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Abstract

This thesis in devoted to the theoretical analysis of the topological and out of equilibrium
properties of one dimensional fermionic systems. After discussing the experimental
signatures of topological bound states in spin-orbit coupled nanowires, we investigate
transport phenomena in Dirac materials heterojunction. Furthermore, by analyzing the
dynamical effects of quantum quenches, we predict the relaxation to a Generalized Gibbs
Ensemble in an integrable system and its observability through optical measurement.
We highlight the role of symmetries in both protecting and hiding topological states in
a quenched topological insulator and we explore how a time dependent magnetic flux
piercing a one dimensional insulating ring can generate a non linear current and dynamical
quantum phase transitions. Finally, we show that the Berry phase of a quenched band
insulator builds up a quantized response to a constant magnetic flux and we prove that
the quantization is dictated by a dynamical topological invariant.
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Chapter 1

Introduction

In this introductory Chapter we shall briefly review the ideas that provide the conceptual
basis for this Thesis. While doing so, we shall also try to yield a bird’s-eye view on recent
achievements and open questions lying at the heart of the present research field, in order
to set this work into a broader perspective. Then, an overview of the content of the Thesis
is reported.

1.1 Topological phases of matter

Topological phases of matter [1, 2, 3, 4] are quantum phases of matter at zero temperature
that cannot be identified by a local order parameter and by Landau’s theory of spontaneous
symmetry breaking [5]. In particular, different topological phases might share the same
symmetries and the same local properties. Nonetheless, they display different global
properties and can be identified and classified according to different topological features.
Moreover, topological phases typically manifest peculiar observable signatures at the
boundaries of the system.

Besides the intrinsic interest in understanding this new paradigm, topological phases are
under the spotlight of research because their peculiar properties might enable technological
breakthroughs, as we briefly describe here below. For definiteness, we shall outline the
essential features of topological phases of matter by focusing on the family of remarkable
phenomena related to the quantum Hall effect.
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1.1.1 The integer quantum Hall effect and symmetry protected
topological phases

In 1980 von Klitzing, Dorda and Pepper [6] reported that when a constant magnetic field
of 18 Tesla is applied perpendicular to the inversion layer of a MOSFET at a temperature
of 1.5 Kelvin, the Hall resistance develops a step like behaviour as a function of the gate
potential and the plateau values are equal to h/e2ν, where ν is an integer. According to our
current understanding the explanation of this phenomenon, called integer quantum Hall
effect, goes as follows [7]. At low temperatures, the conducting electrons in the inversion
layer of the MOSFET can be described as a Fermi gas living in a two dimensional (2D)
world. When a strong magnetic field is applied, the single particle eigenstates then become
the highly degenerate and equally spaced Landau levels (LL) [8]. Thus, if the Fermi energy
is such that an integer number ν of LL are completely filled, the system turns out to
be gapped. However, even though it is in a gapped state, the system is not in a trivial
insulating phase and two remarkable and related features arise. The Hall conductivity
computed in the bulk is found to be equal to σH = νe2/h [9, 10, 11] and deeply related to
a topological invariant [12]. Furthermore, if the analysis is carried on a large but finite
system, ν chiral edge modes propagating along the boundaries appear and are found to be
responsible for the observed experimental results [9, 13, 14].

A couple of comments are thus in order. First, we recognize a clear example of a
characteristic feature of topological phases, the so called bulk-boundary correspondence
[1]: A topological property computed in the bulk (i.e. the Hall conductance) is linked to a
property at the boundaries (i.e. the chiral modes)1. Second, the integer quantum Hall
effect has found important applications almost since its discovery: The measured value
of the Hall conductance is incredibly precise and independent of experimental details. It
has thus been instrumental to improve the accuracy of the International System of Units,
as already suggested in the original paper by von Klitzing et al. [6]. Moreover, chiral
modes are a concrete example of perfectly conducting wires. The possibility to exploit
such perfect wires in electronic devices would drastically reduce energy consumption and
detrimental heating effects, suggesting an immediate application for this topological phase
of matter.

Unfortunately, two massive obstacles prevent the everyday use of the chiral edge modes
of the integer quantum Hall phase as the standard conducting channels for our electronics:
the need for an intense magnetic field and cryogenic temperatures. However, Haldane

1The universal features of such correspondence have now been framed in the language of quantum field
theory anomalies [15]
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proposed in 1988 a model [16] where the same topological phase of the integer quantum
Hall effect at ν = 1 is realized in a 2D lattice system without the need of an external
magnetic field (even though time reversal has to be locally broken). This model, that
describes what is now called a quantum anomalous Hall or Chern insulator phase, would
thus suggest that the first obstacle might be overcome. Yet Haldane’s result was not fully
appreciated2 until the works of Kane and Mele [17, 18] and Zhang and coworkers [19, 20,
21] that in the years 2005-2006 predicted the existence of a novel topological phase called
quantum spin Hall. Differently from the integer and anomalous quantum Hall phase, the
quantum spin Hall phase is stable as long as time reversal symmetry is preserved and thus
belongs to the family of symmetry protected topological (SPT) phases [4]. Roughly, it
can be thought of as two independent copies of the quantum anomalous Hall phase, one
for each spin degree of freedom of the charge carriers, as it exhibits a pair of perfectly
conducting channels at its boundaries, characterized by opposite spin and velocity. These
channels where experimentally observed for the first time in HgTe quantum wells in 2007
[22], giving a boost to the research in topological phases of matter. Still, measurements
had to be performed at very low temperatures (below 10 K) and the reason lies in the
relative weak spin-orbit interaction [23]: The quantum spin Hall phase exists only if the
energy gap is produced by spin-orbit interaction and the gap has to be large compared to
thermal energy in order to have a stable phase. It is thus an ongoing challenge for material
science to find platforms where spin-orbit interaction is enhanced and the topological gap
is sufficiently robust at room temperature3 to enable technological applications [25, 26].
In this respect, impressive theoretical and experimental progress has been made since
2005: Topological insulators, namely the 3D analogue of the quantum spin Hall phase,
were predicted in 2007 [27, 28, 29] and experimentally observed in 2008 [30], the quantum
anomalous Hall phase was finally observed in 2013 [31] and a complete classification of
SPT phases of non-interacting fermions has been recently achieved [3].

1.1.2 The fractional quantum Hall effect and topologically or-
dered phases

We can now leave these impressive developments and go back to 1982 in order to follow
the evolution of a different, yet related, research area. Once again, the starting point is the

2It is interesting to notice that, according to the Scopus database, Haldane’s paper was cited 53 times
in the years 1989-2004 and 2987 times in the years 2005-2020

3A room temperature observation of the integer quantum Hall effect was instead reported in 2007 by
exploiting a single layer of graphene [24], yet an intense magnetic field was needed.
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quantum Hall effect. Indeed, in 1982, Tsui, Stormer and Gossard [32], by performing Hall
measurements in very clean samples, reported the existence of an additional plateau in the
Hall conductance at filling fraction ν = 1/3. This was the first experimental realization of
a fractional quantum Hall phase. While the integer quantum Hall phase, as well as all the
other topological phases that we have described until now, can be understood in terms of
non-interacting fermionic quasi-particles, the gap that stabilizes the fractional Hall phase
is due to the electron-electron interactions, that break the extensive degeneracy of partially
filled LL. Moreover, the quasi-particle excitations above the ν = 1/3 fractional quantum
Hall ground state are quite peculiar: They carry 1/3 of electric charge, as first theoretically
understood by Laughlin [33] 4, and obey fractional statistics [36, 37], providing the first
experimental evidence of anyonic particles [38, 39, 40]. In particular, since such Laughlin
quasi-particles are well localized in real space and the energy of the system does not
depend on their relative position (as long as they are sufficiently far apart), one can (at
least in principle) adiabatically exchange two of them. Upon this adiabatic operation, the
wave function of the entire system is found to acquire a non trivial phase e∓iπ/3 (the sign
corresponds to the clockwise/anti-clockwise braiding of the two quasi-particles) that is
neither the one characteristic for bosons, i.e. +1, nor the one characteristic for fermions,
i.e. −1. Nonetheless, the exchange of two quasi-particles can be accounted for by a single
phase, thus the anyons of the ν = 1/3 fractional quantum Hall phase are called Abelian5.

However, after the first discovery by Tsui et al., it has been found that many other
stable phases at different fractional fillings exist and some of them are believed to support
even more exotic quasi-particles excitations. For instance, in the ν = 5/2 fractional
quantum Hall phase, experimentally discovered in 1987 [43], the excited state consisting
of a given number of quasi-particles fixed in well defined and separated positions is not
described by a unique wavefuntion [44]. Because of this degeneracy, upon a braiding of two
quasi-particles, the wavefunction of the system can transform according to a non trivial
unitary matrix and the anyons are thus called non-Abelian [45]6.

From our current understanding [4], all the fractional quantum Hall phases belong to
the class of topological phases displaying topological order. At variance with SPT phases,
topologically ordered phases are not protected by any symmetry and, besides supporting

4A direct observation of the fractional charge was instead reported in 1997 by two independent groups,
exploiting shot-noise measurements through a quantum point contact [34, 35]

5A direct observation of this Abelian anyonic statistics was recently reported [41], complementing
indirect observations based on shot-noise measurements [42]

6Evidence of the fractionally charged quasi-particles of the ν = 5/2 quantum Hall phase, believed to
carry a quarter of the electron charge, was reported in 2008, by similar means of the 1997 experiments
[46].
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anyonic excitations, have very peculiar properties such as ground state degeneracy on a
toroidal geometry [11, 47] and long-range entanglement [48, 49].

1.1.3 Topological quantum computation and Majorana zero modes

Interest in non-Abelian anyons was further spurred by Kitaev who, in 1997, pointed out
that a universal quantum computer could be realized by encoding and processing quantum
information in the braiding of non-Abelian anyons [50]. Kitaev’s proposal followed shortly
after the ground breaking work by Shor [51], who proved that quantum computation can
outperform its classical counterpart in some specific tasks and kickstarted the “quantum
computer rush”. Shor had also proven in 1996 that quantum computation can be performed
fault-tolerantly [52], i.e. in the presence of slightly imperfect logical operations and some
degree of decoherence, however Kitaev noticed that the precision needed for a robust
quantum computation was unmatched in any known platform and suggested a novel
approach that, in his words, “is fault-tolerant by its physical nature” [50]. Indeed, even
though it is an unsolved challenge to experimentally control non-Abelian anyons7, the
power of Kitaev’s proposal is believed to lie in the robust topological protection of quantum
information. The idea goes as follows: As long as anyons are stable and their positions
under control8, it is extremely unlikely that information gets spoiled by some noise, since it
should be strong enough to unbraid the anyons. Moreover, all the information is encoded in
states that are energetically degenerate, preventing unwanted dephasing. For these reasons,
the information stored in the topological braiding patterns is believed to be immune to
decoherence and the field of topological quantum computation has been growing ever
since [56].

Moreover, three years later, Kitaev proposed “another (theoretically, much simpler)
way to construct decoherence-protected degrees of freedom in one dimensional systems”
[57]. This second proposal is based on a 1D SPT phase, protected by charge conjugation
symmetry and known as topological superconductive phase. We can sketch the model in

7Two independent groups recently reported the first observation of the topologically ordered phase
predicted to appear in the ground state of the toric code (or surface code - depending on the topology
of the underlying two dimensional lattice). Such model, first introduced by Kitaev in his 1997 paper
[50, 53], is exactly soluble and supports topological order and anyonic excitations. Yet, the anyons are
Abelian and cannot provide a physical basis for universal quantum computation. The result is nevertheless
remarkable and it is interesting to notice that the two experiments were based on very different physical
platforms, namely a quantum processor composed of 25-31 superconducting qubits [54] and an array of
19-24 optically controlled neutral atoms [55].

8Within an implementation with fractional quantum Hall phases, the standard proposal would be to
use an STM tip as a tool for localizing and moving anyons around [56].
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order to introduce the useful concept of Majorana operators and gain a concrete example of
a SPT phase. The system is composed by spinless fermions hopping on a 1D lattice, in the
presence of superconducting pairing (induced by proximity with a bulk superconductor).
Following Kitaev’s original paper, the Hamiltonian reads

H =
∑

j

[
−w(a†

jaj+1 + a†
j+1aj)− µ

(
a†

jaj −
1
2

)
+ ∆ajaj+1 + ∆∗a†

j+1a
†
j

]

where w is the hopping amplitude, µ is the chemical potential and ∆ is the superconducting
pairing. Exploiting the Bogolioubov-De Gennes formalism [58] and periodic boundary
conditions (PBC), the Hamiltonian can be diagonalized and the excitation spectrum in
the bulk is found to be ϵ(q) =

√
(2w cos q + µ)2 + 4|∆|2 sin2 q, for −π ≤ q ≤ π. Thus,

supposing that |∆| ̸= 0 and w > 0, we can treat µ as a parameter and identify three
gapped phases, namely µ < −2w, |µ| < 2w and µ > 2w, separated by two critical points
at µ = ±2w. Even though all three phases share the same symmetries, it turns out that
the phase realized for |µ| < 2w is topologically non-trivial, while for |µ| > 2w the system is
in the same, topologically trivial, phase. This topological distinction can be understood by
computing a Z2 topological invariant out of the single particle bulk eigenstates with PBC
[3], however the peculiar nature of the topopological phase becomes manifest by simply
looking at the properties of the system with open boundary conditions (OBC). Indeed, we
can sit in a specific point of the topological parameter region9, namely µ = 0, w = |∆|,
and write the Hamiltonian in terms of Majorana operators. These can be formally defined
as

c2j−1 = eiθ/2aj +H.c. c2j = eiθ/2aj −H.c.
i

j = 1, . . . , L

where eiθ = ∆/|∆| and L is the number of sites of the chain. By construction, these
operators are Hermitian, satisfy the algebra {cl, cm} = 2δlm, for l,m = 1, . . . , 2L, and
are such that i

2c2j−1c2j = a†
jaj − 1

2 . With this choice, the Hamiltonian reads H =
iw
∑L−1

j=1 c2jc2j+1 and, by simply re-arranging the Majorana operators into a new set of
fermionic modes ãj = 1

2(c2j + ic2j+1), for j = 1, . . . , L− 1, the Hamiltonian turns out to
be in a diagonal form H = 2w∑L−1

j=1

(
ã†

jaj − 1
2

)
. At first sight, we have just consistently

recovered the spectrum of bulk excitations, previously computed with PBC. Yet it seems
that there is a missing eigenmode, since j runs from 1 to L−1 only. In fact, for the present
choice of parameters, the Majorana operators c1 and c2L do not appear in the Hamiltonian.
Therefore, we can define a boundary fermionic mode aB = 1

2(c1 + ic2L) and conclude that
9We are (legitimately) assuming that the topological property of the system cannot change unless a

critical point is touched.
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the system with OBC has two degenerate ground states |ψ0⟩ and |ψ1⟩. Both states host
zero bulk excitations, i.e. ãj|ψ0,1⟩ = 0∀j = 1, . . . , L − 1, however |ψ1⟩ hosts a fermion
in the boundary mode while |ψ0⟩ does not. These two states are perfectly degenerate,
since there is no cost in placing a fermion in the boundary mode. Moreover, even though
we picked a peculiar point in the parameter space, one can show that the zero energy
boundary mode survives in the whole topological region |µ| < 2w of an infinite chain10.
In contrast, the chain does not sustain a boundary mode when the system lies in the
topologically trivial phase. A close look at this zero energy eigenmode reveals its peculiar
nature: It has support half on one end of the chain and half on the opposite end. We can
thus think about it as a fermionic excitation split into two, physically separated, Majorana
modes. Since the boundary mode has vanishing energy, the underlying Majorana modes
are commonly known as Majorana zero modes (MZMs).

We are now in the position to understand Kitaev’s argument as to why the doubly
degenerate ground state of a (sufficiently long) topological superconducting chain realizes
“a reliable quantum memory” [57]. Since |ψ0⟩ and |ψ1⟩ are degenerate there is no dephasing
error. Moreover, since fermionic parity is preserved in the model, the state of the system
cannot flip between |ψ0⟩ and |ψ1⟩, unless a bulk excitation is simultaneously produced -
and this event is suppressed by the bulk excitation gap11.

Notwithstanding many works devoted in the early 2000s to topological quantum
computation and to the search for MZMs in different platforms [56, 64], the theoretical
importance of this model was not fully recognized until 201012, when two different groups
[65, 66] independently proposed to realize a 1D topological superconductive phase in a
semiconductor-superconductor heterostructure, de facto proposing a concrete implemen-
tation of Kitaev’s model [67]. The success of this proposal lied in the (theoretically)
simple set up. Indeed, all the elementary building blocks were readily available at the
time: a ballistic semiconductor nanowire with strong spin-orbit interaction, a tunable
magnetic field - together with some gates controlling the chemical potential of the nanowire
- and a conventional superconductor. A huge effort was thus devoted to experimentally
demonstrate the realization of topological superconductivity in these platforms, together

10The degeneracy between |ψ0⟩ and |ψ1⟩ is lifted for a finite chain, however the energy gap is exponentially
suppressed with system size

11This analysis, performed for an isolated system, has to be double checked against more realistic
situations, where the effects of a bath are taken into account. Tunneling processes [59] from the environment
may in fact spoil the system’s fermionic parity and the qubit coherence [60, 61, 62]. At the same time, if
under control, they might provide a useful tool to manipulate and measure the state of the qubit [63].

12According to the Google Scholar database, there are 21 entries citing Kitaev’s paper in the years
2000-2009 and 3010 entries citing it in the years 2010-2019.
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with the appearance of MZMs at the two ends of the wire. Just two years later, in 2012,
the first positive experimental report appeared [68]. Moreover, while Kitaev originally
proposed his model only as a decoherence-free quantum memory, Alicea et al. [67] proposed
in 2011 to use a network of wires as a platform where multiple MZMs could be hosted
and information processed in their braiding. A network of nanowires thus emerged as
one of the most promising platforms for realizing a topological quantum computer. The
scientific quest then merged with an entrepreneurial one in 2016, when Microsoft hired
Leo Kouwenhoven and Charles Marcus, leading experimentalists in the field, in order to
unambiguously prove the existence of MZMs and realize a scalable quantum computer [69].
At the same time, more and more refined theoretical schemes were proposed, addressing
possible sources of errors and simplifying the physical mechanisms needed to process
information [70]. Nonetheless, the experimental demonstration of MZMs turned out to
be difficult to establish conclusively, as many of their experimental signatures can be
mimicked by different phenomena [71]. Yet, important optimistic results were claimed at a
rapid pace [72, 73, 74, 75, 76] until 2021, when Ref.[75] was retracted and the authors had
to apologize for “insufficient scientific rigour”. Shortly after, Ref.[74] was retracted too
and an Editorial Concern was expressed for Ref.[76]. The last episode of this open quest
is brand new, since in 2022, after a change in the experimental strategy, the Microsoft
Team announced that success in the identification of topological superconductivity was
eventually reached [77]. It is almost obvious to add that this claim is still under debate
[78].

1.2 Quench dynamics

In the previous Section we dealt with many-body quantum systems at equilibrium, possibly
in their ground state(s) at zero temperature, or with a finite number of excitations at
most. Moreover, the dynamical processes involved, say, in the braiding operations of
anyonic excitations were treated in the adiabatic limit, hence effectively described in an
equilibrium framework. Now, we would like instead to explore the behaviour of many-body
quantum systems far from an equilibrium state. In its full generality this is a formidable
task and, in order to make some progress, we need to focus on some specific protocols used
to generate the out of equilibrium configuration. In this section we briefly review one of
them, namely the quantum quench protocol [79, 80, 81]. In its most essential formulation,
a quantum quench can be stated in very simple terms: an isolated system is prepared
in the ground state |ψi⟩ of a given initial Hamitonian Hi and then, at time t = 0, the
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Hamiltonian is suddenly changed to a different final one Hf , e.g. by some abrupt change
of parameters. Thus, assuming that the two Hamiltonians do not commute, the system
is suddenly kicked out of equilibrium and its state has a non-trivial unitary evolution
dictated by |ψ(t)⟩ = exp{−iHf t/ℏ}|ψi⟩ for t ≥ 0. This sudden quench protocol, and
slight variations thereof, has been used as a theoretical tool to investigate the relaxation
dynamics in many-body isolated quantum systems at least since the 1970s [82, 83, 84],
and it became a flourishing area of research in the early 2000s [85, 86, 87] mainly due
to the experimental advances in ultra-cold atoms [88]. Indeed, some ground breaking
experiments in 2001-2002 [89, 90, 91] showed for the first time the impressive potential of
optical lattices in manipulating the properties of Bose-Einstein condensates, in particular
proving the experimental capability to tune the system across a superfluid-Mott quantum
phase transition [90, 92]. Even though this first generation of experiments was mainly
concerned with the exploration of the equilibrium phase diagram of the system, the
possibility to tune the Hamiltonian parameters in time opened the door to the analysis of
dynamical phenomena. In fact, besides the possibility to control the lattice geometry and
to tune atom interactions by Feshbach resonances [93], the long coherence time and almost
perfect isolation from the environment designated ultra-cold atomic gases as perfect set-ups
to study the unitary evolution after a quantum quench [94]. It is worth pointing out,
though, that ultrafast pump-probe experiments on solid state devices witnessed amazing
experimental advances in the same years [95, 96], offering an alternative platform for
studying quantum quenches on different time scales. Intense and ultrafast laser pulses
can surgically excite some desired degrees of freedom, while their dynamics can be probed
shortly after, when the target degrees of freedom are still effectively decoupled from the
environment and display a unitary evolution [97, 98]. Even though short-lived, it is thus
possible to generate and observe quenched states with highly non trivial properties, such
as, e.g., high temperature superconductivity [99, 100].

1.2.1 Thermalization in isolated quantum systems

With the aid of ultra-cold atoms some fundamental and venerable questions could be
experimentally probed, such as the thermalization mechanism for isolated many-body
quantum systems [101, 102, 103, 104, 105]. Indeed, a conundrum emerges in the attempt to
explain the undoubted success of thermal states in the description of many-body quantum
systems: If we consider an isolated system, i.e. we include in our description all the
degrees of freedom of the thermodynamic universe, and we initialize it in a pure, out of
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equilibrium state, e.g. with a quench protocol, how can it reach a thermal state, given
that the dynamics is linear and unitary?

Already 1929, Von Neumann proposed a proof of the ergodic theorem for quantum
mechanical systems [106], however the research on the subject gained momentum only in
2008, after the numerical simulations by Rigol, Dunjko and Olshanii [107] that explicitly
demonstrated the approach to thermalization (for a few body observables) of a quenched
generic system, providing numerical evidence to support the eigenstate thermalization
hypothesis (ETH) [108], proposed a decade earlier by Deutsch [109] and, independently,
Srednicki [110]. In a nutshell, the ETH states that the expectation values of a local
observable over the energy eigenstates of a generic many-body Hamiltonian are a smooth
function of the energy, i.e. ⟨ψE|Ô|ψE⟩ = O(E) with O(E) a smooth function. Therefore,
the expectation value of any local observable on any (reasonable) quenched state converges
in time to the expectation value over a properly defined microcanonical ensemble. Indeed,
the initial state can be expanded on the final energy eigenstates |ψi⟩ = ∑

E ci(E)|ψE⟩,
where the normalized coefficients ci(E), i.e. ∑E |ci(E)|2 are typically not negligible only on
a finite energy window ∆E. Then, because of dephasing and the absence of degeneracy for
a generic Hamiltonian, the long time expectation value of any local observable converges to
the diagonal ensemble prediction ⟨Ô⟩(t) −−−−→

t→+∞

∑
E |ci(E)|2O(E). Moreover, the latter has

to be equal to the microcanonical expectation value ∑E∈∆E |∆E|−1O(E). Indeed, since
O(E) is a smooth function of energy, one can very well approximate ∑E |ci(E)|2O(E) ≈
O(Ē) ≈ ∑E∈∆E |∆E|−1O(E), where Ē is the central value of the energy window ∆E. We
can thus conclude that thermalization happens at the quantum level because each single
energy eigenstate of a generic many-body Hamiltonian has local properties similar to the
ones of a thermal state.

Additionally, assuming the ETH to work for any local observable, we can find an
elegant solution to the initial conundrum: We can focus on a finite subsystem A of the ther-
modynamic universe U and define the reduced density matrix ρA(t) = TrB{|ψ(t)⟩⟨ψ(t)|},
by tracing out all the degrees of freedom of the complement subsystem B = U − A. The
expectation value of all observables having support in A can then be computed via the
reduced density matrix ρA(t), according to ⟨OA⟩(t) = TrA{OAρA(t)}. Therefore, since the
ETH guarantees that the expectation value of all local observables in A converges in time
to the equilibrium value, we can conclude that the state of subsystem A, encoded in the
reduced density matrix ρA(t), converges in time to a thermal equilibrium state. Since
this result holds for any subsystem A we have solved the conundrum: Even though the
state of the whole thermodynamic universe remains pure, its long time local properties -
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that are the only meaningful one in a thermodynamic system - are captured by a mixed
thermal state. The local thermal entropy is thus only due to the entanglement entropy,
dynamically accumulated, between the subsystem and the rest of the universe [111].

Yet, even though thermalization is expected to occur in a generic system, the time
scales necessary for such equilibration cannot be straightforwardly derived from the ETH
and non-trivial phenomena can occur, such as prethermalization [112, 113, 114, 115, 116,
117], when the system reaches, on a fast time scale, a long lived non thermal state, before
thermalization is eventually approached at much longer times.

1.2.2 Preventing thermalization

Once the general mechanism for thermalization in a many-body quantum system is
understood, one may wonder whether there are ways to prevent it13. For instance, it
would be a disaster for quantum computation if the quantum information locally stored
in an array of qubits were always irremediably spread in the whole system, due to an
exponentially fast thermalization. Hence, besides exploring schemes where quantum
information is stored in a non local fashion, such as in the braiding patterns of topological
quantum computation, a lot of work has been devoted to characterizing systems where
information is locally preserved.

Integrable models were the first class of systems able to preserve an extensive amount
of local information that got under the spotlight of research [119, 120, 121]. The historical
starting point is the 2006 experimental work by Kinoshita, Wenger and Weiss [118], where
trapped 1D Bose particles, prepared in an out of equilibrium state, “do not noticeably
equilibrate even after thousands of collisions”. Indeed, the authors further add that “Our
results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with
point-like collisional interactions is integrable”. This experimental work stimulated a lot of
theoretical effort and, just a year later, Rigol, Dunjko, Yurovsky and Olshanii theoretically
addressed the relaxation dynamics in integrable systems, proposing an interpretation
in terms of a generalized Gibbs ensemble (GGE) [122]. Given that integrable systems
possess and infinite number of local constants of motion Îα in convolution [Îα, Îβ] = 0, the
correct statistical ensemble capturing their long time behaviour has to take all these local
conserved quantities into account. Therefore, Rigol et al. proposed a relaxation towards a
GGE density matrix ρGGE ∝ exp{−∑a λαÎα}, where the Lagrangian multipliers λα are

13Historically, it was somehow the other way around: The failure of thermalization demonstrated in the
experimental work by Kinoshita et al. [118] prompted theoretical, as well as experimental, investigations
on the thermalization mechanism.
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fixed by the expectation values of the constants of motion on the initial state. Even though
the precise identification of the correct conserved charges might not be trivial [123, 124,
125, 126], many theoretical and numerical works have established the GGE as the correct
description for the late time properties of integrable systems, at least in a prethermal
regime [120, 115], i.e. as long as the integrability-breaking perturbations, that unavoidably
occur in any realistic implementation, can be neglected [127]. Yet, finding experimental
evidence of relaxation towards a GGE is demanding and very sophisticated measurements
were employed in the only successful detection reported in 2015 [128].

Another class of systems where thermalization is believed to fail and information
is believed to be locally retained is the one characterized by many-body localization
(MBL) [129, 130]. The conceptual starting point is, apparently, very far from integrability,
as it involves the highly disordered Anderson insulator [131, 132, 133, 134]. Indeed,
it is well known, since the 1958 work by Anderson [131], that any finite amount of
disorder in a 1D system of non-interacting particles is enough to exponentially localize
the eigenfunctions and turn the system into an insulating phase. Less conclusive results
were known about the robustness of localization against particle interactions and in the
mid 2000s some seminal papers provided strong evidence in support of if [135, 136, 137],
giving birth to the research on MBL. Systems supporting MBL are believed to display
an infinite number of local conserved quantities, that can be roughly understood as
the generalization, to the interacting case, of the number operators associated to the
single particle localized eigenstates of an Anderson insulator. Thus, an unexpected link
between systems displaying MBL and integrability can be formulated and the failure of
thermalization in both systems can be understood on similar grounds [138]. Even though
evidence for MBL was experimentally reported in a quasirandom optical lattice in 2015
[139], recent works have questioned whether MBL is a stable phase in the thermodynamic
limit and a conclusive answer has not been found yet [140].

Finally, in the last five years, many other mechanisms preventing thermalization, at
least on a finite time window, have been proposed and discovered, such as confinement of
the quasi-particle excitations [141, 142, 143], quantum many-body scars and Hilbert space
fragmentation [144, 145, 146, 147, 148, 149, 150, 151, 152], local symmetries in lattice
gauge theories [144, 153] and kinetically constrained models [154, 155, 156].
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1.2.3 Topology out of equilibrium

We started this Chapter by focussing on the equilibrium (zero temperature) properties
of topological phases of matter. However, having by now some acquaintance with non
equilibrium protocols, it becomes natural to elaborate on topological features beyond the
equilibrium setting. For instance, with applications in topological quantum computing in
mind, a first step might involve the discussion of diabatic corrections in braiding operations
[157, 158, 159, 160, 161, 162], since they limit the speed of computations and they may
pose severe limitations to the stability and efficiency of the process. Yet, given that in the
last ten years many topological models have been successfully simulated with ultra-cold
atoms in optical lattices [163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174] one is
allowed to take even more radical approaches and ask about the behaviour of topological
phases in quench protocols. In particular, what happens if a system is quenched between
two topologically different phases? On general ground, since time evolution is a local
unitary transformation and any two gapped state connected by such a transformation
belong to the same phase [175], bulk topological invariants cannot change after a quantum
quench [176, 177, 178, 179]. The same argument can also be understood from a different
perspective: While local order parameters are expected to thermalize after a quench - or,
at least, to have a non trivial relaxation -, topological invariants, being global features,
can reasonably evade this fate. Nonetheless, the standard connections between topological
invariants and physical properties of the system, such as Hall response, are not guaranteed
to hold in a dynamical framework [180, 181, 182, 183] and, if the system has boundaries,
topological edge modes might not be dynamically stable [184, 178, 185]. Furthermore, if
the topological phase is of the SPT kind, even bulk topological properties can undergo a
sudden melting [186, 187]. Indeed, a general mechanism, recently proposed by McGinley
and Cooper, can mine the dynamical robustness of topological phases [188, 189]. The idea,
dubbed “dynamically induced symmetry breaking” is very simple, though far reaching: An
antinunitary operator, e.g. time reversal, that commutes with a given Hamiltonian (and
thus is a symmetry of the system) does not commute with the time evolution operator
generated by the same Hamiltonian, because of the complex exponential. Therefore, even
if both the initial state of the system and the quenched Hamiltonian are symmetric under
an antinunitary operator, the state can - and in general will - be no longer symmetric at
later times. Hence, whenever a topological phase is protected by an antiunitary symmetry,
its robustness can get immediately spoiled after the quench [190].
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1.3 Organization of the Thesis

The rest of the Thesis is organized in two parts. In the first half we will deal with systems
at or close to equilibrium.

In particular, in Ch.2 we will discuss equilibrium properties of semiconductor nanowires
with strong spin-orbit coupling. We will show that some observable features, known as
orthogonal spin density peaks - originally proposed as unique fingerprints of MZMs - can
be mimicked by topologically trivial nanowires. Indeed, such peculiar spin density peaks
might appear as a consequence of an inhomogenous spin-orbit interaction, without the need
of any superconductive pairing. Additional caution is thus needed in the interpretation of
experimental results about MZMs. Furthermore, we will thoroughly discuss the existence
of topologically trivial bound states that arise as a consequence of the interplay between
an inhomogeneous spin-orbit profile and an applied magnetic field.

In Ch.3 we will instead propose a different application of spin-orbit coupled nanowires
by studying a transport phenomenon dubbed “Dirac paradox”. Similarly to the most
famous Klein-paradox [191, 192], describing massless Dirac particles that cannot be trapped
by a scalar potential because of their helical nature, the Dirac paradox involves massless
Dirac modes that, due to their helicity, can neither be reflected nor transmitted across
an interface. After discussing the paradox in its full generality, we will show that, by the
same token the Klein paradox has found a direct test in a solid state platform [193], the
Dirac paradox could be observed with the aid of spin-orbit coupled nanowires, providing a
novel insight into helical states and their properties.

Then, in the second half of the Thesis, we will discuss different realizations of quench
dynamics.

In Ch.4 we will study a local quench, i.e. a sudden application of a local attractive
potential, on a 1D Fermi gas. Focusing on an implementation with semiconducting
nanowires, we will show that the system quickly relaxes to a GGE distribution that can
be detected by measuring the absorption spectrum of the system, similarly to what is
routinely done in pump-probe experiments. Indeed, the out of equilibrium distribution
approached after the quench entails a population inversion that generates a negative
absorption, i.e. a stimulated emission of radiation, in a well defined photon frequency
range, providing a direct evidence of the GGE state.

In Ch.5 we will instead analyze the quench dynamics of a paradigmatic 1D topological
insulator, namely the Su-Schrieffer-Heeger (SSH) model, recently realized in ultra-cold
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atoms platforms. We will first show a general theorem: Because of charge conjugation
symmetry, the expectation values of all real-space local observables are constrained to
their equilibrium values, even when a quench is performed between the two, topologically
different, phases of the model. In particular, this implies that no real space signatures of
the topological edge modes appear after a quench. However, we will subsequently suggest
different strategies to evade the hypothesis of the theorem and observe the dynamical
formation/melting of the edge modes.

In Ch.6 we will focus again on the SSH model, yet with a different perspective. In fact,
we will study the effects of a flux quench, i.e. a sudden suppression of the magnetic flux
threading a ring-shaped 1D system, on an insulating state. We will show that, despite
a vanishing Drude weight and a finite commutator between the Hamiltonian and the
current operator, the flux quench induces a finite stationary current in the SSH model,
that scales cubically with the initial flux. Moreover, even though the system is always
gapped, the flux quench may also induce dynamical quantum phase transitions in the
system, i.e. singularities in the Loschmidt echo.

Lastly, in Ch.7 we will show how a novel dynamical notion of topological phase emerges
in a quench protocol. While only SPT phases are allowed in 1D systems at equilibrium, we
will show that a dynamical topological invariant, that is not symmetry protected, naturally
arises in a 1D quenched system when the space-time scaling limit is taken, namely when
both time and system size tend to infinity while their ratio is kept constant. Furthermore,
such topological invariant leaves a clear signature in the time dependent Berry phase of
the system: when a constant magnetic flux pierces the system, the Berry phase develops a
staircase behaviour in time, whose plateaus are in a one to one correspondence with the
dynamical topological invariant, realizing a dynamical analog of the integer quantum Hall
phases.

A summary of the main results of the Thesis is finally reported in Ch.8, together with
an outline of possible future developments.



Chapter 2

Majorana-like localized spin density
without bound states

The content of this Chapter is based on the published papers [194, 195]

2.1 Introduction

While in theoretical models a topological phase is characterized by a well specified range of
parameters in the Hamiltonian, when it comes to finding an experimental evidence of such
phase in a given material, the challenging question is “how to distinguish signatures of a
topological from a trivial bound state?” As a general criterion, a topological bound state
is stable to perturbations that do not close the gap of the topological phase, while a trivial
bound state is not. However, because in a given experimental setup the actual parameter
range characterizing the topological phase is not known a priori and/or may be relatively
narrow, the search for such stable signatures is in general not a trivial task. In Nanowires
(NWs) with strong Rashba spin-orbit coupling (RSOC) exposed to a magnetic field and
proximized superconducting films, the presence of Majorana quasi-particles (MQPs) has
been predicted[66, 65]. Although various experimental signatures compatible with such
exotic states have been observed[68, 196, 197, 198, 199, 73, 72, 200], a smoking gun
evidence has not been found yet. Indeed it has been pointed out that some observed
data, like the zero bias peak in the conductance [68, 197, 198, 200], may also be caused
by Kondo effect [201], disorder [202, 203] or inhomogeneities [204]. This controversy has
recently spurred further investigations, which pointed out that in the topological phase
also trivial bound states may be present [204, 205, 206, 207, 208, 209, 210]. Furthermore,
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a quite recent analysis [211], carried out on a nanowire with homogeneous RSOC and
with inhomogeneous magnetic field, showed that at the interface between two magnetic
domains with opposite magnetization directions, bound states appear that are unrelated
to the Jackiw-Rebbi topological states.

A more clear evidence of topological bound states requires a spatially resolved analysis.
This was done, for instance, in ferromagnetic atomic chains deposited on a superconductor
[212], where the combined use of spatially resolved spectroscopic and spin-polarized
measurements showed that zero-bias conductance peaks are due to states localized at the
ends of the chain. Yet, the smoking gun enabling one to identify such states with MQPs is
their disappearance in the normal state, when superconductivity is suppressed. As far as
NWs are concerned, it has been pointed out that MQPs in the topological phase exhibit
an orthogonal spin density, i.e., a component perpendicular to both the magnetic and
spin-orbit fields, localized at the NW ends [213, 214, 215]. In order to identify a topological
phase in a given system, it is thus particularly important to understand whether and when
the topologically trivial phase may exhibit observables that are spatially localized at the
interfaces and that may mistakenly be interpreted as a topological signature. So far, this
aspect has been analyzed far less than the topological bound states.

In this Chapter we aim to address this issue. Specifically, we consider the case of a
RSOC NW exposed to a uniform magnetic field, and we analyze the spatial profile of
charge and spin densities at the interface between two regions with different values of
RSOC, as sketched in Fig.2.1(a). Such type of interfaces emerge quite naturally in any
realistic setup, since metallic electrodes or gates are typically deposited on top of a portion
of the NW, thereby altering the underneath structure inversion asymmetry characterizing
the very RSOC. Furthermore, the recent advances in various gating techniques[216, 217,
218, 219, 220, 221], including gate-all-around approaches, allow a large tunability of the
RSOC constant, possibly even changing the RSOC sign [222, 223, 224, 225, 226, 218, 227,
228, 229, 230, 231, 232, 233].

Importantly, on both sides of the interface, the NW that we consider is in the topolog-
ically trivial phase, since no superconducting coupling is included. Furthermore, as the
gap depends only on the strength of the magnetic field, it never closes at the interface if a
uniform magnetic field is applied. Thus, under these conditions the existence of bound
states of topological origin is ruled out a priori.
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Our analysis unveils various noteworthy aspects. In the first instance, a bound state
may appear at the interface. Importantly such interface bound state, while being not
topological, is not a customary interface state merely arising from the inhomogeneity of
the RSOC. Indeed it can only exist if an external magnetic field is applied orthogonally
to the RSOC field, and if its intensity fulfills specific conditions with respect to the two
spin-orbit energies characterizing the two NW regions. The conditions of existence and
the robustness of the bound state are analyzed in details in terms of different values of
RSOC across the interface, including the smoothening length characterizing the crossover
between these two values and the presence of a magnetic field component parallel to the
RSOC field direction.

Secondly, we find for realistic values of chemical potential and temperature that the
orthogonal spin density exhibits a peak pinned at the interface. Despite the NW is in the
topologically trivial phase, such peak is relative robust to other parameter variations. In
fact, we show that it persists even when the bound state is absent, indicating that in such
case also the continuum states locally modify their spin-texture to maintain such effect.
A similar phenomenon, where bulk states reorganize themselves to compensate for the
existence of edge modes, will be described for the Su-Schrieffer-Heeger model in Ch.5.

Furthermore, by considering the case of two interfaces, we show that an additional
kind of bound states may emerge, only due to a non monotonic RSOC profile. However,
independently of the presence of either kinds of bound states, the peaks of the orthogonal
spin density are opposite at the two ends of the inner NW region, similarly to what occurs
for MQPs in the topological phase.

These results imply that a localized orthogonal spin-density can neither be taken as a
unique signature of a MQP, nor of a topologically trivial bound state. However, we argue
that it can represent a useful way to indirectly detect spin current differences. Indeed, while
the detection of a bulk equilibrium spin current, which emerges in a homogeneous NW
from the correlations between spin and velocity induced by the magnetic and spin-orbit
fields [234], has been elusive so far, any variation of equilibrium spin current occurring at
the interface is precisely related to the orthogonal spin-density peak predicted here.

The Chapter is organized as follows. In Sec. 2.2 we introduce the model and describe
the involved energy scales. In Sec. 2.3 we present the results concerning the interface
bound state, discussing first the case of a sharp RSOC interface profile and a magnetic
field applied along the NW axis. Then we analyze the more realistic case of a finite
smoothening length and we address the effect of a magnetic field component parallel to the
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spin-orbit field direction1. In Sec. 2.4 we investigate the spatial profile of the charge and
spin densities, and analyze specifically the bound state contribution to them. In Sec. 2.5
we discuss the origin of the spin density profiles in terms of the equilibrium spin current
induced in the system by the interplay of the RSOC and the magnetic field. In Sec. 2.6 we
extend our analysis to the case of two interfaces, we show that a different kind of bound
states might emerge and we demonstrate how a magnetic field can be used to tune the
charge equilibrium properties of the system. Then in Sec. 2.7 we propose some possible
experimental realizations and, finally, in Sec. 2.8 we draw our conclusions.

2.2 The model for a SOC interface

2.2.1 Nanowire Hamiltonian

Let x denote the longitudinal axis of a NW deposited on a substrate. The NW is
characterized by a RSOC, which is assumed to take two different values αL and αR on
the left and on the right side of an interface, respectively [see Fig.2.1 (a)-(b)]. This
inhomogeneity in the RSOC profile α(x) may result e.g. from the presence of a gate
covering only one portion of the NW, or from two different gate voltage values applied to
top/bottom gates or to the substrate. The crossover between αL and αR occurs over a
smoothening length λs. Denoting by z the direction of the spin-orbit field hSO, i.e., the
effective “magnetic” field generated by the RSOC [see Fig.2.1(a)], the NW Hamiltonian in
the effective mass approximation [235] is

Ĥ =
∫

Ψ̂†(x)H(x) Ψ̂(x) dx , (2.1)

where
H(x) = p2

x

2m∗σ0 −
{α(x), px}

2ℏ σz − h · σ . (2.2)

Here Ψ̂(x) = (Ψ̂↑(x) , Ψ̂↓(x))T is the electron spinor field, with ↑, ↓ corresponding to spin
projections along z, px = −iℏ∂x is the momentum operator, m∗ the NW effective mass, σ0

the 2× 2 identity matrix, and σ = (σx, σy, σz) are the Pauli matrices. For definiteness, we
take the location of the interface at x = 0. The anticommutator in Eq.(2.2) is necessary
since px does not commute with the inhomogeneous RSOC α(x) [236, 237]. The last term

1Note that a component of the magnetic field along a direction orthogonal to both the nanowire and
the spin-orbit field can be re-absorbed in the magnetic field component along the nanowire, via a global
unitary transformation. We can thus set it to zero without loss of generality.
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in Eq.(2.2), where h = gµBB/2, describes the Zeeman coupling with an external uniform
magnetic field B = (Bx, 0, Bz) applied in the substrate plane, with µB denoting the Bohr
magneton and g the NW Landé factor. It is useful to decompose the magnetic energy vector
as h = hxix + hziz, where hx and hz denote the components parallel and perpendicular to
the nanowire axis x, i.e., perpendicular and parallel to the Rashba spin-orbit field direction
z, respectively [see Fig.2.1(a)]. Although for most of our analysis we shall focus on the
case of the magnetic field directed along the nanowire axis x, we shall also discuss the
effects of the component hz parallel to hSO.

(a)

(b)

(c)

x

z
hR

SO
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Fig. 2.1 (a) Top view of a Rashba nanowire deposited on a substrate: the Rashba effective
magnetic field hSO is directed along z, whereas an actual magnetic field, externally applied in
the substrate plane, has components in the x-z substrate plane. The NW contains an interface
between two regions with different RSOC values. (b) The spatial profile of the RSOC across the
interface of the NW, ranging from the bulk values αL to αR over a smoothening lengthscale λs.
(c) Examples of electronic bands related to the bulks of the two interface sides, the left-hand side
in the Zeeman dominated regime, and the right-hand side in the Rashba-dominated regime.

2.2.2 Energy scales

In order to describe the results about the inhomogeneous RSOC profile at the interface, it
is first worth pointing out the energy scales involved in the problem.
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The homogeneous NW

Let us start by briefly summarizing the case of a homogeneous profile α(x) ≡ α in Eq.(2.2),
for an infinitely long NW. In such case the Hamiltonian (2.2) commutes with px, and the
spectrum reads [234, 236, 237]

E±(k) = ε0
k ±

√
h2

x + (αk + hz)2 , (2.3)

where ε0
k = ℏ2k2/2m∗ is the customary parabolic spectrum in the absence of RSOC and

magnetic field. The spectrum (2.3) describes two bands separated by a minimal gap 2∆Z ,
where the quantity

∆Z = |hx| (2.4)

shall be henceforth called the magnetic gap energy. Moreover, the RSOC α identifies the
spin-orbit wavevector

kSO = m∗|α|
ℏ2 , (2.5)

which characterizes, in the absence of external magnetic field, the two degenerate minima
E(±kSO) = −ESO of the spectrum, where

ESO = m∗α2

2ℏ2 = ℏ2k2
SO

2m∗ (2.6)

is called the spin-orbit energy.

