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Abstract

The Laser Interferometer Space Antenna (LISA) is a gravitational wave
detector, which aims to detect 1072 strains in the frequency range from
0.1 mHz to 0.1 Hz. It is a constellation of three spacecrafts, an equilateral
triangle with side length of 2.5 x 10° m, where interferometry monitors
the spacecraft distances. Aberrations and jitter of the wavefront sent by
a spacecraft to the next combine to cause a measurement noise. The paper
investigates analytically this coupling, including beam clipping and far-field
propagation, and develops criteria for the assessment of the wavefront quality.
It also gives the results of Monte Carlo simulations of the measurement noise
for arbitrary wavefront aberrations and jitters.
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1. Introduction

The spacecraft of the Laser Interferometer Space Antenna (LISA) are at the vertices of an
equilateral triangle, which is in a plane inclined 60° with respect to the ecliptic and trails
the Earth by 20° [1-3]. Each spacecraft is equipped with two telescopes, with associated
lasers and optical systems, that transmit and receive 1064 nm beams linking the constellation’s
spacecraft by interferometry. The telescope design includes four mirrors with off-axis primary
and secondary mirrors to avoid back-reflection from the secondary mirror. Preliminary param-
eters are: primary mirror diameter 200 mm, input beam diameter 2.2 mm, magnification 90 x,
field of view £8 urad [4, 5].

A critical aspect is the picometre sensitivity required in the measurement of the space-
craft’s separation, which is 2.5 x 10° m. In fact, the measurement aims at noise power density
approaching 1 pm? Hz~! in the frequency interval from 0.1 mHz to 1 Hz [6]. In turns, this
requires that the noise power density of the interference-signal phase approaches 1 prad®> Hz ™!
and imposes tight requirements on the phase stability of the received wavefront [7-9].

The wavefront errors of the transmitted beam combine with the pointing jitter to originate
a phase noise. In fact, because of the wavefront errors, the received wavefront deviates from a
spherical one centred on the test mass and any pointing variation leads to local changes of the
phase and, consequently, to apparent variations of the spacecraft distance [10, 11].

In this regard, the LISA’s telescopes are critical sub-systems, and there is a need for crite-
ria for the quality of the transmitted wavefront, where the far-field propagation is taken into
account. This underpins the specifications for the manufacturing of the telescopes and the
error budget of the optical system.

Previous works carried out numerical and ray-tracing analyses to determine the errors of
the received wavefront [12—14] and examined defocus [10, 15], astigmatism [16], and trun-
cation [15] effects. We build on these investigations and give an analytical expression of the
wavefront error at the receiving spacecraft—for the transmission of truncated beams hav-
ing both plane and Gaussian intensity profiles—as a function of the normalised beam radius
and Zernike modal amplitudes of the aberrations of the transmitted wavefront. Eventually,
we investigated the phase noise of the received wavefront and took advantage of the results
obtained to carry out Monte Carlo calculations for arbitrary aberrations of the transmitted
wavefront and variances of the horizontal and vertical tilts, which are related to the beam-
pointing jitter. The piston aberration, which is related to the dimensional stability of the tel-
escope, was investigated in [17] and will not be considered here.

2. Far-field propagation of the wavefront error

By using the scalar and paraxial approximations, we describe the monochromatic optical field
propagating between the spacecraft,

E(r,z;t) = u(r;z)e " (&=, (1)

by means of its complex amplitude u(r; z), where z is the propagation distance, r = {x, y} are
the transverse coordinates, w is the angular frequency, k = w/c = 27/ is the wave number,
A = 1064 nm is the wavelength, and the width of the u(r;z) spectrum is much less than k.
The light takes about 8 s to travel between the spacecraft. Therefore, because of the orbital
dynamics of the constellation, the transmitted beam needs to point ahead to the position
where the other spacecraft is observed, which corresponds to an angle varying up to about +6
prad. Therefore, in (1), the z axis joins the centre of the transmitting telescope to that of the
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receiving one at about 8 s in the future. Eventually, we describe the complex amplitude of the
beam leaving the transmitting spacecraft by

u(r; 0) = uo(r)e™), )

where wy(r) is a small and zero-mean wavefront error.

