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Abstract: We consider G2 manifolds with a cohomogeneity two T
2 ×SU(2) symme-

try group. We give a local characterization of these manifolds and we describe the ge-
ometry, including regularity and singularity analysis, of cohomogeneity one calibrated
submanifolds in them. We apply these results to the manifolds recently constructed by
Foscolo–Haskins–Nordström and to the Bryant–Salamon manifold of topology S/(S3).
In particular, we describe new large families of complete T

2-invariant associative sub-
manifolds in them.

1. Introduction

In a Riemannian manifold, parallel transport with respect to the Levi-Civita connection
is used to define its Riemannian holonomy group. The groups that can appear as the
holonomy of a simply-connected, nonsymmetric and irreducible Riemannian manifold
were classified by Berger [Ber53]. All but two elements of Berger’s list come in a
countable family depending on the dimension of the manifold. The exceptional cases
are G2 and Spin(7), which are only related to Riemannian manifolds of dimension 7
and 8, respectively. Manifolds with holonomy G2, called G2 manifolds, are Ricci-flat
[Sal89, Lemma 11.8] and admit two natural classes of volume minimizing submanifolds:
the associative 3-folds and the coassociative 4-folds, which are, in particular, calibrated
submanifolds [HL82].

Bryant and Salamon constructed the first complete G2 manifolds with full holonomy
more than 30 years ago in [BS89]. Since then, much effort has been spent to con-
struct new examples (e.g. [BGGG01,Bog13,FHN21a,FHN21b,Fos21,MS12,MS19])
and study their calibrated submanifolds (e.g. [Kaw18,KL12,KL21,KMO05]). Even
though we now have a lot of examples of complete non-compact manifolds with Rieman-
nian holonomy G2 (mainly because of the seminal work by Foscolo–Haskins–Nordström
and Foscolo [FHN21a,FHN21b,Fos21]), only a few non-trivial associative and coasso-
ciative submanifolds were constructed in them.
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One of the most successful techniques used to construct non-compact G2 manifolds
is symmetry reduction, which means that the manifold admits a structure-preserving,
hence isometric, Lie group action. Particular attention has been given to the cohomo-
geneity one and to the abelian case. Indeed, under the former assumption, the system
of PDEs characterising the G2 holonomy condition becomes a system of ODEs and
many examples were constructed in this way (cfr. [BGGG01,Bog13,BS89,FHN21b]).
Under the latter assumption, the problem reduces to finding a torus bundle with cur-
vature constraints over a lower dimensional manifold with some special structure (cfr.
[AS04,CS02,MS12,MS19]). This technique often relies on the multi-moment maps in-
troduced by Madsen and Swann in [MS12,MS13], which are generalisations of classical
moment maps in symplectic geometry. The authors are not aware of any previous at-
tempt towards a better understanding of the intermediate case, i.e. non abelian groups
of higher cohomogeneity.

For what concerns calibrated geometry, associative and coassociative submanifolds
are in general hard to construct. Indeed, they are solutions of a system of non-linear PDEs.
However, in the setting above, we have special calibrated submanifolds which are easier
to study: the ones that are invariant under a cohomogeneity one symmetry. Indeed, the
invariance turns the system of PDEs into a system of ODEs on the set of orbits. This idea
was successful on the flat R

7 with the standard G2-structure [HL82,Lot05,Lot07] and
on the Bryant–Salamon manifold of topology �2−(S4) and �2−(CP

2) for coassociative
submanifolds [Kaw18,KL21]. Note that in both cases the G2-structure of the manifold
is explicit, and so is the system of ODEs.

By the local existence and uniqueness theorem for associatives and coassociatives
[HL82] (or simply by ODE theory), the calibrated submanifolds constructed in this way
do not intersect and are smooth in the principal set of the action. However, this may
not be the case in the singular set (i.e., the set where the orbits of the action are lower
dimensional). Indeed, there are examples of singular and/or intersecting cohomogeneity
one calibrated submanifolds, such as the T

2-invariant special Lagrangian cone in C
3,

called Harvey–Lawson cone, which induces a T
2-invariant associative cone in R

7 (see
[HL82,KL21,Lot05,Lot07] for further examples).

If we consider T
3-invariant coassociatives, Madsen and Swann observed in [MS19]

that the multi-moment maps related to the T
3-action are first integrals of the coassociative

system, which completely determine the desired submanifolds for dimensional reasons.
Afterwards, the connection between non-abelian multi-moment maps and calibrated
submanifolds was investigated by Karigiannis–Lotay [KL21] and the second named
author [Tri23] on the G2 Bryant–Salamon manifolds and on the Spin(7) Bryant–Salamon
manifold, respectively.

Another method used on the Bryant–Salamon spaces �2−(S4) and �2−(CP
2) was to

look for calibrated submanifolds which are (possibly twisted) vector subbundles over
suitable submanifolds of the zero section [KL12,KMO05]. Neither the cohomogeneity
one nor the vector subbundle technique were adapted to the Bryant–Salamon manifolds
of topology S3 × R

4, where the only known calibrated submanifolds were the zero
section, which is associative, and the fibres over a given point, which are coassociatives.
To the best knowledge of the authors, the last idea used to construct non-trivial examples
of complete calibrated submanifolds in non-flat and non-compact G2 manifolds is by
using fixed sets of involutions [KN10].

Note that even though we lose the calibrated condition, hence the volume minimizing
property, the notion of associative and coassociative submanifolds makes sense and has
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been studied for weaker notions of G2 manifolds, such as closed, co-closed or nearly-
parallel G2 manifolds (cfr. [BM20,BM21,BM22,Kaw15,Lot12] and references therein).

An additional important aspect of manifolds with special holonomy, which we only
tangentially touch upon in this paper, is finding and making use of calibrated fibrations.
These objects are not only interesting from a mathematical perspective but should also
play a crucial role in mathematical physics (cfr. the SYZ conjecture [SYZ96] and its
generalizations [GYZ03]). For this reason, calibrated fibrations in manifolds of special
holonomy have been widely studied by both communities (e.g. [Ach98,Bar10,Don17,
KL21,Li19,LL09,Tri23]).

1.1. Main results. In this work, we investigate G2 manifolds endowed with a structure-
preserving, cohomogeneity two action of the non-abelian Lie group T

2 ×SU(2), and
the related calibrated geometry. Note that there are a lot of G2 manifolds with such a
group action. For instance, the large class of examples constructed by Foscolo–Haskins–
Nordström in [FHN21b] (FHN manifolds for brevity) has the desired symmetry, in fact,
they admit a SU(2)×SU(2)×U(1) cohomogeneity one and structure-preserving action.
Moreover, all simply-connected complete G2-manifolds with SU(2) × SU(2) × U(1)-
symmetry arise in this way ([FHN21b, Theorem 7.3]). Special elements of this family
are the Bryant–Salamon manifold of topology S3 × R

4 and the asymptotically locally
conical manifolds constructed by Bogoyavlenskaya [Bog13], which were previously
predicted by Brandhuber–Gomis–Gubser–Gukov [BGGG01]. Apart from these, which
have symmetry group bigger than T

2 ×SU(2), one can find examples with exactly a
T

2 ×SU(2)-action of cohomogeneity two in ([Fos21, Theorem 4.12]). In the co-closed
case, Alonso has recently constructed examples of G2 manifolds with SU(2)×SU(2)×
U(1)-symmetry [Alo22].

As a first step, we study the stabilizer subgroups that can arise in this setting (The-
orem 4.7). Then we give a local characterization of such manifolds in the principal set
(Theorem 5.9).

Theorem. Let (M, ϕ) be a G2 manifold with a T
2 ×SU(2) cohomogeneity-two action.

In the principal set, it can be locally reconstructed from two nested systems of ODEs
and a suitable two-form, representing the curvature of a T

2-bundle.

Afterwards, we consider T
2 ×IdSU(2)-invariant associatives, T

3 ∼= T
2 ×S1-invariant

coassociatives and Id
T

2 × SU(2)-invariant coassociatives. In particular, we give a nice
characterization of these objects in the T

2 ×SU(2)-quotient of the principal set (Theo-
rems 6.6, 7.8 and 7.14), which is a surface locally parametrized by the T

2-invariant asso-
ciatives and the T

3-invariant coassociatives (Corollary 7.9). In the associative case, we
also give a characterization in the singular set (Theorem 6.10). Along the way (Corollary
6.11), we prove that, under some mild topological conditions, the T

2-invariant associa-
tives form an associative fibration, in the same sense as in [KL21,Tri23].

We then study the regularity of such submanifolds and we deduce the following (cfr.
Theorems 6.12, 7.5 and 7.19):

Theorem. Let (M, ϕ) be a G2 manifold with a T
2 ×SU(2) cohomogeneity-two action.

Then T
2 ×IdSU(2)-invariant ϕ-calibrated integer rectifiable currents and Id

T
2 ×SU(2)-

invariant ∗ϕ-calibrated integer rectifiable currents are smooth, while ∗ϕ-calibrated
integer rectifiable currents that are invariant under T

2 ×S1 for any S1-subgroup of
SU(2) can admit singularities with a tangent cone modelled on the Harvey–Lawson
cone times R.
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We also outline when our results can be extended to manifolds with closed or co-
closed G2-structures (cfr. Remarks 6.14, 7.10 and 7.21).

We conclude by applying the aforementioned discussion to the FHN manifolds and
to the Bryant–Salamon manifolds of topology S3 × R

4. In particular, we obtain new
large families of complete T

2-invariant associatives (Theorems 8.4 and 8.5).

Theorem. Let (M, ϕ) be one of the complete G2 manifolds with SU(2) × SU(2) ×
U(1)-symmetry constructed by Foscolo–Haskins–Nordström [FHN21b]. For everyT

2 ∼=
IdSU(2) × U(1) × U(1) < SU(2) × SU(2) × U(1) (or T

2 ∼= U(1) × IdSU(2) × U(1) <

SU(2)×SU(2)×U(1)), there are the following families of distinct completeT
2-invariant

associatives:

(1) a 4-parameter one with elements of topology T
2 ×R,

(2) two distinct 2-parameter ones whose elements are of topology S1 × R
2,

(3) depending on the topology of M, one single S3 or, alternatively, a 2-parameter
family of topological Lens spaces as elements.

Conversely, any complete associative with such a T
2-symmetry belongs to this list.

In the BGGG and in the Bryant–Salamon manifolds, Fowdar independently con-
structed the same family of S1 × R

2 associatives in [Fow22].
Furthermore, we extend to S3 × R

4 the description of (possibly twisted) calibrated
subbundles in manifolds of exceptional holonomy started by Karigiannis, Leung and
Min-Oo [KL12,KMO05] (Proposition 8.6).

1.2. Overview of the paper. Before getting into the main content of this work, we pro-
vide, in Sect. 2, a brief introduction to G2 geometry and to the related calibrated sub-
manifolds. Inspired by [KL21,Tri23], we also give a definition of calibrated fibrations
in which fibres are allowed to be singular and to intersect.

In Sect. 3, we briefly recall the construction of complete simply-connected non-
compact G2 manifolds with SU(2)2×U(1)-symmetry as described by Foscolo–Haskins–
Nordström [FHN21b]. For convenience, we refer to these objects as FHN manifolds.

In Sect. 4, we study the geometry of the T
2 ×SU(2)-action. As a first step, we discuss

how to take quotients of the Lie group, and of its T
2 or SU(2) components, so that the

action passes to suitable quotients of the G2 manifold. Even though the group is non-
abelian, we are able to classify the stabiliser types and the slice action on the normal
bundle (Theorem 4.7). It turns out that there are no exceptional orbits (i.e., 5-dimensional
orbits of non-principal type) and, using the orbit type theorem, we are able to split our
manifold into a stratification given by a principal set MP , where the stabilizer is zero-
dimensional, and Si for i = 1, 2, 3, 4, where the stabilizer is i-dimensional. Finally,
we untangle the definition of multi-moment maps [MS13, Definition 3.9] for this group
action, and we establish their invariance and equivariance.

Afterwards, in Sect. 5, we investigate the local structure of G2 manifolds with the
given cohomogeneity two symmetry. In our setting, we independently consider the T

2

and the SU(2) factors as follows. Madsen and Swann [MS13] showed that, under the
presence of a T

2-symmetry, Hitchin’s flow preserves the level sets of the T
2 moment

map ν, and the quotient χt = ν−1(t)/ T
2 admits a coherent tri-symplectic structure.

They also showed how to reconstruct the G2 manifold with T
2-symmetry from such a

four manifold. In our setup, χt inherits an additional SU(2)-symmetry. We classify these
tri-symplectic structures as solutions of a matrix valued ODE system. In Theorem 5.9, we
summarise these results and state that, finding a G2 manifold with T

2 ×SU(2)-symmetry,
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decomposes into solving the ODE system of χt , constructing a certain two-form on this
space, and solving the rescaled Hitchin’s flow equation for the hypersurfaces ν−1(t).

In Sect. 6, we turn our attention to T
2-invariant associatives. The first key observation

is that these objects correspond, in the T
2-quotient, to integral curves of a vector field.

Since such integral curves respect the stratification induced from Theorem 4.7, it is
sensible to split our discussion into associatives in the principal set, MP , and associatives
in the various strata, Si , which form the singular set.

Using our knowledge of the possible slice actions, we show in Theorem 6.10 that
each stratum, Si , naturally decomposes into smooth T

2-invariant associatives. In the
principal part MP , we characterise T

2-invariant associatives as horizontal lifts of a level
set on the quotient B := MP/(T2 ×SU(2)), which is two-dimensional (Theorem 6.6).

Moreover, we determine under which topological conditions they are fibres of a global
fibration map on MP (Theorem 6.9) and, hence, when they form an associative fibration
(Corollary 6.11). A priori, the T

2-invariant associatives in MP could approach and
intersect the singular set of the T

2-action, where singularities and intersection can occur.
However, the aforementioned characterisation allows us to exclude such behaviour, and
to conclude, in Theorem 6.12, that all T

2-invariant associatives are smooth. This is
particularly interesting because there are classical examples of singular T

2-invariant
associatives, e.g. the Harvey–Lawson cone in R

7 with the standard G2-structure [HL82].
It follows that the enhanced symmetry rules out singularities.

Fixing a T
3 ∼= T

2 ×S1 inside T
2 ×SU(2), we study T

3-invariant coassociatives and
SU(2)-invariant coassociatives in Sect. 7. In general, T3-invariant coassociatives are easy
to find. Indeed, Madsen and Swann showed in [MS19] that they are the level sets of T

3

multi-moment maps. Similarly to the T
2-invariant associatives case, we can also charac-

terize them them in the quotient B (Theorem 7.14). The "surviving" multi-moment map
forms, together with the defining function of the T

2-invariant associatives, a local or-
thogonal parametrization of B, which we call associative/coassociative in Corollary 7.9.
Unfortunately, SU(2)-invariant coassociatives do not have a nice level set description,
and only project on B to integral curves of a non-trivial vector field. Using a blow-up
argument and some geometric measure theory machinery, which we recall in Appendix
B, we show that SU(2)-invariant coassociatives are smooth and that T

3-invariant coas-
sociatives can exhibit singularities. All singularities have a tangent cone modelled on
the product of the Harvey–Lawson cone with R.

In Sect. 8, we apply these ideas to the FHN-manifolds, which are characterized by
implicit solutions of an ODE system. Under some conditions, this system extends to a
singular initial value, which corresponds to a connected smooth submanifold and it is
determined by one of the following Lie groups: K = � SU(2), K = {

1SU(2)

}× SU(2)

or K = Km,n (see Sect. 3 for further details). We compute the various multi-moment
maps and we are able to characterise the aforementioned calibrated submanifolds. In
particular, in every FHN manifold with SU(2) × SU(2) × U(1)-symmetry, we find
a new 4-dimensional family of T

2-invariant associatives with topology T
2 ×R which

are bounded away from the singular initial value, and two S2-families of T
2-invariant

associatives with the same topology which extend, together with the system, to smooth
associatives of topology S1 ×R

2 for every K . If the solution extends to an initial value
characterized by K = � SU(2) or K = {

1SU(2)

} × SU(2), then we have an additional
T

2-invariant associative of topology S3. When K = Km,n , there is an S2-family of T
2-

invariant associatives of topology a lens space depending on n,m and two additional T
2-

invariant associatives of topology S2 × S1. See Theorem 8.4 for the precise statement of
this result and Fig. 4 for a graphical representation of the submanifolds. Moreover, when
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the solution extends to the singular initial value, we satisfy the topological conditions
of Theorem 6.9 and we obtain an associative fibration. As an explicit special case of
the FHN manifolds, we consider the Bryant–Salamon space of topology S3 × R

4 (see
[KL21, Section 3]) and we construct a new family of (possibly twisted) associative vector
subbundles over a geodesic of S3.

It is well-known that all the Bryant–Salamon manifolds are vector bundles with
calibrated fibres. In [KL21], Karigiannis and Lotay considered the G2 manifolds with
associative fibres, namely �2−(S4) and �2−(CP

2), and constructed coassociative fibra-
tions on them. In some sense, they interchanged the role of associative and coassociative
submanifolds. As a byproduct of Corollary 6.11, we obtain the opposite result, i.e. we
construct on the natural coassociative fibre bundle, S3×R

4, an associative fibration. We
visualize this fibration in Fig. 5.

2. Preliminaries

In this section, we provide the basic definitions and properties of G2 manifolds, asso-
ciative submanifolds and coassociative submanifolds.

2.1. G2 manifolds. The linear model we consider for a G2 manifold is R
7 ∼= R

3 ⊕ R
4

parametrized by (x1, x2, x3) and (a0, a1, a2, a3), respectively. On R
7, we consider the

associative 3-form ϕ0:

ϕ0 = dx1 ∧ dx2 ∧ dx3 +
3∑

i=1

dxi ∧ �i ,

where the �i s are the standard ASD two-forms of R
4 endowed with the Euclidean

metric, i.e., �i = da0 ∧dai −da j ∧dak for (i, j, k) cyclic permuation of (1, 2, 3). The
Hodge dual of ϕ0 in R

7 is also of great geometrical interest:

∗ϕ0 = da0 ∧ da1 ∧ da2 ∧ da3 −
3∑

i=1

dx j ∧ dxk ∧�i ,

where (i, j, k) is again a positive permutation of (1, 2, 3).
Since the stabilizer of ϕ0 is isomorphic to G2, the automorphism group of O, we can

see (R7, ϕ0) as the linear model for manifolds with G2-structure group.

Definition 2.1. Let M be a manifold and ϕ a 3-form on M . We say that ϕ is a G2-structure
on M if at each point x ∈ M there exists a linear isomorphism px : R

7 → TxM which
identifies ϕ0 with ϕ

∣∣
x , i.e., p∗xϕ = ϕ0.