In the case hz = 0, the spectrum (2.3) is symmetric E±(−k) = E±(+k) and two
regimes can be identified: (a) in the Zeeman-dominated regime (∆Z > 2ESO) both bands
have a minimum at k = 0, which takes values Emin

± = ±∆Z , respectively.
(b) in the Rashba-dominated regime (∆Z < 2ESO), the upper band still has a minimum
Emin

+ = +∆Z at k = 0, while the lower band acquires two lower and degenerate minima
Emin

− = −ESO −∆2
Z/4ESO occurring at k = ±kmin, with

kmin = kSO

√
1−∆2

Z/4E2
SO . (2.7)

When a component hz ̸= 0 parallel to the RSOC field is also present, the minimal gap
2∆Z between the two bands occurs at k = −hz/α and the spectrum is no longer symmetric
E±(−k) ̸= E±(+k).



2.2 The model for a SOC interface 22

The eigenfunctions related to the spectrum (2.3) read

ψk±(x) = wk± exp[ikx]/
√

Ω , (2.8)

with Ω denoting the system length. They describe plane waves with spinors

wk− =


cos θk

2

sin θk

2

 wk+ =


− sin θk

2

cos θk

2

 , (2.9)

whose spin orientation n(k) ≡ (sin θk , 0 , cos θk) lies on the x-z substrate plane and forms
with the z-axis an angle θk ∈ [−π, π]. The latter, defined through

cos θk = αk + hz√
(αk + hz)2 + h2

x

sin θk = hx√
(αk + hz)2 + h2

x

, (2.10)

depends on the wavevector k, the magnetic field and the RSOC α. In particular, it is worth
recalling that in the case of a magnetic field along the NW axis (hz = 0) and in the deep
Rashba-dominated regime (∆Z ≪ 2ESO) the states with energy inside the magnetic gap
mimic the helical edge states of the quantum spin Hall effect. Indeed their spin orientation,
determined mainly by the RSOC, is opposite for right- and left-moving electrons, whose
helicity is determined by the sign of the RSOC α. This is precisely the most suitable
regime for the topological phase to be induced by an additional s-wave superconducting
coupling [66, 65, 238, 239] and we will exploit this property in Ch.3 while studying the
Dirac paradox.

The NW with a RSOC interface

When an interface separates two portions of a NW characterized by two different values
αL and αR of RSOC [see Fig.2.1(b)], the momentum px does not commute with the
Hamiltonian characterized by an inhomogeneous α(x)-profile, and the spectrum cannot
be labelled by a wavevector k. Before attacking the inhomogeneous problem in the next
section, it is worth identifying the energy scales and the possible scenarios one can expect
in the interface problem from a preliminary analysis of the bulks of the two regions across
the RSOC interface. To begin with, the two bulk values αL and αR of the two NW regions
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lead to two spin-orbit energies (2.6)

ESO,ν = m∗α2
ν

2ℏ2 ν = R/L . (2.11)

Without loss of generality, we shall choose the RSOC with higher magnitude |α| on the
right-hand side, and we can set it to a positive value, αR > 0, whereas the RSOC on the
left-hand side is allowed to take any value in the range −αR ≤ αL ≤ αR

2. Correspondingly,
one has ESO,L ≤ ESO,R. The fact that the magnetic field is uniform has important
consequences, which are easily illustrated in the case hz = 0: First, in the bulk of each
region the gap between the bands is always given by 2∆Z , regardless of the regime (Rashba-
or Zeeman-dominated) of each interface side. Secondly, the overall minimum of the two
energy band bottoms is determined by the band bottom of the side with higher spin-orbit
energy, i.e., the right-hand side, and is thus given by

Emin
band =


−∆Z if ∆Z > 2ESO,R

−ESO,R

(
1 + ∆2

Z

4E2
SO,R

)
if ∆Z < 2ESO,R

(2.12)

With these notations, if the right-side is in the Zeeman-dominated regime, so is the
left-hand side, whereas if the right-side is in the Rashba-dominated regime the left-hand
side can be either in the Rashba- or in the Zeeman-dominated regime. There can thus be
only three possible regime combinations: (i) ESO,L ≤ ESO,R ≤ ∆Z/2, where both sides are
Zeeman-dominated; (ii) ∆Z/2 ≤ ESO,L ≤ ESO,R, where both sides are Rashba-dominated;
(iii) ESO,L ≤ ∆Z/2 ≤ ESO,R, where the left-side is Zeeman-dominated while the right-side is
Rashba-dominated. The bands of the latter case are illustrated as an example in Fig.2.1(c).

2.3 Interface bound state and its stability

In this section we focus on the inhomogeneous interface problem. By diagonalizing the
inhomogeneous Hamiltonian, with methods to be described here below, we find that its
spectrum always exhibits a continuum branch, whose bottom Emin

cont coincides with the
minimal band energy obtained in Eq.(2.12) from the comparison of bare bulk spectra.

2The case where αR < 0 can easily be mapped into the one considered here, since the case with a α(x)
profile can be mapped into the case −α(x) by space parity (px → −px), as is clear from the Hamiltonian
(2.2).
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However, for some parameter range (see below), the spectrum also displays an additional
eigenvalue Ebs, lying below the continuum spectrum Emin

cont. The related eigenfunction
exhibits an evanescent behavior for |x| → ∞. When such interface bound state exists, we
define its positive ‘binding energy’ as

Eb = Emin
cont − Ebs > 0 . (2.13)

Here below we now analyze the conditions for its existence.

2.3.1 The case of a sharp interface

Let us start by analyzing the existence of the bound state in the case of a sharp interface,
where the smoothening length λs → 0 vanishes and the profile can be assumed as

α(x) = αLθ(−x) + αR θ(x) (2.14)

with θ denoting the Heaviside function. In this case the eigenfunctions of the inhomogeneous
problem can be obtained analytically by combining the eigenstates (2.8) of the homogeneous
problem in each side and by matching them appropriately at the interface. In particular,
since bound states are eigenstates with evanescent wavefunction for |x| → ∞, they are
obtained requiring that the wavevector k acquires an imaginary part. Details of such
calculation can be found in Appendix A.1.

By keeping one side of the junction as a reference, e.g. the right-hand side where the
bulk spin-orbit energy is maximal, the problem can be formulated in terms of dimensionless
parameters, namely the RSOC ratio αL/αR ∈ [−1 , 1] and the energy ratios Eb/ESO,R and
h/ESO,R to the maximal spin-orbit energy ESO,R. We shall focus here below on the case
where the applied magnetic field is directed only along the nanowire axis x, h = hxix,
while the effects of a parallel magnetic field component hz will be discussed later.

The results are presented in Fig.2.2. In particular, panel (a) displays the phase diagram
of the existence of the interface bound state. For a sufficiently strong magnetic field,
∆Z > 2ESO,R, i.e., when both NW sides are in the Zeeman-dominated regime, the bound
state always exists, while for ∆Z < 2ESO,R, where the NW right side is in the Rashba-
dominated regime, the bound state may or may not exist, depending on the ratio αL/αR.
In particular, for ∆Z = 0 (no external magnetic field), the bound state never exists,
regardless of the ratio of the two RSOC values across the interface. This shows that this
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interface bound state, although it has no topological origin, it is not an intrinsic interface
state like the ones occurring at a customary semiconductor interface.
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Fig. 2.2 The case of a sharp profile interface Eq.(2.14). (a) The phase diagram for the existence
of the bound state is shown as a function of the magnetic gap energy (in units of twice the
maximal spin-orbit energy 2ESO,R) and of the ratio between the two RSOC values across the
interface. The thick black line identifies the transition curve, where the binding energy vanishes.
The vertical thin dashed line indicates the crossover value from the Rashba-dominated to the
Zeeman-dominated regime for the right-side of the interface. (b) The binding energy Eb of the
bound state as a function of ∆Z/2ESO,R for four different values of the RSOC ratio across the
interface.

The thick black line in Fig.2.3(a) denotes the transition curve for the existence of the
bound state, and corresponds to the vanishing of the binding energy, Eb = 0. In particular,
the parabolic curve for ∆Z/2ESO,R < 1 is described by the equation

∆⋆
Z

2ESO,R

=
√

1 + αL/αR

2 , (2.15)
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while the upper horizontal line corresponds to the homogeneous NW in the Zeeman-
dominated regime, where the bound state does not exist, as is obvious to expect. Then,
Fig.2.2(b) shows, for four different values of the ratio αL/αR, the behavior of the binding
energy Eb as a function of the ratio ∆Z/2ESO,R. Several features are noteworthy.

First, in all cases the binding energy exhibits a non-monotonic behavior as a function
of the magnetic gap energy, with a maximum Emax

b occurring for a magnetic gap energy
slightly below the transition value ∆Z = 2ESO,R between the Rashba- and Zeeman-
dominated regime of the right-hand side, highlighted by the vertical dashed line as a guide
to the eye.

Secondly, the bound state energy strongly depends on the ratio αL/αR of the two RSOC
values, and is typically much higher when the RSOC changes sign across the interface. In
particular, the optimal condition for the existence of the bound state is αL/αR = −1, i.e.,
when the RSOC takes equal and opposite values of two sides: In this situation not only
the bound state always exists, its binding energy is also higher than any other case. For
these reasons, we shall henceforth term such case the ‘optimal configuration’. In particular,
it can be shown that, for weak applied field (∆Z ≪ 2ESO,R) the binding energy of the
optimal configuration behaves as Eb ≃ ∆2

Z/4ESO,R while for strong field (∆Z ≫ 2ESO,R)
one finds Eb ≃ E2

SO,R/2∆Z .

Third, for all other cases (−1 < αL/αR < 1) the bound state exists only if the magnetic
gap energy overcomes a minimal threshold value, which precisely corresponds to the
transition curve of Fig.2.2(a) described by Eq.(2.15). The threshold of the magnetic gap
energy increases as the RSOC ratio αL/αR increases from the negative value −1 to the
value +1, corresponding to the homogeneous case.

Furthermore, the following ‘rule of thumb’ can be inferred: when the band bottoms of
the two interface sides are equal, the bound state certainly exists. Indeed a close inspection
of Fig.2.2 shows that this certainly occurs in these two situations: (i) when ∆Z/2ESO,R > 1,
i.e., when both sides are in the Zeeman-dominated regime and their band bottoms are
both equal to −∆Z ; (ii) when αL = −αR, i.e., when the two spin-orbit energies (2.11) are
equal, both sides are in the same regime (Rashba- or Zeeman-dominated) and thus have
the same band bottoms. In all other cases the existence of the bound state depends on
the specific energy ratios.

Finally, even when the bound state exists, its binding energy can be quite small. For
instance, the maximal binding energy in the case where αL/αR = 1/2 is about 25 times
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smaller than the maximal value in the optimal case αL/αR = −1. Similarly, even in the
regime ∆Z/2ESO,R > 1 the binding energy decreases with increasing magnetic field.

2.3.2 Effects of a finite smoothening length

In any realistic system the crossover between two RSOC bulk values occurs over a finite
smoothening length λs. To include such effect we now assume the following profile function

α(x) = αR + αL

2 + αR − αL

2 Erf
(√

8x
λs

)
, (2.16)

which varies from αL to αR up to 2% within the lengthscale λs. In Eq.(2.16) Erf denotes
the error function. Although in the presence of such smoothened profile the model cannot
be solved analytically, it can be approached by an exact numerical diagonalization of
the Hamiltonian (2.2), whose details are summarized in App.A.2. Instead of expressing
the results in terms of dimensionless parameters, we now choose to fix the parameters to
realistic setup values. For definiteness, we consider the case of a InSb NW, with an effective
mass m∗ = 0.015me and a maximal spin-orbit energy ESO,R = 0.25 meV. Furthermore,
in order to appreciate the effects of the smoothening length, we focus on the case of
the optimal configuration αR/αL = −1. The results, displayed in Fig.2.3(a), show the
binding energy as a function of the magnetic gap energy ∆Z for four different values of the
smoothening length. As one can see, while for the ideal case λs → 0 (sharp profile) the
bound state always exists, for any finite smoothening length the bound state only appears
above a threshold value for the Zeeman field. For sufficiently strong applied magnetic
field (Zeeman-dominated regime) the bound state always exists. However, the binding
energy exhibits an overall suppression for increasing λs. These effects can be understood
be realizing that a crossover from −αR to αR in the RSOC profile occurring over a finite
smoothening length can, to a first approximation, be considered as a stair-like sequence of
smaller sharp α-steps. As the analysis carried out above on the sharp profile indicates (see
Fig.2.2), in the case of a non-optimal jump αL > −αR, a threshold value for ∆Z does exist
and the binding energy is reduced. In summary, a finite smoothening length λs broadens
the white portion of the sharp-profile phase diagram Fig.2.2(a) where the bound state
does not exist, and suppresses the binding energy.
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Fig. 2.3 The binding energy as a function of the magnetic gap energy, for an interface with
αL = −αR, with ESO,R = ESO,L = 0.25 meV. (a) The effects of a smoothening length. (b)
Effects of a magnetic field component hz parallel to the spin-orbit field on the binding energy,
for a fixed smoothening length λs = 50 nm.

2.3.3 Effects of a parallel field component

So far, we have analyzed cases where the magnetic field hx is directed along the NW. Here
we want to discuss the effect of a magnetic field component hz parallel to the spin-orbit field.
We first point out that, for hz ̸= 0 and hx = 0, i.e., for a magnetic field directed purely
along the spin-orbit field direction z, the eigenvalue problem for the Hamiltonian (2.2)
completely decouples in the two spin-↑ and spin-↓ components, and it can be shown that
the bound state does not exist (see App.A.1). The orthogonal field component hx is thus
a necessary, though not sufficient, condition for the bound state to exist. One can then
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analyze how the parallel field component hz modifies the existence of the bound state, for
a fixed value of hx ≠ 0. To this purpose, we focus again on a InSb NW, with an optimal
configuration αR = −αL > 0, and we take a realistic smoothening length λs = 50 nm.
The result, displayed in Fig.2.3(b), shows that the presence of an additional parallel field
component hz modifies the dependence of the binding energy Eb as a function of the
magnetic gap energy ∆Z , especially by increasing the threshold value ∆⋆

Z at which the
bound state starts to exist. Similarly to the case of the smoothening length, the binding
energy values are quite reduced as compared to the case hz = 0.

2.4 Charge and spin density spatial profiles

In the previous section we have discussed the existence and the robustness of the interface
bound state, which is a spectral feature. Here we wish to analyze the spatial behavior of
physical observables, namely the charge and spin densities, described by the operators

n̂(x) = e Ψ̂†(x) Ψ̂(x) (2.17)

Ŝ(x) = ℏ
2 Ψ̂†(x) σ Ψ̂(x) , (2.18)

respectively, where e denotes the electron charge. The presence of the interface makes
the NW an inhomogeneous system, and we aim to investigate the spatial profile of the
equilibrium expectation values

ρ(x) ≡ 1
e ⟨n̂(x)⟩◦ (2.19)

s(x) ≡ 2
ℏ
⟨Ŝ(x)⟩◦ (2.20)

with a particular focus on their behavior near the interface. Details about the computation
of such expectation values can be found in App.A.2. Before presenting our results, a few
general comments are in order.

Chemical potential and Temperature. The equilibrium distribution determining the
expectation values (2.19) and (2.20) is characterized by a well defined value of chemical
potential µ and temperature T . As pointed out above, the whole spectrum of the
inhomogeneous Hamiltonian (2.2), which we obtain by an exact numerical diagonalization,
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consists of a continuum spectrum, related to extended propagating states, and possibly
(if present) a bound state, energetically lying below the continuum and corresponding to
a state localized at the interface. At equilibrium, and ideally at zero temperature, all
states (localized or extended) with energy up to the chemical potential µ are filled up,
and contribute to determine the equilibrium expectation values ρ(x) and s(x), while at
finite temperature the Fermi function is smeared over a range kBT around the chemical
potential. We shall choose for T and µ realistic values of low-temperature experimental
setups involving NWs, namely T = 250 mK and µ = 0, corresponding to the energy value
in the middle of the magnetic gap [see Fig.2.1(c)]. This is the situation, for instance, where
the Fermi energy states of a NW in the Rashba-dominated regime mimic the helical states
of a quantum spin Hall system.

Orthogonal spin density. Concerning the spin density s(x) in Eq.(2.20), we shall specif-
ically focus on sy component, which we shall refer to as the orthogonal spin density, since
it is orthogonal to the x-z plane identified by the applied magnetic field and the spin-orbit
field. The interest in analyzing the profile of sy(x) stems from a comparison with the
topological phase. Indeed it has been predicted [213, 214, 215] that the MQPs appearing
at the ends of a proximitized NW in the topological phase, are precisely characterized
by a non-vanishing expectation value sy. However, we shall show here below that such
orthogonal spin density already appears in the NW interface problem, where the NW is
certainly in the topologically trivial phase, so that it cannot be considered as a signature
of a MQP.

Full vs. bound state contribution. Interface bound states and orthogonal spin density
sy share two properties. First, both can only exist at an interface, i.e., in the presence of
inhomogeneities. Indeed, in the bulk of a homogeneous NW, sy vanishes since the spin
orientation of each electron lies in the x-z plane [see Eqs.(2.9)-(2.10)]. Second, just like the
bound state, sy may only exist if both a magnetic field component hx and the spin-orbit
field are present. Indeed if hx = 0 (or α = 0) the electron spin is directed, along z (or
x) for all states. In view of such common features, one is naively tempted to conclude
that an orthogonal spin density is necessarily ascribed to the presence of the bound state.
However, this is not the case. To this purpose, we shall illustrate below two types of spatial
profiles. First, we shall show the actual equilibrium values ρ(x) and sy(x) [see Eqs.(2.19)
and (2.20)], which can be referred to as the ‘full’ density and orthogonal spin density
profiles, as they result from contributions of all states, with the customary weight given by
the Fermi function. In particular, since we focus on the low temperature regime, the latter



2.4 Charge and spin density spatial profiles 31

essentially amounts to the contribution of all states occupied up to the chemical potential
µ. Then, we shall also provide the profiles ρbs(x) and sy,bs(x) describing the contribution
to ρ(x) and sy(x) due to the localized bound state only [see App.A.2 for details].

This distinction enables us to show that an orthogonal spin density peak, besides being
no evidence for a MQP, may also not originate from any bound state.
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Fig. 2.4 Spatial profiles of charge density and orthogonal spin density for a sharp interface
profile Eq.(2.14) with αL/αR = −1/2 and ESO,R = 0.25 meV. The four different curves in each
panel refer to four different values of the magnetic gap energy ∆Z = (0.1, 0.3, 0.5, 1.0) meV. (a)
The actual equilibrium density profile ρ(x) [see Eq.(2.19)]. (b) The bound state contribution
ρbs(x) to the density ρ(x). For ∆Z = 0.1 meV the bound state does not exist and yields a
vanishing contribution (black dashed curve). Panel (c) describes the full orthogonal spin density
sy Eq.(2.20) (with the inset magnifying the peaks) while panel (d) describes the related bound
state contribution sy,bs.
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2.4.1 The case of a sharp profile with an orthogonal magnetic
field

Let us start our analysis from the case of a sharp profile interface and a magnetic field
applied along the NW axis. As an illustrative example, we consider an interface with
αL/αR = −1/2, which implies ESO,L = ESO,R/4 [see Eq.(2.11)], and we choose a value of
ESO,R = 0.25 meV for the maximal spin-orbit energy.

Figure 2.4(a) shows the full equilibrium density Eq.(2.19), for four different values
of the magnetic gap energy ∆Z of the applied magnetic field hx. Its spatial profile ρ(x)
exhibits a crossover at the interface x = 0 between two different bulk density values. The
density increases towards the right-hand side, namely the region with higher spin-orbit
energy. This indicates that a higher spin-orbit energy has a similar effect on the density
as a lower gate voltage bias.

In Fig.2.4(b) we have singled out the contribution ρbs due to the interface bound state
only. Differently from ρ(x), the profile of ρbs(x) is localized only around the interface and
is dramatically sensitive to the value of ∆Z . Indeed, as can be deduced from Eq.(2.15),
the minimal threshold for the appearance of the bound state is, for the chosen parameters,
∆⋆

Z = ESO,R = 0.25 meV. For values ∆Z > ∆⋆
Z [red, blue and green curves in Fig.2.4(b)],

where the bound state exists, a comparison of the shape of the peak of ρbs with the profile
of the full ρ [Fig.2.4(a)] would suggest that a small kink in ρ across the interface might be
due to the presence of the bound state. However, the behavior of the full ρ(x) across the
interface [Fig.2.4(a)] is qualitatively very similar for all values of the magnetic gap energy
∆Z , independently on whether the bound states exists or not. This sounds reasonable,
since the electron density is a bulk equilibrium property receiving contributions from all
states up to the chemical potential, and the bound state is just one of such contributions.
The same reasoning holds for the sx component of the spin density [see Eq.(2.20)], which
is also a bulk equilibrium quantity, due to the applied magnetic field hx.

Let us now turn to consider the spin density sy. Differently from ρ and from sx, the
orthogonal spin density sy is vanishing in the bulk of a homogeneous NW, as observed
above. The profile of the full sy, plotted in Fig.2.4(c), provides two important insights.
First, a peak of the orthogonal spin density sy does exist, even if the NW is in the
topologically trivial phase, implying that it cannot be a unique signature of MQP. Second,
the central peak at the interface is weakly sensitive to the values of the magnetic gap
energy ∆Z . This is in striking contrast to the behavior of the bound state contribution
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sy,bs, shown in Fig.2.4(d), which is again strongly dependent on the magnetic field. In
particular, just like the density ρbs, for weak Zeeman field sy,bs vanishes since the bound
state is absent (dashed curve), while for higher magnetic field its broadening depends
on ∆Z . These results show that a localized peak of orthogonal spin density sy is not
necessarily ascribed to the presence of a bound state, neither topological nor trivial.

Before concluding this subsection, a few further comments about Fig.2.4 are in order.
We observe that, while the spatial profile of the bound state density ρbs [panel (b)] is
smooth, the profile of sy,bs [panel (d)] exhibits a cusp at the interface. This difference
originates from the boundary conditions induced by the sharp profile (2.14), which cause
spin-diagonal observables like ρ and sz to have continuous derivatives, while spin off-
diagonal observables like sx and sy to exhibit a cusp at the interface (see App.A.1).
Moreover, for ∆Z = 0.3 meV, i.e., slightly above the threshold ∆⋆

Z = 0.25 meV, the profiles
of the bound state contributions exhibit a slowly decaying oscillations on the right-hand
side, since the bound state wavefunction is characterized by a complex wavevector k on such
side. In contrast, for ∆Z = 0.5 meV and ∆Z = 1.0 meV the wavevector is purely imaginary,
and the bound state density profile has an exponential decay without oscillations. Finally,
the peak of the orthogonal spin density sy,bs has a narrower extension than the one of ρbs.
This is due to the fact that, since on each interface side the bound state wavefunction
is a linear combination of two elementary spinorial waves [see Eq.(2.8)], ρbs and sy,bs

are determined by different combinations of w-spinor components of the wavefunctions,
resulting also into different weights for the space-dependent profiles.

2.4.2 Effects of a smoothened profile and parallel magnetic field
on the orthogonal spin density

In the previous subsection we have shown that the peak of the orthogonal spin density is
far more robust than the interface bound state. In order to test how general such effect is,
we now extend the previous analysis including the presence of a finite smoothening length
in the RSOC profile and a magnetic field component hz parallel to the spin-orbit field.
For simplicity, we focus on the optimal configuration αL/αR = −1 and ESO,R = 0.25 meV,
with a smoothening length λs = 50 nm. These are the parameters also used in Fig.2.3(b),
whence we observe that, keeping a fixed value of the magnetic gap energy ∆Z , and varying
the additional parallel field component hz represents a natural physical knob to control
the weight and the existence of the bound state.
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Fig. 2.5 Spatial profile of the orthogonal spin density for a NW interface with αL/αR = −1 and
a smoothening length of λs = 50 nm. The maximal spin-orbit energy is ESO,R = 0.25 meV, and
the magnetic gap is ∆Z = 0.50 meV. Different curves refer to different values of the magnetic
field component hz parallel to the spin-orbit field. (a) The actual sy due to all states, with the
inset magnifying the peaks. (b) The bound state contribution to sy.

Figure 2.5 shows the spatial profile of the orthogonal spin density for ∆Z = 0.50 meV
and for various values of hz. In particular, panel (a) displays the full sy, while panel
(b) shows the bound state contribution sy,bs. Two features are noteworthy. In the first
instance, as compared to the cuspid peaks obtained at the interface in the case of the
sharp profile [Fig.2.4(c)-(d)], the peaks of Fig.2.5 are rounded off by the finite smoothening
length λs. Secondly, while the peak of the full sy [Fig.2.5(a)] is very weakly affected by the
parallel magnetic field component hz, the bound state peak shown in Fig.2.5(b) rapidly
decreases and eventually disappears when the parallel magnetic field component hz is
ramped up, yielding a vanishing contribution (dashed line). This is in agreement with
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the binding energy behavior previously shown in Fig.2.3(b), where one can see that, at
∆Z = 0.50 meV, the bound state disappears for hz = 0.50 meV. The comparison between
panels (a) and (b) of Fig.2.5 clearly indicates that, when the bound state exists and has
a relatively high binding energy, the peak of sy is mainly due to it. However, when the
binding energy decreases, the bound state contribution to the peak is replaced by the one
of the excited states, so that the orthogonal spin density peak remains present. Indeed,
we will show in Ch.3 that extended states with energies inside the magnetic gap might
develop a localized orthogonal spin density at the interface between regions with different
RSOC.

2.5 Equilibrium spin current

We have demonstrated that the peak of the orthogonal spin density localized at the interface
does not necessarily stem from a localized bound state, and appears to be a quite general
feature. Two natural questions then arise, namely i) what parameters characterizing the
interface determine such peak? ii) can one explain its presence on some general principle?
Here we wish to address these two questions.

2.5.1 General features of the orthogonal spin density

To answer the first question, we consider for definiteness the case of magnetic gap energy
∆Z = 0.50 meV and a maximal spin-orbit energy ESO,R = 0.25 meV. Two parameters
characterize the interface, namely the ratio αL/αR of the two RSOC, and the smoothening
length of the profile. In Fig.2.6(a) we show, for a fixed smoothening length λs = 50 nm,
the orthogonal spin density profile for different values of the RSOC ratio αL/αR across
the interface. As one can see, the height of the peak grows with the relative RSOC jump,
in a roughly linear way.
In Fig.2.6(b), keeping now the ratio of the two RSOC bulk values to αL/αR = −1, we vary
the smoothening length λs of the profile. The peak decreases and broadens with increasing
λs. Importantly, one can verify by a numerical integration that the area underneath each
sy(x) profile is to a very good approximation independent of the value of the smoothening
length λs.
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Fig. 2.6 Spatial profile of the orthogonal spin density for an interface with ESO,R = 0.25 meV,
and a magnetic gap energy ∆Z = 0.50 meV. (a) The effects of the ratio between the two values
of RSOC, for a fixed smoothening length λs = 50 nm. (b) Effects of the smoothening length, for
the configuration αL/αR = −1.

2.5.2 Origin of the orthogonal spin density

Keeping in mind the two features described in the previous subsection, let us now discuss
the origin of the orthogonal spin density peak. As is well know, a magnetic moment exposed
to a magnetic field experiences a magnetic torque[240]. So is the case for spin magnetic
moments of electrons moving in a NW, where both the externally applied magnetic field h
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and the effective spin-orbit field hSO give rise to corresponding torques, defined as

T̂h ≡ Ψ̂† (σ × h) Ψ̂ , (2.21)

T̂SO ≡ 1
2
(
Ψ̂†(σ × hSO)Ψ̂ + H.c.

)
, (2.22)

respectively, where
hSO(x, t) = {α(x), px}

2ℏ (0, 0, 1) (2.23)

is the spin-orbit field (see Appendix A.3 for details). Note that, by definition Eqs.(2.22)-
(2.23), the spin-orbit torque T̂SO = (T̂SO

x , T̂SO
y , 0) has no component along the Rashba

field direction z.

Importantly, the torques determine the spin-dynamics through the operator identity

∂tŜ + ∂xĴs = T̂h + T̂SO (2.24)

where Ŝ is the spin density operator in Eq.(2.18), and

Ĵs = 1
2
(
Ψ̂†(x) Ŝ v Ψ̂(x) + H.c.

)
= ℏ

2

(
− iℏ

2m∗

(
Ψ̂†(x) σ ∂xΨ̂(x)− ∂xΨ̂†(x) σ Ψ̂(x)

)
−α(x)

ℏ
Ψ̂†(x) {σ, σz}

2 Ψ̂(x)
)

(2.25)

is the spin current density operator [240, 241]. Having denoted by

v = [x,H(x)]
iℏ

= px

m∗ −
α(x)
ℏ

σz (2.26)

the velocity operator. Differently from the continuity equation for charge, in Eq.(2.24) the
torques on the right-hand side play the role of sources and sinks of spin.

At equilibrium the expectation values of Ŝ is time-independent, while the one of the
magnetic torque is straightforwardly related to the equilibrium spin-density Eq.(2.20),
through Th = ⟨T̂h⟩◦ = s× h. Thus, taking the equilibrium expectation value of Eq.(2.24)
one has

∂xJs = s(x)× h + TSO(x) (2.27)
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where TSO = ⟨T̂SO⟩◦. Let us focus on the most customary situation where the magnetic
field is directed along the NW axis x (h = hxix), i.e., orthogonal to the spin-orbit field.
In this case, one can show that the spin-orbit torque TSO(x) vanishes and that the spin
current is oriented along z, so that Eq.(2.27) reduces to

∂xJ
s
z = −hx sy(x) . (2.28)

We shall now argue that this equation, derived under quite general hypotheses, is the key
to interpret the appearance of the orthogonal spin density at the interface, even when the
bound state is absent.

Indeed, as has been demonstrated in Ref.[234], when uniform spin-orbit and magnetic
fields are present in a NW, an equilibrium spin current Js

z flows in its bulk. Such bulk spin
current arises from the interplay between spin-orbit field and a magnetic field orthogonal
to it, which induce non-trivial quantum correlation between spin and velocity, in close
similarity to what happens in the helical states of a quantum spin Hall system. The bulk
equilibrium spin current is odd in α and even in hx. For example, for µ = 0 and in the
regime ∆Z ≫ ESO, one has Js

z = −sgn(α)
√

∆ZESO/3π. Equilibrium spin currents have
been predicted for other RSOC systems as well [241, 242, 243, 244, 245, 246, 247, 248, 249,
250, 240, 251, 252, 253, 254, 255] and, in fact, they can be regarded to as the diamagnetic
color currents associated to the non-abelian spin-orbit gauge fields [256, 257]. However,
its measurement in actual experiments has not been achieved thus far. In this respect,
Eq.(2.28) suggests that, while the equilibrium spin current itself is perhaps elusive, its
variation in the presence of inhomogeneities could be detected, as it is straightforwardly
connected to the orthogonal spin density. Indeed, when two regions with different RSOC
are connected, a kink ∂xJ

s
z must arise at the interface to match the different spin current

values in the two bulks. In view of Eq.(2.28), a peak in the orthogonal spin density sy

necessarily appears. This is the reason why the peak of sy shown in Fig.2.6(a) is the
more pronounced the higher the difference in the RSOC of the two regions. Furthermore,
integrating both sides of Eq.(2.28), one can see that the integral of the sy profile equals the
difference between the two bulk spin currents, which is independent of the smoothening
length. This is precisely what we found in Fig.2.6(b). Finally, this argument is quite
general and is not based on the existence of a bound state at the interface. This explains
why the peak shown in Fig.2.4(d) persists even when the bound state is absent, and shows
that the naive interpretation of an orthogonal spin density localized peak in terms of a
bound state is in general wrong.
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2.6 The case of two interfaces

Thus far, we have considered the case of one single interface along the NW. Here we wish
to discuss the case of two interfaces, modeling a NW inner region characterized by a RSOC
parameter αin sandwiched between two outer regions, where the RSOC shall be taken
for simplicity equal to αout in both. This model might describe an experimental setup
where a gate partly covers the nanowire, thereby locally changing the SIA and the RSOC
of the region underneath, similarly to what occurs in constrictions in quantum spin Hall
systems[258, 259, 260]. Thus, the RSOC profile reads

α(x) = αout + αin − αout

2

[
Erf

(√
8

λs

(x+ L

2 )
)
− Erf

(√
8

λs

(x− L

2 )
)]

, (2.29)

and it is sketched in Fig.2.7(a), here L denotes the length of the inner NW region, supposed
to be much bigger than the smoothening length λs, so that the notion of interfaces still
makes sense. When the distance L is much larger than the typical variation lengthscale for
observables in the single interface problem, the two interfaces act independently. However,
when such two scales become comparable, noteworthy aspects emerge, which are illustrated
in Fig.2.7.

First, if the interface bound states exist, they overlap across the distance L, causing
a splitting of their degeneracy. The density profile of the resulting lowest eigenstate is
mainly peaked at the interfaces, but is non vanishing also in the center of the inner region,
as illustrated by the black curve in Fig.2.7(b).

Second, pronounced orthogonal spin density peaks appear at the interfaces, regardless
of whether interface bound states exist or not. Remarkably, the signs of the peaks are
opposite at the two interfaces, as shown in Fig.2.7(c). This is because the opposite jump
in the RSOC across the two interfaces causes two opposite kinks in the equilibrium spin
current, as observed in Sec.2.5.2. Thus, despite the NW is in the topologically trivial
phase, the emerging scenario is identical to the one occurring in a NW in the topological
phase, where the spin density of the MQPs is orthogonal to both the magnetic field and
the RSOC field direction, and takes opposite signs at the two NW ends [213, 214, 215].
This explicitly demonstrates that such orthogonal spin polarization pinned at the NW
ends can neither be taken as a hallmark of the topological phase, nor as an evidence of
bound states. Note also that the orthogonal spin polarization peaks are typically narrower
than the interface bound state and are thus more robust to finite length L effects too.
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Fig. 2.7 (a) Sketch of a double interface problem, modeled by the RSOC profile (2.29). The
parameters are L = 1µm, λs = 50 nm, the value αin > 0 in the inner region corresponds to
ESO,in = 0.25 meV, while the magnetic gap energy is ∆Z = 0.25 meV. (b) The density profile
of the lowest electron state, for two values αout = −αin (black curve) and αout = 0 (red curve),
showing the difference between interface and Rashba dot bound states. (c) The total orthogonal
spin density, for the same two values of αin, shows two opposite peaks at the interfaces.

The third interesting feature of the double interface problem is that, even if the interface
bound states are not present, another type of bound states, dubbed confinement bound
states, may appear, as we shall now elaborate.
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2.6.1 Confinement bound states

In order to illustrate the emergence of confinement bound states, it is sufficient to consider
the case without magnetic field (hx = 0). In this case, the Hamiltonian in Eq.(2.2) is
diagonal in spin space and, by performing the spin-dependent gauge transformation

Ψ̂(x) = ei m∗
ℏ2 σ3

∫ x

0 α(x′)dx′ Ψ̂′(x) , (2.30)

it can be rewritten as

Ĥ =
∫

Ψ̂′†(x)
(
p2

x

2m∗ + USO(x)
)

Ψ̂′(x) dx , (2.31)

where the effective potential

USO(x) = −ESO(x) = −m
∗α2(x)
2ℏ2 , (2.32)

depending on the RSOC profile α(x), corresponds to (minus) the inhomogeneous Rashba
spin-orbit energy. Notice that, due to the absence of magnetic field hx, the problem
becomes purely scalar when rewritten in terms of the new fields Ψ̂′ = (Ψ′

↑ , Ψ′
↓)T . In terms

of the original fields Ψ̂(x) = (Ψ̂↑(x) , Ψ̂↓(x))T , the spin-↑ and spin-↓ components acquire
opposite space-dependent phase factors, as shown by Eq.(2.30). As an example, for a
uniform RSOC α(x) ≡ α, one has

Ψ↑,↓(x) = e±i sgn(α) kSOx Ψ′(x) (2.33)

which corresponds, in momentum space, to shifting horizontally the parabolic spectrum
by a spin-orbit wavevector kSO = m∗|α|/ℏ2, in opposite directions for spin s =↑, ↓.
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Fig. 2.8 Sketch of a nanowire coupled to a gate in the absence of magnetic field, and the related
energy bands characterizing the bulks of the inner/outer regions. While the outer regions are
characterized by a vanishing RSOC and by a spin-degenerate parabolic spectrum, the RSOC α
present in the inside region lifts the spin degeneracy even without magnetic field. Furthermore, the
energy bands are lowered by an amount corresponding to the spin-orbit energy ESO = m∗α2/2ℏ2,
giving rise to the potential well described by Eq.(2.32) and depicted by the thick black line. The
finite length of the central region yields the presence of confinement bound states, whose energy
lie in the energy window between the band bottoms of the inner/outer portions of the nanowire.
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Fig. 2.9 Panel (a): The energy spectrum of a InSb nanowire+gate system, sketched in Fig.2.8
and described by the inhomogeneous RSOC Eq.(2.29), with an inside region L = 500 nm and
a smoothening length λs = 50 nm. The effective mass is m∗ = 0.015me. No magnetic field is
applied (∆Z = 0). Different colors and symbols refer to three different value of the spin-orbit
energy of the inside region, ESO = 0.05 meV (black triangles), ESO = 0.30 meV (red squares),
ESO = 0.60 meV (blue circles). Besides the continuum spectrum, discrete bound states appear,
in spin-degenerate pairs, in the energy window between the bulk band bottom E = 0 of the
outer regions and the bulk band bottom −ESO of the inside region (indicated by an horizontal
dashed lines as a guide to the eye). Panel (b): for the case ESO = 0.30 meV, the spatial profiles
of the density ρ(x) of the ground bound state (solid red curve) and the first excited bound state
(dashed red curve) are shown. The thin green curve displays the inhomogeneous spatial profile
α(x) in Eq.(2.29).
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For suitable inhomogeneous α(x) profiles, a possibility opens up that the effective
potential Eq.(2.32) represents a quantum well hosting confinement bound states [236,
237]. The simplest model describing this situation, sketched in Fig.2.8, is a square profile,
α(x) = α θ(L/2−|x|), with θ denoting the Heaviside function. This corresponds to setting
αin = α, αout = 0 and λs = 0 in Eq.(2.29). Then, Eq.(2.32) represents a square quantum
well with a width L and a depth −ESO, given by the spin-orbit energy ESO = m∗α2/2ℏ2

of the inside region of the nanowire. As is well known, at least one bound state is always
present, and the number of bound states increases with the magnitude of the RSOC.
Furthermore, if the length L is short enough, the energy separation between the bound
states becomes appreciable (see Fig.2.8).

A more realistic model to describe the nanowire+gate system assumes a finite smoothen-
ing length λs. In Fig.2.9 we analyze this case for L = 500nm, a smoothening length
λs = 50 nm and for three different values of the inside RSOC, corresponding to three
different values of spin-orbit energy ESO, in a InSb nanowire. Panel (a) displays the
spectrum, which exhibits both a continuum branch, for energies above the band bottom
E = 0 of the outer regions, and some additional discrete bound states, always appearing
in spin-degenerate pairs, whose number increases with the magnitude of the RSOC. As
expected, the bound states energies Ebs are located in the energy window −ESO ≤ Ebs < 0
between the bulk band bottom −ESO of the inside region (indicated by dashed horizontal
lines as a guide to the eye) and the bulk band bottom E = 0 of the outside regions, as
also sketched in Fig.2.8. Figure 2.9(b) shows, for the case ESO = 0.30 meV, the spatial
profile of the density ρ(x) of the ground bound state (solid red curve) and the first excited
bound state (dashed red curve), as well as the inhomogeneous spatial profile α(x) (thin
green curve).

It is worth emphasizing that a prerequisite for the formation of confinement bound
state is that the RSOC profile varies non-monotonically. In the case e.g. of one single
interface separating two regions characterized by different RSOC values, where the profile
α(x) varies monotonically from the value αL on the left of the interface to the value αR

on the right, the effective potential in Eq.(2.32) never creates a quantum well. Indeed,
if αL and αR have the same sign, USO also changes monotonically, whereas if αL and αR

have opposite signs, so that the profile α(x) crosses zero, USO describes a barrier at the
interface. In neither case a monotonic α(x) profile can give rise to bound states.
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2.6.2 Magnetic control of the charge distribution

We shall now generalize the previous analysis to the situation |αin| > |αout| and, in
particular, we shall discuss how the spectrum and the equilibrium properties are modified
when a magnetic field is applied.

Based on the material previously discussed in Sec.2.3.1 and Sec.2.6.1, let us first point
out the scenario one can expect in this situation. On the one hand, when no magnetic field
is present, the band bottom −ESO,in of the central region is lower than the outer band
bottom −ESO,out, and confinement bound states exist, while no interface bound state may
be present. On the other hand, when a magnetic field is applied, the confinement bound
states get modified by the magnetic field, while additional interface bound states appear at
the two interfaces. The latter are energetically located below the lower bulk band bottom
and are thus more favorable than confinement bound states. In fact, when the magnetic
field is sufficiently strong, the band bottoms of the central and outer regions get aligned
and the confinement bound states disappear completely, leaving only the interface bound
states.

We also wish to point out that the inhomogeneous RSOC problem in the presence of
an applied magnetic field is intrinsically more difficult than the field-free case. To illustrate
that, we apply again the gauge transformation (2.30), and rewrite the Hamiltonian (2.2) as

Ĥ =
∫

Ψ̂′†(x)
(
p2

x

2m∗ + USO(x)− hx (σx cos θSO(x) + σy sin θSO(x))
)

Ψ̂′(x) dx , (2.34)

where θSO(x) = 2m∗ ∫ x
0 α(x′)dx′/ℏ2 is called the spin-orbit angle. In terms of the new

fields Ψ̂′ the RSOC has been re-absorbed into the previously discussed potential Eq.(2.32),
whereas the original uniform magnetic field has transformed into an effective inhomogeneous
magnetic field, whose consequences are more subtle.
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Fig. 2.10 A portion L = 1µm of a InSb nanowire takes a RSOC value αin different from the
value αout characterizing the rest of the nanowire, e.g. due to the presence of a metallic gate
covering it. The RSOC αin corresponds to a spin-orbit energy ESO,in = 0.5 meV for the central
region, while αout = −αin/2, and ESO,out = 0.125 meV. The smoothening length of the RSOC
profile (2.29) is λs = 50 nm. The inhomogeneous nanowire is exposed to an external magnetic
field along the nanowire axis. Panel (a): The spectrum of the inhomogeneous nanowire is plotted
for four different values of the applied magnetic field: for vanishing or weak magnetic field (black
triangles and red squares) only confinement bound states are present. For ∆Z > ∆⋆

Z ≃ 0.5 meV,
two additional interface bound states appear below the confinement bound states (blue circles),
while for ∆Z > 2ESO = 1 meV (green stars) the confinement bound states have disappeared
and only the interface bound states survive. Panel (b): The density profile ρlowest of the lowest
energy state, plotted for the same four values of applied magnetic field, shows a change in the
nature of the electronic ground state from a confinement to interface bound states, determining
a displacement of the electron charge from the center to the interfaces with the leads located at
x = ±0.5µm. Panel (c): the profile of the total density ρ, involving all occupied states up to a
chemical potential µ = −0.45 meV is shown for the four different values of applied magnetic field.
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We illustrate these effects in a InSb nanowire, where the central region has a bulk spin-
orbit energy ESO,in = 0.5 meV, while the outer regions are characterized by αout = −αin/2,
yielding ESO,out = 0.125 meV. Moreover, the length of the central region is L = 1µm
and the smoothening length across each interface is λs = 50 nm. In Fig.2.10(b) the
spectrum of the inhomogeneous nanowire is plotted for four different values of the applied
magnetic gap energy ∆Z = (0, 0.4, 0.8, 1.2) meV. As one can see, for vanishing magnetic
field ∆Z = 0 (black triangles), four doubly degenerate confinement bound states are
present, within the energy window between the band bottoms −ESO,out = −0.125 meV and
−ESO,in = −0.50 meV of the outer and central regions, respectively. When the magnetic
field is increased (red squares), the energy window determined by such band bottom
mismatch reduces, and so does the number of confinement bound states. Furthermore, if
the magnetic gap energy overcomes a threshold value ∆Z > ∆⋆

Z ≃ 0.5 meV (blue circles),
two additional interface bound states appear. They are linear combinations of the two
bound states appearing at the two interfaces and are almost degenerate, with a tiny energy
splitting caused by a non vanishing overlap due to the finite length L of the central region.
Note that in this situation confinement and interface bound states coexist, although
the interface bound state are always energetically more favorable, as they lie below the
band bottoms. However, for even stronger magnetic fields, ∆Z ≥ 2ESO = 1 meV, the
confinement bound states disappear and only the interface bound states survive (green
stars).

