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1 Introduction

The original analytic solution for tachyon condensation in open bosonic string field the-
ory [1] (henceforth, the By gauge solution) takes the form of a regulated sum

Nod
® = lim_ [wN — 2:; %%] : (1.1)

where 1), are wedge states with certain insertions (for more details, see [1, 2]). The form
of this solution has long been a puzzle. First, the limit suggests that the solution may live
outside the space of well-behaved string fields — like a distribution is a limit of a sequence
of functions. Second, the mysterious ¥ term — the so-called “phantom piece” — actually
vanishes when contracted with well-behaved states in the large N limit. But we cannot
simply set limy_,oo ¥y = 0 since, if we evaluate the action analytically [1], the ¢n term
produces a substantial portion of the energy required to prove Sen’s conjecture [3]. Yet,
the ¥ term does not contribute to the energy in the ordinary level expansion [1, 4], since
as a state in the Fock space it vanishes identically.

By now the regularization and phantom piece are better understood [2, 5-10], and
there is little doubt that the By gauge solution is for practical purposes nonsingular. Yet,



no one has found an adequate definition of the solution — or gauge equivalent alternative
— which does not require the regulated sum and phantom piece.

In this note, we present an alternative solution for the tachyon vacuum which avoids
the above complications. Instead of a discrete sum, the solution involves a continuous
integral over wedge states, and no regularization or mysterious phantom term is necessary.
Moreover, evaluation of the action and the proof of Sen’s conjectures is, in contrast to the
By gauge, very straightforward.

Broad classes of generalizations of the By gauge solution have been constructed
in [7, 11-14]. Note in particular that our new solution is a special case of the solutions
considered in [7], though our analysis will be quite different.

This paper is organized as follows. In the first half of the paper, section 2, we present
the new solution for the tachyon vacuum. In section 2.1 we prove the absence of open string
states around the vacuum and calculate the brane tension, giving a very simple proof of
Sen’s first conjecture. In section 2.2 we discuss pure gauge solutions and their relation
to the mysterious phantom piece, and in section 2.3 we prove that the vacuum does not
source closed strings.

In the second half of the paper, section 3, we investigate the energy of the new solution
in level truncation. As a warmup exercise, in section 3.1 we consider the £y level expansion.
Due to the simplicity of our solution, we can solve the Ly expansion exactly, and we resum
the expansion to confirm Sen’s conjecture up to better than one part in 10 million. In
section 3.2 we consider the “true” level expansion in terms of eigenstates of L. Surprisingly
— unlike the Siegel gauge or By gauge tachyon condensates — we find that the expansion
does not converge. In order to understand this, in section 3.3 we construct a toy model of
our solution where the Lg level expansion, though divergent, can be solved exactly. In the
end, we are able to resum the Lg expansion and confirm Sen’s conjecture to better than
99%. We end with some discussion.

2 Solution

The new vacuum solution can be presented using the same basic algebraic setup as the
original By gauge solution [2, 14]—that is, it can be built out of three “atomic” string fields
K. B,c:

K = Grassmann even, gh# = 0,
B = Grassmann odd, gh# = —1,
¢ = Grassmann odd, gh# =1, (2.1)

which satisfy the algebraic relations

[K,B] =0, Bc+cB=1,
B%* =0, =0, (2.2)

and have BRST variations (Q = @p)

QK =0, QB=K, Qc=cKec. (2.3)



All products above are open string star products. Thus, K, B, c generate a subalgebra
of the open string star algebra which is closed under the action of the BRST operator.
Perhaps the most useful explicit definition of K, B, ¢ is given in terms of CFT correlation

1

functions on the cylinder." To keep the presentation self-contained, we explain how this

works in appendix A. Note that the SL(2,R) vacuum can be written explicitly in terms of
K [2, 14]:

0y =Q=¢k. (2.5)
By extension, any power of the vacuum — that is, a wedge state [15] — can be expressed

as QO = e X for t > 0.

With these preparations, the new solution for the tachyon vacuum is:

U= [c + cKBc] (2.6)

1+ K

Let us be specific about the definition of ﬁ We can invert 1 + K using the

Schwinger parameterization

1 *  _H14K) /OO —tot
_— = pu— Q 2-
T, /0 dte ; dte , (2.7)

so, if we like, we can re-express eq. (2.6) in the form
o0
U= / dte™" [c—i—cKBc] Q. (2.8)
0

That’s all there is to it. No regularization or “phantom piece” is necessary. See figure 1
for a picture of the solution as a correlation function on the cylinder.
It is straightforward to verify the equations of motion. Note that ¢cKBec = Q(Bc)
and hence
QY =cKc

i (2.9)

To compute W2 it is convenient to write ¢ + ¢K Be as ¢(1 + K)Be. Then commute one of
the Bs in ¥? towards the other and the equations of motion are quickly established.

An important property of our solution is that it involves integration over wedge
states arbitrarily close to the identity. The identity string field is a somewhat unruly
object [15, 16], and indeed the solution exhibits surprising convergence properties in the
level expansion. But still we have found convincing analytic and numerical evidence that
the solution describes the endpoint of tachyon condensation. We explicitly construct the
gauge transformation relating this solution to the By gauge vacuum in appendix B.

'In the operator notation these fields can be written,
™ ™ 1
K =Z()ul), B=2BulD), e=—e()D), (2.0

where K1 = L1 + L_1,B1 = b1 + b_1, |I) is the identity string field, and the subscript L denotes taking
the left half of the corresponding charge — that is, integrating the current from —i to ¢ on the positive half
of the unit semicircle. Note that each field K, B, ¢ written here differs by a sign from the definitions used
in [7, 14].
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Figure 1. Overlap of the solution eq. (2.6) with a Fock space state |¢), pictured as a conformal
field theory correlation function on the cylinder. See appendix A for further explanation.

Eq. (2.6) is closely related to another solution which satisfies the string field real-
ity condition:?

U = L [c + cKBc] (2.10)

v+ K

where the inverse square root of 1 + K is

1
VI+ K’
1 1 [~ 1
- = dt —e 'O 2.11
VITK ﬁ/o Vi (211)

¥ and ¥ are related by a complex homogeneous gauge transformation

1
V1+ K

The original W is a simpler solution, but for some purposes the real U is more convenient.

U = (Q+V)V1+K. (2.12)

For example, W is twist even, so it lives in the same universal subspace as the By gauge
vacuum and the Siegel gauge condensate. Also, the non-real ¥ has a ¢ insertion on the
boundary of the local coordinate, so ¥ could have singular contractions with states carrying
insertions that collide with the ¢ ghost.? For the purposes of this paper these differences

2In open string field theory, the string field is conventionally assumed to satisfy the following reality
condition:

ot = @,

where 1 is an involution of the star algebra defined by the composition of BPZ and Hermitian conjuga-
tion [17]. K, B and c are real string fields in this sense, so in this context the reality condition simply requires
that the string field read the same way from the left as from the right. The reality condition is sufficient to
guarantee that the action is real and that the string field carries the correct number of perturbative degrees
of freedom. However, all known observables in string field theory are invariant under “complex” gauge
transformations which do not necessarily preserve the reality condition. Therefore an acceptable solution
may not satisfy the reality condition, but it must be in the same (complex) gauge orbit as a solution that
does.

3Note that this problem may also afflict U though the c insertion never sits on the boundary of the local
coordinate, it becomes arbitrarily close to the boundary as the integration approaches the identity string
field. Hence, for example, the action of the operators b(1) and b(—1) on both ¥ and V¥ is divergent due to
singular collisions with the c-ghost.



will not prove to be significant. The analytic proof of Sen’s conjectures is identical for
either solution, and we will often use them interchangeably.

Neither ¥ nor U satisfies a linear b-ghost gauge condition. However they do satisfy
a linear gauge of a more general type, something we call a “dressed By gauge.” We will
explain this class of gauges in appendix C.