A G2-structure ϕ induces a metric gϕ and an orientation volϕ on M satisfying:

(u�ϕ) ∧ (v�ϕ) ∧ ϕ = −6gϕ(u, v) volϕ, (2.1)

for all u, v ∈ TxM and all x ∈ M . This makes px an orientation preserving isometry.
From gϕ and volϕ , one can also construct the coassociative 4-form ∗ϕϕ.

Definition 2.2. Let M be a manifold and let ϕ be a G2-structure on M . We say that
(M, ϕ) is a G2 manifold if ϕ and ∗ϕϕ are closed.
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This terminology is justified by the theorem of Fernández and Gray [FG82], which
states that in this case, the Riemannian holonomy group of (M, gϕ) is contained in G2.
Every G2 manifold is Ricci-flat.

The octonionic structure on the tangent space equips the tangent bundle with a natural
cross product.

Definition 2.3. Let (M, ϕ) be a manifold with a G2-structure. The cross product on the
tangent bundle ×ϕ is defined as follows:

×ϕ :T M × T M → T M

(U, V ) → (V �U�ϕ)#,

where # denotes the Riemannian musical isomorphism.

2.2. Associative and coassociative submanifolds. Harvey and Lawson [HL82] showed
that ϕ and ∗ϕ have co-mass equal to one. It follows that if (M, ϕ) is a G2 manifold, then
ϕ and ∗ϕ are calibrations.

Definition 2.4. Let F ⊂ (R7, ϕ0) be a 3-dimensional vector subspace. The subspace F
is an associative plane if ϕ0

∣∣
F = volF . A submanifold L of a G2 manifold (M, ϕ) is

associative if it is calibrated by ϕ, i.e. for every x ∈ L the subspace Tx L is an associative
plane in TxM .

Definition 2.5. Let F ⊂ (R7, ϕ0) be a 4-dimensional vector subspace. The subspace F
is a coassociative plane if ∗ϕ0

∣∣
F = volF . A submanifold � of a G2 manifold (M, ϕ)

is coassociative if it is calibrated by ∗ϕ, i.e. for every x ∈ � the subspace Tx� is a
coassociative plane in TxM .

Remark 2.6. A submanifold � is associative or coassociative if and only if Tx� is an
associative or a coassociative plane of (R7, ϕ0) for every x ∈ � under the isomorphism
px .

We now state some well-known properties of associative and coassociative planes
which will be useful in the discussion below. We can translate this statement to the
tangent space (TxM, ϕ

∣∣
x ) of a G2 manifold through px .

Proposition 2.7 (Harvey–Lawson [HL82]). Let F ⊂ (R7, ϕ0) be a 3-dimensional sub-
space. Then the following are equivalent:

(1) F is an associative plane,
(2) F⊥ is a coassociative plane,
(3) if u, v ∈ F, then u ×ϕ0 v ∈ F,
(4) if u ∈ F and v ∈ F⊥, then u ×ϕ0 v ∈ F⊥,
(5) if u, v ∈ F⊥, then u ×ϕ0 v ∈ F,
(6) if u, v, w ∈ F, then w�v�u� ∗ϕ0 ϕ0 = 0,
(7) if u, v, w ∈ F⊥, then w�v�u�ϕ0 = 0.

Moreover, it follows that for every u, v linearly independent vectors of R
7 there exists a

unique associative plane containing them. Analogously, if u, v, w are linearly indepen-
dent vectors of R

7 such that ϕ0(u, v, w) = 0 there exists a unique coassociative plane
containing them.
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2.2.1. Local existence and uniqueness In the rest of this paper, we will make exten-
sive use of the following local existence and uniqueness theorem for associative and
coassociative submanifolds. The proof relies on Cartan-Kähler theorem.

Theorem 2.8 (Harvey–Lawson ([HL82, Sect. IV.4])). Let N be a real analytic sub-
manifold of a G2 manifold (M, ϕ). If N is 2-dimensional, then there exists a unique
associative real-analytic submanifold L such that N ⊂ L. If N is 3-dimensional and
ϕ
∣∣
N ≡ 0, then there exists a unique coassociative real-analytic submanifold� such that

N ⊂ �.

When a G2 manifold (M, ϕ) admits a Lie group actionG with 2-dimensional principal
orbits, Theorem 2.8 applied to any such G-orbit yields (locally) the unique G-invariant
associative submanifold passing through it. Obviously, we can then extend any such lo-
cal associative submanifold L until we "hit" the singular part of the G-action. There, L
can intersect another associative and/or admit a singularity. Conversely, any G-invariant
ϕ-calibrated integer rectifiable current intersecting the principal part of the action ad-
mits such description. A similar discussion works for coassociatives, i.e., ∗ϕ-calibrated
integer rectifiable currents. In this case, the principal G-orbits need to be 3-dimensional
and ϕ must vanish when restricted to them.

Remark 2.9. Note that in the G-invariant case, Theorem 2.8 is equivalent to the local
existence and uniqueness for ODEs in the quotient space of the principal part.

2.2.2. Calibrated fibrations Inspired by [KL21,Tri23], we consider a definition of cal-
ibrated fibrations where fibres are allowed to be singular and to intersect.

Definition 2.10. Let (M, α) be a n-manifold with a k-calibration α. The manifold M
admits an α-calibrated fibration if there exists a family of α-calibrated submanifolds Nb
(possibly singular) parametrized by a (n−k)-dimensional topological spaceB satisfying
the following properties:

• M is covered by the family {Nb}b∈B,
• there exists an open dense set B◦ ⊂ B such that Nb is smooth for all b ∈ B◦,
• there exists an open dense subset M ′ ⊂ M , an open dense set B′ ⊂ B which admits
the structure of a smooth manifold and a smooth fibre bundle π : M ′ → B′ with
fibre Nb for all b ∈ B′.

Remark 2.11. The set M \ M ′ is where the calibrated submanifolds can intersect and
can be singular. When we restrict the calibrated submanifolds to M ′, these can cease to
be complete and they can have a different topology from the original ones.

3. The Foscolo–Haskins–Nordström Manifolds

In this section, we recall the construction of complete simply-connected non-compact
G2 manifolds due to Foscolo, Haskins and Nordström in [FHN21b]. For brevity, we will
refer to them as the FHN manifolds. Note that this is not standard terminology. It is
costumary to distinguish three different subfamilies inside the manifolds constructed by
Foscolo–Haskins–Nordström: B7 (predicted in [BGGG01] and previously constructed
in [Bog13]), C7 (predicted in [Bra02,CGLP04]) and D7 (predicted in [Bra02,CGLP02]).

As we will apply the theory we develop in Sects. 6 and 7 to these spaces, we believe
that it is useful to fix some key notation here.
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3.1. The topologyof theFHNmanifolds. Let (M, ϕ)be a non-compact, simply-connected
G2 manifold, with a structure-preserving SU(2) × SU(2) cohomogeneity one action.
Then it is well-known that M/ SU(2) × SU(2) is an open or half-closed interval I ,
and hence, the cohomogeneity one structure can be encoded by a pair of closed sub-
groups: K0 ⊂ K ⊂ SU(2) × SU(2), which are referred to as the group diagram of
M . In particular, SU(2) × SU(2)/K0 is diffeomorphic to the principal orbits of the
SU(2)× SU(2)-action and corresponds to the interior of I , while SU(2)× SU(2)/K is
diffeomorphic to the singular orbit and corresponds to the boundary of I , if it exists.

In the case of our interest, we either have K0 = {1SU(2)×SU(2)} or K0 = Km,n∩K2,−2,
where m, n are coprime integers and Km,n ∼= U (1) × Zgcd(n,m) is defined by:

Km,n :=
{
(eiθ1 , eiθ2) ∈ T

2 : ei(mθ1+nθ2) = 1
}

< SU(2) × SU(2),

where T
2 is the maximal torus in SU(2)× SU(2). If m, n are coprime the isomorphism

between Km,n < SU(2) × SU(2) and U (1) is:

eiθ �→ (einθ , e−imθ ), (3.1)

moreover, Km,n ∩ K2,−2 ∼= Z2|m+n|. Up to automorphisms of SU(2) × SU(2), the
subgroup K determining the singular orbit SU(2)× SU(2)/K is one of the following:

� SU(2),
{
1SU(2)

}× SU(2), Km,n,

where � SU(2) denotes the SU(2) sitting diagonally in SU(2) × SU(2). Note that the
singular orbit is diffeomorphic to S3 for the first two cases, and to S2 × S3 for the third
one.

3.2. The G2-structure. We now describe the G2-structure on the principal part of M ,
diffeomorphic to (SU(2) × SU(2))/K0 × Int(I ).

Consider on SU(2)×SU(2) the basis {e1, e2, e3, f1, f2, f3} of left-invariant 1-forms
satisfying:

dei = 2e j ∧ ek, d fi = 2 f j ∧ fk,

and denote by E1, E2, E3, F1, F2, F3 the dual vector fields. On the principal part of M ,
these can be explicitly described as follows:

E1(p, q, r) = −(pi, 0, 0), E2(p, q, r) = −(pj, 0, 0), E3(p, q, r) = −(pk, 0, 0),

F1(p, q, r) = −(0, qi, 0), F2(p, q, r) = −(0, q j, 0), F3(p, q, r) = −(0, qk, 0),

where the product is by quaternionic multiplication. Let c1, c2 ∈ R and let a1, a2, a3
be three functions only depending on the interval I . The following closed 3-form on
(SU(2) × SU(2))/K0 × Int(I ):

ϕ = −8c1e1 ∧ e2 ∧ e3 − 8c2 f1 ∧ f2 ∧ f3 + 4d(a1e1 ∧ f1 + a2e2 ∧ f2 + a3e3 ∧ f3)
(3.2)

is a G2-structure such that the interval I is the arc-length parameter along a geodesic
meeting orthogonally all the principal orbits if and only if the following conditions are
satisfied:

ȧi > 0, �(a1, a2, a3) < 0, 2ȧ1ȧ2ȧ3 =
√−�(a1, a2, a3),
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where

�(a1, a2, a3) =a4
1 + a4

2 + a4
3 − 2a2

1a
2
2 − 2a2

2a
2
3 − 2a2

3a
2
1 + 4(c1 − c2)a1a2a3+

+ 2c1c2(a
2
1 + a2

2 + a2
3) + c2

1c
2
2.

Furthermore, if K0 = Km,n ∩ K2,−2, we require a2 = a3 unless there exists a d ∈ Z

such that (d + 1)m + (d − 1)n = 0.

Remark 3.1. Under these conditions, the interval I is the arc-length parameter along a
geodesic meeting all the principal orbits orthogonally.

The torsion free condition becomes the Hamiltonian system associated to the poten-
tial:

H(x, y) = √−�(y1, y2, y3) − 2
√
x1x2x3,

where yi = ai and xi = ȧ j ȧk for every (i, j, k) cyclic permutation of (1, 2, 3). If t
denotes the parametrization of I , then the dual form of ϕ is given by:

∗ ϕ = 16
3∑

i=1

ȧ j ȧke j ∧ f j ∧ ek ∧ fk +

+
8√−�

dt ∧
(

(2a1a2a3 − c1(a
2
1 + a2

2 + a2
3 + c1c2))e1 ∧ e2 ∧ e3

+(2a1a2a3 + c2(a
2
1 + a2

2 + a2
3 + c1c2)) f1 ∧ f2 ∧ f3

+
3∑

i=1

(
(ai (a

2
i − a2

j − a2
k + c1c2) − 2c2a jak)ei ∧ f j ∧ fk

+(ai (a
2
i − a2

j − a2
k + c1c2) + 2c1a jak) fi ∧ e j ∧ ek

))
. (3.3)

Enhanced symmetry We now restrict our discussion to the case where a2 = a3.
Under this additional condition, the symmetry of (SU(2)×SU(2))/K0×Int(I ) becomes
SU(2) × SU(2) × U(1), where the action of (γ1, γ2, λ) ∈ SU(2) × SU(2) × U(1) on
([p, q], t) ∈ (SU(2) × SU(2))/K0 × Int(I ) is as follows:

(γ1, γ2, λ) · ([p, q], t) = ([γ1 pλ, γ2qλ], t), (3.4)

where λ is given by the U(1) < SU(2) generated by quaternionic multiplication by i .

Remark 3.2. Note that this enhanced symmetry allows us to find T
2 ×SU(2) subgroups

of the automorphism group of (M, ϕ).

Under this enhanced symmetry, we denote by a := a2 = a3 and b := a1, and the
form of �(a, b) simplifies to:

−�(a, b) = 4a2(b − c1)(b + c2) − (b2 + c1c2)
2, (3.5)

and the same holds for the Hamiltonian system, which becomes:

ẋ1 = − �a(y1, y2)

4
√−�(y1, y2)

, ẋ2 = − �b(y1, y2)

2
√−�(y1, y2)

,
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ẏ1 = x1x2√
x2

1 x2

, ẏ2 = x2
1√

x2
1 x2

,

where y1 = a, y2 = b, x1 = ȧḃ, x2 = ȧ2 and �a , �b denote the derivative of �(a, b)
with respect to the first or the second component, respectively.

Remark 3.3. From −�(a, b) > 0, we deduce that a, b − c1, b + c2 have definite sign,
and hence, ẋ1 has definite sign as well.

Example 3.4. The Bryant–Salamon manifolds can be seen as special examples of FHN
manifolds such that, for some c > 0:

a1 = a2 = a3 =
√

3

2
r2, c1 = −3

8

√
3c, c2 = 0, K = {

1SU(2)

} × SU(2) (3.6)

or

a1 = a2 = a3 = 1

6
r3 − 1

3
c3, c1 = −c2 = c3, K = � SU(2),

where r(t) is a reparametrization of t such that dr/dt = 1/2(c + r2)1/6 in the first case
and dr/dt = 1/

√
3
√

1 − 8c3r−3 in the second case.

3.3. Extension to the singular orbit and forward completeness. Now, we state under
which conditions the G2-structure extends smoothly to the singular orbit and when it is
forward complete.

First, we know from the slice theorem that a neighborhood of the singular orbit
SU(2) × SU(2)/K is equivariantly diffeomorphic to a small disk bundle of:

(SU(2) × SU(2)) ×K V,

for some vector space V endowed with a representation of K . We now summarise when
the G2-structure defined in Eq. (3.2) extends smoothly to the zero section of such a
bundle (cfr. ([FHN21b, Proposition 4.1])).

Case 1 (K = � SU(2)). In this case, V = C
2 and SU(2) acts in the usual way on

it. The SU(2) × SU(2)-invariant G2-structure defined above extends smoothly to the
zero-section if and only if:

(1) c1 + c2 = 0,
(2) the functions {ai } are even and have the following development near 0: ai (t) =

c1 + 1
2αt2 + O(t4) for some α ∈ R,

(3) 8α3 = c1 > 0.

Case 2 (K = {1SU(2)}×SU(2)). As in the previous case, V = C
2 and SU(2) acts in the

usual way on it. The G2-structure defined above extends smoothly to the zero-section if
and only if:

(1) c2 = 0,
(2) the functions {ai } are even and have the following development near 0: ai (t) =

1
2αi t2 + O(t4) for some αi ∈ R

+,
(3) 8α1α2α3 = −c1 > 0.
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Case 3 (K = Km,n). In this situation, V = R
2 and Km,n ∼= U(1) acts on it with

weight 2|m + n|. The G2-structure defined above extends smoothly to the zero-section
if and only if:

(1) mn > 0,
(2) c1 = −m2r3

0 and c2 = n2r3
0 for some r0 ∈ R \ {0},

(3) the function a1 is even and satisfies: a1(0) = mnr3
0 , dota1(0) > 0,

(4) the function a2 + a3 is odd and satisfies: ȧ2(0) + ȧ3(0) > 0,
(5) we either have a2 = a3 or m = n = ±1; if the a2 and a3 do not coincide, then their

difference is an even function with |a2(0) − a3(0)| < 2|r0|3.

The forward completeness of the local solutions constructed above and the metric
completeness is discussed in ([FHN21b, Sects. 6, 7]) for the case we have the enhanced
symmetry SU(2)×SU(2)×U(1). Moreover, they showed that the complete G2 manifolds
they obtain are all the possible complete G2-manifolds with SU(2) × SU(2) × U(1)-
symmetry.

4. G2 Manifolds with T
2 × SU(2)-Symmetry

In this section, we prove some properties of a G2 manifold (M, ϕ) with a structure-
preserving T

2 ×SU(2)-action of cohomogeneity two, i.e. the maximal dimension achieved
by the orbits is 5. We will make extensive use of the theory of differentiable transforma-
tion groups (cfr. Appendix A).

If � represents the kernel of the homomorphism T
2 ×SU(2) → Aut(M, ϕ), we

prove that the Lie group (T2 ×SU(2))/�, which acts effectively on (M, ϕ), has trivial
principal stabilizer. Afterwards, we characterize the group structure and the slice action
of each (T2 ×SU(2))/�-stabilizer using only its dimension. As a consequence of this
technical result, we deduce that there are no exceptional orbits and that the singular set
of (T2 ×SU(2))/� "splits" into smooth embedded submanifolds. We conclude the first
part of the section by studying the properties of these submanifolds.

In the second part of the section, we specialize to our setting the notion of multi-
moment maps, which were introduced in [MS12,MS13]. Then we study the properties,
including invariance and equivariance, that we will need in the rest of the paper.

4.1. T
2 ×SU(2)-symmetry. To understand the action of T

2 ×SU(2) on M , let � be the
kernel of the homomorphism T

2 ×SU(2) → Aut(M), which is discrete by assumption.
Once we rewrite it as � = {(ai , bi ) ∈ T

2 ×SU(2) : i ∈ I }, we define �1 := {a ∈ T
2 :

(a, IdSU(2)) ∈ �} and �2 := {b ∈ SU(2) : (Id
T

2 , b) ∈ �}, which are subgroups of T
2

and SU(2) respectively.
Consider the T

2 action on M given by T
2 ×IdSU(2) < T

2 ×SU(2). Since

�1 × IdSU(2) = (T2 ×IdSU(2)) ∩ �,

we see that the action of T
2 /�1 is effective, and, as T

2 /�1 is diffeomorphic to T
2,

we can assume, without loss of generality, that �1 is trivial and that the action of
T

2 ∼= T
2 ×IdSU(2) is effective. We denote by S the singular set of this action, i.e.

the complement of the principal set with respect to this action.
Analogously, we have an SU(2)-action on M given by SU(2) ∼= Id

T
2 × SU(2) <

T
2 ×SU(2), which induces an effective action of SU(2)/�2.
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Remark 4.1. Observe that � does not need to be equal to �1 × �2. For instance, if
� = {±(1, 1)}, then �1 and �2 are trivial.

