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Abstract

Cutting edge research problems require the use of complicated and computation-
ally expensive computer models. I will present a practical overview of the design
and analysis of computer experiments in high energy nuclear and astro phsyics.
The aim of these experiments is to infer credible ranges for certain fundamental
parameters of the underlying physical processes through the analysis of model
output and experimental data.

To be truly useful computer models must be calibrated against experimental
data. Gaining an understanding of the response of expensive models across the
full range of inputs can be a slow and painful process. Gaussian Process emula-
tors can be an efficient and informative surrogate for expensive computer models
and prove to be an ideal mechanism for exploring the response of these models to
variations in their inputs.

A sensitivity analysis can be performed on these model emulators to character-
ize and quantify the relationship between model input parameters and predicted
observable properties. The result of this analysis provides the user with informa-
tion about which parameters are most important and most likely to affect the pre-
diction of a given observable. Sensitivity analysis allow us to identify what model
parameters can be most efficiently constrained by the given observational data set.

In this thesis I describe a range of techniques for the calibration and exploration

of the complex and expensive computer models so common in modern physics
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research. These statistical methods are illustrated with examples drawn from the
fields of high energy nuclear physics and galaxy formation.

Now with 47 delightful figures.



A green oak tree’s by a cove curving;

A gold chain on that oak is found,

And night and day a cat most learned
Walks by that chain, around, around,
When he walks right, sweet songs intoning,

When leftwards, tells a fairy tale.

I dedicate this thesis to Cassie, and Cup-a-Joe coffee shop. I couldn’t have done

it without you.
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1

Introduction

And I am dumb to tell a weather’s wind
How time has ticked a heaven round the stars.

Reality is messy and complicated, science is a continual attempt to unfold and
understand some of this complexity. Frequently when trying to attack hard prob-
lems one is forced to turn to numerical models. Big questions usually require big
models, with many inputs and outputs and a broad swathe of control parameters
and settings. These big models usually require a lot of computer resources, making
them expensive to run and often rendering the prospect of a serious exploration
of their behaviour infeasible or at least unappealing to the pragmatic researcher.

If our model had no adjustable components and its counterpart process in re-
ality could be reasonably measured we could directly compare the model output
to the set of experimental measurements. For computer codes of any complexity
this is no longer the case, there are usually a host of adjustable quantities present
both experimentally and within the model itself. If we are modeling a very com-
plex process it is unlikely that we are simply solving a well defined equation (such
as heat diffusion V?¢ = 0, with some simple boundary conditions) instead we are
dealing with the potentially stochastic interactions of many complex sub-processes

such as the propagation of interacting particles via an approximation to the Boltz-



mann equation or the intricate web of interactions within a climate model.

The models I am primarily interested in are those that are designed as ex-
ploratory tools as opposed to precision calculators. Research scientists often do
not know what is the appropriate way to model a novel phenomenon, the models
they do create are always a best (simplest, fastest, easiest to implement,. . .) guess
at the underlying processes taking place. With this in mind, our goal is to use the
available experimental measurements to simultaneously poke holes in and shore
up these models as best we can. This is a deviation from the bulk of the literature in
the statistical model-analysis community. This usually focusses on making precise
estimates of the deviations of a well understood model from reality. This approach
will become important as the models themselves crystallize from exploratory to
precision tools. In the initial stages of scientific exploration partial rapid feedback
is much preferred over a more complete long term analysis.

Experimental information about complex processes such as galaxy formation
or particle collisions can be expensive to obtain and it is usually difficult to provide
observations which span the full parameter space. As data is collected gradually
an approach which can readily include new results is to be preferred.

It is usually the case that the domain scientists have explored their model out-
put through variations of a single input parameter. Fixing a given value that seems
to give good results and then varying the next parameter. The high computational
cost of these models usually makes systematic exploration in terms of multiple pa-
rameter variation prohibitively expensive. For models with even moderately sized
parameter spaces the volume sampled in this fashion will rapidly become minute.

Itis important to acknowledge the tension between devoting time and resources
to understanding a model and the need to actually “get things done” meaning ap-
plying the model to apposite domain-science questions. In an ideal world one
would make no siege upon the latter without a detailed and extensive effort to-
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wards the former. The methods, techniques, and rules of thumb presented herein
are intended to give a harassed scientist a good grasp on their model, it’s workings,

and applicability without requiring a lifetime of effort.
1.1 The central questions — An Outline

Faced with this kind of situation we may find ourselves asking;:
o Can we effectively approximate our model in some fashion? (Chapter: 3)

e How well does our model actually reproduce physical reality, as we under-

stand it? (Chapter: 9)

— What is the best value of a given setting? Can we sensibly talk about a

true value of a parameter?

— What can we conclude about our understanding of physical reality given

a set of experimental data and our model?

e What are the most important inputs and parameters for this model? (Chap-

ter: 8)
e What are the uncertainties in our understandings of our model? (Chapter: 7)

In this thesis I will attempt to draw together the wide literature on the statis-
tical analysis of computer experiments and present it in a format that should be
accessible to physicists. In so doing I will address the above central issues with
illustrations drawn from my own practical experiences in the analysis of trans-
port models of relativistic heavy ion collisions [1, 2], and galaxy formation models
[3, 4]. The results and methods collected and expounded upon herein should be

sufficient to carry out a complete analysis of a typical computer model.



1.2 What is a computer model?

Suppose that we have some computer model which we will represent as a function
f(z,u), a function of two sets of numbers = and u the observation and calibration
parameters respectively. The observation parameters are those which can be sys-
tematically varied in both physical and computer experiments. The calibration
parameters usually will be quantities which are not directly accessible experimen-
tally. These could be parameters which control some purely numerical aspect of
the model which are of no great physical significance but of course great computa-
tional significance. We wish to learn about best, in the sense of most compatible
with experimental observations, values of these quantities so that we can run our
model most effectively.

There may also be calibration parameters which encode some unknown quan-
tity that has a real physical significance, such as the mass of a certain particle or a
given coefficient in some model. Of course these “physical” calibration quantities
may not actually have a direct corresponding quantity in reality, since they are the
product of the long chain of approximations, and conceptual models that makes
up the complex game that we call science. Philosophy aside, we are certainly inter-
ested in learning as much as we can about these physical calibration variables as
they represent a powerful tool for the falsification of the theoretical ideas our model
itself is built upon.

For simplicity we can begin by restricting our attention to computer models

which produce only scalar output, i.e. f is a function
[ R x RP* > R (1.1)

where p, is the number of observation parameters (not to be confused with any
finite number of actual observations of something) and p, is the number of cali-
bration parameters. Throughout the course of this thesis I will use the term sim-
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ulator to stand in for computer-model whenever there might be the possibility of
confusion between computational models and the statistical models that we hope
to make of them. The diagram Fig: 1.1 gives a quick overview of where I am going

with these layers of models.

__| Theoretical | _ | Computer
Physics Model

€ — - -
\

Experiment} - Calibration
Parameters

Ficure 1.1: A schematic representation of the connections between reality, theory, experi-
ment, our computer model or simulator, and the statistical emulator or surrogate we will
create of it.

To address how well the model reflects reality, we should adjust the calibration
parameters to their “true” values u, and then make a set of observations of the
model output over the range of x which could then be systematically compared to
experimental data. We'll denote the set of experimental observations as Y;(x, u.),
these will unavoidably have some observation error ¢ associated with them. Let’s
denote the real outputas Yy (z, u.), this is what we would measure if we could make
observations without error and what we believe that our simulator is reproducing.

Proceeding in this way we can now develop a model of the difference. Writ-
ing the simulator output as Y,,,(z,u) = f(z,u), reality as Y,(x,u.) and our field

observations as Y(z, u.) then
Yi(z,u) = Yo(x,u.) + €f(2) (1.2)

Yi(x,u) = Yo (2, uy) + b(x, uy),

where €;(z) represents the error in the experimental observations and b(z, u) is

some unknown function representing the discrepancy between our model and re-
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ality. This is all well and fine however we generally have no idea what u, should be
and so we have to evaluate Y,, over a range of values of u. Furthermore the func-
tional form of b is strongly confounded with u, for differing values of u the model
will produce varying output changing the form of b. The form given in (1.2) was
tirst promulgated by Kennedy and O'Hagan [5]. Though this is by no means the
only possible formulation it is a reasonable place to begin for most simulators.
With the information we have it is impossible to uniquely determine both .
and the correct form of b. Imagine two people with weights 6, 6, standing on a

scales at the same time, the measured weight would be
Yy = 91 + 92.

No matter how we repeat the process or the values of the two weights we will not
be able to make a sensible estimate of either one with only observations of y. In
this case the quantities 6,, 6, are not statistically identifiable. Of course if were to
able to hold one weight fixed (¢, say ) while systematically varying the other we
would be able estimate ;. However this is a rather different situation since the
systematic variation of ¢, promotes it from a random quantity to a certain one.
Returning to our definition (1.2) we can make certain choices of prior distribu-
tion for the discrepancy which attempt to balance the functional form of b so that
its influence is “small” relative to that of the computer model Y;,,. This is reason-
able since we typically have a fairly large number of observations of the computer
model output across the z, u space, although this is typically biased towards the u
side of things, and a far smaller number of experimental observations since these
are typically drastically more expensive to obtain than most computer models.
The bias term is important to fully and fairly understanding the computer model.
If we do not explicitly include it then we are artificially creating some residual «
space structure either in the error in the experimental data or into whatever error

6



structure we create for our statistical model of the simulator output. As we will
see, the more bias is needed to square the model with experimental data the more
uncertain our estimates of u,

Suppose we carry out a model calibration procedure and obtain some estimates
of the true values of the calibration parameters ., we must be very cautious as to
how we interpret these estimates. There is no iron-clad guarantee that the pla-
tonicaly true values u, would actually give a better fit to the observed model and
simulation data than whatever estimated values 4. we obtain. The estimates we
will obtain are the best set of values we could find for the calibration parameters
given not only all of the particular details of our sampling of the model (Y;,) and
reality (Y;), the approximation procedures we use to represent the model and dis-
crepancy at untried input locations, and more subtly all of the assumptions that
went into the construction of the model and of course into the interpretation of
whatever raw information was processed to give the field data.

Nevertheless we should not give up before we even get started, while we cannot
hope to exactly pin down the true values u, in any practical situation we can rea-
sonably expect to obtain credible ranges for their values. Hopefully these credible
ranges obtained after carrying out the analysis of the computer model and running
our experiments will be tighter than our prior ranges. Of course the case where
they are substantially wider may actually be more exciting since then we may have
evidence that our computer model and the theoretical framework it is based upon

is incompatible with these field observations.

1.3 The statistical analysis of computer experiments: a microscopic
review

The systematic investigation of the Fermi-Pasta-Ulam model [6], which models the

dynamics of a lattice of non-linearly coupled oscillators, represents perhaps the
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first formal computer experiment where the goal was to explore the variability in
the model’s behaviour as a function of various calibration parameters.

The first serious statistical treatment of the analysis of computer experiments
can be found in the papers of Sacks et al [7] and Currin et al [8]. Which present fre-
quentist and Bayesian approaches respectively to using Gaussian Processes (GPs),
a kind of stochastic process which can be adjusted to produce a wide range of func-
tional forms, to model the relatively smooth output of computer codes and make
predictions of the output at untried locations in the parameter space. The left hand
panel of Fig: 1.2 shows some random samples from a one dimensional Gaussian
Process.

The process of using a GP to make predictions about a smoothly varying field
at unmeasured locations given a set of inputs has its roots in spatial statistics, be-
ginning with applications to mineral exploration, and is known as Kriging [9] or
Gaussian Process regression. A central reference for spatial statistics is Cressie’s
book [10], a serious discussion of the mathematical details of Kriging or GP re-
gression can be found in [11]. An introduction to all aspects of GP regression from
a machine learning perspective can be found in the excellent book of Rasmussen
and Williams [12]. The right hand panel of Fig: 1.2 shows random samples of a
Gaussian Process after carrying out GP regression, the process has been condi-
tioned to pass through a set of observations of a toy model (solid black points). In
this panel the confidence interval is no longer a uniform band, it shrinks to zero
near the training points since here the model values are known with certainty and
grows in the gaps where the model output is unknown.

The use of GP’s and GP regression as part of a larger analysis of a computer
model, with a view to obtaining calibrated model predictions is introduced in the
seminal papers of Kennedy and O’Hagan [13, 5], where a Gaussian Process is used
as a surrogate or emulator for the model output at untried locations in the parame-

8



ters space. Here the focus is on making the most accurate predictions rather than
on understanding the calibration parameters themselves, the papers by Bayarri et
al[14] and Higdon et al [15] develop the Kennedy and O’'Hagan framework with an
emphasis on calibration itself with the Higdon article espousing a fully Bayesian
procedure in contrast to the partial-Bayesian procedure found in Bayarri !. The
calibration of models which produce multivariate (or functional) output requires
some careful considerations, the fully Bayesian framework of Higdon et al is ex-
tended to multivariate data in [16], the procedure of Bayarri et al is extended in
[17]. Detailed discussions about the optimal design of computer experiments, i.e.
how best to layout a finite set of model evaluations through the parameter space,
can be found in the book of Santner et al [18] and in [19, 20, 21].

Besides calibration GP emulators have been used to develop an understanding
of the variability in a model’s output when some (perhaps all) of the parameters
are unknown and are allowed to vary according to a given joint probability distri-
bution, this is known as uncertainty analysis (sometimes uncertainty quantificiation
in engineering applications). The tutorial by O’'Hagan [22] (based on the detailed
article about uncertainty analysis [23]) is a fine not so technical introduction to the
uncertainty analysis of computer codes via GP emulators and also to the use of
Gaussian processes as emulators for computer models. So called polynomial chaos
methods, based upon expanding the simulator as a series of stochastic polyno-
mials, have recently arisen as an alternative method to GP’s for understanding
variability due to uncertain parameters in dynamical systems [24], while powerful
these methods require a complete mathematical formulation of the model and are
rather outside the scope of this work.

We can naturally extend the concept of uncertainty analysis to building an un-

! The general consensus appears to be that the results from these approaches are roughly equiva-
lent for practical purposes, while the fully Bayesian procedure may be more elegant it also requires
rather more Monte-Carlo simulation effort than the MLE drop-in procedure.
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derstanding of the relative influences of the various input parameters, and their
combinations, upon the model output. This sensitivity analysis requires a great deal
of computational effort if directly applied to the simulator, however it becomes rel-
atively straightforward when carried out on a GP model surrogate [25, 26, 27, 28].
The resulting information about which parameters (or their combinations) have
the most influence on the simulator output provide focal points for the detailed
investigation and calibration of the model.

All of these ideas have been directly applied to complex cutting edge computer
models in the physical sciences, in cosmology [29], galaxy formation [30, 31, 4, 3],
modeling risks from extreme events [32], and increasingly in Heavy Ion physics
[2, 1]. The article by Soltz et al [33] deserves mention as a serious attempt at using
model calibration to make inference about the true values of unknown physical
parameters arising in Heavy Ion physics, although no GP surrogate is used in this

particular analysis.
1.4 Sources of uncertainty in computer models

In [5] the authors include a an extensive list of the possible sources of uncertainty
arising in the analysis of computer experiments. I have reproduce the essential
details of this list here as these definitions provide the basis of a common language

for the discussion of computer experiments.

e Parameter Uncertainty: Our uncertainty about the values of the calibration
parameters. The best values for a given set of observational data may not be

the same as the true values.

e Model Inadequacy: Even if there was no parameter uncertainty, so that we

knew the true settings for the calibration parameters there will still be some
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discrepancy between the predicted value and the true value of the process

we are modelling, “All models are wrong”.

This discrepancy, specifically the difference between the mean value of the
observed process and the model prediction at the true value of the calibration

parameters is the model inadequacy.

Residual Variability: We believe that our parameterization of the model is
sufficient so that repeated observations at the same settings will always take
the same value. In practice this may not be the case, the variability that arises
may be due to stochastic elements in the model or it may be that we have
failed to fully specify all the conditions or parameters needed. A good ex-
ample is a simulator which relies to some extent upon Monte-Carlo (MC)
methods which introduce residual variability into the final output. This vari-
ability may be reduced by increasing the number MC samples used. In some
sense the variability can totally eliminated by including the seed supplied to
the random-number-generator as a parameter in the analysis, however this

is unlikely to be of much practical use.

Parametric Variability: Sometimes it may be useful to obtain predictions
of the model output where some subset of the model inputs are allowed to
vary according to some joint probability distribution, for instance when one
wishes to understand the influence of nuisance parameters or systematic er-

rors on some model.

Observation Error: Model calibration requires a set of field observations,
these will necessarily have some uncertainty associated with their collection.
Typically these observation errors will be smaller than the computer model

uncertainties.
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e Code Uncertainty: Practically the output of our computer model at some as
yet untried location in the parameter space is unknown. Strictly we know
that this output must be a function of the inputs and so the output is not
truly uncertain. However it may take a great deal of effort to obtain this
information for non trivial codes and so it is reasonable to treat this as an

additional source of uncertainty.
1.5 Simple and Complex models

Now that we have an idea of what I mean by a computer model, let us introduce
an important classification between those models which are fundamentally simple
and those which are fundamentally complex or challenging.

Simple models are: models of situations where physical observations and mea-
surements can be readily made, deterministic, almost certainly the right solution to
the problem, typically solving engineering problems where the underlying physi-
cal process is well understood and one seeks to fully understand a given particular
application.

Complex models are: situations where physical observations and measure-
ments are very expensive and difficult to make, not necessarily the right formal
description of the problem i.e. phenomenological, perhaps somewhat stochastic,
typically these models represent research problems where the underlying physical
process is not well understood and a general understanding of this process is the
primary goal.

An example of a simple model is a code that would model the evolution of the
temperature 7'(r, t) of a metal block for a given initial distribution of temperature

Ty and a given heat conductance k (and block, i.e. boundary conditions). We could
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numerically solve

%—f — —kVT T(F,0) = T. (1.3)

Suppose that a suitable experiment could be setup to verify our results. Where
could uncertainty arise with this model? First let us suppose that with a simple
model we are always certain that we are simulating the correct process although
perhaps with incorrect model parameters. Given that we believe that we are solv-
ing the correct equation we could be uncertain about the initial condition, the heat
constant in our block k£ and our temperature measurement. In this case we are
fairly sure that there must be some good set of these parameters which will agree
with our experimental data. With a simple model our goal is to develop the best
possible treatment of our uncertainty in our implementation of the process and to
build up a complete understanding of the models deviations from reality, if indeed
there are any.

An example complex model might be a simulation of the interaction and trans-
port of some set of hadrons using the Boltzmann equation to describe the behavior

of nuclei during a very high energy nuclear collision

0

where Fy(x,p) is the one particle distribution function of the k’th species and C;
represents some complicated collision functional. The complexity in the model
arises from the collision term, the interaction of pairs of particles makes this equa-
tion rather analytically intractable. Relatively slow numerical simulation of this
equation can be carried out.

In this extreme case we are uncertain of a great deal: we do not know the con-
figuration of particles within each nucleus before the collision; we can only ap-
proximate the nature of their interactions and we cannot even be certain that we
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are using the correct model to describe the system. In fact we actually know that
using a model which includes a hydrodynamical evolution sandwiched between
initial and final periods of microscopic transport gives a better description of the
experimental data. To make matters worse we cannot directly observe the system,
we can only make measurements of the resulting particles a long time after the
collision and try and relate them to the processes taking place in our model.
With a complex model we are not sure that we are actually modeling reality
at all. Our goal here is to determine to what extent our complex model could be

reproducing reality if indeed it does this at all.
1.6 Settings and parameters

We have defined our model in terms of two sets of parameters v and x. Parameters
in set = exist in reality and importantly we can make controlled observations at dif-
fering values, hence the name observation parameters. Parameters in set u either
do not have a well defined counterpart in reality, or the counterpart is a (known or
unknown) fixed value such as fundamental constants. These are often referred to
as calibration or tuning parameters.

Experimental observations will be made with the fundamental constants at
their true values, the values of the calibration constants do not matter in terms
of experimental measurements. We denote the location in u space where every-
thing either takes its true value (in terms of fundamental constants) or the best
possible value given the structure of the model as ..

There are also parameters that will change the experimental observations which
have no counterpart within the model, for instance the resolving power of detec-
tors in a heavy-ion experiment is not (directly) included in a transport model like

UrQMD [34, 35, 36]. We will not directly deal with the latter. These missing pro-
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cesses / parameters are important as they are likely to contribute to the discrep-
ancy between our model and reality.

For clarity here let us take UrQMD as our model, this is a hadronic transport
approach including an ideal (3+1) dimensional hydrodynamic evolution for the
hot and dense stage of the evolution. This approach represents a class of state-of-
the-art models which decribe the dynamical evolution of heavy ion collision based
on combining hadronic transport approaches that are well suited to deal with the
non-equilibrium initial and final state and a hydrodynamic evolution where the
equation of state is an explicit input and phase transitions can be treated properly.
Examples of parameters in the = set would be /Sy, centrality of collisions, what
kind of nuclei are involved. Examples of calibration parameters include the grid
spacing in the hydro code, the smoothing width ¢ used to convert from the micro
to the hydro stages, the freeze-out scale and the equation of state for hot nuclear
matter. The latter is an example of a calibration parameter which does exist in
reality, learning about these is often of great interest to the domain scientists.

With complex models we often have a large set of internal calibration parame-
ters v and a relatively smaller set of externally variable parameters x. The limited
information in the = space further restricts our ability to approximate the system-
atic bias between the model and reality.

The models that we are typically dealing with day-by-day are complex, their
behavior as their inputs are jointly varied is not always well understood. Experi-
mental data is usually limited to small discrete sets of values in the = space. For
instance in high-energy nuclear experiments the mechanical details of the particle
accelerator only allow a small discrete set of possible colliding particles and ener-
gies. In this situation we prioritize exploring the model output space in terms of
varying the calibration parameters v and making comparisons with available data
over attempting to build up a representation of the model discrepancy.
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1.7  Getting started, in media res

To close this introduction, let’s consider a tiny example of the use of GP emulators
as part of the analysis of a real computer model. I will introduce all of the rele-
vant mathematical details later (mostly in chapters 3 & 4), for now we can simply
consider the GP emulator as a black-box interpolation scheme. Importantly this
particular interpolation scheme provides a direct measure of the uncertainty in its
predictions at untried locations.

As mentioned in the previous section UrQMD [34, 35, 36] is a transport code
which describes the evolution of relativistic heavy ion collisions. It simulates the
collision from end to end, starting with the initial scattering of the two nucleii,
including the hydrodynamic evolution of the bulk of the system and finishing with
a Boltzmann transport of the hot hadronic matter formed in the aftermath. This is
a complex model with a wide range of potential parameters. Currently the largest
uncertainty in the overall description of heavy-ion collisions lies in the specification
of the initial states of the colliding nucleii and their early time interactions.

In [2] we explored the influence of two parameters in UrQMD associated with
the early stages of the collision, we began with a very simple experimental design,
using only two parameters tg.,,+ and o. The parameter t,,; controls the time (in
units of fm/c) after initial collision at which the code switches the evolution from
the microscopic transport of the hadrons arising from the collision to the hydro-
dynamic treatment. This is an important parameter as it sets the amount of al-
most free-streaming that takes place before the strongly interacting hydrodynami-
cal processes take over. It’s reasonable to expect that this parameter has some kind
of counterpart in physical reality, although the process is likely not a sharp transi-
tion. The parameter o controls the kernel-width of a smoothing function used to

convert the hadronic degrees of freedom into the initial energy density for the hy-
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drodynamical evolution, this effectively sets the lumpiness of the initial conditions
of a very important stage of the evolution. As hydrodynamics is a fundamentally
effective theory of the strong interactions of system this parameter does not have
an obvious counterpart in physical reality.

To explore the dependence of the model on these parameters we constructed
a GP emulator of the total number of pions produced at mid rapidity in central
Au-Au collisions at v/S = 200 AGeV. The set of training data collected at various
values of our parameters of interest ¢, and o is shown in the left hand panel of
Fig: 1.3 along with the STAR data [37].

Using a simple measure of deviation from the experimental measurement we
found a wide valley structure in the o—t. plane where comparable pion mul-
tiplicities could be produced, see Fig: 1.3 Here we defined the implausibility or
feasibility of a given location in the calibration parameter space as a measure of

the distance between our interpolated predictions and experimental data

(E[yemu (’LL)] _ E[yﬁeld])2

I“(u) = V[Yermu(©)] + V[Yserd] + V[Ymodel]

(1.5)

where yen, represents a scalar GP emulator and V[ymoede| represents an informed
estimate in the overall model error. Throughout this thesis I shall use the notation
E[X] and V[X] which respectively represent the expectation and variance of the
random variable X. This simple measure, the implausibility, includes the informa-
tion we have about the uncertainty in the interpolation scheme in the term V| yemu]-
This previously unknown structure, suggesting that changes in one parameter can
be traded off against changes in the other, would have required a very large set of

model runs to uncover without a suitable interpolation scheme.
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Ficure 1.2: Left: random samples from an unconditioned Gaussian Process, smooth func-
tions with a predetermined correlation structure in the x dimension. Right: random sam-
ples from a Gaussian Process after regression carried out against observations of a toy
model (solid points). The random samples now interpolate the training data, passing
through the observed points and deviating more from the true function value the fur-
ther they get from these points . In both panels the gray bands show approximate 95%
confidence intervals around the mean.
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Ficure 1.3: Left panel: the training data for the simple analysis. The mean number of
pions at mid rapidity for each design point is plotted along with 95% confidence intervals,
the STAR experimental result is also plotted in red. Center panel: the expected number
of pions as predicted by our GP surrogate model plotted across the 2d design space, the
symbols show locations of the training points. Right panel: the feasibility (1.5) of the
various regions in the design space.
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2

Heavy Ion Physics — A biased survey

All hadronic matter is made up of a tightly bound quarks which interact through
the exchange of gluons. The theory of quark and gluon interactions Quantum
ChromoDynamics (QCD) is characterized by the running of the coupling constant
as with momentum. At the soft momentum scale typical of the interactions be-
tween confined quarks and gluons the coupling constant becomes large and the
theory is non-perturbative. At very high energy densities this confinement of the
hadronic constituents can be broken. There is a transition from individual sepa-
rate hadrons into a sea of strongly interacting matter. The production and study of
this new deconfined phase, the quark gluon plasma (QGP) is the goal of heavy-ion
collision experiments like those carried out at RHIC and the LHC. For reviews on
the physics of the QGP see [38, 39, 40, 41, 42]. Direct observations of the QGP are
not possible due to the incredibly short lifetime of this system ~ 10 fm/c. Once the
medium cools past the transition temperature strongly bound hadrons form which
are then measured in the experimental detectors. This non-perturbative process

forms a screen around the QGP.
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Ficure 2.1: A schematic representation of the relationships between experiment and the-
ory in relativistic heavy ion physics.

At high energies, i.e. center of mass scales /s, > 10 GeV, the collision of nu-
clei results in quantitatively different behaviour compared to the collision of single
nucleons. There is strong evidence for large scale collective behaviour amongst
the products of the initial collision which cannot be descrbed by the superposition
of pQCD processes. This is in contrast to proton-proton events at similar scales
which can be well described as a combination of a single, perhaps quite complex,
hard QCD (and therefore perturbative) process with universal non-perturbative
objects. The latter representing the probabilty of finding a parton within a nu-
cleon (a parton distribution function PDF) and the probability of a given hadron
being produced by the color-confinment of a particular parton (a fragmentation

function).

