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Abstract: We present the first step toward the quantum computing (QC) formulation of
the electron nuclear dynamics (END) method within the variational quantum simulator
(VQS) scheme: END/QC/VQS. END is a time-dependent, variational, on-the-flight, and
non-adiabatic method to simulate chemical reactions. END represents nuclei with frozen
Gaussian wave packets and electrons with a single-determinantal state in the Thouless
non-unitary representation. Within the hybrid quantum/classical VQS, END/QC/VQS
currently evaluates the metric matrix M and gradient vector V of the symplectic END/QC
equations on the QC software development kit QISKIT, and calculates basis function
integrals and time evolution on a classical computer. To adapt END to QC, we substitute
the Thouless non-unitary representation with Fukutome unitary representation. We derive
the first END/QC/VQS version for pure electronic dynamics in multielectron chemical
models consisting of two-electron units with fixed nuclei. Therein, Fukutome unitary
matrices factorize into triads of one-qubit rotational matrices, which leads to a QC encoding
of one electron per qubit. We design QC circuits to evaluate M and V in one-electron
diatomic molecules. In log2-log2 plots, errors and deviations of those evaluations decrease
linearly with the number of shots and with slopes = −1/2. We illustrate an END/QC/VQS
simulation with the pure electronic dynamics of H2

+ We discuss the present results and
future END/QC/QVS extensions.

Keywords: electron nuclear dynamics; quantum chemical dynamics; time-dependent
variational principle; Fukutome unitary representation; Hartree-Fock theory; quantum
computing; Lie groups and algebras

1. Introduction

Quantum chemical dynamics seeks to describe chemical reactions in terms of quantum
mechanics. Such an endeavor requires the solution of the time-dependent Schrödinger
equation [1]: a partial linear differential equation, second-order in the particles’ posi-
tions ri and first-order in time t, whose unknown is the time-dependent wavefunction
|Ψ(t)⟩ = Ψ(ri, si, t), where si represents the spin variables. Once |Ψ(t)⟩ is found, all the
chemical properties of a reactive system can be calculated from it. Unfortunately, the
solution of the time-dependent Schrödinger equation becomes computationally expensive
even for relatively small molecular systems. Therefore, some approximations should be in-
troduced for feasibility’s sake. One fruitful approach is to adopt the time-dependent
variational principle (TDVP) [2]. Therein, a trial wavefunction |Ψ(t)⟩= |Ψ[ ξi(t)]⟩ =
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Ψ[ri, si; ξi(t)] depending on a set of time-dependent parameters {ξi(t)} is optimized for
dynamical evolution by subjecting it to the stationary condition of the quantum action:
δA[Ψ∗[ ξi(t)], Ψ[ ξi(t)]]= 0, ∀ ξi(t) [2]. This procedure generates a system of classical-like
equations of motion for the parameters {ξi(t)} that takes the place of and is easier to
integrate than the time-dependent Schrödinger equation. Furthermore, guided by chemi-
cal insight, one can propose relatively simple trial wavefunctions |Ψ[ ξi(t)]⟩ that deliver
accurate predictions at low computational cost. A successful employment of the TDVP
for quantum chemical dynamics has been provided by the electron nuclear dynamics
(END) method [3,4]. END adopts a total trial wavefunction that contains frozen Gaussian
wave packets to describe nuclei and a single-determinantal wavefunction in the Thouless
representation [5] to describe electrons. END has proven to be both accurate and feasible
for the simulation of a vast array of time-dependent chemical processes, e.g., Diels–Alder,
SN2, and ion cancer therapy reactions, inter alia [3,4,6–9].

While END/TDVP simulations run relatively fast, they become inevitably slower
when applied to extremely large chemical systems, e.g., to the sizable biomolecules in-
volved in ion cancer therapy reactions [4,6–9]. Therefore, we have devoted considerable
efforts to accelerate the END/TDVP method for those simulations [4,6–9]. Broadly speak-
ing, an END/TDVP simulation involves three essential computational tasks [3,4]: (I) the
calculation of atomic and molecular basis functions integrals corresponding to the trial
wavefunction, (II) the calculation of all the components of the END/TDVP equations of
motion, and (III) the time integration of those equations. While tasks equivalent to I and III
are present in other quantum chemistry methods, task II is specific to the END/TDVP ap-
proach and will be the main focus of this investigation. To accelerate the aforesaid tasks in
our END/TDVP code PACE [4], we have employed various state-of-the-art techniques for
classical (i.e., standard) computers, e.g., a mixed programming language (Python for logic
flow and Fortran and C++ for numerical calculations), intra- and internode parallelization,
and the fast OED/ERD atomic integrals package [10] from the ACES [11] program, inter
alia. Equipped with these capabilities, we were able to perform the first END/TDVP simu-
lations of ion cancer therapy reactions involving large molecules, e.g., ion-induced water
radiolysis in water clusters, and ion-induced DNA damage in nucleobases and the cytosine
nucleotide [4,6–9]. Nevertheless, additional acceleration of END/TDVP simulations will
be necessary to treat even larger systems.

In recent years, the burgeoning field of quantum computing (QC) [12–14] has shown
immense potential to revolutionize quantum chemistry through the provision of efficient
quantum computers and quantum algorithms to simulate chemical systems. Thus, various
research groups have reformulated established quantum chemistry methods [1] into the
QC framework (cf. Refs. [15,16] and citations therein). In this context, Li and Benjamin have
recently developed a variational quantum simulator (VQS) to calculate TDVP dynamics [17].
VQS is a hybrid quantum/classical approach wherein each computational task is entrusted to
the type of computer, either classical or quantum, that provides the fastest algorithms with
current technology. Specifically, the calculation of the trial wavefunction and its related
components for the TDVP equations of motion are assigned to a quantum computer at
each time step; those tasks are executed with quantum circuits that are modifications of
one devised by Ekert et al. [18]. On the other hand, the time integration of the TDVP
equations is assigned to a classical computer operating standard software. Li and Benjamin
successfully applied their VQS to simulate the TDVP dynamics of an Ising-like model
system, thus demonstrating the viability and potential of their innovative approach [17].

The VQS provides a paradigm for a hybrid quantum/classical implementation of
TDVP dynamics, but it will remain scarcely relevant for quantum chemical dynamics if it is
only applied to Ising-like models. While those models can simulate spin dynamics, they fail



Symmetry 2025, 17, 303 3 of 28

to reproduce most of the basic features of molecules and are, therefore, unsuitable for realis-
tic simulations of chemical reactions. Therefore, the extension of the VQS approach for the
accurate description of chemical reactions is a crucial endeavor in both quantum chemistry
and QC fields. In this manuscript, we will embark on such an enterprise by reformulating
the END method for QC (END/QC) within the VQS scheme (END/QC/VQS; henceforth,
we will name END/QC the general QC formulation of END and END/QC/VQS as its
VQS realization).

In terms of the previously discussed tasks I-III, END/QC/VQS involves the following
sequence of processes (cf. Figure 1 for a flowchart). At a given time step, task I, the calcula-
tion of atomic and molecular basis functions integrals, is executed for the current nuclear
and electronic configurations on a classical computer with the OED/ERD atomic integrals
package [10]. With those integrals at hand, task II, the calculation of the components of
the END/QC equations of motion, is executed on a quantum computer with quantum
circuits that are END/QC versions of the general VQS circuit [17]. Specifically, our quantum
circuits evaluate the END/QC trial wavefunction |Ψ[ ξi(t)]⟩, and the metric matrix M and
energy gradient vector V of the END/QC equations of motion (cf. Sections 2, 5 and 6).
Then, task III, the time integration of the latter equations, is executed from the current to
the next time step on a classical computer with standard differential equation solvers. The
last task provides the new nuclear and electronic configurations for the next time step so
that a new cycle of tasks I through III ensues; this loop runs from the initial to the final time
of a dynamical simulation.

tt

ff

tt ff

Figure 1. Flowchart of the main computational tasks in an END/QC/VQS dynamics executed on
classical and quantum computers.

While transparent in outline, END/QC/VQS poses various theoretical and computa-
tional challenges during its development. As previously mentioned, the electronic part of
the END trial wavefunction is a single-determinantal wavefunction in the Thouless repre-
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sentation [5]. In this approach, a non-unitary operator Ẑ[zi(t)] in terms of time-dependent
parameters zi(t) ∈ C generates the evolving electronic trial wavefunction |Ψ[ zi(t)]⟩e by
acting on a single-determinantal reference state |0⟩: |Ψ[ zi(t)]⟩e = Ẑ[zi(t)]|0⟩ [3–5]. It is
well known that QC is strictly formulated in terms of unitary operators and gates [14];
therefore, the original END formulation in terms of a non-unitary operator Ẑ[zi(t)] does
not directly fit into the unitary QC framework. To circumvent this difficulty (and also
for pure theoretical reasons), we decided to reformulate END in terms of the Fukutome

unitary representation [19] of a single-determinantal state. In this case, a unitary opera-
tor Û[λi(t)] in terms of time-dependent parameters λi(t) ∈ C substitutes the previous
non-unitary operator Ẑ[zi(t)] and generates the evolving electronic trial wavefunction as
|Ψ[ λi(t)]⟩e =Û[λi(t)]|0⟩. In this way, |Ψ[ λi(t)]⟩e all its related terms fit directly into the
unitary operators and gates of the quantum circuits. The aforesaid substitution of operators
may seem simple in outline, but, in fact, it substantially changes the whole structure of the
END formalism, as will be shown in Sections 3 and 5. While we will adhere to a unitary
representation in this manuscript, we should note that a non-unitary END/QC formalism
with the Thouless representation [5] is indeed possible if the involved non-unitary oper-
ators are expressed as linear combinations of unitaries (LCUs) [20]. We will present that
alternative formulation in a sequel.

The formulation of END/QC/VQS for all type of chemical systems is a challenging
enterprise to be accomplished in stages. Therefore, in this first attempt, we will adopt
some approximations and tackle particular systems. First, we will formulate END/QC
for pure electronic dynamics, i.e., for the time evolution of electrons in the presence of
fixed nuclei. In this scheme, the END/QC equations of motion will explicitly involve
electronic TVDP variables—nuclear variables will act implicitly in those equations as
time-independent parameters. Second, for pure electronic dynamics, we will formulate
END/QC for multielectron model systems described with effective Hamiltonians and
minimal basis sets; similar types of systems are usually employed to develop and test
QC methodologies for quantum chemistry [15,16]. During these formulations, we will
emphasize the continuous symmetry aspects of the END/QC formalism within the Fukutome
unitary representation [19]; i.e., the END/QC connection with the unitary Lie group and its
associated Lie algebra. Third, we will apply these END/QC developments to evaluate M

and V in one-electron diatomic molecules and to simulate the pure electronic dynamics of
a H2

+ molecule. In the latter case, we will also consider the effect of the point group spatial

symmetry in the END/QC equations of motions and dynamics. In these endeavors, we
will execute our new QC circuits (algorithms) for task II on the QC software development
kit QISKIT version 1.0 [21], which acts as a simulator of a real quantum computer. In this
way, we can corroborate the step-by-step functioning of our QC circuits and gauge their
numerical accuracy. We will utilize a real quantum computer for task II in a sequel.