Now, we show that � is in the center of T
2 ×SU(2): Z(T2 ×SU(2)) = T

2 ×{±1}.
Lemma 4.2. Let x ∈ M be such that the stabilizer (T2 ×SU(2))x is discrete. Then the
stabilizer is a subgroup of the center Z(T2 ×SU(2)).

Proof. We show that the adjoint representation of (T2 ×SU(2))x on t2⊕su(2) is trivial,
which implies the statement by naturality of the exponential map.

Let N be the normal space at x of the T
2 ×SU(2)-orbit, whose tangent space is

identified with t2⊕su(2) in the usual manner. Then the representation of (T2 ×SU(2))x
on TxM splits as

TxM = t2 ⊕ su(2) ⊕ N , (4.1)

and coincides with the adjoint representation on the t2 ⊕ su(2) part. Being abelian, the
action on t2 is trivial and the same holds for the cross product of the t2-generators. This
vector is obviously orthognal to t2 ⊕ {0} and, because of Eq. (4.6), to {0} ⊕ su(2). We
deduce that the cross product of the t2-generators span a linear subspace N1 of N . Note
that we used that the action of (T2 ×SU(2))x preserves the G2-structure.

Denote by N2 the orthogonal complement of N1 in N , which is invariant under the
action. Being an isometry, every element g ∈ (T2 ×SU(2))x acts on N2 by multiplication
of λg , where λg ∈ {−1, +1}.

Finally, we show that λg cannot be −1. In order to do so, we consider the map
(t2⊕N1)⊗N2 → su(2) which is the composition of the cross product and the projection
onto the su(2) component in the splitting given by Eq. (4.1). Since t2⊕N1 is an associative
subspace, this map is an isomorphism of representations. Hence, g acts on su(2) by
multiplication of λg . We conclude because there is no element in T

2 ×SU(2) whose
adjoint action on su(2) is multiplication by −1. ��
Corollary 4.3. Since T

2 ×SU(2) acts on M with cohomogeneity two, � is in the centre
of T

2 ×SU(2). Hence, SU(2)/�2 is either SU(2) or SO(3).

Corollary 4.4. The principal stabilizer of (T2 ×SU(2))/� is trivial.

Proof. As a consequence of Lemma 4.2, all principal stabilizer subgroups are not only
conjugate, but equal to each other. Since the action is effective after the quotient, the
principal stabilizer needs to be trivial. ��

From now on, we consider the action of G := (T2 ×SU(2))/� � Aut(M, ϕ), and
we denote by MP its principal set. This is going to greatly simplify our arguments:
indeed, the G-action is effective and with trivial principal stabilizer.

We will make use of two additional actions induced from the original T
2 ×SU(2).

Let �̃1 := {ai : (ai , bi ) ∈ �} and let �̃2 := {bi : (ai , bi ) ∈ �}, which is either trivial or
{±1} by Corollary 4.3. We state the following lemma without proof.

Lemma 4.5. Let T
2 ∼= T

2 × IdSU(2) acting on M. Then there exists an induced action

of GT
2 := T

2 /�̃1 on MP/(SU(2)/�2) which is free. In particular, MP/(SU(2)/�2)

becomes a principal GT
2
-bundle over B := MP/G. Similarly, there exists a GSU(2) :=

SU(2)/�̃2 action induced by SU(2) ∼= Id
T

2 ×SU(2) on MP/ T
2 which is free. As before,

MP/ T
2 becomes a principal GSU(2)-bundle over B.
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The various quotients are summarised in the following diagram:

MP

MP/(SU(2)/�2) MP/T
2

B

/(SU(2)/�2) /T2

/G

/GT
2 /GSU(2)

.

4.2. The stratification. Applying the orbit type stratification theorem and the principal
orbit type theorem to our setting, where G = (T2 ×SU(2))/� acts effectively on M ,
we see that M decomposes as the union of G-orbit types, and there exists one of them
which is open and dense in M . In this subsection, we study the geometry of the G-action
to understand this stratification.

To simplify our notation, we fix a point x ∈ M and denote by T the tangent space of
Gx at x and by N its normal space, i.e. the orthogonal complement of T in TxM .

In the discussion of the stratification, we will need the following standard lemma:

Lemma 4.6. Let T
2 be a maximal torus in G2. Then the representation of T

2 on R
7

splits as V ⊕W1 ⊕W2 ⊕W3, where V is 1-dimensional and each Wi is 2-dimensional.
Each V ⊕Wi is an associative subspace of R

7 with respect to ϕ0.

Proof. A maximal torus in G2 induces a splitting R
7 = R × C

3, where C
3 is equipped

with its standard Calabi-Yau structure and the torus acts as a maximal torus of SU(3).
A submanifold R × W is associative if and only if W is a holomorphic curve, which is
clearly the case for the complex linear subspaces Wi . ��

Recall that S is the singular set of the T
2-action and, as a consequence of the fol-

lowing theorem, it is also the set where the generators of the T
2-component are linearly

dependent, i.e. there are no exceptional orbits (cfr. ([MS19, Lemma 2.6])).

Theorem 4.7. The dimension of the stabilizer Gx is not bigger than 4, and,

• if dim(Gx ) = 0, then Gx is trivial, i.e. there are no exceptional orbits,
• if dim(Gx ) = 1, then x /∈ S and Gx is isomorphic to SO(2). The action of Gx on
N splits as N1 ⊕ N2 with dim(N1) = 1, dim(N2) = 2 where Gx acts trivially on N1
and faithfully by rotations on N2,
• if dim(Gx ) = 2, then x ∈ S and the identity component of Gx is isomorphic to T

2

and acts diagonally on N ∼= C
2. The G-orbit Gx is an associative submanifold of

M,
• if dim(Gx ) = 3, then x /∈ S and Gx is isomorphic to SU(2). The action of Gx on
N leaves a 1-dimensional subspace N1 ⊂ N invariant and acts on the orthogonal
complement N2 via the standard embedding SU(2) → SO(4),
• if dim(Gx ) = 4, then x ∈ S and the identity component of Gx is isomorphic to
U(2). The action on the normal bundle N is via the embedding

U (2) → SU(3), A �→
(
A 0
0 det A−1

)
.
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Consequently, the singular set of the G-action can be decomposed intoS1∪S2∪S3∪S4,
where Si is the set of points with i dimensional stabilizer.
Proof. The first part of the proposition follows from the fact that the rank of t2 ⊕ su(2)

is three, while the rank of g2 is two. Hence, since Gx < G2 under the identification of
(TxM, ϕx ) ∼= (R7, ϕ0), the dimension of Gx cannot be equal to 5.

By the slice theorem, a neighbourhood of Gx is equivariantly diffeomorphic to a
neighbourhood of the zero section of G ×Gx N . It follows that the representation of Gx
on N is faithful. Indeed, every neighbourhood of the orbit Gx intersects MP , on which
Gx acts freely because of Corollary 4.4.

If dim(Gx ) = 0, then an argument similar to the one used for Lemma 4.2 shows that
Gx acts trivially on N . This means that Gx is trivial by the faithfulness of the Gx -action
on N .

We now consider the case dim(Gx ) = 1 and x ∈ S. This means that Ḡx = Gx ∩
(T2 ×IdSU(2))/� is not trivial and, being a subgroup of (T2 ×IdSU(2))/�, it acts trivially
on T ∼= g/gx . Since the cross-product restricted to any 4-dimensional subspace generates
TxM , we deduce that Ḡx acts trivially on all of TxM . This is a contradiction as Ḡx ≤ Gx
and hence it has to act faithfully on N . We have shown that if dim(Gx ) = 1, then x /∈ S.
So it remains to show that Gx is isomorphic to S1. Since x /∈ S the intersection of
t2 ⊕ {0} ⊂ t2 ⊕ su(2) with gx is trivial. This means that g/gx splits into t2, on which
Gx acts trivially, and a 2-dimensional subspace m. As before, the normal space splits
into N1 ⊕ N2, where N1 is spanned by the cross product on t2 and N2 is its orthogonal
complement in N . So Gx acts trivially on N1. To summarise, the action of Gx on TxM
splits as

TxM = t2 ⊕m⊕ N1 ⊕ N2.

The action of Gx is isometric and faithful on the 2-dimensional space N2. So, Gx is
either isomorphic to SO(2) or to O(2). In the latter case, there is an element τ of order
two and a subspace N3 ⊂ N2 that is fixed by τ . The cross products of t2 ⊕ N1 ⊕ N3
generate all of TxM so that τ acts trivially on all of TxM . This is impossible since the
action on N must be faithful.

When dim(Gx ) = 2, we first assume, for the sake of contradiction, that x /∈ S.
Consider the Lie algebra homomorphism ψ : gx → su(2) coming from the projection
t2 ⊕ su(2) → su(2). The image of ψ would be a 2-dimensional Lie subalgebra of
su(2) which does not exist. It follows that x ∈ S and the identity component of Gx is
isomorphic to T

2. Since the action of the identity component of Gx on TxM splits as
T ⊕ N , we can apply Lemma 4.6 to see that T is isomorphic to V plus one of the Wi ,
for convenience say W1, and N to the sum of W2 ⊕W3 and the statement follows.

We now deal with the dim(Gx ) = 3 case. Consider the Lie algebra homomorphism
ψ : gx → su(2) as above. The image of ψ is a Lie subalgebra of su(2), hence, it is
either su(2) or a 1-dimensional subalgebra. The second case is impossible: indeed, the
condition implies t2⊕{0} ⊂ gx , but gx also intersects su(2) in a 1-dimensional subspace,
so gx ∼= t2 ⊕ ψ(gx ) ∼= t3. This is a contradiction since gx is a subalgebra of g2, which
has rank two. So ψ is surjective, which means that gx intersects t2 ⊕ {0} transversally.
It remains to show that Gx is diffeomorphic to SU(2), which also implies that x /∈ S.
As before, Gx acts trivially on g/gx = t2. The cross product of the generators of this
t2 lies in N and spans a 1-dimensional subspace N1 on which Gx acts trivially too.
On the orthogonal complement N2 of N1 in N the action of Gx is faithful. So Gx acts
trivially on an associative three-plane, which means Gx is a subgroup of SU(2). Since
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Gx is 3-dimensional, it is isomorphic to SU(2) and the action on N2 is isomorphic to
the standard action of SU(2) on C

2.
Finally, we consider dim(Gx ) = 4. Similarly as above, we can show that T is

spanned by the generators of the T
2-componenent of the action, it is 1-dimensional, and

it is fixed by Gx . The subgroup of G2 that fixes a 1-dimensional subspace is SU(3).
So, the action of Gx on the 6-dimensional normal space, N , defines an embedding
Gx → SU(3), yielding a special unitary representation of Gx on C

3. We first show that,
when restricted to the identity component, this representation must be reducible. Indeed,
every 4-dimensional Lie subalgebra of g is isomorphic to u(2) = su(2) ⊕ u(1). Since
Gx is compact, it suffices to show that every complex 3-dimensional special unitary
representation of SU(2) × U(1) is reducible. To see this, denote by Vk the unique k-
dimensional irreducible representation of SU(2) and by Wm the representation of U(1)

on C with weight m. All irreducible representations of the direct product SU(2)×U(1)

are of the form Vk⊗Wm . Those that are 3-dimensional, namely V3⊗Wm , are not special
unitary. Since the representation is faithful and special unitary, we conclude that it must
be (V2 ⊗ W1) ⊕ W−2, i.e. of the desired form. Moreover, the element (−1,−1) acts
trivially, so the identity component of Gx must be (SU(2) × U(1))/Z2 ∼= U(2). ��

We have just proven that we can decompose the singular set of the G-action into four
subsets, {Si }4i=1, which are characterized by having the dimension of the G-stabilizer
fixed. We now study the properties of these subsets.

From the proof of Theorem 4.7, we can immediately see that the following holds.

Corollary 4.8. The singular set of the T
2-action S is S2 ∪S4. Either the set S3 is empty,

or GSU(2) is isomorphic to SU(2).

Using the slice theorem and the slice action which we studied in Theorem 4.7, we
can also deduce the following.

Proposition 4.9. Each Si is either empty or a smooth embedded submanifold of dimen-
sion:

dim(S1) = 5, dim(S2) = 3, dim(S3) = 3, dim(S4) = 1.

Moreover, each connected component of S2 and S4 is a G-orbit.

Proof. As before, for every point x ∈ M we denote by T the tangent space of Gx at x
and by N its normal space.

To prove this statement, it is enough to find the linear subspaces of N on which
Gx acts trivially. Indeed, if Vi is such a vector subspace for a point x ∈ Si and some
i = 1, ..., 4, we immediately see from the slice theorem that Si is diffeomorphic to
G ×Gx Vi in a neighbourhood of Gx . It is now clear that Si is smooth and of dimension
equal to the dimension of Gx plus the dimension of Vi . Moreover, if Vi is trivial, then
each connected component of Si is a G-orbit.

From Theorem 4.7, we can extrapolate that V2 and V4 are trivial and that V1 and V3
are 1-dimensional. ��

By considering subgroups of the stabilizer, we can use a similar argument to under-
stand how the various Si s relate to each other (cfr. Figure 1). In particular, in a neigh-
bourhood of each connected component of S2, there are two connected components of
S1 whose closure contains the given connected component of S2. By the slice theorem,
such subsets of S1 correspond to two vector subspaces of the normal bundle on which
some S1-subgroup of the stabilzer acts trivially. In a similar spirit, we can see that a
connected component of S4 is close to a connected component of S1 and of S3.
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Fig. 1. Representation of how the different Si s relate to each other

Remark 4.10. Note that the stratification induced by {Si } is coarser than the one induced
by the orbit type stratification theorem, as there could be different orbit types of the same
dimension. However, we have seen in Proposition 4.9 that the tangent space of each Si
is spanned by the tangent space of the orbit and possibly the cross product of the T

2

generators. Since the flow of this cross product preserves the orbit type (see Lemma 6.2),
the orbit type is unchanged along every connected component of each Si and, hence, we
can reconstruct one stratification from the other.

4.3. Multi-moment maps. In [MS12] and [MS13], Madsen and Swann extended the
classical notion of moment maps for symplectic manifolds to any closed geometry
(X, α), i.e. a manifold X endowed with a closed form α. The idea is to take generators
of a subgroup of Aut(X, α) and contract them with α to reduce its degree to 1. Now,
if these 1-forms are exact they can be integrated to functions in C∞(X;R) (defined up
to additive constants) that they call multi-moment maps. In order to ensure closedness,
Madsen and Swann introduced the notion of Lie kernel, which we omit for brevity.

In this work, the G multi-moment maps will be crucial in studying cohomogeneity-
one calibrated submanifolds of (M, ϕ). Indeed, we will see in Sect. 6 and Sect. 7 that
such submanifolds are contained in the level sets of some multi-moment maps and that a
direction transveral to the orbits is parametrized by the gradient of a multi-moment map.
Finally, multi-moment maps will also be used in Sect. 5 to find natural hypersurfaces of
M .

Assuming from now on that the G2 manifold (M, ϕ) is simply connected (so that all
closed 1-forms are exact), we can then define the G multi-moment maps related to ϕ

and ∗ϕ bypassing the notion of Lie kernel and other difficulties.

Remark 4.11. Observe that it makes sense to consider the multi-moment maps with
respect to ∗ϕ as well. Indeed, it is a closed form and, by Eq. (2.1), a ϕ-preserving action
will also preserve the metric gϕ and the volume form volϕ . Therefore, ∗ϕ will also be
preserved.

First, we fix the notation for the generators of G. Let U1,U2 be the generators of
t2 ⊕ {0} ⊂ t2 ⊕ su(2) and let V1, V2, V3 be the generators of {0} ⊕ su(2) ⊂ t2 ⊕ su(2).
Clearly, we can choose them to satisfy:

[Ul ,Um] = 0, [Ul , Vi ] = 0, [Vi , Vj ] = εi jkVk, (4.2)

for all l,m = 1, 2 and i, j, k = 1, 2, 3.

Definition 4.12. The multi-moment maps with respect to ϕ are the smooth functions
(defined up to additive constants) θ l : M → R

3 for l = 1, 2 and ν : M → R

characterized by:
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dθ li := ϕ(Ul , Vi , ·), dν := ϕ(U1,U2, ·), (4.3)

where i = 1, 2, 3.

Definition 4.13. The multi-moment maps with respect to ∗ϕ are the smooth functions
(defined up to additive constants) μ : M → R

3 and η : M → R characterized by:

dμi := ∗ϕ(U1,U2, Vi , ·), dη := ∗ϕ(V1, V2, V3, ·), (4.4)

where i = 1, 2, 3.

As a sanity check, one can show that the one-forms given on the right-hand-side are
all closed.

Lemma 4.14. The multi-moment maps μ and θ have the form:

μk = −∗ϕ(U1,U2, Vi , Vj ), θ lk = −ϕ(Ul , Vi , Vj ), (4.5)

where (i, j, k) is a cyclic permutation of (1, 2, 3).

Proof. The proof is a straightforward application of Cartan’s formula, the identity
[LX , iY ] = i[X,Y ] for every vector field X,Y and Eq. (4.2). ��

Before considering the properties of the multi-moment maps, we state two trivial
results that we will use throughout the paper.

Lemma 4.15. Let M be a smooth manifold with an SU(2) action with generators
V1, V2, V3 satisfying [Vi , Vj ] = εi jkVk . Then a smooth function f : M → R

3 is equiv-
ariant with respect to the action of SU(2) on R

3 via the double cover SU(2) → SO(3)

if and only if f satisfies:

LVi f j = εi jk fk .

Lemma 4.16. Let M be a smooth manifold with the action of a connected Lie group G
with generators U1, ...,Ul. Then a smooth function f : M → R is invariant under the
G-action if and only if f satisfies:

LUi f = 0,

for every i = 1, ..., l.

Proposition 4.17. Let θ , ν, μ and η be as in Definitions 4.12 and 4.13. If SU(2) acts on
R

3 via the double cover SU(2) → SO(3), then:

(1) ν is T
2 ×SU(2)-invariant,

(2) μ is T
2-invariant and SU(2)-equivariant,

(3) |μ| is T
2 ×SU(2)-equivariant,

(4) θ1 and θ2 are T
2-invariant and SU(2)-equivariant,

(5) |θ1| and |θ2| are T
2 ×SU(2)-equivariant,

(6) η isSU(2)-invariant and, if theSU(2)/�2-action has a singular orbit, isT
2 ×SU(2)-

invariant.

Moreover, each T
2-invariant function on M descends to a function on the topologi-

cal space M/ T
2; each SU(2)-invariant function on M descends to a function on the

topological space M/ SU(2), and every T
2 ×SU(2)-invariant function descends to a

function on M/ T
2 ×SU(2).
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Proof. The T
2-invariance of ν, μ is clear from Lemma 4.16, Eqs. (4.3) and (4.4), while

the SU(2)-equivariance of μ and θ l follows from Lemma 4.15 and:

LVi μ j = εi jkμk, LVi θ
l
j = εi jkθ

l
k .