7 =0fm/c 7=0.6fm/c 7=_8fm/c T =16fm/c T =22fm/c
Ficure 2.2: A cartoon of the evolution of a relativistic heavy ion collision. The points
in the far left frame represent the nucleons in the inbound nucleii. The colored volumes
represent the QGP matter as simulated by a hydrodynamic model. The red points in the
later frames are the hadrons produced by the cooling of the QGP. Reproduced from [43].
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The colliding matter is believed to form a hot deconfined state called a Quark-
Gluon-Plasma (QGP) with a transition temperature at 7. ~ 170 MeV. The colliding
nucleons are rapidly heated which leads to the deconfinement of their constituent
degrees of freedom. The constituents of each nucleon, quarks and gluons, are lib-
erated. The high temperature and pressure forces the nucleons themselves to melt,
alternatively one can think of this as a local melting of the QCD vacuum which en-
forces confinement. The QCD interactions of the now free colored partons give
rise to a rich set of interesting observable phenomnena, such as collective flow and
the suppression of hard partons and heavy hadronic states.

Heavy ion collisions provide a window for studying the novel properties of the
quark gluon plasma and the mechanisms of its creation and evolution. However,
only experimental observations of the momenta of particles which comprise the
remains of the collision are possible. The process of using theoretical predictions
and experimental models to learn about the nature of these hidden processes is
schematically presented in Fig: 2.1. This situation with a chain of experimental
observations, of the remnants of the true processes of interest, feeding into simu-
lations developed from theoretical models and then feeding back into the exper-
imental process itself is an almost ideal one for the application of the statistical
methods contained in this thesis.

To address the fundamental questions concerning the properties of QGP mat-
ter and understand its evolution requires the application of large and complex
transport models. These models typically combine a viscous hydrodynamic treat-
ments of the evolution of the thermalized quark-gluon plasma (~1-7 fm/c) with
microscopic hadronic transport simulations which describe the propagation and
breakup of the produced hadrons (~7-20 fm/c). During the first fm/c of the colli-
sion, when the system is too far from equilibrium for even a viscous hydrodynamic
treatment, quantitative modeling carries large uncertainties.
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The data sets from the Relativistic Heavy Ion Collider (RHIC) and from the
heavy ion programs at the Large Hadron Collider (LHC) are immense. The mixed
nature of this data, along with the strong interdependence of disparate observables
with respect to basic model parameters, makes a unified interpretation of this data
rather challenging. The field has progressed by identifying the principal connec-
tions between model parameters and observables through phenomenological and
theoretical modelling.

This situation — of non-trivial computer models built from phenomenological
treatments of very complex underlying processes and also of widely held qualita-
tive beliefs about the influence of such and such upon such and such - is typical
across the various sub-fields of QGP physics. Understanding how to use these
models along with the wide range of field data to most effectively turn the many
fascinating and hard won qualitative results into strong quantitative statements
about the properties of QGP matter is a top priority for ensuring the future rel-
evance of the field. This requires a conscious effort on the part of heavy-ion sci-
entists. This transition to precision measurements needed to mature the field will
not, infact surely cannot, come about from a business as usual approach to QGP

phenomenology.
2.1 Bulk Properties

We can separate the observed behaviour of the QGP into bulk evolution and hard
probes. The vast majority of the interactions in the initial instants of the collision
are relatively soft ~ 1 GeV with a power law distribution of interactions at higher
momentum scales. This soft matter is strongly interacting and appears to give
rise to most of the observed phenomena (flow, particle spectra and yields in the

tinal state), its evolution can be well modelled by ideal (inviscid) ultra-relativistic
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hydrodynamics [44, 45, 46, 47, 48, 49]. In this picture the evolving deconfined ma-
terial is modelled as a strongly-interacting liquid. Hydrodynamics explains bulk
properties, it is not a microscopic theory which can describe the evolution of a
particular gluon or quark any more than the Navier-Stokes equations can tell you
about the transport of a particular water molecule. All of the detailed microscopic
information about the QCD matter is absorbed into the equation of state.

Hydrodynamics is simply a statement of energy and momentum conservation:
0,T" = 0, 2.1)

where T is the stress-energy tensor. It is a reasonable first approximation to use

the stress energy tensor of an ideal fluid
" = (& + P)ufu” — PgH, (2.2)

where & is th energy density, # is the presure and u* is the four velocity of the fluid.
We need to introduce conservation equations for baryon density n (¢, /N* = 0) and
finally we need an equation of state which relates the pressure & to the energy
and baryon densities. This is typically obtained from lattice QCD. For hydro to be
applicable we need the mean free path of particles to be much smaller than the typ-
ical size of the system, so that we can describe the system interms of its bulk flow
instead of interms of particulate properties. Also the material in question needs
to be in local thermal equilibrium, the transition from collision to TE is apparently
extremely rapid 7 ~ 0.6 — 0.8 fm/c. We can therefore only apply hydro to evolu-
tion on scales where p;, < 2 GeV (from uncertainty), further we cannot use hydro to
describe the initial or final (particulate) stages of the collision. The baryon number
conservation equation can be expanded to
0, N" = u"o,n + no,u”,

= Dn + nf (2.3)

23



where I have introduced the convective derivative D = v*d, and the four diver-

gence ¢ = J,ut. Explicitly writing out the derivative of the stress-tensor gives

0,IT" = 0,(& + P)utu” + (8 + P) (u” ut + u'd,u”) — g" 0,2, (2.4)

we can simplify these four equations (for v = 0,...,3) by projecting along and

perpendicular to v, this leads to final set of five ideal hydrodynamics equations

Dn+nf =0 (2.5)
D&+ (8 +P)) =0 (2.6)
(&+P)Du' —V'®P =0 (2.7)

where V* is the spatial gradient. Recall that the system is closed by the equation
of state. A solution can be obtained in the so called Bjoken model [50], where
the system is assumed to be boost invariant and homogeneous in the x,y spatial
directions. Here we switch coordinates to ¢t = 7 coshn, z = 7sinh 7. In this special
(and greatly simplified) case the pressure and energy density are purely functions
of the proper time 7, using D = u#d, = ¢; and 0 = J,u* = 1 then the only

contribution from the stress-tensor equations is (2.6) which simplifies to

E+0
= -

06 +

0, (2.8)

using the equation of state of a relativistic ideal gas & = 3% we obtain

46
0.6 = —=—
37
which gives a simple power law solution for the evolution of the energy density as

the system expands and cools &(7) = &, (7—0)4/ °

T

In general one cannot solve the ideal hydrodynamics equations of motion with-

out recourse to numerical methods. Treatment of viscous corrections to the ideal
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Ficure 2.3: Left: A cartoon of the geometry in a heavy ion collision. The two nucleii are
very unlikely to ever collide head on, instead the finite impact parameters typically lead
to an elliptical overlap region. Right: A cartoon showing the contributions of the finite
overlap region to the elliptic v2 and triangular vs flow.

motion introduces additional complexities and transport coefficients. This is usu-
ally carried out in the form of a gradient expansion of the equations of motion,
originally developed by Israel and Stewart [51, 52, 53] and subsequently adapted
and adopted in the work of Song & Heinz [54, 55], Romatschke [56, 57] and more.
Inference about the transport coefficients introduced by this process such as the
shear and bulk viscosity, derived from the interaction of computer simulations and
experimental observations is highly desirable as there are often no direct ways to
obtain information about these quantities.

As an example, the shear viscosity of the quark-gluon plasma is known to
strongly influence the observed anisotropic flow coefficients v,,. These are the co-
efficients of an azimuthal Fourier decomposition of the momentum distribution
of final particles which provide information about collective flow during the colli-
sion.

Typically collisions do not occur at zero impact parameter. The resulting rugby
ball shaped overlap region leads to differential expansion rates in the plane of the
collision versus out of the collision plane (see Fig: 2.3), as a result of the difference
in the initial pressure gradients. An ellipticinitial state energy distribution leads to

an elliptic final state momentum distribution (albeit in a rotated plane), this elliptic
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(and higher order) flow is quantified by the moments v,, of a Fourier expansion of

the azimuthal angular distribution of the momenta of the observed hadrons

AN N -

pr 1+2;vncos(n(gb—ﬁl)) : (2.9
where V is the event-plane angle which acts as a reference angle for the expansion.
Extensive efforts have been put into investigating the correlations between these

final state quantities and a similar decomposition of the experimentally unobserv-

able initial state of the nucleii just before they interact [58, 59].

25 T T T T T T

ideal 0.08 ideal
= == 1)/5=0.03 . e =e1/5=0.03

T T
L P I
20 — 1)/s=0.08 - ’ o= 01)/5=0.08 | ]
3 = = 1/s=0.16 1 /)*H:’—“ﬂ—ﬂ_; 006 ¢ /, . e - o1/s=0.16 ||
sk + STAR = i 7 = PHOBOS
[ P ‘/ ~. Tenere * . * ]
re ¢ . .\

p
- T R
& e PN 0.04 :
> 10 KA e 7 N
[ )—’?‘/I d M
P | - S |
5F ,?‘ * u 002 o .\
0 1 Il L 0 1 1 1 \
0 1 2 4 0 100 200 300 400
pTlGeV] Part

Ficure 2.4: Left: variation of v2 as a function of the number of participating nucleons
(a measure of centrality) as a function of the shear viscosity to entropy ratio 7/s. Right:
variation of v, as a function of particle transverse momentum p7 for minimum bias events.
Au+Au collisions were simulated at /s = 200 GeV, both figures are reproduced from [57].

In an early analysis [57], this viscosity was adjusted in a hydrodynamical model
until a satisfactory fit with the observed anisotropic flow coefficient v, was ob-
tained. The shortcoming of such one at a time an approach is that it leaves un-
touched the other unknown parameters, such as the spatial anisotropy of the ini-
tial state [60], which also are known to influence the flow v,. To make matters
worse each of these parameters also influences numerous other observables. Sim-
ilar approaches with more advanced models [33, 61, 62, 63, 64, 65, 44, 66, 67] have

considered the variation of several parameters at the same time, and also the effects
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of such parameters on the momentum spectra of the produced hadrons. However
these approaches have so far largely been unable to consider the simultaneous
variation of more than two or three parameters, or to consider a wider range of
experimental observables.

Finally it is interesting to note that the success of these straightforward methods
of extracting information about bulk transport coefficients can in part be attributed
to the nature of hydrodynamics itself. Hydrodynamics is an effective theory of the
strongly coupled and thus non-perturbative interaction of the hot QCD matter that
makes up the QGP. One consequence of this is that all of the fine details of these
interactions have been effectively integrated out of the dynamics and now only en-
ter through the equation of state and the specification of the initial conditions. All
of the remaining detail of relativistic hydrodynamics is essentially generic. This
is perhaps something of an overstatement, there are many nuanced ways to ap-
proach the viscous corrections and deal with numeric instabilities. Nevertheless
this genericity is an enormous boon to this particular sub-field since models and
theoretical descriptions can all be readily couched in the same language and so
productively compared and developed. Sadly this is not the case in all aspects of

relativistic heavy ion physics.
2.2 Initial conditions and fluctuations

The major uncertainty in determining transport properties of the QGP, such as the
ratio of shear viscosity to entropy, lies in the specification of the initial conditions
of the collision. The initial conditions have been mainly assumed to be smooth dis-
tributions that are parametrized implementations of certain physical assumptions.
Recently the importance of including fluctuations in these distributions has been

recognized, leading to a whole new set of experimental observations of higher
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flow coefficients and their correlations [68, 69, 70, 71]. On the theoretical side
there has been a lot of effort to refine the previously schematic models with fluc-
tuation inducing corrections and to employ dynamical descriptions of the early
non-equilibrium evolution [72, 59, 73, 74].

Hydrodynamical simulations can take these fluctuations into account by gen-
erating an ensemble of runs each with a unique initial condition, so-called event
by event simulations. This is in contrast to event averaged simulations where an en-
semble of fluctuating initial conditions is generated, and then a single initial con-
dition corresponding to this set’s ensemble average is subject to evolution. Event
by event modeling has proven to be essential for correctly describing many details
of the bulk behavior of heavy ion collisions [75, 76,77,78,79, 80, 81, 82, 83, 84, 85].

The two main models for the generation of hydrodynamic initial conditions
are the Glauber [86, 87, 88, 59] and color glass condensate (CGC) models [89,
90, 91, 92, 93, 94]. The Glauber model samples a Woods-Saxon nuclear density
distribution for each nucleus. Color glass condensate models are ab initio calcu-
lations motivated by the idea of gluon saturation of parton distribution functions
at small momentum scales . In CGC models the gluon distribution for each nu-
cleon is computed and the nuclear collision is modeled as interactions between
these coherent color fields. Each of these models generates spatial fluctuations
whose details depend on the assumptions made in the specific implementation.
Glauber fluctuations come from Monte-Carlo (MC) sampling the nuclear density
distribution. CGC fluctuations arise similarly with additional contributions from
the self interaction of the color fields.

These event by event fluctuations can be seen as intrinsic to the initial energy
distribution and lead to very different flow profiles during the collision. The in-
fluence of these fluctuations are to be thought of as additional to the fluctuations

induced by the randomly distributed impact parameters present. As discussed
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above these impact parameter (or centrality) fluctuations lead primarily to elliptic
tflow, as measured by the coefficient v;. The intrinsic or event-by-event fluctuations
arise from quantum mechanics rather than from the geometry of the collision re-
gion. There is no reason for the nuclear (or even nucleon) ground state to be a po-
sition eigenstate and so at the instant of collision their constituents will have some
random distribution described by the details of the wavefunction. These fluctua-
tions contribute strongly to the higher modes v, v4 in the flow expansion see e.g.
[95, 58, 96]. In Fig: 2.5 the ATLAS event-by-event measured flow coefficients v,, [97]
are shown for a variety of centrality parameters (zero centrality means a head on
collision). Even in the very central (most head on) collisions there are non trivial
amounts of flow, which we can largely attribute to initial state fluctuations since

the collision geometry here can hardly have an influence.
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Ficure 2.5: Event by event flow v,, as reported by the ATLAS collaboration [97]. From left
to right the panels show v, v3 and vy.

2.3 Jet Suppression in QCD matter

In heavy ion physics a jet is a cone of high momentum particles with highly cor-
related momenta. In a high energy nucleon—nucleon collision the valence quarks,
which carry the majority of the momentum, may undergo a hard scattering. This

results in the production of a back to back pair of outgoing partons which have
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some large time-like virtual mass. This virtuality is reduced by the emission of
collinear gluons. These gluons can themselves split further into more gluons and
pairs of quarks. This repeated emission processes leads to the formation of cones
of high momentum partons which will eventually hadronize, a jet.

During a heavy ion collision the majority of the hadronic matter produced
comes from the soft interactions of the sea quarks and gluons in the colliding nu-
clei, eventually leading to the formation of the deconfined medium. The infre-
quent hard interactions of the valence quarks will lead to the production of jets.
While the jets propagate through the medium their constituent partons will inter-
act with the medium to some extent.

Experimental observations of the momentum spectra of hadrons have shown
suppression at high py at both RHIC [98, 99, 100, 101] ,and the LHC [102, 103,
104, 105, 106, 107, 108, 109, 110]. These high momentum particles represent jet-
final states and the reduction in their yield suggests that something is modifying
jets compared to those produced in nucleon-nucleon collisions. This suppression
seems to come from the quenching of jets within the deconfined medium. For re-
cent reviews of experimental jet quenching observables and the various theoretical
approaches to modelling this process see [42, 111].

These results are experimental signals that something is happening to jets as
they propagate. This has to be a final state effect, photons which do not couple
strongly to the colored medium are not suppressed. Furthermore this suppression
is a partonic process, hadron formation times are long and their interactions will
take place far outside of the medium. Jet production and evolution in vacuum
is perturbative. By measuring the modifications to these processes we may learn
some features of the deconfined medium.

The suppression of high pr hadrons in heavy ion collisions is measured through
the nuclear modification parameter R 44 (Fig: 2.6), this is the ratio of the measured
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hadronic spectrum integrated over some range of impact-parameters (binned in
rapidity and transverse momentum) to that from p — p collisions scaled by the ex-
pected number of binary interactions (N, (b)) which is a strong function of the
collisional impact parameter b,

dNAA

Ry = —der (2.10)
(Nyin (b)) goazoe

We would expect R44 = 1, i.e. no modification to the pp process, if a heavy ion
collision was merely the superposition of (/Ny;,) nucleon-nucleon collisions with
no further interactions. The deviation from unity implies that some further physics
must take place and that during these new processes partons with high p; tend to
lose energy. Collected results from the CMS collaboration at the LHC are shown
in Fig: 2.8 [112], photons are clearly not suppressed while charged particles and
identified b-quarks exhibit a strong suppression. Similar behaviours were also
observed at RHIC collision and py scales, in Fig: 2.6 results from PHENIX [113]
are shown.

Di-hadron correlations [114] provide another window on this phenomenon.
The azimuthal angle distribution of hadrons ¢ is measured relative to trigger par-
ticles with high transverse momentum. A correlation structure emerges with a
strong peak around A¢ = 0 corresponding to particles in the jet, the far side re-
coil jet at A¢ =  is strongly suppressed in central Au+Au collisions compared to
d+Au (Fig: 2.7).

These observables (1244, correlations etc) do not require explicit jet reconstruc-
tion. The QGP induced quenching effects can be observed by applying appropriate
selection cuts &c to events without ever having to identify which set of tracks and
calorimeter tower hits actually make up the jets in the event, and indeed if how

many jets are present in that event. This reconstruction process is de-rigeur in vac-
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FIGURE 2.6: R4 4 for Au+Au at 4/Syny = 200 GeV measured at PHENIX relative to a refer-
ence NN spectrum. The peripheral collisions show far less suppression, there is insuffi-
cient medium formed during these events. Filled bars represent systematic error. Repro-
duced from [113].
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Ficure 2.7: Azimuthal angle distribution of associated particles with pr > 2GeV. Au+Au
collisions (stars) show clear suppression relative to the reference p+p and d+Au data. Re-
produced from [115].
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Ficure 2.8: A summary of the hadronic suppression factor R4 4 as collected at the LHC
by the CMS collaboration [112].

uum jet physics, i.e. in p+p collisions. This also reduces the complexity required
by theoretical treatments of these observables.

From the earliest discussions of jet quenching [116] by Bjorken far before any
data was collected a wide variety of phenomenological and theoretical models

arose. The early treatments of Gyulassy, Wang et al were based upon directly
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Ficure 2.9: The ATLAS observed dijet asymmetry for most central collisions reproduced
from [102].
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enumerating the various possible jet-medium interactions systematically within
a simple static medium [117, 118, 119, 120], the Schrodinger equation based treat-
ment of finite size radiation interference effects due to Zakharov [121, 122, 123]
and the related BDMPS prescription [124, 125, 126], the strict pQCD calculation
inspired Higher-Twist formalism [127, 128, 129], and many more !. As mentioned
above see [111, 131] for fuller reviews.

These mostly phenomenological models were focused on describing just enough
of the underlying jet transport phenomena to obtain predictions of R44 and sim-
ilar, typically these revolve around treatments of the propagation of single hard
partons rather than of an entire jet. Notable computer models which include the
physics from this era of jet quenching are the venerable HIJING [132] which in-
cludes some aspects of the Gyulassy-Wang model, Q-PYTHIA [133], JEWEL [134,
135] and PYQUEN [136] which are all based around the BDMPS formalism.

Jet reconstruction is possible in heavy-ion collisions, however the large back-
ground signal from the hadrons produced after the bulk phase of the collision
freezes-out makes this process technically challenging. The heavy ion program
at the LHC has opened up the study of the modification of entire jets by greatly
extending the available kinematic region for jet production. At the LHC jets can
be produced at energy scales far separated from the dominant background scale.
The study of full jets and their correlations, as opposed to leading hadrons, ap-
pears to afford more information about the medium modification, as their shape
and fragmentation functions can now be studied. Indeed, the suppression of high
energy £, ~ 100 — 200 GeV dijets (a pair of back to back jets formed from the
same hard scattering) in heavy ion collisions has now been observed at the LHC

[102,107,106]. These results have shown the feasibility of using dijets as correlated

! In contrast to the theoretical modelling of the bulk evolution, the development of the field of jet
quenching has often seemed like a real bike-shed situation [130]
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probes of jet modification in hot QCD matter. The dijet asymmetry was initially

motivated as a measurement of jet quenching and is defined as

By — By

= = 2.11
’ E o+ Et,s7 ( )

where £, is the transverse energy of the leading jet and E, ; is that of the sub-
leading jet, ATLAS results for the dijet asymmetry in the most central event classes
are shown in Fig: 2.9. In this figure the open circles show the results for p-p col-
lisions, where no medium suppression is expected, the yellow filled histogram is
the result of running Pythia a Monte-Carlo p-p jet simulation, the black filled cir-
cles show the observed results for Pb-Pb collisions. The finite width of the p-p and
Monte-Carlo results arises from higher order quantum corrections to the simple
back to back jet production. The Pb-Pb results show a clear deviation from the ex-
pected distribution. The interpretation is that often one jet of the pair has a shorter
distance in the medium to travel than the other and thus is less suppressed, leading
to enhanced asymmetry.

With the shift from single hadron observables to full jet reconstructions a new
set of simulators arose. The earlier simpler theoretical models and simulators were
either not able to make useful statements about the modification of full jets or in
some cases were rejected since they were unable reasonably to reproduce these
newer observations consistently with the single hadron results. Currently the two
most broadly successful models are MARTINI [137, 138, 139] which is a full jet
transport based upon the AMY formalism [140, 141, 142] and YaJEM [143, 144, 145]
which is a rather simple quenching scheme motivated by BDMPS. Aspects of these
full jet results have been successfully reproduced by various authors with a variety
of models [146, 147, 148].

It is not obvious how to extract details of the jet suppression mechanism such

as the energy loss rate from experiment. Jet modification in QED can be measured
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since the final state particles from a QED jet, electrons and photons, can be mea-
sured in a detector. In a QCD jet the constituents are necessarily unmeasurable,
confinement sits in between any detector and the jet-physics. Theoretical results
have tended to be expressed in the form of intuitive quantities which express the
rate of energy loss and similar quantities which allows for ready model compar-
ison, however efforts are made to generate realistic predictions for hadronic final
states to allow comparison to experiment (see for example [149, 150]).

The determination of the transport coefficients of the Quark-Gluon-Plasma (QGP)
is a major goal of the LHC and RHIC heavy ion programs. Partons moving through
the QGP lose energy and gain momentum perpendicular to their trajectory. The in-
teraction of a hard probe with the QGP medium is traditionally divided into elastic
scattering and medium induced radiation. Although this separation may be artifi-
cial it is convenient to view the two processes as being independent. The strength
of the probe’s interaction with the medium is quantified in-terms of the transport
coefficients ¢ and € which represent the average transverse momentum gained and
the average energy lost by a hard probe passing through a QGP medium. These

can be schematically defined in terms of the differential elastic scattering cross sec-

tion do /dt,
d
j= <Jtd—jdt>, (2.12)
d
e~ (B - B)Fan, 2.13)

where the angular brackets denote a medium average. More formal definitions
can be given in terms of gauge field correlators in QCD [127, 151, 152]. The radia-
tive process and the role of its transport coefficient ¢ in jet quenching have been
discussed extensively [153, 154, 155], aspects of the practical definition of these

coefficients along with their extraction are discussed in [156, 157]. The relative
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importance of elastic energy loss is typically less well understood.

There have been several notable attempts to collate and compare these models
and their predictions. Bass et al [155], manually adjusted these coefficients in sev-
eral models in an attempt to reproduce RHIC data and produced credible ranges
on ¢ for each model. The details of the medium model that the simulated jets pass
through add another layer of complexity to the calibration process, in [131] the out-
puts of mostly single hard probe models were compared for propagation through
a “brick” of QGP matter at a fixed temperature, this effort has been recently up-
dated by the recent Jet-Collaboration article [158] where systematic attempts to
extract these transport coefficients from experimental data are made. To progress
our understanding of the mechanisms of jet quenching the field needs an objective
measure of how these models perform in comparison with the data. A systematic
comparison of the predictions of several models using the methods outlined in this

thesis could be extremely fruitful.
24 Summary

Above I have outlined some of the most interesting physics of the QGP in my
personal opinion. However the bulk evolution, initial state specification and jet
quenching are by no means the only topics of interest. Looking further one can
consider: the production and modification of heavy quark jets; the propagation,
production and destruction of QCD bound states in the medium; the deconfine-
ment and chiral phase transitions and the equation of state of QCD matter; the
final state correlation structure and what it can tell us about the initial interac-
tions; statistical-mechanics based models of the thermal production of hadrons at
freeze out; and understanding the recently observed QGP like phenomena found

in p-A and high multiplicity p-p collisions.
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Already some progress has been made towards the application of statistical
techniques to the calibration and exploration of computer models of the evolution
of the bulk of the hot QCD matter. It is my hope that the methods and results
contained in the rest of this thesis go some way towards promoting their adoption
in the Heavy Ion community. Especially so since the field is so fundamentally

based around determining the values of calibration parameters.
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3

Gaussian Processes

I'm very well acquainted, too, with matters mathematical,

I understand equations, both the simple and quadratical,
About binomial theorem I'm teeming with a lot 0" news,
With many cheerful facts about the square of the hypotenuse.

In order to explore, understand, and calibrate a complex computer model we
need a lot of information about the output of the model. At the same time we
always need to balance this against the realities of finite computing and time re-
sources. If our model is relatively well behaved, intuitively this means producing
rather smooth output as a function of its parameters, we might turn to an interpo-
lation scheme. Then with a sensible choice of sample locations one would hope to
get a good understanding of the model’s response from a fairly small number of
actual model runs.

In this chapter I will introduce a method that uses Gaussian Processes (GPs) for
interpolation of computer model outputs. A seminal reference for GPs and their
applications is Rasmussen & William's book [12], along with [11, 7, 23].

There are many possible interpolation methods, many of which like splines and
polynomial interpolation seem appealing through their simplicity. In practice this

simplicity can often be a facade thrown over a mass of pitfalls.
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Making the (moderate) effort needed to use GPs for this purpose has several
distinct advantages. A GP interpolation scheme is a statistical model of our com-
puter simulation, often called an emulator. These emulators are defined in terms
of probability distributions for the output of the computer model. As a consequence
of this predictions for the model output at new locations naturally come with a
measure of how reliable those predictions are, making them a powerful tool for
computer experiments.

Throughout this chapter I shall illustrate various concepts with application to
the 1d toy model

Y () = sin(x) + 2sin(2x) — 2sin(4x). (3.1)

This toy model was picked for its simplicity and several characteristic length scales.
3.1 An introduction to Gaussian Processes
A Gaussian Process (GP)

GP (p(-),C(-,)) : R" = R, (3-2)

is a stochastic process over some n dimensional space specified via a mean func-
tion y(-) and a covariance function C(-, -). A stochastic process is a parameterized
collection of random variables {z; },cr defined on a probability space (€2, #, P), and
taking values in R™. The indexing space T is usualy [0, o0) but this is quite general
and can be extended to subsets of R". E.g. A random walk, gamblers ruin, arrival
times of cars at traffic lights. See [159] for many examples.

A GP is defined by the fundamental property that any finite marginalization
of the process to some set of points X = {z1,...,z;} will be multivariate-normal

(MVN) with mean and covariance given by p and C. Thus, restricting the process
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to a single point x would give P(z) ~ N(u(z), C(z, z)), for a set of three points
Ty, T2, T3 ~ MVN(ﬁa K)a (3.3)

fo=(u(zy), p(z2), p(zs))",
K, ;= C(z;, ;).

where K ; is the 7, j'th element of the covariance matrix.