In Fig.2.10(c) we have plotted the density profile ρlowest of the lowest energy state, for
each of the four ∆Z values. One can thus clearly see that, while for vanishing magnetic
field (black curve) the energetically most favorable state is mainly located at the center of
the confinement region, by increasing the magnetic field the interface bound state becomes
more favorable (blue and green curves). By operating with the magnetic field one can thus
displace the charge of the electronic ground state from the center of the gated nanowire
region towards the interfaces located at x = ±0.5µm, yielding a stronger coupling with the
outer regions. Finally, in Fig.2.10(d) we have plotted the full electron density, due to all
states filled up to a chemical potential value µ = −0.45 meV, again for the four values of
applied magnetic gap energy. While for ∆Z = 0 the charge is purely localized in the center
of the nanowire, the application of a magnetic field leads the charge to be delocalized also
in the outside regions. Notably, even for the green curve at ∆Z = 1.2 meV, where both
nanowire regions are in the Zeeman dominated regime (∆Z > 2ESO,in > 2ESO,out) and
their bulks have the same band bottom, the stronger spin-orbit coupling in the central
region causes the density therein to exhibit a plateau higher than the density in the outer
regions.
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2.7 Possible setup realizations

Several experiments in topological systems are based on InSb[261, 198, 262, 224, 263, 200]
or InAs [264, 222, 265, 225, 266, 72] NWs deposited on a substrate. In the case of InSb the
effective mass and the g-factor are m∗ ≃ 0.015me and g ≃ 50, respectively, while the value
of the RSOC depends on the specific implementation and experimental conditions and
can be widely tunable, ranging from α ∼ 0.03 eV Å to α ∼ 1 eV Å [222, 224, 68, 261, 198,
262]. The spin-orbit energy ESO resulting from these values [see Eq.(2.6)] is a fraction
of meV. The same order of magnitude is obtained for the magnetic gap energy ∆Z in a
magnetic field range of some hundreds of mT. These are the values adopted in our plots.
Similarly, in the case of InAs nanowires m∗ ≃ 0.022me, g ≃ 20 and the RSOC ranges from
α ∼ 0.05 eV Å to α ∼ 0.3 eV Å [197, 264, 222, 265]. The temperature value of 250 mK used
in our plots is state of the art with modern refrigeration techniques.

Interfaces between regions with different RSOC emerge quite naturally in typical NW
setups, where a portion of the NW is covered by e.g. a superconductor or by a normal
metal to induce proximity effect, to measure the current, or to locally vary the potential.
The resulting SIA is inhomogeneous along the NW, and can be controlled e.g. by the
application of different gate voltage values applied to top/bottom gates or to the substrate,
similarly to the case of constrictions in quantum spin Hall systems [258, 259, 260]. In
particular, covering one portion with the gate-all-around technique and by applying a
sufficiently strong gate voltage, it is reasonable to achieve an inversion of the sign of the
RSOC as compared to the uncovered NW portion, as has already been done in similar
setups [267, 223, 268, 269].

Finally, the orthogonal spin polarization predicted here can be measured by spatially
resolved detection of spin orientation. In particular, nanometer scale resolution can be
reached with various methods such as magnetic resonance force microscopy [270],[271],
spin-polarized scanning electron microscopy [272, 273], by using quantum dots as probes
[274, 275], or also electrically by potentiometric measurements exploiting ferromagnetic
detector contacts [276, 277].

2.8 Conclusions

In conclusions, in this Chapter we have considered a NW with an interface between two
regions with different RSOC values, as sketched in Fig.2.1, when the proximity effect is
turned off and the NW is in the topologically trivial phase.
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In Sec.2.3 we have shown that at the interface bound states may appear, whose energy
is located below the continuum spectrum minimum. Such bound states are neither topolog-
ical (since proximity effect is absent), nor intrinsic interface bound states (since they only
exist if an external magnetic field is applied along the NW axis). Analyzing first the case of
a sharp interface RSOC profile Eq.(2.14), we have obtained the phase diagram determining
the existence of the bound state [see Fig.2.2(a)], as well as the dependence of its binding
energy on the magnetic gap energy [see Fig.2.2(b)]. While the bound state always exists if
the RSOC takes equal and opposite values across the interface (optimal configuration),
for all other situations it only exists if the magnetic field overcomes a minimal threshold
value. Furthermore, even in the optimal configuration, it can be suppressed by either a
finite smoothening length in the RSOC profile or a magnetic field component parallel to
the spin-orbit field (see Fig.2.3).

In Sec.2.4 we have then investigated the spatial profile of the charge density ρ and the
spin density, with a special focus on the spin density component sy, orthogonal to both the
applied magnetic field and the RSOC field direction, which is known to characterize the
MQPs localized at the edges of a NW in the topological phase. By analyzing both the full
equilibrium values ρ and sy due to all occupied states, and the bound state contributions
ρbs and sy,bs, we have been able to gain two useful insights. First, the orthogonal spin
density appears also in the topologically trivial phase as a quite general effect characterizing
any interface between two different RSOC regions under a magnetic field. Second, for
realistic and typical values of chemical potential and temperature, the orthogonal spin
density peak is relatively robust to parameter changes, and persists even when the bound
state is absent (see Figs.2.4 and 2.5). This means that also the propagating states of the
continuum spectrum modify their spin texture around the interface to preserve the peak,
so that a localized orthogonal spin-density cannot be considered a signature of a bound
state.

Furthermore, in Sec.2.5, after analyzing the peak dependence on the single interface
parameters (see Fig.2.6), we have also shown that such stable peaks may in fact have
an impact on the detection of spin currents. Indeed a spin current flows in the bulk
of a NW as a result of quantum correlations between spin and velocity induced by the
interplay between magnetic and spin-orbit field, similarly to the case of quantum spin Hall
helical states. Despite various proposals in the literature, the measurement of equilibrium
spin currents has not been achieved yet. Our results suggest that, while the equilibrium
spin current itself may be elusive, its variations can be detected through the orthogonal
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spin density sy, which is instead experimentally observable with spin-resolved detection
techniques. Indeed the orthogonal spin density peak is precisely related to the kink of the
spin current localized at the interface. This analysis has recently been confirmed also in
Ref.[278].

Finally, in Sec.2.6 we have addressed the case of two interfaces [see Fig.2.7]. While for
a large distance L between the interfaces the single-interface scenario is merely doubled,
for a shorter L the interface bound states may overlap and additional confinement bound
states may appear [see Figs.2.7-2.8-2.9]. In all cases, and independently of the presence of
interface bound states, the spin density sy, orthogonal to both the magnetic field and the
Rashba spin-orbit field, exhibits relatively robust peaks taking opposite signs at the two
interfaces [see Fig.2.7(c)]. Remarkably, these are the same features predicted for the spin
density of the MQPs emerging at the ends of a NW in the topological phase, despite the
NW considered here is in the topologically trivial phase. Our results thus show that such
orthogonal spin polarization pinned at the NW ends can neither be taken as a hallmark
of the topological phase, nor as an evidence of bound states. However, the interplay of
magnetic and spin-orbit fields open the possibility to magnetically tune the property of
the bound states in the system and to control the equilibrium charge density [see Fig.2.10].

With the provided description of possible implementations in realistic NW setups, the
predicted effects seem to be at experimental reach.



Chapter 3

The Dirac paradox in 1 + 1
dimensions

The content of this Chapter is based on the published paper [279]

3.1 Introduction

Conventional semiconductor heterostructures are typically described, within the envelope
function and effective mass approximations, by a Schrödinger Hamiltonian with a space
dependent effective electron mass varying along the growth direction and accounting for
the different effective masses of the component materials.

In the last two decades, however, it has been realized that in various materials such as
graphene, topological insulators and Weyl semimetals, the dynamics of the conduction
electrons is well captured, in physically relevant regimes, by a (D+1)-dimensional massless
Dirac electron model[280, 281, 282, 1, 2, 283, 284], where D denotes the spatial dimension,
and “+1” the time dimension. These discoveries have thus spurred the interest in the
investigation of Dirac heterojunctions. Each massless Dirac cone is characterized by a given
helicity of the electron eigenstates, i.e. a sign encoding the locking between the propagation
direction and the orientation of a “spin-like” degree of freedom, which can be a sublattice
pseudospin, like in graphene, or the actual angular momentum in topological insulators. In
particular, when a junction is formed between two Dirac materials with opposite helicity,
a paradoxical situation emerges, as sketched in Fig.3.1. A right-moving electron (blue line
on the left-hand side) impinging transversally towards a spin-inactive interface can neither
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be transmitted nor be reflected, due to spin conservation. The Dirac paradox has been dis-
cussed in heterojunctions between two 3D Topological insulators, whose surface states are
governed by a 2D massless Dirac Hamiltonian. In such a case the surface electrons turn out
to “escape” the problem by leaking along the interface surface[285, 286, 287, 288]. However,
in a truly 1D realization of a Dirac model such way out to an extra dimension does not
exist and the Dirac paradox becomes even more interesting. The challenging question is
whether a solution in 1D exists and, if so, whether it can be realized in some physical system.

k
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Fig. 3.1 Schematic representation of the Dirac paradox emerging at a heterojunction between two
massless Dirac models with opposite helicity. Blue and red lines describe spin-↑ and spin-↓ states,
respectively. On the left-hand side of the junction, right-moving electrons are characterized by
spin-↑ and left-moving electrons by spin-↓, while the opposite occurs on the right-hand side. A
spin-↑ electron impinging from the left onto the interface can seemingly neither be transmitted
nor reflected, due to spin conservation.

In this Chapter we investigate the Dirac paradox in 1D and address these problems.
First, we show that, if the helicity change across the interface is accounted for by an
inhomogeneous velocity profile, the paradox has no solution, in the sense that the continuity
equation forbids the existence of scattering states and only allows for eigenstates that
involve electron injection from both sides of the junction, which carry a vanishing current.
If, however, the interface directly introduces spin-rotation processes, the solution of the
paradox is of course trivial and transmission is possible. We then investigate whether
non-trivial solutions with proper scattering states and finite transmission exist without
a spin-active interface. To this purpose, we propose an extended model involving both
massless and massive Dirac modes. We show that, despite carrying no current for energies
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within their gap, the massive modes play a crucial role in inhomogeneous problems like the
Dirac paradox. In particular, as will be discussed in details, scattering states describing a
transmission from a spin-↑ incoming massless mode to a spin-↓ outgoing massless mode
do exist, due to the interface coupling between massless and massive modes. Moreover,
the resulting transmission coefficient is finite and tuneable.

We then discuss the possible realization of such extended model. While massless Dirac
helical states have been proven to exist at the edges of quantum spin Hall systems[21, 289,
290, 291, 292], this implementation is not optimal for the Dirac paradox in 1D. Indeed, since
these states flow at the boundaries of a 2D quantum well, an heterojunction between two
such wells with opposite edge helicity would exhibit a linear interface, whereto electrons
could leak, like in the case of heterojunctions between two 3D Topological insulators
mentioned above. However, as already mentioned in Ch.2, a truly 1D implementation of
helical states has been realized with spin-orbit coupled nanowires (NWs) exposed to a
magnetic field[293, 294, 295, 68, 196, 197, 198, 199, 73, 72, 200], in the regime of spin-orbit
energy much larger than the Zeeman energy and for a chemical potential lying in the
middle of the magnetic gap[296, 66, 65, 297, 238, 239].

So far, this remarkable discovery has been mostly exploited in the search for Majorana
quasi-particles[66, 65, 68, 196, 197, 198, 199, 73, 72, 200, 57, 298, 299, 71] and we have
explored connections with such quest in the previous Chapter. However, the possibility to
experimentally control the Rashba spin-orbit coupling (RSOC), both in magnitude[222,
223, 224, 225, 226, 227, 228, 230, 229, 232, 233] and sign[267, 223, 268, 269, 231], fosters us
to explore applications of the NWs also along different research directions. In particular,
because in a NW the helicity of the massless modes is determined by the sign of the
RSOC, a NW with two differently gated regions can represent a truly 1D implementation
of the Dirac paradox configuration. Notably, in such an inhomogeneous setup, the massless
helical modes are not sufficient to describe the low energy physics around the chemical
potential, which turns out to be well captured by the massless+massive Dirac model we
propose here, instead. The resulting conductance can be tuned electrically over a wide
range of values.

This Chapter is organized as follows. In Sec.3.2 we analyze the Dirac paradox with
two different models involving only massless modes. Then, in Sec.3.3 we introduce a
model with both massless and massive Dirac modes and show how this can yield a finite
transmission coefficient depending on three parameters. Furthermore, in Sec.3.4 we show
that this model can be implemented in a suitably designed setup involving spin-orbit
coupled NWs. Finally, in Sec.3.5 we discuss our results and draw our conclusions.
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3.2 Massless Dirac heterojunctions

Let us thus consider a junction connecting two 1+1 dimensional massless Dirac models

ĤL/R = vL/R

∫
Ψ̂†(x)σzpx Ψ̂(x) dx (3.1)

where ĤLand ĤR denote the Hamiltonians on the left and on the right side of the interface
region, respectively, Ψ̂ = (Ψ̂↑, Ψ̂↓)T is the 2× 1 electron spinor field operator, px = −iℏ∂x

is the momentum operator, and σz is a Pauli matrix in spin space. Finally vL/R denotes
the Fermi velocity. When vR and vL have opposite signs, the helicity changes across the
interface and the Dirac paradox emerges. The answer to the paradox, if any, heavily
depends on how the crossover from ĤL to ĤR occurs, as we shall discuss here below
considering different models.

3.2.1 Model 1: velocity sign change

The most straightforward way to implement the crossover from ĤL to ĤR is to assume that
the entire system is characterized by an inhomogeneous velocity v(x), varying from vL to
vR over a certain crossover length λ. Since the momentum operator px does not commute
with an inhomogeneous velocity profile v(x), a quite natural approach is to replace their
product px v by a half of their anticommutator, obtaining the following Hamiltonian

Ĥ =
∫

Ψ̂†(x)σz
{v(x) , px}

2 Ψ̂(x) dx . (3.2)

The current operator associated to Eq.(3.2) is

Ĵ(x) = e v(x)Ψ̂†(x)σzΨ̂(x) , (3.3)

with e denoting the electron charge, whereas the Heisenberg Equation dictated by Hamil-
tonian (3.2) reads

∂tΨ̂ = −σz

(
v(x)∂xΨ̂ + ∂xv

2 Ψ̂
)

. (3.4)

Looking for stationary solutions Ψ̂(x, t) = Ψ̂E(x)e−iEt/ℏ and multiplying Eq.(3.4) by σz on
the left, the equation reduces to

∂xΨ̂ = v−1(x)
(
−∂xv

2 σ0 + i
E

ℏ
σz

)
Ψ̂ , (3.5)
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whose formal solution is

Ψ̂E(x) = exp
[
−1

2

∫ x

xR

∂xv

v(x′)dx
′
]

exp
[
iEσz

∫ x

xR

dx′

ℏv(x′)

]
Ψ̂E(xR) , (3.6)

where xR is some arbitrary reference space point. One can now exploit ∂x ln |v(x)| =
∂xv/v(x), denote kE(x) = E/ℏv(x) and write

Ψ̂E(xR) = u√
2πℏ|v(xR)|

âE , (3.7)

where u is a position-independent 2× 1 spinor and âE the related energy-E mode operator
fulfilling {aE , a

†
E′} = δ(E−E ′). At each energy E there are thus two independent solutions,

corresponding to two mutually orthogonal choices for the spinor u. Then, Eq.(3.6) takes
the form

Ψ̂E(x) = 1√
2πℏ|v(x)|

e
iσz

∫ x

xR
kE(x′)dx′

u âE , (3.8)

which straightforwardly implies that at any space point x, including possible discontinuity
points of v(x), the following boundary condition holds

√
|v(x+)|Ψ̂E(x+) =

√
|v(x−)|Ψ̂E(x−) (3.9)

where x± = x± ε with ε→ 0.

If v(x) varies in magnitude from vL to vR while preserving a (say) positive sign,
v(x) = |v(x)|, the Hamiltonian (3.2) can equivalently be rewritten as

Ĥ =
∫

Ψ̂†(x)σz

√
v(x)

[
px

√
v(x)

]
Ψ̂(x) dx . (3.10)

In this case, one finds that the transmission coefficient is always 1, regardless of the specific
values of vL, vR > 0, as discussed in Ref.[300].

If, however, v(x) vanishes at some point x0, like in the Dirac paradox, the problem
becomes more subtle. Indeed in such case the energy dependent phase factor involving
kE(x) in the solution Eq.(3.8) is well defined only if v(x) vanishes as |v(x)| = O(|x− x0|α)
with 0 < α < 1. Moreover the solution diverges as ∼ 1/

√
|v(x)| for x → x0. Yet, in

view of the condition (3.9), the current in Eq.(3.3) is finite. Denoting by Ĵ±
E
.= ĴE(x±

0 )
the current operator for a stationary solution at energy E at the two sides of the point
x0 of vanishing velocity, one straightforwardly finds from Eq.(3.9) that Ĵ+

E = −Ĵ−
E . For

stationary solutions, however, the continuity equation requires the expectation value of
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the current to be continuous and independent of the position. The only possibility is
that no current flows through the system, ⟨ĴE(x)⟩ ≡ 0 ∀x, implying that the spinor u
appearing in Eq.(3.8) must be chosen to have vanishing spin along z, i.e. u†σzu = 0. Up
to an overall dimensional coefficient, two independent choices are u+ = (1 , eiϕ)T/

√
2 and

u− = (e−iϕ,−1)T/
√

2, where ϕ is an arbitrary phase.

As an illustrative example, consider for instance the spatially odd profile v(x) =
−vF sgn(x) tanhα(|x|/λ), which describes a velocity sign change from vL = +vF to vR =
−vF across the interface located at x0 = 0, occurring over a lengthscale λ and with an
exponent 0 < α < 1. It is straightforward to prove that the solution (3.8) is spatially even.
Explicitly, choosing e.g. xR = −4λ as a reference point and taking the phase ϕ = 0 in
the above spinors u, one finds kE(x) ≃ −E sgn(x)/ℏvF for |x| ≫ λ. The two physically
correct solutions of the Heisenberg Eq.(3.4) then read

Ψ̂±(x, t) =
∫ dE√

2πℏvF

ψE±(x) e−iEt/ℏ âE± , (3.11)

where the wavefunctions ψE± for |x| ≫ λ take the form

ψE±(x) = e−iE|x|/ℏvF

√
2

 1
0

± e+iE|x|/ℏvF

√
2

 0
1

 . (3.12)

These solutions fulfill the continuity equation by carrying a vanishing current [see Eq.(3.3)].
Note that the spatially even wavefunctions in Eq.(3.12) involve incoming waves from both
sides and cannot be scattering state solutions. Moreover, any attempt to construct scat-
tering states by their linear combinations would fail and would also violate the continuity
equation.

In summary, the answer to the Dirac paradox provided by model 1 is that, when vL

and vR have opposite signs, it is impossible to construct scattering state solutions that
respect the continuity equation. The transmission coefficient cannot be properly defined.
Physically correct solutions must necessarily involve incoming waves from both sides and
carry no current, regardless of the specific magnitudes of |vL| and |vR|. We conclude this
section by noticing that the model 1 only involves the σz-component of spin [see Eq.(3.2)],
and the space-dependent v(x) changes magnitude and sign of such component. In this
respect, the model is purely scalar.
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3.2.2 Model 2: spin-active interface

The second model to approach the Dirac paradox is described by the Hamiltonian

Ĥ = vF

∫
Ψ̂†(x)

(
e−iθ(x)σx/2pxσz e

+iθ(x)σx/2
)

Ψ̂(x) dx (3.13)

where the helicity changes sign through a counter-clockwise rotation of the σz spin around
the x-axis by a space-dependent angle θ(x) varying from θL = 0 to θR = π, over a certain
crossover length. Thus, differently from the purely scalar model (3.2), the model (3.13)
exploits the full SU(2) spin structure and Hamiltonian terms at two different points do
not commute in general. The current operator related to the Hamiltonian (3.13) is

Ĵ(x) = evF Ψ̂†(x)
(
e−iθ(x)σx/2σz e

+iθ(x)σx/2
)

Ψ̂(x) =

= evF Ψ̂†(x) [σz cos θ(x)− σy sin θ(x)] Ψ̂(x) . (3.14)

Integrating the Heisenberg equation for the field operator

∂x

(
eiθ(x)σx/2Ψ̂(x)

)
= −σz

vF

eiθ(x)σx/2∂tΨ̂(x) (3.15)

around any point x, including possible discontinuity points of θ(x), the following boundary
condition is found

eiθ(x+)σx/2Ψ̂(x+) = eiθ(x−)σx/2Ψ̂(x−) , (3.16)

which in turn straightforwardly implies the continuity of the current operator (3.14). In
particular, for a step-like model θ(x < 0) = 0 and θ(x > 0) = π of an interface located at
x0 = 0, Eq.(3.16) reduces to

Ψ̂↑(0+) = iΨ̂↓(0−)
Ψ̂↓(0+) = iΨ̂↑(0−)

(3.17)

and describes a spin-rotation process occurring at the interface. Differently from model
1, the Heisenberg equation (3.15) does admit scattering state solutions Ψ̂E,±(x, t) =
exp[−iEt/ℏ]ψE±(x)âE,±/

√
2πℏvF , where âE,± are the energy-E mode operators for scat-

tering from the left(+) and from right(-), respectively, and ψE±(x) are the related scattering
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wavefunctions. For instance, the scattering state from left is given by

ψE+(x < 0) =
 1

0

 eiEx/ℏvF + r

 0
1

 e−iEx/ℏvF

ψE+(x > 0) = t

 0
1

 eiEx/ℏvF

(3.18)

and, when inserted in Eq.(3.17), straightforwardly implies r = 0 and t = i, leading to a
perfect transmission T = |t| = 1.

In summary, model 2 trivially solves the Dirac paradox by simply introducing spin-
rotation processes at the interface.

3.3 Dirac Heterojunctions with massless and massive
modes

So far, we have considered heterojunctions that purely involve Dirac massless modes and
we have obtained two opposite answers to the Dirac paradox, depending on how the
helicity change across the interface is modelled. Model 1, based on an inhomogeneous
scalar velocity profile, implies that physical solutions necessarily involve injections from
both sides of the junction and predicts no current flowing through the system, whereas
model 2 “circumvents” the paradox by introducing a spin-active interface. In this section
we propose a model that, without introducing any direct spin-rotation processes at the
interface, leads to a non-vanishing transmission.

Suppose that, along with the massless propagating Dirac fermions illustrated in Fig.3.1,
the system is also characterized by massive Dirac fermions, as sketched by the green curves
of Fig.3.2. Specifically, the model we consider is

Ĥ = vF

∫
Ψ̂†(x)U †(x)τzσzpx

(
U (x) Ψ̂(x)

)
dx+

−∆
2

∫
Ψ̂†(x)(τ0 − τz)σx Ψ̂(x) dx (3.19)

where Ψ̂ = (ξ̂↑, ξ̂↓, η̂↑, η̂↓)T , with ξ̂↑, ξ̂↓ and η̂↑, η̂↓ denoting the massless and massive fields,
respectively. Here σ0 and σ = (σx, σy, σz) denote the 2 × 2 identity matrix and Pauli
matrices acting on the spin space, whereas τ0 and τ = (τx, τy, τz) the corresponding
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quantities acting on the massless-massive degree of freedom, which we shall label as
pseudospin.

k
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Fig. 3.2 The band spectrum of the massless+massive Dirac model with opposite helicity across
an interface. While blue and red curves denote the spectrum of the massless modes, as in Fig.3.1,
the green curves describe the spectrum of the massive modes, characterized by a gap 2∆.

In the first term of Eq.(3.19) the 4× 4 matrix U(x) interpolates from UL on the left of
the interface to its value UR on the right, where UL/R are required to fulfill the following
properties

U †
LτzσzUL = +τzσz (3.20)

U †
RτzσzUR = −τzσz , (3.21)

so that the ξ̂↑, ξ̂↓ modes have helicity +1 on the left of the interface and −1 on the right,
just like in the Dirac paradox configuration of Fig.3.1, whereas the opposite occurs for the
η̂↑, η̂↓ modes. The simplest example of a U(x)-matrix fulfilling the conditions (3.20)-(3.21)
is U(x) = exp[iθ(x)τxσ0/2], where θ(x) is a space-dependent angle describing a rotation
in pseudospin space around τx from θL = 0 to θR = π and causing the helicity flip, just
like the spin-active model (3.13) introduces a rotation in spin space. As we shall see
below, there exists in fact a much broader set of possible choices for U(x) that turn out to
describe interesting and realistic cases. The second term in Eq.(3.19) describes the mass
term for η̂↑ and η̂↓, and we shall be interested in the energy window |E| < ∆ inside their
gap, where these massive modes carry no current.
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In view of Eqs.(3.20)-(3.21), the current operator related to the Hamiltonian (3.19)

Ĵ(x) = evF Ψ̂†(x)U †(x)τzσz U(x)Ψ̂(x) (3.22)

takes opposite expressions ĴL/R = ±evF Ψ̂†(x)τzσz Ψ̂(x) at the two sides of the interface.
However, the boundary condition

U(x+)Ψ̂(x+) = U(x−)Ψ̂(x−) , (3.23)

obtained from integration of the Heisenberg equation around any point x, guarantees that
the current is in fact continuous for any U(x). In particular, adopting again a step-like
model U(x) = UL H(−x) + UR H(x) for an interface located at x0 = 0, with H(x) denoting
the Heaviside function, the field Ψ̂ fulfills the interface boundary condition

Ψ̂(0+) = M Ψ̂(0−) , (3.24)

where
M = U−1

R UL (3.25)

is the transfer matrix, which must fulfill

M†τzσzM = −τzσz (Requirement #1) (3.26)

as a straightforward consequence of Eqs.(3.20)-(3.21). Note that Eq.(3.24) implies that the
field Ψ̂ is discontinuous, as is customary for Dirac models in the presence of a δ(x)-term,
which in this case originates from pxU(x) term in the Hamiltonian (3.19).

Importantly, in order to avoid trivial solutions to the Dirac paradox like in model
(3.13), we require that the model (3.19) does not directly introduce any spin-rotation
process at the interface. This leads to impose another requirement on the transfer matrix
Eq.(3.24), namely that M is diagonal in spin space, i.e.

M must involve
only σ0 and σz

(Requirement #2) . (3.27)
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It can be shown (see Appendix B.1 for details) that the most general matrix fulfilling the
requirements Eqs.(3.26)-(3.27) has the following form in the τ ⊗ σ basis

M =


iβ↑ e

i(ν↑−γ↑) 0 (1− iβ↑)ei(ν↑+χ↑) 0
0 iβ↓e

i(ν↓−γ↓) 0 (1− iβ↓)ei(ν↓+χ↓)

(1 + iβ↑)ei(ν↑−χ↑) 0 −iβ↑e
i(ν↑+γ↑) 0

0 (1 + iβ↓)ei(ν↓−χ↓) 0 −iβ↓e
i(ν↓+γ↓)


(3.28)

and depends on 8 parameters, namely 4 real parameters χσ, γσ, βσ, νσ for each spin sector
σ =↑, ↓. The vanishing entries in Eq.(3.28) encode the decoupling of the two spin sectors
dictated by Eq.(3.27).

3.3.1 Scattering states

Let us now focus on E = 0, i.e. on the middle of the massive energy gap, and build up
scattering state solutions on both sides of the junction, namely

Ψ̂(x < 0) = (3.29)

= âL↑


1
0
0
0

 eik0x + b̂L↓


0
1
0
0

 e−ik0x + ĉL√
2


0
0
−i
1

 eκ0x

and

Ψ̂(x > 0) = (3.30)

= âR↑


1
0
0
0

 e−ik0x + b̂R↓


0
1
0
0

 eik0x + ĉR√
2


0
0
−i
1

 e−κ0x

where k0 = 0, κ0 = ∆/ℏvF . Here âL↑ and âR↑ are incoming operators describing a
propagating mode impinging from the left(L) and from the right(R) of the interface,
respectively, whereas b̂L↓ and b̂R↓ are outgoing operators for modes propagating to the
left and to the right, respectively. Note that in the Dirac paradox configuration (see
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Fig.3.2) incoming states and outgoing states have opposite spin, namely spin-↑ and spin-↓,
respectively. Furthermore in Eqs.(3.29) and (3.30) ĉL and ĉR describe evanescent modes
on the left- and on the right-hand side of the interface. Importantly, because they are
massive, their spinors have two non vanishing components and their spin points along y 1.
Introducing Eqs.(3.29) and (3.30) into Eq.(3.24) and using Eq.(3.28), one can write


b̂L↓

b̂R↓

ĉL

ĉR

 =
 S

S̃

 âL↑

âR↑

 , (3.31)

where S denotes the Scattering Matrix returning the outgoing propagating modes

S = ie−i∆χ

(1− iβ↑)(1 + iβ↓)× (3.32)


ei∆ν + e−i∆γβ↑β↓ i(ei(γ↓−ν↑)β↓ − ei(γ↑−ν↓)β↑)

i(ei(ν↑−γ↓)β↓ − ei(ν↓−γ↑)β↑) e−i∆ν + ei∆γβ↑β↓



with ∆χ .= χ↑ − χ↓, ∆ν .= ν↑ − ν↓ and ∆γ .= γ↑ − γ↓, whereas

S̃ =
√

2 e−iχ↑

1− iβ↑


β↑e

−iγ↑ ie−iν↑

ie+iν↑ β↑e
iγ↑

 (3.33)

is the matrix yielding the evanescent modes.

In Eq.(3.31), setting âR↑ → 0 yields a scattering state with injection from left, while
a scattering state with injection from right is obtained for âL↑ → 0. Thus, differently
from model 1 in Eq.(3.2), the model in Eq.(3.19) does allow for scattering solutions. The
transmission coefficient T0 = |t0|2, obtained from the off-diagonal entries of the Scattering

1This observation concurs with the appearance of orthogonal spin density peaks at interfaces where no
bound state is present, as shown in Ch.2. Indeed, as we will show in Sec.3.4 below, the present model
captures the essential physics of the interface in a spin-orbit coupled nanowires with an inhomogeneous
spin-orbit profile. We can thus conclude that the matching conditions for the extended helical modes of a
nanowire with inhomogeneous spin-orbit coupling induce an orthogonal polarization at the interface, due
to the evanescent modes localized at the interface.
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Matrix (3.32), reads

T0 =
β2

↑ + β2
↓ − 2β↑β↓ cosφ

(1 + β2
↑)(1 + β2

↓) , (3.34)

and depends on the three parameters β↑, β↓ and φ = ∆γ + ∆ν. To understand how the
transmission between two propagating electronic states with oppositely oriented spins is
possible, let us for instance set âR↑ → 0 in Eq.(3.31), which corresponds to a scattering
process where a spin-↑ state incoming from the far left is transmitted into a spin-↓ state
outgoing to the far right. By inspecting the spin spatial profile of Eqs.(3.29)-(3.30), one
observes that far away from the interface the total spin is mainly carried by the massless
propagating states and is directed along the z-axis. However, near the interface, spin
acquires also a component along y because of the presence of the massive states (third
terms of Eqs.(3.29)-(3.30)). Indeed the conservation of Stot

z = ℏ Ψ̂†τ0σzΨ̂/2 is broken
precisely by the mass in the Hamiltonian Eq.(3.19). Thus, when approaching the interface,
the total spin rotates in the y-z plane, thereby allowing the transmission from a spin-↑
to a spin-↓ massless state. Note the essential difference with respect to model 2: There,
the spin-rotation is induced directly on the massless modes by a spin-active interface [see
Eq.(3.13)], whereas here the transfer matrix in Eqs.(3.24) and (3.28) is fully diagonal
in spin [see Eq.(3.27)] and the spin rotation occurs indirectly, i.e. through the coupling
between massless and massive modes localized at the interface.

To a more formal level, the process can be illustrated in terms of the Transfer Matrix
as follows. Let us again consider for definiteness the scattering from left, i.e. âR↑ → 0 in
Eq.(3.31), and also set for simplicity all phases to zero (γσ = χσ = νσ = 0) in Eqs.(3.28),
(3.32) and (3.33). We first focus on the case β↑ = 0, where the scattering state resulting
from Eqs.(3.31)-(3.32)-(3.33) is sketched on the left-hand side of Fig.3.3(a): The blue
(red) wiggy line describes the incoming spin-↑ state (outgoing spin-↓ states), while an
evanescent wave (green solid line) is present only for x > 0. Its role is elucidated on the
right hand side of Fig.3.3(a), which is a graphical representation of Eq.(3.24) where the
non-vanishing components of such a scattering state are connected across the interface
by the transfer matrix entries (black lines). When the massless spin-↑ state propagates
towards the interface from the left, the transfer matrix Eq.(3.28) connects it through the
entry M31 = 1 to its massive evanescent partner with the same spin located across the
interface, represented by a green dashed box, with the thick solid lines inside it denoting
its two spin components. Because such a mode is massive, inside the gap it always exhibits
both spin components [see third term in Eq.(3.30)]. Thus, its spin-↓ component is also
present and is connected through the transfer matrix entry M42 = 1 + iβ↓ to its spin-↓
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massless partner, which describes the reflected wave propagating to the left of the junction.
Finally, the latter is also coupled, through the entry M22 = iβ↓, to the massless spin-↓ state
outgoing to the right of the junction. Thus, despite the interface connects only states with
the same spin on the two sides, the presence of an evanescent massive mode exhibiting
both spin components leads to an effective spin-flip transmission between massless modes.
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Fig. 3.3 For each panel, the left-hand side sketches the scattering state wavefunction in the
case of injection from the left, resulting from Eqs.(3.31)-(3.32)-(3.33) for âR↑ → 0. Blue and
red wiggy lines describe spin-↑ and spin-↓ propagating massless states, respectively, whereas
solid green lines describe the evanescent wave of the massive mode. The right-hand side of each
panel is a graphical representation of Eq.(3.24), where black lines represent the transfer matrix
entries connecting the non vanishing components of such scattering state. (a) The case with
β↑ = 0. The evanescent mode is present only on the right side of the interface. Here M31 = 1,
M42 = 1 + iβ↓ and M22 = iβ↓. (b) The case with β↓ = 0. In this case the evanescent modes are
present on both sides of the junction. Here M31 = 1 + iβ↑, M33 = −iβ↑ and M24 = M42 = 1. In
all cases, despite the transfer matrix only connects states with the same spin, the presence of the
evanescent modes of the massive field enables a spin-flip transmission between the propagating
modes.

Let us now consider the case β↓ = 0. In this case the scattering state resulting from the
solution Eqs.(3.31)-(3.32)-(3.33) exhibits evanescent modes on both sides of the junction, as
sketched in the left hand side of Fig.3.3(b). The scheme on the right hand side of Fig.3.3(b)
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illustrates the related Eq.(3.24). While the entry M31 is modified to M31 = 1 + iβ↑, a
connection M33 = −iβ↑ opens up across the junction between the two spin-↑ components
of the massive modes. In turn, their corresponding spin-↓ components are connected
through the entries M24 = M42 = 1 to the spin-↓ massless modes across the junction,
thereby inducing again spin-flipped reflection and transmission.

The general case, where both β↑ and β↓ are non vanishing, is a combination of the
two elementary cases and yields the transmission coefficient (3.34). Note that in the limit
where both β↑ → 0 and β↓ → 0, the transmission coefficient (3.34) vanishes. This can
also be understood by realizing that in such limit the transfer matrix (3.28) reduces to
M = τxσ0, yielding the boundary conditions ξ̂σ(0+) = η̂σ(0−)

η̂σ(0+) = ξ̂σ(0−)
σ =↑, ↓ , (3.35)

so that e.g. a massless mode incoming from the left towards the interface is completely
transformed into its massive evanescent mode partner across the interface (with the same
spin), which carries no current.

In summary, although massive modes do not carry any current inside the gap, their
presence is important in inhomogeneous problems because they may localize at the
interfaces. In particular they are crucial in the Dirac paradox, for they provide an indirect
coupling between the two spin channels that would be otherwise uncoupled by the interface
transfer matrix. This leads to an effective spin-flip transmission of the massless propagating
modes. Moreover, in contrast with the models 1 and 3 discussed in Sec.3.2, here the
transmission coefficient is tunable from 0 to 1 through the 3 knobs β↑, β↓ and φ. This is
one of the main results of this Chapter.

3.4 Spin-orbit coupled nanowires

In this section we shall show that the model presented in Sec.3.3 can be realized with
spin-orbit coupled NWs, under suitable circumstances. First, we shall briefly recall how
these systems, introduced in Sec.2.2, can host helical states described by Dirac massless
fermions, as well as gapped Dirac states, when exposed to an external magnetic field.
Then, focussing on energies inside the gap opened up by the magnetic field, we shall
explicitly derive the effective low-energy model for these systems. Finally, we shall consider
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an inhomogeneous spin-orbit coupling profile that, in suitable regimes, realizes the Dirac
paradox configuration involving both massless and massive modes, just like in the model
proposed above.

3.4.1 The NW Hamiltonian and its low energy limit

As described in Ch.2, we consider a ballistic single-channel semiconductor NW deposited
on a substrate and we assume that a uniform magnetic field is applied parallel to the
nanowire axis, denoted by x, while the substrate plane will be identified as x-z. We shall
adopt the same model of Sec.2.2, whose main ingredients are summarized here below
for convenience (see also Appendix B.2 for additional details). With respect to Sec.2.2,
we only have to slightly adjust the notation for the electron field operator, in order to
avoid confusion. We shall denote by Φ̂(x) = (Φ̂↑(x) , Φ̂↓(x))T the electron spinor field
associated to the entire NW energy range, with ↑, ↓ corresponding to spin projections
along z, whereas the symbol Ψ̂(x) will be used to denote the spinor field restricted to
the low energy modes around the Fermi energy [see Eq.(3.42) below]. Hence the full NW
Hamiltonian reads ĤNW =

∫
Φ̂†(x)HNW (x) Φ̂(x) dx, where [see Eq.(2.2)]

HNW (x) = p2
x

2m∗σ0 −
α

ℏ
pxσz − hxσx (3.36)

contains the kinetic term characterized by an effective mass m∗, the Rashba term with a
RSOC α, and the Zeeman term describing the coupling hx = gµBBx/2 with the external
magnetic field B = (Bx, 0, 0), with µB denoting the Bohr magneton and g the NW Landé
factor. The model is characterized by two energy scales, namely the spin-orbit energy
ESO = m∗α2/2ℏ2 and the Zeeman energy EZ = |hx|. For definiteness, we shall henceforth
assume hx > 0 and identify hx = EZ . The spin-orbit wavevector [see Eq.(2.5)]

kSO =
√

2m∗ESO

ℏ
= |α|m

∗

ℏ2 , (3.37)

and the Zeeman wavevector
kZ =

√
2m∗EZ /ℏ (3.38)

are the wavevectors associated to such energies. Diagonalizing the model in momentum
space, one obtains a spectrum characterized by two energy bands separated at k = 0 by a
gap 2EZ centered around the energy E = 0. Depending on the ratio of EZ to ESO, the
qualitative behavior of these bands is different (see Sec.2.2.2).
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Fig. 3.4 In the deep Rashba-dominated regime (2ESO ≫ EZ) and for energies |E| ≪ EZ , a
NW exposed to an external magnetic field exhibits helical states near the Fermi points ±2kSO.
Their spin orientation is locked to the propagation direction and is determined by the sign of
the RSOC α. The spin orientation is shown for the case α > 0. The low energy massless and
massive modes are highlighted with the same colors as in Fig.3.4.

In the following we shall focus on the deep Rashba-dominated regime (EZ ≪ 2ESO),
illustrated in Fig.3.4, and analyze the energy window inside the magnetic gap (|E| ≪ EZ),
highlighted by the dashed box. As is well known, in this range the NW propagating
eigenstates are helical[296, 66, 65, 297, 238, 239, 293, 294, 295]: Their dispersion relation
is well described by a linear behavior near the Fermi points k ≃ ±2kSO, while their spin
orientation, mainly dictated by the Rashba term, is locked to the propagation direction.
For α > 0, right-moving electrons near the right Fermi point k ≃ +2kSO are characterized
by spin-↑, while left-moving electrons near the left Fermi point k ≃ −2kSO have spin-↓
(see Fig.3.4). The opposite occurs if α < 0. The dynamics of these low energy propagating
modes, which we shall denote by ξ̂↑, ξ̂↓, is thus described by a massless Dirac Hamiltonian.
Note that the presence of one single Dirac cone is not an artifact of the continuum model
(3.36) and can be found also in a regularized lattice version of it (see Appendix B.3).
Importantly, the helicity of the Dirac cone is determined by the sign of the RSOC α

sα = sgn(α) . (3.39)

This suggests that a junction between two NW regions with opposite values of RSOC
realizes the Dirac paradox configuration.

However, as highlighted by the green lines in Fig.3.4, the NW also exhibits low-energy
gapped modes near k = 0, whose spin components shall be denoted as η̂↑ and η̂↓. Notably,
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these modes turn out to behave as massive Dirac fermions with a mass term ∆ = EZ .
In problems involving homogeneous NWs these modes are dropped because they are not
normalizable. However, as observed in Sec.3.3, in inhomogeneous problems such as the
Dirac paradox configuration they describe evanescent waves that, despite carrying no
current, ensure the wavefunction matching at the interface. For these reasons, the effective
low energy theory capturing the physical properties of the Dirac paradox configuration
realized with NWs is a Dirac model involving both massless and massive modes.

To derive such effective theory describing low energy excitations |E| ≪ EZ ≪ 2ESO,
we assume that the ground state is the Fermi sea where all NW states below the midgap
energy (E < 0) are occupied, and we perform an expansion near the points k ≃ ±2kSO

and k ≃ 0. It is possible to show (details can be found in Appendix B.2), that the low
energy excitations of the NW Hamiltonian are equivalent to low energy excitations of the
massless+massive Dirac model

ĤNW =
+∞∑

q=−∞
(ξ̂†

q↑ ξ̂
†
q↓)
ℏsαvsoq 0

0 −ℏsαvSOq

 ξ̂q↑

ξ̂q↓


+

+∞∑
q=−∞

(η̂†
q↑ η̂

†
q↓)
−ℏsαvsoq −EZ

−EZ ℏsαvSOq

 η̂q↑

η̂q↓

 (3.40)

where vSO = ℏkSO/m
∗. Introducing the low-energy fields (σ =↑, ↓)

ξ̂σ(x) = 1√
Ω
∑

q

ξ̂q,σe
iqx , η̂σ(x) = 1√

Ω
∑

q

η̂q,σe
iqx (3.41)

that physically describe excitations varying over lengthscales much longer than the spin-
orbit length lSO = k−1

SO, the NW Hamiltonian can be expressed as

ĤNW =
∫
dxΨ̂†(x)

(
sαvSOτzσzpx −

EZ

2 (τ0 − τz)σx

)
Ψ̂(x) (3.42)

where Ψ̂(x) = (ξ̂↑, ξ̂↓, η̂↑, η̂↓)T is a 4-component spinor field. One can now realize the
connection between the NW Hamiltonian (3.42) and the model introduced in Sec.3.3 in
Eq.(3.19). Indeed, identifying vSO → vF and EZ → ∆, Eq.(3.42) describes one side of
the junction model (3.19), where the sign sα of the RSOC [see Eq.(3.39)] implements the
condition Eq.(3.20) or (3.21) and determines which side of the junction is described.



3.4 Spin-orbit coupled nanowires 68

Finally, the original field Φ̂ can be expressed in terms of the Dirac slowly varying modes
(ξ̂, η̂) and the fast oscillating plane waves related to the midgap Dirac points, as follows

 Φ̂↑(x)
Φ̂↓(x)

 =
 e+2isαkSOx ξ̂↑(x) + η̂↑(x)
e−2isαkSOx ξ̂↓(x) + η̂↓(x)

 . (3.43)

3.4.2 The case of inhomogeneous RSOC

Because the helicity of the NW low energy massless modes is determined by the sign of
the RSOC, one can envisage a setup where two different NW portions are characterized
by values of α with opposite signs, as illustrated in Fig.3.5. The overall system can thus
be described by a inhomogeneous spin-orbit coupling α(x) and the Hamiltonian (3.36) is
generalized to[236, 237, 301, 302, 303, 205, 234] (see Sec.2.2.1)

H(x) = p2
x

2m∗σ0 −
{α(x), px}

2ℏ σz − hxσx (3.44)

In particular, as an elementary building block, one can consider a step-like RSOC profile
α(x) = αL H(x0 − x) + αR H(x − x0) describing an interface located at x0 between two
regions with RSOC equal to αL and αR. In such a configuration one can straightforwardly
derive the following matching conditions (see Appendix A.1)

Φ̂↑(x−
0 ) = Φ̂↑(x+

0 )
Φ̂↓(x−

0 ) = Φ̂↓(x+
0 )

∂xΦ̂↑(x−
0 ) = ∂xΦ̂↑(x+

0 )− im∗

ℏ2 (αR − αL)Φ̂↑(x0)
∂xΦ̂↓(x−

0 ) = ∂xΦ̂↓(x+
0 ) + im∗

ℏ2 (αR − αL)Φ̂↓(x0) .

(3.45)

This provides all the ingredients for a concrete implementation of the Dirac paradox. In
order to be more realistic, we shall consider a three-region configuration where the RSOC
varies as

α(x) =


+α > 0 for x < −L/2 (region 1)
0 for |x| < L/2 (region 2)
−α < 0 for x > +L/2 (region 3)

, (3.46)

where the two outer regions 1 and 3 with opposite RSOC are both assumed in the deep
Rashba-dominated regime (2ESO ≫ EZ), and are separated by the central crossover region
2 with length L and with vanishing RSOC, i.e. in the Zeeman-dominated regime (see
Fig.3.5).
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E

Fig. 3.5 By gating different portions of the NW with metallic electrodes an inhomogeneous RSOC
like (3.46) can be realized. Inside the Zeeman gap, induced by an external magnetic field applied
along the nanowire axis, the helical states in the two outer regions have opposite helicity and
thus realize the Dirac paradox configuration.

