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Abstract: We consider G, manifolds with a cohomogeneity two T2 x SU(2) symme-
try group. We give a local characterization of these manifolds and we describe the ge-
ometry, including regularity and singularity analysis, of cohomogeneity one calibrated
submanifolds in them. We apply these results to the manifolds recently constructed by
Foscolo—Haskins—Nordstrom and to the Bryant—Salamon manifold of topology $(S3).
In particular, we describe new large families of complete T2-invariant associative sub-
manifolds in them.

1. Introduction

In a Riemannian manifold, parallel transport with respect to the Levi-Civita connection
is used to define its Riemannian holonomy group. The groups that can appear as the
holonomy of a simply-connected, nonsymmetric and irreducible Riemannian manifold
were classified by Berger [Ber53]. All but two elements of Berger’s list come in a
countable family depending on the dimension of the manifold. The exceptional cases
are G, and Spin(7), which are only related to Riemannian manifolds of dimension 7
and 8, respectively. Manifolds with holonomy G», called G> manifolds, are Ricci-flat
[Sal89, Lemma 11.8] and admit two natural classes of volume minimizing submanifolds:
the associative 3-folds and the coassociative 4-folds, which are, in particular, calibrated
submanifolds [HL82].

Bryant and Salamon constructed the first complete G, manifolds with full holonomy
more than 30 years ago in [BS89]. Since then, much effort has been spent to con-
struct new examples (e.g. [BGGGO1,Bogl3,FHN21a,FHN21b,Fos21,MS12,MS19])
and study their calibrated submanifolds (e.g. [Kaw18,KL12,KL21,KMOO0S5]). Even
though we now have a lot of examples of complete non-compact manifolds with Rieman-
nian holonomy G; (mainly because of the seminal work by Foscolo—Haskins—Nordstrom
and Foscolo [FHN21a,FHN21b,Fos21]), only a few non-trivial associative and coasso-
ciative submanifolds were constructed in them.
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One of the most successful techniques used to construct non-compact G manifolds
is symmetry reduction, which means that the manifold admits a structure-preserving,
hence isometric, Lie group action. Particular attention has been given to the cohomo-
geneity one and to the abelian case. Indeed, under the former assumption, the system
of PDEs characterising the G, holonomy condition becomes a system of ODEs and
many examples were constructed in this way (cfr. [BGGGO1,Bog13,BS89,FHN21b]).
Under the latter assumption, the problem reduces to finding a torus bundle with cur-
vature constraints over a lower dimensional manifold with some special structure (cfr.
[AS04,CS02,MS12,MS19]). This technique often relies on the multi-moment maps in-
troduced by Madsen and Swann in [MS12,MS13], which are generalisations of classical
moment maps in symplectic geometry. The authors are not aware of any previous at-
tempt towards a better understanding of the intermediate case, i.e. non abelian groups
of higher cohomogeneity.

For what concerns calibrated geometry, associative and coassociative submanifolds
are in general hard to construct. Indeed, they are solutions of a system of non-linear PDEs.
However, in the setting above, we have special calibrated submanifolds which are easier
to study: the ones that are invariant under a cohomogeneity one symmetry. Indeed, the
invariance turns the system of PDEs into a system of ODEs on the set of orbits. This idea
was successful on the flat R7 with the standard G;-structure [HL82,Lot035,Lot07] and
on the Bryant-Salamon manifold of topology A% (5%) and A% (CP?) for coassociative
submanifolds [Kaw18,KL21]. Note that in both cases the G;-structure of the manifold
is explicit, and so is the system of ODEs.

By the local existence and uniqueness theorem for associatives and coassociatives
[HL82] (or simply by ODE theory), the calibrated submanifolds constructed in this way
do not intersect and are smooth in the principal set of the action. However, this may
not be the case in the singular set (i.e., the set where the orbits of the action are lower
dimensional). Indeed, there are examples of singular and/or intersecting cohomogeneity
one calibrated submanifolds, such as the T?-invariant special Lagrangian cone in C°,
called Harvey—Lawson cone, which induces a T2-invariant associative cone in R’ (see
[HL82,KL21,Lot05,Lot07] for further examples).

If we consider T>-invariant coassociatives, Madsen and Swann observed in [MS19]
that the multi-moment maps related to the T3-action are first integrals of the coassociative
system, which completely determine the desired submanifolds for dimensional reasons.
Afterwards, the connection between non-abelian multi-moment maps and calibrated
submanifolds was investigated by Karigiannis—Lotay [KL21] and the second named
author [Tri23] on the G, Bryant—Salamon manifolds and on the Spin(7) Bryant—Salamon
manifold, respectively.

Another method used on the Bryant—Salamon spaces A2 (5% and A% (CP?) was to
look for calibrated submanifolds which are (possibly twisted) vector subbundles over
suitable submanifolds of the zero section [KL12,KMOOS5]. Neither the cohomogeneity
one nor the vector subbundle technique were adapted to the Bryant—Salamon manifolds
of topology S® x R*, where the only known calibrated submanifolds were the zero
section, which is associative, and the fibres over a given point, which are coassociatives.
To the best knowledge of the authors, the last idea used to construct non-trivial examples
of complete calibrated submanifolds in non-flat and non-compact G, manifolds is by
using fixed sets of involutions [KN10].

Note that even though we lose the calibrated condition, hence the volume minimizing
property, the notion of associative and coassociative submanifolds makes sense and has
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been studied for weaker notions of G, manifolds, such as closed, co-closed or nearly-
parallel G2 manifolds (cfr. [BM20,BM21,BM22,Kaw15,Lot12] and references therein).

An additional important aspect of manifolds with special holonomy, which we only
tangentially touch upon in this paper, is finding and making use of calibrated fibrations.
These objects are not only interesting from a mathematical perspective but should also
play a crucial role in mathematical physics (cfr. the SYZ conjecture [SYZ96] and its
generalizations [GYZ03]). For this reason, calibrated fibrations in manifolds of special
holonomy have been widely studied by both communities (e.g. [Ach98,Bar10,Donl7,
KL21,Li19,LL09, Tri23]).

1.1. Main results. In this work, we investigate G, manifolds endowed with a structure-
preserving, cohomogeneity two action of the non-abelian Lie group T2 x SU(2), and
the related calibrated geometry. Note that there are a lot of G, manifolds with such a
group action. For instance, the large class of examples constructed by Foscolo—Haskins—
Nordstrom in [FHN21b] (FHN manifolds for brevity) has the desired symmetry, in fact,
they admit a SU(2) x SU(2) x U(1) cohomogeneity one and structure-preserving action.
Moreover, all simply-connected complete G,-manifolds with SU(2) x SU(2) x U(1)-
symmetry arise in this way ([FHN21b, Theorem 7.3]). Special elements of this family
are the Bryant—Salamon manifold of topology $3 x R* and the asymptotically locally
conical manifolds constructed by Bogoyavlenskaya [Bogl3], which were previously
predicted by Brandhuber—-Gomis—Gubser—Gukov [BGGGO1]. Apart from these, which
have symmetry group bigger than T2 x SU(2), one can find examples with exactly a
T? x SU(2)-action of cohomogeneity two in ([Fos21, Theorem 4.12]). In the co-closed
case, Alonso has recently constructed examples of G, manifolds with SU(2) x SU(2) x
U(1)-symmetry [Alo22].

As a first step, we study the stabilizer subgroups that can arise in this setting (The-
orem 4.7). Then we give a local characterization of such manifolds in the principal set
(Theorem 5.9).

Theorem. Let (M, ¢) be a Gy manifold with a T? x SU(2) cohomogeneity-two action.
In the principal set, it can be locally reconstructed from two nested systems of ODEs
and a suitable two-form, representing the curvature of a T?-bundle.

Afterwards, we consider T2 xIdsy(2)-invariant associatives, T3 = T2 x Sl-invariant
coassociatives and Id2 x SU(2)-invariant coassociatives. In particular, we give a nice
characterization of these objects in the T? x SU(2)-quotient of the principal set (Theo-
rems 6.6, 7.8 and 7.14), which is a surface locally parametrized by the T2-invariant asso-
ciatives and the T>-invariant coassociatives (Corollary 7.9). In the associative case, we
also give a characterization in the singular set (Theorem 6.10). Along the way (Corollary
6.11), we prove that, under some mild topological conditions, the T>-invariant associa-
tives form an associative fibration, in the same sense as in [KL21,Tri23].

We then study the regularity of such submanifolds and we deduce the following (cft.
Theorems 6.12, 7.5 and 7.19):

Theorem. Let (M, ¢) be a Gy manifold with a T> x SU(2) cohomogeneity-two action.
Then T? xIdsuy(2)-invariant g-calibrated integer rectifiable currents and Id2 x SU(2)-
invariant x@-calibrated integer rectifiable currents are smooth, while x@-calibrated
integer rectifiable currents that are invariant under T? xS! for any S'-subgroup of
SU(Q2) can admit singularities with a tangent cone modelled on the Harvey—Lawson
cone times R.
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We also outline when our results can be extended to manifolds with closed or co-
closed G;-structures (cfr. Remarks 6.14, 7.10 and 7.21).

We conclude by applying the aforementioned discussion to the FHN manifolds and
to the Bryant—Salamon manifolds of topology S° x R*. In particular, we obtain new
large families of complete T?-invariant associatives (Theorems 8.4 and 8.5).

Theorem. Let (M, @) be one of the complete Gy manifolds with SU(2) x SU(2) x
U(1)-symmetry constructed by Foscolo—Haskins—Nordstrom [FHN21b]. For every T =
Idsu) x U(1) x U(1) < SU) x SU(2) x U(1) (or T? = U(1) x Idsue) x U(1) <
SU(2) x SU(2) xU(1)), there are the following families of distinct complete T?-invariant
associatives:

(1) a 4-parameter one with elements of topology T? xR,

(2) two distinct 2-parameter ones whose elements are of topology S' x R?,

(3) depending on the topology of M, one single S° or, alternatively, a 2-parameter
Sfamily of topological Lens spaces as elements.

Conversely, any complete associative with such a T2-symmetry belongs to this list.

In the BGGG and in the Bryant—Salamon manifolds, Fowdar independently con-
structed the same family of S! x R? associatives in [Fow22].

Furthermore, we extend to S x R?* the description of (possibly twisted) calibrated
subbundles in manifolds of exceptional holonomy started by Karigiannis, Leung and
Min-Oo [KL12,KMOO05] (Proposition 8.6).

1.2. Overview of the paper. Before getting into the main content of this work, we pro-
vide, in Sect.2, a brief introduction to G, geometry and to the related calibrated sub-
manifolds. Inspired by [KL21,Tri23], we also give a definition of calibrated fibrations
in which fibres are allowed to be singular and to intersect.

In Sect.3, we briefly recall the construction of complete simply-connected non-
compact Gy manifolds with SU(2)2 x U(1)-symmetry as described by Foscolo-Haskins—
Nordstrom [FHN21b]. For convenience, we refer to these objects as FHN manifolds.

In Sect. 4, we study the geometry of the T? x SU(2)-action. As a first step, we discuss
how to take quotients of the Lie group, and of its T? or SU(2) components, so that the
action passes to suitable quotients of the G, manifold. Even though the group is non-
abelian, we are able to classify the stabiliser types and the slice action on the normal
bundle (Theorem 4.7). It turns out that there are no exceptional orbits (i.e., S-dimensional
orbits of non-principal type) and, using the orbit type theorem, we are able to split our
manifold into a stratification given by a principal set M p, where the stabilizer is zero-
dimensional, and S; for i = 1, 2, 3, 4, where the stabilizer is i-dimensional. Finally,
we untangle the definition of multi-moment maps [MS13, Definition 3.9] for this group
action, and we establish their invariance and equivariance.

Afterwards, in Sect.5, we investigate the local structure of G, manifolds with the
given cohomogeneity two symmetry. In our setting, we independently consider the T?
and the SU(2) factors as follows. Madsen and Swann [MS13] showed that, under the
presence of a T2-symmetry, Hitchin’s flow preserves the level sets of the T moment
map v, and the quotient x; = v~—!(¢)/ T? admits a coherent tri-symplectic structure.
They also showed how to reconstruct the G, manifold with T2-symmetry from such a
four manifold. In our setup, y; inherits an additional SU(2)-symmetry. We classify these
tri-symplectic structures as solutions of a matrix valued ODE system. In Theorem 5.9, we
summarise these results and state that, finding a G, manifold with T? x SU(2)-symmetry,
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decomposes into solving the ODE system of x;, constructing a certain two-form on this
space, and solving the rescaled Hitchin’s flow equation for the hypersurfaces v=!(t).

In Sect. 6, we turn our attention to T2-invariant associatives. The first key observation
is that these objects correspond, in the Tz—quotient, to integral curves of a vector field.
Since such integral curves respect the stratification induced from Theorem 4.7, it is
sensible to split our discussion into associatives in the principal set, M p, and associatives
in the various strata, S;, which form the singular set.

Using our knowledge of the possible slice actions, we show in Theorem 6.10 that
each stratum, S;, naturally decomposes into smooth T?-invariant associatives. In the
principal part M p, we characterise T2-invariant associatives as horizontal lifts of a level
set on the quotient B := Mp/ (T? x SU(2)), which is two-dimensional (Theorem 6.6).

Moreover, we determine under which topological conditions they are fibres of a global
fibration map on M p (Theorem 6.9) and, hence, when they form an associative fibration
(Corollary 6.11). A priori, the T2-invariant associatives in M p could approach and
intersect the singular set of the T2-action, where singularities and intersection can occur.
However, the aforementioned characterisation allows us to exclude such behaviour, and
to conclude, in Theorem 6.12, that all T2-invariant associatives are smooth. This is
particularly interesting because there are classical examples of singular T2-invariant
associatives, e.g. the Harvey—Lawson cone in R7 with the standard G,-structure [HL82].
It follows that the enhanced symmetry rules out singularities.

Fixing a T3 = T2 x S! inside T2 x SU(2), we stud3y T3-invariant coassociatives and
SU(2)-invariant coassociatives in Sect. 7. In general, T~ -invariant coassociatives are easy
to find. Indeed, Madsen and Swann showed in [MS19] that they are the level sets of T
multi-moment maps. Similarly to the T?-invariant associatives case, we can also charac-
terize them them in the quotient B (Theorem 7.14). The "surviving" multi-moment map
forms, together with the defining function of the T2-invariant associatives, a local or-
thogonal parametrization of B, which we call associative/coassociative in Corollary 7.9.
Unfortunately, SU(2)-invariant coassociatives do not have a nice level set description,
and only project on B to integral curves of a non-trivial vector field. Using a blow-up
argument and some geometric measure theory machinery, which we recall in Appendix
B, we show that SU(2)-invariant coassociatives are smooth and that T>-invariant coas-
sociatives can exhibit singularities. All singularities have a tangent cone modelled on
the product of the Harvey—Lawson cone with R.

In Sect. 8, we apply these ideas to the FHN-manifolds, which are characterized by
implicit solutions of an ODE system. Under some conditions, this system extends to a
singular initial value, which corresponds to a connected smooth submanifold and it is
determined by one of the following Lie groups: K = ASU(2), K = {1SU(2)} x SU(2)
or K = K, , (see Sect.3 for further details). We compute the various multi-moment
maps and we are able to characterise the aforementioned calibrated submanifolds. In
particular, in every FHN manifold with SU(2) x SU(2) x U(1)-symmetry, we find
a new 4-dimensional family of T2-invariant associatives with topology T? xR which
are bounded away from the singular initial value, and two S2-families of T2-invariant
associatives with the same topology which extend, together with the system, to smooth
associatives of topology S' x R? for every K. If the solution extends to an initial value
characterized by K = ASU(2) or K = {1 SU(g)} x SU(2), then we have an additional
T2-invariant associative of topology S°. When K = K., there is an §2-family of T2-
invariant associatives of topology a lens space depending on n, m and two additional T?-
invariant associatives of topology S x S'. See Theorem 8.4 for the precise statement of
this result and Fig. 4 for a graphical representation of the submanifolds. Moreover, when
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the solution extends to the singular initial value, we satisfy the topological conditions
of Theorem 6.9 and we obtain an associative fibration. As an explicit special case of
the FHN manifolds, we consider the Bryant—Salamon space of topology 3 x R* (see
[KL21, Section 3]) and we construct a new family of (possibly twisted) associative vector
subbundles over a geodesic of S°.

It is well-known that all the Bryant-Salamon manifolds are vector bundles with
calibrated fibres. In [KL.21], Karigiannis and Lotay considered the G, manifolds with
associative fibres, namely AZ_(S4) and Az_((CIP’z), and constructed coassociative fibra-
tions on them. In some sense, they interchanged the role of associative and coassociative
submanifolds. As a byproduct of Corollary 6.11, we obtain the opposite result, i.e. we
construct on the natural coassociative fibre bundle, S° x R*, an associative fibration. We
visualize this fibration in Fig. 5.

2. Preliminaries

In this section, we provide the basic definitions and properties of G, manifolds, asso-
ciative submanifolds and coassociative submanifolds.