2.1. Reciprocal space propagation

By using the reciprocal-space representation, the paraxial propagation in free space of the
complex amplitude (2) truncated by the telescope aperture A (a disk having typically 0.1 m
radius) is given by [18]

u(k;z) = U(K; 2)uo(K), A3)
where k is the wave-vector conjugate to r,
_ 1 » :
up(k) = —/ "8y, (&)e™(®) d¢, 4)
2w A
is the u(&;0) spectrum, £ is a position vector in the input plane, and
inz
U(k;z) = —
(i) =0 (5 B

is the reciprocal-space representation of the paraxial approximation of the free-space propa-
gator. In the limit when kz — oo, by calculating the inverse Fourier transform of (3) by the
steepest-descent method, we obtain
ike—ikrz/(Zz) ~

u(r;z) ~ Tuo(kr/z), (6)
where exp|—ikr?/(2z)]/z is a spherical wave and i (kr/z) takes diffraction into account. As
expected, in the far field the intensity of the optical signal is the square modulus of the Fourier
transform, scaled by the distance z.

2.2. Direct space propagation

The paraxial propagation in free space is given by the Rayleigh-Sommerfeld integral [18]

u(riz) = /A U(r: €)uo(€)e™0(© de, ™

where

ike —iklr—¢€1*/(22)

U(r;¢) = , (8)

27z
is the direct-space representation of (5), the integration is carried out on the z = 0 input-plane,
and £ and r are position vectors in the input and output planes, respectively. Since (5) and
(8) are only different representations (in the reciprocal and direct spaces) of the same kernel,
u(k;z) and u(r; z)—see (3) and (7)—are solutions of the same paraxial equation and forms a
Fourier transform pair.

Since k€2 /(2z) < wo(&), once (8) is substituted in (7) the far-field amplitude of the trans-
mitted beam is
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Ta—ikr? /(22
u(r;z) ~ ike ™1/ / el €/2 (£)e™0(©) dg )
27z A
which, obviously, is identical to (6). It is worth noting that, for any given spacecraft’s separa-
tion z, the neglected k&2 /(2z) kernel-phase corresponds to an additional defocus of wo(&), and
can be included among the perturbations of the waveform that will be discussed below in the
document.

2.3. On-axis propagation
On the axis of the receiving telescope, the far-field amplitude is
u(0:2) = o / uo(€)e"™®) dé. (10)
’ 27z J 4

We observe that, by limiting the far-field calculation to the input aperture of the receiving
telescope (having typically 0.1 m radius), the extremal values of the kr - £ /z phase of the (9)’s
kernel are 430 prad, to be compared with the wy (&) phase which, in the case of A/20 wave-
front errors, is bounded by £150 urad. By neglecting these extrema, the on-axis amplitude
is representative of the whole received field and, to within this approximation, the received
wavefront is a spherical one having a phase given by the argument of (10).

For any given spacecraft’s separation z, the neglected kr - £/z phase corresponds to a tilt
by the angle r/z of wy(€). Therefore, the off-axis value u(r; z) is identical to the on-axis ampl-
itude calculated with the transmitted wavefront tilted by r/z.

2.4. Series expansion of the complex amplitude

By assuming wo(€) < 1 the exponential term of equation (2) approximates to
~ . 1 i
e & 1 i (€) — 535(8) — ¢ (6) + s (11)

and apart the non-essential ik/(2m7z) factor, the on-axis far field is

uwazﬁw@maHAM@M@M£

1

-3 [ e ae ¢ [ wieum(e e+ . )

2.5. Zernike modal amplitudes

Since the transmitted beam is truncated by a circular aperture, having typically 0.1 m radius,
a useful way to express the wavefront errors is by the modal amplitudes of the Zernike poly-
nomials, which are a complete set of orthogonal basis functions over the unit disk. Therefore,
let us consider a circular aperture A having radius ro and write the wavefront errors in terms
of the Zernike polynomials,

wo(r) =Y > 2RI (p)e™, (13)

n=1 m=—n
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where R,‘Zml(p) =0 for all n — |m| odd or negative, p = r/ro, 0 is the azimuth, and ZJ' is a
complex number that must fulfill the relation z,™ = z* in order (13) to be real. Hence, 20 is
real and, if m # 0,