As delineated in the previous paragraph, this manuscript presents the proof of concept

of END/QC/VQS: a firm stepping stone from which we can continue developing this
method to its full maturity. Thus, in upcoming publications, we will generalize the current
END/QC/VQS for full electronic and nuclear dynamics, for general molecules described
with ab initio Hamiltonians and large basis sets, and for executions on state-of-the-art
quantum computers. Our group has presented a first glimpse into END/QC/VQS in
Ref. [22]; however, herein, we present a more elaborated version of END/QC/VQS, both
in terms of its formalism development and computer applications.

This manuscript is organized as follows. In Section 2, we will review the TDVP in
terms of real variational parameters [2] because this form of the TDVP provides the most
appropriate parameterization for the current version of END/QC/VQS. In Section 3, we
will discuss the Fukutome unitary representation [19] of single-determinantal wavefunc-
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tions in the context of the Hartree–Fock (HF) and the END methods. In Section 4, we will
define a family of model chemical systems for END/QC/VQS treatments in the spirit of
the semi-empirical methods [23] in quantum chemistry. In Section 5, we will formulate the
END/QC formalism to simulate pure electronic dynamics in those systems. In Section 6,
we will apply END/QC/VQS to evaluate M and V in one-electron diatomic molecules
and to simulate the pure electronic dynamics of a H2

+ molecule. We will perform all the
corresponding QC calculations on the QC software development kit QISKIT [21]. Finally,
in Section 7, we will analyze the main results of this investigation and discuss future work.

2. Background: Time-Dependent Variational Principle (TDVP)

There are different versions of the time-dependent variational principle such as the
Dirac-Frenkel variational principle [24,25], the McLachlan variational principle [26], and
the simply named TDVP (for their definitions and equivalence conditions, cf. Refs. [27–29]).
Since END is based on the TDVP [3,4], we will employ this variational principle to formulate
END/QC. The TDVP starts with a trial wavefunction |Ψ(t)⟩= |Ψ[ξ(t)]⟩ that depends on N

time-dependent variational parameters
{

ξ j(t)
}

, j = 1, . . . N, arranged in a column vector
ξ(t); these parameters can be real or complex [2–4], but, in this investigation, we will take
them as real without any loss of generality: ξ j(t)∈ R ∀j (for the relationship between real
and complex TDVP parameterizations, cf. Ref. [2]). The selection of a trial wavefunction
for a chemical problem is a matter of chemical insight; thus, following quantum chemistry
experience, single-determinantal [3,4,30], multi-configuration [31], and coupled-cluster
wavefunctions [32–34] have been employed/proposed to simulate chemical reactions in
the TDVP framework. For a chosen |Ψ[ξ(t)]⟩, the TDVP involves the quantum Lagrangian
L[ξ(t)] and quantum action A[ξ(t)] functionals:

L[ξ(t)] =

⟨Ψ[ξ(t)]| i
2

(→
∂
∂t −

←
∂
∂t

)
− Ĥ|Ψ[ξ(t)]⟩

⟨Ψ[ξ(t)] |Ψ[ξ(t)]⟩ ; A[ξ(t)] =

t2∫

t1

L[ξ(t)] dt; (1)

where Ĥ is the system Hamiltonian, t1 and t2 are the initial and final times of the dynam-

ics, and
→
∂ /∂t and

←
∂ /∂t are time derivative operators acting to the right and to the left,

respectively; these operators produce a real Lagrangian with a symmetric distribution of
the derivatives

.
ξ j = dξ j/dt over the bra ⟨| and ket |⟩ states [2]. The denominator of L[ξ(t)]

in Equation (1) enforces normalization if the trial wavefunction is unnormalized [2]. How-
ever, we will parameterize |Ψ[ξ(t)]⟩ with a unitary operator Û[ξ(t)] acting on a reference
state |0⟩:|Ψ[ ξ(t)]⟩ = Û[ξ(t)]|0⟩, so that ⟨Ψ[ξ(t)] |Ψ[ξ(t)]⟩ = ⟨0|Û[ξ(t)]†Û[ξ(t)]|0⟩ = 1 at
all times. Therefore, we will omit the aforesaid denominator in L[ξ(t)] and in all the subse-
quent TDVP equations (for the TDVP equations with an unnormalized trial wavefunction,
cf. Refs. [2–4]). Under this condition, the Lagrangian L(ξ) is [2]

L(ξ) =
N

∑
j=1

Pj(ξ)
.
ξ j − E(ξ);

E(ξ) = ⟨Ψ(ξ)|Ĥ|Ψ(ξ)⟩; Pj(ξ) = i⟨Ψ(ξ)| ∂Ψ(ξ)

∂ξ j

〉
= −i

〈
∂Ψ(ξ)

∂ξ j

∣∣∣∣∣Ψ(ξ)⟩;
(2)

where E(ξ) ∈ R is the expectation value of the total energy, and Pj(ξ) ∈ R is the canonical
variable conjugate to ξ j. To obtain the TDVP equations of motion, one should impose the
stationary condition into the quantum action functional, δA[ξ(t)] = 0, with respect to all the
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variational parameters ξ(t) and subjected to the end-point conditions δξ(t1) = δξ(t2) = 0.
That procedure leads to a set of Euler-Lagrange equations for the parameters ξ(t):

d

dt


 ∂L

∂
.
ξ j


 =

(
∂L

∂ξ j

)
j = 1, . . . N; (3)

that in terms of the expressions in Equation (2) are [2]:

N

∑
q=1

Mpq(ξ)
.
ξq = Vp p = 1, . . . N

Mpq(ξ) = i
∂⟨Ψ|
∂ξp

∂|Ψ⟩
∂ξq

+ H. c.; Vp =
∂E(ξ)

∂ξp
=

∂⟨Ψ(ξ)|
∂ξp

Ĥ|Ψ(ξ)⟩+ H. c.
(4)

Above, the metric matrix M =
(

Mpq

)
is real and antisymmetric, and the energy gradient

vector V =
(
Vp

)
is real; M and V contain the kinematic and dynamic features of the

system, respectively. It is clear from Equations (1)–(4) that the TDVP and its equations of
motion are the quantum analogs of the classical Hamilton principle and of the classical
Hamilton equations in symplectic form [35], respectively. In that scheme, the parameters ξ
and P(ξ) span a generalized quantum phase space [2–4,36]. Solving Equation (4) for the
time-dependent parameters ξ(t) provides the evolution of the trial wavefunction |Ψ[ξ(t)]⟩
in time [2–4,36].

3. Fukutome Unitary Representation of Single-Determinantal
Wavefunctions

As discussed in Section 1, we will develop the END/QC formalism employing Fuku-
tome unitary representation [19] of single-determinantal states. Therefore, to understand
our formalism, we should review such a unitary approach in the context of the HF the-
ory [37] (for its extension to the Kohn-Sham density functional theory, cf. Ref. [30]). As antic-
ipated in Section 1, we will consider a system containing Ne evolving electrons and NN fixed
nuclei. The electronic description of that system involves a set of K orthonormal HF spin-
orbitals

{
ψζ(xi)

}
=
{

ψ̃ζ(ri)σζ(si)
}

, ζ, i = 1, 2, . . . K > Ne:
〈
ψζ

∣∣ψη

〉
=
∫

ψ∗ζ (x1) ψη(x1)dx1

= δζη , where ψ̃ζ(ri) and σζ(si) are spatial orbitals and spin eigenfunctions with position
and spin variables ri and si, respectively, and xi = (ri, si). Associated with the

{
ψζ

}
, we

have a set of second-quantization creation a†
ζ and annihilation aζ operators that satisfy the

anti-commutation relationships [37]:

{
a†

ζ , aη

}
= δζη ;

{
a†

ζ , a†
η

}
=
{

aζ , aη

}
= 0. (5)

Having the vacuum state |vac⟩, aζ |vac⟩ = 0∀ζ, we can define a reference Slater determinant
state |0⟩ with occupied spin-orbitals ψα, ψβ. . . ψNe as:

|0⟩ = a†
αa†

β . . . a†
N |vac⟩ =

∣∣ψαψβ . . . ψNe

〉
= det[. . . ψα(xi) . . .]. (6)

In this investigation, we will follow Fukutome’s notation [19] and denote the Ne occupied
(hole) spin-orbitals in |0⟩ with the indices α, β, γ . . ., the K− Ne unoccupied (particle) spin-
orbitals with the indices µ, ν, ξ . . ., and the whole K spin-orbitals irrespective of their with
occupancy with the indices ζ, η, ι. . . From |0⟩, we can generate all the remaining single-,

double-, etc., -excitation Slater determinants as
∣∣∣Ψµ

α

〉
= a†

µaα|0⟩=
∣∣ψµψβ . . . ψN

〉
,
∣∣∣Ψµν

αβ

〉
=

a†
νaβa†

µaα|0⟩=
∣∣ψµψν . . . ψN

〉
, etc. All these single-determinantal states are orthonormal

among themselves. While |0⟩ is arbitrary, we will take it as the HF ground state as is
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usually the case in END simulations [3,4]. The electronic Hamiltonian Ĥe of the system in
second-quantization form is

Ĥe = ∑
ζ,η

hζηa†
ζ aη +

1
2 ∑

ζ,η,κ,ι
⟨ζη |κι⟩a†

ζ a†
ηaιaκ ; (7)

where hζη and ⟨ζη |κι⟩ are the one- and two-electron integrals from the spin-orbitals{
ψζ

}
[37].

To formulate the HF theory in unitary form, Fukutome considered the set of K2

pair operators a†
ηaζ that span (generate) the U(K) Lie algebra (group) with commutation

relationships [38–40]: [
a†

ζ aη , a†
ι aκ

]
= δηιa

†
ζ aκ − δζκa†

ι aη ; (8)

from them, one can construct operator Û[u(γ)] and matrix u(γ) realizations of the unitary
Lie group U(K) [38–40] as:

Û[u(γ)] = exp
[
Γ̂(γ)

]
= exp

(

∑
ζ,η

γζηa†
ζ aη

)
; u(γ) = exp(γ); γ =

(
γζη

)
∈ C

K×K; γζη = −γ∗ηζ ; (9)

where γ =
(
γζη

)
∈ CK×K is an anti-Hermitian matrix containing the parameters γζη ∈ C.

