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Abstract

Cutting edge research problems require the use of complicated and computation-

ally expensive computer models. I will present a practical overview of the design

and analysis of computer experiments in high energy nuclear and astro phsyics.

The aim of these experiments is to infer credible ranges for certain fundamental

parameters of the underlying physical processes through the analysis of model

output and experimental data.

To be truly useful computer models must be calibrated against experimental

data. Gaining an understanding of the response of expensive models across the

full range of inputs can be a slow and painful process. Gaussian Process emula-

tors can be an e�cient and informative surrogate for expensive computer models

and prove to be an ideal mechanism for exploring the response of these models to

variations in their inputs.

A sensitivity analysis can be performed on these model emulators to character-

ize and quantify the relationship between model input parameters and predicted

observable properties. The result of this analysis provides the user with informa-

tion about which parameters are most important and most likely to a�ect the pre-

diction of a given observable. Sensitivity analysis allow us to identify what model

parameters can be most e�ciently constrained by the given observational data set.

In this thesis I describe a range of techniques for the calibration and exploration

of the complex and expensive computer models so common in modern physics
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research. These statistical methods are illustrated with examples drawn from the

fields of high energy nuclear physics and galaxy formation.

Now with 47 delightful figures.
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A green oak tree’s by a cove curving;

A gold chain on that oak is found,

And night and day a cat most learned

Walks by that chain, around, around,

When he walks right, sweet songs intoning,

When leftwards, tells a fairy tale.

I dedicate this thesis to Cassie, and Cup-a-Joe co�ee shop. I couldn’t have done

it without you.
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1
Introduction

And I am dumb to tell a weather’s wind
How time has ticked a heaven round the stars.

Reality is messy and complicated, science is a continual attempt to unfold and

understand some of this complexity. Frequently when trying to attack hard prob-

lems one is forced to turn to numerical models. Big questions usually require big

models, with many inputs and outputs and a broad swathe of control parameters

and settings. These big models usually require a lot of computer resources, making

them expensive to run and often rendering the prospect of a serious exploration

of their behaviour infeasible or at least unappealing to the pragmatic researcher.

If our model had no adjustable components and its counterpart process in re-

ality could be reasonably measured we could directly compare the model output

to the set of experimental measurements. For computer codes of any complexity

this is no longer the case, there are usually a host of adjustable quantities present

both experimentally and within the model itself. If we are modeling a very com-

plex process it is unlikely that we are simply solving a well defined equation (such

as heat di�usion r2� “ 0, with some simple boundary conditions) instead we are

dealing with the potentially stochastic interactions of many complex sub-processes

such as the propagation of interacting particles via an approximation to the Boltz-
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mann equation or the intricate web of interactions within a climate model.

The models I am primarily interested in are those that are designed as ex-

ploratory tools as opposed to precision calculators. Research scientists often do

not know what is the appropriate way to model a novel phenomenon, the models

they do create are always a best (simplest, fastest, easiest to implement,. . .) guess

at the underlying processes taking place. With this in mind, our goal is to use the

available experimental measurements to simultaneously poke holes in and shore

up these models as best we can. This is a deviation from the bulk of the literature in

the statistical model-analysis community. This usually focusses on making precise

estimates of the deviations of a well understood model from reality. This approach

will become important as the models themselves crystallize from exploratory to

precision tools. In the initial stages of scientific exploration partial rapid feedback

is much preferred over a more complete long term analysis.

Experimental information about complex processes such as galaxy formation

or particle collisions can be expensive to obtain and it is usually di�cult to provide

observations which span the full parameter space. As data is collected gradually

an approach which can readily include new results is to be preferred.

It is usually the case that the domain scientists have explored their model out-

put through variations of a single input parameter. Fixing a given value that seems

to give good results and then varying the next parameter. The high computational

cost of these models usually makes systematic exploration in terms of multiple pa-

rameter variation prohibitively expensive. For models with even moderately sized

parameter spaces the volume sampled in this fashion will rapidly become minute.

It is important to acknowledge the tension between devoting time and resources

to understanding a model and the need to actually “get things done” meaning ap-

plying the model to apposite domain-science questions. In an ideal world one

would make no siege upon the latter without a detailed and extensive e�ort to-
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wards the former. The methods, techniques, and rules of thumb presented herein

are intended to give a harassed scientist a good grasp on their model, it’s workings,

and applicability without requiring a lifetime of e�ort.

1.1 The central questions – An Outline

Faced with this kind of situation we may find ourselves asking:

• Can we e�ectively approximate our model in some fashion? (Chapter: 3)

• How well does our model actually reproduce physical reality, as we under-

stand it? (Chapter: 9)

– What is the best value of a given setting? Can we sensibly talk about a

true value of a parameter?

– What can we conclude about our understanding of physical reality given

a set of experimental data and our model?

• What are the most important inputs and parameters for this model? (Chap-

ter: 8)

• What are the uncertainties in our understandings of our model? (Chapter: 7)

In this thesis I will attempt to draw together the wide literature on the statis-

tical analysis of computer experiments and present it in a format that should be

accessible to physicists. In so doing I will address the above central issues with

illustrations drawn from my own practical experiences in the analysis of trans-

port models of relativistic heavy ion collisions [1, 2], and galaxy formation models

[3, 4]. The results and methods collected and expounded upon herein should be

su�cient to carry out a complete analysis of a typical computer model.
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1.2 What is a computer model?

Suppose that we have some computer model which we will represent as a function

fpx, uq, a function of two sets of numbers x and u the observation and calibration

parameters respectively. The observation parameters are those which can be sys-

tematically varied in both physical and computer experiments. The calibration

parameters usually will be quantities which are not directly accessible experimen-

tally. These could be parameters which control some purely numerical aspect of

the model which are of no great physical significance but of course great computa-

tional significance. We wish to learn about best, in the sense of most compatible

with experimental observations, values of these quantities so that we can run our

model most e�ectively.

There may also be calibration parameters which encode some unknown quan-

tity that has a real physical significance, such as the mass of a certain particle or a

given coe�cient in some model. Of course these “physical” calibration quantities

may not actually have a direct corresponding quantity in reality, since they are the

product of the long chain of approximations, and conceptual models that makes

up the complex game that we call science. Philosophy aside, we are certainly inter-

ested in learning as much as we can about these physical calibration variables as

they represent a powerful tool for the falsification of the theoretical ideas our model

itself is built upon.

For simplicity we can begin by restricting our attention to computer models

which produce only scalar output, i.e. f is a function

f : Rp

x

ˆ Rp

u

Ñ R (1.1)

where p
x

is the number of observation parameters (not to be confused with any

finite number of actual observations of something) and p
u

is the number of cali-

bration parameters. Throughout the course of this thesis I will use the term sim-

4



ulator to stand in for computer-model whenever there might be the possibility of

confusion between computational models and the statistical models that we hope

to make of them. The diagram Fig: 1.1 gives a quick overview of where I am going

with these layers of models.

Theoretical
PhysicsReality Computer

Model Emulator

Experiment Calibration
Parameters

F����� �.�: A schematic representation of the connections between reality, theory, experi-
ment, our computer model or simulator, and the statistical emulator or surrogate we will
create of it.

To address how well the model reflects reality, we should adjust the calibration

parameters to their “true” values u‹ and then make a set of observations of the

model output over the range of x which could then be systematically compared to

experimental data. We’ll denote the set of experimental observations as Y
f

px, u‹q,

these will unavoidably have some observation error ✏
f

associated with them. Let’s

denote the real output as Y
f

px, u‹q, this is what we would measure if we could make

observations without error and what we believe that our simulator is reproducing.

Proceeding in this way we can now develop a model of the di�erence. Writ-

ing the simulator output as Y
m

px, uq “ fpx, uq, reality as Y
r

px, u‹q and our field

observations as Y
f

px, u‹q then

Y
f

px, u‹q “ Y
r

px, u‹q ` ✏
f

pxq (1.2)

Y
r

px, u‹q “ Y
m

px, u‹q ` bpx, u‹q,

where ✏
f

pxq represents the error in the experimental observations and bpx, uq is

some unknown function representing the discrepancy between our model and re-

5



ality. This is all well and fine however we generally have no idea what u‹ should be

and so we have to evaluate Y
m

over a range of values of u. Furthermore the func-

tional form of b is strongly confounded with u, for di�ering values of u the model

will produce varying output changing the form of b. The form given in (1.2) was

first promulgated by Kennedy and O’Hagan [5]. Though this is by no means the

only possible formulation it is a reasonable place to begin for most simulators.

With the information we have it is impossible to uniquely determine both u‹

and the correct form of b. Imagine two people with weights ✓
1

, ✓
2

standing on a

scales at the same time, the measured weight would be

y “ ✓
1

` ✓
2

.

No matter how we repeat the process or the values of the two weights we will not

be able to make a sensible estimate of either one with only observations of y. In

this case the quantities ✓
1

, ✓
2

are not statistically identifiable. Of course if were to

able to hold one weight fixed (✓
1

say ) while systematically varying the other we

would be able estimate ✓
1

. However this is a rather di�erent situation since the

systematic variation of ✓
2

promotes it from a random quantity to a certain one.

Returning to our definition (1.2) we can make certain choices of prior distribu-

tion for the discrepancy which attempt to balance the functional form of b so that

its influence is “small” relative to that of the computer model Y
m

. This is reason-

able since we typically have a fairly large number of observations of the computer

model output across the x, u space, although this is typically biased towards the u

side of things, and a far smaller number of experimental observations since these

are typically drastically more expensive to obtain than most computer models.

The bias term is important to fully and fairly understanding the computer model.

If we do not explicitly include it then we are artificially creating some residual x

space structure either in the error in the experimental data or into whatever error

6



structure we create for our statistical model of the simulator output. As we will

see, the more bias is needed to square the model with experimental data the more

uncertain our estimates of u‹

Suppose we carry out a model calibration procedure and obtain some estimates

of the true values of the calibration parameters û‹, we must be very cautious as to

how we interpret these estimates. There is no iron-clad guarantee that the pla-

tonicaly true values u‹ would actually give a better fit to the observed model and

simulation data than whatever estimated values û‹ we obtain. The estimates we

will obtain are the best set of values we could find for the calibration parameters

given not only all of the particular details of our sampling of the model (Y
m

) and

reality pY
r

q, the approximation procedures we use to represent the model and dis-

crepancy at untried input locations, and more subtly all of the assumptions that

went into the construction of the model and of course into the interpretation of

whatever raw information was processed to give the field data.

Nevertheless we should not give up before we even get started, while we cannot

hope to exactly pin down the true values u‹ in any practical situation we can rea-

sonably expect to obtain credible ranges for their values. Hopefully these credible

ranges obtained after carrying out the analysis of the computer model and running

our experiments will be tighter than our prior ranges. Of course the case where

they are substantially wider may actually be more exciting since then we may have

evidence that our computer model and the theoretical framework it is based upon

is incompatible with these field observations.

1.3 The statistical analysis of computer experiments: a microscopic
review

The systematic investigation of the Fermi-Pasta-Ulam model [6], which models the

dynamics of a lattice of non-linearly coupled oscillators, represents perhaps the
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first formal computer experiment where the goal was to explore the variability in

the model’s behaviour as a function of various calibration parameters.

The first serious statistical treatment of the analysis of computer experiments

can be found in the papers of Sacks et al [7] and Currin et al [8]. Which present fre-

quentist and Bayesian approaches respectively to using Gaussian Processes (GPs),

a kind of stochastic process which can be adjusted to produce a wide range of func-

tional forms, to model the relatively smooth output of computer codes and make

predictions of the output at untried locations in the parameter space. The left hand

panel of Fig: 1.2 shows some random samples from a one dimensional Gaussian

Process.

The process of using a GP to make predictions about a smoothly varying field

at unmeasured locations given a set of inputs has its roots in spatial statistics, be-

ginning with applications to mineral exploration, and is known as Kriging [9] or

Gaussian Process regression. A central reference for spatial statistics is Cressie’s

book [10], a serious discussion of the mathematical details of Kriging or GP re-

gression can be found in [11]. An introduction to all aspects of GP regression from

a machine learning perspective can be found in the excellent book of Rasmussen

and Williams [12]. The right hand panel of Fig: 1.2 shows random samples of a

Gaussian Process after carrying out GP regression, the process has been condi-

tioned to pass through a set of observations of a toy model (solid black points). In

this panel the confidence interval is no longer a uniform band, it shrinks to zero

near the training points since here the model values are known with certainty and

grows in the gaps where the model output is unknown.

The use of GP’s and GP regression as part of a larger analysis of a computer

model, with a view to obtaining calibrated model predictions is introduced in the

seminal papers of Kennedy and O’Hagan [13, 5], where a Gaussian Process is used

as a surrogate or emulator for the model output at untried locations in the parame-
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ters space. Here the focus is on making the most accurate predictions rather than

on understanding the calibration parameters themselves, the papers by Bayarri et

al [14] and Higdon et al [15] develop the Kennedy and O’Hagan framework with an

emphasis on calibration itself with the Higdon article espousing a fully Bayesian

procedure in contrast to the partial-Bayesian procedure found in Bayarri 1. The

calibration of models which produce multivariate (or functional) output requires

some careful considerations, the fully Bayesian framework of Higdon et al is ex-

tended to multivariate data in [16], the procedure of Bayarri et al is extended in

[17]. Detailed discussions about the optimal design of computer experiments, i.e.

how best to layout a finite set of model evaluations through the parameter space,

can be found in the book of Santner et al [18] and in [19, 20, 21].

Besides calibration GP emulators have been used to develop an understanding

of the variability in a model’s output when some (perhaps all) of the parameters

are unknown and are allowed to vary according to a given joint probability distri-

bution, this is known as uncertainty analysis (sometimes uncertainty quantificiation

in engineering applications). The tutorial by O’Hagan [22] (based on the detailed

article about uncertainty analysis [23]) is a fine not so technical introduction to the

uncertainty analysis of computer codes via GP emulators and also to the use of

Gaussian processes as emulators for computer models. So called polynomial chaos

methods, based upon expanding the simulator as a series of stochastic polyno-

mials, have recently arisen as an alternative method to GP’s for understanding

variability due to uncertain parameters in dynamical systems [24], while powerful

these methods require a complete mathematical formulation of the model and are

rather outside the scope of this work.

We can naturally extend the concept of uncertainty analysis to building an un-
1 The general consensus appears to be that the results from these approaches are roughly equiva-

lent for practical purposes, while the fully Bayesian procedure may be more elegant it also requires
rather more Monte-Carlo simulation e�ort than the MLE drop-in procedure.
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derstanding of the relative influences of the various input parameters, and their

combinations, upon the model output. This sensitivity analysis requires a great deal

of computational e�ort if directly applied to the simulator, however it becomes rel-

atively straightforward when carried out on a GP model surrogate [25, 26, 27, 28].

The resulting information about which parameters (or their combinations) have

the most influence on the simulator output provide focal points for the detailed

investigation and calibration of the model.

All of these ideas have been directly applied to complex cutting edge computer

models in the physical sciences, in cosmology [29], galaxy formation [30, 31, 4, 3],

modeling risks from extreme events [32], and increasingly in Heavy Ion physics

[2, 1]. The article by Soltz et al [33] deserves mention as a serious attempt at using

model calibration to make inference about the true values of unknown physical

parameters arising in Heavy Ion physics, although no GP surrogate is used in this

particular analysis.

1.4 Sources of uncertainty in computer models

In [5] the authors include a an extensive list of the possible sources of uncertainty

arising in the analysis of computer experiments. I have reproduce the essential

details of this list here as these definitions provide the basis of a common language

for the discussion of computer experiments.

• Parameter Uncertainty: Our uncertainty about the values of the calibration

parameters. The best values for a given set of observational data may not be

the same as the true values.

• Model Inadequacy: Even if there was no parameter uncertainty, so that we

knew the true settings for the calibration parameters there will still be some

10



discrepancy between the predicted value and the true value of the process

we are modelling, “All models are wrong”.

This discrepancy, specifically the di�erence between the mean value of the

observed process and the model prediction at the true value of the calibration

parameters is the model inadequacy.

• Residual Variability: We believe that our parameterization of the model is

su�cient so that repeated observations at the same settings will always take

the same value. In practice this may not be the case, the variability that arises

may be due to stochastic elements in the model or it may be that we have

failed to fully specify all the conditions or parameters needed. A good ex-

ample is a simulator which relies to some extent upon Monte-Carlo (MC)

methods which introduce residual variability into the final output. This vari-

ability may be reduced by increasing the number MC samples used. In some

sense the variability can totally eliminated by including the seed supplied to

the random-number-generator as a parameter in the analysis, however this

is unlikely to be of much practical use.

• Parametric Variability: Sometimes it may be useful to obtain predictions

of the model output where some subset of the model inputs are allowed to

vary according to some joint probability distribution, for instance when one

wishes to understand the influence of nuisance parameters or systematic er-

rors on some model.

• Observation Error: Model calibration requires a set of field observations,

these will necessarily have some uncertainty associated with their collection.

Typically these observation errors will be smaller than the computer model

uncertainties.
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• Code Uncertainty: Practically the output of our computer model at some as

yet untried location in the parameter space is unknown. Strictly we know

that this output must be a function of the inputs and so the output is not

truly uncertain. However it may take a great deal of e�ort to obtain this

information for non trivial codes and so it is reasonable to treat this as an

additional source of uncertainty.

1.5 Simple and Complex models

Now that we have an idea of what I mean by a computer model, let us introduce

an important classification between those models which are fundamentally simple

and those which are fundamentally complex or challenging.

Simple models are: models of situations where physical observations and mea-

surements can be readily made, deterministic, almost certainly the right solution to

the problem, typically solving engineering problems where the underlying physi-

cal process is well understood and one seeks to fully understand a given particular

application.

Complex models are: situations where physical observations and measure-

ments are very expensive and di�cult to make, not necessarily the right formal

description of the problem i.e. phenomenological, perhaps somewhat stochastic,

typically these models represent research problems where the underlying physical

process is not well understood and a general understanding of this process is the

primary goal.

An example of a simple model is a code that would model the evolution of the

temperature T pr, tq of a metal block for a given initial distribution of temperature

T
0

and a given heat conductance k (and block, i.e. boundary conditions). We could
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numerically solve

BT

Bt
“ ´krT T p~r, 0q “ T

0

. (1.3)

Suppose that a suitable experiment could be setup to verify our results. Where

could uncertainty arise with this model? First let us suppose that with a simple

model we are always certain that we are simulating the correct process although

perhaps with incorrect model parameters. Given that we believe that we are solv-

ing the correct equation we could be uncertain about the initial condition, the heat

constant in our block k and our temperature measurement. In this case we are

fairly sure that there must be some good set of these parameters which will agree

with our experimental data. With a simple model our goal is to develop the best

possible treatment of our uncertainty in our implementation of the process and to

build up a complete understanding of the models deviations from reality, if indeed

there are any.

An example complex model might be a simulation of the interaction and trans-

port of some set of hadrons using the Boltzmann equation to describe the behavior

of nuclei during a very high energy nuclear collision

pµ

B

Bxµ

F
k

px, pq “

ÿ

i

C
i

F
k

px, pq, (1.4)

where F
k

px, pq is the one particle distribution function of the k’th species and C
i

represents some complicated collision functional. The complexity in the model

arises from the collision term, the interaction of pairs of particles makes this equa-

tion rather analytically intractable. Relatively slow numerical simulation of this

equation can be carried out.

In this extreme case we are uncertain of a great deal: we do not know the con-

figuration of particles within each nucleus before the collision; we can only ap-

proximate the nature of their interactions and we cannot even be certain that we
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are using the correct model to describe the system. In fact we actually know that

using a model which includes a hydrodynamical evolution sandwiched between

initial and final periods of microscopic transport gives a better description of the

experimental data. To make matters worse we cannot directly observe the system,

we can only make measurements of the resulting particles a long time after the

collision and try and relate them to the processes taking place in our model.

With a complex model we are not sure that we are actually modeling reality

at all. Our goal here is to determine to what extent our complex model could be

reproducing reality if indeed it does this at all.

1.6 Settings and parameters

We have defined our model in terms of two sets of parameters u and x. Parameters

in set x exist in reality and importantly we can make controlled observations at dif-

fering values, hence the name observation parameters. Parameters in set u either

do not have a well defined counterpart in reality, or the counterpart is a (known or

unknown) fixed value such as fundamental constants. These are often referred to

as calibration or tuning parameters.

Experimental observations will be made with the fundamental constants at

their true values, the values of the calibration constants do not matter in terms

of experimental measurements. We denote the location in u space where every-

thing either takes its true value (in terms of fundamental constants) or the best

possible value given the structure of the model as u‹.

There are also parameters that will change the experimental observations which

have no counterpart within the model, for instance the resolving power of detec-

tors in a heavy-ion experiment is not (directly) included in a transport model like

UrQMD [34, 35, 36]. We will not directly deal with the latter. These missing pro-
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cesses / parameters are important as they are likely to contribute to the discrep-

ancy between our model and reality.

For clarity here let us take UrQMD as our model, this is a hadronic transport

approach including an ideal (3+1) dimensional hydrodynamic evolution for the

hot and dense stage of the evolution. This approach represents a class of state-of-

the-art models which decribe the dynamical evolution of heavy ion collision based

on combining hadronic transport approaches that are well suited to deal with the

non-equilibrium initial and final state and a hydrodynamic evolution where the

equation of state is an explicit input and phase transitions can be treated properly.

Examples of parameters in the x set would be
?

S
NN

, centrality of collisions, what

kind of nuclei are involved. Examples of calibration parameters include the grid

spacing in the hydro code, the smoothing width � used to convert from the micro

to the hydro stages, the freeze-out scale and the equation of state for hot nuclear

matter. The latter is an example of a calibration parameter which does exist in

reality, learning about these is often of great interest to the domain scientists.

With complex models we often have a large set of internal calibration parame-

ters u and a relatively smaller set of externally variable parameters x. The limited

information in the x space further restricts our ability to approximate the system-

atic bias between the model and reality.

The models that we are typically dealing with day-by-day are complex, their

behavior as their inputs are jointly varied is not always well understood. Experi-

mental data is usually limited to small discrete sets of values in the x space. For

instance in high-energy nuclear experiments the mechanical details of the particle

accelerator only allow a small discrete set of possible colliding particles and ener-

gies. In this situation we prioritize exploring the model output space in terms of

varying the calibration parameters u and making comparisons with available data

over attempting to build up a representation of the model discrepancy.
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1.7 Getting started, in media res

To close this introduction, let’s consider a tiny example of the use of GP emulators

as part of the analysis of a real computer model. I will introduce all of the rele-

vant mathematical details later (mostly in chapters 3 & 4), for now we can simply

consider the GP emulator as a black-box interpolation scheme. Importantly this

particular interpolation scheme provides a direct measure of the uncertainty in its

predictions at untried locations.

As mentioned in the previous section UrQMD [34, 35, 36] is a transport code

which describes the evolution of relativistic heavy ion collisions. It simulates the

collision from end to end, starting with the initial scattering of the two nucleii,

including the hydrodynamic evolution of the bulk of the system and finishing with

a Boltzmann transport of the hot hadronic matter formed in the aftermath. This is

a complex model with a wide range of potential parameters. Currently the largest

uncertainty in the overall description of heavy-ion collisions lies in the specification

of the initial states of the colliding nucleii and their early time interactions.

In [2] we explored the influence of two parameters in UrQMD associated with

the early stages of the collision, we began with a very simple experimental design,

using only two parameters t
start

and �. The parameter t
start

controls the time (in

units of fm/c) after initial collision at which the code switches the evolution from

the microscopic transport of the hadrons arising from the collision to the hydro-

dynamic treatment. This is an important parameter as it sets the amount of al-

most free-streaming that takes place before the strongly interacting hydrodynami-

cal processes take over. It’s reasonable to expect that this parameter has some kind

of counterpart in physical reality, although the process is likely not a sharp transi-

tion. The parameter � controls the kernel-width of a smoothing function used to

convert the hadronic degrees of freedom into the initial energy density for the hy-
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drodynamical evolution, this e�ectively sets the lumpiness of the initial conditions

of a very important stage of the evolution. As hydrodynamics is a fundamentally

e�ective theory of the strong interactions of system this parameter does not have

an obvious counterpart in physical reality.

To explore the dependence of the model on these parameters we constructed

a GP emulator of the total number of pions produced at mid rapidity in central

Au–Au collisions at
?

S “ 200 AGeV. The set of training data collected at various

values of our parameters of interest t
start

and � is shown in the left hand panel of

Fig: 1.3 along with the STAR data [37].

Using a simple measure of deviation from the experimental measurement we

found a wide valley structure in the �–t
start

plane where comparable pion mul-

tiplicities could be produced, see Fig: 1.3 Here we defined the implausibility or

feasibility of a given location in the calibration parameter space as a measure of

the distance between our interpolated predictions and experimental data

I2

puq “

pEry
emu

puqs ´ Ery
field

sq

2

Vry
emu

puqs ` Vry
field

s ` Vry
model

s

(1.5)

where y
emu

represents a scalar GP emulator and Vry
model

s represents an informed

estimate in the overall model error. Throughout this thesis I shall use the notation

ErXs and VrXs which respectively represent the expectation and variance of the

random variable X . This simple measure, the implausibility, includes the informa-

tion we have about the uncertainty in the interpolation scheme in the term Vry
emu

s.

This previously unknown structure, suggesting that changes in one parameter can

be traded o� against changes in the other, would have required a very large set of

model runs to uncover without a suitable interpolation scheme.
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2d parameter space, scalar output 

Petersen et al, arXiv:1012.4629v2 [nucl-th]

Monday, April 4, 2011
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2

Heavy Ion Physics – A biased survey

All hadronic matter is made up of a tightly bound quarks which interact through

the exchange of gluons. The theory of quark and gluon interactions Quantum

ChromoDynamics (QCD) is characterized by the running of the coupling constant

↵
s

with momentum. At the soft momentum scale typical of the interactions be-

tween confined quarks and gluons the coupling constant becomes large and the

theory is non-perturbative. At very high energy densities this confinement of the

hadronic constituents can be broken. There is a transition from individual sepa-

rate hadrons into a sea of strongly interacting matter. The production and study of

this new deconfined phase, the quark gluon plasma (QGP) is the goal of heavy-ion

collision experiments like those carried out at RHIC and the LHC. For reviews on

the physics of the QGP see [38, 39, 40, 41, 42]. Direct observations of the QGP are

not possible due to the incredibly short lifetime of this system „ 10 fm/c. Once the

medium cools past the transition temperature strongly bound hadrons form which

are then measured in the experimental detectors. This non-perturbative process

forms a screen around the QGP.
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At high energies, i.e. center of mass scales
?

s
NN

° 10 GeV, the collision of nu-

clei results in quantitatively di�erent behaviour compared to the collision of single

nucleons. There is strong evidence for large scale collective behaviour amongst

the products of the initial collision which cannot be descrbed by the superposition

of pQCD processes. This is in contrast to proton-proton events at similar scales

which can be well described as a combination of a single, perhaps quite complex,

hard QCD (and therefore perturbative) process with universal non-perturbative

objects. The latter representing the probabilty of finding a parton within a nu-

cleon (a parton distribution function PDF) and the probability of a given hadron

being produced by the color-confinment of a particular parton (a fragmentation

function).

locations — the resolution of the measurement is much coarser than the actual scale of the collision

zone; each collision is, from the detector’s point of view, point-like and instantaneous.

When the two heavy nuclei collide, their nucleons are shattered. Their constituents, the quarks

and gluons, are spilled out for a brief amount of time and form a new type of matter: the quark

gluon matter. This matter can exist for only very short amount of time (� 10

�23

second) before

it “evaporates”: the quarks and gluons quickly recombine into hadrons and fly into the detectors.

It is not only heavy-ion collision that can shatter nucleons into quarks and gluons; proton-

proton collisions collisions can also break the proton cage to free the quarks and gluons at high

enough energy: in all such collisions the quark-gluon matter is created. However one peculiar

property of the quark-gluon matter created by heavy-ion collision is that the created matter can

actually equilibrate, meaning that the quarks and gluons in the matter can almost reach local

equilibrium, which is another way to say that the particle number probability density of finding

quarks and gluons with given energy satisfy their corresponding Boltzmann distributions. This

thermalized medium is the quark-gluon plasma (QGP).

The information on the out-going particles can be analyzed to form observables, which will be

compared with various theoretical results in order to learn about the properties of the QGP.

Another concept that needs to be introduced is “centrality”. A collision where the two nuclei

hit head-on is very di�erent from another collision where the two nuclei only graze each other; for

this reason, collisions are usually sub-divided into “centrality classes”, where each class contains

collisions under similar conditions. The conventional quantity that can be used theoretically

to perform such a division is the impact parameter, which is defined as the closest distance

between the tracks of the centers of the two nuclei. However, as mentioned above, in heavy-ion

collisions no detailed information including impact parameter can be directly obtained, therefore in

measurements another quantity is used to define the “centrality” of the collision. Let us explain the

idea: it is plausible, at least statistically, that the more central a collision is, the more particles it

will produce. Based on this observation, the number of produced particles can be used to indicate

how central a collision is. Operationally, all collisions are ordered by the number of charged

hadrons they produce, and the rank of a collision is its “centrality”. For example, the top 5% of

all the events in this ordered list form the 0-5% centrality class (or centrality bin). The smaller

the centrality class, the more central the collisions it contains

1

.

1.3 Relativistic hydrodynamic simulations

The evolution of the quark-gluon plasma is simulated using relativistic hydrodynamics. There

are several stages involved in this process. For an illustration, a typical simulation is visualized in

Fig. 1.1.

Figure 1.1: Snapshots of a simulated event at indicated time. The two groups of colored balls are

the colliding nuclei, the color patches are the quark-gluon plasma, and the red balls are the final

hadrons emitted from the quark-gluon plasma.

1
This procedure does not work for p-p collisions, due to multiplicity fluctuations. It only works for nuclear

collisions where the monotonic increase of multiplicity with the number of nucleons participating in the collision

overwhelms the fluctuations in individual nucleon-nucleon collisions.

2

F����� �.�: A cartoon of the evolution of a relativistic heavy ion collision. The points
in the far left frame represent the nucleons in the inbound nucleii. The colored volumes
represent the QGP matter as simulated by a hydrodynamic model. The red points in the
later frames are the hadrons produced by the cooling of the QGP. Reproduced from [43].
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The colliding matter is believed to form a hot deconfined state called a Quark-

Gluon-Plasma (QGP) with a transition temperature at T
c

„ 170 MeV. The colliding

nucleons are rapidly heated which leads to the deconfinement of their constituent

degrees of freedom. The constituents of each nucleon, quarks and gluons, are lib-

erated. The high temperature and pressure forces the nucleons themselves to melt,

alternatively one can think of this as a local melting of the QCD vacuum which en-

forces confinement. The QCD interactions of the now free colored partons give

rise to a rich set of interesting observable phenomnena, such as collective flow and

the suppression of hard partons and heavy hadronic states.

Heavy ion collisions provide a window for studying the novel properties of the

quark gluon plasma and the mechanisms of its creation and evolution. However,

only experimental observations of the momenta of particles which comprise the

remains of the collision are possible. The process of using theoretical predictions

and experimental models to learn about the nature of these hidden processes is

schematically presented in Fig: 2.1. This situation with a chain of experimental

observations, of the remnants of the true processes of interest, feeding into simu-

lations developed from theoretical models and then feeding back into the exper-

imental process itself is an almost ideal one for the application of the statistical

methods contained in this thesis.

To address the fundamental questions concerning the properties of QGP mat-

ter and understand its evolution requires the application of large and complex

transport models. These models typically combine a viscous hydrodynamic treat-

ments of the evolution of the thermalized quark-gluon plasma („1-7 fm/c) with

microscopic hadronic transport simulations which describe the propagation and

breakup of the produced hadrons („7-20 fm/c). During the first fm/c of the colli-

sion, when the system is too far from equilibrium for even a viscous hydrodynamic

treatment, quantitative modeling carries large uncertainties.
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The data sets from the Relativistic Heavy Ion Collider (RHIC) and from the

heavy ion programs at the Large Hadron Collider (LHC) are immense. The mixed

nature of this data, along with the strong interdependence of disparate observables

with respect to basic model parameters, makes a unified interpretation of this data

rather challenging. The field has progressed by identifying the principal connec-

tions between model parameters and observables through phenomenological and

theoretical modelling.

