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Abstract

In this thesis, we will investigate the quantisation ambiguities that arise during the canonical
quantisation of General Relativity (GR), and we will develop a method of Hamiltonian renor-
malisation to fix the mentioned ambiguities.
“Quantisation” is an ansatz to obtain a fundamental (i.e. quantum) theory from a classical
description. However, there is no way to “derive” this more complex framework if we only know
a special case of it, i.e. its classical pendant. Hence, quantisation contains a lot of possible
choices and must be supplemented by mathematical consistency and experimental evidence.
In the case of gravity, whose effects are described by GR, no experiments are known which
reveal properties of its quantum nature. Thus, we must rely purely on mathematical rigour
to obtain a version of Quantum Gravity (QG). A promising candidate for this endeavour is
“Loop Quantum Gravity” (LQG), a modern version of the canonical or Hamiltonian approach.
During its development over the past 30 years, it achieved to describe a well-defined canonical
quantum field theory. LQG presented a unique Hilbert space representation and the quanti-
sation of constraints as operators acting thereon. During quantisation one must make certain
choices by introducing “regularisation parameters”. However, the details of the operators will
be influenced by these choices even in the limit of vanishing regularisation parameters. Their
varying physical predictions present an unsatisfactory situation as it is not clear which of those
describe the real world.
The present work adapts the techniques from the covariant “renormalisation group” from
Quantum Field Theory (QFT) to LQG. The philosophy of this machinery is that continuum
theories should provide a consistent description, no matter with what resolution one looks
at the system under consideration. This tool has been used in the context of defining other
quantum field theories via the path integral framework. It turned out to be very successful and
is, as of today, one of the main tools for studying weak and strong interaction in the Standard
Model of particle physics. But, since the mathematical language of canonical QG is vastly
different, we will translate the renormalisation group from covariant QFT. Afterwards, we will
test it on a simple model, i.e. the massive free scalar field in arbitrary dimensions, and we will
present a detailed analysis of it. This includes robustness of the fixed point under different
choices of the renormalisation map and the fixed point’s range of attraction. Also, we study
properties of the discrete projections such as the perfect lattice Laplacian and restoration of
continuum symmetries.
Finally, we will show the non-trivial impact of quantisation ambiguities in the context of LQG,
which can already be seen in cosmological models describing our universe at large scales. De-
spite these drawbacks, the recent developments in the field allowed to pinpoint the caveats
due to their mathematically precise formulation and suggest renormalisation techniques as
a possible future improvement. It turns out that the new framework of direct Hamiltonian
renormalisation serves as a good candidate to resolve the quantisation ambiguities plaguing
QG.
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Zusammenfassung

In dieser Arbeit werden wir die Wahlfreiheiten untersuchen, die während der kanonischen Quan-
tisierung der allgemeinen Relativitätstheorie auftauchen, und werden eine Form von Hamilto-
nischer Renormierung entwickeln, um aus allen Wahlmöglichkeiten eine physikalisch sinnvolle
Option zu isolieren.
Unter

”
Quantisierung“ versteht man den Prozess, aus einer klassischen eine fundamentalere

(d.h. Quanten-)Theorie zu konstruieren. Da es jedoch keine Möglichkeit gibt, eine funda-
mentale Theorie aus einem ihrer Spezialfälle

”
abzuleiten“, folgt, dass die Quantisierung eine

Menge an Wahlmöglichkeiten enthält (sogenannte
”
Quantisierungsambiguititäten“). Um die

Quantentheorie zu finden, die die Natur korrekt beschreibt, würde man sich deshalb gerne
an experimentellen Befunden orientieren. Im Fall der Gravitation, welche klassisch durch die
allgemeine Relativitätstheorie beschrieben wird, sind bis heute keine Experimente bekannt, die
uns etwas über ihre Quantennatur verraten. Folglich muss man sich vollständig auf mathe-
matische Rigorosität verlassen, um einen Kandidaten für Quantengravitation zu erhalten. Ein
vielversprechender Ansatz ist die

”
Schleifenquantengravitation“ (auf Englisch

”
Loop Quan-

tum Gravity“ (LQG)), die eine moderne Version des kanonischen, oder auch Hamiltonischen,
Zugangs darstellt. Während ihrer Entwicklung in den vergangenen 30 Jahren, ist es gelun-
gen aus ihr eine wohldefinierte Quantenfeldtheorie (QFT) zu konstruieren, die eine eindeutige
Hilbertraum-Darstellung beinhaltet. Die Quantisierung der auftretenden Zwangsbedingungen
wird durch Operatoren auf diesem Hilbertraum realisiert. Bei der Quantisierung müssen Regu-
larisierungswahlen getroffen werden, die auch im Limes eines verschwindenden Regulators die
Details der Operatoren beeinflussen. Damit unterscheiden sich die Operatoren in ihren physi-
kalischen Vorhersagen und man befindet sich in einer unangenehmen Lage: Ohne Experiment
ist nicht klar, welche Wahl die Realität wirklich beschreibt.
Die vorliegende Arbeit adaptiert das erprobte Verfahren der kovarianten

”
Renormierungsgrup-

pe“ aus der QFT für die LQG. Die zugrunde liegende Philosophie des Verfahrens ist die
Folgende: Eine Kontinuumstheorie soll eine konsistente Beschreibung haben, unabhängig von
der Auflösung unter der sie betrachtet wird (d.h. unabhängig davon, wie fein das zugrun-
de liegende Raumzeit-Gitter ist). Diese Maschinerie wurde mit großem Erfolg auf anderen
Gebieten angewendet, insbesondere bei der Definition von Quantenfeldtheorien mittels des
Pfadintegral-Formalismus. Bis heute ist es eines der wichtigsten Werkzeuge, um sowohl die
schwache, als auch die starke Wechselwirkung im Standardmodell der Elementarteilchenphy-
sik zu untersuchen (z.B.

”
Lattice QCD“). Jedoch sind die mathematischen Methoden, mit

denen die Renormierungsgruppe ursprünglich beschrieben wurde, sehr unterschiedlich von de-
nen, die man in der kanonischen Quantengravitation verwendet. Deswegen werden wir dieses
Verfahren entsprechend

”
übersetzen“, um es in jenen physikalischen Systemen anwenden zu

können, welche durch eine Hamiltonfunktion beschrieben werden. Anschließend werden wir
unsere neue Formulierung der Renormierungsgruppe in einem einfachen Modell testen, explizit
einem massereichen, freien Skalarfeld in beliebigen Dimensionen, und eine detaillierte Analyse
hiervon präsentieren. Dies beinhaltet die Stabilität des Fixpunktes und seines Attraktionsge-
bietes gegenüber Veränderungen der Renormierungsabbildung. Darüber hinaus betrachten wir
Eigenschaften der diskreten Theorien, wie den perfekten Gitter-Laplace-Operator, und stellen
fest wie Symmetrien des Kontinuums wiedergefunden werden können.
Zum Abschluss werden wir zeigen, dass in der LQG diese Quantisierungsambiguitäten tatsächlich
nicht-trivialen Einfluss haben, indem wir ein kosmologisches Modell untersuchen, welches unser
Universum auf großen Skalen beschreibt. Dank der vorangegangen Fortschritte auf dem Gebiet
und ihrer mathematischen Präzision, auf denen diese Arbeit aufbauen konnte, ist es möglich,
die übriggebliebenen Lücken aufzuzeigen, die auf natürliche Weise die Renormierungsgruppe
als Technik für weitere Verbesserungen vorschlagen. Es stellt sich heraus, dass das neue Ver-
fahren der direkten Hamiltonischen Renormierung einen guten Kandidaten darstellen könnte,
um das Problem der Quantisierungsambiguitäten zu lösen, die die Quantengravitation plagen.
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Kapitel I

Introduction

I.A Motivation and Historical Review

There are two topics in theoretical physics which spread their influence far afield and are known to most people
even outside the physics community. These are the “Theory of Relativity” developed by Einstein on the one
hand and “Quantum Theory” on the other hand. Their publicity is partially due to their predictions, which
drastically changed our way of perceiving the world, and the enormous accuracy with which both have been
verified by experiment.
That our world in the microcosm is fundamentally quantum was discovered over 100 years ago, starting with
the discovery of the Planck constant h [1, 2]. Its very early success was the explanation of many aspects of
molecular physics [3–7] and the correct prediction of new quantum degrees of freedom such as spin [8–10]. It
features, however, even more bizarre phenomena, such as the fact that it is no longer predictive. In contrast
to a classical theory, we are forced to accept that we can only give probabilities for what happens to a par-
ticle after we have measured it as accurately as possible (which, due to the famous Heisenberg uncertainty
obstruction, can never be without error bars [11]). Today, quantum theory is of use in numerous applications,
e.g. in detection methods like nuclear magnetic resonance, for which numerous Nobel prizes have been awar-
ded [12–14].
Almost in parallel, Einstein initiated in 1915 a revolution of our understanding of space and time [15, 16].
With General Relativity (GR), he found a geometric interpretation of the gravitational field which answered
many questions plaguing astronomers back then. As the field evolved, people were able to use GR to predict
the collapse of stars forming black holes [17–19] as well as gaining first insights into what happened in the
beginning of our universe [20–32]. The idea of the “Big Bang” was born, which roughly states that the universe
started as a single, infinitesimally small point called singularity. Even more, GR has found its application in our
everyday life, as without its predictions of the gravitational redshift [33], the global positioning system (GPS)
used for navigation would not work nearly as precise as it does today.
Despite the huge success of both theories, they are fundamentally very different as they describe our world at
completely opposite scales. Each also features its own drawbacks: Quantum Field Theory (QFT) is written in
a mathematical language which does not even allow the presence of gravitational fields as described by GR.
Moreover, the mathematical description of QFT in four spacetime dimensions has not yet been completed.
Currently, the only way to describe scattering theory is by a perturbation series, which however does not con-
verge [34–37]. However, GR does not fare better as it predicts its own failure: Penrose and Hawking discovered
that the origin of our universe from an initial singularity is unavoidable in this classical theory [38–40]. But
if everything collapses into a single point then the matter energy density becomes infinite in this point. This
implies that GR leaves its domain of validity and must be replaced by a more fundamental theory.
This “fundamental theory” is as of today unknown. However, by our understanding, it should be a merger of
Quantum Theory and GR. This is the starting point for the search for a theory of Quantum Gravity (QG).
In the 1930s, Dirac started with attempts to unify quantum theory at least with the principles of Special
Relativity [41–45] and was shortly followed by Pauli, Jordan and Heisenberg [46, 47]. And while in the fol-
lowing years people were able to make progress via the invention of renormalisation on the conceptual side,
the establishment of a non-perturbative quantum field theory in four spacetime dimensions remains elusive to
this day. However, following the framework of canonical quantisation developed by Dirac back then, a modern
approach to QG originated in the last decades:
The field of “Loop Quantum Gravity” (LQG) (cf. [48–52] for a general introduction) started primarily with the
discovery of the nowadays famous Ashtekar variables in 1986 [53–55]. His work was based on the ADM or Ha-
miltonian formulation of four-dimensional GR, which turned out to feature an involved constraint algebra [56],

5



including a complicated, non-polynomial scalar constraint, which captured the dynamical content. Extending
seminal work by Sen [57–59], Ashtekar (and later Barbero [60, 61]) succeeded in rewriting this Hamiltonian
formulation in such a way that they were able to use the machinery for “Quantisation of Gauge Theories”which
had already been hugely successful in the past for describing the weak and strong interaction [62–65]. Indeed,
exactly like the weak interaction, the Ashtekar-Barbero variables were based on the compact structure group
SU(2) which enabled a mathematically rigorous construction of a kinematical Hilbert space equipped with
operator constraints. The Ashtekar-Isham-Lewandowski representation [66, 67] of the algebra of elementary
operators, called holonomy-flux algebra, implemented two of the three constraint types and was later shown
to have suitable uniqueness and irreducibility properties [68–73].
In 1996, Thiemann was the first to give a possible completion to the program of canonical quantisation by
constructing a well-defined representative of the scalar constraint [74, 75] . This was the starting point for
various applications such as black holes in LQG [76–79] or the application to cosmological models of GR. The
latter runs under the name of Loop Quantum Cosmology (LQC) and it presented a possible resolution of the
Big Bang singularity for the first time [80–85].
However, the setup for full LQG was not fully satisfactory. Namely, the quantisation of the scalar constraint
by Thiemann involved several choices of regularisation steps, which leave an imprint in the details of the final
operator as the regulator is removed. Of course, these details have an impact on the physical predictions of the
theory. Hence, one should also consider other regularisation proposals, foremost some for which the algebra of
constraints for GR closes. To deal with complications arising from the latter, the master constraint program-
me [86–91] was developed and later refined in Algebraic Quantum Gravity (AQG) [92–95], which suffers from
fewer quantisation ambiguities.
Due to the latter fact, the analogy to Lattice Gauge Theory [96–99] was maximal and one could hope to use
tools from there to fix the quantisation ambiguities.
We are especially referring to the covariant and background dependent “renormalisation group”. This method
was pioneered in 1954 by Gell-Mann and Low [100] and in 1966 by Kadanoff’s block-spin transformation [101].
Later Wilson applied it to critical phenomena winning him the Nobel Prize in physics in 1982 [102–105]. The
renormalisation group has shown promise in describing the physics of strongly interacting many-body systems,
where different phase transitions occur, and in statistical physics when one deals with various scaling relations
and critical indices [106–114].
In contrast to this, the application we have in mind is vastly different, as GR is background independent.
But, as the formulation of the renormalisation group in the literature has made crucial use of the background
metric, it is pivotal to redefine its structure to make it applicable for the context of fixing the quantisation
ambiguities of QG.
First steps in this direction were taken in the “Asymptotic Safety” programme, developed by Weinberg, Reuter,
Saueressig and Percacci [115–119]. Here, the idea was to formulate renormalisation conditions in a background
independent situation and search for its fixed point. Parts of those ideas are also realised in the programme
of “Causal Dynamical Triangulations” of Ambjorn, Loll, Jurkiewiz and Smolin [120–122]. However, the Asym-
ptotic Safety programme as well as Causal Dynamical Triangulation are formulated in terms of path integral
measures, while most of the work in LQG is in the Hamiltonian setting (see [123–127] for the state of the art
in the path integral formulation of LQG). Thus, in its application to LQG it would be desirable to have the
renormalisation group in a Hamiltonian formulation.

Of course, this shorthand exposition of QG cannot be comprehensive and many important aspects were
left unmentioned. For further references we suggest the following sources: [48–52].

I.B Overview of the Results

The starting point of this thesis was the unsettling situation in Quantum Gravity, as well as in other con-
structive Quantum Field Theories, that a lot of ambiguities arise during the process of quantisation. This is
especially worrisome for Quantum Gravity as until today no experiments are known that could help us to eli-
minate these quantisation ambiguities. However (as this thesis will show), these choices have drastic influence
on the physical predictions.
Despite this, the canonical approach known as “Loop Quantum Gravity” has over the last decades evolved into
a promising candidate for Quantum Gravity. It presents rigorously defined candidates for a Hilbert space, on
which the elementary phase space variables are quantised in terms of operators, as well as for a Hamiltonian
operator, which captures the dynamical content. It is hence the next logical step to determine among all the
possible candidates a unique choice whose predictions can be trusted. Some steps towards this direction been
tackled in this thesis, and build on the earlier, mathematically precise developments in LQG due to which a
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possible strategy to resolve these ambiguities suggested itself.
The mentioned strategy to deal with these kinds of ambiguities is used in the covariant approach towards
Quantum Field Theories and is known as “Renormalisation”. This is a procedure which determines on a dis-
cretised system a measure such that it behaves as a consistent projection of the continuum measure to some
finite resolution. The machinery of renormalisation has proven very successful in eliminating quantisation am-
biguities and thus one would want to apply it to the problems in canonical Quantum Gravity.
However, as the canonical and the covariant approach are very different from the onset, it is obvious that
the covariant renormalisation procedure could not be straightforwardly used for Loop Quantum Gravity. This
thesis extends earlier work in this direction to formulate a version of renormalisation which stays completely in
the Hamiltonian setting. This is the “direct Hamiltonian renormalisation”, which has been thoroughly tested
and verified for the toy model of the free, massive scalar field. This strengthens the hope that renormalisation
is a way to investigate (and some day hopefully fix) the quantisation ambiguities in Loop Quantum Gravity,
such that the reliability of its physical predictions can be confirmed.