The unitary matrix u(γ) =
(
uζη

)
acts on the orthonormal spin-orbitals

{
ψζ

}
as:

(
φ1 . . . φζ . . . φK

)
=
(
ψ1 . . . ψζ . . . ψK

)
u(γ) ⇒ φζ = ∑

η

ψηuηζ ; (10)

where
{

φζ(xi)
}

is a new set of K transformed spin-orbitals; since u(γ) is unitary, the{
φζ(xi)

}
are orthonormal as well. Then, all the possible single-determinantal states |Ψ(γ)⟩

that are non-orthogonal to |0⟩, ⟨Ψ(γ) |0⟩ ̸= 0, can be generated from |0⟩ by the unitary
transformation [19]:

|Ψ(γ)⟩ = Û[u(γ)]|0⟩ =
∣∣φαφβ . . . φNe

〉
= det[. . . φα(xi) . . .]; (11)

where |Ψ(γ)⟩ contains Ne occupied (hole) transformed spin-orbitals {φα(xi)}.
Equation (11) provides a unitary representation of the single-determinantal states

|Ψ(γ)⟩ but its application is inconvenient due to redundancies in the parameters γ as
shown shortly. Fortunately, Fukutome [19] solved this problem via an exact factorization of
both Û[u(γ)] and u(γ) into two unitary components containing the non-redundant and
redundant parameters λ and ξ, respectively:

Û[u(γ)] = Û[u(λ)]Û[u(ξ)] ≡ exp
(
Λ̂
)

exp
(
Ξ̂
)
; u(γ) = u(λ)u(ξ) ≡ exp(λ) exp(ξ); (12)

where the new operators and complex parameters are

Ξ̂ = ∑
α,β

ξαβa†
αaβ + ∑

µ,ν
ξµνa†

µaν; ξαβ = −ξ∗βα; ξµν = −ξ
∗
νµ; Λ̂ = ∑

µ,α

(
λµαa†

µaα − λ∗µαa†
αaµ

)
. (13)

Notice that Ξ̂ only contains hole-hole and particle-particle pair operators, and Λ̂ only

contains particle-hole and hole-particle ones. The matrix u(ξ) is u(ξ) = w⊕ ¯
w where

w = exp
[(

ξαβ

)]
∈U(Ne) and

¯
w = exp

[(
ξµν

)]
∈ U(K− Ne). The matrix u(λ)∈U(K) is

u(λ) =

[
C(λ) −S†(λ)

S(λ) C̃(λ)

]
; λ =

(
λµα

)
∈ C

(K−N)×N ; (14)
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where

S(λ) =
∞

∑
k=0

(−1)k

(2k + 1)!
λ

(
λ†λ

)k
∈ C(K−N)×N ; C(λ) = IN×N +

∞

∑
k=1

(−1)k

(2k)!

(
λ†λ

)k
∈ CN×N ;

C̃(λ) = I(K−N)×(K−N) +
∞

∑
k=1

(−1)k

(2k)!
λ

(
λλ†

)k
∈ C(K−N)×(K−N).

(15)

The functions S(λ) and C(λ)/C̃(λ) are matrix generalizations of the standard sine and
cosine functions, respectively. From a QC standpoint, u(λ)∈U(K) in Equation (14) can be in-
terpreted as a multi-qubit generalization of the one-qubit matrices u(φ0, φ1, φ2, φ3)∈U(2)
in terms of the rotational matrices Ri(φi), i = 1, 2, 3, [14]; suggestively, u(λ) resembles

Ry

(
φy

)
, cf. Section 5. The unitary matrices w and

¯
w act on the spin-orbitals

{
ψζ

}
as

φα = ∑
β

ψβwβα and φµ = ∑
ν

ψνwνµ, i.e., w combines occupied spin-orbitals
{

ψβ

}
among

themselves, and
¯
w combines unoccupied spin-orbitals {ψν} among themselves. The matrix

u(λ) acts on the spin-orbitals
{

ψζ

}
as:

φα = ∑
β

ψβ[C(λ)]βα + ∑
µ

ψµ[S(λ)]µα; φµ = ∑
ν

ψν

[
C̃(λ)

]
νµ
−∑

α

ψα

[
S†(λ)

]
αµ

; (16)

i.e., u(λ) combines occupied and unoccupied spin-orbitals
{

ψβ, ψµ

}
among them-

selves. From a QC standpoint, the K transformed orthonormal spin-orbitals
{

φα, φµ

}

in Equation (16) can be interpreted as multiple-qubit generalization of the one-qubit Bloch
sphere states [14], cf. Section 5. The action of the operator Û[u(ξ)] on |0⟩ is

|Ψ(ξ)⟩ = Û[u(ξ)]|0⟩ =
∣∣∣∣∣. . .

(

∑
β

ψβwβα

)
. . .

〉
= det(w)|0⟩ ∼ |0⟩; (17)

i.e., Û[u(ξ)] combines the occupied spin-orbitals
{

ψβ

}
in |0⟩ among themselves and trans-

forms |0⟩ into the equivalent states det(w)|0⟩. The action of the operator Û[u(λ)] on |0⟩ is

|Ψ(λ)⟩ = Û[u(λ)]|0⟩ =
∣∣∣. . .

{
ψβ[C(λ)]βα + ψµ[S(λ)]µα

}
. . .
〉
= |. . . φα . . .⟩; (18)

i.e., Û[u(λ)] combines occupied and unoccupied spin-orbitals
{

ψβ, ψµ

}
into |0⟩ and trans-

forms the latter into the non-equivalent states |Ψ(λ)⟩. Thus, Equations (17) and (18) demon-
strate that λ and ξ are the non-redundant and redundant parameters in the unitary rep-
resentation of all the single-determinantal states from |0⟩. Then, we can omit Û[u(ξ)] in
|Ψ(γ)⟩ = Û[u(γ)]|0⟩ = Û[u(λ)]Û[u(ξ)]|0⟩, Equation (11), and take |Ψ(λ)⟩ = Û[u(λ)]|0⟩,
Equation (18), as the non-redundant Fukutome unitary representation of the all the non-
equivalent single-determinantal states |Ψ(λ)⟩ from |0⟩ and non-orthogonal to it [19].

Fukutome unitary representation, Equation (18), establishes a bijective mapping be-
tween the single-determinantal states |Ψ(λ)⟩ and the parameters λ [3,4,19]. In a time-
independent context, this representation provides a suitable parameterization of stationary
states |Ψ(λ)⟩ for HF energy optimizations, instabilities analyses, and symmetry breaking
classifications [19]. In a time-dependent context, Fukutome unitary representation provides
a suitable parameterization of time-evolving states |Ψ[λ(t)]⟩ for END/QC optimizations
and for time-dependent symmetry breakings, as the Thouless non-unitary representation [5]
does in the standard END [3,4,41,42]. We will employ Fukutome unitary representation
to formulate END/QC in Sections 5 and 6. In this and the following section, we keep
Fukutome’s original parameters λ ∈ CK×K but we will turn to real parameters in Section 5.
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4. Model Systems for END/QC

The general formulation and code implementation of END/QC for any type of chem-
ical system are challenging. We will present such a general treatment in a subsequent
publication. Herein, as a proof of concept, we will implement END/QC for a family of
model chemical systems, which in some cases admit analytical solutions. This family of
models is constructed by a set of five approximations that resemble those employed in
semi-empirical methods for quantum chemistry [23]. The END/QC trial wavefunction
|Ψ(λ)⟩ for any of these systems will be a single-determinantal wavefunction in Fukutome
unitary representation, Equation (18). The approximations defining these systems are:

Approximation 1. We adopt a system consisting of Ñ chemical units; each unit has two
electrons with opposite spins up ↑ and down ↓ , respectively. The units can be atoms,
molecules, or monomers, identical or not. The units can be real subsystems with two actual
electrons (e.g., H−, Li+, H2, HeH+, etc.) or model subsystems with two active electrons
in the presence of a frozen electronic core [23]. The units together can constitute a single
molecule (H2), a super-molecule (H2)n, or a polymer/lattice (-- H2 -- H2 -- H2 --).

Approximation 2. Within a unit, each electron has available two spin-orbitals, one oc-
cupied and another unoccupied with respect to the reference state. Specifically, the spin-
orbitals

{
ψα , ψµ

}
and

{
ψβ , ψν

}
are available for the unit electrons with spins up and

down, respectively. This approximation implies a minimal basis set [37] with two atomic
orbitals per unit to construct the spin-orbitals.

Approximation 3. Particle-hole excitations are only allowed within spin-orbitals with the
same type of spin. To enforce this, we set in the END/QC trial wavefunction |Ψ(λ)⟩, Equa-
tion (18), and resulting expressions:

λµα = 0 if ⟨α|ŝz|α⟩ ̸= ⟨µ|ŝz|µ⟩; (19)

where ŝz is the z-component of the one-electron spin operator. With Equation (19), |Ψ(λ)⟩ be-
comes an unrestricted HF (UHF) state [37] [an axial-spin-density-wave (ASDW) wave-
function in Fukutome’s classification of HF states [19]], where the transformed spin-
orbitals φα remain as one-electron spin eigenfunctions, and the spin symmetries of |Ψ(λ)⟩with
respect to Ŝz and Ŝ2 (squared total spin) are preserved and lost, respectively. UHF wave-
functions are regularly used in quantum chemistry, especially to describe radicals and
bond making/breaking processes [19,37]. Without this approximation, |Ψ(λ)⟩ will be
a less useful generalized HF (GHF) wavefunction [1,19], where the transformed spin-
orbitals φα contain both spin-up and spin-down components, and all the spin symmetries
of |Ψ(λ)⟩ are lost.

Approximation 4. Particle-hole excitations are only allowed within units. That is, an
electron in the occupied spin-up spin-orbital ψα can only be excited to the unoccupied
spin-up spin-orbital ψµ in the same unit:

λµα = 0 if unit of ψα ̸= unit of ψµ. (20)

This approximation becomes exact with well-separated units carrying localized spin-
orbitals.

Approximation 5. If Approximation 1 involves active electrons in the presence of a frozen
electronic core, the ab initio Hamiltonian Ĥe, Equation (7), should be transformed into an
effective Hamiltonian by applying appropriate semi-empirical approximations [23] to the
one- and two-electron integrals of Ĥe . Unlike the previous approximations, this one eludes
a general formulation because it depends on the chemical features of the model system at
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hand. Therefore, we will present examples of this approximation as we investigate concrete
systems in Section 6 of this manuscript and in subsequent publications.