2.1 Sen’s conjectures

Let us demonstrate that the solution (2.6) describes the endpoint of tachyon condensation.
We need to establish two things [3]: first, no open strings are present at the vacuum, and
second, that the vacuum has precisely minus the energy of an unstable D-brane.

It is easy to show that ¥ supports no open string excitations. Following [18, 19], this
follows if there exists a string field A (the homotopy operator) satisfying

QuA =1, (2.13)

where Qg = Q + [V, ] is the vacuum kinetic operator. If this is the case, any Qg closed
state @ can be written as Qy(A®P) and the cohomology is trivial. The homotopy operator

for our solution is easily found:

A=B——. (2.14)

Therefore Qg has no cohomology.*
Let us now calculate the energy. Sen’s conjecture predicts that, in the appropriate
units,® the energy of the vacuum should be

1

(2.16)

where S(¥) is the action. Assuming the equations of motion, we can compute the action
using only the kinetic term:

1 1 1 1
E—=-(U,Qp¥) = =T [ KB K , 2.1
6< QpY) 5 r(c—l—c C]1+KC cl—l—K> (2.17)

where we write

Tr(-) = (1,) (2.18)

to denote the one point vertex. Now expand the ﬁ factors in terms of wedge states and
use cK Be = Q(Bc) to write the second term as a “total derivative”:

E= % /O " dtydty et [Tr (cQtchcQtQ) Tr (Q [BcQtchcQtQM . (2.19)

“We should mention that the existence of a homotopy operator implies the absence of cohomology at
all ghost numbers, not just at the physical ghost number of 1. This appears to be in conflict with some
numerical studies [20], and the paradox has yet to be resolved.

®We normalize the ghost correlator

(c(z1)c(22)c(z3))unp = (21 — 22)(22 — 23) (21 — 23) (2.15)

and set the spacetime volume factor and open string coupling constant to unity. Our normalizations agree
with [1, 2].



The second term is a trace of a BRST exact state, and therefore vanishes.® The energy

reduces to: 1 oo
E = G / dtidta e 72 Ty (cQtchcQtQ). (2.20)
0
Following appendix A, we can translate the trace into a correlation function on the cylinder,
which is then easy to evaluate by the usual CFT methods. (This particular correlator has

already been computed e.g. in [1, 2].) The answer is,

2
t t t
Tr <cQtchcQt2> —_(htie sin? L (2.21)
T t1 4+ 12
Therefore, we can compute the energy by evaluating the double integral,
1 [ t+12)? t
E = __/ dtidty e 11712 ( o 2> sin 2 (2.22)
6 0 ™ tl + t2
This looks complicated, but with the substitution
u= t;+ts, u€l0,00),
1
v = , vel0,1]
t1 +t2 0,1]
dt1dty = wdudv, (2.23)

the double integral factorizes into a product of two very simple integrals

1 [e§) 1
E=—-— / duude / dvsin®? o | . (2.24)
67T2 0 0

The first is I'(4) = 6, and the second is the integral of sin? over a period, which produces

a factor of 1/2. Therefore

1

in agreement with Sen’s conjecture.

2.2 Pure gauge solutions and the phantom piece

The absence of a phantom term in our solution comes as a surprise. To see why, let us
mention a related issue: All solutions for the tachyon vacuum (constructed so far) are, in
a sense, arbitrarily close to being pure gauge. In particular, for every vacuum solution
®, there is a one parameter family of pure gauge solutions ®), A € [0,1) such that the
Fock space component fields of @) approach those of ® as A approaches 1. Yet, if the
tachyon vacuum is expanded in a basis of £, eigenstates (see next section) the expansion
coefficients never appear close to a pure gauge solution, for any A. Therefore the tachyon
vacuum and pure gauge solutions must differ by a term which vanishes in the Fock space,

50ne should be a little careful about this. In particular, since the integration includes traces of wedge
states arbitrarily close to the identity, if the insertions have net scaling dimension > 2 in the sliver coordinate
frame, there could be a divergence leading to an anomaly. Fortunately, the insertions in the second term
have net scaling dimension —1, so such divergences are absent.



but whose expansion in Ly eigenstates is nevertheless nonvanishing. This is the origin of
the phantom piece.

Since the phantom piece does not explicitly appear in our solution, we need to track
down where it went. Following Okawa [2],” we can construct the appropriate one parameter
family of pure gauge solutions, Wy:

2.27
l- A+ K1+ K (2.27)

1+ K 1
\I/,\:)\\I/—)\(l—)\)<cB + >
where ¥ is the vacuum solution eq. (2.6). Assuming the second term vanishes as A ap-
proaches 1, the vacuum and pure gauge solutions appear to become identical. But we
should be more careful. Using the Schwinger representation to expand the second term
more explicitly:

o 1
: _ — : _ -1-Ntot| .~
)l\l_)ml(\I’ U,y) cB(l%—K))l\l_)m1 [(1 )\)/0 dte Q} TR (2.28)

In this form the subtlety of the limit is clear. Though 1 — A vanishes, as A — 1 there
is a corresponding divergence from the integration over all wedge states (Q! approaches a
constant — the sliver state — for large t). The product of these factors is finite, and in fact

Jim (1) / dt e"1=NEQt = 0, (2.29)
—1- 0

where Q is the sliver state. Substituting into eq. (2.28) therefore gives®

)l\lml(\I’ —U,) =cBOQ>c (2.30)

1+ K

Since B annihilates the sliver when contracted with Fock space states [1, 7], the last term
is a phantom piece. However, unlike in By gauge, the phantom term appears in the pure
gauge solution (as A approaches 1), not the tachyon vacuum.

2.3 Closed string tadpole

Since our solution describes an empty vacuum without D-branes, the field configuration
should leave the closed string background undisturbed. One way to check this is to compute
the closed string tadpole, which can be evaluated as a disk amplitude

As (V) = —(V(ic0)c(0)) ey BeFT, - (2.31)

Here V = ¢¢V™ is an on-shell closed string vertex operator, and for convenience we have
mapped the canonical unit disk to a cylinder C; of unit circumference; the subscript BCFTg

"The Okawa pure gauge form for our solution is

1 1
— @ .
1- X’ 1+ K

Uy =(1-20)Q (2.26)
We formally obtain the vacuum solution for A = 1.

$We ignore the 1+ K factor since this would give a subleading contribution to the phantom piece, though
such contributions can be important [8].



indicates that the correlator is evaluated in the boundary conformal field theory correspond-
ing to the classical solution ®. Ellwood [21] gave a nice prescription for computing this
amplitude directly from &:

Ag (V) = Ao(V) + Tr(VP), (2.32)

where Ag(V) is the tadpole in the reference BCFT defining the string field theory, and
V = V(i)|I). This quantity is very easy to compute. The BRST exact term in eq. (2.6)
does not contribute, so we have

— / - dt et Tr(VeQb). (2.33)

1
Tr(VV) =Tr <Vc1 n K> ;

The inner product Tr(Veft) is a correlator on a cylinder of circumference t; by a scale
transformation we can reduce it to a cylinder of unit circumference, producing a factor of
t for the ¢ ghost from the conformal transformation. Thus

Tr(VV) = Tr(VcQ) /00 dtte™ = Tr(VeQ)
0
= (V(io0)e(0)) ey = —Ao(V). (2.34)

Therefore the closed string tadpole vanishes:
Ag (V) = 0. (2.35)

It is interesting to note that for our solution the contribution to the amplitude comes
from the BRST nontrivial term cﬁ, whereas in By gauge it comes exclusively from the
phantom piece [21].

Before concluding, let us mention that it is possible to generalize this calculation by
computing the full off-shell boundary state of our solution, following [25]. The calculation
would take us too far astray to present here, but we have confirmed that the boundary

state for our solution vanishes identically.