If we show that ϕ(U1,U2, Vi ) = 0 for every i = 1, 2, 3, then ν is SU(2)-invariant
and θ l is T

2-invariant. Cartan’s formula, together with [LX , iY ] = i[X,Y ], implies that
d(ϕ(U1,U2, Vi )) = 0 and, hence, ϕ(U1,U2, Vi ) is a constant ci . We conclude because:

0 = LVj ci = Vj (ϕ(U1,U2, Vi )) = −ϕ(U1,U2, Vk) = −ck, (4.6)

where we used again Cartan’s formula and Eq. (4.2). Analogously, one can prove that η is
T

2-invariant if the SU(2)/�2-action has a singular orbit. We conclude as η is obviously
SU(2)-invariant. ��

Since the T
2 ×SU(2)-action is structure preserving, and in particular, its generators

are Killing vector fields, we can obtain the following result. Recall that the Lie derivative
of a Killing vector field commutes with musical isomorphisms.

Corollary 4.18. Let ν, μ, η be as defined in Definitions 4.12 and 4.13. Then:

(1) ∇ν = U1 ×U2 is T
2 ×SU(2)-invariant,

(2) ∇|μ| is T
2 ×SU(2)-invariant,

(3) ∇η isSU(2)-invariant and, if theSU(2)/�2-actionhasa singular orbit, isT
2 ×SU(2)-

invariant.

Moreover, each H-invariant vector field on M descends to a vector field on the principal
part of the H-action, for every H � T

2 ×SU(2).

Remark 4.19. As an abuse of notation, we will use the same symbol for both the invariant
functions (or vector fields) in the total space and in the quotients.

We are also able to locate the zero set of the multi-moment map of μ in terms of the
stratification given in Theorem 4.7.

Corollary 4.20. Let μ as in Eq. (4.5). Then:

S2 ∪ S3 ∪ S4 ⊂ μ−1(0) ⊂ S1 ∪ S2 ∪ S3 ∪ S4.

Proof. The first inclusion is obvious from Theorem 4.7 and Lemma 4.14.
Assume by contradiction that the second inclusion does not hold. Hence, there ex-

ists a point x ∈ M such that μ(x) = 0 and such that U1,U2, V1, V2, V3 are linearly
independent at TxM . By Eq. (4.6), V1, V2, V3 spans a 3-dimensional linear subspace of
TxM which is orthogonal to U1 ×U2 and transversal to the two-dimensional subspace
spanned by U1,U2. Since the two-form ∗ϕ(U1,U2, ·, ·) does not vanish on any such
3-dimensional subspace, we can conclude. ��

5. Local Characterization of G2 Manifolds with T
2 × SU(2)-Symmetry

In this section, we provide a local characterization of G2 manifolds with a structure-
preserving T

2 ×SU(2)-action. This characterization is local in the sense that we restrict
our manifold M to MP , where G = (T2 ×SU(2))/� acts freely.

In the first subsection, we recall Madsen–Swann T
2-reduction [MS12], which can

be summarized as follows. Any smooth hypersurface in a torsion-free G2 manifold
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carries a half-flat SU(3)-structure [CS02]. Moreover, under the real-analytic condition,
one can locally reverse this procedure through Hitchin’s flow [Hit01]. As the manifold
admits a free T

2-action, it is natural to take a level set of ν (which can be defined as in
Definition 4.12 even when the manifold is endowed with only a T

2-action) as the given
hypersurface. Madsen–Swann [MS12] proved that the SU(3)-structure on the level sets
of ν is described as a T

2-bundle over a four manifold χ , with a coherent tri-symplectic
structure.

Afterwards, we enhance the symmetry to T
2 ×SU(2), which implies that the coherent

tri-symplectic manifold χ admits a structure-preservingGSU(2)-action, and the curvature
of the T

2-bundle is also GSU(2)-invariant. In the second subsection, we describe the
GSU(2)-invariant coherent tri-symplectic structure in a frame compatible with the action.
In the third subsection, we characterize all such structures in terms of a solution of an
ODE. Finally, in the last subsection, we explain how to deal with the T

2-bundle structure
and how to locally characterize G2 manifolds with T

2 ×SU(2)-symmetry.

5.1. The T
2-reduction. Let (M, ϕ) be a G2 manifold with a structure-preserving T

2-
action and singular set S. On M\S, the level sets of ν are hypersurfaces oriented by
∇ν = U1×U2, whereU1,U2 are two generators of the T

2-action. The T
2-action passes

to the level sets of ν and, hence, it endows ν−1(t) with a T
2-bundle structure over

ν−1(t)/ T
2, which inherits the following additional structure (cfr. [MS12]).

Definition 5.1. A 4-manifold χ has a coherent tri-symplectic structure if it admits three
symplectic forms σ 0, σ 1, σ 2 such that σ 0 ∧ σ i = 0 for i = 1, 2, σ 0 ∧ σ 0 is a volume
form of χ and the matrix Q := (Qi j )i, j=1,2 defined by σ i ∧σ j = Qi jσ 0∧σ 0 is positive
definite.

The forms defining this structure on ν−1(t)/ T
2 are:

σ 0 = ∗ϕ(U1,U2, ·, ·), σ 1 = ϕ(U1, ·, ·), σ 2 = ϕ(U2, ·, ·). (5.1)

Conversely (see ([MS12, Theorem 6.10])), assuming real analyticity, one can locally
reconstruct a G2 manifold with T

2-symmetry from a coherent tri-symplectic four man-
ifold χ , equipped with a closed two-form F ∈ �2(χ, R

2) with integral periods and
whose self-dual part F+ satisfies the orthogonality condition:

F+ = (σ̄1, σ̄2)A, (5.2)

for some A ∈ GL(2, R) such that Tr(AQ) = 0. These conditions guarantee that F+ is
the curvature form of a T

2-bundle N over χ . The G2-structure is then constructed from
N by running rescaled Hitchin’s flow. The resulting G2-structure yields a moment map
ν of which N is a level set and rescaled Hitchin’s flow evolves N into other level sets of
ν.

When the symmetry is enhanced to T
2 ×SU(2), the remaining GSU(2)-symmetry

passes to the quotient χ and preserves its coherent tri-symplectic structure (see Eq.
(5.1)). We now describe such four manifolds with a free GSU(2)-symmetry.

5.2. On 4-manifolds with coherent symplectic triple and GSU(2)-symmetry. Let (χ, σ̄1,

σ̄2, σ̄3) be a coherent symplectic 4-manifold with a GSU(2) structure-preserving free
action generated by the vector fields V1, V2, V3 satisfying [Vi , Vj ] = εi jkVk . Since the
action is structure-preserving, we have that LVi σ̄ j = 0, therefore, Q is GSU(2)-invariant.
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Moreover, as Q is also positive definite, there exists a unique real symmetric, positive
definite 2 × 2 matrix T such that T−2 = T−1(T−1)T = Q, which is GSU(2)-invariant
as well.

Let volχ := 1
2 σ̄0 ∧ σ̄0 and define the forms σi := ∑2

j=1 Ti j σ̄ j for i = 1, 2, which
then satisfy σi ∧ σ j = 2δi j volχ . Define the metric:

gχ (u, v) volχ = σ0 ∧ iuσ1 ∧ ivσ2,

for all u, v ∈ Txχ and all x ∈ χ . With respect to this metric, the vector fields Vi are
Killing for gχ .

Using the standard cover SL(4, R) → SO(3, 3) induced by the map:

�2 ⊗�2 → �4 ∼= R, α ⊗ β �→ α ∧ β,

one can prove the following lemma.

Lemma 5.2. There are unique gχ -orthonormal one-forms αi for i = 0, ..., 3 such that

σ0 = α0 ∧ α1 + α2 ∧ α3, σ1 = α0 ∧ α2 + α3 ∧ α1,

σ2 = α0 ∧ α3 + α1 ∧ α2, α0 = 1
√

det ĝχ

volχ (V1, V2, V3, ·), (5.3)

where ĝχ is the matrix-valued function of entries (gχ (Vi , Vj ))i, j=1,2,3.

We define the unit vector field X := α
�
0, which satisfies the conditions α0(X) = 1

and αi (X) = 0 for i = 1, 2, 3, and determines the αi s by αi = σi−1(X, ·). Consider
the two 3 × 3-matrix-valued functions η = (ηi j ) and τ = (τi j ), where ηi j and τi j are
defined by:

ηi j := σi−1(X, Vj ) = αi (Vj ), τi j := σi−1(Vk, Vl),

for ( j, k, l) positive permutation of (1, 2, 3). We also define the one-forms δ0 and δi for
i = 1, 2, 3 by:

δ0 =
√

det ĝχα0 = volχ (V1, V2, V3, ·), δi (Vj ) = δi j , δi (X) = 0.

which satisfies αi = ∑3
j=1 ηi jδ j .

Using that [Vi , X ] = 0, standard computations yield the following.

Lemma 5.3. The matrix functions η and τ have the following properties

• τ = adj(ηT ), where adj denotes the adjugate matrix.
• The row vectors of τ and η are GSU(2)-equivariant.
• The determinant of τ and the determinat of η are GSU(2)-invariant,
• The 3×3-matrix-valued function ĝχ with entries (gχ (Vi , Vj ))i, j=1,2,3 is determined
by η via:

ĝχ = ηT η, (5.4)

• We have the matrix equation:

σ = 1

det(η)
δ0 ∧ ηδ + τ δ̄, (5.5)

where σ = (σ1, σ2, σ3)
T , δ = (δ1, δ2, δ3)

T and δ̄ = (δ2 ∧ δ3, δ3 ∧ δ1, δ1 ∧ δ2)
T .
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In this subsection, we have constructed a GSU(2)-compatible co-frame {δi }3i=0 on χ ,
and we have rewritten the orthogonalized coherent symplectic structure {σi }3i=1 in this
co-frame (Eq. (5.5)). Along the way, we have introduced on χ a compatible volume
form, volχ , and a metric, gχ , which induces two 3× 3-matrix-valued functions η and τ

representing gχ on this GSU(2)-compatible co-frame.

5.3. The differential equation. Now, we deduce how the equations dσ̄i = 0 transform
in the GSU(2)-compatible co-frame {δi }3i=0 that we constructed in the previous section.

We assume that H1(χ, R) = 0 so that there is a function R such that dR = δ0.
The dual vector field ∂R is equal to (det η)−1X , so it satisfies [∂R, Vi ] = 0, for every
i = 1, 2, 3. Morever, by Lemma 5.3 and the commutator relationships for X and Vi , we
deduce that dδ = −δ̄ and d( 1

det η δ0) = 0.
We recall the following version of Lemma 4.15 in terms of differential forms, which

can be proven using Cartan’s formula.

Lemma 5.4. A smooth function f : χ → R
3 is SU(2)-equivariant if and only if (d f =

f × δ) mod δ0, for ( f × δ)i = εi jk f jδk .

As a consequence of this lemma, we have

dη = η × δ +
∂η

∂R
δ0, dτ= τ × δ +

∂τ

∂R
δ0,

where (η × δ)i j = (ηi × δ) j and (τ × δ)i j = (τi × δ) j , i.e. we are taking the cross
products of the rows of η with δ. Putting all together in Eq. (5.5), we get

dσ = 1

det η
δ0 ∧ (−dη ∧ δ − ηdδ) + dτ ∧ δ̄ = 1

det η
δ0 ∧ (−ηδ̄) + (∂Rτ)δ0 ∧ δ̄.

The last step is due to the two identities:

(η × δ) ∧ δ = 2ηδ̄, (τ × δ) ∧ δ̄ = 0.

Extend T to a 3× 3 matrix by padding it with one in the (1, 1) entry and by zeros in the
first row and column elsewhere. This extension is such that σ = T σ̄ , which implies:

dσ = dT ∧ σ̄ = ∂R(T )T−1δ0 ∧ σ = ∂R(T )T−1τδ0 ∧ δ̄, (5.6)

where the first equality follows from dσ̄i = 0, the second one from theGSU(2)-invariance
of T and the definition of σ , and the third one from Eq. (5.5). Combining the two
equations for dσ and using 1

det ηη = (τ T )−1 gives:

0 = (∂Rτ − (∂RT )T−1τ − (τ T )−1)δ0 ∧ δ̄. (5.7)

Proposition 5.5. A coherent symplectic 4-manifold χ with free GSU(2)-symmetry and
intersection matrix Q admits a matrix-valued function τ : χ → M3×3(R) whose rows
are equivariant with respect to the action of SO(3) on R

3 and satisfying the following
differential equation:

∂Rτ = (∂RT )T−1τ + (τ T )−1, (5.8)

where T : χ → M3×3(R) is the, padded as above, matrix satisfying Q = T−2.
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Conversely, let T : (a, b) → Sym2×2(R) be a function of positive-definite matrices,
identified with T : (a, b) → Sym3×3(R) padded as above. Then equivariant solutions
τ : (a, b) × GSU(2) → M3×3(R) of Eq. (5.8) are in bijection with coherent symplectic
structures on (a, b) × GSU(2) with intersection matrix Q = T−2.

Proof. The first statement follows from Eq. (5.7) since the δ0∧δ̄i are linearly independent
on χ .

For the converse direction, define the frame δ0, . . . , δ3 on (a, b) × SU(2) such that
δ0 = dR and δi are the invariant one-forms on SU(2), hence, satisfying dδi = −εi jkδ j ∧
δk . Lemma 5.4 and Eq. (5.8) imply

dτ = τ × δ +
(
(∂RT )T−1τ + (τ T )−1)

)
δ0 (5.9)

Define the forms αi by the equation αi = ∑3
j=1 ηi jδ j , with η := adj(τ T )) as before.

From the αi s, we can reconstruct the forms σ by Eq. (5.3) and then σ̄ through the
transformation matrix T . We deduce that σ̄i are such that σ̄0 ∧ σ̄i = 0 and σ̄i ∧ σ̄ j =
Qi j

1
2σ0 ∧ σ0, where Q = T−2. Our previous computations show that Eq. (5.9) implies

that the forms σ̄i are closed and, hence, we conclude. ��
Remark 5.6. If Q is the identity matrix, then gχ is hyperkähler and by rotating σ0, σ1, σ2
we can assume that τ is a diagonal at a given point. The diagonality is preserved along
R (as in the Bianchi IX ansatz) by Eq. (5.8), and we have ∂R

1
2τ 2

i i = 1 for i = 1, 2, 3.
So each τi i is of the form

√
2R + ki and can we assume that k1 + k2 + k3 = 0 and

k1 ≥ k2 ≥ k3. The metric gχ is

1

τ11τ22τ33
dR2 +

τ22τ33

τ11
δ2

1 +
τ33τ11

τ22
δ2

2 +
τ11τ22

τ33
δ2

3

If all ki = 0, then all τi i are equal and the metric is flat. If k1 > 0 and k2 = k3 < 0
then gχ is the Eguchi-Hanson metric. In all other cases the metric is incomplete. Note
that the Taub–NUT and Atiyah–Hitchin metric are not described by our set-up, since
the SU(2) action is not tri-holomorphic on these spaces. Instead, the action rotates the
three hyperkähler two-forms.

5.4. From coherent tri-symplectic manifolds to G2 manifolds. Finally, we use Propo-
sition 5.5 to obtain a local construction of G2 manifolds with T

2 ×SU(2)-symmetry
through ([MS12, Theorem 6.10]).

The last object that we need is an orthogonal (i.e., satisfies Eq. (5.2)) self-dual two-
form F+ ∈ �2(χ, R

2) on χ with integral periods. This condition assumes the existence
of an anti-self-dual form F− ∈ �2(χ, R

2) such that F+ + F− is closed and defines an
element in the image of H2(M, Z

2).
In the GSU(2)-invariant case the closedness condition can always be satisfied.

Lemma 5.7. For any GSU(2)-invariant F+ ∈ �2
+(χ, R

2), there is a F− ∈ �2−(χ, R
2)

such that F+ + F− is closed.

Proof. Using the form that the self-dual two-forms {σi }3i=1 take in Lemma 5.2, we can
define the anti-self dual two-forms:

σ−
1 = −α0 ∧ α1 + α2 ∧ α3,



  168 Page 24 of 51 B. Aslan, F. Trinca

σ−
2 = −α0 ∧ α2 + α3 ∧ α1,

σ−
3 = −α0 ∧ α3 + α1 ∧ α2.

The vector of 2-forms σ− := (σ−
1 , σ−

2 , σ−
3 ) satisfies the same structure equation of

σ : Eq. (5.6). Indeed, this is evident by computing dσ− as before or by using a local
diffeomorphism that preserves α1, α2, α3 and flips the sign of α0, i.e pulls back σ to σ−.
It follows that their difference satisfies:

d(σ − σ−) = ∂R(T )T−1δ0 ∧ (σ − σ−),

which vanishes as σ − σ− = 2α0 ∧ α and α0 is proportional to δ0.
Since F+ is self-dual, there is a : χ → R

3 ⊗ R
2 such that F+ = aσ = ∑

i aiσi .
Because F+ is GSU(2)-invariant, the same is true for a, which implies that da is a multiple
of α0. Now define F− := −aσ− and observe

d(F+ + F−) =
3∑

i=1

2dai ∧ α0 ∧ αi = 0,

as required. ��
Remark 5.8. In a similar fashion, one can find all closed GSU(2)-invariant 2-forms F+ +
F− in terms of a system of ODEs.

If the function T is real-analytic the solutions of Eq. (5.8) are real-analytic as well
by the Cauchy-Kovalevskaya theorem. This observation, together with Proposition 5.5
and ([MS12, Theorem 6.10]) implies the following theorem.

Theorem 5.9. Simply connected G2 manifolds with a free G-action are in bijection with
solutions of Eq. (5.8), for any given T : (a, b) → Sym2×2(R) real-analytic function of
positive-definite matrices, together with the real analytic two-form F+ ∈ �2

+((a, b) ×
GSU(2), R

2) satisfyingEq. (5.2) and such that F++F− is closed andwith integral periods,
for some real analytic anti-self-dual form F− in �2(χ;R

2).