This situation – of non-trivial computer models built from phenomenological

treatments of very complex underlying processes and also of widely held qualita-

tive beliefs about the influence of such and such upon such and such – is typical

across the various sub-fields of QGP physics. Understanding how to use these

models along with the wide range of field data to most e�ectively turn the many

fascinating and hard won qualitative results into strong quantitative statements

about the properties of QGP matter is a top priority for ensuring the future rel-

evance of the field. This requires a conscious e�ort on the part of heavy-ion sci-

entists. This transition to precision measurements needed to mature the field will

not, infact surely cannot, come about from a business as usual approach to QGP

phenomenology.

2.1 Bulk Properties

We can separate the observed behaviour of the QGP into bulk evolution and hard

probes. The vast majority of the interactions in the initial instants of the collision

are relatively soft „ 1 GeV with a power law distribution of interactions at higher

momentum scales. This soft matter is strongly interacting and appears to give

rise to most of the observed phenomena (flow, particle spectra and yields in the

final state), its evolution can be well modelled by ideal (inviscid) ultra-relativistic
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hydrodynamics [44, 45, 46, 47, 48, 49]. In this picture the evolving deconfined ma-

terial is modelled as a strongly-interacting liquid. Hydrodynamics explains bulk

properties, it is not a microscopic theory which can describe the evolution of a

particular gluon or quark any more than the Navier-Stokes equations can tell you

about the transport of a particular water molecule. All of the detailed microscopic

information about the QCD matter is absorbed into the equation of state.

Hydrodynamics is simply a statement of energy and momentum conservation:

B

µ

T µ⌫

“ 0, (2.1)

where T is the stress-energy tensor. It is a reasonable first approximation to use

the stress energy tensor of an ideal fluid

T µ⌫

“ pE ` Pquµu⌫

´ Pgµ⌫ , (2.2)

where E is th energy density, P is the presure and uµ is the four velocity of the fluid.

We need to introduce conservation equations for baryon density n (B
µ

Nµ

“ 0) and

finally we need an equation of state which relates the pressure P to the energy

and baryon densities. This is typically obtained from lattice QCD. For hydro to be

applicable we need the mean free path of particles to be much smaller than the typ-

ical size of the system, so that we can describe the system interms of its bulk flow

instead of interms of particulate properties. Also the material in question needs

to be in local thermal equilibrium, the transition from collision to TE is apparently

extremely rapid ⌧ „ 0.6 ´ 0.8 fm/c. We can therefore only apply hydro to evolu-

tion on scales where p
t

† 2 GeV (from uncertainty), further we cannot use hydro to

describe the initial or final (particulate) stages of the collision. The baryon number

conservation equation can be expanded to

B

µ

Nµ

“ uµ

B

µ

n ` nB

µ

uµ,

“ Dn ` n✓ (2.3)
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where I have introduced the convective derivative D “ uµ

B

µ

and the four diver-

gence ✓ “ B

µ

uµ. Explicitly writing out the derivative of the stress-tensor gives

B

µ

T µ⌫

“ B

µ

pE ` Pquµu⌫

` pE ` Pq pu⌫

B

µ

uµ

` uµ

B

µ

u⌫

q ´ gµ⌫

B

µ

P, (2.4)

we can simplify these four equations (for ⌫ “ 0, . . . , 3) by projecting along and

perpendicular to u⌫ , this leads to final set of five ideal hydrodynamics equations

Dn ` n✓ “ 0 (2.5)

DE ` pE ` Pq✓ “ 0 (2.6)

pE ` PqDui

´ riP “ 0 (2.7)

where r↵ is the spatial gradient. Recall that the system is closed by the equation

of state. A solution can be obtained in the so called Bjöken model [50], where

the system is assumed to be boost invariant and homogeneous in the x, y spatial

directions. Here we switch coordinates to t “ ⌧ cosh ⌘, z “ ⌧ sinh ⌘. In this special

(and greatly simplified) case the pressure and energy density are purely functions

of the proper time ⌧ , using D “ uµ

B

µ

“ B

⌧

and ✓ “ B

µ

uµ

“

1

⌧

then the only

contribution from the stress-tensor equations is (2.6) which simplifies to

B

⌧

E `

E ` P

⌧
“ 0, (2.8)

using the equation of state of a relativistic ideal gas E “ 3P we obtain

B

⌧

E “ ´

4

3

E

⌧

which gives a simple power law solution for the evolution of the energy density as

the system expands and cools Ep⌧q “ E
0

`
⌧0
⌧

˘
4{3.

In general one cannot solve the ideal hydrodynamics equations of motion with-

out recourse to numerical methods. Treatment of viscous corrections to the ideal
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F����� �.�: Left: A cartoon of the geometry in a heavy ion collision. The two nucleii are
very unlikely to ever collide head on, instead the finite impact parameters typically lead
to an elliptical overlap region. Right: A cartoon showing the contributions of the finite
overlap region to the elliptic v

2

and triangular v

3

flow.

motion introduces additional complexities and transport coe�cients. This is usu-

ally carried out in the form of a gradient expansion of the equations of motion,

originally developed by Israel and Stewart [51, 52, 53] and subsequently adapted

and adopted in the work of Song & Heinz [54, 55], Romatschke [56, 57] and more.

Inference about the transport coe�cients introduced by this process such as the

shear and bulk viscosity, derived from the interaction of computer simulations and

experimental observations is highly desirable as there are often no direct ways to

obtain information about these quantities.

As an example, the shear viscosity of the quark-gluon plasma is known to

strongly influence the observed anisotropic flow coe�cients v
n

. These are the co-

e�cients of an azimuthal Fourier decomposition of the momentum distribution

of final particles which provide information about collective flow during the colli-

sion.

Typically collisions do not occur at zero impact parameter. The resulting rugby

ball shaped overlap region leads to di�erential expansion rates in the plane of the

collision versus out of the collision plane (see Fig: 2.3), as a result of the di�erence

in the initial pressure gradients. An elliptic initial state energy distribution leads to

an elliptic final state momentum distribution (albeit in a rotated plane), this elliptic
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(and higher order) flow is quantified by the moments v
n

of a Fourier expansion of

the azimuthal angular distribution of the momenta of the observed hadrons

dN

d�
“

N

2⇡

«
1 ` 2

8ÿ

n“1

v
n

cos pnp� ´ qq

�
, (2.9)

where is the event-plane angle which acts as a reference angle for the expansion.

Extensive e�orts have been put into investigating the correlations between these

final state quantities and a similar decomposition of the experimentally unobserv-

able initial state of the nucleii just before they interact [58, 59].

3

algorithm agrees with the results from Ref. [19] for cen-

tral collisions, when dropping the extra terms in Eq. (2).

Also, our code passes the fluctuation test from Ref. [16],

shown in Fig. 1. We thus have some confidence that our

numerical algorithm solves Eq. (2) correctly.

When solving the set of equations (2), we set the ratio

⌘/s to be constant throughout the evolution of the sys-

tem, since modeling any space-time dependence would

necessarily introduce more unknown parameters. There-

fore, results on ⌘/s quoted below should be considered

as mean values over the entire system evolution.

To make contact with experiment, the hydrodynamic

variables are translated into particle spectra via the

Cooper-Frye freeze-out mechanism [20] (adapted to VH

[8, 16], see also [17]). For simplicity, we use a single

freeze-out temperature Tf but include the e�ect of res-

onance decays with masses up to 2 GeV on the spectra

[21, 22]. The normalization of the initial energy den-

sity and Tf are chosen such that the experimental data

on total multiplicity and mean transverse momentum

< pT > as a function of total number of participants

NPart =

�
d

2
x�nPart(x�,b) are reasonably reproduced

by our model (see Fig. 2). We choose to fit to kaons

rather than pions because the former are influenced less

by Bose enhancement e�ects, which we have ignored [19].

Note that for simplicity our model does not include a

finite baryon chemical potential, prohibiting us to dis-

tinguish particles from anti-particles. As a consequence,

results for protons cannot be expected to match exper-

imental data. Starting from ideal hydrodynamics with

a freeze-out temperature Tf = 150 MeV, we have found

that reasonable fits to dN/dy and < pT > for VH can

be accomplished by keeping Tf fixed and reducing the

initial entropy density by 75 ⌘/s percent to correct for

the viscous entropy production [19].

In Fig. 3 we compare our hydrodynamic model with

the above fit parameters to experimental data on the in-

tegrated and minimum bias elliptic flow v2, respectively.

Shown are results for ideal hydrodynamics and VH for

the initial condition ✏ � nColl at an initial time �0 = 1

fm/c. The results hardly change when assuming instead

s � nPart as initial condition (see also [14]) or varying �0

by a factor of two. Interestingly, we also find that chang-

ing �� hardly a�ects the results shown. Note that this

depends on the presence of the terms in the last line of

Eq. (2): if these terms are dropped, increasing �� tends

to further suppress v2 in line with the trend found in [19].

For the above initial conditions, we have noted that

there is also hardly any e�ect from the vorticity term.

This can be understood as follows: noting that for u

�
= 0

the only non-trivial vorticity is �

xy
, which vanishes ini-

tially because of u

x
= u

y
= 0 and forming the com-

bination rx
Du

y � ry
Du

x
we find –up to third order
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FIG. 3: PHOBOS [24] data on p
T

integrated v2 and STAR
[25] data on minimum bias v2, for charged particles in Au+Au
collisions at

�
s = 200 GeV, compared to our hydrodynamic

model for various viscosity ratios �/s. Error bars for PHO-
BOS data show 90% confidence level systematic errors while
for STAR only statistical errors are shown.

corrections–

D�

xy
+ �

xy

�
rµu

µ
+

Dp

✏ + p

� Du

�

u

�

�
= O(�

3
). (3)

This is the relativistic generalization of the vorticity

equation, well known in atmospheric sciences [26]. Start-

ing from �

xy
= 0, Eq. (3) implies a very slow buildup of

vorticity, explaining the tiny overall e�ect of the vorticity

term in Eq. (2). Note that upon dropping the assumption

u

�
= 0, this term can become important [27].

From Fig. 3 it can be seen that the e�ect from viscos-

ity on the elliptic flow is strong, in line with estimates

from Ref. [17]. Data on integrated v2 is fairly well re-

produced by a viscosity of ⌘/s � 0.08 and – within sys-

tematic errors – seems to be consistent with ⌘/s � 0.16.
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This is the relativistic generalization of the vorticity

equation, well known in atmospheric sciences [26]. Start-
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xy
= 0, Eq. (3) implies a very slow buildup of

vorticity, explaining the tiny overall e�ect of the vorticity

term in Eq. (2). Note that upon dropping the assumption

u

�
= 0, this term can become important [27].

From Fig. 3 it can be seen that the e�ect from viscos-

ity on the elliptic flow is strong, in line with estimates

from Ref. [17]. Data on integrated v2 is fairly well re-

produced by a viscosity of ⌘/s � 0.08 and – within sys-

tematic errors – seems to be consistent with ⌘/s � 0.16.

F����� �.�: Left: variation of v

2

as a function of the number of participating nucleons
(a measure of centrality) as a function of the shear viscosity to entropy ratio ⌘{s. Right:
variation of v

2

as a function of particle transverse momentum p

T

for minimum bias events.
Au+Au collisions were simulated at

?

s “ 200 GeV, both figures are reproduced from [57].

In an early analysis [57], this viscosity was adjusted in a hydrodynamical model

until a satisfactory fit with the observed anisotropic flow coe�cient v
2

was ob-

tained. The shortcoming of such one at a time an approach is that it leaves un-

touched the other unknown parameters, such as the spatial anisotropy of the ini-

tial state [60], which also are known to influence the flow v
2

. To make matters

worse each of these parameters also influences numerous other observables. Sim-

ilar approaches with more advanced models [33, 61, 62, 63, 64, 65, 44, 66, 67] have

considered the variation of several parameters at the same time, and also the e�ects
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of such parameters on the momentum spectra of the produced hadrons. However

these approaches have so far largely been unable to consider the simultaneous

variation of more than two or three parameters, or to consider a wider range of

experimental observables.

Finally it is interesting to note that the success of these straightforward methods

of extracting information about bulk transport coe�cients can in part be attributed

to the nature of hydrodynamics itself. Hydrodynamics is an e�ective theory of the

strongly coupled and thus non-perturbative interaction of the hot QCD matter that

makes up the QGP. One consequence of this is that all of the fine details of these

interactions have been e�ectively integrated out of the dynamics and now only en-

ter through the equation of state and the specification of the initial conditions. All

of the remaining detail of relativistic hydrodynamics is essentially generic. This

is perhaps something of an overstatement, there are many nuanced ways to ap-

proach the viscous corrections and deal with numeric instabilities. Nevertheless

this genericity is an enormous boon to this particular sub-field since models and

theoretical descriptions can all be readily couched in the same language and so

productively compared and developed. Sadly this is not the case in all aspects of

relativistic heavy ion physics.

2.2 Initial conditions and fluctuations

The major uncertainty in determining transport properties of the QGP, such as the

ratio of shear viscosity to entropy, lies in the specification of the initial conditions

of the collision. The initial conditions have been mainly assumed to be smooth dis-

tributions that are parametrized implementations of certain physical assumptions.

Recently the importance of including fluctuations in these distributions has been

recognized, leading to a whole new set of experimental observations of higher
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flow coe�cients and their correlations [68, 69, 70, 71]. On the theoretical side

there has been a lot of e�ort to refine the previously schematic models with fluc-

tuation inducing corrections and to employ dynamical descriptions of the early

non-equilibrium evolution [72, 59, 73, 74].

Hydrodynamical simulations can take these fluctuations into account by gen-

erating an ensemble of runs each with a unique initial condition, so-called event

by event simulations. This is in contrast to event averaged simulations where an en-

semble of fluctuating initial conditions is generated, and then a single initial con-

dition corresponding to this set’s ensemble average is subject to evolution. Event

by event modeling has proven to be essential for correctly describing many details

of the bulk behavior of heavy ion collisions [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85].

The two main models for the generation of hydrodynamic initial conditions

are the Glauber [86, 87, 88, 59] and color glass condensate (CGC) models [89,

90, 91, 92, 93, 94]. The Glauber model samples a Woods-Saxon nuclear density

distribution for each nucleus. Color glass condensate models are ab initio calcu-

lations motivated by the idea of gluon saturation of parton distribution functions

at small momentum scales x. In CGC models the gluon distribution for each nu-

cleon is computed and the nuclear collision is modeled as interactions between

these coherent color fields. Each of these models generates spatial fluctuations

whose details depend on the assumptions made in the specific implementation.

Glauber fluctuations come from Monte-Carlo (MC) sampling the nuclear density

distribution. CGC fluctuations arise similarly with additional contributions from

the self interaction of the color fields.

These event by event fluctuations can be seen as intrinsic to the initial energy

distribution and lead to very di�erent flow profiles during the collision. The in-

fluence of these fluctuations are to be thought of as additional to the fluctuations

induced by the randomly distributed impact parameters present. As discussed
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above these impact parameter (or centrality) fluctuations lead primarily to elliptic

flow, as measured by the coe�cient v
2

. The intrinsic or event-by-event fluctuations

arise from quantum mechanics rather than from the geometry of the collision re-

gion. There is no reason for the nuclear (or even nucleon) ground state to be a po-

sition eigenstate and so at the instant of collision their constituents will have some

random distribution described by the details of the wavefunction. These fluctua-

tions contribute strongly to the higher modes v
3

, v
4

in the flow expansion see e.g.

[95, 58, 96]. In Fig: 2.5 the ATLAS event-by-event measured flow coe�cients v
n

[97]

are shown for a variety of centrality parameters (zero centrality means a head on

collision). Even in the very central (most head on) collisions there are non trivial

amounts of flow, which we can largely attribute to initial state fluctuations since

the collision geometry here can hardly have an influence.

F����� �.�: Event by event flow v

n

as reported by the ATLAS collaboration [97]. From left
to right the panels show v

2

, v

3

and v

4

.

2.3 Jet Suppression in QCD matter

In heavy ion physics a jet is a cone of high momentum particles with highly cor-

related momenta. In a high energy nucleon–nucleon collision the valence quarks,

which carry the majority of the momentum, may undergo a hard scattering. This

results in the production of a back to back pair of outgoing partons which have
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some large time-like virtual mass. This virtuality is reduced by the emission of

collinear gluons. These gluons can themselves split further into more gluons and

pairs of quarks. This repeated emission processes leads to the formation of cones

of high momentum partons which will eventually hadronize, a jet.

During a heavy ion collision the majority of the hadronic matter produced

comes from the soft interactions of the sea quarks and gluons in the colliding nu-

clei, eventually leading to the formation of the deconfined medium. The infre-

quent hard interactions of the valence quarks will lead to the production of jets.

While the jets propagate through the medium their constituent partons will inter-

act with the medium to some extent.

Experimental observations of the momentum spectra of hadrons have shown

suppression at high p
T

at both RHIC [98, 99, 100, 101] ,and the LHC [102, 103,

104, 105, 106, 107, 108, 109, 110]. These high momentum particles represent jet-

final states and the reduction in their yield suggests that something is modifying

jets compared to those produced in nucleon-nucleon collisions. This suppression

seems to come from the quenching of jets within the deconfined medium. For re-

cent reviews of experimental jet quenching observables and the various theoretical

approaches to modelling this process see [42, 111].

These results are experimental signals that something is happening to jets as

they propagate. This has to be a final state e�ect, photons which do not couple

strongly to the colored medium are not suppressed. Furthermore this suppression

is a partonic process, hadron formation times are long and their interactions will

take place far outside of the medium. Jet production and evolution in vacuum

is perturbative. By measuring the modifications to these processes we may learn

some features of the deconfined medium.

The suppression of high p
T

hadrons in heavy ion collisions is measured through

the nuclear modification parameter R
AA

(Fig: 2.6), this is the ratio of the measured
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hadronic spectrum integrated over some range of impact-parameters (binned in

rapidity and transverse momentum) to that from p ´ p collisions scaled by the ex-

pected number of binary interactions xN
bin

pbqy which is a strong function of the

collisional impact parameter b,

R
AA

“

dN

AA

dyd

2
p

T

xN
bin

pbqy

dN

pp

dyd

2
p

T

. (2.10)

We would expect R
AA

“ 1, i.e. no modification to the pp process, if a heavy ion

collision was merely the superposition of xN
bin

y nucleon-nucleon collisions with

no further interactions. The deviation from unity implies that some further physics

must take place and that during these new processes partons with high p
T

tend to

lose energy. Collected results from the CMS collaboration at the LHC are shown

in Fig: 2.8 [112], photons are clearly not suppressed while charged particles and

identified b-quarks exhibit a strong suppression. Similar behaviours were also

observed at RHIC collision and p
T

scales, in Fig: 2.6 results from PHENIX [113]

are shown.

Di-hadron correlations [114] provide another window on this phenomenon.

The azimuthal angle distribution of hadrons � is measured relative to trigger par-

ticles with high transverse momentum. A correlation structure emerges with a

strong peak around �� “ 0 corresponding to particles in the jet, the far side re-

coil jet at �� “ ⇡ is strongly suppressed in central Au+Au collisions compared to

d+Au (Fig: 2.7).

These observables (R
AA

, correlations etc) do not require explicit jet reconstruc-

tion. The QGP induced quenching e�ects can be observed by applying appropriate

selection cuts &c to events without ever having to identify which set of tracks and

calorimeter tower hits actually make up the jets in the event, and indeed if how

many jets are present in that event. This reconstruction process is de-rigeur in vac-
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[49] and minimum-bias d+Au collisions [64]. The shaded boxes on the left show the

systematic errors for the Au+Au R

AA

values resulting from overall normalization

of spectra and uncertainties in T

AB

. The shaded box on the right shows the same

systematic error for the d+Au points.

onset of suppression. The charged particles and ⇡0

’s exhibit similar evolution

of suppression with N
part

. In the most central collisions we obtain R
AA

val-

ues of 0.24 ± 0.04(total) and 0.23 ± 0.05(total) for charged particles and ⇡0

’s

respectively. In peripheral collisions, R
AA

approaches one, but the systematic

errors on the most peripheral T
AB

values are su�ciently large that we cannot

rule out � 20% deviations of the peripheral Au+Au hard-scattering yields

from the T
AB

-scaled p + p cross sections.

An alternative method for evaluating the evolution of the high-p
T

suppression

71

F����� �.�: R

AA

for Au+Au at
?

S

NN

“ 200 GeV measured at PHENIX relative to a refer-
ence NN spectrum. The peripheral collisions show far less suppression, there is insu�-
cient medium formed during these events. Filled bars represent systematic error. Repro-
duced from [113].
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Figure 4. Elliptic flow as a function of p

t

in Au+Au collisions in six di�erent centrality

ranges. Results at

�
s

NN

= 62.4 GeV (solid symbols) are compared to results at 200 GeV (open

symbols). Results from four-particle (triangles) and two-particle (squares) cumulant analyses

are shown.
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F����� �.�: Azimuthal angle distribution of associated particles with p

T

° 2GeV. Au+Au
collisions (stars) show clear suppression relative to the reference p+p and d+Au data. Re-
produced from [115].
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azimuthal angle between the two jets, for data and HIJING+PYTHIA, also as a function of centrality.

tral events a peak is visible at higher asymmetry values

(asymmetries larger than 0.6 can only exist for leading

jets substantially above the kinematic threshold of 100

GeV transverse energy). The �� distributions show that

the leading and second jets are primarily back-to-back in

all centrality bins; however, a systematic increase is ob-

served in the rate of second jets at large angles relative

to the recoil direction as the events become more central.

Numerous studies have been performed to verify that

the events with large asymmetry are not produced by

backgrounds or detector e�ects. Detector e�ects primar-

ily include readout errors and local acceptance loss due to

dead channels and detector cracks. All of the jet events

in this sample were checked, and no events were flagged

as problematic. The analysis was repeated first requiring

both jets to be within |⌘| < 1 and |⌘| < 2, to see if there

is any e�ect related to boundaries between the calorime-

ter sections, and no change to the distribution was ob-

served. Furthermore, the highly-asymmetric dijets were

not found to populate any specific region of the calorime-

ter, indicating that no substantial fraction of produced

energy was lost in an ine�cient or uncovered region.

To investigate the e�ect of the underlying event, the

jet radius parameter R was varied from 0.4 to 0.2 and

0.6 with the result that the large asymmetry was not re-

duced. In fact, the asymmetry increased for the smaller

radius, which would not be expected if detector e�ects

are dominant. The analysis was independently corrobo-

rated by a study of “track jets”, reconstructed with ID

tracks of pT > 4 GeV using the same jet algorithms. The

ID has an estimated e�ciency for reconstructing charged

hadrons above pT > 1 GeV of approximately 80% in the

most peripheral events (the same as that found in 7 TeV

proton-proton operation) and 70% in the most central

events, due to the approximately 10% occupancy reached

in the silicon strips. A similar asymmetry e�ect is also

observed with track jets. The jet energy scale and under-

lying event subtraction were also validated by correlating

calorimeter and track-based jet measurements.

The missing ET distribution was measured for mini-

mum bias heavy ion events as a function of the total ET

deposited in the calorimeters up to about �ET = 10 TeV.

The resolution as a function of total ET shows the same

behavior as in proton-proton collisions. None of the

events in the jet selected sample was found to have an

anomalously large missing ET .

The events containing high-pT jets were studied for the

presence of high-pT muons that could carry a large frac-

tion of the recoil energy. Fewer than 2% of the events

have a muon with pT > 10 GeV, potentially recoiling

against the leading jet, so this can not explain the preva-

lence of highly asymmetric dijet topologies in more cen-

tral events.

None of these investigations indicate that the highly-

asymmetric dijet events arise from backgrounds or

detector-related e�ects.

In summary, first results are presented on jet recon-

struction in lead-lead collisions, with the ATLAS detector

at the LHC. In a sample of events with a reconstructed

jet with transverse energy of 100 GeV or more, an asym-

2Wednesday, September 25, 13

F����� �.�: A summary of the hadronic suppression factor R

AA

as collected at the LHC
by the CMS collaboration [112].

uum jet physics, i.e. in p+p collisions. This also reduces the complexity required

by theoretical treatments of these observables.

From the earliest discussions of jet quenching [116] by Bjorken far before any

data was collected a wide variety of phenomenological and theoretical models

arose. The early treatments of Gyulassy, Wang et al were based upon directly
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tral events a peak is visible at higher asymmetry values

(asymmetries larger than 0.6 can only exist for leading

jets substantially above the kinematic threshold of 100

GeV transverse energy). The �� distributions show that

the leading and second jets are primarily back-to-back in

all centrality bins; however, a systematic increase is ob-

served in the rate of second jets at large angles relative

to the recoil direction as the events become more central.

Numerous studies have been performed to verify that

the events with large asymmetry are not produced by

backgrounds or detector e�ects. Detector e�ects primar-

ily include readout errors and local acceptance loss due to

dead channels and detector cracks. All of the jet events

in this sample were checked, and no events were flagged

as problematic. The analysis was repeated first requiring

both jets to be within |⌘| < 1 and |⌘| < 2, to see if there

is any e�ect related to boundaries between the calorime-

ter sections, and no change to the distribution was ob-

served. Furthermore, the highly-asymmetric dijets were

not found to populate any specific region of the calorime-

ter, indicating that no substantial fraction of produced

energy was lost in an ine�cient or uncovered region.

To investigate the e�ect of the underlying event, the

jet radius parameter R was varied from 0.4 to 0.2 and

0.6 with the result that the large asymmetry was not re-

duced. In fact, the asymmetry increased for the smaller

radius, which would not be expected if detector e�ects

are dominant. The analysis was independently corrobo-

rated by a study of “track jets”, reconstructed with ID

tracks of pT > 4 GeV using the same jet algorithms. The

ID has an estimated e�ciency for reconstructing charged

hadrons above pT > 1 GeV of approximately 80% in the

most peripheral events (the same as that found in 7 TeV

proton-proton operation) and 70% in the most central

events, due to the approximately 10% occupancy reached

in the silicon strips. A similar asymmetry e�ect is also

observed with track jets. The jet energy scale and under-

lying event subtraction were also validated by correlating

calorimeter and track-based jet measurements.

The missing ET distribution was measured for mini-

mum bias heavy ion events as a function of the total ET

deposited in the calorimeters up to about �ET = 10 TeV.

The resolution as a function of total ET shows the same

behavior as in proton-proton collisions. None of the

events in the jet selected sample was found to have an

anomalously large missing ET .

The events containing high-pT jets were studied for the

presence of high-pT muons that could carry a large frac-

tion of the recoil energy. Fewer than 2% of the events

have a muon with pT > 10 GeV, potentially recoiling

against the leading jet, so this can not explain the preva-

lence of highly asymmetric dijet topologies in more cen-

tral events.

None of these investigations indicate that the highly-

asymmetric dijet events arise from backgrounds or

detector-related e�ects.

In summary, first results are presented on jet recon-

struction in lead-lead collisions, with the ATLAS detector

at the LHC. In a sample of events with a reconstructed

jet with transverse energy of 100 GeV or more, an asym-
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F����� �.�: The ATLAS observed dijet asymmetry for most central collisions reproduced
from [102].
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enumerating the various possible jet-medium interactions systematically within

a simple static medium [117, 118, 119, 120], the Schrödinger equation based treat-

ment of finite size radiation interference e�ects due to Zakharov [121, 122, 123]

and the related BDMPS prescription [124, 125, 126], the strict pQCD calculation

inspired Higher-Twist formalism [127, 128, 129], and many more 1. As mentioned

above see [111, 131] for fuller reviews.

These mostly phenomenological models were focused on describing just enough

of the underlying jet transport phenomena to obtain predictions of R
AA

and sim-

ilar, typically these revolve around treatments of the propagation of single hard

partons rather than of an entire jet. Notable computer models which include the

physics from this era of jet quenching are the venerable HIJING [132] which in-

cludes some aspects of the Gyulassy-Wang model, Q-PYTHIA [133], JEWEL [134,

135] and PYQUEN [136] which are all based around the BDMPS formalism.

Jet reconstruction is possible in heavy-ion collisions, however the large back-

ground signal from the hadrons produced after the bulk phase of the collision

freezes-out makes this process technically challenging. The heavy ion program

at the LHC has opened up the study of the modification of entire jets by greatly

extending the available kinematic region for jet production. At the LHC jets can

be produced at energy scales far separated from the dominant background scale.

The study of full jets and their correlations, as opposed to leading hadrons, ap-

pears to a�ord more information about the medium modification, as their shape

and fragmentation functions can now be studied. Indeed, the suppression of high

energy E
t

„ 100 ´ 200 GeV dijets (a pair of back to back jets formed from the

same hard scattering) in heavy ion collisions has now been observed at the LHC

[102, 107, 106]. These results have shown the feasibility of using dijets as correlated

1 In contrast to the theoretical modelling of the bulk evolution, the development of the field of jet
quenching has often seemed like a real bike-shed situation [130]
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probes of jet modification in hot QCD matter. The dijet asymmetry was initially

motivated as a measurement of jet quenching and is defined as

A
j

“

E
t,`

´ E
t,s

E
t,`

` E
t,s

, (2.11)

where E
t,`

is the transverse energy of the leading jet and E
t,s

is that of the sub-

leading jet, ATLAS results for the dijet asymmetry in the most central event classes

are shown in Fig: 2.9. In this figure the open circles show the results for p-p col-

lisions, where no medium suppression is expected, the yellow filled histogram is

the result of running Pythia a Monte-Carlo p-p jet simulation, the black filled cir-

cles show the observed results for Pb-Pb collisions. The finite width of the p-p and

Monte-Carlo results arises from higher order quantum corrections to the simple

back to back jet production. The Pb-Pb results show a clear deviation from the ex-

pected distribution. The interpretation is that often one jet of the pair has a shorter

distance in the medium to travel than the other and thus is less suppressed, leading

to enhanced asymmetry.

With the shift from single hadron observables to full jet reconstructions a new

set of simulators arose. The earlier simpler theoretical models and simulators were

either not able to make useful statements about the modification of full jets or in

some cases were rejected since they were unable reasonably to reproduce these

newer observations consistently with the single hadron results. Currently the two

most broadly successful models are MARTINI [137, 138, 139] which is a full jet

transport based upon the AMY formalism [140, 141, 142] and YaJEM [143, 144, 145]

which is a rather simple quenching scheme motivated by BDMPS. Aspects of these

full jet results have been successfully reproduced by various authors with a variety

of models [146, 147, 148].

It is not obvious how to extract details of the jet suppression mechanism such

as the energy loss rate from experiment. Jet modification in QED can be measured
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since the final state particles from a QED jet, electrons and photons, can be mea-

sured in a detector. In a QCD jet the constituents are necessarily unmeasurable,

confinement sits in between any detector and the jet-physics. Theoretical results

have tended to be expressed in the form of intuitive quantities which express the

rate of energy loss and similar quantities which allows for ready model compar-

ison, however e�orts are made to generate realistic predictions for hadronic final

states to allow comparison to experiment (see for example [149, 150]).

The determination of the transport coe�cients of the Quark-Gluon-Plasma (QGP)

is a major goal of the LHC and RHIC heavy ion programs. Partons moving through

the QGP lose energy and gain momentum perpendicular to their trajectory. The in-

teraction of a hard probe with the QGP medium is traditionally divided into elastic

scattering and medium induced radiation. Although this separation may be artifi-

cial it is convenient to view the two processes as being independent. The strength

of the probe’s interaction with the medium is quantified in-terms of the transport

coe�cients q̂ and ê which represent the average transverse momentum gained and

the average energy lost by a hard probe passing through a QGP medium. These

can be schematically defined in terms of the di�erential elastic scattering cross sec-

tion d�{dt,

q̂ “ x

ª
t
d�

dt
dty, (2.12)

ê “ x

ª
pE

f

´ E
i

q

d�

dt
dty, (2.13)

where the angular brackets denote a medium average. More formal definitions

can be given in terms of gauge field correlators in QCD [127, 151, 152]. The radia-

tive process and the role of its transport coe�cient q̂ in jet quenching have been

discussed extensively [153, 154, 155], aspects of the practical definition of these

coe�cients along with their extraction are discussed in [156, 157]. The relative
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importance of elastic energy loss is typically less well understood.