A Gaussian process is translation invariant or stationary if
pu(s) =p(s+h), C(s+h,t+h)=C(s,t) (3.4)

forall 1 1. If this is the case then the mean must be constant and the covariance func-
tion can only depend on the distance between two locations C(s,t) = C(s—t,0). In
this case C(s,t) = Cy(s — t), for some Cy(h) = C(h,0) : R — R. We shall typically
be concerned with stationary GP’s, in this case all the interesting information about
the process is contained in the covariance function. Note that a stationary GP can
be used to model a simulator with some overall trend in its output. This is accom-
plished by treating the overall trend first typically with a linear model and then us-
ing the stationary GP to model the residuals. Real world random fields, such as the
distribution of oil or gold across a given geographic region, may only be approx-
imately stationary. However stationarity is a typically a reasonable assumption
for “smooth-ish” computer models which don’t undergo some dramatic change
across their parameter space. Models with “jumpy” phenomena such as phase
transitions or regime changes can also be treated but additional care is needed? .
Not every function can be a covariance function. For starters it must be an even

function, this arises neatly from the symmetry of the covariance, writing Z(-) as

! Strictly this is the definition for a general stochastic process to be weakly stationary but the two
concepts are equivalent for a GP

2 In this case one might consider dividing the model output space up into distinct regions and
training different GP’s in each region, see [160]
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the GP evaluated at a given point
C(s—1t) =cov(s,t) =E[(Z(s) — u(s))(Z(t) — u(t)] = cov(t,s) = C(t — s).

From the marginalization property we obtain the restriction that the covariance
function € must be positive definite, since this is arises from the form of the mul-

tivariate normal density,

feu,y)f(x)f(y) du(x)dpu(y) > 0. (3.5)

Bochner’s theorem states that, all positive semidefinite functions can be written
Co(h) = J exp(thw)G(w)d"w (3.6)
Rn

where G(w) is a positive function on R". All positive semidefinite fns can be writ-
ten in this form for some positive measure G(w), the spectral measure. Since the
Gaussian process itself is real, the spectral density must also be an even fn and we
can write

Co(h) = Jn cos(hw)G (w)d"wG(w) cos(hw)Co(h)d"w. (3.7)

"2 g
This spectral representation of stationary GP’s provides a tool to gain some power-
tul insights into their behaviour and particularly into their asymptotic properties,
see for instance Stein [11] .

A Gaussian process is an extension of a normal distribution to a stochastic pro-
cess that generates functions with a controllable amount of correlation across the
indexing space. This makes them a very suitable choice for a prior on a distribution

of unknown functions, such as the output of a computer model.
3.2 Drawing samples from a GP

A GP is a probability distribution for functions with some mean and spatial cor-

relation structure. This seems rather abstract, given particular mean and covari-
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ance functions how can we generate realizations of the process.Let’s suppose that
our GP is defined on a one dimensional space, i.e. n = 1. Using the fundamen-
tal marginalization property if we pick some finite set of say £ points at which to
evaluate the process the problem becomes one of drawing samples from a k-variate
MVN. Given the mean and covariance functions sx(-), C(-, ) we can generate a set

of samples at these points as follows.
1. Compute the covariance matrix C for the k points, where

G,‘j = G(Il, (L’j)

2. Compute the Cholesky decomposition S of the covariance matrix ¢ = SST

[161].

3. The vector
z=pu+ Su (3.8)
where u is a vector of k£ standard normal samples, i.e. u; ~ N(0,1), is the

desired sample from the GP.

We directly see that the vector z has the correct expectation E[z] = p. The covari-
ance of z is also correct
cov|z] = E[22T] = E[Su(Su)T],
= SE[uuT]ST = SST = C. (3.9)

Some illustrations of samples drawn from GP’s can be see below in Fig: 3.8 and
Fig: 3.9, a more complex example is shown in Fig: 3.1. Here a GP is used as a
model for the space-time fluctuations of a massless relativistic scalar field in 1 + 1

dimensions. The GP has mean zero and covariance function

1
Cla,y) = 5 (IG" (,y) +iG " (2.y)), (3.10)
GEoa)) = —- AR (=t tie)? — [z — 2|
’ 472 Ax%i’ + -
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where G*(z, y) are positive and negative frequency massless free-field Green func-
tions. In Wightman's axiomatic construction of QFT [162] one can show that the
two point function of the field itself W (z,y) = (0|¢(z)¢(y)|0) is itself positive defi-
nite, which could also be interesting to simulate.

Practically one may need to add a vector of random noise w with w ~ N(0,¢)
and € « 1 to the diagonal of the covariance matrix C. The eigenvalues of covariance
matrices usually fall off very rapidly which can make the Cholesky decomposition
numerically unstable. This adds noise with variance €2 to the generated samples,
however one can usually select a sufficiently small value of e such that the linear

algebra converges without appreciably changing the samples.

10F . -

05

FIGURE 3.1: A realization from a Gaussian Process model of a massless relativistic scalar
field in 1 4+ 1 dimensions. The GP has mean zero and covariance function given by (3.10).
The dashed lines are drawn along null (light-like) directions, it is interesting to note that
the fluctuation structure is fairly well correlated with these directions.

This Cholesky decomposition based method is ©(k?), for very large values of

k the linear algebra may become unstable and computationally impractical. There
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are several other more mathematically complex methods for simulating (drawing
samples from) Gaussian processes which are more computationally efficient see

[10, 163, 164, 165].
3.3 GPs for Interpolation (or regression)

We can use a GP as a method for interpolating the output of a computer model,
for the purposes of this section we will not distinguish between the parameter sets
u and z. Let us denote the model output at a point = in the combined parameter
space as

Vi(2) = f(z), R" >R (3.11)

where for now we have assumed that we can make observations of the computer
model output without any noise or uncertainty and that the model output is uni-
variate and real. We will use a Bayesian approach to develop a statistical model
of the output of the code, an emulator. This is done by taking a Gaussian process,
with a given covariance function € and mean g, as the prior distribution for the
simulator output and conditioning it a set of observations of the simulator.

Let us denote the design, the set of d points in the parameter space where the

model has been evaluated, as
D = {x1,x9,...,2q4}, w; €R" (3.12)
The vector of d outputs evaluated at these points is
Y = (You(x1), Yo (z2), ..., Yiu(a)) - (3.13)

Our GP prior amounts to Y,,, | C,u ~ GP(u, C), we can update this prior with
our set of observations (0, /) to obtain a posterior distribution for the simulator

output Y, at some yet untried set of k£ points X, = {z,1,..., 2.} . Our observations
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of the model output represent a finite marginalization of our GP prior, as such they
are distributed
Y| D,C,u~ MVN (e, Ko u), (3.14)
po = (1), plwa), -, p(xa))

K@j = G(I‘Z’,Z‘j), ZT; & T;€e @7

where p, (d) is the vector of the prior mean evaluated at each point in the design
space and K, . (d x d) is the covariance matrix arising from evaluating the prior
covariance between each point in the design. We can write the joint distribution

for our set of known observations Y and the as yet unknown v, as

Y. N K,. K..
()~ () (ke k) 619

where K., (k x k) and p. (k) represent the prior covariance function and mean
evaluated at the unknown locations and (K..);; = C(z.;, ;) (k x d) is the ma-
trix of covariances between each new point z,; and the current design set. This
matrix plays an essential role in the rest of the formulation, we will find that our
predictions for the new points are weighted averages of the training data with the
weighting given by this set of covariances.

We can write the conditional distribution for our untried locations Y, given our

set of observations Y as another multivariate normal
Vi | X, Y,D,C,u ~MVN (i(X.), K) (3.16)
following the derivation in § A.2 from (A.11) we obtain the posterior mean

(X)) = pa+ Koo Ko J(Y — p) (3.17)

this will serve as our prediction for value of the model output at the untried loca-
tions. From (A.12) we have

K = K,,— K.. K; K], (3.18)
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this gives the posterior covariance at the set of untried locations. The actual simula-
tor observations Y enter only linearly in the posterior mean and are entirely absent
from not the posterior variance. Our ability to make accurate predictions/interpolations
of our computer model is apparently only a function of the choices we make when

designing our experiment.
3.4 Developing an understanding

Let’s take a moment to examine these results, for simplicity let’s consider the case
where we only want to make predictions at a single unknown point. A simple ex-
ample of GP regression is shown in Fig: 3.4, the left panel shows several draws, the
light blue lines, from a GP prior with zero mean and a power-exponential covari-
ance function. For more details on the covariance structure itself see §3.10.1. It is
important to note that the draws from the prior are smooth functions, this reflects
our prior belief that the output of any computer model we are hoping to emulate
is also reasonably smooth.

In the right panel a set of 9 observations of the example model (3.1) have been
made, these are plotted as the solid points. Draws from the posterior distribution,
with mean given by (3.17) and variance given by (3.18) are plotted. These posterior
draws all pass through the training points, they are still smooth functions and their
variability increases away from the training locations. The gray band shows an
approximate 95% confidence interval around the process mean in both panels. In
the trained case these bubbles grow away from locations where observations have
been made and shrink to zero at the trained locations.

The posterior mean (3.17) is a linear combination of the prior mean at the un-
known location i, and the term K, . K} (Y —p,) which is a linear transform A (z,) =

K..K,. applied to the residuals of the observed data I/ under the prior mean ..
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For clarity let’s drop the prior mean, i.e. = 0.
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Ficure 3.2: In red dashed lines elements of the prior covariance vector K, , are plotted for
a simple one dimensional example. In blue solid lines the equivalent elements of the vector
A(zy) = K, oK, are plotted. The points show the design locations, the corresponding
element for each panel is enlarged and plotted in red.

We can view K, , as a vector of functions of z., each of these functions is the
prior covariance function centered on one of the design points. In Fig: 3.2 the red
dashed traces show plots of the elements of K, . for a simple one dimensional
example. This represents our prior knowledge of the correlation structure in the
design space. The equivalent elements of 4 (z.) are plotted in blue. The more
complicated structure here shows how our choice of the whole design influences
the shape of the correlations between points in the space. The extremities which
reach outside the design in the first (top left) and final (bottom right) panels are rel-
atively unchanged while the other panels some modification due to the influence
of the other points.

In Fig: 3.3 the panels show partial interpolation function

k
By(z.) = Y| A(x.)iY;, (3.19)

i=1

which includes the first £ observations. Although the resulting interpolation is

of a very poor quality, when compared with the underlying function (dashed red
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curve) this figure makes it clear how successive observations points influence the

shape of the posterior mean. With this in hand we can understand how A (z.)Y

41
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FiGure 3.3: From top left to bottom right the panels show By, plotted in blue, as given in
(3.19). The toy model is shown in dashed red and the training observations are plotted as
the solid points. At each panel an additional training point is included into the resulting
partial interpolation function.

can be viewed as a weighted dot product between the modified covariance kernels
and the observations. The posterior variance at the unknown location (3.18) is also
a linear combination of the prior variance and another term K, K IK . which
can be interpreted as another weighted inner product, however this time it is a
weighted norm of the vector X, ..

Since K. . is a positive definite matrix, its inverse is also positive definite there-
fore the posterior variance K of our prediction at the untried location is always
smaller than our prior K, .. Following a similar line of argument as used above to
derive the form of this posterior variance we can conclude that every time we add
an additional observation to this GP model our posterior variance at the untried
location will decrease relative to the previous value. This is an interesting conse-
quence of our assumption of stationarity. The amount that our posterior variance
will decrease by is not entirely trivial to obtain.

Let us return again to our inspection of the posterior mean and variance. For
this to be a sensible interpolation scheme we require that when =z, is one of the
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FiGure 3.4: Left: draws from a mean zero GP prior with a power exponential covariance
function. Right: draws from the posterior distribution after observation of a toy model
(solid points). In both panels the gray bands show approximate 95% confidence intervals
around the mean. The model function is given by (3.1).

points in the design @ the posterior mean should be the appropriate training value
and the posterior variance ought to be zero, since we know the output of the model
with certainty at this location. Suppose we pick our test point to be the p’th point

in our design, then writing

d
lwp) =y + 35 AU = o), (3.20)

We are free to order our basis in the X space any way we like, in this case it is
convenient to pick an ordering where p is the final element in the basis, in which
case the covariance matrix K, , has the block form

K K
Keo = o pio ) 3.21
’ < Kio Kpp (3.21)

where K., (d — 1 x d — 1) is the covariance matrix of all the design points apart

from the p’th point, &c for K, , (1 xd—1). Using the Sherman-Morrison-Woodbury
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inversion formula given in § A.1

K. l=

o0

—1 1 —1 —1 1 —
Ko,o + EKO,O KP70KJ,OKO,O _EK‘%
1 -1 1

S k

pe ) (3.22)

where k = K, — K] (KK, .. Now we can evaluate 7;, when j = p

d—1
1. 1
Ap = Z {G(xiaxp) (_EKo,iKp,O)} + EG(ZEpaxp),
=1

1 — .
=% (Kpp — K} K Kpo) =1, j=p (3.23)

for the other terms j # p

d—1

1

A, = Z C(z4, ) (KO,(} + EinKp,oK;,oKo,i) ,
=1

G(l’ )y L ) —1
- Z]; p K;,OKO7O

1
= K] Koo+ - (K] K Ky o — Kpp) KK
= K Koo — K] Koo =0. (3.24)

This is sufficient to conclude that the posterior mean reverts to the values of the
input data set when evaluated at the design values. In a similar manner one can

show that the posterior variance vanishes when evaluated at points in the design.
3.5 Observations with noise

We can readily expand the GP regression procedure introduced above to the case

where we can only make observations of our model with random noise,
Yo(z) = f(z) +2, R"—-R, =z~ N(0,0%). (3.25)

This noise is assumed to be constant over the space of model inputs or homoscedas-

tic 3. We evaluate the computer model at design set of d points @ in R™ obtaining a

3 There has been significant effort put into developing GP’s which can handle observations coming
from a varying noise process (called heteroscedastic input) for more details see eg [166, 167].
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vector of model observations Y. The observation noise process is a-priori not spa-
tially correlated E[z(z;)z(z;)] = d;;0?, as such we can again write the conditional
distribution of our observations Y given the choice of covariance function, prior

mean and design as
Y|D,C,p1,0° ~MVN (po, Koo + 0°1y) (3.26)

where p, (d) and K. . (dxd) have the same definitions as above and the observation
error enters only along the diagonal of the covariance matrix. Proceeding as before
the posterior mean /i and covariance K at some set of k untried locations X, given

the current set of training observations are

/1<X*) =[x T K*,o (K.,. + 0'2[d)_1 (y = u.)) (327)
K = (K.\ + 0°L) = Koo (Kuu+0°L0) ' KT, (3.28)

Evaluating the posterior mean at a point z, in the design will no longer return

precisely y,, considering again the linear mixing term

ﬂj = K*,o (Ko,o + Uz[d)_l )

picking our basis so that the point p is the final element, the block form of the

covariance matrix is

Kop + U2Id—1 Kp7o )

2 —
(Ko7o + o ]d) - < K;p Kp7p + 0_2 (3.29)

Where we use the same notation K, for the covariance evaluated over the (d — 1)

element reduced design. The inverse is

(3.30)

1 1 7-1 i I o |
(K.7. + 02[d)_1 = ( K + kJ’K KPJOKppK ]{I/K Kp,o ) :

1 T -1 1
_FKP@K K
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where K = (K., + 0°I;_1) and k' = (K,,, + 02) — K] KK, . For j = p the linear

mixing term is

d—1
- 1~ 1
Aj=p = Z {G<xi7xp) <_EK le,0>} + 7 (Tp, Tp),
i=1

)
)Zkkfa’

1 -
— (K — KKK,

0.2

=1-— 3.31
o (3:31)

for the other terms j # p
d—1

. . 1 - .
Ajzp = 2 {G(xi,xp) <k1 + EKIKWK;,OKI)} — TK;,OK*,
=1
1

= KK+ (KR K — Ky ) KR,

/2 2 ~
— KT K <1 k - ) = CKJE (3.32)

The resulting deviation from the training value y, is proportional to ¢ the prior
observation error. A similar analysis shows that the posterior variance at training
points is no longer zero. These results are illustrated in Fig: 3.5. Observe how
noise in the measurements not only pushes the posterior mean and its confidence
intervals away from the training data but also adds an overall local roughness to

the draws from the posterior.
3.6 Incorporating an explicit set of basis functions

Suppose that we want to model the mean of the computer model output with some
basis of functions h(x), for instance if we were interested in polynomial regression
of order r then h(z) = {1,z,2%, ..., 2"}. We can write our statistical model for the

simulator as

You(z) = W(2)8+ f(z), Yu:R* >R, f~GP(0,C) (3.33)
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o° = 0.001 o> =0.05 o?=0.1

c 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5

Ficure 3.5: Draws from the posterior density (blue) after observation of a toy model (3.1)
(solid black circles) with varying amounts of observation noise o. The posterior mean is
shown in red, note how the mean along with the draws no longer passes exactly through
the training points. The gray region shows a 95% confidence interval around the mean,
note how as the observation noise increases the posterior variance at the training points is
pushed away from zero.

where we are now modelling the mean with our basis of r functions and some
vector of unknown constants 3 and then modelling the residuals with a Gaussian
Process with covariance function C. Taking a normal prior on the parameters 3 ~
N(b, B) (r x 1) along with a design over some d points @ and the associated vector

of observations Y/ then by integrating out J (see (A.17))
Y|»,6,bbB~MVN(H]b, K., + H]BH.,). (3.34)

where H, (r x d) is the matrix of the r regression functions evaluated at each of
the d design locations. Following the same procedures as above we can obtain the

probability distribution for y.(z,) the computer model output at some unknown
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location z,. Plugging into (3.17) and (3.18) we find
pa(z.) = HIb+ (K,o + H]BH,) (K. + HIBH,) " (Y — H.b), (3.35)

K = (K., + HIBH,)

— (K,.+ HIBH,) (K., + HIBH,) " (K,.+ H'BH.)", (3.36)

where the convention of stars and bullets is the same as the previous sections.

After some algebra and more applications of the SMW matrix inverse formula we
obtain

fi(z.) = HIB+ KI K., (Y — HIp) (3.37)

K =K., K.. K;IKI, + R" (B~ + H.K;'HI) "' R. (3.38)

Where the posterior regression coefficient is
B= (B +H.K..H]) " (H.K_ Y+ B™'), (3.39)

and R = (H, + H,K_!K,). Consider taking the limit of B — o0 in the prior, this
corresponds to an infinite prior variance for the fit coefficients. In this limit the

posterior regression coefficient becomes

lim = (H. K. HI) ™ (HEY) (3.40)

which is the usual Ordinary Least Squares (OLS) form for the fit coefficients in a

linear model.
3.7 A confession

I've slightly pulled the wool over your eyes in the preceding sections, all of the
above discussion is predicated on knowing the prior mean and covariance func-
tions which correctly describe the underlying Gaussian Process. Where the GP
itself is being used to describe the output of our computer model. It’s very un-
likely that we would actually know this a priori. We need to use the output from
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the simulator in two simultaneous roles, to estimate the parameters of the GP as
well as providing the actual data for interpolation. This double dipping actually
makes the whole procedure rather non-linear as the choice of covariance structure
will now depend upon the observations of the model in some complicated fash-
ion. The extent to which one can really hope to perfectly reproduce the mean and
covariance functions of a GP from some finite set of samples is carefully explored
by Stein [11].

To ameliorate this problem one typically selects a given functional form or fam-
ily of functions for the prior covariance and prior mean. This shifts the burden of
estimation onto the set of hyper-parameters which describe these functions. In the
Bayesian community this is referred to as a hierarchical model.

At this point one can use a maximume-likelihood process to estimate the param-
eters of the prior mean and covariance given the observations and then take these
estimates as certain for the remainder of the analysis, this is commonly referred
to as a “drop in” process. Alternatively one can place distributions on these un-
known parameters and fold these into the rest of the analysis obtaining a posterior
distribution for the GP which fully accounts for the uncertainty in the hyperpa-
rameters. This approach is more consistent with a Bayesian philosophy. The GP
likelihood surface itself is typically fairly sharply peaked, as such the drop-in ap-
proach usually ends up providing a satisfactory treatment of the GP parameters
with less complexity than the fully Bayesian approach. The drop in procedure will
systematically under represent the amount of uncertainty in the emulator param-

eters.
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3.8 Estimation

In the above sections I have outlined several approaches to “training” a Gaussian
Process on a set of observed data {{/, D} from a computer model y,,(z) so that the
resulting posterior mean functions as an interpolating function for the computer
model with a concomitant measure of its own uncertainty. As discussed in §3.7
these methods are predicated upon knowing the right prior mean and covariance
functions. By picking certain parameterized functional forms for the prior covari-

ance and mean this problem can be split into two separate issues:

e Model Selection: which family of covariance functions, or set of linear model

(regression) basis functions is most suitable for describing the data set?

e Estimation: given a family of covariance functions and a mean model pa-
rameterized by some set of values ©, which particular values ©° result in a

posterior distribution which best reproduces the true model output y,,(z)?

In this section I will discuss the second of these questions. The model selection
question is a tricky one as it is highly dependent upon the situation one is trying
to model, some of the discussion in §3.10 is relevant to this question, the practical
examples in later chapters will hopefully provide some illumination. Some general

advice for model selection follows naturally from linear modelling;:

e Plot the data in as many ways as you can. Although typically too complex
for publication scatterplot matrices can make a world of difference interms

of understanding the co-variation of your data.

e Try and motivate modelling choices by an understanding of the underlying

processes leading to the observations,
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e Favor moderately good, parsimonious (simple), models over highly special-

ized ones.

The final point is aimed at avoiding over-fitting , an over fitted model leaves very
little room for further variation in the sample. This will certainly perform beauti-
fully on the initial set of observations and then most likely totally fail to match any
turther observations as there is essentially no “slack” left. This can be a serious
issue for GP emulators and is a well known problem in machine learning.
Returning to the estimation problem, let us first consider a simple example. In
Fig: 3.6 GP regression on a toy model is shown. Here the prior mean was taken to
be zero and no additional linear model was enforced, the prior covariance function
is of the power-exponential form (3.67) with fixed roughness (for some discussion

of this family of covariance functions see §3.10.1),
T, — Xj 2
G({EZ,LI?],G) = 00 exXp (—(5—2])) + 5ij02- (341)

This covariance function is parameterized by an overall variance 6, and a length
scale ¢ (which has dimensions of length), note that I have also included a term ¢
which only contributes along the diagonal, this so called “nugget” term serves the
same role as the observation noise discussed in §3.5.

In Fig: 3.6 three choices of § are shown for the same training set. By inspection of
the covariance function and through our intuition built up in § 3.4 it’s evident that
this parameter, which sets the length over which pairs of points in the parameter
space have a strong influence upon each other, is going to be pivotal in determining
how the GP reproduces the underlying function.

The left panel shows the result of specifying a very short length scale, the re-
sulting posterior distribution is very variable with large uncertainty bands around

the mean. Note that a large value of ¢ is needed to ensure that the resulting co-
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variance matrix is non singular. The right panel shows the result of specifying a
longer length scale, again a large amount of measurement error is needed to make
this mathematically feasible. However this figure is certainly more intuitively rea-
sonable than the left panel.

The central panel shows the result of specifying a length scale and noise level
o which maximize the likelihood of the posterior, essentially this is a numerically
optimal choice of parameters given the data set {l/,D}. Ignoring the mathemati-
cal details for a moment it’s readily apparent that this reproduces the underlying
function rather well. The uncertainty is essentially zero between the sample points
and begins to grow at each of the ends of the data range. For a toy model this is
quite reasonable, however this kind of overly-confident fit would probably be an
underestimate of the true variation of any “interesting” computer model, this il-

lustrates over-fitting fairly well.

arb. units)
0 2

Ry

-4

0 50 i 2 3 4 50 i 2 3 4 5

1 X (azrb. u%its) 4
Ficure 3.6: Varying the characteristic length scale ¢ in a power-exponential covariance
function gives very different posterior distributions. Note that a substantial amount of ob-

servation noise o is present in the right and left hand panels, without this the covariance
matrix would be singular.

Now let us return to the concept of maximum likelihood. Given a zero-mean
GP prior with some parameterized covariance function C(-, ; ©) then our set of n
observations and design {{/,®} have a joint multivariate-normal distribution, as
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discussed in detail in §3.3. The joint distribution of the observations conditioned

on the design and the choice and parameterization of the covariance function is
Y|D,0,06 ~MVN(0,K,.0)), (3.42)

Ki,j(@) = G(l’z,ﬂfj,@), JZi&SL’j eD.
Given some prior on this set of parameters P(©) the posterior distribution for © is

P(Y|D,C,0)P(O)

(3.43)

a fully Bayesian approach to GP regression would be to write the probability dis-
tribution for the simulator output y.(z.), evaluated at some new point z, as the

integral over all possible values of these parameters
P(y* ‘ x*:y7®76) = JP@* | x*ay7®767@) P(® | y7®76> d@ (344)

This integral can be approximated relatively efficiently with modern Markov-chain
Monte-Carlo (MCMC) methods *. We can avoid this added complication for now
by making some reasonable approximations. If the posterior distribution of ¥, is

sharply peaked around the most probable values of the parameters ©° then
Py | 2,Y,D,C) « P(yu | 2., Y, D,C,0°) P(©° | Y,D,0C). (3.45)

This formulation is compatible with the results for the posterior mean and variance
given above (i.e. (3.17) & (3.18)) if we evaluate the covariance function with the
extremal ©° as long as the distribution for © is sufficiently sharply peaked that
P©° | Y,D,C) ~ 1.

To find the most probable parameters ©° we should find the set of values ©

which maximize the posterior P(O | Y/, D, C) as given in (3.43). This is still a tricky

% see [169, 170, 171] for introductions to MCMC procedures

60



proposition since the term P(Y | @, C) also requires integrating out all possible
values of ©. However as we are only interested in finding the set of parameters
which maximize (3.43) it is sufficient to find values of © which maximize a function

proportional to the numerator,
L(©) = PY[D,C,0)P(0) x P(O[Y,D,0C), (3.46)

this is the likelihood function. For simplicity we can drop the prior on ©, explicitly

writing out the multivariate normal density for our observations Y we have

1 1o

This likelihood is to be interpreted as a “score” for a given value of ©, larger val-

ues are better. We will need to numerically maximize this scoring function, i.e.

tind values of © where % = 0 and \#’g@jl < 0. For the purpose of a numerical

treatment it’s far easier to consider maximizing the log likelihood
1 1 1 n
logL(0O) = ) logdet K(©) — §yTK(®) Y- 5 log 2, (3.48)

as the values of . are often rather small. The partial derivative of the log likelihood

(3.48) with respect to the j'th parameter is readily obtained

~

0 1 oK1 0K
-y (K
7o, 08 L(0) =5V 55U — 3 r< a@)’

-~

oK
00;

= %tr ((77T — K ) . y=K'. (3.49)

In the general case where one has some non trivial prior mean structure as
in §3.6 one has to estimate parameters for the covariance function © and the fit
coefficients 3. Indeed typically one can get away with simply inserting the OLS
estimates /3 as given in (3.40).
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Any numerical scheme for obtaining ©°, such as conjugate gradients or similar
Newton-like methods [172], will necessarily involve evaluating (3.48) and (3.49)
several times. This is a computationally costly procedure, dominated by comput-
ing the inverse of K (0) which is O(n?). Note that in (3.48) and (3.49) the covariance
matrix inverse appears as part of a vector matrix product (y = K~'/). Instead of
explicitly computing X! and then the matrix-vector multiplication for a cost of
O(n?®) + O(n?) one should directly solve for v via a Cholesky or QR decomposition
at a cost of O(n?) [161, 173].

A practical computational strategy for this maximization process is to first run
a Nelder-Mead or similar gradient free routine to obtain a rough candidate local
maximum and then use a gradient based method such as BFGS to obtain a precise
result [172]. There is little reason to assume that log £ is globally convex as such
this procedure should be run from as many initial conditions as computationally
teasible, a process which is a good candidate for a multi-threaded approach.

A significant amount of effort has been put into alleviating the numerical prob-
lems arising from large n, typically by attempting to find lower rank approxima-
tions to the covariance matrix K see chapter 8 in [12] for a relatively recent review.