6. T
2-invariant Associative Submanifolds

In this section, we study T
2 ∼= T

2 ×IdSU(2)-invariant associative submanifolds of a G2
manifold (M, ϕ), endowed with a structure-preserving, cohomogeneity two action of
T

2 ×SU(2). We use the same notation and conventions of Sect. 4.
First, we give a characterization of T

2-invariant associatives in terms of integral curves
of a vector field in the T

2-quotient. Since such a characterizing vector field is T
2 ×SU(2)-

invariant, the problem of finding associative submanifolds "splits" with the stratification
constructed in Theorem 4.7. Moreover, the multi-moment map μ : M → R

3, defined
in Definition 4.13, is a first integral of the ODE problem, i.e., it is constant on every
T

2-invariant associative.
In the principal part MP of the T

2 ×SU(2)-action, we characterize T
2-invariant

associatives using the level sets of |μ| : MP/G → R. Indeed, MP/ T
2 admits a GSU(2)-

bundle structure, and T
2-invariant associatives project to the level sets of |μ|. Choosing a

suitable connection on the GSU(2)-bundle, one can horizontal lift these level sets and re-
verse the procedure. We conclude our discussion on MP by making this characterization
locally explicit.
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In the singular part of the T
2 ×SU(2)-action, we use Theorem 4.7 to show that there

exists a submersion from S1 to S2 such that each fibre is a T
2-invariant associative.

Similarly, we show that S2 and S3 ∪ S4 are associatives.
Putting together our discussion on the principal part and on the singular part of

the T
2 ×SU(2)-action, we deduce that there exists an easy geometrical condition that

guarantees the existence of a T
2-invariant associative fibration. Finally, we show that all

T
2-invariant associatives are smooth.

In Sect. 8, we will use the theory developed here to describe T
2-invariant associatives

in the FHN G2 manifolds.

6.1. T
2-invariant associatives. As in Sect. 4.3, let U1 and U2 be the generators of t2 ⊕

{0} ⊂ t2⊕su(2). We now give a characterization of T
2-invariant associatives as integral

curves of U1 ×U2.

Proposition 6.1. Let L0 be a T
2-invariant associative submanifold of M \ S ⊇ MP.

Then L0/T
2 is an integral curve of the nowhere vanishing vector field U1 × U2 in

(M \S)/T
2. Conversely, every integral curve of U1×U2 in (M \S)/T

2 is the projection
of a T

2-invariant associative in M\S.
Proof. Via the projection map, every T

2-invariant submanifold L0 of M \ S projects to
a curve in (M\S)/T

2, and, conversely, every curve in (M\S)/T
2 can be lifted to a T

2-
invariant submanifold of M \ S by taking its preimage. This correspondence obviously
extends to their tangent space.

If L0 is also associative, it follows from Proposition 2.7 that its tangent space is
spanned by {U1,U2,U1 × U2}. Since U1 × U2 is T

2-invariant (Corollary 4.18) and
orthogonal to U1,U2, we deduce that L0 projects in (M \S)/T

2 to a curve with tangent
space spanned by the nowhere vanishing vector field U1 × U2. Conversely, an integral
curve of U1 × U2 in (M\S)/T

2 lifts to a T
2-invariant submanifold of tangent space

spanned by {U1,U2,U1 ×U2}. ��
We now state some general properties of T

2-invariant associatives and integral curves
of U1 ×U2 that will play a crucial role later on.

Since the flow ofU1×U2 commutes with the group action ofG, we have the following.

Lemma 6.2. The flow along U1 ×U2 preserves the orbit type of G. Therefore, integral
curves of U1 ×U2 stay in the same stratum of the orbit type stratification, and hence of
{Si }.

In particular, we have proven that the problem of finding T
2-invariant associatives

decomposes with respect to the stratification, and, on M \ S it reduces to a problem of
finding integral curves of a nowhere vanishing vector field.

Lemma 6.3. The multi-moment map μ : M → R
3 is preserved by the vector field

U1 ×U2. Therefore, μ is constant on every T
2-invariant associative.

Proof. By definition of μi we have dμi (U1 × U2) = ∗ϕ(U1,U2, Vi ,U1 × U2) for
every i = 1, 2, 3. If U1,U2 are linearly independent, then {U1,U2,U1 × U2} spans an
associative plane and ∗ϕ(U1,U2, Vi ,U1 ×U2) = 0 by Proposition 2.7. Otherwise, the
equation trivially holds. ��
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6.2. Associatives in the principal set. In this subsection, we restrict our attention to the
principal set MP . LetU1,U2, V1, V2, V3 be the generators of the G-action as in Sect. 4.3.
Note that the action is assumed to be of cohomogeneity two, hence, the generators are
everywhere linearly independent on MP .

Proposition 6.4. Let ν and μ be the multi-moment maps defined in Definitions 4.12 and
4.13, respectively, and restricted to MP. Then the map (μ, ν) : MP → R

3 × R is a
submersion. In particular,μ−1(c)∩MP is a 4-dimensional submanifold of MP for every
c in the image μ(MP ) and (|μ|, ν) : MP/G → R

2 is a local diffeomorphism onto its
image.

Proof. Given a fixed x ∈ MP , it follows from Corollary 4.20 that μ(x) �= 0. Since μ is
SU(2)-equivariant and ν is SU(2)-invariant, it suffices to show that (|μ|2, ν) : MP → R

2

is a submersion at x .
As

∑3
k=1 ϕ(U1,U2, μkVk) = 0, there is an X ∈ TxM such that

∑3
k=1 ∗ϕ(U1,U2,

μkVk, X) = 1. Observe that

1

2
d|μ|2 =

3∑

k=1

μk ∗ ϕ(U1,U2, Vk, ·),

which implies d|μ|2(X) = 2 and d|μ|2(U1 ×U2) = 0.
Since d(|μ|2, ν) = (d|μ2|, dν), we have proven that d(|μ|2, ν)(X) = (2, 0). Ob-

viously we also have that d(|μ|2, ν)(U1 × U2) = (0, |U1 × U2|) and the statement
follows.

��
We now take a different perspective. Indeed, we argued in Lemma 4.5 that the action

of SU(2) on M induces on the quotient MP/T
2 a principal bundle structure with structure

group GSU(2) and base space the surface B = MP/G. Let H be a connection on MP/T
2

such that the SU(2)-invariantU1×U2 is horizontal at each point. A connection satisfying
this property always exists: indeed, we showed in Proposition 4.17 that the one induced
by the G2-metric satisfies:

g(U1 ×U2, Vj ) = ϕ(U1,U2, Vj ) = 0.

Remark 6.5. Note that an invariant metric on a principal bundle naturally induces an
(Ehresmann) connection. Indeed, the horizontal distribution defined by Hp := V⊥

p is
clearly horizontal and equivariant.

Using such a connection, integral curves of U1 × U2 are horizontal lifts over such
curves in B.

Theorem 6.6. Let H be a connection on the principal GSU(2)-bundle MP/T
2 → B

such that U1 ×U2 ∈ H. Let γ be a curve in MP/T
2. The following are equivalent:

(1) The pre-image π−1
T

2 (imγ ) is a T
2-invariant associative in MP,

(2) γ is an integral curve of U1 ×U2,
(3) γ is the horizontal lift of a level set of |μ| on B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral
curve of U1×U2 in B there is a GSU(2)-family of integral curves of U1×U2 in MP/ T

2.

Proof. The equivalence between (1) and (2) has been established in Proposition 6.1,
while the equivalence between (2) and (3) can be deduced from the G-invariance of
U1 ×U2, the fact that it is assumed to be horizontal and Proposition 6.4. ��
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6.3. Local description of associatives in the principal set. We have seen that MP/T
2 is a

GSU(2)-principal bundle over the base B. In Theorem 6.6, the integral curves ofU1×U2
in MP/T

2 are described as horizontal lifts of curves in a surface. In the following, we
will show how these horizontal lifts can be computed in a local trivialization of the
principal bundle.

Lemma 6.7. Given U ⊂ B open, let U ×GSU(2) → MP/T
2 be a local trivialisation of

the GSU(2)-bundle with U1 × U2 ∈ TU × {0}. If Ū ⊂ MP and pGSU(2) : Ū → GSU(2)

are, repsectively, the induced local chart and the obvious projection coming from the
trivialization, then the fibres of the submersion (|μ|, pGSU(2) ) : Ū → R

+ × GSU(2) are
associative submanifolds.

Proof. As U1 × U2 ∈ TU × {0}, it follows that its integral curves will be constant on
the GSU(2) component of U × GSU(2). Since |μ| is constant on the GSU(2)-component
and since integral curves of U1 ×U2 are contained in the level set of |μ| (Theorem 6.6)
we conclude. ��

The aim is to find trivializations of MP/ T
2 → B where we can apply Lemma

6.7. Since μ is GSU(2)-equivariant, we can reduce the structure group of the GSU(2)-
principal bundle. Indeed, given v ∈ R

3\{0} and denoting by 〈v〉 the line spanned by v,
then Qv := μ−1(〈v〉) is an S1 reduction of the bundle MP/ T

2 → B.

Proposition 6.8. Let U ⊂ B open. If (|μ|, ν) : U → R
2 is a diffeomorphism onto

its image and the image is convex, then there exists a flat connection on Qv such that
U1 ×U2 is horizontal.

Proof. Let θ ∈ �1(Qv, R) be any connection form on Qv for whichU1×U2 is horizon-
tal. Then the curvature form dθ is a basic form, so there is a function f : U → R such
that dθ = f dν∧d|μ|, where we are considering (|μ|, ν) as coordinates on U ⊂ B. The
form d|μ| is basic and annihilates U1 ×U2, hence, θ ′ = θ + Fd|μ| is also a connection
on Qv such that U1 × U2 is horizontal for every smooth function F : U → R. The
new connection θ ′ is flat if and only if (∂νF + f )dν ∧ d|μ| = 0. Because the image
is convex, ∂νF = − f admits at least one solution, for instance, using the methods of
characteristics. ��
Theorem 6.9. Let U ⊂ B open. If (|μ|, ν) : U → R

2 is a diffeomorphism onto its image
and the image is convex, then there exists a trivialization U × GSU(2) → MP/T

2 such
that U1 × U2 ∈ TU × {0}. As a consequence, the map (|μ|, pGSU(2) ) is a fibre bundle
map whose fibres are associative submanifolds. Here, pGSU(2) is the projection to GSU(2)

coming from the trivialisation.

Proof. By Proposition 6.8, the bundle Qv admits a flat connection for which U1 × U2
is horizontal. Since U is diffeomorphic to a convex set (simply-connected), there is a
trivialization U × S1 → Qv which induces this connection, i.e. the horizontal bundle is
TU × {0} ⊂ T Qv . Since U1 ×U2 is horizontal the component in S1 is constant along
integral curves ofU1×U2. By equivariance, we get a trivializationU×GSU(2) → MP/T

2

such that the component in GSU(2) is constant along integral curves of U1 ×U2. ��
Clearly, the condition on (|μ|, ν) in Theorem 6.9 always holds locally.

6.4. Associatives in the singular set. In this subsection, we describe the T
2-invariant

associative submanifolds of M that are contained in the singular set of the T
2 ×SU(2)-

action. In particular the following theorem holds.
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Theorem 6.10 (Associatives in the singular set). Let S1,S2,S3 and S4 be the strata as
described in Theorem 4.7. Then:

• S1 admits an SU(2)-equivariant submersion F : S1 → S2 such that each (not
necessarily connected) fibre is a T

2-invariant totally geodesic associative.
• every connected component of S2 is an associative G-orbit,
• The set S3 ∪ S4 is totally geodesic, associative and the action of G on S3 is of
cohomogeneity one.

Proof. We first consider S1. For every c ∈ R × R and b ∈ S2, consider the Killing
vector field Wc,b := c1U1 + c2U2 + b1V1 + b2V2 + b3V3 and its zero set Lc,b ⊂ M\S.
Observe that every point of S1 lies in a unique Lc,b, up to Lc,b = L−c,−b. Indeed,
Wc,b corresponds to the Lie algebra of Gx ∼= S1. Since Gx is the quotient of a compact
1-dimensional subgroup of T

2 ×SU(2), it follows that c ∈ Q × Q, (otherwise, Lc,b is
empty). Let H+ be a half plane in Q × Q, determined by a line with irrational slope
through the origin. This means that every element in Q×Q has a unique representative
in H+ under the action of −1. In other words:

S1 =
⋃

(c,b)∈H+×S2

Lc,b

and the union is disjoint. We define F : S1 → S2 such that on each of Lc,b the value of
F is b. To show that F is equivariant, let ξc,b be the Lie algebra element corresponding
to the vector field Wc,b and recall that

Lc,b = {x ∈ M | ξc,b ∈ gx },
wheregx is the Lie algebra ofGx . The equivariance follows because, for every g ∈ SU(2)

we have:

ξc,b ∈ gx ⇔ ξc,gb = Adgξc,b ∈ Adggx = ggx

The space Lc,b is a totally geodesic submanifold since it is the zero set of a Killing
vector field and, since the vector fields U1,U2,U1 × U2 commute with Wc,b, they are
linearly independent and tangent to Lc,b.

It remains to show that F is a submersion. For a point x ∈ S1, a neighbourhood of the
orbit Gx in S1 is diffeomorphic to R×G/Gx . The vector field U1 ×U2 is tangent to the
R direction, so F is invariant under the coordinate in R and descends to a G-equivariant
map onto G/Gx ∼= S2, which is a T

2-invariant submersion.
We now turn our attention to S2. By Proposition 4.9, S2 is smooth, 3-dimensional

and, by Theorem 4.7, associative. As it is 3-dimensional, we deduce that every connected
component is a G-orbit.

Finally, we consider S3 ∪S4. In Proposition 4.9, we have seen that S3 is smooth and
3-dimensional and that S4 is smooth and 1-dimensional. It follows from Theorem 4.7
(cfr. Figure 1) thatS3 is dense inS3∪S4 and it suffices to show thatS3∪S4 is smooth and
that S3 is associative, totally geodesic and of cohomogeneity one. Clearly, S3 is open in
S3 ∪S4. Hence, it is enough to show smoothness at a point x ∈ S4. By Theorem 4.7, the
normal representation of Gx on C

3 splits into two invariant components N = N1 ⊕ N2
where dimC(N1) = 1, dimC(N2) = 2. The set of points with 3-dimensional stabilizer
is exactly N1. So, by the slice theorem, there is a diffeomorphism of G ×Gx N to
a neighbourhood U ⊂ M of Gx such that the subbundle G ×Gx N1 is mapped to
U ∩ (S3 ∪ S4) and smoothness follows.
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Being the vanishing locus of three Killing vector fields, V1, V2, V3, it is clear that S3
is totally geodesic. Finally, it is associative because, at each point, the tangent space is
the spanned by U1,U2 and U1 ×U2. ��
Corollary 6.11. If (|μ|, ν) : B → R

2 is a diffeomorphism onto its image and the image
is convex, then M admits a global T

2-invariant associative fibration in the sense of
Definition 2.10.

Proof. Since (|μ|, ν) : B → R
2 is a diffeomorphism onto its image and the image

is convex, Theorem 6.9 implies that there exists a smooth fibre bundle π : MP →
R × GSU(2) with T

2-invariant associatives as fibres. Using Theorem 6.10, we conclude
that the complement of MP is covered by possibly intersecting T

2-invariant associatives.
��

6.5. Singularity analysis. In this last subsection, we show that every T
2-invariant asso-

ciative in a G2 manifold with T
2 ×SU(2)-symmetry needs to be smooth.

Theorem 6.12. Every T
2-invariant ϕ-calibrated integer rectifiable current in M is a

smooth submanifold. Moroever, if aT
2-invariant ϕ-calibrated integer rectifiable current

has support intersecting the singular set of the T
2 ×SU(2)-action, then its support is

contained in it.

Proof. As a first step, we observe that the local uniqueness and existence theorem (The-
orem 2.8) implies that T

2-invariant ϕ-calibrated integer rectifiable currents are smooth
away from S = S2 ∪ S4.

Moreover, if L is a T
2-invariant ϕ-calibrated current with supp L ∩ S �= ∅, then its

support is contained in the singular set of the T
2 ×SU(2)-action. Indeed, if by contra-

diction supp L∩MP �= ∅, then μ
∣∣
supp L = c for some constant c �= 0, by Corollary 4.20.

However, once again by Corollary 4.20, we have that μ
∣∣S = 0 which is a contradiction

as μ is constant on L . Hence, all T
2-invariant currents with support in MP admit a local

neighbourhood separated from the singular set of the T
2 ×SU(2)-action and are smooth.

We now consider T
2-invariant associatives contained inS1∪S3∪S. By Theorem 2.8,

we can distinguish two cases: supp L ⊂ S3 ∪ S and supp L ⊂ S1 ∪ S. The smoothness
of the second case was proven in Theorem 6.10 so we restrict our attention to the first
case. Given x ∈ S1 ∩ supp L �= ∅ we can associate a vector field Wc,b = c1U1 + c2U2 +
b1V1 + b2V2 + b3V3 for c ∈ R

2 and b ∈ S2 on M , such that its zero set in S1 coincides
with supp L ∩S1 or one of its connected components (cfr. Theorem 6.10). We conclude
that supp L is globally the zero set of a Killing vector field Wc,b, which is a smooth
totally geodesic submanifold. ��
Remark 6.13. The approach used to study the singularities in Theorem 7.5 and Theorem
7.19 can be attempted for T

2-invariant associatives as well. However, in this case, we
could not rule out the existence of branched points.

Remark 6.14. Note that, apart from Sect. 6.3 and Corollary 6.11, where we need ν to be
defined, all the other results can be extended to manifolds with co-closed G2-structures.

7. T
3-invariant and SU(2)-invariant Coassociative Submanifolds

In this section, we study coassociative submanifolds of a G2 manifold (M, ϕ), endowed
with a structure-preserving, cohomogeneity two action of T

2 ×SU(2). We use the same
notation and conventions of Sect. 4.1.
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First, we consider coassociative submanifolds that are invariant under T
3 ∼= T

2 ×S1 <

T
2 ×SU(2), for some S1 < SU(2). Similarly to the T

2-invariant case, we can charac-
terize T

3-invariant coassociatives in terms of integral curves of a vector field in the
T

3-quotient. Madsen and Swann [MS19] found three first integrals of the ODE problem
in the principal part of the T

3-action, i.e., three constant quantities on every T
3-invariant

coassociative. Once again, these are components of the T
3-multi-moment maps. For

dimensional reasons, this means that T
3-invariant coassociatives are the level sets of a

function and from this we can prove that the same is true in B = MP/G. Conversely,
such level sets can be lifted to an S2-family of T

3-invariant coassociatives. Combin-
ing this result with the similar one for T

2-invariant associatives, we deduce that there
exists a parametrization of B such that the coordinate lines correspond to T

2-invariant
associatives or T

3-invariant coassociatives. Along the way, we show that T
3-invariant

coassociatives con only admit singularities modelled on the product of the Harvey–
Lawson cone in C

3 with a line.
Afterwards, we consider SU(2) ∼= Id

T
2 ×SU(2)-invariant coassociatives. First of all,

we need to assume that ϕ vanishes when restricted to SU(2)-orbits. Otherwise, it would
be pointless discussing SU(2)-invariant coassociatives (cfr. Proposition 2.7). Most of the
properties that were true for T

2-invariant associatives remain true for SU(2)-invariant
coassociatives. The main difference is that SU(2)-invariant coassociatives do not admit
natural first integrals, but only 1-forms on which SU(2)-invariant coassociatives need to
vanish.