ZEm = |gr)eion, (14)

where 67 is the azimuth rotation of the reference system of the polynomials with respect to
that of the telescope. The radial functions are given by

m n—\m m m|,0
RL l(P) = (_1)( | I)/2P| ‘Pgnj"'?l)/z(l —2p%), (15)

where P,Ea’ﬁ ) is the Jacobi polynomial of degree k, and satisfy the orthogonality relation

1 |m]
il ol _ SR (1) 16

2.6. Tilt aberration

According to (1) and (2), a wavefront tilt by a small angle o« = a/[cos(f3), sin(/3)]” about an axis
lying in a plane orthogonal to z and having azimuth (3 is implemented by the transformation

wo(r, 0) = wo(r, 0) + k& - o = wo(r, ) + krocos(6 — ), (17)

where & = r[cos(#), sin(6)]” and we considered only the first order term. Therefore, the n = 1
term of the Zernike expansion (13),

g pe ™ +2pe =2lzi|pcos(0 + 6}), (18)
where 6] = —J3, takes the wavefront tilt into account and
2z
= : 19
@ kr() ( )

It is worth noting that ¢, which identifies the pointing of uy(£), approximates the deviation of
the beam-propagation direction from the z axis and, since A = 1064 nm and ry ~ 0.1 m, the
approximation (11) is valid if o < 1 prad.

3. Flat intensity profile

3.1. Received wavefront

Let up(&€) = 1, where we used a unit and dimensionless power density of the transmitted
beam. To calculate the errors of the received wavefront, we introduce the notations

1
ap = s /Auo(s) d¢ =1, (20a)
a - ;% /A w0 (€)uo(€) d€ = 0, (20)
1
“="5 /A w3 (€)uo(€) dE, (20¢)
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Table 1. Coefficients of the (24a)—(24c¢) polynomials.

B C D E F G H
—1/2 —1/6 —1/3 —1/6 —1/3 —1/5 0
and
i = [ wi(Eu(e) e
= — W, .
5= [, 0O (20d)

By rewriting (12) as
u(0;z) ~ 7rr2(a0 +ia; + ay +ia3), 2n

up to third order of the Zernike modal amplitudes of the transmitted-wavefront aberrations,
the wavefront errors at the receiving spacecraft, w(0; z) = arg[u(0; z)}, is approximated by

Im(u(0;2)]  a; +as
Re[u(0;2)]  ao+ a2

w(0;z) ~ ~a3(l — ap), (22)
which expresses the excess (defect) of the optical distance between the spacecraft with respect
to their geometric distance. Within the perturbative approach adopted, equation (22) shows
that the errors of the received wavefront depend on the modal amplitudes of the Zernike spec-
trum of the transmitted-wavefront only whether at least the third perturbative-order is taken
into account.

By limiting the wavefront aberration to tilt, defocus, astigmatism, coma, trefoil, and spher-
ical—that is by considering in (13) only the modal amplitudes z},zg,z%,zé,zg, and zg—we
obtain

w(0,2) = by + bi|z}| + ba|z} %, (23)
where we used (22) and made explicit the dependence on the amplitude of the tilt,
|z{| = kroa/2, to describe the coupling of the s jitter to the errors of the transmitted wave-
front. To obtain the b; coefficients, we have carried out the integrations (20a)—(20d) with the
aid of Mathematica [19]. The code is available in the supplementary material (stacks.iop.org/
CQG/35/185013/mmedia). By retaining only the lowest order terms, they are

1 2
by = 210/ + |z3]* + 913[) — 15 [B12s]* cos(63 — 2603)