5. Formulation of END/QC for the Model Systems. Natural QC Encoding

Application of approximations 1–4 in conjunction with the U(K) commutation rela-
tionships, Equation (8), to the operator Û[u(λ)] and matrix u(λ), Equations (12) and (14),
leads to their factorization into µ− α particle-hole-pair components:

Û[u(λ)] =
Ne

∏
(µα)

Û
[
u
(
λµα

)]
; u(λ) = ⊗Ne

(µα)
u
(
λµα

)
; (21)

where ∏
Ne

(µα)
and ⊗Ne

(µα)
denote ordinary and tensor products, respectively, and (µα) is a

compound index, (µα) = 1, 2, . . . Ne. Û
[
u
(
λµα

)]
and u

(
λµα

)
∈ SU(2) depend on a single

parameter λµα = ρµαe+iωµα∈ C as:

Û
[
u
(
λµα

)]
= exp

(
λµαa†

µaα − λ∗µαa†
αaµ

)
; (22)

and

u
(
λµα

)
= R

(
ρµα, ωµα

)
=

[
C
(
λµα

)
−S∗

(
λµα

)

S
(
λµα

)
C
(
λµα

)
]
=

[
cos
(
ρµα

)
−e−iωµα sin

(
ρµα

)

e+iωµα sin
(
ρµα

)
cos
(
ρµα

)
]

. (23)

In Equations (21)–(23), the multi-qubit matrix u(λ)∈U(K), Equation (14), simplifies into a
tensor product of one-qubit unitary matrices u

(
λµα

)
∈U(2) [14], the matrix λ, Equation (14),

into a set of numbers λµα = ρµαe+iωµα , and the matrix functions C(λ), C̃(λ), and S(λ),
Equation (15), into the numerical functions C

(
λµα

)
and S

(
λµα

)
in terms of sine, cosine,

and exponential functions. Furthermore, through λµα = ρµαe+iωµα , we can switch from
a complex

(
λµα

)
to a real

(
ρµα, ωµα

)
parameterization, i.e., u

(
λµα

)
= R

(
ρµα, ωµα

)
in

Equation (23); the latter scheme fits into the TDVP with real variational parameters dis-
cussed in Section 2.

The factorizations in Equation (21) into particle-hole-pair components (µα) suggests a
natural QC encoding for the current model systems. In this scheme, each electron of a µ− α

particle-hole-excitation pair can be assigned to a single qubit with compound index (µα).
We will employ this QC encoding during the rest of this manuscript and present alternative
formulations in terms of standard QC encodings (e.g., Jordan-Wigner, Kitaev, etc., [16]) in a
sequel. In the natural QC encoding, the occupied and unoccupied spin-orbitals |ψα⟩ and∣∣ψµ

〉
correspond to the computational basis states (vectors) |0α⟩ and

∣∣1µ

〉
of the qubit with

index (µα):

ψα ↔ |0α⟩ =
(

1
0

)

α

; ψµ ↔
∣∣1µ

〉
=

(
0
1

)

µ

; (24)

where the equivalences between operator-wavefunction and matrix-vector representa-
tions are indicated with the symbol↔. In addition, we can define pseudo spin angular
momentum operators ĴX µα, ĴY µα, and ĴZ µα, and an electron number operator N̂ µα as

ĴXµα = 1
2

(
a†

µaα + a†
αaµ

)
↔ 1

2 Xµα; ĴYµα = i
2

(
a†

µaα − a†
αaµ

)
↔ 1

2 Yµα;

ĴZ µα = 1
2

(
a†

αaα − a†
µaµ

)
↔ 1

2 Zµα; N̂ µα = a†
αaα + a†

µaµ ↔ Iµα;
(25)

where their equivalences with the identity and Pauli matrices Iµα, Xµα, Yµα, and Zµα

of the qubit (µα) are shown. By inverting the relationships in Equation (25), one can
encode the operators a†

ηaζ and a†
ζ a†

ηaιaκ , and the electronic Hamiltonian Ĥe, Equation (7),
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in terms of the matrices Iµα, Xµα,Yµα and Zµα of all the qubits (cf. Section 6). The first
three operators in Equation (25) span (generates) the SU(2) Lie algebra (group), and N̂ µα

and Ĵ2
µα = Ĵ2

Xµα + Ĵ2
Yµα + Ĵ2

Zµα are the Casimir operators of U(2)⊃ SU(2). The mutually

commuting ĴZ µα, Ĵ2
µα and N̂ µα act on the spin-orbital |ψα⟩ and

∣∣ψµ

〉
as

ĴZµα |ψα⟩ = +
1
2
|ψα⟩; ĴZµα

∣∣ψµ

〉
= −1

2

∣∣ψµ

〉
; Ĵ2

µα

∣∣∣ψα/µ

〉
=

3
4

∣∣∣ψα/µ

〉
; N̂µα

∣∣∣ψα/µ

〉
= +1

∣∣∣ψα/µ

〉
; (26)

with equivalent expressions in terms of the states (vectors) |0α⟩ and
∣∣1µ

〉
and matrices Iµα,

Xµα, Yµα, and Zµα.
From this point to the end of this section, we will concentrate on the END/QC expres-

sions for QC programming. Therefore, we will prioritize the matrix-vector representation
of END/QC [in terms of the matrices Iµα, Xµα, Yµα, and Zµα acting on the computational
basis states (vectors) |0⟩α and |1⟩µ] over its equivalent operator-wavefunction represen-

tation (in terms of the operators N̂µα, ĴXµα, ĴYµα and ĴZ µα acting on the spin-orbitals |ψα⟩
and

∣∣ψµ

〉
]. Nevertheless, the equivalences between both representations can be obtained

straightforwardly [cf. Equation (25)].
u
(
λµα

)
∈ U(2) can be factorized in terms of a global phase angle φ0 ∈ R and

three extrinsic Euler angles φ1, φ2 and φ3 ∈ R in the z-y-z axis convention: u
(
λµα

)
=

exp(iφ0)Rz(φ1)Ry(φ2)Rz(φ3) [14], where Ri

(
φj

)
is the 2 × 2 rotation matrix around the

axis i by an angle φj. Then, from Equation (23), one obtains φ0 = 0, φ1 = ωµα, φ2 = 2ρµα,
and φ3 = −ωµα so that

u
(
λµα

)
= R

(
ρµα, ωµα

)
= Rz

(
+ωµα

)
Ry

(
2ρµα

)
Rz

(
−ωµα

)

=

[
e−i

ωµα
2 0

0 e+i
ωµα

2

][
cos
(
ρµα

)
− sin

(
ρµα

)

sin
(
ρµα

)
cos
(
ρµα

)
][

e+i
ωµα

2 0

0 e−i
ωµα

2

]
.

(27)

This additional factorization per qubit is useful in subsequent QC implementations. Alter-
natively, u

(
λµα

)
can be expressed as a general (1-norm quaternion) rotation by an angle

ρµα ≥ 0 about an axis with unit vector n =
(
nx, ny, nz

)
, n2 = 1, [14]:

u
(
λµα

)
= R

(
ρµα, ωµα

)
= cos

(
ρµα

)
Iµα − i sin

(
ρµα

)(
nxXµα + nyYµα + nzZµα

)

= cos
(
ρµα

)
Iµα − i sin

(
ρµα

)[
sin
(
−ωµα

)
Xµα + cos

(
ωµα

)
Yµα

]
;

(28)

from which nx = sin
(
−ωµα

)
, ny = cos

(
ωµα

)
, and nz = 0; then, u

(
λµα

)
= R

(
ρµα, ωµα

)
is

a rotation by an angle ρµα about an axis on the x-y plane and tilted by an angle ωµα from
the y-axis. For constant angles ωµα, the matrices

{
u
(
λµα

)
= R

(
ρµα, ωµα = constant

)}

form a one-real-parameter continuous subgroup ⊂ SU(2). Since the SU(2) matrices are
identical to the matrices of the SU(2) irreducible representation D J=1/2, the tensor product
in Equation (21) goes along with the products of the SU(2) irreducible representations
D J=1/2, which, in general, produce reducible representations, e.g., D J=1/2 ⊗ D J=1/2=

D J=0 ⊕ D J=1 [43].
To obtain the components of the END/QC equations of motion for the model sys-

tems in QC form, we should first express the corresponding wavefunction and Hamilto-
nian in that form. The reference Slater determinant state

∣∣0
〉

for Ne electrons is now [cf.
Equation (6)]

∣∣0
〉
=
∣∣0α0β . . . 0Ne

〉
= ⊗Ne

α |0α⟩ = |0α⟩ ⊗
∣∣0β

〉
⊗ . . . |0Ne⟩. (29)

Then, through Equations (21)–(27), the END/QC trial wavefunction |Ψ(λ)⟩, Equation (18),
corresponds to the QC state |Ψ(ρ, ω)⟩ with real parameters ρ =

(
ρµα

)
and ω =

(
ωµα

)
.
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|Ψ(ρ, ω)⟩ = RTotal

∣∣0
〉
= ⊗Ne

(µα)
R
(
ρµα, ωµα

)∣∣0
〉
= ⊗Ne

(µα)
Rz

(
+ωµα

)
Ry

(
2ρµα

)
Rz

(
−ωµα

)∣∣0
〉

= ⊗Ne
α |φα⟩; |φα⟩ = cos

(
ρµα

)
|0α⟩+ exp

(
+iωµα

)
sin
(
ρµα

)∣∣1µ

〉
;

(30)

where the original multiple-qubit states |φα⟩ in Equation (16) simplifies into standard
single-qubit Bloch sphere states |φα⟩ in Equation (30). In addition, by mapping the op-
erators a†

ηaζ and a†
ζ a†

ηaιaκ into the identity and Pauli matrices via Equation (25) [e.g.,

a†
αaα ↔

(
Iµα + Zµα

)
/2, etc.], we can encode the electronic Hamiltonian Ĥe, Equation (7), as

Ĥe =
Nh

∑
i=1

h̃ihi (31)

where the coefficients h̃i are combinations of the original one-electron hζη and two-electron
⟨ζη |κι⟩ integrals in Equation (7), and the unitary matrices hi are combinations of the
identity and Pauli matrices. The explicit expressions of the h̃i and hi depend on the
chemical features of the model system under consideration. We will present examples
of these expressions for one-electron diatomic molecules in the following section and for
additional molecules in a sequel. From Equation (30), we can obtain the derivatives of the
END/QC trial wavefunction |Ψ(ρ, ω)⟩ with respect to its variational parameters ρk and
ωk as

∂|Ψ(ρ, ω)⟩
∂ρk

=
Ne

∑
j=1

f
ρ
k,jR

ρ
k,j

∣∣0
〉
;

R
ρ
k,j = R(ρ1, ω1)⊗ . . . Rz

(
+ωj

)
Ry

(
2ρj

)
YjRz

(
−ωj

)
⊗ . . . R(ρNe , ωNe)

∣∣0
〉 (32)

and

∂|Ψ(ρ, ω)⟩
∂ωk

=
Ne

∑
j=1

f ω
k,jR

ω
k,j

∣∣0
〉
=

Ne

∑
j=1

(
f+ω
k,j R+ω

k,j + f−ω
k,j R−ω

k,j

)∣∣0
〉
;

Rω
k,j = R+ω

k,j −R−ω
k,j ;

R+ω
k,j = R(ρ1, ω1)⊗ . . . Rz

(
+ωj

)
ZjRy

(
2ρj

)
Rz

(
−ωj

)
⊗ . . . R(ρNe , ωNe);

R−ω
k,j = R(ρ1, ω1)⊗ . . . Rz

(
+ωj

)
Ry

(
2ρj

)
Rz

(
−ωj

)
Zj ⊗ . . . R(ρNe , ωNe);

(33)

where j, k =(µα) = 1, 2 . . . , R
ρ
k,j, Rω

k,j, R+ω
k,j , and R−ω

k,j are defined, and their associated
factors are

f
ρ
k,j = −δkji; f±ω

k,j = ∓δk,j

(
i

2

)
; f ω

k,j = f+ω
k,j = − f−ω

k,j . (34)

Our Equations (32) and (33) are equivalent but not identical to their VQS counterparts in
Ref. [17]; the main differences between those and our expressions lie in the occurrence of
two derivative terms per each angle ωk, and in the content of some terms. Differences aside,
our equations admit a QC implementation similar to that in Ref. [17], cf. next section. From
Equations (31)–(34), we can obtain the metric matrix M =

(
Mpq

)
and the energy gradient

vector V =
(
Vp

)
with respect to the variational parameters

{
ξp

}
and

{
ξ ′p
}

= {ρk, ωk} [cf.
Equation (4)]:

Mpq = i
∂⟨Ψ(ξ)|

∂ξp

∂
∣∣∣Ψ
(
ξ’
)〉

∂ξ ′q
+ H. c. =

Ne ,Ne

∑
j, k=1

(
i f

ξ∗
p,j f

ξ ′
q,k

〈
0
∣∣Rξ†

p,jR
ξ ′
q,k

∣∣0
〉
+ H. c.

