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Abstract

This is a tutorial review of methods to braid non-Abelian anyons (Majorana zero-modes)

in topological superconductors. That “Holy Grail” of topological quantum information

processing has not yet been reached in the laboratory, but there now exists a variety

of platforms in which one can search for the Majorana braiding statistics. After an in-

troduction to the basic concepts of braiding we discuss how one might be able to braid

immobile Majorana zero-modes, bound to the end points of a nanowire, by performing

the exchange in parameter space, rather than in real space. We explain how Coulomb

interaction can be used to both control and read out the braiding operation, even though

Majorana zero-modes are charge neutral. We ask whether the fusion rule might provide

for an easier pathway towards the demonstration of non-Abelian statistics. In the fi-

nal part we discuss an approach to braiding in real space, rather than parameter space,

using vortices injected into a chiral Majorana edge mode as “flying qubits”.
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1 Introduction

Non-Abelian anyons have the property that a pairwise exchange operation in a two-dimensional
plane may produce a different state at the same energy, related to the initial state by a uni-
tary matrix rather than by a scalar phase factor [1]. The exchange of a set of anyons can
be described by the interlacing of their world lines in a space-time diagram (see Fig. 1). One
speaks of “braiding”, with reference to the way strands of wire or hair are interlaced in a zigzag
manner.1 Topologically distinct braids, which cannot be transformed into each other without
cutting the world lines, correspond to distinct unitary matrices that can be used as building
blocks for a quantum computation [2].

1Because the anyons are indistinguishable particles, each world line in a braid is equivalent. This distinguishes
braiding from weaving, which involves inequivalent perpendicular strands.
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Figure 1: World lines in a space-time (x , t) diagram, describing the braiding (ex-
change) of four particles. When the particles are non-Abelian anyons each topologi-
cally distinct braid corresponds to a different unitary operation on the ground state.

Because the braiding operation transforms between locally indistinguishable ground states
it is protected from local sources of decoherence. This inherent protection of quantum states
is topological in nature. Employing these evolutions for performing fault-tolerant quantum
evolutions gave rise to the concept of topological quantum computation [3]. In principle,
a platform of non-Abelian anyons could provide a robust alternative to qubits formed out
of conventional two-level systems (such as electron or nuclear spins). This opportunity is
motivating an intense search to find such exotic quasiparticles and to demonstrate the non-
Abelian exchange statistics.

Charge e/4 quasiparticles in the ν = 5/2 quantum Hall effect were the first candidates
for non-Abelian anyons [4], followed by vortices in topological superconductors [5,6]. There
is experimental evidence for non-Abelian anyons in the quantum Hall effect [7, 8], but most
of the recent experimental effort (spearheaded by Microsoft research [9]) has focused on the
superconducting platforms [10]— where one can benefit from the macroscopic coherence of
the superconducting state.

While the mathematical description of the braiding operation is the same in both platforms,
the way in which braiding can be physically implemented is altogether different: Quasipar-
ticles in quantum Hall edge channels can move around localized quasiparticles in the bulk
to demonstrate non-Abelian statistics via the electrical conductance [11–13]. In contrast, the
Majorana fermions that propagate along the edge of a topological superconductor [5] have
conventional fermionic exchange statistics, while the non-Abelian anyons are midgap states
(“zero-modes”) bound to a defect (a vortex [14,15] or the end-point of a nanowire [16–18])
and are therefore typically immobile. For that reason most proposals to demonstrate non-
Abelian statistics generate the unitary braiding operation without physically moving the zero-
modes in real space [19–23]— although there might be a real-space braiding alternative [24].

Here we present an overview of the diversity of ideas for Majorana braiding in supercon-
ductors. There are only ideas so far, no experiments yet. We see a parallel with our review of
the search for the observation of Majoranas [25], which we wrote in 2011 — one year before
the first experiment appeared [26]. There now exist many updates on the observational state
of affairs, to which we refer for background [10, 27–34]. In what follows we focus on the
“how-to” of the braiding operation, expecting physical implementations to follow in the near
future.

2 Basic concepts

For starters we discuss the conceptual basics of braiding of Majorana zero-modes in vortices.
This section summarizes text book material, see for example Refs. 35–39.
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Figure 2: Excitation spectrum of two pairs of vortices in a topological superconductor.
In isolation each vortex contains a midgap level at E = 0 (a Majorana zero-mode).
The levels split when the vortices from a pair come into proximity. The left vortex
pair has even fermion parity (lower level filled), the right vortex pair has odd fermion
parity (upper level filled).

Figure 3: The effect on the fermion parity of two pairs of vortices (panel a), when a
vortex from one pair encircles the vortex from another pair (panel b, σx operation),
or when two vortices exchange positions (panel c,

p
σx operation).

2.1 The magic of braiding

An operational description of braiding has the magical flavor of a cups and balls performance.
The “cups” are magnetic vortices penetrating a topological superconductor. The “balls” are
fermions (electrons or holes) that appear when two of the vortices are brought together (“fused”).
The operation starts with two pairs of vortices, one pair without a fermion, the other pair with
a fermion. “Braiding” means that a vortex from one pair is moved around a vortex from the
other pair, at a large distance without ever approaching it. And, surprise: a fermion has jumped
from one pair to the other!

Following Ivanov [6], the physics of vortex braiding can be explained as follows.2 In Fig.
2 the initial situation is illustrated in terms of an excitation spectrum. Each pair of vortices
contributes two energy levels within the superconducting gap, symmetrically arranged around
E = 0. The vortices share an unpaired electron or hole when the upper level is occupied, while
all fermions are paired if the upper level is empty. The state of odd fermion parity is denoted

2The Wikipedia entry on cups and balls cites the Roman writer Seneca: “With the juggler’s cup and dice, it is
the very trickery that pleases me. But show me how the trick is done, and I have lost my interest therein." I like to
think physics is different: a seemingly magical effect becomes more interesting if it is explained.
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by |−〉 and the state of even fermion parity by |+〉.
The two states |±〉 of vortices 1 and 2 are eigenstates with eigenvalue ±1 of a parity op-

erator P12, and similarly P34 is the parity operator for vortices 3 and 4. The representation
Pkl = 1− 2a

†
kl

a
kl

in terms of fermionic creation and annihilation operators a
†
kl

and akl is in-
convenient because it does not distinguish the contributions from the individual vortices k, l

that make up the pair. For that purpose we decompose

a
†
kl
= 1

2(γk + iγl)

a
kl
= 1

2(γk − iγl)

�

⇒ Pkl = iγkγl . (2.1)

Two different γ-operators anticommute, just like the a-operators, but they don’t square to zero:

γkγl = −γlγk if k 6= l, γ2
k
= 1. (2.2)

The Hermitian operator γ is called a Majorana fermion operator, while the non-Hermitian
operator a represents a Dirac fermion (an electron or a hole). Colloquially, it is said that “a
Majorana fermion is half an electron”, because one a-operator corresponds to two γ-operators.
Referring to Fig. 2, the operators γ1 and γ2 each represent half of the two-level system formed
by vortices 1 and 2. When the vortices are moved far apart, the level spacing vanishes and we
are left with two levels at E = 0, one localized in vortex 1 represented by γ1 and the other
localized in vortex 2 represented by γ2. One speaks of a Majorana “zero-mode”, avoiding the
word “state” or “particle” because it is not possible to associate an occupation number to the
E = 0 level in a single vortex.