60
1

- §|Z%\|Z§||Z§| cos(63 — 65 — 63)
Lo, Liop by, 150 L o0

(= — — — — 24
(15|Z2‘ +30 2 +2O|Z3| +20|13| +105|Z4| )z4> (24a)

by = B|z3||z3| cos(63 — 03 — 0}) + C|23 |} cos(65 — 63 — 0;)
+ Dlz} |9 cos(6} — 0}) + Glz}|f cos(63 — 0)), (24b)

by = Ez) + F|z3| cos(63 — 26} + Hz'. (24c)
The B, C ... H values are given in table 1.


stacks.iop.org/CQG/35/185013/mmedia
stacks.iop.org/CQG/35/185013/mmedia
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3.2. Received power density
By remembering (10) and (12) and after normalizing to the aberration-free density
[Tkr?/(27z)]?, the received power density is

I1(0;2) = 1 —

13 5 o~ PR
Iy = 25)

n+1

n=2 m=-—n

where we used |z} | = kroa/2. The received power density is maximum when o = 0, that is,
the beam is pointed along the z axis, and decreases quadratically with the pointing error.

4. Gaussian intensity profile

4.1. Received wavefront

Let up(€) = exp(—r? /w?), where the power density is unitary. By following the same steps as
in section 3.1, we redefine the symbols in (20a)—(20d) as

2, 2 1
ag=1—e /" = — Auo(s) de, (26a)
1
a) = m AWO(QMO(Q dg, (26b)
1
T RGGES (260
and
1
az = —W/Awg(ﬁ)uo(ﬁ) dg, (26d)

and rewrite (12) as
u(0;z) = 7w (ap + ia) + ay + ias). (27)

Since Im[u(0; z)] < Re[u(0; z)|—no matter what the w value may be—and both the limits of
az/(1 — e="0/"") when ro/w — 0o and ro/w — 0 are finite, the wavefront error at the receiv-

ing spacecraft can be approximated up to third order of the Zernike modal amplitudes of the
transmitted-wavefront aberrations as

Im[u(0; )] a; + a3
0;2) = =—
M0~ R0 T arta
(et a)(l—e " —ay) (28)
(1—e1/v?)2 ’

where w' = ry/w. Hence, by limiting again the wavefront aberration to tilt, defocus, astig-
matism, coma, trefoil, and spherical, and by carrying out the relevant algebraic calculations,

w(0,2) = bo + bilzj| + ba|zi *, (29)

where we used (28). To obtain the b; coefficients, we carried out the integrations (265)—(26d)
with the aid of Mathematica [19]. The code is available in the supplementary material. By
retaining only the lowest order terms, they are

7
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by = Az + Aqzl, (30a)

by = Blz3]|23] cos(63 — 63 — 01) + Clz3|z5] cos(63 — 05 — 01)
+ D23|z3| cos(63 — 0}) 4 Gz3|z3| cos(63 — 6}), (306)
by = Ez) + F|z5| cos(63 — 201) + Hz), (30c¢)
where, by measuring the beam radius w in terms of the telescope aperture ry,

_ 1_|_el/wl2 +2(1 _el/w’Z)W/Z

A, = , (31a)
_al/w? /w2y, 72 _ al/w?y, 4
a4y = L HOU el )wm+12(1 — e Jw (31b)
1 —el/w
2 14 _al/wN 6
B:_2[1—|—3w + 6w +6(1 — e/ )w'S] Glo)
1 —el/v? ’
” /w2y, 4 _ al/wN, 16
C:_2[1+5w +2(7 + 2w+ 18(1 — e/ )w'®] 31d)
1 _ el/WIZ ’
A eI/W/Z_|_6el/v1/2W/2
_2(2 _ el/w/2 o e2/w'2)w/4 o 12(1 o e1/w'2)2wl6 (316)
D= ey )
e/ W2 — (2 — 9!/ 4 &2/
24 , / /
[—2(7 — 2el/"” — 5e2/% )6 — 30(1 — el/Wz)zw’S] 31
= (1 —el/w?)2 ’
2[el/w'2 —(1- eZ/W/z)zw"‘]
E TErRE , (31g)
2 _al/wy, 4
1 —el/v
w2 02 (1 a2/wW, 4 _4(1 — 1/w?\2,, /16
H:6[2e w? — (1 —e*" (1—e/"")2w ]' 31

(1—el/w?)?2

Figure 1 shows the A, Ay4, B, ... coefficients versus the beam radius w. Also in this case, (29)
describes the coupling of the o’s jitter to the errors of the transmitted wavefront.