There have been several notable attempts to collate and compare these models

and their predictions. Bass et al [155], manually adjusted these coe�cients in sev-

eral models in an attempt to reproduce RHIC data and produced credible ranges

on q̂ for each model. The details of the medium model that the simulated jets pass

through add another layer of complexity to the calibration process, in [131] the out-

puts of mostly single hard probe models were compared for propagation through

a “brick” of QGP matter at a fixed temperature, this e�ort has been recently up-

dated by the recent Jet-Collaboration article [158] where systematic attempts to

extract these transport coe�cients from experimental data are made. To progress

our understanding of the mechanisms of jet quenching the field needs an objective

measure of how these models perform in comparison with the data. A systematic

comparison of the predictions of several models using the methods outlined in this

thesis could be extremely fruitful.

2.4 Summary

Above I have outlined some of the most interesting physics of the QGP in my

personal opinion. However the bulk evolution, initial state specification and jet

quenching are by no means the only topics of interest. Looking further one can

consider: the production and modification of heavy quark jets; the propagation,

production and destruction of QCD bound states in the medium; the deconfine-

ment and chiral phase transitions and the equation of state of QCD matter; the

final state correlation structure and what it can tell us about the initial interac-

tions; statistical-mechanics based models of the thermal production of hadrons at

freeze out; and understanding the recently observed QGP like phenomena found

in p-A and high multiplicity p-p collisions.
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Already some progress has been made towards the application of statistical

techniques to the calibration and exploration of computer models of the evolution

of the bulk of the hot QCD matter. It is my hope that the methods and results

contained in the rest of this thesis go some way towards promoting their adoption

in the Heavy Ion community. Especially so since the field is so fundamentally

based around determining the values of calibration parameters.
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3

Gaussian Processes

I’m very well acquainted, too, with matters mathematical,
I understand equations, both the simple and quadratical,
About binomial theorem I’m teeming with a lot o’ news,
With many cheerful facts about the square of the hypotenuse.

In order to explore, understand, and calibrate a complex computer model we

need a lot of information about the output of the model. At the same time we

always need to balance this against the realities of finite computing and time re-

sources. If our model is relatively well behaved, intuitively this means producing

rather smooth output as a function of its parameters, we might turn to an interpo-

lation scheme. Then with a sensible choice of sample locations one would hope to

get a good understanding of the model’s response from a fairly small number of

actual model runs.

In this chapter I will introduce a method that uses Gaussian Processes (GPs) for

interpolation of computer model outputs. A seminal reference for GPs and their

applications is Rasmussen & William’s book [12], along with [11, 7, 23].

There are many possible interpolation methods, many of which like splines and

polynomial interpolation seem appealing through their simplicity. In practice this

simplicity can often be a facade thrown over a mass of pitfalls.
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Making the (moderate) e�ort needed to use GPs for this purpose has several

distinct advantages. A GP interpolation scheme is a statistical model of our com-

puter simulation, often called an emulator. These emulators are defined in terms

of probability distributions for the output of the computer model. As a consequence

of this predictions for the model output at new locations naturally come with a

measure of how reliable those predictions are, making them a powerful tool for

computer experiments.

Throughout this chapter I shall illustrate various concepts with application to

the 1d toy model

Y
m

pxq “ sinpxq ` 2 sinp2xq ´ 2 sinp4xq. (3.1)

This toy model was picked for its simplicity and several characteristic length scales.

3.1 An introduction to Gaussian Processes

A Gaussian Process (GP)

GP pµp¨q,Cp¨, ¨qq : Rn

Ñ R, (3.2)

is a stochastic process over some n dimensional space specified via a mean func-

tion µp¨q and a covariance function Cp¨, ¨q. A stochastic process is a parameterized

collection of random variables tx
t

u

tPT

defined on a probability space p⌦,F, P q, and

taking values in Rn. The indexing space T is usualy r0, 8q but this is quite general

and can be extended to subsets of Rn. E.g. A random walk, gamblers ruin, arrival

times of cars at tra�c lights. See [159] for many examples.

A GP is defined by the fundamental property that any finite marginalization

of the process to some set of points X “ tx
1

, . . . , x
k

u will be multivariate-normal

(MVN) with mean and covariance given by µ and C. Thus, restricting the process
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to a single point x would give P pxq „ Npµpxq,Cpx, xqq, for a set of three points

x
1

, x
2

, x
3

„ MVNp~µ, Kq, (3.3)

~µ “ pµpx
1

q, µpx
2

q, µpx
3

qq

| ,

K
i,j

“ Cpx
i

, x
j

q.

where K
i,j

is the i, j’th element of the covariance matrix.

A Gaussian process is translation invariant or stationary if

µpsq “ µps ` hq, Cps ` h, t ` hq “ Cps, tq (3.4)

for all h 1. If this is the case then the mean must be constant and the covariance func-

tion can only depend on the distance between two locations Cps, tq “ Cps´ t, 0q. In

this case Cps, tq “ C
0

ps ´ tq, for some C
0

phq “ Cph, 0q : Rn

Ñ R. We shall typically

be concerned with stationary GP’s, in this case all the interesting information about

the process is contained in the covariance function. Note that a stationary GP can

be used to model a simulator with some overall trend in its output. This is accom-

plished by treating the overall trend first typically with a linear model and then us-

ing the stationary GP to model the residuals. Real world random fields, such as the

distribution of oil or gold across a given geographic region, may only be approx-

imately stationary. However stationarity is a typically a reasonable assumption

for “smooth-ish” computer models which don’t undergo some dramatic change

across their parameter space. Models with “jumpy” phenomena such as phase

transitions or regime changes can also be treated but additional care is needed2 .

Not every function can be a covariance function. For starters it must be an even

function, this arises neatly from the symmetry of the covariance, writing Zp¨q as

1 Strictly this is the definition for a general stochastic process to be weakly stationary but the two
concepts are equivalent for a GP

2 In this case one might consider dividing the model output space up into distinct regions and
training di�erent GP’s in each region, see [160]
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the GP evaluated at a given point

Cps ´ tq “ covps, tq “ E rpZpsq ´ µpsqqpZptq ´ µptqs “ covpt, sq “ Cpt ´ sq.

From the marginalization property we obtain the restriction that the covariance

function C must be positive definite, since this is arises from the form of the mul-

tivariate normal density,
ª
Cpx, yqfpxqfpyq dµpxqdµpyq • 0. (3.5)

Bochner’s theorem states that, all positive semidefinite functions can be written

C
0

phq “

ª

Rn

exppih!qGp!qdn! (3.6)

where Gp!q is a positive function on Rn. All positive semidefinite fns can be writ-

ten in this form for some positive measure Gp!q, the spectral measure. Since the

Gaussian process itself is real, the spectral density must also be an even fn and we

can write

C
0

phq “

ª

Rn

cosph!qGp!qdn!Gp!q “

1

2⇡n

ª

Rn

cosph!qC
0

phqdn!. (3.7)

This spectral representation of stationary GP’s provides a tool to gain some power-

ful insights into their behaviour and particularly into their asymptotic properties,

see for instance Stein [11] .

A Gaussian process is an extension of a normal distribution to a stochastic pro-

cess that generates functions with a controllable amount of correlation across the

indexing space. This makes them a very suitable choice for a prior on a distribution

of unknown functions, such as the output of a computer model.

3.2 Drawing samples from a GP

A GP is a probability distribution for functions with some mean and spatial cor-

relation structure. This seems rather abstract, given particular mean and covari-
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ance functions how can we generate realizations of the process.Let’s suppose that

our GP is defined on a one dimensional space, i.e. n “ 1. Using the fundamen-

tal marginalization property if we pick some finite set of say k points at which to

evaluate the process the problem becomes one of drawing samples from a k-variate

MVN. Given the mean and covariance functions µp¨q,Cp¨, ¨q we can generate a set

of samples at these points as follows.

1. Compute the covariance matrix C for the k points, where

C
ij

“ Cpx
i

, x
j

q

2. Compute the Cholesky decomposition S of the covariance matrix C “ SS|

[161].

3. The vector

z “ µ ` Su (3.8)

where u is a vector of k standard normal samples, i.e. u
i

„ Np0, 1q, is the

desired sample from the GP.

We directly see that the vector z has the correct expectation Erzs “ µ. The covari-

ance of z is also correct
covrzs “ Erzz|s “ ErSupSuq

|
s,

“ SEruu|
sS|

“ SS|
“ C. (3.9)

Some illustrations of samples drawn from GP’s can be see below in Fig: 3.8 and

Fig: 3.9, a more complex example is shown in Fig: 3.1. Here a GP is used as a

model for the space-time fluctuations of a massless relativistic scalar field in 1 ` 1

dimensions. The GP has mean zero and covariance function

Cpx, yq “

1

2

`
iG`

px, yq ` iG´
px, yq

˘
, (3.10)

G˘
px, x1

q “

´i

4⇡2

1

�x2

˘
, �x2

˘ “ pt ´ t1
˘ i✏q2

´ }x ´ x1
}

2
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where G˘
px, yq are positive and negative frequency massless free-field Green func-

tions. In Wightman’s axiomatic construction of QFT [162] one can show that the

two point function of the field itself W px, yq “ x0|�pxq�pyq|0y is itself positive defi-

nite, which could also be interesting to simulate.

Practically one may need to add a vector of random noise w with w „ Np0, ✏q

and ✏ ! 1 to the diagonal of the covariance matrixC. The eigenvalues of covariance

matrices usually fall o� very rapidly which can make the Cholesky decomposition

numerically unstable. This adds noise with variance ✏2 to the generated samples,

however one can usually select a su�ciently small value of ✏ such that the linear

algebra converges without appreciably changing the samples.

F����� �.�: A realization from a Gaussian Process model of a massless relativistic scalar
field in 1 ` 1 dimensions. The GP has mean zero and covariance function given by (3.10).
The dashed lines are drawn along null (light-like) directions, it is interesting to note that
the fluctuation structure is fairly well correlated with these directions.

This Cholesky decomposition based method is Opk3

q, for very large values of

k the linear algebra may become unstable and computationally impractical. There
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are several other more mathematically complex methods for simulating (drawing

samples from) Gaussian processes which are more computationally e�cient see

[10, 163, 164, 165].

3.3 GPs for Interpolation (or regression)

We can use a GP as a method for interpolating the output of a computer model,

for the purposes of this section we will not distinguish between the parameter sets

u and x. Let us denote the model output at a point x in the combined parameter

space as

Y
m

pxq “ fpxq, Rn

Ñ R (3.11)

where for now we have assumed that we can make observations of the computer

model output without any noise or uncertainty and that the model output is uni-

variate and real. We will use a Bayesian approach to develop a statistical model

of the output of the code, an emulator. This is done by taking a Gaussian process,

with a given covariance function C and mean µ, as the prior distribution for the

simulator output and conditioning it a set of observations of the simulator.

Let us denote the design, the set of d points in the parameter space where the

model has been evaluated, as

D “ tx
1

, x
2

, . . . , x
d

u, x
i

P Rn. (3.12)

The vector of d outputs evaluated at these points is

Y “ pY
m

px
1

q, Y
m

px
2

q, . . . , Y
m

px
d

qq . (3.13)

Our GP prior amounts to Y
m

| C, µ „ GPpµ,Cq, we can update this prior with

our set of observations pD,Yq to obtain a posterior distribution for the simulator

output Y‹ at some yet untried set of k points X‹ “ tx‹,1

, . . . , x‹,k

u . Our observations
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of the model output represent a finite marginalization of our GP prior, as such they

are distributed
Y | D,C, µ „ MVNpµ‚, K‚,‚q, (3.14)

µ‚ “ pµpx
1

q, µpx
2

q, . . . , µpx
d

qq ,

K
i,j

“ Cpx
i

, x
j

q, x
i

& x
j

P D,

where µ‚ pdq is the vector of the prior mean evaluated at each point in the design

space and K‚,‚ pd ˆ dq is the covariance matrix arising from evaluating the prior

covariance between each point in the design. We can write the joint distribution

for our set of known observations Y and the as yet unknown y‹ as
ˆ

Y‹
Y

˙
„ MVN

"ˆ
µ‹
µ‚

˙
,

ˆ
K‹,‹ K‹,‚
K|

‹,‚ K‚,‚

˙*
(3.15)

where K‹,‹ pk ˆ kq and µ‹ pkq represent the prior covariance function and mean

evaluated at the unknown locations and pK‹,‚q

ij

“ Cpx‹,i

, x
j

q pk ˆ dq is the ma-

trix of covariances between each new point x‹,i

and the current design set. This

matrix plays an essential role in the rest of the formulation, we will find that our

predictions for the new points are weighted averages of the training data with the

weighting given by this set of covariances.

We can write the conditional distribution for our untried locations Y‹ given our

set of observations Y as another multivariate normal

Y‹ | X‹,Y,D,C, µ „ MVN

`
µ̄pX‹q, ¯K

˘
(3.16)

following the derivation in § A.2 from (A.11) we obtain the posterior mean

µ̄pX‹q “ µ‹ ` K‹,‚ K´1

‚,‚ pY ´ µ‚q

(3.17)

this will serve as our prediction for value of the model output at the untried loca-

tions. From (A.12) we have

¯K “ K‹,‹ ´ K‹,‚ K´1

‚,‚K|
‹,‚

(3.18)
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this gives the posterior covariance at the set of untried locations. The actual simula-

tor observations Y enter only linearly in the posterior mean and are entirely absent

from not the posterior variance. Our ability to make accurate predictions/interpolations

of our computer model is apparently only a function of the choices we make when

designing our experiment.

3.4 Developing an understanding

Let’s take a moment to examine these results, for simplicity let’s consider the case

where we only want to make predictions at a single unknown point. A simple ex-

ample of GP regression is shown in Fig: 3.4, the left panel shows several draws, the

light blue lines, from a GP prior with zero mean and a power-exponential covari-

ance function. For more details on the covariance structure itself see § 3.10.1. It is

important to note that the draws from the prior are smooth functions, this reflects

our prior belief that the output of any computer model we are hoping to emulate

is also reasonably smooth.

In the right panel a set of 9 observations of the example model (3.1) have been

made, these are plotted as the solid points. Draws from the posterior distribution,

with mean given by (3.17) and variance given by (3.18) are plotted. These posterior

draws all pass through the training points, they are still smooth functions and their

variability increases away from the training locations. The gray band shows an

approximate 95% confidence interval around the process mean in both panels. In

the trained case these bubbles grow away from locations where observations have

been made and shrink to zero at the trained locations.

The posterior mean (3.17) is a linear combination of the prior mean at the un-

known location µ‹ and the term K‹,‚K´1

‚,‚ pY´µ‚q which is a linear transformApx‹q “

K‹,‚K´1

‚,‚ applied to the residuals of the observed data Y under the prior mean µ‚.
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For clarity let’s drop the prior mean, i.e. µ “ 0.
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F����� �.�: In red dashed lines elements of the prior covariance vector K‹,‚ are plotted for
a simple one dimensional example. In blue solid lines the equivalent elements of the vector
Apx‹q “ K‹,‚K´1

‚,‚ are plotted. The points show the design locations, the corresponding
element for each panel is enlarged and plotted in red.

We can view K‹,‚ as a vector of functions of x‹, each of these functions is the

prior covariance function centered on one of the design points. In Fig: 3.2 the red

dashed traces show plots of the elements of K‹,‚ for a simple one dimensional

example. This represents our prior knowledge of the correlation structure in the

design space. The equivalent elements of Apx‹q are plotted in blue. The more

complicated structure here shows how our choice of the whole design influences

the shape of the correlations between points in the space. The extremities which

reach outside the design in the first (top left) and final (bottom right) panels are rel-

atively unchanged while the other panels some modification due to the influence

of the other points.

In Fig: 3.3 the panels show partial interpolation function

B
k

px‹q “

kÿ

i“1

Apx‹q

i

Y
i

, (3.19)

which includes the first k observations. Although the resulting interpolation is

of a very poor quality, when compared with the underlying function (dashed red
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curve) this figure makes it clear how successive observations points influence the

shape of the posterior mean. With this in hand we can understand how Apx‹qY
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F����� �.�: From top left to bottom right the panels show B

k

plotted in blue, as given in
(3.19). The toy model is shown in dashed red and the training observations are plotted as
the solid points. At each panel an additional training point is included into the resulting
partial interpolation function.

can be viewed as a weighted dot product between the modified covariance kernels

and the observations. The posterior variance at the unknown location (3.18) is also

a linear combination of the prior variance and another term K‹,‚K´1

‚,‚K|
‹,‚ which

can be interpreted as another weighted inner product, however this time it is a

weighted norm of the vector K‹,‚.

Since K‚,‚ is a positive definite matrix, its inverse is also positive definite there-

fore the posterior variance ¯K of our prediction at the untried location is always

smaller than our prior K‹,‹. Following a similar line of argument as used above to

derive the form of this posterior variance we can conclude that every time we add

an additional observation to this GP model our posterior variance at the untried

location will decrease relative to the previous value. This is an interesting conse-

quence of our assumption of stationarity. The amount that our posterior variance

will decrease by is not entirely trivial to obtain.

Let us return again to our inspection of the posterior mean and variance. For

this to be a sensible interpolation scheme we require that when x‹ is one of the
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F����� �.�: Left: draws from a mean zero GP prior with a power exponential covariance
function. Right: draws from the posterior distribution after observation of a toy model
(solid points). In both panels the gray bands show approximate 95% confidence intervals
around the mean. The model function is given by (3.1).

points in the design D the posterior mean should be the appropriate training value

and the posterior variance ought to be zero, since we know the output of the model

with certainty at this location. Suppose we pick our test point to be the p’th point

in our design, then writing

µ̄px
p

q “ µ
p

`

dÿ

j“1

A
j

pY ´ µ‚q

j

, (3.20)

Aj “ pK
p,‚q

i

pK´1

‚,‚ q

ij

.

We are free to order our basis in the X space any way we like, in this case it is

convenient to pick an ordering where p is the final element in the basis, in which

case the covariance matrix K‚,‚ has the block form

K‚,‚ “

ˆ
K˝,˝ K

p,˝
K|

p,˝ K
p,p

˙
(3.21)

where K˝,˝ pd ´ 1 ˆ d ´ 1q is the covariance matrix of all the design points apart

from the p’th point, &c for K
p,˝ p1ˆd´1q. Using the Sherman-Morrison-Woodbury
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inversion formula given in § A.1

K´1

‚,‚ “

ˆ
K´1

˝,˝ `

1

k

K´1

˝,˝K
p,˝K|

p,˝K
´1

˝,˝ ´

1

k

K´1

˝,˝K
p,˝

´

1

k

K|
p,˝K

´1

˝,˝
1

k

˙
(3.22)

where k “ K
p,p

´ K|
p,˝K

´1

˝,˝K
p,˝. Now we can evaluate A

j

, when j “ p

A
p

“

d´1ÿ

i“1

"
Cpx

i

, x
p

q

ˆ
´

1

k
K´1

˝,˝K
p,˝

˙*
`

1

k
Cpx

p

, x
p

q,

“

1

k

`
K

p,p

´ K|
p,˝K

´1

˝,˝K
p,˝

˘
“ 1, j “ p (3.23)

for the other terms j ‰ p

A
p

“

d´1ÿ

i“1

Cpx
i

, x
p

q

ˆ
K´1

˝,˝ `

1

k
K´1

˝,˝K
p,˝K

|
p,˝K

´1

˝,˝

˙
,

´

Cpx
p

, x
p

q

k
K|

p,˝K
´1

˝,˝

“ K|
p,˝K

´1

˝,˝ `

1

k

`
K|

p,˝K
´1

˝,˝K
p,˝ ´ K

p,p

˘
K|

p,˝K
´1

˝,˝

“ K|
p,˝K

´1

˝,˝ ´ K|
p,˝K

´1

˝,˝ “ 0. (3.24)

This is su�cient to conclude that the posterior mean reverts to the values of the

input data set when evaluated at the design values. In a similar manner one can

show that the posterior variance vanishes when evaluated at points in the design.

3.5 Observations with noise

We can readily expand the GP regression procedure introduced above to the case

where we can only make observations of our model with random noise,

Y
m

pxq “ fpxq ` z, Rn

Ñ R, z „ Np0, �2

q. (3.25)

This noise is assumed to be constant over the space of model inputs or homoscedas-

tic 3. We evaluate the computer model at design set of d points D in Rn obtaining a
3 There has been significant e�ort put into developing GP’s which can handle observations coming

from a varying noise process (called heteroscedastic input) for more details see eg [166, 167].
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vector of model observations Y. The observation noise process is a-priori not spa-

tially correlated Erzpx
i

qzpx
j

qs “ �
ij

�2, as such we can again write the conditional

distribution of our observations Y given the choice of covariance function, prior

mean and design as

Y | D,C, µ, �2

„ MVN

`
µ‚, K‚,‚ ` �2I

d

˘
, (3.26)

where µ‚ pdq and K‚,‚ pdˆdq have the same definitions as above and the observation

error enters only along the diagonal of the covariance matrix. Proceeding as before

the posterior mean µ̄ and covariance ¯K at some set of k untried locations X‹ given

the current set of training observations are

µ̄pX‹q “ µ‹ ` K‹,‚
`
K‚,‚ ` �2I

d

˘´1

pY ´ µ‚q,

¯K “

`
K‹,‹ ` �2I

k

˘
´ K‹,‚

`
K‚,‚ ` �2I

d

˘´1

K|
‹,‚.

(3.27)
(3.28)

Evaluating the posterior mean at a point x
p

in the design will no longer return

precisely y
p

, considering again the linear mixing term

˜A
j

“ K‹,‚
`
K‚,‚ ` �2I

d

˘´1

,

picking our basis so that the point p is the final element, the block form of the

covariance matrix is

pK‚,‚ ` �2I
d

q “

ˆ
K˝,˝ ` �2I

d´1

K
p,˝

K|
p,˝ K

p,p

` �2

˙
. (3.29)

Where we use the same notation K˝,˝ for the covariance evaluated over the pd ´ 1q

element reduced design. The inverse is

`
K‚,‚ ` �2I

d

˘´1

“

ˆ
˜K´1

`

1

k

1 ˜K´1K
p,˝K|

p,˝ ˜K´1

´

1

k

1 ˜K´1K
p,˝

´

1

k

1 K
|
p,˝ ˜K´1

1

k

1

˙
, (3.30)
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where ˜K “ pK˝,˝ ` �2I
d´1

q and k1
“ pK

p,p

` �2

q´K|
p,˝ ˜K´1K

p,˝. For j “ p the linear

mixing term is

˜A
j“p

“

d´1ÿ

i“1

"
Cpx

i

, x
p

q

ˆ
´

1

k1
˜K´1K

p,˝

˙*
`

1

k1Cpx
p

, x
p

q,

“

1

k1

´
K

p,p

´ K|
p,˝ ˜K´1K

p,˝
¯

“

k1
´ �2

k1 ,

“ 1 ´

�2

k1 (3.31)

for the other terms j ‰ p

˜A
j‰p

“

d´1ÿ

i“1

"
Cpx

i

, x
p

q

ˆ
˜k´1

`

1

k1
˜K´1K

p,˝K
|
p,˝ ˜K´1

˙*
´

Cpx
p

, x
p

q

k1 K|
p,˝ ˜K´1,

“ K|
p,˝ ˜K´1

`

1

k1

´
K|

p,˝ ˜K´1K
p,˝ ´ K

p,p

¯
K|

p,˝ ˜K´1,

“ K|
p,˝ ˜K´1

ˆ
1 ´

k1
´ �2

k1

˙
“

�2

k1 K
|
p,˝ ˜K´1. (3.32)

The resulting deviation from the training value y
p

is proportional to �2 the prior

observation error. A similar analysis shows that the posterior variance at training

points is no longer zero. These results are illustrated in Fig: 3.5. Observe how

noise in the measurements not only pushes the posterior mean and its confidence

intervals away from the training data but also adds an overall local roughness to

the draws from the posterior.

3.6 Incorporating an explicit set of basis functions

Suppose that we want to model the mean of the computer model output with some

basis of functions hpxq, for instance if we were interested in polynomial regression

of order r then hpxq “ t1, x, x2, . . . , xr

u. We can write our statistical model for the

simulator as

Y
m

pxq “ h|
pxq� ` fpxq, Y

m

: Rn

Ñ R, f „ GP p0,Cq (3.33)
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F����� �.�: Draws from the posterior density (blue) after observation of a toy model (3.1)
(solid black circles) with varying amounts of observation noise �. The posterior mean is
shown in red, note how the mean along with the draws no longer passes exactly through
the training points. The gray region shows a 95% confidence interval around the mean,
note how as the observation noise increases the posterior variance at the training points is
pushed away from zero.

where we are now modelling the mean with our basis of r functions and some

vector of unknown constants � and then modelling the residuals with a Gaussian

Process with covariance function C. Taking a normal prior on the parameters � „

Npb, Bq pr ˆ 1q along with a design over some d points D and the associated vector

of observations Y then by integrating out � (see (A.17))

Y | D,C, b, B „ MVN pH|
‚ b, K‚,‚ ` H|

‚ BH‚q . (3.34)

where H‚ pr ˆ dq is the matrix of the r regression functions evaluated at each of

the d design locations. Following the same procedures as above we can obtain the

probability distribution for y‹px‹q the computer model output at some unknown
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location x‹. Plugging into (3.17) and (3.18) we find

µ̄px‹q “ H|
‹ b ` pK‹,‚ ` H|

‹ BH‚q pK‚,‚ ` H|
‚ BH‚q

´1

pY ´ H‚bq , (3.35)

¯K “ pK‹,‹ ` H|
‹ BH‹q

´ pK‹,‚ ` H|
‹ BH‚q pK‚,‚ ` H|

‚ BH‚q

´1

pK‹,‚ ` H|
‹ BH‚q

| , (3.36)

where the convention of stars and bullets is the same as the previous sections.

After some algebra and more applications of the SMW matrix inverse formula we

obtain

µ̄px‹q “ H|
‹ ¯� ` K|

‹,‚K
´1

‚,‚
`
Y ´ H|

‚ ¯�
˘

¯K “ K‹,‹ ´ K‹,‚ K´1

‚,‚K|
‹,‚ ` R| `

B´1

` H‚K
´1

‚,‚H|
‚
˘´1

R.

(3.37)
(3.38)

Where the posterior regression coe�cient is

¯� “

`
B´1

` H‚K‚,‚H
|
‚
˘´1

`
H‚K

´1

‚,‚Y ` B´1b
˘
, (3.39)

and R “

`
H‹ ` H‚K´1

‚,‚K‹
˘
. Consider taking the limit of B Ñ 8 in the prior, this

corresponds to an infinite prior variance for the fit coe�cients. In this limit the

posterior regression coe�cient becomes

lim

BÑ8
¯� “ pH‚K‚,‚H

|
‚ q

´1

`
H‚K

´1

‚,‚Y
˘
, (3.40)

which is the usual Ordinary Least Squares (OLS) form for the fit coe�cients in a

linear model.

3.7 A confession

I’ve slightly pulled the wool over your eyes in the preceding sections, all of the

above discussion is predicated on knowing the prior mean and covariance func-

tions which correctly describe the underlying Gaussian Process. Where the GP

itself is being used to describe the output of our computer model. It’s very un-

likely that we would actually know this a priori. We need to use the output from
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the simulator in two simultaneous roles, to estimate the parameters of the GP as

well as providing the actual data for interpolation. This double dipping actually

makes the whole procedure rather non-linear as the choice of covariance structure

will now depend upon the observations of the model in some complicated fash-

ion. The extent to which one can really hope to perfectly reproduce the mean and

covariance functions of a GP from some finite set of samples is carefully explored

by Stein [11].

To ameliorate this problem one typically selects a given functional form or fam-

ily of functions for the prior covariance and prior mean. This shifts the burden of

estimation onto the set of hyper-parameters which describe these functions. In the

Bayesian community this is referred to as a hierarchical model.

At this point one can use a maximum-likelihood process to estimate the param-

eters of the prior mean and covariance given the observations and then take these

estimates as certain for the remainder of the analysis, this is commonly referred

to as a “drop in” process. Alternatively one can place distributions on these un-

known parameters and fold these into the rest of the analysis obtaining a posterior

distribution for the GP which fully accounts for the uncertainty in the hyperpa-

rameters. This approach is more consistent with a Bayesian philosophy. The GP

likelihood surface itself is typically fairly sharply peaked, as such the drop-in ap-

proach usually ends up providing a satisfactory treatment of the GP parameters

with less complexity than the fully Bayesian approach. The drop in procedure will

systematically under represent the amount of uncertainty in the emulator param-

eters.
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3.8 Estimation

In the above sections I have outlined several approaches to “training” a Gaussian

Process on a set of observed data tY,Du from a computer model y
m

pxq so that the

resulting posterior mean functions as an interpolating function for the computer

model with a concomitant measure of its own uncertainty. As discussed in § 3.7

these methods are predicated upon knowing the right prior mean and covariance

functions. By picking certain parameterized functional forms for the prior covari-

ance and mean this problem can be split into two separate issues:

• Model Selection: which family of covariance functions, or set of linear model

(regression) basis functions is most suitable for describing the data set?

• Estimation: given a family of covariance functions and a mean model pa-

rameterized by some set of values ⇥, which particular values ⇥˝ result in a

posterior distribution which best reproduces the true model output y
m

pxq?

In this section I will discuss the second of these questions. The model selection

question is a tricky one as it is highly dependent upon the situation one is trying

to model, some of the discussion in § 3.10 is relevant to this question, the practical

examples in later chapters will hopefully provide some illumination. Some general

advice for model selection follows naturally from linear modelling:

• Plot the data in as many ways as you can. Although typically too complex

for publication scatterplot matrices can make a world of di�erence interms

of understanding the co-variation of your data.

• Try and motivate modelling choices by an understanding of the underlying

processes leading to the observations,
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• Favor moderately good, parsimonious (simple), models over highly special-

ized ones.

The final point is aimed at avoiding over-fitting , an over fitted model leaves very

little room for further variation in the sample. This will certainly perform beauti-

fully on the initial set of observations and then most likely totally fail to match any

further observations as there is essentially no “slack” left. This can be a serious

issue for GP emulators and is a well known problem in machine learning.

Returning to the estimation problem, let us first consider a simple example. In

Fig: 3.6 GP regression on a toy model is shown. Here the prior mean was taken to

be zero and no additional linear model was enforced, the prior covariance function

is of the power-exponential form (3.67) with fixed roughness (for some discussion

of this family of covariance functions see § 3.10.1),

Cpx
i

, x
j

; ✓q “ ✓
0

exp

ˆ
´

px
i

´ x
j

q

2

�2

˙
` �

ij

�2. (3.41)

This covariance function is parameterized by an overall variance ✓
0

and a length

scale � (which has dimensions of length), note that I have also included a term �2

which only contributes along the diagonal, this so called “nugget” term serves the

same role as the observation noise discussed in § 3.5.

In Fig: 3.6 three choices of � are shown for the same training set. By inspection of

the covariance function and through our intuition built up in § 3.4 it’s evident that

this parameter, which sets the length over which pairs of points in the parameter

space have a strong influence upon each other, is going to be pivotal in determining

how the GP reproduces the underlying function.

The left panel shows the result of specifying a very short length scale, the re-

sulting posterior distribution is very variable with large uncertainty bands around

the mean. Note that a large value of � is needed to ensure that the resulting co-

58



variance matrix is non singular. The right panel shows the result of specifying a

longer length scale, again a large amount of measurement error is needed to make

this mathematically feasible. However this figure is certainly more intuitively rea-

sonable than the left panel.

The central panel shows the result of specifying a length scale and noise level

� which maximize the likelihood of the posterior, essentially this is a numerically

optimal choice of parameters given the data set tY,Du. Ignoring the mathemati-

cal details for a moment it’s readily apparent that this reproduces the underlying

function rather well. The uncertainty is essentially zero between the sample points

and begins to grow at each of the ends of the data range. For a toy model this is

quite reasonable, however this kind of overly-confident fit would probably be an

underestimate of the true variation of any “interesting” computer model, this il-

lustrates over-fitting fairly well.
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F����� �.�: Varying the characteristic length scale � in a power-exponential covariance
function gives very di�erent posterior distributions. Note that a substantial amount of ob-
servation noise �

2 is present in the right and left hand panels, without this the covariance
matrix would be singular.