Applying the general interface condition (3.45) to the two interfaces x1 = −L/2 and
x2 = +L/2 of the piecewise constant profile (3.46), one can match the NW wavefunction
in the three regions and obtain the solution for the NW scattering problem with standard
techniques[304] (see Appendix B.4). Although the resulting transmission coefficient is
numerically exact and available for arbitrary values of E, ESO and EZ , it is not quite
amenable. However, in the energy window |E| ≪ EZ ≪ 2ESO where the Dirac paradox
emerges, an analytical expression can be gained from the effective low energy model. To
this purpose, one can insert the expression (3.43) for the field Φ̂ in the outer Rashba-
dominated regions into the interface condition (3.45) and obtain the low energy boundary
conditions at the left interface x1 = −L/2

e−ikSOLξ̂↑(x−
1 ) + η̂↑(x−

1 ) = Φ̂↑(x+
1 )

e+ikSOLξ̂↓(x−
1 ) + η̂↓(x−

1 ) = Φ̂↓(x+
1 )

+ikSO

[
e−ikSOLξ̂↑(x−

1 )− η̂↑(x−
1 )
]

= ∂xΦ̂↑(x+
1 )

−ikSO

[
e+ikSOLξ̂↓(x−

1 )− η̂↓(x−
1 )
]

= ∂xΦ̂↓(x+
1 )

(3.47)
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and at the right interface x2 = +L/2

Φ̂↑(x−
2 ) = e−ikSOLξ̂↑(x+

2 ) + η̂↑(x+
2 )

Φ̂↓(x−
2 ) = e+ikSOLξ̂↓(x+

2 ) + η̂↓(x+
2 )

∂xΦ̂↑(x−
2 ) = −ikSO

[
e−ikSOLξ̂↑(x+

2 )− η̂↑(x+
2 )
]

∂xΦ̂↓(x−
2 ) = +ikSO

[
e+ikSOLξ̂↓(x+

2 )− η̂↓(x+
2 )
] , (3.48)

where, consistently with the low energy limit, we have neglected the derivatives ∂xξ̂ and
∂xη̂ of the slowly varying fields with respect to the term proportional to kSO, since they
are characterized by wavevectors |q| ≪ kSO.

In the central region 2, where only the Zeeman coupling is present, the field Φ̂ can
be expressed as a linear combination of propagating and evanescent waves that are
eigenfunctions of σx, so that for |x| < L/2

Φ̂(x) = ĥE√
2

 1
1

 eik2,Ex + ĝE√
2

 1
1

 e−ik2,Ex (3.49)

+ d̂E√
2

 1
−1

 eκ2,Ex + f̂E√
2

 1
−1

 e−κ2,Ex

where ĥE, ĝE, d̂E and f̂E are mode operators, whereas k2,E = kZ

√
1 + E/EZ , κ2,E =

kZ

√
1− E/EZ and kZ is given in Eq.(3.38). Inserting Eq.(3.49) into Eqs.(3.47)-(3.48), one

can obtain the link between the fields in the outer Rashba-dominated regions

ξ̂↑(L/2)
ξ̂↓(L/2)
η̂↑(L/2)
η̂↓(L/2)

 = ME


ξ̂↑(−L/2)
ξ̂↓(−L/2)
η̂↑(−L/2)
η̂↓(−L/2)

 (3.50)

where the transfer matrix ME depends on the energy E and on the size L of the central
region through two dimensionless parameters kZL and kSOL. Details about the derivation
of ME can be found in the Appendix B.4. As an illustrative example, here we shall focus
on the midgap value (E = 0), which in fact well represents the entire low energy range
|E| ≪ EZ . Moreover, since in the deep Rashba-dominated regime kZL≪ kSOL, one can
keep kSOL finite and consider kZL as a small parameter, performing an expansion of ME=0
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in its powers. Neglecting orders O((kZL)4) one obtains

M0 ≃


ikSOL/2 A (1− ikSOL/2)eikSOL B

A∗ −ikSOL/2 B∗ (1 + ikSOL/2)e−ikSOL

(1 + ikSOL/2)e−ikSOL −B −ikSOL/2 A∗e2iLkSO

−B∗ (1− ikSOL/2)eikSOL Ae−2ikSOL ikSOL/2


(3.51)

where

A = i
−6 + kSOL(kSOL+ 6i)

12kSOL
e2iLkSO(kZL)2 (3.52)

B = −i(kSOL)2 + 6
12kSOL

eikSOL(kZL)2 . (3.53)

The 8 entries of the transfer matrix (3.51) containing A and B couple spin-↑ to spin-↓
components. Notably, such terms are of the order O((kZL)2) and in the regime kZL≪ 1
can be neglected with respect to the other terms, which are O(1) with respect to the
variable kZL. Then, the transfer matrix reduces to

M0 ≃


ikSOL

2 0 (1− ikSOL
2 )eikSOL 0

0 −ikSOL
2 0 (1 + ikSOL

2 )e−ikSOL

(1 + ikSOL
2 )e−ikSOL 0 −ikSOL

2 0
0 (1− ikSOL

2 )eikSOL 0 ikSOL
2

 .

(3.54)
The expression (3.54) has precisely the form Eq.(3.28) of the transfer matrix of the
massless+massive Dirac model described in Sec.3.3, when setting β↑ = −β↓ = kSOL/2,
χ↑ = −χ↓ = kSOL and γ↑ = γ↓ = ν↑ = ν↓ = 0. Thus, in the regime kZL ≪ 1, where
the central region is much shorter than the Zeeman wavelength lZ = k−1

Z characterizing
the wavefunction (3.49) at E = 0, the transfer matrix is diagonal in spin and becomes
independent of the Zeeman energy EZ . Yet, M0 couples massless to massive modes and
still depends on kSOL. This parameter, which represents the ratio of the crossover region
L to the spin-orbit length lSO = k−1

SO, may be finite because of the deep Rashba-dominated
regime kZ ≪ kSO.

In turn, the transmission coefficient related to Eq.(3.54) can be obtained from the
general formula Eq.(3.34),

T0 = (kSOL)2

(1 + (kSOL/2)2)2 , (3.55)
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Fig. 3.6 The transmission coefficient (3.55), plotted as a function of kSOL, covers the entire range
T0 ∈ [0, 1].

and varies over the entire range T0 ∈ [0, 1] as a function of kSOL, as shown in Fig.3.6. In
particular, while for small values kSOL ≪ 1 the transmission is low, T0 ∼ (kSOL)2, for
finite values of kSOL we observe from Fig.3.6 that T0 increases, and a perfect transmission
T0 = 1 is obtained for kSOL = 2. Then, for large values of kSOL the transmission decreases
again as T0 ∼ 16/(kSOL)2. The ratio of the spin-orbit length lSO = k−1

SO to the distance L
is thus the parameter controlling the value of T0.

3.4.3 Transmission coefficient in the case of InSb

For definiteness, we consider here an implementation with a ballistic InSb NW with
effective electron mass m∗ = 0.015me. Two different portions of the NW are supposed
to be gated by differently biased metals inducing opposite RSOC values, as previously
sketched in Fig.3.5, and are separated by a crossover region L = 100nm where the RSOC
is negligible. In Fig.3.7(a) the solid curves display the midgap transmission coefficient
T0 = TE=0 as a function of the spin-orbit energy ESO, for different values of the Zeeman
energy EZ , obtained from the numerically exact solution of the model (3.44) with the
profile (3.46) (see Appendix B.4 for technical details). Moreover the dashed curve describes
the analytical result (3.55) obtained from the low-energy limit in the Rashba-dominated
regime of the outer regions, i.e. the massless+massive Dirac model. As one can see, for
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ESO → 0, the exact transmission coefficient tends to 1, regardless of the value of EZ , since
all three regions become equal in such a limit.

0 1 2 3 4 5 6 7 8 9 10

ESO[meV]

0.0

0.5

1.0

T0

(a)(a)(a)(a)

Ez = 0.1meV

Ez = 0.05meV

Ez = 0.01meV

Ez = 0.005meV

massless+massive
Dirac model

0.0 0.1 0.2 0.3 0.4 0.5
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0.0

0.5

1.0

T0

(b)(b)(b)(b)

Ez = 0.1meV
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Ez = 0.01meV

Ez = 0.005meV

massless+massive
Dirac model

Fig. 3.7 The Dirac paradox configuration realized with a InSb NW setup where two outer gated
regions are characterized by opposite RSOC and the central region has a width L = 100 nm
(see Fig.3.5). The midgap transmission coefficient (E = 0), obtained from the numerically exact
solution of the model (3.44) with the profile (3.46), is plotted as a function of the spin orbit energy,
for different values of the external magnetic field EZ (solid curves). When the Rashba-dominated
regime (2ESO ≫ EZ) is reached, the various solid curves all tend to the dashed curve describing
the result Eq.(3.55), obtained in the low energy limit from the effective massless+massive Dirac
model. Panel (b) is a zoom of panel (a) in the regime of spin-orbit values that are realistic with
present gating techniques.
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However, for each Zeeman energy value, when ESO is sufficiently large to enter the
deep Rashba-dominated regime (2ESO ≫ EZ), all solid curves are well reproduced by the
low-energy limit Eq.(3.55) (dashed curve), which is independent of EZ . This is thus the
regime where the NW gap states are helical and the setup realizes the Dirac paradox.
Despite the absence of a spin-active interface, the transmission coefficient is non-vanishing
because the propagating massless modes are coupled to the evanescent massive modes.
In Fig.3.7(b) the same quantities as in panel (a) are shown, with a zoom in the range
of spin-orbit energy values up to ESO = 0.5meV, which is the realistic range presently
reachable. Correspondingly, the range of Zeeman energy values EZ ensuring a deep Rashba
dominated regime for the external gated regions is EZ < 0.1meV. This implies that
the linear conductance G0, straightforwardly connected to the transmission coefficient
through the relation G0 = (e2/h)TE=0, is tunable from low to high values with varying the
spin-orbit energy, which can electrically be done through the gate voltage.

3.5 Conclusions

In this Chapter we have analyzed the Dirac paradox, illustrated in Fig.3.1, where an
electron impinging towards an interface can seemingly neither be transmitted nor reflected.
In particular, we have focussed on the interesting case of one spatial dimension. Indeed,
differently from higher dimensional realizations such as heterojunctions between two 3D
Topological Insulators where electrons can leak along the interface surface, in 1D electrons
do not have a “way out” to escape the paradox. We have first analyzed models that purely
involve massless modes. The first model Eq.(3.2), where the helicity change across the
interface is accounted for by a spatially inhomogeneous velocity, leads to conclude that
the paradox has no actual solution, namely it is not possible to build up a scattering
state solution. Indeed physical solutions must necessarily involve electron injection from
both sides and are characterized by a vanishing current. In contrast, the second model
Eq.(3.13), where the helicity change occurs through a rotation of the spin across the
interface, provides a trivial solution to the paradox, for it directly introduces a spin-active
interface, which leads to a perfect transmission.

Then, we have proposed a model, Eq.(3.19), involving both massless and massive
Dirac modes [see Fig.3.2] and we have shown that it leads to a non-trivial solution of the
Dirac paradox, even for a spin-inactive interface. This is possible because of the massive
modes that, despite carrying no current for energies inside their gap, always exhibit both
spin components. Thus, a massless-massive coupling at the interface indirectly enable an
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incoming massless electron impinging with spin-↑ to get transmitted as a massless electron
with spin-↓ (see Fig.3.3). Properly defined scattering state solutions thus exist, and the
transmission coefficient depends in general on three parameters [see Eq.(3.34)].

Moreover, in Sec.3.4, we have shown that such model can be implemented in spin-orbit
coupled NWs exposed to an external magnetic field, whose midgap states are characterized
by massless modes near the Fermi points k ∼ ±2kSO and massive modes near k ∼ 0
[see Fig.3.4]. The massless modes are helical in the deep Rashba-dominated regime
(2ESO ≫ EZ) and their helicity is determined by the sign of the RSOC. Because the latter
can be tuned by state-of-the-art gating techniques, a NW with two regions characterized
by opposite RSOC values, as shown in Fig.3.5, is a suitable candidate to realize the Dirac
paradox configuration in one spatial dimension. We have shown that the low energy limit
of such inhomogeneous NW model is precisely a particular case of the proposed model
(3.19). The resulting transmission coefficient Eq.(3.55) varies over the full range T0 ∈ [0, 1]
(see Fig.3.6) as a function of the parameter kSOL, where L is the distance between the two
differently gated regions and kSO is the spin-orbit wavevector that is directly controlled
by the RSOC [see Eq.(3.37)]. Focussing on the specific case of an inhomogeneous InSb
NW, we have determined from model (3.44) the exact transmission coefficient, which in
general depends both on the spin-orbit and the Zeeman energies [solid curves of Fig.3.7].
Whenever the Rashba-dominated regime is reached, the setup realizes the Dirac paradox
configuration. Then, the transmission coefficient is well captured by the low energy limit
result (3.55) (dashed curve of Fig.3.7) obtained from the proposed massless+massive Dirac
model and only depends on the spin-orbit energy ESO. Because ESO can be controlled via
the gate bias coupled to the NW, the transmission coefficient and the linear conductance
are electrically tuneable.



Chapter 4

Negative Absorption Induced by a
Local Quench

The content of this Chapter is based on the published paper [305]

4.1 Introduction

The concept of quantum quench [87, 79, 80, 81] has found an extraordinary impact in
both technological applications and fundamental physics. Not only does it represent
a basic operational tool for quantum state manipulations, it also enables one to tailor
material properties [306] and quantum phases [307]. In the present Chapter we exploit the
quench protocol as a tool to address the questions: “Does an isolated many-body quantum
system thermalize after an initial perturbation? Can it reach a non-thermal (eventually
meta-stable) steady state? if so, what are the properties of the steady state?” These
questions have intrigued scientists ever since the foundations of quantum mechanics[106]
and have found renewed interests in recent years, in part due to the technological advances
in realizing experimental platforms with a high level of isolation and coherence, such as
trapped ultra-cold atoms [94], as well as ultra-fast pump and probe set-ups, which can
investigate the out of equilibrium behaviour of the system before thermalization eventually
is reached [96]. The answers to these non trivial problems mainly depend on two aspects.
First, the type of quench: While early studies considered quenches of spatially homogeneous
parameters [308, 309, 310, 311, 312, 313, 314, 315, 316, 317], recent works have focused on
inhomogeneous quenches such as extensive disorder potentials [318, 319], e.g., in view of
many-body localization [320, 321], and spatially localized perturbations [322, 323, 324, 325,
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326, 327, 328, 329, 330, 331, 332], which can for instance generate persistent oscillations in
physical observables thus preventing the reaching of a steady state [319, 318, 330]. The
second important ingredient in the problem is the type of system. In particular, in the
case of integrable post-quench Hamiltonian [119], the dynamics is restricted by a complete
set {Îα} of local constants of motions commuting with the post-quench Hamiltonian [118].
This implies that, if an out of equilibrium steady state is reached, it can be described by a
Generalized Gibbs Ensemble (GGE) density matrix [333, 308, 334, 123, 120, 335, 336, 337,
338]

ρ̂GGE = exp(−∑α λαÎα)
Tr
[
exp(−∑α λαÎα)

] , (4.1)

where the Lagrange multipliers {λα} are determined by the pre-quench state and uniquely
characterize the GGE.

On the theoretical side, there is a growing consensus that the GGE hypothesis works
both for homogeneous [333, 308, 334, 123, 120, 335, 336, 337, 338] and inhomogeneous [319,
318, 339, 340, 341] quenches. However, only a few experimental GGE signatures have been
observed so far, mostly limited to trapped one-dimensional Bose gases [128]. As far as
Fermi systems are concerned, the proposals for GGE detection are based on homogeneous
quenches of the interaction strength [342, 343] and have not found experimental evidence
yet. Different schemes are thus needed.

A particularly illuminating case where sound results concerning GGE are known is
when the post-quench Hamiltonian Ĥ is a quadratic form in the creation and annihilation
operators, i.e., a one-body operator [319, 318, 344, 345, 346]. In such a case, the latter
can always be brought into a diagonal form Ĥ = ∑

α εαγ̂
†
αγ̂α through a change of basis to

suitable creation/annihilation operators γ̂†
α, γ̂α of single particle states α and the complete

set of constants of motion {Îα} are identified as the number operators n̂α ≡ γ̂†
αγ̂α

1.

The analysis of these systems provides useful insights on fundamental questions. In
particular, the way quantum dynamics is described by a GGE heavily depends on the type
of inhomogeneities that are possibly quenched in the system. On the one hand, quenching
an extensively dense disorder prevents the system from reaching a strict stationarity, and
only long time time-averages of one-body observables equal the GGE statistical average
over Equation (4.1) [319, 318]. On the other hand, recent results have shown that, if the
localized states of Ĥ are sufficiently spatially separated, i.e., if disorder is rare and weak

1If the n̂α themselves are not local, as is customary in the case of homogeneous quenches, it is always
possible to construct local conserved quantities out of them, following the lines of Ref.[345] (see e.g.
Eqs.(18)-(19) therein).
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enough, the expectation values of local observables tend in time to the ones prescribed by
the GGE density matrix [345].

Importantly, in the case of post-quench one-body Hamiltonians, one can also quantify the
deviation of GGE from thermal equilibrium. This can be done through the single-particle
reduced density matrix stemming from ρ̂GGE, which is explicitly given by ρ̂D = ∑

α |α⟩⟨α|fα

and is thus called the “diagonal ensemble” in the α-basis. Here fα ≡ ⟨n̂α⟩◦ = Tr[n̂αρ̂◦]
represent the occupancies of the post-quench constants of motion over the pre-quench
state ρ̂◦. They are in one-to-one correspondence with the {λα}, which are fixed through
the relation ⟨n̂α⟩GGE = ⟨n̂α⟩◦. In particular, for fermionic systems, this implies fα =
(1+exp[λα])−1. Thus, while the equilibrium state at temperature T and chemical potential
µ corresponds to the Fermi distribution f eq

α = f eq(εα) = {1 + exp[(εα − µ)/kBT ]}−1, or
equivalently to λeq

α = (εα − µ)/kBT , the out of equilibrium state is characterized by the
actual set {fα}, or equivalently by the set {λα}, and is thus quantified in terms of “how
many” occupancies fα deviate from f eq

α and by “how much”.

In this Chapter we focus on quadratic Fermi systems and address the following question:
what is the most elementary deviation from equilibrium that can produce observable
effects? We shall show that quenching a spatially localized potential can lead, under
suitable circumstances, to an out of equilibrium state that (i) reaches stationarity and (ii)
is described by a GGE distribution where only one parameter λα deviates from equilibrium,
corresponding to an only partially occupied bound state lying below a continuum of fully
occupied extended states. Furthermore, we show that such condition yields a negative
absorption spectrum, also known in optoelectronics as the optical gain, thereby paving
the way to observe signatures of GGE through optical measurements.

The Chapter is organized as follows. After presenting the model in Section 4.2, we
first focus on the case of a sudden quench of a rectangular quantum well to provide the
proof of concept of the effect. In particular, in Section 4.3, we determine the post-quench
out of equilibrium distribution, while in Section 4.4 we evaluate the related absorption
spectrum, displaying the quench-induced negative absorption peak. Then, in Section 4.5,
we generalize these results by including realistic effects, namely a finite switching time and
a smooth quantum well potential profile. Finally, in Section 4.6, we draw our conclusions.
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4.2 Model and Post-Quench Occupancies for a Sud-
den Quench

In order to illustrate the effect, we consider as a pre-quench system a homogeneous
one-dimensional gas of free spinless electrons, described by the Hamiltonian Ĥpre =
−ℏ2 ∫ dx Ψ̂†(x) ∂2

xΨ̂(x)/2m, with Ψ̂ denoting the electron field operator. The system is
initially at equilibrium with a reservoir, at a temperature T and a chemical potential µ.
This entails that the Fourier mode operators ĉ(k) diagonalizing the Hamiltonian, Ĥpre =∫
dk ε(k)ĉ†(k)ĉ(k), are characterized by

⟨ĉ†(k)ĉ(k′)⟩◦ = δ(k − k′)f eq(ε(k)) , (4.2)

where ε(k) = ℏ2k2/2m is the pre-quench spectrum. Then, the system is disconnected
from the reservoir and, at the time t = 0, a localized attractive potential V (x) < 0
is switched on near the origin x = 0, so that the post-quench Hamiltonian is Ĥpost =
Ĥpre +

∫
dxΨ̂†(x)V (x)Ψ̂(x). For the moment, we shall focus on the case of a sudden quench,

while the effects of a finite switching time will be considered in Section 4.5. Notably, while
Ĥpre has a purely continuous spectrum, Ĥpost also displays a discrete set of bound states,
spatially localized around the origin, and with energies εn < 0 (n = 0, 1, 2 . . .) lying below
the continuum branch ε > 0.

The post-quench dynamics of this isolated system is intriguing in view of two opposite
expectations. On the one hand, because the quenched potential is local, the energy
change experienced by the entire system is vanishingly small in the thermodynamic limit,
suggesting that even the post-quench distribution should remain a thermal one, just
like the pre-quench state. In particular, if the initial state is the pre-quench ground
state, one might expect the system to fall into the post-quench ground state, with all the
bound states fully occupied. On the other hand, the Anderson orthogonality catastrophe
[347, 348] ensures that, precisely in the thermodynamic limit, the many-body ground
states of the pre- and post-quench Hamiltonians are orthogonal, suggesting a different
post-quench distribution. In order to characterize the out of equilibrium dynamics, we
first bring the post-quench Hamiltonian, quadratic in the fermionic fields Ψ̂ and Ψ̂†, to its
diagonal form Ĥpost = ∑∫

α εαγ̂
†
αγ̂α through a unitary transformation. Here the symbol ∑∫

is a compact notation indicating a summation over the discrete spectrum branch and an
integral over the continuous spectrum branch. This implies, as observed above, that the
out of equilibrium dynamics of the system is governed by a GGE, which is characterized
by the set of post-quench occupancies fα of the constants of motion.
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continuum

bound state

Fig. 4.1 (a) The occupancy of the bound state εbs < 0 induced by the quench as a function of
the quantum well (QW) parameters V0/Ea, at pre-quench temperature equal to zero, and for
four different values of the pre-quench chemical potential µ. (b) Sketch of the occupancy of the
post-quench states: While the states of continuum (ε > 0) are fully occupied up to µ, just like
in the pre-quench state, the quench induced bound state gets only partially occupied, realizing
the population-inversion regime (optical gain) leading to a stimulated emission of radiation (see
Section 4.4).

However, because the post-quench spectrum contains both a discrete and a continuum
branch, care must be taken in identifying the occupancies fα, which in this case are
determined from the diagonal ensemble density matrix through the relation (ρ̂D)α′α ≡
⟨γ̂†

αγ̂α′⟩GGE = dαα′fα, where dαα′ ≡ δαα′ for α, α′ ∈ discrete spectrum, while dαα′ ≡ δ(α−α′)
for α, α′ ∈ continuum spectrum and dαα′ = 0 otherwise 2. In turn, the ρ̂D entries can be
computed by exploiting the transformation γ̂α =

∫
dk U(α, k) ĉ(k) linking the post- to the

pre-quench operators, where U(α, k) =
∫
dxψ∗

α(x)φk(x) is the overlap integral between
the post-quench eigenfunctions ψα and the pre-quench eigenfunctions φk. By recalling the
expectation values (4.2) of the pre-quench operators, it is straightforward to show that

(ρ̂D)αα =
∫
dk |U(α, k)|2 f eq(ε(k)) , (4.3)

whence the post-quench occupancies fα are obtained through the above prescription.
2The operators fulfill {γ̂α, γ̂

†
α′} = dα,α′ at equal-time.
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4.3 The Case of a Quantum Well

For definiteness, we shall evaluate the post-quench occupancies for the case of a rectangular
quantum well (QW) potential V (x) = −V0 θ(a/2− |x|), characterized by a potential depth
V0 and a width a around the origin. Here, θ denotes the Heaviside function. In this
case, space parity is conserved across the quench, the post-quench eigenfunctions ψα are
well known, just like the pre-quench free-particle eigenfunctions φk, and the occupancies
Equation (4.3) can be evaluated for all the post-quench states.

As far as the continuous spectrum is concerned, it is worth recalling that the presence
of the QW does modify the continuum states with respect to the free-particle waves,
especially at small energies (0 < ε < V0). Nevertheless, a lengthy but straightforward
calculation (see Appendix C for details), shows that in the thermodynamic limit, the post-
quench occupancy of the continuum is fα = f eq(εα), i.e., it coincides with the equilibrium
Fermi function of the pre-quench state, with the same temperature and chemical potential,
regardless of the values a and V0 of the QW parameters. This is the hallmark of the
locality of the quench. In particular, at zero temperature all continuum states are fully
occupied up to the chemical potential µ.

The situation is different for the bound states. As is well known, the number of bound
states in a rectangular QW depends on the ratio between the well potential depth V0 and
the kinetic energy Ea = π2ℏ2/2ma2 associated to the confinement in the well width a.
The smallest deviation from equilibrium is when one single discrete level, lying below the
continuous spectrum of occupied states, is not fully occupied. Moreover, the existence
of only one bound state ensures that the system reaches a stationary state after the
quench [345]. Focusing then on the regime V0 < Ea, where the QW hosts only one bound
state, one can exploit the well known expression for the bound state of a rectangular
QW and evaluate its occupancy fbs = (ρ̂D)bs,bs numerically from Equation (4.3). The
result is shown in Figure 4.1(a), where fbs is plotted as a function of the ratio V0/Ea,
at zero temperature, for four values of chemical potential µ. While for an extremely
shallow and thin well (V0/Ea ≪ 1) one has fbs ≃ 1, i.e., the value one would obtain if the
post-quench system were at equilibrium, for V0/Ea ≲ 1 the occupancy decreases. Notably,
such a reduction is, the more pronounced the lower µ is, which can be understood from
the following arguments. Since the pre-quench eigenfunctions φk are essentially plane
waves, the U(bs, k) coefficient is the Fourier transform of the bound state wavefunction
ψbs and becomes negligible for k ≫ 1/ℓ, where ℓ ≳ a is the length scale over which ψbs

is localized. The chemical potential µ of the pre-quench state appearing in the Fermi
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function, cuts the integral in Equation (4.3) at the Fermi wavevector kF =
√

2mµ/ℏ. Thus,
while for kF ≫ 1/ℓ the occupancy is fbs =

∫
dk |U(bs, k)|2 f eq(ε(k)) ≃

∫
dk |U(bs, k)|2 = 1

(unitarity of the U transformation), for small chemical potential, such that kF ≪ 1/ℓ, the
integral is cut before yielding the occupancy 1.

The resulting occupancy of the post-quench spectrum is sketched in Figure 4.1(b)
at zero temperature: While the continuum states ε > 0 are characterized by the very
same Fermi function as the equilibrium pre-quench state and are thus fully occupied
up to the chemical potential µ for any QW parameter, the bound state εbs < 0 is only
partially occupied, despite being energetically more favorable than the continuum. This
peculiar out of equilibrium effect thus realizes the most elementary GGE deviation from
equilibrium: only the bound state λbs = ln[(1 − fbs)/fbs] deviates from the equilibrium
value. In particular, this is quite different from the case of a homogeneous quench, where
typically an extensive number of post-quench occupancies deviate from equilibrium [336].

Note that, because of particle conservation, the partial occupation of the quench-
induced bound state corresponds to an infinitesimally small depletion (by at most one
electron) of the continuum spectrum. In the thermodynamic limit, no directly seizable
effect thus occurs in the continuum states. In contrast, the emergence of an only partially
occupied bound state, energetically separated from the fully occupied continuum above,
has a remarkable consequence: It realizes the condition of population-inversion, well known
in optoelectronics. While at equilibrium a radiation impinging onto an electron system
yields the absorption of an energy quantum causing a transition from energetically lower
and more populated levels to upper and less populated levels, the out of equilibrium
population obtained here leads to a release of energy, causing a stimulated emission or,
a “negative” absorption. This opens up the possibility to observe this GGE signature
through optical measurement, as we shall describe in the next section.

4.4 Absorption Spectrum

For an electron system coupled to an electromagnetic radiation of frequency ω, the non-
linear absorption spectrum A(ω) is given, within the conventional perturbation-theory
based on a Fermi’s golden rule treatment of the light-matter interaction [349], by

A(ω) = 2πe2

c ϵ0 nℜVm2
eω

∑∫
α

∑∫
α′

|⟨α′|p|α⟩|2 δ (εα′ − εα − ℏω) (fα − fα′) , (4.4)
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where p = −iℏ∂x is the momentum operator, nℜ denotes the real part of the refraction
index, c the speed of light, ϵ0 the vacuum dielectric constant, me the bare electron mass and
V the volume. Equation (4.4) describes all transitions from initial states α to final states α′

compatible with the transition energy ℏω, and its non-linear nature is determined by the
factor fα − fα′ . While at equilibrium, the final state α′ is necessarily less populated than
α (fα > fα′), causing an actual absorption, A(ω) > 0, in the population-inversion regime
induced by the quench, one has fα′ > fα for α = bs and α′ in the occupied continuous
spectrum, opening up the possibility of a negative absorption coefficient, A(ω) < 0, i.e.,
to the emission of an electromagnetic radiation stimulated by the quench. This is known
in optoelectronics as the optical gain effect [350]. However, unlike the more conventional
inter-band transitions, the effect described here can be considered as “intraband”, as it
originates from a quench on one single pre-quench band. We also point out that the
semiclassical treatment underlying Equation (4.4) is valid for time scales longer than the
decoherence time scale, where the density matrix exhibits damped out off-diagonal entries
and reduces to the time independent GGE diagonal ensemble. Indeed, as we shall argue in
Section 4.5, there exists a finite relaxation time τrel, after which all local observables are
effectively described by such diagonal ensemble. Thus, within the specified time window,
the semiclassical treatment captures the gist of the population-inversion effect.

4.4.1 Implementation

As can be deduced from Figure 4.1(a), the optimal regime to obtain a population-inversion
is in principle µ≪ V0 ≲ Ea. However, a too small chemical potential reduces screening
effects and makes electron–electron interaction effects relevant. A still quite acceptable
regime is µ ≲ V0 ≲ Ea, which can be achieved, e.g., with an InSb nanowire (NW),
characterized by a small effective mass m = 0.015me, and a realistic QW realized by a
finger gate deposited on a NW portion with size a = 150 nm and biased by a gate voltage
V0 < 0. This yields Ea ≃ 1.12 meV and, by taking a realistic value µ = 0.2 meV, one still
has an energy window for the QW depth V0. Furthermore, due to the large g-factor of
InSb NWs (g ∼ 50) [294] the application of a magnetic field of a few Teslas is sufficient to
widely spin-split the NW bands, thereby avoiding double occupancy of the bound state,
ruling out the related electron–electron interaction effects inside the quantum well.

Since Equation (4.4) cannot be computed analytically, we have performed a numerically
exact evaluation on a finite system, whose total length L = 16µm is two orders of
magnitude bigger than the QW width a, at a realistic pre-quench temperature of T =
250 mK. Furthermore, the unavoidable presence of inelastic processes broadening the
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Fig. 4.2 The ratio R between the out of equilibrium absorption spectrum A(ω) induced by the
quench and the equilibrium absorption spectrum Aeq(ω) of the post-quench system, for an InSb
nanowire (NW) with a QW width a = 150 nm (Ea ≃ 1.12 meV) and depth V0 = 0.5 meV (black
curve) and V0 = 1.0 meV (red curve). The pre-quench temperature and chemical potential are
T = 250mK and µ = 0.2 meV, respectively. While at low frequencies the quench does not induce
any deviation from equilibrium (R → 1), a significant negative peak appears at ℏω∗ = |εbs|
corresponding to the energy separation between the continuum and the bound state.

otherwise sharp energy levels has been taken into account by replacing the ideal Dirac
δ-function appearing in Equation (4.4) with a broadened function of Gaussian shape
δ(ε)→ δb(ε) = exp[−ε2/2ε2

b]/
√

2πεb, where the value of broadening energy has been taken
as εb = 20µeV. This roughly corresponds to kBT , i.e., the typical broadening related to
electron–acoustic phonon energy exchange. The result is illustrated in Figure 4.2, where
we have plotted the ratio R(ℏω) ≡ A(ω)/Aeq(ω) between the out of equilibrium absorption
spectrum induced by the quench and the equilibrium case corresponding to the situation
where the post-quench system is at equilibrium, for two different values of QW depth V0.

At low frequencies one has R(ℏω) ≃ 1, indicating that the spectrum of the quench-
induced absorption coefficient is just like the equilibrium one. In this regime the intraband
absorption processes are caused by continuum→continuum transitions from energetically
lower and almost fully occupied states 0 < ε < µ to energetically higher and almost empty
states ε′ > µ. It is worth pointing out that such transitions occur because of the presence
of the QW, which makes the dipole matrix entries ⟨α′|p̂|α⟩ non vanishing for α ̸= α′.

The most interesting effect, however, arises as the frequency approaches the value
ω∗ ≡ |εbs|/ℏ, where transitions can occur from the fully occupied lowest continuum
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states to the only partially occupied bound state lying underneath. This is how the
population-inversion regime causes a negative absorption, i.e., the stimulated emission of
an electromagnetic radiation. The hallmark of this optical gain effect is the negative peak
located around ℏω∗. Note that, just like the value of such resonance frequency, also the
depth R∗ of the negative peak is controlled by the value of the potential depth V0, and
its magnitude can be significantly higher than 1, so that the negative absorption is much
stronger than the equilibrium positive absorption contribution. For higher frequencies, the
ratio R(ω) becomes positive again. This corresponds to an actual absorption, arising from
transitions to the energetically higher and almost empty continuum states from both the
bound state and the energetically lower and occupied continuum states.

4.5 Finite Switching Time and Smooth Potential

So far, we have considered the ideal situation of a sudden quench in a quantum well with
a sharp rectangular profile. In realistic implementations, however, the quench is applied
over a finite switching time τsw and the potential profile of the well is smooth. In this
section we thus generalize the results of the previous Sections by taking these aspects into
account. This enables us to demonstrate that the predicted effect relies neither on the
instantaneous switching of the potential nor on the details of the potential profile, but
rather on its property of being local, attractive and hosting a single bound state. Moreover,
by simulating the complete time dependent dynamics of the quench, we are able to provide
an explicit example of convergence to stationarity of a post-quench local observable, and
to show that its stationary profile is accurately described by the GGE density matrix.

To this purpose, we now consider a time-dependent Hamiltonian Ĥ(t) = Ĥpre +
gsw(t)

∫
dxΨ̂†(x)V (x)Ψ̂(x), where gsw(t) = {1 + Erf[

√
8 (t − τsw)/τsw]}/2 is a switching

function ranging from 0 to 1, up to 2%, within a time scale τsw. Moreover the potential
profile V (x) = −V0/2{Erf[

√
8 (x+ a/2)/λ]− Erf[

√
8 (x− a/2)/λ]} corresponds to a QW

with depth V0, width a and edges smoothened over a length λ. The overall quench
dynamics is thus governed by an inhomogeneous and time-dependent Hamiltonian that
cannot be treated analytically. By solving numerically the Liouville–von Neumann equation
iℏ∂tρ̂ = [H, ρ̂] for the single-particle density matrix ρ̂, the related diagonal density matrix
ρ̂D, associated to the time independent post-quench eigenbasis, is extracted 3. Differently

3The post-quench Hamiltonian is defined as the time-independent Hamiltonian once the localized
potential is completely switched on, i.e. Ĥpost = Ĥ(t→∞) = Ĥpre +

∫
dxΨ̂†(x)V (x)Ψ̂(x). In practice,

due to the form of the ramp function gsw(t), one has Ĥ(t ≳ 2τsw) ≃ Ĥpost.
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Fig. 4.3 (a) The time evolution of the occupancy of the bound state, and of the low lying
delocalized states, is plotted for different values of the switching time τsw. While the occupancy
of the delocalized states remains constant and indistinguishable from 1 independently on the
switching time, the occupancy of the bound state grows from the initial value during the switching
time, and reaches a stationary value lower than 1 after the switching is complete. The dashed
curve describes the sudden quench case, for comparison. (b) The ratio R between the out of
equilibrium absorption spectrum A(ω) induced by the quench and the equilibrium absorption
spectrum Aeq(ω) of the post-quench system is shown, at different values of the switching time
τsw. Although the finite switching time reduces the depth of the negative peak with respect
to the sudden quench case (dotted curve), its magnitude remains significantly higher than the
values of the equilibrium spectrum Aeq(ω). In all panels, the computations are performed for an
InSb NW with a pre-quench thermal state corresponding to µ = 0.2 meV and T = 250 mK and a
post-quench Hamiltonian with a QW potential of width a = 150 nm, depth V0 = 1.0 meV and a
profile smoothening length λ = 20 nm. The energy broadening εb = 20µeV has been taken.

from the case of a sudden quench, ρ̂D exhibits a non trivial evolution during the ramp
and it becomes constant only after the switching is complete. From ρ̂D(t) one can then
directly observe the time evolution of the occupancies of the post-quench energy levels.

Taking again as a reference physical system an InSb nanowire of L = 16µm and starting
from a thermal pre-quench state with µ = 0.2 meV and T = 250 mK, the occupancies
of the post-quench bound state and of the post-quench low lying delocalized states (i.e.,
states with energies 0 < ε ≪ µ) are plotted in Figure 4.3(a) for different values of the
switching time τsw. The QW parameters are a = 150 nm (width ), V0 = 1.0 meV (depth)
and λ = 20 nm (smoothening length). Several features are noteworthy. The occupancy of
the low lying delocalized states is always indistinguishable from 1, independently of the
switching time τsw, as one can see from the thick black horizontal line of Figure 4.3(a). In
fact, one can verify that the overall distribution of the post-quench delocalized states does
not appreciably differ from a thermal one, consistently with the analytical result found
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for the sudden quench of the rectangular QW in the thermodynamic limit. In contrast,
the dynamical behavior of the bound state occupancy does depend on the finite switching
time, as shown by the colored solid curves. In particular, while at t = 0 it always coincides
with the occupancy found in a sudden quench (dashed line), it grows during the ramp and
then saturates to a higher value once the switching is complete. Note that the longer the
switching time τsw, the higher is the final occupancy of the bound state, consistently with
the picture that an infinitely slow dynamical evolution favors the system relaxation to a
lower energy state with the lowest available level being fully occupied. However, for finite
but realistic switching time values (see colored curves in Figure 4.3(a)), the occupancy
of the bound state is still lower than 1 by an appreciable fraction, confirming the above
described picture of a partially occupied bound state lying underneath a continuum of
fully occupied delocalized states.

The robustness of the resulting population inversion effect is supported by the analysis
of the absorption spectrum. Specifically, the ‘post-quench’ absorption spectrum, i.e., the
value of Equation (4.4) evaluated at time t ≫ τsw and normalized to the equilibrium
absorption spectrum, is shown in Figure 4.3(b) for various switching time values. By
increasing τsw, the shape of the negative peak is roughly unaltered, whereas its depth R∗

is reduced. The value R∗ ≃ −18 obtained for an ideally instantaneous quench (dashed
curve in Figure 4.3(b)) reduces to R∗ ≃ −17 (red curve), R∗ ≃ −8 (blue curve) and
R∗ ≃ −3 (green curve) for τsw values of 1, 5 and 10 ps, respectively. Yet, the value |R∗| > 1
indicates that the out of equilibrium contribution of the negative peak is still larger than
the positive equilibrium one. This clearly visible negative peak is thus a stable signature
of the predicted out of equilibrium GGE distribution.

Having addressed the robustness of this GGE distribution, we conclude this section by
explicitly showing that the unitary dynamics following the quench effectively generates a
stationary state whose local properties are well captured by the GGE density matrix. In
doing so, we thus provide not only an explicit numerical confirmation of the analytical
results found for sudden quenches [344, 345], but also their generalization to the more
realistic cases with finite switching times. In particular, we have focused on the spatial
profile of the charge density. Note that its time evolution is characterized by three time
scales: the switching τsw, the recurrence τrec and the relaxation time τrel. The first one
depends on the chosen quench protocol and determines the time after which ρ̂D(t) becomes
stationary. The second one, associated to the recurrences emerging in any finite size
system, scales with the system size and thus tends to infinity in the thermodynamic limit.
Finally τrel is the time after which the expectation values of any local observable should
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be reproduced by the stationary ρ̂D(t ≫ τsw), up to the chosen accuracy. For sudden
quenches it is known that, under suitable hypotheses, a sufficiently large system size always
enables one to find a relaxation time τrel < τrec, thus identifying a finite time window in
which the state becomes effectively stationary and is accurately described by the GGE
density matrix [344, 345].

 
  
 
 
 
 

Fig. 4.4 Different snapshots of the post-quench charge density profile, normalized to the pre-
quench spatially uniform profile, are shown for an InSb NW with the same parameters as in
Figure 4.3, for a switching time τsw = 5 ps of the QW potential. The charge density profile
relaxes to the stationary distribution predicted by the Generalized Gibbs Ensemble (GGE) within
a finite time τrel ≃ 30 ps > τsw. It remains in this out of equilibrium distribution until the
recurrence time related to finite size of the system.

Here we test this prediction in our model for a finite switching time. The charge
density profile, renormalized to the pre-quench spatially uniform distribution, is reported
in Figure 4.4 for a finite switching time τsw = 5 ps, at various snapshots. During the
switching of the potential (0 < t < 2τsw) the charge density profile starts to deviate from
the pre-quench uniform profile. After the switching has been completed (t > 2τsw), it
gradually relaxes in a finite time to the stationary profile predicted by ρ̂D(t≫ τsw). In
particular, within a spatial region of 2 µm including the QW, the convergence to the
GGE occurs within ≃30 ps (magenta curve in Figure 4.4). The convergence to the GGE
result thus holds for a finite switching time as well, with the necessary further restriction
τsw < τrel < τrec. We thus conclude that, in the prescribed time window τrel < t < τrec,
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the state of the system is effectively stationary and indistinguishable from a GGE density
matrix. We emphasize that, since the local quenched potential is set to induce one single
bound state, the convergence to the GGE-prescribed profile occurs in time, not just upon
time-average as in the case of an extensively distributed disorder potential [318, 319].
Furthermore, such out of equilibrium GGE distribution corresponds to a very peculiar
population-inversion regime, which leads to a unique fingerprint in the absorption spectrum
of the system.

4.6 Conclusions

We have shown that, by quenching a suitable local attractive potential in an isolated
one-dimensional free electron gas, the out of equilibrium dynamics is determined by a
GGE describing the elementary deviation from equilibrium, where only one Lagrange
multiplier λbs deviates from its equilibrium value. The proof of concept of this prediction
has been provided in Sections 4.3 and 4.4, where we have considered the case of a sudden
quench in a rectangular QW. This case can be analytically evaluated and the resulting
post-quench GGE distribution has been computed exactly. We have found that the
occupancy of the continuum states is unaltered by the quench and is still described by
an equilibrium Fermi function, so that all such states are occupied up to the chemical
potential at zero temperature. In striking contrast, the bound state generated by the
quench is only partially occupied, despite being energetically more favorable than the
continuum (see Figure 4.1). Such population-inversion regime has been shown to cause a
negative peak in the absorption spectrum, realizing an optical gain (see Figure 4.2). The
implementation in InSb NWs has also been discussed.

Then, in Section 4.5, we have considered the more realistic case of a QW potential
that is switched on in a finite switching time and that exhibits a smooth profile. This
analysis, which has been carried out numerically, confirms the robustness of the predicted
effect. Indeed, as shown in Fig. 4.3(a), the population of the bound state saturates, after
a transient time, to a value that is lower than 1 and that depends on the switching time.
The negative absorption thus persists, as shown in Fig. 4.3(b). Furthermore, we have
also proven in Figure 4.4 that, since the locally quenched potential is set to induce one
single bound state, the spatial profile of the electron density tends to the profile prescribed
by the out of equilibrium GGE in time, not just upon time average like in the cases of
extensively distributed quenched potentials. In conclusion, these results based on a local
quench protocol could pave the way to observe via optical measurements signatures of
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GGE in fermionic systems, which have been elusive so far within proposals based on
homogeneous quenches.



Chapter 5

Real-space effects of a quench in the
Su–Schrieffer–Heeger model

The content of this Chapter is based on the published paper [351]

5.1 Introduction

After a decade characterized by a remarkable effort to find signatures of topological edge
states in various materials, presently one of the most fascinating challenges in Physics is
the possibility to manipulate these states and to possibly encode information therein [352,
353, 354]. To this purpose, the implementation with cold atoms in optical lattices[355,
356, 357, 358, 165, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371] offers
a twofold advantage, namely a pretty reliable system isolation from the environmental
decoherence, and an extremely precise control of the system Hamiltonian. In particular, it
is possible to realize quantum quenches of the Hamiltonian parameters [87, 79, 80, 81],
both over the entire system and on a spatially localized portion. These experimental
advances thus also bring up new interesting questions about topological systems. Consider,
for instance, a topological insulator characterized by some symmetry and suppose that, by
a quantum quench preserving such symmetry, the system is dynamically brought from
the trivial to the topological phase, passing through a gap closing. Can one observe the
topological states dynamically appear in real-space at its edges? Conversely, how do they
evolve and possibly disappear when the quench is towards the trivial phase? In this
Chapter we aim to answer these questions, focussing on a prototypical case, namely the
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Su-Schrieffer-Heeger (SSH) model[372, 373].