2.1. Gy manifolds. The linear model we consider for a G, manifold is RT=R3q@R?
parametrized by (x1, x2, x3) and (ag, a1, a2, az), respectively. On R7, we consider the
associative 3-form ¢q:

3
0o = dx1 ANdxy ANdx3 +dei A i,
i=1

where the ;s are the standard ASD two-forms of R* endowed with the Euclidean
metric, i.e., ; = dag Ada; —da; Nday for (i, j, k) cyclic permuation of (1, 2, 3). The
Hodge dual of ¢ in R is also of great geometrical interest:
3
*x@o = dag ANda; ANday ANdaz — dej Adxp A,

i=1

where (i, j, k) is again a positive permutation of (1, 2, 3).
Since the stabilizer of ¢ is isomorphic to G, the automorphism group of O, we can
see (R, ¢p) as the linear model for manifolds with Gj-structure group.

Definition 2.1. Let M be a manifold and ¢ a 3-form on M. We say that ¢ is a G-structure
on M if at each point x € M there exists a linear isomorphism p, : R’ — T, M which
identifies ¢o with (p}x, ie., pio = @o.

A Ga-structure ¢ induces a metric g, and an orientation vol, on M satisfying:
(wap) A (Va@) A @ = —68y(u, v) voly, (2.1)

forall u,v € TyM and all x € M. This makes p, an orientation preserving isometry.
From g, and voly, one can also construct the coassociative 4-form *,¢.

Definition 2.2. Let M be a manifold and let ¢ be a Gy-structure on M. We say that
(M, ¢) is a G2 manifold if ¢ and *,¢ are closed.
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This terminology is justified by the theorem of Ferndndez and Gray [FG82], which
states that in this case, the Riemannian holonomy group of (M, g,) is contained in G>.
Every G, manifold is Ricci-flat.

The octonionic structure on the tangent space equips the tangent bundle with a natural
cross product.

Definition 2.3. Let (M, ¢) be a manifold with a G;-structure. The cross product on the
tangent bundle X, is defined as follows:

X TIM<xTM — TM
(U, V) — (V.U p)*,

where # denotes the Riemannian musical isomorphism.

2.2. Associative and coassociative submanifolds. Harvey and Lawson [HL82] showed
that ¢ and x@ have co-mass equal to one. It follows that if (M, ¢) is a G, manifold, then
¢ and ¢ are calibrations.

Definition 2.4. Let F C (R, ¢p) be a 3-dimensional vector subspace. The subspace F
is an associative plane if (p0| p = volp. A submanifold L of a G, manifold (M, ¢) is
associative if it is calibrated by ¢, i.e. for every x € L the subspace T L is an associative
plane in 7, M.

Definition 2.5. Let F C (R’ ¢p) be a 4-dimensional vector subspace. The subspace F
is a coassociative plane if *<p0| F= volr. A submanifold ¥ of a G; manifold (M, ¢)
is coassociative if it is calibrated by *g, i.e. for every x € X the subspace T, X is a
coassociative plane in 7, M.

Remark 2.6. A submanifold ¥ is associative or coassociative if and only if 7, ¥ is an
associative or a coassociative plane of (R’, ¢o) for every x € X under the isomorphism

Px-

We now state some well-known properties of associative and coassociative planes
which will be useful in the discussion below. We can translate this statement to the
tangent space (Tx M, <p’x) of a Gy manifold through p,.

Proposition 2.7 (Harvey—Lawson [HL82]). Let F C (R7, ¢o) be a 3-dimensional sub-
space. Then the following are equivalent:

(1) F is an associative plane,

(2) FL is a coassociative plane,
(3)ifu,veF,thenu xyv €F,

(4)ifu € Fandv € F1, thenu x4, v € F*,
(5) ifu,v e Ft, thenu Xgo UV EF,

(6) ifu,v,w € F, then w_v_u_ %y, ¢o =0,
(7) ifu,v,w € FL, then w v au g = 0.

Moreover, it follows that for every u, v linearly independent vectors of R’ there exists a
unique associative plane containing them. Analogously, if u, v, w are linearly indepen-
dent vectors of R7 such that ¢o(u, v, w) = O there exists a unique coassociative plane
containing them.
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2.2.1. Local existence and uniqueness In the rest of this paper, we will make exten-
sive use of the following local existence and uniqueness theorem for associative and
coassociative submanifolds. The proof relies on Cartan-Kéhler theorem.

Theorem 2.8 (Harvey-Lawson ([HL82, Sect. IV.4])). Let N be a real analytic sub-
manifold of a Gy manifold (M, ¢). If N is 2-dimensional, then there exists a unique
associative real-analytic submanifold L such that N C L. If N is 3-dimensional and
% | v = 0, then there exists a unique coassociative real-analytic submanifold ¥ such that
NCZX.

When a G, manifold (M, ¢) admits a Lie group action G with 2-dimensional principal
orbits, Theorem 2.8 applied to any such G-orbit yields (locally) the unique G-invariant
associative submanifold passing through it. Obviously, we can then extend any such lo-
cal associative submanifold L until we "hit" the singular part of the G-action. There, L
can intersect another associative and/or admit a singularity. Conversely, any G-invariant
@-calibrated integer rectifiable current intersecting the principal part of the action ad-
mits such description. A similar discussion works for coassociatives, i.e., xg-calibrated
integer rectifiable currents. In this case, the principal G-orbits need to be 3-dimensional
and ¢ must vanish when restricted to them.

Remark 2.9. Note that in the G-invariant case, Theorem 2.8 is equivalent to the local
existence and uniqueness for ODEs in the quotient space of the principal part.

2.2.2. Calibrated fibrations Inspired by [KL21,Tri23], we consider a definition of cal-
ibrated fibrations where fibres are allowed to be singular and to intersect.

Definition 2.10. Let (M, «) be a n-manifold with a k-calibration «. The manifold M
admits an «-calibrated fibration if there exists a family of «-calibrated submanifolds N;,
(possibly singular) parametrized by a (n — k)-dimensional topological space B satisfying
the following properties:

e M is covered by the family {Nj}pep,

e there exists an open dense set 5° C B such that N, is smooth for all b € 5°,

e there exists an open dense subset M’ C M, an open dense set 3’ C B which admits
the structure of a smooth manifold and a smooth fibre bundle = : M’ — B’ with
fibre Nj, forall b € B'.

Remark 2.11. The set M \ M’ is where the calibrated submanifolds can intersect and
can be singular. When we restrict the calibrated submanifolds to M’, these can cease to
be complete and they can have a different topology from the original ones.

3. The Foscolo-Haskins—Nordstrom Manifolds

In this section, we recall the construction of complete simply-connected non-compact
G; manifolds due to Foscolo, Haskins and Nordstrom in [FHN21b]. For brevity, we will
refer to them as the FHN manifolds. Note that this is not standard terminology. It is
costumary to distinguish three different subfamilies inside the manifolds constructed by
Foscolo—Haskins—Nordstrom: B (predicted in [BGGGO1] and previously constructed
in [Bog13]), Cy (predicted in [Bra02,CGLP04]) and D7 (predicted in [Bra02, CGLP02]).

As we will apply the theory we develop in Sects. 6 and 7 to these spaces, we believe
that it is useful to fix some key notation here.
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3.1. Thetopology ofthe FHN manifolds. Let (M, ¢)be anon-compact, simply-connected
G; manifold, with a structure-preserving SU(2) x SU(2) cohomogeneity one action.
Then it is well-known that M/ SU(2) x SU(2) is an open or half-closed interval 7,
and hence, the cohomogeneity one structure can be encoded by a pair of closed sub-
groups: Ko C K C SU(2) x SU(2), which are referred to as the group diagram of
M. In particular, SU(2) x SU(2)/Kj is diffeomorphic to the principal orbits of the
SU(2) x SU(2)-action and corresponds to the interior of /, while SU(2) x SU(2)/K is
diffeomorphic to the singular orbit and corresponds to the boundary of I, if it exists.

In the case of our interest, we either have Ko = {Isy@)xsu@)}or Ko = K nNK2, 2,
where m, n are coprime integers and K, , = U (1) X Zgcd(n,m) is defined by:

Ko i= [(ei91 L eif2) @ T2 ; pimOremdy) _ 1] <SUQ) x SUQ),

where T? is the maximal torus in SUQ2) x SU(2). If m, n are coprime the isomorphism
between K, , < SU(2) x SU(2) and U(1) is:

0

ei — (einQ’ e*ime)7 (31)

moreover, Ky, N K2 _2 = Zpjmn). Up to automorphisms of SU(2) x SU(2), the
subgroup K determining the singular orbit SU(2) x SU(2)/K is one of the following:
ASU©2), {lsue} *xSUQ), Kmnn,

where A SU(2) denotes the SU(2) sitting diagonally in SU(2) x SU(2). Note that the
singular orbit is diffeomorphic to $3 for the first two cases, and to S x S> for the third
one.

3.2. The Gy-structure. We now describe the Gp-structure on the principal part of M,
diffeomorphic to (SU(2) x SU(2))/K¢y x Int(7).
Consider on SU(2) x SU(2) the basis {e1, e2, €3, f1, f2, f3} of left-invariant 1-forms
satisfying:
dej =2ej Ney, dfi =2f; A fi,

and denote by Ey, E», E3, F1, F>, F3 the dual vector fields. On the principal part of M,
these can be explicitly described as follows:

Ei(p,q,r) =—(pi,0,0), Ez(p,q,r)=—(pj,0,0), E3(p,q,r)=—(pk,0,0),
Fi(p,q.r) =—(0,4i,0), F(p,q,r)=—(0,4j.0), F3(p,q,r)=—(0,qk,0),
where the product is by quaternionic multiplication. Let ¢, ¢ € R and let ay, a2, a3

be three functions only depending on the interval /. The following closed 3-form on
(SU®2) x SU(2))/Ko x Int({):

¢ =—8crey NexAe3 —8cafi N fa A f3+4d(ater N f1+azex A fr +azes A f3)
(3.2)

is a Gp-structure such that the interval / is the arc-length parameter along a geodesic
meeting orthogonally all the principal orbits if and only if the following conditions are
satisfied:

a; >0, Aar,az,a3) <0, 2aia2a3 =+/—A(ay, az, a3),
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where

A(ay, ap, az) :af + ag + ag — 2a12a% — 2a§a§ — 2a§a12 +4(c1 — cp)araraz+

+2c1c2(al + a3 +ad) + i3
Furthermore, if Ko = K, » N K2,_2, we require ap = a3 unless there exists ad € Z

such that (d + D)m + (d — 1)n = 0.

Remark 3.1. Under these conditions, the interval [/ is the arc-length parameter along a
geodesic meeting all the principal orbits orthogonally.

The torsion free condition becomes the Hamiltonian system associated to the poten-
tial:

H(.X, )’) =V _A(ylv Y2, }’3) _2\,)61)(:2)( ’

where y; = a; and x; = a;ay for every (i, j, k) cyclic permutation of (1,2, 3). If ¢
denotes the parametrization of 7, then the dual form of ¢ is given by:

3
* @ = 16Zdjdk6jAfjAekAfk+

i=1

+

8

\/_Adt A Qajazas — ¢y (a% + a% + a% +c1c2))er Aep Aes
2, 2, 2

+Qarazaz +ca(ay +a5 +az +c1c2)) fi A 2 A f3

3

2 2 2

+Z ((a,-(ai —aj —aj +c1c2) — 2c2ajap)e; N fi A fi
i=1

+(a; (ai2 — ajz- — a,% +cie) +2c1ajar) fi ANej A ek)>. (3.3)

Enhanced symmetry We now restrict our discussion to the case where a, = a3.
Under this additional condition, the symmetry of (SU(2) x SU(2))/ Ko x Int(I) becomes
SUQR2) x SU2) x U(1), where the action of (yy, y2, A) € SU(2) x SU(2) x U(1) on
([p,ql,t) € (SUQR) x SUR))/Ko x Int(]) is as follows:

(v, v2. 1) - ([P, q1. 1) = ([y1 pk, y2q 2L, 1), (34
where A is given by the U(1) < SU(2) generated by quaternionic multiplication by i.

Remark 3.2. Note that this enhanced symmetry allows us to find T2 x SU(2) subgroups
of the automorphism group of (M, ¢).

Under this enhanced symmetry, we denote by a := ay = a3 and b := ay, and the
form of A(a, b) simplifies to:

—A(a,b) =4a*(b — c))(b+c2) — (b +c1c2)?, (3.5)
and the same holds for the Hamiltonian system, which becomes:

Aa(y1, y2) . A

_—7 x2 — —7
4/ —=A(Q1, ¥2) 2/ =A(y1, y2)

X1 =
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X1X2 . xlz
yl = E) )’2 = E)
xlzxz Xlzxz

where y| = a, y» = b, x; = ézB, x2 = a2 and A,, Ap denote the derivative of A (a, b)
with respect to the first or the second component, respectively.

Remark 3.3. From —A(a, b) > 0, we deduce that a, b — c1, b + ¢ have definite sign,
and hence, x| has definite sign as well.

Example 3.4. The Bryant—Salamon manifolds can be seen as special examples of FHN
manifolds such that, for some ¢ > 0:

3
_ Y3

3
> €1 = —gﬁc, =0, K={lsup)}xSUQ) (3.6)

ay) =day = as
or

A S S 3 _
111—112—613—6i’ _56’ cir=—cp=c’, K=ASU®),

1/6

where r () is a reparametrization of ¢ such that dr/dt = 1/2(c + r>)'/% in the first case

and dr/dt = 1/+/3+/1 — 8¢3r=3 in the second case.

3.3. Extension to the singular orbit and forward completeness. Now, we state under
which conditions the G;-structure extends smoothly to the singular orbit and when it is
forward complete.

First, we know from the slice theorem that a neighborhood of the singular orbit
SU(2) x SU(2)/K is equivariantly diffeomorphic to a small disk bundle of:

(SUR2) x SUQ)) xg V,

for some vector space V endowed with a representation of K. We now summarise when
the Gp-structure defined in Eq. (3.2) extends smoothly to the zero section of such a
bundle (cfr. ((FHN21b, Proposition 4.1])).

Case 1 (K = ASU(2)). In this case, V = C? and SU(2) acts in the usual way on
it. The SU(2) x SU(2)-invariant G,-structure defined above extends smoothly to the
zero-section if and only if:

(1) c1+¢c2 =0,

(2) the functions {a;} are even and have the following development near 0: a;(¢) =
c1+ %atz + 0(t*) for some o € R,

(3) 8a® =c; > 0.

Case2 (K = {Isuq)} x SU(2)). As in the previous case, V = C? and SU(2) acts in the
usual way on it. The Gj-structure defined above extends smoothly to the zero-section if
and only if:

(1) c2=0,
(2) the functions {a;} are even and have the following development near 0: @; () =
%aitz + O(t*) for some a; € R*,

3) 8ajapaz = —c; > 0.
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Case 3 (K = K, ;). In this situation, V = R2 and Km,n = U(1) acts on it with
weight 2|m + n|. The Gy-structure defined above extends smoothly to the zero-section
if and only if:

(1) mn > 0,

2) c1 = —mzrg and ¢; = nzrg for some rp € R\ {0},

(3) the function a; is even and satisfies: a1 (0) = mnrg, dota(0) > 0,

(4) the function ay + a3 is odd and satisfies: a>(0) + a3(0) > 0,

(5) we either have ap = a3 or m = n = %1, if the ay and a3 do not coincide, then their
difference is an even function with |a;(0) — a3(0)| < 2|r0|3.

The forward completeness of the local solutions constructed above and the metric
completeness is discussed in ([FHN21b, Sects. 6, 7]) for the case we have the enhanced
symmetry SU(2) x SU(2) x U(1). Moreover, they showed that the complete G, manifolds
they obtain are all the possible complete G>-manifolds with SU(2) x SU(2) x U(1)-
symmetry.

4. G, Manifolds with T2 x SU(2)-Symmetry

In this section, we prove some properties of a G manifold (M, ¢) with a structure-
preserving T? x SU(2)-action of cohomogeneity two, i.e. the maximal dimension achieved
by the orbits is 5. We will make extensive use of the theory of differentiable transforma-
tion groups (cfr. Appendix A).

If T represents the kernel of the homomorphism T2 x SUR) — Aut(M, @), we
prove that the Lie group (T2 x SU(2))/ I', which acts effectively on (M, ¢), has trivial
principal stabilizer. Afterwards, we characterize the group structure and the slice action
of each (T? x SU(2)) / I'-stabilizer using only its dimension. As a consequence of this
technical result, we deduce that there are no exceptional orbits and that the singular set
of (T2 x SU(2))/ " "splits" into smooth embedded submanifolds. We conclude the first
part of the section by studying the properties of these submanifolds.

In the second part of the section, we specialize to our setting the notion of multi-
moment maps, which were introduced in [MS12,MS13]. Then we study the properties,
including invariance and equivariance, that we will need in the rest of the paper.

4.1. T? x SU(2)-symmetry. To understand the action of T2 x SU(2) on M, let T be the
kernel of the homomorphism T? x SU(2) — Aut(M), which is discrete by assumption.
Once we rewrite it as I' = {(a;, b;) € T? x SUR) :i € I}, wedefinel'| :={a € T2 :
(a,Idsy)) € '} and I'; := {b € SU(2) : (Idq2, b) € I'}, which are subgroups of T?
and SU(2) respectively.