In Sect. 8, we will use the theory developed here to describe T
3-invariant coassocia-

tives and SU(2)-invariant coassociatives in the FHN G2 manifolds.

7.1. T
3-invariant coassociative submanifolds. Given any S1 < SU(2), we can consider

a structure preserving T
3-action on M by T

2 ×S1 < T
2 ×SU(2). Moreover, up to

passing to some quotient, we can assume that the action is effective. We denote by S the
singular set of this action which satisfies: S2 ∪ S4 ⊆ S ⊆ S1 ∪ S2 ∪ S3 ∪ S4. Madsen
and Swann proved in [MS19, Lemma 2.6] that the stabilizer of an effective T

3-action
on a G2 manifold is either trivial, a circle or a two-torus.

In the notation of Sect. 4.3, we can assume that the generators of the T
3 action are

U1,U2, V1 and, hence, the multi-moment maps associated to it are μ1, θ
1
1 , θ2

1 and ν,
which are maps in C∞(M;R) (as usual defined up to additive constants). Observe that
Eq. (4.6) and Theorem 2.8 guarantee the local existence and uniqueness of T

3-invariant
associatives in M\S .

Similarly to the T
2-invariant associative case, we can see T

3-invariant coassociatives
as integral curves of a vector field.

Proposition 7.1. Let �0 be a T
3-invariant coassociative submanifold of M \ S. Then

�0/T
3 is an integral curve of the nowhere vanishing vector field ∇μ1 in (M \ S)/T

3.
Conversely, every integral curve of∇μ1 in (M\S)/T

3 is the projection of aT
3-invariant

coassociative in M\S.
Proof. The proof of this proposition is analogous to the one of Proposition 6.1. Observe
that:

ϕ(Ul , V1,∇μ1) = gϕ(Ul × V1,∇μ1) = ∗ϕ(U1,U2, V1,Ul × V1) = 0, l = 1, 2;
ϕ(U1,U2,∇μ1) = gϕ(U1 ×U2,∇μ1) = ∗ϕ(U1,U2, V1,U1 ×U2) = 0,

which ensure that {U1,U2, V1,∇μ1} is a coassociative subspace at each point of M \S.
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��
In contrast to the associative case, ∇μ1 does not commute with T

2 ×SU(2), hence,
integral curves do not respect the stratification of Sect. 4.2. However, the following holds.

Lemma 7.2. Let γ be an integral curve of ∇μ1 in M\S. Then the multi-moment map
μ1 is strictly increasing along γ .

Proof. The lemma follows from the following standard computation:

d

dt
(μ1 ◦ γ ) = dμ1(γ̇ ) = g(∇μ1, γ̇ ) = g(∇μ1,∇μ1) = |dμ1|2 > 0.

The strict inequality follows from Proposition 2.7 and Eq. (4.6), which guarantees the
existence of a vector v such that dμ1(v) > 0, i.e. the vector that together with the
generators of the T

3-action spans a coassociative plane. ��
We recall that T

3-invariant coassociatives are the level sets of the following multi-
moment maps.

Proposition 7.3 (Madsen–Swann [MS19]). The map (θ1
1 , θ2

1 , ν) : M \ S → R
3 is a

submersion with fibres T
3-invariant coassociative submanifolds.

Remark 7.4. In contrast to the T
2-invariant associative case, where we showed that M

admits an associative fibration in the sense of Definition 2.10, we can not argue in the
same way in this case. Indeed, a priori we do not know if there exists a T

3-invariant
coassociative passing through each point of S .

Using a completely different approach to the one employed in Theorem 6.12, we can
study the singularities that a T

3-invariant coassociative can admit. To this end, we need
to describe the structure of the local model near the singular set S. This means that we
only have to consider two cases, i.e., when the stabilizer is a circle or when it is a torus.
We refer to these sets as S1 and S2, respectively.

7.1.1. Blow-up analysis at S1 Let p ∈ S1 and let U1 ∈ t3 be the generator of the
T

3-stabilizer at p. Let U2,U3 be a basis of the complement of U1 in t3. We pick normal
coordinates around p using Lemma B.6. In these coordinates, under the blow-up pro-
cedure, the vector fields U1,U2,U3, properly rescaled (cfr. Lemma B.4), respectively
converge to Ũ1 = U1 and Ũ2 = U2(0), Ũ3 = U3(0) constant vector fields (cfr. Lemma
B.6). If we write R

7 as R
3 ⊕ C

2, where R
3 is determined by Ũ2, Ũ3, Ũ2 ×ϕ0 Ũ3, then

Ũ1 generates a U(1)-action on the C
2-component preserving ϕ0. Since this U(1) is a

subgroup of G2 and commutes with Ũ2, Ũ3 and Ũ2 ×ϕ0 Ũ3, it acts on C
2 as a maximal

torus of SU(2). We conclude that the integral curves of ∇0μ0
1 passing through p gener-

ate, under the limit of the T
3-action (cfr. Remark B.7), a multiplicity-1 plane. Here, ∇0

denotes the flat covariant derivative on R
7 and μ0

1 is the multi-moment map defined by:

dμ0
1 = ∗ϕ0(Ũ1, Ũ2, Ũ3, ·).
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Fig. 2. Blow-up procedure of Theorem 7.5

7.1.2. Blow-up analysis at S2 Given p ∈ S2, we denote byU2,U3 the generators of the
stabilizer of the T

3-action at p and by U1 the generator of the complement in t3. Now,
we pick normal coordinates at p = 0, as above. In particular, we deduce from Lemma
B.4 and Lemma B.6 that, under blow-up, the properly rescaled vector fields U1,U2,U3

converge to Ũ1 = U1(0), constant vector field, and to Ũ2 = U2, Ũ3 = U3. We write
R

7 = R × C
3, where R is determined by the flow of Ũ1, and we observe that Ũ2, Ũ3

generate a T
2, ϕ0-preserving action that commutes with Ũ1. Hence, it acts only on the

C
3-component as a subgroup of SU(3). It is straightforward to see that integral curves

of ∇0μ0
1 passing through p generate, under the limit of the T

3-action (cfr. Remark B.7),
the multiplicity-1 cone: R × N , where N is the Harvey–Lawson cone in C

3.

Theorem 7.5. Let � be a T
3-invariant ∗ϕ-calibrated integer rectifiable current of M.

Then � is smooth at each point of M where the stabilizer of the T
3-action is 0-

dimensional or 1-dimensional. Otherwise, the stabilizer is 2-dimensional and � has
a tangent cone modelled on the product of the Harvey–Lawson cone in C

3 with a line.

Proof. Let � be a ∗ϕ-calibrated integer rectifiable current which is invariant under the
T

3-action. It is clear from the local existence and uniqueness theorem (Theorem 2.8)
that � is smooth at each point where the stabilizer of the T

3-action is 0-dimensional. In
particular, � can exhibit singularities only at S .

Note that � can not be contained in S and it corresponds to an integral curve γ of
∇μ1 in M \ S. Without loss of generality, we consider a connected component of � in
M\S so that γ is connected.

Let p ∈ (supp �)∩S and let B2(0) be a neighbourhood of p, identified with 0, as in
Lemma B.6. Note that the restriction of � to B2(0) \S corresponds to a unique integral
curve of ∇μ1 up to picking B2(0) small enough. Otherwise, μ1

∣∣
supp �

would have an
interior maximum or a minimum contradicting Lemma 7.2. In particular, the support of
the integral curve can not be a loop passing through p. (This means that γ1 as in Fig. 2
can not be an integral curve of ∇μ1).
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Fig. 3. Associative/coassociative parametrization of B

We now want to show that, under a suitable blow-up, γ converges to an integral curve
of ∇0μ0

1 passing through zero (Fig. 2). We can then conclude by the analysis of the local
models (cfr. Sects. 7.1.1, 7.1.2) and by Theorem B.2.

Since 0 ∈ Imγ , we can choose a sequence of points of Imγ : xk ∈ Ck := S1/k(0) =
{x ∈ B2(0) : |x |R7 = 1

k }. In particular, kxk ∈ S1(0) will converge, up to passing to a

subsequence, to some x ∈ S1(0). We denote by γ x
t the integral curve of (̃∇μ1)t with

initial value x . Since for k → ∞ we have that kxk → x̄ and (̃∇μ1)t → ∇0μ0
1 because

of Lemma B.5, it follows from the theory of ODEs that γ
kxk
1/k converges to γ x

0 integral

curve of ∇0μ0
1 of initial value x . From the choice of xk and Lemma B.5, we deduce that

{γ kxk
1/k }∞k=1 is a blow-up of γ and we can conclude. ��

Remark 7.6. In Sect. 8.2, we will see that there are examples of singular T
3-invariant

coassociatives.

Remark 7.7. Observe that we have not used the fact that T
3 is a subgroup of T

2 ×SU(2).
In particular, Theorem 7.5 holds in G2-manifolds with a structure-preserving T

3-action.

On B := MP/G the T
3-invariant coassociatives correspond to the level sets of ν.

Theorem 7.8. Let �0 be a T
3-invariant coassociative submanifold of MP. Then the

projection of �0 to B is contained in a level set of ν. Conversely, every level set of ν on
B can be lifted to an S2-family of T

3-invariant coassociatives.

Proof. If we consider the projection of �0 to MP/ T
2, we obtain a surface �0/ T

2

which is invariant under the action of an S1 < GSU(2). So, projecting it to B reduces the
dimension to one and we obtain a curve in B. We conclude from Proposition 7.3 and
dimensional reasons that �0 is contained in a level set of ν.

Conversely, given a level set of ν on B and a point p in it, we can construct, using
Proposition 7.3, a T

3-invariant coassociative from every point of MP/ T
2 in the fibre

over p. Indeed, such a point determines a value of (θ1
1 , θ2

1 , ν). Since two points in the
same S1-orbit determine the same T

3-invariant coassociative we conclude. ��
As a consequence of this discussion we deduce that B has a nice parametrization

determined by associative and coassociative submanifolds, which are T
2-invariant and

T
3-invariant respectively (Fig. 3).



  168 Page 34 of 51 B. Aslan, F. Trinca

Corollary 7.9 (Associative/coassociative parametrization of the quotient). Consider the
local orthogonal parametrization of B := MP/G given by (|μ|, ν). Then the coordinate
lines correspond to T

2-invariant associative submanifolds and T
3-invariant coassocia-

tive submanifolds, respectively.

Proof. The proof follows immediately from Theorems 6.6 and 7.8. ��
Remark 7.10. Note that, apart from Lemma 7.2, Theorem 7.5 and Corollary 7.9 where
we need μ to be defined, all the other results of this section so far can be extended to man-
ifolds with closed G2-structures. Indeed, this can be done by reading ∗ϕ(U1,U2, V1, ·)�
instead of ∇μ1.

7.2. SU(2)-invariant coassociative submanifolds. For the sake of brevity we omit the
proofs, which are analogous to the other cases. In order to guarantee the existence of
SU(2)-invariant coassociatives, we need to assume that ϕ(V1, V2, V3) ≡ 0 from now
on. Actually, it is enough to have that it vanishes at a point. Indeed, Cartan’s formula,
together with [LX , iY ] = i[X,Y ], implies that ϕ(V1, V2, V3) is a constant function. A
sufficient condition, but not necessary as shown in Sect. 8.2.5, is that the SU(2)/�2

action has a singular orbit. We denote the singular set of this action by S̃.

Proposition 7.11. Let �0 be a SU(2)-invariant coassociative submanifold of M \ S̃.
Then �0/SU(2) is an integral curve of the nowhere vanishing vector field ∇η in (M \
S̃)/SU(2). Conversely, every integral curve of ∇η in (M\S̃)/SU(2) is the projection of
a SU(2)-invariant coassociative in M\S̃ .
Lemma 7.12. Let γ be an integral curve of ∇η in M\S̃. Then the multi-moment map η

is strictly increasing along γ .

Proof. The proof is analogous to the one of Lemma 7.2. The existence of the vector v

such that dη(v) > 0 is guaranteed once again by Proposition 2.7 and by the assumption:
ϕ(V1, V1, V3) ≡ 0. ��
Proposition 7.13. The flow of ∇η preserves the orbit type of G. Hence, the integral
curves of ∇η stay in the same stratum of the stratification described in Theorem 4.7.

By Lemma 4.5, the action of T
2 on M induces on the quotient MP/(SU(2)/�2) aGT

2

principal bundle structure with base space B. LetH be a connection on MP/(SU(2)/�2)

such that the T
2-invariant vector field ∇η is horizontal. For instance, the connection

induced by the metric gϕ satisfies this property: g(Ui ,∇η) = ∗ϕ(Ui , V1, V2, V3) = 0
for i = 1, 2 (cfr. Remark 6.5). As in Theorem 6.6, we deduce the following proposition.

Theorem 7.14. Let H be a connection on the principal GT
2
-bundle MP/SU(2) → B

such that ∇η ∈ H. Let γ be a curve in MP/(SU(2)/�2). The following are equivalent:

(1) The pre-image π−1
SU(2)(imγ ) is a SU(2) invariant co-associative in MP,

(2) γ is an integral curve of ∇η,
(3) γ is the horizontal lift of an integral curve of ∇η in B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral
curve of ∇η in B there is a T

2-family of integral curves of ∇η on MP/(SU(2)/�2).

Remark 7.15. Note that, we can not conclude that we have an SU(2)-invariant coasso-
ciative fibration in the sense of Definition 2.10. Indeed, Theorem 7.14 only implies that
MP admits a foliation of coassociative leaves.
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In contrast to the other cases, the obvious 1-forms that would give constant quantities
on SU(2)-invariant coassociatives are not closed. These are defined as:

ω1 := ϕ(V2, V3, ·), ω2 := ϕ(V3, V1, ·), ω3 := ϕ(V1, V2, ·). (7.1)

Remark 7.16. These 1-forms can be put in the context of weak homotopy moment-maps
(see [Her18] and references therein). Moreover, since iUlωi = −θ li the ωi s do not
descend to the quotients: MP/(SU(2)/�2), MP/ T

2 and B.

Proposition 7.17. A 4-dimensional submanifold, �0, is an SU(2)-invariant coassocia-
tive submanifold of M \ S̃ if and only if ωi

∣∣
�0

= 0 for all i = 1, 2, 3.

Remark 7.18. The previous proposition does not use the additional T
2-action. In particu-

lar, we re-obtain the characterizing ODEs for the SU(2)-invariant coassociative subman-
ifolds on the Bryant–Salamon manifold �2−(S4) and �2−(CP

2) computed in [KL21].

In a similar fashion to Theorem 7.5, one can obtain the following regularity result on
SU(2)-invariant coassociative submanifolds.

Theorem 7.19. Every SU(2)-invariant ∗ϕ-calibrated integer rectifiable current in M is
a smooth submanifold.

Remark 7.20. The existence of the T
2-action is crucial for Theorem 7.19. Indeed,

Karigiannis and Lotay constructed in [KL21] examples of asymptotically singular SU(2)-
invariant coassociatives on �2−(S4) and on �2−(CP

2).

Remark 7.21. Note that, apart from Lemma 7.12 and Theorem 7.19 where we need η to
be defined, all the other results can be extended to manifolds with closed G2-structures.
Indeed, this can be done by reading ∗ϕ(V1, V2, V3, ·)� in place of ∇η.

8. Examples

In this final section, we consider the G2 manifolds constructed by Foscolo–Haskins–
Nordström in [FHN21b] and the Bryant–Salamon G2 manifolds of topology S3 × R

4.
On these spaces we use the general theory developed in Sects. 6 and 7 to study calibrated
submanifolds in them.

In particular, fixed a T
2 ×SU(2) < SU(2) × SU(2) × U(1), we compute in each

FHN manifold the relative stratification and multi-moment maps. Then we explicitly
construct the submersion F : S1 → S2 given in Theorem 6.10 and describe the quotient
MP/G, together with the relevant multi-moment maps. In this way, we have described
all T

2-invariant associatives and T
3-invariant coassociatives in the FHN manifolds. By

inspection, one can see that SU(2)-invariant coassociative are trivial.
In reality, our discussion does not rely on the completeness of the FHN manifolds,

and is carried out in the non-complete setting.
Afterwards we specialize our discussion to the Bryant–Salamon manifolds of topol-

ogy S3 × R
4, which are explicit examples of FHN manifolds. Finally, we observe that

certain possibly twisted vector subbundles of the trivial bundle S3 × R
4 → S3 are

associative submanifolds with respect to the Bryant–Salamon G2-structure.
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8.1. The Foscolo–Haskins–Nordström manifolds. The FHN manifolds, described in
Sect. 3, admit the required T

2 ×SU(2)-symmetry. Indeed, the action of (λ1, λ2, γ ) ∈
U(1) × U(1) × SU(2) on ([p, q], t) ∈ (SU(2) × SU(2))/K0 × I , given as follows:

(λ1, λ2, γ ) · ([p, q], t) = ([λ1 pλ2, γ qλ2], t), (8.1)

is structure preserving (cfr. Equation (3.4)), where the two U(1)s are generated by
quaternionic multiplication by i .

Remark 8.1. Obviously, there is another action of (λ1, λ2, γ ) ∈ T
2 ×SU(2)on ([p, q], t)

∈ (SU(2) × SU(2))/K0 × I :

(λ1, λ2, γ ) · ([p, q], t) = ([γ pλ2, λ1qλ2], t).
The discussion is analogous to the one for Eq. (8.1) and we leave it to the reader.

8.1.1. The stratification We first deal with the set: (SU(2) × SU(2))/K0 × Int(I ). If
K0 is trivial, it is straightforward to see that the principal stabilizer of the T

2 ×SU(2)-
action is generated by (−1

T
2 ,−1SU(2)). On the other hand, if K0 = Km,n ∩ K2,−2 the

principal stabilizer is a discrete subgroup of T
2 ×SU(2) with �1 �= 0. In both cases,

GSU(2) = SO(3) and the singular set of the T
2 ×SU(2)-action is given by:

S+ = {([p, q], t) ∈ (SU(2)× SU(2))/K0 × Int(I ) : p ∈ C × {0} ⊂ H} ,
S− = {([p, q], t) ∈ (SU(2) × SU(2))/K0 × Int(I ) : p ∈ {0} × C ⊂ H} ,

with 1-dimensional stabilizer. If K0 is trivial, the stabilizer at ([p, q], t) is either the
circle {(λ, λ, qλq)} or {(λ, λ, qλq)}, depending on whether ([p, q], t) is in S+ or S−.