The SSH model describes spinless fermions in a bipartite one-dimensional lattice
through the following tight-binding Hamiltonian

ĤSSH = v
∑

j

(
ĉ†

j,Aĉj,B + ĉ†
j,B ĉj,A

)
+ w

∑
j

(
ĉ†

j,B ĉj+1,A + ĉ†
j+1,Aĉj,B

)
, (5.1)

where ĉ†
j,s and ĉj,s denote the fermionic creation/annihilation operators for electrons local-

ized at atom s = A,B within the j-th cell of the lattice, whereas v and w indicate the
intra- and inter-cell tunneling amplitudes, respectively. The model, first introduced in the
description of opto-electronic properties of polyacetylene[372, 373, 374], is considered as a
paradigmatic example of one-dimensional topological insulators [375, 376]. Indeed at half
filling (one electron per unit cell) the SSH model describes a band insulator characterized
by a band gap 2εg with εg = ||v|−|w|| and by a sublattice symmetry called chiral symmetry,
which identifies for |v| < |w| and for |v| > |w| two topologically different phases that
cannot be connected to each other without closing the gap. In the topologically non-trivial
phase, a SSH chain exhibits at its edges localized states that are protected by the chiral
symmetry. Recently, soliton states and topological indices of the SSH model have been
experimentally observed in implementations with cold atoms[377, 378]. Moreover, the
effects of time-dependent perturbations to the SSH hopping amplitudes have been analyzed
in the context of topologically protected quantum gates [379] and Floquet nonequilibrium
states generated by periodic drives [380, 381, 382, 383].

Consider now a SSH chain-lattice, initially in the ground state of the topologically
trivial phase (|v| > |w|), at half filling, and perform a quench of the hopping amplitudes to
the topological phase (|v| < |w|). If the quench remains within the chiral symmetry class,
the gap closes at some time and, by inspecting the dynamical evolution of the occupancy
at each chain site, one would expect localized topological states to gradually emerge at the
chain edges. Here we show that this is not the case: the site occupancy remains exactly
equal to the one of the trivial pre-quench state at any time and any site, including at the
chain edges, regardless of the quench protocol (fast or slow) and even in the presence of
chiral disorder. As we shall demonstrate, the reason boils down to the charge conjugation
or time-reversal symmetries of the pre-quench state and of the quenching Hamiltonian.
In an open chain, these additional symmetries are typically present and completely mask
any effect of the quench in real-space, including the appearance of the topological states.
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Effects of a quench can be observed in real-space occupancies only when such symmetries
are broken, which can be done in two ways: i) remaining within the topological insulator
framework, i.e. preserving the chiral symmetry and the half-filling condition1; ii) by “brute
force”, i.e. by breaking the chiral symmetry and/or by moving away from an insulating
state.

We shall first explore the first option and propose two ways to observe the dynamical
effects of the quench in real-space. The quench protocols are based on a local quench,
where a ring lattice is cut into a chain or, viceversa, two edges of a chain are bridged to
form a ring. In both cases the presence of a magnetic flux threading the ring is crucial to
induce a real-space dynamical response to the quench, which is different depending on
whether the involved chain is in the trivial or in the topological phase.

Then, we shall explore the second option and analyze the effects of quenches beyond
the framework of topological insulator, i.e. by breaking the chiral symmetry and by
considering filling values different from 1/2, where the SSH model describes a metallic
state. We find that the optimal way to observe the dynamical appearance of the edge
states characterizing the topological insulator is to have a slightly metallic system. Then,
the dynamical appearance of these states is robust even in the limit of short quench time
and in the presence of chiral breaking disorder.

The Chapter is organized as follows. In Sec.5.2, after briefly summarizing the aspects
of the SSH model that are needed to illustrate our results, including its symmetries, we
shall describe the method we used to compute the dynamical evolution. In Sec.5.3 we
present a general theorem ensuring that the site occupancy remains locked to 1/2 when
charge conjugation symmetry is present. In particular, this explains the case of a quenched
half-filled SSH chain. Then, in Sec.5.4 we show how to violate the hypotheses of the
theorem and observe real-space effects of the quench without breaking the chiral symmetry.
Finally, after analyzing the effects of chiral breaking terms and of a filling different from
1/2 in Sec.5.5, we discuss our results and draw our conclusions in Sec.5.6.

1In fact, this corresponds to a dynamical breaking of chiral symmetry, see Sec.1.2.3
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5.2 Model, symmetries and method

5.2.1 Generalized SSH model and symmetries

In this Chapter we consider a generalized SSH model

ĤSSH,χ =
∑

j

(
vj ĉ

†
j,Aĉj,B + v∗

j ĉ
†
j,B ĉj,A

)
+
∑

j

(
wj ĉ

†
j,B ĉj+1,A + w∗

j ĉ
†
j+1,Aĉj,B

)
(5.2)

extending the SSH Hamiltonian (5.1) to the case where the tunneling amplitudes {vj , wj}
are possibly complex and site-dependent. Here j = 1, 2 . . . ,M , where M is the number
of cells in the lattice. Furthermore, because symmetries play an important role in the
dynamical effects that we aim to discuss, it is worth briefly recalling the behavior of the
Hamiltonian (5.2) under three transformations that are local on the lattice site operators.
The first one is charge-conjugation C, a linear and unitary transformation mapping the
lattice site creation/annihilation operators as follows Cĉj,AC−1 = ĉ†

j,A

Cĉj,BC−1 = −ĉ†
j,B

, (5.3)

and fulfilling C−1 = C† = C. The second one is the chiral transformation S. Despite acting
on the lattice site operators in the same way as C S ĉj,AS−1 = ĉ†

j,A

S ĉj,BS−1 = −ĉ†
j,B

, (5.4)

it is by definition anti-linear (S iS = −i) and anti-unitary ⟨SΨ1|SΨ2⟩ = ⟨Ψ1|Ψ2⟩∗. Finally,
the time-reversal transformation, which leaves lattice site operators unaltered T ĉj,AT −1 = ĉj,A

T ĉj,BT −1 = ĉj,B

(5.5)

but is also anti-linear and anti-unitary, with T 2 = I, as is the case for spinless fermions.
In fact, only two of these transformations are independent because the chiral symmetry S
can be obtained as the product S = T C.

The Hamiltonian (5.2) exhibits the chiral symmetry (5.4)

SĤSSH,χ S−1 = ĤSSH,χ ⇔
[
ĤSSH,χ , S

]
= 0 , (5.6)
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and the subscript χ stands in fact for ‘chiral’. In chiral-symmetric models like ĤSSH,χ,
T and C are intimately related. Indeed, because C = T S, time-reversal and charge
conjugation transformations are either both preserved or both broken. In particular, for
{vj , wj} ∈ R, the Hamiltonian (5.2) also commutes with time-reversal T and charge
conjugation C. However, when vj = |vj|eiϕv

j and wj = |wj|eiϕw
j have non-vanishing complex

phases, the preservation of T and C heavily depends on the geometric boundary conditions.
In particular, in a chain, i.e. a lattice with open boundary conditions (OBCs), T and C are
always preserved, since such complex phases can be eliminated through a canonical trans-
formation onto the lattice operators cj,A → c̃j,A = eiαjcj,A and cj,B → c̃j,B = ei(αj+ϕv

j )cj,B,
where α1 = 0 and αj = ∑j−1

i=1 (ϕv
i + ϕw

i ) for j = 2, . . .M , recasting the Hamiltonian into the
case of real and positive tunneling amplitudes[375]. In contrast, in a ring-shaped lattice,
the periodic boundary conditions (PBCs) prevent the elimination of the phases of vj and
wj . Physically, this can be understood in terms of the Peierls substitution[384, 385], where
the complex phases of the tunneling amplitudes describe the integral of a vector potential
from one lattice site to next one. While in a chain the vector potential can always be
gauged out, in a ring this is not possible, for its circulation yields the magnetic flux Φ
threading the ring, and one has ∑M

j=1(ϕv
j + ϕw

j ) = 2πΦ/Φ0 ≠ 0, where Φ0 = h/e is the flux
quantum. Thus, in the SSH ring with a flux Φ ̸= pΦ0/2 (with p ∈ Z), T and C are broken.

To perform our time-dependent analysis, we represent the second-quantized Hamilto-
nian (5.2) in the real-space basis as follows

ĤSSH,χ =
M∑

j1,j2=1

∑
s1,s2=A,B

ĉ†
j1,s1Hj1s1,j2s2 ĉj2,s2 , (5.7)

where

H =



0 v1 w∗
M

v∗
1 0 w1

w∗
1 0 v2

v∗
2 0 w2

w∗
2

. . .
. . .

. . .
. . . wM−1

w∗
M−1 0 vM

wM v∗
M 0



(5.8)
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is the related first-quantized Hamiltonian matrix, whose entries Hj1s1,j2s2 are labelled by
the cell j and the site s = A,B = +/− within the cell. In terms of the first quantized
Hamiltonian (5.8), symmetries are expressed in a different way as compared to the second
quantized Hamiltonian (5.2). Explicitly, the chiral symmetry (5.6) implies

S H S−1 = −H ⇔ {H,S} = 0 (5.9)

where S = ⊕M
j=1(σz)j is the first-quantized version of the chiral transformation S defined

in Eq.(5.4), and is unitary. From Eq.(5.9) one straightforwardly deduces that, for any
realization of the parameters {vj , wj}, the single-particle spectrum is symmetric around
ε = 0. Indeed if ψ is a single-particle wavefunction with eigenvalue ε, i.e. Hψ = ε ψ,
the wavefunction Sψ, obtained from ψ by changing the sign at the B-sites, is also an
eigenfunction of H with eigenvalue −ε. The set of eigenfunctions of Eq.(5.8) can thus be
chosen as {ψα} (positive eigenvalues εα > 0) and {Sψα} (negative eigenvalues −εα < 0),
where α = 1, . . .M is the quantum number running over the positive spectrum. The
corresponding operators


γα,+ =

M∑
j=1

∑
s=A/B=±

(ψ∗
α)j,s ĉj,s

γα,− =
M∑

j=1

∑
s=A/B=±

(ψ∗
α)j,s (−1)s ĉj,s

(5.10)

diagonalize the Hamiltonian (5.2)

ĤSSH,χ =
∑

α

εα

(
γ†

α,+γα,+ − γ
†
α,−γα,−

)
(5.11)

and fulfill the relations
Sγα,±S−1 = γ†

α,∓ (5.12)

While the chiral symmetry (5.9) always holds for Eq.(5.8), time-reversal and charge-
conjugation symmetries hold if the Hamiltonian H fulfills further properties. Specifically
the former symmetry holds if H is real

T H T−1 = H∗ = H (5.13)

where T = K denotes the complex conjugation and is anti-unitary, whereas the latter
symmetry holds if

C H C−1 = S H∗ S−1 = −H (5.14)
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where C = S T is the first-quantized version of C [see Eq.(5.3)] and is anti-unitary2.

Note that the hopping amplitude wM appearing in the lower-left and upper-right
corners of Eq.(5.8) is vanishing for a chain. In such a case, an argument similar to the one
used above for the second quantized Hamiltonian, leads to conclude that Eqs.(5.13) and
(5.14) always hold, as can be checked by merely redefining the real-space basis by local
phase factors.

We conclude this subsection by recalling that, for homogeneous hopping amplitudes
(vj ≡ v and wj ≡ w) the model (5.2) can be exactly solved both in a ring (PBCs) and in a
chain (OBCs). In particular, in the ring geometry and in the thermodynamic limit one
can identify two different topological classes[375], and by analyzing the chain one can see
that one phase is topologically non-trivial, hosting two discrete levels in the spectrum near
ε = 0, which correspond to states localized at the edges. For the sake of completeness, a
short summary of these aspects in given in the Appendix D.

5.2.2 Quenches, density matrix approach and observables

In the following, we shall investigate the dynamical effects of a quench in the parameters
{vj, wj} of the Hamiltonian (5.2). Specifically, the system is prepared in an initial state ρpre,
typically the ground state or the thermal equilibrium state of a pre-quench Hamiltonian
Ĥpre = ĤSSH,χ(t < t0). Then, at t = t0 the system is disconnected from the environment
and the dynamics is unitarily governed by the Hamiltonian ĤSSH,χ(t), which varies until
a time tf from Ĥpre to a post-quench Hamiltonian Ĥpost = ĤSSH,χ(t > tf). The quench
protocol specifies the way the parameters {vj(t), wj(t)} in Eq.(5.2) are varied during the
quench time τq = tf − t0.

Although in our analysis we shall mainly focus on short quench time limit (τq → 0),
we shall keep the parameter time dependence arbitrary because, as we shall see, some
results are independent of the specific quench protocol. Moreover, we shall deal with both
global and local quenches. A global quench involves a change in a significant number
(scaling like the number M of cells) of hopping amplitudes along the chain. This occurs,
for instance, when all the hopping amplitudes of a homogeneous chain (vj ≡ v and wj ≡ w)
are brought from the trivial to the topological phase. In contrast, a local quench only
involves a limited number of hopping amplitudes. For instance, the cutting of a ring into
a chain is described by quenching to zero the hopping amplitude of one single bond. Note

2Further details about the symmetry constraints in a translation invariant Hamiltonian are reported in
Appendix D.1.
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that, because of Eq.(5.6), the chiral symmetry is preserved at any time, so that the quench
occurs within the chiral symmetry class. Yet, the result of a quench depends not only on
the quenching Hamiltonian, but also on the pre-quench state and its symmetries, as we
shall see. Furthermore, in Sec.5.5, we shall also analyze the quench in chiral symmetry
broken cases.

We shall be interested in one-body observables Â = ∑
j1s1,j2s2 ĉ

†
j1,s1Aj1s1,j2s2 ĉj2,s2 , whose

expectation values are straightforwardly evaluated in terms of the single-particle density
matrix ρj1s1,j2s2(t) = Tr{c†

j2,s2 ĉj1s1ρ̂(t)}, where ρ̂(t) denotes the dynamical evolution of the
full system density matrix and Tr the trace over the Fock space. Due to the quadratic
structure of Eq.(5.7), the Liouville-von Neumann equation for ρ̂ straightforwardly implies
the dynamical equation for ρ, which reads

iℏ
dρ

dt
= [H(t), ρ] . (5.15)

We numerically solve Eq.(5.15) with the initial condition ρ(t0) = ρpre corresponding to the
single-particle density matrix of the pre-quench state, typically the ground state of the
pre-quench Hamiltonian. Then, the expectation values of an observable Â are obtained as

⟨Â⟩(t) = tr {Aρ(t)} (5.16)

where “tr” denotes the trace over the single-particle Hilbert space. In particular, we shall
henceforth focus on the site occupancy, evaluated as

Nj,s(t) = ⟨n̂j,s⟩(t) = ρjs,js(t) , (5.17)

and on the cell polarization

Pj(t) = ⟨n̂j,A⟩(t)− ⟨n̂j,B⟩(t) , (5.18)

obtained as Pj = ρjA,jA − ρjB,jB. The total number of electrons Ne = ∑
j,s Nj,s is simply

given by Ne = trρ and is constant as a consequence of Eq.(5.15). In Sec.5.5 we shall also
discuss the non-equilibrium energy distribution in the post-quench eigenbasis {λ}, where
Ĥpost = ∑

λ ελn̂λ is diagonal. The energy distribution is obtained as

⟨n̂λ⟩(t) =
M∑

j1,j2=1

∑
s1,s2=A,B

Uλ,j2s2U
∗
λ,j1s1 ρj2s2,j1s1(t) (5.19)
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where Uλ,js = ⟨λ|js⟩ is the unitary matrix determining the single-particle change of basis
from the real-space basis to the post quench eigenbasis.

5.3 Quenches in half-filled SSH models: The locking
of site occupancy

We start by considering a chain of the customary SSH model Eq.(5.1) with homogeneous
hopping amplitudes, which can be assumed to be positive (v, w > 0). Let the pre-quench
state be the half-filled ground state of the chain in the trivial phase, so that there is one
electron per cell (Ne = M), i.e. half an electron per site on average, and

wpre < vpre , (5.20)

where wpre ≡ w(t < 0) and vpre ≡ v(t < 0). No edge state is present. At t = 0 we
start to quench the Hamiltonian parameters towards the topological phase, as sketched in
Fig.5.1. This means that, within a quench time τq, the values of the hopping amplitudes
are brought to

wpost > vpost , (5.21)

where wpost ≡ w(t > τq) and vpost ≡ v(t > τq).
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vpost

Fig. 5.1 A global quench is applied to a half-filled SSH chain from the trivial to the topological
phase. The insets on the right-hand side sketch the spectra of the two phases: while the trivial
phase only exhibits a continuum spectrum, the topological phase also hosts two discrete states.
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At first, one would expect the discrete states characterizing the chain spectrum in
the topological phase to gradually appear in real-space, causing an occupancy increase
localized at the two edges. However, this is not the case: we find that the site occupancy
is locked at 1/2 at any time and at any site, including the chain edges

Nj,s(t) = 1/2 ∀t ∀j, s (5.22)

just like in the trivial pre-quench phase. Notably, such a locking of the real-space occupancy
occurs for any quench duration τq, regardless of the specific way one changes the hopping
amplitudes from (vpre, wpre) to (vpost, wpost). Furthermore, it also holds in the presence
of chiral disorder and/or if the pre-quench state is a thermal state at finite temperature.
Indeed the result (5.22) is a consequence of a general theorem that we shall prove here
below. Before doing that, it is worth emphasizing that the quench does affect the system,
though. For instance, the energy distribution of the post-quench Hamiltonian strongly
differs from the pre-quench equilibrium distribution and exhibits a striking band population
inversion, as has been proven in Ref.[336] for a SSH ring exposed to a sudden quench.

5.3.1 General theorem about site occupancy

The following general result can be proven: (i) If the pre-quench state (t = t0) is invariant
under charge-conjugation

Cρ̂preC−1 = ρ̂pre (5.23)

and (ii) if the time-dependent Hamiltonian Ĥ(t) characterizing the quench (t > t0)
commutes with charge-conjugation transformation

[
ĤSSH,χ(t > t0) , C

]
= 0 , (5.24)

then Eq.(5.22) holds. The proof starts by recalling that the pre-quench state ρ̂pre evolves
as ρ̂(t) = U(t)ρ̂preU †(t), where the evolution operator is

U(t) =←−T
[
exp

(
− i
ℏ

∫ t

t0
Ĥ(t′)dt′

)]
∀t > t0 (5.25)

and ←−T denotes the time-ordering. Moreover, the property (5.24) and the linearity of C
imply that

[C , U(t)] = 0 ∀t > t0 (5.26)
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By using Eqs.(5.23) and (5.26) the time evolution of the site occupancy Nj,s = ⟨n̂j,s⟩ is
then computed as

Nj,s(t) = Tr {ρ̂(t) n̂j,s} =
= Tr

{
U(t)ρ̂preU †(t) n̂j,s

}
=

= Tr
{
U(t) Cρ̂preC−1U †(t) n̂j,s

}
=

= Tr
{
CU(t)ρ̂pre U †(t) C−1n̂j,s

}
=

= Tr
{
U(t)ρ̂pre U †(t) Cn̂j,sC−1

}
=

= Tr {ρ̂(t) (1− n̂j,s)} =
= 1−Nj,s(t) (5.27)

where we have used C = C−1 and Cn̂j,sC−1 = 1− n̂j,s. The result Eq.(5.22) follows from
Eq.(5.27), and shows that the site occupancy remains locked to its trivial phase value
1/2. We also observe that, by a very similar argument, the hypotheses of the theorem
also imply that the off-diagonal single-particle density matrix entries are always either
real or purely imaginary, at any time. Specifically ρiA,jB(t) = ⟨c†

jBciA⟩ is real ∀i, j, while
ρis,js(t) = ⟨c†

jscis⟩ is purely imaginary ∀i ̸= j and s = A,B.

5.3.2 Global quench in a SSH chain

We shall now show that a quench of the half-filled SSH chain satisfies the hypotheses
Eqs.(5.23) and (5.24) of the above theorem, whence one straightforwardly deduces the
locking of the site occupancy, Eq.(5.22). Indeed Eq.(5.24) is satisfied by ĤSSH,χ(t) because,
as observed in Sec.5.2.1, in a chain with OBCs the SSH model Eq.(5.2) preserves both
charge-conjugation C and time-reversal symmetry T . Furthermore, if the pre-quench state
is the thermal equilibrium state at half-filling (µ = 0) of the pre-quench SSH Hamiltonian
Ĥpre

ρ̂pre = e−βĤpre

Tr[e−βĤpre ]
(5.28)

where β = 1/kBT is the inverse temperature, the symmetry [Ĥpre, C] = 0 straight-
forwardly implies Eq.(5.23). In particular, this is true for the half-filled ground state
ρ̂pre = |H.F.⟩⟨H.F.|, where |H.F.⟩ is constructed by occupying all the negative energy
states of Ĥpre |H.F.⟩ = ∏M

α=1 γ
†
α,−|0⟩ and is non-degenerate.
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This explains why in a half-filled SSH chain the quench does not lead to any change of
the site occupancy, which remains uniform and constant regardless of i) the specific quench
time and protocol, ii) the presence of chiral disorder in the tunneling amplitudes {vj, wj},
and iii) finite temperature of the pre-quench thermal state. In particular, in a chain it
is impossible to observe the appearance of the topological states or any other difference
between the trivial and the topological phase in real-space occupancies. In Sec.5.4 we shall
propose a different setup where real-space effects of a quench can be observed. However,
we wish to first provide a more physical justification for the result Eq.(5.22).

The case of infinitely slow quench: Comparison between the trivial and topo-
logical half-filled ground states.

Because the result Eq.(5.22) is valid for any quench protocol, it holds in particular for an
infinitely slow quench (τq →∞), where the pre-quench ground state evolves into the post-
quench ground state. In this particular limit, the result Eq.(5.22) can thus be understood
by comparing the site occupancy profile of the trivial and topological half-filled ground
states. In the trivial phase, where the spectrum is purely continuum, the uniform pattern
Npre

j,s ≡ 1/2 is expected from the contribution of the bulk states extending over the entire
chain. In the topological phase, where the additional discrete levels ±εedge near ε = 0 are
present, the site occupancy profile results from two types of contributions. The red curve in
Fig.5.2(a) shows the discrete state contribution localized at the chain edges [see Eq.(D.6)],
while the thin black curve displays, as an illustrative example, the contribution of one bulk
state, whose wavefunction extends over the entire chain [see Eq.(D.5)]. Notably, the blue
curve, describing the contribution of all the occupied bulk states of the chain, features
two dips at the edges, which are perfectly complementary to the edge state contribution:
The bulk states “feel” the presence of the edge states and make room for them by slightly
modifying their behavior near the boundaries with respect to the trivial phase. This can
be considered as a real-space imaging of the bulk-boundary correspondence3. The thick
black curve is the sum of the two contributions and uniformly takes the value Npost

j,s ≡ 1/2.
Thus the half-filled ground state of the chain in the topological phase does not show any
different feature in real-space occupancy with respect to the trivial phase, despite the
presence of the edge states in the spectrum.

3It is also worth recalling that a similar phenomenon was observed in Ch.2, where bulk modes collectively
compensate for the absence of interface bound states in the orthogonal spin density profile (see Fig.2.4).
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Fig. 5.2 The site occupancy profile of the half-filled SSH chain (N = 80 sites, i.e. M = 40
cells) in the topological phase (thick black curve), the discrete level contribution (edge states,
in red) and the contribution of all the occupied states in the continuum spectrum (bulk states,
blue). (a) in the clean case, where the tunneling amplitudes are homogeneous (vj ≡ v, wj ≡ w,
with v = 0.7w), all bulk states are extended, and the thin black curve shows an example of a
bulk state; (b) in the chiral-disordered case, where the tunneling amplitudes vj , wj are random
variables with average values fulfilling v = 0.7w and with disorder strength d = 0.1, the bulk
states are also localized, and one example is shown by the thin black curve. In both cases the
edge and bulk states contributions are perfectly complementary, so that the total site occupancy
profile is flat and equal to 1/2 everywhere.

Such a lack of difference seems at first to contradict the argument that is customarily
invoked to illustrate the emergence of the edge states in the topological phase, based on
the dimerized limit of the chain: When the extremal links of the chain are very weak,
v/w → 0, the outmost chain sites host a localized electron. However, this can only hold
when the number Ne of electrons in the chain is M + 1. At half filling, Ne = M , only one
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electron can be accommodated in the two edge sites and, in fact, each of them hosts “half
an electron”. Indeed the red curve of Fig.5.2, peaked at both chain edges, describes the
contribution of only one discrete state, namely the one at energy −εedge, which is occupied
in the half-filled ground state.

We also emphasize that such uniform site occupancy profile is not merely due to the
accidental spatial parity4 of the homogeneous SSH model (5.1). The very chiral symmetry
forbids disorder to localize the two discrete states on opposite sides of the chain: The two
wavefunctions ψedge

± with opposite energies ±εedge are mapped into each other by a mere
sign change in the B-sites through the chiral transformation S [see Sec.5.2.1], so that their
square moduli have to coincide, even in the presence of chiral disorder. This is illustrated
in Fig.5.2(b), which refers to a disordered SSH model realized by taking wj = w(1 + ξj d)
and vj = v(1 + ηj d) in Eq.(5.2), where {ξj, ηj} are sets of random variables uniformly
distributed in [−1/2, 1/2], v > 0 and w > 0 are the average tunneling amplitudes, and
d < |v − w|/max(v, w) is the disorder strength. For v < w the spectrum of the disordered
SSH chain still consists of a continuum branch and of two additional discrete levels. The
red curve describes the only occupied discrete level and again is localized on both edges. In
fact, disorder has a stronger impact on the bulk states, which get localized too, as shown
by the thin black curve in Fig.5.2(b), in agreement with Anderson localization[131, 386].
However, their total contribution to the site occupancy profile [blue curve in Fig.5.2(b)] is
still uniformly flat in the bulk and exhibits two dips by the edges, just like in the clean
case of Fig.5.2(a). Again, at half filling, the sum of bulk and edge state contributions
yields a perfectly uniform occupancy profile Nj,s ≡ 1/2 [black thick line in Fig.5.2(b)].
It is also straightforward to understand why such uniform profile is unaltered by finite
temperatures: Despite the energy separation between the two discrete levels is tiny, the
partial occupancy of the level at energy +εedge induced by thermal excitations is perfectly
balanced by the corresponding depletion of the level at energy −εedge.

5.4 Breaking charge conjugation in chiral symmetric
models: A local quench

In order to observe some effects of the quench in the real-space occupancy, and possibly
the appearance of the topological edge states, a necessary condition is that at least one of
the two crucial hypotheses of the theorem, Eq.(5.23) and Eq.(5.24), is violated. Here below

4Specifically, Eq.(5.1) commutes with P, defined through Pcj,AP−1 = cM−j+1,B and Pcj,BP−1 =
cM−j+1,A.
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we show how this is possible while still preserving the chiral symmetry and while operating
at half-filling, i.e under the conditions where the SSH model is rigorously characterized as
a topological insulator.

5.4.1 Ring-to-chain quench

The first option is to violate the hypothesis of charge-conjugation invariance of the pre-
quench state, Eq.(5.23). This can be achieved by choosing as ρ̂pre a thermal equilibrium
state of the homogeneous half-filled SSH model, like in Eq.(5.28), where Ĥpre is Eq.(5.2)
defined on a ring-shaped lattice threaded by a magnetic flux Φ. In this case both Ĥpre and
ρ̂pre break time-reversal symmetry T and hence charge conjugation C symmetry, so that
the condition Eq.(5.23) is violated. Note that, nevertheless, the pre-quench site occupancy
still equals exactly 1/2. Indeed, since Ĥpre commutes with the chiral symmetry S, the
relation

Npre
j,s = Tr [ρ̂pren̂j,s] =

Tr
[
Se−βĤpreS−1Sn̂j,sS−1

]
Tr
[
e−βĤpre

] =

=
Tr
[
e−βĤpre(1− n̂j,s)

]
Tr
[
e−βĤpre

] = 1−Npre
j,s (5.29)

implies that Npre
j,s = 1/2 ∀j, s. For definiteness, we take for ρ̂pre the ground state of the

SSH ring.

Then, after isolating the system from the environment, at t = 0 we perform a local
quench, i.e. we bring one single ring bond, e.g. wM , from wpre

M = w to wpost
M = 0, leaving

all the other bonds v and w unaltered. As a consequence, the ring gets cut into a chain,
as illustrated in Fig.5.3(a). The post-quench Hamiltonian, being defined on a chain
lattice, preserves T and C and the second hypothesis Eq.(5.24) of the theorem is satisfied.
Depending on whether the cut bond is weak (|wpre

M | < |v|) or strong (|wpre
M | > |v|), the post

quench chain is in the trivial or in the topological phase, respectively. For simplicity we
shall consider the limit of an instantaneous quench. Still, two timescales characterize the
post-quench evolution, namely

τg = ℏ
||v| − |w||

, (5.30)
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which is the timescale related to the inverse half-gap, and

τL = ℏM
min(|v|, |w|) , (5.31)

corresponding to the typical time an electron wavepacket takes to travel the system length
L = Ma (see Appendix D).

The space-time evolution of the site occupancy induced by the quench is depicted in
Fig.5.3 for a ring of N = 80 sites (M = 40 cells), initially threaded by a magnetic flux
Φ = Φ0/5, where the w-bond between sites 1 and 80 is cut by the local quench. In the
plot, the red (blue) color characterizes a positive (negative) fluctuation Nj,s − 1/2 from
the pre-quench occupancy 1/2 (white color), and time is expressed in units of τg. Panels
(b) and (c) refer to the cases of quench from the ring to the trivial and to the topological
chain, respectively. After the bond is cut (t > 0), we observe in both cases that the site
occupancy remains roughly equal to 1/2 everywhere until a time τL/2, which corresponds
to the timescale needed by the quench-induced electron waves propagating in opposite
directions to meet again and interfere in the middle of the chain, i.e. at the opposite site
of the cut bond.

After such time, the two panels feature qualitatively different behaviors. Indeed for
a quench to the trivial chain [see Fig.5.3(b)], the fluctuations Nj,s − 1/2 from the pre-
quench occupancy are more pronounced near the center of the chain and occur at times
t ≃ τL(m + 1/2) corresponding to half-integer values of the typical time related to the
chain length, Eq.(5.31). In contrast, for a quench to the topological chain [Fig.5.3(c)], the
largest occupancy fluctuations are observed at the chain edges and dynamically appear for
the first time at t ≃ τL, and then again at odd integer multiples (2m+ 1)τL. Note that,
at each appearance, the fluctuations take opposite signs at the two boundaries, since the
total charge is conserved.

We emphasize that the pre-quench flux Φ is crucial in determining the magnitude of
fluctuations from the occupancy value 1/2, for both quenches to the trivial and to the
topological chain. For the quench to the trivial chain this is clearly illustrated in panel
(d), which displays the bulk polarization P20 = N20,A − N20,B, i.e. the polarization of
the central cell j = 20, for the time range highlighted by the dashed box of panel (b),
for various values of the flux Φ through the pre-quench ring. Similarly, for the case of
quench to the topological chain, panel (e) shows the edge polarization P1 = N1,A −N1,B,
i.e. the polarization of the cell j = 1 in the time frame highlighted in panel (c). When
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Φ is vanishing or equal to Φ = pΦ0/2, with p ∈ Z, the site occupancy remains locked to
Nj,s ≡ 1/2 at any time.
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Fig. 5.3 (a) Sketch of a local quench: By cutting a bond w of an SSH ring threaded by a flux Φ, a
SSH chain is obtained. Here we used a ring with N = 80 sites (i.e. M = 40 cells). (b) space-time
evolution of the site occupancy Nj,s for the case Φ = Φ0/5 and w = 0.7 |v|: the cut bond w is
weak, so that the post-quench SSH chain is in the trivial phase; (c) space-time evolution of the
site occupancy Nj,s for the case Φ = Φ0/5 and |v| = 0.7 |w|: the cut bond w is strong, so that
the post-quench chain is in the topological phase; (d) the central polarization P20 = N20A−N20B

is plotted in the time frame highlighted in panel (b) by the dashed box, for various values of the
pre-quench ring flux Φ; (e) the edge polarization P1 = N1A −N1B is plotted in the time frame
highlighted in panel (c) by the dashed box, for various values of Φ.
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Furthermore, for a given flux Φ, the magnitude of the fluctuations also depends on the
gap 2εg through the ratio r = εg/max(|w|, |v|). In particular, when r → 1, the model tends
to the dimerized limit where the flux plays no role and the fluctuations from occupancy
1/2 vanish everywhere. In general, both for quenches to the trivial and to the topological
phase, a decrease in the value of r implies an increase in the fluctuation magnitude. For
instance, for N = 80 and Φ = Φ0/5, when r is decreased from r = 0.5 down to r = 0.1,
the fluctuation magnitude at the edge sites of the topological chain increases from 14%
to 30% of the pre-quench site occupancy value 1/2. However, when r → 0 the model
tends to the gapless metallic tight-binding model, and a difference between topological
and trivial phase emerges. Indeed if such limit is taken from the trivial phase (|v| > |w|)
the magnitude of fluctuations located near the center of the chain [see Fig.5.3(b)] tends to
a finite value and survive even in the metallic case. In contrast, when the gap is decreased
from the topological phase side (|v| < |w|), the magnitude of the fluctuations located at
the chain edges [see Fig.5.3(c)] eventually drops to zero for r < 10−2 and the effect is
completely suppressed in the metallic case r = 0, in agreement with the fact that edge
states disappear in such a case.
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Fig. 5.4 Quench from a ring with flux to a chain in the topological phase: The space-time
evolution of the site occupancy Nj,s in the case of a small site number (N = 20, i.e. M = 10
cells). For comparison with a longer chain, the parameters |v| = 0.7 |w| and Φ = Φ0/5 are the
same as in Fig.5.3(c).

To conclude this subsection, we analyze how the site occupancy fluctuations induced
by the quench depend on the chain length L = Ma. The cases analyzed so far in Fig.5.3
correspond to the regime τL ≫ τg of a long chain. In this regime the magnitude of site
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occupancy fluctuations does not significantly change with the number N = 2M of sites,
while the occurrence timescale τL does of course depend on M [see Eq.(5.31)]. For fixed
values of v and w, when the number of lattice sites is reduced one reaches the regime
τL ∼ τg, where the typical energy separation ∆ between the bulk states becomes compara-
ble with the gap 2εg, so that the very notion of bulk gap becomes somewhat questionable.
Yet, two discrete energy levels ±εedge near ε = 0 are still present in the topological phase.
In Fig.5.4 we have plotted the space-time evolution of the site occupancy for a short lattice
with N = 20 sites (i.e. M = 10 cells), when the ring with flux is cut into a chain in the
topological phase, keeping all the other parameters unchanged with respect to the case of
Fig.5.3(c). The comparison shows two interesting effects of the reduced system size on the
dynamics. First, the magnitude of the fluctuations at the edges is bigger in the shorter
chain [Fig.5.4] than in the longer chain [Fig.5.3(c)], highlighting the dynamical alternation
of excess and depletion of occupancy at the two edges. Second, along with the short
timescale τL determining the roughly periodic occurrence described above, we observe a
second longer period that further modulates the fluctuation magnitude. Such a timescale
is associated to the small energy splitting 2εedge between the two discrete edge states.
Indeed such energy separation increases when reducing the system size and, despite be-
ing much smaller than the gap, it becomes visible through this time-dependent modulation.

The local quench cutting the ring thus leads to qualitatively different behaviors in real-
space, depending on whether the post-quench chain is in the trivial or in the topological
phase. In particular, in the quench to a topological chain the fluctuations of site occupancy
are localized at the edges, and alternate in time from excess to depletion. A time-resolved
measurement is thus needed to observe such real-space signatures, while a time-average
would vanish, just like in any site of the bulk. This is typical of a half-filled system. In
Sec.5.5 we shall discuss the case of different filling values.

5.4.2 Chain-to-ring quench

The second possibility to tackle the theorem of Sec.5.3.1 is to break the hypothesis Eq.(5.24).
We keep the first hypothesis Eq.(5.23) by choosing as a pre-quench state the ground state
of a homogeneous half-filled SSH chain. Then, one can perform a local quench binding the
first and last site of the chain, i.e. bringing the tunneling amplitude wM from wpre

M = 0
to wpost

M = w, thereby enclosing the chain into a ring, as illustrated in Fig.5.5(a). If the
ring is threaded by a magnetic flux, the quenching Hamiltonian breaks T and hence C
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symmetries, and the condition Eq.(5.24) is violated, opening up the possibility to observe
real-space signatures of the quench.
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Fig. 5.5 (a) By binding the extremal sites of a SSH chain in the topological phase, the chain is
brought into a SSH ring threaded by a flux. Here we have taken N = 80 sites (i.e. M = 40 cells)
and v = 0.7 |w|; (b) space-time evolution of the site occupancy Nj,s along the ring, for a flux
Φ = Φ0/5; (c) time evolution of the edge polarization P1 = N1A −N1B of the first cell (j = 1),
for various values of the flux Φ.

Figure 5.5(b) displays the space-time evolution of the site occupancy when the pre-
quench state is the ground state of a 80-sites half-filled SSH chain in the topological phase
(|v| < |w|) and the post-quench ring is threaded by a flux Φ = Φ0/5. Note that, although
the initial chain is in the topological phase, before the quench (t < 0) the site occupancy is
locked to 1/2 everywhere, in agreement with the theorem proven above, and no signature
of the edge state emerges in real-space. However, after the quench (t > 0), two occupancy
fluctuations Nj,s − 1/2 of opposite signs depart from the bridged link and propagate along
the ring in opposite directions, determined by the sign of the flux Φ. When the SSH chain
is initially in the trivial phase, such an effect is absent, the occupancy evolution is quite
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similar to the case of a ring-to-trivial chain quench already shown in Fig.5.3(b) and is
not reported here. The evolution of the edge polarization at the cell j = 1 is shown in
Fig.5.5(c) in the early time range highlighted by the dashed circle of panel (b), for various
flux values. Again the presence of the flux is crucial to observe real-space signatures of the
quench.

5.5 Quenches in chiral-symmetry broken models and
effects of band filling

In the previous section we have shown how to violate the conditions Eqs.(5.23) and (5.24),
while preserving the chiral symmetry S in the half-filled SSH model. Here we want to
explore the dynamical effect of quenches when the chiral symmetry is broken and the
filling is not necessarily equal to 1/2, i.e. beyond the framework where the model can
be classified as a topological insulator. As a matter of fact, in a realistic electron model
on a bipartite lattice, the chiral symmetry is fragile. A difference δj between the on-site
energies of A and B sites is likely to exist, leading to an additional Hamiltonian term

Ĥχb =
∑

j

δj(n̂j,A − n̂j,B) , (5.32)

which breaks the chiral symmetry because SĤχbS−1 = −Ĥχb
5. On the one hand, in the

absence of chiral symmetry the very topological classification is not well defined since, for
instance, one could go from the range |v| > |w| to the range |v| < |w| without closing the
gap. A priori, there is no guarantee that the topological states exist at all. On the other
hand, numerical analysis shows that, if the values of the δj are small compared to the
band gap 2εg, edge states still persist. Specifically, we shall consider a Hamiltonian

Ĥ = ĤSSH,χ + Ĥχb , (5.33)

where the first term, Eq.(5.2), contains a chiral disorder wj = w(1+ξjd) and vj = v(1+ηjd),
while the second term, Eq.(5.32), contains a chiral-breaking disorder δj = ζj max(v, w)d.
Here we have assumed v, w > 0 and {ξj, ηj, ζj} denote real random variables uniformly
distributed in [−1/2,+1/2] with a disorder strength d < |v − w|/max(v, w). Note that,
although for each disorder realization the chiral symmetry is broken by Eq.(5.33), the

5The first-quantized version of Eq.(5.32) is Hχb = ⊕M
j=1δj(σz)j and fulfills SHχbS

−1 = +Hχb, causing
the breaking of Eq.(5.9).
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disorder-averaged Hamiltonian Eq.(5.33) still preserves the chiral symmetry, so that the
trivial and topological phases can still be defined in the sense of the average values v
and w. While Ref.[387] analyzed the Hamiltonian Eq.(5.33) in the case of local quenches
performed over a long quench time (τq ≫ τg) and at half filling, here we shall focus on the
complementary situation of a global quench in the short quench time limit (τq ≪ τg) and
consider also filling values different from a half, which turns out to be important for the
effects in real-space.

Let us thus go back to the original problem illustrated in Fig.5.1, and analyze a global
quench from the trivial to the topological chain, where now the Hamiltonian Eq.(5.33)
includes the chiral-breaking term Eq.(5.32).
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Fig. 5.6 The site occupancy profile of the half-filled chain of model (5.33) in the topological phase.
The parameters are the same as in Fig.5.2, with the addition of the chiral-breaking disorder term.
Its effect is to localize the two edge state wavefunctions on opposite edges (thick and thin red
curves), differently from the case with purely chiral disorder [see Fig.5.2(b)]. The contribution of
all occupied bulk states is described by the blue curve. The total site occupancy profile, depicted
by the thick solid black curve, exhibits a peak at one edge and a depletion at the other edge.

5.5.1 The case of half-filling

At first, one might even expect that Ĥχb may favor the appearance of the edge states
already at half-filling. Indeed without such term Eq.(5.32) the site occupancy would always
remain strictly locked to 1/2, due to the theorem proven in Sec.5.3.1. In contrast, because
the term (5.32) also breaks the charge conjugation symmetry, CĤχbC−1 = −Ĥχb, the
hypotheses of the theorem are violated, opening up the possibility to observe fluctuations
of the site occupancy, possibly at the edges. This expectation seems to be confirmed



5.5 Quenches in chiral-symmetry broken models and effects of band filling 113

when analyzing how the edge state wavefunctions are modified by the term Ĥχb. While in
the purely chiral SSH model ĤSSH,χ each wavefunction is localized on both edges even in
the presence of chiral disorder {vj, wj} [see Fig.5.2], the addition of the chiral-breaking
disorder Ĥχb localizes each discrete state of the Hamiltonian (5.33) only on one single edge
of the chain, as shown by the red curves of Fig.5.6. This is the hallmark of the break-up
of the topological protection. Depending on the specific disorder realization, one of the
two edge wavefunctions is energetically slightly more favoured than the other, so that the
ground state of the half-filled topological chain with chiral-breaking disorder exhibits a site
occupancy with an enhancement at one edge, a depletion on the other edge and a value
roughly equal to 1/2 in the bulk [see black curve of Fig.5.6]. In principle, such real-space
signature of the edge state should appear by performing an infinitely slow quench from the
trivial to the topological chain, where the pre-quench trivial ground state should evolve into
the post-quench topological ground state. However, if the chiral-breaking disorder term is
weak, the energy separation between the two localized states is very small. In practice, at
half filling, any finite temperature in the pre-quench state leads the post-quench state to
exhibit only half-occupancy of both discrete states, quite similarly to what happens in the
chiral SSH model Ĥχb.

The same effect occurs when the duration of the quench is short, as shown in Fig.5.7(a),
which illustrates the space-time evolution of the site occupancy of a 80-sites chain that
is suddenly quenched from the ground state of the trivial phase (wpre = 0.7vpre) to the
topological phase (wpost = vpre and vpost = wpre), for given pre-quench and post-quench
realizations of chiral and chiral-breaking disorder with strength d = 0.1. Due to the
chiral-breaking term Eq.(5.32), static deviations from the site occupancy 1/2 are present
even before the quench, while after the quench these deviations fluctuate in time as well.
In Fig.5.7(b), the corresponding edge polarization P1 = N1,A − N1,B (black curve) is
compared to the polarization at the central chain cell P20 = N20,A −N20,B (red curve). As
one can see, fluctuations do have larger amplitudes at the chain edges than in the chain
bulk. However, at each edge, the site occupancy experiences an alternation of depletion
and excess [blue and red colors in panel (a)], just like for the quenches preserving the
chiral symmetry discussed above [see e.g. Fig.5.3(b) or Fig.5.4]. This quantitatively shows
that the chiral-breaking term does not really improve the observability of real-space effects
of the quench. In particular, the time-average of the fluctuations at the edge and in the
bulk is essentially the same, as highlighted by the arrows in Fig.5.7(b).

In energy-space, however, the effects of the quench are seizable. Indeed the energy
distribution of the post-quench Hamiltonian displayed in Fig.5.7(c) strongly differs from
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the pre-quench equilibrium one, depicted in red for comparison. In particular, as far as
the continuum spectrum is concerned (black symbols), the non-equilibrium distribution
that we obtain for the disordered chain-to-chain quench is quite similar to the result
obtained for a quench in the clean bulk SSH model analyzed in Ref.[336], and describes
the population inversion effect found upon quenching from one phase to the other. This
effect can open up the possibility that, when the SSH model is coupled to a radiation[388],
a stimulated emission occurs due to transitions from the (almost filled) continuum states
near the bottom of the conduction band to the (almost depleted) states near the top of
the valence band, with a radiation frequency corresponding to the band gap. Apart from
the presence of disorder, the major difference from the ring case arises from the presence
of the topological edge states in the post-quench spectrum of the chain, highlighted by the
blue symbols. Note that their occupancy is roughly 1/2. On the one hand, this is precisely
what disguises these states in the real-space occupancy at the chain edges, as argued above
[see Fig.5.7(a)]. On the other hand, differently from a purely bulk SSH system, in a chain
quenched to the topological phase the presence of half-occupied discrete levels near ε = 0
causes an additional emission process, characterized by a frequency corresponding to a half
of the gap, similar to the phenomenon of a quenched quantum well potential, described in
Ch.4 .