Consider the T? action on M given by T2 xIdsy(z) < T2 xSU(2). Since

I' x IdSU(Z) = (Tz XIdSU(z)) nT,

we see that the action of T? /'y is effective, and, as T2 / I'1 is diffeomorphic to ’IFZ,
we can assume, without loss of generality, that I'y is trivial and that the action of
T2 =~ T? xIdsy() is effective. We denote by S the singular set of this action, i.e.
the complement of the principal set with respect to this action.

Analogously, we have an SU(2)-action on M given by SU(2) = Idp2 x SU(2) <

T2 x SU(2), which induces an effective action of SU(2)/ I';.
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Remark 4.1. Observe that I' does not need to be equal to I'1 x I';. For instance, if
I' = {£(1, 1)}, then Iy and I"; are trivial.

Now, we show that I" is in the center of T2 x SU(2): Z(T? x SU(2)) = T? x{%1}.

Lemma 4.2. Let x € M be such that the stabilizer (T? x SU(2))y is discrete. Then the
stabilizer is a subgroup of the center Z(T? x SU(2)).

Proof. We show that the adjoint representation of (T? x SU(2)), on £ @ su(2) is trivial,
which implies the statement by naturality of the exponential map.

Let N be the normal space at x of the T? x SU(2)-orbit, whose tangent space is
identified with t> @ su(2) in the usual manner. Then the representation of (’]1‘2 x SU2))x
on T M splits as

TM =t ®su?) ® N, 4.1

and coincides with the adjoint representation on the £ @ su(2) part. Being abelian, the
action on ¢ is trivial and the same holds for the cross product of the t>-generators. This
vector is obviously orthognal to 2 @ {0} and, because of Eq. (4.6), to {0} & su(2). We
deduce that the cross product of the t>-generators span a linear subspace N of N. Note
that we used that the action of (T2 x SU(2)), preserves the G>-structure.

Denote by N the orthogonal complement of Ny in N, which is invariant under the
action. Being an isometry, every element g € (T? x SU(2)), acts on N, by multiplication
of Ag, where Ay € {—1, +1}.

Finally, we show that A, cannot be —1. In order to do so, we consider the map
(@ N)®N, — su(2) which is the composition of the cross product and the projection
onto the s1(2) component in the splitting given by Eq. (4.1). Since t*@ N is an associative
subspace, this map is an isomorphism of representations. Hence, g acts on su(2) by
multiplication of Ag. We conclude because there is no element in T2 x SU(2) whose
adjoint action on su(2) is multiplication by —1. O

Corollary 4.3. Since T? x SU(2) acts on M with cohomogeneity two, T is in the centre
()sz x SU(2). Hence, SU(2)/ I'y is either SU(2) or SO(3).

Corollary 4.4. The principal stabilizer of (T? x SU(2))/ T is trivial.

Proof. As a consequence of Lemma 4.2, all principal stabilizer subgroups are not only
conjugate, but equal to each other. Since the action is effective after the quotient, the
principal stabilizer needs to be trivial. O

From now on, we consider the action of G := (T? x SUQR))/T < Aut(M, ¢), and
we denote by Mp its principal set. This is going to greatly simplify our arguments:
indeed, the G-action is effective and with trivial principal stabilizer.

We will make use of two additional actions induced from the original T? x SU(2).
Let 'y := {a; : (a;, b;) € T} and let I's := {b; : (a;, b;) € T'}, which is either trivial or
{£1} by Corollary 4.3. We state the following lemma without proof.

Lemma 4.5. Ler T? = T2 x Idsu(2) acting on M. Then there exists an induced action
of GT := T2 JT'| on Mp/(SU(2)/ T'2) which is free. In particular, Mp /(SU(2)/ T'2)
becomes a principal G -bundle over B := Mp/G. Similarly, there exists a GSU®?) :=
SU(2)/T; action induced by SU(2) = Id2 x SU(2) on Mp/ T? which is free. As before,
Mp ) T? becomes a principal GSY® -bundle over B.
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The various quotients are summarised in the following diagram:

Mp .
/(SU(2V %
Mp/(SU(2)/T2) /G Mp/T* "

/GR‘ M ‘//GSU@

4.2. The stratification. Applying the orbit type stratification theorem and the principal
orbit type theorem to our setting, where G = (T? x SU(2))/ T acts effectively on M,
we see that M decomposes as the union of G-orbit types, and there exists one of them
which is open and dense in M. In this subsection, we study the geometry of the G-action
to understand this stratification.

To simplify our notation, we fix a point x € M and denote by T the tangent space of
Gx at x and by N its normal space, i.e. the orthogonal complement of 7 in 7 M.

In the discussion of the stratification, we will need the following standard lemma:

Lemma 4.6. Let T? be a maximal torus in Gy. Then the representation of T? on R’
splitsas V @ Wi @ Wy @ Wi, where V is 1-dimensional and each W; is 2-dimensional.
Each V & W; is an associative subspace of R7 with respect to ¢y.

Proof. A maximal torus in G, induces a splitting R’ = R x C3, where C? is equipped
with its standard Calabi-Yau structure and the torus acts as a maximal torus of SU(3).
A submanifold R x W is associative if and only if W is a holomorphic curve, which is
clearly the case for the complex linear subspaces W;. O

Recall that S is the singular set of the T2-action and, as a consequence of the fol-
lowing theorem, it is also the set where the generators of the T2-component are linearly
dependent, i.e. there are no exceptional orbits (cfr. ((MS19, Lemma 2.6])).

Theorem 4.7. The dimension of the stabilizer G is not bigger than 4, and,

e ifdim(Gy) = 0, then Gy is trivial, i.e. there are no exceptional orbits,

e ifdim(Gy) = 1, then x ¢ S and G, is isomorphic to SO(2). The action of G on
N splits as N1 @ Ny with dim(Ny) = 1, dim(N,) = 2 where G acts trivially on Ny
and faithfully by rotations on N3,

e if dim(G,) = 2, then x € S and the identity component of G is isomorphic to T?
and acts diagonally on N = C?. The G-orbit Gx is an associative submanifold of
M,

e if dim(Gy) = 3, then x ¢ S and G is isomorphic to SU(2). The action of G on
N leaves a 1-dimensional subspace N1 C N invariant and acts on the orthogonal
complement Ny via the standard embedding SU(2) — SO(4),

e if dim(G,) = 4, then x € S and the identity component of G is isomorphic to
U(2). The action on the normal bundle N is via the embedding

A 0
UQ2) — SUQR), A (0 detA_1>.
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Consequently, the singular set of the G -action can be decomposed into S| US>, US3U Sy,
where S; is the set of points with i dimensional stabilizer.

Proof. The first part of the proposition follows from the fact that the rank of > @ su(2)
is three, while the rank of g; is two. Hence, since Gy < Gj under the identification of
(TeM, @) = (R7, ¢p), the dimension of G, cannot be equal to 5.

By the slice theorem, a neighbourhood of Gx is equivariantly diffeomorphic to a
neighbourhood of the zero section of G x5, N. It follows that the representation of G
on N is faithful. Indeed, every neighbourhood of the orbit Gx intersects M p, on which
G, acts freely because of Corollary 4.4.

If dim(G,) = 0, then an argument similar to the one used for Lemma 4.2 shows that
G, acts trivially on N. This means that G is trivial by the faithfulness of the G -action
on N.

We now consider the case dim(G,) = 1 and x € S. This means that Gy =G, N
(T? xIdsuy(z))/ I is not trivial and, being a subgroup of (T? xIdsy(z))/ I, itacts trivially
onT = g/gx.Since the cross-product restricted to any 4-dimensional subspace generates
T, M, we deduce that G, acts trivially on all of 7,y M. This is a contradiction as Gy <G,
and hence it has to act faithfully on N. We have shown that if dim(G,) = 1, then x ¢ S.
So it remains to show that G, is isomorphic to S!. Since x ¢ S the intersection of
2 @ {0} C > @ su(2) with g, is trivial. This means that g/g, splits into >, on which
G, acts trivially, and a 2-dimensional subspace m. As before, the normal space splits
into Ny @ N,, where N is spanned by the cross product on t* and Nj is its orthogonal
complement in N. So G acts trivially on Nj. To summarise, the action of G, on Ty M
splits as

TM=t*dm®d N, ®N,.

The action of G, is isometric and faithful on the 2-dimensional space N>. So, G is
either isomorphic to SO(2) or to O(2). In the latter case, there is an element t of order
two and a subspace N3 C N> that is fixed by 7. The cross products of > @& Ni @ N3
generate all of 7, M so that t acts trivially on all of 7, M. This is impossible since the
action on N must be faithful.

When dim(G,) = 2, we first assume, for the sake of contradiction, that x ¢ S.
Consider the Lie algebra homomorphism ¢ : g, — su(2) coming from the projection
T2l su(2) — su(2). The image of ¥ would be a 2-dimensional Lie subalgebra of
su(2) which does not exist. It follows that x € S and the identity component of G is
isomorphic to T2. Since the action of the identity component of G, on T, M splits as
T & N, we can apply Lemma 4.6 to see that T is isomorphic to V plus one of the W;,
for convenience say Wi, and N to the sum of W, @& W3 and the statement follows.

We now deal with the dim(G,) = 3 case. Consider the Lie algebra homomorphism
¥ gy — su(2) as above. The image of ¢ is a Lie subalgebra of su(2), hence, it is
either su(2) or a 1-dimensional subalgebra. The second case is impossible: indeed, the
condition implies @ {0} C g, but g, also intersects 51(2) in a 1-dimensional subspace,
0 gr = 2 @ ¥ (gy) = 3. This is a contradiction since g, is a subalgebra of go, which
has rank two. So ' is surjective, which means that g, intersects t* @ {0} transversally.
It remains to show that G, is diffeomorphic to SU(2), which also implies that x ¢ S.
As before, G, acts trivially on g/g, = t>. The cross product of the generators of this
t? lies in N and spans a 1-dimensional subspace Ni on which G, acts trivially too.
On the orthogonal complement N, of Ny in N the action of Gy is faithful. So G acts
trivially on an associative three-plane, which means G, is a subgroup of SU(2). Since
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G, is 3-dimensional, it is isomorphic to SU(2) and the action on N3 is isomorphic to
the standard action of SU(2) on C2.

Finally, we consider dim(G,) = 4. Similarly as above, we can show that T is
spanned by the generators of the T?-componenent of the action, it is 1-dimensional, and
it is fixed by G,. The subgroup of G that fixes a 1-dimensional subspace is SU(3).
So, the action of G, on the 6-dimensional normal space, N, defines an embedding
G, — SU(3), yielding a special unitary representation of G, on C3. We first show that,
when restricted to the identity component, this representation must be reducible. Indeed,
every 4-dimensional Lie subalgebra of g is isomorphic to u(2) = su(2) & u(l). Since
G, is compact, it suffices to show that every complex 3-dimensional special unitary
representation of SU(2) x U(1) is reducible. To see this, denote by Vi the unique k-
dimensional irreducible representation of SU(2) and by W,, the representation of U(1)
on C with weight m. All irreducible representations of the direct product SU(2) x U(1)
are of the form Vi ® W,,,. Those that are 3-dimensional, namely V3 ® W,,, are not special
unitary. Since the representation is faithful and special unitary, we conclude that it must
be (Vo ® Wi) @ W_,, i.e. of the desired form. Moreover, the element (—1, —1) acts
trivially, so the identity component of G, must be (SU(2) x U(1))/Z, =U(2). O

‘We have just proven that we can decompose the singular set of the G-action into four
subsets, {S,-}?zl, which are characterized by having the dimension of the G-stabilizer
fixed. We now study the properties of these subsets.

From the proof of Theorem 4.7, we can immediately see that the following holds.

Corollary 4.8. The singular set of the T?-action S is Sy U Sy. Either the set S is empty,
or GV js isomorphic to SU(2).

Using the slice theorem and the slice action which we studied in Theorem 4.7, we
can also deduce the following.

Proposition 4.9. Each S; is either empty or a smooth embedded submanifold of dimen-
sion:

dim(S1) =5, dim(S;) =3, dim(S3) =3, dim(S) = 1.
Moreover, each connected component of Sy and Sy is a G-orbit.

Proof. As before, for every point x € M we denote by T the tangent space of Gx at x
and by N its normal space.

To prove this statement, it is enough to find the linear subspaces of N on which
G, acts trivially. Indeed, if V; is such a vector subspace for a point x € S; and some
i = 1,...,4, we immediately see from the slice theorem that S; is diffeomorphic to
G x¢, V; in a neighbourhood of Gx. It is now clear that S; is smooth and of dimension
equal to the dimension of Gx plus the dimension of V;. Moreover, if V; is trivial, then
each connected component of S; is a G-orbit.

From Theorem 4.7, we can extrapolate that V, and V; are trivial and that V; and V3
are 1-dimensional. 0O

By considering subgroups of the stabilizer, we can use a similar argument to under-
stand how the various S;s relate to each other (cfr. Figure 1). In particular, in a neigh-
bourhood of each connected component of S, there are two connected components of
S1 whose closure contains the given connected component of S,. By the slice theorem,
such subsets of Sj correspond to two vector subspaces of the normal bundle on which
some S'-subgroup of the stabilzer acts trivially. In a similar spirit, we can see that a
connected component of Sy is close to a connected component of S and of S3.



On G, Manifolds with Cohomogeneity Two Symmetry Page 17 of 51 168

\ ’ \
\ ’ \

81 81 81 83

32 84

Fig. 1. Representation of how the different S; s relate to each other

Remark 4.10. Note that the stratification induced by {S;} is coarser than the one induced
by the orbit type stratification theorem, as there could be different orbit types of the same
dimension. However, we have seen in Proposition 4.9 that the tangent space of each S;
is spanned by the tangent space of the orbit and possibly the cross product of the T?
generators. Since the flow of this cross product preserves the orbit type (see Lemma 6.2),
the orbit type is unchanged along every connected component of each S; and, hence, we
can reconstruct one stratification from the other.

4.3. Multi-moment maps. In [MS12] and [MS13], Madsen and Swann extended the
classical notion of moment maps for symplectic manifolds to any closed geometry
(X, o), i.e. a manifold X endowed with a closed form «. The idea is to take generators
of a subgroup of Aut(X, o) and contract them with « to reduce its degree to 1. Now,
if these 1-forms are exact they can be integrated to functions in C*°(X; R) (defined up
to additive constants) that they call multi-moment maps. In order to ensure closedness,
Madsen and Swann introduced the notion of Lie kernel, which we omit for brevity.

In this work, the G multi-moment maps will be crucial in studying cohomogeneity-
one calibrated submanifolds of (M, ¢). Indeed, we will see in Sect.6 and Sect.7 that
such submanifolds are contained in the level sets of some multi-moment maps and that a
direction transveral to the orbits is parametrized by the gradient of a multi-moment map.
Finally, multi-moment maps will also be used in Sect.5 to find natural hypersurfaces of
M.

Assuming from now on that the G, manifold (M, ¢) is simply connected (so that all
closed 1-forms are exact), we can then define the G multi-moment maps related to ¢
and *x¢ bypassing the notion of Lie kernel and other difficulties.

Remark 4.11. Observe that it makes sense to consider the multi-moment maps with
respect to x¢ as well. Indeed, it is a closed form and, by Eq. (2.1), a ¢-preserving action
will also preserve the metric g, and the volume form vol,. Therefore, *¢ will also be
preserved.

First, we fix the notation for the generators of G. Let U;, U, be the generators of
2 @ {0} C @ su(2) and let Vi, V3, V3 be the generators of {0} ® su(2) C @ su(2).
Clearly, we can choose them to satisfy:

[Ul’ Um] = 01 [Ulv ‘/l] = Ov [‘/lv Vj] = eijkvkv (42)

foralll,m =1,2andi, j,k=1,2,3.

Definition 4.12. The multi-moment maps with respect to ¢ are the smooth functions
(defined up to additive constants) o/ : M - R¥forl = 1,2andv : M — R
characterized by:
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dol = U, Vi, ),  dv:= Ui, U, ), 4.3)
wherei =1, 2, 3.

Definition 4.13. The multi-moment maps with respect to x¢ are the smooth functions
(defined up to additive constants) i : M — R and n : M — R characterized by:

d“/i = *‘P(Ul, U29 ‘/i’ ')7 d’l = *(p(Vlv V27 V37 ‘)a (44)
wherei =1, 2, 3.

As a sanity check, one can show that the one-forms given on the right-hand-side are
all closed.

Lemma 4.14. The multi-moment maps (. and 6 have the form:
i = —xoU1, Uz, Vi, Vj), 6 = —o(Up, Vi, V), 4.3)
where (i, j, k) is a cyclic permutation of (1,2, 3).

Proof. The proof is a straightforward application of Cartan’s formula, the identity
[Lx,iy] = ijx,y) for every vector field X, ¥ and Eq. (4.2). O

Before considering the properties of the multi-moment maps, we state two trivial
results that we will use throughout the paper.