3 Level expansions

Though we have a simple analytic proof of Sen’s first conjecture, it is desirable to confirm
our calculation by other means. The most trusted — but also the most poorly understood
— method for calculating the energy is the old Lg level expansion, which provided the first
convincing numerical evidence for Sen’s conjectures in [26-29]. The level expansion of our
new solution, however, brings a surprise: if we add contributions to the energy level by
level, the expansion is divergent.

The situation here appears to be analogous to the “sliver frame” Ly level expansion,
where the energy is represented as the formal sum of an asymptotic series [1, 6]. For
our new solution, the Ly level expansion is so simple that we are able to find an exact
expression for the asymptotic series and its resummation, allowing us to gain concrete
insight into the nonperturbative structure of the level expansion. The L case, of course, is

Tr(V®) are the gauge invariant overlaps introduced in [22-24].



more complicated, but we have found a useful toy model of our solution where, remarkably,
it is possible to compute the Lg level expansion exactly in terms of elliptic functions. In
both Ly and Ly expansions, we resum the divergent series to obtain good agreement with
Sen’s first conjecture.

3.1 Curly Lj level expansion

We begin by considering the L level expansion. The L level expansion is quite analogous
to the ordinary Lg level expansion, but performed in a conformal frame well-adapted to
the wedge state geometry of analytic solutions. Ly is the dilatation generator in the sliver
conformal frame [1]:

Lo= f5'oLg
= 7{ L (14 ) tanL£T(¢) (3.1)
0 211 ’
where fs(z) = 2tan~!z is the sliver coordinate map. We define the level L of a state to

be its Ly eigenvalue plus one, so the tachyon is at level zero. We can write such eigenstates
in the form

FoF, (3.2)

where F' = v/Q is the square root of the SL(2,R) vacuum, and ¢ corresponds to an inser-
tion of an operator with scaling dimension L — 1 in the sliver coordinate frame. K, B,c
have scaling dimension 1,1, —1 respectively, and the dimensions are additive with the star
product. Therefore, any state at level L in the K Bc subalgebra can be written using states
of the form

F(K%BK%K”) F, l+m+n=L. (3.3)

This is a different basis of eigenstates from the one used in [1], but either basis gives the
same level expansion for the energy.
To expand the solution (2.10) in terms of L eigenstates, we multiply and divide by F,

R K2 K2
V-F| - [e4 kB | F 3.4
Vi by v (3:4)

and expand the factor in parentheses in powers of K. It is useful to introduce the field

\i,( ) Eo\i, » ezK/? [1 B eZK/2 » (3 5)
zZ) =2z = _— —C—|—C Ci| . .
Vv1i+zK Lz V14 zK

Then the Ly level expansion is equivalent to a power series expansion in z.

To compute the energy we should sum the infinite series

E = i En, (3.6)

n=-—2



where &, is the contribution to the energy (or the action) coming from fields whose Ly
eigenvalues add up to n. Assuming the equations of motion, the &,s can be found from
the expression

1 dz 1 - N
n = 7 P v s LY . .
8= § e e (46, Q002 i
Therefore, to find the expansion we should evaluate the inner product
1, . .
£() = =(¥(2), Qu¥(2)). (3.9)

In By gauge, the computation of this quantity appears to be a nontrivial task, but for our
new solution it is quite straightforward. The final answer is naturally expressed in terms
of a variable Z, related to z by an SL(2,R) transformation:

We find

1 21 11 11(2)
1+ - -2 3.10
[+3Z+6’Z2+67r Z (3:10)

where I(Z) is the integral

I(Z) = /Oo due % (u+1)%sin (3.11)

0 u + 1
Note that as z approaches 1 (or Z — o0) the energy function approaches the expected
value £(1) = —#.
To find the &,s, we need a power series expansion for this integral. To this end, expand
the second factor in the integrand as a Taylor series:

(o]

T

(1 + u)®sin => lu", (3.12)
1+u =

where £,s can be expressed in terms of generalized Laguerre polynomials
0, = (=1)"Im[L,*(im)]. (3.13)

Integrating over u produces a factor of n! in the sum, so we find the power series for £(z)

1 21 11 1
ER) =-S5 |1+ + 25+ — 10, Z" 3] . 3.14
()= "5 +3Z+622+6w;"" (3.14)
This is a prototype for an asymptotic expansion. The n! divergence of the coefficients is not
helped by the ¢,s, which themselves diverge quite rapidly'® due to the essential singularity

in the Laguerre generating function at u = —1.

10The large n asymptotics of the Laguerre polynomials implies In [£,,| ~ v/27n.

,10,



N -2 0 2 4 6 8
New solution | —1.3333 | —0.35507 | —4.4137 | —45.133 | —269.51 | 22051
By gauge —1.3333 | —1.0015 | —0.98539 | —1.0327 | —1.3054 | 6.7582

Table 1. Partial sum 22[272 E, up to N = 8 in units of 525, shown for the new solution eq. (2.6),

27\'2 Y

eq. (2.10) and the By gauge solution, taken from [1].

From here it is a trivial extra step to expand Z in terms of z and read off the &,s. To

the first few orders, we find explicitly:

1 41 2 1 w2 72 3372 gt
E = | - = 2,y L2, 2 3 _ !
() 6[ 772z2+< 772+2> 8Z+2Z+< 16 +32>Z

N 37r? 3nt 54 365772+557T4 ™\ 4
‘ 8 16 128)°

4 8
98772 2357t 370\ -
_ 1
+< 1 3 16 ) 2t + (3.15)

This gives an efficient method for computing &,s. Indeed, we were easily able to compute
the &,s out to n = 400 and could have gone much further, whereas with our current

understanding the calculation in By gauge becomes time consuming much beyond n = 50.

For illustrative purposes, we have listed the first few partial sums of the &,s in table 1,
both for the new solution and the By gauge solution. Both reveal an “approximation”
to the energy which is typical of a divergent asymptotic series. However, the partial
sum for our new solution diverges much faster than in By gauge — ironically, the best
approximation to the energy is the trivial one, where we truncate the solution down to the
zero momentum tachyon.

To compute the energy, it is necessary to resum the asymptotic series. One way to
do this is to use the method of Padé approximants [1], where we replace the asymptotic
series 22€(z) by a Padé approximant P (z)—a ratio of a degree n polynomial to a degree
m polynomial chosen so that the first m +n terms in the Taylor expansion of P! (z) match
those of 22£(z). The approximation to the energy is then revealed by evaluating P7(1). A
second method!! is to use a combination of Padé and Borel resummation. Here we replace
the Borel transform of 22£(2) by its Padé approximant P” (2)gorel and evaluate the integral

ﬁrﬁ('z) = /0 dt eitPrTrLL(tz)Borel (316)

at z = 1. In table 2 we list Padé and Padé-Borel approximations to the energy including
fields out to level 200. Both confirm Sen’s conjecture to very high accuracy. At low levels,
Padé-Borel does a little better than Padé, though at very high levels Padé appears to be
more accurate.!?

"'We thank D. Gross for suggesting this to us.
12Note that the convergence is slower than it is in By gauge: to get results as good as our Pgy (1), one
only has to go out to Pi&(1) in By gauge.

— 11 —



L) L)

n=20 —1.33333 —1.33333
n=2 —1.14334 —0.994896
n=4 —0.898883 —0.900412
n==~6 —1.04241 —1.00487
n=3~8 —0.996478 —1.00029

n =10 —0.995773 —0.999944

n = 20 —0.99991237 —0.99996793
n =40 —0.99998202 —0.99999517
n = 60 —0.99999945 —0.99999754
n = 80 —0.99999984 —0.99999904
n = 100 —0.99999995 —0.99999954

Table 2. Padé and Padé-Borel approximation to the energy in units of # We have shown the

approximants for m = n, since Padé resummation is generally most reliable when the numerator
and denominator are polynomials of similar order.