The subject of this thesis was suggested by Thomas Thiemann. In collaboration with him and Thorsten
Lang the direct Hamiltonian renormalisation was developed in [128–131]. In a joint project with Andrea Dapor
the expectation values of Hamiltonian operators in cosmological coherent states were found to be prone to
the ambiguities of a chosen regularisation in [132,133]. These results inspired a numerical investigation in the
context of LQC together with Mehdi Assanioussi, Andrea Dapor and Tomasz Paw lowski in [134].

Chapter II : Quantum Field Theory - In this chapter, we revisit the established strategy of con-
structive QFT to obtain a quantum version of any classical canonical theory. Due to the involved nature of
a field theory, the several ambiguities which occur during the process of quantisation get even worse. Having
infinitely many different, inequivalent states to choose from is aggravated further by the fact that, up to today,
not a single interacting example for a QFT in four spacetime dimensions is known. To get more control over
the various ambiguities, we study the broad ideas of path integral quantisation and compare the possible choi-
ces of a measure of spacetime fields with the ambiguities which arise during quantisation in the Hamiltonian
framework. This is partially achieved via the Osterwalder-Schrader reconstruction [135–137].
In this work, we will generalise the Feynman-Kac proposal [138, 139] for defining path integral measures.
This will result in a reverse procedure to the Osterwalder-Schrader reconstruction - the Osterwalder-Schrader
construction -, which builds a covariant quantum theory out of every suitable canonical quantum description.
Indeed, we can show that under certain technical assumptions both processes are inverses.
The advantage of having Osterwalder-Schrader bijection explicitly at hand is that we can now relate ambigui-
ties in both the canonical and the covariant framework with each other. So, while no scheme is intrinsically
favoured in terms of uniqueness, we can now hope to translate strategies which use in one formulation to fix
the quantisation ambiguities to the other. Hence, this can also be regarded as a prerequisite for the next chapter.

Chapter III : Renormalisation - In this chapter, we recall the renormalisation group in the covariant
formulation in which it was originally invented. Given a cylindrically consistent coarse graining map, one would
have to look for a fixed point of the flow of the block spin transformation corresponding to the coarse graining
map. This flow must be started with the initial discretisation of a path integral measure which agrees with
the full covariant theory in its continuum limit. One must take note, that the fixed point family itself is not
a fundamental theory, but rather are the cylindrically consistent projections from an underlying continuum
theory [140–146].
This thesis will achieve to transfer the renormalisation prescription to the Hamiltonian level by using the deve-
loped Osterwalder-Schrader bijection. A procedure following exactly the flow of the reconstructed data from a
covariant measure will, however, require the computation of the spacetime measure at each intermediate step.
To circumvent this, we introduce an alternative (yet maximally close) renormalisation group flow: the direct
Hamiltonian renormalisation. We then study both schemes in the test case of the massive, free scalar field in
arbitrary dimensions and find that both their fixed points agree in the continuum limit. However, we will see
that it is the fixed point of the direct Hamiltonian renormalisation which displays the finite resolution matrix
elements of the continuum Hamiltonian.
Afterwards, we investigate properties of the latter renormalisation flow: first, we verify that the flow indeed
drives the initial discretisation into the fixed point, in other words, it is an attractive fixed point. This holds
also true when considering different initial discretisations if they agree in their continuum limit. This is an
important property as it guarantees that we do not have to be careful which ambiguous discretisation to pick
in the beginning. We then look at different choices for the coarse graining map, other cylindrically consistent
choices as well as some which are not. We see that those which do not satisfy this criterion - albeit being
considered in the literature - lead to fixed points which cannot be understood as projections from the conti-

7



nuum. However, other consistent block-spin transformations lead to the same physically sensible fixed point,
indicating that our more restrictive framework captures important physical insight.
From this fixed point theory, we can extract the perfect Lattice Laplacian for the massive free scalar field, i.e.
a difference operator which possess all the important properties of its continuum counterpart. We find that
it is no longer a local operator, but that its excitations get exponentially suppressed the longer the lattice
distance is. Lastly, we show how symmetries of the continuum, such as rotational invariance, can be found
in the cylindrical projections at finite resolution. We determine a criterion for the rotational invariance of a
lattice theory and study it numerically for the aforementioned test case.
This thorough analysis is essential to confirm that the direct Hamiltonian renormalisation leads indeed to
reliable theories. Due to the results obtained here we can trust the scheme and hope to apply it for Quantum
Gravity, which is also prone to troublesome quantisation ambiguities.

Chapter IV : General Relativity - In this chapter, we outline the basic idea behind GR and its ap-
plication in cosmological models. Historically, GR was first formulated in terms of the Einstein-Hilbert action
i.e. in a covariant framework. It was only in 1960 that a Hamiltonian version was discovered in the ADM
formulation. We repeat their construction and proceed further to the Ashtekar-Barbero variables and later on
the holonomy-flux algebra, which will be suitable for developing a theory of QG. The dynamical content is
expressed in terms of several constraints, one of them is the so-called scalar constraint. In the presence of a
suitable dust or clock field it can be associated with a physical Hamiltonian driving the dynamics [147–153].
We revisit the most prominent approximation to the aforementioned scalar constraint in terms of holonomies
and fluxes.
Then, we turn towards the cosmological sector of GR, i.e. the Robertson-Walker metric, and for the first time
compute the value of the complicated constraint on a discrete set of holonomies, namely a cubical graph. We
investigate its difference to the standard continuum value and realise that its dynamics replaces the initial
singularity with a Big Bounce.
However, as different regularisations produce different predictions of what has happened before the Big Boun-
ce, we conclude that in canonical Quantum Gravity it will become important which choice to pick.

Chapter V : Loop Quantum Gravity - We repeat the programme of canonical quantisation for the
gravitational field in the way it is envisioned in LQG. We comment on the unique, diffeomorphism invariant
state which is a representation of the holonomy-flux algebra. In this Hilbert space, a representation of the
group SU(2) labels each path and it is possible to construct coherent states peaked on classical holonomies
and fluxes for the mentioned path (and an associated surface) [154–158]. Then, we repeat how certain geo-
metric operators such as the volume can be quantised and how the Gauss and the spatial diffeomorphism
constraints are implemented. We look also at the regularisation Thiemann proposed, which can be used to
define a quantum scalar constraint operator.
Following this, we investigate this constraint operator for its quantisation ambiguities by testing it on a cohe-
rent state peaked on semi-classical Robertson-Walker spacetime. We find explicit formulas for the expectation
value including first corrections in ~. However, its physical predictions are still affected by the quantisation
ambiguities: by computing the expectation value of the scalar constraint, we arrive at an effective Hamiltonian
from the full theory. However, when choosing different details in the regularisation we find different physical
predictions, especially in the way a Big Bounce resolves the initial singularity.
This finishes our claim that the quantisation ambiguities in LQG have significant impact and must be resolved
before any reliable predictions can be made. However, the earlier, mathematically rigorous developments were
crucial in order that one now can identify strategies of future improvement, i.e. renormalisation techniques.
One possible incarnation thereof has been formulated in this thesis: the direct Hamiltonian renormalisation.

Chapter VI : Conclusion and Outlook - Here, we summarise our results and finish with a list of
topics for further research following these results.

At the beginning of each chapter, we will give a brief overview over the content. It will summarise the key
concepts and main results obtained in the remaining sections.
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Kapitel II

Quantum Field Theory

The necessity for a quantum description of the world surrounding us is rooted in a number of historical dis-
coveries in the late 19th and early 20th century, most notably the problem of black body radiation [2, 3] and
the photoelectric effect [4, 5]. It transpired that our classical point of view of the world must be considerably
changed. Instead of particles and ordinary fields (e.g. electro-magnetism), the fundamental building blocks of
the universe must obey strange and - back then - unknown properties on very small scales. Since the beginning
of the 20th century, physicists have tried to develop a mathematical framework by which this new nature could
be described [6, 7, 11, 34–37, 41, 65, 159–162] - a process that is still developing today!
In this chapter, we will revisit some of the many viewpoints which physicists adapt today when trying to define
a mathematically rigorous framework to describe the quantum nature of fields with non-trivial interaction.
However, we will see that this task is not yet completed: there is no four-dimensional quantum theory fulfilling
all the physically plausible criteria we intuitively want an interacting field to have.1

In this chapter, we will, for pedagogical reasons, treat the spacetime field of the metric as the flat Minkowski
metric ηµν . As will be shown in chapter IV. General Relativity, one can see that this metric field corresponds
to the solution of the Einstein field equations for empty (i.e. matter free) space. Of course, this is an appro-
ximation, which is necessarily wrong as soon as massive particles and fields come into play. But the effects
of the gravitational field are of such a low order of magnitude that, in a first approximation, it is assumed to
be safe to ignore them. We will come back to integrate the full gravitational interaction in the last chapter of
this thesis. For the moment, however, this puts us into the advantageous position that we can use the concept
of imaginary time. It is a mere mathematical trick to perform a Wick rotation t→ iβ in order to remove the
minus sign in the time component of ηµν . In other words, we move from Lorentzian to Euclidian signature
(+,+,+,+), which allows us to treat space and time on an equal footing. Apart from rendering computations
easier, this does not serve any physical purpose and at the end of the day we will always “rotate back” to real
time.

In order to start tackling the problem of defining a “quantum theory” of fields (or particles), we have to
think about classical field theory for a moment. This is a well-understood concept and we of course want to
regain it once all the scales involved in our experiments are sufficiently large. This “quantum to classical”
transition is a necessary feature, as our everyday world appears to be manifestly classical.
In the following, we will adapt an algebraic point of view. As this is slightly different from the usual terminology,
we will carefully define the most important concepts. First, we envision a classical field theory as follows: the
result of any experiment must depend on the configuration variables of the system. The space of all possible
combinations of degree of freedom which the system can be found in at a given instant of time t is known
as the phase space F . For the moment, we will talk about field theories in their Hamiltonian formulation.
Then, for each field species, the phase space consists of the configurations of the field φ(~x) itself and of those
of its canonical momentum π(~x). The result of any measurement will be some function f : F → C from
this phase space to the (complex) numbers, i.e. the pointers of the measurement device. Thus, the set of all
measurements we could perform is the space of all such smooth functions, which we denote by C∞(F). A
theory (classical or quantum) is now merely a prescription of which result a measurement is supposed yield.
We want to emphasise this: given the phase space point which the system occupies, the theory predicts the
average result for any measurement. Hence, in mathematical terms, a theory is described by a state which

1These criteria run under the name of Wightman axioms [163] and, in fact, the Clay Mathematics Institute has offered
one of its millennium prizes for a concrete formulation of a Yang-Mills QFT [164]. This drawback is countered by the
astonishing fact that the unfinished formulations used today provide excellent agreement with the experiments, e.g. Quantum
Electrodynamics (QED) is verified within ten parts in a billion [165].
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maps observables onto their expected outcomes:

ω : C∞(F) → C . (II.1)

This formulation, as yet very formal, can be applied to a practical problem by giving a concrete form to
ω so that actual calculations can be performed. This is indeed possible by making contact to the framework
of functional analysis and representation theory, hence we must familiarise ourselves with these concepts in
section II.A. Mathematical Background.2

Imagine that at time t you have z = (φ, π) ∈ F , then a very simple choice for ω is just to perform each
experiment on the mentioned field. Precisely speaking: one evaluates each observable a ∈ C∞(F) on the given
point in phase space z, such that ω(a) = a(φ, π). This specific choice of ωz for each z = (φ, π) corresponds
to our classical point of view. For example, it implies that ∀a, b ∈ C∞(F) we find

ωz(ab) = ωz(a)ωz(b) . (II.2)

Thus, we have vanishing correlation functions. In other words, ωz predicts an exact outcome of the experiment
not just the average, i.e. there is no variance! Hence, from a classical point of view this choice of a theory
works very well.
However, we already know from experiments that there are corrections to the classical world on very small sca-
les. For these quantum contributions we will introduce a new parameter, which is called the (reduced) Planck
constant ~.3 The idea is that all deviation from the classical theory must be proportional to ~. However, the
exact form of the deviation is to be determined by comparing it to experiments. Here it is found that in the
deep quantum regime the property of predictivity is lost!
Even if all information of the system is available, the outcome of a measurement cannot be predicted befo-
rehand. As mentioned before, this is connected to a property of the state and to the product of two observables.
Hence, a quantum theory in agreement with the experiment must be such that (II.2) is lost. A possible way to
achieve this is to define a new product on the algebra C∞(F) which is non-commutative and implies that the
two observables are no longer independent of each other. How to choose this new product presents a certain
ambiguity only restricted by the condition that the deviation from the normal product should vanish if ~ is
sufficiently small. A possible choice is thus the following product on the space of all observables:

a ? b := a · b +
i~
2
{a, b} , (II.3)

where {·, ·} stands for the Poisson bracket of the system. It is important that the joint measurements of two
(or more) elements now depend on the order in which we they appear. However, this is not a property of
the above given example for a state ω, hence we have indeed a distinguishing criterion between classical and
quantum theories.
In section II.B. Canonical vs Covariant Quantisation, we will see that nonetheless there is a way to give a
concrete form to ω for a quantum theory, in form of a representation of the algebra of all possible observables.
By this we mean that we want to assign to every element a in C∞(F) (say every experiment we want to
conduct) an element â ∈ (C∞(F), ?), which we equip with an involution â 7→ â∗. We will see later that,
moreover, each â is in correspondence with a self-adjoint operator π(â), which is a map on some (infinite
dimensional) Hilbert space H. This is well-motivated, as in general the ordering matters when considering ope-
rators. Their non-commutativity is described by the commutator, motivating the assignment i~{·, ·} → [·, ·]
while a → â. We will call this assignment ˆ : C∞(F) → (C∞(F), ?), however its implementation is not
possible in general: the Groenewold-van Hove theorem [167,168] is a mathematical proof stating that there is

no consistent mapping ˆ such that â? b̂ = âb and â = â∗ hold for all a, b ∈ C∞(F) with the non-commutative
product from (II.3). In other words, we cannot demand this assignment on the whole space of observables,
but only on a subset, which we have to choose manually. This of course introduces other ambiguities during
the process of developing the quantum theory. Choosing one of these ambiguities corresponds to considering
specific maps ˆ into a ∗-algebra A, which we generate from the chosen subset. Often, one referees to ˆ as
ordering prescription. E.g.“Weyl ordering” means that a polynomial in φ, π a ∈ C∞(F) is mapped to its the
total symmetrisation in A.

Once the assignment has been chosen and the quantum algebra of observables A has been constructed,
one is faced with the question of how to choose the correct state ω. We remember that in the classical case

2During this chapter we will require basic knowledge of differential geometry. The reader unfamiliar with it, is refereed
to section IV.A of chapter IV. General Relativity, which is self-consistent and be read in advance if necessary.