Finally a word of warning, as the above derivation should suggest, the actual
value of the likelihood function evaluated at the maximum, -£'(©°), is meaningless
outside of finding the maximum. We threw away the denominator in (3.43) and

so there is nothing to sensibly compare with this number.
3.9 Full GP Emulator Specification

In the coming chapters it will sometimes prove useful to have a full description of
the probability distribution of the simulator given an emulator with some specified

prior mean and covariance function given priors on their parameters. If we want
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to use the emulator as part of a larger statistical analysis of the behaviour of the
simulator we will need the posterior distribution of the model conditioned on our
observations, choice of GP prior mean and covariance and the hyper parameters
which determine them.

Taking our design @ = {x,..., 24} as a set of d points in an n dimensional sub-
setof R”, denoting our simulator as Y, (z), and the training setas Y = {Y,,(z1), ..., Y (za)}
then our prior on the model Y, (-) is a function of the prior mean and variance
mo(-), Vol -)

Yin() | B,0%,0 ~ GP (mqo("), Vo (-, -)) - (3.50)

n

The prior mean is a linear model my(z) = h(z)7f with A(-) : R* — R?, where ¢
is the number of components in the linear model and f is some set of ¢ unknown
fit coefficients. The prior covariance Vy(z,2’) = 0?C(z, 2’; ©) has the total scale o2
factored out and the covariance function is described by some set of parameters O.

According to the prior (3.50) the simulation output vector Y has conditional

distribution

Y| B,0* ~MVN, (H, 3,0°K,..) (3.51)

where H, = (h(x1),...,h(zq))" (¢ x d) is the matrix of the regression model func-
tions evaluated at each point in the design, and K., . (d x d) has elements K, ; =
C(z;,x;;0©) as before. As above using (3.51) and the results for conditional multi-
variate normal distributions we obtain the conditional distribution for the simula-

tor Y,,(-) given our observations and the parameterization

where the GP mean and variance are similar to those above
mo(z*) = h(z*) B+ KI K, (Y — H.f3) (3.53)

— !

Vo(a*,2*) = o {G(x*, 2 0) - K;,K;}K*,7.} , (3.54)
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where (K, .);; = C(x,;, 2;; ©). Under the weak prior p(j3, 0?) o« o2 using (3.51) we
can obtain the posterior for (3, 0?) which is a normal inverse-gamma distribution.

From Bayes theorem

f3(81Y,0%0) < fy(Y | B,0% 0)fs(B),
the PDF for the model output is MVN,
o] 5.0%,0) . exp {3 (U = H.0) (0*Ken) (U = Ho5)

with a little algebra we can re-arrange this and obtain the conditional distribution

for /3 (recall this is a ¢ length vector)

B1Y,0% 6 ~N (B7UQ<HIK.,.H.)*1) : (3.55)
6= (HIK 'H.) " HIK Y. (3.56)

Note that /3 is structurally very similar to the usual least squares estimator for the

linear model Y = Hf3 + e. Similarly for the scale o2,

P(o® | ,0) = fP(ﬁ | Y,0%, ©)P(0®)dp
so the conditional density for o2 is
Joo? 10,00l I [ 5007 (3-5)' et (5 5) |
= (%) DKL V2 exp(— ) exp(— YT 1Y) ¢
b 0_ 2 9

exp (—%B(HIK,’}H.)B) |HTK, L HT|'Y?(0%)1? (3.57)

which is proportional to the PDF of an inverse gamma distribution f(z,a, ) =

%x*“” exp(—g). Reading the terms off from (3.57) in this case we have
- —q-2
o? | Y, ~ InvGamma (m2 q) (m 2(1 )(32) (3.58)
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where 6% = U7 (K:} — K, lH, (H,TK:’}H.)_1 HIK:}) Y.
To obtain the final form for our distribution for the model output we would
like to eliminate the dependence on the hyper-parameters o2, 3, ©. First lets “av-

erage’ the conditional posterior for the simulator output over all values of mean

coefficients 3,

P(Yu() | Y,0%,0) = fP(Ym(') | B.0%,OY)P(B|Y.0% ©) dj
this is yet another set of Gaussian integrals, after the dust settles we find
Ym() ‘ y7027@ ~ GP (ml()avvl(a)) ) (359)

where the posterior mean m; is structurally unchanged but the coefficients 3 have

been replaced by the estimates 3, the posterior variance V; gains terms which ac-

count for the variance explained by the linear model on the mean

ma(z.) = hw)B + K1 (Y — H.p), (3.60)
Vi(@uw) = Vo(z*,2)+
o [(h(z*) = K] K H)T(HIK JH,) ' (h(2") — KT K, 1 H,)] . (3.61)

To obtain the final form we must average over all values of ¢ using (3.58) and

(3.59)

P(Yin() | .0) = f P(Y() | Y. 0%.0)P(o® | 1, ©) do

to this end we obtain the form for the predictive distribution of the model output

given our set of observations and the choice of covariance function parameters ©

n(-) = Yn() | Y,O0 ~ StudentProcess (m — q,m(+), Vi(-,+)), Vi = a_vl’

(3.62)
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this is how our emulator 7(-) is defined. Similar to a Gaussian Process a Student-
Process is a stochastic process where any finite marginalization of points are jointly
distributed with a noncentral Student-t distribution with m —q degrees of freedom.

It turns out that going further to integrate out © is typically intractable. We can

take some prior p(©) then we can construct the likelihood
WO V)< p(6) [ oY | 5,07 O)p(8, ) 45 do?

o p(O)| Koo VA HIK H,| 7V (6%) "m0/ (3.63)

in theory we would like to compute the posterior distribution for Y,,,(-) conditioned

only on the training data

(Vi) | Y)or j P(Y() | Y. ©)P(O | 1) de.

This integral can be approximated by Monte-Carlo methods, however it is usually
sufficient to use maximume-likelihood methods on the log of (3.63) to obtain a set

of estimated values © (as discussed in §3.8),
1 1 —
log L(©) = log P(©)— 5 log det K, o — 3 log det (HI K, H.)— (m—Qq) log 62 (3.64)

The fit coefficients 3 and the overall variance 62 are functions of the estimated
length scales which needs to be taken into account when computing gradients of
log L. Once we have a set of estimated lengths ©° we can then readily obtain an
estimated set of coefficients. One then proceeds by dropping the estimate ©° into
(3.62) (for all practical purposes this means (3.60), (3.61)) and treating this as the
full emulator. As far as simulating draws from the emulator we are typically in
the limitn » ¢ ~ 1 and so we can usually use the methods for making draws from

GP’s as a reasonable approximation (as developed in §3.2).
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3.10 Covariance Functions

As discussed above the choice of GP covariance function is not entirely free, we
are required to select from positive semi-definite functions. It is useful to note that
both the sum and product of pairs of positive definite functions are also positive
definite, in this way complicated covariance structures with multiple characteristic
length scales per dimension can be constructed.

It is sometimes helpful to represent a covariance function as an infinite sum of

eigenfunctions ¢ and eigenvalues ),

IZ,JIJ ZAlQﬁl Z; (bl x]) (365)

where the eigenfunctions are orthogonal { ¢;(z)¢;(z) dz = ¢;;. From the positive
definite requirement, and symmetry, it’s clear that this spectral decomposition will
always exist and be real for any finite covariance matrix. In d dimensions the spec-

tral density for an isotropic covariance function C(-) is

o) = [ 7 (2)" Tt (3.66)

3.10.1 Power Exponential

The power-exponential form is the the most commonly used covariance form, this

relatively simple form is flexible enough to handle most practical applications.

S 1 & e — il
G(f,ﬂ;e,é,a)=9exp<—52%—ay1’), l<a<2 (3.67)
g

The overall variance for the process is set by 6, the scalars J set the characteristic

correlation length scale in each of the dimensions spanned by the parameter space,
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finally the power « sets the smoothness of draws from the process, for rather tech-
nical reasons relating to the spectral properties of the resulting Gaussian process
a value just less than 2 is preferred [11].

The spectral density for the limiting cases « = 1 and a = 2, in d dimensions,

can be found to be

d/2 .

9(r)a=1 = 22050 (%) r27 <—d; 1) (6°r + 1)—%—5 (3.68)
_ o—d —g i _g —152,2

G(r)azs = 27720 ol (3.69)

where we have isotropized the covariance i.e. r(z,y) = |z — y|.

The general shape of the power-exponential covariance function and its spec-
tral density are plotted in Fig: 3.7. In Fig: 3.8 draws with two different characteristic
length scales ¢ are shown, this scale is typically set by estimation from the data.
The dependence of the process upon the roughness scale is shown in Fig: 3.9. The
overall length scale ¢ is fixed in each panel of this figure, it’s clear that this rough-

ness scale introduces variability at a much smaller spatial scale.
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Ficure 3.7: Left: The shape of the power-exponential covariance function (3.67) for various
values of the roughness scale a and fixed values of the length and overall scales ¢ and 6.
Right: The spectral densities for the a = 1 (blue) and o = 2 (red) limits (3.68) for d = 2
withf =1landd = 1.
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Ficure 3.8: Draws from a mean-zero GP with a power exponential covariance function
(3.67), the length scale on the left (blue, § = 0.05) is significantly shorter than that on the
right (red, 6 = 0.3) note the increased number of zero crossings. In both panels the overall
scale and roughness paramters are fixed to § = 1 and a = 1.999.
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Ficure 3.9: Draws from a mean zero GP with a power exponential covariance function,
the roughness parameter « is varied from left to right. The length scale is fixed § = 0.2 as
is the overall scale 6 = 1.

3.10.2 Matern Class

The Matern class is another important form for the prior covariance function, most
commonly used in geo-spatial statistical applications. this covariance function is
parameterized by a length scale / and a parameter v which sets the degree of differ-
entiability of the underlying Gaussian Process, again ¢ parameterizes the overall
variance of the process. This is an isotropic function, it only depends on the dis-

tance r = |« — y|| between the two points.

21=vg 2vr\” 2ur
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where K, is the modified bessel function of the second kind [174], for half integer

values of the order parameter v we obtain the following simple forms
3 \3r \3r
G (T,g, 5) = 9 (1 + T) exp <—7> s
5 Vor Br? \5r
C (T,€,§> =0 (1 + 7 + ﬁ) exp (—7) :
The Matern spectral density in d dimensions is

7% vl v pd 1
g(r) = MF d +v —. (3.71)
0w \2 ") (s a0t

The shape of this covariance function and its spectral representation are plotted
in Fig: 3.10. Realizations of a mean zero GP with the Matern class covariance func-
tion are shown in Fig: 3.11, for differing values of the roughness/differentiability
parameter v. In the limit that v — oo the Matern covariance will converge to the

squared exponential form (3.67).
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Ficure 3.10: Left, the shape of the Matern covariance function (3.70) for various values of
the differentiability scale v and fixed ¢ = 1.0, § = 1.
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FiGure 3.11: Draws from a mean zero GP with a Matern covariance function (3.70) with
differing values of the parameter v and fixed ¢ = 0.2, 6 = 1.
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4

Practical details for Emulator building

In the previous chapter I introduced the essential concepts and mathematical tools
needed to build a Gaussian-Process emulator, which will serve as a statistical ap-
proximation to our simulator. In this rather shorter chapter I will cover a few prac-
tical details for constructing and using an emulator.

Of primary concern is testing how well the emulator represents the underlying
simulator structure. Assessing the validity of any simulator, or a representation of
it, in the very literal sense of “does this particular computer model actually do what 1
think it should be doing?” is an important step towards being able to use that sim-
ulator to talk about reality. If we do not understand the validity of our emulator
formulation we can hardly expect to be able to draw strong conclusions further
along the road. The article by O'Hagan et al [175] provides a primary reference
for this section, although there are many small discussions of emulator validation
scattered throughout the literature it is here that most attention has been paid to
the detailed testing and validation of GP emulators.

Also in this chapter I will discuss some of the practical issues related to actually

72



setting up a computer experiment: how many samples of the simulator output
are needed and how should these samples be distributed in the parameter space.
In the statistical literature these questions fall under the concept “experimental
design”. In many situations involving the real-life collection and analysis of data
it is often possible to propose an experimental design — a scheme for how many
conditions to test and how many replicates to make and so forth —which is optimal.
This optimality is typically in the sense of requiring the fewest resources while
providing the most robust set of answers to whatever questions the designers wish,
such as which field and fertilizer combination gives the best yield of crops or which
barrel size and chemical combination gives the best pickles [176].

There has been a substantial amount of work put into addressing the design of
computer experiments with pioneering work done by Sacks et al [7], this is exhaus-
tively treated in the recent book of Santner et al [18]. Due to the rather complex
nature of a GP emulator’s posterior distribution (§ 3.9) and the intractability of the
estimation process (§ 3.8) these results are typically heuristic rather than provably
optimal.

Finally, it is useful to note that we do not have to construct an emulator 7(-)
from the direct model output Y. We can equally well use a transformed set Y, =
{g(Yi(z1)), ..., 9(Yi(zq))} where g(Y) is any strictly monotone function. In [32]
the authors use g(Y') = log(Y + 1), this disperses small positive values of the out-
put and reduces the influence of very large values. In this application this log
transformation was substantially more stable than an emulator developed from

the raw model output.
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4.1 “Goodnesss of Fit”

Suppose we have some simulator which produces output Y,,(z) where x € R" is
a point in n dimensional parameter space. As discussed in the previous chap-
ter we can construct a GP emulator 7 for Y,,(z) given some set of d observations
Y = {Y(z1),...,Yn(zq)} of the model output evaluated according to some design
D = {x1,...,24}. Let’s take the prior mean to be a linear model with some set of
q regression functions h(z) = {1,z,...} and chose a suitable covariance function
parameterized by length scales ©. Following the methods outlined in the previ-
ous chapter we can construct maximume-likelihood estimates ©° for the correlation
lengths and use these to obtain MLE values for the fit coefficients 3 and 2 overall
variance.

At this point we want to try and understand how well our estimated param-
eters, and in fact our choice of prior mean and covariance functions, work as a

description of our simulator. There are two related concepts here:

e Verification: does the simulator, and in this case our statistical model of it,

do what the designer intended.

e Validation: is the simulator a sufficiently accurate representation of the real

world.

In this section I will address the question of emulator verification, we will be con-
cerned with quantifying how well our emulator represents the true model output.
The question of validation is rather more difficult to address, see the calibration
chapter for a detailed discussion.

By construction our GP emulator is modelling a deterministic function, the

model output at a given point in the design space is certain 1. A natural conse-

1 Of course there is the possibility for treating models which produce output with some uncer-
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quence of this is that there is no simple concept of residuals, the GP output at a
training point is exactly what was put in, as discussed in §3.4. In the theory of
general linear models, of which our GP emulator is a certain limit, there are two

kinds of residuals

e Marginal: the errors between the observed data and that predicted by the

model. This is the typical definition of residuals y — Bz.

e Conditional: errors between predicted data and observed values not used to

build the model.

We will naturally be concerned with conditional residuals when analyzing the per-
formance of our GP emulator. If we consider the form for the posterior variance
of our emulator predictions at some unknown points (eg (3.18), (3.53)) it’s clear
that any set of predictions are not going to be statistically independent. This non
independence will have to be taken seriously when we are considering these con-
ditional errors.

To construct a set of conditional errors we need an additional set of p points
D' = {2,...,2,} in the parameter space. These locations should be chosen to
span the space with particular emphasis on regions where we are very interested

in using the emulator to learn about the model. At each of the locations in @’

we need to observe the simulator Y’ = {Y,,(z}), ..., Y (z},)} and the emulator ’ =
{n(z}),...,n(x,)}. With these in hand we can construct a series of useful diagnostic
quantities.

Practically it is reasonable to take a validation set of perhaps p ~ (0.2)d. After
constructing an emulator with the original output data and using this validation

set to gauge its performance one may be in one of several situations. If the original

tainty this is still essentially certain data. We have already observed the output and its uncertainty
and have constructed our GP emulator accordingly.
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emulator performance is generally seen as satisfactory then the validation set can
be included with the original training data to build a slightly improved final emu-
lator. The Mahalanobis distance (see §4.1.2) can be used to ascertain the extent of
this improvement. Alternatively if the original emulator is not found to be satis-
factory it may be the case that including the validation set into the original training
data is sufficient to alleviate this, otherwise more runs are needed. However care
is needed here as it is often the case that particular regions in parameter space are
the root cause of a bad emulator fit, this can be found by graphical inspection of
the various metrics below. In this case it is important to ensure that the locations of
the new set of training points are focused in the regions of parameter space where

the current emulator performs most poorly.
4.1.1 Individual Prediction Errors

These are the simplest errors we can create,

E[n(z )|y7@ﬂ_
W (x}) [ Y, ©°]

D{(Y') = (4.1)

Since the emulator posterior is a StudentProcess (3.62) we expect these errors to be
t distributed with m — ¢ degrees of freedom. Further since we’ve hopefully made a
sensible design m » 1 we can approximate these errors having a standard normal
distribution, in this case values of | D! (y/)| > 2 indicate a discrepancy between our
simulator and the emulator description.

Plotting these against the input parameters z is likely to be useful, for exam-
ple see Fig: 4.1. We would expect to see all the errors randomly distributed within
a horizontal band, significant deviations or structure here may indicate issues with
stationarity. Plotting these individual errors against the emulator predictions E[n(z’) |
Y, ©°] is likely to be very useful. If for some ranges of the emulator output the er-
rors are consistently of the same sign then there is likely a problem with the mean
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functions h(z). If any particular errors seem particularly large then it is likely that
the overall variance 6% has been underestimated. If points which are particularly
close to those in the training set exhibit large errors then this indicates a problem

with the estimation of the covariance length scales ©.

Individual Errors
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FIGURE 4.1: Individual prediction errors D/ plotted for a toy model with Yy (21, 22) =
5exp(—3x1x2)sin(10z1) + 4, with m = 64, ¢ = 1 (b = {1}) and p = 12. From left to right
the errors are plotted against the predicted values, the coordinate x1 and the coordinate

x2. The outstanding points 1,9 appear to be located at fairly extreme values of z; and this
may well be the reason why they perform badly.

4.1.2 Mahalanobis Distance

To obtain a single error statistic we can consider the sum of the squares of the

individual prediction errors
p
DY) = 2, DIY')? (42)
1=1

this is suggestive of a x* quantity (i.e. D,2(y’) ~ Xf)), however the errors D! are
not actually independent and we shouldn’t throw away our knowledge of their

correlation structure. Instead we can introduce the “Mahalanobis Distance”

Duyp(Y') = (Y = E[n) | Y,0° )" (VIn) | Y,0° )" (V' = E[n(«) | Y,6°]).
(4.3)
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If we write Dyp = & where Z = (Y —m))" (V)" (Y —mj)T and W = g—z (see
(3.53)), then Z | J,0%,© ~ x2 and (m — ¢ — 2)w | Y,0 ~ x2,_, and so since these

two variables are independent x? their ratio is £’ distributed

I%DMDW(ZE/)) [ Y0 ~ Fymg- (4.4)

This quantity correctly takes into account the non-independence of our verification
data set, large values of (4.3) compared with those expected from (4.4) indicate that
there is certainly a discrepancy between the simulator and the emulator. However
unlike the individual errors D! we can’t really learn much about where this problem

lies.
4.1.3 Variance Decomposition

Let’s define a standard deviation matrix G such that V[n(z') | Y, 0°] = GGT, then

we can introduce the vector of p transformed errors

Da(V') =G (Y ~E[n(a’) | Y,08%), (4.5)

the elements of D are uncorrelated and are student-t distributed with m — ¢ de-
grees of freedom, furthermore the Mahalanobis distance can be recovered D p(Y’)
Da(Y')"De(Y'). We can obtain G either by carrying out an eigendecomposition of
Vin(z") | Y,©°] or through a regular or pivoted cholesky decomposition. The
choice of decomposition which leads to GG gives the errors (4.5) subtly different in-
terpretations. The eigendecomposition and pivoted cholesky are most useful, the
eigendecomposition errors give linear combinations of validation locations in de-
scending order of predictive error. The pivoted cholesky decomposition permutes
the basis of validation points 2’ into descending order of conditional predictive
variance, such that the first point has the largest predictive variance the second
point has the largest variance conditioned on the first and so forth. Plots of the
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individual elements of D¢ against both the emulator predictions and the index in

the vector are most likely to be useful.
4.2 How many model runs is enough?

The glib answer to the question of “how many model runs to use” is as many as
you can afford, which will turn out to be fairly good advice. There are currently no
general results for the optimal design of computer experiments, however we can
at least heuristically motivate some reasonable lower bounds on how many points
to use.

As discussed above one should budget for a set of validation runs which are
well dispersed through the parameter space, although this may seems tedious
there really is very little one can do with a tool if one has no idea of how well
it actually works.

Realistic estimates of how long the simulator takes to run at a given point in the
parameter space, along with any additional pre and post processing of data, are
essential for developing an appropriate experimental design. Here an experimental
design is the actual set of points @, however the choices of input parameters and
which output quantities are of interest are acutely relevant to this process.

The computational complexity (time and space) of training and using a GP em-
ulator scales with the total number d of design points. The dimension of the input
space n itself is really important, the so called curse of dimensionality applies here.
Consider a hypercube with side length 27 and a hypersphere with radius r, the
cube’s volume in R" is Voype(n) = 2™ while the volume enclosed by the sphere

2T'n7r"/2

is Viphere(n) = NOEIR The fraction of the volume of our n dimensional hyper-cube

which is within the hyper-sphere is

‘/sphere(n) - 7Tn/2
Vewbe(n) — n2n—1T(n/2)’
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and this ratio really doesn’t fare well in large dimensions, lim o = 0. As the dimen-

n—ao0

sion of a space grows most of the volume ends up in the corners, in four dimensions
only a third of the total volume is contained within the unit hyper-sphere.

As a consequence, constructing a GP emulator is likely to become impractical
for high dimensional parameter spaces (large n) if there is significant structure in
all dimensions. However all is not lost, it is frequently the case that the output of
computer models with high dimensional parameter spaces is dominated by a small
number of parameters which determine most of the structure with the remaining
parameters playing minor roles. A sensitivity analysis (see chapter 8) is a good
way to begin approaching these kinds of models.

The choice of a relatively smooth prior covariance function reflects our belief
that the simulator output itself is fairly smooth across the parameter space. This
is a strong assumption and the extent to which it holds is largely responsible for
the success or failure of GP emulators of computer models. When this assump-
tion is justified and the prior mean is reasonably well modelled only a relatively
small number of model observations are required to establish the characteristic
structures, usually far fewer than would be needed to obtain an interpolation of a
similar quality using more traditional methods.

The rule of thumb (due to Sacks) which should be thought of as providing a
reasonable lower bound for the total number of points is to allocate at least ten
points per spatial dimension

mind = 10n (4.6)

this “rule” is seriously explored in [21] and found to be fairly reasonable. In Fig: 4.2
the number of design points d for a toy one dimensional model is varied between
6 and 12. For a quantifiable approach to understanding how many training points

are sufficient one can consult the statistical and machine-learning literature about
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“learning curves” for GP regression (see [12, 177, 178]). The primary object of
concern here is the generalization error, this is the average over all possible designs
of a loss-function typically the L, distance between the true function and the GP
mean computed over the whole parameter space. Results obtained for these are

typically of fairly limited practical use and so not presented here.

O T 2 T 4 T O T 2 T 4 T 0 T 2 T 4 T
FiGure 4.2: The panels show the effects of varying the number of design points (model
samples), between 6 (left) which is clearly too few, the center panel has 9 design points
and the right has 12. Note the reduction in the 95% confidence intervals as the number of
design points increases. The red dashed line shows the true model curve given by (3.1),

the blue solid line shows the posterior mean of the GP” and the open circles show the points
where the model function was evaluated.

4.3 Design

Supposing we have selected the n most interesting input parameters to explore
and we decide on some number of points d that will be sufficient for at least a first
pass, we are then left with the question of how to distribute these d points through

our n dimensional space.
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Typically the nominal ranges of the model parameters will form some irregular
volume [a1,b1] ® [az2,b2] ® - - - ® [an, b,] = R™. Naturally the inputs fed to the sim-
ulator when making the training set Y/ must be within these ranges. However the
resulting analysis and emulator construction will be rather easier if we transform
these ranges onto the unit hyper cube [0, 1]". The transformations used to achieve
this may be linear in the case of finite [a, b] and will be nonlinear for infinite initial
ranges. Standardizing the parameter space in this way is helpful as it places all the
parameters on an equal footing with respect to typical length scales. This allows
for a ready comparison of the relative sensitivity of the output to variations in each
input dimension, which is useful feedback for understanding the model.

As mentioned in the introduction to this chapter the optimal design of exper-
iments has a long and illustrious history. There are formal results for optimal ex-
perimental designs for GP emulators in certain limiting cases, these are however
somewhat academic [18]. In practice any suitably dispersed simple pattern that
spans the design space will probably work fairly well. I will heuristically discuss

and illustrate a scheme which is almost always sufficient in practical applications.
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Ficure 4.3: Examples of various d = 36,n = 2 designs. Left: points are iid draws from
a two dimensional uniform distribution. Center: the sample points are arranged on a
uniform square lattice. Right: a maximin Latin square design.

We can identify two opposing limiting procedures for distributing the d points
into our n dimensional space. We could distribute the points completely randomly
throughout the space, say by taking the points as a set of d independent uniform
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samples. This will result in a relatively clumpy distribution with some rather large
distance between the points, this is the limit of the least intentional structure in the
choice of points. The other limit, the scheme with the most intentional structure,
would be to arrange the points on some kind of uniform lattice that spans the
space. Each of these schemes has strengths and weaknesses and neither is strictly
practical, the commonly used schemes represent a compromise between these two
limits.

Uniformly and independently distributed sets of random points are surpris-
ingly clumpy, as a result some parts of the parameter space are likely to be under
sampled and some will be over sampled. However this clumpiness does have the

advantage that a wide variety of length scales of the model will be sampled. A uni-
form grid with some spacing ao (3) " will guarantee to fill the space as fairly as
possible, no region will be especially over or under sampled. However as a result
of the fixed grid this design will only be sensitive to structures in the model out-
put which appear at spatial scales greater than a, since there is no data available to
inform about shorter length scales. Furthermore if we believe that the simulator
output is well modelled by a stationary GP then it is really a huge waste of effort
to attempt to uniformly span the space since in this case we only need to gather
enough information about the simulator’s output to reasonably estimate the char-
acteristic length scales.

To be truly effective the grid design requires a huge number of points which
given our strong prior on the smoothness of the model output seems rather waste-
ful. The uniform random design is appealing as it gives access to a wide range of
length scales which will be important when estimating the correlation structure of

our simulator. However this comes at the price of wasting effort by creating too

many clusters, which may well not even be in interesting parts of the parameter
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FiGure 4.4: Empirical CDFs of the euclidean distance between all pairs of points in each
of the example designs (d = 36,n = 2) shown in Fig: 4.3. The uniform and LHS designs
are generally similar, although the propensity for tighter clusters in the uniform design is
observable in the differences in the tails of the CDF’s.

space, and of simply failing to sample the model at all in others.

To effectively compromise we want a design that has something like the guar-
anteed coverage of a grid (although it doesn’t have to be quite so uniform), with
some degree of randomness mixed in so that we are able to effectively sample the
simulator’s dominant length scales without having to resort to a sampling so dense
as to be computationally impractical.

The dominant method for generating designs for computer experiments is Latin
Hypercube Sampling(LHS) [19, 179, 180]. A Latin square is an n x n array filled with
n symbols such that each symbol occurs exactly n times and exactly once in each

row and column, an example with n = 4 is

12 3 4
2 4 1

1 4 2 (47)
43 21
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Latin squares are rather interesting beasts in their own right, with many symmetry
and invariance properties. For the purposes of LHS we will relax the mathematical
definition of a Latin square to being an n x n grid with n non zero entries arranged

such that there is only one non zero entry in each row and column, like this

(4.8)

In Latin Hypercube Sampling we distribute our d points over an n dimensional
uniformly spaced grid (d x d x ---,_3 x d) such that every possible two dimen-
sional marginalization of our grid has the relaxed Latin square property, i.e. looks
like (4.8). Since each occupied cell in this grid corresponds to some fraction of the
total volume of the parameter space the location of the corresponding design point
is typically uniformly sampled within this volume. There are several strategies for
selecting an optimal (or nearly optimal) LHS design from some ensemble of candi-
dates, again for more detail see [18]. A robust strategy is to generate a moderately
large ensemble of candidate LHS designs and select the element which has the
largest minimal interpoint distance, i.e. maxXgesigns(MiNpoints 745), this is known as
a maximin LHS design. An example maximin LHS design is plotted in the right
panel of Fig: 4.3.