Now let us return to the concept of maximum likelihood. Given a zero-mean

GP prior with some parameterized covariance function Cp¨, ¨;⇥q then our set of n

observations and design tY,Du have a joint multivariate-normal distribution, as
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discussed in detail in § 3.3. The joint distribution of the observations conditioned

on the design and the choice and parameterization of the covariance function is

Y | D,C,⇥ „ MVN p0, K‚,‚p⇥qq , (3.42)

K
i,j

p⇥q “ Cpx
i

, x
j

;⇥q, x
i

&x
j

P D.

Given some prior on this set of parameters P p⇥q the posterior distribution for⇥ is

P p⇥ | Y,D,Cq “

P pY | D,C,⇥qP p⇥q

P pY | D,Cq

, (3.43)

a fully Bayesian approach to GP regression would be to write the probability dis-

tribution for the simulator output y‹px‹q, evaluated at some new point x‹ as the

integral over all possible values of these parameters

P py‹ | x‹,Y,D,Cq “

ª
P py‹ | x‹,Y,D,C,⇥q P p⇥ | Y,D,Cq d⇥. (3.44)

This integral can be approximated relatively e�ciently with modern Markov-chain

Monte-Carlo (MCMC) methods 4. We can avoid this added complication for now

by making some reasonable approximations. If the posterior distribution of y‹ is

sharply peaked around the most probable values of the parameters ⇥˝ then

P py‹ | x‹,Y,D,Cq 9 P py‹ | x‹,Y,D,C,⇥˝
q P p⇥

˝
| Y,D,Cq . (3.45)

This formulation is compatible with the results for the posterior mean and variance

given above (i.e. (3.17) & (3.18)) if we evaluate the covariance function with the

extremal ⇥˝ as long as the distribution for ⇥ is su�ciently sharply peaked that

P p⇥

˝
| Y,D,Cq » 1.

To find the most probable parameters ⇥˝ we should find the set of values ⇥

which maximize the posterior P p⇥ | Y,D,Cq as given in (3.43). This is still a tricky

4 see [169, 170, 171] for introductions to MCMC procedures
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proposition since the term P pY | D,Cq also requires integrating out all possible

values of ⇥. However as we are only interested in finding the set of parameters

which maximize (3.43) it is su�cient to find values of⇥which maximize a function

proportional to the numerator,

Lp⇥q “ P pY | D,C,⇥qP p⇥q 9 P p⇥ | Y,D,Cq, (3.46)

this is the likelihood function. For simplicity we can drop the prior on⇥, explicitly

writing out the multivariate normal density for our observations Y we have

Lp⇥q “

1

2⇡n{2
|Kp⇥q|

exp

ˆ
´

1

2

Y|Kp⇥q

´1Y

˙
. (3.47)

This likelihood is to be interpreted as a “score” for a given value of ⇥, larger val-

ues are better. We will need to numerically maximize this scoring function, i.e.

find values of ⇥ where BL
B⇥

i

“ 0 and |

BL
B⇥

i

B⇥

j

| † 0. For the purpose of a numerical

treatment it’s far easier to consider maximizing the log likelihood

logLp⇥q “ ´

1

2

log det Kp⇥q ´

1

2

Y|Kp⇥q

´1Y ´

n

2

log 2⇡, (3.48)

as the values ofL are often rather small. The partial derivative of the log likelihood

(3.48) with respect to the j’th parameter is readily obtained

B

B⇥

j

logLp⇥q “

1

2

Y|BK´1

B⇥

j

Y ´

1

2

tr

ˆ
K´1

BK

B⇥

j

˙
,

“

1

2

tr

ˆ
p��|

´ K´1

q

BK

B⇥

j

˙
, � “ K´1Y. (3.49)

In the general case where one has some non trivial prior mean structure as

in § 3.6 one has to estimate parameters for the covariance function ⇥ and the fit

coe�cients �. Indeed typically one can get away with simply inserting the OLS

estimates ¯� as given in (3.40).
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Any numerical scheme for obtaining⇥˝, such as conjugate gradients or similar

Newton-like methods [172], will necessarily involve evaluating (3.48) and (3.49)

several times. This is a computationally costly procedure, dominated by comput-

ing the inverse of Kp⇥q which isOpn3

q. Note that in (3.48) and (3.49) the covariance

matrix inverse appears as part of a vector matrix product (� “ K´1Y). Instead of

explicitly computing K´1 and then the matrix-vector multiplication for a cost of

Opn3

q `Opn2

q one should directly solve for � via a Cholesky or QR decomposition

at a cost of Opn3

q [161, 173].

A practical computational strategy for this maximization process is to first run

a Nelder-Mead or similar gradient free routine to obtain a rough candidate local

maximum and then use a gradient based method such as BFGS to obtain a precise

result [172]. There is little reason to assume that logL is globally convex as such

this procedure should be run from as many initial conditions as computationally

feasible, a process which is a good candidate for a multi-threaded approach.

A significant amount of e�ort has been put into alleviating the numerical prob-

lems arising from large n, typically by attempting to find lower rank approxima-

tions to the covariance matrix K see chapter 8 in [12] for a relatively recent review.

Finally a word of warning, as the above derivation should suggest, the actual

value of the likelihood function evaluated at the maximum, Lp⇥

˝
q, is meaningless

outside of finding the maximum. We threw away the denominator in (3.43) and

so there is nothing to sensibly compare with this number.

3.9 Full GP Emulator Specification

In the coming chapters it will sometimes prove useful to have a full description of

the probability distribution of the simulator given an emulator with some specified

prior mean and covariance function given priors on their parameters. If we want
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to use the emulator as part of a larger statistical analysis of the behaviour of the

simulator we will need the posterior distribution of the model conditioned on our

observations, choice of GP prior mean and covariance and the hyper parameters

which determine them.

Taking our design D “ tx
1

, . . . , x
d

u as a set of d points in an n dimensional sub-

set ofRn, denoting our simulator as Y
m

pxq, and the training set asY “ tY
m

px
1

q, . . . , Y
m

px
d

qu

then our prior on the model Y
m

p¨q is a function of the prior mean and variance

m
0

p¨q, V
0

p¨, ¨q

Y
m

p¨q | �, �2,⇥ „ GP pm
0

p¨q, V
0

p¨, ¨qq . (3.50)

The prior mean is a linear model m
0

pxq “ hpxq

|� with hp¨q : Rn

Ñ Rq, where q

is the number of components in the linear model and � is some set of q unknown

fit coe�cients. The prior covariance V
0

px, x1
q “ �2Cpx, x1

;⇥q has the total scale �2

factored out and the covariance function is described by some set of parameters⇥.

According to the prior (3.50) the simulation output vector Y has conditional

distribution

Y | �, �2

„ MVN

d

`
H‚ �, �2K‚,‚

˘
(3.51)

where H‚ “ phpx
1

q, . . . , hpx
d

qq

|
pq ˆ dq is the matrix of the regression model func-

tions evaluated at each point in the design, and K‚,‚ pd ˆ dq has elements K
i,j

“

Cpx
i

, x
j

;⇥q as before. As above using (3.51) and the results for conditional multi-

variate normal distributions we obtain the conditional distribution for the simula-

tor Y
m

p¨q given our observations and the parameterization

Y
m

p¨q | �, �2,⇥,Y „ GP

`
m̄

0

p¨q, ¯V
0

p¨, ¨q

˘
(3.52)

where the GP mean and variance are similar to those above

m̄
0

px‹
q “ hpx‹

q

|� ` K|
‹,‚K

´1

‚,‚ pY ´ H‚�q (3.53)

¯V
0

px‹, x‹1
q “ �2

!
Cpx‹, x‹1

;⇥q ´ K|
‹,‚K

´1

‚,‚K‹1
,‚

)
, (3.54)
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where pK‹,‚q

ij

“ Cpx‹,i

, x
j

;⇥q. Under the weak prior pp�, �2

q 9 �´2 using (3.51) we

can obtain the posterior for p�, �2

q which is a normal inverse-gamma distribution.

From Bayes theorem

f
�

p� | Y, �2,⇥q 9 fYpY | �, �2,⇥qf
�

p�q,

the PDF for the model output is MVN,

fYpy | �, �2,⇥q 9 exp

"
´

1

2

pY ´ H‚�q

|
p�2K‚,‚q

´1

pY ´ H‚�q

*
,

with a little algebra we can re-arrange this and obtain the conditional distribution

for � (recall this is a q length vector)

� | Y, �2,⇥ „N

´
ˆ�, �2

pH|
‚ K‚,‚H‚q

´1

¯
, (3.55)

ˆ� “

`
H|

‚ K´1

‚,‚H‚
˘´1

H|
‚ K´1

‚,‚Y. (3.56)

Note that ˆ� is structurally very similar to the usual least squares estimator for the

linear model Y “ H� ` ✏. Similarly for the scale �2,

P p�2

| Y,⇥q 9

ª
P p� | Y, �2,⇥qP p�2

qd�

so the conditional density for �2 is

f
�

2
p�2

| Y,⇥q9p�2

q

´p1` d

2 q
|K‚,‚|

´1{2
ª

exp

"
´

1

2

p�2

q

´1

´
� ´

ˆ�
¯|

pH|
‚ K´1

‚,‚H‚q

´
� ´

ˆ�
¯*

d�

“ p�2

q

´p1` d

2 q
|K‚,‚|

´1{2
expp´

2

�2

q expp´

1

2

Y|K´1

‚,‚Yqˆ

exp

ˆ
´

1

2

ˆ�pH|
‚ K´1

‚,‚H‚q

ˆ�

˙
|H|K´1

‚,‚H|
|

1{2
p�2

q

q{2 (3.57)

which is proportional to the PDF of an inverse gamma distribution fpx, ↵, �q “

�

↵

�p↵qx
´↵´1

expp´

�

x

q. Reading the terms o� from (3.57) in this case we have

�2

| Y,⇥ „ InvGamma

ˆ
m ´ q

2

,
pm ´ q ´ 2q

2

�̂2

˙
(3.58)

64



where �̂2

“

1

m´q´2

Y|
´
K´1

‚,‚ ´ K´1

‚,‚H‚
`
H|

‚ K´1

‚,‚H‚
˘´1

H|
‚ K´1

‚,‚
¯
Y.

To obtain the final form for our distribution for the model output we would

like to eliminate the dependence on the hyper-parameters �2, �,⇥. First lets ’av-

erage’ the conditional posterior for the simulator output over all values of mean

coe�cients �,

P pY
m

p¨q | Y, �2,⇥q “

ª
P pY

m

p¨q | �, �2,⇥YqP p� | Y, �2,⇥q d�

this is yet another set of Gaussian integrals, after the dust settles we find

Y
m

p¨q | Y, �2,⇥ „ GP

`
m̄

1

p¨q, ¯V
1

p¨, ¨q

˘
, (3.59)

where the posterior mean m̄
1

is structurally unchanged but the coe�cients � have

been replaced by the estimates ˆ�, the posterior variance ¯V
1

gains terms which ac-

count for the variance explained by the linear model on the mean

m̄
1

px‹q “ hpx‹q

ˆ� ` K|
‹,‚pY ´ H‚ ˆ�q,

¯V
1

px‹,‹1
q “

¯V
0

px‹, x‹1
q`

�2

“
phpx‹

q ´ K|
‹,‚K

´1

‚,‚H‚q

|
pH|

‚ K´1

‚,‚H‚q

´1

phpx‹
q ´ K|

‹,‚K
´1

‚,‚H‚q

‰
.

(3.60)

(3.61)

To obtain the final form we must average over all values of �2 using (3.58) and

(3.59)

P pY
m

p¨q | Y,⇥q “

ª
P pY

m

p¨q | Y, �2,⇥qP p�2

| Y,⇥q d�2,

to this end we obtain the form for the predictive distribution of the model output

given our set of observations and the choice of covariance function parameters ⇥

⌘p¨q “ Y
m

p¨q | Y,⇥ „ StudentProcess pm ´ q, m̄
1

p¨q, V
1

p¨, ¨qq , V
1

“

�̂2

�2

¯V
1

,

(3.62)
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this is how our emulator ⌘p¨q is defined. Similar to a Gaussian Process a Student-

Process is a stochastic process where any finite marginalization of points are jointly

distributed with a noncentral Student-t distribution with m´q degrees of freedom.

It turns out that going further to integrate out⇥ is typically intractable. We can

take some prior pp⇥q then we can construct the likelihood

pp⇥ | Yq9 pp⇥q

ª
ppY | �, �2,⇥qpp�, �2

q d� d�2

9 pp⇥q|K‚,‚|

´1{2
|H|

‚ K´1

‚,‚H‚|

´1{2
p�̂2

q

´pm´qq{2, (3.63)

in theory we would like to compute the posterior distribution for Y
m

p¨q conditioned

only on the training data

ppY
m

p¨q | Yq9

ª
P pY

m

p¨q | Y,⇥qP p⇥ | Yq d⇥.

This integral can be approximated by Monte-Carlo methods, however it is usually

su�cient to use maximum-likelihood methods on the log of (3.63) to obtain a set

of estimated values ˆ

⇥ (as discussed in § 3.8),

logLp⇥q “ log P p⇥q´

1

2

log det K‚,‚´

1

2

log det

`
H|

‚ K´1

‚,‚H‚
˘

´

pm ´ qq

2

log �̂2 (3.64)

The fit coe�cients ˆ� and the overall variance �̂2 are functions of the estimated

length scales which needs to be taken into account when computing gradients of

logL. Once we have a set of estimated lengths ⇥˝ we can then readily obtain an

estimated set of coe�cients. One then proceeds by dropping the estimate ⇥˝ into

(3.62) (for all practical purposes this means (3.60), (3.61)) and treating this as the

full emulator. As far as simulating draws from the emulator we are typically in

the limit n " q » 1 and so we can usually use the methods for making draws from

GP’s as a reasonable approximation (as developed in § 3.2).
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3.10 Covariance Functions

As discussed above the choice of GP covariance function is not entirely free, we

are required to select from positive semi-definite functions. It is useful to note that

both the sum and product of pairs of positive definite functions are also positive

definite, in this way complicated covariance structures with multiple characteristic

length scales per dimension can be constructed.

It is sometimes helpful to represent a covariance function as an infinite sum of

eigenfunctions � and eigenvalues �,

Cpx
i

, x
j

q “

8ÿ

l“1

�
l

�
l

px
i

q�
l

px
j

q, (3.65)

where the eigenfunctions are orthogonal
≥
�

i

pxq�
j

pxq dx “ �
ij

. From the positive

definite requirement, and symmetry, it’s clear that this spectral decomposition will

always exist and be real for any finite covariance matrix. In d dimensions the spec-

tral density for an isotropic covariance function Cp¨q is

gprq “

ª 8

0

r
´ ⇢

2⇡r

¯
d{2

J
d{2´1

pr⇢qCp⇢qd⇢. (3.66)

3.10.1 Power Exponential

The power-exponential form is the the most commonly used covariance form, this

relatively simple form is flexible enough to handle most practical applications.

Cp~x, ~y; ✓,~�, ↵q “ ✓ exp

˜
´

1

2

Lÿ

i“1

|x
i

´ y
i

|

↵

�↵

i

¸
, 1 § ↵ § 2. (3.67)

The overall variance for the process is set by ✓, the scalars � set the characteristic

correlation length scale in each of the dimensions spanned by the parameter space,
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finally the power ↵ sets the smoothness of draws from the process, for rather tech-

nical reasons relating to the spectral properties of the resulting Gaussian process

a value just less than 2 is preferred [11].

The spectral density for the limiting cases ↵ “ 1 and ↵ “ 2, in d dimensions,

can be found to be

gprq

↵“1

“ ⇡´ d

2 ´ 1
2 ✓�d

ˆ
1

r

˙
d{2

rd{2
�

ˆ
d ` 1

2

˙ `
�2r2

` 1

˘´ d

2 ´ 1
2 (3.68)

gprq

↵“2

“ 2

´d⇡´ d

2 ✓

ˆ
1

�2

˙´ d

2

e´ 1
4 �

2
r

2 (3.69)

where we have isotropized the covariance i.e. rpx, yq “ }x ´ y}.

The general shape of the power-exponential covariance function and its spec-

tral density are plotted in Fig: 3.7. In Fig: 3.8 draws with two di�erent characteristic

length scales � are shown, this scale is typically set by estimation from the data.

The dependence of the process upon the roughness scale is shown in Fig: 3.9. The

overall length scale � is fixed in each panel of this figure, it’s clear that this rough-

ness scale introduces variability at a much smaller spatial scale.
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F����� �.�: Left: The shape of the power-exponential covariance function (3.67) for various
values of the roughness scale ↵ and fixed values of the length and overall scales � and ✓.
Right: The spectral densities for the ↵ “ 1 (blue) and ↵ “ 2 (red) limits (3.68) for d “ 2

with ✓ “ 1 and � “ 1.
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F����� �.�: Draws from a mean-zero GP with a power exponential covariance function
(3.67), the length scale on the left (blue, � “ 0.05) is significantly shorter than that on the
right (red, � “ 0.3) note the increased number of zero crossings. In both panels the overall
scale and roughness paramters are fixed to ✓ “ 1 and ↵ “ 1.999.
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F����� �.�: Draws from a mean zero GP with a power exponential covariance function,
the roughness parameter ↵ is varied from left to right. The length scale is fixed � “ 0.2 as
is the overall scale ✓ “ 1.

3.10.2 Matern Class

The Matern class is another important form for the prior covariance function, most

commonly used in geo-spatial statistical applications. this covariance function is

parameterized by a length scale ` and a parameter ⌫ which sets the degree of di�er-

entiability of the underlying Gaussian Process, again ✓ parameterizes the overall

variance of the process. This is an isotropic function, it only depends on the dis-

tance r “ }x ´ y} between the two points.

Cpr; `, ⌫q “

2

1´⌫✓

�p⌫q

ˆ?

2⌫r

`

˙
⌫

K
⌫

ˆ?

2⌫r

`

˙
, (3.70)
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where K
⌫

is the modified bessel function of the second kind [174], for half integer

values of the order parameter ⌫ we obtain the following simple forms

C

ˆ
r; `,

3

2

˙
“ ✓

ˆ
1 `

?

3r

`

˙
exp

ˆ
´

?

3r

`

˙
,

C

ˆ
r; `,

5

2

˙
“ ✓

ˆ
1 `

?

5r

`
`

5r2

3`2

˙
exp

ˆ
´

?

5r

`

˙
.

The Matern spectral density in d dimensions is

gprq “

⇡´ d

2
2

⌫✓⌫⌫`d

�p⌫q

�

ˆ
d

2

` ⌫

˙
1

p`2r2

` 2⌫q

d

2 `⌫

. (3.71)

The shape of this covariance function and its spectral representation are plotted

in Fig: 3.10. Realizations of a mean zero GP with the Matern class covariance func-

tion are shown in Fig: 3.11, for di�ering values of the roughness/di�erentiability

parameter ⌫. In the limit that ⌫ Ñ 8 the Matern covariance will converge to the

squared exponential form (3.67).
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F����� �.��: Left, the shape of the Matern covariance function (3.70) for various values of
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4

Practical details for Emulator building

In the previous chapter I introduced the essential concepts and mathematical tools

needed to build a Gaussian-Process emulator, which will serve as a statistical ap-

proximation to our simulator. In this rather shorter chapter I will cover a few prac-

tical details for constructing and using an emulator.

Of primary concern is testing how well the emulator represents the underlying

simulator structure. Assessing the validity of any simulator, or a representation of

it, in the very literal sense of “does this particular computer model actually do what I

think it should be doing?” is an important step towards being able to use that sim-

ulator to talk about reality. If we do not understand the validity of our emulator

formulation we can hardly expect to be able to draw strong conclusions further

along the road. The article by O’Hagan et al [175] provides a primary reference

for this section, although there are many small discussions of emulator validation

scattered throughout the literature it is here that most attention has been paid to

the detailed testing and validation of GP emulators.

Also in this chapter I will discuss some of the practical issues related to actually
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setting up a computer experiment: how many samples of the simulator output

are needed and how should these samples be distributed in the parameter space.

In the statistical literature these questions fall under the concept “experimental

design”. In many situations involving the real-life collection and analysis of data

it is often possible to propose an experimental design – a scheme for how many

conditions to test and how many replicates to make and so forth – which is optimal.

This optimality is typically in the sense of requiring the fewest resources while

providing the most robust set of answers to whatever questions the designers wish,

such as which field and fertilizer combination gives the best yield of crops or which

barrel size and chemical combination gives the best pickles [176].

There has been a substantial amount of work put into addressing the design of

computer experiments with pioneering work done by Sacks et al [7], this is exhaus-

tively treated in the recent book of Santner et al [18]. Due to the rather complex

nature of a GP emulator’s posterior distribution (§ 3.9) and the intractability of the

estimation process (§ 3.8) these results are typically heuristic rather than provably

optimal.

Finally, it is useful to note that we do not have to construct an emulator ⌘p¨q

from the direct model output Y. We can equally well use a transformed set Y
g

“

tgpY
m

px
1

qq, . . . , gpY
m

px
d

qqu where gpY q is any strictly monotone function. In [32]

the authors use gpY q “ logpY ` 1q, this disperses small positive values of the out-

put and reduces the influence of very large values. In this application this log

transformation was substantially more stable than an emulator developed from

the raw model output.
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4.1 “Goodnesss of Fit”

Suppose we have some simulator which produces output Y
m

pxq where x P Rn is

a point in n dimensional parameter space. As discussed in the previous chap-

ter we can construct a GP emulator ⌘ for Y
m

pxq given some set of d observations

Y “ tY
m

px
1

q, . . . , Y
m

px
d

qu of the model output evaluated according to some design

D “ tx
1

, . . . , x
d

u. Let’s take the prior mean to be a linear model with some set of

q regression functions hpxq “ t1, x, . . .u and chose a suitable covariance function

parameterized by length scales ⇥. Following the methods outlined in the previ-

ous chapter we can construct maximum-likelihood estimates⇥˝ for the correlation

lengths and use these to obtain MLE values for the fit coe�cients ˆ� and �̂2 overall

variance.

At this point we want to try and understand how well our estimated param-

eters, and in fact our choice of prior mean and covariance functions, work as a

description of our simulator. There are two related concepts here:

• Verification: does the simulator, and in this case our statistical model of it,

do what the designer intended.

• Validation: is the simulator a su�ciently accurate representation of the real

world.

In this section I will address the question of emulator verification, we will be con-

cerned with quantifying how well our emulator represents the true model output.

The question of validation is rather more di�cult to address, see the calibration

chapter for a detailed discussion.

By construction our GP emulator is modelling a deterministic function, the

model output at a given point in the design space is certain 1. A natural conse-

1 Of course there is the possibility for treating models which produce output with some uncer-
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quence of this is that there is no simple concept of residuals, the GP output at a

training point is exactly what was put in, as discussed in § 3.4. In the theory of

general linear models, of which our GP emulator is a certain limit, there are two

kinds of residuals

• Marginal: the errors between the observed data and that predicted by the

model. This is the typical definition of residuals y ´

ˆ�x.

• Conditional: errors between predicted data and observed values not used to

build the model.

We will naturally be concerned with conditional residuals when analyzing the per-

formance of our GP emulator. If we consider the form for the posterior variance

of our emulator predictions at some unknown points (eg (3.18), (3.53)) it’s clear

that any set of predictions are not going to be statistically independent. This non

independence will have to be taken seriously when we are considering these con-

ditional errors.

To construct a set of conditional errors we need an additional set of p points

D1
“ tx1

1

, . . . , x1
p

u in the parameter space. These locations should be chosen to

span the space with particular emphasis on regions where we are very interested

in using the emulator to learn about the model. At each of the locations in D1

we need to observe the simulator Y1
“ tY

m

px1
1

q, . . . , Y
m

px1
p

qu and the emulator ⌘1
“

t⌘px1
1

q, . . . , ⌘px1
p

qu. With these in hand we can construct a series of useful diagnostic

quantities.

Practically it is reasonable to take a validation set of perhaps p » p0.2qd. After

constructing an emulator with the original output data and using this validation

set to gauge its performance one may be in one of several situations. If the original

tainty this is still essentially certain data. We have already observed the output and its uncertainty
and have constructed our GP emulator accordingly.
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emulator performance is generally seen as satisfactory then the validation set can

be included with the original training data to build a slightly improved final emu-

lator. The Mahalanobis distance (see § 4.1.2) can be used to ascertain the extent of

this improvement. Alternatively if the original emulator is not found to be satis-

factory it may be the case that including the validation set into the original training

data is su�cient to alleviate this, otherwise more runs are needed. However care

is needed here as it is often the case that particular regions in parameter space are

the root cause of a bad emulator fit, this can be found by graphical inspection of

the various metrics below. In this case it is important to ensure that the locations of

the new set of training points are focused in the regions of parameter space where

the current emulator performs most poorly.

4.1.1 Individual Prediction Errors

These are the simplest errors we can create,

DI

i

pY1
q “

y1
i

´ Er⌘px1
i

q | Y,⇥˝
sa

Vr⌘px1
i

q | Y,⇥˝
s

. (4.1)

Since the emulator posterior is a StudentProcess (3.62) we expect these errors to be

t distributed with m´q degrees of freedom. Further since we’ve hopefully made a

sensible design m " 1 we can approximate these errors having a standard normal

distribution, in this case values of |DI

i

py1
q| • 2 indicate a discrepancy between our

simulator and the emulator description.

Plotting these against the input parameters x is likely to be useful, for exam-

ple see Fig: 4.1. We would expect to see all the errors randomly distributed within

a horizontal band, significant deviations or structure here may indicate issues with

stationarity. Plotting these individual errors against the emulator predictions Er⌘px1
q |

Y,⇥˝
s is likely to be very useful. If for some ranges of the emulator output the er-

rors are consistently of the same sign then there is likely a problem with the mean
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functions hpxq. If any particular errors seem particularly large then it is likely that

the overall variance �̂2 has been underestimated. If points which are particularly

close to those in the training set exhibit large errors then this indicates a problem

with the estimation of the covariance length scales ⇥.
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F����� �.�: Individual prediction errors D

I

i

plotted for a toy model with Y

M

px

1

, x

2

q “

5 expp´3x

1

x

2

q sinp10x

1

q ` 4, with m “ 64, q “ 1 (h “ t1u) and p “ 12. From left to right
the errors are plotted against the predicted values, the coordinate x

1

and the coordinate
x

2

. The outstanding points 1, 9 appear to be located at fairly extreme values of x

1

and this
may well be the reason why they perform badly.

4.1.2 Mahalanobis Distance

To obtain a single error statistic we can consider the sum of the squares of the

individual prediction errors

D
�

2
pY1

q “

pÿ

i“1

DI

i

pY1
q

2 (4.2)

this is suggestive of a �2 quantity (i.e. D
�

2
py1

q „ �2

p

), however the errors DI

i

are

not actually independent and we shouldn’t throw away our knowledge of their

correlation structure. Instead we can introduce the “Mahalanobis Distance”

D
MD

pY1
q “ pY1

´ Er⌘px1
q | Y,⇥˝

sq

|
pVr⌘px1

q | Y,⇥˝
sq

´1

pY1
´ Er⌘px1

q | Y,⇥˝
sq .

(4.3)
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If we write D
MD

“

Z

W

where Z “ pY1
´ m̄1

1

q

|
p

¯V 1
1

q

´1

pY1
´ m̄1

1

q

| and W “

�̂

2

�

2 (see

(3.53)), then Z | Y, �2,⇥ „ �2

p

and pm ´ q ´ 2qw | Y,⇥ „ �2

m´q

and so since these

two variables are independent �2 their ratio is F distributed

pm ´ qq

ppm ´ q ´ 2q

D
MD

p⌘px1
qq | Y1,⇥ „ F

p,m´q

. (4.4)

This quantity correctly takes into account the non-independence of our verification

data set, large values of (4.3) compared with those expected from (4.4) indicate that

there is certainly a discrepancy between the simulator and the emulator. However

unlike the individual errors DI

i

we can’t really learn much about where this problem

lies.

4.1.3 Variance Decomposition

Let’s define a standard deviation matrix G such that Vr⌘px1
q | Y,⇥˝

s “ GG|, then

we can introduce the vector of p transformed errors

D
G

pY1
q “ G´1

pY ´ Er⌘px1
q | Y,⇥˝

sq , (4.5)

the elements of D
G

are uncorrelated and are student-t distributed with m ´ q de-

grees of freedom, furthermore the Mahalanobis distance can be recovered D
MD

pY1
q “

D
G

pY1
q

|D
G

pY1
q. We can obtain G either by carrying out an eigendecomposition of

Vr⌘px1
q | Y,⇥˝

s or through a regular or pivoted cholesky decomposition. The

choice of decomposition which leads to G gives the errors (4.5) subtly di�erent in-

terpretations. The eigendecomposition and pivoted cholesky are most useful, the

eigendecomposition errors give linear combinations of validation locations in de-

scending order of predictive error. The pivoted cholesky decomposition permutes

the basis of validation points x1 into descending order of conditional predictive

variance, such that the first point has the largest predictive variance the second

point has the largest variance conditioned on the first and so forth. Plots of the

78



individual elements of D
G

against both the emulator predictions and the index in

the vector are most likely to be useful.

4.2 How many model runs is enough?

The glib answer to the question of “how many model runs to use” is as many as

you can a�ord, which will turn out to be fairly good advice. There are currently no

general results for the optimal design of computer experiments, however we can

at least heuristically motivate some reasonable lower bounds on how many points

to use.

As discussed above one should budget for a set of validation runs which are

well dispersed through the parameter space, although this may seems tedious

there really is very little one can do with a tool if one has no idea of how well

it actually works.

Realistic estimates of how long the simulator takes to run at a given point in the

parameter space, along with any additional pre and post processing of data, are

essential for developing an appropriate experimental design. Here an experimental

design is the actual set of points D, however the choices of input parameters and

which output quantities are of interest are acutely relevant to this process.

The computational complexity (time and space) of training and using a GP em-

ulator scales with the total number d of design points. The dimension of the input

space n itself is really important, the so called curse of dimensionality applies here.

Consider a hypercube with side length 2r and a hypersphere with radius r, the

cube’s volume in Rn is V
cube

pnq “ 2

nrn while the volume enclosed by the sphere

is V
sphere

pnq “

2r

n

⇡

n{2
n�pn{2q . The fraction of the volume of our n dimensional hyper-cube

which is within the hyper-sphere is

↵ “

V
sphere

pnq

V
cube

pnq

“

⇡n{2

n2

n´1

�pn{2q

,
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and this ratio really doesn’t fare well in large dimensions, lim

nÑ8
↵ “ 0. As the dimen-

sion of a space grows most of the volume ends up in the corners, in four dimensions

only a third of the total volume is contained within the unit hyper-sphere.

As a consequence, constructing a GP emulator is likely to become impractical

for high dimensional parameter spaces (large n) if there is significant structure in

all dimensions. However all is not lost, it is frequently the case that the output of

computer models with high dimensional parameter spaces is dominated by a small

number of parameters which determine most of the structure with the remaining

parameters playing minor roles. A sensitivity analysis (see chapter 8) is a good

way to begin approaching these kinds of models.

The choice of a relatively smooth prior covariance function reflects our belief

that the simulator output itself is fairly smooth across the parameter space. This

is a strong assumption and the extent to which it holds is largely responsible for

the success or failure of GP emulators of computer models. When this assump-

tion is justified and the prior mean is reasonably well modelled only a relatively

small number of model observations are required to establish the characteristic

structures, usually far fewer than would be needed to obtain an interpolation of a

similar quality using more traditional methods.

The rule of thumb (due to Sacks) which should be thought of as providing a

reasonable lower bound for the total number of points is to allocate at least ten

points per spatial dimension

min d “ 10n (4.6)

this “rule” is seriously explored in [21] and found to be fairly reasonable. In Fig: 4.2

the number of design points d for a toy one dimensional model is varied between

6 and 12. For a quantifiable approach to understanding how many training points

are su�cient one can consult the statistical and machine-learning literature about
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“learning curves” for GP regression (see [12, 177, 178]). The primary object of

concern here is the generalization error, this is the average over all possible designs

of a loss-function typically the L
2

distance between the true function and the GP

mean computed over the whole parameter space. Results obtained for these are

typically of fairly limited practical use and so not presented here.
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F����� �.�: The panels show the e�ects of varying the number of design points (model
samples), between 6 (left) which is clearly too few, the center panel has 9 design points
and the right has 12. Note the reduction in the 95% confidence intervals as the number of
design points increases. The red dashed line shows the true model curve given by (3.1),
the blue solid line shows the posterior mean of the GP and the open circles show the points
where the model function was evaluated.