Lemma 4.15. Let M be a smooth manifold with an SU(2) action with generators
V1, Va, V3 satisfying [ Vi, V;] = €;jx Vi. Then a smooth function f: M — R3 is equiv-
ariant with respect to the action of SU(2) on R3 via the double cover SU(2) — SO(3)
if and only if f satisfies:

Ly, fj = €ijk fr-

Lemma 4.16. Let M be a smooth manifold with the action of a connected Lie group G
with generators Uy, ..., U;. Then a smooth function f: M — R is invariant under the
G-action if and only if f satisfies:

Ly, f=0,
foreveryi =1, ..., 1

Proposition 4.17. Let 0, v, ;u and n be as in Definitions 4.12 and 4.13. If SU(2) acts on
R3 via the double cover SU(2) — SO(3), then:

(1) v is T? x SU(2)-invariant,

(2) nis T2-invariant and SU(2)-equivariant,

(3) || is T? x SU(2)-equivariant,

(4) 01 and 62 are T*-invariant and SU(2)-equivariant,

(5) 16| and |62| are T? x SU(2)-equivariant,

(6) nis SU(2)-invariant and, if the SU(2)/ I'2-action has a singular orbit, is T2 x SUQ2)-
invariant.

Moreover, each T*-invariant function on M descends to a function on the topologi-
cal space M/ T?; each SU(2)-invariant function on M descends to a function on the
topological space M /SU(2), and every T? x SU(2)-invariant function descends to a
Sfunction on M/ T2 x SU(2).
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Proof. The T2-invariance of v, u is clear from Lemma 4.16, Eqs. (4.3) and (4.4), while
the SU(2)-equivariance of © and 6! follows from Lemma 4.15 and:

I !
Ly,pwj = €ijkik,  Lv,0; = €ijity.

If we show that ¢(Uy, Uz, V;) = 0 for every i = 1,2, 3, then v is SU(2)-invariant
and 6! is T2-invariant. Cartan’s formula, together with [Ly, iy] = i[x,y], implies that
d(p(Uy, Us, Vi)) = 0and, hence, ¢(U;, U;, V;) is a constant ¢;. We conclude because:

0=_Ly;ci =VjlpWU, Uz, V})) = —pU1, Uz, Vi) = —cx, (4.6)

where we used again Cartan’s formula and Eq. (4.2). Analogously, one can prove that 7 is
T2-invariant if the SU(2) / I'>-action has a singular orbit. We conclude as 7 is obviously
SU(2)-invariant. 0O

Since the T2 x SU(2)-action is structure preserving, and in particular, its generators
are Killing vector fields, we can obtain the following result. Recall that the Lie derivative
of a Killing vector field commutes with musical isomorphisms.

Corollary 4.18. Let v, i, n be as defined in Definitions 4.12 and 4.13. Then:

(1) Vv = Uy x Us is T? x SUQ2)-invariant,

(2) V|| is T?> x SU(2)-invariant,

(3) Vnis SU(2)-invariant and, ifthe SU(2)/ I'>-action has a singular orbit, is T? x SUQ2)-
invariant.

Moreover, each H -invariant vector field on M descends to a vector field on the principal
part of the H-action, for every H < T? x SU(2).

Remark 4.19. As an abuse of notation, we will use the same symbol for both the invariant
functions (or vector fields) in the total space and in the quotients.

We are also able to locate the zero set of the multi-moment map of w in terms of the
stratification given in Theorem 4.7.

Corollary 4.20. Let i as in Eq. (4.5). Then:
SUSUS, C M_I(O) CSIUSUS3US,.

Proof. The first inclusion is obvious from Theorem 4.7 and Lemma 4.14.

Assume by contradiction that the second inclusion does not hold. Hence, there ex-
ists a point x € M such that u(x) = 0 and such that Uy, U,, Vi, V2, V3 are linearly
independent at 7, M. By Eq. (4.6), Vi, V2, V3 spans a 3-dimensional linear subspace of
T M which is orthogonal to U; x U; and transversal to the two-dimensional subspace
spanned by Uy, U;. Since the two-form *¢@(Uj, Ua, -, -) does not vanish on any such
3-dimensional subspace, we can conclude. O

5. Local Characterization of G; Manifolds with T? x SU(2)-Symmetry

In this section, we provide a local characterization of G, manifolds with a structure-
preserving T2 x SU(2)-action. This characterization is local in the sense that we restrict
our manifold M to Mp, where G = (T? x SU(2)) / I acts freely.

In the first subsection, we recall Madsen—Swann T2_reduction [MS12], which can
be summarized as follows. Any smooth hypersurface in a torsion-free G, manifold
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carries a half-flat SU(3)-structure [CS02]. Moreover, under the real-analytic condition,
one can locally reverse this procedure through Hitchin’s flow [HitO1]. As the manifold
admits a free ’]I‘z-action, it is natural to take a level set of v (which can be defined as in
Definition 4.12 even when the manifold is endowed with only a T2-action) as the given
hypersurface. Madsen—Swann [MS12] proved that the SU(3)-structure on the level sets
of v is described as a T2-bundle over a four manifold y, with a coherent tri-symplectic
structure.

Afterwards, we enhance the symmetry to T? x SU(2), which implies that the coherent
tri-symplectic manifold x admits a structure-preserving GV -action, and the curvature
of the T2-bundle is also GSY@-invariant. In the second subsection, we describe the
GSV)_invariant coherent tri-symplectic structure in a frame compatible with the action.
In the third subsection, we characterize all such structures in terms of a solution of an
ODE. Finally, in the last subsection, we explain how to deal with the T2-bundle structure
and how to locally characterize G, manifolds with T? x SU(2)-symmetry.

5.1. The T2-reduction. Let (M, ¢) be a G, manifold with a structure-preserving T2-
action and singular set S. On M\S, the level sets of v are hypersurfaces oriented by
Vv = Uj x U,, where U1, U, are two generators of the T2-action. The T?-action passes
to the level sets of v and, hence, it endows v‘l(t) with a T2-bundle structure over
p~! @)/ ']I‘z, which inherits the following additional structure (cfr. [MS12]).

Definition 5.1. A 4-manifold y has a coherent tri-symplectic structure if it admits three
symplectic forms 0, 01, 02 such that g Ao; = 0fori = 1,2, 59 A 0 is a volume
form of x and the matrix Q := (Q;;); j=1,2 definedby 5; AG; = Q;;G0 AT is positive
definite.

The forms defining this structure on v=1(¢)/ T? are:
oo =*¢U1, U, -,*), o1 =9, ), 02=¢WUs", ). (5.1

Conversely (see ((MS12, Theorem 6.10])), assuming real analyticity, one can locally
reconstruct a G manifold with T?-symmetry from a coherent tri-symplectic four man-
ifold y, equipped with a closed two-form F € Q2(x,R?) with integral periods and
whose self-dual part F, satisfies the orthogonality condition:

F, = (01,02)A, (5.2)

for some A € GL(2, R) such that Tr(AQ) = 0. These conditions guarantee that F. is
the curvature form of a T2-bundle N over X - The Gp-structure is then constructed from
N by running rescaled Hitchin’s flow. The resulting G;-structure yields a moment map
v of which N is a level set and rescaled Hitchin’s flow evolves N into other level sets of
V.

When the symmetry is enhanced to T? x SU(2), the remaining GSY®-symmetry
passes to the quotient x and preserves its coherent tri-symplectic structure (see Eq.
(5.1)). We now describe such four manifolds with a free GSV® -symmetry.

5.2. On 4-manifolds with coherent symplectic triple and GSV® -symmetry. Let (x, 61,
&2, 33) be a coherent symplectic 4-manifold with a GSU®) structure-preserving free
action generated by the vector fields Vi, V2, V3 satisfying [V;, V;] = €;ji Vi. Since the
action is structure-preserving, we have that Ly,6; = 0, therefore, Q is GSU@ invariant.
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Moreover, as Q is also positive definite, there exists a unique real symmetric, positive
definite 2 x 2 matrix 7 such that 7-2 = 7—1(r—HT = Q, which is GSY @ _invariant
as well.

Let vol, := %60 A o0p and define the forms o; := Z?:l Tijoj fori = 1,2, which
then satisfy o; A 0 = 2§;; vol,,. Define the metric:
gy, v)vol, =0 Aiyo1 ANiyoo,

for all u, v € Ty x and all x € x. With respect to this metric, the vector fields V; are
Killing for g, .
Using the standard cover SL(4, R) — SO(3, 3) induced by the map:

A’QA? > A*ZR, a®B anpB,
one can prove the following lemma.

Lemma 5.2. There are unique g, -orthonormal one-forms «; fori =0, ..., 3 such that

op=o0pNay+op N3, o1 =ap Nop+o3 Nog,

1
Jdet g,

where g, is the matrix-valued function of entries (g (Vi, Vi), j=1,2,3.

o)y =00pg A3 +a] ANap, oy= voly (Vi, V2, V3, 4), (5.3)

We define the unit vector field X := ag, which satisfies the conditions oo(X) = 1
and «; (X) = 0 fori = 1,2, 3, and determines the «;s by «; = 0;_1(X, -). Consider
the two 3 x 3-matrix-valued functions n = (»;;) and T = (t;;), where 7;; and 7;; are
defined by:

nij i=0i1(X, V) =a;(Vy), tij:=0i-1(Vk, V),
for (j, k, I) positive permutation of (1, 2, 3). We also define the one-forms &g and §; for
i=1,2,3by:
o = y/det gyap = voly (Vi, Vo, V3,4), & (V) = dij, &i(X) =0.
which satisfies o; = Z’j":l nij6;.
Using that [V;, X] = 0, standard computations yield the following.

Lemma 5.3. The matrix functions n and t have the following properties

e v = adj(n’), where adj denotes the adjugate matrix.

e The row vectors of T and n are GSY® -equivariant.

e The determinant of T and the determinat of n are GSV® -invariant,

obThe 3.>< 3-matrix-valued function g, with entries (g, (V;, Vi)i,j=1,2,3 is determined
y 1 via:

gy =n"n, (5.4)

o We have the matrix equation:

= 80 A nd + T8, 5.5
o det(n)o né+t (5.5)

where o = (01, 02, 03)T, 8 = (81,82, 83)T and 8 = (82 A 83,83 A 81,81 A S)T.
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In this subsection, we have constructed a GSY®-compatible co-frame {5; }1'3:0 on x,

and we have rewritten the orthogonalized coherent symplectic structure {crl-}?:l in this
co-frame (Eq. (5.5)). Along the way, we have introduced on y a compatible volume
form, vol,, and a metric, g, , which induces two 3 x 3-matrix-valued functions n and 7
representing g, on this GSU@ _compatible co-frame.

5.3. The differential equation. Now, we deduce how the equations do; = 0 transform
in the GSVU®)_compatible co-frame {5; }7_o that we constructed in the previous section.

We assume that H! (x,R) = 0 so that there is a function R such that dR = &.
The dual vector field g is equal to (det 7)™ X, so it satisfies [dg, V;] = 0, for every
i =1, 2, 3. Morever, by Lemma 5.3 and the commutator relationships for X and V;, we
deduce that d§ = —§ and d(ﬁ&)) =0.

We recall the following version of Lemma 4.15 in terms of differential forms, which
can be proven using Cartan’s formula.

Lemma 5.4. A smooth function f: x — R3 is SU(2)-equivariant if and only if (df =
f x8) mod &, for (f x§); = Gijkfj5k~

As a consequence of this lemma, we have
an aT
dn = 8§+ —68y, dr= 5+ —6o,
n=nx 9R 0 T=17 X 9R 0

where (n x 8);; = (n; x 8); and (t x §);; = (r; x J);, i.e. we are taking the cross
products of the rows of 1 with §. Putting all together in Eq. (5.5), we get

1 - 1 - _
do=—38 AN (—=dnAS—nds)+dt N6 = ——68y A (—nd) + (OrT)dp A b.
detn detn

The last step is due to the two identities:
Mx8AS=2n8, (tx8) A8=0.

Extend T to a 3 x 3 matrix by padding it with one in the (1, 1) entry and by zeros in the
first row and column elsewhere. This extension is such that ¢ = T'o, which implies:

do =dT NG = ag(T)T " '8g Ao = dg(T)T '8¢ A 8, (5.6)

where the first equality follows from d6; = 0, the second one from the GSY® -invariance
of T and the definition of o, and the third one from Eq. (5.5). Combining the two
equations for do and using ﬁn = (z7)~! gives:

0= gt — DT 't = ) Hsy A 6. (5.7)

Proposition 5.5. A coherent symplectic 4-manifold x with free GSV® -symmetry and
intersection matrix Q admits a matrix-valued function t: x — M3x3(R) whose rows
are equivariant with respect to the action of SO(3) on R> and satisfying the following
differential equation:

gt = QDT 't + 7!, (5.8)

where T : x — M3,3(R) is the, padded as above, matrix satisfying Q = T 2.
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Conversely, let T : (a, b) — Sym,,,(R) be a function of positive-definite matrices,
identified with T : (a, b) — Symjs,3(R) padded as above. Then equivariant solutions
T (a,b) x GSU? — M3 3(R) of Eq. (5.8) are in bijection with coherent symplectic
structures on (a, b) x GSYD with intersection matrix 0= T2,

Proof. The first statement follows from Eq. (5.7) since the §¢ AS; are linearly independent
on .

For the converse direction, define the frame &g, ..., 63 on (a, b) x SU(2) such that
80 = d R and §; are the invariant one-forms on SU(2), hence, satisfying d§; = —¢;jx8; A
8. Lemma 5.4 and Eq. (5.8) imply

dr:r><5+(@RTﬂ””z+(r5*U)50 (5.9)

Define the forms «; by the equation «; = Z§:1 nijé;, with n := adj(zT)) as before.
From the ¢;s, we can reconstruct the forms o by Eq. (5.3) and then ¢ through the
transformation matrix 7. We deduce that o; are such that 6o A6; = O and 0; A o; =
0ij %ao A 00, where Q = T 2. Our previous computations show that Eq. (5.9) implies
that the forms o; are closed and, hence, we conclude. 0O

Remark 5.6. If Q is the identity matrix, then g, is hyperkihler and by rotating oy, o1, 02
we can assume that t is a diagonal at a given point. The diagonality is preserved along
R (as in the Bianchi IX ansatz) by Eq. (5.8), and we have 3R%Ti2i =1fori =1,2,3.
So each t;; is of the form /2R + k; and can we assume that k; + kp + k3 = 0 and
ki > ko > k3. The metric g, is

1 22733 733711 T117T22
dR* + 8+ 85 + 83
T11T22733 11 ™ 33

If all k; = 0, then all t;; are equal and the metric is flat. If k; > O and kp = k3 < O
then g, is the Eguchi-Hanson metric. In all other cases the metric is incomplete. Note
that the Taub—NUT and Atiyah—Hitchin metric are not described by our set-up, since
the SU(2) action is not tri-holomorphic on these spaces. Instead, the action rotates the
three hyperkéhler two-forms.

5.4. From coherent tri-symplectic manifolds to G, manifolds. Finally, we use Propo-
sition 5.5 to obtain a local construction of G, manifolds with T? x SU(2)-symmetry
through ([MS12, Theorem 6.10]).

The last object that we need is an orthogonal (i.e., satisfies Eq. (5.2)) self-dual two-
form F, € ©2(x, R?) on x with integral periods. This condition assumes the existence
of an anti-self-dual form F_ € ©2(x, R?) such that F, + F_ is closed and defines an
element in the image of H 2(M, Z%).

In the GSU@-invariant case the closedness condition can always be satisfied.

Lemma 5.7. For any GSY@ invariant F, € Qi(x, R2), there isa F_ € Q%(X, R2)
such that F, + F_ is closed.

Proof. Using the form that the self-dual two-forms {oi}?: | take in Lemma 5.2, we can
define the anti-self dual two-forms:

0 = —ap Ao +op Aas,
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0, = —0gAa2+a3 Ay,
03 = —ap Aa3+ap Aay.
The vector of 2-forms o~ := (o0, , 0, , 03 ) satisfies the same structure equation of

o: Eq. (5.6). Indeed, this is evident by computing do ~ as before or by using a local
diffeomorphism that preserves a1, o2, o3 and flips the sign of «, i.e pulls back o too ™.
It follows that their difference satisfies:

dic —07) = ()T 'So A (0 —07),

which vanishes as 0 — 0~ = 200 A « and o is proportional to §p.

Since F; is self-dual, there is a: x — R3 ® R? such that F, = ac = Zi a;o;.
Because F is GSY@ _invariant, the same is true for a, which implies that da is a multiple
of ag. Now define F_ := —ao ~ and observe

3
d(F,+F_) = ZZdai ANag Aoy =0,

i=1
as required. O

Remark 5.8. In a similar fashion, one can find all closed GSY® _invariant 2-forms F* +
F~ in terms of a system of ODEs.

If the function T is real-analytic the solutions of Eq. (5.8) are real-analytic as well
by the Cauchy-Kovalevskaya theorem. This observation, together with Proposition 5.5
and ([MS12, Theorem 6.10]) implies the following theorem.

Theorem 5.9. Simply connected G, manifolds with a free G-action are in bijection with
solutions of Eq. (5.8), for any given T : (a, b) — Sym,,,(R) real-analytic function of
positive-definite matrices, together with the real analytic two-form F, € Qi((a, b) x
GSY®) | R?) satisfying Eq. (5.2) and such that F,+F_ is closed and with integral periods,
for some real analytic anti-self-dual form F_ in Q*(x; R?).