Figs. 3a and b illustrate the switch in fermion parity when one vortex circles around an-
other. Each vortex is the origin of a 2π branch cut in the phase φ of the superconducting
pair potential, corresponding to a π phase jump for fermion operators. When vortex 2 circles
around vortex 3 both γ2 and γ3 cross a branch cut and change sign, resulting in a sign change
of both P12 and P34. The initial state |+〉|−〉 of even–odd fermion parity is thus converted into
the odd–even state |−〉|+〉, meaning that a fermion has been exchanged between vortex pairs
1,2 and 3,4 — even though they have not overlapped. The nonlocality of the branch cut in the
superconducting phase allows for this action at a distance. So much for cups & balls magic.

2.2 Non-Abelian statistics

The two states |0〉 ≡ |+〉|−〉 and |1〉 ≡ |−〉|+〉 encode a qubit degree of freedom,3 and the
braiding operation of Fig. 3b acts as a Pauli matrix σx that flips the qubit (a NOT gate). In
terms of the Majorana operators, one has σx = iγ2γ3. (Use Eq. (2.2) to check that σx = iγ2γ3

is Hermitian, squares to unity, and anticommutes with both P12 and P34.) The state may also
acquire a phase factor, which plays no role in what follows and will be ignored for simplicity.4

The square root of NOT,

B23 = e
1
4 iπ(1−σx ) =

Ç

i
2 (1+ γ2γ3), B2

23 = σx , (2.3)

describes the counterclockwise exchange of the vortices 2 and 3, as in Fig. 3c. (For a clockwise
exchange, take B−1

23 = B
†
23.) Exchange is also referred to as “half a braid”, where the full braid

3Equivalently, we could encode the qubit in the states |+〉|+〉 and |−〉|−〉 of even rather than odd total fermion
parity. The two parity sectors do not mix so they can be considered separately.

4The additional phase factor eiφC associated with a braid can be determined by encircling vortex 3 jointly by
vortices 1 and 2. Since two Majorana zero-modes are equivalent to a Dirac fermion, this joint encircling operation
produces the usual Aharonov-Bohm phase of a fermion encircling an h/2e flux, which amounts to a σz operation
on the qubit. In terms of the exchange operators σz = e2iφC B23B2

12B23 = e2iφC iσz , hence φC = −π/4 modulo π.
This phase factor applies to vortices but it is not universal: It can be different for other realizations of Majorana
zero-modes, for example at the end points of nanowires.
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is the encircling operation. The exchange operation transforms a state of even–odd fermion
parity into an equal-weight superposition of even–odd and odd–even fermion parities,

B23|+〉|−〉=
Ç

i
2

�

|+〉|−〉 − i|−〉|+〉
�

. (2.4)

The corresponding unitary transformation of the Majorana operators is

γ2 7→ B23γ2B
†
23 = −γ3, γ3 7→ B23γ3B

†
23 = γ2. (2.5)

Which of the two Majorana operators switches sign is determined by which of the two vortices
crosses a branch cut, and that depends on whether the exchange is clockwise or counterclock-
wise. Note that the transformation rule (2.5), and the converse γ2 7→ γ3, γ3 7→ −γ2, are
the only possibilities consistent with the requirement that the fermion parity P23 = iγ2γ3 of
vortices 2 and 3 is not affected by the exchange.

In a similar way the exchange of vortices 1 and 2 is a unitary transformation with exchange
operator

B12 = e
1
4 iπ(1−σz) =

Ç

i
2 (1+ γ1γ2), B2

12 = σz . (2.6)

We have identified B2
12 = iγ1γ2 = P12 with the σz Pauli matrix because it leaves the |0〉 state

unchanged while the |1〉 state changes sign.
The exchange of vortices 1 and 2 does not commute with the exchange of vortices 2 and

3: [B12, B23] = iγ1γ3. Because the order of the exchange matters, Majorana zero-modes
in superconductors have non-Abelian statistics [5, 6]. They realize the non-Abelian anyons
discovered in the fractional quantum Hall effect by Moore and Read [4].5

2.3 Fusion rules

The Majorana zero-modes in 2N isolated vortices produce a fermionic state at E = 0 with an
exponentially large degeneracy of 2N (or 2N−1 if restrict ourselves to a fixed global fermion
parity). A unitary evolution in this manifold is called braiding, and a projective measurement
is called fusion. The latter name refers to the process of bringing vortices together so that the
zero-modes overlap, and due to their coupling they energetically split, allowing the fermion
parity to be measured.

Because pairs of quasiparticles are absorbed as Cooper pairs in the superconducting con-
densate, the measurement outcome is an element of Z2: either the fused vortices leave behind
an unpaired quasiparticle or they do not. The outcome is specified by fusion rules. If two pairs
of Majorana zero-modes γ1, γ2 and γ3, γ4 are each in a state of definite fermion parity, then
the fusion of one vortex from each pair will produce an equal-weight superposition of even and
odd fermion parity. In a formal notation the fusion rule is expressed by

γ2 × γ3 = 1+ψ, (2.7)

where ψ indicates the presence of an unpaired fermion and 1 refers to the vacuum (no un-
paired fermions).

This fusion rule follows directly from a calculation of the expectation value of the parity
operator of zero-modes 2 and 3,

〈P23〉= 〈P12P23P12〉= −〈P12P12P23〉= −〈P23〉 ⇒ 〈P23〉= 0. (2.8)

5The charge e/4 quasiparticles in the filling factor 5/2 state of the quantum Hall effect have exchange operators
that differ only by phase factors from those of Majorana zero-modes. This class of non-Abelian anyons is referred
to as Ising anyons.
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Figure 4: Braiding operations that result in a
p

σy gate (panel a) or in a Hadamard
gate H (panel b).

In the first equality we used that zero-modes 1 and 2 are in a state of definite parity, so
P12 = ±1, in the second and third equalities we used the anticommutation P23P12 = −P12P23

and P2
12 = 1. The expectation value of the fusion outcome vanishes, so even and odd fermion

parity must have exactly equal weight. Moreover

〈P23P12〉= ±〈P23〉= 0, 〈P23P14〉= 〈P12P34〉= ±1, (2.9)

so the parities P12 and P23 are uncorrelated, while P23 and P14 are maximally correlated.

2.4 Clifford gates

A quantum computation is constructed from elementary unitary operations, gates, acting on
one or two qubits. The gates that can be realized by braiding Majorana zero-modes are called
Clifford gates, in reference to the Clifford algebra (2.2). Clifford gates include the Pauli matri-
ces σα and their square roots acting on a single qubit, in addition to the two-qubit CNOT gate.
Let us first discuss the single-qubit Clifford gates.

We have already encountered the NOT gate, a Pauli matrix σx = iγ2γ3 realized by moving
vortex 2 around vortex 3. Moving vortex 1 around vortex 2 realizes the phase shiftσz = iγ1γ2.
The Pauli matrix σy = iσxσz = iγ1γ3 then follows by composing these two operations.