)
; (35)
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and

Vp =
∂⟨Ψ(ξ)|

∂ξp
Ĥe|Ψ(ξ)⟩+ H. c. =

Ne ,Nh

∑
j,k=1,1

(
f

ξ∗
p,j h̃k

〈
0
∣∣Rξ†

p,jhkRTotal

∣∣0
〉
+ H. c.

)
; (36)

where
{

f
ξ
p,j

}
and

{
f

ξ ′
p,j

}
=
{

f
ρ
p,j, f ω

p,j

}
, and

{
R

ξ
p,j

}
and

{
R

ξ ′
p,j

}
=
{

R
ρ
p,j, Rω

p,j

}
, cf.

Equations (32)–(34). Each summand between parentheses in Equations (35) and (36) con-
tains one, two, or four terms of the form (cf. Ref. [17]):

aRe
[
exp(iα)

〈
0
∣∣Ũ
∣∣0
〉]

(37)

where the QC parameters a and α ∈ R, and the unitary matrix Ũ are

For terms of Mpq : a = 2
∣∣∣i f

ξ∗
p,j f

ξ ′
q,k

∣∣∣; α = arg
(

i f
ξ∗
p,j f

ξ ′
q,k

)
; Ũ = R

ξ†
p,jR

ξ ′
q,k;

For terms of Vp : a = 2
∣∣∣ f ξ∗

p,j h̃k

∣∣∣; α = arg
(

f
ξ∗
p,j h̃k

)
; Ũ = R

ξ†
p,jhkRTotal ;

(38)

where now
{

f
ξ
p,j

}
and

{
f

ξ ′
p,j

}
=

{
f

ρ
p,j, f+ω

p,j , f−ω
p,j

}
, and

{
R

ξ
p,j

}
and

{
R

ξ ′
p,j

}
=

{
R

ρ
p,j, R+ω

p,j , R−ω
p,j

}
, cf. Equations (32)–(34). The terms Re

[
exp(iα)

〈
0
∣∣Ũ
∣∣0
〉]

in Equation (37)
can be evaluated with our END/QC versions of the VQS circuit in Ref. [17]. We will illus-
trate such QC evaluations in the following section.

6. Application of END/QC/VQS to One-Electron Diatomic Molecules

As a proof of concept and for illustration’s sake, we will now apply END/QC/VQS to
simulate the pure electronic dynamics of one-electron diatomic molecules. We will consider
the general case of hetero-nuclear diatomic molecules that contains the homo-nuclear ones
as a simple subcase. In the framework of the model systems defined in Section 4, each of
these molecules forms a single one-electron unit furnished with a minimal basis set of two
Slater-type atomic orbitals [37] {ϕA, ϕB}, where A and B are the labels of the nuclei. With
this basis set, we can construct one occupied ψα and one unoccupied ψµ spin-orbital:

ψα(x1) = ψ̃α(r1)σ(s1) = [cAα ϕA(r1) + cBα ϕB(r1)]σ(s1) occupied (hole);
ψµ(x1) = ψ̃µ(r1)σ(s1) =

[
cAµ ϕA(r1) + cBµ ϕB(r1)

]
σ(s1) unocupied (particle);

(39)

where ψ̃α(r1) and ψ̃µ(r1) are the highest occupied and lowest unoccupied molecular or-
bitals (HOMO and LUMO), respectively, σ(s1) is a one-electron spin eigenfunction, and
cAα, cBα, cAµ and cBµ are the molecular orbital coefficients from a self-consistent-field HF
calculation [37]. The transformed occupied φα and unoccupied φµ spin-orbitals and the
END/QC total trial wavefunction

∣∣Ψ
(
ρµα, ωµα

)〉
from the reference state

∣∣0
〉
= |ψα⟩ are [cf.

Equations (29) and (30)]

φα = Û
[
R
(
ρµα, ωµα

)]
ψα = cos

(
ρµα

)
ψα + exp

(
+iωµα

)
sin
(
ρµα

)
ψµ;

φµ = Û
[
R
(
ρµα, ωµα

)]
ψµ = − exp

(
−iωµα

)
sin
(
ρµα

)
ψα + cos

(
ρµα

)
ψµ;∣∣Ψ

(
ρµα, ωµα

)〉
= Û

[
R
(
ρµα, ωµα

)]∣∣0
〉
=
∣∣cos

(
ρµα

)
ψα + exp

(
+iωµα

)
sin
(
ρµα

)
ψµ

〉
.

(40)

The electronic Hamiltonian Ĥe of the considered molecules is [cf. Equation (7)]

Ĥe = hααa†
αaα + hµµa†

µaµ + hµα

(
a†

µaα + a†
αaµ

)
(41)

where the one-electron hζη integrals ∈ R so that hµα = hαµ. Notice that within the present
atomic basis set, the Hamiltonian Ĥe is exact. hαα and hµµ are the orbital energies of the
HOMO ψ̃α and LUMO ψ̃µ, respectively, and ∆µα = hµµ − hαα > 0 is the HOMO–LUMO
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energy gap. From Equations (40) and (41), we can obtain the energy of the considered
systems as:

E
(
ρµα, ωµα

)
=
〈
Ψ
(
ρµα, ωµα

)∣∣Ĥe

∣∣Ψ
(
ρµα, ωµα

)〉

= cos2
(
ρµα

)
hαα + sin2(ρµα

)
hµµ + sin

(
2ρµα

)
cos
(
ωµα

)
hµα.

(42)

To derive and implement the END/QC equations motion, we switch to the matrix-
vector representation of END/QC delineated in Equations (29)–(38). Then, in the present
case, the transformed occupied |φα⟩ and unoccupied

∣∣φµ

〉
computational basis states, and

the END/QC total trial wavefunction |Ψ(ξ1, ξ2, ξ3)⟩ from the reference state
∣∣0
〉
= |0α⟩ are

|Ψ(ξ1, ξ2, ξ3)⟩ = RTotal

∣∣0
〉
= R3(ξ3)R2(ξ2)R1(ξ1)

∣∣0
〉
= |φα⟩;

|φα⟩ = R3(ξ3)R2(ξ2)R1(ξ1)|0α⟩ = cos
(
ρµα

)
|0α⟩+ exp

(
+iωµα

)
sin
(
ρµα

)∣∣1µ

〉
;∣∣φµ

〉
= R3(ξ3)R2(ξ2)R1(ξ1)

∣∣1µ

〉
= − exp

(
−iωµα

)
sin
(
ρµα

)
|0α⟩+ cos

(
ρµα

)∣∣1µ

〉
.

(43)

In some of the above expressions, we have adopted a simpler notation, more amenable for
QC coding, where ξ1 = ωµα, ξ2 = ρµα, ξ3 = ω′µα, R1(ξ1) = Rz

(
−ωµα

)
, R2(ξ2) = Ry

(
2ρµα

)
,

and R3(ξ3) = Rz

(
+ω′µα

)
, and ω′µα→ωµα, cf. Equation (27). From Equation (43), the

derivatives of |Ψ(ξ1, ξ2, ξ3)⟩ with respect to the variational parameters ξ1, ξ2, and ξ3 are

∂|Ψ(ξ1, ξ2, ξ3)⟩
∂ξ1

= f1Rξ1
∣∣0
〉
= f1R3(ξ3)R2(ξ2)R1(ξ1)Z

∣∣0
〉
;

∂|Ψ(ξ1, ξ2, ξ3)⟩
∂ξ2

= f2Rξ2
∣∣0
〉
= f2R3(ξ3)R2(ξ2)YR1(ξ1)

∣∣0
〉
;

∂|Ψ(ξ1, ξ2, ξ3)⟩
∂ξ3

= f3Rξ3
∣∣0
〉
= f3R3(ξ3)ZR2(ξ2)R1(ξ1)

∣∣0
〉
;

(44)

where f1, f2 and f3 are equivalent to f−ω
1,1 , f

ρ
1,1 and f+ω

1,1 in Equation (34), respectively,

f1 = +
i

2
; f2 = −i; f3 = − i

2
. (45)

Through Equation (25), we can encode the electronic Hamiltonian Ĥe of Equation (41) into
the QC form of Equation (31) as

Ĥe = h̃II + h̃XX + h̃YY + h̃ZZ;
h̃I =

1
2

(
hαα + hµµ

)
; h̃X = hµα; h̃Y = 0; h̃Z = 1

2

(
hαα − hµµ

)
.

(46)

From Equations (44)–(46), we obtain the components of the END/QC equations of motion as

Mρµα ,ρµα = 0; Mωµα ,ωµα = 0; Mρµα ,ωµα = M̃21 + M̃23 = − sin
(
2ρµα

)
;

M̃21 = i f ∗2 f1
〈
0
∣∣Rξ2†Rξ1

∣∣0
〉
+ H. c.; M̃23 = i f ∗2 f3

〈
0
∣∣Rξ2†Rξ3

∣∣0
〉
+ H. c.;

(47)

and
Vρµα = ∑

k=I,X,Y,Z
Ṽ2k = −2h̃Z sin

(
2ρµα

)
+ 2h̃X cos

(
2ρµα

)
cos
(
ωµα

)
;

Vωµα = ∑
k=I,X,Y,Z

(
Ṽ1k + Ṽ3k

)
= −h̃X sin

(
2ρµα

)
sin
(
ωµα

)
;

Ṽjk = f ∗j h̃k

〈
0
∣∣Rξ j† ĥkRTotal

∣∣0
〉
+ H. c.; j = 1, 2, 3; k = I, X, Y, Z.