Contrary to the truncated plane-wave case, since a; # 0, the wavefront error at the receiv-
ing spacecraft (29) displays a first order dependence on the aberrations of the transmitted
wavefront—namely defocus, spherical aberration, and higher order axially symmetric aber-
rations. As shown in figure 1, when w’ — 0, the received wavefront is insensitive to the beam
pointing. In fact, in this case, the received wavefront is spherical and centred in the origin
of the input plane. Figure 1 shows also that, when w' — 00, (29) converges to the truncated
plane-wave solution (22), as expected.



Class. Quantum Grav. 35 (2018) 185013 C P Sasso et al
0.2 . |

x& —

0.0 A

B

-0.2 AN —C

D

— G

F
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0.0 0.5 1.0 15 2.0
wirg

polynomial coeeficients

Figure 1. Coefficients of the (30a)—(30c) polynomials versus the w/ry ratio. The
horizontal lines are the asymptotic values given in table 1 for the transmission of a flat
intensity-profile. The limits of A, and A4 when w/ry — 0 are £1.

4.2. Received power density

By remembering (10) and (12), observing that (up to the second order of the Zernike modal
amplitudes of the transmitted-wavefront aberrations)

7r2w4}a0 +ia; + az‘zkz
(2mz)?
7r2w4}a% + 2apa; + aﬂzk2
(27z)?
7.‘_2W4[(1 _e_l/w’z)z +2<1 _ e-]/wn)a2 +aﬂk2
(2mz)? ’

u(0; 2)|?

Q

(32)

~
~

and after normalizing to the aberration-free density [rkw?(1 — e~1/*"*) /(272)]2, the received
power density is

1(0;2) & 1+ c1z3] [cos(63)C + sin(03)¢] — e2(CF + () (33)
In (33), ¢, = |z}| cos(}) and ¢, = |z]|sin(@}) are the horizontal and vertical tilts, and

41422+ W2 4 6(1 — e/ )]

e (34a)

cl = —

2[1+(1- el/wlz)w’z]
1 —e-l/w?

e = (34b)
To obtain these coefficients, we carried out the symbolical calculations with the aid of
Mathematica [19]; the code is available in the supplementary material.

Figure 2 shows the coefficients (34a) and (34b) versus the beam radius w. When w — oo,
the received power density reduces to the plane-wave expression (25); when w — 0, which
corresponds to the transmission of a spherical wave, it is independent on the beam pointing,
as expected.
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Figure 2. Coefficients of the polynomial (33).

The power density is maximum when

_ <] cos(63)
G= " (35a)

1 win (ol
c1|zz| sin(6
Cy 1| 3|2C ( 3). (35b)
2

In the absence of coma, whose amplitude is set by the coefficient z}, the maximum is on the
telescope axis. The deviation that occurs when z} # 0 depends on the ratio between the beam
and aperture radii and mirrors the beam’s perception of a wavefront tilt due to the coma.

5. Phase noise

As shown in section 2.6, the pointing jitter of the transmitted beam with respect to the z axis
translates in a jitter of the wavefront tilt-aberration. Therefore, let the horizontal and vertical
tilts

G = 21| cos(8}) = kroow/2, (36a)

Gy = lzi|sin(0]) = kroar, /2, (36b)

where o, and «,, are the horizontal and vertical pointing components, be normal uncorrelated
white noises having ¢, = ({ox. (oy) mean (identifying the nominal pointing) and o2 and ayz
variances. In terms of ¢, and ¢, the wavefront error at the receiving spacecraft (29) is

w(0;2) = boo + b10Ce + b20F + borCy + boaCy + b116eGy (37)

where

boo = A2 + Aszl, (384)