The array of points produced by an LHS design is much sparser than a full
grid design, which would require d" points, and yet provides a good coverage of
the parameter space. This design is particularly good for stationary processes as it
incorporates samples at a variety of inter point distances in each dimension. How-
ever if there are strong interactions between different parameters, i.e. the model
output is dominated by nonlinear terms coupling different dimensions in the pa-

rameter space, then this design is likely to be so sparse that it will not be possible
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to accurately assess the extent of these effects. This would be a bad thing.

If more training points are needed, for instance due to poor diagonistics of the

current emulator, or if more computational resources become available then there

are several methods for efficiently extending these designs [181, 182, 18].

4.4

Step-By-Step Analysis Procedure

This is a sort of checklist for proceeding with an analysis of a model.

1.

Learn as much as you can from model developers (if you're not one) about the

model, what it aims to achieve and at what level of physical detail /realism.

. Identify which inputs and outputs are interesting for the problem domain.

Make a table of these. Obtain expected ranges for output paramters and sen-
sible ranges for the input parameters. If possible consider splitting input

parameters into calibration v and tuning = parameters.

. Identify which inputs and outputs have a correspondance with reality and

obtain appropriate field data if possible.

Identify how deterministic the model output is, how many replicates will
be needed at each design point to obtain a sensible estimate of the quantity
of interest. From this estimate how computationally expensive it will be to

obtain the necessary number of replicates at a design point.

. Plan on carrying out the analysis on a unit hypercube in the parameter space.

This makes the interpretation of correlation length scales a lot easier. Typ-
ically a linear scaling from the natural ranges of the parameters to the unit

cube is sufficient, although it may not be the only way.

A minimal rule of thumb is to start with m = 10d points per input dimension

[21]. Create an m point d dimensional LHS design @ on [0, 1]¢ with as many
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10.

11.

points as the computational budget allows. Create a second LHS design with

a smaller set of points for use in validation.

Run the code, collate the raw output V.

. Graphically investigate the model output. Make scatter plots of the out-

put against the various parameters along with histograms/boxplots and QQ
plots. These will help identify what kind of transformation (if any) is needed
so that the GP training set U is sufficiently normal (see § A.4). It is often
useful to see how much structure there is in the model output and how this
structure depends on the parameters. These plots should help inform the

choice of prior covariance and mean functions.

. Center the model output, compute the sample mean i = % N V() and

subtract it from all the elements of the raw output V..

It may be appropriate to scale the centered raw output Y, — [ so that the fi-
nal training set is Y/ = %= (where s* = 52?:1 (Yyu(z;) — fi)” is the sample
variance). For simulators which produce univariate data this is typically fine,
although extreme outliers may adversely skew this transformation. This scal-
ing makes the specification of priors for the variance, such as the marginal
precision A, rather simple. For simulators which produce multivariate out-
put scaling each output to unit variance needs careful consideration. If the
sample variances between each output variable are rather different and this
difference is believed to be physically significant then it may not be sensible

to hide this away from the rest of the analysis.

Go forth and emulate! Construct a GP and draw samples from it using the

methods outlined in chapter 3.
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5

Dealing with Multivariate Output

In chapter 31 outlined how to create a surrogate model, or emulator, which smoothly
interpolates the output of a simulator. The results and methods presented are ap-
plicable to computer models with a scalar output. In practice interesting computer
models typically produce many outputs and we are naturally interested in how
each of these outputs varies across the parameter space, furthermore we are typi-
cally also very interested in the extent to which these outputs vary together.

In theory one could construct individual GP emulators for each component of
the output vector. While conceptually simple this has the distinct disadvantage
of potentially requiring a lot of computational work if the number of output com-
ponents is high, this approach throws away the correlations between the output
components across the training set.

It is theoretically possible to define an explicitly multivariate Gaussian Process,
however specifying the prior correlation between the outputs becomes tricky as
does estimating all the parameters needed to determine this correlation structure.

Instead the typical process for dealing with a model with multivariate output is
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to construct a lower dimensional approximation to the observed data. A popular
method for achieving this is the method of principal component analysis (or PCA),
which constructs a set of orthogonal (and approximately statistically independent)
basis functions which describe the observed data and its variability. The training
data set is projected into this basis and a set of GP emulators are trained on the

resulting weights for each basis component.
5.1 Principal Components

Suppose our computer model produces a set of k£ different outputs at each point

in the parameter space
Yoz, u) = {Y, (z,u), ..., Y (2, u)},

in general these outputs will be somewhat correlated across the parameter space.
If we have observations for all k£ of these outputs we can easily modify the GP
emulator framework to treat this multivariate model.

We go about this by constructing a principal component decomposition for our
set of model outputs. This defines a projection which rotates the data onto the di-
rections of maximal variation, which are by construction orthogonal. We can then
construct GP emulators for the data projected onto each of these directions. Each
of these projected directions are approximately independent and so the posterior
covariance matrix between our emulators is diagonal. Finally can we rotate the
predictions from the PCA basis back into the original or physical space. In this
fashion we can compute the mean vector /i(x,u) (k) of our observables at some
untested location and also the covariance between them Cy (k x k) .

To compute the P.C decomposition suppose that we have a set of £ dimensional

observations obtained by running the multivariate model at some set of d locations
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in the n dimensional parameter space, i.e. as before our design set is
D =A{(z1,u1),...,(Ta,uq)},
each observation is a k length vector
Yo (i, u;) = {Yﬂlb(xi, w), ..., V¥ (x;, uz)}

and our training setis Y = {Y,,(z1,u1), ..., Yin (24, uq)}. From the training set I/ we

compute the sample mean vector /i (length k) and the sample covariance matrix 3.

(k x k),

1 d
= EZY$($Z’UZ)’ (51)

=1

& 1Y
S = EZ (Y2 (i, 1) — fia) (Y (s, us) — fug) " (5.2)

An eigendecomposition of the matrix 3 defines our principal component decom-
position

S = UAUT, (5.3)

here U (k x k) is a matrix whose columns are the eigenvectors of 3 and Aij = 6N
is a diagonal matrix of eigenvalues sorted in descending order. The trace of A
corresponds to the total sample covariance of our observations Y. As such each
eigenvalue represents the covariance contribution of its associated eigenfunction
to the observed total covariance. This decomposition identifies the direction in the
space spanned by our data Y which corresponds to the largest observed variation
and the remaining eigenvectors correspond to orthogonal directions with succes-
sively smaller amounts of variation. Each additional eigen-component describes
a lesser amount of the sample variation which is orthogonal to all the others. The

eigenvectors U describe the rotation from our observations into the P.C space. The
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set of k£ d—dimensional vectors
Zk(%,%‘) = —Aﬂz[ym(%aui) - ﬂ], (5.4)

where 1y, is the k’th eigenvector and )\ is the £’th eigenvalue, represent the pro-
jection of our original set of d k—dimensional model observation vectors into our
orthogonal P.C space. Each of the k vectors Z;, is then used as an input for a sin-
gle GP emulator, which is otherwise constructed exactly as described in chapter 3.
Each of these emulators now interpolates the weights Z(z, ) and can be made to
give predictions at untrained locations as before.

The PC rotated weights Z, are statistically independent if the original data Y
has a multivariate normal distribution, in this case the covariance Cov|Z;, Z;] = Aid;;
is diagonal by construction. This independence underlies our ability to construct
individual scalar GP emulators for each of the Z,..

It's important to realize that the sample outputs of a real computer model gen-
erated by some design that spans the parameter space may not be particularly nor-
mally distributed. This needs to be explicitly tested and addressed on a case by case
basis. To test for normality one can construct so called “QQ"” plots and compute
the squared distances which should be x* with degrees of freedom equal to the
rank of 3. see § A.4. Often the sample data can be transformed to improve normal-
ity, for instance a square-root transformation in the case of count data. For more
information see [183]. In the case of sample non-normality the potentially non
trivial higher moments of the sample distribution will not be removed by the PC
transformation, leading to some amount of residual correlation between the vari-
ables which is neglected in the remainder of the analysis leading to a less faithful

multivariate emulator.
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FiGure 5.1: A toy example of a principal component decomposition, showing the poten-
tially skewing influence of outliers. The solid black circles show 128 samples from a toy
model with y» = y; + § where is a mean zero normally distributed random variable with
standard deviation 0.05. The red and blue lines show the two principal directions (eigen-
vectors). In the left panel A; = 0.998 and Ay = 0.0018, the first principal component (red)
explains essentially all of the variation in the sample, as we would expect. In the right panel
outlying data points (red) have been added to the data set. As a result the two principal

directions which are now skewed. Also now A\; = 0.904 and Xy = 0.095, the contribution
of the second direction to the variance decomposition has erroneously become enlarged.

We can rotate our predictions back into the ‘physical” space, in general
Yar(ws, wi) = i + U\FAZ(%,%‘)’ (5.5)

where Z(z;, u;) = {Z1(x;,w;), - . ., Z(x;,u;) } is a vector of the P.C rotated quantities,

the expectation of the emulator in the P.C space is the same as before and so
E[Yar(wi, ui)] = fo+ UVAE[Z (2, u:)], (5.6)
where
BlZ (i, ui)] = {E[Z1 (2, wi)], - .., E[ 23 (i, wa)]}
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The estimated covariance between the components of Y,,(z;, u;) can also be ob-

tained at a fixed location x;, u;

Cov[YL (xi,w), Y3, (x5, ;) 2 Ul AU A Var[Zs(x,w)],  (57)

a,By=1
where Var[Z3(z;, u;)] is the variance of the f’th principal component weight GP
emulator at z;, u; as given by (3.18). We can also estimate the covariance between
two locations in the parameter space (z;,u;), (z;,u;) and between two different

observables Y%, Y/ as
Cov[Y* (i, u;), Y7 (x5, u5)] = BIY (23, 1:) Y2 (25,1)] = B[Y* (25, ui) JE[Y P (s, )],
= a5A1/2UﬁeA1/QCOV[ (l'm u1> ZX ('rj7 uj)]a

= a§A1/2U55A1>/<257XCOV[ZA/ (.TZ', Ui); ZX (Z‘j, u])]

Where we have used the independence of the P.C space to set Cov|Z, (z;, u;), Z, (2, u;)] =
Oy COV[Zy (3, w3), Z (5, ;)]

5.2 Dimensional Reduction

We have described how to use a principal component decomposition to construct
an orthogonal basis for a set of potentially correlated data. If k is very large, for
instance if our vector of model outputs corresponds to some discrete sampling of
a continuous process such as a time series, then it becomes painful to construct
and sample all £ emulators. In this case it is usual to retain only the first  compo-
nents of the P.C decomposition, by construction these are the largest contributors
to the observed variation in the input data. This process is often referred to as
“Dimensional Reduction” or as “finding a low rank approximation” to 3.

Typically r is selected to reproduce some large fraction of the sample variance
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usually around 95%), this value of r can be approximated by solving

Vi(r) = 2 TiA = 0.95, (5.8)

i=1

for r. Naturally by selecting » < k we have lost some of the original information
about our sample set Y, however with judicious choice of r this is usually not a
serious issue. It is often very useful to plot V' (r) a so called scree plot. Inspection of
such plots gives a good visual indication of how well a PCA dimensional reduction
approach will work. If the plot saturates quickly then only a small number of
components will be needed to reproduce the most important parts of the variation
of the model output across the training set.

A set of training data from a simple multivariate model is shown in the left

panel of Fig: 5.2, the toy model here is
Ym (T, w1, us) = 5exp (—3uix) sin(10x) + 2us, (5.9)

where uy, uy are interpreted as calibration parameters and x is an index that picks
out the different elements of the model output. I have discretized z into k = 128
uniformly spaced sample locations on [0, 2], the values of the calibration parame-
ters are sampled from a maximin LHS with d = 64 (see §4.3). This kind of high
dimensional functional model output might represent a time-series or the bins of
a histogram. This training data set clearly has a lot of structure in the functional
dimension z, by inspection we would expect that we should be able to pick an
r « k = 128. The right hand panel in Fig: 5.2 shows the first few P.C basis functions
(eigenvectors of the sample covariance matrix), the legend gives the associated
standard deviations (square roots of the eigenvalues) for these components. Ex-
amining the scree plot and the eigenvalues makes it clear that taking » = 3 would

give a fairly faithful reproduction of the input data, one could perhaps make a case
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Ficure 5.2: Left: Training data Y for the toy functional model (5.9) with £ = 128 and
d = 64. Right: The five most significant eigenvectors of the sample covariance matrix of /,
the legend gives the standard deviation associated with each component. The inset figure
shows the cumulative variance explained by the eigenvectors V() (5.8).

for including up r = 5 but any additional components are likely to add no further
information. This is a substantial reduction from the naive case of constructing
k = 128 GP emulators.

The observed correlations in the data provide a low-rank approximation to the
full sample covariance matrix. However if the scree plot saturates very slowly then
there may not be a suitable lower dimensional representation. For a nice treatment
of the analysis of scree-plots and other PCA related diagnostics consult [184, 183].

After determining r one proceeds as above, but with the eigendecomposition
matrices truncated U = U, (k x r) and A = A, (r x r) as such one obtains a trun-
cated vector Z(u;) = {Z1(w;), ..., Z.(u;)}. There are other methods of dimensional
reduction (such as wavelets etc), however it can be shown that the truncated P.C
decomposition is the highest fidelity linear transformation, we lose the least infor-

mation by making this rotation.
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5.3 Principal Pitfalls

Finally, it is important to note that the presence of outlying data points in a sample
set can have a very strong influence on the resulting P.C basis and weights, see
Fig: 5.1 for a toy example. Here a two dimensional data set with a strong linear
correlation between the two variables is decomposed (left panel). In this case the
two principal directions could be deduced by inspection, the first direction (red)
is responsible for the vast majority of the variation observed in the sample Y. The
right hand panel shows the same data set with the addition of two rather exagger-
ated outliers, plotted as red crosses. These two outlying points strongly skew the
two principal directions and push the variance explained by the second direction
up to almost 10%. This sensitivity makes a blind application of these multivariate
methods somewhat unadvisable.

To make this more precise let’s consider the change in the decomposition in-
duced by adding a new (and outlying) observation Yo, = {Y,\,,..., Y%}, we can

compute the new sample mean and covariance as updates to (5.1),

1 [ d 1
1 = —— VY w) + Y3 | = e Yo, 5.10
MO{ d + 1 (;1 ((L’ U; ) + out) d + 1[’[’ + d + 1 out ( )
d
Z;B T d+1 {Z (Y (i, wi) — fig,) (Yﬁ(%auz) - %) (Yous = fia) <Yoit ﬂ,ﬁ> } )

= #‘llzaﬂ + ﬁ (Kffn ((d2 1) Y5, — 2d2ﬂﬁ>
i ((3d2 1) fus — 2d }{fflt» (5.11)

Recalling results from elementary linear algebra [161, 185], we could compute the

compute the corrections to our original eigendecomposition of ¥ perturbatively
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(ine = é and taking the limit that d is large). Writing
S x X4 €V 4+ O
where the elements of the perturbing matrix 1 are

V&B::(—2M3Kmt 2fia Yy + Yo

out

Yo + 3fiaits) (5.12)

Writing the eigenvalues and eigenvectors of 3 (k x k) as a power series \, = \° +
eXN' +. ., ul = u) +euj + ..., with the unperturbed values as the lowest order terms
we obtain the usual results for the first order corrections in to the eigenvalues and

eigenvectors

k 01y/,,0

A= TV wl — Z up, Vo

; Ty/7,0 : SUSSYL
i M

J J 77 J
(=1,0]

(5.13)

after inserting the series expansions into the definition of the eigendecomposition
and matching terms order by order. The shift in the eigenvalues and vectors is
linear in the matrix elements V/, g (as it must be at first order in the expansion). We
can easily see the skewing influence of the outlying points by slightly re-writing

(5.12)

Vass = {2115 (o= Vi) + 2ita (15 = Vi) + (YouYow — fais) } - (5:14)

It's clear that these matrix elements are directly proportional the difference be-
tween the sample mean values of a given output component /i, and the associated

component of the additional data point Y. If the point truly is outlying then it

out

will exert a strong pull on the PCA decomposition that is proportional to the extent

to which it outlies the main trend in the data.
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6

An Example Analysis: ChemTreeN

What are the stars but points in the body of God where we
insert the healing needles of our terror and longing?

To illustrate some of these ideas let’s look at a detailed example of an analysis
of a model with a significantly multivariate output. In [4] the authors (myself in-
cluded) investigate the hybrid galaxy formation model chemtreeN, for a detailed
description of the physics included in the model see [186, 187]. Fiducial points
are selected in the calibration parameter space, the model output at these points is
used as artificial field data. We construct a series of GP emulators based upon dif-
ferent subsets of the model outputs and use these to explore how well the fiducial
locations in the parameter space can be reconstructed.

Galaxies like the Milky-Way have complicated formation histories, the under-
lying dark matter mergers between evolving galaxies and the capture of smaller
galaxies play a role alongside the stellar chemistry which determines the stellar
content of the galaxies as we observe them. Because we are embedded in it, in-
formation about the physical properties of the Milky Way can be measured at an
exquisite level of detail. Recent studies seem to indicate that our Galaxy may not
be a typical galaxy after all. For example, observations of a large sample of the

Sloan Digital Sky Survey (SDSS) galaxies have shown that the Milky Way has sig-
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nificantly more satellites than a typical galaxy of its luminosity

The model ChemTreeN layers stellar chemistry over a given set of dark matter
merger dynamics. We selected several reasonable candidate dark matter histories
for the Milky Way and systematically calibrated the model to best reproduce ob-
servable features of the Milky Way such as its population of satellite galaxies. The
computational overhead for such an analysis would have been prohibative without
surrogate models of the computer codes.

Surprisingly the resulting sets of best fit parameters, which determine the evo-
lution of the baryonic components of our Milky Way-like galaxy, obtained from
each candidate merger history were found to be strikingly inconsistent. The de-
tails of the dark matter history must play a important role in galaxy formation.
This exercise provided an interesting and new insight into how the dark-matter
merger history of different candidate galaxies influences the full galaxy formation

pI'OCQSS.
6.1 An Introduction to the Problem Domain

Understanding the formation and evolution of galaxies is a central and long-standing
problem in astrophysics. Over the past century, and particularly in the past decade,
a tremendous amount of information has been gleaned about populations of galax-
ies and their temporal evolution, and data have been collected on galaxies span-
ning more than six orders of magnitude in stellar mass and over thirteen billion
years in the age of the Universe. These observations show that the galaxies that we
can see have undergone radical changes in size, appearance, and content over the
last thirteen billion years [188, 189, 190, 191]. Complementary observations have
provided a rich data-set on the kinematics and elemental abundances of stars in

our own Milky Way, including large numbers of metal-poor stars in the halo of our
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own galaxy and in local dwarf galaxies. In principle, this ‘galactic fossil record” can
probe the entire merger and star formation history of the Milky Way and its satel-
lites, and complement direct observations at higher redshifts.

The quantity and quality of observational data on galaxy formation, which is
already staggering, is going to increase exponentially over the next decade. Sur-
veys such as LAMOST [192], SkyMapper [193], Gaia [194], and, ultimately, the
Large Synoptic Survey Telescope [195] will produce petabytes of data on billions
of individual objects, both galactic and extra galactic, that will strongly inform our
understanding of galaxy behavior.

Despite this wealth of observational information, we currently lack the detailed
and self-consistent theoretical models necessary to adequately interpret such ob-
servational data sets. Purely analytic (i.e., “pencil-and-paper”) theoretical mod-
els are insufficient to address the questions that are currently being asked about
galaxy formation, due in no small part to the range of physical components that
must be simultaneously modeled (e.g., gravity, dark matter, gas dynamics, radia-
tive cooling, star formation and feedback), and the complex and nonlinear cou-
pling of these components. As a result of these complications, two separate theo-
retical methods are commonly used to study galaxy formation: multiphysics hy-
drodynamical simulations and semi-analytic models.

Multi-physics numerical simulations are typically used to model galaxy forma-
tion by implementing all of the relevant physical processes in as realistic a man-
ner as is technically and computationally feasible. These calculations are typically
based on N-body dark matter dynamics simulations of cosmological structure for-
mation, and include gas dynamics, the radiative cooling and heating of gas, mod-
els for star formation and feedback, and possibly more complex physics such as
magneto-hydrodynamics, radiation transport, and the formation of, and feedback

from, super massive black holes. Commonly-used codes of this type include Enzo
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[196, 197], Gadget [198], Gasoline [199], RAMSES [200], and more recently AREPO
[201]. These codes produce broadly similar results, although some important dif-
ferences remain to be resolved [202, 203, 204, 205].

The main advantage of such calculations is that they attempt to faithfully re-
produce the relevant physical processes in as accurate of a manner as possible,
and by virtue of their construction automatically include any complex, nonlinear
interaction between important physical processes. The main disadvantage of this
sort of simulation lies in its cost: current-generation calculations of a single Milky
Way-like galaxy performed at high (~ 100 pc) spatial resolution [e.g. 206] can easily
consume hundreds of thousands of CPU hours and months of time to complete,
making it challenging to model statistically-significant numbers of galaxies or to
perform a meaningful study of variations in free parameters within the models,
even with the methods discussed in this thesis.

A second approach is often referred to as “semi-analytic” or “phenomenolog-
ical” modeling of galaxy formation. This type of model typically is based upon
either the extended Press-Schechter formalism or N-body cosmological simula-
tions, which provide the evolutionary histories for a population of galaxies. Pre-
scriptions are then applied on top of these evolutionary histories to describe the
behavior of the gas and stellar populations contained within, and surrounding, the
dark matter halos that drive dynamics on large scales, as well as the observational
properties of the resulting galaxies. These models are then calibrated by compar-
ison to some set of observations. Some examples of this sort of model include
GALFORM [207, 208, 209], Galacticus [210], and ChemTreeN [186, 187].

Two important strengths of this type of model are flexibility and speed: one can
easily implement variations on a model (gas ejection from galaxies as a function of
halo mass and redshift versus a constant value) and then see within minutes how

this affects the modeled population of galaxies. The disadvantages of this model-
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ing technique include the large number of free parameters and the extent to which
the observable properties of simulated galaxies depend on the models of specific
physical phenomena, such as the behavior of galaxies during mergers. Even with
these substantial downsides, however, semi-analytic models are incredibly useful
for exploring the consequences of various physical phenomena on the observable
properties of galaxies.

We combine semi-analytic models of the formation of the Milky Way (including
several different N- body simulation-based merger histories) with modern statis-
tical techniques to explore how one might meaningfully constrain the formation
of the Milky Way’s stellar halo and population of satellite galaxies both from a

theoretical standpoint and in terms of guiding future observations.
6.2 The Model — Input and Output

ChemTreeN belongs to the class of semi-analytic galaxy formation models men-
tioned above. The chemical processes of galaxy formation, here chemical can typ-
ically be read as nuclear-astrophysical, are described phenomenologicaly by the
model through a series of differential equations [186, 187]. The model takes as
primary input a (cosmological) series of snapshots of the state of an N-body sim-
ulation of the purely gravitational interaction of a primordial distribution of dark
matter. This dark-matter history, where fluctuations in the initial dark matter dis-
tribution evolve to form gravitationally bound clumps and eventually merge into
galactic scale objects, forms the backbone of the simulation. These bound clumps
are referred to as halos, the halos are individually tracked throughout the evolu-
tion along with their merger into larger halos or their consumption of smaller ones.
These merger histories are computationally very expensive to obtain as they cur-

rently require super-computer level resources to obtain a reasonable resolution of
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the simulated cosmology, a typical simulation takes 5-10 days of runtime on 3000
cores.

The chemical evolution of the galaxy as described by the model is coupled to
the details of this merger history. The model describes the evolution of populations
of stars associated with each of the dark matter halos. These populations evolve
through star formation, interactions with stellar winds and stellar decays. Each
halo is modelled as having some initial gas that is accreted from the interstellar
medium (ISM), this gas collapses into stars and eventually these stars decay and
return energy and metals ! back to the halo and into the larger environment. This
process is iterated and new generations of stars form from the now metal enriched
gas in the halo.

We will begin by concerning ourselves with building an understanding of the
influence of an important subset of the calibration parameters controlling the chem-
ical evolution of our candidate milky way by varying them under a single fixed
merger history. Later we will turn to examining the influence of a small set of

candidate dark-matter merger histories.

6.2.1 Parameters

Table 6.1: ChemTreeN calibration parameters.

Parameter Fiducial Value Range  Description Explored
2 10 5-19  Epoch of re-ionization Yes
Jbary 0.05 0-0.2  Baryonic mass fraction Yes
fese 50 0-110  Escape factor of metals Yes
€4 1x 10710 02-1.8 Star formation effi- Yes
ciency (107 yr™1)
mi 0.07 0.04-0.2 SN IIiron yield (M) Yes
fra 0.015 e SN Ia probability No
€SN 0.0015 o SNe energy coupling No
mi 0.5 e SN Ia iron yield (Mg) No

! Here metals refers to baryonic matter other than hydrogen
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The calibration parameters identified as being potentially interesting by the do-

main scientists are listed in Table: 6.1. They represent a series of potentially sub-

jective parameterizations of very complex physical processes. Learning about the

values of these calibration parameters which are compatible with observational

data would be very interesting, as it would help constrain the scale and nature of

many of the modelled physical processes. However it should not be thought of as

a measurement of a fundamental physical constant, such as measuring the charge

of an electron or the mass of the Higgs boson, since these calibration parameters

may not have a directly corresponding physical constant.

Some brief description of the explored parameters is given below.

2

fbary:

The red-shift » at which reionization begins. Recall that for a FRW cosmology

with scale parameter a(t) the cosmological redshift between two times is

a(thow)

1+2=
a(tthen>

After recombination the early universe was initially populated with hot hy-
drogen. Reionization is the cosmological process where radiation from (and
perhaps their explosive decay) the initial population of very bright pure hy-
drogen stars ionizes and induces a large velocity dispersion in the interstel-
lar medium. This is an important process as it imposes a lower bound on
the mass of a dark-matter halo which is sufficient to collect enough baryonic
matter to form a substantial population of stars. Halos which are not heavy

enough by this "time” will remain effectively barren.

The baryonic mass fraction, the proportion of baryonic matter to dark mat-
ter assigned to each halo. This is substantially larger than say the WMAP3

cosmological baryon density as it is a local quantity.
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fesc: The escape factor of metals. This sets the level of metallicitiy enrichment of
galactic winds relative to the interstellar medium metallicity. This effectively
sets up a flux of metallicity out from the simulation, without this the simu-

lated stellar populations would be far too metal rich.
€,: Sets the rate of star formation.

mp,: The amount of iron in solar masses produced by core collapse (type II) Super

Novae (SN).

To create the training set a d = 200 point design was created using a Latin
Squares method (see §4.3). This number of points gives an acceptable balance be-
tween covering the available space and run time. The input parameters are allowed

to vary within the ranges specified in Table: 6.1.
6.2.2  Output

The model output for each of the d = 200 locations in the design is plotted In
Fig: 6.1. The output is in the form of the cumulative distribution of the number
of satellite galaxies below a certain absolute visual magnitude (left panel) and the
satellite metallicity ratio as a function of absolute visual magnitude (right panel).
Both of these outputs are functional, in the sense of being naturally given by some
curve, over M, the absolute visual magnitude.