4.3 Design

Supposing we have selected the n most interesting input parameters to explore

and we decide on some number of points d that will be su�cient for at least a first

pass, we are then left with the question of how to distribute these d points through

our n dimensional space.
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Typically the nominal ranges of the model parameters will form some irregular

volume ra
1

, b
1

s b ra
2

, b
2

s b ¨ ¨ ¨ b ra
n

, b
n

s Ä Rn. Naturally the inputs fed to the sim-

ulator when making the training set Y must be within these ranges. However the

resulting analysis and emulator construction will be rather easier if we transform

these ranges onto the unit hyper cube r0, 1s

n. The transformations used to achieve

this may be linear in the case of finite ra, bs and will be nonlinear for infinite initial

ranges. Standardizing the parameter space in this way is helpful as it places all the

parameters on an equal footing with respect to typical length scales. This allows

for a ready comparison of the relative sensitivity of the output to variations in each

input dimension, which is useful feedback for understanding the model.

As mentioned in the introduction to this chapter the optimal design of exper-

iments has a long and illustrious history. There are formal results for optimal ex-

perimental designs for GP emulators in certain limiting cases, these are however

somewhat academic [18]. In practice any suitably dispersed simple pattern that

spans the design space will probably work fairly well. I will heuristically discuss

and illustrate a scheme which is almost always su�cient in practical applications.
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F����� �.�: Examples of various d “ 36, n “ 2 designs. Left: points are iid draws from
a two dimensional uniform distribution. Center: the sample points are arranged on a
uniform square lattice. Right: a maximin Latin square design.

We can identify two opposing limiting procedures for distributing the d points

into our n dimensional space. We could distribute the points completely randomly

throughout the space, say by taking the points as a set of d independent uniform
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samples. This will result in a relatively clumpy distribution with some rather large

distance between the points, this is the limit of the least intentional structure in the

choice of points. The other limit, the scheme with the most intentional structure,

would be to arrange the points on some kind of uniform lattice that spans the

space. Each of these schemes has strengths and weaknesses and neither is strictly

practical, the commonly used schemes represent a compromise between these two

limits.

Uniformly and independently distributed sets of random points are surpris-

ingly clumpy, as a result some parts of the parameter space are likely to be under

sampled and some will be over sampled. However this clumpiness does have the

advantage that a wide variety of length scales of the model will be sampled. A uni-

form grid with some spacing a9

`
1

d

˘
1{n will guarantee to fill the space as fairly as

possible, no region will be especially over or under sampled. However as a result

of the fixed grid this design will only be sensitive to structures in the model out-

put which appear at spatial scales greater than a, since there is no data available to

inform about shorter length scales. Furthermore if we believe that the simulator

output is well modelled by a stationary GP then it is really a huge waste of e�ort

to attempt to uniformly span the space since in this case we only need to gather

enough information about the simulator’s output to reasonably estimate the char-

acteristic length scales.

To be truly e�ective the grid design requires a huge number of points which

given our strong prior on the smoothness of the model output seems rather waste-

ful. The uniform random design is appealing as it gives access to a wide range of

length scales which will be important when estimating the correlation structure of

our simulator. However this comes at the price of wasting e�ort by creating too

many clusters, which may well not even be in interesting parts of the parameter
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F����� �.�: Empirical CDFs of the euclidean distance between all pairs of points in each
of the example designs (d “ 36, n “ 2) shown in Fig: 4.3. The uniform and LHS designs
are generally similar, although the propensity for tighter clusters in the uniform design is
observable in the di�erences in the tails of the CDF’s.

space, and of simply failing to sample the model at all in others.

To e�ectively compromise we want a design that has something like the guar-

anteed coverage of a grid (although it doesn’t have to be quite so uniform), with

some degree of randomness mixed in so that we are able to e�ectively sample the

simulator’s dominant length scales without having to resort to a sampling so dense

as to be computationally impractical.

The dominant method for generating designs for computer experiments is Latin

Hypercube Sampling(LHS) [19, 179, 180]. A Latin square is an nˆn array filled with

n symbols such that each symbol occurs exactly n times and exactly once in each

row and column, an example with n “ 4 is

¨

˚̊
˝

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

˛

‹‹‚. (4.7)
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Latin squares are rather interesting beasts in their own right, with many symmetry

and invariance properties. For the purposes of LHS we will relax the mathematical

definition of a Latin square to being an nˆn grid with n non zero entries arranged

such that there is only one non zero entry in each row and column, like this

¨

˚̊
˝

1

1

1

1

˛

‹‹‚. (4.8)

In Latin Hypercube Sampling we distribute our d points over an n dimensional

uniformly spaced grid (d ˆ d ˆ ¨ ¨ ¨

n´3

ˆ d) such that every possible two dimen-

sional marginalization of our grid has the relaxed Latin square property, i.e. looks

like (4.8). Since each occupied cell in this grid corresponds to some fraction of the

total volume of the parameter space the location of the corresponding design point

is typically uniformly sampled within this volume. There are several strategies for

selecting an optimal (or nearly optimal) LHS design from some ensemble of candi-

dates, again for more detail see [18]. A robust strategy is to generate a moderately

large ensemble of candidate LHS designs and select the element which has the

largest minimal interpoint distance, i.e. max

designs

pmin

points

r
ij

q, this is known as

a maximin LHS design. An example maximin LHS design is plotted in the right

panel of Fig: 4.3.

The array of points produced by an LHS design is much sparser than a full

grid design, which would require dn points, and yet provides a good coverage of

the parameter space. This design is particularly good for stationary processes as it

incorporates samples at a variety of inter point distances in each dimension. How-

ever if there are strong interactions between di�erent parameters, i.e. the model

output is dominated by nonlinear terms coupling di�erent dimensions in the pa-

rameter space, then this design is likely to be so sparse that it will not be possible
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to accurately assess the extent of these e�ects. This would be a bad thing.

If more training points are needed, for instance due to poor diagonistics of the

current emulator, or if more computational resources become available then there

are several methods for e�ciently extending these designs [181, 182, 18].

4.4 Step-By-Step Analysis Procedure

This is a sort of checklist for proceeding with an analysis of a model.

1. Learn as much as you can from model developers (if you’re not one) about the

model, what it aims to achieve and at what level of physical detail/realism.

2. Identify which inputs and outputs are interesting for the problem domain.

Make a table of these. Obtain expected ranges for output paramters and sen-

sible ranges for the input parameters. If possible consider splitting input

parameters into calibration u and tuning x parameters.

3. Identify which inputs and outputs have a correspondance with reality and

obtain appropriate field data if possible.

4. Identify how deterministic the model output is, how many replicates will

be needed at each design point to obtain a sensible estimate of the quantity

of interest. From this estimate how computationally expensive it will be to

obtain the necessary number of replicates at a design point.

5. Plan on carrying out the analysis on a unit hypercube in the parameter space.

This makes the interpretation of correlation length scales a lot easier. Typ-

ically a linear scaling from the natural ranges of the parameters to the unit

cube is su�cient, although it may not be the only way.

6. A minimal rule of thumb is to start with m “ 10d points per input dimension

[21]. Create an m point d dimensional LHS design D on r0, 1s

d with as many
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points as the computational budget allows. Create a second LHS design with

a smaller set of points for use in validation.

7. Run the code, collate the raw output Y
r

.

8. Graphically investigate the model output. Make scatter plots of the out-

put against the various parameters along with histograms/boxplots and QQ

plots. These will help identify what kind of transformation (if any) is needed

so that the GP training set Y is su�ciently normal (see § A.4). It is often

useful to see how much structure there is in the model output and how this

structure depends on the parameters. These plots should help inform the

choice of prior covariance and mean functions.

9. Center the model output, compute the sample mean µ̄ “

1

d

∞
d

i“1

Y
m

px
i

q and

subtract it from all the elements of the raw output Y
r

.

10. It may be appropriate to scale the centered raw output Y
r

´ µ̄ so that the fi-

nal training set is Y “

Y
r

´µ̄

s

(where s2

“

1

d

∞
d

i“1

pY
m

px
i

q ´ µ̄q

2 is the sample

variance). For simulators which produce univariate data this is typically fine,

although extreme outliers may adversely skew this transformation. This scal-

ing makes the specification of priors for the variance, such as the marginal

precision �
m

rather simple. For simulators which produce multivariate out-

put scaling each output to unit variance needs careful consideration. If the

sample variances between each output variable are rather di�erent and this

di�erence is believed to be physically significant then it may not be sensible

to hide this away from the rest of the analysis.

11. Go forth and emulate! Construct a GP and draw samples from it using the

methods outlined in chapter 3.
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5

Dealing with Multivariate Output

In chapter 3 I outlined how to create a surrogate model, or emulator, which smoothly

interpolates the output of a simulator. The results and methods presented are ap-

plicable to computer models with a scalar output. In practice interesting computer

models typically produce many outputs and we are naturally interested in how

each of these outputs varies across the parameter space, furthermore we are typi-

cally also very interested in the extent to which these outputs vary together.

In theory one could construct individual GP emulators for each component of

the output vector. While conceptually simple this has the distinct disadvantage

of potentially requiring a lot of computational work if the number of output com-

ponents is high, this approach throws away the correlations between the output

components across the training set.

It is theoretically possible to define an explicitly multivariate Gaussian Process,

however specifying the prior correlation between the outputs becomes tricky as

does estimating all the parameters needed to determine this correlation structure.

Instead the typical process for dealing with a model with multivariate output is
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to construct a lower dimensional approximation to the observed data. A popular

method for achieving this is the method of principal component analysis (or PCA),

which constructs a set of orthogonal (and approximately statistically independent)

basis functions which describe the observed data and its variability. The training

data set is projected into this basis and a set of GP emulators are trained on the

resulting weights for each basis component.

5.1 Principal Components

Suppose our computer model produces a set of k di�erent outputs at each point

in the parameter space

Y
m

px, uq “

 
Y 1

m

px, uq, . . . , Y k

m

px, uq

(
,

in general these outputs will be somewhat correlated across the parameter space.

If we have observations for all k of these outputs we can easily modify the GP

emulator framework to treat this multivariate model.

We go about this by constructing a principal component decomposition for our

set of model outputs. This defines a projection which rotates the data onto the di-

rections of maximal variation, which are by construction orthogonal. We can then

construct GP emulators for the data projected onto each of these directions. Each

of these projected directions are approximately independent and so the posterior

covariance matrix between our emulators is diagonal. Finally can we rotate the

predictions from the PCA basis back into the original or physical space. In this

fashion we can compute the mean vector µ̂px, uq pkq of our observables at some

untested location and also the covariance between them C
Y

pk ˆ kq .

To compute the P.C decomposition suppose that we have a set of k dimensional

observations obtained by running the multivariate model at some set of d locations
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in the n dimensional parameter space, i.e. as before our design set is

D “ tpx
1

, u
1

q, . . . , px
d

, u
d

qu ,

each observation is a k length vector

Y
m

px
i

, u
i

q “

 
Y 1

m

px
i

, u
i

q, . . . , Y k

m

px
i

, u
i

q

(

and our training set is Y “ tY
m

px
1

, u
1

q, . . . , Y
m

px
d

, u
d

qu. From the training set Y we

compute the sample mean vector µ̂ (length k) and the sample covariance matrix ˆ

⌃

(k ˆ k),

µ̂
↵

“

1

d

dÿ

i“1

Y ↵

m

px
i

, u
i

q, (5.1)

ˆ

⌃

↵,�

“

1

d

dÿ

i“1

pY ↵

m

px
i

, u
i

q ´ µ̂
↵

q

`
Y �

m

px
i

, u
i

q ´ µ̂
�

˘|
. (5.2)

An eigendecomposition of the matrix ˆ

⌃ defines our principal component decom-

position

ˆ

⌃ “ U⇤U|, (5.3)

here U pk ˆ kq is a matrix whose columns are the eigenvectors of ˆ

⌃ and ⇤
ij

“ �
ij

�
i

is a diagonal matrix of eigenvalues sorted in descending order. The trace of ⇤

corresponds to the total sample covariance of our observations Y. As such each

eigenvalue represents the covariance contribution of its associated eigenfunction

to the observed total covariance. This decomposition identifies the direction in the

space spanned by our data Y which corresponds to the largest observed variation

and the remaining eigenvectors correspond to orthogonal directions with succes-

sively smaller amounts of variation. Each additional eigen-component describes

a lesser amount of the sample variation which is orthogonal to all the others. The

eigenvectors U describe the rotation from our observations into the P.C space. The
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set of k d´dimensional vectors

Z
k

px
i

, u
i

q “

1a
ˆ�

k

û|
k

rY
m

px
i

, u
i

q ´ µ̂s, (5.4)

where û
k

is the k’th eigenvector and �
k

is the k’th eigenvalue, represent the pro-

jection of our original set of d k´dimensional model observation vectors into our

orthogonal P.C space. Each of the k vectors Z
k

is then used as an input for a sin-

gle GP emulator, which is otherwise constructed exactly as described in chapter 3.

Each of these emulators now interpolates the weights Z
k

px, uq and can be made to

give predictions at untrained locations as before.

The PC rotated weights Z
k

are statistically independent if the original data Y

has a multivariate normal distribution, in this case the covariance CovrZ

i

, Z
j

s “ �
i

�
ij

is diagonal by construction. This independence underlies our ability to construct

individual scalar GP emulators for each of the Z
k

.

It’s important to realize that the sample outputs of a real computer model gen-

erated by some design that spans the parameter space may not be particularly nor-

mally distributed. This needs to be explicitly tested and addressed on a case by case

basis. To test for normality one can construct so called “QQ” plots and compute

the squared distances which should be �2 with degrees of freedom equal to the

rank of ˆ

⌃ see § A.4. Often the sample data can be transformed to improve normal-

ity, for instance a square-root transformation in the case of count data. For more

information see [183]. In the case of sample non-normality the potentially non

trivial higher moments of the sample distribution will not be removed by the PC

transformation, leading to some amount of residual correlation between the vari-

ables which is neglected in the remainder of the analysis leading to a less faithful

multivariate emulator.
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F����� �.�: A toy example of a principal component decomposition, showing the poten-
tially skewing influence of outliers. The solid black circles show 128 samples from a toy
model with y

2

“ y

1

` � where is a mean zero normally distributed random variable with
standard deviation 0.05. The red and blue lines show the two principal directions (eigen-
vectors). In the left panel �

1

“ 0.998 and �

2

“ 0.0018, the first principal component (red)
explains essentially all of the variation in the sample, as we would expect. In the right panel
outlying data points (red) have been added to the data set. As a result the two principal
directions which are now skewed. Also now �

1

“ 0.904 and �

2

“ 0.095, the contribution
of the second direction to the variance decomposition has erroneously become enlarged.

We can rotate our predictions back into the ’physical’ space, in general

Y
M

px
i

, u
i

q “ µ̂ ` U
?

�Zpx
i

, u
i

q, (5.5)

where Zpx
i

, u
i

q “ tZ
1

px
i

, u
i

q, . . . , Z
k

px
i

, u
i

qu is a vector of the P.C rotated quantities,

the expectation of the emulator in the P.C space is the same as before and so

ErY
M

px
i

, u
i

qs “ µ̂ ` U
?

�ErZpx
i

, u
i

qs, (5.6)

where

ErZpx
i

, u
i

qs “ tErZ
1

px
i

, u
i

qs, . . . , ErZ
k

px
i

, u
i

qsu ,

ErY
M

px
i

, u
i

qs “

 
ErY 1

M

px
i

, u
i

qs, . . . , ErY k

M

px
i

, u
i

qs

(
.
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The estimated covariance between the components of Y
m

px
i

, u
i

q can also be ob-

tained at a fixed location x
i

, u
i

CovrY

l

m

px

i

, u
i

q, Yj

m

px

i

, u
i

qs “

kÿ

↵,�,�“1

U

l↵

⇤

1{2
↵�

U

j�

⇤

1{2
��

VarrZ

�

px

i

, u
i

qs, (5.7)

where VarrZ
�

px
i

, u
i

qs is the variance of the �’th principal component weight GP

emulator at x
i

, u
i

as given by (3.18). We can also estimate the covariance between

two locations in the parameter space px
i

, u
i

q, px
j

, u
j

q and between two di�erent

observables Y ↵

m

, Y �

m

as

CovrY ↵

px
i

, u
i

q, Y �

px
j

, u
j

qs “ ErY ↵

px
i

, u
i

qY �

px
j

, u
j

qs ´ ErY ↵

px
i

, u
i

qsErY �

px
j

, u
j

qs,

“ U
↵�

⇤

1{2
��

U
�✏

⇤

1{2
✏�

CovrZ
�

px
i

, u
i

q, Z
�

px
j

, u
j

qs,

“ U
↵�

⇤

1{2
��

U
�✏

⇤

1{2
✏�

�
��

CovrZ
�

px
i

, u
i

q, Z
�

px
j

, u
j

qs.

Where we have used the independence of the P.C space to set CovrZ
�

px
i

, u
i

q, Z
�

px
j

, u
j

qs “

�
��

CovrZ
�

px
i

, u
i

q, Z
�

px
j

, u
j

qs.

5.2 Dimensional Reduction

We have described how to use a principal component decomposition to construct

an orthogonal basis for a set of potentially correlated data. If k is very large, for

instance if our vector of model outputs corresponds to some discrete sampling of

a continuous process such as a time series, then it becomes painful to construct

and sample all k emulators. In this case it is usual to retain only the first r compo-

nents of the P.C decomposition, by construction these are the largest contributors

to the observed variation in the input data. This process is often referred to as

“Dimensional Reduction” or as “finding a low rank approximation” to ˆ

⌃.

Typically r is selected to reproduce some large fraction of the sample variance
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usually around 95%, this value of r can be approximated by solving

V prq “

rÿ

i“1

�
i

Tr⇤

“ 0.95, (5.8)

for r. Naturally by selecting r † k we have lost some of the original information

about our sample set Y, however with judicious choice of r this is usually not a

serious issue. It is often very useful to plot V prq a so called scree plot. Inspection of

such plots gives a good visual indication of how well a PCA dimensional reduction

approach will work. If the plot saturates quickly then only a small number of

components will be needed to reproduce the most important parts of the variation

of the model output across the training set.

A set of training data from a simple multivariate model is shown in the left

panel of Fig: 5.2, the toy model here is

y
m

px, u
1

, u
2

q “ 5 exp p´3u
1

xq sinp10xq ` 2u
2

, (5.9)

where u
1

, u
2

are interpreted as calibration parameters and x is an index that picks

out the di�erent elements of the model output. I have discretized x into k “ 128

uniformly spaced sample locations on r0, 2s, the values of the calibration parame-

ters are sampled from a maximin LHS with d “ 64 (see § 4.3). This kind of high

dimensional functional model output might represent a time-series or the bins of

a histogram. This training data set clearly has a lot of structure in the functional

dimension x, by inspection we would expect that we should be able to pick an

r ! k “ 128. The right hand panel in Fig: 5.2 shows the first few P.C basis functions

(eigenvectors of the sample covariance matrix), the legend gives the associated

standard deviations (square roots of the eigenvalues) for these components. Ex-

amining the scree plot and the eigenvalues makes it clear that taking r “ 3 would

give a fairly faithful reproduction of the input data, one could perhaps make a case
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F����� �.�: Left: Training data Y for the toy functional model (5.9) with k “ 128 and
d “ 64. Right: The five most significant eigenvectors of the sample covariance matrix of Y,
the legend gives the standard deviation associated with each component. The inset figure
shows the cumulative variance explained by the eigenvectors V prq (5.8).

for including up r “ 5 but any additional components are likely to add no further

information. This is a substantial reduction from the naïve case of constructing

k “ 128 GP emulators.

The observed correlations in the data provide a low-rank approximation to the

full sample covariance matrix. However if the scree plot saturates very slowly then

there may not be a suitable lower dimensional representation. For a nice treatment

of the analysis of scree-plots and other PCA related diagnostics consult [184, 183].

After determining r one proceeds as above, but with the eigendecomposition

matrices truncated U “ U
r

pk ˆ rq and ⇤ “ ⇤

r

pr ˆ rq as such one obtains a trun-

cated vector Zpu
i

q “ tZ
1

pu
i

q, . . . , Z
r

pu
i

qu. There are other methods of dimensional

reduction (such as wavelets etc), however it can be shown that the truncated P.C

decomposition is the highest fidelity linear transformation, we lose the least infor-

mation by making this rotation.
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5.3 Principal Pitfalls

Finally, it is important to note that the presence of outlying data points in a sample

set can have a very strong influence on the resulting P.C basis and weights, see

Fig: 5.1 for a toy example. Here a two dimensional data set with a strong linear

correlation between the two variables is decomposed (left panel). In this case the

two principal directions could be deduced by inspection, the first direction (red)

is responsible for the vast majority of the variation observed in the sample Y. The

right hand panel shows the same data set with the addition of two rather exagger-

ated outliers, plotted as red crosses. These two outlying points strongly skew the

two principal directions and push the variance explained by the second direction

up to almost 10%. This sensitivity makes a blind application of these multivariate

methods somewhat unadvisable.

To make this more precise let’s consider the change in the decomposition in-

duced by adding a new (and outlying) observation Y
out

“

 
Y 1

out

, . . . , Y k

out

(
, we can

compute the new sample mean and covariance as updates to (5.1),

µ̂1
↵

“

1

d ` 1

˜
dÿ

i“1

Y ↵

px
i

, u
i

q ` Y ↵

out

¸
“

d

d ` 1

µ̂
↵

`

1

d ` 1

Y ↵

out

, (5.10)

ˆ

⌃

1
↵,�

“

1

d ` 1

#
dÿ

i“1

pY ↵

m

px
i

, u
i

q ´ µ̂1
↵

q

`
Y �

m

px
i

, u
i

q ´ µ̂1
�

˘
` pY ↵

out

´ µ̂1
↵

q

´
Y �

out

´ µ̂1
�

¯+
,

“

d

d ` 1

ˆ

⌃

↵,�

`

1

p1 ` dq

3

´
Y ↵

out

´`
d2

` 1

˘
Y �

out

´ 2d2µ̂
�

¯

`µ̂
↵

´`
3d2

´ 1

˘
µ̂

�

´ 2d2Y �

out

¯¯
(5.11)

Recalling results from elementary linear algebra [161, 185], we could compute the

compute the corrections to our original eigendecomposition of ˆ

⌃ perturbatively
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(in ✏ “

1

d

and taking the limit that d is large). Writing

ˆ

⌃

1
«

ˆ

⌃` ✏V ` Op✏3

q

where the elements of the perturbing matrix V are

V
↵,�

“

´
´2µ̂

�

Y ↵

out

´ 2µ̂
↵

Y �

out

` Y ↵

out

Y �

out

` 3µ̂
↵

µ̂
�

¯
. (5.12)

Writing the eigenvalues and eigenvectors of ˆ

⌃

1
pk ˆ kq as a power series �1

i

“ �0

`

✏�1

` . . ., u1
i

“ u0

i

` ✏u1

i

` . . ., with the unperturbed values as the lowest order terms

we obtain the usual results for the first order corrections in to the eigenvalues and

eigenvectors

�1

j

“ u0|
j

V u0

j

, u1

j

“

kÿ

`“1,`‰j

u0|
`

V u0

j

�0

j

´ �0

`

, (5.13)

after inserting the series expansions into the definition of the eigendecomposition

and matching terms order by order. The shift in the eigenvalues and vectors is

linear in the matrix elements V
↵,�

(as it must be at first order in the expansion). We

can easily see the skewing influence of the outlying points by slightly re-writing

(5.12)

V
↵,�

“

!
2µ̂

�

pµ̂
↵

´ Y ↵

out

q ` 2µ̂
↵

´
µ̂

�

´ Y �

out

¯
`

´
Y ↵

out

Y �

out

´ µ̂
↵

µ̂
�

¯)
. (5.14)

It’s clear that these matrix elements are directly proportional the di�erence be-

tween the sample mean values of a given output component µ̂
↵

and the associated

component of the additional data point Y ↵

out

. If the point truly is outlying then it

will exert a strong pull on the PCA decomposition that is proportional to the extent

to which it outlies the main trend in the data.
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6

An Example Analysis: ChemTreeN
What are the stars but points in the body of God where we
insert the healing needles of our terror and longing?

To illustrate some of these ideas let’s look at a detailed example of an analysis

of a model with a significantly multivariate output. In [4] the authors (myself in-

cluded) investigate the hybrid galaxy formation model chemtreeN, for a detailed

description of the physics included in the model see [186, 187]. Fiducial points

are selected in the calibration parameter space, the model output at these points is

used as artificial field data. We construct a series of GP emulators based upon dif-

ferent subsets of the model outputs and use these to explore how well the fiducial

locations in the parameter space can be reconstructed.

Galaxies like the Milky-Way have complicated formation histories, the under-

lying dark matter mergers between evolving galaxies and the capture of smaller

galaxies play a rôle alongside the stellar chemistry which determines the stellar

content of the galaxies as we observe them. Because we are embedded in it, in-

formation about the physical properties of the Milky Way can be measured at an

exquisite level of detail. Recent studies seem to indicate that our Galaxy may not

be a typical galaxy after all. For example, observations of a large sample of the

Sloan Digital Sky Survey (SDSS) galaxies have shown that the Milky Way has sig-
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nificantly more satellites than a typical galaxy of its luminosity

The model ChemTreeN layers stellar chemistry over a given set of dark matter

merger dynamics. We selected several reasonable candidate dark matter histories

for the Milky Way and systematically calibrated the model to best reproduce ob-

servable features of the Milky Way such as its population of satellite galaxies. The

computational overhead for such an analysis would have been prohibative without

surrogate models of the computer codes.

Surprisingly the resulting sets of best fit parameters, which determine the evo-

lution of the baryonic components of our Milky Way-like galaxy, obtained from

each candidate merger history were found to be strikingly inconsistent. The de-

tails of the dark matter history must play a important rôle in galaxy formation.

This exercise provided an interesting and new insight into how the dark-matter

merger history of di�erent candidate galaxies influences the full galaxy formation

process.

6.1 An Introduction to the Problem Domain

Understanding the formation and evolution of galaxies is a central and long-standing

problem in astrophysics. Over the past century, and particularly in the past decade,

a tremendous amount of information has been gleaned about populations of galax-

ies and their temporal evolution, and data have been collected on galaxies span-

ning more than six orders of magnitude in stellar mass and over thirteen billion

years in the age of the Universe. These observations show that the galaxies that we

can see have undergone radical changes in size, appearance, and content over the

last thirteen billion years [188, 189, 190, 191]. Complementary observations have

provided a rich data-set on the kinematics and elemental abundances of stars in

our own Milky Way, including large numbers of metal-poor stars in the halo of our
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own galaxy and in local dwarf galaxies. In principle, this ‘galactic fossil record’ can

probe the entire merger and star formation history of the Milky Way and its satel-

lites, and complement direct observations at higher redshifts.

The quantity and quality of observational data on galaxy formation, which is

already staggering, is going to increase exponentially over the next decade. Sur-

veys such as LAMOST [192], SkyMapper [193], Gaia [194], and, ultimately, the

Large Synoptic Survey Telescope [195] will produce petabytes of data on billions

of individual objects, both galactic and extra galactic, that will strongly inform our

understanding of galaxy behavior.

Despite this wealth of observational information, we currently lack the detailed

and self-consistent theoretical models necessary to adequately interpret such ob-

servational data sets. Purely analytic (i.e., “pencil-and-paper”) theoretical mod-

els are insu�cient to address the questions that are currently being asked about

galaxy formation, due in no small part to the range of physical components that

must be simultaneously modeled (e.g., gravity, dark matter, gas dynamics, radia-

tive cooling, star formation and feedback), and the complex and nonlinear cou-

pling of these components. As a result of these complications, two separate theo-

retical methods are commonly used to study galaxy formation: multiphysics hy-

drodynamical simulations and semi-analytic models.

Multi-physics numerical simulations are typically used to model galaxy forma-

tion by implementing all of the relevant physical processes in as realistic a man-

ner as is technically and computationally feasible. These calculations are typically

based on N -body dark matter dynamics simulations of cosmological structure for-

mation, and include gas dynamics, the radiative cooling and heating of gas, mod-

els for star formation and feedback, and possibly more complex physics such as

magneto-hydrodynamics, radiation transport, and the formation of, and feedback

from, super massive black holes. Commonly-used codes of this type include Enzo
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[196, 197], Gadget [198], Gasoline [199], RAMSES [200], and more recently AREPO

[201]. These codes produce broadly similar results, although some important dif-

ferences remain to be resolved [202, 203, 204, 205].

The main advantage of such calculations is that they attempt to faithfully re-

produce the relevant physical processes in as accurate of a manner as possible,

and by virtue of their construction automatically include any complex, nonlinear

interaction between important physical processes. The main disadvantage of this

sort of simulation lies in its cost: current-generation calculations of a single Milky

Way-like galaxy performed at high („ 100 pc) spatial resolution [e.g. 206] can easily

consume hundreds of thousands of CPU hours and months of time to complete,

making it challenging to model statistically-significant numbers of galaxies or to

perform a meaningful study of variations in free parameters within the models,

even with the methods discussed in this thesis.

A second approach is often referred to as “semi-analytic” or “phenomenolog-

ical” modeling of galaxy formation. This type of model typically is based upon

either the extended Press-Schechter formalism or N -body cosmological simula-

tions, which provide the evolutionary histories for a population of galaxies. Pre-

scriptions are then applied on top of these evolutionary histories to describe the

behavior of the gas and stellar populations contained within, and surrounding, the

dark matter halos that drive dynamics on large scales, as well as the observational

properties of the resulting galaxies. These models are then calibrated by compar-

ison to some set of observations. Some examples of this sort of model include

GALFORM [207, 208, 209], Galacticus [210], and ChemTreeN [186, 187].

Two important strengths of this type of model are flexibility and speed: one can

easily implement variations on a model (gas ejection from galaxies as a function of

halo mass and redshift versus a constant value) and then see within minutes how

this a�ects the modeled population of galaxies. The disadvantages of this model-
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ing technique include the large number of free parameters and the extent to which

the observable properties of simulated galaxies depend on the models of specific

physical phenomena, such as the behavior of galaxies during mergers. Even with

these substantial downsides, however, semi-analytic models are incredibly useful

for exploring the consequences of various physical phenomena on the observable

properties of galaxies.

We combine semi-analytic models of the formation of the Milky Way (including

several di�erent N- body simulation-based merger histories) with modern statis-

tical techniques to explore how one might meaningfully constrain the formation

of the Milky Way’s stellar halo and population of satellite galaxies both from a

theoretical standpoint and in terms of guiding future observations.

6.2 The Model – Input and Output

ChemTreeN belongs to the class of semi-analytic galaxy formation models men-

tioned above. The chemical processes of galaxy formation, here chemical can typ-

ically be read as nuclear-astrophysical, are described phenomenologicaly by the

model through a series of di�erential equations [186, 187]. The model takes as

primary input a (cosmological) series of snapshots of the state of an N-body sim-

ulation of the purely gravitational interaction of a primordial distribution of dark

matter. This dark-matter history, where fluctuations in the initial dark matter dis-

tribution evolve to form gravitationally bound clumps and eventually merge into

galactic scale objects, forms the backbone of the simulation. These bound clumps

are referred to as halos, the halos are individually tracked throughout the evolu-

tion along with their merger into larger halos or their consumption of smaller ones.

These merger histories are computationally very expensive to obtain as they cur-

rently require super-computer level resources to obtain a reasonable resolution of
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the simulated cosmology, a typical simulation takes 5–10 days of runtime on 3000

cores.

The chemical evolution of the galaxy as described by the model is coupled to

the details of this merger history. The model describes the evolution of populations

of stars associated with each of the dark matter halos. These populations evolve

through star formation, interactions with stellar winds and stellar decays. Each

halo is modelled as having some initial gas that is accreted from the interstellar

medium (ISM), this gas collapses into stars and eventually these stars decay and

return energy and metals 1 back to the halo and into the larger environment. This

process is iterated and new generations of stars form from the now metal enriched

gas in the halo.

We will begin by concerning ourselves with building an understanding of the

influence of an important subset of the calibration parameters controlling the chem-

ical evolution of our candidate milky way by varying them under a single fixed

merger history. Later we will turn to examining the influence of a small set of

candidate dark-matter merger histories.