10
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bio = Bcos(03 — 63)|23||23| + C cos(63 — 63)|z3|23
+ D cos(63)|23/29 + G cos(63)z5. (38b)
boy = Bsin(03 — 63)|23||23| + Csin(63 — 63)|2}||23]

+ Dsin(03)|z3]25 + Gsin(6})|25 |23 (350
by = Ez3 + F cos(03)|25| + Hzj, (384)
boy = Ez — F cos(63)|23| + Hzj, (38e)
by, = 2Fsin(63)|23], (38/)

and we carried out the reparametrization of w(0; z) with the aid of Mathematica [19]. The code
is available in the supplementary material.

By linearization of (37), the standard deviation of the phase noise induced by the wavefront
jitter is approximated by

Oy R \/(bIO + 2b20Gox + b11€oy)*0? + (bor + 2boaCoy + b11ox)? 0. (39)

The phase noise is minimum—actually, it nullifies—when the transmitted wavefront jitters
about the stationary point of (37), that is, when the nominal pointing is given by

_boib1r — 2b1obg2
Cox = doosbm — B, (40a)
_ biob11 — 2bg1by

Coy = 4borbr — b7, (40b)

Provided that it is not incompatible with the power-transmission requirement, (40a) and (40b)
identify the optimal pointing. It must be observed that the exact expression of 2, obtained by
the computation of the relevant integral, removes its nullifying.

As pointed out at the end of section 2.3, the off-axis errors of the received wavefront,
w(r; z), are identical to the on-axis error (37) as long as the transmitted wavefront is tilted by
a = r/z. Therefore, when the beam is pointed according to (40a) and (40b), the deviation of
the mean curvature of the received wavefront from that of a sphere centered in the origin of
the transmitting aperture, that is responsible for the coupling of the phase error to jitter, is half
the trace of the Hessian matrix of (37). Hence,

kro\ kro\ > EZ + HZ?
AK = (boy + ba) (’0) :(rO> Ed) + Hef

2z Z 2 (41)

where, to differentiate with respect to x and y, we used (36a) and (36b) and r = az. Therefore,
the defocus of the transmitted wavefront could be adjusted to reduce the phase noise.

It must be noted that, if the attitude jitter of the transmitting spacecraft is 3 = (0, By), the
phase noise —kzp3% /2, where 7 is the distance of the input-plane origin from the test mass
and the negative sign is consistent with the negative retardation in (1), must be added to (37).
This term takes the variation of the spacecraft’s separation (measured along the z axis) into
account. Eventually, since 3 has zero mean, it does not affect the linearized version of (37)
nor the approximate variance-calculation (39).

1
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x/rg
-10 -05 0.0 0.5 1.0

y/ro

-1.0 -05 0.0 0.5 1.0
x/rg

Figure 3. Transmitted wavefront. The rainbow extends from —26.6nm (violet)
to +26.6nm (red). The Zernike modal amplitudes are given in table 2.

Table 2. Zernike modal amplitudes of the wavefront error shown in figure 3 (left).

2 |3| |23 |23 2 Unit
1.71 12.6 6.54 5.46 3.53 nm
- 0% 9% 9% — Unit
— -0.97 1.95 —0.26 _ rad

6. Numerical simulation

We estimated the phase noise of the received wavefront by using a Monte Carlo simulation to
model the coupling between the wavefront jitter and errors. In the simulation, we randomly
draw the real and imaginary parts (the latter representing the azimuthal rotation of the poly-
nomial system of reference) of the Zernike modal amplitudes—z93, 23, z}, z3, and z}—of the
transmitted wavefront from zero-mean Gaussian distributions having the same variance and
constrained to a A/20 peak-to-valley wavefront deviation from a plane. We set the beam wave-
length and the radius of the telescope aperture to A = 1064 nm and ry = 0.1 m, respectively.
The normalised radius w/rg of the transmitted beam was set to one.