From a superficial inspection of these figures it’s clear that the ranges of the
calibration parameters covered by our design lead to substantial variations in the
model performance. Furthermore one should note that the fiducial curves (black)
have roughly central positions in both figures. These are both positive signs that we
have constructed a design which samples the model output in a wide, and roughly
symmetric, variety of conditions around our case of interest. Had we observed a

very reduced variation this might suggest that the design is not wide enough, or
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that the model doesn’t actually respond very strongly to the parameters in our de-
sign. If our field data (in this case the fiducial curves) was not roughly spanned by
all the runs in the training set this would suggest that our model may have some
systematic deviations from true physical process which would need to explicitly
treated as part of the analysis and calibration process (see §9.3). We will use these
fiducial curves to stand in for field data to give a focal point for building an under-
standing of the model response.

The absolute visual magnitude is a standardized measure of brightness for a as-
tronomical object, with the standard being the brightness that would be observed
if the object was at a distance of 10 parsec. The scale is inverse and logarithmic, a
difference of five magnitudes corresponds to a factor of 100 in brightness. More
negative values are brighter and more positive values are dimmer.

The Luminosity Functions (LF) (left panel Fig: 6.1) show the cumulative num-
ber of satellite galaxies at a given luminosity. Satellite galaxies are gravitationally
bound clumps of stars which are themselves bound to our milky way candidate.
Typically we see that there are rather few very bright satellites, recall that abso-
lute magnitude is a inverse logarithmic scale so points towards the left end of the
spectrum are brighter. The cumulative distributions grow fairly slowly and rela-
tively uniformly with decreasing magnitude. The black curve shows the result of
running the simulation at the given set of fiducial values. To reduce this data to
a more manageable form we slice the full spectra into a set of five bins spaced at
increasing intervals in magnitude, these are indicated by the dashed vertical lines.
The choice of bins was made so as to be most sensitive to the shape of the luminos-
ity function at the bright end of the spectrum as the bright satellites are typically
the most influential.

The metallicity ratio (L-Z) (right panel Fig: 6.1) is a logarithmic scaled measure
of how average amount of iron present in a satellite galaxy relative to the amount of
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hydrogen. Since iron is produced by type two super novae this is a measure of the
maturity of the stellar populations in the satellites. The data plotted in the figure
is a result of applying a linear fit to the metallicity and luminosity for each simu-
lation. The fit coefficients were used to represent this data in the further analysis.
The results of the fiducial run are plotted in black. We can see that the brighter
satellites (left end of the plot) are typically much more metal rich than the dimmer

ones.

-15 -10 -5 - -15 T 5
M M

Ficure 6.1: Satellite galaxy luminosity functions (left panel) and satellite galaxy
luminosity-metallicity relations (right panel). The result of a linear fit to each luminosity-
metallicity relation is shown. The models were obtained after coupling ChemTreeN with
the N-body simulation MW1. The vertical dashed lines on the left panel indicate the five
values of M, chosen to sample the LFs. The black solid line on both panels indicate the

s “

model considered to be the galaxy’s “true” observational quantities, obtained after run-
ning ChemTreeN with the input parameter vector uops.

6.3 Emulator Specification

The first step in constructing a model emulator is to obtain a finite set of model
outputs at the design points. These outputs are obtained by running ChemtreeN
using different sets of input parameters drawn from an experimental design @ =
{(z1,u1),..., (x4, uq)}. From here on out we will only deal with calibration param-
eters u, we will take u; as a three-component vector, u; = (2!, f&., fi.y,) - These

variable were identified as the three most interesting parameters for a primary

analysis. It is trivial to increase the dimensionality of u;, however interpretation
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and visualization of the final results become progressively more complicated with
increasing dimensionality.

Once the models have been run, the next step is to choose the set of outputs,
Y = {y1,...,yx} of interest. Initially let us construct individual emulators for each
of these outputs. Motivated by the discussion in §6.2, we chose to emulate five
values of the satellite galaxy luminosity function, each one at a different abso-
lutely magnitude, in addition to the slope and the intercept of the satellite galaxy
luminosity-metallicity (L-Z) relation. This gives us a total of k& = 7 outputs to be
extracted from the model runs. Each of these outputs strongly constrains different
model parameters.

The model parameters v and output Y are scaled and centered prior to emu-
lator analysis, Centering the model output Y is usually a good idea as it removes
any trends which are common to all of the design points, allowing the GP emu-
lator to deal with more interesting residual variation across . Scaling should be
approached with a little more caution as it puts the residual variation in all outputs
on the same footing. This is quite reasonable if one has a strong prior belief that all
the outptus are equally important. However if for some reason the variance in the
model output varies across the k dimensional output space this may not be a good
idea. For instance if the model output was a spectrum built from a finite number of
observations of an underlying power law (e.g. the pr distribution of jets in a high
energy P-P collision) then the bins at higher values are naturally going to be more
uncertain as relatively fewer observations will have been made. Scaling the bins
of such histogram to all have the same variance would be a mistake, this would
override the variation which naturally arose from the sampling scheme.

After training the seven model emulators by computing the maximum likeli-
hood estimates for the GP covariance parameters, we compare the model (via the

emulators) to the observable data by calculating surfaces of implausibility /(x, )
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for each observable (see § 6.4). The values of these three-dimensional surfaces pro-
vide an indication of which parts of the input space v are more likely to reproduce
the desired observational data set Y.

The observable data should be obtained from the luminosity function and L-
Z relation of the Milky Way satellite galaxies. However, to test the constraining
power of this approach, a particular run of the ChemTreeN model will be used
as a mock observable data set. This type of controlled experiment can be very
helpful in model performance assessment, since we know exactly what values of
the input parameters were used to obtain the artificial “field data.” The black solid
lines in Fig: 6.1 show the luminosity function and L-Z relation of the model used
as the mock observations. The values of the input parameters used are s =
(2, fese, foary) = (10, 50, 0.05). It is important to note that this input parameter

vector is not included among the design points @.
6.4 Comparison to Fiducial Data

To make a simple comparison of the simulator (via the GP emulator) to experi-
mental data, it is convenient to introduce the notion of implausibility [31]. Let’s
define an implausibility measure I(z, u) as follows. Consider a model with a sin-
gle output for which we have generated an emulator with posterior mean fi(z, u)
and variance K ((z,u), (z,u)). The implausibility of the emulated model output at

a point (z,u) in the parameter space is given by

]2(‘%,7 u) ([L(ZL’, u) — E[Yf])2 6.1)

- K((x,u), (z,u)) + V[Y:]’

where Y} represents the distribution of field data that we seek to compare our
model against. Here we have only accounted for the variation from the emulator

itself and the field data. In the following work we carry out comparisons of the
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model output with idealized field data generated from the model itself. We will
compare the model output at different locations in the parameter space against
certain selected default values, as such we are free to neglect model bias or dis-
crepancy terms.

The output of ChemTreeN is multivariate — the code produces predictions for
many observables, such as the distributions of stellar populations in stellar halos of
Milky Way-like galaxies or its satellite galaxy luminosity function and metallicity-
luminosity relation. It is possible to separately compare each observable with a
model emulator generated from the corresponding model output. Considerably
more powerful conclusions can be drawn by examining the joint properties of
the observables and model outputs, as discussed in chapter 5. Consider a k-
dimensional vector of model outputs y(x,u) = {y,...,ys} with a correspond-
ing vector of field data Y;. We extend our training set to be the d x k matrix
Y =A{ylzr,ua), - y(Tn, un)}.

We apply a principal component decomposition to our training data set Y to
obtain a set of approximately independent and numerically orthogonal basis vec-
tors spanning the k& dimensional output space, see §5.1 discarding terms in the
eigen-decomposition which contribute less than 5% of the total variation. We con-
struct individual independent emulators from the training values projected onto
each basis. When we wish to evaluate the model output at a new location we in-
vert this transformation to obtain predictive distributions for each of the ¢ model
outputs at a given location in the parameter space.

The implausibility (6.1) can be naturally extended to the multivariate case. From
the emulator we obtain a k-dimensional vector of predictions for the model out-
put with means i(z, u). The emulated k x k dimensional covariance matrix K(z, u)
between the model outputs at the point z, v in the design space can also be con-
structed from the PCA decomposition. With these two quantities, we define the
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joint implausibility J(z,u) for observables Y; with measurement variance V[Y¢]

and mean values E[Y/].

T (x,u) = (B[Y}] — iz, w)" (R(z,u) + - V[Yd)) " EY]] - ile,w), ©2)

this construction provides a covariance weighted combination of the multiple ob-
servables which gives a reasonable indication of which regions in , u are predicted
by the emulator to be close to the observed values Y;. This implausibility score
J(z,u) is a normally distributed variable with zero mean and unit standard de-
viation, confidence intervals for values of J(x,u) can then be established in the
usual way. In this section we consider approximate 95% (20) confidence intervals
as representative of the true values of x, u. Locations in the parameter space with
J(z,u) < 2areviewed as being regions which are very likely to give model outputs
closely reproducing the observational data, given the experimental and interpola-

tion uncertainties.

6.5 Parameter space exploration

6.5.1 Independent Emulators

Let’s first explore the extent of the parameter space that we can constrain using our
fiducial data with a set of £ = 7 independent scalar GP emulators. Each of these
GP emulators was trained on only a single component of the multivariate output.

Fig: 6.2 shows three different sections of each of the implausibility surfaces ob-
tained from the five independent model emulators constructed for the LF’s outputs.
The 3-dimensional implausibility surfaces are sliced with three orthogonal planes
as defined by the components of u,,s. The top row panels show the f... = 50 section
of the I(u) surfaces. The black dashed lines indicate the values of the remaining
two components of u,,s. Given an input parameter vector u, the larger the value

of the I(u;) the less likely it is that a good fit to the observed (fiducial) data could
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be obtained, given the uncertainty arising from the emulator and with the fiducial
data itself.

From the left-most panel (i.e. M, = —16.5) it becomes clear that the parameter
controlling the amount of available gas to form stars, fyay, is strongly constrained
by the number of satellite galaxies at the bright end of the satellite galaxy luminos-
ity function. Furthermore, within the range of values considered here, the number
of satellites at this M, is independent of the redshift of the epoch re-ionization, z,.
The most plausible parameter values are near the true value of fi,,,y = 0.05.

As we move towards the faint end of the luminosity function the model param-
eter z, becomes progressively more constrained and the total number of satellite
galaxies becomes less dependent on f..,. For M, = —3.5 (top right-most panel).
The corresponding model emulator strongly constrains the input parameter space
around values of z, ~ 10, but it gives equally good fits for nearly all possible values
of foary- The second row of panels show sections of the /(u) surfaces at fi.., = 0.05.
The satellite galaxy luminosity function appears to be completely independent of
the value adopted for the escape factor of metals, f.... At the bright end of the lu-
minosity function, any combination of z, and f.,. would yield an equally good fit to
the mock observable data. However at the faint end values of z, ~ 10 are required
to fit the mock data. A similar result can be obtained for the third row of panels
showing the remaining sections, i.e., 2z, = 10. Again, a good fit to the "observable"
data can be obtained with values of fi,., ~ 0.05 for any possible value of fe..

It is possible to put constraints on the parameter f... by exploring cross-sections
of the implausibility surfaces constructed from the satellite galaxy luminosity-
metallicity relation’s slope and intercept model emulators. The middle and bot-
tom panels of Fig: 6.3 show the sections defined by fiay, = 0.05 and 2, = 10,
respectively. Comparison with Fig: 6.2 reveals implausibility surfaces with a more
complex geography. Although both emulators present regions of low implausi-
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bility for a wide range of f. values, these regions are strongly correlated with z,
and fyary. These two parameters are also strongly constrained by the slope and

intercept of the L-Z relation, as shown in the top row panels.
6.5.2 Joint Emulators

Individually, none of the previously explored implausibility surfaces constrain the
full parameter space. This is not the case with the joint implausibility measure
J(u), which combines the information obtained from the seven model emulators
into one quantity. Following the PC methods in §5.1 we construct a multivariate
emulator using all k£ = 7 resulting principal components.

Figure 6.4 shows different iso-implausibility surfaces of the resulting J(u). No-
tice that as the value of J(u) decreases the volume enclosed by each iso-surface
becomes smaller, converging towards the values associated with s, as shown
by the red solid lines. This can be more clearly appreciated in Fig: 6.5. Each row
of panels shows different sections .J(u) as we traverse one of the three possible
dimensions in .

The black solid line on the color bars show the 20 cutoff applied to the joint
implausibility. A value of J(u) > 2 indicates that it is very implausible to obtain
a good fit to the observed data with the corresponding values of the model pa-
rameters. Thus, regions of the parameter space lying above this threshold can be
disregarded. We find that J(u) strongly constrains the full parameter space under
study. Furthermore, the values of the components of w5 are located in the most
plausible regions of the space, as indicated by the star symbols in the correspond-

ing panels.
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6.6 The role of merger histories

In the previous section we showed that it was possible to recover the set of input
parameter chosen to create a mock Milky Way-like observational data set using a
suite of model emulators. In this “controlled” experiment, both training and mock
observable data were obtained by coupling ChemTreeN to a merger tree obtained
from a single simulation. We have implicitly assumed that the exact merger history
of our Milky Way-like galaxy is a known quantity. In reality, this merger history is
poorly known, and should be regarded as an extra input parameter of the model.
It is thus important to study how different merger histories can compromise our
ability to meaningfully constrain the input parameter space.

For this purpose, we perform the following set of controlled experiments. Us-
ing the merger trees extracted from the four available N-body simulations we
generate four different training sets (each training set containing n = 200 design
points) and construct, for each set, the suite of model emulators discussed previ-
ously. Hereafter, we will refer to these emulators” as “MWi-emulators”, with ¢ =
1,2, 3 and 4. The input parameter vector wops = (2r, feses foary) = (10,50, 0.05) is
used to obtain a mock observational data set from each merger tree. We will refer
to these mock observables as “MW:i-observables”. The cumulative mass of these
merger trees as a function of redshift, is shown in Fig: 6.6. While there is clearly
some variation between the candidates, the extent to which this variation matters
is not clear. We then ask the following question: is it possible to recover the input
parameter vector, s, if we use training data obtained from a merger tree different than
that used to obtain the mock observables?

In Fig: 6.7 we show the outcome of this experiment. Each block of four pan-
els shows joint implausibility surface’s sections obtained after comparing a given

MW:i-observables with the four MWi-emulators. The merger tree used to gener-
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ate the MWi-observables in each block is indicated with the green label, MW3.
For example, on the top left corner we show the result of such comparison using
MW1-observables. As previously shown in Fig: 6.5, when the model emulators are
trained on the same merger tree that was used to generate the mock observables,
we can successfully constrain the input parameter space and recover the compo-
nents of u,,s. However, when model emulators constructed on different merger
trees are considered, the most plausible regions are located around values of fyary
much larger than those used to obtain the mock observables. This is not surpris-
ing since, as shown in Fig: 6.6, MW1 is the Milky Way-like halo that contains the
largest number of satellites at all A/,. To achieve a good fit to MW1-observables in
the remaining simulations, it a larger amount of gas to form stars is required. Note
as well that the joint implausibility surface obtained with the MW3-emulators has
no values below the chosen threshold. Thus MW1-observables cannot be repro-
duced using the merger history extracted from halo MW3. Another interesting
example is shown on the lower right panels of Fig: 6.7. Here MW4-observables are
considered. Very good fits to these observables can be obtained for either larger
(MW3-emulators) or smaller (MW2-emulators) values of f,,, than that used to
generate the mock observables. A similar situation is observed for the input pa-
rameter z,. Note that we have only considered the f... = 50 section of each joint
implausibility surface.

The previous analysis clearly shows how a particular merger history can influ-
ence the model parameter selection: similarly good fits to a given set of observables
can be obtained with different model parameter values simply by modifying the
host’s merger history. In our experiments these values may differ from those used
to generate the mock observables. When comparing with real observational data,
a given set of best fitting parameter’s values may be significantly off from the val-
ues that could best parametrize the desired underlying physical processes. This
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in turn may have important implications on other observable quantities that we

would like to study and which have not been used for model parameter selection.
6.7 Conclusions

We successfully used the joint implausibility to constrain the possible parameter
space to a small region around the point us selected to generate the fiducial data.
By exploring the simple implausibility surfaces generated for each observation we
gain some useful insights into how sensitive the respective observables are to the
calibration parameters.

By expanding the scope of the analysis to considering a small set of superficially
similar dark matter merger histories we were able to show that the calibration pa-
rameters needed to reproduced the various fiducial runs are quite different. This
result suggests that details of the merger histories have a more important impact
on the chemical model then previously appreciated.

This analysis has provided not only a good first step towards understanding
how ChemTreeN responds to its most significant calibration parameters, but also
has provided the first evidence for a relatively novel scientific result namely that

superficially similar merger histories may not be entirely generic.
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FiGure 6.2: Sections through the Implausibility surfaces, I(u), obtained from the five model
emulators constructed for the LF’s outputs. The output being emulated is indicated on
the top right corner of each panel. Columns correspond to different observables. The 3d
implausibility surfaces are sliced with three orthogonal planes as defined by the compo-
nents of uqps. The top, middle and bottom row panels show the fese = 50, foary = 0.05
and z, = 10 sections of the I(u) surfaces, respectively. The black dashed lines indicate the
values of the remaining components of u,p,s. Given an input parameter vector wu, the larger
the value of the I(u;), the less likely a good fit to the observable data can be obtained. It is
possible to strongly constrain the parameters fi,ary and z;, but not fegc.
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FiGURE 6.3: As in Fig: 6.2 for the two model emulators constructed for the L-Z relation. The
left and right panels show sections of the implausibility surfaces associated with the slope

and the intercept, respectively. These model emulators provide strong constraints on the
model parameter fesc.
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Ficure 6.4: Iso-implausibility surfaces extracted from the joint implausibility measure
J(u). Redder colors indicate larger values of J(u). The region of lowest implausibility

(and thus highest plausibility) is shown by the opaque blue volume at the intersection of
the red lines.
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Ficure 6.5: Sections of the Joint implausibility surface, J(u), obtained by combining in-
formation provided by the seven model emulators shown in Figures 6.2 and 6.3. The top,
middle and bottom row panels show different sections of constant fes, fhary and z.. On
each row, the black dashed lines indicate the values of two of the components of ups. If the
three components are simultaneously present in a section, the location of us is indicated
with a blue star. The horizontal black solid line on the color bars indicate the imposed
two-sigma threshold.
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Ficure 6.6: Galaxy formation history as shown by the virial mass of the most massive
progenitor of the four candidate Milky Way-like dark matter halos as a function of the
expansion factor. In all cases, the mass is normalized to the z = 0 mass of the galaxy.
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FiGure 6.7: Sections of Joint Implausibility surfaces at constant f.s, obtained after com-
paring different models and mock observables. Each block of panels shows the results of
comparing a given MWi-observables to the four sets of MWk-emulators (see text), where
k, i =1, 2, 3and 4. MWi-observables are obtained by running ChemTreeN on the merger
tree extracted from simulation MW¢, using the input parameter vector u,,s. The labels on
the top left corner of each panel indicates the MWk-emulators being considered. In green

we indicate the MWi-observables associated with each block. The white dashed lines in-
dicate the values of two of the components. Note that, in many cases, similarly good fits

to a given set of observables can be obtained with different parameter’s values simply by
modifying the host’s merger history.
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7

Uncertainty Analysis

In this chapter I will discuss a simple practical application of the GP emulator re-
sults developed in §3. Consider a computer model Y, (z, u) with n observation
parameters x and p calibration parameters u. As discussed in the introduction
in §1.6 the calibration parameters are typically unknowns that we wish to learn
about but which we cannot explicitly vary when making experimental observa-
tions. They might be a fundamental physical constant such as a particle’s mass or
a certain transport coefficient or perhaps a parameter in a model of how a detector
responds to a certain input. Calibration parameters might be further classified into
those parameters which have some physically interesting meaning or they may be
purely a residue of the computer modelling process, such as a certain choice of a
numerical cut-off or a grid spacing in some finite difference scheme.

Later on in §9 I will outline the steps needed to use a set of experimental ob-
servations along with a set of observations of a computer model to try and learn
about the true values of these calibration parameters. Where as always true re-

ally means the set of values which best agree with our choice of computational
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and statistical models. Let us suppose that we have the above computer model
Y, (z, u) with some calibration parameters and experimental data is not available.
The calibration parameters are assumed to be weakly known. By weakly known
I am referring to the fairly usual case, when although a model developer doesn't
a-priori know the true values of these u they can be pushed into giving some kind
of plausible range or bounds for their values.

Given such a set of weak prior knowledge about these calibration parameters
a natural question is: “how does the uncertainty on these parameters pass into
our uncertainty about the model output?”. Suppose that we are interested in the
model output at a particular set, or range, of observation parameter values z, then
given some plausible ranges on the unknown calibration parameters u we would
like to know about the distribution of model outputs we should expect at these ob-
servation locations. If we can motivate some prior distribution for the unknown
parameters v then schematically we're interested in obtaining a conditional dis-
tribution for Y, (z.) given the prior P(u). In the literature this kind of process is
referred to as uncertainty analysis, [22, 23].

An uncertainty analysis like this certainly does not tell us anything about what
the true or best values of these calibration parameters should be. However it does
offer a substantial amount of insight into the behaviour of the simulator. Under-
standing the amount of parametric variability in a simulator is a key step in learn-
ing where to most carefully focus attention in the collection of additional data.

An example of this kind of situation is the estimation of systematic errors in
physics experiments. Here the calibration parameters u represent unknown as-
pects of a detector response or similar and the computer model could represent
the entire data analysis.

After ascertaining nominal values for a set of unknown calibration parameters
u a typical process for estimating their influence upon some observable of interest
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is to repeat the analysis with a given parameter set to values representing the ex-
tremes of its plausible range and then quantifying the influence of this procedure
on the observables of interest. This can be thought of as approximately linearizing

the model’s response around the nominal parameter values.
(7.1)

If the other calibration parameters are also held fixed during this procedure, in-
stead of somehow jointly varying them, then this procedure essentially diagonal-
izes the covariance structure of the model. This is sometimes referred to as the “one
at a time” or OAT process. Depending on the details of model and the number of
calibration parameters this varies between a bad and an awful way to approach
the problem. As the number of model parameters grows the volume of the pa-
rameter space explored by such naive procedures becomes very small. For further

discussion see the definitive text by Saltelli et al [27].
7.1 A Contrived Model

To help illustrate these ideas let’s consider a simple model inspired by particle
physics. The Breit-Wigner distribution is a probability distribution for observing
an unstable particle at a given centre of mass energy F given the particle has a
decay width (or inverse lifetime for the state) I' and mass M

k
(B2 — M2)* + M2’

2\/2MT
po 2V2MIy v = A/M2(M? +T?).
A/ M? +

few(E,M,T) = (7.2)

Here we can think of F as the observation parameter, this represents an energy

that an otherwise perfect particle detector is tuned to. The particle mass M and
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the decay width I' can serve as our calibration parameters. Now let’s suppose that
we are in the unfortunate situation of only being able to build a detector which
measures the mean energy over some width AFE centered around whatever energy

E we tune it to, i.e.

_ Sotars B fow (B MT) dE

§p aps fow(E, M.T) dE"

We are interested in understanding how predictions from y,, at some fixed E and
AF vary given our uncertainty in the decay width I' and the particle’s mass M.
Putting some numbers in let’s suppose we're trying to measure the energy of the Z
boson, for reference the Particle Data Group (PDG) reported mass and decay width
arem, = 91.1876+£0.0021 GeV/c?%, T, = 2.4952+0.0023 GeV/c? [211]. We will center
our detector energy at E; = m, and set the energy width to AE; = 20 GeV/c?,

evaluated at these “nominal” values our model gives
wa(Ed,AEd,mz,Fz) =91.1102 (74)

for brevity from now on I will drop the units on the model output. The integrals in
(7.3) can be evaluated analytically although the result is a little messy, this provides

a neat form for comparison with our statistical methods.
7.2 Uncertainty Analysis

We aim to quantify the uncertainty in our model outputs induced by uncertainty
in the inputs, for now lets suppose our uncertainty is confined to the calibration
parameters. We can consider the uncertain calibration vector u to be a random
vector U, now our model output is promoted to a random variable n = Y,,,(z, U).
Given a probability distribution G for the uncertain calibration vector U we want

to learn about the probability distribution for the model output 7.
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Lets consider the simplest useful things we can learn about 7, the mean E[7] and
variance V[n]. These quantities along with some form of credible interval for 7, i.e.
a region bounding the mean that we expect an observed value to fall within with a
certain probability, should give sufficient information about how our uncertainty
in the parameters passes through to the model output.

The simplest approach to uncertainty analysis is to sample the probability dis-
tribution G (using typical Monte-Carlo methods [171]) to obtain some set of nyc
input configurations u = {uy, us, ..., un,}, where the distribution of u approxi-
mates G as nyic — % . The model can then be run at each of these points, giving
a set of outputs y = {Y,,(z,u1), Vi (2, ua), ..., Yo (2, uny. )} Sample estimates of y,
such as the mean and variance, are naturally sample estimates of the same quanti-
ties of 7. This conceptually very simple Monte-Carlo method is certainly superior
to the naive range sampling method. However it will most likely require a fairly
large number of model evaluations to obtain a posterior which is a good approx-
imation to 1. For non trivial models this may require a substantial investment of
effort and resources.

Let’s examine what we can learn about our toy model using this simple method.
To keep things interesting let’s ignore the quoted (and small) uncertainties from
the PDG data and instead we’ll take 10% uncertainties on the measured values,

promoting M and I' to independent random variables we have
M ~ N(my, (0.1m,)*), T ~ N(I,,(0.11,)?),

so that in this case the distribution on our inputs is

G:(%>~MVN{<”§)( (0'16%)2 (0.10FZ)2 )}

A histogram of the set of Monte-Carlo outputs y, generated after sampling a set

of . = 4000 input configurations from G is shown in Fig: 7.1. The uncertainty in
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FiGure 7.1: A histogram of model output (defined in (7.3)) generated from a set of 4000
sample input configurations.

our inputs has resulted in a large spread of measured values, note that the bulk of
this distribution is not centered around our expected mean value (7.4). Lets focus
our attentions on the posterior mean value of the MC distribution,

nM
1 C

uo = Ely] = — ) V(o w), (7.5)

e o5

this is the average energy that our detector would measure as predicted by our
model given the uncertain inputs. The choice of the posterior mean is purely for
simplicity, practically one would certainly also be interested in the width of the
posterior distribution as quantified by estimates of the variance or estimates of

quantiles. For completeness the sample variance is defined as

1 &
532/,1\/10 - Z (Yo (2, ui) — ﬂMc)2 ; (7.6)

nve — 14

the expected variance of s ;- can be obtained but pursuing this is an unnecessary
complication for the purposes of this analysis.

From the data used to make Fig: 7.1 we obtain yyc = 91.0952 the Monte-
Carlo sample variance is s, ;¢ = 24.0458. The standard error associated with
our Monte-Carlo sample mean is 4/24.0458/4000 and so a 95% interval for g is

[90.9432, 91.2472]. Since our model can be expressed algebraically we can directly
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Table 7.1: Estimates for the mean of the model output, given the uncertainty distribution
G computed by various methods. The naive bounds are computed by evaluating y,, with
M, T set at two standard deviations below and above the nominal values.

] conf lower conf upper
exact 91.0635
naive 91.1102  86.8729 94.7689
nyc = 4000 91.0952  90.9432 91.2472
nvc = 40000 91.0662  91.0176 91.1147

compute the exact mean of the model output given the uncertainties,

o0
Tocnct = J yoa (B, AE, M, T) f(M, m.,0.1m.) f(T, T, 0.1T.) dM dT'

—00

— 91.0635, (7.7)

where f(z, piz, 0,) = ~ j/ﬂ exp <— %) represents the normal density with mean

it and standard deviation o,. With 4000 model evaluations we appear to have ob-
tained a moderately accurate Monte-Carlo estimate of the posterior mean, given
the distribution G on our uncertain parameters. These results are summarized in

Table: 7.1.
7.3 Uncertainty Analysis with an Emulator

In the above section we used some large-ish number of model evaluations to get an
apparently reasonable estimate of the posterior mean. For many computer mod-
els this kind of brute-force Monte-Carlo sampling may represent an unreachable
amount of computing. This high barrier to entry may discourage many computer-
model builders from even beginning to think seriously about estimating the influ-
ence of parameter uncertainty on model predictions.