(48)

For non-null values in Equations (47) and (48), we write first the QC expressions of the
elements of M and V obtained from Equations (44)–(46), and second their equivalent ana-
lytical expressions obtained from Equations (40)–(42). In terms of the latter, the END/QC
equations of motion are

(
0 − sin

(
2ρµα

)

+ sin
(
2ρµα

)
0

)( .
ρµα
.

ωµα

)
=

(
−2h̃Z sin

(
2ρµα

)
+ 2h̃X cos

(
2ρµα

)
cos
(
ωµα

)

−h̃X sin
(
2ρµα

)
sin
(
ωµα

)
)

. (49)



Symmetry 2025, 17, 303 15 of 28

To obtain M and V for the END/QC/VQS simulations, we need to evaluate their
basic elements M̃jk and Ṽjk in Equations (47) and (48) in a QC fashion. After recasting
these elements in the form of Equation (37), we can evaluate them with the five quantum
circuits shown in Figures 2–6; these circuits are the END/QC versions of the VQS circuit in
Figure 2 of Ref. [17]. Each of the present circuits has one ancillary qubit prepared in the state(
|0⟩+ eiα|1⟩

)
/
√

2, where the values of the circuit parameter α and a, Equation (37), are
obtained with Equation (38). The values of α and a employed in the present QC evaluations
are listed in Table 1. All the ancillary qubits have the same operators: two X gates and
two control gates, but in different orders and with varying targets. Each of the present
circuits has also one register qubit initially prepared in the END/QC reference state

∣∣0
〉
.

The operators in the register qubits correspond to those involved in each evaluated element
M̃jk and Ṽjk, cf. Equations (47) and (48). All these circuits end with a measurement of the an-
cillary qubit in the {|+⟩, |−⟩} basis [14], where |±⟩ = (|0⟩ ± |1⟩)/

√
2 are the eigenvectors

of the Pauli matrix X with eigenvalues +1 and −1, respectively [14]. The average measure-

ment provides the expectation value ⟨X⟩ = Re
(

eiα
〈
0
∣∣Ũ
∣∣0
〉)

, cf. Equations (37) and (38), as
explained in the following paragraph.









Figure 2. QC circuit to evaluate the element M̃21, Equation (47).



 







Figure 3. QC circuit to evaluate the element M̃23, Equation (47).









Figure 4. QC circuit to evaluate the element Ṽ1,hi
, hi = k = I, X, Y, Z, Equation (48).
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Table 1. Values of the circuit parameters α and a, and of the END/QC variational parameters ρ = ρµα

and ω = ωµα for the QC evaluation of the elements M̃jk and Ṽj,k, and of the matrix M and vector V

2–6.

Circuit-Evaluated Elements,
Matrix and Vector

END/QC Parameters
Value of the

Elements
Circuit Parameters

ρ (◦) ω(◦) α (◦) a(a.u.)

M̃23 = −a sin(2ρ) 240 180 M̃23 = −
√

3/2 90 1.0

Ṽ2,X = a cos(2ρ) cos(ω) 240 45 Ṽ2,X = −
√

2/4 90 2hµα = 2.0

Ṽ2,Z = −a sin(2ρ) 240 180 Ṽ2,Z = −
√

3/2 90 (hαα − hµµ)
= −0.7773

V3,X = −a sin(2ρ) sin(ω) 240 45 V3,X = −
√

6/4 90 hµα = 1

M Matrix 240 180 From previous circuits Ibid. Ibid.

V Vector 240 180 Ibid. Ibid. Ibid.







 

Figure 5. QC circuit to evaluate the element Ṽ2,hi
, hi = k = I, X, Y, Z, Equation (48).

 



   



     

          

   

  

  

{ }  

{ }  

{ }   tt

{ }  

{ }  

  ffi


β β  

   


 

  

  

Figure 6. QC circuit to evaluate the element Ṽ3,hi
, hi = k = I, X, Y, Z, Equation (48).

All the present quantum circuits operate similarly and we will elucidate their execution
by analyzing the sequential operations in the circuit for M̃23 shown in Figure 3. At each of
the steps drawn in Figure 3, the circuit total state |Ψi⟩ successively is

|Ψ0⟩ = 1√
2

(
|0⟩+ eiα|1⟩

)
⊗
∣∣0
〉
= 1√

2

(
|0⟩ ⊗

∣∣0
〉
+ eiα|1⟩ ⊗

∣∣0
〉)

;

|Ψ1⟩ = 1√
2

(
|1⟩ ⊗R1

∣∣0
〉
+ eiα|0⟩ ⊗R1

∣∣0
〉)

;

|Ψ2⟩ = 1√
2

(
|1⟩ ⊗ YR1

∣∣0
〉
+ eiα|0⟩ ⊗R1

∣∣0
〉)

;

|Ψ3⟩ = 1√
2

(
|0⟩ ⊗R2YR1

∣∣0
〉
+ eiα|1⟩ ⊗R2R1

∣∣0
〉)

;

|Ψ4⟩ = 1√
2

(
|0⟩ ⊗R2YR1

∣∣0
〉
+ eiα|1⟩ ⊗ ZR2R1

∣∣0
〉)

;

|Ψ5⟩ = 1√
2

(
|0⟩ ⊗R3R2YR1

∣∣0
〉
+ eiα|1⟩ ⊗R3ZR2R1

∣∣0
〉)

;

(50)
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By changing from the {|0⟩, |1⟩} basis to the {|+⟩, |−⟩} one in |Ψ5⟩, we obtain

|Ψ5⟩ = 1
2

[
|+⟩ ⊗

(
R3R2YR1 + eiαR3ZR2R1

)∣∣0
〉
+ |−⟩ ⊗

(
R3R2YR1 − eiαR3ZR2R1

)∣∣0
〉]

;

= 1
2

[
|+⟩ ⊗

(
Rξ2 + eiαRξ3

)∣∣0
〉
+ |−⟩ ⊗

(
Rξ2 − eiαRξ3

)∣∣0
〉]

;
(51)

where the unitary matrices Rξ2 and Rξ3 are defined in Equation (44). Then, from
Equation (51), the probability P(|±⟩) to find the ancillary qubit in the state |±⟩ is

P(|±⟩) = 1
4

〈
0
∣∣
(

Rξ2 ± eiαRξ3

)†(
Rξ2 ± eiαRξ3

)∣∣0
〉

= 1
2 ± 1

2 Re
(

eiα
〈
0
∣∣Rξ2

†
Rξ3
∣∣0
〉)

= 1
2 ± 1

2 Re
(

eiα
〈
0
∣∣Ũ
∣∣0
〉)

;
(52)

where Ũ = Rξ2
†
Rξ3 is another unitary matrix. Then, the average measurement of the

ancillary qubit in the {|+⟩, |−⟩} basis is the expectation value ⟨X⟩

⟨X⟩ = ⟨Ψ5|X⊗ I|Ψ5⟩ = (+1)P(|+⟩) + (−1)P(|−⟩) = Re
(

eiα
〈
0
∣∣Ũ
∣∣0
〉)

; (53)

which is the final result from the quantum circuit. From that, M̃23 is (cf. Table 1)

M̃23 = i f ∗2 f3
〈
0
∣∣Rξ2†Rξ3

∣∣0
〉
+ H. c. = aRe

(
eiα
〈
0
∣∣Ũ
∣∣0
〉)

= − sin
(
ρµα

)
;

a = 2|i f ∗2 f3| = 1; α = arg(i f ∗2 f3) =
π
2 ; Ũ = Rξ2†Rξ3 ;

(54)

The remaining circuits operate in a similar way.
To appraise the accuracy and precision of these circuits, we will examine their results

for the elements M̃23, Ṽ2,X, Ṽ2,Z, and Ṽ3,X corresponding to the values of the END/QC
variational parameters ρµα and ωµα listed in Table 1. These are the only elements having

circuit-evaluated components Re
(

eiα
〈
0
∣∣Ũ
∣∣0
〉)

not identical to zero ∀ρµα and ωµα. We
performed all these circuit calculations on the QC software development kit QISKIT [21].
To appraise the accuracy of these QC calculations, we will consider the absolute error (AE),
AE
[
TQC(ns, i)

]
, and mean AE (MAE), MAE

[
TQC(ns)

]
:

AE
[

TQC(ns, i)
]
=
∣∣∣TQC(ns, i)− TExact

∣∣∣; MAE
[

TQC(ns)
]
=

1
Nr

Nr

∑
i=1

AE
[

TQC(ns, i)
]
; (55)

where TQC(ns, i) is the value of M̃23, Ṽ2,X , Ṽ2,Z, or Ṽ3,X from the i repetition of a QC calcula-
tion with ns shots, and TExact is the value of the same element from its analytical expression,
Equations (47) and (48). The MAE

[
TQC(ns)

]
is the average of the AE

[
TQC(ns, i)

]
over

the total number of repetitions Nr. In Figures 7–10, we plot the log2

{
AE
[
TQC(ns, i)

]}
for

i = 1 to Nr = 1000 repetitions, and the log2

{
MAE

[
TQC(ns)

]}
vs. log2(ns). In each figure,

for a given number of shots ns, the individual values of log2

{
AE
[
TQC(ns, i)

]}
appear as

vertically scattered blue points, and the values of log2

{
MAE

[
TQC(ns)

]}
appear as red

start points/lines. In addition, in each figure, we plot the regression line corresponding
to log2

{
MAE

[
TQC(ns)

]}
vs. log2(ns) in black and report its slope α̃, intercept β̃, and co-

efficient of determination R2 in each figure caption. Remarkably, all the regression lines
exhibit the same slope α̃ ≈ −1/2 with a perfect correlation with R2 ≈ 1:

log2

{
MAE

[
TQC(ns)

]}
= α̃ log2(ns) + β̃ ≈ − 1

2 log2(ns) + β̃;

⇒ MAE
[
TQC(ns)

]
≈ 2β̃n−1/2

s ;
(56)

i.e., the asymptotic behavior of these errors with respect to ns is of the order O
(

n−1/2
s

)
.

To appraise the precision of these QC evaluations, we will now consider the standard
deviation (SD), σ(ns), of the individual AE

[
TQC(ns, i)

]
with respect to its MAE

[
TQC(ns)

]
:
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σ(ns) =

√√√√ 1
Nr

Nr

∑
i=1
{AE[TQC(ns, i)]−MAE[TQC(ns)]}

2

; (57)

where all the terms have been defined in/after Equation (55). In Figure 11, we plot the
log2[σ(ns)] vs. log2(ns) of the QC calculations of M̃23, Ṽ2,X , Ṽ2,Z, and Ṽ3,X and their corre-
sponding regression lines. Like in the MAEs’ case, all the regression lines of the SDs show
the same slope α̃ ≈ −1/2, with a perfect correlation with R2 ≈ 1. This demonstrates that

the asymptotic behavior of the error spread with respect to ns is of the order O
(

n−1/2
s

)
.

The QC evaluations of the remaining elements M̃jk and Ṽjk having circuit-evaluated com-

ponents Re
(

eiα
〈
0
∣∣Ũ
∣∣0
〉)

identical to zero ∀ρµα and ωµα exhibit same behaviors and trends
in their accuracy and precision.