5.5.2 Away from half-filling

The results obtained above at half filling (Ne = M), where the model (5.33) describes a
band insulator, indicate that a quench from a trivial to the topological phase of a chain
does lead to the appearance of site occupancy fluctuations that are larger at the chain
edges than in the bulk. However, the alternation of depletion and excess yields a vanishing
result upon time-average, both at the edges and in the bulk. In the short quench time
limit this holds for any temperature of the pre-quench state. We now analyze the effects
of a quench in a non half-filled chain, where the number Ne of electrons differs from the
number M of lattice cells. Note that in such a case the pre-quench ground state is metallic,
with an excess of electrons (holes) in the conduction (valence) band for Ne > M (Ne < M).
At finite temperature this is described by

ρ̂pre = e−β(Ĥpre−µN̂e)

Tr[e−β(Ĥpre−µN̂e)]
, (5.34)
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where N̂e = ∑
j,s n̂j,s is the total electron number operator and µ the chemical potential.

While in the insulator µ = 0, the metallic state is described by µ ̸= 0. Moreover, because
N̂e transforms under charge conjugation as CN̂eC−1 = 2M − N̂e the condition (5.23) of
the theorem proven in Sec.5.3.1 is violated, opening up the way to observe effects of the
quench in real-space.

In principle, if one takes the standard disorder-free SSH model Eq.(5.1), the ideal
situation to observe the appearance of the topological edge states is a Gedankenexperiment
where the pre-quench state is the ground state of the trivial SSH chain (vpre > wpre) with
exactly Ne = M + 1 electrons, with the extra electron lying in the conduction band. By
performing an infinitely slow quench (τq → ∞) to the topological chain (wpost > vpost),
the ground state evolves to the post-quench ground state of the topological chain [see
Fig.5.1], where now both discrete levels will be occupied, instead of only one like in the
half-filled case. The extra electronic level, delocalized on both edges, causes the gradual
appearance of peaks localized at the chain edges in the site occupancy profile, over a
value of Nj,s = 1/2 in the bulk of the chain. In practice, however, such ideal conditions
are not necessarily easy to realize and/or useful. First, chiral-breaking disorder Eq.(5.32)
is typically present as well. Second, in view of technological applications, one typically
wants these operations to be performed sufficiently fast. For a finite and possibly short
quench time τq the post-quench state may differ from the slow-quench scenario. Third, in
a metallic system the filling would deviate from 1/2 not just by one single electron. A
finite fraction of the (say) conduction band is occupied and, even in the adiabatic quench
limit, these extra conduction states may mask the localized peaks due to the edge states.
This is certainly the case, for instance, when the filling approaches 1. The question is thus
whether the edge states dynamically appear in real-space when these aspects are taken
into account.

For definiteness, we shall analyze the case Ne > M , where before the quench a small
fraction of the conduction band of the trivial phase is occupied, e.g. 1/10 of the conduction
bandwidth from its band bottom. For the values wpre = 0.7vpre this corresponds to setting
the chemical potential to µ = 0.44 vpre. Then, we consider a quench to the topological
phase of the chain (wpost/pre = vpre/post), in the short quench time limit (τq → 0). The
resulting time evolution of the site occupancy is shown in Fig.5.7(d). As one can see, while
in the pre-quench state the edge states are absent, after the quench they start to become
visible and stable. This can be seen explicitly in Fig.5.7(e), where the polarization of the
edge cell (black curve) and of the central chain cell (red curve) are compared.
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Fig. 5.7 Effects of an instantaneous quench in a 80-sites chain (M = 40 cells) from the trivial
phase (wpre = 0.7vpre) to the topological phase (wpost = vpre and vpost = wpre), for a given
realization of both chiral and chiral-breaking disorder with strength d = 0.1. Panels (a)-(b)-(c)
refer to the case Ne = M (µ = 0, half filling, insulating pre-quench state), while panels (d)-(e)-(f)
to the case Ne > M (µ = 0.44 vpre, metallic pre-quench state). Panels (a) and (d) describe
the space-time evolution of the site occupancy. Panels (b) and (e) display the polarizations
P1 and P20 of the edge cell (j = 1) and the central cell (j = 20). Panels (c) and (f) show the
nonequilibrium distribution of the post-quench Hamiltonian (black and blue circles for bulk and
edge states, respectively). For comparison, the pre-quench equilibrium distribution is shown in
red squares.
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Differently from the half-filling case [panel(b)], the edge occupancy oscillates around
an average value that is finite and thus differs from the small one obtained in the bulk
of the chain, as highlighted by the arrows. Finally Fig.5.7(f) shows the corresponding
nonequilibrium post-quench energy distribution. Note that the occupancy of the discrete
states near ε = 0 significantly differs from 1/2. On the one hand, this is the reason for
their appearance in real-space at the chain edges. On the other hand, this reduces the
occupancy difference from the (almost filled) states near the bottom of the conduction
band, thereby reducing the spontaneous emission effect as compared to the half-filling case
shown panel (c).

5.6 Discussion and conclusion

In this Chapter we have analyzed how a quantum quench applied to the SSH model (5.2)
impacts on observables that are local in real-space, namely the site occupancy and the cell
polarization.

In Sec.5.3 we have proven a general theorem ensuring that, when the pre-quench state
and the quenching Hamiltonian fulfill the charge conjugation symmetry C, the occupancy
of each lattice site remains firmly locked to the value 1/2, at any time. These symmetries
are always satisfied in the customary case of a half-filled SSH chain. Indeed, because
C = ST and the chiral symmetry S is preserved by the SSH model, the breaking of C
requires also the breaking of time-reversal symmetry T , which is not possible for spinless
electrons in a chain lattice with OBCs. As a consequence of the proven theorem, a quench
from the trivial to the topological phase performed on a SSH chain has no effect whatsoever
on the site occupancies. In particular, no signature of the topological edge states appears
locally in real-space, independently of the quench protocol, of the temperature of the
pre-quench thermal state and also of the presence of chiral disorder. This is strikingly
different from what is known to happen in k-space. Indeed when a quench between two
topologically different phases is performed, a dynamical quantum phase transition[312]
is known to arise, and the momentum distribution exhibits a band population inversion
related to a dynamical topological invariant[389, 336, 390]. Our result thus implies that
these out of equilibrium phenomena can be detected in real space only through non-local
quantities, such as correlation functions.

The effects of the quench can become visible in observables that are local in real space
only when charge conjugation symmetry is broken. This can be done either remaining
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within the framework of the topological insulator characterization, i.e. by preserving the
chiral symmetry S and the half-filling condition, or going out of such framework. The first
case requires suitably engineered setups. In particular, in Sec.5.4 we have shown that a
local quench cutting a SSH ring threaded by a flux into a SSH chain (or viceversa), violates
the hypotheses of the above theorem while still remaining in the topological insulator
framework. Real-space effects of the quench then become observable and quite distinct
dynamical features appear in the two phases. In particular, when the pre-quench ring
is cut into a trivial chain the site occupancy fluctuations appear near the center of the
chain, while when the ring is cut into a topological chain these fluctuations appear at the
chain edges after a time τL [see Fig.5.3], and then repeat with a dynamical alternation
of excess and depletion at each edge. Such effect at the edges appears even more clearly
in a lattice with smaller number of sites [see Fig.5.4]. Conversely, when the local quench
bridges a chain to form a ring with flux, the site occupancy fluctuations propagate towards
the chain center if the pre-quench chain is in the topological phase[see Fig.5.5], whereas
such effect is absent if the chain is in the trivial phase. In all such dynamical effects the
presence of the flux Φ threading the ring is crucial. For vanishing flux or for Φ = pΦ0/2,
where time-reversal and charge conjugation hold, the site occupancy remains locked to the
pre-quench value 1/2.

In Sec.5.5 we have explored the effects of the quench beyond the framework of the
topological insulator. By adding a disordered on-site potential term Eq.(5.32) both
the chiral and the charge conjugation symmetries get broken. Although for a disorder
realization the topological classification is in principle not well defined and the existence of
the edge states is not guaranteed, the disorder-averaged Hamiltonian (5.33) still preserves
S, and the topological phases can still be considered to hold for weak enough disorder. We
have thus analyzed the effects of a quench from a trivial to a topological chain. Our results
show that, although the chiral-breaking disorder localizes each edge state wavefunction
on one edge only [see Fig.5.6], in practice such term does not lead to any improvement
in terms of their observability in real-space as compared to the purely chiral SSH model.
In particular, for a half-filled system, while the edge occupancy exhibits much larger
fluctuations than the bulk, its time average is roughly equal to the bulk one [see Fig.5.7(b)].
Thus, real-space effects of the quench do exist, but time-resolved measurements are needed
to probe the quench-induced appearance of the edge states. In contrast, for filling values
different from 1/2, where the model is slightly metallic, the edge site occupancy fluctuates
around a value that is different from the bulk. In this case the dynamical signature of the
topological states survive both time-average and the presence of chiral-breaking disorder,
and persist even in the short quench time limit [see Fig.5.7(d)-(e)].
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In conclusion our analysis points out that, when a topological insulator is driven out
of equilibrium by a quantum quench, the presence of additional symmetries (such as
charge conjugation or time-reversal) in the quenching Hamiltonian and in the pre-quench
state can completely mask the impact of the quench in real-space occupancies, even in
customary cases where the energy distributions are typically strongly affected. Only when
such additional symmetries are suitably broken, like in the setups and protocols proposed
here in Secs. 5.4 and 5.5, real-space effects do emerge in local observables, and exhibit
distinct dynamical behavior in the topological and trivial phases. The huge advances
in realizing topological models with cold atoms in optical lattices, which nowadays also
enable one to effectively implement a Peierls substitution in tunneling amplitudes[391,
392, 393], represent a promising perspective to test the predicted quench effects.



Chapter 6

Nonlinear current and dynamical
quantum phase transitions induced
by a flux quench

The content of this Chapter is based on the published paper [394]

6.1 Introduction

Many important features of a quantum mechanical system can be gained from the Linear
Response Theory (LRT), where the out of equilibrium response of the system to a weak
perturbation is encoded in a correlation function evaluated at its equilibrium state[395,
396]. In particular, LRT is used to establish whether a fermionic system is a conductor or
an insulator. Operatively this can be done through the following Gedankenexperiment: We
first imagine to switch off all sources of extrinsic scattering phenomena, e.g. with a bath
or with disorder. Then, we apply a weak uniform electric pulse E(t) = Eδ(t) and observe
the long time behavior of the current in the thermodynamic limit. If a finite persistent
current eventually flows, the system is a conductor, otherwise it is an insulator. Explicitly,
the LRT current is expressed as J(t) = (2π)−1E

∫
dω σ(ω)e−iωt, and its stationary value

J(+∞) = DE is determined by the Drude weight D, i.e. the coefficient appearing in the
low frequency singular term of the conductivity[397] σ(ω) = σreg(ω) + iD/(ω + i0+) and
characterizing the possibility of a system to sustain ballistic transport. The evaluation
of the Drude weight[398] has allowed to identify interaction-induced insulating states in
exactly solvable fermionic models, either by a direct investigation, like e.g. in the Hubbard
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model[399, 400, 401] , or indirectly through spin models that can be mapped into fermionic
ones through the Jordan-Wigner transformation[402, 403, 404, 405, 124, 406]. Moreover,
the linear response of systems that are in a stationary out-of-equilibrium state has been
investigated [407].

Remarkably, the high control and tunability of cold atom systems in optical lattices[408,
88], together with the ability to realize artificial gauge fields[409, 410], intriguingly suggest
that the above Gedankenexperiment could actually be realized in a quantum quench
protocol[87, 79, 80, 81]. Consider an isolated fermionic system on a one dimensional (1D)
ring, initially prepared in the ground state of a given Hamiltonian Ĥi. Then, suppose
that the unitary dynamics is governed by a different final Hamiltonian Ĥf , obtained from
the previous one by a sudden change in a magnetic flux piercing the ring. Such sudden
variation precisely generates the uniform electric pulse mentioned above.

These experimental advances have also spurred the interest in the dynamics beyond
LRT, i.e. when the stationary state properties of the system are no longer sufficient
to describe its dynamical response. In particular, the dynamics resulting from a flux
quench has been analyzed in the case of a single-band model of spinless fermions with
a homogeneous nearest neighbour hopping and interaction[411]. Although quantitative
discrepancies from the LRT prediction have been numerically found in the gapless phase,
the overall qualitative picture relating the existence of a persistent current to a non
vanishing Drude weight seems quite robust.

Here we would like instead to highlight qualitative differences from LRT predictions
emerging after a flux quench in a model of spinless fermions hopping in a dimerized ring
lattice. Specifically, we shall focus on the Su-Schrieffer-Heeger(SSH) model[372, 373],
recently realized in optical lattices[165, 377, 378]. As already discussed in the previous
Chapter, such model is gapped even without interactions and, at half filling, describes a
two-band (topological) insulator[375, 376]. By quenching the initial flux to zero and by
analyzing the resulting dynamics, we find two main results. First, while LRT predicts
a vanishing Drude weight and a vanishing current[397], the flux quench does lead to a
persistent current flowing along the ring, which is thus a signature of non-linear effects.
Second, if the initial flux exceeds a critical value (dependent on the dimerization strength)
dynamical quantum phase transitions (DQPTs)[312] occur. Notably, while a quench
performed across the two different topological phases of the SSH model is known to give
rise to DQPTs[389], the DQPTs we find occur even if the quench is performed within the
same topological phase.
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We emphasize that the effects predicted here are intrinsically ascribed to the dimeriza-
tion and arise even without interaction, in sharp contrast with the customary single-band
tight-binding model with homogeneous hopping, where interaction is needed to observe
any non trivial dynamical effect of the flux-quench[411]. Here, dimerization provides an
intrinsically spinorial nature to the Hamiltonian and to its eigenstates, implying that the
current operator is not a constant of motion even without interaction. Furthermore, in
the single band model the eigenstates of the Hamiltonian are uniquely determined by
their (quasi)-momenta and do not depend on the flux, while in the dimerized case the
eigenstates exhibit a non-trivial dependence on the flux. Finally, it is the spinorial nature,
which is thus absent in the single-band tight-binding model, that leads to the DQPTs.

This Chapter is organized as follows. In Sec.6.2 we present the model and describe
the flux quench dynamics of a two-band model. In Sec.6.3 we derive the expression of the
persistent current and show that, while in the limit of vanishing dimerization the LRT
captures the metallic behavior, in the presence of dimerization the persistent current flows
despite the LRT predicts a vanishing Drude weight and an insulating behavior. In Sec.6.4
we then analyze the DQPTs induced by the dimerization. Finally, in Sec.6.5 we discuss
our results and draw our conclusions.

6.2 Model and state evolution

6.2.1 The SSH model

As mentioned in the Introduction, in this Chapter we take as a reference system the
Su-Schrieffer-Heeger (SSH) model[372, 373] in a 1D ring geometry pierced by a magnetic
flux. Since the model was already described in Ch.5 and App.D, here below we briefly
recall a few aspects that are needed to our analysis. The SSH Hamiltonian in real space
can be written as [see Eq.(5.1)]

Ĥ[ϕ] = v
M∑

j=1

(
eiϕĉ†

jAĉjB + reiϕĉ†
jB ĉj+1A + H. c.

)
, (6.1)

where M denotes the number of cells, containing two sites A and B each, v is a real
positive hopping amplitude, r ≥ 0 is the dimerization parameter, and ĉ†

jα creates a spinless
fermion in the site α = A,B of the j-th cell. Denoting by Φ the total magnetic flux
threading the ring, we adopt the gauge where the phase related to its vector potential[384,
385], denoted by ϕ in Eq.(6.1), is uniform along the ring links, so that 2Mϕ = 2π(Φ/Φ0),
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where Φ0 = h/e is the elementary flux quantum. We are interested in the thermodynamic
limit M → +∞ with a finite flux per unit cell Φ/M .

In Eq.(6.1) we assume periodic boundary conditions (PBCs), so that the k wavevectors
are quantized (also in the presence of flux) as ka = 2π n/M , where n ∈ {−⌊M/2⌋ , . . . , ⌊(M − 1)/2⌋}
and a denotes the size of the unit cell. The SSH Hamiltonian is thus rewritten in momentum
space as

Ĥ[ϕ] =
π∑

ka=−π

(ĉ†
kA, ĉ

†
kB) d(k, ϕ) · σ

ĉkA

ĉkB

 (6.2)

where
d(k, ϕ) = v(cosϕ+ r cos(ka+ ϕ),− sinϕ+ r sin(ka+ ϕ), 0) (6.3)

and σ = (σx, σy, σz) are Pauli matrices acting on the sublattice degree of freedom. The
spectrum of single particle eigenvalues consists of two symmetric energy bands ε±(k, ϕ) =
±vϵ(k, ϕ), where

ϵ(k, ϕ) =
√

1 + r2 + 2r cos(ka+ 2ϕ) . (6.4)
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dy[v]

Fig. 6.1 The closed loops traced by the d(k, ϕ) vector Eq.(6.3) as a function of k, for a given
value of ϕ and for two different dimerization ratios, namely r < 1 in red and r > 1 in blue. The
blue circle, corresponding to the topological phase r > 1, winds once around the origin, while
the red circle, associated to the topologically trivial phase r < 1, has a vanishing winding.

The two topologically distinct phases [375] are identified by r ≶ 1 , with r = 1
identifying the non-dimerized gapless case, see Fig.6.1. The density matrices of the single
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particle eigenstates, in the {|kA⟩, |kB⟩} basis, are given by

ρ±(k, ϕ) = 1
2
(
σ0 ± d̂(k, ϕ) · σ

)
(6.5)

where σ0 is the 2× 2 identity matrix, and d̂(k, ϕ) = d(k, ϕ)/|d(k, ϕ)| is a unit vector.

Notably, in the presence of a magnetic flux (ϕ ̸= 0), the energy spectrum (6.4) depends
on the wavevector k and on the flux phase ϕ only though the combination ka+2ϕ, whereas
the Hamiltonian (6.2) and its eigenstates (6.5) depend on both these quantities separately.
This is due to the dimerization. Indeed, in the limit r → 1 of vanishing dimerization, in
the Hamiltonian (6.2) one has d(k, ϕ) · σ = 2v cos(ka/2 + ϕ)(σx cos(ka/2) + σy sin(ka/2)),
and the dependence on the flux phase reduces to a mere multiplicative factor. In this case
the single particle eigenstates become independent of ϕ.

6.2.2 State evolution upon a flux quench

Let us suppose that the system is initially prepared in the insulating ground state of the
half filled SSH model with an initial flux phase value ϕi, corresponding to a completely
filled lower band ε−(k, ϕi). The k-th component of the single particle density matrix
at t = 0 can thus be written in the {|kA⟩, |kB⟩} basis as ρi(k) =

[
σ0 − d̂i(k) · σ

]
/2,

where d̂i(k) = d̂(k, ϕi). Then, the magnetic flux is suddenly switched off and the initial
state evolves according to the final Hamiltonian Ĥf characterized in Eq.(6.2) by d̂f (k) =
d̂(k, ϕ = 0).

Since the k modes do not couple in the quench process, the Liouville-Von Neumann
equation can be easily integrated and the k-th component of the one-body density matrix
is uniquely identified, in the {|kA⟩, |kB⟩} basis, by the time evolving Bloch vector d̂(k, t)
through

ρ(k, t) = 1
2
[
σ0 − d̂(k, t) · σ

]
. (6.6)

Specifically, the Bloch vector precesses around the final direction d̂f(k) and can be
expressed as the sum of three orthogonal contributions[390]

d̂(k, t) = d∥(k) + d⊥(k) cos
[2ϵ(k, 0)vt

ℏ
]

+ d×(k) sin
[2ϵ(k, 0)vt

ℏ
]

(6.7)
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whose explicit expression can be deduced from the general state evolution in a two-band
model (see Appendix E.1) and read

d∥(k) = d∥(k, ϕi)d̂f (k) (6.8)

d⊥(k) = d⊥(k, ϕi)Rz[d̂f (k)] (6.9)

d×(k) = d⊥(k, ϕi)(−ez) . (6.10)

Here

Rz =


0 1 0
−1 0 0
0 0 1

 (6.11)

is a matrix describing a rotation by −π/2 around the z-axis identified by the unit vector
ez and orthogonal to the di-df plane, while

d∥(k, ϕi) = (1 + r2) cosϕi + 2r cos(ka+ ϕi)
ϵ(k, ϕi)ϵ(k, 0) (6.12)

d⊥(k, ϕi) = (1− r2) sinϕi

ϵ(k, ϕi)ϵ(k, 0) . (6.13)

As a last remark we notice that, in the limit r → 1 of vanishing dimerization, the dynamics
in Eq.(6.7) becomes trivial, since d⊥(k, ϕi) = 0 and d∥(k, ϕ) = sign[cos(ka/2+ϕi) cos(ka/2)].
Indeed without dimerization the initial state is an eigenstate of Ĥf and its density matrix
does not evolve with time.

6.3 Current

Let us now investigate the dynamical behavior of the particle current generated by the
quench. We first note that, because the system is bipartite, there actually exist two
types of currents, namely inter-cell and to intra-cell current operators. Their explicit
expression straightforwardly stems from the continuity equation related to the post-quench
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Hamiltonian Ĥf (see Appendix E.2) and reads

Ĵ inter
j = rv

ℏ
[
iĉ†

jB ĉj+1A − iĉ†
j+1AĉjB

]
(6.14)

Ĵ intra
j = v

ℏ
[
iĉ†

jAĉjB − iĉ†
jB ĉjA

]
. (6.15)

Note that, since Ĥf has a vanishing flux, these operators do not depend on the flux explicitly.
Due to the translational invariance of both the initial state and the final Hamiltonian,
the expectation values of Eqs.(6.14)-(6.15) are actually independent on the specific cell
label j. It is thus worth introducing the space-averaged operators Ĵ l ≡M−1∑M

j=1 Ĵ
l
j (with

l = inter/intra), obtaining

Ĵ l = 1
M

π∑
ka=−π

(ĉ†
kA, ĉ

†
kB)J l

k

ĉkA

ĉkB

 (6.16)

where

J inter
k = rv

ℏ
(− sin(ka)σx + cos(ka)σy) (6.17)

J intra
k = −v

ℏ
σy . (6.18)

Their expectation values J l(t) ≡ ⟨Ĵ l⟩(t) = M−1∑
k tr[J l

kρ(k, t)] for t > 0 can be written as

J l(t) = Jdc + J l
ac(t) l = inter/intra (6.19)

where the first term Jdc describes a steady state contribution and is thus the same for
inter/intra contributions, while the second term describes the time-dependent fluctuations
around it and is different in the two contributions. Explicitly, the ac-terms read

J inter
ac (t) = rv

ℏ
1
M

π∑
ka=−π

d⊥(k, ϕi)
r + cos(ka)
ϵ(k, 0) cos

[2ϵ(k, 0)vt
ℏ

]
(6.20)

and
J intra

ac (t) = −v
ℏ

1
M

π∑
ka=−π

d⊥(k, ϕi)
1 + r cos(ka)

ϵ(k, 0) cos
[2ϵ(k, 0)vt

ℏ
]

(6.21)

whereas the dc-current is

Jdc = rv

ℏ
1
M

π∑
ka=−π

d∥(k, ϕi)
sin(ka)
ϵ(k, 0) (6.22)
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with d∥(ka, ϕi) and d⊥(ka, ϕi) given by Eqs.(6.12)-(6.13). Figure 6.2 displays the time
evolution of J intra(t) and J inter(t) in the thermodynamic limit M−1∑

k → (2π)−1 ∫ d(ka).
As one can see, the two currents are in general different and exhibit long living fluctuations,
described by the ac-terms in Eq.(6.19). However, these fluctuations eventually vanish and
both currents converge to the same steady state contribution Jdc, highlighted by the green
line.
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Fig. 6.2 The inter-cell current J inter (blue curve) and the intra-cell current J intra (yellow curve)
resulting from a sudden flux quench in the SSH model are plotted as a function of time. At
long-time, they both tend to the same stationary contribution Jdc (green curve). The time
evolution is computed in the thermodynamic limit for r = 0.6 and ϕi = π/2.

A few comments are in order about such persistent current Jdc. First, Jdc is essentially
different from the current flowing at equilibrium in a mesoscopic ring threaded by a flux,
since it is non-vanishing also in the thermodynamic limit, where it acquires the form

Jdc = v

2πℏ

∫ π

−π
d(ka) r sin(ka)

ϵ(k, 0)
(1 + r2) cosϕi + 2r cos(ka+ ϕi)

ϵ(k, ϕi)ϵ(k, 0) (6.23)

Second, Jdc cannot be captured by the LRT, which would predict a vanishing persistent
current due to a vanishing Drude weight (see Appendix E.3). This can also be seen by
inspecting Eq.(6.23) in the limit of weak initial flux ϕi ≪ 1, which corresponds to the
limit of weak applied electric pulse. Indeed one obtains

Jdc ≈ −
v r2

πℏ
(1− r2)2

[∫ π

−π
d(ka)sin2(ka)

ϵ7(k, 0)

]
ϕ3

i (6.24)
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which highlights the non-linear (cubic) response of the insulating SSH ring.

It is now worth comparing the above results with the one of the non-dimerized limit
r → 1, where one obtains for the post-quench currents (t > 0)

J inter(t) = J intra(t) = − 2v
πℏ

sinϕi . (6.25)

Differently from the result obtained for the dimerized case (see Fig.6.2), the current
(6.25) is time-independent after the quench1 and, for a weak field ϕi ≪ 1, it exhibits
a linear dependence on ϕi. One thus recovers the well known finite Drude weight2

D = −(e2/ℏ)vF/π, where vF is the Fermi velocity, of a non interacting half filled metallic
band, as predicted by LRT[412].
The role of dimerization is emphasized in Fig.6.3, where the persistent current (6.23) is
depicted as a function of the initial flux, for various values of dimerization r. While at
small flux values ϕi ≪ 1 the current Jdc of the dimerized case r ≠ 1 is suppressed as
compared to the metallic case r = 1 (green curve), for finite flux values the two cases
exhibit comparable currents.

The origin of the persistent current term Jdc can be understood in terms of the out of
equilibrium occupancies nf,± of the post-quench bands ε±(k, 0) induced by the flux quench.
These can be computed, for each k, by projecting the initial state on the post-quench
eigenmodes, obtaining time-independent expressions

nf,±(k, ϕi) = tr
{
ρi(k)

(
σ0 ± d̂f (k) · σ

)
/2
}

= 1
2(1∓ d̂i(k) · d̂f (k))

= 1
2 ∓

(1 + r2) cosϕi + 2r cos(ka+ ϕi)
2ϵ(k, ϕi)ϵ(k, 0) (6.26)

which are plotted as a function of ka/π in Fig.6.4. By comparing Eq.(6.26) with Eq.(6.23),
the persistent current can be rewritten as

Jdc = 1
2πa

∫ π

−π
d(ka) ∆nf (k, ϕi)

1
ℏ
∂kε−(ka) (6.27)

1The non-dimerized limit acquires a time dependent current only in the presence of interactions, see
Ref.[411].

2The expression for D is obtained by re-expressing the phase ϕi in terms of the the initial magnetic
flux Φi = EiL (see Eq.(E.12) in Appendix E.3). Moreover an additional factor e has to be included to
obtain the charge current from the particle current J in Eq.(6.25).
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Fig. 6.3 The persistent current Jdc induced in the SSH model by quenching the flux to zero is
plotted as a function of the initial flux ϕi. The blue, yellow and green curves are obtained for
different dimerization strengths, namely r = (0.6, 0.8, 1) respectively. For each value of r ̸= 1 the
current does not exhibit a linear term in ϕi for ϕi ≪ 1. The inset magnifies the behaviour at
small fluxes to highlight the difference between linear and non linear response.

where 1
ℏ ∂kε±(k) = ±va

ℏ
r sin(ka)

ϵ(ka) are the post quench group velocities, and

∆nf (k, ϕi) = nf,−(k, ϕi)− nf,+(k, ϕi) = d̂i(k) · d̂f (k) (6.28)

denotes the occupancy difference. Since in Eq.(6.27) the group velocities are odd functions
in k, the origin of the non-vanishing persistent current Jdc boils down to the lack of even
parity in k of the post quench occupancy distributions (6.26) and of their difference ∆nf .
Such lack of symmetry, clearly seen in Fig.6.4, arises from the fact that the flux quench
impacts on the phase of tunneling amplitudes, whereas quenches in the magnitude of the
tunneling amplitudes lead to out of equilibrium occupancy distributions that preserve
their even parity in k and cannot induce a net current [336].

We conclude this section by two comments. First, when moving away from half filling,
the system becomes metallic even in the presence of dimerization. In this case one can show
that the system develops a finite Drude weight and that the linear response theory well
captures the quench-induced current for small initial fluxes. Nonetheless, there exist some
qualitative differences with respect to the non-dimerized metallic case. Indeed, because of
dimerization, the current also has a finite ac-contribution and, for small filling, it does not
increase monotonically in ϕi ∈ [0, π/2], developing a local minimum for ϕi = π/2 instead of
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Fig. 6.4 Occupancies of the post-quench bands for different values of the initial flux ϕi and a
fixed dimerization strength r = 0.6. Dashed lines correspond to the upper band, while solid lines
correspond to the lower one. The blue, yellow and green colors correspond to ϕi = (0.1, 0.2, 0.4)π,
respectively. The distributions are not symmetric in k ↔ −k for any value of the initial flux.
As ϕi is increased, the upper band becomes more occupied and the lower band gets more
depleted. Inset: bands ε±(k, ϕ) of a SSH model pierced by a magnetic flux: Solid and dashed
lines describe the lower and the upper bands, respectively. The bands are depicted for v = 1,
a fixed dimerization strength r = 0.6 and for two different values of the flux, namely ϕ = 0.2π
(yellow lines) and ϕ = 0 (black lines).

a maximum. The second comment is concerned with the flux switching protocol. Here, in
analogy to what was done in Ref.[411], we have considered the switching off of the initial
flux, so that the latter only appears in the initial state. In the reversed protocol, where
the flux is switched on, one obtains a current with opposite sign, as expected, provided
that one consistently includes the flux phases related to the vector potential both in the
post-quench Hamiltonian and in the current operators (6.14)-(6.15).

6.4 Dynamical Quantum Phase Transitions

Let us now analyze the properties of the Loschmidt amplitude G(t) = ⟨ψ0|e−iĤf t/ℏ|ψ0⟩,
where |ψ0⟩ is the many-body initial state, while Ĥf is the final Hamiltonian that governs
the time evolution of the system after the quench. With applications in studies on quantum
chaos and dephasing [413, 414, 415], the Loschmidt amplitude has a tight relation to the
statistics of the work performed through the quench [416, 312, 417, 418]. Equivalently,
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it can also be regarded as the generating function of the energy probability distribution
encoded in the post quench diagonal ensemble, since G(t) =

∫
dEP (E)e−iEt/ℏ and the

post-quench diagonal ensemble is described by P (E) = ∑
n |⟨n|ψ0⟩|2δ(E − En), where En

and |n⟩ are the many-body eigenvalues and eigenstates of the final Hamiltonian respectively.
Moreover, it has been suggested[312] that the Loschmidt amplitude can be interpreted
as a dynamical partition function whose zeros, in analogy with the equilibrium case, are
identified with DQPTs. The initial belief of a connection between DQPTs and quenches
across different equilibrium phase transitions has been proved to be not rigorous [419, 420,
421, 422, 423, 424], and the impact of DQPTs on local observables has been found only in
specific cases[312, 425, 426, 427, 428]. Nevertheless, the existence of zeros of G(t) can be
interpreted as a clear signature of quench-induced population inversion[312, 429] and are
necessary for the formation of a non trivial dynamical topological order parameter in the
time-momentum domain [430, 431]
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Fig. 6.5 Time evolution of the real part of the dynamical free energy density g(t), for different
values of the initial flux ϕi at a fixed dimerization strength r = 0.6. The blue curve corresponds to
an initial flux ϕi = 0.1π lying outside the range identified by Eq.(6.32) and is smooth. The yellow
and green curves correspond to flux values that fulfill Eq.(6.32) (ϕi = (0.2, 0.4)π, respectively)
and exhibit DQPT singularities.

For the present flux quench the Loschmidt amplitude explicitly reads[389]

G(t) =
∏

−π≤ka≤π

[
cos

(
ϵ(k, 0)vt

ℏ

)
+ i [d̂i(k) · d̂f (k)] sin

(
ϵ(k, 0)vt

ℏ

)]
(6.29)
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whence the dynamical free energy density g(t) = −M−1 log[G(t)] in the thermodynamic
limit is straightforwardly given by

g(t) = − 1
2π

∫ π

−π
d(ka) log

[
cos

(
ϵ(k, 0)vt

ℏ

)
+ i[d̂i(k) · d̂f (k)] sin

(
ϵ(k, 0)vt

ℏ

)]
. (6.30)

The argument of the logarithm in Eq.(6.30) may vanish at some critical times if and only
if

d̂i(k) · d̂f (k) = 0 . (6.31)

Using Eqs.(6.28) and (6.26) in the regime r ̸= 1, this condition can be satisfied by some
ka ∈ [−π, π] if and only if

| cosϕi| ≤
2r

1 + r2 . (6.32)

In conclusion, for each value of the dimerization strength r ̸= 1, there exists a range of
initial flux values, Eq.(6.32), such that singularities in the dynamical free energy density
appear, as shown in Fig.6.5. Recalling Eq.(6.28), we observe that DQPTs appear if and
only if the post-quench band occupancies cross at some k, i.e. if there exists a subregion
of the Brillouin zone, where the post-quench upper band is more populated then the
lower one (band population inversion). This is the case for the yellow and green curves
in Figs.6.4 and 6.5. Notably, while a quench across the critical point r = 1 is sufficient
to induce a DQPT[389], it is not a necessary condition and accidental DQPTs can also
appear[419, 423]. This is the case here, where the DQPTs show up even if the quench is
performed within the same topological phase.

Before concluding this section, a remark is in order about the specific case r = 1,
which deserves some care. At first, by looking at the limit r → 1 of Eq.(6.32), one could
naively expect that DQPTs exist for any value of the initial flux. However, this is not
the case since the scalar product d̂i(k) · d̂f(k) reduces to a pure sign and the argument
of the logarithm in Eq.(6.30) can never vanish. Indeed for r = 1 the initial state is an
(excited) eigenstate of the final Hamiltonian, its dynamics is trivial and G(t) reduces to
a pure oscillating phase[417]. Hence the Loschmidt amplitude can never vanish and the
dynamical free energy density is analytic for t > 0. Moreover, for r = 1 a description in
terms of a two band structure is redundant and a proper band population inversion can
not be defined without ambiguities.
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6.5 Discussion and Conclusions

Our results have been obtained in the case of a sudden flux quench. Here we would like to
briefly discuss the effects of a finite switch-off time τsw. By implementing a time-dependent
flux phase ϕ(t) = ϕi(1− Erf(

√
8t/τsw)) and by numerically integrating the Liouville von-

Neumann equation for the density matrix, one can show that the persistent current Jdc

depends on the ratio τsw/τg, where τg = ℏ/(2v|1− r|) is the timescale associated to the
energy gap of the SSH model. In particular, while for τsw ≪ τg the persistent current Jdc is
robust, when τsw ≃ τg it reduces with respect to the sudden quench value (e.g. to roughly
1/5 for the parameters of Fig.6.2) and it vanishes in the limit τsw ≫ τg of an adiabatic
switch-off. In such limit, a vanishing stationary current is consistent with the recent
generalization of LRT to higher order response, which predicts that in a band insulator
the response to an adiabatic electric field vanishes to all orders in the field strength[432,
433, 434].

It is worth pointing out the essential difference between the quench induced dynamics
in an insulating and in a metallic state. For a metallic state, where the response to a weak
electric pulse is linear, the persistent current that eventually flows is independent of the
quench protocol and is thus fully encoded in the Drude weight. In striking contrast, when
a weak field is applied to an insulating state (like the half-filled SSH model), the response
is non-linear and does depend on the quench protocol. Thus, while the vanishing higher
order generalized Drude weights[432, 433] only capture the behavior of the system in the
adiabatic switching limit, for a sufficiently fast switching a persistent current does flow
even in an insulator.

In conclusion, in this Chapter we have analyzed the response of a half filled SSH ring
to a sudden flux quench, or equivalently, to a sudden pulse of electric field. We have
shown that the intrinsically spinorial nature of the problem, due to the dimerization of
the hopping amplitudes, induces a non trivial current dynamics even without interactions.
In particular, a time-dependent current flows along the ring and eventually reaches a
stationary value, despite the insulating nature of the initial state (see Fig.6.2). Such
persistent current Jdc, which depends cubically on a weak initial flux ϕi in the presence
of dimerization [see Eq.(6.24) and Fig.6.3], is a clear hallmark of a non-linear dynamics
and it is ascribed to the peculiar non-equilibrium occupancy induced by the quench (see
Fig.6.4). For suitable dimerization and flux values, a post quench population inversion
occurs, which in turn implies the occurrence of DQPTs (see Fig.6.5). Notably, the DQPTs
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are present even without closing the gap, i.e. when the quench is performed within the
same topological phase.



Chapter 7

Topology in the space-time scaling
limit of quantum quench dynamics

The content of this Chapter is based on the preprint [435]

7.1 Introduction

While initially topology has mostly been used to unravel ground state properties of low
temperature systems [6, 10, 16, 18, 21, 436], recent advances in experimentally controlling
the quantum dynamics of atomic many-body states [437, 179] have triggered the study of
topological features far from equilibrium. In particular, within the paradigmatic quantum
quench protocol[79], new dynamical topological invariants, which are predicted to charac-
terize the change in topology of the quenched Hamiltonian[389, 430, 438, 439, 390] have
been observed[431, 440], and the dynamical robustness of topological features has been ad-
dressed, both theoretically[176, 177, 441, 186, 178, 187, 188, 189] and experimentally[190].
Since topological phases may be defined as equivalence classes under local unitary transfor-
mations [175], bulk topological properties of a quantum state cannot dynamically change
during coherent time evolution generated by a local Hamiltonian[175, 176, 177, 178, 390,
179]. Notwithstanding these fundamental constraints, symmetry protected topological
invariants can be fragile, if the underlying symmetries are dynamically broken [188, 189,
190]. In addition, topological invariants are typically defined in the thermodynamic limit
(TL), while all experiments deal with finite systems. Hence, the conventional topological
characterization is meaningful only for time scales such that t≪ L/vf , where L measures
system size, and vf is a characteristic band velocity of the post quench Hamiltonian
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(b)

Fig. 7.1 (a) Illustration of a Rice-Mele lattice model on a ring [see Eq. (7.6)], subject to a quench
by a sudden variation of the intercell hopping amplitude γri → γrf . (b) Schematic representation
of the closed loops formed in the complex plane by the Bloch state overlap ξ− [see Eq. (7.1)] as a
function of quasi-momentum k. Non-trivial loops (right panel) may form in the STSL regime
at at critical values η∗

m [see Eq. (7.3)] of the ratio η = 2πt/L. Solid lines represent the 0-th
order contribution ξ

(0)
− (k, η) [see Eq. (7.2)], shallow halos visualize the sub-leading contribution

2πξ(1)
− (k, η)/L. When η < η∗

1 (left panel) the winding number ν vanishes, while for η∗
1 < η < η∗

2
(right panel) ν = 2. The dashed line depicts the unit circle as a guide to the eye.

[179]. At later times, since an extensively long unitary time evolution is no longer a local
transformation, standard topological properties are expected to become ill defined [179]
and previous works have thus mostly focused on the t≪ L/vf regime.

Here, investigating the space-time scaling limit (STSL) of quantum quench dynamics,
where both time and system size tend to infinity while their ratio η = 2πt/L is kept
constant, we show how a novel dynamical topological invariant ν naturally arises. To
understand its physical implications, we analyze the effect of a constant magnetic flux
Φ threading a one dimensional (1D) system with periodic boundary conditions (PBC).
Remarkably, while Φ, as a global property, remains invisible in the quench dynamics for
sub-extensive times, in the STSL the Berry phase [442, 443, 375] is found to dynamically
acquire a staircase behavior (see Fig. 7.2), whose plateau values are topologically quantized
as 2πνΦ/Φ0, where Φ0 = h/e is the flux quantum. Since the limits t→ +∞ and L→ +∞
do not commute, these properties are unique to the STSL regime and cannot be obtained by
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applying the long time limit to formulae derived in the standard TL. Yet, we demonstrate
that clear signatures of our predictions can be observed in finite systems of moderate size
that are within reach of present day quantum simulators.

This Chapter is organized as follows. In Sec.7.2 we present the model and describe
the definition of the Berry phase in the STSL of a quenched two-band model. In Sec.7.3
we introduce the dynamical winding number ν and discuss its interplay with a constant
magnetic flux. In Sec.7.4 we illustrate the previous results focusing on the Rice-Mele
model. In Sec.7.5 we discuss how the standard notion of Wannier functions, as well as the
standard relation between current and Berry phase, are modified in the STSL. Finally, in
Sec.7.6 we draw our conclusions and briefly outline possible experimental platforms for
observing the predicted phenomena.

7.2 Model

We consider a sudden quench in a system of non-interacting spinless fermions hopping
in a 1D bipartite lattice with PBC, and we assume the Hamiltonian to be traceless. We
measure lengths in units of the lattice spacing a, so that the length of the system L

coincides with the number of cells. Thanks to translation invariance we can write the
initial/final realizations in reciprocal space as Ĥi/f = ∑

k ĉ
†(k)[di/f(k) · σ]ĉ(k). Here

k ∈ 2πn/L is a dimensionless quasi-momentum, where n ∈ {−⌊L/2⌋, . . . , ⌊(L − 1)/2⌋},
while σ is the three dimensional vector of Pauli matrices and ĉ†(k) = (ĉ†

A(k), ĉ†
B(k)) is

a spinor of fermionic operators, which create spinless fermions with quasi-momentum
k in sublattice A/B. All the information about the specific Hamiltonian realizations
is thus encoded in the k-dependent three dimensional vectors di/f(k). In particular,
the initial/final spectra are given by ϵ

i/f
± (k) = ±|di/f(k)|. Moreover, the time evolved

many-body state can be easily reconstructed out of the single particle time dependent
Bloch spinors |u±(k, t)⟩ = e−i[df (k)·σ]t/ℏ|ui

±(k)⟩, where |ui
±(k)⟩ are the Bloch single particle

eigenstates of Ĥi.

We assume Ĥi to have a finite band gap, initialize the system in its half filled insulating
ground state, and follow the time evolution of the Berry phase in its discretized formulation,
appropriate for finite system sizes φB(t, L) = ∑

k arg ξ−(k, t, L) [444], where

ξ−(k, t, L) = ⟨u−(k + δk, t)|u−(k, t)⟩ (7.1)
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and δk = 2π/L. As in the standard continuous formulation, the discrete Berry phase
is gauge invariant under |u−(k, t)⟩ → |uλ

−(k, t)⟩ = eiλ(k)|u−(k, t)⟩ and takes quantized
values, equal to either 0 or π, when charge conjugation symmetry is present[3, 375]
(see App.F for details). Moreover, in the usual TL, i.e. L → +∞ while t ∈ R, it is
straightforward to recognize that ξ−(k, t, L) = 1 + iAB(k, t)δk+O(L−2), where AB(k, t) =
⟨u−(k, t)|i∂k|u−(k, t)⟩ is the time dependent Berry connection, and the standard result
φB(t) =

∫ π
−π dk AB(k, t) is recovered [375].