6. T2-invariant Associative Submanifolds

In this section, we study T? = T? xIdsy(2)-invariant associative submanifolds of a G,
manifold (M, ¢), endowed with a structure-preserving, cohomogeneity two action of
T? x SU(2). We use the same notation and conventions of Sect. 4.

First, we give a characterization of T2-invariant associatives in terms of integral curves
of a vector field in the T2-quotient. Since such a characterizing vector field is T x SU(2)-
invariant, the problem of finding associative submanifolds "splits" with the stratification
constructed in Theorem 4.7. Moreover, the multi-moment map u : M — R3, defined
in Definition 4.13, is a first integral of the ODE problem, i.e., it is constant on every
T2-invariant associative.

In the principal part Mp of the T? x SU(2)-action, we characterize T?-invariant
associatives using the level sets of || : Mp/G — R.Indeed, Mp/ T? admits a GSU?)-
bundle structure, and T2-invariant associatives project to the level sets of | |. Choosing a
suitable connection on the GSU(Z)-bundle, one can horizontal lift these level sets and re-
verse the procedure. We conclude our discussion on M p by making this characterization
locally explicit.
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In the singular part of the T2 x SU(2)-action, we use Theorem 4.7 to show that there
exists a submersion from S to $2 such that each fibre is a T2-invariant associative.
Similarly, we show that S; and S3 U Sy are associatives.

Putting together our discussion on the principal part and on the singular part of
the T? x SU(2)-action, we deduce that there exists an easy geometrical condition that
guarantees the existence of a T2-invariant associative fibration. Finally, we show that all
T2-invariant associatives are smooth.

In Sect. 8, we will use the theory developed here to describe T2-invariant associatives
in the FHN G, manifolds.

6.1. T2-invariant associatives. As in Sect.4.3, let U; and U, be the generators of £ @
{0} C 2 @ su(2). We now give a characterization of T2-invariant associatives as integral
curves of Uy x U,.

Proposition 6.1. Let Lo be a T?-invariant associative submanifold of M\ S 2 Mp.
Then Lo/T? is an integral curve of the nowhere vanishing vector field Uy x U, in
(M\S)/T?. Conversely, every integral curve of Uy x Uy in (M \ S)/T? is the projection
ofa T-invariant associative in M \S.

Proof. Via the projection map, every T2-invariant submanifold Lo of M \ S projects to
acurve in (M\S)/ T2, and, conversely, every curve in (M\S) /"JI‘2 can be lifted to a T>-
invariant submanifold of M \ S by taking its preimage. This correspondence obviously
extends to their tangent space.

If Lo is also associative, it follows from Proposition 2.7 that its tangent space is
spanned by {U1, Us, U; x Us}. Since Uy x Uj is T2-invariant (Corollary 4.18) and
orthogonal to Uy, U, we deduce that L projects in (M \ S)/ T? to a curve with tangent
space spanned by the nowhere vanishing vector field U; x U;. Conversely, an integral
curve of Uy x Uy in (M\S)/T? lifts to a T>-invariant submanifold of tangent space
spanned by {U;, Up, Uy x Uy}, O

We now state some general properties of T2-invariant associatives and integral curves
of Uy x U, that will play a crucial role later on.
Since the flow of U1 x U> commutes with the group action of G, we have the following.

Lemma 6.2. The flow along U; x U, preserves the orbit type of G. Therefore, integral
curves of Uy x Us stay in the same stratum of the orbit type stratification, and hence of

{Si}.

In particular, we have proven that the problem of finding T?-invariant associatives
decomposes with respect to the stratification, and, on M \ S it reduces to a problem of
finding integral curves of a nowhere vanishing vector field.

Lemma 6.3. The multi-moment map . : M — R> is preserved by the vector field
U1 x U,. Therefore, | is constant on every T-invariant associative.

Proof. By definition of u; we have du;(Uy x Uz) = x¢(Uy, Uz, Vi, U x Us) for
every i = 1,2, 3. If Uy, Uj are linearly independent, then {U;, U,, Uy x U;} spans an
associative plane and x¢(U;, Ua, V;, U} x U) = 0 by Proposition 2.7. Otherwise, the
equation trivially holds. O
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6.2. Associatives in the principal set. In this subsection, we restrict our attention to the
principal set Mp.Let Uy, Us, Vi, Va2, V3 be the generators of the G-action as in Sect. 4.3.
Note that the action is assumed to be of cohomogeneity two, hence, the generators are
everywhere linearly independent on Mp.

Proposition 6.4. Let v and (1 be the multi-moment maps defined in Definitions 4.12 and
4.13, respectively, and restricted to Mp. Then the map (u,v) : Mp — R3x Risa
submersion. In particular, w= (¢) N\ Mp is a 4-dimensional submanifold of M p for every
c in the image w(Mp) and (|u|,v) : Mp/G — R2 is a local diffeomorphism onto its
image.

Proof. Given a fixed x € Mp, it follows from Corollary 4.20 that p(x) # 0. Since u is
SU(2)-equivariant and v is SU(2)-invariant, it suffices to show that (|u|?, v) : Mp — R?
is a submersion at x.

As Zi:l U1, Uz, ui Vi) = 0, there is an X € T, M such that Zi:l *x@(Uy, U,
i Vi, X) = 1. Observe that

3

1
Al =3 ik o (UL, Uz, Vi),
k=1

which implies d||*(X) = 2 and d|u|>(U; x Us) = 0.

Since d(|u|?, v) = (d|u?], dv), we have proven that d(|u|?, v)(X) = (2, 0). Ob-
viously we also have that d(|pu|?, v)(Uy x Up) = (0,|U; x Us|) and the statement
follows.

O

We now take a different perspective. Indeed, we argued in Lemma 4.5 that the action
of SU(2) on M induces on the quotient M p /T2 a principal bundle structure with structure
group GSU@ and base space the surface B = Mp/G. Let H be a connection on Mp /T>
such that the SU(2)-invariant Uy x U, is horizontal at each point. A connection satisfying
this property always exists: indeed, we showed in Proposition 4.17 that the one induced
by the G;-metric satisfies:

gy x Uz, Vj) = Uy, Uy, Vj) = 0.

Remark 6.5. Note that an invariant metric on a principal bundle naturally induces an
(Ehresmann) connection. Indeed, the horizontal distribution defined by H, := Vj is
clearly horizontal and equivariant.

Using such a connection, integral curves of U; x Uj are horizontal lifts over such
curves in B.

Theorem 6.6. Let H be a connection on the principal GSY® -bundle Mp/T?> — B
such that Uy x Uy € H. Let y be a curve in Mp/T>. The following are equivalent:

(1) The pre-image nqul (imy) isa T2-invariant associative in Mp,
(2) y is an integral curve of Uy x U,
(3) y is the horizontal lift of a level set of | 11| on B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral
curve of Uy x Uy in B there is a GSY® -family of integral curves of Uy x Ua in Mp ] T>.

Proof. The equivalence between (1) and (2) has been established in Proposition 6.1,
while the equivalence between (2) and (3) can be deduced from the G-invariance of
U x Us, the fact that it is assumed to be horizontal and Proposition 6.4. O
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6.3. Local description of associatives in the principal set. We have seen that M p / T?isa
GSY® _principal bundle over the base B. In Theorem 6.6, the integral curves of U; x U
in Mp/ T2 are described as horizontal lifts of curves in a surface. In the following, we
will show how these horizontal lifts can be computed in a local trivialization of the
principal bundle.

Lemma 6.7. Given U C B open, let U x GSY® — Mp /T? be a local trivialisation of
the GSV® -bundle with Uy x Uy € TU x {0}. IfU C Mp and pgsve: U — GSUP
are, repsectively, the induced local chart and the obvious projection coming from the
trivialization, then the fibres of the submersion (|it|, pgsve) : U — R* x G gre
associative submanifolds.

Proof. As Uy x Uy € TU x {0}, it follows that its integral curves will be constant on
the GSY® component of U x G3U? . Since || is constant on the G3Y® -component
and since integral curves of U; x U, are contained in the level set of |u| (Theorem 6.6)
we conclude. O

The aim is to find trivializations of Mp/ T?> — B where we can apply Lemma
6.7. Since u is GSU@-equivariant, we can reduce the structure group of the GSU?-
principal bundle. Indeed, given v € R3\{0} and denoting by (v) the line spanned by v,
then Q, := ' ((v)) is an S! reduction of the bundle Mp / T? - B.

Proposition 6.8. Let U C B open. If (|, v) : U — R2 is a diffeomorphism onto
its image and the image is convex, then there exists a flat connection on Q, such that
Uy x U, is horizontal.

Proof. Let® € Q'(Q,, R) be any connection form on Q, for which U; x U is horizon-
tal. Then the curvature form d#6 is a basic form, so there is a function f: &/ — R such
that d6 = fdv Ad|u|, where we are considering (||, v) as coordinates on/ C B. The
form d || is basic and annihilates U; x U», hence, 8’ = 0 + Fd|u| is also a connection
on Q, such that U; x U, is horizontal for every smooth function F : &/ — R. The
new connection 6’ is flat if and only if (3, F + f)dv A d|u| = 0. Because the image
is convex, d, F = — f admits at least one solution, for instance, using the methods of
characteristics. 0O

Theorem 6.9. LetU{ C B open. If (||, v) : U — RZ is a diffeomorphism onto its image
and the image is convex, then there exists a trivialization U x GSY® — Mp /T? such
that Uy x Uy € TU x {0}. As a consequence, the map (|1t], pgsuw) is a fibre bundle
map whose fibres are associative submanifolds. Here, pgsue) is the projection to GSU@
coming from the trivialisation.

Proof. By Proposition 6.8, the bundle Q, admits a flat connection for which U; x U,
is horizontal. Since U/ is diffeomorphic to a convex set (simply-connected), there is a
trivialization U x S! — 0, which induces this connection, i.e. the horizontal bundle is
TU x {0} C T Q,. Since U; x U, is horizontal the component in S! is constant alon§
integral curves of Uy x U. By equivariance, we get a trivialization/ x GSY® — Mp /T
such that the component in GSY® is constant along integral curves of Uy x U,. O

Clearly, the condition on (Ju|, v) in Theorem 6.9 always holds locally.

6.4. Associatives in the singular set. In this subsection, we describe the T2-invariant
associative submanifolds of M that are contained in the singular set of the T? x SU(2)-
action. In particular the following theorem holds.
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Theorem 6.10 (Associatives in the singular set). Let S1, Sy, S3 and Sy be the strata as
described in Theorem 4.7. Then:

e S| admits an SU(2)-equivariant submersion F: S — 82 such that each (not
necessarily connected) fibre is a T2-invariant totally geodesic associative.

e every connected component of S is an associative G-orbit,

e The set Sz U Sy is totally geodesic, associative and the action of G on Sz is of
cohomogeneity one.

Proof. We first consider Sy. For every ¢ € R x R and b € S, consider the Killing
vector field W, := c1Uy + coUs + b1V + by Vo + b3 V3 and its zero set L., C M\S.
Observe that every point of Sy lies in a unique L¢p, up to Lo, = L_. —p. Indeed,
W p corresponds to the Lie algebraof G, = § 1. Since G, is the quotient of a compact
1-dimensional subgroup of T2 x SU(2), it follows that ¢ € Q x Q, (otherwise, L. p is
empty). Let H* be a half plane in Q x Q, determined by a line with irrational slope
through the origin. This means that every element in Q x Q has a unique representative
in H" under the action of —1. In other words:

S = U L¢p

(c.h)eH*x§?

and the union is disjoint. We define F : S; — S such that on each of L j the value of
F is b. To show that F is equivariant, let &. ;, be the Lie algebra element corresponding
to the vector field W, ;, and recall that

LQ,Q ={xeM| é‘_c,b S gx},

where g is the Lie algebra of G . The equivariance follows because, forevery g € SU(2)
we have:

b EPr & Ec,gb = Adgfc,b € Adggx = fgx

The space L. p is a totally geodesic submanifold since it is the zero set of a Killing
vector field and, since the vector fields U;, Uz, Uy x U commute with W, p, they are
linearly independent and tangent to L p.

It remains to show that F is a submersion. For a point x € Sy, a neighbourhood of the
orbit Gx in S is diffeomorphic to R x G/G. The vector field U; x Uy is tangent to the
R direction, so F' is invariant under the coordinate in R and descends to a G-equivariant
map onto G/G, = S2 which is a T2-invariant submersion.

We now turn our attention to S». By Proposition 4.9, S; is smooth, 3-dimensional
and, by Theorem 4.7, associative. As it is 3-dimensional, we deduce that every connected
component is a G-orbit.

Finally, we consider S3 U S4. In Proposition 4.9, we have seen that S3 is smooth and
3-dimensional and that S4 is smooth and 1-dimensional. It follows from Theorem 4.7
(cfr. Figure 1) that Sz is dense in S3USy and it suffices to show that S3USy is smooth and
that 53 is associative, totally geodesic and of cohomogeneity one. Clearly, S3 is open in
S3 U S4. Hence, it is enough to show smoothness at a point x € S4. By Theorem 4.7, the
normal representation of G, on C? splits into two invariant components N = N1 & N>
where dimc(N1) = 1, dimc(N2) = 2. The set of points with 3-dimensional stabilizer
is exactly Ni. So, by the slice theorem, there is a diffeomorphism of G xg, N to
a neighbourhood U C M of Gx such that the subbundle G xg, Nj is mapped to
U N (83 U 84) and smoothness follows.
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Being the vanishing locus of three Killing vector fields, Vi, V3, V3, itis clear that S3
is totally geodesic. Finally, it is associative because, at each point, the tangent space is
the spanned by Uy, U and Uy x U,. O

Corollary 6.11. If (||, v): B — R? is a diffeomorphism onto its image and the image
is convex, then M admits a global T2-invariant associative fibration in the sense of
Definition 2.10.

Proof. Since (|u|,v) : B — R? is a diffeomorphism onto its image and the image
is convex, Theorem 6.9 implies that there exists a smooth fibre bundle # : Mp —
R x GSY® with T2-invariant associatives as fibres. Using Theorem 6.10, we conclude
that the complement of M p is covered by possibly intersecting T?-invariant associatives.

O

6.5. Singularity analysis. In this last subsection, we show that every T2-invariant asso-
ciative in a Gy manifold with T? x SU(2)-symmetry needs to be smooth.

Theorem 6.12. Every T?-invariant @-calibrated integer rectifiable current in M is a
smooth submanifold. Moroever, if a T2-invariant @-calibrated integer rectifiable current
has support intersecting the singular set of the T? x SU(2)-action, then its support is
contained in it.

Proof. As a first step, we observe that the local uniqueness and existence theorem (The-
orem 2.8) implies that T2-invariant ¢-calibrated integer rectifiable currents are smooth
away from S = S, U Sy.

Moreover, if L is a T2-invariant p-calibrated current with supp L NS # @, then its
support is contained in the singular set of the T> x SU(2)-action. Indeed, if by contra-
diction supp LN Mp # @, then ,u|supp ;, = c¢ for some constant ¢ # 0, by Corollary 4.20.

However, once again by Corollary 4.20, we have that p | s = 0 which is a contradiction

as u is constant on L. Hence, all T?-invariant currents with support in M p admit a local
neighbourhood separated from the singular set of the T2 x SU(2)-action and are smooth.

We now consider T2-invariant associatives contained in S} US3 US. By Theorem 2.8,
we can distinguish two cases: supp L C S3 U S and supp L C S1 U S. The smoothness
of the second case was proven in Theorem 6.10 so we restrict our attention to the first
case. Given x € S§; Nsupp L # ¥ we can associate a vector field W, ,, = ciUy +c2Uz +
b1Vi+byVo+ b3V forc e R? and b e S2 on M, such that its zero set in S; coincides
with supp L NS or one of its connected components (cfr. Theorem 6.10). We conclude
that supp L is globally the zero set of a Killing vector field W, , which is a smooth
totally geodesic submanifold. O

Remark 6.13. The approach used to study the singularities in Theorem 7.5 and Theorem
7.19 can be attempted for T2-invariant associatives as well. However, in this case, we
could not rule out the existence of branched points.

Remark 6.14. Note that, apart from Sect. 6.3 and Corollary 6.11, where we need v to be
defined, all the other results can be extended to manifolds with co-closed G;-structures.

7. T3-invariant and SU(2)-invariant Coassociative Submanifolds

In this section, we study coassociative submanifolds of a G, manifold (M, ¢), endowed
with a structure-preserving, cohomogeneity two action of T2 x SU(2). We use the same
notation and conventions of Sect.4.1.
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First, we consider coassociative submanifolds that are invariant under T =T2xs! <
T? x SU(2), for some S! < SU(2). Similarly to the T2-invariant case, we can charac-
terize T>-invariant coassociatives in terms of integral curves of a vector field in the
T3-quotient. Madsen and Swann [MS19] found three first integrals of the ODE problem
in the principal part of the T3-action, i.e., three constant quantities on every T>-invariant
coassociative. Once again, these are components of the T3-multi-moment maps. For
dimensional reasons, this means that T3-invariant coassociatives are the level sets of a
function and from this we can prove that the same is true in B = Mp/G. Conversely,
such level sets can be lifted to an S2-family of T>-invariant coassociatives. Combin-
ing this result with the similar one for T2-invariant associatives, we deduce that there
exists a parametrization of B such that the coordinate lines correspond to T2-invariant
associatives or T>-invariant coassociatives. Along the way, we show that T>-invariant
coassociatives con only admit singularities modelled on the product of the Harvey—
Lawson cone in C3 with a line.