To understand the stratification on (SU(2)× SU(2))/K we need to distinguish three
cases:

Case 1 (K = � SU(2)). If we identify SU(2) × SU(2)/� SU(2) with S3 via
[(p, q)] �→ pq , then the action of T

2 ×SU(2) becomes, for every p ∈ S3 ∼= Sp(1):

(λ1, λ2, γ ) · p = λ1 pγ .

We deduce that the stabilizer is always 2-dimensional and it is the two torus: {(λ1, λ2,

pλ1 p)}.
Case 2 (K = {1SU(2)} × SU(2)). Under the identification of (SU(2) × SU(2))/K

with S3 given by [(p, q)] �→ p, the T
2 ×SU(2) action becomes:

(λ1, λ2, γ ) · p = λ1 pλ2,

where p ∈ S3 ∼= Sp(1). Hence, the stabilizer is the Z2 × SU(2) given by {±1
T

2 , γ } if
p /∈ (C×{0}∪ {0}×C) ⊂ Sp(1), otherwise it is the 4-dimensional SU(2)×U(1) given
by {(λ, λ, γ )} or {(λ, λ, γ )}.

Case 3 (K = Km,n). Using the isomorphism for Km,n ∼= U(1) of Eq. (3.1), we
have that two elements of SU(2)× SU(2) are in the same equivalence class if and only
they they are equal up to right multiplication of (e−inθ , eimθ ) for some θ ∈ [0, 2π).
It is straightforward to verify that the stabilizer at [(p, q)] is 1-dimensional if p /∈
C × {0} ∪ {0} × C ⊂ Sp(1). Otherwise, it is 2-dimensional.
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8.1.2. The multi-moment maps In this subsection we compute the multi-moment maps
on (SU(2)× SU(2))/K0 × Int(I ) and hence, by continuity, on the whole space. In this
subsection, i, j, k will denote the standard basis of im H such that i · j = k.

Consider the Hopf fibration map S3 ⊂ H → S2 ⊂ im H that maps p → pip. Taking
two copies of the Hopf fibration, together with the identity on Int(I ), yields the quotient
map to the T

2-quotient:

π
T

2 : (SU(2) × SU(2))/K0 × Int(I ) → S2 × S2 × Int(I )

(p, q, t) �→ (v,w, t),

where v = q pipq = v1i + v2 j + v3k and w = qiq = w1i + w2 j + w3k.
If h := pip = h1i + h2 j + h3k, g1 := qiq = g1,1i + g1,2 j + g1,3k, g2 := q jq =

g2,1i +g2,2 j +g2,3k and g3 := qkq = g3,1i +g3,2 j +g3,3k, then the Killing vector fields
of the T

2 ×SU(2)-action satisfying Eq. (4.2) are:

U1(p, q, r) = (i p, 0, 0) = (ppip, 0, 0) = −
3∑

m=1

hmEm(p, q, r),

U2(p, q, r) = (−pi,−qi, 0) = E1 + F1,

V1(p, q, r) = −1

2
(0,−iq, 0) = −1

2
(0, qqiq, 0) = 1

2

3∑

m=1

g1,mFm,

V2(p, q, r) = −1

2
(0,− jq, 0) = −1

2
(0, qq jq, 0) = 1

2

3∑

m=1

g2,mFm,

V3(p, q, r) = −1

2
(0,−kq, 0) = −1

2
(0, qqkq, 0) = 1

2

3∑

m=1

g3,mFm,

where Em, Fm form the standard orthonormal left invariant frame of SU(2)× SU(2) as
defined in Sect. 3.2.

A straightforward computation gives the multi-moment maps in the quotient:

ν = −4(b − c1)〈v,w〉R3 , μ = −4ȧḃv ×R3 w,

θ1 = 2av − 2(a − b)〈v,w〉R3w, θ2 = −2(b + c2)w,

η = Primitive of

(
2ba2 + c2(b2 + 2a2 + c1c2)√−�

)
, (8.2)

where � is as defined in Eq. (3.5). Note that we used the following identities:

h1 = 〈v,w〉R3 , 〈h, gm〉R3 = vm, gm,1 = wm, (h × gm)1 = (v × w)m,

for every m = 1, 2, 3.

8.1.3. Associatives in the singular set As a first step, we deal with (SU(2)×SU(2))/K0×
Int(I ). Observe that the images of S+ and S− under the T

2-projection map π
T

2 are:

O+ = {(v, v, t) ∈ S2 × S2 × Int(I )}, O− = {(v,−v, t) ∈ S2 × S2 × Int(I )}.
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As argued in Lemma 4.5, the action of GSU(2) descends to (M\S)/ T
2 and GSU(2) =

SO(3) acts diagonally on S2 × S2. This SO(3)-action is of cohomogeneity one and the
singular orbits are O+ and O− which have stabilizer diffeomorphic to S1.

The proof of Theorem 6.10 contains the construction of a fibration S1 → S2 with
associative fibres. These are zero sets of Killing vector fields. For S+ ∪S−, the fibration
can be described explicitly as follows.

Let u : (SU(2)×SU(2))/K0× Int(I ) → S2× S2 be the composition of π
T

2 with the
projection p : S2 × S2 × Int(I ) → S2 × S2. Then u maps S+ ∪ S− to p(O+) ∪ p(O−)

and the fibres are associative.

Proposition 8.2. The map u : S+ ∪ S− → p(O+) ∪ p(O−) ∼= S2 ∪ S2 is a submersion
with totally geodesic T

2-invariant associative fibres of topology T
2 ×Int(I ).

Proof. By SU(2)-equivariance, it suffices to show the statement for a single fibre in
each of O+ and O−. We restrict ourselves to the fibre over the point {(i, i)} ∈ O+ ⊂
Im H × Im H, as the O− case is analogous.

Note that

u−1({(i, i)}) = {([p, q], t) : p, q ∈ (C × {0}) ∩ Sp(1), t ∈ Int(I )},
which is the fixed set of the involution (i, i, i) ∈ U (1) × U (1) × Sp(1) acting on
(SU(2)×SU(2))/K0× Int(I ) as in Eq. (8.1). So u−1({(i, i)}) is a connected component
of the fixed set of (i, i, i), which is therefore totally geodesic and associative. ��

We now consider the singular orbit SU(2) × SU(2)/K . If K = � SU(2) or K =
{1} × SU(2), then SU(2)× SU(2)/K is an associative submanifold because it is either
S2 or S3∪S4. For K = Km,n , the singular orbit, SU(2)×SU(2)/Km,n , is diffeomorphic
to S3 × S2 and it admits a submersion onto S2:

F : (SU(2)× SU(2))/Km,n → S2 [(p, q)] �→ qiq,

with fibres that are T
2-invariant associative submanifolds, of topology the lens space:

L(m;−n, n).
In order to prove the previous claim, we observe that, by SU(2)-equivariance, it is

enough to show that F−1({i}) = {[p, q] : q ∈ (C × {0}) ∩ Sp(1)} has the desired
properties. By inspection, it is straightforward to deduce that it is T

2-invariant and of the
given topology. Associativity of F−1({i}) follows because it is a connected component of
the set with 2-dimensional stabilizer with respect to the action of Remark 8.1. Moreover,
there are two additional T

2-invariant associative submanifolds in SU(2)×SU(2)/Km,n :
the two components of S2 described in the stratification discussion of Sect. 8.1.1, which
have topology L(n;m,−m).

Finally, note that for all possible K , the associative submanifolds of Proposition 8.2
extend smoothly to associatives of topology S1 × R

2 because of Theorem 6.12.

8.1.4. Associatives in the principal set On the principal set

MP = ((SU(2)× SU(2)) × Int(I )) \ (S+ ∪ S−) ,

we are able to give an an explicit parametrization of the GSU(2)-bundle described in
Sect. 6.2.

Consider the maps:

� : SO(3) × (0, π) → S2 × S2, (g, θ) �→ (g1, (g1 cos θ − g2 sin θ))
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where g1, g2 and g3 are the column vectors of g, and:

A : S2 × S2 \ (p(O+ ∪O−)) → SO(3),

(v,w) �→
((

v,
1

sin θ
(cos θv − w),− 1

sin(θ)
v × w

))
,

where θ ∈ (0, π) is defined by 〈v,w〉R3 = cos θ . We recall that p : S2 × S2 × Int(I ) →
S2 × S2 is the obvious projection and that p(O±) = {(v,±v)}.

It is easy to see that the map (A, θ) is the inverse of �, and � is a diffeomorphism
that is equivariant with respect to the action of SO(3) on both spaces, where SO(3) acts
on SO(3)× (0, π) by left multiplication on the SO(3) factor. The singular orbits O+ and
O− are the images of {0} × SO(3) and {π} × SO(3) if � is extended to SO(3)× [0, π ].

By taking the identity on the component Int(I )we get the equivariant diffeomorphism,
which we also denote by �:

� : SO(3) × (0, π) × Int(I ) → MP/T
2 = (S2 × S2 × Int(I )) \ (O+ ∪O−).

This means that the base space of the GSU(2)-bundle described in Sect. 6.2 is diffeomor-
phic to B = (0, π) × Int(I ) and � is a global trivialization of MP/T

2 → B. With
respect to this trivialization, we have:

|μ| = 4ȧḃ sin θ, ν = −4(b − c1) cos θ.

In order to apply the machinery of Sect. 6.3, we need the following lemma. In our case,
we will have α = (|μ|, ν), u = 4ȧḃ and v = ±4(b − c1), depending on its sign.

Lemma 8.3. Let u, v be two functions from an interval, Int(I ), to R
+. If u̇, v̇ are both

positive or both negative everywhere, then α(θ, t) = (u(t) sin(θ), v(t) cos(θ)) defines
a diffeomorphism from (0, π) × Int(I ) onto its image in R × R

+. Moreover, let v− is
the infimum of v over I . Then (u(t) cos(θ))−1(c) is connected if c > u− and has two
connected components otherwise. In particular, the map α is a diffeomorphism onto its
image and the image is convex if and only if u− = 0.

Proof. The determinant of the Jacobian vanishes if and only if u̇v sin2(θ)+cos2(θ)uv̇ =
0, which never happens because u̇v and v̇u have the same sign. So, α is a local diffeo-
morphism and it remains to show that it is injective. For a fixed value, t0, of t the function
α(θ, t0) traces out a half ellipse centred at the origin with semi-axes u(t0), v(t0). If t1 is
another fixed value for t , then the ellipses α(θ, t0) and α(θ, t1) intersect if u(t0)− u(t1)
and v(t0) − v(t1) have different signs. But this is impossible because u̇ and v̇ have the
same sign. Denote by u± the supremum and the infimum of u, and by v± the supremum
and infimum of v. The image of α is the half ellipse with semi-axes (u+, v+) minus the
smaller ellipse with semi-axes (u−, v−) (see Fig. 4), which implies the last statement.

��
In particular, if the infimum of ȧḃ is zero, we get a global fibration in the sense of

Definition 2.10 by Corollary 6.11. Note that this is always the case, when the G2-structure
defined by Foscolo–Haskins–Nordström extends to the singular orbit SU(2)×SU(2)/K
(cfr. Section 3.3).

On the other hand, if the infimum of ȧḃ is not zero, we can still describe the T
2-

invariant associatives splitting B ∼= (0, π)×Int(I ) into (0, π/2)×Int(I ) and (π/2, π)×
Int(I ).

We summarize everything in the following theorem.
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Fig. 4. Image of α

Theorem 8.4 (T2-invariant associatives in FHN manifolds). Consider the stratification,
as given in Sect.4.1, of the FHN manifolds into MP ∪ S1 ∪ S2 ∪ S3 ∪ S4 with respect
to the T

2 ×SU(2)-action.
We first consider the subset ((SU(2) × SU(2))/K0) × Int(I ), which does not inter-

sect S2,S3,S4. Then each stratum decomposes into T
2-invariant associatives in the

following way:

• MP is fibred by T
2-invariant associatives which are horizontal lifts of level sets of

|μ| = 4ȧḃ sin θ in B ∼= (0, π) × Int(I ), where θ is determined by cos θ = 〈v,w〉
and v,w are images of the Hopf maps: (v = q p̄ipq̄, w = qiq̄) ∈ S2 × S2. The
topology of these associatives is T

2 ×R. If the G2-structure extends smoothly to
(SU(2) × SU(2))/K, these associatives do not intersect (SU(2) × SU(2))/K.
• As in Proposition 8.2,S1 admits a submersion over S2∪S2 with totally geodesicT

2-
invariant associative fibres of topology T

2 ×R. If the G2-structure extends smoothly
to (SU(2)×SU(2))/K, these associatives extend smoothly to associatives of topology
S1 × R

2 in M.

When the G2-structure extends to SU(2) × SU(2)/K, we distinguish two cases:

• If K = � SU(2) or K = Id{SU(2)}×SU(2), thenSU(2)×SU(2)/K is aT
2-invariant

associative of topology S3 as it is S2 or S3 ∪ S4.
• If K = Km,n, the set consists of S1 and S2. There exists a submersion over S2 with
T

2-invariant associative fibres of topology L(n : m,−n). Moreover, there are two
additionalT2-invariant associatives corresponding to the two connected components
of S2.

8.1.5. T
3-invariant coassociatives Let T

3 be the torus generated by V1,U1,U2. It is
straightforward to see that the singular set of this action, S , restricted to ((SU(2) ×
SU(2))/K0) × Int(I ) is:

SP={([p, q], t) ∈ (SU(2)×SU(2)/K0)×Int(I ) : p, q∈(C × {0} ∪ {0}×C)⊂Sp(1)} ,

which is contained in⊂ S+∪S−. OnS P the stabilizer is 1-dimensional and it is mapped,
via π

T
2 to {(±i,±i, t), (±i,∓i, t)}.

On SU(2) × SU(2)/K , with K = � SU(2) or K = {1} × SU(2), the stabilizer is
everywhere 1-dimensional apart from the intersection of SU(2) × SU(2)/K with the
closure of SP , where the stabilizer is 2-dimensional. If K = Km,n , the stabilizer at
[(p, q)] ∈ (SU(2)×SU(2))/Km,n is 2-dimensional if p and q are in C×{0}∪ {0}×C,
it is 1-dimensional if p or q is in C × {0} ∪ {0} × C and it is 0-dimensional otherwise.
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By Proposition 7.3, the T
3-invariant coassociatives, in M \S, are the level sets of the

map (θ1
1 , θ2

1 , ν):

([p, q], t) �→ (
2av1 − 2(a − b)〈v,w〉R3w1,−2(b + c2)w1,−4(b − c1)〈v,w〉R3

)
,

where v,w are as above.
We now characterize the T

3-invariant coassociatives intersecting the 1-dimensional
and the 2-dimensional stabilizer.

Given ([p, q], t0) ∈ S P , it is mapped via (θ1
1 , θ2

1 , ν) to (ε12b(t0), ε22(b(t0) + c2),

ε34(b(t0) − c1)), where εi ∈ {0, 1} take one of four possibilities for which ε1ε2ε3 = 1,
depending whether p and q are in C × {0} or {0} × C. We now turn our attention to
SU(2) × SU(2)/K .

Case 1 (K = � SU(2)). If K = � SU(2), a T
3-invariant coassociative intersects the

set with 1-dimensional stabilizer in SU(2)× SU(2)/K , if and only if it is the preimage
of (x, 0, 0) for x ∈ (−2c1, 2c1). It intersects the set with 2-dimensional stabilizer, and
hence singular by Theorem 7.5, if and only if x = ±2c1.

Case 2 (K = {1SU(2)} × SU(2)). In this case, the T
3-invariant coassociatives cor-

responding to the preimages of (0, 0, x), for x ∈ [−4c1, 4c1], are the ones intersecting
SU(2)× SU(2)/K . Among them, the one intersecting the set with 2-dimensional stabi-
lizer are the preimages of (0, 0,±4c1).

Case 3 (K = Km,n). When K = Km,n , the coassociatives intersecting the set with
0-dimensional stabilizer in SU(2)× SU(2)/K are the the level sets of points in:

{
(2mnr3

0 xy,−2n(m + n)r3
0 y,−4m(m + n)r3

0 x) : x, y ∈ (−1, 1)
}
;

they intersect the set with 1-dimensional stabilizer they are the level set of points in:
{
(2mnr3

0 xy,−2n(m + n)r3
0 y,−4m(m + n)r3

0 x) : x = ±1, y ∈ (−1, 1) or

y = ±1, x ∈ (−1, 1)} ;
and they are singular if they are the preimage of:

(±2mnr3
0 ,−2n(m + n)r3

0 ,∓4m(m + n)r0
3) or

(±2mnr3
0 , +2n(m + n)r3

0 ,±4m(m + n)r0
3).

In particular, from this discussion one could characterize the T
3-invariant coassocia-

tives of different topology (see Sect. 8.2.4 for an explicit example). Note that, the only
topological possibilities are the T

3 ×R, T
2 ×R

2 and the singular ones T
2 ×R × R

+.

8.1.6. SU(2)-invariant coassociatives Finally, we study SU(2)-invariant coassociatives.
Similarly to Sect. 8.1.2, we can compute ϕ(V1, V2, V3) = c2. Hence, there are SU(2)-
invariant coassociatives if and only if c2 = 0. If this is the case, the coassociative
submanifolds are of the form:

{([p0, q], t) ∈ ((SU(2) × SU(2))/K0) × Int(I ) : q ∈ SU(2), t ∈ Int(I )},
for every fixed p0 ∈ SU(2). As we assumed c2 = 0, the only possibility to extend the
G2-structure to SU(2) × SU(2)/K is for K equal to {1} × SU(2). In this situation, the
resulting SU(2)-invariant coassociatives extend to smooth R

4s.
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8.2. The Bryant–Salamonmanifold. As an explicit special case of Sect. 8.1, we consider
the Bryant–Salamon manifolds of topology S3 × R

4 = {(x, a) ∈ H
2 : ||x || = 1}. Up

to an element of the automorphism group, we can restrict ourselves to the following
actions of T

2 ×SU(2):

(1) (λ1, λ2, γ )(x, a) �→ (λ1x γ̄ , λ2aγ̄ ),
(2) (λ1, λ2, γ )(x, a) �→ (λ1xλ2, γ aλ2),
(3) (λ1, λ2, γ )(x, a) �→ (γ xλ2, λ1aλ2),

where (λ1, λ2, γ ) ∈ U(1)× U(1)× Sp(1) and the U(1)s are generated by quaternionic
multiplication by i . Note that Case (1) can be reduced to the discussion in Sect. 8.1,
picking K = � SU(2). The same holds for Case (2) and Case (3) picking K = {1} ×
SU(2). However, to be more explicit, we fix the description of the Bryant–Salamon
manifold as in Eq. (3.6) and we adjust the arguments of Sect. 8.1 accordingly.