3This tiny object is one of the most accurately measured constants [166] with value ~ ≈ 1.0546 · 10−34J · s and tells us
about the quantum nature of the system under investigation. Hence, in the limit ~→ 0 we would not measure any quantum
effects at all and call it thus the semi-classical limit.
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we had one state ωz for each point z in phase space. Similarly, there is a huge abundance of possible quantum
systems we could encounter and in general we should aim at finding a suitable state for each possibility. An
special subclass among them, are those states, which reassemble the classical states ωz in the following way:
for a given observable a ∈ C∞(F) (or a set of them) the predictions of the quantum state on â agree with
those of ωz on a up to corrections of order ~. This is a possible definition for a semi-classical or coherent
state. However, upon demanding further properties, e.g. that the deviations stay of order ~ even for the whole
time evolution of the observables, it can become an increasingly hard task to find such (stable) coherent states
in general.
But, one can at least classify the set of all possible quantum states: Gel’fand, Naimark and Segal found a
construction [169, 170] by which any state on a (unital) algebra A becomes equivalent to the expectation
value of a representation of A on a specific vector of a Hilbert space, which is commonly called the vacuum
vector Ω. If the state is invariant under global time translations, this is a well-motived terminology, as Ω has
then the generic property to be annihilated by the operator π(Ĥ) that is the generator of time translations.
This means in explicitly: Let αHt be the flow that evolves any observable at time 0 to its pendant at time t.
Then, any state ω0 that fulfils

ω0(αHt (â)) = ω0(â) , ∀ â ∈ A . (II.4)

will give rise to an element Ω with π(Ĥ)Ω = 0. And as we envision the classical vacuum to be invariant under
time-shifts (if there is no field which evolves the system will remain unchanged), this element is called vacuum
vector.
However, up to today there has not been found any state ω0 for an interacting Hamiltonian in four spacetime
dimensions! But as everything in the real world interacts with its surroundings, this is an important problem
to deal with.4

Although this approach - commonly referred to as constructive QFT - seems to have in a certain sense
fail so far, there is also another approach towards defining an interacting QFT, which at first glance differs
quite drastically from the outlined framework. This second approach is known as covariant or path integral
quantisation.
The starting point is once again a classical (field) theory. Instead of observables at a given instant of time,
one considers observables in spacetime. These are consequently functions of the history fields Φ(β = −it, ~x),
i.e. a collection of fields at every instant of time. Since the space of functions allowed this way has become
even bigger, we will give a new name to the corresponding map from spacetime observables F to the complex
numbers, which are the outputs of an experiment: The path integral measure µ is defined heuristically as

µ( F ) =

ˆ
dµ(Φ)F (Φ) , dµ(Φ) := DΦ e−S[Φ]/~ (II.5)

wit µ(1) = 1 and where S[Φ] is the action of the corresponding classical interacting theory. The path integral
measure consists of

´
DΦ, which denotes integration over all possible field configurations; an object to which

a priori one cannot give a rigorous mathematical meaning!
One should pay attention to the fact that this is a mere guess for a possible framework by which to formulate
a quantum theory. Hence, the question arises whether it is equivalent to one of the possible choices which we
encountered during the aforementioned canonical approach. Also, it is not clear if there exist slight alterations
to the proposal (II.5) to account for the other ambiguities. Due to dµ(Φ) being an undefined object in its
full generality, it is hard to study how different choices might alter the predictions of the quantum corrections
and maybe introduce the same amount - or worse - of arbitrariness as in the canonical framework. In order
to answer this question, one would need to find a way to compare both methods for defining a quantum
theory and try to construct a map between them. Half of this was achieved in 1973 by Osterwalder and
Schrader [135–137] by constructing a canonical theory from every well-behaved measure. We will see that also
the converse statement is true: from any suitable canonical theory one can construct a measure, as has been
done in [128] based on ideas from [138,139]. This will be the topic of the section II.C. Bijection between OS
measure and OS data. Let us outline the general strategy of both procedures:
Assume, we have a measure µ from the space of history fields Φ (and hence a definition of a possible quantum
theory). We want to reformulate this in a language where we have a concrete Hamiltonian operator Ĥ (in
an abuse of notation we identify π(Ĥ) with Ĥ in the following) at hand that evolves a configuration of the

4Although one could construct states for interacting field theories in lower spacetime dimensions, in 4D one has only
managed to find states for the free scalar field and the free Maxwell field. It might be tempting to just use the corresponding
free vacuum vectors for computations in interacting theories, however Haags No-Go theorem forbids implementing any
interacting Hamiltonian on the Hilbert space obtained from the aforementioned free vacuum vectors [171,172].
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quantum field, which is described by some element in a Hilbert space H. If H features also a vector that does
not change under time evolution, we will call it the vacuum vector Ω ∈ H. Since the Hamiltonian generates
translations in time, it shall hold ĤΩ = 0. This triple (Ĥ,H,Ω) will be called Osterwalder-Schrader data (OS
data) in the following and it turns out that one can always find it, provided the spacetime measure µ obeys
certain properties known as the Osterwalder-Schrader axioms (or even a subset thereof5).
We consider the space of some bounded observables, i.e. functionals Ψ(Φ) from the history fields Φ(β, ~x) to
C that only read Φ(β, ~x) at positive times β > 0. A key idea from Osterwalder and Schrader was to introduce
the time reflection operator R and consider the subspace of those Ψ for which

〈Ψ,Ψ′〉V ≥ 0 with 〈Ψ,Ψ′〉V :=

ˆ
dµ(Φ) Ψ(Φ)(RΨ′)(Φ) (II.6)

Herewith the construction of a Hilbert space was possible, whose elements are the equivalence classes with
respect to the Null space of (II.6). In other words, we have brought together all elements which differ from
each other by some element of norm zero. These equivalence classes will be called [Ψ], with some arbitrary
representative Ψ. As Ψ is still a functional of Φ(β, ~x), we can define a time-shift operator K(s) on it, which
will simply force the functional to read the history field at Φ(β + s, ~x). Then we simply define the Hilbert
space as all possible equivalence classes and the Hamiltonian as the generator of the time-shifts:

K(s) =: exp( −sĤ ) , H := span( {[Ψ]} ) , Ω := [1] , 〈[Ψ], [Ψ′]〉H := 〈Ψ,Ψ′〉V .
(II.7)

This is the punchline of the famous Osterwalder-Schrader reconstruction.6

Now assume the situation were reversed and we would have given the OS data (Ĥ,H,Ω) but wanted to have a
spacetime measure µ at hand. This measure is supposed to give us a measurement prediction for each possible
spacetime observable. We consider a generator of this set, namely the spacetime-dependent Weyl elements
W [F ] : Φ 7→ W [F ](Φ) with smearing functions F . If it can be written as a product of some purely spatial,
bounded observables W [fk, βk] at sharp times βk > βk−1, then we simply define the measure to be

µ( W [F ] ) = µ(
∏
k

W [fk, βk] ) = 〈Ω , ŵ(fN ) e(βN−βN−1)Ĥ ... e−(β2−β1)Ĥ ŵ(f1) Ω〉H , (II.8)

where ŵ(f) are the spatial Weyl elements, bounded operators on H. After a lengthy calculation, it is shown
that µ defined this way also satisfies the necessary and physically sensible Osterwalder-Schrader axioms. Af-
terwards one is free to move arbitrarily between both formulations as we will show that both maps are inverses
of each other.7

Another important lesson to learn from this is that the ambiguities during the quantisation process in the
canonical approach are equivalent to the ambiguities in the definition of the path integral measure. But while
there are no trade-offs in the principal freedom of constructing QFTs, both methods so far fail at presenting
one single non-trivial interacting example in 4D.
As mentioned, in 4D the only example where both approaches could be carried out rigorously and indeed shown
to yield the same consistent result, is the case of the free field. Hence, to make the hugely abstract method
of quantisation more understandable, we will at the end review both constructions and how to interchange
between them, in the section II.D. Example: Free scalar field which follows closely [128].

We finish this introduction with a very quick summary of the steps of canonical quantisation as discussed
above. As this programme was first suggested in [42–45], it is commonly known as the Dirac programme of
canonical quantisation:

1. Choose a set E of observables, e.g. the classical phase space variables of the theory

2. Find a representation thereof as operators in an (auxiliary) Hilbert space Hkin satisfying the standard
commutation relations, i.e. {., .} → −i/~[., .]

3. If present, promote the constraints to (self-adjoint) operators in Hkin. The space of solutions, i.e.
elements in the kernel of all constraints, defines the physical Hilbert space Hphys ⊂ H

5This is very important in the context of Quantum Gravity, where without a fixed background metric a restriction like
“Euclidean invariance”will be too strong to ask for.

6From the OS data (H, Ĥ,Ω) it is straightforward to build a state, by simply defining it as ω(a) := 〈Ω, âΩ〉H.
7It must, however, be noted that it is not automatically granted that µ, as defined by this OS construction, is indeed a

measure, i.e. a positive map such that µ(a) ≥ 0 ∀a ≥ 0. This is the case for the free field, as we will learn later. However,
in general more work is needed for this, see e.g. [173–176].
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4. The Hamiltonian is defined as the self-adjoint operator that is the generator of the time-translations
automorphism on A ⊃ E .

5. Find a (complete) set of observables (commuting with the constraints, if present). They represent the
physical experiments whose outcomes our quantum theory can predict

II.A Mathematical Background

In this chapter we give an introduction to functional analysis and compile the basic notions from representations
theory. We follow the textbooks [177–188], which also covers further details.

II.A.1 Functional Analysis

The proofs in the following subsection are partly taken from [177] and [178].

Definition II.A.1 (Cauchy sequence, Hilbert space). A Pre-Hilbert space H′ is a complex vector space
with a form

〈 . , . 〉 : H′ ×H′ → C
(ψ,ψ′) 7→ 〈ψ,ψ′〉 (II.9)

called scalar product obeying the following properties

1. Symmetry: for all ψ, ψ′ ∈ H′

〈ψ,ψ′〉 = 〈ψ′, ψ〉 (II.10)

2. Sesqui-linearity: for all ψ, ψ1, ψ2 ∈ H′ and z1, z2 ∈ C

〈ψ, z1ψ1 + z2ψ2〉 = z1〈ψ,ψ1〉+ z2〈ψ,ψ2〉 (II.11)

3. Positive definiteness: for all ψ ∈ H′: 〈ψ,ψ〉 ≥ 0 and 〈ψ,ψ〉 = 0⇔ ψ = 0.

Let ||ψ|| :=
√
〈ψ,ψ〉, called the norm of H. We adopt the following notations

• A sequence (ψn)n∈N with ψn ∈ H′ ∀n is called Cauchy sequence ⇔ ∀ε > 0 there exists N(ε) ∈ N
with ||ψn − ψm|| < ε for all m,n > N(ε).

• A sequence is called convergent to ψ ∈ H′ ⇔ ∀ε > 0 there exists N(ε) ∈ N with ||ψ − ψn|| < ε for
all n > N(ε).

• A subspace U ⊂ H′ is called dense in H′ ⇔ ∀ε > 0, ψ ∈ H′ there exists ψ′ ∈ U such that
||ψ − ψ′|| < ε

• A subspace U ⊂ H′ is closed ⇔ If ψn ∈ U and (ψn)n∈N convergent to ψ ∈ H′ then ψ ∈ U
Iff every Cauchy sequence of elements in a Pre-Hilbert space converges, it is called a Hilbert space.

Hence any element of H′ can be approximated with arbitrary precision by elements of a dense subspace U .

Lemma II.A.1 (Cauchy-Schwarz inequality). Let H′ be a Pre-Hilbert space. It holds for all ψ,ψ′ ∈ H′:
|〈ψ,ψ′〉| ≤ ||ψ|| · ||ψ′|| (II.12)

and the equality is only true iff ψ = λψ′, λ ∈ C.

Proof. Since (II.12) is trivial for ψ′ = 0 we assume in the following ψ′ 6= 0 and define λ = 〈ψ,ψ′〉/||ψ′||2:

0 ≤ ||ψ − λψ′||2 = 〈ψ,ψ〉 − 〈λψ′, ψ〉 − 〈ψ, λψ′〉+ 〈λψ′, λψ′〉 =

= ||ψ||2 − λ〈ψ,ψ′〉 − λ〈ψ,ψ′〉+ |λ|2||ψ′||2 = ||ψ|| − |〈ψ,ψ′〉|2/||ψ′||2 (II.13)

If both sides are equal, i.e. ||ψ − λψ′|| = 0 hence ψ − λψ′ = 0 by positive definiteness of the scalar product.
On the other hand, if ψ = λψ′ follows

|〈ψ,ψ′〉| = |〈λψ′, ψ′〉| = |λ||ψ′||2| = |λ| · ||ψ′||2 = ||λψ′|| · ||ψ′|| = ||ψ|| · ||ψ′|| (II.14)

which is the statement.
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Definition II.A.2 (Orthonormal basis). Let H be a Hilbert space. A system (eI)I∈I of elements eI ∈ H
with some index set I is called an orthonormal basis if its finite linear combinations are dense in H and
∀I, J ∈ I holds 〈eI , eJ〉 = δIJ .8

We call a Hilbert space separable if there exists an orthonormal basis with at most countable infinite I.

Lemma II.A.2 (Riesz-Lemma). Let l : H → C be a bounded linear form. Then, there exists a unique
ξl ∈ H such that ∀ψ ∈ H

l(ψ) = 〈ξl, ψ〉 (II.15)

Proof. If l ≡ 0 then ξl = 0. Let l 6= 0, then exists l(ψ′) = 1 since e.g. ψ′ = ψ/l(ψ). So we call:

Cl = {ψ ∈ H : l(ψ) = 1} (II.16)

which is closed (pre-image of a single point) and convex, since

l(
ψ + ψ′

2
) =

1

2
l(ψ) +

1

2
l(ψ′) = 1 (II.17)

As l was bounded there exists a (due to convexity and (II.12)) unique ψ̃ ∈ Cl, such that ||ψ̃|| = infψ∈Cl ||ψ||.

Cl = {ψ̃ + ψ : ψ ∈ H, l(ψ) = 0} = {ψ̃ + ψ : ψ ∈ N} (II.18)

where N = {ψ ∈ H : l(ψ) = 0} is the null space of l. It follows that for all ψ ∈ N we have 〈ψ, ψ̃〉 = 0 since

||ψ̃ + tψ||2 = ||ψ̃||2 + t〈ψ, ψ̃〉+ t〈ψ̃, ψ〉+ t2||ψ||2 (II.19)

∀t due to convexity. However, by definition it must be smaller than ||ψ̃||, hence 〈ψ, ψ̃〉 = 0.
If l(ψ′) = 0 ⇒ ψ′ ∈ N . On the other hand, if l(ψ′) = s then l(ψ′/s) = 1 ⇒ ψ′/s ∈ Cl. Thus, each ψ′ ∈ H
can be written as ψ′ = sψ̃ + ψ, ψ ∈ N , s ∈ C. This yields

l(ψ′) = l(sψ̃ + ψ) = sl(ψ̃) + l(ψ) = s (II.20)

So, we conclude that each ψ′ ∈ H can be uniquely written as ψ′ = l(ψ′)ψ̃ + ψ, l(ψ) = 0 and hence:

〈ψ′, ψ̃〉 = l(ψ′)〈ψ̃, ψ̃〉 ⇒ l(ψ′) = 〈ψ′, ψ̃/||ψ̃||〉 =: 〈ψ′, ξl〉 (II.21)

Theorem II.A.1 (Bounded Operators). Given two Hilbert spaces H1, H2 (with corresponding norms
||.||1, ||.||2) we denote as operator any linear transformation T : H1 → H2, i.e.