Afterwards, we consider SU(2) = Idp2 x SU(2)-invariant coassociatives. First of all,
we need to assume that ¢ vanishes when restricted to SU(2)-orbits. Otherwise, it would
be pointless discussing SU(2)-invariant coassociatives (cfr. Proposition 2.7). Most of the
properties that were true for T2-invariant associatives remain true for SU(2)-invariant
coassociatives. The main difference is that SU(2)-invariant coassociatives do not admit
natural first integrals, but only 1-forms on which SU(2)-invariant coassociatives need to
vanish.

In Sect. 8, we will use the theory developed here to describe T3-invariant coassocia-
tives and SU(2)-invariant coassociatives in the FHN G; manifolds.

7.1. T3-invariant coassociative submanifolds. Givenany S' < SU(2), we can consider
a structure preserving T3-action on M by T? xS' < T? x SU(2). Moreover, up to
passing to some quotient, we can assume that the action is effective. We denote by S the
singular set of this action which satisfies: S, US; € S € S1 US> U S3 U Sy. Madsen
and Swann proved in [MS19, Lemma 2.6] that the stabilizer of an effective T3-action
on a G, manifold is either trivial, a circle or a two-torus.

In the notation of Sect.4.3, we can assume that the generators of the T3 action are
U1, U,, Vi and, hence, the multi-moment maps associated to it are w1, 911, 612 and v,
which are maps in C*°(M; R) (as usual defined up to additive constants). Observe that
Eq. (4.6) and Theorem 2.8 guarantee the local existence and uniqueness of T>-invariant
associatives in M\S.

Similarly to the T2-invariant associative case, we can see T3-invariant coassociatives
as integral curves of a vector field.

Proposition 7.1. Let S be a T>-invariant coassociative submanifold of M \ S. Then
Yo/T> is an integral curve of the nowhere vanishing vector field Vi, in (M \ S)/T>.
Conversely, every integral curve of Vw1 in (M \S)/T? is the projection of a T>-invariant
coassociative in M\S.

Proof. The proof of this proposition is analogous to the one of Proposition 6.1. Observe
that:

o, Vi, V) = go(Up x V1, Vi) = *x@(Uy, U, Vi, Uy x Vi) =0, =12
o1, Uz, Viup) = go(Uy x Uz, V1) = *¢(Uy, Uz, Vi, Uy X Uz) =0,

which ensure that {U;, U, Vi, Vu1} is a coassociative subspace at each point of M \3
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O

In contrast to the associative case, V| does not commute with T2 x SU(2), hence,
integral curves do not respect the stratification of Sect. 4.2. However, the following holds.

Lemma 7.2. Let y be an integral curve of Vi1 in M\S. Then the multi-moment map
W1 is strictly increasing along y .

Proof. The lemma follows from the following standard computation:

d . .
E(M oY) =dui(y) = g(Viur, ) = g(Vur, Viur) = ldi|* > 0

The strict inequality follows from Proposition 2.7 and Eq. (4.6), which guarantees the
existence of a vector v such that duj(v) > 0, i.e. the vector that together with the
generators of the T3-action spans a coassociative plane. 0

We recall that T>-invariant coassociatives are the level sets of the following multi-
moment maps.

Proposition 7.3 (Madsen-Swann [MS19]). The map (0},6%,v) : M\'S — R3isa
submersion with fibres T3-invariant coassociative submanifolds.

Remark 7.4. In contrast to the T?-invariant associative case, where we showed that M
admits an associative fibration in the sense of Definition 2.10, we can not argue in the
same way in this case. Indeed, a priori we do not know if there exists a T>-invariant
coassociative passing through each point of S.

Using a completely different approach to the one employed in Theorem 6.12, we can
study the singularities that a T3-invariant coassociative can admit. To this end, we need

to describe the structure of the local model near the singular set S. This means that we
only have to consider two cases, i.e., when the stabilizer is a circle or when it is a torus.

We refer to these sets as S| and Sy, respectively.

7] 1. Blow-up analysis at S Let p € Sy and let U; € ¢ be the generator of the
T3-stabilizer at p. Let U,, Uz be a basis of the complement of U; in 3. We pick normal
coordinates around p using Lemma B.6. In these coordinates, under the blow-up pro-
cedure, the vector fields Uy, Uz, U3, properly rescaled (cfr. Lemma B.4), respectively
converge to U 1 =Uj and 02 = U(0), 03 = U3(0) constant vector fields (cfr. Lemma
B.6). If we write R7 as R3 & C2, where R? is determined by 02, 173, 172 X o 03, then
U, generates a U(1)-action on the C2- -component preservmg @p. Since this U(1) is a
subgroup of G, and commutes with Uz, U3 and Uz X o U3, 1t acts on C? as a maximal
torus of SU(2). We conclude that the integral curves of V010 | passing through p gener-
ate, under the limit of the T3-action (cfr. Remark B.7), a multiplicity-l plane. Here, Vo0
denotes the flat covariant derivative on R’ and M? is the multi-moment map defined by:

dpd = x@o(Uy, Uy, Us, -).
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Fig. 2. Blow-up procedure of Theorem 7.5

7.1.2. Blow-up analysis atS» Given p € S,, we denote by U,, Us the generators of the
stabilizer of the T>-action at p and by U the generator of the complement in 3. Now,
we pick normal coordinates at p = 0, as above. In particular, we deduce from Lemma
B.4 and Lemma B.6 that, under blow-up, the properly rescaled vector fields Uy, Ua, U3
converge to f]l = U1(0), constant vector field, and to 02 = Uy, 03 = Us. We write
R7 = R x C3, where R is determined by the flow of Uy, and we observe that Us, U3
generate a T?, @o-preserving action that commutes with U. Hence, it acts only on the
C?-component as a subgroup of SU(3). It is straightforward to see that integral curves
of V0 /1,(1) passing through p generate, under the limit of the T>-action (cfr. Remark B.7),
the multiplicity-1 cone: R x N, where N is the Harvey—Lawson cone in C>.

Theorem 7.5. Let S be a T>-invariant x@-calibrated integer rectifiable current of M.
Then ¥ is smooth at each point of M where the stabilizer of the T>-action is 0-
dimensional or 1-dimensional. Otherwise, the stabilizer is 2-dimensional and X has
a tangent cone modelled on the product of the Harvey—Lawson cone in C> with a line.

Proof. Let X be a x¢-calibrated integer rectifiable current which is invariant under the
T3-action. It is clear from the local existence and uniqueness theorem (Theorem 2.8)
that ¥ is smooth at each point where the stabilizer of the T>-action is 0-dimensional. In
particular, & can exhibit singularities only at S.

Note that ¥ can not be contained in S and it corresponds to an integral curve y of
Vi in M\ S. Without loss of generality, we consider a connected component of ¥ in
M\S so that y is connected.

Let p € (supp £) NS and let By(0) be a neighbourhood of p, identified with 0, as in
Lemma B.6. Note that the restriction of ¥ to B>(0) \ S corresponds to a unique integral
curve of Vi up to picking B>(0) small enough. Otherwise, 111 ’suppZ would have an
interior maximum or a minimum contradicting Lemma 7.2. In particular, the support of
the integral curve can not be a loop passing through p. (This means that y; as in Fig.2
can not be an integral curve of V).
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Fig. 3. Associative/coassociative parametrization of B

We now want to show that, under a suitable blow-up, y converges to an integral curve
of V0 ,u(l) passing through zero (Fig. 2). We can then conclude by the analysis of the local
models (cfr. Sects.7.1.1, 7.1.2) and by Theorem B.2.

Since 0 € W, we can choose a sequence of points of Imy: xx € Cy := §1,£(0) =

{x € B2(0) : |x|g7 = %}. In particular, kx; € S1(0) will converge, up to passing to a
subsequence, to some X € S1(0). We denote by y;* the integral curve of (@T)f with
initial value x. Since for k — oo we have that kx; — x and (@_1/)’ — Vo,u? because
of Lemma B.5, it follows from the theory of ODEs that ylk/x,i‘ converges to yg integral

curve of VO ,u(l) of initial value x. From the choice of x; and Lemma B.5, we deduce that
kxy

(¥ Ik }z; is a blow-up of y and we can conclude. O
Remark 7.6. In Sect.8.2, we will see that there are examples of singular T3-invariant
coassociatives.

Remark 7.7. Observe that we have not used the fact that T* is a subgroup of T? x SU(2).
In particular, Theorem 7.5 holds in G;-manifolds with a structure-preserving T3-action.

On B := Mp/G the T3-invariant coassociatives correspond to the level sets of v.

Theorem 7.8. Let Xy be a T -invariant coassociative submanifold of Mp. Then the
projection of X to B is contained in a level set of v. Conversely, every level set of v on
B can be lifted to an S>-family of T3-invariant coassociatives.

Proof. If we consider the projection of X to Mp/T?, we obtain a surface £/ T>
which is invariant under the action of an S < GSU®)_ So, projecting it to B reduces the
dimension to one and we obtain a curve in B. We conclude from Proposition 7.3 and
dimensional reasons that X is contained in a level set of v.

Conversely, given a level set of v on B and a point p in it, we can construct, using
Proposition 7.3, a T>-invariant coassociative from every point of Mp/T? in the fibre
over p. Indeed, such a point determines a value of (6?11 , 612, v). Since two points in the

same S'-orbit determine the same T>-invariant coassociative we conclude. O
As a consequence of this discussion we deduce that B has a nice parametrization

determined by associative and coassociative submanifolds, which are T2-invariant and
T3-invariant respectively (Fig. 3).
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Corollary 7.9 (Associative/coassociative parametrization of the quotient). Consider the
local orthogonal parametrization of B := Mp /G given by (||, v). Then the coordinate
lines correspond to T?-invariant associative submanifolds and T>-invariant coassocia-
tive submanifolds, respectively.

Proof. The proof follows immediately from Theorems 6.6 and 7.8. O

Remark 7.10. Note that, apart from Lemma 7.2, Theorem 7.5 and Corollary 7.9 where
we need u to be defined, all the other results of this section so far can be extended to man-
ifolds with closed Gy-structures. Indeed, this can be done by reading x@ (U1, Ua, V7, -)F
instead of V1.

7.2. SU(2)-invariant coassociative submanifolds. For the sake of brevity we omit the
proofs, which are analogous to the other cases. In order to guarantee the existence of
SU(2)-invariant coassociatives, we need to assume that ¢ (Vy, V2, V3) = 0 from now
on. Actually, it is enough to have that it vanishes at a point. Indeed, Cartan’s formula,
together with [Ly,iy] = i[x,y], implies that ¢(V1, V2, V3) is a constant function. A
sufficient condition, but not necessary as shown in Sect.8.2.5, is that the SU(2)/ ",
action has a singular orbit. We denote the singular set of this action by S.

Proposition 7.11. Let X be a SU(2)-invariant coassociative submanifold of M \ S.
Then %o/SU(2) is an integral curve of the nowhere vanishing vector field Vn in (M \
3)/SU(2). Conversely, every integral curve of Vn in (M\S)/SU(Z) is the projection of
a SU(2)-invariant coassociative in M \5.

Lemma 7.12. Let y be an integral curve of Vn in M\S' Then the multi-moment map 1
is strictly increasing along y .

Proof. The proof is analogous to the one of Lemma 7.2. The existence of the vector v
such that dn(v) > 0 is guaranteed once again by Proposition 2.7 and by the assumption:
e(V1,V1,V3) =0. O

Proposition 7.13. The flow of Vn preserves the orbit type of G. Hence, the integral
curves of V) stay in the same stratum of the stratification described in Theorem 4.7.

By Lemma4.5, the action of T? on M induces on the quotient Mp/(SU(2)/ ) a GT
principal bundle structure with base space B. Let H be a connectionon M p /(SU(2)/I'2)
such that the T?-invariant vector field V7 is horizontal. For instance, the connection
induced by the metric g, satisfies this property: g(U;, Vi) = *¢(U;, V1, V2, V3) =0
fori = 1, 2 (cfr. Remark 6.5). As in Theorem 6.6, we deduce the following proposition.

Theorem 7.14. Let H be a connection on the principal G™ -bundle Mp/SU2) - B
such that Vn € 'H. Let y be a curve in Mp /(SU(2)/ I'2). The following are equivalent:

(1) The pre-image ”51}(2) (imy) is a SU(2) invariant co-associative in M p,
(2) y is an integral curve of Vn,
(3) y is the horizontal lift of an integral curve of Vn in B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral
curve of Vi in B there is a T>-family of integral curves of Vi on Mp /(SU(2)/ ).

Remark 7.15. Note that, we can not conclude that we have an SU(2)-invariant coasso-
ciative fibration in the sense of Definition 2.10. Indeed, Theorem 7.14 only implies that
M p admits a foliation of coassociative leaves.
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In contrast to the other cases, the obvious 1-forms that would give constant quantities
on SU(2)-invariant coassociatives are not closed. These are defined as:

w] = (p(V27 V3a ')7 wy = (p(v3a Vla ')7 w3 = (p(vl7 V27 ) (7'1)

Remark 7.16. These 1-forms can be put in the context of weak homotopy moment-maps
(see [Her18] and references therein). Moreover, since iy,w; = —Gf the w;s do not

descend to the quotients: Mp/(SU2)/I2), Mp/ T? and B.

Proposition 7.17. A 4-dimensional submanifold, %, is an SU(2)-invariant coassocia-
tive submanifold of M \ S if and only if &' |20 =0foralli =1,2,3.

Remark 7.18. The previous proposition does not use the additional T2-action. In particu-
lar, we re-obtain the characterizing ODEs for the SU (2)-invariant coassociative subman-
ifolds on the Bryant—Salamon manifold A% (5% and A2 (CP?) computed in [KL21].

In a similar fashion to Theorem 7.5, one can obtain the following regularity result on
SU(2)-invariant coassociative submanifolds.

Theorem 7.19. Every SU(2)-invariant x@-calibrated integer rectifiable current in M is
a smooth submanifold.

Remark 7.20. The existence of the T2-action is crucial for Theorem 7.19. Indeed,
Karigiannis and Lotay constructed in [KL21] examples of asymptotically singular SU(2)-
invariant coassociatives on A2 (§*) and on A2 (CP?).

Remark 7.21. Note that, apart from Lemma 7.12 and Theorem 7.19 where we need 7 to
be defined, all the other results can be extended to manifolds with closed G;-structures.
Indeed, this can be done by reading *¢(V1, V2, V3, 9% in place of Vn.

8. Examples

In this final section, we consider the G manifolds constructed by Foscolo—Haskins—
Nordstrom in [FHN21b] and the Bryant-Salamon G, manifolds of topology S x R*.
On these spaces we use the general theory developed in Sects. 6 and 7 to study calibrated
submanifolds in them.

In particular, fixed a T? x SU2) < SU(2) x SU2) x U(1), we compute in each
FHN manifold the relative stratification and multi-moment maps. Then we explicitly
construct the submersion F : S; — S given in Theorem 6.10 and describe the quotient
Mp /G, together with the relevant multi-moment maps. In this way, we have described
all T2-invariant associatives and T>-invariant coassociatives in the FHN manifolds. By
inspection, one can see that SU(2)-invariant coassociative are trivial.

In reality, our discussion does not rely on the completeness of the FHN manifolds,
and is carried out in the non-complete setting.

Afterwards we specialize our discussion to the Bryant—Salamon manifolds of topol-
ogy S3 x R*, which are explicit examples of FHN manifolds. Finally, we observe that
certain possibly twisted vector subbundles of the trivial bundle 3 x R* — §3 are
associative submanifolds with respect to the Bryant—Salamon G;-structure.



168  Page 36 of 51 B. Aslan, F. Trinca

8.1. The Foscolo—Haskins—Nordstrom manifolds. The FHN manifolds, described in
Sect. 3, admit the required T2 x SU(2)-symmetry. Indeed, the action of (A1, Az, y) €
U) x U(1) x SU2) on ([p, q], 1) € (SUR) x SUR))/Ko x I, given as follows:

(A, 22, ¥) - (. ql, 1) = (Mpra, yghal, 1), (8.1)

is structure preserving (cfr. Equation (3.4)), where the two U(1)s are generated by
quaternionic multiplication by i.

Remark 8.1. Obviously, thereis another actionof (A1, A2, ) € T? x SU(2) on ([ p.ql,t)
€ (SUQ2) x SU(Q2))/Kg x I:

(A, 22, ¥) - ([p. ql, 1) = (lypra, Mighral, b).

The discussion is analogous to the one for Eq. (8.1) and we leave it to the reader.