6.2.1 Parameters

Table 6.1: ChemTreeN calibration parameters.
Parameter Fiducial Value Range Description Explored

z
r

10 5 - 19 Epoch of re-ionization Yes
f

bary

0.05 0 - 0.2 Baryonic mass fraction Yes
f

esc

50 0 - 110 Escape factor of metals Yes
✏˚ 1 ˆ 10

´10 0.2 - 1.8 Star formation e�-
ciency (10

´10 yr´1)
Yes

mII

Fe

0.07 0.04 - 0.2 SN II iron yield (Md) Yes
f

Ia

0.015 ¨ ¨ ¨ SN Ia probability No
✏
SN

0.0015 ¨ ¨ ¨ SNe energy coupling No
mIa

Fe

0.5 ¨ ¨ ¨ SN Ia iron yield (Md) No

1 Here metals refers to baryonic matter other than hydrogen
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The calibration parameters identified as being potentially interesting by the do-

main scientists are listed in Table: 6.1. They represent a series of potentially sub-

jective parameterizations of very complex physical processes. Learning about the

values of these calibration parameters which are compatible with observational

data would be very interesting, as it would help constrain the scale and nature of

many of the modelled physical processes. However it should not be thought of as

a measurement of a fundamental physical constant, such as measuring the charge

of an electron or the mass of the Higgs boson, since these calibration parameters

may not have a directly corresponding physical constant.

Some brief description of the explored parameters is given below.

z
r

: The red-shift z at which reionization begins. Recall that for a FRW cosmology

with scale parameter aptq the cosmological redshift between two times is

1 ` z “

apt
now

q

apt
then

q

After recombination the early universe was initially populated with hot hy-

drogen. Reionization is the cosmological process where radiation from (and

perhaps their explosive decay) the initial population of very bright pure hy-

drogen stars ionizes and induces a large velocity dispersion in the interstel-

lar medium. This is an important process as it imposes a lower bound on

the mass of a dark-matter halo which is su�cient to collect enough baryonic

matter to form a substantial population of stars. Halos which are not heavy

enough by this ’time’ will remain e�ectively barren.

f
bary

: The baryonic mass fraction, the proportion of baryonic matter to dark mat-

ter assigned to each halo. This is substantially larger than say the WMAP3

cosmological baryon density as it is a local quantity.
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f
esc

: The escape factor of metals. This sets the level of metallicitiy enrichment of

galactic winds relative to the interstellar medium metallicity. This e�ectively

sets up a flux of metallicity out from the simulation, without this the simu-

lated stellar populations would be far too metal rich.

✏‹: Sets the rate of star formation.

mII

Fe

: The amount of iron in solar masses produced by core collapse (type II) Super

Novae (SN).

To create the training set a d “ 200 point design was created using a Latin

Squares method (see § 4.3). This number of points gives an acceptable balance be-

tween covering the available space and run time. The input parameters are allowed

to vary within the ranges specified in Table: 6.1.

6.2.2 Output

The model output for each of the d “ 200 locations in the design is plotted In

Fig: 6.1. The output is in the form of the cumulative distribution of the number

of satellite galaxies below a certain absolute visual magnitude (left panel) and the

satellite metallicity ratio as a function of absolute visual magnitude (right panel).

Both of these outputs are functional, in the sense of being naturally given by some

curve, over M
v

the absolute visual magnitude.

From a superficial inspection of these figures it’s clear that the ranges of the

calibration parameters covered by our design lead to substantial variations in the

model performance. Furthermore one should note that the fiducial curves (black)

have roughly central positions in both figures. These are both positive signs that we

have constructed a design which samples the model output in a wide, and roughly

symmetric, variety of conditions around our case of interest. Had we observed a

very reduced variation this might suggest that the design is not wide enough, or
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that the model doesn’t actually respond very strongly to the parameters in our de-

sign. If our field data (in this case the fiducial curves) was not roughly spanned by

all the runs in the training set this would suggest that our model may have some

systematic deviations from true physical process which would need to explicitly

treated as part of the analysis and calibration process (see § 9.3). We will use these

fiducial curves to stand in for field data to give a focal point for building an under-

standing of the model response.

The absolute visual magnitude is a standardized measure of brightness for a as-

tronomical object, with the standard being the brightness that would be observed

if the object was at a distance of 10 parsec. The scale is inverse and logarithmic, a

di�erence of five magnitudes corresponds to a factor of 100 in brightness. More

negative values are brighter and more positive values are dimmer.

The Luminosity Functions (LF) (left panel Fig: 6.1) show the cumulative num-

ber of satellite galaxies at a given luminosity. Satellite galaxies are gravitationally

bound clumps of stars which are themselves bound to our milky way candidate.

Typically we see that there are rather few very bright satellites, recall that abso-

lute magnitude is a inverse logarithmic scale so points towards the left end of the

spectrum are brighter. The cumulative distributions grow fairly slowly and rela-

tively uniformly with decreasing magnitude. The black curve shows the result of

running the simulation at the given set of fiducial values. To reduce this data to

a more manageable form we slice the full spectra into a set of five bins spaced at

increasing intervals in magnitude, these are indicated by the dashed vertical lines.

The choice of bins was made so as to be most sensitive to the shape of the luminos-

ity function at the bright end of the spectrum as the bright satellites are typically

the most influential.

The metallicity ratio (L-Z) (right panel Fig: 6.1) is a logarithmic scaled measure

of how average amount of iron present in a satellite galaxy relative to the amount of
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hydrogen. Since iron is produced by type two super novae this is a measure of the

maturity of the stellar populations in the satellites. The data plotted in the figure

is a result of applying a linear fit to the metallicity and luminosity for each simu-

lation. The fit coe�cients were used to represent this data in the further analysis.

The results of the fiducial run are plotted in black. We can see that the brighter

satellites (left end of the plot) are typically much more metal rich than the dimmer

ones.

F����� �.�: Satellite galaxy luminosity functions (left panel) and satellite galaxy
luminosity-metallicity relations (right panel). The result of a linear fit to each luminosity-
metallicity relation is shown. The models were obtained after coupling ChemTreeN with
the N -body simulation MW1. The vertical dashed lines on the left panel indicate the five
values of M

v

chosen to sample the LFs. The black solid line on both panels indicate the
model considered to be the galaxy’s “true” observational quantities, obtained after run-
ning ChemTreeN with the input parameter vector u

obs

.

6.3 Emulator Specification

The first step in constructing a model emulator is to obtain a finite set of model

outputs at the design points. These outputs are obtained by running ChemtreeN

using di�erent sets of input parameters drawn from an experimental design D “

tpx
1

, u
1

q, . . . , px
d

, u
d

qu. From here on out we will only deal with calibration param-

eters u, we will take u
i

as a three-component vector, u
i

“ pzi

r

, f i

esc

, f i

bary

q . These

variable were identified as the three most interesting parameters for a primary

analysis. It is trivial to increase the dimensionality of u
i

, however interpretation
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and visualization of the final results become progressively more complicated with

increasing dimensionality.

Once the models have been run, the next step is to choose the set of outputs,

Y “ ty
1

, . . . , y
k

u of interest. Initially let us construct individual emulators for each

of these outputs. Motivated by the discussion in § 6.2, we chose to emulate five

values of the satellite galaxy luminosity function, each one at a di�erent abso-

lutely magnitude, in addition to the slope and the intercept of the satellite galaxy

luminosity-metallicity (L-Z) relation. This gives us a total of k “ 7 outputs to be

extracted from the model runs. Each of these outputs strongly constrains di�erent

model parameters.

The model parameters u and output Y are scaled and centered prior to emu-

lator analysis, Centering the model output Y is usually a good idea as it removes

any trends which are common to all of the design points, allowing the GP emu-

lator to deal with more interesting residual variation across D. Scaling should be

approached with a little more caution as it puts the residual variation in all outputs

on the same footing. This is quite reasonable if one has a strong prior belief that all

the outptus are equally important. However if for some reason the variance in the

model output varies across the k dimensional output space this may not be a good

idea. For instance if the model output was a spectrum built from a finite number of

observations of an underlying power law (e.g. the p
T

distribution of jets in a high

energy P–P collision) then the bins at higher values are naturally going to be more

uncertain as relatively fewer observations will have been made. Scaling the bins

of such histogram to all have the same variance would be a mistake, this would

override the variation which naturally arose from the sampling scheme.

After training the seven model emulators by computing the maximum likeli-

hood estimates for the GP covariance parameters, we compare the model (via the

emulators) to the observable data by calculating surfaces of implausibility Ipx, uq
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for each observable (see § 6.4). The values of these three-dimensional surfaces pro-

vide an indication of which parts of the input space u are more likely to reproduce

the desired observational data set Y
f

.

The observable data should be obtained from the luminosity function and L-

Z relation of the Milky Way satellite galaxies. However, to test the constraining

power of this approach, a particular run of the ChemTreeN model will be used

as a mock observable data set. This type of controlled experiment can be very

helpful in model performance assessment, since we know exactly what values of

the input parameters were used to obtain the artificial “field data.” The black solid

lines in Fig: 6.1 show the luminosity function and L-Z relation of the model used

as the mock observations. The values of the input parameters used are u
obs

“

pz
r

, f
esc

, f
bary

q “ p10, 50, 0.05q. It is important to note that this input parameter

vector is not included among the design points D.

6.4 Comparison to Fiducial Data

To make a simple comparison of the simulator (via the GP emulator) to experi-

mental data, it is convenient to introduce the notion of implausibility [31]. Let’s

define an implausibility measure Ipx, uq as follows. Consider a model with a sin-

gle output for which we have generated an emulator with posterior mean µ̄px, uq

and variance ¯Kppx, uq, px, uqq. The implausibility of the emulated model output at

a point px, uq in the parameter space is given by

I2

px, uq “

pµ̄px, uq ´ ErY
f

sq

2

¯Kppx, uq, px, uqq ` VrY

f

s

, (6.1)

where Y
f

represents the distribution of field data that we seek to compare our

model against. Here we have only accounted for the variation from the emulator

itself and the field data. In the following work we carry out comparisons of the
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model output with idealized field data generated from the model itself. We will

compare the model output at di�erent locations in the parameter space against

certain selected default values, as such we are free to neglect model bias or dis-

crepancy terms.

The output of ChemTreeN is multivariate – the code produces predictions for

many observables, such as the distributions of stellar populations in stellar halos of

Milky Way-like galaxies or its satellite galaxy luminosity function and metallicity-

luminosity relation. It is possible to separately compare each observable with a

model emulator generated from the corresponding model output. Considerably

more powerful conclusions can be drawn by examining the joint properties of

the observables and model outputs, as discussed in chapter 5. Consider a k-

dimensional vector of model outputs ypx, uq “ ty
1

, . . . , y
k

u with a correspond-

ing vector of field data Y
f

. We extend our training set to be the d ˆ k matrix

Y “ typx
1

, u
1

q, . . . , ypx
n

, u
n

qu.

We apply a principal component decomposition to our training data set Y to

obtain a set of approximately independent and numerically orthogonal basis vec-

tors spanning the k dimensional output space, see § 5.1 discarding terms in the

eigen-decomposition which contribute less than 5% of the total variation. We con-

struct individual independent emulators from the training values projected onto

each basis. When we wish to evaluate the model output at a new location we in-

vert this transformation to obtain predictive distributions for each of the t model

outputs at a given location in the parameter space.

The implausibility (6.1) can be naturally extended to the multivariate case. From

the emulator we obtain a k-dimensional vector of predictions for the model out-

put with means µ̄px, uq. The emulated kˆk dimensional covariance matrix ¯

Kpx, uq

between the model outputs at the point x, u in the design space can also be con-

structed from the PCA decomposition. With these two quantities, we define the
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joint implausibility Jpx, uq for observables Y
f

with measurement variance VrY

f

s

and mean values ErY
f

s.

J2

px, uq “ pErY
f

s ´ µ̄px, uqq

| `
¯

Kpx, uq ` I ¨ VrY

f

s

˘´1

pErY
f

s ´ µ̄px, uqq , (6.2)

this construction provides a covariance weighted combination of the multiple ob-

servables which gives a reasonable indication of which regions in x, u are predicted

by the emulator to be close to the observed values Y
f

. This implausibility score

Jpx, uq is a normally distributed variable with zero mean and unit standard de-

viation, confidence intervals for values of Jpx, uq can then be established in the

usual way. In this section we consider approximate 95% (2�) confidence intervals

as representative of the true values of x, u. Locations in the parameter space with

Jpx, uq † 2 are viewed as being regions which are very likely to give model outputs

closely reproducing the observational data, given the experimental and interpola-

tion uncertainties.

6.5 Parameter space exploration

6.5.1 Independent Emulators

Let’s first explore the extent of the parameter space that we can constrain using our

fiducial data with a set of k “ 7 independent scalar GP emulators. Each of these

GP emulators was trained on only a single component of the multivariate output.

Fig: 6.2 shows three di�erent sections of each of the implausibility surfaces ob-

tained from the five independent model emulators constructed for the LF’s outputs.

The 3-dimensional implausibility surfaces are sliced with three orthogonal planes

as defined by the components of u
obs

. The top row panels show the f
esc

“ 50 section

of the Ipuq surfaces. The black dashed lines indicate the values of the remaining

two components of u
obs

. Given an input parameter vector u
t

, the larger the value

of the Ipu
t

q the less likely it is that a good fit to the observed (fiducial) data could
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be obtained, given the uncertainty arising from the emulator and with the fiducial

data itself.

From the left-most panel (i.e. M
v

“ ´16.5) it becomes clear that the parameter

controlling the amount of available gas to form stars, f
bary

, is strongly constrained

by the number of satellite galaxies at the bright end of the satellite galaxy luminos-

ity function. Furthermore, within the range of values considered here, the number

of satellites at this M
v

is independent of the redshift of the epoch re-ionization, z
r

.

The most plausible parameter values are near the true value of f
bary

“ 0.05.

As we move towards the faint end of the luminosity function the model param-

eter z
r

becomes progressively more constrained and the total number of satellite

galaxies becomes less dependent on f
bary

. For M
v

“ ´3.5 (top right-most panel).

The corresponding model emulator strongly constrains the input parameter space

around values of z
r

« 10, but it gives equally good fits for nearly all possible values

of f
bary

. The second row of panels show sections of the Ipuq surfaces at f
bary

“ 0.05.

The satellite galaxy luminosity function appears to be completely independent of

the value adopted for the escape factor of metals, f
esc

. At the bright end of the lu-

minosity function, any combination of z
r

and f
esc

would yield an equally good fit to

the mock observable data. However at the faint end values of z
r

« 10 are required

to fit the mock data. A similar result can be obtained for the third row of panels

showing the remaining sections, i.e., z
r

“ 10. Again, a good fit to the "observable"

data can be obtained with values of f
bary

« 0.05 for any possible value of f
esc

.

It is possible to put constraints on the parameter f
esc

by exploring cross-sections

of the implausibility surfaces constructed from the satellite galaxy luminosity-

metallicity relation’s slope and intercept model emulators. The middle and bot-

tom panels of Fig: 6.3 show the sections defined by f
bary

“ 0.05 and z
r

“ 10 ,

respectively. Comparison with Fig: 6.2 reveals implausibility surfaces with a more

complex geography. Although both emulators present regions of low implausi-
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bility for a wide range of f
esc

values, these regions are strongly correlated with z
r

and f
bary

. These two parameters are also strongly constrained by the slope and

intercept of the L-Z relation, as shown in the top row panels.

6.5.2 Joint Emulators

Individually, none of the previously explored implausibility surfaces constrain the

full parameter space. This is not the case with the joint implausibility measure

Jpuq, which combines the information obtained from the seven model emulators

into one quantity. Following the PC methods in § 5.1 we construct a multivariate

emulator using all k “ 7 resulting principal components.

Figure 6.4 shows di�erent iso-implausibility surfaces of the resulting Jpuq. No-

tice that as the value of Jpuq decreases the volume enclosed by each iso-surface

becomes smaller, converging towards the values associated with u
obs

, as shown

by the red solid lines. This can be more clearly appreciated in Fig: 6.5. Each row

of panels shows di�erent sections Jpuq as we traverse one of the three possible

dimensions in u.

The black solid line on the color bars show the 2� cuto� applied to the joint

implausibility. A value of Jpuq ° 2 indicates that it is very implausible to obtain

a good fit to the observed data with the corresponding values of the model pa-

rameters. Thus, regions of the parameter space lying above this threshold can be

disregarded. We find that Jpuq strongly constrains the full parameter space under

study. Furthermore, the values of the components of u
obs

are located in the most

plausible regions of the space, as indicated by the star symbols in the correspond-

ing panels.
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6.6 The rôle of merger histories

In the previous section we showed that it was possible to recover the set of input

parameter chosen to create a mock Milky Way-like observational data set using a

suite of model emulators. In this “controlled” experiment, both training and mock

observable data were obtained by coupling ChemTreeN to a merger tree obtained

from a single simulation. We have implicitly assumed that the exact merger history

of our Milky Way-like galaxy is a known quantity. In reality, this merger history is

poorly known, and should be regarded as an extra input parameter of the model.

It is thus important to study how di�erent merger histories can compromise our

ability to meaningfully constrain the input parameter space.

For this purpose, we perform the following set of controlled experiments. Us-

ing the merger trees extracted from the four available N -body simulations we

generate four di�erent training sets (each training set containing n “ 200 design

points) and construct, for each set, the suite of model emulators discussed previ-

ously. Hereafter, we will refer to these emulators’ as “MWi-emulators”, with i “

1, 2, 3 and 4. The input parameter vector u
obs

“ pz
r

, f
esc

, f
bary

q “ p10, 50, 0.05q is

used to obtain a mock observational data set from each merger tree. We will refer

to these mock observables as “MWi-observables”. The cumulative mass of these

merger trees as a function of redshift, is shown in Fig: 6.6. While there is clearly

some variation between the candidates, the extent to which this variation matters

is not clear. We then ask the following question: is it possible to recover the input

parameter vector, u
obs

, if we use training data obtained from a merger tree di�erent than

that used to obtain the mock observables?

In Fig: 6.7 we show the outcome of this experiment. Each block of four pan-

els shows joint implausibility surface’s sections obtained after comparing a given

MWi-observables with the four MWi-emulators. The merger tree used to gener-
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ate the MWi-observables in each block is indicated with the green label, MWi.

For example, on the top left corner we show the result of such comparison using

MW1-observables. As previously shown in Fig: 6.5, when the model emulators are

trained on the same merger tree that was used to generate the mock observables,

we can successfully constrain the input parameter space and recover the compo-

nents of u
obs

. However, when model emulators constructed on di�erent merger

trees are considered, the most plausible regions are located around values of f
bary

much larger than those used to obtain the mock observables. This is not surpris-

ing since, as shown in Fig: 6.6, MW1 is the Milky Way-like halo that contains the

largest number of satellites at all M
v

. To achieve a good fit to MW1-observables in

the remaining simulations, it a larger amount of gas to form stars is required. Note

as well that the joint implausibility surface obtained with the MW3-emulators has

no values below the chosen threshold. Thus MW1-observables cannot be repro-

duced using the merger history extracted from halo MW3. Another interesting

example is shown on the lower right panels of Fig: 6.7. Here MW4-observables are

considered. Very good fits to these observables can be obtained for either larger

(MW3-emulators) or smaller (MW2-emulators) values of f
bary

than that used to

generate the mock observables. A similar situation is observed for the input pa-

rameter z
r

. Note that we have only considered the f
esc

“ 50 section of each joint

implausibility surface.

The previous analysis clearly shows how a particular merger history can influ-

ence the model parameter selection: similarly good fits to a given set of observables

can be obtained with di�erent model parameter values simply by modifying the

host’s merger history. In our experiments these values may di�er from those used

to generate the mock observables. When comparing with real observational data,

a given set of best fitting parameter’s values may be significantly o� from the val-

ues that could best parametrize the desired underlying physical processes. This
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in turn may have important implications on other observable quantities that we

would like to study and which have not been used for model parameter selection.

6.7 Conclusions

We successfully used the joint implausibility to constrain the possible parameter

space to a small region around the point u
obs

selected to generate the fiducial data.

By exploring the simple implausibility surfaces generated for each observation we

gain some useful insights into how sensitive the respective observables are to the

calibration parameters.

By expanding the scope of the analysis to considering a small set of superficially

similar dark matter merger histories we were able to show that the calibration pa-

rameters needed to reproduced the various fiducial runs are quite di�erent. This

result suggests that details of the merger histories have a more important impact

on the chemical model then previously appreciated.

This analysis has provided not only a good first step towards understanding

how ChemTreeN responds to its most significant calibration parameters, but also

has provided the first evidence for a relatively novel scientific result namely that

superficially similar merger histories may not be entirely generic.
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F����� �.�: Sections through the Implausibility surfaces, Ipuq, obtained from the five model
emulators constructed for the LF’s outputs. The output being emulated is indicated on
the top right corner of each panel. Columns correspond to di�erent observables. The 3d

implausibility surfaces are sliced with three orthogonal planes as defined by the compo-
nents of u

obs

. The top, middle and bottom row panels show the f

esc

“ 50, f

bary

“ 0.05

and z

r

“ 10 sections of the Ipuq surfaces, respectively. The black dashed lines indicate the
values of the remaining components of u

obs

. Given an input parameter vector u

t

, the larger
the value of the Ipu

t

q, the less likely a good fit to the observable data can be obtained. It is
possible to strongly constrain the parameters f

bary

and z

r

, but not f

esc

.
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F����� �.�: As in Fig: 6.2 for the two model emulators constructed for the L-Z relation. The
left and right panels show sections of the implausibility surfaces associated with the slope
and the intercept, respectively. These model emulators provide strong constraints on the
model parameter f

esc

.

F����� �.�: Iso-implausibility surfaces extracted from the joint implausibility measure
Jpuq. Redder colors indicate larger values of Jpuq. The region of lowest implausibility
(and thus highest plausibility) is shown by the opaque blue volume at the intersection of
the red lines.
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F����� �.�: Sections of the Joint implausibility surface, Jpuq, obtained by combining in-
formation provided by the seven model emulators shown in Figures 6.2 and 6.3. The top,
middle and bottom row panels show di�erent sections of constant f

esc

, f

bary

and z

r

. On
each row, the black dashed lines indicate the values of two of the components of u

obs

. If the
three components are simultaneously present in a section, the location of u

obs

is indicated
with a blue star. The horizontal black solid line on the color bars indicate the imposed
two-sigma threshold.
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F����� �.�: Galaxy formation history as shown by the virial mass of the most massive
progenitor of the four candidate Milky Way-like dark matter halos as a function of the
expansion factor. In all cases, the mass is normalized to the z “ 0 mass of the galaxy.
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F����� �.�: Sections of Joint Implausibility surfaces at constant f

esc

, obtained after com-
paring di�erent models and mock observables. Each block of panels shows the results of
comparing a given MWi-observables to the four sets of MWk-emulators (see text), where
k, i “ 1, 2, 3 and 4. MWi-observables are obtained by running ChemTreeN on the merger
tree extracted from simulation MWi, using the input parameter vector u

obs

. The labels on
the top left corner of each panel indicates the MWk-emulators being considered. In green
we indicate the MWi-observables associated with each block. The white dashed lines in-
dicate the values of two of the components. Note that, in many cases, similarly good fits
to a given set of observables can be obtained with di�erent parameter’s values simply by
modifying the host’s merger history.
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7

Uncertainty Analysis

In this chapter I will discuss a simple practical application of the GP emulator re-

sults developed in § 3. Consider a computer model Y
m

px, uq with n observation

parameters x and p calibration parameters u. As discussed in the introduction

in § 1.6 the calibration parameters are typically unknowns that we wish to learn

about but which we cannot explicitly vary when making experimental observa-

tions. They might be a fundamental physical constant such as a particle’s mass or

a certain transport coe�cient or perhaps a parameter in a model of how a detector

responds to a certain input. Calibration parameters might be further classified into

those parameters which have some physically interesting meaning or they may be

purely a residue of the computer modelling process, such as a certain choice of a

numerical cut-o� or a grid spacing in some finite di�erence scheme.

Later on in § 9 I will outline the steps needed to use a set of experimental ob-

servations along with a set of observations of a computer model to try and learn

about the true values of these calibration parameters. Where as always true re-

ally means the set of values which best agree with our choice of computational
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and statistical models. Let us suppose that we have the above computer model

Y
m

px, uq with some calibration parameters and experimental data is not available.

The calibration parameters are assumed to be weakly known. By weakly known

I am referring to the fairly usual case, when although a model developer doesn’t

a-priori know the true values of these u they can be pushed into giving some kind

of plausible range or bounds for their values.

Given such a set of weak prior knowledge about these calibration parameters

a natural question is: “how does the uncertainty on these parameters pass into

our uncertainty about the model output?”. Suppose that we are interested in the

model output at a particular set, or range, of observation parameter values x‹ then

given some plausible ranges on the unknown calibration parameters u we would

like to know about the distribution of model outputs we should expect at these ob-

servation locations. If we can motivate some prior distribution for the unknown

parameters u then schematically we’re interested in obtaining a conditional dis-

tribution for Y
m

px‹q given the prior P puq. In the literature this kind of process is

referred to as uncertainty analysis, [22, 23].

An uncertainty analysis like this certainly does not tell us anything about what

the true or best values of these calibration parameters should be. However it does

o�er a substantial amount of insight into the behaviour of the simulator. Under-

standing the amount of parametric variability in a simulator is a key step in learn-

ing where to most carefully focus attention in the collection of additional data.

An example of this kind of situation is the estimation of systematic errors in

physics experiments. Here the calibration parameters u represent unknown as-

pects of a detector response or similar and the computer model could represent

the entire data analysis.

After ascertaining nominal values for a set of unknown calibration parameters

ū a typical process for estimating their influence upon some observable of interest
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is to repeat the analysis with a given parameter set to values representing the ex-

tremes of its plausible range and then quantifying the influence of this procedure

on the observables of interest. This can be thought of as approximately linearizing

the model’s response around the nominal parameter values.

Y
m

px‹, uq » Y
m

px‹, ūq ` pu ´ ūq

BY
m

px‹, uq

Bu

ˇ̌
ˇ̌
u“ū

. (7.1)

If the other calibration parameters are also held fixed during this procedure, in-

stead of somehow jointly varying them, then this procedure essentially diagonal-

izes the covariance structure of the model. This is sometimes referred to as the “one

at a time” or OAT process. Depending on the details of model and the number of

calibration parameters this varies between a bad and an awful way to approach

the problem. As the number of model parameters grows the volume of the pa-

rameter space explored by such naïve procedures becomes very small. For further

discussion see the definitive text by Saltelli et al [27].

7.1 A Contrived Model

To help illustrate these ideas let’s consider a simple model inspired by particle

physics. The Breit-Wigner distribution is a probability distribution for observing

an unstable particle at a given centre of mass energy E given the particle has a

decay width (or inverse lifetime for the state) � and mass M

f
BW

pE, M,�q “

k

pE2

´ M2

q

2

` M2

�

2

, (7.2)

k “

2

?

2M��

⇡
a

M2

` �
, � “

a
M2

pM2

` �

2

q.

Here we can think of E as the observation parameter, this represents an energy

that an otherwise perfect particle detector is tuned to. The particle mass M and

123



the decay width � can serve as our calibration parameters. Now let’s suppose that

we are in the unfortunate situation of only being able to build a detector which

measures the mean energy over some width�E centered around whatever energy

E we tune it to, i.e.

y
BW

pE,�E, M,�q “

≥
E`�E{2
E´�E{2 E 1f

BW

pE 1, M,�q dE 1

≥
E`�E{2
E´�E{2 f

BW

pE 1, M,�q dE 1
. (7.3)

We are interested in understanding how predictions from y
m

at some fixed E and

�E vary given our uncertainty in the decay width � and the particle’s mass M .

Putting some numbers in let’s suppose we’re trying to measure the energy of the Z

boson, for reference the Particle Data Group (PDG) reported mass and decay width

are m
z

“ 91.1876˘0.0021 GeV{c2, �
z

“ 2.4952˘0.0023 GeV{c2 [211]. We will center

our detector energy at E
d

“ m
z

and set the energy width to �E
d

“ 20 GeV{c2,

evaluated at these “nominal” values our model gives

y
BW

pE
d

,�E
d

, m
z

,�
z

q “ 91.1102 (7.4)

for brevity from now on I will drop the units on the model output. The integrals in

(7.3) can be evaluated analytically although the result is a little messy, this provides

a neat form for comparison with our statistical methods.

7.2 Uncertainty Analysis

We aim to quantify the uncertainty in our model outputs induced by uncertainty

in the inputs, for now lets suppose our uncertainty is confined to the calibration

parameters. We can consider the uncertain calibration vector u to be a random

vector U , now our model output is promoted to a random variable ⌘ “ Y
m

px, Uq.

Given a probability distribution G for the uncertain calibration vector U we want

to learn about the probability distribution for the model output ⌘.
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Lets consider the simplest useful things we can learn about ⌘, the mean Er⌘s and

variance Vr⌘s. These quantities along with some form of credible interval for ⌘, i.e.

a region bounding the mean that we expect an observed value to fall within with a

certain probability, should give su�cient information about how our uncertainty

in the parameters passes through to the model output.

The simplest approach to uncertainty analysis is to sample the probability dis-

tribution G (using typical Monte-Carlo methods [171]) to obtain some set of n
MC

input configurations u “ tu
1

, u
2

, . . . , u
nMCu, where the distribution of u approxi-

mates G as n
MC

Ñ 8 . The model can then be run at each of these points, giving

a set of outputs y “ tY
m

px, u
1

q, Y
m

px, u
2

q, . . . , Y
m

px, u
nMCqu. Sample estimates of y,

such as the mean and variance, are naturally sample estimates of the same quanti-

ties of ⌘. This conceptually very simple Monte-Carlo method is certainly superior

to the naïve range sampling method. However it will most likely require a fairly

large number of model evaluations to obtain a posterior which is a good approx-

imation to ⌘. For non trivial models this may require a substantial investment of

e�ort and resources.

Let’s examine what we can learn about our toy model using this simple method.

To keep things interesting let’s ignore the quoted (and small) uncertainties from

the PDG data and instead we’ll take 10% uncertainties on the measured values,

promoting M and � to independent random variables we have

M „ Npm

z

, p0.1m

z

q

2

q, � „ Np�

z

, p0.1�
z

q

2

q,

so that in this case the distribution on our inputs is

G “

ˆ
M
N

˙
„ MVN

"ˆ
m

z

�

z

˙
,

ˆ
p0.1m

z

q

2

0

0 p0.1�
z

q

2

˙*
.

A histogram of the set of Monte-Carlo outputs y, generated after sampling a set

of n
mc

“ 4000 input configurations from G is shown in Fig: 7.1. The uncertainty in
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F����� �.�: A histogram of model output (defined in (7.3)) generated from a set of 4000

sample input configurations.

our inputs has resulted in a large spread of measured values, note that the bulk of

this distribution is not centered around our expected mean value (7.4). Lets focus

our attentions on the posterior mean value of the MC distribution,

ȳ
MC

“ Erys “

1

n
MC

nMCÿ

i“1

Y
m

px, u
i

q, (7.5)

this is the average energy that our detector would measure as predicted by our

model given the uncertain inputs. The choice of the posterior mean is purely for

simplicity, practically one would certainly also be interested in the width of the

posterior distribution as quantified by estimates of the variance or estimates of

quantiles. For completeness the sample variance is defined as

s2

y,MC

“

1

n
MC

´ 1

nmcÿ

i“1

pY
m

px, u
i

q ´ ȳ
MC

q

2 , (7.6)

the expected variance of s2

y,MC

can be obtained but pursuing this is an unnecessary

complication for the purposes of this analysis.

From the data used to make Fig: 7.1 we obtain ȳ
MC

“ 91.0952 the Monte-

Carlo sample variance is s2

y,MC

“ 24.0458. The standard error associated with

our Monte-Carlo sample mean is
a

24.0458{4000 and so a 95% interval for ȳ
MC

is

r90.9432, 91.2472s. Since our model can be expressed algebraically we can directly
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Table 7.1: Estimates for the mean of the model output, given the uncertainty distribution
G computed by various methods. The naïve bounds are computed by evaluating y

m

with
M, � set at two standard deviations below and above the nominal values.