T (z1ψ + z2ψ
′) = z1Tψ + z2Tψ

′, ∀z1, z2 ∈ C,∀ψ,ψ′ ∈ H (II.22)

Then, the following statements are equivalent:

1. T is bounded ⇔ there exists k ≥ 0 with ||Tψ||2 ≤ k||ψ||1 ∀ψ ∈ H
2. T is continuous for all ψ ∈ H ⇔ ∀ε > 0 there exists δ(ε) > 0 with ||Tψ− Tψ′||2 < ε, ∀ψ′ ∈ H such

that ||ψ − ψ′||1 < δ(ε)

3. T is continuous in 0 ∈ H
Proof. 1.→ 2. Since ψn → ψ in H is equivalent to limn→∞ ||ψn − ψ||1 = 0, we deduce that

||Tψn − Tψ||2 = ||T (ψn − ψ)||2 ≤ k||ψn − ψ||1 −→
n→∞

0 (II.23)

2.→ 3. is trivial. And for 3.→ 1. we assume there is no k such that 1. is true, in other words ∀n ∈ N there
exists ψn ∈ H such that ||Tψn||2 > n||ψn||1. Let ψ′n = ψn/(n||ψn||1) hence ||ψ′n||1 = 1/n→ 0. Then

||Tψ′n||2 =
||Tψn||2
n||ψn||1

> 1 (II.24)

implying that Tψ′n is not converging to 0 = T (0), hence not continuous in 0 ∈ H.

In the following we denote the space of all linear operators from H1 to H2 as L(H1,H2) and the space of all
bounded operators as B(H1,H2) and respectively L(H), B(H) if H = H1 = H2. In general, an operator T
might only be defined on a subset called D(T ) ⊂ H.

8The existence of an ONB is guaranteed for any Hilbert space by the axiom of choice [189] and the Gram-Schmidt
process [185].
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Theorem II.A.2 (Continuous linear extension theorem). Let T ∈ B(H′,H), with H being a Hilbert space
and H′ a Pre-Hilbert space. Then there exists a unique extension of T , called T̃ from the completion H̃
of H′.
Also, for the norm of T holds: ||T ||′ = ||T ||∼, where ||T ||′ = supψ/∈0

||Tψ||
||ψ||′ .

Proof. First we show uniqueness: be T̃ : H̃ → H such an extension, then for any ψ ∈ H̃ and ψn ∈ H′
such that ψn → ψ we get due to continuity of T̃ :

T̃ψ = lim
n

T̃ψn = lim
n

Tψn (II.25)

in other words, T̃ is uniquely determined by T .
Regarding existence , choose ψ ∈ H̃ and ψn ∈ H′ a Cauchy sequence with ψn → ψ. Then, (Tψn)n∈N is also
a Cauchy sequence, due to ||Tψn − Tψm||′ ≤ ||T || · ||ψn − ψm||). With H being a Hilbert space, (TψN ) is
convergent. We choose for each ψ ∈ H̃ a sequence ψn ∈ H′ such that ψn → ψ

T̃ψ := lim
n

Tψn (II.26)

(which is independent on the choice of the particular ψn). That this extension is also linear is seen by considering
two sequences ψn → ψ, ψ′n → ψ and

T̃ (aψ + bψ′) = lim
n

T (aψn + bψ′n) = a lim
n

Tψn + b lim
n

Tψ′n = aT̃ψ + bT̃ψ′ (II.27)

Lastly, we show that ||T̃ || = ||T ||, i.e. T̃ is continuous: Obviously ||T̃ || ≥ ||T ||. But ψ ∈ H̃ and ψn → ψ give

||T̃ψ|| = lim
n
||Tψn|| ≤ lim

n
||T || · ||ψn|| = ||T || · ||ψ|| (II.28)

thus ||T̃ || ≤ ||T ||.

Lemma II.A.3. Let T ∈ L(H) be densely defined, i.e. D(T ) ⊂ H. Let

D(T †) := {ψ ∈ H, sup
06=ψ∈D(T )

|〈ψ, Tψ′〉|
||ψ′|| <∞} (II.29)

Then, there exists a linear operator T † uniquely defined by

〈T †ψ,ψ′〉 = 〈ψ, Tψ′〉, ∀ψ ∈ D(T †), ψ′ ∈ D(T ) (II.30)

Proof. Consider the following linear form for each ψ ∈ D(T †)

Lψ(ψ′) = 〈ψ, Tψ′〉 (II.31)

on D(T ). Since ψ ∈ D(T †), it follows that Lψ( . ) is a bounded linear transformation, mapping from
(D(T ), ||.||) to the Cauchy-complete space (C, ||.||C) with ||z||C = |z|. Thus, we can invoke the continuous
linear extension theorem II.A.2 in order to promote Lψ uniquely to L̃ψ on D(T ) = H with respect to ||.||
on H. And with the Riesz-Lemma II.A.2 we deduce the existence of a unique element ξL̃ψ ∈ H such that

∀ψ′ ∈ H:

〈ξL̃ψ , ψ
′〉 = L̃ψ(ψ′) (II.32)

Thus, we can define an operator T † on D(T †) as T †ψ := ξL̃ψ .

Defined in such way T † is indeed linear as ∀ψ1, ψ2 ∈ D(T †), ψ′ ∈ D(T ):

〈T †(z1ψ1 + z2ψ2), ψ′〉 = 〈z1ψ1 + z2ψ2, Tψ
′〉 = z̄1〈ψ1, Tψ

′〉+ z̄2〈ψ2, Tψ
′〉 = (II.33)

= z̄1〈T †ψ1, ψ
′〉+ z̄2〈T †ψ2, ψ

′〉 = 〈z1T
†ψ1, ψ

′〉+ 〈z2T
†ψ2, ψ

′〉 = 〈(z1T
†ψ1 + z2T

†ψ2), ψ′〉

Definition II.A.3 (Unitary and self-adjoint operators). Let T ∈ L(H). It is called unitary if D(U) = H,
UH = H and ∀ψ ∈ H it fulfils the isometry condition

||Uψ|| = ||ψ|| (II.34)

We will call T self-adjoint9 if it is densely defined on H, D(T ) = D(T †) and

TΨ = T †Ψ, ∀Ψ ∈ D(T ) (II.35)
9In physics these operators play a special role as one can easily see that they have real spectrum, i.e. σ(T ) ⊂ R.
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II.A.2 Measures on Lie groups and Lie algebras

We adapt a didactic approach to Lie groups and Lie algebras which is due to [179] and supplement it with
proofs from [180].

Definition II.A.4 (Lie groups, Lie algebras). A Lie group is a smooth manifold G that also forms a
group via a smooth group product G×G→ G and a smooth inverse map g → g−1.
A complex Lie algebra g is a complex vector space together with a bilinear, antisymmetric Lie bracket

[·, ·] : g× g→ g (II.36)

a× b 7→ [a, b]

which obeys the Jacobi identity ∀a, b, c ∈ g:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 . (II.37)

A unital ∗-Algebra A is an algebra with unit element 1A ∈ A with respect to multiplication and involution,
i.e. an antilinear map such that a, b ∈ A ⇒ (ab)∗ = b∗a∗, (a∗)∗ = a and (za)∗ = z̄a∗ for z ∈ C. We can
endow it with a Lie algebra structure by defining an antisymmetric bracket obeying (II.37).

One should note that with any Lie group G one can associate a Lie algebra g by considering the space of all
tangent vectors at the identity of G. For all h ∈ G, the left translation diffeomorphism Lh : G→ G is defined
as

Lhg := gh, ∀g, h ∈ G (II.38)

We say that a tangent vector field10 v ∈ TG is left-invariant iff (Lh)∗v |g= v |ga, where the push-forward
is defined as φ∗(v)(.) := v(φ(.)) for all φ ∈ Diff(G). The space of all left-invariant tangent vectors at the
identity is the Lie algebra g = g(G), equipped the commutator of vector fields as Lie bracket.
We construct an isomorphism from g to G called the exponential map: for any left–invariant vector field v
we associate the integral curves on G of v passing through idG, i.e. the associated one parameter subgroup
g(t). Then we define ∀v ∈ g: exp(tv) := g(t).11

Definition II.A.5 (Measure, Lebesque integral). Let Γ be the σ-algebra of a Lie group, i.e. a collection
of all subsets including G, the empty set, for each U ∈ Γ its complement and being closed under countable
unions. The triple (G,Γ, µ) is called a measure space, where the measure µ : Γ→ R is a map obeying:

1. Non-negativity: ∀E ∈ Γ : µ(E) ≥ 0.

2. Null empty set: for the empty set E∅ = {∅} is µ(E∅) = 0.

3. σ-additivity: for all countable collections {Ei}∞i=1 of pairwise disjoint sets:

µ(
⋃
k

Ek) =
∑
k

µ(Ek) . (II.39)

For any E ∈ Γ the characteristic function χE : G → C is such that χE(x) = 1 if x ∈ E and χE(x) = 0

otherwise. A function s : G→ C of the form s =
∑N
k=1 zkχEk with N <∞, zk ∈ C is called simple.

Given a measure space (G,Γ, µ) the Lebesque integral of a Borel measurable function f ∈ C∞(G) is
defined by (with s being simple)

µ(f) :=

ˆ
G

dµ(g) f(g) := sup
0≤s≤f

N(s)∑
k=1

zk(s)µ(Ek(s)) . (II.40)

The supremum in (II.40) is understood by decomposing the real and the imaginary part of a complex valued
function f in positive and negative contributions f+, f−. For the positive part we consider sequences sn of
simple functions smaller than f+ pointwise almost everywhere with respect to µ and take the supremum of
all such sequences. Then we continue analogously with (−f−).

10I.e. a linear map, v : C∞(G)→ C∞(G). See the later section IV.A Differential Riemannian Geometry for more details.
11While largely unintuitive in this abstract formalism, once we introduce representations, the name exp becomes clear:

the matrix exponential of an operator tπ(v) defines a group representation Π(g(t)).
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Definition II.A.6 (Haar measure). Given a finite-dimensional Lie group G and let for each h ∈ G be
λh/ρh the operators of left/right translations, i.e. λhf(g) := f(hg) and ρhf(g) := f(gh) for any smooth
function f : G→ R.
A left/right-invariant Haar measure µl/µr on G satisfies ∀h ∈ G:

µl(f) = µl(λ∗hf), µr(f) = µr(ρ∗hf) (II.41)

Theorem II.A.3. If G is a finite-dim. (not necessarily compact) semi-simple Lie group then both µl and
µr exist and are unique up to a constant. If G is compact then in fact µG := µl = µr if we normalise,
i.e. demand that µ(1) = 1. Its explicit form is given by: (Z ∈ C, n = dim(G))

dµ(g) :=
1

Z

√
det(k(t))dnt|g=exp(t) . (II.42)

Proof. If G is not connected, let G0 be the component containing the identity idG of G. Then all other
components are of the form Gn = gn ·Go with gn ∈ G. Suppose µl0 is left-invariant on G0, then

µl(f) :=
∑
n

µl0(λ∗gnf) (II.43)

is left-invariant on all of G and in fact independent of the choice of gn ∈ Gn. Conversely if µl is left-invariant
on all of G =

⋃
nGn, then

µl(f) =
∑
n

µl|G0(λ∗gnf) (II.44)

Hence µl is determined once we know it on G0 and we can restrict our attention to connected Lie groups G.
We will first show the uniqueness and afterwards the existence by explicit construction. So let f ∈ C(G) be
non-negative and not identically zero and let f ′ be arbitrary. Then for two left-invariant measures µ, µ′

h(g, g′) :=
f(g′g)f ′(g)´
G
dµ′(t)f(tg)

(II.45)

is well defined on G×G and continuous. Then we can use a generalisation of Fubini’s theorem (which allows
us to interchange integrations) and use the left-invariance of µ and µ′:

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)h(g, g′) =

ˆ
G

dµ′(g′)

ˆ
G

dµ(g)h(g, g′) =

ˆ
G

dµ′(g′)

ˆ
G

dµ(g)h(g′
−1
g, g′) =

=

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)h(g′
−1
g, g′) =

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)h(g′
−1
, gg′) (II.46)

And thus (inserting a one in the first step)

ˆ
G

dµ(g)f ′(g) =

ˆ
G

dµ(g)f ′(g)

´
G
dµ′(g′)f(g′g)´
G
dµ′(t)f(tg)

=

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)
f ′(g)f(g′g)´
G
dµ′(t)f(tg)

= (II.47)

=

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)h(g, g′) =

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)h(g′
−1
, gg′) =

=

ˆ
G

dµ(g)

ˆ
G

dµ′(g′)
f ′(g′

−1
)f(g)´

G
dµ′(t)f(tg′−1)

=

ˆ
G

dµ(g)f(g) ·
(ˆ

G

dµ′(g′)
f ′(g′

−1
)´

G
dµ′(t)f(tg′−1)

)

Thus, there is a constant c independent of µ such that
´
G
f ′(g)dµ(g)´

G
f(g)dµ(g)

= c (II.48)

Since c does not depend on µ, it is the same for µ′ and hence follows ∀f ′
ˆ
G

f ′(g)dµ′(g) =

(´
G
f(g)dµ′(g)´

G
f(g)dµ(g)

)ˆ
G

f ′(g)dµ(g) =: a

ˆ
G

f ′(g)dµ(g) (II.49)

Thus, the linear functionals µ(f ′), µ′(f ′) for f ′ ∈ C(G) are the same up to a constant µ′(f ′) = aµ(f ′) and
it follows: µ′ = aµ =: µl.
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Moreover, this unique left-inv. measure µl coincides with the right-inv. measure µr in case of compact G, as
upon considering for an arbitrary but fixed g0 ∈ G

µ(f) :=

ˆ
G

dµr(h)f(g0hg
−1
0 ) (II.50)

it follows µ(ρ∗g′f) = µ(f) due to right-inv. of µr and µ = κ(g0)µr by uniqueness. Using compactness, we may
normalise µr

κ(g0) = κ(g0)µr(G) = µ(G) =

ˆ
G

dµr(g) = 1 (II.51)

which is independent of g0. And thus ∀g0 ∈ G:

µ(f) =

ˆ
G

dµr(g)f(g) =

ˆ
G

dµr(g)f(g0gg0
−1) =

ˆ
G

dµr(g)f(g0g) (II.52)

So, µ is also left-invariant, i.e. µ = µl = µr.
Lastly, for its existence, we follow [50] and consider the bijective exponential map exp : g → G. Since
exp(s) exp(t) ∈ G there exists a c ∈ G such that exp(c) = exp(s) exp(t) which is unique due to the
exponential map being bijective, in other words c(s, t) is a composition function such that

exp(s) exp(t) =: exp(c(s, t)) (II.53)

Now ∂tJ e
t = (es)−1(∂rM e

r) |r=c(s,t) ∂tJ cM (s, t) and it follows:

kJK(t) = (∂tJ c
M )(∂tK c

N )tr
(
(es)−1(∂rM e

r) |r=c(s,t) (∂rN e
r) |r=c(s,t) es

)
= (∂tJ c

M )(∂tK c
N )kMN (c(s, t)) (II.54)

and thus for the measure: (det(c2q) = det(c2) det(q))

µ(λ∗sf) =

ˆ
G

dnt
√

det(k(t))f(exp c(s, t)) =

ˆ
G

dnr

√
det(k(t))

|det(∂c(s, t)/∂t)|c(s,t)
f(er)

=

ˆ
G

dnrf(er)
√

det(k(r)) = µ(f) (II.55)

A similar calculation for right translation and inversion gives the statement.

II.A.3 Representation Theory

In the following we will carefully distinguish between representations of groups and of ∗-algebras. This subsec-
tion follows closely [50].

Definition II.A.7 (Representation of a group / ∗-algebra). Let G be a Lie group. A group representation
(Π,H) of G consists of a map

Π : G→ B(H) (II.56)

g 7→ Π(g) (II.57)

onto the bounded operators on a Hilbert space H, which are defined on a dense, invariant subspace D,
i.e. Π(g)D ⊂ D ⊂ H ∀g ∈ G and obey the following properties

1. Π(idG) = idH =: 1

2. Π(gh) = Π(g)Π(h)

3. Π(g−1) = Π(g)−1

For a unital ∗-algebra with Lie-algebra structure, A, a representation (π,H) with π : A → L(H) shall
fulfil: (a, b,∈ A, z1, z2 ∈ C)

1. π(1A) = idH =: 1
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2. π(ab) = π(a)π(b)

3. π(a∗) = π(a)†

4. π(z1a+ z2b) = z1π(a) + z2π(b)

We will adopt the following notations likewise for group and algebra representations:

Definition II.A.8. A representation of (π,H) is called

1. cyclic with cyclic vector or vacuum Ω ⇔ there exists Ω with π(A)Ω := {π(a)Ω, a ∈ A} dense in H.