However, in the STSL, when t, L→ +∞ with fixed η = δk t = 2πt/L ∈ R, the function
ξ−(k, t, L) may develop a non-trivial dependence on k and η already to zeroth order in
the 1/L expansion. Indeed one can write ξ−(k, t, L) = ξ

(0)
− (k, η) + ξ

(1)
− (k, η, t)δk +O(L−2)

where (see App.F.3 for details)

ξ
(0)
− (k, η) = cos[vf (k)η]− i C(k) sin[vf (k)η] . (7.2)

Here C(k) = d̂i(k) · d̂f(k) is the cosine of the k-dependent angle between the initial and
final unit vectors, while vf(k) = ∂kϵ

f
+(k)/ℏ is the post quench band velocity. Then it is

straightforward to derive |ξ(0)
− (k, η)| =

√
1− {S(k) sin[vf (k)η]}2, where S2(k) = 1−C2(k),

and we notice that, if C(k) = 0 is satisfied by some k∗, Eq.(7.2) vanishes at equally spaced
critical ratios

η∗
m =

(
π

2 + (m− 1)π
) 1
vf (k∗) , m ∈ N+ . (7.3)

Before proceeding, some comments are in order. In the limit η → 0 one has ξ(0)
− (k, η)→

1 + O(L−1) and the standard TL result is recovered. Moreover, at finite η, Eq.(7.2) is
reminiscent of the k-dependent contribution to the Loschmidt amplitude, appearing in the
context of the dynamical quantum phase transitions (DQPT)[312, 389, 430], discussed
in the previous Chapter (see Sec.6.4). Similarly, the condition C(k∗) = 0 leading to a
vanishing ξ(0)

− in Eq.(7.2) is formally equivalent to the requirement for observing DQPT[389]
[see Eq.(6.31)]. However, we emphasize that, while the k dependent contribution to the
Loshmidt amplitude stems from the overlap between the initial and the time evolved Bloch
spinor at the same k, the quantity studied here, Eq.(7.1), is the overlap between Bloch
spinors that are both time evolved and that are computed at different quasi-momenta,
namely k and k + δk. It is precisely such a tiny deviation that yields to Eq.(7.2) at
t ∼ L/vf . Thus, while DQPT occur at finite times in a TL system, Eq.(7.2) vanishes at
extensive critical times t∗m = η∗

mL/2π, with η∗
m given by Eq.(7.3).
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7.3 Winding number in the STSL

We now start to investigate the topological features unique to the STSL regime, i.e. relying
on a finite value of η even for arbitrarily large systems. Far away from its critical values,
by treating η as a parameter, we can define α(0)(k; η) = arg ξ(0)

− (k, η). The function
k 7→ α(0)(k; η) from a circle to a circle naturally leads to the definition of a dynamical
winding number ν(η) ∈ Z through α(0)(k; η) = α̃(0)(k; η) + k ν(η), where α̃(0)(k; η) is
a R-valued smooth periodic function. Remarkably, by contrast to the conventional
equilibrium framework [3], this dynamical winding number does not require any symmetry
to be properly defined. We can then write the Berry phase in the STSL regime as
φB(η) = φ

(0)
B (η) + φ

(1)
B (η), where

φ
(0)
B (η) = L

2π

∫ π

−π
dk [α̃(0)(k; η) + k ν(η)] , (7.4)

while φ(1)
B (η) is analogous to the usual integral of the Berry connection (see App.F.3 for

details). Thus, let us focus on the consequences of the new contribution stemming from a
non-trivial ξ(0)

− . A priori, φ(0)
B (η) is of order L and, given that the Berry phase is defined

mod 2π, the zeroth order would produce a Berry phase that wildly fluctuates with time.
Nonetheless, if di(k) and df(k) have the same parity under k ↔ −k, then α(0)(k; η)
becomes an odd function of k and the integral in Eq.(7.4) vanishes identically. This
condition physically corresponds to a quench that does not generate any stationary current
, as discussed in the previous Chapter [see Eq.(6.27)]. However, if we now assume that a
finite and constant magnetic flux Φ is present throughout the entire quench dynamics, the
quasi-momenta get shifted according to k → k + ϕ, where ϕ = 2π

L
Φ
Φ0

. This shift does not
affect the integral of the odd periodic part α̃(0)(k; η), which remains vanishing. However,
although ϕ is infinitesimal for large L, the shift yields a finite contribution proportional to
ν(η), thanks to the factor L in Eq.(7.4). We thus end up with

φ
(0)
B (η; Φ) = 2πν(η)Φ/Φ0 +O(L−1) . (7.5)

We can therefore conclude that, in the STSL, the Berry phase develops a non-trivial
zeroth order contribution which induces a quantized response to an applied magnetic flux
and the quantization is encoded in the dynamical topological invariant ν(η). Note that,
since the winding number ν(η) can change only at the critical ratios η∗

m in Eq.(7.3), the
topological invariant is stable for extensive time windows ∆t = L/2vf(k∗). This means
that the system undergoes a new kind of dynamical topological phase transition, where



7.4 Implementation in the Rice-Mele model 140

a well defined topological invariant suddenly changes at the extensive critical times t∗m.
Moreover, since the quantized response does not depend on system size, it is remarkable
to notice that even a fraction of the elementary flux quantum may yield a detectable
signature in the coherent dynamics of a macroscopic quantum system.

7.4 Implementation in the Rice-Mele model

After the above general derivations, we now choose a specific setup to illustrate our results.
We consider a sudden quench of the hopping amplitudes in the Rice-Mele model[445],
which is defined by

d(k) = γ(1 + r cos k, r sin k, u) (7.6)

and depicted in Fig.7.1(a). Here γ is the reference energy scale, r is the ratio between
intercell and intracell hopping, and u is the ratio between the staggered potential on A and
B sublattice. We choose a quench such that C(k) vanishes for some k∗, namely we quench
from ri = 0.5 to rf = 2 while keeping u = −0.1 constant. It is then straightforward to
show that ν(η), which has to be zero for η = 0, increases by two at each critical ratio η∗

m.
Such increase by two units can be easily understood if one recognizes that the condition
C(k) = 0 is satisfied by two quasi-momenta {k∗

1, k
∗
2} which, because of symmetry, are

related by k∗
1 = −k∗

2 and are thus associated to the same critical ratios η∗
m. Concurrently,

the closed loop traced by ξ
(0)
− (k, η) in the complex plane as a function of k touches the

origin twice at the critical ratios and the winding increases by two. Far away from η∗
m

the winding of ξ(0)
− (k, η) is instead a robust topological invariant. Moreover, it coincides

with the winding of the whole overlap function Eq.(7.1), since the first order contribution
ξ

(1)
− (k, η)δk is suppressed by a factor L−1 and it cannot destroy the robustness of the

invariant. A comparison between the loops traced by ξ−(k, η) for η < η∗
1 and η∗

1 < η < η∗
2

is schematically depicted in Fig.7.1(b), where the solid lines denote the finite contribution
given by ξ(0)

− (k, η), while the shallow halos around them account for the L−1 contribution
carried by ξ(1)

− (k, η)δk.

We can now fully appreciate the interplay between a finite dynamical winding number
and a constant magnetic flux. In Fig.7.2, we plot the difference in Berry phases, with and
without flux, ∆φB(η) = φB(η; Φ ̸= 0)− φB(η; Φ = 0), for the above specified quench in a
finite Rice-Mele lattice. We compute the same quantity for different system sizes while
keeping the non-zero value of the magnetic flux always equal to Φ = 0.1Φ0. Increasing L
at constant η, hence going towards the STSL regime, a staircase profile becomes more and
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Fig. 7.2 The difference ∆φB between the Berry phase with and without flux is plotted as a
function of η = 2πt/L in the STSL regime, after quantum quenches in finite Rice-Mele lattices
with PBC [see Eq. (7.6)]. In all quenches, the energy scale γ is fixed to a constant value
throughout the entire protocol, together with the ratio of the staggered potential u = 0.1. The
ratio r of the staggered hopping amplitudes is instead quenched from ri = 0.5 to rf = 2 while
the magnetic flux, when present, is constant and equal to Φ/Φ0 = 0.1. System sizes are L = 40
(blue), L = 80 (red), and L = 400 (green). The plateaus at 0.4π (ν = 2), 0.8π (ν = 4), 1.2π
(ν = 6), and 1.6π (ν = 8) are clearly visible already for L = 40, they do not depend on system
size and abruptly change at critical ratios η∗

m. The fluctuations are instead system size dependent
and are suppressed with increasing L.
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more pronounced. The critical ratios at which the jumps occur are given by Eq.(7.3) while
the heights of the different plateaus are encoded in Eq.(7.5). The reason is straightforward:
The contribution to the Berry phase given by ∆φ(1)

B (η) amounts to bounded fluctuations
with zero average, which are produced by the slight mismatch between k and k + ϕ and
are suppressed in the STSL. The contribution carried by ∆φ(0)

B (η) instead corresponds to
rigid shifts of 4πΦ/Φ0 each time a critical ratio is reached, independent of system size. In
the proper STSL a sharp staircase profile is thus recovered.

7.5 Berry phase, Wannier functions and particle cur-
rent in the STSL

We would like to elaborate on the differences between the TL and the STSL in terms of the
Berry phase, the Wannier wavefunctions, and the particle current density. In the standard
TL (η → 0), the many-body insulating state can be built out of a Slater determinant
of exponentially localized Wannier functions[446]. Because a vector potential can be
always gauged away for such wavefunctions[447], a constant magnetic flux cannot lead to
observable signatures. At the same time, the time derivative of the Berry phase is linked,
even out of equilibrium, to the particle current density[188]. In contrast, in the STSL
regime, the localization length of the Wannier functions becomes comparable to system
size, with a twofold implication. On the one hand, the magnetic flux can no longer be
gauged away and can lead to observable signatures, such as the staircase profile depicted
in Fig.7.2. On the other hand, the jumps of the Berry phase at the critical ratios η∗

m are
not associated to a physical current. Instead one can show that (see App.F.4 for details)

d

dη
φ

(0)
B (η) = L

2π

∫ π

−π
dk ⟨ui

−(k)|J f
DC(k)|ui

−(k)⟩ (7.7)

+ L

2π

∫ π

−π
dkRe

χ
(0)
− (k, η)
ξ

(0)
− (k, η)

⟨ui
+(k)|J f

DC(k)|ui
−(k)⟩


where J f

dc(k) = vf(k) d̂f(k) · σ is the component of the particle current operator that
commutes with the post quench Hamiltonian and describes a DC current, while χ(0)

− (k, η) =
⟨u−(k+δk, t)|u+(k, t)⟩+O(L−1). In the interesting case in which the Berry phase develops
a staircase profile, the first integral, which is the expectation value of the DC current and
it is the only contribution appearing in the long time limit of a TL system, is vanishing due
to symmetry. The jumps are instead produced by the additional contribution in the second
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line of Eq.(7.7), which is absent in the standard TL. Such integral does not correspond to
the expectation value of a particle current and it rather involves the inter-band elements
of the DC current operator.

7.6 Conclusions

In summary, we have shown that intriguing topological features arise in the STSL regime
after a quantum quench, when both time and system size are sent to infinity while keeping
their ratio finite. In particular, we have rigorously defined a novel dynamical winding
number ν(η), which characterizes the many-body state of a 1D two-band model in the
STSL regime, see Fig.7.1(b). Notably, its definition does not rely on any specific symmetry,
at variance with the customary equilibrium setting. We have shown that the interplay
of a non trivial winding and a constant magnetic flux yields a staircase behavior in the
time dependent Berry phase, see Fig.7.2, where the different plateaus are quantized in
units of 2πν(η)Φ/Φ0 and the jumps between them occur at well defined critical times
given by Eq.(7.3). It is also worth mentioning that this phenomenon can be observed with
state of the art experimental techniques. The long coherence time of ultracold atoms in
optical lattices[94], which is also important for adiabatic state preparation [448, 449, 450,
451, 452], may also allow to approach the STSL regime experimentally in finite systems.
Moreover, given the possibility to generate artificial gauge fields[410] and reconstruct the
time dependent Berry phase through quantum state tomography techniques[431, 440, 190],
we expect experiments with ultracold atoms, similar to the one described in Ref.[190], to
enable observing the onset of a staircase profile as depicted in Fig.7.2. An alternative
implementation could be based on quantum walks in photonic platforms where the present
quench dynamics can be simulated and the time-dependent Berry phases can be measured
[453, 454]. These results provide a starting point for investigating further topological
properties unique to the STSL regime, including the study of higher dimensions with
richer geometry of Bloch bands, and probing the robustness of the dynamical winding
number ν to the breaking of translation invariance and its generalization in the presence
of many-body interactions.



Chapter 8

Conclusive remarks

In conclusion, in this Thesis we have investigated several topological and out of equilibrium
properties of one dimensional fermionic systems. We shall here summarize the main results
and outline some possible future research directions.

In Ch.2 we showed that Majorana-like spin density peaks may emerge in topologically
trivial nanowires at the interface between regions with different spin-orbit interactions.
Moreover, two different kinds of topologically trivial bound states may emerge in these
inhomogeneous platforms. On the one hand, this observation sets an additional obstacle
to the experimental detection of Majorana zero modes, ruling out a supposedly unique
fingerprint of these exotic quasi-particles. On the other hand it provides a possible handle
to experimentally study equilibrium spin currents and suggests new avenues to manipulate
charge and spin equilibrium densities by means of the interplay between gate potentials
and magnetic fields.

Along these same lines, we discussed in Ch.3 how a Dirac paradox configuration could
be realized in suitably gated nanowires. The paradoxical situation emerges when studying
an interface between two helical liquids with opposite helicity. A particle impinging from
one side of the interface can, apparently, neither be transmitted nor reflected. Interestingly,
given the experimental vectorial control on the spin-orbit interaction [231], one can envisage
to exploit a Dirac paradox configuration to realize a spin field-effect transistor [455]. Indeed,
while helical states cannot be reflected by scalar potentials of by a change in their velocity,
a sign reversal of the spin-orbit interaction in a inner portion of the nanowire, controlled
by the appropriate gate potential, could potentially suppress the transmission coefficient
of this ballistic channel. Further investigations, in view of spintronic applications [456],
could thus be carried on along this direction.
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As a last application of semiconducting nanowires, we proposed in Ch.4 a protocol to
experimentally detect a Generalized Gibbs ensemble (GGE) distribution. By suddenly
switching on a local attractive potential, the conducting electrons of a ballistic nanowire
are set out of equilibrium, however local observables quickly relax towards the values
predicted by a GGE distribution. Such out of equilibrium state, which entails a partially
empty bound state lying energetically below a continuum of fully occupied states, can be
detected through a characteristic negative peak in the absorption spectrum. Although
similar in spirit to pump-probe experiments, this proposal provides a concrete approach
to observe a GGE state in a fermionic system, a result still never accomplished. Moreover
it neither relies on challenging ultrafast optical experiments nor on highly sophisticated
matter wave interferometry with ultracold atoms.

In the subsequent Chapters we focused on the effects of a quench on (topological) lattice
models. In Ch.5 we discussed local and global quenches in the Su-Schrieffer-Heeger (SSH)
model. We proved that a global quench in a SSH chain does not lead to any detectable
signature in real space local observables, due to charge conjugation symmetry. Instead, a
local quench to/from a chirally symmetric SSH ring with complex hopping amplitudes, by
explicitly breaking time reversal and charge conjugation, reveals the difference between
a trivial and a topological chain in terms of site occupancy fluctuations. Furthermore,
the dynamical appearance of edge modes in real space is found to be stable when chiral
symmetry is explicitly broken too, e.g. by moving away from the half filling condition.
As a possible extension of the present work, one might want to analyze the local quench
produced by cutting a one dimensional boundary in a translationally invariant Haldane
model, i.e. going form a toroidal to a cylindrical geometry. If the model realizes the
quantum anomalous Hall phase, two counter propagating chiral currents might dynamically
build-up along the two opposite edges of the cylinder, simply as a consequence of the cut.

In Ch.6 we studied how a flux quench can induce a finite stationary current in an
insulating system, clarifying a key difference between linear and non-linear responses.
While linear response probes the equilibrium properties of a system and does not depend
on how fast the flux is switched off, rather only on the flux variation, non linear responses
strongly depend on the time scales of the process involved. Therefore, the qualitative
behaviour of a metallic system, that does not possess any intrinsic time scale, is always
well captured by the linear theory. On the contrary, the behaviour of an insulating system
strongly depends on the details of the flux variation. Furthermore, the multiple band
structure of an insulator induces a non trivial current dynamics even without interactions.
Additionally, a flux quench might generate a band population inversion that leads to
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dynamical quantum phase transitions. It is an open question, though, whether the finite
stationary current found for the SSH model survives in the presence of particle interactions.
On the one hand, a system with both dimerization and interactions is not integrable and
one expects it to thermalize. On the other hand, the existence of a single particle gap
might reduce the impact of umklapp processes and prevent a fast thermalization.

Finally, in Ch.7, we introduced the space-time scaling limit (STSL) for a quenched
system, namely the limit in which time and system size are sent to infinity at a constant
ratio. We argued that the STSL cannot be captured by taking the long time limit in a
thermodynamic system and we showed that a dynamical topological invariant naturally
arises in this out of equilibrium setting, without the need for any symmetry. Interestingly,
the time dependent Berry phase is deeply connected to the dynamical topological invariant
and realizes, in the STSL, a dynamical analog of the integer quantum Hall conductance.
While the latter develops a staircase behaviour as a function of the chemical potential,
the former, in the presence of a constant magnetic flux, develops a similar behaviour as a
function of time. Further investigations of the STSL might involve higher dimensional
models, as well as the robustness of the topological invariant to disorder or interactions.
Moreover, given their tight connections to the Berry phase, other quantities, such as
Wannier wavefunctions and the quantum geometry tensor, deserve a deeper understanding.
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Appendix A

A.1 Calculation for sharp profile interface

In this Appendix we provide details about the calculation for a sharp profile interface
(2.14), in the case where the applied magnetic field is orthogonal to the spin-orbit field
(hz = 0). In such situation the eigenvalue equation stemming from the Hamiltonian (2.2)
at energy E reads

− ℏ2

2m∗∂
2
x + iα(x)∂x + iαR−αL

2 δ(x)− hz −hx

−hx − ℏ2

2m∗∂
2
x − iα(x)∂x − iαR−αL

2 δ(x) + hz

ψ(E)
↑ (x)

ψ
(E)
↓ (x)

 =

= E

ψ(E)
↑ (x)

ψ
(E)
↓ (x)

 (A.1)

equipped with the boundary conditions at the interface

ψ↑(0−) = ψ↑(0+)
ψ↓(0−) = ψ↓(0+)
∂xψ↑(0−) = ∂xψ↑(0+)− im∗

ℏ2 (αR − αL)ψ↑(0)
∂xψ↓(0−) = ∂xψ↓(0+) + im∗

ℏ2 (αR − αL)ψ↓(0)

(A.2)

A few remarks about the boundary conditions (A.2) are in order. First, the discontinuity in
the derivative of the wavefunction involves an imaginary unit too, making such boundary
conditions intrinsically different from the ones of the well known problem of a particle in a
scalar δ-potential. Second, as a consequence of such imaginary unit, it can straightfor-
wardly be shown that, despite the derivative ∂xψs is discontinuous (s =↑, ↓), the derivative
∂xρs of the quantity ρs(x) ≡ ψ∗

s(x)ψs(x) is continuous at the interface x = 0. For this
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reason, both the density ρ(x) = ρ↑ + ρ↓ [see Eq.(2.19)] and the spin density component
sz = ρ↑ − ρ↓ [see Eq.(2.20)] do not exhibit any cusp in their spatial profile. In contrast,
off-diagonal spin density components sx and sy, which cannot be expressed in terms of the
ρs’s, do exhibit a cusp due to the discontinuity of the derivative implied by the boundary
conditions (A.2). This difference becomes apparent by comparing e.g. panels (b) and (d)
in Fig.2.4.

Let us now proceed with the calculation of the energy spectrum. As observed above,
we have assumed αR > 0 and |αL| ≤ |αR| without loss of generality. As a consequence
ESO,R is the higher spin-orbit energy, ESO,R ≥ ESO,L [see Eq.(2.11)]. By denoting the
ratio between the two RSOC values

r ≡ αL

αR

∈ [−1 , 1 ] (A.3)

one has ESO,L = r2ESO,R. One can introduce the momentum space Hamiltonian Hν
k =

ε0
k − ανkσz − hxσx − hzσz describing the homogeneous bulk of each side ν = R/L of the

interface, and match the related eigenfunctions with the boundary conditions (A.2).

The energy spectrum characterizing the NW on the right-hand side and on the left-hand
side of the interface can be suitably rewritten as

ER
±(K) = K2

4ESO,R

±
√

∆2
Z + (K + hz)2 (A.4)

EL
±(K) = (rK)2

4ESO,L

±
√

∆2
Z + (rK + hz)2 (A.5)

respectively, where K = αRk has the dimension of an energy, while ∆Z is the magnetic
gap energy Eq.(2.4).
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The eigenstates of the momentum Hamiltonian in each side can be written, for arbitrary
complex wavevector K, in the following explicit form

for x > 0



w−(K) = 1√
∆2

Z+|z(K)|2

 z(K)
∆Z



w+(K) = 1√
∆2

Z+|z(K)|2

 −∆Z

z(K)


(A.6)

for x < 0



w−(rK) = 1√
∆2

Z+|z(rK)|2

 z(rK)
∆Z



w+(rK) = 1√
∆2

Z+|z(rK)|2

 −∆Z

z(rK)


(A.7)

where z(K) =
√

∆2
Z + (K + hz)2 + (K + hz).

In order to determine the energy Ebs of the bound state, the crucial point is to correctly
re-express Eqs.(A.6)-(A.7) as a function of the energy E, and then to impose the boundary
conditions (A.2). To this purpose, the first step is to invert the dispersion relation in each
side ν = R/L. This can be done analytically in two specific cases, namely for hz = 0 or for
hx = 0. Here below we shall discuss these two situations, while the general case hx, hz ≠ 0
will be approached numerically as described in App.A.2.

A.1.1 The case hz = 0

In this case the dispersion relation can be inverted yielding four possible K-values

Kν
ϵ,ϵ′(E) = ϵ

√
4ESO,R

[
E + 2ESO,ν + ϵ′

√
∆2

Z + 4E2
SO,ν + 4ESO,νE

]
(A.8)

where ϵ, ϵ′ = ±1. Note that K ∈ C, and we have adopted the convention
√
z =

√
|z|ei ϕ

2

for the square root of a complex number z = |z|eiϕ with ϕ ∈ (−π , π ].

One then inserts the four possible values (A.8) of Kν
ϵ,ϵ′ into the two eigenvectors

Eqs.(A.6)-(A.7). In doing that, some caution must be taken, since for a given energy E and
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each side of the interface a seeming redundancy of eigenstates appears. However, only half
of the possible eigenstates actually fulfill the equation Hk [K(E)]w[K(E)] = E w[K(E)],
as it should be. Their explicit expressions depend on the regime of the involved energy
scales E, ∆Z and ESO,ν , Focusing e.g. on the right hand side of the interface, one can
identify three regimes where, for a given energy E lower than the overall minimum of the
bulk bands, the corresponding 4 correct eigenspinors are given in Table Eq.(A.9).

Regime 2 differs from regime 3 because in the former wave vectors turn out to be
strictly imaginary, while in the latter they exhibit a real part as well. The expression for
the eigenspinors on the left hand side, together with their corresponding domain, can be
directly obtained from the ones in Table (A.9) by simply replacing ESO,R → ESO,L and
KR

±±(E)→ r KL
±±(E).

regime eigenvectors

1) ∆Z > 4ESO,R and −
∆2

Z + 4E2
SO,R

4ESO,R

< E < −∆Z

w−
[
KR

ϵ,+(E)
]

w+
[
KR

ϵ,+(E)
] ϵ = ±1

2) ∆Z > 2ESO,R and −
∆2

Z + 4E2
SO,R

4ESO,R

< E < min
[
− ∆2

Z

4ESO,R

,−∆Z

]
w−
[
KR

ϵ,ϵ′(E)
]

ϵ, ϵ′ = ±1

3) ∆Z < 4ESO,R and E < −
∆2

Z + 4E2
SO,R

4ESO,R

w−
[
KR

ϵ,ϵ′(E)
]

ϵ, ϵ′ = ±1

(A.9)

Once the four eigenspinors w and momenta K are identified, the wavefunction ψ is
constructed as a linear superposition of each spinor w multiplied by the related phase
factor eiKx/αR . In doing that, the requirement that ψ does not diverge at x→ ±∞ reduces
the four terms to two in each side. Let thus wν

j (E) and Kν
j (E) with j = 1, 2 denote

such two eigenspinors and momenta related to non-divergent wavefunctions in the region
ν = R/L at energy E in a given regime. Then, the eigenfunction ψ(E)(x) can be written
as a linear superposition

ψ(E)(x) =


∑2

j=1 ljw
R
j (E) ei

KR
j

(E)
αR

x
x > 0∑2

j=1 rjw
L
j (E) ei

KL
j

(E)
αR

x
x < 0

. (A.10)

Thus, the boundary condition Eq.(A.2) leads to a system of 4 linear equations in 4 un-
knowns l1, l2 r1 and r2. Imposing the solvability of the system one obtains an equation for
the energy E whose solutions, if they exist, correspond to the energy Eb of the bound state
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for given values of ∆Z , ESO,R and r. The binding energy (2.13) is then straightforwardly
obtained.

A.1.2 The case hx = 0

In this case the eigenvalue problem (A.1) decouples into two separate problems for the
spin-↑ and spin-↓ components of the wave function, and the magnetic gap energy ∆Z = |hx|
vanishes. Accordingly, the eigenvectors (A.6) acquire the simple form

w−(K)|∆Z=0 =
 1

0

 , w+(K)|∆Z=0 =
 0

1

 (A.11)

both for x > 0 and x < 0, while the eigenvalues have a quadratic dependence on K,

ER
↑ (K) = K2

4ESO,R
− (K + hz) x > 0

EL
↑ (K) = (rK)2

4ESO,L
− (rK + hz) x < 0

ER
↓ (K) = K2

4ESO,R
+ (K + hz) x > 0

EL
↓ (K) = (rK)2

4ESO,L
+ (rK + hz) x < 0 .

(A.12)

Without loss of generality, we can focus on the spin-↑ component of the wave function.
The dispersion relation can be easily invertedK

R
±(E) = 2ESO,R ±

√
(2ESO,R)2 + 4ESO,R(hz + E)

KL
±(E) = 2rESO,R ±

√
(2rESO,R)2 + 4ESO,R(hz + E)

(A.13)

In order for Kν
±(E) to exhibit an imaginary part, one has to consider energies in the range

E < −hz − ESO,ν and the most general eigenfunction of energy E can thus be written as

ψ(E)(x) =


a e

i
KR

+ (E)
αR

x + b e
i

KR
−(E)
αR

x
x > 0

c e
i

KL
+(E)
αR

x + d e
i

KL
−(E)
αR

x
x < 0

(A.14)
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where a, b, c, d are complex coefficients to be determined. The regularity at x→ ±∞ and
the continuity in x = 0 reduce the wavefunction to the form

ψ(E)(x) =


a e

iKR
+ (E)x

αR x > 0

a e
iKL

−(E)x

αR x < 0
(A.15)

while the matching condition (A.2) on the first derivative in x = 0 implies

KL
−(E) = KR

+(E)− 2ESO,R(1− r) (A.16)

whose only possible solution is: r
2 = 1
E = −hz − ESO,R

(A.17)

However, this corresponds to the lowest energy eigenfunction of the continuum, demon-
strating that no bound state exists in such case.

A.2 Diagonalization strategy in the presence of a
smoothening length

Here we describe how to numerically approach the problem in the presence of the RSOC
profile (2.16) characterized by a finite smoothening length λs, and when both perpendicular
and parallel magnetic field components hx, hz ≠ 0 are present. To this end, we impose
periodic boundary conditions onto the NW, and express the electron spinor field in terms
of discretized Fourier components k = 2πn/Ω, namely

Ψ̂(x) =
∑

k

eikx

√
Ω

 ĉk↑

ĉk↓

 , (A.18)

where Ω is the (large) NW periodicity length and ĉk,s denotes the Fourier mode operators
for spin s =↑, ↓. The Hamiltonian (2.1) is thus rewritten in terms of the discretized k-basis
introduced in Eq. (A.18) as

Ĥ =
∑

k1,k2

∑
s1,s2=↑,↓

ĉ†
k1,s1Hk1,s1;k2s2 ĉk2,s2 , (A.19)
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where
Hk1,s1;k2s2 =

[(
ε0

k1σ0 − h · σ
)
δk1,k2 − αk1−k2

k1 + k2

2 σz

]
s1,s2

, (A.20)

where αq is the (discretized) Fourier transform of the RSOC profile α(x). Specifically,
taking for αq the following expression

αq =


αL+αR

2 for q = 0

e− q2λ2
s

32
αL

(
e

iqΩ
2 −1

)
−αR

(
e− iqΩ

2 −1
)

iqΩ otherwise
. (A.21)

one obtains the (periodic version) of the prototypical profile Eq.(2.16) as Fourier series
α(x) = ∑

q αqe
iqx.

Then, we have performed an exact numerical diagonalization of the Hamiltonian matrix
Eq.(A.20), thereby obtaining diagonalizing operators d̂ξ defined through ĉa = ∑

ξ Ua,ξ d̂ξ,
where a = (k, s) is a compact quantum number notation for the original basis, and U is
the matrix of the eigenvectors of Eq.(A.20). Denoting by Eξ the eigenvalues, the NW
Hamiltonian can be rewritten as

Ĥ =
∑

ξ

Eξ d̂
†
ξd̂ξ (A.22)

Finally, to compute the equilibrium expectation values ⟨. . .⟩◦ of the operators (2.17), (2.18),
one can re-express the electron field operator Ψs(x) with spin component s =↑, ↓ in terms
of the diagonalizing operators d̂ξ’s,

Ψ̂s(x) = 1√
Ω
∑
k,ξ

eikxUks,ξ d̂ξ (A.23)

and to exploit ⟨d̂†
ξd̂ξ′⟩◦ = δξξ′f ◦(Eξ), with f ◦(E) = {1 + exp [(E − µ)/kBT ]}−1 denoting

the Fermi distribution function. For instance, the density Eq.(2.19) is obtained as ρ(x) =∑
ξ ρξ(x), where

ρξ(x) = 1
Ω
∑

s=↑,↓

∑
k1,k2

e−i(k1−k2)x U∗
k1s,ξUk2s,ξ f

◦(Eξ) (A.24)

is the contribution arising from the ξ-th eigenstate. In this way, the contribution of each
eigenstate (in particular the bound state) can be singled out.
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A.3 Calculation of the spin continuity equation

In this Appendix we derive the equation of motion for the spin density operator Ŝ(x) =
Ψ̂†(x)

[
ℏ
2σ
]
Ψ̂(x). Starting from the Heisenberg equation of motion for the electron field

operator Ψ̂(x, t)

∂tΨ̂ = 1
iℏ

[
− ℏ2

2m∗∂
2
xΨ̂− σz

2ℏ{α(x), px}Ψ̂− h · σ Ψ̂
]

, (A.25)

together with the one of its adjoint Ψ̂†(x, t), the time evolution of the spin density operator
reads

∂tŜ = ℏ
2

{
− iℏ

2m∗

[(
∂2

xΨ̂†
)

σ Ψ̂− Ψ̂† σ
(
∂2

xΨ̂
)]

+ i

2ℏ2 Ψ̂† σ σz

[
{α(x), px}Ψ̂

]
+ i

2ℏ2

[
{α(x), px}Ψ̂

]†
σz σ Ψ̂ + i

ℏ
Ψ̂† [σ,h · σ] Ψ̂

}
. (A.26)

Exploiting the relations σσz = ({σ, σz}+ [σ, σz])/2 and σzσ = ({σ, σz} − [σ, σz])/2 we
can write

∂tŜ = ℏ
2

{
iℏ

2m∗∂x

[
Ψ̂† σ

(
∂xΨ̂

)
−
(
∂xΨ̂†

)
σ Ψ̂

]
+ i

ℏ
Ψ̂† [σ,h · σ] Ψ̂

+ i

2ℏ2 Ψ̂†{σ, σz}
2

[
{α(x), px}Ψ̂

]
+ H.c.

+ i

2ℏ2 Ψ̂† [σ, σz]
2

[
{α(x), px}Ψ̂

]
+ H.c.

}
. (A.27)

Then it is straightforward to prove that

i

2ℏ2 Ψ̂†{σ, σz}
2

[
{α(x), px}Ψ̂

]
+ H.c. = ∂x

[
α(x)
ℏ

Ψ̂†{σ, σz}
2 Ψ̂

]
(A.28)

while

i

2ℏ2 Ψ̂† [σ, σz]
2

[
{α(x), px}Ψ̂

]
+ H.c. = i

ℏ
Ψ̂† [σ,σ · hSO]

2 Ψ̂ + H.c. (A.29)

where hSO = {α(x), px}/2ℏ(0, 0, 1) is the spin-orbit field operator (see Eq.(2.23)). Thus,
by recalling the definition of the spin current operator Eq.(2.25) and the one of the
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magnetic and spin-orbit torques Eqs.(2.21)-(2.22), the spin continuity equation Eq.(2.24)
is recovered.



Appendix B

B.1 Derivation of the transfer matrix Eq.(3.28)

In this Appendix we provide details about the derivation of the transfer matrix (3.28),
i.e. the most general 4× 4 matrix fulfilling the requirements (3.26) and (3.27). We first
observe that the former requirement (3.26) straightforwardly stems from Eq.(3.21) and the
property (U †

R)−1 = (U−1
R )†, which imply that U−1

R fulfills Eq.(3.21) as well. When taking
into account Eq.(3.20) and the definition (3.25), the condition Eq.(3.26) follows. Second,
we observe that the requirement (3.27) can equivalently be formulated by requiring that
M must only involve the combinations σ↑ = (σ0 + σz)/2 and σ↓ = (σ0 − σz)/2, i.e. M must
have the form

M = M↑σ↑ + M↓σ↓ , (B.1)

where M↑,↓ are 2×2 matrices acting on the massless-massive pseudospin space and fulfilling

M†
στzMσ = −τz σ =↑, ↓ (B.2)

as a consequence of Eq.(3.26) and of the properties σ2
↑,↓ = σ↑,↓ and σ↑σ↓ = [σ↑, σz] =

[σ↓, σz] = 0. For each spin sector σ =↑, ↓, the requirement Eq.(B.2) imposed on a generic
2× 2 complex matrix

Mσ =
aσ bσ

cσ dσ

 (B.3)

implies that |cσ|2 − |aσ|2 = 1, |bσ|2 − |dσ|2 = 1 and a∗
σbσ = c∗

σdσ. These conditions
straightforwardly imply the following expression

Mσ = eiνσ

 iβσe
−iγσ (1− iβσ) eiχσ

(1 + iβσ) e−iχσ −iβσe
iγσ

 , (B.4)
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which also fulfills the properties M−1
σ (βσ, χσ, νσ, γσ) = Mσ(βσ, χσ,−νσ,−γσ) and det(Mσ) =

− exp[2iνσ]. Inserting the two independent matrices M↑ and M↓ given in Eq.(B.4) into
Eq.(B.1), the transfer matrix M in the τ ⊗ σ basis takes the form given in Eq.(3.28).

Finally, an explicit expression can be given for UL and UR as well. The requirement
(3.20) can always be fulfilled by choosing for UL the form

UL = τ0σ0 . (B.5)

Then, the expression for UR = M−1 following from Eq.(3.25) can straightforwardly be
obtained from Eq.(3.28) by exploiting the property M−1(β,χ,ν,γ) = M(β,χ,−ν,−γ),
where each bold symbols denotes the pair of related parameters, e.g. β = (β↑, β↓).

B.2 Details about the NW Hamiltonian and its low
energy limit

The Hamiltonian for a NW with RSOC was already described in Sec.2.2. However, for
the sake of completeness, we provide here some details that are relevant to Sec.3.4.1.
Denoting by Ω the total NW length and re-expressing the field in terms of its Fourier
modes Ĉk = (ĉk↑, ĉk↓)T

 Φ̂↑(x)
Φ̂↓(x)

 = 1√
Ω
∑

k

eikx

 ĉk↑

ĉk↓

 , (B.6)

the NW Hamiltonian ĤNW is compactly rewritten in terms of a 2× 2 matrix HNW (k), i.e.
ĤNW = ∑

k Ĉ
†
kHNW (k)Ĉk. In turn, this also highlights the energy scales involved in the

problem. In particular, the first two terms acquire the form

Ĥkin + ĤR =
∑

k

Ĉ†
k

(
ℏ2

2m∗ (kσ0 − sαkSOσz)2 − ESOσ0

)
Ĉk (B.7)

and describe two parabolic spin bands that are lowered by the spin-orbit energy [see
Eq.(2.6)] and horizontally shifted by the spin-orbit wavevector Eq.(3.37) with the sign
Eq.(3.39) of the RSOC determining whether the shift is positive or negative in k-axis.
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Assuming hx > 0 for definiteness, the Zeeman term is rewritten as

HZ = −EZ

∑
k

Ĉ†
kσxĈk , (B.8)

where EZ is the Zeeman energy (see eq. 2.4). Summing up Eqs.(B.7) and (B.8) the
diagonalization of the resulting HNW (k) is straightforward. Denoting ε0

k = ℏ2k2/2m∗, the
spectrum consists of two energy bands [see Eq.(2.3)]

E±(k) = ε0
k ±

√
E2

Z + α2k2 , (B.9)

separated at k = 0 by a gap 2EZ centered around the midgap energy E = 0. The
eigenfunctions related to the spectrum (B.9) are ψk,±(x) = wk,± exp[ikx]/

√
Ω. They

describe plane waves with spinors [see Eq.(2.9)]

wk,− =


cos θk

2

sin θk

2

 wk,+ =


− sin θk

2

cos θk

2

 , (B.10)

whose spin orientation n(k) ≡ (sin θk , 0 , cos θk) lies on the xz-plane and depends on the
wavevector k, forming with the z-axis an angle θk ∈ [0, π] defined through

cos θk = αk√
E2

Z + α2k2

sin θk = EZ√
E2

Z + α2k2

. (B.11)

Furthermore, for energies |E| < EZ , the model also exhibits evanescent wave solutions
ψ̃κ,±(x) = w̃κ,± exp[κx]/

√
Ω. They describe plane waves with spinors

w̃κ,± = 1√
2


∓ exp

[
±iarctan

(
ακ/

√
E2

Z − (ακ)2
)]

1

 (B.12)

with energy E± = −ε0
κ ±

√
E2

Z − (ακ)2. While these solutions are not normalizable in
a homogeneous NW, they must be taken into account in the inhomogeneous RSOC problem.
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Let us now focus on the regime (|E| ≪ EZ ≪ 2ESO) and derive an effective low energy
NW Hamiltonian.

Expansion near k = ±2kSO. In the deep Rashba-dominated regime (EZ ≪ 2ESO), one
finds that, up to O

(
(EZ/2ESO)2

)
,

E−(k) ≈ 0 ⇔ k ≈ ±2kSO

cos θk=±2kSO
≈ ±sα

, (B.13)

so that the spinors (B.10) of the lower band propagating modes near k ∼ ±2kSO reduce to
eigenstates of σz, (1, 0)T or (0, 1)T , depending on the sign sα of the RSOC [see Eq.(3.39)].
To extract the low energy Hamiltonian governing their dynamics, let us consider, for
instance, α > 0 like in Fig.3.4, and focus e.g. on the vicinity of the right Fermi point
+2kSO. Setting k = 2kSO + q and performing an expansion of Eqs.(B.7) and (B.8) for
|q| ≪ kSO, one obtains

ĤNW

∣∣∣
k≃+2kSO

≃
∑

|q|≪kSO

Ĉ†
2kSO+q

 ℏvSOq −EZ

−EZ 8ESO

 Ĉ2kSO+q

≃
∑

|q|≪kSO

ℏvSOq ĉ
†
2kSO+q,↑ĉ2kSO+q,↑ , (B.14)

where vSO = ℏkSO/m
∗. The last line of Eq.(B.14) follows from the fact that, while the

spin-↑ band is characterized by a low-energy ℏvF q, the spin-↓ band has a large energy
8ESO much above the magnetic gap. The weak Zeeman energy EZ ≪ 2ESO cannot couple
them, so that in the low energy sector |E| ≪ EZ only the spin-↑ states matter. One can
proceed in a similar manner near the −2kSO Fermi point, obtaining that only the spin-↓
states matter, proving that the states are helical. Repeating the same calculation for α < 0
one obtains the opposite helicity. From Eq.(B.14) the massless propagating low energy
excitations (|q| ≪ kSO) are thus described by the set of operators


ξ̂q↑

.= ĉ2sαkSO+q,↑

ξ̂q↓
.= ĉ−2sαkSO+q,↓

(B.15)

where sα is given by Eq.(3.39).
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Expansion near k = 0. In the low energy range |E| ≪ EZ there are also gapped (i.e.
massive) modes, related to the upper and lower bands for k ∼ 0 (see Fig.3.4). Performing
an expansion of Eqs.(B.7) and (B.8) in q = k (with |q| ≪ kSO) and introducing the new
set of operators 

η̂q↑ = ĉq↑

η̂q↓ = ĉq↓

, (B.16)

one obtains the low energy expression

ĤNW

∣∣∣
k≃0
≃ −

∑
|q|≪kSO

ℏsαvSO q (η̂†
q↑ η̂

†
q↓)σz

 η̂q↑

η̂q↓


−EZ

∑
|q|≪kSO

(η̂†
q↑ η̂

†
q↓)σx

 η̂q↑

η̂q↓

 . (B.17)

Summing up Eqs.(B.14) and (B.17) one obtains a low-energy NW Hamiltonian. Moreover,
one can observe that such model shares the same low-energy physics as the Dirac model
given in Eq.(3.40), obtained by removing the constraints on wave vector q, which can
therefore be regarded to as the effective low energy model for the NW.

B.3 Lattice model

In this Appendix we show that the existence of one single effective massless Dirac mode,
i.e. a Weyl mode, inside the magnetic gap of the NW is not an artifact of the continuum
model in Eq.(3.36). To this purpose, we consider the following lattice model

Ĥ = −t
∑

j

(
Ĉ†

j+1Ĉj + ia Ĉ†
j+1σzĈj + b Ĉ†

jσxĈj − Ĉ†
j Ĉj

)
+ H.c. (B.18)

where Ĉ†
j = (c†

j↑, c
†
j↓) and c†

j↑,↓ creates a fermion in the site j with spin ↑ or ↓, respectively.
Here t is the nearest-neighbor hopping amplitude, while a and b are dimensionless parame-
ters related to the strength of the spin-orbit coupling (time reversal preserving) and the
external magnetic field (time reversal breaking), respectively. Passing to momentum space
operators through Ĉj = N−1/2∑

k∈BZ e
ikja0Ĉk, where N denotes the number of lattice



B.3 Lattice model 162

-� - �
�

� �
�

�

�

�

�

<latexit sha1_base64="k6E8EpSkmJvVeRyER1GzDE3C95Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5Y0L7br9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27ql8+XNYat0UcZTiBUzgHD66hAffQBB8YcHiGV3hzpPPivDsfi9aSU8wcwx84nz8IqY4w</latexit>

ka0

<latexit sha1_base64="04VXwAEMxlFd47ZZsK+0BvlCkG4=">AAAB63icbVBNSwMxEM3Wr1q/qh69BIvgqe6Woh6LInisYD+gXUo2zbahSXZJZoWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzglhwA6777RTW1jc2t4rbpZ3dvf2D8uFR20SJpqxFIxHpbkAME1yxFnAQrBtrRmQgWCeY3GZ+54lpwyP1CNOY+ZKMFA85JZBJdxc1GJQrbtWdA68SLycVlKM5KH/1hxFNJFNABTGm57kx+CnRwKlgs1I/MSwmdEJGrGepIpIZP53fOsNnVhniMNK2FOC5+nsiJdKYqQxspyQwNsteJv7n9RIIr/2UqzgBpuhiUZgIDBHOHsdDrhkFMbWEUM3trZiOiSYUbDwlG4K3/PIqadeq3mW1/lCvNG7yOIroBJ2ic+ShK9RA96iJWoiiMXpGr+jNkc6L8+58LFoLTj5zjP7A+fwBTt6NxQ==</latexit> E
/2

t

Fig. B.1 Comparison between the spectra of the lattice model Eq.(B.19) (solid curves) and of
the continuum model Eq. (3.36)(dashed curves). The latter captures the main features of the
former in the low energy sector (green box). In particular only two helical states (red and blue
thick lines) are present in the magnetic gap around E = 0.

sites, a0 the lattice spacing and ka0 ∈ [−π, π] the lattice momentum, one gets

Ĥ = 2t
∑

k

Ĉ†
k

{
[1− cos(ka0)]σ0 − a sin(ka0)σz − b σx

}
Ĉk . (B.19)

It is straightforward to see that Eq.(B.19) can be considered as the lattice regularized
version of the continuum model in Eq.(3.36). Indeed in the limit ka0 ≪ 1, the former model
reduces to the latter upon identifying t = ℏ2/2m∗a2

0, a = m∗a0α/ℏ2 and b = hxm
∗a2

0/ℏ2.
The energy spectrum of the lattice model (B.19) is easily obtained

E±(k) = 2t
[
1− cos(k)±

√
a2 sin2(k) + b2

]
, (B.20)

and is plotted in Fig.B.1 (solid lines), whereas the dashed lines display the spectrum of
the continuum model (3.36) for comparison. As one can see, the low energy sector of the
lattice model (green box) is perfectly captured by the continuum theory. In particular,
the bands of the full lattice model cross the E = 0 line in two and only two points, namely
the ones already found within the continuum model, since a gap is present at k = 0. Thus,
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inside the magnetic gap, one finds only two massless helical states (red and blue thick
lines), i.e. one single 1D Weyl mode. Notably, this is consistent with the Nielsen-Ninomiya
theorem[457], which implies, in the one dimensional case, that the number of left movers
equals the number of right movers at any energy. In pass we note that, at much higher
energy (irrelevant to our purposes), a similar situation occurs: The gap opening up at
ka0 = ±π leaves only two massless helical modes at E = 4t, giving rise to one single Dirac
cone as low energy excitations around that energy. Only when time-reversal symmetry is
present, i.e. for b = 0 in Eq.(B.19), the two bands touch at k = 0 and k = ±π, where an
additional Weyl mode appears.