8.1.1. The stratification We first deal with the set: (SU(2) x SU(2))/Ko x Int(Z). If
K is trivial, it is straightforward to see that the principal stabilizer of the T> x SU(2)-
action is generated by (—142, —1sy(2)). On the other hand, if Ko = K, N K2, 2 the
principal stabilizer is a discrete subgroup of T? x SU(2) with I'; # 0. In both cases,
GSU®@ = SO(3) and the singular set of the T x SU(2)-action is given by:

Sy ={(lp.ql. 1) € (SUQ) x SUQ))/Ko x Int(]) : p € Cx {0} C H},
S_={(lp.ql.1) € (SUQ) x SU(2))/Ko x Int(I) : p € {0} x C C H},

with 1-dimensional stabilizer. If K is trivial, the stabilizer at ([p, q], 7) is either the
circle {(A, X, gAq)} or {(X, A, gAq)}, depending on whether ([p, ¢],7) isin S; or S—.
To understand the stratification on (SU(2) x SU(2))/K we need to distinguish three
cases:
Case 1 (K = ASU(2)). If we identify SU(2) x SU(2)/A SU(2) with §3 via
[(p,q)] — pg, then the action of T? x SU(2) becomes, for every p € $3 = Sp(1):

(A, A2, y) - p=A1py.

We deduce that the stabilizer is always 2-dimensional and it is the two torus: {(A1, A2,
Prip)}

Case 2 (K = {Isu)} x SU(2)). Under the identification of (SU(2) x SU(2))/K
with $3 given by [(p, ¢)] — p, the T? x SU(2) action becomes:

(A1, A2, 7) - p = M pha,

where p € 3 = Sp(1). Hence, the stabilizer is the Z, x SU(2) given by {£lp, y}if
p ¢ (Cx{0}U{0} x C) C Sp(1), otherwise it is the 4-dimensional SU(2) x U(1) given
by {(A, A, y)}or {(&, A, ¥)}.

Case 3 (K = K, ). Using the isomorphism for K,, , = U(1) of Eq. (3.1), we
have that two elements of SU(2) x SU(2) are in the same equivalence class if and only
they they are equal up to right multiplication of (=", /™) for some 6 € [0, 27).
It is straightforward to verify that the stabilizer at [(p, g¢)] is 1-dimensional if p ¢
C x {0} U {0} x C c Sp(1). Otherwise, it is 2-dimensional.
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8.1.2. The multi-moment maps In this subsection we compute the multi-moment maps
on (SU(2) x SU(2))/Ko x Int(/) and hence, by continuity, on the whole space. In this
subsection, i, j, k will denote the standard basis of im H such thati - j = k.

Consider the Hopf fibration map S* ¢ H — $2 C im H that maps p — pip. Taking
two copies of the Hopf fibration, together with the identity on Int(7), yields the quotient
map to the T2-quotient:

g2+ (SU2) x SU(2))/Ko x Int(I) — §? x §? x Int(I)
(p.q. 1) — (v,w,1),
where v = gpipqg = vii + v2j + vi3k and w = qiq = wyi + waj + wik.
If h :=pip = hii + haj + h3k, g1 = qiq = g1,1i + g1.2] + 813k, &2 == qjq =
82.1i+822j+g23kand g3 := gkq = g3,1i + 83,2 + 83,3k, then the Killing vector fields
of the T? x SU(2)-action satisfying Eq. (4.2) are:

3
Ui(p,q,7) = (ip,0,0) = (ppip,0,0) = = > hyuEn(p,q,7),

m=1

UZ(P’ qyr) = (_pls _qlvo) = El + Flv

1 1 1 e
Vi(p.q.r) = =50, ~iq.0) = =>(0.47iq.0) = 5 3 g.mF.

m=1

3
| . 1 1
Va(pq, 1) = =50, -jg,0) = =3(0,44jg,0) = 5 > gomFu.
m=1

1 1 [
Vs(p,q,7) = =50, —kq,0) = == (0, 4kq, 0) = 5 > _ g3.mFm,
m=1

where E,,, F,, form the standard orthonormal left invariant frame of SU(2) x SU(2) as
defined in Sect.3.2.
A straightforward computation gives the multi-moment maps in the quotient:

v =—4(b — 1) (v, wps, = —4abv xps w,
6! = 2av —2(a — b) (v, w)gsw, 0% = —2(b + c2)w,
2ba® + ¢ (b* +2a* +
n = Primitive of< @t b +2a clcﬂ) , (8.2)
v=A

where A is as defined in Eq. (3.5). Note that we used the following identities:
hy = (v, wigs, (h, gm)rs = Vm: 8m,1 = Wm, (B X gu)1 =@ X Wy,

foreverym =1, 2, 3.

8.1.3. Associativesinthe singular set Asafirst step, we deal with (SU(2) xSU(2))/ Ko x
Int(). Observe that the images of Sy and S_ under the T2-projection map T2 are:

O; ={(v,v,1) € §? x S xInt(I)}, O_ ={(v, —v, 1) € §? x § x Int(I)}.
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As argued in Lemma 4.5, the action of GSU® descends to (M\S)/ T? and GSY® =
SO(3) acts diagonally on S? x S2. This SO(3)-action is of cohomogeneity one and the
singular orbits are O, and O_ which have stabilizer diffeomorphic to S'.

The proof of Theorem 6.10 contains the construction of a fibration S; — $2 with
associative fibres. These are zero sets of Killing vector fields. For S; U S_, the fibration
can be described explicitly as follows.

Letu: (SU(2) x SU(2))/Ko x Int(I) — S? x S? be the composition of 7> with the
projection p : §2 x S% x Int(I) — S% x S%. Then u maps S, US_ to p(O4) U p(O_)
and the fibres are associative.

Proposition 8.2. The map u: S,y US_ — p(O4) U p(O_) = S U 5% is a submersion
with totally geodesic T?-invariant associative fibres of topology T? xInt(I).

Proof. By SU(2)-equivariance, it suffices to show the statement for a single fibre in
each of O, and O_. We restrict ourselves to the fibre over the point {(i,i)} € Oy C
ImH x Im H, as the O_ case is analogous.

Note that

w” ({6 DD =1{Ap,q1. 1) : p,g € (C x {0H N Sp(1), 1 € Int(D)},

which is the fixed set of the involution (i,i,i) € U(l) x U(l) x Sp(l) acting on
(SU(2) xSU(2))/ Ko x Int(I) asin Eq. (8.1). So u='({(@i, 1)}) is a connected component
of the fixed set of (i, 7, i), which is therefore totally geodesic and associative. 0O

We now consider the singular orbit SU(2) x SUQ2)/K.If K = ASU®2) or K =
{1} x SU(2), then SU(2) x SU(2)/K is an associative submanifold because it is either
82 0r S3USy. For K = K,y p, the singular orbit, SU(2) x SU(2)/ K,y », is diffeomorphic
to S3 x $2 and it admits a submersion onto S

F: (SUQ) x SU@)/Knn — S* [(p. )] — qig.

with fibres that are T>-invariant associative submanifolds, of topology the lens space:
L(m; —n, n).

In order to prove the previous claim, we observe that, by SU(2)-equivariance, it is
enough to show that F'{i) = {[p.q] : g € (C x {0h N Sp(1)} has the desired
properties. By inspection, it is straightforward to deduce that it is T>-invariant and of the
given topology. Associativity of F~1({i}) follows because it is a connected component of
the set with 2-dimensional stabilizer with respect to the action of Remark 8.1. Moreover,
there are two additional T2-invariant associative submanifolds in SU(2) x SU(2) /Km.n:
the two components of S, described in the stratification discussion of Sect. 8.1.1, which
have topology L(n; m, —m).

Finally, note that for all possible K, the associative submanifolds of Proposition 8.2
extend smoothly to associatives of topology S' x R? because of Theorem 6.12.

8.1.4. Associatives in the principal set On the principal set
Mp = ((SU(2) x SU(2)) x Int(I)) \ (5+ US-),

we are able to give an an explicit parametrization of the GSY®-bundle described in
Sect.6.2.
Consider the maps:

W: SOB3) x (0,7) > S% x 82, (g,0) — (g1, (g1cosO — gasin0))
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where g1, g2 and g3 are the column vectors of g, and:

A: 82 x S\ (p(O, UO_)) = SOQ3),

1 1
(v, w) — ((v ﬁ(cosev —w), _sin(Q)v X w)) ,

where 6 € (0, ) is defined by (v, w)g3s = cos§. We recall that p : $? x §? x Int() —
§2 x S? is the obvious projection and that p(O1) = {(v, £v)}.

It is easy to see that the map (A, 0) is the inverse of W, and W is a diffeomorphism
that is equivariant with respect to the action of SO(3) on both spaces, where SO(3) acts
on SO(3) x (0, 7r) by left multiplication on the SO(3) factor. The singular orbits O, and
O_ are the images of {0} x SO(3) and {7} x SO(3) if ¥ is extended to SO(3) x [0, 7].

By taking the identity on the component Int(/) we get the equivariant diffeomorphism,
which we also denote by W:

W: SOB) x (0, 7) x Int() — Mp/T? = (52 x §? x Int(I)) \ (O, U O_).

This means that the base space of the GSU®)-bundle described in Sect. 6.2 is diffeomor-
phic to B = (0, ) x Int(/) and ¥ is a global trivialization of Mp /T2 — B. With
respect to this trivialization, we have:

M= 4absing, v = —4(b —c;)cos.

In order to apply the machinery of Sect. 6.3, we need the following lemma. In our case,
we will have @ = (|ul|, v), u = 4ab and v = £4(b — c1), depending on its sign.

Lemma 8.3. Let u, v be two functions from an interval, Int(I), to R*. If i, ¥ are both
positive or both negative everywhere, then a(0,t) = (u(t) sin(0), v(t) cos(0)) defines
a diffeomorphism from (0, &) x Int(I) onto its image in R x R*. Moreover, let v_ is
the infimum of v over I. Then (u(t) cos(0)) "L (c) is connected if c > u_ and has two
connected components otherwise. In particular, the map o is a diffeomorphism onto its
image and the image is convex if and only if u_ = 0.

Proof. The determinant of the Jacobian vanishes if and only if v sin(0) +cos2 (9 uv =
0, which never happens because #v and vu have the same sign. So, « is a local diffeo-
morphism and it remains to show that it is injective. For a fixed value, 7, of ¢ the function
(6, ty) traces out a half ellipse centred at the origin with semi-axes u(fg), v(tp). If #1 is
another fixed value for ¢, then the ellipses a(8, f9) and « (6, t1) intersect if u(fg) — u(t;)
and v(#p) — v(#1) have different signs. But this is impossible because # and v have the
same sign. Denote by u 4 the supremum and the infimum of u, and by v the supremum
and infimum of v. The image of « is the half ellipse with semi-axes (u#+, v4+) minus the
smaller ellipse with semi-axes (u—_, v_) (see Fig.4), which implies the last statement.
O

In particular, if the infimum of ab is zero, we get a global fibration in the sense of
Definition 2.10 by Corollary 6.11. Note that this is always the case, when the G -structure
defined by Foscolo—Haskins—Nordstrom extends to the singular orbit SU(2) x SU(2)/K
(cfr. Section 3.3). .

On the other hand, if the infimum of ab is not zero, we can still describe the T2-
invariant associatives splitting B = (0, 7r) x Int(/) into (0, r/2) x Int(/) and (7t /2, ) X
Int(]).

We summarize everything in the following theorem.
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Theorem 8.4 (T>-invariant associatives in FHN manifolds). Consider the stratification,
as given in Sect. 4.1, of the FHN manifolds into Mp U §1 U S U §3 U Sy with respect
to the T? x SU(2)-action.

We first consider the subset (SU(2) x SU(2))/Ko) x Int(I), which does not inter-
sect 82, 83, Sa. Then each stratum decomposes into T2-invariant associatives in the
following way:

o Mp is fibred by T2-invariant associatives which are horizontal lifts of level sets of

| = 4absin® in B = (0, ) x Int(I), where 0 is determined by cos6 = (v, w)
and v, w are images of the Hopf maps: (v = qpipg, w = qig) € S* x 2. The
topology of these associatives is T? xR. If the Ga-structure extends smoothly to
(SU(2) x SU(2))/K, these associatives do not intersect (SU(2) x SU(2))/K.

e As in Proposition 8.2, Si admits a submersion over S*U 82 with totally geodesic T?-
invariant associative fibres of topology T* xR. If the Gy-structure extends smoothly
to (SU(2) xSU(2))/ K, these associatives extend smoothly to associatives of topology
S' x R? in M.

When the Gy-structure extends to SU(2) x SU(2)/K, we distinguish two cases:

o IfK = ASU2) or K = Id(su(2); xSU(2), thenSU(2) xSU(2) /K isa T2-invariant
associative of topology S> as it is Sy or S3 U Sy.

o I[f K = K p, the set consists of S1 and S. There exists a submersion over S2 with
T2-invariant associative fibres of topology L(n : m, —n). Moreover, there are two
additional T?-invariant associatives corresponding o the two connected components

of Sy.

8.1.5. T3-invariant coassociatives Let T> be the torus generated by Vi, Uy, Us. It is

straightforward to see that the singular set of this action, S, restricted to ((SUR) x
SU2))/Ko) x Int(1) is:

Sp={(p,ql.1) € (SUQ)xSUQ)/Ko) xInt(I) : p, g €(C x {0} U {0} xC)cSp(1)},

which is contained in € S; US_. On S p the stabilizer is 1-dimensional and it is mapped,
via o to {(£i, £, 1), (i, Fi, 1)).

On SU(2) x SU(2)/K, with K = ASU(Q2) or K = {1} x SU(2), the stabilizer is
everywhere 1-dimensional apart from the intersection of SU(2) x SU(2)/K with the
closure of Sp, where the stabilizer is 2-dimensional. If K = K m.n, the stabilizer at
[(p,g)] € (SUR2) x SUQ))/ K n is 2-dimensional if p and g are in C x {0} U {0} x C,
itis 1-dimensional if p or ¢ is in C x {0} U {0} x C and it is O-dimensional otherwise.
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By Proposition 7.3, the T3-invariant coassociatives, in M \3, are the level sets of the
map (01, 912, v):

(Ip,ql,t) — (2av1 —2(a—=b)(v, w)gpswy, —2(b + c2)wy, —4(b — c1)(v, w)Rz) ,

where v, w are as above.

We now characterize the T>-invariant coassociatives intersecting the 1-dimensional
and the 2-dimensional stabilizer.

Given ([p, q1,70) € Sp, it is mapped via (0], 67, v) to (€12b(t9), €22(b(to) + ¢2),
€34(b(ty) — c1)), where €; € {0, 1} take one of four possibilities for which €1e2¢3 = 1,
depending whether p and g are in C x {0} or {0} x C. We now turn our attention to
SUQ2) x SUQ2)/K.

Casel (K = ASU2)).If K = ASU(2),a T3-invariant coassociative intersects the
set with 1-dimensional stabilizer in SU(2) x SU(2)/K, if and only if it is the preimage
of (x,0,0) for x € (—2c1, 2c1). It intersects the set with 2-dimensional stabilizer, and
hence singular by Theorem 7.5, if and only if x = £2c¢.

Case 2 (K = {Isuc)} x SU(2)). In this case, the T3-invariant coassociatives cor-
responding to the preimages of (0, 0, x), for x € [—4c1, 4c1], are the ones intersecting
SU(2) x SU(2)/K. Among them, the one intersecting the set with 2-dimensional stabi-
lizer are the preimages of (0, 0, £4cy).

Case 3 (K = K,;.»). When K = K, ,, the coassociatives intersecting the set with
0-dimensional stabilizer in SU(2) x SU(2)/K are the the level sets of points in:

{(Zmnrgxy, —2n(m + n)rgy, —4m(m + n)rgx) tx,y e (—1, 1)} ;
they intersect the set with 1-dimensional stabilizer they are the level set of points in:
{(2mnr3xy, —2n(m +n)rgy, —4dm(m + n)rgx) cx==x1,ye(—1,1) or
y==£l,x e (-1, 1)};
and they are singular if they are the preimage of:

(:I:Zmnrg, —2n(m + n)rg, Fdm(m +n)ro>) or

(:I:Zmnrg, +2n(m + n)rg, +4m(m + n)ro3).

In particular, from this discussion one could characterize the T>-invariant coassocia-
tives of different topology (see Sect. 8.2.4 for an explicit example). Note that, the only
topological possibilities are the T xR, T? xR? and the singular ones T> xR x R*.

8.1.6. SU(2)-invariant coassociatives Finally, we study SU(2)-invariant coassociatives.
Similarly to Sect.8.1.2, we can compute ¢(V7, V3, V3) = c¢3. Hence, there are SU(2)-
invariant coassociatives if and only if ¢c; = 0. If this is the case, the coassociative
submanifolds are of the form:

{(Lpo. q1. 1) € (SUQ2) x SU(2))/Ko) x Int(I) : g € SU(2),t € Int(])},

for every fixed pgp € SU(2). As we assumed ¢z = 0, the only possibility to extend the
Gy-structure to SU(2) x SU(2)/K is for K equal to {1} x SU(2). In this situation, the
resulting SU(2)-invariant coassociatives extend to smooth R?s.
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8.2. The Bryant—Salamon manifold. As an explicit special case of Sect. 8.1, we consider
the Bryant—Salamon manifolds of topology $3x R* = {(x,a) € H : ||x|| = 1}. Up
to an element of the automorphism group, we can restrict ourselves to the following
actions of T? x SU(2):

(1) (A1, 42, ¥)(x, a) = (Axy, Aaay),
(2) (A1, 22, ¥)(x,a) = (AixA2, yara),
(3) (A1, A2, ¥)(x, a) = (yYxAz, Aaks),

where (A1, A2, ¥) € U(1) x U(1) x Sp(1) and the U(1)s are generated by quaternionic
multiplication by i. Note that Case (1) can be reduced to the discussion in Sect.8.1,
picking K = A SU(2). The same holds for Case (2) and Case (3) picking K = {1} x
SU(2). However, to be more explicit, we fix the description of the Bryant—Salamon
manifold as in Eq. (3.6) and we adjust the arguments of Sect. 8.1 accordingly.