2. irreducible ⇔ every vector 0 6= ψ ∈ D ⊂ H is cyclic ⇔ @ invariant subspaces other than H and {0}

3. faithful iff it is injective

4. finite dimensional ⇔ dim(H) <∞

5. unitary ⇔ π(a)† = π(a)−1, i.e. all operators are unitary

6. completely reducible iff it decomposes into a direct sum of irreducible representations π(j) on the
spaces H(j), that is

π = ⊕jπ(j), H = ⊕jH(j) (II.58)

7. unitary equivalent with another representation (π′,H′) ⇔ there exists a (unitary) isomorphism
U : H → H′ such that ∀a ∈ A : Uπ(a)U† = π′(a)

And similar for (Π,H).

Theorem II.A.4. Let A be a unital *-algebra with Lie-algebra structure. Then every representation
(π,H) is a direct sum of cyclic representations.

Proof. This is taken from [181]. First note that existence of a unit element guarantees automatically non-
degeneracy, i.e. π(a)ψ = 0 ∀a ∈ A implies ψ = 0. Then, we consider the maximal set (H(j))j∈J of all pairwise
orthogonal, closed and invariant subspaces on which π is cyclic.

Let K := ⊕jH(j), i.e. the closure of the direct sum of Hilbert spaces. With H(j) being invariant and π(a)
continuous ∀a ∈ A, follows that K is invariant, too. Hence also K⊥, the orthogonal complement of K in H,
since for ψ ∈ K⊥ and ψ′ ∈ K follows for all a ∈ A:

〈π(a)ψ,ψ′〉 = 〈ψ, π(a)†ψ′〉 = 0 (II.59)

because π(a)†ψ ∈ π(A)K ⊆ K. The statement would follow if K⊥ = 0. Hence we assume that K⊥ 6= 0.
Then exists 0 6= ψ ∈ K⊥ and we define

C = span π(A)ψ (II.60)

which is also a closed, invariant subspace. We write ψ = ψ0 + ψ′ with ψ′ ∈ C and ψ0⊥C. With C⊥ being
invariant, follows:

C 3 π(a)ψ = π(a)ψ0 + π(a)ψ′ (II.61)

But since π(a)ψ0 ∈ C⊥, it must vanish for all a ∈ A. But (π,H) is non degenerate, thus ψ0 = 0. This
means ψ ∈ C and hence the representation is cyclic on C. This implies a contradiction to the maximality of
(H(j))j∈J .

One can quickly see that the same holds true for Lie groups which carry an involution and non-degenerate
representations thereof. Thus, we can restrict our attention to the construction of cyclic representations and,
moreover, to unitary ones as:

Lemma II.A.4. Let G be a compact, finite-dim Lie group and (Π,H) a continuous finite-dim represen-
tation of G. Then we may replace the scalar product on H by one with respect to which Π is unitary.
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Proof. We denote with 〈., .〉′ the old scalar product on H and define a new scalar product by

〈ψ,ψ′〉 :=

ˆ
G

dµG(g)〈Π(g)ψ,Π(g)ψ′〉′ (II.62)

which is due to Π being continuous and G compact:

|〈ψ,ψ′〉| ≤ (

ˆ
G

µG(g) 1) sup
g∈G
|〈Π(g)ψ,Π(g)ψ′〉′| <∞ (II.63)

With this we can easily check ∀g′ ∈ G: (g̃ := gg′)

〈ψ,Π(g′)ψ′〉 =

ˆ
G

dµG(g)〈Π(g)ψ,Π(g)Π(g′)ψ′〉′ =

ˆ
G

dµG(g̃)〈Π(g̃)Π(g′
−1

)ψ,Π(g̃)ψ′〉′ =

= 〈Π(g′
−1

)ψ,ψ′〉 = 〈Π(g′)†ψ,ψ′〉 (II.64)

Giving the statement: Π(g′)† = Π(g′
−1

) = Π(g′)−1.

Lemma II.A.5 (Schur). Suppose (Πj ,Hj) j = 1, 2 are finite-dim irreducible representations of G and
there exists an intertwiner: A : H1 → H2 such that Π2(g)A = AΠ1(g) for all g ∈ G. Then:
1. Either A = 0
2. Or A is invertible, unique up to a constant (A = κ1) and we call (Π1,H1) and (Π2,H2) equivalent.

Proof. Let V1 = ker(A) ⊂ H1, V2 = Im(A) ⊂ H2. Let ψ ∈ ker(A) then AΠ1(g)ψ = Π2(g)Aψ = 0 ⇒
V1 is invariant. Let φ ∈ Im(A), then exists ψ ∈ H1 such that φ = Aψ and Π2(g)Aψ = AΠ1(g)ψ ⇒ V2 is
invariant.
Now since Π1 is Irrep ⇒ either V1 = H1 (i.e. A = 0) or V1 = {0} (i.e. A is injective). And since Π2 is Irrep
⇒ either V2 = {0} (i.e. A = 0) or V2 = H2 (i.e. A is surjective).
Now let A be an intertwiners for case 2., then exists κ ∈ C such that A− κ1 is singular. But since A− κ1 is
an intertwiner we are in case 1. and A− κ1 = 0.

This Lemma (due to [190]) but found many application in representation theory. We will use it in the proof
of the following theorem [191]

Theorem II.A.5 (Peter & Weyl). Let j be a labelling of the equivalence classes of finite-dim., irreducible,
unitary representations (Π(j),H(j)) of compact G and define

bjmn(g) :=
√
djΠ

(j)
mn(g) (II.65)

with m,n ∈ {1...dj} and dj = dim(H(j)).
Then the bjmn form an orthonormal basis of the Hilbert space H = L2(G, dµG), where µG is the Haar
measure on G, i.e. ∀f, h ∈ H:

〈f, h〉 :=

ˆ
G

dµG(g) f(g)h(g) (II.66)

Proof. This taken from [50]. First, we show that

〈bjmn, bj′m′n′〉 = δjj′δmm′δnn′ (II.67)

which we call Ajj
′

nn′(mm
′) := 〈bjmn, bj′m′n′〉, i.e. a matrix with entries labelled by n, n′ (n = 1, ..., dj ,

n′ = 1, ..., dj′) with additional labels j, j′,m,m′. First, we show that Ajj
′
(m,m′) is an intertwiner between

(Π(j′),H(j)) and (Π(j),H(j)):

[Ajj
′
(m,m′)Π(j′)(g)]nn′ =

∑
ñ

Ajj
′

nñ(m,m′)Π
(j′)
ñn′(g) =

=
√
djdj′

ˆ
G

dµG(h) Π
(j)
mn(h)Π

(j′)
m′n′(hg) = [Π(j)(g)Ajj

′
(m,m)]nn′ (II.68)

where we used unitarity: Π
(j)
ñn(g−1) = Π

(j)
nñ(g).

For non-vanishing A, by Schur, j and j′ must be equivalent and then A is fixed up to a constant κ, i.e.:

Ajj
′

nn′(m,m
′) = δjj′A

jj′

nn′(m,m
′) = δjjδnn′κ

jj′(m,m′) (II.69)
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To determine κ, we compute the trace∑
n=n′

δjj′δnn′κ
jj′(m,m′) = djδjj′κ

jj′(m,m′) =
∑
n=n′

dj

ˆ
G

dµg(h)Π
(j)
mn(h)Π

(j)
m′n′(h) = djδmm (II.70)

where we used unitarity, that Π
(j)
mm′(idG) = δmm′ and that µG = 1.

Now we want to prove that the span of the bjmn is dense in L2(G, dµG). Let B ⊂ C(G) be the subalgebra
of the abelian C∗-algebra of continuous functions on G generated by the bjmn, so B contains finite linear
combinations and products of the bjmn.

bjmnbj′m′n′ can be considered as matrix e′ of Π(j) ⊗ Π(j′) which is finite-dim, thus completely reducible
to sums of the Π(j) again. In other words, B is the finite linear span of the bjmn. As one can see from
the general theory of Hausdorff spaces C(G) is dense in L2(G, dµG). Now given ψ ∈ L2(G, dµG), then
there exists f ∈ C(G) such that ||ψ − f ||L2

< ε/2 with ε > 0. For this f , there exists b ∈ B such that
||f − b||∞ = supg∈G |f(g)− b(g)| < ε/2. Then

||f − b||2L2
=

ˆ
G

dµG(g)|(f − b)(g)|2 ≤ ||f − b||2∞ < (ε/2)2 (II.71)

And finally

||ψ − b||L2
≤ ||ψ − f ||L2

+ ||f − b||L2
< ε (II.72)

II.B Canonical vs Covariant Quantisation

We will review two of the many possible ways to quantise a system, which both yield the same unique result
in case of a regular state in a finite dimensional system due to the Stone-von Neumann theorem [192–195].
Since a field theory carries infinitely many degrees of freedom the situation looks different and both cases will
have to be discussed separately.

II.B.1 Canonical Quantisation

Given an action S[φI ] of a system with some field degrees of freedom living on a manifold M∼= σ ×R (with
σ being a spatial submanifold), we will perform a Legendre transformation to obtain the corresponding Ha-
milton function H(φI , πφI ), defined on a classical phase space F with symplectic structure {πJφ(y), φI(x)} =

δJI δ
(3)(x, y).

The structure of this subsubsection follows the programme of canonical quantisation, see e.g. [50].

Gel’fand-Naimark-Segal Construction

The first step towards defining a canonical quantum theory is the choice of a quantum ∗-algebra of observables.

Definition II.B.1 (Algebra of observable, states). Let E be a sub set of C∞(F) such that it is

1. closed under complex conjugation, i.e. E = E

2. closed with respect to the symplectic structure, i.e. {E , E} ⊆ E

3. separating points, i.e. f(φ, π) = f(φ′, π′) ∀f ∈ E ⇒ (φ, π) = (φ′, π′)

4. including the constant functions, i.e. 1 ∈ E

We construct the free algebra A′, i.e. the non-commutative ∗-algebra of books and words from E where
a word w is a formal multiplication of finitely many fk ∈ E and a book b a formal linear combination of
finitely many words

b = w1 + ...+ wM, w = f1 · ... · fN , fk ∈ E (II.73)
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The algebra of observables A is now simply the quotient

A = A′/J (II.74)

with the two sided ideal, i.e. bJ = Jb′ for all b,b′ ∈ A′,

J = {b(f · g − g · f − i~{f, g})b′, b,b′ ∈ A′, f, g ∈ E} (II.75)

for some ~ ∈ R.
A state on A is a positive linear functional ω : A → C such that

ω(z1a1 + z2a2) = z1ω(a1) + z2ω(a2), ω(a∗a) ≥ 0, ω(1A) = 1 (II.76)

One can easily convince oneself that the equivalence class [b] = [b + j, j ∈ J ] is independent of the choice of
representative and that the following relations hold:

[b] + [b′] = [b + b′], [b] · [b′] = [bb′], [b]∗ = [b∗] (II.77)

Given an algebra of observables and a state thereon the GNS construction [169, 170] builds a corresponding
representation thereof:

Theorem II.B.1 (Gel’fand, Naimark, Segal). Let A be a unital ∗-algebra and ω a state on A. Then
there exists (up to unitary equivalence) a unique correspondence between ω and a cyclic representation
(π,H,Ω) given by the vacuum expectation value of π(a):

ω(a) = 〈Ω, π(a)Ω〉H (II.78)

Proof. Let D′ := A, which is a linear space, due to A being a vector space. We can define the following
map on it

( . . . ) : D′ ×D′ → C (II.79)

a× b 7→ (a, b) := ω(a∗b)

which we will show to be a positive definite, symmetric, sesqui-linear form on D′. Using the polarisation
identity [196]

a∗b =
1

4

∑
ε4=1

ε̄(a+ εb)∗(a+ εb) (II.80)

with ε ∈ {±1,±i}, hence ε̄ = ε−1 and ε̄ε = 1. Then:

(a, b)∗ = ω(a∗b)∗ =

(
1

4

∑
ε4=1

ε̄ω((a+ εb)∗(a+ εb))

)∗
=

1

4

∑
ε4=1

εω((a+ εb)∗(a+ εb)) =

=
1

4

∑
ε4=1

εω(ε̄ε(b+ ε−1a)∗(b+ ε−1a)) =
1

4

∑
ε4=1

ε̄ω((b+ εa)∗(b+ εa)) = ω(b∗a) = (b, a) (II.81)

where we could neglect the outer involution in the third step due to positivity of ω and exchanged ε↔ ε̄ for
the last line. Hence, (., .) is symmetric and obviously sesquilinear and non-negative by definition. However, it
will in general have a non-vanishing kernel, hence consider:

N = {n ∈ D′, ω(n∗n) = 0} (II.82)

Then with [a] = {a+ n, n ∈ N} and using (II.12)

〈[a], [b]〉 = ω(a∗b) (II.83)

is positive definite on D := {[a], a ∈ D′}. N is also a left-sided ideal, since for a ∈ A, n ∈ N :

ω((an)∗an) = (n, a∗an) = |(n, a∗an)| ≤ (n, n)1/2(a∗an, a∗an)1/2 = ω(n∗n)(a∗an, a∗an)1/2 = 0 (II.84)

using again Cauchy-Schwartz-inequality. So, we can choose as Hilbert space H the closure of D with respect
to 〈., .〉, as cyclic vector Ω := [1] and finally π(a) = [a] for all a ∈ A., which acts by π(a)[b] = [ab]. This is

22



independent from the choice of representative as N is a left-ideal, so a[b] = a(b+n) = ab+an with an ∈ N .
The linearity criterion for the representation of a ∗-algebra is obviously fulfilled, moreover:

π(ab)[c] = [abc] = π(a)[bc] = π(a)π(b)[c] (II.85)

and

〈[π(a)]†[b], [c]〉 = 〈[b], π(a)[c]〉 = ω(b∗ac) = ω((a∗b)∗c) = 〈π(a∗)[b], c〉 (II.86)

By definition of H we have D being dense and then π(a)Ω = [a · 1] = [a] ∀a ∈ A shows that every point
in D can be reached hence, Ω is a cyclic vector. To summarise we have indeed found a cyclic representation
stemming from ω.
Consequently, given (π,H, ω) equation (II.78) defines a state, if Ω is normalised, as

〈Ω, π(a∗a)Ω〉 = 〈π(a)Ω, π(a)Ω〉 = ||π(a)Ω||2 ≥ 0 (II.87)

It remains to show uniqueness up to unitary equivalence. Assuming there would be another triple (π′,H′,Ω′),
such that

ω(a) = 〈Ω, π(a)Ω〉H = 〈Ω′, π′(a),Ω′〉H′ (II.88)

which is a consequence of ω(a) = ω(1∗a) = 〈[1], [a]〉H = 〈Ω, π(a)Ω〉H. Then define

U : D → D′ ⊂ H′ (II.89)

π(a)Ω 7→ π′(a)Ω′ (II.90)

which is an isometry

||Uπ(a)Ω||2H = ||π′(a)Ω′||2H′ = 〈π′(a)Ω′, π′(a)Ω′〉H′ = 〈Ω′, π′(a)†π′(a)Ω′〉H′ =

= 〈Ω′, π′(a∗a)Ω′〉H′ = ω(a∗a) = ... = ||π(a)Ω||2H (II.91)

Thus U is densely defined on D. And by the same calculation we find the existence of an U−1 : D′ → D. With
D′ ⊂ H′, D ⊂ H both dense and H,H′ both closed, we can extend U,U−1 to a unitary operator according
to the continuous linear extension theorem II.A.2, since isometry underlies boundedness.