On the Bloch sphere, encircling operations (as in Fig. 3b) rotate the qubit by π around
orthogonal axes. Exchange operations (as in Fig. 3c) take the square root, resulting in rotations
by π/2. The

p
σx and

p
σz operations are given by Eqs. (2.3) and (2.6), while the

p
σ y

operation follows from the exchange of vortices 1 and 3,

B13 = e
1
4 iπ(1−σy ) =

Ç

i
2 (1+ γ1γ3), B2

13 = σy . (2.10)

Vortices 1 and 3 are non-adjacent, to obtain B13 we make sure not to cross the branch cut of
the intermediate vortex 2 in the exchange operation, see Fig. 4a.

The alternative exchange of Fig. 4b, in which vortex 2 is encircled by the exchange of
vortices 1 and 3, produces the Hadamard gate,

B12B23B12 = B23B12B23 =

Ç

i
2(σx +σz)≡ eiπ/4H,

H=
Ç

1
2

�

1 1
1 −1

�

, H2 = 1. (2.11)

The first equality in Eq. (2.11) (known as the Yang-Baxter equation) shows two equivalent
ways to decompose the exchange of vortices 1 and 3 into three exchanges of adjacent vortices.

It is a remarkable geometrical fact [40] that only one more square root would be needed
to cover the Bloch sphere uniformly: If we combine π/4 rotations around the z-axis with
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Figure 5: Two-qubit CNOT gate [43,44] involving four Hadamard braids (red circles)
and three joint fermion parity measurements with an ancilla qubit (blue boxes). The
ancilla is prepared in the state (|0〉+|1〉)/

p
2 and measured at the end. The measured

parities p1, p2, p3 determine the Pauli matrices that have to be applied at the end to
control and target qubits in order to complete the CNOT operation.

π/2 rotations around the x-axis, a rotation by an arbitrary angle around any axis can be
approximated with arbitrary accuracy. The missing π/4 rotation

T= e
1
8 iπ(1−σz) =

�

1 0
0 eiπ/4

�

, T4 = σz , (2.12)

is called a T-gate.6 It cannot be produced by braiding of vortices, which is a basic limitation of
Ising anyons.

So much for the single-qubit gates. Any multi-qubit unitary operation can be constructed
from the combination of a two-qubit gate with single-qubit rotations, so for a universal quan-
tum computation it is sufficient to implement the two-qubit CNOT (controlled-not) gate [35].
The CNOT gate is a Clifford gate, meaning that it can be realized by braiding if we add one extra
ingredient [41, 42]: The ability to measure the fermion parity of four Majorana zero-modes
without gaining any information on the fermion parity of two of these four.

An implementation [43, 44] using one ancilla qubit is shown in Fig. 5. The sequence of
three parity measurements and four Hadamard rotations carries out the unitary operation 7

G = 1
2(1+ p1p3iγ3γ4) +

1
2 p2(1− p1p3iγ3γ4)iγ10γ11iγ5γ8

= 1
2(1+ p1p3σc,z) +

1
2 p2(1− p1p3σc,z)σt,x (2.13)

6The name π/8-phase gate or magic gate is also used for the T-gate. The π/2 rotation T2 = B12 =
�1 0

0 i

�

is also
called an S-gate or π/4-phase gate.

7The Mathematica package SNEG [45] is helpful to evaluate the product of Majorana operators that leads to Eq.
(2.13).
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on the control (c) and target (t) qubit. (In the second equality we have used that the ancilla
is prepared in an eigenstate of iγ5γ8 = σx .) To complete the CNOT we operate on the control
qubit with σz = iγ1γ2 if p2 = −1 and we operate on the target qubit with σx = iγ10γ11 if
p1p3 = +1.

2.5 Topological protection

Unitary operations performed by braiding are said to be topologically protected, and a compu-
tation based on such operations is called a topological quantum computation [2, 3]. Clifford
gates are topologically protected, the T-gate is not. At the mathematical level the distinction
means that a qubit encoded in Ising anyons can be rotated by an angle equal to π/4 to all
decimal places, while a π/8 rotation is only approximate. At the physical level the topological
protection of the π/4 rotation is limited by the finite excitation gap ∆0 in the material that
hosts the non-Abelian anyons [46].

To mimimize errors, the time t0 of the braiding operation should be neither too short nor
too long: it should be long compared to ħh/∆0 to avoid the excitation of quasiparticles and
it should be short compared to the coherence time tφ = min(ttunneling, tthermal, tpoisoning) of

the Majorana qubit. The coherence is limited by the time ttunneling ∝ eL∆0/ħhvF for tunneling
between two Majorana zero-modes at a distance L, it is limited by the thermal excitation time
tthermal ∝ e∆0/kBT , and it is limited by the time tpoisoning for quasiparticles to leak into the
superconductor from the environment. The latter process is called quasiparticle poisoning
and can be suppressed by the Coulomb charging energy of the superconductor.

3 Braiding of Majorana zero-modes in nanowires

In typical experimental realizations the Majorana zero-modes in a superconductor are immo-
bile objects. It might be possible using magnetic force microscopy [47] to drag one vortex
around another as in Figs. 3 and 4. But when the zero-modes are bound to the end points
of a nanowire, the motion in real space is not practical and indirect methods of exchange are
needed. We discuss two varieties, one based on unitary evolution and one based on projective
measurements.

3.1 The three-point turn

The first obstacle to overcome when one thinks about braiding Majorana zero-modes in nanowires
is how to escape from the 1D confinement. The three-point turn in a tri-junction shown in Fig.
6 was introduced for that purpose by Alicea et al. [20]. This is a unitary evolution of a twofold
degenerate ground state, made possible by the fact that whenever three Majorana zero-modes
are coupled only two can split up at ±Ec, leaving a third level pinned at E = 0. Together with
the fourth uncoupled zero-mode this preserves a twofold degenerate ground state manifold.
The evolution does not leave this manifold if it is done slowly (adiabatically) on the time scale
ħh/Ec.

Since Majorana zero-modes appear at the point where the superconducting gap in the
nanowire closes, they can in principle be moved through the tri-junction by opening and clos-
ing the gap in adjacent sections of the nanowire [20, 48]. However, to protect the adiabatic
evolution, it is preferrable to have a transfer mechanism that keeps the superconducting gap
open throughout the braiding process [21, 49]. This is possible because a sequence of cou-
pling and decoupling operations transfers the Majorana operators from one end point of the
tri-junction to another, via the unitary transformation γk 7→ UγkU

†. The time-dependent cou-
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Figure 6: Exchange of Majorana zero-modes via the three-point turn [20]. Three
nanowires meet at a tri-junction, where a Majorana zero-mode γ0 can be coupled
(solid line) or decoupled (dashed line) from the zero-modes γ1,γ2,γ3 at the end
points of the nanowires. The coupling splits off two zero-modes (white circles), leav-
ing the other two Majoranas at E = 0 (colored circles). By switching the coupling
from one branch to another, a Majorana zero-mode is transferred from one end point
to another. The small diagram above each arrow shows an intermediate stage, with
one zero-mode delocalized over three coupled sites. The three steps together ex-
change zero-modes 1 and 2. [Figure from Ref. 21.]

pling Hamiltonian that drives this transformation is

H(t) =

3
∑

k=1

∆k(t)iγ0γk, (3.1)

with ∆k(t) the adjustable coupling energy between the Majorana zero-mode γk at end point
k and the zero-mode γ0 at the center of the tri-junction.