We can use the Gaussian-Process regression methods developed in chapter 3,
particularly the results from § 3.3, to build a statistical surrogate model of the slow

computer model. This surrogate will be computationally cheap to evaluate and
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typically will require far fewer samples of the underlying computer model to gen-
erate than the number of model evaluations needed by the direct MC method.

To proceed we should generate a design of m points (where m « nyic) which
span the parameter space @ = {uy, us,...,u,} for details on the design see §4.3.
We then construct the training set Y = {Y,,,(x,u1), ..., Y., (2, uy,)} by evaluating the
computer model at each of these points. Making reasonable choices for the para-
metric forms of the prior mean and covariance function for the GP and estimating

their hyper-parameters, as discussed in § 3.8, we fully specify our surrogate model.
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FiGure 7.2: A histogram of the mean of the GP emulated model output fi(u) this output
was generated from a set of 4000 sample input conditions. The GP emulator was trained
from a set of m = 128 observations of the model.

With the emulator constructed we can proceed to carry out the same simple
Monte-Carlo procedure as given in the previous section, generating a set of nyic
sample configurations drawn u from G and instead of directly evaluating the model
at each of these locations we evaluate the emulator mean fi(u) (3.17). A histogram
of these samples is shown in Fig: 7.2, these are generated using a GP surrogate
with a training set with m = 128. Estimates for the posterior mean ¢ generated
using this method are shown in Table: 7.2 for nyc = 4000 as a function of the
number of training points m. The agreement with the exact result is rather good
especially given that these results require a substantially reduced set of full model

evaluations.
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Table 7.2: Estimates for the mean of the model output, given the uncertainty distribution
G computed using the Monte-Carlo method on top of a GP emulator with nyc = 4000.

m y conflower conf upper
exact 91.0635
60 91.1072 90.9550 91.2594
128 91.0444 90.8910 91.1978
256 91.0196 90.8667 91.1724

7.4 Direct Calculation

Since the GP posterior defining our surrogate is such a simple function we can
directly compute the mean of the model output given the uncertainty on the pa-

rameters G,
Yap = Jﬂ(u)dG(u), (7.8)

we can also compute the expected point-wise GP variance

Soap = fK(u,u)dG(u), (7.9)

where K is given by (3.18), and /i is given by (3.17). For simple distributions G
these integrals can typically be computer analytically, for full results see [23]. In
the next chapter I will discuss the process of sensitivity analysis which is closely
related to that of UA and indeed we will directly compute analogues of (7.8) and
(7.9).
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8

Sensitivity Analysis

Given the complexity of typical simulators, model builders are often interested in
understanding how the simulator outputs interms of individual inputs. As dis-
cussed in the previous chapter building an understanding of this can be a tricky
proposition if the model is computationally expensive. Naive approaches to this
problem might be to generate a set of Monte-Carlo samples of the simulator out-
put across the parameter space and use these to attempt to reconstruct the model
output or response surface about points of interest. Sophisticated Monte-Carlo
sampling procedures have been developed for this purpose which attempt to min-
imize the total number of model evaluations, (see [27]), however they are often still
very expensive.

Using a model emulator we can do somewhat better than this. Following along
from the ideas developed in the previous section we can construct a surrogate
model and then consider the simulator inputs as random variables. The GP pos-
terior mean and variance which represent our simulator are sufficiently straight-

forward that one can directly evaluate many useful quantities [25].
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To gain an understanding of the shape of the model’s output, or response sur-
face, as a function of the various input parameters we can decompose the output
into a series of functions of increasingly complex combinations of the input pa-
rameters. These functions, known as the main effects and interactions, provide a
measure of how each individual input parameter and each combination of param-
eters contribute to the response surface. We construct these functions by directly
integrating out all but the subset of parameters that we are interested in, without
a surrogate model this would be a very challenging procedure. This decompo-
sition can be a very effective way of understanding which parameters are more
influential.

These techniques were recently used by myself and collaborators in a follow up
analysis of ChemtreeN [3] (see chapter 6 for a detailed discussion and analysis) to
screen out the most important parameters from a larger set and to compare how
the sensitivity of the model to these parameters varied as a function of the Dark

Matter merger history.
8.1 Inference for main effects and interactions

Suppose we have a computer model Y;,, () which produces scalar output and some
number d of input parameters. Given a suitable design ©, some set of m points in
the parameter space D = {z1,...,x,} , our training set Y/ is the set of model out-
puts Y = {Y,,(21),...,Y(zq)}. Supposing that we specify a suitable prior covari-
ance function and a prior mean, setting aside issues of estimating their parametric

forms, we obtain a GP surrogate

with mean and variance given by (3.17) and (3.18) for instance. If we integrate out

the coefficients 3 of a prior mean model along with the total scale then the resulting
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emulator is strictly speaking Student-¢ distributed (see §3.9)
We can decompose the emulated model 7(-) into its main effects and interac-

tions

d
U(X) = E[Y] + Z ZE(SCZ) + Z Zi,j(xi,j> + Z Zi,j,k’(xi,j,k) + ...+ 21,2,..., d(X) (82)

i—1 i<j i<j<k
where we have
zi(z;) = E[Y | ;] — E[Y], (8.3)
25(%:5) = E[Y | %] — zi(2;) — 2 (z;) — E[Y], (8.4)

Ziik(Xigr) = BIY | Xig0] = zin(Xin) = 20(50) = 2i(2:) = 2(25) — 2 (2x) = E[Y].

(8.5
and the higher order terms follow naturally. The main effect to z; is z;(z;), the first
order interaction is z; ;(x; ;). This is a decomposition of the model in terms of its
mean over the whole space E[Y'] and a series of progressively more complex terms

which isolate the influence on the model output of a given set of parameters.

These terms depend upon the distribution G of the uncertain inputs. Comput-
ing and plotting the main effects and first order interactions is my main goal, this
should provide a strong indication of how the model output depends upon each

input and how “tangled” these influences become.
8.1.1 Notation

Above we introduced @ = {z1,...,z,} the design, this is not to be confused with
the vector x™ = (z1,...,z4) of the model inputs, I shall try and make it clear by
denoting elements of the design set as #, and elements of the input vector z;. A
sub vector (z;,z;) is given by x; ; and for a general set of indicies ¢ = {z;,..., 2}
then x, is the sub vector of x whose elements have those indices. Further x_, is

the sub vector of x which excludes the set of indices g.
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8.1.2  Inference for effects

We want to know about:

E[Y | x,] = f DX)AG (x| %) (8.6)

P

where x_, is the space of possible values of x_,,. Since this is a linear functional of
a Gaussian Process we can derive the posterior mean as follows.
Recalling the results from § 3.9 the posterior mean and variance of our GP em-

ulator after integrating out our priors are

() = h(z) 8+ KLY = Hap), (8.7)
Vi(@un) = 62Vo(z* )
&* [(h(z") — K*,.K.,.HJ (HIK; H.) " (h(z*) — KI K  H.)] (8.8)

with
Vol*,a") = {475 0) = K1, K 1K)

1
62 = ————
m—q—2

YT (K;} — K; H, (HTKH,) ™ H:K;}) Y
B = (HIK;'H.) " HIK. ly

Quantities defined with respect to the posterior distribution of 7(-) are denoted

by F™* etc.
EYEY [ x,]} = Ry( p)B + Tp(xp)e (8.9)
where
Ry(x,) = J h(x )Tdeplp(X—p | %), (8.10)
Tp(xp) f (X)dG_ppp(x—p | Xp), (8.11)
_ (y _ H.B) (8.12)



Just to be clear R, is a vector of length g where ¢ is the number of regression func-
tions, T, is a vector of length d where d is the number of design points, as is e. It is
then just a matter of writing down the posterior mean of the main effects and first

order interactions

E*{zi(2:)} = {Ri(w:) — R}B + {Tiwi — T}e, (8.13)
E*{2;(xi5)} = {Ri;(xi;) — Ri(z:) — Rj(x;) — R}B+

{T(xi ;) — Ti(x:) — Ty(x;) — The. (8.14)

Finally we would certainly like to the variances of our estimated posterior means,

we can derive them from the general result

cov'{E[Y | x,], E[Y | x/,]}
— &QJ J Vi(x, x)dG _yjp(x—p | X g)dG_gg(x' -4 | X'g)
X—p YX—q
y = o [Up;q(xpaxlq) - Tp(xp)A_qu(X/q)T

+ {Ry(x,) — Tp(x,) A H W {Ry(x,) — Tq(x/q)A’lH.}T] , (8.15)

where we have defined

Upsq(Xp; X'g) = f J c(x,x")dG (x| Xp)dG—qlq(leq | Xiq)a (8.16)
X—p YX—q
W= (HF A7 H,) 7" (8.17)

While the above looks a bit daunting, if we make some reasonable assumptions
about G, h and c we can readily obtain analytic expressions floor i, T}, and so forth,
however I won't take up any more space by reproducing these here. Furthermore
all of the integrals we have encountered here can be easily done numerically.

We can plot our posterior mean main-effects (and interactions) constructed
from (8.9) using (8.15) to obtain say 20 confidence intervals on either side. This
gives a reasonably intuitive graphical representation of the sensitivity of the model
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output to a given input however we need to consider a decomposition of the total
variance in the model output Y if we want to get a full understanding. Our poste-
rior inference for the expected values of these effects and their posterior variances
can never give us a really full understanding of the actual variability of the model
output explained by the various inputs, since by construction we're starting from

inference about the mean.
8.2 Inference for Variances

We can also consider the sensitivity of the output Y in terms of the reduction of the
total variance which would be observed if we knew the value of one of the inputs

x; with certainty. This reduction of variance can be written schematically as
AVIY] = VY] = V[Y | 2],

since we don’t actually know the true value of z; we will compute the average

reduction of the total variance over all values of z;
E{AV[Y]} = V[Y] = E{V[Y | z;]}. (8.18)

Recalling the so called Adam and Eve formulas for conditional expectations and

variances
E[X | Al = E{E[X | A] | B}, (8.19)

VIX]=E{V[X | A} + V{E[X | A]}, (8.20)

using these we can simplify (8.18) to obtain a simple form for the variance reduc-
tion

Vi =E{AV[Y]} = V{E[Y | =]}, Si= (8.21)
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where 5, is the standardized value. Another construction that may be useful is V7,

the remaining uncertainty in Y after all inputs but z; are known with certainty,

Vi, = V[Y] = V{E[Y | xi]}, (8.22)
Vi, . o
S = gy = 1 S (8.23)

Oakley and O'Hagan refer to .S; as the main effect index of x; and Sy, as the total
effect index of x;. The main effect indices can be interpreted as giving the relative
importance of the various inputs to the total uncertainty in the output. If we want
to consider the influence of learning the true values of pairs (or more complex
combinations) of parameters we must consider their joint contribution along with
their individual contributions, i.e. we should compute the variance due to their

joint effect
Vijg = VAEY [ xij]} = V{zi(a:) + 2(2;) + 2i5(xi5)} - (8.24)
8.2.1 Variance Decomposition

If the distribution G on the inputs is such that the elements of x are independent
then the total variance of the output Y can be decomposed into another series of

terms relating to the main effects and interactions

d
VIY] = Z Wi + Z Wi+ Z Wijk+ ...+ Wia 4, (8.25)
i=1 1<j 1<j<k

where W, = V {z,(x,)}. In fact we can see that W; = V; is the reduction in the total
variance of Y obtained when we learn the true value of the i'th input. Further
(8.24) can be written as V; ; = W, + W; + W, ;, so we can interpret W, ; as the extra
variance removed after learning the true value of both the i'th and j’th parameters.

When we make such a decomposition of the total variance then we see that V_;

is the sum of all the W, terms appearing in (8.25) which do not include the i'th
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point. As such the total effect index S;; = 1 — S_; is the proportion of the total
variance accounted for by all the effect and interaction terms in (8.25) which do

involve the i'th parameter.
8.2.2  Inference for the Variance Decomposition

We would like to carry out inference for the posterior means and variances, after
constructing a GP emulator of the model output, of the various terms in (8.25), as
we did in §8.1.2 for the decomposition of the mean. The complexity of the integrals
relative to how instructive they are rapidly gets out of hand here. I will attempt to
illustrate the calculation of the posterior mean of V, = V{E(Y | x,,)} which is part
of the variance contribution of a sub-vector of p inputs, the posterior variance of
V, can be obtained but its complexity to information ratio is sufficient to prohibit

reproduction. Invoking the Eden formulae (8.19) and the definition of variance
V, = VIE(Y | x,)} = E{E(Y | x,)*} = E{E(Y | x,)}",
= E{E(Y | x,)*} —E(Y)%.
Above in §8.1.2 we computed E*{E[Y]} in (8.9) and V*{E(Y')} in (8.15), these are

all we need to obtain E*{E(Y)?}. The remaining term we need for the posterior

mean of V,, is

E'[E{E(Y | x,)"}]

_ j p j ) j B G 5 | ) (- |G )
. j p f i j [Fae) ) ()] G | 3G | )G )

where here x° is the vector made from the elements x;, and x’_, just as x is the vector
constructed from the elements x, and x_,, in general the set p may not be a trivial

partition of the d possible elements there isn’t really a neater way to represent this.
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Writing the measure as dI',(x_,, x’,

x) = dG_pp(x—p | Xp)dG_pjp(X_,, | Xp)dG(x,),

the integrals over the posterior variance and mean are

LP f f (Vi3] dly(xp %)

= o2 {U, — tr(K 1 P,) + tr (W(Q, — S,K 1 H, — HIK;1ST + HIK}P,K 1 H.)}

f J f x°)] dlp(x_p, X, %) = tr(eTPye) + 2tr(3S,e) + tr(3Q,0)
Xp YX—p YX-p

These are given interms of the integrals

r

=] [ o).

Xp —p YX—p

[

r

B[ [ HeaboRI0) )

Xp X—p

(.

r

Q= | j BR(X°) dTp(X_py X', %),

YXp YX-p YX—p

r

Sy = f J h(x)K,o(x%) dTp(x_p, X", %).

JXp —p YX—p

From this we can obtain the posterior means of the main effect variances V; and
their complementary quantities V7, ideally we want to look at the standardized

quantities .S; and S, however

i) - [ | 4 5

V()] E{V(Y)}

Regardless of this the quantities on the far right hand side above are still useful to

examine.
8.3 A toy example

Let’s consider the following simple three parameter model

Yo (2) = exp(—0.123 4+ 0.225) + 0.4sin(x3) + 0.12129 + 0.4z973, (8.26)
1
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after training a GP emulator on a 64 point LHS design we can estimate the main
effects and interactions (§ 8.1.2) and their contributions to the total variance. In the
top left panel Fig: 8.1 the main effects clearly show the sinusoidal term in z3 and
vaguely hint at the Gaussian term in z;, however the role of z, is not very clear. If
we were to purely judge by this figure we might expect x5 to be the dominant vari-
able. However after examining the pairwise terms we see that the range of values
in the plot of the joint effect z; »(x; 2) is significantly larger than any of the others,
suggesting that this interaction is very important. Finally we might conclude that

x, and z3 are relatively independent of each other.

predicted output (arb)
X2

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

param value (arb) X1

X3
X3

0

X4 X2

Ficure 8.1: Posterior mean main effects and interactions for the toy model (8.26). Top
left panel: the posterior mean main effects E*{z;(x;)} for each parameter, the remaining
panels show the pairwise interactions E*{z; j(x; j)}.
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Table 8.1: Posterior mean contributions to the total observed variance for the parameters
and their first interactions, the interaction between x5 and x3 dominates.

param 100%
pl 2.34
p2 10.50
p3 22.36
pl:p2 3.98
pl:p3 0.00
p2:p3 60.80
total 99.8

After consulting Table: 8.1 the table of estimated effect indexes S, it is imme-
diately clear that the interaction of x; and 3 dominate, with the factor of three
smaller z3 contribution as the next most important term. This is in line with what
we would expect from the form of the model (8.26). Finally we can conclude from
the table that at least up to the accuracy of our GP emulator the z; and z;3 variables

are indeed independent.
8.4 Application to ChemTreeN

In chapter 6 I outlined an analysis of the hybrid galaxy formation model ChemtreeN.
In the recent article [3] we continued to develop our understanding of the model
and applied the GP emulator based sensitivity analysis techniques described in
this chapter to examine the influence of an extended set of model inputs. The
training data is essentially the same as that described in §6.2. The main changes
are as follows: we increased the number of slices through the luminosity function
to eight these now span My = [-3.5,...,—17.5]; we switched from the linear fit to
the average metallicity-luminosity function (as shown in the right hand panel of
Fig: 6.1) to the cumulative distribution of average metallicity which was then sum-
marized by slicing it at four relatively equally spaced values; finally we increased

the number of calibration parameters set to seven (see Table: 6.1), f1, and egy were
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also explored. For more details on the model and data see § 2 of [3].

In Fig: 8.2 the main effects for the eight slicings of the luminosity function are
plotted, the seven calibration parameters are all plotted on the same standardized
scale. From this figure it is possible to infer what parameters are most important
to explaining the variability observed on each observable. The main effects for all
the luminosity bins are dominated by f;,,, (solid black) and Z, (solid red), it is in-
teresting to note that the dominant effect switches between f;,,, for the luminosity
bins M, = [—17.5,...,—11.5] to Z,. Note as well that some parameters, such as
mp, and f1,, do not show a strong influence on the values of the selected observ-
ables. In Fig: 8.3 the main effects for the four metallicity bins are plotted, careful
examination of these reveals that they are dominated by an entirely different set
of parameters than the luminosity results.

Fig: 8.4 shows the results of applying the variance decomposition methods de-
scribed above to the expanded ChemTreeN model, for eight bins through the lumi-
nosity function. This graphical representation of the variance decomposition allow
us to quickly identify what input parameters are more important on explaining the
variability observed on each observable. The results largely confirm our intuition
developed from the plots of the main effects. The total variance in the dimmer
bins —17.5,—15.5, —13.5 is dominated by contributions from the baryon fraction
Joary, at M, = —11.5 and brighter however the epoch of reionization becomes an
increasingly important factor. Further in this figure we can see that the interaction
between these two variables is non trivial, this information was not at all obvious
from the plots of the mean decomposition. A similar figure can be made for the
metallicity results. These results proved very useful in the selection of observables

and inputs needed for further analysis of the model, see § 4-5 of [3].
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Ficure 8.2: Main effects obtained from a Gaussian process model emulator of ChemTreeN,
with seven different input variables. The results were obtained using the simulation la-
beled MW1. The panels show the results for different bins in the luminosity function, as
indicated in the top left corner of each panel. The plotted lines show the main effect as-
sociated with a different input variable, as indicated in the legend located at the bottom
right corner.
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Ficure 8.3: Asin Fig: 8.2, now for mock observables obtained from the cumulative number
of satellite galaxies as a function of mean metallicity, ([Fe/H]).
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F1Gure 8.4: Variance decomposition (see 8.2.1) obtained a Gaussian process model emula-
tor of ChemTreeN with seven input variables. The results were obtained using the simu-
lation labeled MW1. The different columns correspond to different observables, rows are
associated to variance contribution V,, for either main effects or interactions. The columns
correspond to different bins of the luminosity function. We only consider up to two-
variable interaction effects. Note that, for simplicity, not all interaction effects are shown.
The different colors indicate the percentage of the total variance that can be explained by
the corresponding effect.
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9

Calibration

In this chapter we turn our attention back to the primary concern, that of finding
a set of true or best values for our unknown model parameters, model calibration.
Excellent references for calibration of computer models using GP emulators are the
papers by Kennedy and O’Hagan [5, 13] and Higdon et al [15, 16]. In this chapter
I will follow the general lines of the concise methodology outlined in [15] as this
is readily generalized to treat simulators with multivariate output as discussed in
[16].

Suppose we have a simulator Y, (z, u) which has observation parameters = and
calibration parameters u and we are interested in using field observations Y;(z) to
learn about the true’ values u, of the calibration parameters. In the introduction I
laid out the following relations between measured field data Y;(x) which is mea-
sured with some observation error ¢¢(z), the true physical process Y, (z, u.) and

the simulator output Y, (z, u)
Yi(z) = Y. (z,u.) + €f(2), (9.1)

Yo(z,u,) = Yo (2, u,) + (2, uy).
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Let’s suppose that we obtain a set of n observations of the field process Y; at lo-
cations Dy = {z1,...,z,}. To simplify the analysis here lets further suppose that
we understand the experimental data collection process enough to be able to accu-
rately characterize the observational errors with some distribution, typically this
will be a multivariate normal with some correlation structure.

Let’s restrict ourselves to the case of simulators that produce only a single out-
put, the processes outlined below can be generalized to work with multivariate
output using a suitable decomposition (see [16]), such as those discussed in chap-

ter 5.
9.1 Fast Faithful Model

The simplest calibration case we can address is one where the computer model Y,
is sufficiently fast that we can effectively make an unlimited number of observa-
tions of the model at any location in the =, u parameter space that we wish.
Furthermore lets suppose that the simulator Y,,(z, u) faithfully simulates the
true physical Y, (z, u*) system when evaluated at the true, but currently unknown,

values u = u*. Under this assumption we can simplify our model (9.1) to
Yi(z;) = Yoo(wi,ue) + €(z), i=1...n, (9.2)

where the n values z; € @y are the settings where the field observations are made.
It's important to note that at this point we don’t actually know the values ., we will
model these as a random variable and use the field data and the model to make
inference about their values. Taking the field observation errors as independent
normal with some known standard deviation o/, we can write the likelihood of

the vector of n observations y; = (Y¢(z1), ..., Ys(z,))" as

Ly [Yu)zexp { =500~ Yalw 570~ Yalad ) 03)
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where the n element vector YV, (u.) = (Y (21, u.), ..., Yo (20, ur))" and Xy = 071,
This is to be interpreted as the probability for observing the field data y; given the
set of model outputs Y, (u,). Treating u, as a random variable we introduce a prior
distribution 7 (u,) which captures our prior uncertainty about the true calibration
values. Note that we are only sampling our model at the x parameter values that
we have field data for, this is reasonable since we believe the model is faithful at
this stage. The posterior distribution for u,. given our prior and the observations

ys is then
T (ue | yy) o L(yf | Ym(u*))w(u*). 9.4)

Typically the full form of this posterior is intractable, unless our model is a very
simple function we will not be able to proceed much further algebraically. How-
ever we can use Markov Chain Monte Carlo (MCMC) [171, 169, 170] to generate
a series of samples u;, ..., us™¢, if we generate enough samples then their em-

pirical distribution will (eventually) converge to the distribution of the posterior

7 (e | Yy)-

9.1.1 Metropolis MCMC Algorithm

The Metropolis algorithm [212] is a simple but effective implementation of MCMC,
it may be may well be familiar as it is the typical process introduced to numeri-
cally explore the Ising ferromagnetic model [213]. A common feature of MCMC
algorithms is that they typically scale very well with the dimensionality of the dis-
tribution being sampled.

I will outline the algorithm with the variables u, introduced above. The pro-
cedure itself is quite general and can be easily adapted to many situations where
one wants samples of some posterior distribution whose full form would be pro-

hibitively difficult to obtain.

1. Pick some initial value for the calibration parameters u}. The particular value
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is theoretically not important since the sampling procedure will “thermalize”

to the target distribution 7 (u, | yy) effectively forgetting the particular choice

1

x*

u

. At step t the current sample is v, generate a new proposed sample v/, from
some symmetric distribution, i.e. the proposal distribution must satisfy P(u! |

u,) = P(u, | ).

. Compute the Metropolis acceptance ratio
/
azmin{l,ﬂ(u*—w}. (9.5)
m

. Accept the proposed step, 0'"! = 6* with probability «, otherwise reject the
proposal and set #*"! = #*. This can be done by generating a standard uni-
formly distributed random number r and accepting the proposed move if

r <.

. Iterate steps 2-4.

One of the great advantages of this procedure is that the posterior density only

enters in a ratio with itself, as such we only need to specify the terms which do not

cancel. In this case we can directly insert the product of 7 (u.,) and (9.3).

Given a chain of draws u}, ..., us"¥¢ obtained from the MCMC procedure we

can histogram them to obtain an estimate of the posterior 7(u. | ys). A good first

order of business is to compare this histogram with that of the prior distribution,

if the posterior histogram is more concentrated in the parameter space than the

prior then our observations have reduced our uncertainty in the true values u,.

Sample estimates of moments of the chain (such as the mean and variance etc) are

also estimates for the corresponding moments of the posterior distribution.

! which is usually the whole point of the exercise
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Table 9.1: A comparison of the prior m(u.) and MCMC posterior 7(u. | yy), the prior
ranges are simply the appropriate normal quantiles.

HPD lower (95%) mean HPD upper (95%)
prior 0.089 0.5 0.911
posterior 0.556 0.629 0.707

If the posterior is sufficiently peaked we might report the posterior mean and
variance of u, as a summary of the calibration procedure, credible intervals may

also be useful here, see [170].
9.1.2 A toy example

Lets consider the following toy model,
Y (2, u) = 5z? exp(—32?)sin(x —u) +2, z€[0,2] (9.6)

given n = 4 observations equally spaced in = can we infer the true calibration
parameter wug,,? Taking the observation errors as i.i.d normal with standard de-
viation o; = 0.025 and a normal prior distribution 7(u,) ~ N(0.5,0.25?). Results
of using Metropolis MCMC procedure to sample (9.4) are shown in Fig: 9.1 and
summarized in Table: 9.1. Here 10000 Metropolis steps were used with a normal
proposal distribution centered on the current value v/, | u! ~ N(u!,0.3?). Given
the uncertainty in the field observations we should be rather satisfied with the
results of this procedure, we have strongly reduced the variability in our model
function so that posterior draws typically fall within the 95% confidence intervals

associated with our field data.
9.2 Slow Faithful Model

Now lets consider the slightly more realistic situation where our simulator is
sufficiently complex that we can only obtain a finite number d of runs Y =

{Yi(x1,u1), ..., Ym(2a, uq)} generated from running the simulator at some design
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Ficure 9.1: Left: the four field observations making up yr are plotted as open circle with
95% confidence intervals, samples of Y, (z,u,) with u, drawn from the prior 7 (u.) are
shown in light red. The inset figure shows the prior density, the true value is shown as
the dashed blue line. Right: the light red curves are plots of Y,,,(z, u.) with u, drawn from
the MCMC posterior which approximates (9.4). The inset figure shows the prior density
7(ux) (dashed) and the MCMC posterior density oc 7 (u. | yy).

D = {(z1,u1),...,(x4,uq)}. Now we have to treat the simulator output Y,,(z, u) as
being unknown when evaluated at locations not in the design @. Let’s take the
total dimension of the parameter space as p = p, + p, where p, is the number of
calibration parameters and p, is the number of observation parameters. Placing a
GP prior on the simulator with a constant mean . and a power exponential prior

covariance function

C((z,u), (z',u)) = )\1 exp{ Z (ﬁk —23)° Z k/ a} 9.7)

where the p, quantities 3] are the length scales for the observation and calibration
parameters and )\, is the marginal precision.

The model (9.2) is again appropriate here. We have n field observations y; with
x; € Dy and a set of d observations of our simulator Y with (z;,u;) € @. We can
introduce the n + d length vector z = (y}, YT)T which corresponds to input settings
D, = {(z1,u4), ..., (Tn, ), (X1,u1), . .. (xa, uq)}. The first n observation parameter
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settings in z are from @ ; with the calibration parameters set to their unknown true
values. The remaining d sets of observation and calibration parameters are set by
the simulator design @.