Dynamical Restrictions on the State ω

In the following, we impose restrictions on ω, which will allow us to implement time evolution in the quantum
theory.

Definition II.B.2 (Automorphisms, G-invariance). Let G be a group, whose action on an algebra of
observables A is given via automorphism αg : A → A with g ∈ G, i.e. maps obeying

1. αg ◦ αg′ = αgg′ for all g, g′ ∈ G

2. αg(ab) = αg(a)αg(b) and αg(a)∗ = αg(a
∗) ∀a, b,∈ A

3. αg(z1a+ z2b) = z1αg(a) + z2αg(b) ∀z1, z2 ∈ C

We call G a symmetry and a state ω in A G-invariant iff ∀g ∈ G, a ∈ A

ω(αg(a)) = ω(a) (II.92)

Lemma II.B.1. Each G-invariant state ω leads to unitary representation of G on the GNS-Hilbert space
corresponding to A, ω by

U(g) (π(a)Ω) := π(αg(a))Ω (II.93)

for all g ∈ G. Moreover, Ω is a G-invariant vector in H.
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Proof. We show isometry of U(g):

〈U(g)π(a)Ω, U(g)π(b)Ω〉 = 〈π(αg(a))Ω, π(αg(b))Ω〉 = 〈Ω, π(αg(a
∗b))Ω〉 = ω(αg(a

∗b)) =

= ω(a∗b) = ... = 〈π(a)Ω, π(b)Ω〉 (II.94)

Also U(G) has as inverse U(g−1), hence it can be extended to a unique unitary operator on the whole ofH.

Physical input enters now in demanding that the vacuum Ω is a state which does not change under a
global shift of the time coordinate, i.e. it gives rise to a G-invariant state ω with respect to the classical
automorphism αHg (a) =

∑
n t

n/n!{H, a}(n) induced by the Hamilton function H.

By the Stone theorem [194,195] we have then guaranteed the existence of a self-adjoint operator Ĥ := π(H)
as generator of time evolution. From (II.93) and setting a = 1 follows that it annihilates the vacuum

ĤΩ = 0, U(t) := exp(−itĤ) (II.95)

In other words the vacuum is from now on referred to as a vector which does not change under time evolution,
which we get automatically during the GNS construction.

The Stone-von Neumann Theorem

In special cases the choice of the states becomes unique. In this paragraph we will comment on when this
happens.

Let us consider S(Rn) the space of Schwartz functions, i.e. f : Rn → R which are of rapid decrease. In
other words f ∈ S(Rn) iff

´
σ
d3x f(x)P (x) ≤ ∞ for any polynomial P . In the following we use its elements

often as test functions.

Definition II.B.3 (Weyl Algebra). (cf. [197, 198]) The (spatial) Weyl elements of a scalar field theory
are defined as (f, g ∈ S(σ))

w[f, g](φ, π) := exp (i(φ[f ] + π[g])) , w[f ](φ) := w[f, 0](φ, π) (II.96)

Similarly the (spatial) Weyl elements for the phase space R2 of a mechanical system with {p, q} = 1 are
(x, y ∈ R)

w[x, y](q, p) := exp (i(yq + xp)/~) (II.97)

The ∗-algebra generated by the finite linear combinations of some Weyl elements is called the Weyl algebra,
W. For each Weyl algebra, we define the maps .∗ : Γ→ Γ and fα : Γ× Γ→ Γ (where Γ is either S(σ) or
R2) such that

w[f∗] := w[f ]∗, w[f ]w[f ′] :=

L∑
α=1

zαw[fα(f, f ′)], ∀f, f ′ ∈ Γ (II.98)

where L <∞.

Example: For the scalar field theory, the Weyl relations (II.98) have the following, explicit form of the
parameters (f, f ′ ∈ S(σ))

f∗ = −f, L = 1, z1 = 1, f1(f, f ′) = f + f ′ (II.99)

In case of a one particle system, the parameter of the relations read: (x, y ∈ R2)

(x1, x2)∗ = (−x1,−x2), L = 1, z1(x, y) = e
−i
2~ (x1y2−x2y1), f1(x, y) = (x1 + x2, y1 + y2) (II.100)

Definition II.B.4. A state ω on a Weyl algebra W is called regular, iff for the corresponding repre-
sentation (π,H) the 1-parameter groups x1 7→ π(w[x1, 0]) and x2 7→ π(w[0, x2]) are strongly continuous,
i.e.

lim
x→0
||(π(w[x, 0])− 1H)Ψ|| = 0, ∀Ψ ∈ H (II.101)

and similar for the second argument of w[., .].
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Theorem II.B.2 (Stone-von Neumann). (cf. [192–195]) Given the Weyl-algebra of a one-particle system,
i.e. with finitely many degrees of freedom. Let ω be a state thereon, whose GNS representation (π,H) is
irreducible and with respect to which the Weyl elements w[x, y] are regular.
Then ω is equivalent to the Fock-state ωl:

ω(w[x, y]) = ωl(w[x, y]) := exp

(
−1

4
(
x2

l2
+
y2l2

~2
)

)
(II.102)

with l > 0 and [l] =cm.

For the proof of this theorem there are excellent accounts in the literature. See e.g. [199] for a modern
version.

In the case of a field theory the Stone-von Neumann theorem is not applicable and other methods must
be used to classify all possible states on A. A formulation, which is used in constructive QFT and in terms of
which the Gårding-Wightman axioms [163] are formulated, are the Wightman functions:

Definition II.B.5 (Wightman functions, Schwinger functions). Let A be an algebra of observables with
state ω such that the Hamilton function H can be represented as a self-adjoint operator Ĥ = π(H) on H.
Moreover, we demand that π(A) contains the time-dependent Heisenberg fields

φ̂I(p, t) = exp(−itĤ)φ̂I(p, 0) exp(itĤ) (II.103)

where φ̂I(p, 0) := π(φI(p)) with p ∈ σ.
Then the Wightman n-point functions12 are defined as (xi ∈ σ × R)

Wn,In...I1(xn, ..., x1) := 〈Ω, φ̂In(xn)...φ̂I1(x1)Ω〉H (II.104)

And their analytic continuations t 7→ iβ, β ∈ R will be called the Schwinger n-point functions Sn.

II.B.2 Path integral Quantisation of Euclidian fields

In this subsection we will be working in the covariant formulation, i.e. using the history time fields ΦI rather
than the canonical pair (φI , πφI ).
Most of the work in the previous section is side-stepped by simply defining a candidate for the Schwinger
n-point function in the following way:

Definition II.B.6 (Euclidian functions). Given a field theory described by an action of the form

S[ΦI ] = S0[ΦI ] + V [ΦI ] :=

ˆ
M
d4x (

1

2

∑
I,α

(∂αΦI)
2(x) + V ({ΦI}I(x)) ) (II.105)

with S0 the action of the free field and the semi-bounded potential V [ΦI ] ≥ 0.
Then the Euclidian n-point function is defined as the path integral (or functional integral) [200]

En,In...I1(xn...x1) =

ˆ
dµ(Φ) ΦIn(xn)...ΦI1(x1), dµ(Φ) = e−SN [ΦI ]/~ lim

N→∞

∏
v∈T (1/N)

dΦ(v)

(II.106)

with µ(1) = 1 and T (1/N) is some cubulation of M with cells of vanishing volume for N → ∞.13

Lastly, SN [Φ] is for all N bounded from below and some discretisation of the continuum action, such that
S[ΦI ] = limN→∞ SN [ΦI ].

14

As we realise, the action S[ΦI ] is by definition bounded from below, it made sense to demand the same for
SN [ΦI ]. Hence, the exponent exp(−SN [ΦI ]) is bounded from above and strictly positive. Thus, dµ(Φ) indeed
defines a positive measure.

12Strictly speaking these objects (and all other n-point functions) are distributions, but we will stick to the notation
commonly found in the literature.

13Note that the limit must be taken before evaluating the integral. This makes dµ(Φ) a mathematically ill-defined object,
known as the Euclidian path integral measure.

14We will encounter explicit examples for such discretisations in chapter III. Renormalisation.
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Consequently, we can hope to identify the Euclidian n-point function with the Schwinger function of a cano-
nical theory as they are fulfilling the same properties of a vacuum expectation value.

On the other hand, the set of possible actions of the form (II.105) should be too restrictive for all ap-
plications in mind (e.g., we will later consider the Einstein-Hilbert action of General Relativity). So we will
allow more general measures, yet are then faced with the question, whether they give rise to a corresponding
well-defined caonincal quantum theory. Sufficient conditions on the measure for this have been collected by
Osterwalder and Schrader [135–137]. We now state the axioms and present the explicit construction in the
following section.

Definition II.B.7 (Generating functional). Given a field theory on M∼= σ × R, we perform a rotation
to imaginary time t 7→ iβ, β ∈ R. Fields on this space, R, are called Euclidian fields.
Consider the distribution space S ′(R) on the Schwartz functions, such that ΦI ∈ S ′(R) via

ΦI [F ] = 〈ΦI , F 〉R =

ˆ
R
d4x ΦI(x)F (x) (II.107)

∀F ∈ S(R) called test functions. For FI ∈ S(R), I = 1....N , we define W [F ] : S ′(R) → C with
W [F ]({ΦI}) := exp(i

∑
I ΦI [FI ]) and

A+ = {Ψ( . ) =

N∑
K=1

zKW [FK ]( . ) , zK ∈ C, T− supp(FKI ) ⊂ (0,∞)} (II.108)

Then, given a measure µ on S ′(R), we define the generating functional of the Schwinger functions:

S[F ] =

ˆ
S′(R)

dµ(Φ) W [F ](Φ) (II.109)

Definition II.B.8 (Osterwalder-Schrader axioms). The OS axioms are conditions which a measure µ
(uniquely determined by its generating functional) may satisfy. They read explicitly:

OS0 Analyticity. For all FK ∈ S(R), K ≤ N <∞ and z1...zN ∈ C the function

~z 7→ S[
∑
K

zKF
K ] (II.110)

is complex differentiable on the entire complex plane CN .15

OS1 Regularity. There exists 1 ≤ p ≤ 2 and c ∈ C such that for all F ∈ S(R) holds16

|S[F ]| ≤ exp
(
c(||F ||L1 + ||F ||pLp)

)
(II.111)

OS2 Euclidian invariance. S[F ] is invariant under time reflections and translations. If R ∼= R4 then we
might demand invariance under all Euclidian symmetries E, i.e. rotations and spatial reflections
and translations:17

S[F ] = S[E F ] or equivalently µ(F ) = µ(E F ) (II.112)

OS3 Reflection positivity. For the time reflection R : S ′(R)→ S ′(R), defined as (RΨ)(F ) = Ψ(θF ) with
θ : S(R) → S(R) acting as (θF )(x, t) = F (x,−t), the measure µ fulfils (∀Ψ ∈ E := V , i.e. the
closure of V = A+ ∩ L2(S ′(R), dµ))18

0 ≤ 〈Ψ, RΨ〉E :=

ˆ
dµ(Φ) Ψ(Φ)(RΨ)(Φ) (II.113)

OS4 Cluster property:19 Let F, F ′ ∈ S(R), then holds

lim
s→∞

ˆ
dµ(Φ) W [F ](Φ)W [TsF

′](Φ) = µ(W [F ])µ(W [F ′]) = 〈W [F ], 1〉E〈1,W [F ′]〉E (II.114)

15In other words, dµ(Φ) decays faster than any exponential. Dropping this axiom could force us to consider only a subset
of all test functions.

16The Lp-norm is defined as ||.||Lp : F 7→ (
´
|F (x)|pdx)1/p.

17E.g. GR will provide counterexamples. Also note that, upon going back to Minkowski fields, this is equivalent to Lorentz
invariance.

18This axiom guarantees positivity of the scalar product of a GNS Hilbert space and is therefore crucial for the subsequent
constructions.

19This is slightly stronger than the Ergodicity property mentioned in [135]. However both ensure uniqueness of the vacuum.

26



II.C Bijection between OS measure and OS data

Given a field theory defined on a manifold M ∼= σ × R, for which we will consider a single field species. In
this chapter we show that there is a unique one to one correspondence between a triple of OS data (H, Ĥ,Ω)
(consisting out of a Hilbert space, a self-adjoint Hamiltonian operator thereon and a cyclic vector) and an
OS measure µ satisfying a subset of the Osterwalder-Schrader axioms. Moreover, we will only consider scalar
fields in the following, for extensions to gauge groups see [201–205].
For the Osterwalder-Schrader reconstruction we follow [128,135] and for the Osterwalder-Schrader construction
and their inversion properties we quote the calculations from [128].

II.C.1 Osterwalder-Schrader Reconstruction

Let µ be a measure satisfying OS2 and OS3.
On V , the finite linear combinations of W [F ] with F of positive time support, we define the bi-linear form

〈Ψ,Ψ′〉V := 〈Ψ, RΨ′〉E (II.115)

which is positive by OS3, however not yet positive definite. Due to OS2 we have invariance under time
reflections, giving sesqui-linearity of the form: (using unitarity of R)

〈Ψ,Ψ′〉V = 〈RΨ′,Ψ〉E = 〈R2Ψ′, RΨ〉E = 〈Ψ′,Ψ〉V (II.116)

Lemma II.C.1. Let µ be a measure on S ′(R) satisfying OS3. Then the Null space

N = {Ψ ∈ V, 〈Ψ,Ψ〉V = 0} (II.117)

is a linear space. And upon defining the canonical Hilbert space H as the completion of the set V/N of
equivalence classes [Ψ] := {Ψ +N, N ∈ N} with Ψ ∈ V , the scalar product

〈[Ψ], [Ψ′]〉H := 〈Ψ,Ψ′〉V (II.118)

is well defined on H, i.e. independent of the representative.

Proof. We need to show that if Ψ,Ψ′ ∈ V and N ∈ N then 〈Ψ +N,Ψ′〉H = 〈Ψ,Ψ′〉H. And from

〈Ψ +N,Ψ′〉H =

ˆ
Ψ +NRΨ′ = 〈Ψ,Ψ′〉H + 〈N,Ψ′〉H (II.119)

follows with the Cauchy-Schwarz-inequality (II.12), which applies to positive definite sesqui-linear forms, that:

|〈N,Ψ′〉H| ≤ 〈N,N〉1/2H 〈Ψ′,Ψ′〉
1/2
H = 0 (II.120)

We define densely on L2 := L2(S ′(∇), dµ): (s ∈ R)

(TsF )(β) := F (β − s), U(s)W [F ] := W [TsF ] (II.121)

Note that T− supp(TsF ) = T− supp(F ) + s thus U(s) does not map V onto V unless s > 0. Thus, on V
we may still define a one parameter family s 7→ U(s) but it is a semi-group rather than a group, because its
inverses are not defined.
We want to define for Ψ ∈ V

K(s)[Ψ] := [U(s)Ψ] (II.122)

but we must first show that this definition is well-defined, i.e. U(s)N ⊂ N . For this note first that

(θ TsF )(β) = (TsF )(−β) = F (−b− s) = (θF )(β + s) = (T−s θF )(β) (II.123)

whence RU(s)W [F ] = W [θ TsF ] = U(−s)RW [F ]. Thus using unitarity of U(s) on L2 for Ψ ∈ V,N ∈ N

〈RU(s)N,U(s)N〉L2
= 〈U(−s)RN,U(s)N〉L2

= 〈RN,U(2s)N〉L2

≤ 〈RN,N〉1/2〈L2
RU(2s)N,U(2s)N〉1/2L2

= 0 (II.124)

hence giving the claim that U(s)N ⊂ N .
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Theorem II.C.1 (Reconstruction of canonical Quantum Theory). Let µ be a measure on S ′(R) satisfying
to OS2 and OS3. Then from (II.122) we have for s ≥ 0

K(s) = exp
(
−sĤ

)
(II.125)

Here, Ĥ : S ′(R)→ S ′(R) is a self-adjoint positive operator, i.e. 0 ≤ Ĥ = Ĥ†. Moreover, Ω := [1] =
[W [F ]|F=0] ∈ S ′(R) is a ground state of Ĥ, i.e.