8.2.1. The stratification We first notice that the principal stabilizer is generated by
(=1, —1) € T? x SU(2) for all cases, hence GSU? = SO(3).
The stratification for Case (1) is:
Mp = (8 x H)\ Si, S ={(x,a)e S x H*:xa € C x {0} U {0} x C},
S ={(x.00eH}, S3=0, Si=¥,

for Case (2) it is:

Mp = (S xH)\ Si, S ={(x,a) e H?:x eU(l) x {0} U{0} x U(1)},
S=0, S={(x0ecH}I\S, S={x0ecH}NS,

finally, for Case (3) it is:

Mp = (8> x H*\ S1), Si={(x,a) € H? :a € U(1) x {0} U {0} x U(1)},
S ={(x,0) e H?} S3=84=4.

8.2.2. The multi-moment maps Before computing the multi-moment maps, we write the
explicit form of the projection to the T2-quotient: mp2. Identifying H* with $3 x R*
using the standard map: a +— (a/|al, |al), the projections take the following form in
§3 x §3 x R*:

Tpe S x P xR > 2 xS2xRY (p,g,r)— (v, w,r),
where, for Case (1) v = pip, w = giq, for Case (2) v = g pipg, w = giq and, for Case

(3), v = pip, w = pgiqp. The multi-moment maps, which pass to the ’]I‘z-quotients,
are:

Case (1) Case (2) Case (3)
v 2/3r% (v, W)R3 —? Be +4r)(v, W)R3 —2/3r2 (v, W)R3
o! 4(3c+4r2)v V3r?y Q(SC‘“"Z)U
62 —3r2w —3rtw —V3r2w

93 —3r2(c+r2)1/3v XR3 W —3r2(c+r2)1/3v Xp3 W 3r2(c+r2)1/3v XR3 W-
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8.2.3. T2-invariant associatives The description of the T2-invariant associatives follows
exactly as in the FHN manifolds. For instance, we obtain the following result for Case
(1.

Theorem 8.5 (T2-invariant associatives in Bryant-Salamon manifolds). Consider the
stratification, as given in Sect. 4.1, of the Bryant—Salamon space into Mp U S| U S, U
S3USy with respect to the T2 x SU(2)-action of Case (1). Then each stratum decomposes
into T*-invariant associatives in the following way:

e Mp is fibred by T2-invariant associatives which are horizontal lifts of level sets of
Il = 3r2(c +r»)1B3sind in B = (0, w) x R, where 6 is determined by cos 6 =
(v, w) and v, w are images of the Hopf maps: (v = pip,w = qig) € S* x 2. The
topology of these associatives is T xR and they do not intersect the zero section.

e S| admits a fibration over S* U S? with totally geodesic T2-invariant associa-
tive fibres of topology T?> xR. These associatives extend smoothly to associatives of
topology S' x R? in M.

. S 2 is the zero section, which is an associative totally geodesic group orbit of topology
S-.
e S53=84=0.

8.2.4. T3-invariant coassociatives Up to an element of the autormorphism group, we
can choose, for all the three cases, the torus T3 acting on (x, a) € $3 x R* as follows:

(M, A2, A3)(x, @) > (h1xA3, Aaal3),

where all the A;s are generated by multiplication by i. _
It is straightforward to see that the singular set of this action, S, is given by the zero
section and the following subset:

Sp={@a)es xHixaeCx U0 xC)cCxCl,
In the singular set, the stabilizer is everywhere 1-dimensional apart from the points in:
[(x,O)eS3xH:xe(Cx{O}u{O}xC)chc},

where the stabilizer is 2-dimensional.
By Proposition 7.3, the T3-invariant coassociatives are given by the level sets of the
map (911, 912, v), which is explicitly given by:

3
(p,q,r) — (%—(36 +4r2)vl, —«/§r2w1, 2\/§r2(v, w)Rs) ,

where v, w € §? C R are defined accordingly to (1). By Theorem 7.5, the T>-invariant
coassociatives are smooth topological T xR, apart from the ones intersecting the points
with one or 2-dimensional stabilizer, which are smooth T2 xR2s and T? xR x R*
cones, respectively. The intersection with the 2-dimensional stabilizer occurs only to
the preimages of {(:i:%gc, 0, 0)}. The T>-invariant coassociatives intersecting the 1-
dimensional stabilizer are the ones corresponding to the fibres of the following set:

{(x,0,0): x € (—34ﬁ, 3TJ§C)} U A, where A is:

{(:I: (3{56 +a> , —d, :|:2a> :aeR+}U{<:t (ch +Cl> ,+ﬂ,:an> La 6R+}
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Fig. 5. Blue: The level sets of |u| = 3r2(c + r2)1/ 3sinfin B = (0, ) x R*. Every level set represents an
SU(2)-family of T2-invariant associatives in M p. Orange: The level sets of v = 2/3r2 cos 6. Every level set
represents an S 2 family of T3-invariant coassociatives in M p- The vertical line represents the ones intersecting
the zero section, two of these T3-invariant coassociatives are singular

8.2.5. SU(2)-invariant coassociatives One can compute ¢.(Vi, Vo, V3) for Case (1),
Case (2) and (3). This vanishes only when ¢ = 0 in Case (1) and Case (3), while for
Case (2) it is always vanishing. We deduce that SU(2)-invariant coassociatives are given
by fibres of the standard projection to $3 (cfr. ([KL21, Sect. 4])).

8.2.6. Another family of associative submanifolds In this subsection, we consider the
Bryant—Salamon manifold as described in ([KL21, Sect. 3]). The associatives fibres of
S1 — §?in Theorem 8.5 are products of a plane in R* times a geodesic in 3. In general,
one can take any 2-dimensional vector subspace W C R*, with an orthonormal basis
w1, wy, and observe that wy x w; is tangent to S°. For every p € S3, we can consider
yw, p to be the unit length geodesic starting at p with velocity wi X w>, and observe that
yw,p X W is an associative submanifold. These examples are not only part of the family
of T2-invariant associative submanifolds, but also of the following family, where each
associative contains an affine plane W := W +x in R*. Here, W is a 2-dimensional vector
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subspace of R* and x is in the Euclidean perpendicular subspace W+. The orthogonal
complement W+ carries a unique positive complex structure, so we can define the curve
contained in it:

-t
Swax(t) =e'2x.

Proposition 8.6. Let p be a point in S3, Vf{ = W + x be an affine plane with x € W+.
The unique associative containing {p} x W is

N = {(yw p(0), y +8w. (1)) € > x R* | y € W, 1 € R}.

Proof. As the uniqueness follows immediately from the local existence and unique-
ness theorem, we only need to prove that N is an associative submanifold. We use the
parametrisation of §3 x R* as in ((KL21, Sect. 3]). By applying elements of the automor-
phism group SU(2)?, we can assume without loss of generality that W = {ay = a3 = 0}.
Moreover, we choose a left-invariant frame {E{, E;, E3} on S3 such that the tangent
space of N is spanned by {04y, 94, €1 — (@304, — a2043)/2} at any point of N. We
conclude as x@(e1 — (304, — A2043)/2, 34y, 94, -) = O at any pointof N. O

In particular, Proposition 8.6 extends the description of possibly twisted calibrated
subbundles in manifolds of exceptional holonomy which was started by Karigiannis,
Leung and Min-Oo in [KL12,KMOO05].
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Appendix A: Differentiable Transformation Groups

In this appendix, we provide a short introduction to the theory of differentiable trans-
formation groups, i.e. the theory of Lie groups smoothly acting on smooth manifolds.
In particular, we will fix the notation and state (without proof) three fundamental re-
sults: the slice theorem, the orbit type stratification theorem and the principal orbit type
theorem.

Let G be a compact connected Lie group of Lie algebra g and let M be a manifold.

Definition A.1. A Lie group action of G on M is a Lie group homomorphism:
G — Diff(M)
g feg


http://creativecommons.org/licenses/by/4.0/
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This homomorphism induces the smooth action map:
GxM-—->M
(8, m) = fg(m).

It is costumary to write g - m (or gm) instead of f, (m).
Definition A.2. An action of a Lie algebra g on M is a Lie algebra homomorphism:

g— I'(TM)

E> &y
where the space of vector fields is endowed with the usual Lie-bracket structure.

A Lie group action of G on M induces a Lie algbera action of g on M, by mapping
& € g to the the vector field:

d
Em(m) = arl, exp(—t§) - m,
where exp : ¢ — G is the usual exponential map for Lie groups. We will often identify
& € g with the corresponding vector field (and similarly we will think of g C I'(T M)).
All such vector fields are called generating vector fields. Conversely, every Lie algebra
action induces a (local) Lie group action.
For any m € M, we can construct an (embedded, closed) submanifold of M, called
the orbit of m, which is defined by:

Gm:={g-meM:geG}

We can also construct a (compact) Lie subgroup of G, called the stabilizer of m,
which is defined by:

Gn ={geG:g-m=m}.
We denote the orbit space of the action by M/ G := {Gm : m € M}.
Remark A.3. As for standard group actions, a Lie group action is free if all stabilizer

subgroups are trivial. It is effective if the Lie group homomorphism G — Diff(M) is
injective. Finally, it it transitive if Gm = M for some m € M.

We can now state the slice theorem, which locally describe the geometry of M near
a fixed orbit.

Theorem A.4. (Slice theorem [MY57]) Fixm € M and let N be the normal space to the
orbit Gm at m. Then the associated bundle G x,, N is G-equivariantly diffeomorphic
to the normal bundle of Gm taking [1dg, 0] to m. The action of G, on N is the natural
one induced by G and is called the slice representation. Moreover, G acts on G xg,, N
on the first factor by left multiplication.

The stabilizers in different points of an orbit are related by the following adjoint
formula:

Ggm = Adg(Gm):

where ¢ € G and m € M. It follows that to each orbit there exists a conjugacy class of
subgroups of G. Given a subgroup H of G, we denote by (H) the conjugacy class of H
and we define:

My = {m € M : (G) = (H)).
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Definition A.5. A stratification of a topological space M is a decomposition into smooth
submanifolds (called strata): M = U; M;, such that:

(1) each compact set of M intersects finitely many M;,
Q)if M; " M; #0,then M; C M;.

Theorem A.6 (Orbit type stratification). The decompositions:

M=\Mu. M/G=|)Mu/GC
(H) (H)

are stratifications of M and of M / G, respectively. Indeed, each Mgy C M is a smooth
embedded submanifold which induces a smooth structure on M(p)/G via the quotient
map. With respect to these smooth structures, the quotient map ppy : Mgy — M)/ G
is a fibre bundle of fibre G/H.

Theorem A.7 (Principal orbit type [MSYS56)). If M is connected, then there exists a
unique conjugacy class (Hp) such that Hp < G, for every m € M, up to conjugation.
The corresponding strata Mp := M,y C M and Mp/G C Mp are open, dense and
conneted.

Letm € M\Mp. If dim(G,,) = dim(Hp), then (G,,) is called an exceptional orbit
type for the action. Otherwise, it is a called a singular.

Appendix B: Blow-Up and Regularity of Calibrated Submanifolds

In this appendix, we recall some basic preliminary results that we will use to study the
singularities of associative and coassociative submanifolds.

The first result, due to Madsen and Swann, claims that the blow-up of any torsion-free
Gj-structure converges to the standard local model.

Theorem B.1 (Madsen—Swann [MS19]). Let g be the standard Gy-structure of R7 and
let ¢ be a torsion-free Gy-structure on B(0) C R7 such that ©(0) = ¢o(0). Then for
t > 0, the rescaled Gy-structure ¢; := t‘%f(p is such that 1 = ¢ and we have that
@ = goast — 0on B1(0) inthe CX-norm foreveryk > 0, where 1, (x) := tx for every
x € R7. Moreover, the same holds for the ¢;-induced Riemannian metric g, = t’z)\;‘ g
and dual form (x¢); = t74)»;"(>!<(p), where g is the Riemannian metric induced by ¢ and
* is the related Hodge dual.

Moreover, Harvey and Lawson showed that under the blow-up procedure calibrated
integer rectifiable currents remain calibrated, and converge to a calibrated tangent cone.

A result due to Simon ([Sim83a, Corollary p. 564]), together with Allard’s regularity
theorem (see ([Sim83b, Chapter 5])), allows us to study the geometry of calibrated
currents with mild singularities.

Theorem B.2. If L is a p-calibrated integer rectifiable current in (B2(0), ¢) of density
I away from 0 and has a tangent cone C at 0 that is non-singular (i.e. C \ {0} is smooth),
then C is the unique tangent cone and, in a smaller neighborhood of 0, L is smooth
everywhere apart from 0, where the singularity is modeled on C. Moreover, if C is also
flat, then L is smooth at 0. The same result holds for x@-calibrated integer rectifiable
currents.
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Since we are interested in G-invariant submanifolds, for some compact Lie group G
acting effectively on M, we study how vector fields behave under blow-up. These vector
fields will be chosen to be the generators of the action.

Proposition B.3. Let X be a vector field on (B2(0), ¢) such that Lx¢ = 0. Then the
rescaled vector field X' := LfX = t~Y(X o A,) is such that Lxi@, = 0. Moreover, the
same holds for f(t)X', where f € C®°(R"; R).

Proof. It follows from a straightforward application of Cartan’s formula and 1} (ix¢) =
i AEX )L;k . 0O

Since [ X!, Y!] = Af[X, Y] for every X, Y vector fields, the generators of a G-action
defined for r = 1 will give vector fields satisfying the same equations for every ¢ > 0.
However, if we let ¢ go to 0, X’ does not necessarily converge. Indeed, if we write

7
X(x) =) ai(x)d,
i=l1
for some functions @; on B;(0), then

7
X' (x)=¢"" Zai (tx)0;,

i=1
which does not converge if some a; (0) # O.

Lemma B.4. If X is a real-analytic vector field on (B2(0), ¢), we can always find a
minimal integer a < 1 such that X' := t*X" converges smoothly to some non-zero
vector field X ast — 0.

Clearly, « = 1 if and only if X (0) # 0. Moreover, if Lx:¢, = 0, then Proposition
B.3 implies 0 = L. ¢ — L 0.
In a similar fashion, given a 1-form w one can define w;, @; and @.

Lemma B.5. Given three vector fields X,Y, Z on (B2(0), ¢) as in Theorem B.1, then
for t — 0 the following equations hold:

(1) (XY ), = Xt_:?ugo, — X_I?J(O(),
(2) (XYL Zixg), = ) LRVARE o —> XY Zx ©o-

The following lemma shows that if X is a Killing vector field one can choose coor-
dinates in which « is either O or 1.

Lemma B.6. Let X1, ... Xy be Killing vector fields on (M, ¢) generated by an auto-
morphic group action G, such that X1, ..., X; vanish at p and X1, ..., Xi do not
vanish at p. Then we can choose normal coordinates around p such that:

X, =X'=X;ifi <I,

Xi=Xi(0)£0ifi >1+1

and ¢(0) = o, where the X; are as defined in Lemma B.4. In particular, this means
that the a; relative to X' is zero in the first case and one in the second.
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Proof. Wheni > [+1, the statement holds in any coordinates and is a direct consequence
of X; being continuous.

Normal coordinates are defined via the exponential map exp, : Be(0) C T,M —
U C M. Because of the slice theorem, this map is G-equivariant and the stabilizer group
G p, has Lie algebra which is generated by X1, ..., X;. So, in normal coordinates, the
vector fields X1, ..., X; generate a linear action on T), M. This means they agree with
their first order approximation and the statement follows. We can use the freedom to
choose a basis of 7, M such that ¢(0) = ¢ since GL(7, R) acts transitively on positive
3-formsonR7. O

Remark B.7. Observe that it makes sense to talk about the blow-up limit of a G-action
in this setup. Indeed, given a Lie group action G on M, this induces a Lie algebra action
of g on M. Now, Lemma B.6 describes the blow-up limit of the g action, and from this
we can reconstruct a (local) group action.

We restrict our attention to the case where the group G is T? x SU(2), or some
discrete quotient of it. If Uy, U, are the generators of the ’H‘z-component and Vi, Vo, V3
are generators of the SU(2)-component, then for every I, m = 1, 2 and all (i, j, k) cyclic
permutation of (1, 2, 3), they satisfy:

(U, U2]=0, [U,Vul=0, [Vi,V;]=c¢€irVk.
It follows that the vector fields U’ f]ﬁ, \7]’ , \7{ , ‘73’ are such that:

[0{,051=0, [U],V,1=0, (B.1)
[V, Vil =iy, (B.2)

where o; is the o defining V.
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