      

  
   



 





tt

tt   ffi

Figure 7. log2-log2 plot of the absolute error (AE) in QC calculations of the element M̃23 vs. the
number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦ and ω = 180◦,
and circuit parameters α = 90◦ and a = 1.0. AEs from 1000 repetitions per each ns appear as
scattered blue dots, and their mean absolute error (MAE) per each ns appear as red stars. For the
latter, a regression line with slope α̃ = −0.50077038, intercept β̃ = −1.8216273, and coefficient of
determination R2 = 0.9999 appears as a black dashed line.





tt

tt 
 ffi





tt

tt 
 ffi

Figure 8. log2-log2 plot of the absolute error (AE) in QC calculations of the element Ṽ2,X vs. the
number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦ and ω = 45◦,
and circuit parameters α = 90◦ and a = 2h̃X = 2hµα = 2.0 a.u. AEs from 1000 repetitions per each ns

appear as scattered blue dots, and their mean absolute error (MAE) per each ns appear as red stars.
For the latter, a regression line with slope α̃ = −0.50006339, intercept β̃ = 0.07408203, and coefficient
of determination R2 = 0.9998 appears as a black dashed line.
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


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 ffi





tt
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Figure 9. log2-log2 plot of the absolute error (AE) in QC calculations of the element Ṽ2,z vs. the
number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦ and ω = 180◦,
and circuit parameters α = 90◦ and a = 2h̃z = (hαα − hµµ) = −0.7773 a.u. AEs from 1000 repetitions
per each ns appear as scattered blue dots, and their mean absolute error (MAE) per each ns appear as
red stars. For the latter, a regression line with slope α̃ = −0.49975525, intercept β̃ = −2.68894878,
and coefficient of determination R2 = 0.9999 appears as a black dashed line.





tt

tt 
 ffi

  

ff

 

Figure 10. log2-log2 plot of the absolute error (AE) in QC calculations of the element vs. Ṽ3,X the
number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦ and ω = 45◦,
and circuit parameters α = 90◦ and a = h̃X = hµα = 1.0 a.u. AEs from 1000 repetitions per each
ns appear as scattered blue dots, and their mean absolute error (MAE) per each ns appear as red
stars. For the latter, a regression line with slope α̃ = −0.49819948, intercept β̃ = −0.68106768 and
coefficient of determination R2 = 0.9999 appears as a black dashed line.

Finally, to elucidate a full END/QC/VQS simulation, we will examine its operations
for the pure electronic dynamics of a H2

+ molecule, an homonuclear diatomic system.
Before examining computational aspects, we will briefly discuss the spatial symmetry of H2

+

and its effect on the END/QC dynamics. H2
+ has a D∞h spatial symmetry, and its HOMO

and LUMO, ψ̃α and ψ̃µ, belong to the one-dimensional D∞h irreducible representations of
gerade (σg) and ungerade (σu) functions, respectively [37,44]. This discrepancy between
representations dictates that hµα = hαµ = h̃X = 0 exactly [37,44], cf. Equation (46). Due
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to this condition, the END/QC equations of motion for H2
+, Equation (49), can be solved

analytically as

.
ρµα(t) = 0⇒ ρµα(t) = ρ0

µα;
.

ωµα(t) = −
(
hµµ − hαα

)
⇒ ωµα(t) = −

(
hµµ − hαα

)
t + ω0

µα;
∣∣Ψ
[
ρµα(t), ωµα(t)

]〉
=
∣∣∣cos

(
ρ0

µα

)
ψα + exp

[
+iωµα(t)

]
sin
(

ρ0
µα

)
ψµ

〉
;

(58)

where ρ0
µα and ω0

µα are two initial conditions. Notice that the time-dependent exponential
term of

∣∣Ψ
[
ρµα(t), ωµα(t)

]〉
involves the angular frequency

(
hµµ − hαα

)
= ∆µα, i.e., the

HOMO–LUMO gap.
∣∣Ψ
[
ρµα(t), ωµα(t)

]〉
remains stationary as an spin-orbital ±ψα or

± exp
[
+iωµα(t)

]
ψµ∼±ψµ if ρ0

µα = kπ or = (2k− 1)π/2, k = 0, ±1, ±2 . . ., respectively. For
values of ρ0

µα different from the previous ones,
∣∣Ψ
[
ρµα(t), ωµα(t)

]〉
superimposes both spin-

orbitals ψα and ψµ, undergoes a real dynamics, and leads to molecular properties evolving
with angular frequency ωµα =

(
hµµ − hαα

)
= ∆µα(cf. the last paragraph of this section).





tt

tt 
 ffi

  

ff

 

Figure 11. log2[σ(ns)] as a function of log2(ns) for the results of the individual QC circuits and of
the M matrix and V vector. Legend on the upper right specifies the color and marker for each of
the curves.

To perform an END/QC/VQS simulation according to the flowchart in Figure 1, we
will consider a H2

+ molecule described with a minimal STO-3G basis set [37] (cf. Approxi-
mation 1, Section 4), and with a bond distance R = 1.4 a.u. The END/QC/VQS simulation
of this system starts with task I that calculates the spin-orbital integrals hαα = −1.2528 a.u.
and hµµ = −0.4756 a.u., cf. Equation (46), for the initial nuclear positions of H2

+. This task
is performed on a classical computer with the OED/ERD atomic integrals package [10]
incorporated in our END code PACE [4]. In the present example, task I need not be repeated
at each successive time step because the nuclear positions of H2

+ do not change during
pure electronic dynamics. Next, task II calculates the matrix M and vector V for the values
of the END/QC variational parameters ξ(t) = ρµα(t) and ωµα(t) at each time step. Task
II is performed on the QC software development kit QISKIT [21] with the QC circuits in
Figures 2–6, which calculate the basic elements M̃jk and Ṽjk as discussed previously; these
elements are subsequently combined to construct M and V via Equations (47) and (48).
To appraise the accuracy and precision of the M and V calculations, we consider the root
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mean squared error (RMSE), RMSE
[
AQC(ns, i)

]
and the mean RMSE, MRMSE

[
AQC(ns)

]
,

for A = M or V as

RMSE
[
AQC(ns, i)

]
= +

√
1

N

N

∑
j,k=1

[
AQC

jk (ns, i)− AExact
jk

]2
;

MRMSE
[
AQC(ns)

]
=

1
Nr

Nr

∑
i=1

RMSE
[
AQC(ns, i)

]
;

(59)

where AQC
jk (ns, i) is the value of an element/component of A from the i repetition of a

QC calculation with ns shots, AExact
jk is the value of the same element/component from an

analytical expression, Equations (47) and (48), N is the number of elements/components
of A, and Nr is the total number of repetitions = 1000; the RMSE is proportional to the

Frobenius norm
∥∥∥AQC −AExact

∥∥∥. Like in Figures 7–10, we plot in Figures 12 and 13 the

log2

{
RMSE

[
AQC(ns, i)

]}
, log2

{
MRMSE

[
AQC(ns)

]}
, and the regression line of the latter

vs. log2(ns) of A = M and V, respectively, for the values of the END/QC variational
parameters ρµα and ωµα listed in Table 1. In addition, we plot in Figure 11 the log2 of the SD

of the RMSE
[
AQC(ns, i)

]
’s with respect to its MRMSE

[
AQC(ns)

]
and its regression line

vs. log2(ns). Like in all previous QC calculations, the log2-log2 plots of the MRSMEs and
SDs vs. ns show the same slopes α̃ ≈ −1/2 with perfect linear correlations; furthermore,

both metrics again scale asymptotically with an order O
(

n−1/2
s

)
.
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Figure 12. log2-log2 plot of the root mean square error (RMSE) in QC calculations of the matrix M

vs. the number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦

and ω = 180◦, and circuit parameters α = 90◦ and a = 1.0. RMSEs from 1000 repetitions per each
ns appear as scattered blue dots, and their mean RMSEs per each ns appear as red stars. For the
latter, a line of regression with slope α̃ = −0.50077038, intercept β̃ = −2.3216273, and coefficient of
determination R2 = 0.9999 appears as a black dashed line.

Finally, task III integrates the END/QC equations of motion with the current M and
V over one time step ∆t to obtain the new END/QC variational parameters ρµα(t + ∆t)

and ωµα(t + ∆t) for the subsequent time step. This task is performed with the differential
equations solvers of PACE [4] on a classical computer. Alternatively, in the present example,
the dynamics can be computed analytically with the expressions in Equation (58).
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Figure 13. log2-log2 plot of the root mean square error (RMSE) in QC calculations of the vector V

vs. the number of shots ns. Values corresponding to END/QC variational parameters ρ = 240◦ and
ω = 180◦, and circuit parameters α = 90◦ and a = 2h̃z = (hαα − hµµ) = −0.7773 a.u. RMSEs from
1000 repetitions per each ns appear as scattered blue dots, and their mean RMSEs per each ns appear
as red stars. For the latter, a regression line with slope α̃ = −0.49975525, intercept β̃ = −2.18894878,
and coefficient of determination R2 = 0.9999 appears as a black dashed line.

To illustrate the dynamics of H2
+ and gain chemical insight, we will present the

time evolution of some molecular properties of H2
+ from the time-dependent END/QC

wavefunction
∣∣Ψ
[
ρµα(t), ωµα(t)

]〉
. A first property to consider is the one-electron density

ρ(r, t) [37]:
ρ(r) =

∣∣Ψ
[
ρµα(t), ωµα(t)

]∣∣2 = ∑
A,B

PAB(t)ϕA(r)ϕ∗B(r); (60)

where P(t) = [PAB(t)] is the one-electron density matrix in the atomic orbitals’ basis
{ϕA, ϕB}. ρ(r, t) provides the probability density to find the electron of H2

+ in position r

at time t. The other properties are the electron Mulliken populations [37] on the nuclei A

and B, NA(t) and NB(t), respectively:

NA(t) = 1− NB(t) = ∑
C∈A

[P(t)S]CC; (61)

where S = (SAB) is the overlap matrix of the atomic orbitals {ϕA, ϕB}. NA(t) and NB(t)

provide estimates of the total number of electrons around nuclei A and B, respectively.
In Figure 14, we show six sequential snapshots of an END/QC/VQS/STO-3G computer
animation of the pure electronic dynamics of H2

+ at bond distance R = 1.4 a.u. and from the
initial conditions ρ0

µα = 5◦ and ω0
µα = 0◦. The distortion on the electronic density introduced

by the initial variational parameters reproduces a perturbation on that density caused by an
incoming ion or by an external electric field. The selected values of these parameters lead to
a dynamics appropriate for validation and visualization. In each frame of Figure 14, white
spheres represent the fixed H nuclei, and the green cloud depicts an electron density ρ(r, t)

iso-value = 0.1 a.u. In the first frame at evolution time t = 0 fs, we notice that the initial
condition ρ0

µα = 5◦ distorts the ground-state density ρgs(r) = |ψα(r)|2 conforming to the D∞h

molecular symmetry into an upright pear shape density ρ(r, t = 0) not conforming to D∞h

symmetry but to the lower C∞v one. This reveals a spatial symmetry breaking [19,41,42]
in
∣∣Ψ
[
ρµα(0), ωµα(0)

]〉
and ρ(r, t = 0), which results from the combination of the spin-

orbitals ψα and ψµ from different D∞h irreducible representation in
∣∣Ψ
[
ρµα(0), ωµα(0)

]〉

when ρ0
µα = 5◦, cf. Equation (58). In a sense, this superposition (“mixing”) of the spin-

orbitals and its resulting symmetry breaking propel the subsequent dynamics. In the
following frames, ρ(r, t) evolves to a D∞h-conforming shape at t = 0.242 fs, to a C∞v-
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conforming downright pear shape at t = 0.484 fs, again to a D∞h-conforming shape at
t = 0.726 fs, and finally to the initial upright pear shape at t = 0.968 fs. This transformation
of shapes repeats periodically in time. In chemical terms, these snapshots reveal that H2

+

undergoes periodical intramolecular electron transfers between the two nuclei.