B.4 The scattering problem for the inhomogeneous
NW with the profile (3.46)

The solution of the scattering problem for the model (3.44) with the piecewise constant
profile (3.46) can be obtained from the expression of the electron field operator in the
three regions. For an energy E within the magnetic gap (|E| < EZ) one has

Φ̂E(x) =



âLEwkE ,−e
ikEx + b̂LEw−kE ,−e

−ikEx + ĉLEw̃κE ,sE
eκEx x < −L/2

ĥE√
2

 1
1

 eik2,Ex + ĝE√
2

 1
1

 e−ik2,Ex + d̂E√
2

 1
−1

 eκ2,Ex + f̂E√
2

 1
−1

 e−κ2,Ex |x| < L/2

âREw−kE ,−e
−ikEx + b̂REwkE ,−e

ikEx + ĉREw̃−κE ,sE
e−κEx x > +L/2

(B.21)
where

kE =
√

2m∗

ℏ

√
E + 2ESO +

√
4EESO + 4E2

SO + E2
Z (B.22)

κE =
√

2m∗

ℏ

√
−E − 2ESO +

√
4EESO + 4E2

SO + E2
Z (B.23)

sE = sgn(E + E2
Z/4ESO) (B.24)

k2,E = kZ

√
1 + E/EZ κ2,E = kZ

√
1− E/EZ , (B.25)

while the spinors w±kE ,− and w̃±κE ,sE
are given in Eqs.(B.10) and (B.12), respectively.
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Imposing the boundary conditions (3.45) to the field (B.21), one expresses the outgoing
operators b̂L/R E in terms of the operators âLE and âRE describing the modes incoming
from the left and from the right region, respectively. The transmission amplitudes tE and
t′E are then obtained through the relations b̂RE = tE âLE and b̂LE = t′E âRE. The resulting
transmission coefficient TE = |tE|2 = |t′E|2 is numerically exact and is plotted in the solid
curves of Fig.3.7 as a function of the spin orbit energy, at the midgap energy E = 0 and
for different values of the external magnetic field EZ .

However, as observed in Sec.3.4, an analytical expression for the transmission coefficient
can be obtained in the low energy limit (dashed curve in Fig.3.7), where the inhomogeneous
NW physics is well captured by the effective massless+massive Dirac theory. Such an
expression directly follows from the transfer matrix (3.50) connecting the massless and
massive fields of the outer Rashba-dominated regions, which can be obtained as follows.
Inserting Eq.(3.49) into the low energy boundary conditions Eqs.(3.47)-(3.48), the latter
can be re-expressed in a matrix form as

P


ξ̂↑(−L/2)
ξ̂↓(−L/2)
η̂↑(−L/2)
η↓(−L/2)

 = V(−L/2)


ĥ

ĝ

d̂

f̂

 (B.26)

V(L/2)


ĥ

ĝ

d̂

f̂

 = Q


ξ̂↑(L/2)
ξ̂↓(L/2)
η̂↑(L/2)
η̂↓(L/2)

 , (B.27)

where the energy dependence of the operators has been dropped to make the notation
lighter. Here

P =


e−ikSOL 0 1 0

0 eikSOL 0 1
kSOe

−ikSOL 0 −kSO 0
0 −kSOe

ikSOL 0 kSO

 , (B.28)

Q =


e−ikSOL 0 1 0

0 eikSOL 0 1
−kSOe

−ikSOL 0 kSO 0
0 kSOe

ikSOL 0 −kSO

 (B.29)
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and

V(x) = 1√
2


eik2,Ex e−ik2,Ex eκ2,Ex e−κ2,Ex

eik2,Ex e−ik2,Ex −eκ2,Ex −e−κ2,Ex

ik2,Ee
ik2,Ex −ik2,Ee

−ik2,Ex κ2,Ee
κ2,Ex −κ2,Ee

−κ2,Ex

ik2,Ee
ik2,Ex −ik2,Ee

−ik2,Ex −κ2,Ee
κ2,Ex κ2,Ee

−κ2,Ex

 (B.30)

The transfer matrix ME appearing in Eq.(3.50) can thus straightforwardly be obtained
as ME = Q−1V(L/2)V−1(−L/2)P. In particular, setting the energy to the midgap value
E = 0 and expanding in the parameter kZL one obtains Eq.(3.51), up to O((kZL)4) terms.



Appendix C

C.1 Continuum Spectrum Eigenfunctions of the Post-
Quench Hamiltonian

As is well known, since the post-quench Hamiltonian

Ĥpost =
∫
dxΨ̂†(x)

(
−ℏ2/2m∂2

x − V0 θ(a/2− |x|)
)

Ψ̂(x) (C.1)

commutes with the space parity operator, the single-particle eigenfunctions can be classified
according to their parity η = ± = even/odd. In particular, within a given parity sector η,
the continuum spectrum (ε > 0) wavefunction ψη(x) outside the QW can be written as
a linear combination of two wavefunctions, namely the free-particle wavefunction φη(x)
and a singular wavefunction φ̄η(x), both with the same parity η. The weight of such
linear combination is determined by an angle θη. Explicitly, denoting by q =

√
2mε/ℏ the

wavevector outside the QW and by q̃ =
√

2m(ε+ V0)/ℏ the wavevector inside the QW,
one can label the post-quench unbound eigenfunctions with the discrete-plus-continuum
index α = (η, q) and compactly write

ψη,q(x) =



cos θη,q φη,q(x)− η sin θη,q φ̄η,q(x) |x| ≥ a/2

√√√√√√ 1 + tan2η
(

q̃a
2

)
1 +

(
q̃
q

)2
tan2η

(
q̃a
2

) φη,q̃(x) |x| < a/2
(C.2)
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where
φ+,q(x) = 1√

π
cos(qx) , φ−,q(x) = 1√

π
sin(qx) (C.3)

are the pre-quench even/odd eigenfunctions, respectively, and

φ̄+,q(x) = 1√
π

sin(q|x|) , φ̄−,q(x) = 1√
π

sgn(x) cos(qx) (C.4)

are their even and odd singular counterparts. Moreover, the angle determining their
relative weight in the first line of Equation (C.2) is

θη,q = arctan
[(
q̃

q

)η

tan
(
q̃a

2

)]
− qa

2 + π
1− sgn

(
cos

(
q̃a
2

))
2 . (C.5)

From the above definitions, one can then verify that the normalization ⟨ψη,q|ψη′,q′⟩ =
δη,η′δ(q − q′) holds.

C.2 Basis Change Coefficients (Continuum Spectrum)

In computing the coefficients of the pre-post basis change appearing in Equation (4.3), we
observe that Uηη′(q, k) = δηη′⟨ψη,q|φη,k⟩ and

Uηη′(q, k) = δηη′

 ∫
|x|≥ a

2

ψ∗
η,q(x)φη,k(x) dx︸ ︷︷ ︸
=Cout

η (q,k)

+
∫

|x|< a
2

ψ∗
η,q(x)φη,k(x) dx︸ ︷︷ ︸
=Cin

η (q,k)



≃ 2δηη′

 cos θη,q

(∫ ∞

a
2

φη,q(x)φη,k(x) dx
)

− η sin θη,q

(∫ ∞

a
2

φ̄η,q(x)φη,k(x) dx
) (C.6)

where in Equation (C.6) we have neglected the second contribution Cin
η , which is negligible

with respect to the first contribution Cout
η , because the space region outside the QW is

infinitely long in the thermodynamic limit and because we are focusing on the continuum
spectrum wavefunctions. Thus, the Uηη′(q, k) coefficients can be straightforwardly evaluated
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by inserting the definitions of φ and φ̄ into Equation (C.6), and by exploiting the identity

∫ ∞

a
2

e(ik−kmin)x dx = e(ik−kmin) a
2

(
kmin

k2
min + k2 + i

k

k2
min + k2

)
∼ ei ka

2

[
πδ(k) + iP.V.

(1
k

)]
(C.7)

where 

δ(k) = 1
π

kmin

k2
min + k2

P.V.
(1
k

)
= k

k2
min + k2

(C.8)

are the regularized versions of the δ-function and the Principal Value (P.V.), respectively,
while kmin is an infrared cut-off controlling the integral divergences and mimicking the
inverse total length of the system (kmin ∼ 2/L→ 0 in the thermodynamic limit L→∞).
Within a few algebraic steps, one obtains

Uηη′(q, k) = δηη′

{
cos θη,q δ(q − k) − η

π
sin

[
(q + k)a2 + θη,q

]
P.V.

(
1

q + k

)

− 1
π

sin
[
(q − k)a2 + θη,q

]
P.V.

(
1

q − k

)}
(C.9)

C.3 Occupancy of the Continuum Post-Quench Eigen-
states

As explained in Section 4.2 (see Equation (4.3)), the continuum–continuum diagonal
density matrix entries are given by

ρηη(q, q) = ⟨γ̂†
η(q)γ̂η(q)⟩ =

∫ +∞

0
dk |Uηη(q, k)|2 f eq(ε(k)) . (C.10)

Inserting Equation (C.9) in Equation (C.10), their evaluation can be carried out and leads
to
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ρηη(q, q) = δ(0)

[
cos2 θη,q −

η

π
cos θη,q sin

(
qa+ θη,q

)
︸ ︷︷ ︸

bounded

P.V.
(

1
q

)
1
δ(0)︸ ︷︷ ︸

→0

]
f eq(ε(q)) +

+ 1
π2

∫ ∞

0
dk sin2

[
(q + k)a

2 + θη,q

]
︸ ︷︷ ︸

bounded

P.V.2
(

1
q + k

)
1
δ(0)︸ ︷︷ ︸

→0

f eq(ε(k)) +

+ 1
π2

∫ ∞

0
dk sin2

[
(q − k)a

2 + θη,q

]
︸ ︷︷ ︸

bounded

P.V.2
(

1
q − k

)
1
δ(0)︸ ︷︷ ︸

→π2δ(q−k)

f eq(ε(k)) +

+2η
π2

∫ ∞

0
dk sin

[
(q + k)a

2 + θη,q

]
sin

[
(q − k)a

2 + θη,q

]
︸ ︷︷ ︸

bounded

·

P.V.
(

1
p+ k

)
P.V.

(
1

p− k

)
1
δ(0)︸ ︷︷ ︸

→0

f eq(ε(k))
 (C.11)

= δ(0)
{

cos2 θη,q f
eq(ε(q)) + sin2 θη,qf

eq(ε(q))
}

(C.12)

= δ(0) f eq(ε(q)) , (C.13)

where the regularized δ and P.V. are defined in Equation (C.8). In particular δ(0) = δ(q =
0) = (πkmin)−1 ∼ L/2π → ∞, as expected, since the total number of electrons in the
continuum should scale extensively with the system size. By singling out a δ(0) pre-factor,
one can see that, apart from the cos2 θη,q contribution in the first line of Equation (C.11),
the only term yielding a finite contribution is the squared Principal Value appearing on
the third line, due to the relation

1
δ(0) P.V.2

(
1

q − k

)
≡ πkmin

(q − k)2

((q − k)2 + k2
min)2 = π

(q − k)2

(q − k)2 + k2
min︸ ︷︷ ︸

→1

kmin

(q − k)2 + k2
min︸ ︷︷ ︸

=πδ(q−k)

→ π2δ(q − k) . (C.14)

In conclusion, one obtains that the occupancy of the post-quench continuum states equals
the equilibrium one.



Appendix D

Here we briefly summarize some aspects of the standard homogeneous SSH model, which
corresponds to taking vj ≡ v ∈ C and wj ≡ w ∈ C in Eq.(5.2). Let us now recall the cases
of a ring and of a chain.

D.1 Ring (periodic boundary conditions) and topo-
logical classification

Let M denote the number of cells and by N = 2M the number of lattice sites of a
ring-shaped lattice. By re-expressing the site operators as ĉj,s = M−1/2∑

k e
ikjaĉk,s, the

periodic boundary condition ĉM+1,A = ĉ1,A enables one to straightforwardly rewrite the
Hamiltonian Eq.(5.2) as a decoupled set of k-dependent Hamiltonians

ĤSSH,χ =
∑

k

(
ĉ†

k,A, ĉ
†
k,B

)
H(k)

 ĉk,A

ĉk,B

 . (D.1)

Here a denotes the cell size, k = 2πn/Ma the wavevectors (with n = −M
2 ,−

M
2 +

1, . . . , M
2 − 1 for even M and n = −[M

2 ],−[M
2 ] + 1, . . . ,+[M

2 ] for odd M), and ĉk,s

are the Fourier mode operators1. In Eq.(D.1) H(k) = σ · d(k) is the first-quantized
SSH Hamiltonian in k-space, with σ denoting the set of Pauli matrices and d(k) =(
Re(v) + Re(weika) , −Im(v) + Im(weika) , 0

)
a vector lying in the plane. The absence of

the bz component is the hallmark of the chiral symmetry, which is expressed by the property
σzH(k)σz = −H(k) in terms of the first-quantized Hamiltonian. In terms of the tenfold
classification scheme[458, 3], the SSH model is in the AIII symmetry class. If w, v ∈ R the

1The k-mode operators ĉk,s (with s = A,B = ±) transform under C,S and T as follows: Cĉk,sC−1 =
(−1)sĉ†

−k,s, S ĉk,sS−1 = (−1)sĉ†
k,s and T ĉk,sT −1 = ĉ−k,s.
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Hamiltonian H(k) also fulfills the properties H∗(k) = H(−k) and σzH
∗(k)σz = −H(−k)

encoding the time-reversal and charge conjugation symmetries, respectively, and the model
is in the BDI symmetry class. The spectrum consists of two bands

ε±(k) = ±|d(k)| = (D.2)
= ±

√
|w|2 + |v|2 + 2|vw| cos(ka+ arg(v) + arg(w)) , (D.3)

separated by the bandgap 2εg = 2||v| − |w||. The maximal value of the group velocity
v(k) = ℏ−1∂ε/∂k is vmax = amin(|v|, |w|)/ℏ and determines the minimal timescale
Eq.(5.31) an electron wavepacket takes to travel across the ring length L = Ma.

The single-particle eigenvectors related to the two bands ε± are |u−(k)⟩ = (1 , −eiφ(k))T/
√

2
and |u+(k)⟩ = (e−iφ(k) , 1)T/

√
2, with φ(k) = −φ(−k) denoting the polar angle of the d(k)

vector, so that tanφ(k) = dy(k)/dx(k). In particular, in the thermodynamic limit, where k
becomes a continuous variable spanning the Brillouin zone [−π,+π]/a, d(k) draws a circle
centered at (Re(v),−Im(v)) and with radius |w|. As is well known, this enables one to
identify two topological classes of the insulator, depending on whether such circle encloses
or not the origin (corresponding to the gap closing). Correspondingly, the winding number
of the fully occupied lower band of the insulator

ν = − i
π

∮
⟨u−|∂ku−⟩ dk = 1

2π

∮ dφ

dk
dk (D.4)

takes two different integer values ν = 1 (for |v| < |w|) and ν = 0 (for |v| > |w|). We
emphasize that, while the two phases are topologically distinct, labelling one phase as
“topological” and the other one as “trivial” is in fact unphysical as long as the model is
defined on a ring. This is because the topological classification is defined once the unit
cell is identified, which is completely arbitrary in a system with PBCs, though. Indeed
the very Hamiltonian ĤSSH , written in Eq.(5.1) by adopting (A,B) as unit cell, could be
equivalently rewritten choosing (B,A) as unit cell, which would amount to exchanging the
role of intra- and inter-cell hopping amplitudes (v ↔ w), so that the “topological” phase
for the choice (A,B) corresponds to the “trivial” phase for the choice (B,A) and viceversa.
The emergence of topological edge states, which are perhaps the most striking hallmark
distinguishing the topological character of the two phases, requires the breaking of the
PBCs.
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D.2 Chain (open boundary conditions)

The customary way to break the PBCs is to cut the ring into a finite chain, thereby
interfacing the SSH model with vacuum. In turn, this lifts the degeneracy about the choice
of the unit cell: If (say) (A,B) is the unit cell of the chain with an even number of sites
N = 2M , the OBCs of the chain impose ĉM+1,A = 0 = ĉ0,B, where M again denotes the
number of cells. As argued above, in a chain the hopping amplitudes can be taken as
real and positive, v, w ∈ R+, without loss of generality. The OBCs modify the spectrum
and enable one to identify the actual topological and trivial phases. Indeed, besides a
continuum spectrum similar to the ring, when v < w the chain also features two additional
discrete levels (topological phase), which are absent for v > w (trivial phase) instead. The
difference between the two phases becomes apparent in the so called dimerized limit, where
one of the two hopping amplitude is set to zero. The SSH chain eigenstates resulting
from the OBCc are non-degenerate and can be given an analytic expression[459, 460]. In
particular, the continuum eigenstates extend over the entire bulk of the chain and can
formally be built by linearly combining the |u±(k)⟩ and |u±(−k)⟩ of the ring

|ψbulk
± (k)⟩ = 1√

Nk

M∑
j=1

 sin[kaj − φ(k)]
± sin[kaj]

 (D.5)

where tanφ(k) = w sin(ka)/(v + w cos(ka)) and Nk = M + v(v + w cos(ka))/(v2 + w2 +
2vw cos(ka)) is a a normalization constant. However, the quantization rule of k’s differs
from the customary kaM = 2πn in the ring and fulfill the transcendental equation
ka(M + 1) = πn+ φ(k) with n = 1, 2 . . .M . In contrast, the topological edge eigenstates
read[459, 460]

|ψedge
± ⟩ = 1√

N0

M∑
j=1

(−1)j+1

 sinh[κa(M + 1− j)]
± sinh[κaj]

 (D.6)

where κ fulfills v sinh[κ(M + 1)a] = w sinh[κMa] and N0 = (w sinh(2κaM)/2v sinh(κa))−
(M + 1) is a normalization constant. They are localized mainly on A sites on the left edge
and on B sites on the right edge. Their energies are εedge

± = ±w sinh(κa)/ sinh(κ(M + 1)a),
whose difference decreases exponentially as ∼ exp[−κMa] with the number of cells.



Appendix E

E.1 State evolution in a quenched two-band system

In this appendix we recall the general state evolution after a sudden quench in a two-band
model[390]. Let us suppose that the initial state is the half filled ground state of a two-band
Hamiltonian, whose one-body form can be written in momentum space as

Hi(k) =
[
d0

i (k)σ0 + di(k) · σ
]

(E.1)

The k-th component of the initial state can thus be written as ρ(k, 0) =
[
σ0 − d̂i(k) ·σ

]
/2

where d̂i(k) = di(k)/|di(k)|. The state evolves according to the post-quench Hamiltonian

Hf (k) =
[
d0

f (k)σ0 + df (k) · σ
]

(E.2)

and, by solving the Liouville-Von Neumann equation for the one-body density matrix, one
can write the k-th component of the time evolved state as ρ(k, t) =

[
σ0 − d̂(k, t) · σ

]
/2,

where the time dependent unit vector can be written as the sum of three orthogonal
contributions:

d̂(k, t) = d∥(k) + d⊥(k) cos
[
2|df (k)|t/ℏ

]
+ d×(k) sin

[
2|df (k)|t/ℏ

]
(E.3)

where

d∥(k) =
[
d̂i(k) · d̂f (k)

]
d̂f (k) (E.4)

d⊥(k) =
[
d̂i(k)− d∥(k)

]
(E.5)

d×(k) = −
[
d̂i(k)× d̂f (k)

]
(E.6)
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Then, by inserting the explicit expression for di(k) and df(k) corresponding to a flux
quench in the SSH model, see Eq. (6.3), the expressions in Eqs. (6.8), (6.9), (6.10), (6.12)
and (6.13) are recovered.

E.2 Current

In this appendix we briefly outline how to derive the current operators discussed in Sec.6.3.
Given the site density operators n̂j,α = ĉ†

jαĉjα, with α = A,B, and the SSH Hamiltonian
with ϕ = 0 [see Eq.(6.1)], it is straightforward to derive the following Heisenberg equations
of motion:

∂tn̂jA = Ĵ inter
j−1 − Ĵ intra

j (E.7)
∂tn̂jB = Ĵ intra

j − Ĵ inter
j (E.8)

where, by definition:
Ĵ inter

j = rv

ℏ
[
iĉ†

jB ĉj+1A − iĉ†
j+1AĉjB

]
(E.9)

is the inter-cell current reported in Eq.(6.14), while:

Ĵ intra
j = v

ℏ
[
iĉ†

jAĉjB − iĉ†
jB ĉjA

]
(E.10)

is the intra-cell current reported in Eq.(6.15).

E.3 Drude weight

The Drude weight D characterizing the LRT of the SSH model can be computed following
Kohn’s approach [398]. In particular, in a 1D ring one has

D = −Ld
2E0(Φ)
d2Φ

∣∣∣∣∣
Φ=0

(E.11)

where E0(Φ) denotes the dependence of the many-body ground state energy on the
magnetic flux Φ threading the ring, while L denotes the ring length. For a tight-binding
model, we can associate the magnetic flux Φ to a phase ϕ in the hopping amplitudes
according to Nϕ = 2πΦ/Φ0, where N is the number of links in the ring and Φ0 = h/e is
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the magnetic flux quantum. Hence, in a bipartite lattice with two sites per cell, we get:

Φ = L
2
a

ℏ
e
ϕ (E.12)

where a is the lattice constant. Exploiting the linear relation between ϕ and Φ we can
write Kohn’s formula as

D = −
(
a

2

)2 ( e
ℏ

)2
L−1d

2E0(ϕ)
d2ϕ

∣∣∣∣∣
ϕ=0

(E.13)

Moreover, for translation invariant one-body Hamiltonians we can write:

D = −
(
a

2

)2 ( e
ℏ

)2
L−1

 d2

d2ϕ

∑
(k,b)∈I

εb(k, ϕ)


ϕ=0

(E.14)

where I denotes the set of bands b and wavevectors k that are occupied in the many body
ground state without flux, while εb(k, ϕ) denotes the band dispersion relations for a finite
flux.

Since the single particle energies depend on the phase ϕ only through the combination
ka+ 2ϕ, see Eq.(6.4), the many-body ground state energy of a half filled SSH model with
dimerization (r ̸= 1) does not depend on the flux in the thermodynamic limit. Indeed,
due to the periodic nature of the lower band over the interval ka ∈ [−π, π], one has

L−1Er ̸=1
0 (ϕ) = 1

2π
1
a

∫ π

−π
d(ka)ε−(k, ϕ) (E.15)

= 1
2π

1
a

∫ π

−π
d(ka)ε−(k, 0) = L−1Er ̸=1

0 (0) (E.16)

and we conclude that the Drude weight (E.13) is identically zero in this case, consistently
with Eq.(6.24).

Without dimerization (r = 1) the situation is different, since we get

L−1Er=1
0 (ϕ) = −v

π

2
a

∫ π
2

− π
2

d
(ka

2
)

cos
(ka

2 + ϕ
)

(E.17)

= −2v
π

2
a

cos(ϕ) (E.18)
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and from Eq.(E.13) one obtains

D = −e
2

ℏ
2v
ℏπ

a

2 = −e
2

ℏ
vF

π
(E.19)

where vF is the Fermi velocity. The finite Drude weight computed in this way coincides
with the one obtained in the Ch.6 [see Eq.(6.25)] through its dynamical definition.



Appendix F

In this appendix we summarize some useful results about quenches in two band models
and we provide some details about the definition of the Berry phase for a finite size system,
its evaluation in the space-time scaling limit, and its connection to the current operator.

F.1 Fictitious Hamiltonian in a quenched two band
model

In the quench protocol described in the Ch.7, the single particle eigenstates |ui
±(k)⟩

of the initial Hamiltonian Ĥi = ∑
k ĉ

†(k)[di(k) · σ]ĉ(k), determined by the unit vector
d̂i(k) = di(k)/|di(k)| through the eigenvalue problem [d̂i(k) ·σ]|ui

±(k)⟩ = ±|ui
±(k)⟩, evolve

according to the post-quench Hamiltonian Ĥf = ∑
k ĉ

†(k)[df(k) · σ]ĉ(k) as |u±(k, t)⟩ =
exp[−i[df (k) · σ]t/ℏ]|ui

±(k)⟩. In turn, the related projector ρ±(k, t) = |u±(k, t)⟩⟨u±(k, t)|
can always be written as ρ±(k, t) = [σ0± d̂(k, t) ·σ]/2, where σ0 denotes the 2× 2 identity
matrix and d̂(k, t) is a time-dependent unit vector given by [see Eq.(E.3)]

d̂(k, t) = d∥(k) + d⊥(k) cos[2|df (k)|t/ℏ] + d×(k) sin[2|df (k)|t/ℏ] , (F.1)

where d∥(k) = [d̂i(k) · d̂f (k)]d̂f (k), d⊥(k) = d̂i(k)− d∥(k) and d×(k) = −[d̂i(k)× d̂f (k)],
with d̂f(k) = df(k)/|df(k)|. Because the initial state is the many-body ground state
of the initial Hamiltonian Ĥi at half filling, where the lower band ϵi

−(k) = −|di(k)| is
completely filled and the upper band ϵi

+(k) = +|di(k)| is empty, the evolved many-body
state can always be regarded to as the half filled ground state of a fictitious (two flat band)
Hamiltonian Ĥ(t) = ∑

k ĉ
†(k)[d̂(k, t) · σ]ĉ(k), where time appear as a parameter.
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F.2 Discrete Berry phase

On the basis of the previous Section, the Berry phase associated to the many body state
of a quenched two band insulator can be formulated in terms of |u−(k, t)⟩ and d̂(k, t). We
shall now determine some of its general properties that hold independently of the time
dependence. In order to lighten the notation, we are thus going to omit the t variable,
which will be restored later, when time plays a major role. Yet we will deal with both the
lower band Berry phase φB− and the upper band Berry phase φB+. In Ch.7, the symbol
φB was used to denote φB− while here we explicitly keep both band indexes to highlight
the relations between φB− and φB+.

When dealing with a finite system, the Berry phase has to be reformulated in terms
of finite differences according to φB± = ∑

k∈BZ arg ξ± mod 2π, where ξ± = ⟨u±(k +
δk)|u±(k)⟩, BZ denotes the Brillouin Zone and δk = 2π/L [444].

We first note that in the continuum limit L→ +∞, if |u±(k)⟩ is a smooth function of
k (as it is usually the case in the time independent framework and for t≪ L/vf ), we can
approximate ξ± ≈ 1 + i⟨u±(k)|i∂k|u±(k)⟩δk, implying arg ξ± ≈ ⟨u±(k)|i∂k|u±(k)⟩δk, and
we recover the standard expression φB± =

∫
dkAB±(k), where AB±(k) = ⟨u±(k)|i∂k|u±(k)⟩

is the Berry connection of the upper/lower band.

Then we show that some general properties fulfilled by the Berry phase in the customary
continuous formulation are preserved also in the present discrete formulation [375]. Indeed,
despite ξ± at each k is gauge dependent, the Berry phase is gauge invariant, as can be
seen by rewriting φB± as

φB± = Im ln
∏

k∈BZ

⟨u±(k + δk)|u±(k)⟩ = arg tr
∏

k∈BZ

ρ±(k) (F.2)

where tr denotes the trace on a two dimensional space and the projectors ρ±(k) are gauge
invariant.

Moreover, Eq.(F.2) also enables one to prove that φB− +φB+ = 0 mod 2π. Indeed we
observe that, for each k, the related projector can be written as ρ± = β0(±d̂)σ0 +β(±d̂) ·σ,
where the real parts β0

R,βR and the imaginary parts β0
I ,βI of the β-coefficients are functions
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of the unit vector d̂ = d̂(k) satisfying the following parity relations

β0
R(d̂) = +β0

R(−d̂)
β0

I (d̂) = −β0
I (−d̂)

βR(d̂) = −βR(−d̂)
βI(d̂) = +βI(−d̂)

. (F.3)

It is then straightforward to prove by induction that the product R± = ∏
k ρ±(k) of an

arbitrary set of projectors ρ±(k) is a matrix R± = B0({±d̂(k)})σ0 +B({±d̂(k)}) ·σ whose
B-coefficients are functions of the entire set {d̂(k)} of unit vectors and satisfy the parity
relations Eq.(F.3) in terms of {d̂(k)} ↔ {−d̂(k)}, implying that

tr
∏

k∈BZ

ρ±(k) = B0
R({±d̂(k)}) + iB0

I ({±d̂(k)}) = B0
R({d̂(k)})± iB0

I ({d̂(k)}) . (F.4)

Thus, in view of Eqs.(F.2) and (F.4), the relation φB− + φB+ = 0 mod 2π holds also in
the discrete formulation.

Finally, if charge conjugation symmetry is present then the following relations hold
true

d̂x(k) = d̂x(−k) (F.5)
d̂y,z(k) = −d̂y,z(−k) (F.6)

and one can prove that φB− = φB+ mod 2π. Together with the general constraint
φB− = −φB+ mod 2π this implies that, when the system is invariant under charge
conjugation, the Berry phase is constrained to be either 0 or π even in the discrete
formulation.

F.3 The space-time scaling limit

We can now evaluate the time dependent discrete Berry phase φB− in the space-time
scaling limit (STSL). Given that ξ−(k, t, L) = ⟨u−(k + δk, t)|u−(k, t)⟩ and |u−(k, t)⟩ =
exp[−i

[
df (k)t/ℏ

]
· σ]|ui

−(k)⟩ we have to evaluate

ei[df (k+δk)t/ℏ]·σ = cos
∣∣∣df (k + δk)t/ℏ

∣∣∣+ i
[
d̂f (k + δk) · σ

]
sin

∣∣∣df (k + δk)t/ℏ
∣∣∣ (F.7)
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to order L−1, where t ∼ L while η = 2πt/L is fixed. To make the notation lighter, we
suppress the dependence on k and denote df = |df |. We need to first evaluate the modulus

∣∣∣df (k + δk)t
∣∣∣ =

∣∣∣∣df t+ ∂kdfη + 1
2δk ∂

2
kdfη +O(L−2)

∣∣∣∣
= |df t|

√√√√1 + 2df · ∂kdf

|df |2
δk +

(
|∂kdf |2
|df |2

+ df · ∂2
kdf

|df |2

)
δk2 +O(L−3)

= |df t|

√√√√1 + 2df · ∂kdf

|df |2
δk + ∂k(df · ∂kdf )

|df |2
δk2 +O(L−3)

= |df t|

1 + df · ∂kdf

|df |2
δk +

1
2
∂k(df · ∂kdf )
|df |2

−
(

df · ∂kdf

|df |2

)2
 δk2 +O(L−3)


= df t

{
1 + ∂kd

f

df
δk + 1

2

[
df∂2

kd
f − (∂kd

f )2

(df )2

]
δk2 +O(L−3)

}

= df t+ ∂kd
fη + 1

2δk d
f
2η +O(L−2) (F.8)

where
df

2 = ∂2
kd

f − (∂kd
f )2

df
. (F.9)

Then the unit vector d̂f appearing in Eq.(F.7) is given by

d̂f (k + δk) = df t

df t
{

1 + ∂kdf

df δk + 1
2

[
df ∂2

k
df −(∂kdf )2

(df )2

]
δk2 +O(L−3)

}
+ ∂kdfη

df t
{

1 + ∂kdf

df δk + 1
2

[
df ∂2

k
df −(∂kdf )2

(df )2

]
δk2 +O(L−3)

} +O(L−2)

= df t

df t

{
1− ∂kd

f

df
δk

}
+ ∂kdfη

df t
+O(L−2)

= d̂f + ∂kd̂fδk +O(L−2) (F.10)
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whence one obtains

ei[df (k+δk)t/ℏ]·σ = cos
[
(df t+ ∂kd

fη + 1
2δkd

f
2η)/ℏ

]
+i
[
(d̂f + ∂kd̂fδk) · σ

]
sin

[
(df t+ ∂kd

fη + 1
2δkd

f
2η)/ℏ

]
+O(L−2)

= ei[(df t+∂kdf η+ 1
2 δkdf

2 η)/ℏ]d̂f ·σ

+iδk sin
[
(df t+ ∂kd

fη)/ℏ
]
[∂kd̂f · σ] +O(L−2) (F.11)

and

ei[df (k+δk)t/ℏ]·σe−i[df (k)t/ℏ]·σ =
= ei[(∂kdf η+ 1

2 δkdf
2 η)/ℏ]d̂f ·σ + iδk sin

[
(df t+ ∂kd

fη)/ℏ
]
[∂kd̂f · σ]e−i[df t/ℏ]·σ +O(L−2)

= cos
[
(∂kd

fη + 1
2δkd

f
2η)/ℏ

]
+ i sin

[
(∂kd

fη + 1
2δkd

f
2η)/ℏ

]
[d̂f · σ]

+iδk sin
[
(df t+ ∂kd

fη)/ℏ
]

cos
[
df t/ℏ

]
[∂kd̂f · σ]

+iδk sin
[
(df t+ ∂kd

fη)/ℏ
]

sin
[
df t/ℏ

]
[(∂kd̂f × d̂f ) · σ] +O(L−2)

= cos
[
∂kd

fη/ℏ
]
− 1

2 sin
[
∂kd

fη/ℏ
]
[δkdf

2η/ℏ]

+i sin
[
∂kd

fη/ℏ
]

[d̂f · σ] + i

2 cos
[
∂kd

fη/ℏ
] [
δkdf

2η/ℏ
]
[d̂f · σ]

+iδk sin
[
(df t+ ∂kd

fη)/ℏ
]

cos
[
df t/ℏ

]
[∂kd̂f · σ]

+iδk sin
[
(df t+ ∂kd

fη)/ℏ
]

sin
[
df t/ℏ

]
[(∂kd̂f × d̂f ) · σ] +O(L−2)

= ei[∂kdf η/ℏ][d̂f ·σ] − δk

2 sin[∂kd
fη/ℏ][df

2η/ℏ] + i
δk

2 cos[∂kd
fη/ℏ][df

2η/ℏ][d̂f · σ]

+iδk cos
[
∂kd

fη/ℏ
] {

sin
[
df t/ℏ

]
cos

[
df t/ℏ

]
[∂kd̂f · σ] + sin2

[
df t/ℏ

]
[(∂kd̂f × d̂f ) · σ]

}
+iδk sin

[
∂kd

fη/ℏ
] {

cos2
[
df t/ℏ

]
[∂kd̂f · σ] + cos

[
df t/ℏ

]
sin

[
df t/ℏ

]
[(∂kd̂f × d̂f ) · σ]

}
+O(L−2) . (F.12)
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Thus we finally arrive at

ξ−(k, t, L) =
+⟨ui

−|ei[∂kdf η/ℏ][d̂f ·σ]|ui
−⟩+ δk⟨∂ku

i
−|ei[∂kdf η/ℏ][d̂f ·σ]|ui

−⟩

−δk2 sin[∂kd
fη/ℏ][df

2η/ℏ]⟨ui
−|ui

−⟩+ i
δk

2 cos[∂kd
fη/ℏ][df

2η/ℏ]⟨ui
−|[d̂f · σ]|ui

−⟩

+iδk cos
[
∂kd

fη/ℏ
]
⟨ui

−|
{1

2 sin
[
2df t/ℏ

]
[∂kd̂f · σ] + 1

2
(
1− cos

[
2df t/ℏ

] )
[(∂kd̂f × d̂f ) · σ]

}
|ui

−⟩

+iδk sin
[
∂kd

fη/ℏ
]
⟨ui

−|
{1

2
(
1 + cos

[
2df t/ℏ

] )
[∂kd̂f · σ] + 1

2 sin
[
2df t/ℏ

]
[(∂kd̂f × d̂f ) · σ]

}
|ui

−⟩

+O(L−2)
= ξ

(0)
− (k, η) + δk ξ

(1)
− (k, η, t) +O(L−2) (F.13)

where

ξ
(0)
− (k, η) = ⟨ui

−|ei[∂kdf η/ℏ][d̂f ·σ]|ui
−⟩ = cos[∂kd

fη/ℏ] + i sin[∂kd
fη/ℏ]⟨ui|[d̂f · σ]|ui⟩

= cos[∂kd
fη/ℏ] + i[d̂f · d̂i] sin[∂kd

fη/ℏ] (F.14)

while ξ(1)
− (k, η, t) = ξ

(1,A)
− (k, η) + ξ

(1,B)
− (k, η, t) and

ξ
(1,A)
− (k, η) = −1

2 sin[∂kd
fη/ℏ][df

2η/ℏ]− sin[∂kd
fη/ℏ]Im{⟨∂ku

i
−|[d̂f · σ]|ui

−⟩}

+ i

2 cos[∂kd
fη/ℏ][df

2η/ℏ]⟨ui
−|[d̂f · σ]|ui

−⟩+ i sin[∂kd
fη/ℏ]Re{⟨∂ku

i
−|[d̂f · σ]|ui

−⟩}

+i cos[∂kd
fη/ℏ]⟨ui

−|i∂k|ui
−⟩+ i

2 cos
[
∂kd

fη/ℏ
]
⟨ui

−|[(∂kd̂f × d̂f ) · σ]|ui
−⟩

+ i

2 sin
[
∂kd

fη/ℏ
]
⟨ui

−|[∂kd̂f · σ]|ui
−⟩ (F.15)

ξ
(1,B)
− (k, η, t) =

+ i

2 sin
[
2df t/ℏ

]
⟨ui

−|
{

cos
[
∂kd

fη/ℏ
]

[∂kd̂f · σ] + sin
[
∂kd

fη/ℏ
]

[(∂kd̂f × d̂f ) · σ]
}
|ui

−⟩

+ i

2 cos
[
2df t/ℏ

]
⟨ui

−

{
− cos

[
∂kd

fη/ℏ
]

[(∂kd̂f × d̂f ) · σ] + sin
[
∂kd

fη/ℏ
]

[∂kd̂f · σ]
}
|ui

−⟩ .

(F.16)
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Notice that, since by definition of ξ− its gauge dependence amounts to corrections of order
δk, the zeroth order contribution ξ

(0)
− turns out to be gauge invariant. Moreover, the

modulus of ξ− is given by

|ξ−| =
√
|ξ(0)

− |2 + 2δkRe
{
ξ

(0)
− ξ

(1)
−

}
+O(L−2) = |ξ(0)

− |+ δkRe
ξ

(0)
− ξ

(1)
−

|ξ(0)
− |

+O(L−2)

(F.17)

while the argument equals

arg {ξ−} = Im
{
ln
[
ξ

(0)
− + δkξ

(1)
− +O(L−2)

]}
= arg

{
ξ

(0)
−

}
+ δk Im

(ξ(0)
− )∗ξ

(1)
−

|ξ(0)
− |2

+O(L−2)

(F.18)

The Berry phase thus acquires the form

φB− =
∑

k∈BZ

arg ξ− =
∑

k∈BZ

arg
{
ξ

(0)
−

}
+

∑
k∈BZ

δk Im
(ξ(0)

− )∗ξ
(1)
−

|ξ(0)
− |2

+O(L−1)

= φ
(0)
B− + φ

(1)
B− +O(L−1) (F.19)

where

φ
(0)
B− =

∑
k∈BZ

arg
{
ξ

(0)
−

}
≈ L

2π

∫ π

−π
dk arg

{
ξ

(0)
−

}
(F.20)

while

φ
(1)
B− =

∑
k∈BZ

δk Im
(ξ(0)

− )∗ξ
(1)
−

|ξ(0)
− |2

 ≈
∫ π

−π
dk Im

(ξ(0)
− )∗ξ

(1,A)
−

|ξ(0)
− |2

 . (F.21)

In Eq.(F.20) the summation over k has been replaced by an integral, according to the
usual recipe ∑k∈BZ → (L/2π)

∫ π
−π dk, since the function arg{ξ(0)

− (k, η)} varies smoothly in
k with respect to δk. The same procedure cannot be straightforwardly applied to the sum-
mation in Eq.(F.21) since ξ(1)

− (k, η, t) contains terms proportional to sin
[
2df (k)t/ℏ

]
and

cos
[
2df (k)t/ℏ

]
, which are rapidly oscillatory functions of k for t ∼ L [see the contribution

ξ
(1,B)
− (k, η, t) in Eq.(F.16)]. Nonetheless, because of this highly oscillatory behavior, the

summation of such terms is negligible in the STSL and φ
(1)
B− in Eq.(F.21) is eventually
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recast into an integral involving the contribution ξ
(1,A)
− (k, η) only.

F.4 Berry phase and current operator

We start this section by showing that, for η → 0, which corresponds to the usual thermo-
dynamic limit, one recovers the known relation ∂tφB(t)/2π = Jf(t) [188]. Indeed, when
η → 0, Eq.(F.13) reduces to

ξ−(k, t, L) = 1 + iδk(∂kd
f t/ℏ)⟨ui

−|[d̂f · σ]|ui
−⟩+ iδk⟨ui|i∂k|ui⟩

+iδk⟨ui
−|
{1

2 sin
[
2df t/ℏ

]
[∂kd̂f · σ] + 1

2
(
1− cos

[
2df t/ℏ

] )
[(∂kd̂f × d̂f ) · σ]

}
|ui

−⟩

+O(L−2) (F.22)

so that

arg{ξ−(k, t, L)} = δk⟨ui|i∂k|ui⟩+ δk(∂kd
f t/ℏ)⟨ui

−|[d̂f · σ]|ui
−⟩

+δk⟨ui
−|
{1

2 sin
[
2df t/ℏ

]
[∂kd̂f · σ] + 1

2
(
1− cos

[
2df t/ℏ

] )
[(∂kd̂f × d̂f ) · σ]

}
|ui

−⟩

+O(L−2) (F.23)

and

φB−(t)
2π = 1

2π
∑

k

arg{ξ−(k, t, L)}

≈ 1
2π

∫ π

−π
dkAi

B−(k) + 1
2π

∫ π

−π
dk[∂kd

f/ℏ]⟨ui
−|[d̂f · σ]|ui

−⟩ t

+ 1
2π

∫ π

−π
dk⟨ui

−|
{1

2 sin
[
2df t/ℏ

]
[∂kd̂f · σ] + 1

2
(
1− cos

[
2df t/ℏ

] )
[(∂kd̂f × d̂f ) · σ]

}
|ui

−⟩

= φB−(0)
2π + Jf

DC t+
∫ t

0
dt′Jf

AC(t′) (F.24)

where Ai
B−(k) is the initial Berry connection, while Jf

DC and Jf
AC(t) are the integral over

the Brillouin zone of the expectation values of the operators J f
DC(k) = ℏ−1∂kd

f(d̂f · σ)
and J f

AC(k, t) = ℏ−1df{cos[2df t/ℏ][∂kd̂f · σ] + sin[2df t/ℏ][(d̂f × ∂kd̂f ) · σ] }, respectively,
which can in turn be interpreted as the DC/AC term of k-component current operator
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resulting from its Heisenberg evolution

ℏJ f (k, t) = e−i[df t/ℏ]d̂f ·σ[∂kdf · σ]ei[df t/ℏ]d̂f ·σ

= e−i[df t/ℏ]d̂f ·σ[∂kd
f (d̂f · σ) + df (∂kd̂f · σ)]ei[df t/ℏ]d̂f ·σ

= ∂kd
f (d̂f · σ) + df

(
cos[df t/ℏ]− i sin[df t/ℏ][d̂f · σ]

)
·

·[∂kd̂f · σ]
(

cos[df t/ℏ] + i sin[df t/ℏ][d̂f · σ]
)

= ∂kd
f (d̂f · σ) + df

(
cos2[df t/ℏ][∂kd̂f · σ]− i sin[df t/ℏ] cos[df t/ℏ][d̂f · σ][∂kd̂f · σ]

+i sin[df t/ℏ] cos[df t/ℏ][∂kd̂f · σ][d̂f · σ] + sin2[df t/ℏ][d̂f · σ][∂kd̂f · σ][d̂f · σ]
)

= ∂kd
f (d̂f · σ) + df

(
cos2[df t/ℏ][∂kd̂f · σ] + 2 sin[df t/ℏ] cos[df t/ℏ][(d̂f × ∂kd̂f ) · σ]

− sin2[df t/ℏ][d̂f × (∂kd̂f × d̂f )] · σ
)

= ∂kd
f (d̂f · σ) + df

(
cos2[df t/ℏ][∂kd̂f · σ] + 2 sin[df t/ℏ] cos[df t/ℏ][(d̂f × ∂kd̂f ) · σ]

− sin2[df t/ℏ][∂kd̂f · σ]
)

= ∂kd
f (d̂f · σ) + df

(
cos[2df t/ℏ][∂kd̂f · σ] + sin[2df t/ℏ][(d̂f × ∂kd̂f ) · σ]

)
(F.25)

Let us now determine the relation between φ
(0)
B− and the current operator in the

space-time scaling limit. Starting from ξ
(0)
− (k, η) = ⟨ui

−(k)|eiJ f
DC(k)η|ui

−(k)⟩ we get

1
i
∂ηξ

(0)
− (k, η) = ⟨ui

−(k)|eiJ f
DC(k)ηJ f

DC(k)
∑
s=±
|ui

s(k)⟩⟨ui
s(k)|ui

−(k)⟩ =

= ξ
(0)
− (k, η)⟨ui

−(k)|J f
DC(k)|ui

−(k)⟩+ χ
(0)
− (k, η)⟨ui

+(k)|J f
DC(k)|ui

−(k)⟩
(F.26)

where χ(0)
− (k, η) = ⟨ui

−(k)|eiJ f
DC(k)η|ui

+(k)⟩. Then, in view of the definition

φ
(0)
B−(η) = L

2π

∫ π

−π
dk arg ξ(0)

− (k, η) = L

2π

∫ π

−π
dk Im ln ξ(0)

− (k, η) (F.27)
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we arrive at

d

dη
φ

(0)
B−(η) = L

2π

∫ π

−π
dk Im d

dη
ln ξ(0)

− (k, η)

= L

2π

∫ π

−π
dk Imiξ

(0)
− (k, η)⟨ui

−(k)|J f
DC(k)|ui

−(k)⟩+ iχ
(0)
− (k, η)⟨ui

+(k)|J f
DC(k)|ui

−(k)⟩
ξ

(0)
− (k, η)

= L

2π

∫ π

−π
dk ⟨ui

−(k)|J f
DC(k)|ui

−(k)⟩+ L

2π

∫ π

−π
dkRe

χ
(0)
− (k, η)
ξ

(0)
− (k, η)

⟨ui
+(k)|J f

DC(k)|ui
−(k)⟩


(F.28)
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