The physical origin of the coupling can be a tunnel coupling or a Coulomb coupling. The
tunnel coupling can be adjusted electrostatically by gate electrodes that raise or lower tun-
nel barriers separating zero-modes with overlapping wave functions [49] (see Ref. 50 for a
quantum-dot based implementation). The Coulomb coupling works over longer distances (no
wave function overlap needed), but requires more explanation (isn’t a Majorana zero-mode
charge neutral?). We will return to this a bit later but we first show, following Ref. 21, how
the unitary evolution operator U in the degenerate manifold can be derived. This amounts to
a calculation of the non-Abelian Berry phase accumulated along the closed path in parameter
space of Fig. 7, which substitutes for the closed path in real space when the Majoranas are
immobile.

3.2 Non-Abelian Berry phase

The occupation numbers 0, 1 of the two fermionic operators a1 = (γ1 − iγ2)/2 and a2 = (γ0 − iγ3)/2
define the basis states |00〉, |01〉, |10〉, |11〉. In this basis the coupling Hamiltonian (3.1) is given
by

H =







−∆3 0 0 −i∆1 −∆2

0 ∆3 −i∆1 −∆2 0
0 i∆1 −∆2 −∆3 0

i∆1 −∆2 0 0 ∆3





 . (3.2)
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Figure 7: The braiding path in three-dimensional parameter space along which the
non-Abelian Berry phase is evaluated. [Figure from Ref. 21.]

The ground state is twofold degenerate,8 spanned by states of even or odd fermion parity,

|+〉= C+







i(∆̄+∆3)

0
0

∆1 + i∆2





 , |−〉= C−







0
i(∆̄−∆3)

∆1 + i∆2

0





 . (3.3)

(We have abbreviated ∆̄ =
q

∆
2
1 +∆

2
2 +∆

2
3 and inserted normalization constants C±.) This

parameterization is smooth and continuous provided we stay away from the line∆1 =∆2 = 0.
A closed path C in parameter space has non-Abelian Berry phase [51]

U = exp

�

−
∮

C

∑

k

Ak d∆k

�

, (3.4)

obtained by integration of the matrices

Ak =

�

〈+| d
d∆k
|+〉 0

0 〈−| d
d∆k
|−〉

�

, (3.5a)

A1 =
i∆2

2∆̄(∆̄2 −∆2
3)

�

∆̄+∆3 0
0 ∆̄−∆3

�

, A2 = −(∆1/∆2)A1, A3 = 0. (3.5b)

The path C corresponding to the three-point turn of Fig. 6 is shown in Fig. 7. The cou-
pling strengths ∆k vary between a minimal value ∆min and maximal value ∆max. The contour
integral (3.4) evaluates to

U = exp
�

−i
�

1
4π− ε
�

σz

�

, ε= 3
2

p
2∆min/∆max. (3.6)

8To avoid confusion, keep in mind that E = 0 for a Majorana zero-mode means vanishing single-particle ex-
citation energy, it does not imply a many-particle eigenstate at zero energy. The many-particle spectrum consists
of eigenvalues of the operator H = 1

2

∑

nm γnHnmγm, while the single-particle excitation spectrum consists of the
eigenvalues of the matrix H (known as the Bogoliubov-De Gennes Hamiltonian). In this case H given by Eq. (3.1)

has twofold degenerate eigenvalues at ±∆̄, while H =

�

0 i∆1 i∆2 i∆3
−i∆1 0 0 0
−i∆2 0 0 0
−i∆3 0 0 0

�

has eigenvalues −∆̄, 0, 0, ∆̄.
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In the limit ∆min/∆max → 0 the braiding operator (2.6) is recovered up to an Abelian phase
factor (which is not universal).

The ε correction to the π/4 rotation angle does not spoil the topological protection if it can
be made exponentially small in some physical parameter. In addition, there are corrections
to adiabaticity arising from the finite operation time t0, which are exponentially small in the
parameter t0∆max/ħh [46].

3.3 Coulomb-assisted braiding

Non-Abelian anyons carry a topological charge [3], which in general is an emergent quantum
number unrelated to the electrical charge. Majorana zero-modes in a superconductor have the
special feature that their topological charge, the fermion parity, equals the electrical charge
modulo 2e. This opens up the possibility to operate on the Majorana zero-modes by means of
Coulomb interactions [52] — even though Majorana fermions are themselves charge neutral
quasiparticles. Coulomb-assisted braiding has the advantage that no microscopic control of
tunneling amplitudes between zero-modes is needed, all couplings can be varied by macro-
scopic parameters of the electrical circuit in which the zero-modes are embedded [21,53].

The electrical circuit is a socalled Cooper pair box consisting of a superconducting island
(capacitance C) connected to a bulk (grounded) superconductor by a split Josephson junc-
tion enclosing a magnetic flux Φ. The Josephson energy EJ(Φ) = E0 cos(eΦ/ħh) can be varied
between 0 when Φ = h/4e and a maximal value E0 when Φ = 0. The Cooper pair box has
Hamiltonian [54]

HCPB =
1
2Q2/C − EJ(Φ) cosφ, (3.7)

in terms of the canonically conjugate phase φ and charge Q = −2ei d/dφ of the Cooper pair
box.

The Majorana operators γ1,γ2, . . .γ2N from the zero-modes on the superconducting island
do not enter explicitly in HCPB, but they affect the spectrum through a constraint on the eigen-
states [55],

Ψ(φ + 2π) = (−1)(1−P)/2Ψ(φ), P = iN

2N
∏

n=1

γn. (3.8)

This ensures that the eigenvalues of Q are even multiples of e for P = 1 and odd multiples
of e for P = −1. Since P contains the product of all the Majorana operators on the island,
the constraint (3.8) effectively couples distant Majorana zero-modes — without requiring any
overlap of wave functions.

The Cooper pair box is operated in the regime that the Josephson energy EJ is large com-
pared to the single-electron charging energy EC = e2/2C . The phase then has small zero-point
fluctuations around φ = 0, with occasional 2π quantum phase slips. In this regime the effec-
tive low-energy Hamiltonian is [52,56]

HCPB(Φ) = −U(Φ)P , U(Φ)∝ e−
p

8EJ(Φ)/EC . (3.9)

The term −UP due to quantum phase slips depends on the Majorana operators through the
fermion parity. This term acquires a dynamics for multiple coupled islands, because then the
fermion parity of each individual island is no longer conserved.

For the three-point turn we need three Cooper pair boxes, as in Fig. 8. The effective cou-
pling Hamiltonian has the form (3.1), with flux dependent coupling strengths ∆k ∝ U(Φk).
The proportionality includes a term that varies slowly with the flux, but the main flux de-
pendence comes from the exponential Φ-dependence of U(Φ). The Majorana zero-modes are
weakly coupled for Φ = 0, when the Cooper pair box is strongly coupled to the bulk supercon-

ductor, and it’s the other way around forΦ = h/4e. For E0≫ EC the ratio∆min/∆max ≃ e−
p

8E0/EC
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Figure 8: Three Cooper pair boxes (charge Qk, superconducting phase φk), each
containing Majorana zero-modes at the end points of a nanowire (yellow dots). The
three overlapping Majorana zero-modes at the tri-junction effectively produce a sin-
gle zero-mode γ0. The three-point turn of Fig. 6 can implemented by varying the
fluxes Φk through the split Josephson junctions. [Figure from Ref. 21.]