Figure 3 gives an example of the randomly generated wavefronts; its Zernike modal ampl-
itudes are given in table 2. The wavefront errors (37) and phase noise (39) at the receiving
spacecraft are shown in figure 4 as a function of the horizontal and vertical tilts of the transmit-
ted wavefront, cio, and ayy (i.e. the pointing deviations from the z axis), and of x = apxz and
¥ = agyz (i.e. the transverse coordinates at the receiving telescope, see the end of section 2.3).

On the average, the errors of the received wavefront are null and bounded as shown in
figure 5. By observing that, as discussed in section 2.3, a 250 m radius at the receiving tele-
scope is equivalent to a 100 nrad tilt of the transmitted wavefront, the +7/250 pm m~! bounds

12
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-250 -100 -250
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agy / nrad agy / nrad

Figure 4. Errors (left) and phase noise (right) of the received wavefront. g, and
oy are the mean horizontal and vertical tilts of the transmitted wavefront, where the
origin identifies the z axis. x = g,z and y = ayyz are the transverse coordinates at the
receiving telescope. The rainbows range from —7 pm to +7 pm (left) and from 0.0 pm
to 1.1 pm (right). The (horizontal and vertical) tilt jitters of the transmitted wavefront
(10 nrad standard deviation) are white and uncorrelated. The transmitted wavefront is
given in figure 3, and the Zernike modal amplitudes are given in table 2.

Figure 5. Upper and lower bounds (standard deviations) of the received-wavefront
errors. The plot region is a disk having 250 m radius. The colours range from —7 pm
to +7 pm. The errors of the transmitted wavefront are constrained to A/20. The bounds
are calculated over 10* Monte Carlo simulations. An exemplary wavefront error (figure
4 left) is also shown (green).

corresponds to a w(0; z) sensitivity to the tilt equal to 0.07 pm nrad~'. Figure 6 shows the
parabolic approximation (33) of the received power.

The histograms of the pointing directions maximising the transmitted power and those
minimising the phase noise of the received wavefront are shown in figure 7 (left and right).
Figure 8 shows the distribution of the transmitted power (33) when the pointing direction is
chosen in such a way to minimise the phase noise of the received wavefront. In the majority
of the Monte Carlo simulations—actually, 95%—the power loss is less than 10%, but there
are cases—actually, 2.5%—where the power loss is higher than 50%. Also, to calculate the
transmitted power, we used the parabolic approximation (33). Therefore, though the left tail
of the histogram is a clue of troubles, the actual loss value reported must be handled with care.
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X / km

agy / prad
y / km

-2 -1 0 1 2
agx / prad

Figure 6. Received fractional power. ci, and o, are the horizontal and vertical tilts of
the transmitted wavefront, where the origin identifies the z axis. x = aq,z and y = aqyz
are the transverse coordinates at the receiving telescope. The transmitted wavefront is
given in figure 3; the Zernike modal amplitudes are given in table 2. The colours range
from 0.7 (violet) to 1 (red).

0.12 0.20f
0.10 ] -
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ap / prad ag / prad

Figure 7. Histograms of 10* Monte Carlo calculations of the pointing directions
maximising the transmitted power (left) and minimising the phase noise of the received
wavefront (right). In both cases, the distribution of the optimal pointing azimuths is
uniform in the [0, 27] interval. The origin is the direction of the z axis.

The observations of fractional powers slightly exceeding one are due to fortuitous corrections
of the off-axis propagation originated by the coma.

Figure 9 shows the quadratic average over 10* Monte Carlo calculations of the root mean
square amplitude o, of the phase noise when the jitters of the horizontal and vertical tilts
(o and ay) are uncorrelated white noises having 10 nrad standard deviations. The average
is given both versus the pointing deviation from the z axis and the output-plane coordinates.
Figure 10 shows the o,, distribution when the beam is transmitted along the z axis. When the
transmitting telescope points in a cone having 100 nrad half-aperture about the z axis, the
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Figure 8. Histogram of 10* Monte Carlo calculations of the received (fractional)
power. The laser beam is transmitted in such a way to minimise the phase noise of the
received wavefront.