It is interesting to understand why the L level expansion is asymptotic. By analogy
with the old argument about the divergence of perturbation theory in QED, one suspects
that something severe must happen to the energy £(z) as the “coupling constant” z is
taken to be negative. The problem is easy to identify: for z < 0 the string field \i’(z) does
not exist. That is, though \i’(z) has a well-defined expansion in terms of Ly eigenstates, for
z < 0 the expansion does not converge to a well defined string field. The problem comes

from the factor which for z < 0 would only seem to make sense as an integral over

TR
singular “inverse” wedge states. This fact should show up as some sort of pathology in
the energy z2€(z) for z < 0. In fact, because we have a closed form expression eq. (3.10),
we can plot the energy to see what happens. As can be seen from figure 2, 22€(z) has
a branch point at z = 0 together with a branch cut extending to z = oco. Though we
can analytically continue to negative z, the continuation is not unique and moreover is
complex, in contradiction with the fact that \i/(z) is real to any finite level in the level
expansion. Therefore 22£(2) for z < 0 cannot be interpreted as a BRST inner product of
\if(z) Incidentally, note that there is another branch point at z = 1. This comes from the
factor Fe*®/2 which for z > 1 is an inverse wedge state.

We expect that this phenomenon is quite general. For any solution depending on some
f(K) expressed in terms of positive powers of the SL(2,R) vacuum, f(zK) for z < 0 will
be undefined. Therefore the energy function should be singular at z = 0, rendering the Ly

level expansion asymptotic.

3.2 Square L level expansion

The traditional L expansion of a string field very efficiently summarizes all possible over-
laps with Fock states up to a given conformal weight. Such an information is often useful,
either in explicit numerical computations, or as one possible criterion of a string field being
well defined.

- 12 —



Figure 2. Real and imaginary parts of 22€(z2) for —2 < Re(z) < 2 and —2 < Im(z) < 2, shown
left and right, respectively. Note that the function is very smooth at z = 0 and 1, but they are
nevertheless branch points.

To expand our solution in the eigenstates of Lg it is convenient to use the techniques
and formalism of [1]. The twist even (real) solution can be written as

- %/000/000 dt ds %ﬁt+s+1 [%c <%(s - t)) n %Qggé (%(s - t))] 0y, (3.17)

where ﬁr = U, U} and the star denotes the BPZ conjugate. The rest of the notation

follows [1], in particular U, = (2/r)%°. The tilde is used to translate the ¢ insertions in the

cylinder frame to the canonical upper half plane, explicitly &(z) = cos? z c(tan ).

The string field can be readily expanded and the individual coefficients can be numer-
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ically integrated. We find

U = 0.509038 ¢10) + 0.13231 ¢_1|0) — 0.00157618 L_ c1]0) +
—0.0135795 L_4 ¢1]0) + 0.0231579 L_oL_5 ¢1|0) + 0.0893356 c_3|0)
—0.00694698 L_9 ¢_1|0) + - - - + (@ p-exact). (3.18)

For example the first coefficient is given by
(u+ 1)2 o (T u
t = d —
= due1 v 2<1+J0< >>
47T 1

= 0.509038, (3.19)

where Jj is a Bessel function of the first kind. To obtain eq. (3.19) from eq. (3.17) we have
made a change of variables u = ¢t + s and w = (¢t — s)/(t + s). In more generality all the
coefficients are given by an integral of the form

o0 1 1 1 T u T U
d 12P - —Uu 2 t n _
/0 u(u+1) <u—|—1>e R <2u+1w> an <2u+1w>’
(3.20)

where P is a polynomial whose detailed form depends on the coefficient in question. These

integrals are absolutely convergent, but to evaluate them numerically with enough preci-
sion we found necessary to make a further change of variables w = sin ¢ upon which the
integrable singularity at w = 41 disappears.

The apparently rapid decay of the coefficients suggests that the energy of the solution
computed in level truncation should converge quite well. Let us compute the regularized
energy, the analogue of eq. (3.10):

B(z) = é(zLo@,QBzLoif). (3.21)

For z = 1 we recover the exact expression, and because the kinetic term is diagonal in Lg

eigenstates, the coefficients of the energy at order z2/~2

are exactly the contributions from
fields at level L. With the help of the computer'® we have computed the energy up to level
30 which in our basis includes contributions from 2455 fields. The resulting (normalized)

energy takes the form

0.85247
22

+0.1583652'% — 0.20474622% + 0.2680882%0 — 0.3639992%° + 0.49600923*
—0.682054238 + 0.9420442*% — 1.308652%% + 1.817392°° — 2.522162°4
+3.496492%8 + - - . (3.22)

2m?E(z) = — 0.06167622% — 0.1205292° + 0.10403720 — 0.1327122'4

BPart of our computer code was written by Ian Ellwood while working on an unpublished project with
the second author [30]. We thank him for kindly letting us use his code.
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o) (1)
n=~0 —0.852470 —0.852470
n=4 —0.787834 —0.871988
n ==, —0.992052 —0.983243
n =12 —0.992013 —0.984516
n =16 —0.996081 —0.993936
n =20 —0.999595 —0.993687
n =24 —0.997322 —0.995001
n = 28 —0.997690 —0.993253

Table 3. Padé and Padé-Borel approximation to the energy in units of # We have shown
only the diagonal approximants P? and P? for 22F(z) at z = 1. Note that they depend on the
contributions of fields up to level n.

The result for the lowest levels is encouraging: at lowest truncation level we find 85% of
the expected energy, at level 2 we get 91% and at level 4 103%. But that is as close as
we get to the correct answer; in fact it is obvious from eq. (3.22) that the contributions of
higher levels are increasing in magnitude and therefore the series cannot converge.

As we've seen, a similar divergence occurs in the Lg level expansion, but this is the
first time such behavior has appeared in the canonical Lg level truncation scheme. We can
evaluate the energy using either Padé or Padé-Borel resummation; as shown in table 3,
both types of resummation confirm Sen’s conjecture to better than 99% at level 28. Tt is
of great interest to understand why the expansion of our solution is divergent. We explore
the answer to this question using an explicitly soluble toy model in section 3.3.

Let us give the expansion of our solution in the original matter Virasoro+ghost oscil-
lator basis used by Sen and Zwiebach [27], out to level 4:

A

U = tc1|0) + uc_1]|0) +vL™, ¢1|0) + wb_scpc1|0) +
+AL™, ¢1|0) + BL™,L™, ¢1|0) + C'c_3|0) + Db_gzc_1¢1|0) +
+FEb_9c_9¢1|0) + FL™yc_1|0) + w1 L™5¢0|0) + wab_oc—_1¢0|0) +
+wsb_yscoc1|0) + waLM5b_ocpcr|0) + - - . (3.23)

The coeflicients above are given by

t = 0.509038 A = -0.10674 FE =0.242131 w; =0

u = 0.772988 B = 0.106714 F = 0.673728 wy = 1.13718

v = 0.213559 C = 1.11009 wz = 0.3338

w = —0.211983 D = 0.887287 wyg = —0.343299.

Surprisingly, the expectation values do not appear to be getting smaller at higher levels,
at least out to level 4. Apparently this is an artifact of the choice of basis, since in the
simpler basis eq. (3.18) the coefficients appear to decay quite rapidly. Of course, the level

approximation to the energy is the same in either case.
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o) (1)

n=~0 —0.266085 —0.266085
n=4 —0.679355 —0.679026
n ==, —0.935655 —0.883524
n=12 —0.940574 —0.920585
n =16 —0.971911 —0.950665
n =20 +0.452292 —0.946722
n =24 —0.974222 —0.955226
n = 28 —0.974103 —0.954514

Table 4. Padé and Padé-Borel approximation to the energy for the asymmetric solution in units
of ﬁ We have shown the approximants for m = n. The value P3) is anomalously large due to
an accidental position of a zero and a pole of the Padé approximant very near the value z = 1.