ĤΩ = 0 (II.126)

Proof. We verify the following four properties:
(i) Semigroup law: K(t)K(s) = K(t+ s), for all s, t ∈ R+. This follows from the multiplication law for U(s):

K(t)K(s)[Ψ] = [U(s)U(t)Ψ] = [U(t+ s)Ψ] = K(t+ s)[Ψ] (II.127)

(ii) K(s) is self-adjoint, as

〈[Ψ],K(s)[Ψ′]〉H = 〈Ψ, RU(s)Ψ′〉L2
= 〈Ψ,U(−s)RΨ′〉L2

=

ˆ
dµ(Φ)Ψ(Φ[.])(RΨ′)(Φ[T−s .]) =

= 〈U(s)Ψ, RΨ′〉L2
= 〈K(s)[Ψ], [Ψ′]〉H (II.128)

Moreover, K(s) is positive as follows from

〈[Ψ],K(s)[Ψ]〉H = 〈[Ψ], [U(s/2)2Ψ]〉H = 〈[Ψ],K(s/2)2[Ψ]〉H = ||K(s/2)[Ψ]||2H (II.129)

(iii) K(s) is a contraction, i.e. ||K(s)||H ≤ 1. For this we consider any 0 6= [Ψ] ∈ H then:

||K(s)[Ψ]||H =
√
〈[Ψ],K(s)2[Ψ]〉H ≤ ||[Ψ]||1/2H ||K(2s)[Ψ]||1/2H ≤ ||[Ψ]||

∑n
k=1 2−k

H ||K(2ns)[Ψ]||2−nH (II.130)

And with (r > 0)

||K(r)[Ψ]||2H = ||[U(r)Ψ]||2H = 〈U(r)Ψ, RU(r)Ψ〉L2
≤ ||U(r)Ψ||L2

||RU(r)Ψ||L2
≤ ||Ψ||2L2

(II.131)

we get for any n ∈ N

||K(s)[Ψ]||H ≤ ||[Ψ]||1−2−n

H ||Ψ||2−nL2
(II.132)

and taking the limit n→∞:

||K(s)[Ψ]||H
||[Ψ]||H

≤ 1 (II.133)

taking the supremum over [Ψ] 6= 0 shows that K(s) is bounded by norm one.
(iv) Strong continuity: K(s)→ 1 as s→ 0. By assumption U(s) is reflection continuous whence

||(K(s)− 1)[Ψ]||2H = 〈Ψ, R(U(2s)− 2U(s) + 1)Ψ〉L2
≤

≤ |〈Ψ, R(U(2s)− 1)Ψ〉L2
| +2|〈Ψ, R(U(s)− 1)Ψ〉L2

| −→
s→0

0 (II.134)

These properties say that K(s) is a strongly continuous, self-adjoint, contraction semigroup and then there
exists an operator Ĥ such that K(s) = exp(−sĤ) by the Hille-Yosida theorem [206]. If we take the derivative
of (II.128) with respect to s and set afterwards s = 0 we deduce moreover that Ĥ must be self-adjoint too.
Furthermore U(s)1 = 1 and then ∀s > 0:

K(s)Ω = [U(s)W [F ] |F=0] = [W [TsF ] |F=0] = [1] = Ω (II.135)

so that Ω is a vacuum for Ĥ.

Lemma II.C.2 (Uniqueness of vacuum). The vacuum Ω is unique, if the measure µ obeys OS4, i.e. it
is time-clustering.
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Proof. If (II.114) holds for all W [F ] (which are dense), then for s → ∞ the operator U(s) becomes a
projection operator

lim
s→∞

U(s) = 〈1, . 〉L21 (II.136)

Now suppose there are any Ω such that K(s)Ω = Ω. Then for all [Ω′] = Ω we have

(K(s)− 1H)Ω = [(U(s)− 1L2
)Ω′] = 0 (II.137)

In other words (U(s)− 1L2
)Ω′ ∈ N for any s. If µ clusters then take s→∞ and find

lim
s→∞

(U(s)− 1L2
)Ω′ = 〈1,Ω′〉1− Ω′ ∈ N (II.138)

i.e. Ω := [Ω′] ∼ [1] and the vacuum is unique up to a phase.

II.C.2 Osterwalder-Schrader Construction

In this section, we follow [128]. Let (H, Ĥ,Ω) be a representation π of a ∗-algebra A of observables generated
by the Weyl elements w[f ](φ) := exp(iφ[f ]) that support the Hamiltonian as a self-adjoint operator. For the

corresponding operators, we write ŵ[f ] := π(w[f ]), φ̂[f ] := π(φ[f ]) unless stated otherwise. We define the
N -th Wightman function generator20 as

WN ((fN , tN ), ..., (f1, t1)) := 〈Ω, ŵ[fN ]U(tN − tN−1)−1...U(t2 − t1)−1ŵ[f1]Ω〉H (II.139)

and correspondingly the N -th Schwinger function generator with t 7→ iβ, β ∈ R as

SN ((fN , βN ), ..., (f1, β1)) := 〈Ω, ŵ[fN ]e−(βN−β1)Ĥ ...e−(β2−β1)Ĥŵ[f1]Ω〉H (II.140)

where βN > ... > β1 and Ĥ is bounded from below. The Wightman functions from (II.104) can be obtained
from (II.139) by taking the functional derivatives with respect to f1...fN and then setting them to zero.
Now, we want to use the N-th Wightman function generator to define a measure candidate. For this, we need
the spectrum of an abelian algebra:

Definition II.C.1 (Spectrum of an abelian C∗−algebra). Let B an abelian C∗−algebra. The spectrum,
called ∆(B), of it are the ∗-homomorphisms χ : B→ C such that

χ(ab) = χ(a)χ(b), χ(a+ b) = χ(a) + χ(b), χ(a)∗ = χ(a∗) (II.141)

Especially in the case of a scalar field, we consider the w[f ] as the algebra generated by them is surely abelian.
Then, we promote it to a C∗-algebra by equipping it with the C∗-norm induced by the operator norm [186]
and complete it with respect to it. Due to the w[f ] being bounded, this will be a sub algebra of A and we
denote it with the symbol B in the following. Due to the Gel’fand isomorphism, B ∼= B∨ ⊂ C(∆(B)).
Hence, we can think of a representation (π(B),H) in the following way: H ∼= L2(∆(B), dν′) with some
measure dν′ and π(B) as continuous functions on ∆(B) acting by multiplication on H. For further details
see [128, 185–188, 207, 208].
Now, we simply define:

Definition II.C.2. Let ν be the Hilbert space measure corresponding to (H, Ĥ,Ω) with Ĥ bounded from
below and Bk ⊂ ∆(B) the open sets with respect to ν. We define the spacetime fields Φ as the elements
of the set Γ := {Φ | Φ(β1) ∈ ∆(B), ∀β1 ∈ R}. The cylindrical sharp time subsets of Γ are

Γβ1...βN
B1...BN

:= {Φ ∈ Γ | Φ(βk) ∈ Bk, k = 1, ..., N} (II.142)

where β1 < ... < βN are real numbers. Then we assign to those sets the heat kernel measure µ by

µ(Γβ1,...,βN
B1,...,BN

) := 〈Ω, χBN e−(βN−βN−1)Ĥ ...e−(β2−β1)ĤχB1
Ω〉H (II.143)

where χB is the operator that multiplies by the characteristic function χB(φ), φ ∈ ∆(B).

20If the Hamiltonian function H is quadratic in the momenta πφ we have {H,φ} = πφ and by taking suitable limits

of π(αHt (w[f ](.))) we can reconstruct the canonical pair (φ, πφ) from it. Hence, any scalar product can, in this case, be
obtained from this generator.
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One has to note that µ defined this way might not automatically be positive. Indeed there exist counter-
examples for it [175], so we will restrict in the following to OS data for which Nelson-Symanzik [176] positivity
can be ensured.
In the spirit of (II.40) we define the Lebesgue-integral by considering as simple functions the step functions

χ
Γ
{βk}
{Bk}

(Φ) :=

N∏
k=1

χBk(Φ(βk)) (II.144)

Definition II.C.3 (Functions of sharp time support). For a finite set of fk ∈ S(σ), k = 1...N , we define
the smearing functions of sharp time support as the (formal) objects

F :=

N∑
k=1

δβkfk (II.145)

depending on N many sharp time points βk.
The time-dependent Weyl element of a function of sharp time support is then simply defined as

W [F ] :=

N∏
k=1

W [δβk,., fk], W [δβ,.f ] := w[f ] |φ→Φ(β) (II.146)

i.e. the Weyl element with the time zero field φ(x) replaced by the history time field Φ(β, x).

Corollary II.C.1. Let W [F ] with F =
∑
k fkδβk,. of finite sharp time support . Then with βN > ... > β1

µ(

N∏
k=1

W (δβkfk)) = 〈Ω, ŵ(fN )e−(βN−βN−1)Ĥŵ(fN−1) ... e−(β2−β1)Ĥŵ(f1)Ω〉H (II.147)

Proof. By defining s(Φ) :=
∑
z
{βI}
{BI}χ

{βI}
{BI}(Φ) we see that z{βI} = 0 unless {βI} = {βk}. Then we can

use (II.143) and the fact that simple functions approximate the function pointwise to obtain the claim. Note
also that due to the fact that Φ on the left hand side is just an integration variable, all W [δβk,.fk] commute
with each other.

Theorem II.C.2 (Osterwalder-Schrader Construction). Given the OS data (H, Ĥ,Ω) and knowledge of
the Schwinger n-point functions. Then the measure candidate µ defined in (II.147) automatically satisfies
OS2 (i.e. time reflection and time translation invariant) and OS3 (i.e. reflection positivity).

Proof. Let H′ := L2(Γ, dµ) be the closure of the linear span of the functions W [F ] equipped with the
scalar product

〈W [F ],W [F ′]〉H′ := µ(W [F ]W [F ′]) (II.148)

We remember that due to the defining properties of a Lie algebra representations (see II.A.7) we know the
existence of f∗, fα, zα such that:

ŵ[f ]† = ŵ[f∗], ŵ[f ]ŵ[f ′] =

N∑
α=1

zαŵ[fα(f, f ′)] (II.149)

and (as before in OS reconstruction) define densely the operators on H′.

(RW )[F ] := W [θF ], (θF )(x, β) = F (x,−β) (II.150)

This operator is unitary as can be seen, since for F (t) =
∑
k δβk,tfk with β1 < ... < βN we have (θF )(t) =∑

k δ−β,tfk whence due to −βN < ... < −β1:

µ(R W [F ]) = 〈Ω, ŵ[f1]e−(−β1+β2)Ĥŵ[f2]e−(−β2+β2)Ĥ ... e−(βN−1+βN )Ĥŵ[fN ]Ω〉H =

= 〈ŵ[fN ]†e−(βN−βN−1)Ĥ ... e−(β2−β1)Ĥw[f1]†Ω,Ω〉H =

= 〈Ω, ŵ[f∗N ]e−(βN−βN−1)Ĥ ... e−(β2−β1)Ĥŵ[f∗1 ]Ω〉H =

= µ(W [F ∗]) =

ˆ
dµ(Φ) W [F ∗](Φ) = µ(W [F ∗]∗) = µ(W [F ]) (II.151)
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where we used positivity of the measure for the first equality of the last line. In the representation from
Definition II.C.2 the φ̂ became multiplication operators and hence w[f ]∗(φ) = w[f ](φ) which translates to the
W [F ]. Hence, R is a unitary operator on H′, consequently R2 = 1E′ and µ is time reflection invariant.
Time translation invariance follows after defining

(TsF )(β′) := F (β′ − s), U(s)W [F ] := W [TsF ] (II.152)

Thus for F of finite time support {βk} as before, we deduce that (TsF ) has support β′k = βk + s and then
(since β′k − β′l = βk − βl)

µ(U(s)W [F ]) = 〈Ω, ŵ[fN ]e−(β′N−β
′
N−1)Ĥ ... e−(β′2−β

′
1)Ĥŵ[f1]Ω〉H′ = µ(W [F ]) (II.153)

We continue by showing that the measure µ is automatically reflection positive on V := A+ ∩ H′, i.e.
〈Ψ, RΨ〉H′ ≥ 0, ∀Ψ ∈ V . Note that if T− supp(F ) ⊂ (0,∞) then T− supp(θF ) ⊂ (−∞, 0). Thus by
definition of A+ (see (II.108))

〈Ψ, RΨ〉H′ =
∑
IJ

z̄IzJµ(W [F ]W [θ F ]) =
∑
I,J

z̄IzJµ(W [F ∗]W [θ F ]) =

=
∑
I,J

z̄IzJ〈Ω, ŵ[f I∗NI ] ... e
−(βI2−β

I
1 )Ĥŵ[f I∗1 ]e−(βI1+βJ1 )Ĥŵ[fJ1 ]e−(βJ2−β

J
1 )Ĥ ... ŵ[fJNJ ]Ω〉H′ =

=
∑
I,J

z̄IzJ〈e−β
I
1Ĥŵ[f I1 ] ... e

−(βI
NI
−βI

NI−1
)Ĥ
ŵ[f INI ]Ω, e

−βJ1 Ĥŵ[fJ1 ] ... e
−(βJ

NJ
−βJ

NJ−1
)Ĥ
ŵ[fJNJ ]Ω〉

= ||
∑
I

zIe
−βI1Ĥŵ[f I1 ]e−(βI2−β

I
1 )Ĥ ... e

−(βI
NI
−βI

NI−1
)Ĥ
ŵ[f INI ]Ω||2H′ (II.154)

which is manifestly non-negative.

II.C.3 OS Reconstruction and Construction are Inverses

Having Osterwalder-Schrader reconstruction and construction at hand, one can traverse freely between the
measure theoretic formalism and the canonical description. Although the physical predictions will by definition
not change, it is not clear, that if we e.g. started with a measure µ - after going through both algorithms -
do not obtain only an equivalent measure µ′ to µ. In this section we want to demonstrate that for a special
class of theories both processes are indeed inverses. This class is characterised by an assumption, which we
can formulate in two different ways:
1. Starting with the OS data, the w[f ](φ̂)Ω lie dense in the canonical Hilbert space H.
2. Starting with the OS measure, the path integral fields at a fixed time are of the same form as the canonical
configuration operator fields W [δβk,.f ] = w[f ](Φ(βk)).
Indeed, these two conditions turn out to be equivalent, as 2. gives 1. automatically during the OS reconstruc-
tion and we will show below, that starting with 1. we can always find an equivalent measure, such that 2. holds.

We repeat the steps from [128] and begin with the reproduction of the OS data, i.e. starting with (H, Ĥ,Ω)
we ask if the reconstruction of the newly obtained measure µ recovers the original OS data. For all Ψ ∈ V :=
A+ ∩H′, i.e. Ψ =

∑
J zJW [FJ ] we know from (II.154) that

|| [Ψ] ||2
V/N = ||

∑
I

zIe
−βI1Ĥŵ[f I1 ]e−(βI2−β

I
1 )Ĥ ... e

−(βI
NI
−βI

NI−1
)Ĥ
ŵ[f INI ]Ω||2H (II.155)

and we will call

ψ :=
∑
I

zIe
−βI1Ĥŵ[f I1 ]e−(βI2−β

I
1 )Ĥ ... e

−(βI
NI
−βI

NI−1
)Ĥ
ŵ[f INI ]Ω (II.156)

Since by assumption 1. the finite linear span of the ŵ[f ]Ω lies dense in H for any ε > 0 we find ψε =∑
J cJ ŵ[gJ ]Ω such that ||ψ − ψε||H < ε. Consider the corresponding Ψε =

∑
J cJW [δ0,.g

J ]. Then by the
same calculation as in (II.154)

||[Ψ]− [Ψε]||2
V/N = ||ψ − ψε||2H < ε2 (II.157)
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Since the scalar product on H is non-degenerate, by definition of the OS data, this demonstrates that the
equivalence class of [Ψ] can be labelled by representatives which lie in the closure of the span of the W [F ]
with F = δ0,.f .