Figure 9: Exchange of Majorana zero-modes via a sequence of projective measure-
ments [19]. The fermion parity Pkl = iγkγl of Majoranas k and l within the oval
shape is measured. The operation proceeds to the next step if Pkl = +1, otherwise
one should start over from the previous step. After four successful measurements
Majoranas 1 and 2 have been exchanged.

that governs the accuracy of the braiding operation via Eq. (3.6) can then be made exponen-
tially small.

The tri-junction in Fig. 8 is controlled magnetically, but more generally all one needs for
Coulomb-assisted braiding is a way to control the ratio EJ/EC by a few orders of magnitude.
Electrostatic control instead of magnetic control has been proposed by Aasen et al. [57], in a
design that uses a gate voltage to modulate the transparency of the Josephson junction and
thereby vary the Josephson energy.

3.4 Anyon teleportation

A pair of non-Abelian anyons with a definite topological quantum number is an entanglement
resource that can be used for the teleportation of topological qubits. Bonderson, Freedman,
and Nayak [19] showed how such anyon teleportation could implement the braiding transfor-
mations through the sequence of projective measurements shown in Fig. 9.

The setup looks like the tri-junction of Fig. 6, but the coupling and decoupling operations
are replaced by fermion parity measurements. Suppose that Majoranas 0 and 3 are initialized
in a state of even fermion parity, so P03 = iγ0γ3 = +1, and subsequently a measurement of
Majoranas 0 and 1 also has the even parity outcome, P01 = +1. In that case, because of the
global conservation of fermion parity, any parity information in Majorana 1 must have been
transferred, or “teleported”, to Majorana 3. Further parity measurements then effectively carry
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Figure 10: Device proposed in Ref. 22 to carry out the measurement-based braiding
operation of Fig. 9. (Similar structures are described in Refs. 23, 58.) The fermion
parity Pkl is measured via the electrical conductance of a loop that contains one nor-
mal metal arm and one superconducting arm. The path through the superconductor
involves tunneling into a pair of Majorana zero-modes γk and γl , selected by opening
a gate-controlled barrier. (In the drawing P02 is measured.) The magnetoconduc-
tance oscillations acquire a phase shift dependent on the value of Pkl .

out the exchange of Majoranas 1 and 2.
Formally, one can check this by working out the product of projection operators

Πkl =
1
2(1+ Pkl) corresponding to the measurement sequence of Fig. 6,

Π03Π02Π01Π03 =

Ç

1
8 Π03 ⊗ 2−1/2(1+ γ2γ1), (3.10)

and comparing with the braiding operator (2.6).
The operation has a probabilistic element, because each measurement has a probability

1/2 to give odd rather than even fermion parity. (The prefactor
p

1/8 in Eq. (3.10) accounts
for the reduced success probability of the first three projections.) If the outcome is odd parity,
one has to return to the previous step and repeat the process until even parity is obtained, an
iterative procedure called a “forced measurement” [19].

Fig. 10 shows one implementation [22] of the abstract scheme of Fig. 9, which shares
with other implementations [23, 58] the useful feature that no tri-junctions of nanowires are
needed. The fermion-parity measurements are performed by interferometry, as we will discuss
in the next section.

4 Read-out of Majorana qubits

Whichever approach to braiding one chooses, a read-out of the quantum information stored
in the non-Abelian anyons is an essential step in the procedure: It is needed at the end of the
computation to read out the outcome of the computation, or to verify that a certain opera-
tion has been performed, or for the measurement-based approach to implement the braiding
operator itself.

Majorana zero-modes in superconductors store the quantum information in the fermion
parity, which cannot be accessed if the zero-modes are uncoupled [16]. To protect the quan-
tum information from decoherence one therefore needs a tunable coupling term, which can be
switched off with exponential accuracy and then switched on only during the read-out process.
Adjustable tunnel barriers and Coulomb charging energies provide two such mechanisms. We
also need an observable that couples to the fermion parity and performs a projective measure-
ment. Electrical interferometry, microwave spectroscopy, inductive coupling to a SQUID, or
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capacitive coupling to an electrometer are some candidates. We discuss these various options
in this section.

4.1 Majorana interferometry

We first explain the interferometric measurement of the fermion parity in the device of Fig.
10 [22]. The tunable coupling term is provided by adjustable tunnel barriers and the measured
observable is the electrical conductance. A voltage drives a current to ground via a normal
metal wire, either directly or via a superconducting side branch. The superconductor is not
grounded (it is “floating”), and a large Coulomb charging energy suppresses charge transfer
from the normal metal into the superconductor. Quantum fluctuations of the charge on the
superconductor still allow for the cotunneling process [59], whereby an electron tunnels into
the superconductor via Majorana zero-mode γk and back into the normal metal via zero-mode
γl .

The cotunneling Hamiltonian is [55]

Hkl = tk t lγkγl c
†
l
c

k
+H.c., (4.1)

in terms of fermion annihilation operators cn on the normal-metal side of the tunnel junction
connected to zero-mode n, with tunneling amplitude tn. The Coulomb charging energy of the
superconductor selectively couples the distant Majorana zero-modes γk and γl , depending on
which of the tunnel barriers to the normal metal is opened up (k = 0, l = 2 in Fig. 10).

The phase difference between the two current paths, one directly via the normal metal
and the other via cotunneling through the superconductor, depends on the fermion parity
Pkl = iγkγl and on the magnetic flux Φkl enclosed by the two paths. The switch from even to
odd fermion parity amounts to a π phase shift, resulting in parity-dependent Aharonov-Bohm
oscillations in the magnetoconductance,

Gkl(B) = G0 + PklδG cos(eΦkl/ħh). (4.2)

With a large enough driving voltage V , a conductance measurement thus becomes a projective
measurement of the fermion parity [22,58].

4.2 Inductive coupling to a flux qubit

The Aharonov-Bohm interferometer of Fig. 10 requires phase coherence for single electrons
propagating through the normal metal wire out of equilibrium, which limits the length of the
wire. An alternative approach without that limitation is to make the entire circuit supercon-
ducting and to measure the Josephson supercurrent in equilibrium [22]. The clockwise or
counterclockwise circulating supercurrent forms a flux qubit, which can be read-out by induc-
tive measurement of its magnetic moment in a SQUID [60].