It is of interest to consider the level expansion of the non-real solution eq. (2.6) as well.
Focusing on the BRST nontrivial part of the string field we find by numerical integration

U = 0.284394 ¢; |0) + 0.249034 0|0} + 0.244516 c_1]0) + 0.0359031 L_5 ¢1]0) +
10.252567 ¢_2]0) + 0.00302175 L_s c0|0) — 0.0177251 L_4 ¢1]0) + (3.24)
0.0175741 L_o Lo ¢1]0) + 0.268936 c_3]0) — 0.010923 L_5 c_1|0) + - --
+(Q p-exact).

We have computed the components of the string field up to level 30. The resulting z-
dependent energy is given by

0.266085
272 By (2) = —————— — 0.408062 — 0.006444032> + 0.02008652* — 0.2925412°

22
—0.1083612% + 0.23035210 + 0.06726572'% — 0.2752332* — 0.0745232'6
+0.2993722"% + 0.0574889220 — 0.3628622%? — 0.05923612%* + 0.4407432°
+0.051353622°% — 0.563397230 — 0.0524896232 + 0.72168723* + 0.047125223¢
—0.9445482% — 0.04747322%0 + 1.247492%? + 0.043922924 — 1.672182%°
—0.04428552%8 4 2.250552°Y + 0.04150042°% — 3.044912°* — 0.04161842°°

+4.130942°8. (3.25)

There are twice as many terms here because the solution is not twist even, so odd levels
contribute to the action as well. Again the expansion is divergent and we can resum
the series using Padé or Padé-Borel resummation. The results in table 4 nicely confirm
Sen’s conjecture, though we do not get quite as close to the expected answer as with the
real solution.

3.3 Exactly soluble model for the L; level expansion

Let us now try to understand why the L expansion of our solution is divergent. Following
the logic of section 3.1, the divergence should be related to the analytic structure of the
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Figure 3. a) Location of the poles and zeros of the Padé approximant Pj) of 22E(z) in eq. (3.21).
Red asterisks indicate position of poles; blue dots indicate location of zeros. b) The analogous
picture for the identity correlator (3.29). Note that for the true solution the poles and zeros almost
coincide, which suggests milder singularities along the unit circle than for the identity correlator.

energy as a function of the parameter z. Given the slow non-exponential growth of the
coefficients in eq. (3.22) we expect the function 22F(2) to be holomorphic inside the unit
disk but with some singularities on its boundary. Plotting the distribution of poles and
zeros of Padé approximants (see figure 3) suggests that z?E(z) cannot be analytically
continued beyond the unit disk, just like elliptic functions in the ¢ variable.

We can gain an important insight into this problem by looking at a certain class
of coefficients in eq. (3.18). For example the family of states (L_2)"c1|0) comes with

coeflicients given by

g [ o ) () )
(3.26)

vy = ﬁ (1 +0 (%)) . (3.27)

This looks exactly as if the coefficients were coming from the identity string field. This

For large n, these behave as

identity-like behavior is not surprising. The dominant contribution to our solution comes
from wedge states close to the identity, since larger wedges are exponentially suppressed.
This suggests that we consider the level expansion of the field ¢ = %Uf c1]0) as a toy
model for the level expansion of our solution W. The level expansion of ¢ will not yield the
brane tension (c is not a solution), but it is of interest in its own right in relation to certain
other energy computations, as we will describe shortly. The analogue of the z-dependent

energy for c is:

F(z) = <ZLOC, ZLOQBC> _ !

P<0|c,1U12«2L0U;kclco|0>. (3.28)
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Figure 4. Worldsheet picture of our toy correlator eq. (3.28).

To our great surprise, we found that the contribution to F(z) from each level is exactly
an integer:

1

F(Z):—m

1
— — 427 +102° — 242" + 552" — 1162'% + 2302* —
z

—4402%0 4 81920 — 1480231 4 26022%° + - - - |. (3.29)

Such a nice expansion is sure to have an analytic explanation, but before we derive it, let
us note that the question about the analytic behavior of F(z) is essentially answered at
this point. By the Polya-Carlson theorem a function with integer coefficients in its Taylor
expansion cannot be extended beyond the unit disk unless it is rational (which, as we will
show, it is not). Therefore F'(z) must have an essential singularity at every point on the
unit circle. This agrees well with the analytic structure 22E(z) in eq. (3.21), as suggested
by position of the Padé poles and zeros.

Let us now see how to evaluate F(z) analytically. Geometrically, eq. (3.28) can be
represented as a correlator of ghost operators on a paper-bag-shaped surface obtained by
taking a rectangular strip, folding it in half and gluing together adjacent edges of the folded
boundary (see figure 4). To evaluate the correlator directly one would have to conformally
map the geometry to the upper half plane where we know all the correlation functions.
Undoubtedly such a map can be constructed (along the lines of [31]),!* but there is a
simple shortcut.

Algebraically, our task is to “normal order” U; z2Lo U}, that is, to find a conformal map
(&), holomorphic in the vicinity of £ = 0 such that

Ur2*oUT = UjUy, (3.30)

where Uy is the action of a finite conformal transformation v(£) (note that ¢ implicitly
depends on z). If we can find such a 1, then we can easily compute F'(z):

F(z) = —%Qp’(o)*? (3.31)

1 Upon completion of this paper we were informed by Ian Ellwood that such a map has been constructed
in [32, 33].
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In terms of conformal transformations the problem can be stated equivalently as finding
1 (&) holomorphic around the origin, such that

foIof_loI:quj)_loIozZ), (3.32)
where [ stands for the inversion I : { — —1/&, and f is the map entering the definition of
the star algebra identity composed with rescaling by z, f(§) = % To make sense of the

equation eq. (3.32) we have to assume that f is holomorphic and univalent in some domain
which includes the unit disk. Both sides of the equation have to match in some annular
region around the unit circle where both are simultaneously meaningful. Alternatively, one
can demand that both sides agree as formal power series in the scaling parameter z, not to
be confused with the coordinate £. This is a well known problem in mathematics related
to uniformization and the existence of the Neretin semigroup [34, 35].

Although in general it is more convenient to carry out computations in a CFT-
independent way, for this particular problem it is useful to pick the simplest CFT cor-
responding to strings propagating freely in flat space. The identity string field has a very
simple expression and its correlators can be easily evaluated by oscillator methods, see

g. [36-38]. Consider the following correlator

<ix/2/o/) C (100X () 20U 0X (y)). (3.33)

Here we assume the total central charge is zero, so an insertion of a weight zero operator
like cOcd?c is implicit. We can compute the correlator in two different ways: Either using
formula eq. (3.30), upon which we find the correlator is equal to

V' (z)) (y)
0+ o@ow)? (3.34)

or we can compute it with the oscillator formalism. Let us commute X towards the center

of the correlator and write it in its mode expansion

in/2/a 0X (w) = i apw "L (3.35)

n=—oo

Next let us introduce normalized oscillators a,, = ay,//n for n > 0 and rewrite

UF|0) = e~3 Zata(-Drahal gy, (3.36)
Using the formula
(0le2%5g,al e29"VaT|0) = det(1 — S.V)"V/2(1 — V.S) L, (3.37)
we find
a ffp );?;p( 23 an T (=)"ME) (5 A+ (—)" ) 1 —124" %@%%’
(3.38)
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where

Z=x—\V1+ 22,
7=y+V1+y>

Note that thanks to the vanishing total central charge the determinant factor from eq. (3.37)