X/m
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100} ' ' ' "]250
50| {125
ge]
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8
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~100+ . ‘ 1-250

-100 -50 0 50 100
ag y / nrad

Figure 9. Mean phase-noise (quadratic average of the root mean square amplitudes)
of the received wavefront. ag, and oy are the mean horizontal and vertical tilts of the
transmitted wavefront, where the origin identifies the z axis. x = g,z and y = ag,z are
the transverse coordinates at the receiving telescope. The rainbow ranges from 0.8 pm
to 1.0 pm. The (horizontal and vertical) tilt jitters of the transmitted wavefront (10 nrad
standard deviation) are white and uncorrelated. The errors of the transmitted wavefront
are constrained to A/20. The means are calculated over 10* Monte Carlo simulations.

expected o,, value is about 0.9 pm. The distribution of the tilt magnitude is a Rayleigh one
having \/7r_/2 oxy mean. Therefore, 0.9 pm standard deviation (mean value) of the phase noise
corresponds to a w(0; z) sensitivity to the tilt equal to +0.07 pm nrad !, which is in excellent
agreement with the previous estimate based on the figure 5 data. To establish criteria for qual-

ity of the transmitted wavefront, we repeated Monte Carlo calculations in the case of arbitrary
A/10 and )\ /40 aberrations. Table 3 shows the results.
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Figure 10. Histogram of 10* Monte Carlo calculations of the phase noise o,, (root
mean square amplitude) originated by the coupling of the (horizontal and vertical) tilt
jitter (10 nrad standard deviation, white, and uncorrelated) with random \/20 errors of
the transmitted wavefront. The beam is transmitted along the z axis.

Table 3. Sensitivity (expressed in pm nrad~') of the received-wavefront phase to the
tilt of the transmitted wavefront for (arbitrary) aberrations of the same constrained to
/10, A/20, and \/40 deviations from a flat. The beam is transmitted along the z axis.

A/10 A/20 A/40
+0.28 +0.07 +0.02

7. Conclusions

A gravitational wave shifts the phase of the laser beams linking the LISA’s spacecraft by less
than 10 pm. To compensate for the disturbances, the beam pointing is continuously corrected,
which corrections jitter the transmitted wavefront [20]. If the received wavefront is spherical
and centred on the test mass, the pointing jitter does not affect its phase. However, if the outgo-
ing wavefront is aberrated, the phase of the received wavefront varies, and the jitter-induced
noise must be made harmless.

We carried out analytical computations to determine the wavefront error at the receiving
spacecraft as a function of lowest-order Zernike aberrations of the transmitted wavefront.
Calculations were done both for flat and Gaussian intensity profiles, the former having been
used to validate the Gaussian results via a cross check in the appropriate limit case. Next,
we obtained an analytical expression of the phase noise and used it to carry out Monte Carlo
calculations in the case of arbitrary aberrations of the transmitted wavefront—constrained to
a given optical flatness—and horizontal and vertical jitters having 10 nrad root mean square
amplitudes.

The sensitivity to the jitter is minimised when the laser beam points in a direction that,
in general, deviates from that of the receiving spacecraft. Almost always this implies a neg-
ligible loss of the transmitted power, but there exist cases where the power loss is higher
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than 50%. Without optimisation, the sensitivity to the jitter increases (non-linearly) from
+0.02 pm nrad~! to 40.28 pm nrad~! when the optical quality of the transmitted wavefront
decreases from A/40 to A/10.

We assumed that aberrations other than defocus, astigmatism coma, trefoil and spherical
are negligibly smaller. This assumption might be too optimistic. In fact, in a combined x-ray
and optical interferometer used to determine the lattice parameter of silicon, the comparison
of the wavefront of the optical beam—having about 3mm 1/e* diameter—to the crystal
lattice planes highlighted errors as large as A/10 having a periodicity of less than 1 mm
[21, 22]. They were most probably due to imperfections of the surfaces hit or crossed by the
laser beam. This observation suggests that the Zernike spectrum of the transmitted wave-
front might have high-frequency components originated in the beam path through the optical
bench and transmitting telescope. Therefore, future work must examine the impact of high-
frequency aberrations on the far field propagation.
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