− −

Figure 14. Six sequential snapshots of an END/QC/VQS/STO-3G computer animation of the pure
electronic dynamics of H2

+ at bond distance R = 1.40 a.u. and from the initial conditions ρ◦µα = 5.0◦

and ω◦µα = 0.0◦. Simulation times in femtoseconds. The white spheres represent the fixed H nuclei
and the green cloud depicts an electron density ρ(r, t) iso-value = 0.1 a.u.

Finally, in Figure 15, we plot the electron Mulliken population on one of the nuclei of
H2

+ vs. time obtained by numerical integration of the END/QC equations, Equation (49),
with the Shampine-Gordon predict-evaluate-correct-evaluate method [45] in PACE [4], and
obtained from the analytical solution in Equation (58). Numerical and analytical results are
identical as expected. Both types of Mulliken populations oscillate sinusoidally with the
theoretical period T =2π/ωµα = 2π/

(
hµµ − hαα

)
= 2π/∆µα = 8.0844 a.u., cf. Equation (58),

where hαα = −1.2528 a.u. and hµµ = −0.4756 a.u. in H2
+ with R = 1.4 a.u.. Figure 15 also

reveals the aforesaid intramolecular electron transfers.

− −

Figure 15. Electron Mulliken population (MP) on a H nucleus vs. time from an END/QC/VQS/STO-
3G simulation of the pure electronic dynamics of H2

+ at bond distance R = 1.40 a.u. and from initial
conditions ρ◦µα = 5.0◦ and ω◦µα = 0.0◦.
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7. Conclusions and Future Work

In this manuscript, we present the first step toward the QC formulation of the END
method [3,4] within the VQS scheme [17], i.e., END/QC/VQS. END [3,4] is a time-
dependent, variational, direct, and non-adiabatic method to simulate various types of
chemical reactions and scattering processes. As implemented in our code PACE [4] on
classical computers, END adopts a total trial wavefunction that represents nuclei with frozen
Gaussian wave packets and electrons with a single-determinantal state in the Thouless
non-unitary representation [5]. The END equations of motions are obtained through the
application of the TDVP [2] to the END trial wavefunction; this procedure renders a set
of symplectic equations for the nuclear and electronic variational parameters ξ, M

.
ξ = V,

where M is the phase-space metric matrix and V the energy gradient vector [2–4]. To imple-
ment END on quantum computers, we adopt the VQS scheme [17]: a hybrid quantum/classical

approach to simulate symplectic equations of motion from the TDVP [2] and analogous
variational principles [24–26]. In our case, an END/QC simulation in the VQS scheme
involves three main tasks: (I) the calculation of atomic and molecular basis functions
integrals on a classical computer, (II) the calculation of all the components of the END/QC
equations of motion, M and V, on a quantum computer, and (III) the time integration of
those equations, M

.
ξ = V, on a classical computer. The philosophy of the VQS scheme [17]

is to perform each numerical task on the type of computer, either classical or quantum, that
delivers the most efficient result with current technology.

To derive the general END/QC formalism, we substitute Thouless non-unitary rep-
resentation of the END single-determinantal electronic state [3,4] with Fukutome unitary

representation [19] of the same state. Through this innovation, the new END/QC formalism
fits directly into the unitary framework of QC [14]. Fukutome representation is based on the
U(K) Lie unitary group [19]; therefore, to understand the END/QC structure, we present a
review of Fukutome representation that underlines its relationship with the U(K) group
and associated algebra via second quantization. In this context, we are the first to identify
Fukutome unitary transformation matrices and transformed spin-orbitals as multi-qubit
generalizations of one-qubit unitary matrices U(2) and of one-qubit Bloch sphere states [14],
respectively. In this investigation, we adopt a Fukutome unitary representation in terms
of real parameters because it fits directly into the chemical systems under consideration.
Accordingly, we also present a review of the particular form of the TDVP in terms of real
variational parameters [2]. Nevertheless, it is possible to derive alternative formulations of
END/QC in terms of the Fukutome unitary representation with complex parameters, or in
terms of the Thouless non-unitary representation with complex parameters via LCU [20];
we will present these alternative approaches in a following study soon.

The formulation and code implementation of END/QC for any type of dynamics and
chemical systems are challenging endeavors. Therefore, in this investigation, we develop
END/QC for pure electronic dynamics, i.e., for the time evolution of the electrons in the
presence of fixed nuclei. Furthermore, within this dynamics, we derive END/QC for a
family of model chemical systems defined by a set of four approximations; the latter are akin
to semi-empirical approximations [23] employed in quantum chemistry [23]. In essence,
these model systems consist of various chemical units (atoms, molecules, monomers, etc.),
each of them containing two effective electrons with opposite spins and represented with a
minimal basis set. For these systems, Fukutome unitary transformation matrices factorize
into one-qubit U(2) matrices; in turn, each of these U(2) matrices factorizes into three
one-qubit rotational matrices Rz

(
+ωµα

)
, Ry

(
2ρµα

)
, and Rz

(
−ωµα

)
in terms of two real

angle parameters ρµα and ωµα. Concomitantly, Fukutome transformed spin-orbitals become
one-qubit Bloch sphere states in terms of ρµα and ωµα. This decomposition leads to a natural
QC encoding of END/QC for the chosen systems wherein each individual electron can be
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assigned to a single qubit. We adopt this natural encoding in this investigation and will
present alternative formulations in terms of standard QC encodings [16] in a following
study soon.

Within the described framework, we derive all the END/QC expressions for one-
electron heteronuclear diatomic molecules. We present various formulas to evaluate the
END/QC spin-orbitals, wavefunction, total energy, matrix M and vector V in both analyti-
cal and QC programming forms. In addition, we present the encoded Hamiltonian and full
END/QC equations of motion. To evaluate M and V, we design and code five QC circuits
(cf. Figures 2–6) on the QC software development kit QISKIT [21], which acts as a simulator
of a real quantum computer; these circuits are the END/QC versions of the VQS circuit [17].
For illustration’s sake, we analyze the step-by-step functioning of the END/QC circuit
depicted in Figure 3. With these circuits, we evaluate the elements/components of M and
V, and the whole M and V constructs, and calculate various metrics to gauge the accuracy
(as MAE or mean RMSE) and precision (as SDs) of the QC results with respect to their
analytical counterparts. Remarkably, in log2-log2 plots, we find that the error and deviation
of all the QC results exhibit a perfect decreasing linear correlation with the number of shots
ns and with a same slope equal to −1/2 (cf. Figures 7–13). In other words, we find that the

error and deviation of these QC calculations scale asymptotically with order O
(

n−1/2
s

)
.

We illustrate a full END/QC/VQS simulation with the pure electronic dynamics
of a H2

+ molecule, a homonuclear diatomic subcase. In this endeavor, we execute all
the QC circuits for task II on the QC software development kit QISKIT [21]. We first
demonstrate that this H2

+ two-parameter END/QC dynamics has the analytic solution
ρµα(t) = ρ0

µα = constant and ωµα(t) = −∆µαt + ω0
µα, where the angular frequency ∆µα is

the HOMO–LUMO energy gap. We exemplify the three main tasks of the END/QC/VQS
algorithm with this H2

+ case. Finally, we plot the time evolutions of the one-electron
density and of the electron Mulliken populations corresponding to the END/QC/VQS
dynamics of H2

+. Both properties evolutions reveal a periodic intramolecular electron
transfer between the two nuclei. The analytical solution of the END/QC equations indicates
that the “trigger” of this dynamics is the breaking of the D∞h spatial symmetry in the initial
END/QC wavefunction; such breaking is generated by the superposition of the HOMO
and LUMO that correspond to the gerade and ungerade 1D irreducible representation of
D∞h, respectively [19,41,42]. The plot of the electron Mulliken population vs. time from
the numerically integrated END/QC/VQS equations agrees with its counterpart from
analytical formulas. Those electron Mulliken populations oscillate in time with an angular
frequency equal to the HOMO–LUMO energy gap ∆µα.

This manuscript presents a successful proof of concept of END/QC/VQS, a solid foun-
dation from which we can continue developing this method to its full maturity. However,
we would like to emphasize that we are not claiming that this investigation has completely
solved the arduous problem of simulating chemical reactions on quantum computers,
nor that this investigation will revolutionize the fields of QC and quantum chemical dy-
namics. On the contrary, this investigation is just the first step toward a fully developed
END/QC/VQS, a method currently in its infancy. The objective merits of this investigation
lie on the introduction of the Fukutome unitary representation [19] as a key tool to develop
END/QC/VQS, the first derivation of the END/QC/VQS formalism for model systems
with any number of electrons, the first END/QC/VQS calculations of the metric matrix M

and the gradient vector V in one-electron diatomic molecules, and the first END/QC/VQS
simulation of the pure electronic dynamics with fixed nuclei of the H2

+ molecule (all those
one-electron prototypes provide analytical solutions for comparison). We emphasize that in
those efforts, we executed all the reported QC algorithms on the QC software development
kit QISKIT [21] and not on real quantum computers. Thus, this investigation is the first and
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necessary step in the long road leading to the chemical reactions’ simulations on quantum
machines. Toward this goal, in a series of forthcoming publications, we will first apply
the current END/QC/VQS to larger model systems in order to further appraise this novel
approach. Then, and more importantly, we will generalize the current END/QC/VQS
for full electronic and nuclear dynamics, and for any type of molecules described with ab
initio Hamiltonians and large basis sets. In this regard, we are currently implementing full
nuclear and electronic END/QC/VQS dynamics of various multielectron molecules, such
as H2, LiH, BeH2, H2O, etc. Finally, we will extend our QC formulation to the currently
classical tasks, tasks I and III, of END/QC/VQS and execute the QC algorithms on real
quantum computers.
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