The flux qubit couples to the fermion parity because of the 4π-periodic Josephson effect of
a Josephson junction containing Majorana zero-modes [16]. The 4π periodicity refers to the
fact that the supercurrent I(Φ) depends on the enclosed flux Φ with a periodicity of h/e rather
than h/2e,

I(Φ) = I0P sin(eΦ/ħh). (4.3)

The usual h/2e periodicity is doubled by fermion parity conservation, it would be restored if
the fermion parity P of the Majoranas is switched when Φ 7→ Φ + h/2e. A braiding circuit
based on this coupling mechanism has been proposed in Ref. 61.
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4.3 Microwave coupling to a transmon qubit

As we discussed in Sec. 3.3, Coulomb charging introduces a fermion parity dependent term
in the Hamiltonian (3.9) of a Cooper pair box. The control parameter is the ratio of charging
energy EC and Josephson energy EJ, which can be varied by the magnetic flux through a
Josephson junction [21] or by a gate voltage controlled tunnel barrier [57]. (The relative
merits of the two types of control have been discussed in Ref. 62.)

To measure the fermion parity the Cooper pair box must be coupled to a macroscopic ob-
servable. A well-developed non-invasive measurement technique in superconducting electron-
ics relies on coupling to microwave photons [63]. The Cooper pair box is placed in a microwave
transmission line resonator. A fermion parity switch can be measured as a shift in the resonance
frequency [64]. The charge qubit in a transmission line is called a transmon [65],9 motivating
the name top-transmon for a transmon coupled to a topological Majorana qubit [52].

The two lowest levels of a Cooper pair box form a two-level system with spacing given
by the plasma frequency ħhΩ0 =

p

8EJEC. We denote the Pauli matrices of this charge qubit
by τz and τ± = τx ± iτy (not to be confused with the σα Pauli matrices of the Majorana
qubit). In the transmission line resonator the charge qubit is coupled to the bosonic operators
b, b† of microwave photons at frequencyω0 by the term ħhδω(τ+b+τ−b†). The top-transmon
Hamiltonian

Htop-transmon =
1
2ħhΩ0τz + (U+τz + U−)P +ħhω0 b† b+ħhδω(τ+b+τ−b†) (4.4)

contains a term τzP that couples the charge qubit to the fermion parity P of the Majorana
zero-modes. The coupling energies U± are both of order e−ħhΩ0/EC . (The energy U in Eq. (3.9)
equals U+ − U−.)

Within the Jaynes-Cummings model, a measurement of the resonance frequency ωeff of
the transmission line now becomes a joint projective measurement of the charge qubit and the
topological qubit [52,53],

ωeff =ω0 +
τzδω

2

Ω0 −ω0 + 2PU+/ħh
. (4.5)

This measurement is performed far off resonance (δω ≪ |Ω0 −ω0|, the socalled dispersive
regime), so the charge qubit is not excited. If it is in the ground state we may just replace
τz 7→ −1 and then ωeff directly measures P .

4.4 Capacitive coupling to a quantum dot

The transmon read-out exploits superconducting technology, alternatively one can make use
of well-developed semiconductor technology for capacitive charge read-out [66]. For that
purpose the superconducting nanowires are connected by tunnel barriers to semiconductor
quantum dots. The barrier heights can be adjusted by gate voltages, so that one can selectively
couple and decouple Majorana zero-modes on the nanowires to the quantum dots. The charge
on the quantum dots is modulated by the fermion parity of the zero-modes, and this charge
can be read out capacitively [23,58].

4.5 Random Access Majorana Memory

The various read-out circuits described above are ready for few-qubit operations, but for appli-
cation in a quantum computer it is desirable to have a layout that is scalable to many Majorana
qubits. A Random Access Majorana Memory (RAMM) is a scalable read-out circuit that can per-
form a joint parity measurement on Majorana zero-modes belonging to an arbitrary selection

9A gate-voltage controlled transmon has been called a gatemon [62].
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Figure 11: Left panel: Design of a Majorana qubit (a socalled tetron [23]) consist-
ing of two topological superconducting nanowires with four Majorana zero-modes.
The two wires are bridged by an ordinary superconductor which fixes the total parity
and thereby protects the qubit from quasiparticle poisoning. A parallel connection
is formed by a nanowire with zero-modes γa and γb at a fixed parity. The super-
conducting nanowires are coupled via gate-tunable tunnel barriers to semiconductor
quantum dots. Right panel: Tunnel couplings used to measure the joint fermion par-
ity of six qubits. The coupled Majorana zero-modes form a superconducting loop
interrupted by quantum-dot Josephson junctions, with a supercurrent proportional
to the joint fermion parity

∏6
j=1 iγ j,1γ j,2 (times iγaγb = 1). This parity dependence

can be measured capacitively or inductively. [Figure from Ref. 67.]

of topological qubits. A magnetically controlled top-transmon RAMM was proposed in Ref. 53.
In Fig. 11 we show an alternative design [23,67] based on electrostatially controlled quantum
dot couplings.

A key advantage of a RAMM is that products of Pauli matrices on multiple topological qubits
can be measured directly, which makes it possible to implement quantum error correction
without having to introduce ancilla qubits [53,67].

5 Fusion of Majorana zero-modes in nanowires

The Majorana fusion rule γ × γ = 1 + ψ can be tested by performing two fermion parity
measurements on a Majorana qubit formed out of four zero-modes: first on zero-modes 1 and
2 and then on zero-modes 2 and 3. The first measurement is a P12 = σz measurement and
the second measurement is a P23 = σx measurement. According to Eqs. (2.8) and (2.9) the
second measurement should have zero expectation value regardless of the result of the first
measurement.

5.1 Linear junction or tri-junction

Two geometries in which to detect the fusion rule are compared in Fig. 12. The left panel
shows the linear circuit proposed in Ref. 57, consisting of two superconducting islands, each
containing a pair of Majorana zero-modes. While the couplings between Majoranas on the
same island can be flux-controlled Coulomb couplings, the inter-island coupling is via a tunnel
barrier, which would require microscopic control by a gate voltage. The right panel shows an
alternative tri-junction circuit that can be fully controlled by Coulomb couplings [68], at the
expense of requiring three rather than two islands.
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Figure 12: Two alternative circuits to measure the Majorana fusion rule. The
blue boxes indicate superconducting islands, each containing a nanowire with Ma-
jorana zero-modes at the end points. The black solid line connects zero-modes
whose fermion parity is measured. The linear circuit needs adjustable tunnel and
Coulomb couplings, in the tri-junction circuit only the Coulomb couplings need to
be adjustable. The fusion rule says that the two measurement outcomes should be
uncorrelated and that the second measurement has zero expectation value.

The switch from a measurement of P12 to a measurement of P23 involves a coupling and
decoupling of zero-modes on a time scale tc . This switch should be performed rapidly enough
so that quasiparticles from the environment cannot leak in. A complicating factor is that tc

cannot be too short, since the presence of even a small number of higher levels at energies
below ħh/tc will favor P23 ≈ 0 — irrespective of the presence of the zero-modes [69,70].

5.2 If we can fuse, do we need to braid?

We expect the fusion of Majorana zero-modes to be realized earlier than their braiding. Would
such an observation be sufficient to announce the demonstration of non-Abelian statistics?
One can argue that the answer is “yes”, both from a fundamental and from a computational
perspective.

Fundamentally, the Majorana fusion rule γ×γ= 1+ψ says that the ground state is degen-
erate (quantum dimension d > 1). It is known from general principles that d > 1 implies that
the braiding matrix cannot consist solely of Abelian phase factors eiφ [71]. A fusion experiment
with two outcomes can therefore serve as an indirect demonstration of non-Abelian statistics
— indirect because the specific Majorana braiding matrix e

1
4 iσx has not been measured.