ȳ conf lower conf upper
exact 91.0635
naïve 91.1102 86.8729 94.7689

n
MC

“ 4000 91.0952 90.9432 91.2472
n

MC

“ 40000 91.0662 91.0176 91.1147

compute the exact mean of the model output given the uncertainties,

ȳ
exact

“

ª 8

´8
y

m

pE,�E, M,�qfpM, m
z

, 0.1m
z

qfp�,�
z

, 0.1�
z

q dM d�

“ 91.0635, (7.7)

where fpx, µ
x

, �
x

q “

1

�

x

?
2⇡

exp

´
´

px´µ

x

q2
2�

2
x

¯
represents the normal density with mean

µ
x

and standard deviation �
x

. With 4000 model evaluations we appear to have ob-

tained a moderately accurate Monte-Carlo estimate of the posterior mean, given

the distribution G on our uncertain parameters. These results are summarized in

Table: 7.1.

7.3 Uncertainty Analysis with an Emulator

In the above section we used some large-ish number of model evaluations to get an

apparently reasonable estimate of the posterior mean. For many computer mod-

els this kind of brute-force Monte-Carlo sampling may represent an unreachable

amount of computing. This high barrier to entry may discourage many computer-

model builders from even beginning to think seriously about estimating the influ-

ence of parameter uncertainty on model predictions.

We can use the Gaussian-Process regression methods developed in chapter 3,

particularly the results from § 3.3, to build a statistical surrogate model of the slow

computer model. This surrogate will be computationally cheap to evaluate and
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typically will require far fewer samples of the underlying computer model to gen-

erate than the number of model evaluations needed by the direct MC method.

To proceed we should generate a design of m points (where m ! n
MC

) which

span the parameter space D “ tu
1

, u
2

, . . . , u
m

u for details on the design see § 4.3.

We then construct the training setY “ tY
m

px, u
1

q, . . . , Y
m

px, u
m

qu by evaluating the

computer model at each of these points. Making reasonable choices for the para-

metric forms of the prior mean and covariance function for the GP and estimating

their hyper-parameters, as discussed in § 3.8, we fully specify our surrogate model.
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F����� �.�: A histogram of the mean of the GP emulated model output µ̄puq this output
was generated from a set of 4000 sample input conditions. The GP emulator was trained
from a set of m “ 128 observations of the model.

With the emulator constructed we can proceed to carry out the same simple

Monte-Carlo procedure as given in the previous section, generating a set of n
MC

sample configurations drawn u from G and instead of directly evaluating the model

at each of these locations we evaluate the emulator mean µ̄puq (3.17). A histogram

of these samples is shown in Fig: 7.2, these are generated using a GP surrogate

with a training set with m “ 128. Estimates for the posterior mean ȳ generated

using this method are shown in Table: 7.2 for n
MC

“ 4000 as a function of the

number of training points m. The agreement with the exact result is rather good

especially given that these results require a substantially reduced set of full model

evaluations.
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Table 7.2: Estimates for the mean of the model output, given the uncertainty distribution
G computed using the Monte-Carlo method on top of a GP emulator with n

MC

“ 4000.
m ȳ conf lower conf upper

exact 91.0635
60 91.1072 90.9550 91.2594

128 91.0444 90.8910 91.1978
256 91.0196 90.8667 91.1724

7.4 Direct Calculation

Since the GP posterior defining our surrogate is such a simple function we can

directly compute the mean of the model output given the uncertainty on the pa-

rameters G,

ȳ
GP

“

ª
µ̄puqdGpuq, (7.8)

we can also compute the expected point-wise GP variance

s2

y,GP

“

ª
¯Kpu, uqdGpuq, (7.9)

where ¯K is given by (3.18), and µ̄ is given by (3.17). For simple distributions G

these integrals can typically be computer analytically, for full results see [23]. In

the next chapter I will discuss the process of sensitivity analysis which is closely

related to that of UA and indeed we will directly compute analogues of (7.8) and

(7.9).
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8

Sensitivity Analysis

Given the complexity of typical simulators, model builders are often interested in

understanding how the simulator outputs interms of individual inputs. As dis-

cussed in the previous chapter building an understanding of this can be a tricky

proposition if the model is computationally expensive. Naïve approaches to this

problem might be to generate a set of Monte-Carlo samples of the simulator out-

put across the parameter space and use these to attempt to reconstruct the model

output or response surface about points of interest. Sophisticated Monte-Carlo

sampling procedures have been developed for this purpose which attempt to min-

imize the total number of model evaluations, (see [27]), however they are often still

very expensive.

Using a model emulator we can do somewhat better than this. Following along

from the ideas developed in the previous section we can construct a surrogate

model and then consider the simulator inputs as random variables. The GP pos-

terior mean and variance which represent our simulator are su�ciently straight-

forward that one can directly evaluate many useful quantities [25].
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To gain an understanding of the shape of the model’s output, or response sur-

face, as a function of the various input parameters we can decompose the output

into a series of functions of increasingly complex combinations of the input pa-

rameters. These functions, known as the main e�ects and interactions, provide a

measure of how each individual input parameter and each combination of param-

eters contribute to the response surface. We construct these functions by directly

integrating out all but the subset of parameters that we are interested in, without

a surrogate model this would be a very challenging procedure. This decompo-

sition can be a very e�ective way of understanding which parameters are more

influential.

These techniques were recently used by myself and collaborators in a follow up

analysis of ChemtreeN [3] (see chapter 6 for a detailed discussion and analysis) to

screen out the most important parameters from a larger set and to compare how

the sensitivity of the model to these parameters varied as a function of the Dark

Matter merger history.

8.1 Inference for main e�ects and interactions

Suppose we have a computer model Y
m

pxq which produces scalar output and some

number d of input parameters. Given a suitable design D, some set of m points in

the parameter space D “ tx
1

, . . . , x
m

u , our training set Y is the set of model out-

puts Y “ tY
m

px
1

q, . . . , Y
m

px
d

qu. Supposing that we specify a suitable prior covari-

ance function and a prior mean, setting aside issues of estimating their parametric

forms, we obtain a GP surrogate

⌘p¨q „ GP pµ̄p¨q,Cp¨, ¨qq , (8.1)

with mean and variance given by (3.17) and (3.18) for instance. If we integrate out

the coe�cients � of a prior mean model along with the total scale then the resulting
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emulator is strictly speaking Student-t distributed (see § 3.9)

We can decompose the emulated model ⌘p¨q into its main e�ects and interac-

tions

⌘pxq “ ErY s `

dÿ

i“1

z
i

px
i

q `

ÿ

i†j

z
i,j

px

i,j

q `

ÿ

i†j†k

z
i,j,k

px

i,j,k

q ` . . . ` z
1,2,...,d

pxq (8.2)

where we have

z
i

px
i

q “ ErY | x
i

s ´ ErY s, (8.3)

z
i,j

px

i,j

q “ ErY | x

i,j

s ´ z
i

px
i

q ´ z
j

px
j

q ´ ErY s, (8.4)

z
i,j,k

px

i,j,k

q “ ErY | x

i,j,k

s ´ z
i,k

px

i,k

q ´ z
j,k

px

j,k

q ´ z
i

px
i

q ´ z
j

px
j

q ´ z
k

px
k

q ´ ErY s.
(8.5)

and the higher order terms follow naturally. The main e�ect to x
i

is z
i

px
i

q, the first

order interaction is z
i.j

px

i,j

q. This is a decomposition of the model in terms of its

mean over the whole space ErY s and a series of progressively more complex terms

which isolate the influence on the model output of a given set of parameters.

These terms depend upon the distribution G of the uncertain inputs. Comput-

ing and plotting the main e�ects and first order interactions is my main goal, this

should provide a strong indication of how the model output depends upon each

input and how “tangled” these influences become.

8.1.1 Notation

Above we introduced D “ tx
1

, . . . , x
m

u the design, this is not to be confused with

the vector x

|
“ px

1

, . . . , x
d

q of the model inputs, I shall try and make it clear by

denoting elements of the design set as x̃
a

and elements of the input vector x
i

. A

sub vector px
i

, x
j

q is given by x

i,j

and for a general set of indicies q “ tx
i

, . . . , x
k

u

then x

q

is the sub vector of x whose elements have those indices. Further x´q

is

the sub vector of x which excludes the set of indices q.
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8.1.2 Inference for e�ects

We want to know about:

ErY | x

p

s “

ª

�´p

⌘pxqdG´p|ppx´p

| x

p

q (8.6)

where �´p

is the space of possible values of x´p

. Since this is a linear functional of

a Gaussian Process we can derive the posterior mean as follows.

Recalling the results from § 3.9 the posterior mean and variance of our GP em-

ulator after integrating out our priors are

m̄
1

px‹q “ hpx‹q

ˆ� ` K|
‹,‚pY ´ H‚ ˆ�q,

¯V
1

px‹,‹1
q “ �̂2

¯V
0

px‹, x‹1
q`

�̂2

“
phpx‹

q ´ K|
‹,‚K

´1

‚,‚H‚q

|
pH|

‚ K´1

‚,‚H‚q

´1

phpx‹
q ´ K|

‹,‚K
´1

‚,‚H‚q

‰

(8.7)

(8.8)

with

¯V
0

px‹, x‹1
q “

!
Cpx‹, x‹1

;⇥q ´ K|
‹,‚K

´1

‚,‚K‹1
,‚

)

�̂2

“

1

m ´ q ´ 2

Y|
´
K´1

‚,‚ ´ K´1

‚,‚H‚
`
H|

‚ K´1

‚,‚H‚
˘´1

H|
‚ K´1

‚,‚
¯
Y

ˆ� “

`
H|

‚ K´1

‚,‚H‚
˘´1

H|
‚ K´1

‚,‚Y

Quantities defined with respect to the posterior distribution of ⌘p¨q are denoted

by F ‹ etc.

E

‹
tErY | x

p

su “ R
p

px

p

q

ˆ� ` T
p

px

p

qe (8.9)

where

R
p

px

p

q “

ª

�´p

hpxq

T dG´p|ppx´p

| x

p

q, (8.10)

T
p

px

p

q “

ª

�´p

K|
‹,‚pxqdG´p|ppx´p

| x

p

q, (8.11)

e “

´
Y ´ H‚ ˆ�

¯
(8.12)
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Just to be clear R
p

is a vector of length q where q is the number of regression func-

tions, T
p

is a vector of length d where d is the number of design points, as is e. It is

then just a matter of writing down the posterior mean of the main e�ects and first

order interactions

E

‹
tz

i

px
i

qu “ tR
i

px
i

q ´ Ru

ˆ� ` tT
i

x
i

´ T ue, (8.13)

E

‹
tz

i,j

px

i,j

qu “ tR
i,j

px

i,j

q ´ R
i

px
i

q ´ R
j

px
j

q ´ Ru

ˆ�`

tT
i,j

px

i,j

q ´ T
i

px
i

q ´ T
j

px
j

q ´ T ue. (8.14)

Finally we would certainly like to the variances of our estimated posterior means,

we can derive them from the general result

cov

‹
tErY | x

p

s, ErY | x

1
q

su

“ �̂2

ª

�´p

ª

�´q

¯V
1

px,x1
qdG´p|ppx´p

| x´q

qdG´q|qpx

1
´q

| x

1
q

q

, “ �̂2

“
U

p;q

px

p

,x1
q

q ´ T
p

px

p

qA´1T
q

px

1
q

q

T

`

 
R

p

px

p

q ´ T
p

px

p

qA´1H‚
(

W
 
R

q

px

1
q

q ´ T
q

px

1
q

qA´1H‚
(

T

ı
, (8.15)

where we have defined

U
p;q

px

p

,x1
q

q “

ª

�´p

ª

�´q

cpx,x1
qdG´p|ppx´p | xpqdG´q|qpx

1
´q | x

1
qq, (8.16)

W “

`
HT

‚ A´1H‚
˘´1

. (8.17)

While the above looks a bit daunting, if we make some reasonable assumptions

about G, h and c we can readily obtain analytic expressions floor R
p

, T
p

and so forth,

however I won’t take up any more space by reproducing these here. Furthermore

all of the integrals we have encountered here can be easily done numerically.

We can plot our posterior mean main-e�ects (and interactions) constructed

from (8.9) using (8.15) to obtain say 2� confidence intervals on either side. This

gives a reasonably intuitive graphical representation of the sensitivity of the model
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output to a given input however we need to consider a decomposition of the total

variance in the model output Y if we want to get a full understanding. Our poste-

rior inference for the expected values of these e�ects and their posterior variances

can never give us a really full understanding of the actual variability of the model

output explained by the various inputs, since by construction we’re starting from

inference about the mean.

8.2 Inference for Variances

We can also consider the sensitivity of the output Y in terms of the reduction of the

total variance which would be observed if we knew the value of one of the inputs

x
i

with certainty. This reduction of variance can be written schematically as

�VrY s “ VrY s ´ VrY | x
i

s,

since we don’t actually know the true value of x
i

we will compute the average

reduction of the total variance over all values of x
i

Et�VrY su “ VrY s ´ EtVrY | x
i

su. (8.18)

Recalling the so called Adam and Eve formulas for conditional expectations and

variances

ErX | As “ E tErX | As | Bu , (8.19)

VrXs “ E tVrX | Asu ` V tErX | Asu , (8.20)

using these we can simplify (8.18) to obtain a simple form for the variance reduc-

tion

V
i

“ Et�VrY su “ V tErY | x
i

su , S
i

“

V
i

VrY s

(8.21)
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where S
i

is the standardized value. Another construction that may be useful is V
T

i

the remaining uncertainty in Y after all inputs but x
i

are known with certainty,

V
T

i

“ VrY s ´ V tErY | x

i

su , (8.22)

S
T

i

“

V
T

i

VrY s

“ 1 ´ S´i

. (8.23)

Oakley and O’Hagan refer to S
i

as the main e�ect index of x
i

and S
T

i

as the total

e�ect index of x
i

. The main e�ect indices can be interpreted as giving the relative

importance of the various inputs to the total uncertainty in the output. If we want

to consider the influence of learning the true values of pairs (or more complex

combinations) of parameters we must consider their joint contribution along with

their individual contributions, i.e. we should compute the variance due to their

joint e�ect

V
i,j

“ V tErY | x

i,j

su “ V tz
i

px
i

q ` z
j

px
j

q ` z
i,j

px

i,j

qu . (8.24)

8.2.1 Variance Decomposition

If the distribution G on the inputs is such that the elements of x are independent

then the total variance of the output Y can be decomposed into another series of

terms relating to the main e�ects and interactions

VrY s “

dÿ

i“1

W
i

`

ÿ

i†j

W
i,j

`

ÿ

i†j†k

W
i,j,k

` . . . ` W
1,2,...,d

, (8.25)

where W
p

“ V tz
p

px

p

qu. In fact we can see that W
i

“ V
i

is the reduction in the total

variance of Y obtained when we learn the true value of the i’th input. Further

(8.24) can be written as V
i,j

“ W
i

` W
j

` W
i,j

, so we can interpret W
i,j

as the extra

variance removed after learning the true value of both the i’th and j’th parameters.

When we make such a decomposition of the total variance then we see that V´i

is the sum of all the W
p

terms appearing in (8.25) which do not include the i’th
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point. As such the total e�ect index S
T

i

“ 1 ´ S´i

is the proportion of the total

variance accounted for by all the e�ect and interaction terms in (8.25) which do

involve the i’th parameter.

8.2.2 Inference for the Variance Decomposition

We would like to carry out inference for the posterior means and variances, after

constructing a GP emulator of the model output, of the various terms in (8.25), as

we did in § 8.1.2 for the decomposition of the mean. The complexity of the integrals

relative to how instructive they are rapidly gets out of hand here. I will attempt to

illustrate the calculation of the posterior mean of V
p

“ V tEpY | x

p

qu which is part

of the variance contribution of a sub-vector of p inputs, the posterior variance of

V
p

can be obtained but its complexity to information ratio is su�cient to prohibit

reproduction. Invoking the Eden formulae (8.19) and the definition of variance

V
p

“ V tEpY | x

p

qu “ E

 
EpY | x

p

q

2

(
´ E tEpY | x

p

qu

2 ,

“ E

 
EpY | x

p

q

2

(
´ EpY q

2.

Above in § 8.1.2 we computed E

‹
tErY su in (8.9) and V

‹
tEpY qu in (8.15), these are

all we need to obtain E

‹
tEpY q

2

u. The remaining term we need for the posterior

mean of V
p

is

E

‹
rEtEpY | x

p

q

2

us

“

ª

�

p

ª

�´p

ª

�´p

E‹
t⌘pxq⌘px˝

qudG´p|ppx´p

| x

p

qdG´p|ppx

1
´p

| x

p

qdGpx

p

q

“

ª

�

p

ª

�´p

ª

�´p

“
¯V
1

px,x˝
q ` m̄

1

pxqm̄
1

px

˝
q

‰
dG´p|ppx´p

| x

p

qdG´p|ppx

1
´p

| x

p

qdGpx

p

q

where here x

˝ is the vector made from the elements x

p

and x

1
´p

just as x is the vector

constructed from the elements x

p

and x´p

, in general the set p may not be a trivial

partition of the d possible elements there isn’t really a neater way to represent this.
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Writing the measure as d�
p

px´p

,x1
´p

,xq “ dG´p|ppx´p

| x

p

qdG´p|ppx

1
´p

| x

p

qdGpx

p

q,

the integrals over the posterior variance and mean are
ª

�

p

ª

�´p

ª

�´p

“
¯V
1

px,x˝
q

‰
d�

p

px´p

,x1
´p

,xq

“

ˆ�2

 
U

p

´ trpK´1

‚,‚P
p

q ` tr

`
W pQ

p

´ S
p

K´1

‚,‚H‚ ´ H|
‚ K´1

‚,‚S|
p

` H|
‚ K´1

‚,‚P
p

K´1

‚,‚H‚
˘(

ª

�

p

ª

�´p

ª

�´p

rm̄
1

pxqm̄
1

px

˝
qs d�

p

px´p

,x1
´p

,xq “ trpe

|P
p

eq ` 2trp

ˆ�S
p

eq ` trp

ˆ�Q
p

ˆ�q

These are given interms of the integrals

U
p

“

ª

�

p

ª

�´p

ª

�´p

¯V
1

px,x˝
q d�

p

px´p

,x1
´p

,xq,

P
p

“

ª

�

p

ª

�´p

ª

�´p

K‹,‚pxqK|
‹,‚px

˝
q d�

p

px´p

,x1
´p

,xq,

Q
p

“

ª

�

p

ª

�´p

ª

�´p

hpxqhpx

˝
q d�

p

px´p

,x1
´p

,xq,

S
p

“

ª

�

p

ª

�´p

ª

�´p

hpxqK‹,‚px

˝
q d�

p

px´p

,x1
´p

,xq.

From this we can obtain the posterior means of the main e�ect variances V
i

and

their complementary quantities V
T

i

, ideally we want to look at the standardized

quantities S
i

and S
T

i

however

E

‹
tS

i

u “ E

‹
„

V
i

VpY q

⇢
‰

E

‹
tV

i

u

E

‹
tVpY qu

.

Regardless of this the quantities on the far right hand side above are still useful to

examine.

8.3 A toy example

Let’s consider the following simple three parameter model

Y
m

pxq “ expp´0.1x2

1

` 0.2x
2

q ` 0.4 sinpx
3

q ` 0.1x
1

x
2

` 0.4x
2

x
3

, (8.26)
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after training a GP emulator on a 64 point LHS design we can estimate the main

e�ects and interactions (§ 8.1.2) and their contributions to the total variance. In the

top left panel Fig: 8.1 the main e�ects clearly show the sinusoidal term in x
3

and

vaguely hint at the Gaussian term in x
1

, however the role of x
2

is not very clear. If

we were to purely judge by this figure we might expect x
3

to be the dominant vari-

able. However after examining the pairwise terms we see that the range of values

in the plot of the joint e�ect z
1,2

px

1,2

q is significantly larger than any of the others,

suggesting that this interaction is very important. Finally we might conclude that

x
1

and x
3

are relatively independent of each other.
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F����� �.�: Posterior mean main e�ects and interactions for the toy model (8.26). Top
left panel: the posterior mean main e�ects E

‹
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i

qu for each parameter, the remaining
panels show the pairwise interactions E

‹
tz

i,j

px

i,j

qu.
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Table 8.1: Posterior mean contributions to the total observed variance for the parameters
and their first interactions, the interaction between x

2

and x

3

dominates.
param 100

E

‹tV
i

u
E

‹tVpY qu
p1 2.34
p2 10.50
p3 22.36
p1:p2 3.98
p1:p3 0.00
p2:p3 60.80
total 99.8

After consulting Table: 8.1 the table of estimated e�ect indexes S
i

it is imme-

diately clear that the interaction of x
2

and x
3

dominate, with the factor of three

smaller x
3

contribution as the next most important term. This is in line with what

we would expect from the form of the model (8.26). Finally we can conclude from

the table that at least up to the accuracy of our GP emulator the x
1

and x
3

variables

are indeed independent.

8.4 Application to ChemTreeN

In chapter 6 I outlined an analysis of the hybrid galaxy formation model ChemtreeN.

In the recent article [3] we continued to develop our understanding of the model

and applied the GP emulator based sensitivity analysis techniques described in

this chapter to examine the influence of an extended set of model inputs. The

training data is essentially the same as that described in § 6.2. The main changes

are as follows: we increased the number of slices through the luminosity function

to eight these now span M
V

“ r´3.5, . . . , ´17.5s; we switched from the linear fit to

the average metallicity-luminosity function (as shown in the right hand panel of

Fig: 6.1) to the cumulative distribution of average metallicity which was then sum-

marized by slicing it at four relatively equally spaced values; finally we increased

the number of calibration parameters set to seven (see Table: 6.1), f
1a

and ✏
SN

were
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also explored. For more details on the model and data see § 2 of [3].

In Fig: 8.2 the main e�ects for the eight slicings of the luminosity function are

plotted, the seven calibration parameters are all plotted on the same standardized

scale. From this figure it is possible to infer what parameters are most important

to explaining the variability observed on each observable. The main e�ects for all

the luminosity bins are dominated by f
bary

(solid black) and Z
r

(solid red), it is in-

teresting to note that the dominant e�ect switches between f
bary

for the luminosity

bins M
v

“ r´17.5, . . . , ´11.5s to Z
r

. Note as well that some parameters, such as

mII

Fe

and f
Ia

, do not show a strong influence on the values of the selected observ-

ables. In Fig: 8.3 the main e�ects for the four metallicity bins are plotted, careful

examination of these reveals that they are dominated by an entirely di�erent set

of parameters than the luminosity results.

Fig: 8.4 shows the results of applying the variance decomposition methods de-

scribed above to the expanded ChemTreeN model, for eight bins through the lumi-

nosity function. This graphical representation of the variance decomposition allow

us to quickly identify what input parameters are more important on explaining the

variability observed on each observable. The results largely confirm our intuition

developed from the plots of the main e�ects. The total variance in the dimmer

bins ´17.5, ´15.5, ´13.5 is dominated by contributions from the baryon fraction

f
bary

, at M
v

“ ´11.5 and brighter however the epoch of reionization becomes an

increasingly important factor. Further in this figure we can see that the interaction

between these two variables is non trivial, this information was not at all obvious

from the plots of the mean decomposition. A similar figure can be made for the

metallicity results. These results proved very useful in the selection of observables

and inputs needed for further analysis of the model, see § 4–5 of [3].
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9

Calibration

In this chapter we turn our attention back to the primary concern, that of finding

a set of true or best values for our unknown model parameters, model calibration.

Excellent references for calibration of computer models using GP emulators are the

papers by Kennedy and O’Hagan [5, 13] and Higdon et al [15, 16]. In this chapter

I will follow the general lines of the concise methodology outlined in [15] as this

is readily generalized to treat simulators with multivariate output as discussed in

[16].

Suppose we have a simulator Y
m

px, uq which has observation parameters x and

calibration parameters u and we are interested in using field observations Y
f

pxq to

learn about the ’true’ values u‹ of the calibration parameters. In the introduction I

laid out the following relations between measured field data Y
f

pxq which is mea-

sured with some observation error ✏
f

pxq, the true physical process Y
r

px, u‹q and

the simulator output Y
m

px, uq

Y
f

pxq “ Y
r

px, u‹q ` ✏
f

pxq, (9.1)

Y
r

px, u‹q “ Y
m

px, u‹q ` bpx, u‹q.
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Let’s suppose that we obtain a set of n observations of the field process Y
f

at lo-

cations D
f

“ tx
1

, . . . , x
n

u. To simplify the analysis here lets further suppose that

we understand the experimental data collection process enough to be able to accu-

rately characterize the observational errors with some distribution, typically this

will be a multivariate normal with some correlation structure.

Let’s restrict ourselves to the case of simulators that produce only a single out-

put, the processes outlined below can be generalized to work with multivariate

output using a suitable decomposition (see [16]), such as those discussed in chap-

ter 5.

9.1 Fast Faithful Model

The simplest calibration case we can address is one where the computer model Y
m

is su�ciently fast that we can e�ectively make an unlimited number of observa-

tions of the model at any location in the x, u parameter space that we wish.

Furthermore lets suppose that the simulator Y
m

px, uq faithfully simulates the

true physical Y
r

px, u‹
q system when evaluated at the true, but currently unknown,

values u “ u‹. Under this assumption we can simplify our model (9.1) to

Y
f

px
i

q “ Y
m

px
i

, u‹q ` ✏px
i

q, i “ 1 . . . n, (9.2)

where the n values x
i

P D
f

are the settings where the field observations are made.

It’s important to note that at this point we don’t actually know the values u‹, we will

model these as a random variable and use the field data and the model to make

inference about their values. Taking the field observation errors as independent

normal with some known standard deviation �
f

, we can write the likelihood of

the vector of n observations y
f

“ pY
f

px
1

q, . . . , Y
f

px
n

qq

| as

L py
f

| Y
m

pu‹qq 9 exp

"
´

1

2

py
f

´ Y
m

pu‹qq

|
⌃

´1

f

py
f

´ Y
m

pu‹qq

*
, (9.3)
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where the n element vector Y
m

pu‹q “ pY
m

px
1

, u‹q, . . . , Y
m

px
n

, u‹qq

| and ⌃
f

“ �2

f

I
n

.

This is to be interpreted as the probability for observing the field data y
f

given the

set of model outputs Y
m

pu‹q. Treating u‹ as a random variable we introduce a prior

distribution ⇡pu‹q which captures our prior uncertainty about the true calibration

values. Note that we are only sampling our model at the x parameter values that

we have field data for, this is reasonable since we believe the model is faithful at

this stage. The posterior distribution for u‹ given our prior and the observations

y
f

is then

⇡ pu‹ | y
f

q 9 L
`
y

f

| Y
m

pu‹q

˘
⇡pu‹q. (9.4)

Typically the full form of this posterior is intractable, unless our model is a very

simple function we will not be able to proceed much further algebraically. How-

ever we can use Markov Chain Monte Carlo (MCMC) [171, 169, 170] to generate

a series of samples u1

‹, . . . , usN

MC , if we generate enough samples then their em-

pirical distribution will (eventually) converge to the distribution of the posterior

⇡ pu‹ | y
f

q.

9.1.1 Metropolis MCMC Algorithm

The Metropolis algorithm [212] is a simple but e�ective implementation of MCMC,

it may be may well be familiar as it is the typical process introduced to numeri-

cally explore the Ising ferromagnetic model [213]. A common feature of MCMC

algorithms is that they typically scale very well with the dimensionality of the dis-

tribution being sampled.

I will outline the algorithm with the variables u‹ introduced above. The pro-

cedure itself is quite general and can be easily adapted to many situations where

one wants samples of some posterior distribution whose full form would be pro-

hibitively di�cult to obtain.

1. Pick some initial value for the calibration parameters u1

‹. The particular value
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is theoretically not important since the sampling procedure will “thermalize”

to the target distribution ⇡ pu‹ | y
f

q e�ectively forgetting the particular choice

u1

‹.

2. At step t the current sample is ut

‹, generate a new proposed sample u1
‹ from

some symmetric distribution, i.e. the proposal distribution must satisfy P put

‹ |

u1
‹q “ P pu1

‹ | ut

‹q.

3. Compute the Metropolis acceptance ratio

↵ “ min

"
1,

⇡ pu1
‹ | y

f

q

⇡ put‹ | y
f

q

*
. (9.5)

4. Accept the proposed step, ✓t`1

“ ✓‹ with probability ↵, otherwise reject the

proposal and set ✓t`1

“ ✓t. This can be done by generating a standard uni-

formly distributed random number r and accepting the proposed move if

r § ↵.

5. Iterate steps 2-4.

One of the great advantages of this procedure is that the posterior density only

enters in a ratio with itself, as such we only need to specify the terms which do not

cancel. In this case we can directly insert the product of ⇡pu‹q and (9.3).

Given a chain of draws u1

‹, . . . , usN

MC obtained from the MCMC procedure we

can histogram them to obtain an estimate of the posterior ⇡pu‹ | y
f

q. A good first

order of business is to compare this histogram with that of the prior distribution,

if the posterior histogram is more concentrated in the parameter space than the

prior then our observations have reduced our uncertainty in the true values u‹1.

Sample estimates of moments of the chain (such as the mean and variance etc) are

also estimates for the corresponding moments of the posterior distribution.
1 which is usually the whole point of the exercise
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Table 9.1: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | y

f

q, the prior
ranges are simply the appropriate normal quantiles.

HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.556 0.629 0.707

If the posterior is su�ciently peaked we might report the posterior mean and

variance of u‹ as a summary of the calibration procedure, credible intervals may

also be useful here, see [170].

9.1.2 A toy example

Lets consider the following toy model,

Y
m

px, uq “ 5x2

expp´3x2

q sinpx ´ uq ` 2, x P r0, 2s (9.6)

given n “ 4 observations equally spaced in x can we infer the true calibration

parameter u
star

? Taking the observation errors as i.i.d normal with standard de-

viation �
f

“ 0.025 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. Results

of using Metropolis MCMC procedure to sample (9.4) are shown in Fig: 9.1 and

summarized in Table: 9.1. Here 10000 Metropolis steps were used with a normal

proposal distribution centered on the current value u1
‹ | ut

‹ „ Nput

‹, 0.3
2

q. Given

the uncertainty in the field observations we should be rather satisfied with the

results of this procedure, we have strongly reduced the variability in our model

function so that posterior draws typically fall within the 95% confidence intervals

associated with our field data.

9.2 Slow Faithful Model

Now lets consider the slightly more realistic situation where our simulator is

su�ciently complex that we can only obtain a finite number d of runs Y “

tY
m

px
1

, u
1

q, . . . , Y
m

px
d

, u
d

qu generated from running the simulator at some design
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F����� �.�: Left: the four field observations making up y

F

are plotted as open circle with
95% confidence intervals, samples of Y

m

px, u‹q with u‹ drawn from the prior ⇡pu‹) are
shown in light red. The inset figure shows the prior density, the true value is shown as
the dashed blue line. Right: the light red curves are plots of Y

m

px, u‹q with u‹ drawn from
the MCMC posterior which approximates (9.4). The inset figure shows the prior density
⇡pu‹q (dashed) and the MCMC posterior density 9 ⇡ pu‹ | y

f

q.

D “ tpx
1

, u
1

q, . . . , px
d

, u
d

qu. Now we have to treat the simulator output Y
m

px, uq as

being unknown when evaluated at locations not in the design D. Let’s take the

total dimension of the parameter space as p “ p
x

` p
u

where p
u

is the number of

calibration parameters and p
x

is the number of observation parameters. Placing a

GP prior on the simulator with a constant mean µ and a power exponential prior

covariance function

Cppx, uq, px1, u1
qq “

1

�
m

exp

#
´

p

xÿ

k“1

px
k

´ x1
k

q

↵

p�m

k

q

↵

´

p

uÿ

k“1

pu
k

´ u1
k

q

↵

p�m

p

x

`k

q

↵

+
(9.7)

where the p
x

quantities �m

k

are the length scales for the observation and calibration

parameters and �
m

is the marginal precision.

The model (9.2) is again appropriate here. We have n field observations y
f

with

x
i

P D
f

and a set of d observations of our simulator Y with px
i

, u
i

q P D. We can

introduce the n`d length vector z “ py|
f

,Y|
q

| which corresponds to input settings

D
z

“ tpx
1

, u‹q, . . . , px
n

, u‹q, px
1

, u
1

q, . . . px
d

, u
d

qu. The first n observation parameter
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settings in z are from D
f

with the calibration parameters set to their unknown true

values. The remaining d sets of observation and calibration parameters are set by

the simulator design D.