(3.39)

cancels against normalization constants from the other sectors.
Imposing ¥(0) = 0 the equation can be easily integrated. Expanding 1/(1 — 2*") into
a geometric series the two infinite sums can be interchanged and one finds

(1— %Z4k+2)(1 _ %Z4k+2)(1 + %Z4k+2)(1 + jgz4k+2)

1 — Loaktd) (1 — G2k +4) (1 — %Z4k+4)(1 — Rkt

o0
L+9()y(y) =[] (1= 2%
o (
(3.40)
This equation at first sight seems rather unlikely to be self-consistent, the right hand
side does not look anything like one plus something factorizable. Fortunately, the infinite

product can be expressed in terms of Jacobi theta functions:'®
RSP ) Lol (3.41)
+ vz = — = — —. .
1 @)05(2)04(5)85 )
2miT

The theta functions all depend on common nome g = e which we suppressed and which

is related to our previous scaling parameter z by ¢ = z*. Explicitly the theta functions are

given by
b = Y = [[A -+ ), )
n=—oo m=1
0a(x) = i (—1)"g"/an = ﬁ (1—¢™ (1 —zg" ) (1 —2"'q"?), (3.43)
n=—oo m=1
02(90) _ i q(n—1/2)2/2xn—1/2
= ¢'B"? + a7 lo_o[ (1=g™) (1 +z¢™)(1+2""q™), (3.44)
m=1
ra) =i Y (—1yrgn 2
— —ig 32— a2 T] (- ™)1 - ag™) (1 — 5™ (3.45)

m=1

From the representation in terms of infinite sums, one can easily derive an identity

5 (f) b (55) = 04(2)05(2)04(9)05(5) _ 01(2)02(2)01(5)02(5) (3.46)

04(1)05(1) 04(1)05(1)

5We use the notation of Polchinski, String Theory, Vol 1.
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Using this identity the expression for 1 + ¢ (x)¥(y) simplifies and we find

M) == G ) a1
and hence
_ 01(@)0s(@) _ 1o gy L@ 13
Y(z) = ZW =qi(T -7 1)n1;[1 1—2@m11_z2pm 1 (3.48)

We see that indeed (0) = 0 and
2
1-¢ n(27)*
— 9,1/4 _
=2¢"/ H ( g2m- 1) RTCEh (3.49)

Now we can very easily compute the correlator eq. (3.28):

1 op(n)?
w2 n(27)8’

This function is holomorphic inside the unit circle |z] < 1, but every point on the unit

F(z) = z=e"/2, (3.50)

circle is an essential singularity and the function cannot be analytically continued beyond
the unit disk (see figure 3b for the distribution of poles and zeros of its Padé approximant).

We can gain some intuition into the origin of these singularities by looking at figure 4.
For z = 1, the c insertions sit right on top of each other, but for z > 1 the picture does not
appear to make sense — formally, the c¢s should be separated by a worldsheet of “negative”
length. This is quite analogous to the worldsheet interpretation of inverse wedge states,
which are responsible for the divergence of the L level expansion. Therefore it is not
surprising that F'(z) is undefined for |z| > 1. Note also that the F'(z) occurs in the lower
limit of integration when we evaluate E(z). Therefore figure 4 for z > 0 gives a nice
intuitive picture for why the Lg level expansion of our solution is divergent.

Now that we have a closed form solution for the level expansion, we can evaluate
F(1) = Tr[eQc] and see what we get:16

4

Tr(cQc) = —— lim n(r)

=0. 3.01
772 z—1-n(27)8 (3:51)

We have checked that this result agrees with the Padé resummation of the series eq. (3.29).
In fact, we get the same answer when computing in the £y level expansion:

2
(£0¢, 2£0Q ) = _% (1 - Z) . (3.52)

z

Again this vanishes at z = 1. Given that cQc is an identity-like string field, it may be
surprising that Tr(cQc) appears to vanish regardless of the regularization, and even holds

16T prove this limit we use the formula n(—1/7) = /=irn(r) and (1) ~ "7/12 for large and positive
Im(7). Note that because F'(z) has essential singularities on the unit circle, in taking the limit z — 1 we
should be careful to follow a contour that intersects the real axis at an angle of less than 90°.
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in the Lo level expansion. There is actually a good formal argument for believing this
result. Consider the energy of a vacuum solution ® computed in the %Ea expansion. The
energy function

1 _ _
£ (2) = 6<Z%£0 0,235 Qpd) (3.53)

is independent of z because %/La is a reparameterization generator. Expanding ® in a basis
of %EO_ eigenstates
® ¢+ higher levels. . .. (3.54)

we can formally rewrite eq. (3.53) in the form,

[e.9]

E ()= > 2"&,, (3.55)

n=—2

where £, is the contribution to the action of fields whose total 3£ eigenvalues adds up to
n. But since the energy is independent of z, only the contribution £; can be nonvanishing,
and in particular

€~ x Tr(eQe) =0, (3.56)

consistent with the prediction of the Ly and L level expansions. It would be interesting
to test this formal argument by extending the above computations to the other &, .

4 Discussion

In this paper we have given a simple analytic solution for tachyon condensation in open
bosonic string field theory. The absence of a regulator and phantom term makes the
solution easier to work with than in By gauge. Moreover, the physics is much easier to see,
as it is almost exclusively contained in the term:

1

— 4.1
T+r (4.1)

which is nothing more than the zero momentum tachyon, albeit expressed in an unusual
gauge (see appendix C). The second term

cKBc (4.2)

1+ K

is BRST exact, and its only purpose is to make the tachyon eq. (4.1) satisfy the equation of
motion. Of course, this fits nicely with the intuition that the condensation of the tachyon
field is really what’s responsible for the physics of tachyon condensation.

A novel feature of our solution is that it involves a continuous superposition of wedge
states arbitrarily close to the identity. The fact that it is a continuous superposition, and
not, say, an isolated identity-like piece, is crucial for the consistency of our solution. Indeed,
many identity-based solutions have been proposed in the past, but such solutions provide
no unambiguous calculation of the action.!” Still, there are certain types of calculations

Y Though identity based solutions are singular, some still correctly capture some nontrivial open string
physics. See especially [39].
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that would be problematic for our solution. For example, b(1)|¥) and b(1)|¥) are divergent
because the b ghost gets “too close” to the ¢ insertion inside W, . We hope that such issues
will not limit the utility of our solution.

Since the beginning, one of the great mysteries of string field theory has been the
remarkable success of the level expansion. One byproduct of our analysis has been a more
detailed picture of why the level expansion works, and in particular how it may fail to
converge. It is quite remarkable that we were able to solve the L level expansion exactly
for the field ¢ — it would be very interesting to find analogous solutions for other states.
Ideas along these lines could be important for constructing a solution for the tachyon
vacuum in Siegel gauge.

There are many questions related to the tachyon vacuum that have yet to be under-
stood. For example, finding an analytic construction of the tachyon potential, understand-
ing vacuum string field theory and multiple D-branes [24, 40, 41], recovering closed string
physics around the tachyon vacuum, and finding an analytic tachyon vacuum in super-
string field theory [42-47]. Perhaps this solution could inspire new approaches to marginal
deformations [48-55], or help in the construction of lump solutions [56]. We hope that our
work will be useful for studying these important issues.
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A Star products and cylinder correlators

In this appendix we explain how to translate expressions given in the text into conformal
field theory correlation functions on the cylinder. The basic starting point are string
fields ® which can be represented as a correlation function on a semi-infinite vertical strip
of worldsheet in the complex plane, with some operator insertions placed inside. The
bottom edge of the strip lies on the real axis, and corresponds to the boundary of the open
string; the “top” of the strip is at +ioo, and corresponds to the open string midpoint.
On the positive and negative vertical edges of the strip we impose boundary conditions
corresponding to the left and right halves of the open string,'® respectively. Evaluating the

8 Fixing these boundary conditions requires a choice of parameterization of the string along the vertical
edges. Different parameterizations correspond to different choices of projector conformal frames [12]. In
this paper we have been using the sliver conformal frame, where the standard parameterization of the half
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Figure 5. Star product and trace of open string functionals, represented as correlation functions
on a semi-infinite strip with possible operator insertions. Note that if we visualize the real axis as
increasing towards the left, the order of the multiplication matches the geometrical order of the
gluing.

resulting correlator gives a representation of ® as a Schroedinger functional of a classical
open string configuration ®[x (o), ghosts].