Computationally, braiding is not needed if one has a RAMM with the capability to fuse
arbitrary sets of two and four zero-modes [67]. We illustrate this in Fig. 13, where we show
how the CNOT operation (2.13) carried out by braiding in Fig. 5 can be equivalently performed
by fusion of non-adjacent zero-modes. It is quite possible that a topological quantum computer
will need to implement braiding operations for practical reasons, but in a RAMM architecture
such as Fig. 11 these are not needed.

6 How to braid Majorana edge modes

Two-dimensional (2D) superconductors with broken spin-rotation symmetry and broken time-
reversal symmetry provide the superconducting analogue to the quantum Hall effect in a 2D
semiconductor [5]: Both systems have a gapped bulk with gapless states that propagate chi-
rally (in a single direction) along the edge. In the semiconductor the edge states are populated
by Dirac fermions, electrons and holes, while in the superconductor the quasiparticle excita-
tions are Majorana fermions — charge-neutral electron-hole superpositions. In this section we
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Figure 13: Two-qubit CNOT gate equivalent to the circuit in Fig. 5, but without any
braiding operations. (The corresponding unitary operator differs from Eq. (2.13) by
an irrelevant minus sign.) One can do without braiding if non-adjacent zero-modes
can be fused.

address the question whether one can use the chiral motion in a Majorana edge mode to braid
non-Abelian anyons in real space, by physically moving one zero-mode past another.

6.1 Chiral edge modes in a superconductor

Majorana edge modes support two types of excitations: fermions ψ and vortices σ. The
fermions are called Majorana fermions because they have a real wave function ψ(x , t). The
vortices are π-phase domain walls on the edge, across which the fermion field changes sign
[72–74]. The domain wall is tied to the fermions, so it moves along the edge with the same
velocity v.

Edge vortices are the mobile counterpart to immobile Abrikosov vortices in the bulk of
the superconductor [14]. They are the chiral counterpart to fluxons in a Josephson junction
[75]. Mobile or immobile, the vortices share the property that they support a Majorana zero-
mode, which is a non-Abelian anyon. A Majorana fermion, in contrast, has Abelian fermionic
statistics. We have summarized the nomenclature in an info box.10

It has been suggested [76] that it might be easier to demonstrate non-Abelian braiding
of chiral Majorana fermions than of localized Majorana zero-modes. However, a Majorana
fermion has conventional fermionic statistics because it is not attached to a branch cut of the
superconducting phase. That is the essential distinction between Majorana zero-modes bound
to a vortex core and Majorana fermions propagating along an edge. To obtain a mobile (flying)

10In the older literature, Majorana fermions are not always distinguished from Majorana zero-modes. (The
Wikipedia talk page has an amusing discussion of this conflation: Calling a Majorana fermion a fermion is like

calling a jellyfish a fish.) Looking back, it would have helped if the word “Majorana” was only used for the Abelian
fermions. If I could change the common practice I would refer to the non-Abelian Majorana zero-modes as “Ising
anyons”.
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Info box: Who is Who in topological superconductors

◦ Bogoliubov quasiparticle: A subgap excitation of a superconductor, obtained by breaking up a
Cooper pair. It is described by a four-component wave function ψ = (ψe↑,ψe↓,ψh↑,ψh↓), represent-
ing a coherent superposition of an electron e (filled state above the Fermi level with spin up or down)
and a hole h (empty state below the Fermi level). Charge-conjugation symmetry relates the electron
and hole components, ψeσ(r , t) =ψ∗

hσ
(r , t).

◦ Dirac fermion: An electron or hole with a linear dispersion and a complex wave function. The
edge modes in the quantum Hall effect are populated by Dirac fermions. A Dirac fermion can split
into a superposition of two Majorana fermions at the interface with a topological superconductor.
◦ Majorana fermion: A fermion is called “Majorana” when it has a real wave function,
ψ(r , t) = ψ∗(r , t). A Bogoliubov quasiparticle that is in an equal-weight electron-hole superpo-
sition within a single spin band, ψ =ψe,σ+ψh,σ, is a Majorana fermion. The Majorana fermion has
a purely imaginary Hamiltonian H = iA, with antisymmetric A, so it evolves according to a real wave
equation, ∂ψ/∂ t = Aψ.
◦ Majorana zero-mode: A midgap state in a superconductor, bound to a defect (a vortex core or

the end point of a nanowire). Two zero-modes are needed to store one Majorana fermion, so in a
single zero-mode the fermion is hidden from the environment.
◦ non-Abelian anyon: The noun “anyon” means that this particle is neither a boson nor a fermion

(it can have any exchange statistics). The adjective “non-Abelian” means that the order matters
when two of the particles are exchanged. The Majorana zero-mode is a non-Abelian anyon, while
the Majorana fermion is, as the name says, a fermion.
◦ Abrikosov vortex: Abrikosov discovered that a magnetic field penetrates a superconductor in-

crementally with h/2e flux tubes. The phase φ of the superconducting pair potential winds by
2π around a flux tube, hence the name Abrikosov vortex. The vortex has a discrete spectrum
En = (n + ν)∆E, n = 0,±1,±2, . . .. Particle-hole symmetry enforces that the offset ν equals ei-
ther 0 or 1/2. In a conventional superconductor ν = 1/2, while in a topological superconductor
ν= 0, hence the appearance of a zero-mode E0 = 0.
◦ Josephson vortex: When an Abrikosov vortex is trapped in the insulating region between two

superconductors, it is called a Josephson vortex or fluxon. While the Abrikosov vortex is massive
and immobile, the Josephson vortex is massless and mobile. It can move in both directions along a
Josephson junction, its motion is not chiral.
◦ Majorana edge vortex: A phase boundary σ on the edge, at which the Majorana fermion phase

jumps by π. Because of the reality constraint on ψ, a π phase jump (a minus sign) is stable: it can
only be removed by merging with another π phase jump. Just like Abrikosov vortices in the bulk of
the topological superconductor or fluxons in a Josephson junction, edge vortices have non-Abelian
exchange statistics. The motion of the edge vortices is unidirectional (chiral).
◦ Majorana edge mode: A reference to both a quasiparticle degree of freedom, the Majorana

fermion ψ, and to a collective degree of freedom, the edge vortex σ. These are independent enti-
ties: a Majorana fermion propagating along the edge can split into two edge vortices and one vortex
may tunnel to the opposite edge to become an independent degree of freedom. Both ψ(x − vt)

and σ(x − vt) propagate unidirectionally (chirally) with velocity v along the edge. Opposite edges
may propagate in the same direction or in opposite direction, depending on the way in which time-
reversal symmetry is broken in the topological superconductor.
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Figure 14: Left panel: Chiral Majorana modes moving in the same direction [77, 78]
on the 2D surface (grey) of a 3D topological insulator. The modes appear at the edge
(red) between a superconductor (yellow) and magnetic insulators of opposite mag-
netization M↑ and M↓ (shaded). A 2π increment of the phase difference φ across a
Josephson junction injects a pair of edge vortices σ1, σ2 in a state of even fermion
parity. When σ1 crosses the 2π branch cut of an Abrikosov vortex a fermion is ex-
changed, and the fermion parity of the edge vortices switches from even to odd. Right

panel: Braiding of world lines in space-time: an overpass indicates that the vortex
crosses a branch cut. Two crossings jointly switch the fermion parity of the edge vor-
tices and of the bulk vortices, conserving overall fermion parity. [Figure from Ref.
24.]

topological qubit one should inject individual vortices rather than fermions into the chiral edge
mode. In Fig. 14 we show how one might exploit the chiral motion of edge vortices to perform
the braiding operation in real space [24] — rather than in parameter space as for immobile
bulk vortices.