Taking the same model for the field observations as above, we can write the
likelihood of our vector of samples and observations z given a value of the "true’

parameters u, along with values of \,,, n which specify the length scales in our GP,

_ 1 _
L(Z ’ Uy [y >\m7 6m7 z:f) OC‘EZ| 12 exp {_§ (Z o :u’]Iner)T 2z ! (Z o ,U/]Iner)} ) (98)

where

_ Ef 0 _ Eyfyf Eyfl/

yrY

and ¥, is the (n+d x n+d) matrix obtained by applying (9.7) to every pair of inputs
in the augmented set .. When we sample the posterior associated with this like-
lihood and appropriate priors for the GP parameters and u,. we will be effectively
estimating the distribution for u, as well as the distribution for the parameters con-
trolling GP covariance structure . While this is elegant one could always insert the
maximum likelihood estimates for the GP parameters \,,, ;x and 5 obtained using
the methods outlined in § 3.8 treating them as fixed quantities and then carry out
MCMC sampling for the unknown calibration parameters u..

Scaling the input parameter space onto the unit hyper cube [0, 1]P* "7« and cen-
tering and scaling the model output data so that Y/ has unit sample variance simpli-
fies the prior specification process. With the parameter space mapped onto the unit
cube we can identify unimportant parameters as those whose estimated length
scale is approximately 1. Taking a gamma prior for the marginal precision \,, and
beta priors on the length scales

(A )oC Aim—Le=bmAm

T(B)oc (B (L= )"k =1, pa + Pus

150



we can take a,, = b,, = 5 which pushes ), towards 1. For the correlation lengths
we take ag = 1and bg = 0.1, this makes the prior probability of a length scale being
somewhat significant P(5]" < 0.98) ~ 3. Centering the observations z allows us
to simplify things by taking ;. = 0, if this is somehow not appropriate we can of
course specify some prior form for the GP mean.

After conditioning on our vector of observations z = (y}, YT)T we obtain the

posterior

T (U, fy Ay B | 2) € L(2 | Uy s Ay 87, Ep) 7 (wi) () m (A ) (™), 9.9)

which we can again sample using MCMC methods. Given one such sample
(Usy by A, f™) we can sample our GP emulator at any given point in the parameter
space Y, (2, u’) just as we would using the drop-in emulators discussed in previ-
ous chapters. Essentially we obtain the conditional distribution of the emulator
at the new location given the simulator observations from their joint distribution

using (A.10).
9.2.1 A toy model

Lets consider the previous toy model,
Y, (7, u) = 52% exp(—32?) sin(z —u) +2, w€[0,2] (9.10)

givenn = 4 observations equally spaced in =z and a set of d = 32 observations of the
simulator distributed in the p = 2 dimensional parameter space with a LHS design.
Again we will take the observation errors as i.i.d normal with standard deviation
oy = 0.25 and a normal prior distribution 7(u,) ~ N(0.5,0.25%). The posterior
mean of the resulting GP emulator m, (z, u) is shown in Fig: 9.2, the values of /™ =
(0.0787,0.142) and \,, = 1.138 were randomly drawn from the Nyc = 30,000
MCMC samples.
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FIGURE 9.2: Several views of the posterior mean m; (z, u) of a GP emulator developed from
the 32 observations Y of (9.6). The red points are the training data set U/, the blue points
and line show the field observations. The emulator parameters, 5, \,,, were drawn at
random from the MCMC chain.

Table 9.2: A comparison of the prior 7(u.) and MCMC posterior 7(u. | z), the prior ranges
are simply the appropriate normal quantiles.

HPD lower (95%) mean HPD upper (95%)
prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

As in the previous example the left panel of Fig: 9.3 shows draws from the prior
distribution for u, as fine red lines. In addition the training data of 32 sample points
(projected into the x dimension) are plotted as the solid points, these correspond
with solid red points shown in Fig: 9.2. The right hand panel shows draws from
the posterior density 7(u. | z), although somewhat noisy these are mostly well
grouped around the true value of the model function (plotted as the blue solid
line). The inset panel shows the posterior distribution for u, as the histogram with
solid bins, the prior density is drawn as the dashed line and the true value is drawn

as the vertical dashed blue line.
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FiGure 9.3: Left: the field observations y; are plotted as blue open circles of (9.10), the
training data Y projected into the x direction are plotted as red closed circles, the curves
are draws from Y}, (z, u,) with u, drawn from the prior density. Right: the light red curves
are plots of Y}, (x, u.) with u, drawn from the MCMC posterior which approximates (9.9).
The inset figure shows the prior density 7 (u,) (dashed) and the MCMC posterior density

7 (U, | 2)

Admittedly the performance is not quite so beautiful as in the case with the
fast model in terms of the posterior draws. This is still a very good result given
the relatively small number of training points. The posterior distribution for u, is
significantly constrained as shown in Table: 9.2. The performance could likely be
improved, in the sense of posterior draws more perfectly approximating the true
output, by increasing the number of MCMC samples and optimizing the proposal

distributions and perhaps by considering alternative forms for the prior.
9.3 Slow Unfaithful Model

If we have reason to believe that there is a systematic difference between the output
of our simulator and the observational data, i.e. that our model is no longer a
faithful representation of reality, we may still be able to obtain some interesting
information about the true values of the calibration parameters .. Typically the

“smaller” the discrepancy is the more we can learn about u.. We now adopt the
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model

Yi(z;) = Yio(@i, ue) + () + €(x;), i=1...n, (9.11)

where 6(z;) is a function which represents the systematic deviation between our
simulator and reality. We model the discrepancy with a mean zero Gaussian Pro-

cess with covariance function

1 1 & (g, — o)
Cs(z,2) = —exp{ —= » ——c " b, 9.12
5( ) >\6 { 9 ’;1 (/Bg)a ( )
and take similar priors to those used above for the model GP
m(As)oc Ao~ tebarm, (9.13)
(B (B T L= p)" T k=1 pe. (9.14)

Suggested values are given by Higdon etalasas = 1,bs = 0.11and a} = 1,03 = 0.1
in [16]. The likelihood for our augmented vector z is structurally the same as (9.8)

with the modified covariance matrix

- > r+ s 0
me=at (V5 0)
where ¥, is the (n + d x n + d) matrix obtained by applying (9.7) to every pair of
inputs in the augmented set @, ¥ is the (n x n) covariance matrix of the field data,
and X; is the (n x n) matrix obtained by evaluating (9.12) at every pair of points in
the observation design @;. After conditioning on our vector of observations z the

posterior is now
T (U s Ay B Xs, B2 | 2) o€ L(2 | s 1, A, B™, Ns, B, B 7)
() () (A )7 (87 (8°)(Ns), (9.15)
which can be sampled to obtain realizations of the vector (u,, i, A, 8™, As, 3°).

These realizations can be used to obtain posterior predictions for the model out-

put at any point in the untried space Y,,(2',u’), the discrepancy function at any
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location 6(z') and the 'real” physical process at any point of interest Y, (2, u.) =

Yo (2, us) 4+ 0(2').
9.4 A Heavy lon Analysis

In [1] we considered a 3 + 1d viscous hydrodynamic+microscopic transport model
of Au+Au collisions at v/S = 200 AGeV at RHIC, the model was developed by
S.Pratt et al and is described in detail in the article.

Six calibration parameters were identified (see Table: 9.3), with four of these
describing various aspects of the initial state and the two 7/s and « describing vis-
cous aspects of the hydrodynamics flow. Inference about all of these parameters is
highly desirable. The initial state of heavy ion collisions is widely believed to cur-
rently be the largest source of uncertainty in most calculations of bulk evolution.
The shear viscosity to entropy ratio 7/s and its temperature dependence « are ex-
tremely interesting as these are fundamental properties of the strongly-interacting
QGP.

A novel feature of this analysis is that the initial state is described with prescrip-
tions for the initial energy density and flow profiles that can be adjusted para-
metrically. The initial energy density ¢(z,y) is constructed as a balance between
wounded nucleon (Glauber) and saturation (CGC) based profiles, this balance is
controlled by f,,. The parameter o, controls the cross-section scale for chang-
ing the behavior of the saturation model from the binary collision limit where
e ~ TyTp (where T is the nuclear thickness function, essentially the density of
the nucleus projected into the plane transverse to the beam axis) to the saturated
limit when €7},,;,. The change occurs for T},,,, ~ 1/0gu.

The initial transverse flow profile is approximated as being proportional to

Tvi/Too where T, is the stress energy tensor (see §2.1), the extent of this propor-

155



Table 9.3: Summary of model parameters. Six model parameters were varied. The first
four describe the initial state being fed into the hydrodynamic module, and the last two
describe the viscosity and its energy dependence.

parameter | description range

(dE/dy)pp | Theinitial energy per rapidity in the diffuse limit com- 0.85-1.2
pared to measured value in pp collision
Osat This controls how saturation sets in as_function of | 30 mb-50 mb
areal density of the target or projectile. In the

wounded nucleon model it is assumed to be the free
nucleon-nucleon cross section of 42 mb

Jun Determines the relative weight of the wounded- 0-1
nucleon and saturation formulas for the initial energy
density
Faow Describes the strength of the initial flow as a fraction 0.25-1.25
of T()i / TO()
n/s|r, Viscosity to entropy ratio for 7' = 170 MeV 0-05
e Temperature dependence of 7/s for temperatures 0-5

above 170 MeV /¢, i.e., n/s = n/s|p. + aIn(T/T,)

tionality is set by the parameter Fj,,,. The shear-viscosity 7 arises as a constant in
the Israel-Stewart gradient expansion of the hydrodynamical equations of motion,

a temperature dependence for the shear viscosity to entropy density ratio in the

+1T
TcoznTc.

A wide range of observables were initially collected and considered for use

QGP phase 7/s was taken as

n_n

S S

in a calibration procedure with runs being made in two centrality bins 0 — 5%
and 20 — 30%. A 729 point LHS design was used for each centrality class. The
outputs selected (see Table: 9.4) include average particle multiplicities and trans-
verse momenta, the average elliptic flow and two-particle correlations in the form
of Hanbury-Brown-Twiss (HBT) source radii [214, 215]. These observations were
reducing using principle components and then a scheme roughly similar to that
outlined in §9.2 was used to obtain posterior distributions for the calibration pa-
rameters, with initially flat priors m(u,)x©(1 — u,).

The marginal and joint posterior distributions for the calibration parameters are
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Ficure 9.4: The marginal posterior distributions of the six calibration parameters are
shown along the diagonal. The off-diagonal plots display the joint distributions of the
calibration parameters. Four of the six parameters refer to the initial state (hence the “I.C.”
in their name) and the last two describe the shear viscosity.
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Table 9.4: Observables used to compare models to data. *To account for non-flow corre-
lations, the value of v was reduced by 10% from the value reported in [216].

observable | p, weighting centrality | ref err
Vot ave. over 11 p, bins from 160 | 20-30% | [216]* | 12%
MeV/cto1 GeV/ce

Rout ave. over 4 p; bins from 150-500 0-5% [217] 6%
MeV/c

Rgide ave. over 4 p; bins from 150-500 0-5% [217] | 6%
MeV/c

Riong ave. over 4 p; bins from 150-500 0-5% [217] 6%
MeV/c

Rt ave. over 4 p; bins from 150-500 | 20-30% | [217] 6%
MeV/c

Raide ave. over 4 p; bins from 150-500 | 20-30% | [217] 6%
MeV/c

Riong ave. over 4 p; bins from 150-500 | 20-30% | [217] 6%
MeV/c

P atn- | 200MeV/c <p, <1.0GeV/c 0-5% [218] | 3%

(pyx+x- | 400MeV/c <p <1.3GeV/c 0-5% [218] | 3%

Dt)pp 600 MeV/c <p, <1.6GeV/c 0-5% [218] | 3%

P ymtn— | 200MeV/ec<p, <1.0GeV/c 20-30% | [218] | 3%

(pyr+x- | 400MeV/ec <py <1.3GeV/c 20-30% | [218] | 3%

{Dt)pp 600 MeV/c < p;, <1.6GeV/c 20-30% | [218] | 3%

ntn~ yield | 200 MeV/c < p; < 1.0 GeV/c 0-5% [218] | 6%

ntn~ yield | 200 MeV/c < p; < 1.0 GeV/c 20-30% | [218] | 6%

shown in Fig: 9.4. Although over 90% of the six-dimensional parameter space is
eliminated at the one-sigma level, the individual parameters are rarely constrained
to less than half their initial range when other parameters are allowed to vary.
The first four parameters (“I.C. PP NORM”, “I.C. SAT ¢”, “I.C. W.N. FRAC”
and “I.C. FLOW”) determine the initial state fed into the hydro. The first param-
eter “I.C. PP NORM” sets the constant of proportionality between the product of
the areal densities of the incoming nuclei, and the initial energy density fed into
the hydro. In the limit of low aerial densities this should be consistent with pp col-
lisions. Thus, the range of the prior distribution was quite small, and the statistical
analysis did little to further constrain it. The parameter “I.C. SAT o” refers to o

and parameterizes the saturation of the energy density with multiple collisions.
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The preferred value appears rather close to the value of 42 mb typically used in the
wounded nucleon model, though there is a fairly wide range of accepted values.
The parameter “I.C. W.N. FRAC” sets the weights between the wounded nucleon
and the saturation parameterizations. This shows a preference for the wounded
nucleon prescription which gives a smaller initial anisotropy than the saturation
parameterization. The final initial-condition parameterization, “I.C. FLOW” sets
the fraction of initial transverse flow in the hydrodynamic calculation. The pos-
terior points to a rather small fraction of this flow, though like all of the initial-
condition parameters has a fairly broad range of possible values.

The last two parameters refer to the viscosity. The viscosity at 7' = 170 MeV is
referred to as “7/s” in Fig: 9.4, and the temperature dependence is labelled by “T
DEP. of ”. Both are significantly constrained as a fraction of the original param-
eter space. The range of 7)/s is consistent with similar, but less complete, searches
through parameter space using similar models [33, 61]. In [219], the authors found
little sensitivity to the viscosity at higher temperatures, but considered a smaller
variation of the viscosity with temperature than was considered here.

Figure 9.4 also shows the pairwise joint posteriors of the calibration parameters
. Several parameters are strongly correlated. For instance, the energy normaliza-
tion “I.C. PP NORM” and “I.C. SAT ¢” are strongly correlated in that one can have
less saturation of the cross section if the energy normalization is turned down.
There is also a strong correlation between “I1.C. FLOW” and “I.C. W.N. FRAC”. One
can compensate for less initial flow if the saturation prescription is more heavily
used than the wounded nucleon. Again, this is expected because the wounded
nucleon parameterization leads to less spatial anisotropy and a somewhat more
diffuse initial state.

The inferred viscosity is clearly correlated with the weighting between the

wounded nucleon and saturation parameterizations, as expected from the argu-
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ments in [60]. The two viscous parameters are also correlated with one another as
expected. One can compensate for a very low viscosity at 7' = 170 MeV by hav-
ing the viscosity rise quickly with temperature. Higher values of the temperature
dependence « are increasingly unlikely for higher values of 7/s|r..

The procedures applied here represent a significant improvement to the state-
of-the-art for comparisons of data and models in the field of relativistic heavy
ion physics. Previously, parameters were varied either individually, or in small

groups.
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10

Afterword

I was the smudge of ashen fluff-and I
Lived on, flew on, in the reflected sky

Computer models are an essential tool in the study of complicated physical
systems, in fact they often seem to be unavoidable. In this thesis I have introduced
the concept of the computer experiment, the systematic analysis of a computer
model and it’s inputs and outputs as a means for not just understanding the model
but also the potential rolé it can play in making strong statements about observable
and un-observable physical quantities.

While these ideas are not entirely cutting edge in and of themselves, their prac-
tical application/adoption is presently rather confined to experts or at least to
those projects which can afford to devote a graduate student to become an ap-
proximate expert. The results and experiences that I have collected here should
hopefully serve to ameliorate this situation. As illustrated in chapter 2 there are a
great many ripe opportunities for the careful application of computer experiments
in the field of Heavy-Ion physics, where almost all the quantities of interest are not
directly observable. The techniques themselves are general and can and should be
applied widely in the physical sciences.

The direct calibration of Heavy Ion bulk evolution simulators will lead to pre-
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cision estimates of the shear viscosity and other transport coefficients, has already
begun in [1, 33] (§9.4). Furthermore with a sufficiently well calibrated model the
loop between experimental and computational data might be closed enough to al-
low direct inference about the plausible initial conditions which lead to a given
set of experimental observables [220]. There is great potential for studying how
experimental data and a calibrated model constrain “un-observable observables”
such as the simulated initial energy and flow distributions of the system in a given
model, this is a very intriguing prospect.

A similarly bright future exists in the application of these techniques to the
study of jet quenching in heavy ion physics, values of (or really distributions for)
¢ and é can be extracted from the various advanced transport models and these
should be subject to careful scrutiny and happily these efforts are already under-
way although perhaps in a slightly ad-hoc fashion [157, 221, 158, 131, 155]. Finally
it might be very interesting to turn this calibration process on its head and under-
take a top down (primarily experimentally driven) approach to understanding jet
quenching. Alongside the more traditional focus on accepting or rejecting a par-
ticular microscopic theoretical model of in-medium jet transport described above
I suggest a new approach based on attempting to estimate the scale and nature
of the family of general jet modification kernels that are compatible with a given
set of observations. Taking advantage of the relatively low theoretical uncertainty
in the treatment of the bulk evolution of the QGP, even lower once one is using a
really well calibrated model, along with the well understood vacuum jet produc-
tion process it may be possible to invert the experimental data to give a range of
acceptable quenching forms, using a Gaussian Process as a prior on our family of

modification kernels.
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Appendix A

Some Useful Results

A.1 Block Matrix Inverse

If A,C and C~' + DA™ B are nonsingular square matrices then the following is

true

(A+ BOD) ' =A1+ A 'B(C'+ DA™'B)"'DA™.

Further if we write
ABN(X Y\ (I, 0
¢ D zZz U ) \0 I,)°
Then by the definition of the matrix inverse
X Y)Y\ 1 D -B
Z U ) (AD-BC)\ —C '
Which we can re-arrange to obtain some common factors

Z U

( XY ) 3 [ (A—BD7'C)™! ~A'B(D-CA'B)!

—D7'C(A— BD™'C)™ (D - CA™'B)~!
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If we multiply the X and A matrices the other way around we find that

B (A— BD™1C)! —(A— BD™'C)"'BD™!

X v
( Z U ) - [ —(D—-CA'B)'cA™! (D —CA-'B)! (A.5)

Which are equivalent. Now we can use these results to find the inverse of an (m +

1) x (m + 1) matrix M in block form

M:(;T g) (A.6)

After a little algebra we obtain

—1 . 1 4-1 TA-1 _14-1
Mlz(A +kA BB A k/i B) (A7)

1 _
_EBTA ' k

Where k = C — BT A1 B. This is the Sherman-Morrison-Woodbury inversion for-

mula, it’s fun to think of A, B, C' as representing each of the authors.
A.2 Gaussian Identities

The probability density for a p dimensional multivariate normal variable, with

mean vector y and covariance matrix Y is

o Z) = g o0 (e -0 -0 (A8)

Let 2z and y be jointly distributed Gaussian random vectors, their joint distribution

(o)~ () (& )} (19)

Where the block matrix C' can be thought of as setting the degree of statistical

is

dependence, or lack of independence between the two vectors. The conditional
distribution of x given a particular value of y = 7 is
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where the conditional mean depends on the value taken by y
fi = piz + CB~X(§ — mu,) (A11)
and the conditional covariance is independent of y
Y=A-CB'CT. (A.12)

To see why this is so let us first note the following fact, if X ~ MVN(yu, X) then
any linear combination a’X = ;X + ... has distribution: a’X ~ MVN(d'pi, a’Ya),

[183]. Let us define the block matrix

I —CB™
()

if we label the joint distribution of x and y given in (A.9) as X then

F(X—u)=(x_”$),

Y — [y

:(x—ux—(y—uy)03‘1)2<$:)7 (A.13)

Yy —= ,uy
is jointly normal with covariance matrix I'YI'7

TSI = ( (A.14)

A—-CB7'CT 0
0 B )

Note that we can immediately conclude that under this transform z’ is independent

of y'. Again if we are given the value y = g then
«' ~MVN (0,A— CB~'CT) (A.15)

and y, + CB~'(§ — u,) is a constant. By the independence of 2’ and ¥/, the condi-
tional distribution of ' given y = 7 is the same as its unconditional distribution,

then we can write

zly ~ MVN (p, + CB~Y(§ — p,),A— CB~'CT) (A.16)
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which is the desired result.
The product of two Gaussians is another Gaussian
N(z | a, AN(z | b,B) = Z' N(z | ¢, 0), (A.17)

c=C(Aa+B"), C=(A"1+B,

where the normalization constant is itself another Gaussian
1
Z7' = (2m)P?|A + B|7?exp <—§(a —b)T(A+ B) a— b)) . (A.18)

A.3 Some Probability Things

For lots of fascinating reading about probability, Bayes and otherwise consult [222,
223,170, 169, 224]. The particle data group reviews on statistics and probability

give an experimental physics perspective on some of these issues [225].

A.3.1 Bayes Theorem

_ P(B|A)P(A)
P(A|B) = PB) (A.19)
A.3.2 Poisson distribution
Aee=A
flz;A) =Pr(X =k) = o (A.20)
F(z;\) = Pr(X < k) = eA; = (A.21)

The mean and variance E[X| = V[X] = A are both equal to the rate.
A.3.3  Student-t distribution

The Student-t or just ¢ distribution with v arises from considering the distribution
of the sample mean z = £ " | X; of a setof n = v + 1 samples from some popula-
tion, i.e. the distribution of sample means that would be obtained after making a
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large number of repeated observations from the same population. If we introduce

the sample variance s> = - " (X, — ji)” then the centralized and standardized
p n—1 =1 ,LL

quantity
T —
—— ~tyn— A22
N A2
is t distributed with n — 1 degrees of freedom, where 1 is the population mean.
L)L () )
V) = (=) (1+— A2
flasv) = —= (2)( + V) (A.23)
1 v+1 1 v+l 3 22 1
F(z;v) = - +al Filz,—iz—— )| ——~ A24
(x;v) 5T ( 5 >2 1(27 5 5 V) 0 ( )

The mean is zero and the variance V[X] = %5, examining the density it’s clear

that in the limit v — oo the distribution will become normal using the well known

result lim <1 + f) = exp(z).
n

n—o0

The noncentral Student-t distribution is a generaliztion, if Z ~ N(0,1) and V' ~

Xz and V and Z are statistically independent then the variable T,

Lt

m ~ tky (A.25)

has a noncentral ¢ distribution with £ degrees of freedom and noncentrality pa-

rameter p. The CDF is

= (i)
3 250 i (V)¢ Ty "2 a2

Fk,u(x> = 1 wo 1 =t T4 . E j+1
1—520 ﬁ(—ﬂ\/ﬁ)“@ > Ty L s ly), <0

where I(z,a,b) = % is the regularized incomplete beta function, where
© - ['(a)I'(b)
B b)= | t* (1 —-t)"tdt, Bla,b) = —~L—=.
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The density is

k 2 .
> Fk+2, A/l + 2 —Fk’ (l’) s lfﬂjio,
f(z) = r({k;rl) : ( V - k) a } _ (A.27)
mexp <—7> s if x = 0.
The mean and variance exist as long as k is large enough,
_ o JRL(R=1)/2) .
Rk (T((k - 1)/2)\° |
Var [T] = o 5 T2) , if k> 2. (A.29)

A.3.4 Chi-Squared distribution

If Xi,... X, are independent standard normal random variables then the sum of

their squares is chi-squared distributed with £ degrees of freedom

k
Q=>X! — Q@~xi, (A.30)
i=1

the density and distribution functions are

1 E_l _z

f(ﬂf,k) = WIQ e 2, x= 0 (A31)
F(r; k) = ﬁv <§ g) , (A.32)

v(z,s) = J t~te t dt.
0

where 7(z, s) is known as the lower incomplete gamma function. The mean of a x?
distribution is k and the variance is 2k. It may be useful to note that the sum of
independent chi-squared variables is also chi-squared, i.e. if X; ~ x}, then if we
define Z = 3" | X;, Z ~ XQZ?:l r,- Asymptotically in the number of degrees of free-
dom £, a standardized x} variable converges in distribution to a standard normal,
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(i —+)

V2k

with mean p and rank k covariance matrix C' then the sum of squared distances

ie. ask — 4N (0,1). If Z is a n dimensional Gaussian random vector

X=Z-p'C ' (Z-pn), X~xi,

this result is clear if we imagine diagonalizing C first. If X; ~ x7 and X, ~ x;

2

then the ratio Y = % is F' distributed, Y ~ F(ky, k). The F distribution comes
up fairly often in the context of linear modelling, the details of the distribution are

tairly tedious and best found by consulting a standard references [174, 226].

A4 Assessing Normality

A.4.1 Univariate Data

Given a set of d samples Y = {y1,...,ya} Wwhere we believe that the samples are
roughly normally distributed, we can compute the sample mean i = < 3¢ yiand

sample standard variance s* = ; 3% (3 — i)? in the usual way and then we want

to assess if
Y—n

S

~ N(0,1).

A nice visual way to do this is by making a so called quantile-quantile (QQ) plot,
here one plots a set of empirical quantiles generated from the sample data set
against theoretical quantiles from the distribution of interst. Essentially one is
plotting a set of points from the CDF of the sample against the same set of points
from the CDF of the test distribution. In this case if the samples are well described
by a normal distribution the graph should be a relatively straight line, the major
advantage of a QQ plot is that it allows one to rapidly assess the location of any
deviations.

A contrived example using a QQ plot for some diagnostics is shown in Fig: A.1.

A set of 256 samples were drawn from a x? distribution, in the left panel empirical
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quantiles for these samples are plotted against those of a standard normal distri-
bution, the red-line shows what one would expect if the samples were normally
distributed. Although the central part of the sample QQ curve looks roughly linear
its clear that there are serious deviations at both tails of the sample distribution,
confronted with this sort of plot one would not be convinvced of the normality of
ones samples. In the right panel I have plotted the sample quantiles against theo-
retical quantiles from a x? distribution with 4 degrees of freedom. The agreement
here is far better at the left tail although there is still some deviation at the right
tail. This remaining deviation is a result of drawing a finite number of samples

from a distribution with long tail.

Normal Q-Q Plot ChiSq Q-Q plot
w |
12 [}
2 2
5 24 I 5
> =
a ¢}
<@ Q<
o Q.
£ 0 £
© 5
%] n
© 7\. ."\ T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 0 2 4 6 8 10 12
Theoretical Quantiles Theoretical Quantiles

Ficure A.1: Two QQ plots for a set of 256 samples drawn from a x7 distribution. In the
left panel the sample quantiles are plotted against theoretical quantiles from a standard
normal distribution. In the right panel the sample quantiles are plotted against theoretical
quantiles from the population distribution namely 3. In both panels the red curve shows
the expected result if the sample and theoretical distributions were identical.

A.4.2 Multivariate Data

Given a set of d sample vectors Y = {y1,...,ya} where each sample is a k-length
vector y] = (yi,...,y})T we can construct the sample mean (a k vector) in the usual
way
d
~Oo 1 (6%
i = - ; ui,

170



we can also construct the elements of the sample covariance matrix S (k x k)
1
I Q_ACV(?_AB).
d;:l (W =) (i — i

We can then introduce the set of squared distances d?

&=y, — S (y; — ). (A.33)

If the data Y/ is multivariate normally distributed then we would expect that these
distances to have a x? distribution with degrees of freedom given by the rank » < k
of 33 [183]

42 ~ x2. (A.34)

Now we have obtained a set of quantities d> which can be easily visually examined
with QQ plots, but here the theoretical quantiles we're plotting our data against

are those of a x? distribution.
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