Perhaps there is a possibility for geometrical confusion here, since the left half of the
string lies on the right (positive) edge of the strip in the complex plane. This is an artifact
of our star product convention, which adheres to [1, 14, 27, 57]. To solve this problem, [2]
introduced a different convention for the star product with the opposite identification of
left and right. We keep the old convention, but to avoid confusing pictures it is helpful
to visualize the complex plane so that the positive real axis increases towards the left —
that is, our complex plane is related to the old one by z — —z*. Then the left half of the
string lies on the left (positive) boundary of the strip. Note that closed contours in our
visualization move clockwise — so our convention might be called the left handed picture
for the star product, whereas that of [2] is the right handed picture.

Given a string field defined as a correlator on the strip, we can compute star products
and traces as follows: To compute the product ®;®s[z(0)], we glue ®;’s negative vertical
edge to ®y’s positive vertical edge, and evaluate the resulting correlator. To compute the
trace, we glue the positive and negative edges of the strip together to form a correlation
function on the cylinder. See figure 5. The gluing of edges is analogous to the contraction of
matrix indices — this is the essential intuition behind the split string formalism [14, 58, 59].
Note that with our picture of the complex plane, ®;’s strip appears to the left of ®5’s in
the product ®;Py[z(0)], as would seem natural.

string with o € [0, 5] maps to the vertical height y = %t:&mhf1 sino € [0,00] on the strip edge. If we had
used the butterfly frame, the edges would be parameterized as y = %tana € [0, o).

— 24 —



Let us demonstrate how this works for fields in the K Bc subalgebra. We use the
doubling trick to extend holomorphically to the lower half plane, so the semi-infinite
vertical strip becomes an infinite vertical strip extending from —ioco to +ico. The wedge
state Q! is then represented as an infinite vertical strip of worldsheet of width ¢, without
any operator insertions. A Fock space state |¢) = ¢(0)|0) is a vertical strip of width 1,
with an insertion fso ¢(0) placed halfway between the edges of the strip, on the real axis.
Here

fs(z) = %tanfl z (A.1)

is called the sliver conformal map, and maps the unit disk to an infinite vertical strip of
width 1. Finally, consider the string fields K, B,c. We take them to be infinitely thin
vertical strips of worldsheet carrying operator insertions

K = —T
- ﬁ — 00 2772 (2)7
B = —
c — c(z), (A.2)

where ¢(z) is inserted exactly on the strip, on the real axis. We can now compute star
products and traces of fields in the K Bc subalgebra by gluing strip edges, as described
above. The procedure is illustrated for an example Tr(cK Bc)'¢) in figure 6.

Using this basic procedure, we can calculate the overlap of our solution eq. (2.6) with
any Fock space state:

o
Tr(Vg) = / dtet < [c(t + 1) +olt+ 1) KB limc(t+ § — e)} fso ¢(0)> ., (A3)
0 €— Crt1
where ()¢, 1 is the correlation function on the cylinder of circumference ¢ + 1 and the B
and K contour insertions must be integrated between the ¢ ghosts on either side. It is often
convenient to represent the K insertion as a derivative of a wedge state K = %QSL:Q'
Therefore we can also write

1r(wo) = [ dre | (et + Dis 0 60)

0

Ciy1

£ {eft 4 5+ 3)Belt + ) fs 0 6(0)) (A4)

Ciys+1|g—0

Note that the gluing prescription does not determine the absolute location of the operator
insertions in the complex plane — it only determines their relative positions, modulo
the circumference of the cylinder. Here we have made some convenient choice for the
coordinates of the insertions.

Since both left and right handed star products have become common in the literature,
let us explain how to relate theories which use these conventions. The right handed star
product is related to the left handed one by

[AB|r = (-1)*2BA, (A.5)
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Figure 6. Representation of the inner product Tr(cK BcQ!¢) as a correlation function on the
cylinder. The parameter ¢ above is introduced for visual purposes, and should be taken to zero.
Note that positive z increases from right to left in this picture.

where the bracket [-]g indicates that all star products inside are right handed. We define a
string field A in our theory to be equivalent to a string field A’ in the right handed theory
if they are related by:

Al = A8, (A.6)

where A% = (—1)° A denotes twist conjugation, a graded involution of the star product
corresponding to a reversal of the parameterization of the open string!® [17, 57]. This

involution satisfies

(QA) = Q(AY),  (AB)} = (-)*FBIAY, v (A%) = Ta(4A). (A7)
For fields in the K Bc subalgebra
BY = B. (A.8)
If string fields in the left and right handed theory are related by this twist, one can show:

[f(A,B',..)]r = f(A,B,...)5, (A.9)

1948 is related to the twist conjugation introduced in [17, 57] by a minus sign. Thus a twist even solution
acquires a minus sign under conjugation with §.
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where f is any function of a list of string fields. This has two consequences: First, if we
have a relation between string fields of the form

f(A,B,...) =0, (A.10)
then the corresponding relation holds in the right handed theory:
[f(A",B',..)]r = 0. (A.11)
Second, traces between the two theories agree:

Tr ([f(A/,B/, . .)]R) - (f(A,B, . .)). (A.12)

Therefore we know how to translate any statement about string fields in our left handed
convention to a statement about string fields in the right handed convention. One can check
that the By gauge vacuum picks up an extra sign under twist conjugation, which accounts
for the sign discrepancy between the solutions presented in [1] and [2]. Our solution ¥
maps to
;1
1+ K

Note that in the right handed convention, the sign in front of ¢ insertion is negative.

(—c+ cKBc) = — [(c—i— cKBc)1 —iK}R' (A.13)

This is because in the right handed picture the tachyon condenses towards the left of the
perturbative vacuum in the tachyon potential.

B Equivalence to the By gauge solution

In this appendix we explicitly construct the gauge parameter relating our solution to the

By gauge solution. Consider two dressed By gauge solutions?”
KB , , KB ,
@:fcl_fgcg, i) :fcl—f’g’CQ’ (B.1)

where f, f’,g,¢" are functions of K. If these solutions are gauge equivalent, they can be
related by the transformation
' =U"1Q+ o), (B.2)

where
1-fg

U = 11— fBCg + <1—7f,g/> f/BCg,,

1—fq

1—fg

If they are not gauge equivalent, than either U or U~! must be singular. The only part of

U'l= 1-f'Bed + < > fBcyg. (B.3)

the above expressions which could potentially cause problems are the factors in parentheses.
Therefore, ® and @ are gauge equivalent if and only if the string field

Mo 1279 (B.4)

1— f/g/

20We discuss dressed By gauges in appendix C. Note that not all solutions within the K Be subalgebra

can be written in this form.
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and its inverse are well defined. In practice, the easiest way to see this is to check that
both M and M~! are analytic functions of K at K = 0.2! Since fg and f’¢’ must also be
analytic, this amounts to the requirement that the first nonvanishing powers in a Taylor
series expansion of 1 — fg and 1 — f’¢’ must be the same:

1— fg~ K" + higher powers.. ., 1— f'¢’ ~ K™ + higher powers. . .. (B.5)

The integer n plays the role of an index labeling physically inequivalent solutions in the
K Be subalgebra. n = 0 describes the perturbative vacuum and n = 1 describes the closed
string vacuum. Other possible values of n are mysterious since the corresponding solutions
do not appear to be well-defined. They have been conjectured to be related to multiple
brane solutions [30].