6.2 Edge vortex injection

For the deterministic, on-demand injection of individual edge vortices one can use a Josephson
junction with an externally adjustable phase difference φ of the pair potential, controlled by
a flux bias or voltage bias. Recall that a 2π phase shift across the Josephson junction is a 2π
phase shift for Cooper pairs. It corresponds to a π phase shift for unpaired fermions, which
propagates away from the junction as a phase boundary along the edge.

The phase profile Λ(x , t) for a Josephson junction at x = 0, with a time dependent phase
difference φ(t), is given by [24]

Λ(x , t) = (−1)ncutα(t − x/v)θ (x), (6.1a)

cosα=
cos(φ/2) + tanhβ

1+ cos(φ/2) tanhβ
, β =

W

ξ0
cos(φ/2). (6.1b)

The integer ncut counts the number of branch cut crossings between the Josephson junction
and the point x . The phase profile is plotted in Fig. 15 for W/ξ0 = 5, with W the junction width
and ξ0 = ħhv/∆0 the superconducting coherence length in the bulk of the superconductor.
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Figure 15: Phase field Λ(x , t) of the Majorana edge vortices, calculated from Eq.
(6.1) for a linearly varying phase difference φ(t) = 2πt/∆t across the Josephson
junction (of width W = 5ξ0). The π-phase domain walls are well separated when
the ratio ∆t/tinj ≃W/ξ0≫ 1.

The π-phase boundary extends over a time interval

tinj = (ξ0/W )(dφ/d t)−1, ξ0 = ħhv/∆0, (6.2)

the “vortex injection time”, which sets the core size δxcore = vtinj of the edge vortex. If one
increments the phase φ linearly in time, as in Fig. 15, then one injects edge vortices spaced by
a distance which is larger than the core size by a factor W/ξ0. This separation of length scales
is why it is meaningful to distinguish the injection of vortices from the injection of fermions,
since a Majorana fermion in an edge mode is equivalent to a pair of overlapping edge vortices.

6.3 Construction of the vortex operator

The unitary vortex operator σ̂(t) describes how the unperturbed Fermi sea |0〉 evolves in time,
|t〉= σ̂(t)|0〉. It is given in terms of the phase field Λ by [79]

σ̂(t) = exp

�

−i

∫

d x ρ̂(x)Λ(x , t)

�

, (6.3)

ρ̂(x) = 1
2[Ψ̂

†(x), Ψ̂(x)], Ψ̂ = 2−1/2(ψ̂1 − iψ̂2). (6.4)

The field Ψ̂ is a Dirac fermion field, constructed from the Majorana fermion fields ψ̂1, ψ̂2 on
upper and lower edge. The charge operator ρ̂ is defined such that it vanishes in the unper-
turbed Fermi sea. The commutator

[ρ̂(x), ρ̂(x ′)] =
i

2π

∂

∂ x
δ(x − x ′), (6.5)

is known from bosonisation theory [80].
The Majorana fermion fields have anticommutator

{ψ̂n(x), ψ̂m(x
′)}= δnmδ(x − x ′) (6.6)

and hence
ρ̂(x) = −1

2 iψ̂1(x)ψ̂2(x). (6.7)

The corresponding commutator of σ̂ with the spinor ψ̂ =
�ψ̂1

ψ̂2

�

is

σ̂(t)ψ̂(x) = eiΛ(x ,t)νy ψ̂(x)σ̂(t). (6.8)
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The Pauli matrix νy acts on the two components of ψ̂.
It is instructive to take the limit tinj→ 0 when each π-phase boundary in Fig. 15 becomes

a step function. This corresponds to the neglect of the finite size of the core of the edge vortex.
For a Josephson junction at x = 0 and a phase difference φ(t) which crosses π at t = 0 one
then has

Λ(x , t) = πθ (vt − x)θ (x)⇒ σ̂(t) = exp

�

−iπ

∫ vt

0

d x ρ̂(x)

�

. (6.9)

Because eiπνy = −1, the commutator (6.8) no longer couples the edges,

σ̂(t)ψ̂n(x) =

¨

−ψ̂n(x)σ̂(t) if 0< x < vt,

+ψ̂n(x)σ̂(t) otherwise.
(6.10)

This relation allows us to identify σ̂ with the “twist field” from the conformal field theory of
Majorana edge modes [72,73].

6.4 Edge vortex braiding

Two edge vortices may be in a state of odd or even fermion parity, meaning that when they fuse
they may or may not leave behind an unpaired electron. This is the qubit degree of freedom.
The fermion parity cannot be detected if the edge vortices remain widely separated, so the
qubit is protected from local sources of decoherence — it is a topological flying qubit.

Coming back to Fig. 14, the two vortices σ1 and σ2 are injected at the Josephson junction
in a state of even fermion parity, but that may change as they move away from the junction:
If one edge vortex crosses the branch cut of the phase winding around an Abrikosov vortex, a
fermion is exchanged and the fermion parity switches from even to odd.

The fermion parity switch can be detected electrically at a metal electrode, where the
Majorana modes ψ1 and ψ2 are fused and can transfer a charge Q [24, 79]. The current
density operator Î(x) = evρ̂(x) has at time t the expectation value

I(x , t) = ev〈0|σ̂†(t)ρ̂(x)σ̂(t)|0〉. (6.11)

Using the identity

σ̂†(t)ρ̂(x)σ̂(t) = ρ̂(x) +
1

2π

∂

∂ x
Λ(x , t), (6.12)

which follows from Eqs. (6.3) and (6.5), one finds

I(x , t) = ev〈0|σ̂†(t)ρ̂(x)σ̂(t)|0〉= ev

2π

∂

∂ x
Λ(x , t). (6.13)

Eqs. (6.1) and (6.13) imply that the π-phase domain wall carries a charge of

Q = v−1

∫

I(x , t)d x = − e

2
× (−1)ncut . (6.14)

This charge is only detectable when the vortices on opposite edges fuse — a single edge vortex
transfers no charge into the metal contact. When an edge vortex crosses the branch cut of a
bulk vortex, as in Fig. 14, the transferred charge switches between ±e/2 — as an electrically
detectable signature of the fermion exchange.

We can make a comparison with the elementary excitations of the chiral Dirac edge modes
in a quantum Hall insulator [81]. In that context a charge-e excitation (a socalled leviton)
is produced by a 2π phase increment of the single-electron wave function [82]. The edge
vortices, in contrast, are injected by a 2π phase increment of the pair potential, which is a π
phase shift for single fermions. This explains why the π-phase domain wall carries half-integer

charge.
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