8.2.1. The stratification We first notice that the principal stabilizer is generated by
(−1,−1) ∈ T

2 ×SU(2) for all cases, hence GSU(2) = SO(3).
The stratification for Case (1) is:

MP = (S3 × H
∗) \ S1, S1 = {(x, a) ∈ S3 × H

∗ : xa ∈ C × {0} ∪ {0} × C},
S2 = {(x, 0) ∈ H

2}, S3 = ∅, S4 = ∅,

for Case (2) it is:

MP = (S3 × H
∗) \ S1, S1 = {(x, a) ∈ H

2 : x ∈ U(1) × {0} ∪ {0} × U(1)},
S2 = ∅, S3 = {(x, 0) ∈ H

2} \ S1, S4 = {(x, 0) ∈ H
2} ∩ S1,

finally, for Case (3) it is:

MP = (S3 × H
∗ \ S1), S1 = {(x, a) ∈ H

2 : a ∈ U(1) × {0} ∪ {0} × U(1)},
S2 = {(x, 0) ∈ H

2} S3 = S4 = ∅.

8.2.2. The multi-moment maps Before computing the multi-moment maps, we write the
explicit form of the projection to the T

2-quotient: π
T

2 . Identifying H
∗ with S3 × R

+

using the standard map: a �→ (a/|a|, |a|), the projections take the following form in
S3 × S3 × R

+:

π
T

2 : S3 × S3 × R
+ → S2 × S2 × R

+ (p, q, r) �→ (v,w, r),

where, for Case (1) v = pip, w = qiq, for Case (2) v = q p̄ipq̄, w = qiq̄ and, for Case
(3), v = pi p̄, w = pq̄iq p̄. The multi-moment maps, which pass to the T

2-quotients,
are:

Case (1) Case (2) Case (3)

ν 2
√

3r2〈v, w〉
R3 −

√
3

2 (3c + 4r2)〈v, w〉
R3 −2

√
3r2〈v, w〉

R3

θ1
√

3
4 (3c + 4r2)v

√
3r2v

√
3

4 (3c + 4r2)v

θ2 −√3r2w −√3r2w −√3r2w

θ3 −3r2(c + r2)1/3v ×
R3 w −3r2(c + r2)1/3v ×

R3 w 3r2(c + r2)1/3v ×
R3 w.



On G2 Manifolds with Cohomogeneity Two Symmetry Page 43 of 51   168 

8.2.3. T
2-invariant associatives The description of the T

2-invariant associatives follows
exactly as in the FHN manifolds. For instance, we obtain the following result for Case
(1).

Theorem 8.5 (T2-invariant associatives in Bryant–Salamon manifolds). Consider the
stratification, as given in Sect.4.1, of the Bryant–Salamon space into MP ∪ S1 ∪ S2 ∪
S3∪S4 with respect to theT

2 ×SU(2)-action ofCase (1). Then each stratumdecomposes
into T

2-invariant associatives in the following way:

• MP is fibred by T
2-invariant associatives which are horizontal lifts of level sets of

|μ| = 3r2(c + r2)1/3 sin θ in B ∼= (0, π) × R
+, where θ is determined by cos θ =

〈v,w〉 and v,w are images of the Hopf maps: (v = pi p̄, w = qiq̄) ∈ S2 × S2. The
topology of these associatives is T

2 ×R and they do not intersect the zero section.
• S1 admits a fibration over S2 ∪ S2 with totally geodesic T

2-invariant associa-
tive fibres of topology T

2 ×R. These associatives extend smoothly to associatives of
topology S1 × R

2 in M.
• S2 is the zero section, which is an associative totally geodesic group orbit of topology
S3.
• S3 = S4 = ∅.

8.2.4. T
3-invariant coassociatives Up to an element of the autormorphism group, we

can choose, for all the three cases, the torus T
3 acting on (x, a) ∈ S3 × R

4 as follows:

(λ1, λ2, λ3)(x, a) �→ (λ1x λ̄3, λ2aλ̄3),

where all the λi s are generated by multiplication by i .
It is straightforward to see that the singular set of this action, S, is given by the zero

section and the following subset:

SP =
{
(x, a) ∈ S3 × H : x, a ∈ (C × {0} ∪ {0} × C) ⊂ C × C

}
,

In the singular set, the stabilizer is everywhere 1-dimensional apart from the points in:
{
(x, 0) ∈ S3 × H : x ∈ (C × {0} ∪ {0} × C) ⊂ C × C

}
,

where the stabilizer is 2-dimensional.
By Proposition 7.3, the T

3-invariant coassociatives are given by the level sets of the
map (θ1

1 , θ2
1 , ν), which is explicitly given by:

(p, q, r) �→
(√

3

4
(3c + 4r2)v1,−

√
3r2w1, 2

√
3r2〈v,w〉R3

)

,

where v,w ∈ S2 ⊂ R
3 are defined accordingly to (1). By Theorem 7.5, the T

3-invariant
coassociatives are smooth topological T

3 ×R, apart from the ones intersecting the points
with one or 2-dimensional stabilizer, which are smooth T

2 ×R
2s and T

2 ×R × R
+

cones, respectively. The intersection with the 2-dimensional stabilizer occurs only to

the preimages of {(± 3
√

3
4 c, 0, 0)}. The T

3-invariant coassociatives intersecting the 1-
dimensional stabilizer are the ones corresponding to the fibres of the following set:

{(x, 0, 0) : x ∈ (− 3
√

3c
4 , 3

√
3c

4 )} ∪ A, where A is:
{(

±
(

3
√

3c

4
+ a

)

,−a,±2a

)

: a∈R
+

}

∪
{(

±
(

3
√

3c

4
+ a

)

, +a,∓2a

)

: a ∈ R
+

}
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Fig. 5. Blue: The level sets of |μ| = 3r2(c + r2)1/3 sin θ in B = (0, π) × R
+. Every level set represents an

SU(2)-family of T
2-invariant associatives in MP . Orange: The level sets of ν = 2

√
3r2 cos θ . Every level set

represents an S2 family of T
3-invariant coassociatives in MP . The vertical line represents the ones intersecting

the zero section, two of these T
3-invariant coassociatives are singular

8.2.5. SU(2)-invariant coassociatives One can compute ϕc(V1, V2, V3) for Case (1),
Case (2) and (3). This vanishes only when c = 0 in Case (1) and Case (3), while for
Case (2) it is always vanishing. We deduce that SU(2)-invariant coassociatives are given
by fibres of the standard projection to S3 (cfr. ([KL21, Sect. 4])).

8.2.6. Another family of associative submanifolds In this subsection, we consider the
Bryant–Salamon manifold as described in ([KL21, Sect. 3]). The associatives fibres of
S1 → S2 in Theorem 8.5 are products of a plane in R

4 times a geodesic in S3. In general,
one can take any 2-dimensional vector subspace W ⊂ R

4, with an orthonormal basis
w1, w2, and observe that w1 × w2 is tangent to S3. For every p ∈ S3, we can consider
γW,p to be the unit length geodesic starting at p with velocity w1 ×w2, and observe that
γW,p×W is an associative submanifold. These examples are not only part of the family
of T

2-invariant associative submanifolds, but also of the following family, where each
associative contains an affine plane W̄ := W +x in R

4. Here, W is a 2-dimensional vector
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subspace of R
4 and x is in the Euclidean perpendicular subspace W⊥. The orthogonal

complement W⊥ carries a unique positive complex structure, so we can define the curve
contained in it:

δW,x (t) = e−i t2 x .

Proposition 8.6. Let p be a point in S3, W̄ = W + x be an affine plane with x ∈ W⊥.
The unique associative containing {p} × W̄ is

N := {(γW,p(t), y + δW,x (t)) ∈ S3 × R
4 | y ∈ W, t ∈ R}.

Proof. As the uniqueness follows immediately from the local existence and unique-
ness theorem, we only need to prove that N is an associative submanifold. We use the
parametrisation of S3×R

4 as in ([KL21, Sect. 3]). By applying elements of the automor-
phism group SU(2)3, we can assume without loss of generality that W = {a2 = a3 = 0}.
Moreover, we choose a left-invariant frame {E1, E2, E3} on S3 such that the tangent
space of N is spanned by {∂a0 , ∂a1 , e1 − (a3∂a2 − a2∂a3)/2} at any point of N . We
conclude as ∗ϕ(e1 − (a3∂a2 − a2∂a3)/2, ∂a0 , ∂a1 , ·) = 0 at any point of N . ��

In particular, Proposition 8.6 extends the description of possibly twisted calibrated
subbundles in manifolds of exceptional holonomy which was started by Karigiannis,
Leung and Min-Oo in [KL12,KMO05].
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Appendix A: Differentiable Transformation Groups

In this appendix, we provide a short introduction to the theory of differentiable trans-
formation groups, i.e. the theory of Lie groups smoothly acting on smooth manifolds.
In particular, we will fix the notation and state (without proof) three fundamental re-
sults: the slice theorem, the orbit type stratification theorem and the principal orbit type
theorem.

Let G be a compact connected Lie group of Lie algebra g and let M be a manifold.

Definition A.1. A Lie group action of G on M is a Lie group homomorphism:

G → Diff(M)

g �→ fg

http://creativecommons.org/licenses/by/4.0/
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This homomorphism induces the smooth action map:

G × M → M

(g,m) �→ fg(m).

It is costumary to write g · m (or gm) instead of fg(m).

Definition A.2. An action of a Lie algebra g on M is a Lie algebra homomorphism:

g → �(T M)

ξ �→ ξM

where the space of vector fields is endowed with the usual Lie-bracket structure.

A Lie group action of G on M induces a Lie algbera action of g on M , by mapping
ξ ∈ g to the the vector field:

ξM (m) := d

dt

∣∣∣∣
0

exp(−tξ) · m,

where exp : g → G is the usual exponential map for Lie groups. We will often identify
ξ ∈ g with the corresponding vector field (and similarly we will think of g ⊂ �(T M)).
All such vector fields are called generating vector fields. Conversely, every Lie algebra
action induces a (local) Lie group action.

For any m ∈ M , we can construct an (embedded, closed) submanifold of M , called
the orbit of m, which is defined by:

Gm := {g · m ∈ M : g ∈ G}.
We can also construct a (compact) Lie subgroup of G, called the stabilizer of m,

which is defined by:

Gm := {g ∈ G : g · m = m}.
We denote the orbit space of the action by M/G := {Gm : m ∈ M}.

Remark A.3. As for standard group actions, a Lie group action is free if all stabilizer
subgroups are trivial. It is effective if the Lie group homomorphism G → Diff(M) is
injective. Finally, it it transitive if Gm = M for some m ∈ M .

We can now state the slice theorem, which locally describe the geometry of M near
a fixed orbit.

Theorem A.4. (Slice theorem [MY57]) Fix m ∈ M and let N be the normal space to the
orbit Gm at m. Then the associated bundle G ×Gm N is G-equivariantly diffeomorphic
to the normal bundle of Gm taking [IdG, 0] to m. The action of Gm on N is the natural
one induced by G and is called the slice representation. Moreover, G acts on G ×Gm N
on the first factor by left multiplication.

The stabilizers in different points of an orbit are related by the following adjoint
formula:

Ggm = Adg(Gm),

where g ∈ G and m ∈ M . It follows that to each orbit there exists a conjugacy class of
subgroups of G. Given a subgroup H of G, we denote by (H) the conjugacy class of H
and we define:

M(H) := {m ∈ M : (Gm) = (H)}.
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Definition A.5. A stratification of a topological space M is a decomposition into smooth
submanifolds (called strata): M = ∪i Mi , such that:

(1) each compact set of M intersects finitely many Mi ,
(2) if Mi ∩ M j �= ∅, then Mi ⊂ M j .

Theorem A.6 (Orbit type stratification). The decompositions:

M =
⋃

(H)

M(H), M/G =
⋃

(H)

M(H)/G

are stratifications of M and of M/G, respectively. Indeed, each M(H) ⊂ M is a smooth
embedded submanifold which induces a smooth structure on M(H)/G via the quotient
map.With respect to these smooth structures, the quotient map p(H) : M(H) → M(H)/G
is a fibre bundle of fibre G/H.

Theorem A.7 (Principal orbit type [MSY56]). If M is connected, then there exists a
unique conjugacy class (HP ) such that HP ≤ Gm for every m ∈ M, up to conjugation.
The corresponding strata MP := M(HP ) ⊂ M and MP/G ⊂ MP are open, dense and
conneted.

Let m ∈ M\MP . If dim(Gm) = dim(HP ), then (Gm) is called an exceptional orbit
type for the action. Otherwise, it is a called a singular.

Appendix B: Blow-Up and Regularity of Calibrated Submanifolds

In this appendix, we recall some basic preliminary results that we will use to study the
singularities of associative and coassociative submanifolds.

The first result, due to Madsen and Swann, claims that the blow-up of any torsion-free
G2-structure converges to the standard local model.

Theorem B.1 (Madsen–Swann [MS19]). Let ϕ0 be the standard G2-structure of R7 and
let ϕ be a torsion-free G2-structure on B2(0) ⊂ R

7 such that ϕ(0) = ϕ0(0). Then for
t > 0, the rescaled G2-structure ϕt := t−3λ∗t ϕ is such that ϕ1 = ϕ and we have that
ϕt → ϕ0 as t → 0 on B1(0) in the Ck-norm for every k ≥ 0, where λt (x) := t x for every
x ∈ R

7. Moreover, the same holds for the ϕt -induced Riemannian metric gt = t−2λ∗t g
and dual form (∗ϕ)t = t−4λ∗t (∗ϕ), where g is the Riemannian metric induced by ϕ and
∗ is the related Hodge dual.

Moreover, Harvey and Lawson showed that under the blow-up procedure calibrated
integer rectifiable currents remain calibrated, and converge to a calibrated tangent cone.

A result due to Simon ([Sim83a, Corollary p. 564]), together with Allard’s regularity
theorem (see ([Sim83b, Chapter 5])), allows us to study the geometry of calibrated
currents with mild singularities.

Theorem B.2. If L is a ϕ-calibrated integer rectifiable current in (B2(0), ϕ) of density
1 away from 0 and has a tangent cone C at 0 that is non-singular (i.e. C \{0} is smooth),
then C is the unique tangent cone and, in a smaller neighborhood of 0, L is smooth
everywhere apart from 0, where the singularity is modeled on C. Moreover, if C is also
flat, then L is smooth at 0. The same result holds for ∗ϕ-calibrated integer rectifiable
currents.
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Since we are interested in G-invariant submanifolds, for some compact Lie group G
acting effectively on M , we study how vector fields behave under blow-up. These vector
fields will be chosen to be the generators of the action.

Proposition B.3. Let X be a vector field on (B2(0), ϕ) such that LXϕ = 0. Then the
rescaled vector field Xt := λ∗t X = t−1(X ◦ λt ) is such that LXtϕt = 0. Moreover, the
same holds for f (t)Xt , where f ∈ C∞(R+;R).

Proof. It follows from a straightforward application of Cartan’s formula and λ∗t (iXϕ) =
iλ∗t Xλ∗t ϕ. ��

Since [Xt ,Y t ] = λ∗t [X,Y ] for every X,Y vector fields, the generators of a G-action
defined for t = 1 will give vector fields satisfying the same equations for every t > 0.
However, if we let t go to 0, Xt does not necessarily converge. Indeed, if we write

X (x) =
7∑

i=1

ai (x)∂i ,

for some functions ai on B2(0), then

Xt (x) = t−1
7∑

i=1

ai (t x)∂i ,

which does not converge if some ai (0) �= 0.

Lemma B.4. If X is a real-analytic vector field on (B2(0), ϕ), we can always find a
minimal integer α ≤ 1 such that X̃ t := tαXt converges smoothly to some non-zero
vector field X̃ as t → 0.

Clearly, α = 1 if and only if X (0) �= 0. Moreover, if LXtϕt = 0, then Proposition
B.3 implies 0 = LX̃ tϕt → LX̃ϕ0.

In a similar fashion, given a 1-form ω one can define ωt , ω̃t and ω̃.

Lemma B.5. Given three vector fields X,Y, Z on (B2(0), ϕ) as in Theorem B.1, then
for t → 0 the following equations hold:

(1) ˜(X�Y�ϕ)t = X̃ t�Ỹ t�ϕt → X̃�Ỹ�ϕ0,

(2) ˜(X�Y�Z� ∗ ϕ)t = X̃ t�Ỹ t�Z̃ t� ∗ ϕt → X̃�Ỹ�Z̃� ∗ ϕ0.

The following lemma shows that if X is a Killing vector field one can choose coor-
dinates in which α is either 0 or 1.

Lemma B.6. Let X1, . . . Xk be Killing vector fields on (M, ϕ) generated by an auto-
morphic group action G, such that X1, . . . , Xl vanish at p and Xl+1, . . . , Xk do not
vanish at p. Then we can choose normal coordinates around p such that:

X̃i = X̃ t
i = Xi if i ≤ l,

X̃i = Xi (0) �= 0 if i ≥ l + 1

and ϕ(0) = ϕ0, where the X̃i are as defined in Lemma B.4. In particular, this means
that the αi relative to X̃ t is zero in the first case and one in the second.
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Proof. When i ≥ l+1, the statement holds in any coordinates and is a direct consequence
of Xi being continuous.

Normal coordinates are defined via the exponential map expp : Bε(0) ⊂ TpM →
U ⊂ M . Because of the slice theorem, this map is G-equivariant and the stabilizer group
Gp, has Lie algebra which is generated by X1, . . . , Xl . So, in normal coordinates, the
vector fields X1, . . . , Xl generate a linear action on TpM . This means they agree with
their first order approximation and the statement follows. We can use the freedom to
choose a basis of TpM such that ϕ(0) = ϕ0 since GL(7, R) acts transitively on positive
3-forms on R

7. ��
Remark B.7. Observe that it makes sense to talk about the blow-up limit of a G-action
in this setup. Indeed, given a Lie group action G on M , this induces a Lie algebra action
of g on M . Now, Lemma B.6 describes the blow-up limit of the g action, and from this
we can reconstruct a (local) group action.

We restrict our attention to the case where the group G is T
2 ×SU(2), or some

discrete quotient of it. If U1,U2 are the generators of the T
2-component and V1, V2, V3

are generators of the SU(2)-component, then for every l,m = 1, 2 and all (i, j, k) cyclic
permutation of (1, 2, 3), they satisfy:

[U1,U2] = 0, [Ul , Vm] = 0, [Vi , Vj ] = εi jkVk .

It follows that the vector fields Ũ t
1, Ũ

t
2, Ṽ

t
1 , Ṽ t

2 , Ṽ t
3 are such that:

[Ũ t
1, Ũ

t
2] = 0, [Ũ t

l , Ṽ
t
m] = 0, (B.1)

[Ṽ t
i , Ṽ t

j ] = tαi+α j−αk Ṽ t
k , (B.2)

where αi is the α defining Ṽ t
i .
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