For the By gauge vacuum and our new solution, we have

K
1—fg = K = K + higher powers.. .,

1-f¢d = 1-Q = K + higher powers.. .. (B.6)

Therefore the solutions are gauge equivalent and describe the closed string vacuum. Ex-
plicitly, M and M~! are,

o0
M = lim dte™?
N*?OO 0

N+t Y d t
vy e,
nzodt

1
M1t=1 —Q+/ dt Q. (B.7)
0

Note the presence of a limit and sliver-like term in the expression for M. This is the origin
of the regulator and phantom piece in the By gauge solution.

C Gauge fixing

In this appendix we give a setup for understanding the gauge fixing of the new solu-
tion (2.6), (2.8) and related solutions appearing in [7]. To this end, we define the operator

| T P
Bry® = 5 f1By (f g7 g, (C.1)
where f, g are functions of K and B, = By — Bj;. Also define

Lig® = %f[ﬁa(f”@g*l)]g- (C.2)

21For the sake of discussion we presume that elements of the wedge algebra are analytic functions of
K at K = 0, though this may be a stronger regularity requirement than is necessary for some purposes.
For example, in a general proof of Sen’s conjectures [7] it only appears necessary to assume fg(K) is once
differentiable at K = 0. However in the general case such solutions fail to have a well-defined Ly level
expansion.
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These operators are easy to evaluate on wedge states with insertions since B, L, are
derivations and

1 __ 1 .-
§BOK:B, §£OK:K,

1 __ 1 .-

§BOB:0, §EOB:B,

1 __ 1 .-

580 Cc = 0, 5,60 Cc = —C. (C3)

We should think of By 4, L, as generalizations of By, L. In fact
Lrr =Ly, Brr=DBo, (C.4)

where F' = 1/ is the square root of the SL(2,R) vacuum. In particular, By gauge is just
an example of a large family of gauges

Bjy® = 0. (C.5)

Note that the string field must be “dressed” by factors of f~1, ¢! before it is annihilated
by B . For this reason, we call these dressed By gauges. The new solutions ¥ and the real
U satisfy gauge conditions of this type:

BLHl U= 0, (C.6)
B_i 1 U= 0 (C.7)
VI+E’VI+K
Equation (C.6) can be reexpressed in a particularly simple form:
_ T
B; <1 - §(K1)R) o =0. (C.8)

It could be interesting to explore the consequences of these gauges in perturbation theory.
Of all these gauges, By gauge certainly appears to be the most natural one. It is

reasonable to wonder, then, in what sense our new gauge B_ 1 1 ® = 0 is special or
VI+FK’'V1+K

unique. One answer to this question is given by the level expansion. Given any solution
satisfying a linear gauge condition O® = 0, one can define a “natural” level expansion in
terms of eigenstates of the operator [, O]. For Siegel gauge, this leads to the ordinary L
level expansion; for By gauge, this gives the L level expansion. For the new solution \i’, the
natural expansion is in terms of eigenstates of £ 1 1. Remarkably, this expansion

of eq. (2.8) terminates after just two levels:

1 1 1 1
Level O : c , Levell : ——=cKBc——. C.9
VI+K V1I+K VI+K VI+K ()
Indeed this is remarkable — certainly we do not find the tachyon condensate in Siegel

gauge after expanding out to level 2. In fact, this can be taken as the defining property of
our solution, according to the following claim:
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Claim. Eq. (2.6) is the unique, regular dressed By gauge solution in the K Be subalge-
bra that terminates at finite level in its own level expansion, up to homogeneous gauge
transformations.

We can establish this as follows. For a solution to terminate at level n — 1 in its own
level expansion, the function of K sandwiched between the ¢ insertions must be an nth
degree polynomial, call it P,. The non-real form of the solution is then

K
d =cBP,c (1 — E) ) BM_P%CI) =0. (C.10)
It is helpful to cancel the K in the numerator. Assuming n > 1, P, has at least one root,
which we can call —%. Then write P, = <K + %) Tp—1 With m,_1 some polynomial of
order n — 1, and the solution becomes

® = cBP,c (1— ! —|—li> . (C.11)
Tn—1 v Py

The first term is the identity string field with some insertions. Unless the identity piece
cancels, the action evaluated on the solution will be undefined.?? For n > 2, the inverses of
P, and m,_1 can be found by making a partial fraction decomposition and expressing the
resulting terms as integrals over wedge states via the Schwinger parameterization. None of
this produces a piece which would cancel the identity string field, so for n > 2 the solutions
are ill-defined. However, for n = 1, m,_1 = 7o is a constant; if we choose my = 1 the
identity is exactly canceled, leaving P, = % + K and

o= <1c + cKBc> (C.12)

v 149K

This is our original solution eq. (2.6), up to a reparameterization v%0/2. This leaves the
case n = 0; the solution there is

¢ = %c(l —K). (C.13)

This is a singular identity-based solution. Therefore only n = 1 admits a regular solution
to the equations of motion, as claimed.

Let us list a few useful properties of dressed By operators. Dressed By operators have
the following symmetries under conjugation:

B, = —Bj-1,1, (C.14)
Bl = —Bji, (C.15)
Bf,= B;7, (C.16)
B}, = By (C.17)

%Note also that the trace of an identity-like string field is undefined if the field carries insertions with
total zero or positive scaling dimension in the sliver coordinate frame. This is certainly true of eq. (C.11).
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Here *x denotes BPZ conjugation, t denotes Hermitian conjugation, I is reality conjugation,

§ is twist conjugation, and f, g are the complex conjugates of f, g. The same properties also

hold for Ly 4. Note that equations (C.16), (C.17) imply that a dressed By gauge solution is

consistent with the reality condition only when f = g, and it is twist even only when f = g.
To give some other formulas, it is helpful to introduce the string fields,

d d
By=Bf-——f1' K;=Kf-—f" 1
p =Bl =it (C.18)
We have for example,
B
By and Ky characterize the failure of By g, Ly, to be derivations of the star product:
Bry(®A) = (B, @) A+ (—1)*® (BuyA) — (—1)*®B,,A, (C.20)
Lfg(PA) = (Lyp®P)A+ P (LygA) — PK A (C.21)

To give a slightly more general formula we have introduced arbitrary w,v on the right
hand side. Note that this implies that By y-1,Lf -1 are derivations of the star product.
Also note
ByglI) = By, Lygll) = Kyg. (C.22)
Two dressed By operators can be related by left /right multiplication with Bj:
Bjy® = By ® + By, ® + (-1)*®B,, (C.23)
with a similar formula for £¢,. By and K satisfy a logarithmic sum/product rule:
aBf +bBy = Bfagp, a,b€C (C.24)
which implies a similar rule for By 4, Ly 4
aBfg+ bBpj = Brapp gaje, a,b€C, a+b=1. (C.25)

The restriction a+b = 1 gives a simpler formula, but the general case follows by multiplying
this equation by a constant. Thus dressed By, Ly operators form a closed linear space; in
particular, we cannot make new gauges by taking linear combinations of By gs.

The special projector algebra [1, 11] [Lo, L] = Lo + L plays an important role in the
algebraic structure of analytic solutions. There is an analogue of this algebra for dressed
Ly operators. To display this algebra is is useful to introduce a “dressed” analogue of a
wedge state:

Q(f) = e, (C.26)
and,
Qf%9") = Q)" Ug)" abeC. (C.27)
The generalization of the special projector algebra is then,
[Ef,g’ Ez*mj] = Lﬂ(f),ﬂ(g) + E;z(u)@(v)- (C.28)

Note that Q(-) acts as the identity on wedge states, so we recover the usual formula when
f=u=Fandg=v=F.
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