Taking the same model for the field observations as above, we can write the

likelihood of our vector of samples and observations z given a value of the ’true’

parameters u‹ along with values of �
m

, ⌘ which specify the length scales in our GP,

Lpz | u‹, µ, �
m

, �m,⌃
f

q 9|⌃

z

|

´1{2
exp

"
´

1

2

pz ´ µI
n`d

q

|
⌃

´1

z

pz ´ µI
n`d

q

*
, (9.8)

where

⌃

z

“ ⌃

m

`

ˆ
⌃

f

0

0 0

˙
, ⌃

m

“

ˆ
⌃

y

f

y

f

⌃

y

f

Y

⌃

|
y

f

Y ⌃YY

˙

and⌃
m

is the pn`dˆn`dq matrix obtained by applying (9.7) to every pair of inputs

in the augmented set D
z

. When we sample the posterior associated with this like-

lihood and appropriate priors for the GP parameters and u‹ we will be e�ectively

estimating the distribution for u‹ as well as the distribution for the parameters con-

trolling GP covariance structure . While this is elegant one could always insert the

maximum likelihood estimates for the GP parameters �
m

, µ and � obtained using

the methods outlined in § 3.8 treating them as fixed quantities and then carry out

MCMC sampling for the unknown calibration parameters u‹.

Scaling the input parameter space onto the unit hyper cube r0, 1s

p

x

`p

u and cen-

tering and scaling the model output data so thatY has unit sample variance simpli-

fies the prior specification process. With the parameter space mapped onto the unit

cube we can identify unimportant parameters as those whose estimated length

scale is approximately 1. Taking a gamma prior for the marginal precision �
m

and

beta priors on the length scales
⇡p�

m

q9 �a

m

´1

m

e´b

m

�

m

⇡p�m

k

q9 p�m

k

q

a

�

´1

p1 ´ ⇢
k

q

b

�

´1, k “ 1, . . . , p
x

` p
u

.
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we can take a
m

“ b
m

“ 5 which pushes �
m

towards 1. For the correlation lengths

we take a
�

“ 1 and b
�

“ 0.1, this makes the prior probability of a length scale being

somewhat significant P p�m

k

† 0.98q «

1

3

. Centering the observations z allows us

to simplify things by taking µ “ 0, if this is somehow not appropriate we can of

course specify some prior form for the GP mean.

After conditioning on our vector of observations z “ py|
f

,Y|
q

| we obtain the

posterior

⇡pu‹, µ, �
m

, �m

| zq 9 Lpz | u‹, µ, �
m

, �m,⌃
f

q⇡pu‹q⇡pµq⇡p�
m

q⇡p�m

q, (9.9)

which we can again sample using MCMC methods. Given one such sample

pu‹, µ, �
m

, �m

q we can sample our GP emulator at any given point in the parameter

space Y
m

px1, u1
q just as we would using the drop-in emulators discussed in previ-

ous chapters. Essentially we obtain the conditional distribution of the emulator

at the new location given the simulator observations from their joint distribution

using (A.10).

9.2.1 A toy model

Lets consider the previous toy model,

Y
m

px, uq “ 5x2

expp´3x2

q sinpx ´ uq ` 2, x P r0, 2s (9.10)

given n “ 4 observations equally spaced in x and a set of d “ 32 observations of the

simulator distributed in the p “ 2 dimensional parameter space with a LHS design.

Again we will take the observation errors as i.i.d normal with standard deviation

�
f

“ 0.25 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. The posterior

mean of the resulting GP emulator m̄
1

px, uq is shown in Fig: 9.2, the values of �m

“

p0.0787, 0.142q and �
m

“ 1.138 were randomly drawn from the N
MC

“ 30, 000

MCMC samples.
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F����� �.�: Several views of the posterior mean m̄

1

px, uq of a GP emulator developed from
the 32 observations Y of (9.6). The red points are the training data set Y, the blue points
and line show the field observations. The emulator parameters, �

m

, �

m

were drawn at
random from the MCMC chain.

Table 9.2: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | zq, the prior ranges
are simply the appropriate normal quantiles.

HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

As in the previous example the left panel of Fig: 9.3 shows draws from the prior

distribution for u‹ as fine red lines. In addition the training data of 32 sample points

(projected into the x dimension) are plotted as the solid points, these correspond

with solid red points shown in Fig: 9.2. The right hand panel shows draws from

the posterior density ⇡pu‹ | zq, although somewhat noisy these are mostly well

grouped around the true value of the model function (plotted as the blue solid

line). The inset panel shows the posterior distribution for u‹ as the histogram with

solid bins, the prior density is drawn as the dashed line and the true value is drawn

as the vertical dashed blue line.
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F����� �.�: Left: the field observations y

f

are plotted as blue open circles of (9.10), the
training data Y projected into the x direction are plotted as red closed circles, the curves
are draws from Y

m

px, u‹q with u‹ drawn from the prior density. Right: the light red curves
are plots of Y

m

px, u‹q with u‹ drawn from the MCMC posterior which approximates (9.9).
The inset figure shows the prior density ⇡pu‹q (dashed) and the MCMC posterior density
⇡pu‹, | zq

Admittedly the performance is not quite so beautiful as in the case with the

fast model in terms of the posterior draws. This is still a very good result given

the relatively small number of training points. The posterior distribution for u‹ is

significantly constrained as shown in Table: 9.2. The performance could likely be

improved, in the sense of posterior draws more perfectly approximating the true

output, by increasing the number of MCMC samples and optimizing the proposal

distributions and perhaps by considering alternative forms for the prior.

9.3 Slow Unfaithful Model

If we have reason to believe that there is a systematic di�erence between the output

of our simulator and the observational data, i.e. that our model is no longer a

faithful representation of reality, we may still be able to obtain some interesting

information about the true values of the calibration parameters u‹. Typically the

“smaller” the discrepancy is the more we can learn about u‹. We now adopt the
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model

Y
f

px
i

q “ Y
m

px
i

, u‹q ` �px
i

q ` ✏px
i

q, i “ 1 . . . n, (9.11)

where �px
i

q is a function which represents the systematic deviation between our

simulator and reality. We model the discrepancy with a mean zero Gaussian Pro-

cess with covariance function

C
�

px, x1
q “

1

�
�

exp

#
´

1

2

p

xÿ

k“1

px
k

´ x1
k

q

↵

p��

k

q

↵

+
, (9.12)

and take similar priors to those used above for the model GP

⇡p�
�

q9 �a

�

´1

�

e´b

�

�

m , (9.13)

⇡p��

k

q9 p��

k

q

a

�

�

´1

p1 ´ ⇢
k

q

b

�

�

´1, k “ 1, . . . , p
x

. (9.14)

Suggested values are given by Higdon et al as a
�

“ 1 , b
�

“ 0.11 and a�

�

“ 1, b�

�

“ 0.1

in [16]. The likelihood for our augmented vector z is structurally the same as (9.8)

with the modified covariance matrix

⌃

z

“ ⌃

m

`

ˆ
⌃

f

` ⌃

�

0

0 0

˙

where ⌃
m

is the pn ` d ˆ n ` dq matrix obtained by applying (9.7) to every pair of

inputs in the augmented setD
z

,⌃
f

is the pnˆnq covariance matrix of the field data,

and ⌃
�

is the pn ˆ nq matrix obtained by evaluating (9.12) at every pair of points in

the observation design D
f

. After conditioning on our vector of observations z the

posterior is now

⇡pu‹, µ, �
m

, �m, �
�

, ��

| zq 9 Lpz | u‹, µ, �
m

, �m, �
�

, ��,⌃
f

qˆ

⇡pu‹q⇡pµq⇡p�
m

q⇡p�m

q⇡p��

q⇡p�
�

q, (9.15)

which can be sampled to obtain realizations of the vector pu‹, µ, �
m

, �m, �
�

, ��

q.

These realizations can be used to obtain posterior predictions for the model out-

put at any point in the untried space Y
m

px1, u1
q, the discrepancy function at any
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location �px1
q and the ’real’ physical process at any point of interest Y

r

px1, u‹q “

Y
m

px1, u‹q ` �px1
q.

9.4 A Heavy Ion Analysis

In [1] we considered a 3`1d viscous hydrodynamic+microscopic transport model

of Au+Au collisions at
?

S “ 200 AGeV at RHIC, the model was developed by

S.Pratt et al and is described in detail in the article.

Six calibration parameters were identified (see Table: 9.3), with four of these

describing various aspects of the initial state and the two ⌘{s and ↵ describing vis-

cous aspects of the hydrodynamics flow. Inference about all of these parameters is

highly desirable. The initial state of heavy ion collisions is widely believed to cur-

rently be the largest source of uncertainty in most calculations of bulk evolution.

The shear viscosity to entropy ratio ⌘{s and its temperature dependence ↵ are ex-

tremely interesting as these are fundamental properties of the strongly-interacting

QGP.

A novel feature of this analysis is that the initial state is described with prescrip-

tions for the initial energy density and flow profiles that can be adjusted para-

metrically. The initial energy density ✏px, yq is constructed as a balance between

wounded nucleon (Glauber) and saturation (CGC) based profiles, this balance is

controlled by f
wn

. The parameter �
sat

controls the cross-section scale for chang-

ing the behavior of the saturation model from the binary collision limit where

✏ „ T
A

T
B

(where T
X

is the nuclear thickness function, essentially the density of

the nucleus projected into the plane transverse to the beam axis) to the saturated

limit when ✏T
min

. The change occurs for T
max

« 1{�
sat

.

The initial transverse flow profile is approximated as being proportional to

T
0i

{T
00

where T
µ⌫

is the stress energy tensor (see § 2.1), the extent of this propor-
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Table 9.3: Summary of model parameters. Six model parameters were varied. The first
four describe the initial state being fed into the hydrodynamic module, and the last two
describe the viscosity and its energy dependence.

parameter description range
pdE{dyq

pp

The initial energy per rapidity in the di�use limit com-
pared to measured value in pp collision

0.85–1.2

�

sat

This controls how saturation sets in as function of
areal density of the target or projectile. In the
wounded nucleon model it is assumed to be the free
nucleon-nucleon cross section of 42 mb

30 mb–50 mb

f

wn

Determines the relative weight of the wounded-
nucleon and saturation formulas for the initial energy
density

0–1

F

flow

Describes the strength of the initial flow as a fraction
of T

0i

{T

00

0.25–1.25

⌘{s|

T

c

Viscosity to entropy ratio for T “ 170 MeV 0 – 0.5
↵ Temperature dependence of ⌘{s for temperatures

above 170 MeV/c, i.e., ⌘{s “ ⌘{s|

T

c

` ↵ lnpT {T

c

q

0 - 5

tionality is set by the parameter F
flow

. The shear-viscosity ⌘ arises as a constant in

the Israel-Stewart gradient expansion of the hydrodynamical equations of motion,

a temperature dependence for the shear viscosity to entropy density ratio in the

QGP phase ⌘{s was taken as

⌘

s
“

⌘

s

ˇ̌
ˇ
T

c

` ↵ ln

ˆ
T

T
c

˙
.

A wide range of observables were initially collected and considered for use

in a calibration procedure with runs being made in two centrality bins 0 ´ 5%

and 20 ´ 30%. A 729 point LHS design was used for each centrality class. The

outputs selected (see Table: 9.4) include average particle multiplicities and trans-

verse momenta, the average elliptic flow and two-particle correlations in the form

of Hanbury-Brown-Twiss (HBT) source radii [214, 215]. These observations were

reducing using principle components and then a scheme roughly similar to that

outlined in § 9.2 was used to obtain posterior distributions for the calibration pa-

rameters, with initially flat priors ⇡pu‹q9⇥p1 ´ u‹q.

The marginal and joint posterior distributions for the calibration parameters are
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F����� �.�: The marginal posterior distributions of the six calibration parameters are
shown along the diagonal. The o�-diagonal plots display the joint distributions of the
calibration parameters. Four of the six parameters refer to the initial state (hence the “I.C.”
in their name) and the last two describe the shear viscosity.
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Table 9.4: Observables used to compare models to data. ˚To account for non-flow corre-
lations, the value of v

2

was reduced by 10% from the value reported in [216].
observable p

t

weighting centrality ref err
v

2,⇡

`
⇡

´ ave. over 11 p
t

bins from 160
MeV/c to 1 GeV/c

20-30% [216]˚ 12%

R
out

ave. over 4 p
t

bins from 150-500
MeV/c

0-5% [217] 6%

R
side

ave. over 4 p
t

bins from 150-500
MeV/c

0-5% [217] 6%

R
long

ave. over 4 p
t

bins from 150-500
MeV/c

0-5% [217] 6%

R
out

ave. over 4 p
t

bins from 150-500
MeV/c

20-30% [217] 6%

R
side

ave. over 4 p
t

bins from 150-500
MeV/c

20-30% [217] 6%

R
long

ave. over 4 p
t

bins from 150-500
MeV/c

20-30% [217] 6%

xp
t

y

⇡

`
⇡

´ 200 MeV/c † p
t

† 1.0 GeV/c 0-5% [218] 3%
xp

t

y

K

`
K

´ 400 MeV/c † p
t

† 1.3 GeV/c 0-5% [218] 3%
xp

t

y

pp̄

600 MeV/c † p
t

† 1.6 GeV/c 0-5% [218] 3%
xp

t

y

⇡

`
⇡

´ 200 MeV/c † p
t

† 1.0 GeV/c 20-30% [218] 3%
xp

t

y

K

`
K

´ 400 MeV/c † p
t

† 1.3 GeV/c 20-30% [218] 3%
xp

t

y

pp̄

600 MeV/c † p
t

† 1.6 GeV/c 20-30% [218] 3%
⇡`⇡´ yield 200 MeV/c † p

t

† 1.0 GeV/c 0-5% [218] 6%
⇡`⇡´ yield 200 MeV/c † p

t

† 1.0 GeV/c 20-30% [218] 6%

shown in Fig: 9.4. Although over 90% of the six-dimensional parameter space is

eliminated at the one-sigma level, the individual parameters are rarely constrained

to less than half their initial range when other parameters are allowed to vary.

The first four parameters (“I.C. PP NORM”, “I.C. SAT �”, “I.C. W.N. FRAC”

and “I.C. FLOW”) determine the initial state fed into the hydro. The first param-

eter “I.C. PP NORM” sets the constant of proportionality between the product of

the areal densities of the incoming nuclei, and the initial energy density fed into

the hydro. In the limit of low aerial densities this should be consistent with pp col-

lisions. Thus, the range of the prior distribution was quite small, and the statistical

analysis did little to further constrain it. The parameter “I.C. SAT �” refers to �
sat

and parameterizes the saturation of the energy density with multiple collisions.
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The preferred value appears rather close to the value of 42 mb typically used in the

wounded nucleon model, though there is a fairly wide range of accepted values.

The parameter “I.C. W.N. FRAC” sets the weights between the wounded nucleon

and the saturation parameterizations. This shows a preference for the wounded

nucleon prescription which gives a smaller initial anisotropy than the saturation

parameterization. The final initial-condition parameterization, “I.C. FLOW” sets

the fraction of initial transverse flow in the hydrodynamic calculation. The pos-

terior points to a rather small fraction of this flow, though like all of the initial-

condition parameters has a fairly broad range of possible values.

The last two parameters refer to the viscosity. The viscosity at T “ 170 MeV is

referred to as “⌘{s” in Fig: 9.4, and the temperature dependence is labelled by “T

DEP. of ⌘”. Both are significantly constrained as a fraction of the original param-

eter space. The range of ⌘{s is consistent with similar, but less complete, searches

through parameter space using similar models [33, 61]. In [219], the authors found

little sensitivity to the viscosity at higher temperatures, but considered a smaller

variation of the viscosity with temperature than was considered here.

Figure 9.4 also shows the pairwise joint posteriors of the calibration parameters

. Several parameters are strongly correlated. For instance, the energy normaliza-

tion “I.C. PP NORM” and “I.C. SAT �” are strongly correlated in that one can have

less saturation of the cross section if the energy normalization is turned down.

There is also a strong correlation between “I.C. FLOW” and “I.C. W.N. FRAC”. One

can compensate for less initial flow if the saturation prescription is more heavily

used than the wounded nucleon. Again, this is expected because the wounded

nucleon parameterization leads to less spatial anisotropy and a somewhat more

di�use initial state.

The inferred viscosity is clearly correlated with the weighting between the

wounded nucleon and saturation parameterizations, as expected from the argu-
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ments in [60]. The two viscous parameters are also correlated with one another as

expected. One can compensate for a very low viscosity at T “ 170 MeV by hav-

ing the viscosity rise quickly with temperature. Higher values of the temperature

dependence ↵ are increasingly unlikely for higher values of ⌘{s|

T

c

.

The procedures applied here represent a significant improvement to the state-

of-the-art for comparisons of data and models in the field of relativistic heavy

ion physics. Previously, parameters were varied either individually, or in small

groups.
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10

Afterword
I was the smudge of ashen flu�–and I
Lived on, flew on, in the reflected sky

Computer models are an essential tool in the study of complicated physical

systems, in fact they often seem to be unavoidable. In this thesis I have introduced

the concept of the computer experiment, the systematic analysis of a computer

model and it’s inputs and outputs as a means for not just understanding the model

but also the potential rolê it can play in making strong statements about observable

and un-observable physical quantities.

While these ideas are not entirely cutting edge in and of themselves, their prac-

tical application/adoption is presently rather confined to experts or at least to

those projects which can a�ord to devote a graduate student to become an ap-

proximate expert. The results and experiences that I have collected here should

hopefully serve to ameliorate this situation. As illustrated in chapter 2 there are a

great many ripe opportunities for the careful application of computer experiments

in the field of Heavy-Ion physics, where almost all the quantities of interest are not

directly observable. The techniques themselves are general and can and should be

applied widely in the physical sciences.

The direct calibration of Heavy Ion bulk evolution simulators will lead to pre-
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cision estimates of the shear viscosity and other transport coe�cients, has already

begun in [1, 33] (§ 9.4). Furthermore with a su�ciently well calibrated model the

loop between experimental and computational data might be closed enough to al-

low direct inference about the plausible initial conditions which lead to a given

set of experimental observables [220]. There is great potential for studying how

experimental data and a calibrated model constrain “un-observable observables”

such as the simulated initial energy and flow distributions of the system in a given

model, this is a very intriguing prospect.

A similarly bright future exists in the application of these techniques to the

study of jet quenching in heavy ion physics, values of (or really distributions for)

q̂ and ê can be extracted from the various advanced transport models and these

should be subject to careful scrutiny and happily these e�orts are already under-

way although perhaps in a slightly ad-hoc fashion [157, 221, 158, 131, 155]. Finally

it might be very interesting to turn this calibration process on its head and under-

take a top down (primarily experimentally driven) approach to understanding jet

quenching. Alongside the more traditional focus on accepting or rejecting a par-

ticular microscopic theoretical model of in-medium jet transport described above

I suggest a new approach based on attempting to estimate the scale and nature

of the family of general jet modification kernels that are compatible with a given

set of observations. Taking advantage of the relatively low theoretical uncertainty

in the treatment of the bulk evolution of the QGP, even lower once one is using a

really well calibrated model, along with the well understood vacuum jet produc-

tion process it may be possible to invert the experimental data to give a range of

acceptable quenching forms, using a Gaussian Process as a prior on our family of

modification kernels.
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Appendix A

Some Useful Results

A.1 Block Matrix Inverse

If A, C and C´1

` DA´1B are nonsingular square matrices then the following is

true

pA ` BCDq

´1

“ A´1

` A´1BpC´1

` DA´1Bq

´1DA´1. (A.1)

Further if we write

ˆ
A B
C D

˙ ˆ
X Y
Z U

˙
“

ˆ
I
m

0

0 I
n

˙
. (A.2)

Then by the definition of the matrix inverse

ˆ
X Y
Z U

˙
“

1

pAD ´ BCq

ˆ
D ´B

´C A

˙
. (A.3)

Which we can re-arrange to obtain some common factors

ˆ
X Y
Z U

˙
“

„
pA ´ BD´1Cq

´1

´A´1BpD ´ CA´1Bq

´1

´D´1CpA ´ BD´1Cq

´1

pD ´ CA´1Bq

´1

⇢
. (A.4)
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If we multiply the X and A matrices the other way around we find that

ˆ
X Y
Z U

˙
“

„
pA ´ BD´1Cq

´1

´pA ´ BD´1Cq

´1BD´1

´pD ´ CA´1Bq

´1CA´1

pD ´ CA´1Bq

´1

⇢
. (A.5)

Which are equivalent. Now we can use these results to find the inverse of an pm `

1q ˆ pm ` 1q matrix M in block form

M “

ˆ
A B
BT C

˙
. (A.6)

After a little algebra we obtain

M´1

“

ˆ
A´1

`

1

k

A´1BBT A´1

´

1

k

A´1B
´

1

k

BT A´1

1

k

˙
(A.7)

Where k “ C ´ BT A´1B. This is the Sherman-Morrison-Woodbury inversion for-

mula, it’s fun to think of A, B, C as representing each of the authors.

A.2 Gaussian Identities

The probability density for a p dimensional multivariate normal variable, with

mean vector µ and covariance matrix ⌃ is

fpx | µ,⌃q “

1

p2⇡q

p

|⌃|

1{2 exp

ˆ
´

1

2

px ´ µq

|
⌃

´1

px ´ µq

˙
(A.8)

Let x and y be jointly distributed Gaussian random vectors, their joint distribution

is
ˆ

x
y

˙
„ MVN

"ˆ
µ

x

µ
y

˙
,

ˆ
A C
C| A

˙*
. (A.9)

Where the block matrix C can be thought of as setting the degree of statistical

dependence, or lack of independence between the two vectors. The conditional

distribution of x given a particular value of y “ ỹ is

fpx | y “ ỹq „ MVN

`
µ̄, ¯

⌃

˘
, (A.10)
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where the conditional mean depends on the value taken by y

µ̄ “ µ
x

` CB´1

pỹ ´ mu
y

q (A.11)

and the conditional covariance is independent of y

¯

⌃ “ A ´ CB´1C|. (A.12)

To see why this is so let us first note the following fact, if X „ MVNpµ,⌃q then

any linear combination a1X “ a
1

X
1

` . . . has distribution: a1X „ MVNpa1µ, a1
⌃aq,

[183]. Let us define the block matrix

� “

ˆ
I ´CB´1

0 I

˙
,

if we label the joint distribution of x and y given in (A.9) as X then

�pX ´ µq “

ˆ
x ´ µ

x

y ´ µ
y

˙
,

“

ˆ
x ´ µ

x

´ py ´ µ
y

qCB´1

y ´ µ
y

˙
“

ˆ
x1

y1

˙
, (A.13)

is jointly normal with covariance matrix �⌃�|

�⌃�

|
“

ˆ
A ´ CB´1C|

0

0 B

˙
. (A.14)

Note that we can immediately conclude that under this transform x1 is independent

of y1. Again if we are given the value y “ ỹ then

x1
„ MVN

`
0, A ´ CB´1C|˘

(A.15)

and µ
x

` CB´1

pỹ ´ µ
y

q is a constant. By the independence of x1 and y1, the condi-

tional distribution of x1 given y “ ỹ is the same as its unconditional distribution,

then we can write

x|y „ MVN

`
µ

x

` CB´1

pỹ ´ µ
y

q, A ´ CB´1C|˘
(A.16)
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which is the desired result.

The product of two Gaussians is another Gaussian

Npx | a, AqNpx | b, Bq “ Z´1

Npx | c, Cq, (A.17)

c “ CpA´1a ` B´1bq, C “ pA´1

` B´1

q,

where the normalization constant is itself another Gaussian

Z´1

“ p2⇡q

p{2
|A ` B|

´1{2
exp

ˆ
´

1

2

pa ´ bq

|
pA ` Bq

´1

pa ´ bq

˙
. (A.18)

A.3 Some Probability Things

For lots of fascinating reading about probability, Bayes and otherwise consult [222,

223, 170, 169, 224]. The particle data group reviews on statistics and probability

give an experimental physics perspective on some of these issues [225].

A.3.1 Bayes Theorem

P pA | Bq “

P pB | AqP pAq

P pBq

(A.19)

A.3.2 Poisson distribution

fpx; �q “ PrpX “ kq “

�ke´�

k!

(A.20)

F px; �q “ PrpX § kq “ e´�

tkuÿ

i“0

�i

i!
(A.21)

The mean and variance ErXs “ VrXs “ � are both equal to the rate.

A.3.3 Student-t distribution

The Student-t or just t distribution with ⌫ arises from considering the distribution

of the sample mean x̄ “

1

n

∞
n

i“1

X
i

of a set of n “ ⌫ ` 1 samples from some popula-

tion, i.e. the distribution of sample means that would be obtained after making a
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large number of repeated observations from the same population. If we introduce

the sample variance s2

“

1

n´1

∞
n

i“1

pX
i

´ µ̄q

2 then the centralized and standardized

quantity
x̄ ´ µ

s{

?

n
„ t

⌫“n´1

(A.22)

is t distributed with n ´ 1 degrees of freedom, where µ is the population mean.

fpx; ⌫q “

�

`
⌫`1

2

˘
?

⌫⇡
�

´⌫

2

¯ ˆ
1 `

x2

⌫

˙´⌫` 1
2

(A.23)

F px; ⌫q “

1

2

` x�

ˆ
⌫ ` 1

2

˙
2

F
1

ˆ
1

2

,
⌫ ` 1

2

;

3

2

; ´

x2

⌫

˙
1

?

⇡⌫�
`

⌫

2

˘ (A.24)

The mean is zero and the variance VrXs “

⌫

⌫´2

, examining the density it’s clear

that in the limit ⌫ Ñ 8 the distribution will become normal using the well known

result lim

nÑ8

´
1 `

x

n

¯
n

“ exppxq.

The noncentral Student-t distribution is a generaliztion, if Z „ Np0, 1q and V „

�2

k

and V and Z are statistically independent then the variable T ,

T “

Z ` µ
?

V {k
„ t

k,µ

(A.25)

has a noncentral t distribution with k degrees of freedom and noncentrality pa-

rameter µ. The CDF is

F
k,µ

pxq “

$
&

%

1

2

∞8
j“0

1

j!

p´µ
?

2q

je
´µ

2

2
�p j`1

2 q
�p1{2q I

`
k

k`x

2 ;
k

2

, j`1

2

˘
, x • 0

1 ´

1

2

∞8
j“0

1

j!

p´µ
?

2q

je
´µ

2

2
�p j`1

2 q
�p1{2q I

`
k

k`x

2 ;
k

2

, j`1

2

˘
, x † 0

(A.26)

where Ipx, a, bq “

Bpx;a,bq
Bpa,bq is the regularized incomplete beta function, where

Bpx, a, bq “

ª
x

0

ta´1

p1 ´ tqb´1 dt, Bpa, bq “

�paq�pbq

�pa ` bq

.
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The density is

fpxq “

$
&

%

k

x

!
F

k`2,µ

´
x

b
1 `

2

k

¯
´ F

k,µ

pxq

)
, if x ‰ 0,

�p k`1
2 q?

⇡k�p k

2 q exp

´
´

µ

2

2

¯
, if x “ 0.

(A.27)

The mean and variance exist as long as k is large enough,

E rT s “ µ

c
k

2

�ppk ´ 1q{2q

�pk{2q

, if k ° 1, (A.28)

Var rT s “

kp1 ` µ2

q

k ´ 2

´

µ2k

2

ˆ
�ppk ´ 1q{2q

�pk{2q

˙
2

, if k ° 2. (A.29)

A.3.4 Chi-Squared distribution

If X
1

, . . . X
k

are independent standard normal random variables then the sum of

their squares is chi-squared distributed with k degrees of freedom

Q “

kÿ

i“1

X2

i

ùñ Q „ �2

k

, (A.30)

the density and distribution functions are

fpx; kq “

1

2

k{2
�

`
k

2

˘x
k

2 ´1e´ x

2 , x • 0 (A.31)

F px; kq “

1

�

`
k

2

˘�

ˆ
k

2

,
x

2

˙
, (A.32)

�px, sq “

ª
x

0

ts´1e´t dt.

where �px, sq is known as the lower incomplete gamma function. The mean of a �2

k

distribution is k and the variance is 2k. It may be useful to note that the sum of

independent chi-squared variables is also chi-squared, i.e. if X
i

„ �2

k

i

then if we

define Z “

∞
n

i“1

X
i

, Z „ �2∞
n

i“1 k

i

. Asymptotically in the number of degrees of free-

dom k, a standardized �2

k

variable converges in distribution to a standard normal,
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i.e. as k Ñ 8

p

�

2
k

´k

q?
2k

d

Ñ Np0, 1q. If Z is a n dimensional Gaussian random vector

with mean µ and rank k covariance matrix C then the sum of squared distances

X “ pZ ´ µq

| C´1

pZ ´ µq , X „ �2

k

,

this result is clear if we imagine diagonalizing C first. If X
1

„ �2

k1
and X

2

„ �2

k2

then the ratio Y “

k2X1
k1X2

is F distributed, Y „ F pk
1

, k
2

q. The F distribution comes

up fairly often in the context of linear modelling, the details of the distribution are

fairly tedious and best found by consulting a standard references [174, 226].

A.4 Assessing Normality

A.4.1 Univariate Data

Given a set of d samples Y “ ty
1

, . . . , y
d

u where we believe that the samples are

roughly normally distributed, we can compute the sample mean µ̄ “

1

d

∞
d

i“1

y
i

and

sample standard variance s2

“

1

d

∞
d

i“1

py
i

´ µ̄q

2 in the usual way and then we want

to assess if
Y ´ µ̄

s
„ Np0, 1q.

A nice visual way to do this is by making a so called quantile-quantile (QQ) plot,

here one plots a set of empirical quantiles generated from the sample data set

against theoretical quantiles from the distribution of interst. Essentially one is

plotting a set of points from the CDF of the sample against the same set of points

from the CDF of the test distribution. In this case if the samples are well described

by a normal distribution the graph should be a relatively straight line, the major

advantage of a QQ plot is that it allows one to rapidly assess the location of any

deviations.

A contrived example using a QQ plot for some diagnostics is shown in Fig: A.1.

A set of 256 samples were drawn from a �2 distribution, in the left panel empirical
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quantiles for these samples are plotted against those of a standard normal distri-

bution, the red-line shows what one would expect if the samples were normally

distributed. Although the central part of the sample QQ curve looks roughly linear

its clear that there are serious deviations at both tails of the sample distribution,

confronted with this sort of plot one would not be convinvced of the normality of

ones samples. In the right panel I have plotted the sample quantiles against theo-

retical quantiles from a �2 distribution with 4 degrees of freedom. The agreement

here is far better at the left tail although there is still some deviation at the right

tail. This remaining deviation is a result of drawing a finite number of samples

from a distribution with long tail.
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F����� A.�: Two QQ plots for a set of 256 samples drawn from a �

2

4

distribution. In the
left panel the sample quantiles are plotted against theoretical quantiles from a standard
normal distribution. In the right panel the sample quantiles are plotted against theoretical
quantiles from the population distribution namely �

2

4

. In both panels the red curve shows
the expected result if the sample and theoretical distributions were identical.

A.4.2 Multivariate Data

Given a set of d sample vectors Y “ ty
1

, . . . , y
d

u where each sample is a k-length

vector y|
1

“ py1

1

, . . . , yk

1

q

| we can construct the sample mean (a k vector) in the usual

way

µ̂↵

“

1

d

dÿ

i“1

y↵

i

,

170



we can also construct the elements of the sample covariance matrix ˆ

⌃ (k ˆ k)

ˆ

⌃

↵�

“

1

d

dÿ

i“1

py↵

i

´ µ̂↵

q

´
y�

i

´ µ̂�

¯
.

We can then introduce the set of squared distances d2

j

d2

j

“ py
j

´ µ̂q

ˆ

⌃

´1

py
j

´ µ̂q

| . (A.33)

If the data Y is multivariate normally distributed then we would expect that these

distances to have a �2 distribution with degrees of freedom given by the rank r § k

of ˆ

⌃ [183]

d2

j

„ �2

r

. (A.34)

Now we have obtained a set of quantities d2

j

which can be easily visually examined

with QQ plots, but here the theoretical quantiles we’re plotting our data against

are those of a �2

r

distribution.
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