We wish to show that V/H is isomorphic to H for which we define the embedding

E : H → V

ψ =
∑
I

zIŵ[f I ]Ω 7→ Ψ =
∑
I

zIW [δ0,.f
I ] (II.158)

It follows that E(Ω) = 1 the constant function equal unity and the scalar products are isometric ||E(ψ)||
V/N =

||ψ||H, i.e. [E(ψ)] can be identified with ψ and we conclude V/N = H.
It remains to show that the Hamiltonian remains unchanged, for which we consider (II.155) for F of finite
time support 0 < β1 < ... < βN

[W [F ]] ≡ e−β1Ĥŵ[f1]e−(β2−β1)Ĥŵ[f2] ... e−(βN−βN−1)Ĥŵ[fN ]Ω (II.159)

We use this to compute the contraction semi-group for ψ =
∑
I zIw[f I ]Ω

K̂(s)ψ ≡ K(s)[E(ψ)] = [U(s)E(ψ)] = [
∑
I

zIW [δs,.f
I ]] ≡

∑
I

zIe
−sĤŵ[f I ]Ω = e−sĤψ (II.160)

∀ψ ∈ H hence indeed K̂(s) = esĤ and we reconstructed again exactly the original OS data (H, Ĥ,Ω).

Now we turn to the reproduction of the OS measure where we ask whether the OS data (H = V/N , Ω =
[1], Ĥ = −[d/ds]s=0K(s)) stemming from a measure µ yield under OS construction as measure µ′ again the
original OS measure. According to assumption 2. the Weyl operators ŵ[f ] can be defined as multiplication
operators on the Hilbert space, i.e. the equivalences classes of the temporal W [G], explicitly

ŵ[f ][W [G]] = [W [δ0,.f ]W [G]] (II.161)

This action is independent on the choice of representative, as for [Ψ] = 0 follows (using θδ0,. = δ0,.)

||ŵ[f ][Ψ]||2H = 〈W [δ0,.f ]Ψ, R W [δ0,.f ]Ψ〉H′ = 〈W [δ0,.f ]Ψ,W [δ0,.f ](RΨ)〉H′ =

= 〈ŵ[f ]†ŵ[f ][Ψ], [Ψ]〉H ≤ ||ŵ[f ]†ŵ[f ][Ψ]||H||[Ψ]||H = 0 (II.162)

by the Cauchy-Schwarz inequality (II.12).
We compute for F of discrete time support at β1 < ... < βN :

µ′(W [F ]) = 〈Ω, ŵ[fN ]K(βN − βN−1)...K(β2 − β1)ŵ[f1]Ω〉H =

= 〈Ω, ŵ[fN ]K(βN − βN−1)...K(β2 − β1)[W [δ0,.f1] · 1]〉H =

= 〈, ŵ[fN ]K(βN − βN−1...ŵ[f2][U(β2 − β1)W [δ0,.f1]]〉H =

= 〈Ω, ŵ[fN ]K(βN − βN−1..K(β3 − β2)[W [δ0,.f2]W [δβ2−β1,.f1]]〉H =

= 〈Ω, ŵ[fN ]K(βN − βN−1)...ŵ[f3][W [δβ3−β2,.f2]W [δβ3−β1,.f1]]〉H =

= 〈[1], [W [δβN−βN ,.fN ]...W [δβN−β1,.f1]]〉H = 〈1, RW [δβN−βN ,.fN ]...W [δβN−β1,.f1]〉H′ =

= 〈1,W [δβN−βN ,.fN ]...W [δβ1−βN ,.f1]〉H′ = 〈U(βN ) · 1,W [δβN ,.fN ]...W [δβ1,.f1]〉H′ =

= 〈1,W [F ]〉H′ = µ(W [F ]) (II.163)

thus indeed the measure coincides with µ.

II.D Example: Free scalar field

Due to the rather involved nature of the previous chapters, we will now study a concrete example. This will put
the formalism developed so far into action and present how calculations therein are explicitly performed. The
example which we will study is the massive, free scalar field, i.e. there are no interactions of any type. This
limits the physical interest of this system as any phenomenon in our everyday live is described by interacting
processes. However, as in this model all steps can be carried out analytically, it serves as good test case which
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has been studied amongst others in [128]. We repeat the calculations from there.
The class of actions of a free field theory of mass m is given by

Sφ =

ˆ
M
L :=

−1

2κφ

ˆ
M
dtdDx (

√−ggµν(∂µφ)(∂νφ) +
α

2
φm2φ) (II.164)

where α is a constant such that the dimensions match, hence we will denote in the following p2 := αm2, the
inverse Compton wave length of dimension [cm−2]. In order to make φ2 dimensionless we have introduced the
constant κφ. We specialise to M = RD+1 and flat Minkowski spacetime gµν = ηµν with η = −c2dt2 + dx̄2.
Then with g00 = −1/c2 and

√−g = c follows (using integration by parts)

Sφ =
1

2κφ

ˆ
RD+1

dtdDx (
1

c
φ̇2 − cφ(−∆ + p2)φ) =:

1

2κφ

ˆ
RD+1

dtdDx (
1

c
φ̇2 − cφω2φ) (II.165)

where ∆ =
∑D
a=1(∂/∂xa)2 is the Laplacian. We perform a Legendre transformation and with the canonical

momentum πφ := ∂L/∂φ̇ = φ̇/(κφc) obtain the Hamiltonian density

H :=

ˆ
dDx (πφφ̇− L) =

1

2

ˆ
dDx (κφcπ

2 +
c

κφ
φω2φ) (II.166)

II.D.1 Canonical Quantisation

The first step in the GNS construction was the choice of a suitable algebra of observables, A, for which we
have to choose a sub set E ⊆ C∞(F). Having in mind that we will also want to incorporate time evolution
we will want to allow for a representation including the Hamiltonian function π(H).
We choose the following set

E := {1, a[f ], a[g], H | a :=
1√

2~κφ
(
√
ωφ− iκφ

1√
ω
π) , ∀f, g ∈ S} (II.167)

Indeed, with φ and π being real so is the Hamiltonian and property 1 of Def II.B.1 is fulfilled. Since we can by
addition respectively subtraction reconstruct φ, πφ, E is for sure separating points as demanded in property 3.
Also we check property 2, i.e. closure with respect to the Poisson bracket. For this (using integration by parts
to shift the ω and {π(x), φ(y)} = δD(x, y))

{a[f ], a[g]} =
1

2~κφ

ˆ
dDxdDy f̄(x)g(y){(√ωφ)(x)− (

iκφ√
ω
π)(x), (

√
ωφ)(y) + (

iκφ√
ω
π)(y)} =

=
iκφ

2~κφ

ˆ
dDxdDy

(
(

1√
ω
f̄)(x)(

√
ωg)(y){π(x), φ(y)}+ (

1√
ω
g)(y)(

√
ωf̄)(x){φ(x), π(y)}

)
=

1

i~
〈f, g〉L2

∼ 1 ∈ E (II.168)

{H, a[f ]} = ~c
ˆ
dDx{ā(x), a[f ]}(ωa)(x) = ic a[ωf ] ∈ E (II.169)

where we used that

H = ~c
ˆ
dDx a(x)(ωa)(x) (II.170)

With E defined in such a way we can construct the algebra of observables A and define as state on this algebra

ω(b a[f ]) = ω((a[f ])∗b) = 0 (II.171)

∀b ∈ A, f ∈ S. Note that (a[f ])∗ ∈ A is defined via the involutive structure of the non-commutative ∗-
algebra. Indeed (II.171) defines the action of ω on all polynomials of a, a∗ and hence on all of A, as other
terms can be evaluated via knowing that ω(1A) = 1 by definition and that by (II.75) the commutator is
proportional to the Poisson bracket: for a as an object in A

[a[f ], (a[g])∗] = 〈f, g〉L21A (II.172)

Moreover, this state is invariant under the automorphism induced by H and can be used to implement
the dynamics. Hence upon performing the GNS construction we know that the cyclic vector Ω must obey
π(H)Ω = 0 and due to (II.171) also

â[f ]Ω := π(a[f ])Ω = 0 (II.173)

33



This fact motivates to pick as operator for the Hamiltonian simply

Ĥ := ~c
ˆ
dDx â†ωâ (II.174)

Expressing Ĥ again in terms of â, â†, which we will call annihilation and creation operators, bears the
significant advantage that knowing the vacuum expectation values of all polynomials in those â, â† operators,
determines also all Wightman functions. Moreover, from â[f ]Ω = 0 follows that

H ≡ V̄ , V = span
{
a†[fN ]...a†[f1]Ω, f1...fN ∈ S(RD), N <∞

}
(II.175)

Upon introducing the Weyl elements f ∈ S(RD)

w[f ] := exp
(
iφ̂[f ]

)
(II.176)

(where φ̂ is defined by inverting (II.167)) we find that the monomials in â†[f ]...Ω are obtained via multiple
functional derivatives on w[f ] and using that â[f ]Ω = 0 for all f . Thus H is indeed generated by the field
dependent Weyl elements.
Lastly, to determine the Hilbert space measure we need only to consider the mentioned Weyl elements: using
the Baker-Campbell-Hausdorff (BCH) formula [209–211]

ν(w[f ]) := 〈Ω, ŵ[f ]Ω〉H = 〈Ω, exp

(
i

√
~κφ

2
(â[

1√
ω
f ] + â†[

1√
ω
f ])

)
Ω〉H = e−

~κφ
4 〈f,ω

−1f〉L2 (II.177)

which displays ν as a Gaussian measure. Indeed, using the easily verified Weyl relation for a scalar field, i.e.
w[f ]w[g] = w[f + g], w[f ]∗ = w[−f ] , we can compute any expectation value.21

We present, as an example, the time evolution of vectors of the form exp(iφ̂[f ])Ω (which also span H). For
this, we use again the BCH formula

e−βĤ/~â[f ]eβĤ/~ =

∞∑
m=0

1

m!
[−βĤ/~, â[f ]](m) = a[eβcωf ] (II.178)

And similar for â†[f ] gives

e−βĤ/~φ̂[f ]eβĤ/~ = â[

√
~κφ
2ω

eβcωf ] + â†[

√
~κφ
2ω

e−βcωf ] = φ̂[e−βcωf ] + â[

√
2~κφ
ω

sh(βcω)f ] (II.179)

Thus the time evolution of the vector exp(iφ̂[f ])Ω) is obtained:

e−βĤ/~eiφ̂[f ]Ω = eiφ̂[e−βcωf ]+iâ[

√
2~κφ
ω sh(βcω)f ]Ω = e−

1
2 [φ̂[e−βcωf ],â[

√
2~κφ
ω sh(βcω)f ]]eiφ̂[e−βcωf ]Ω =

= e
~κφ
4 (〈f,ω−1f〉−〈f,e−2βcωω−1f〉)eiφ̂[e−βcωf ]Ω (II.180)

II.D.2 Constructing the Measure from the Hamiltonian Formulation

Via the above canonical quantisation, the Hilbert space H is the span of the â†[f1]...â†[fN ]Ω and hence
equivalently the span of the ŵ[f ]Ω.
As the spectrum of A are the real-valued distributions, we define as in [128] the spacetime fields as Φ(β) ∈
∆(A) = S ′(RD). Hence Φ ∈ Γ = S ′(RD+1). By the OS construction defined above the measure µ is defined
for

W [F ] := eiΦ[F ], F (β, x) =

N∑
k=1

δ(β, βk)fk(x) (II.181)

with βk+1 > βk and fk ∈ S(RD), as being (see Definition II.143)

µ(W [F ]) := 〈Ω, ŵ[fN ]e−(βN−βN−1)Ĥ/~...e−(β2−β1)Ĥ/~ŵ[f1]Ω〉H (II.182)

21The strategy is to first revert the vacuum expectation value of a monomial involving φ̂ and π̂ into a polynomial in â†,
relate each term by functional derivatives to a product in Weyl elements and lastly combine them to a single one, whose
measure is computed above.
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In the remainder of this paragraph we will focus on finding an explicit expression for this object.
We start by expressing

eiz[f,β] := e−βĤ/~ŵ[f ]eβĤ/~ (II.183)

which implies

z[f, β] = e−βĤ/~φ[f ]eβĤ/~ = φ̂[ch(βcω)f ]− iπ̂[sh(βcω)
κφ
ω
f ] (II.184)

where we used Baker-Campbell-Hausdorff eABe−A =
∑
m[A,B](m)/m! and

[Ĥ, φ̂[f ]] = cκφi~π[f ], [Ĥ, π̂[f ]] = − c

κφ
i~φ̂[ω2f ] (II.185)

Due to (II.182) involving multiple products of these we note:

Lemma II.D.1. Let zk := z(fk, βN − βk) then

eizN ...eiz2eiz1 = ei
∑N
k=1 zke

1
2

∑N
k=2

∑k−1
l=1 [zk,zl] (II.186)

and

〈Ω, ei
∑N
k=1 zkΩ〉H =e

~κφ
2

´ βN
β1

dsds′〈F (s), e
c(s−s′)ω

ω F (t)〉 (II.187)

〈Ω, e 1
2

∑N
k=2

∑k−1
l=1 [zk,zl]Ω〉H =e

−
~κφ
2

´ βN
β1

ds
´ s
β1
ds′ 〈sh(c(s−s′)ω)F (s), 1ωF (s′)〉

(II.188)

Proof. By the BCH formula

eizN ...eiz1 = eizN ...eiz3ei(z1+z2)e
1
2 [z2,z1] = eizN ...eiz4ei(z1+z2+z3)e

1
2 ([z2,z1]+[z3,z1+z2])

= ei
∑N
k=1 zke

1
2

∑N
k=2

∑k−1
l=1 [zk,zl] (II.189)

Then from [π̂, φ̂] = i~ and with β′k := βN − βk:

1

κφ~
[zk, zl] = 〈ch(cβ′lω)fl,

1

ω
sh(cβ′kω)fk〉L2

− 〈ch(cβ′kω)fk,
1

ω
sh(cβ′lω)fl〉L2

(II.190)

Now with

fch :=

√
~κφ
2ω

N∑
k=1

ch(cβ′kω)fk, fsh :=

√
~κφ
2ω

N∑
k=1

sh(cβ′kω)fk (II.191)

we see that (use finite time support of F (II.181))

〈fch − fsh, fch + fsh〉L2
=

~κφ
2

N∑
k,l=1

〈e−cβ′kωfk, ω−1ecβ
′
lωfl〉L2

= (II.192)

=
~κφ

2

ˆ βN

β1

dsds′ 〈e−c(βN−s)ωF (s), ω−1ec(βN−s
′)ωF (s′)〉L2 =

~κφ
2

ˆ βN

β1

dsds′ 〈e
c(s−s′)ω

ω
F (s), F (t)〉

Thus we compute the first exponent in (II.189) using (II.184)

ei
∑N
k=1 zk = e

iφ̂[
√

2ω
~κφ

fch]+iπ̂[
√

2ω
~κφ

fsh]
= ei(â+â†)[fch]+i(â−â†)[fsh] = eiâ[fch+fsh]+iâ†[fch−fsh] =

= eiâ
†[fch−fsh]eiâ[fch+fsh]ei[â

†[fch−fsh],â[fch+fsh]]/2 =

= eiâ
†[fch−fsh]eiâ[fch+fsh]e

~κφ
4

´ βN
β1

dsds′〈F (s), e
c(s−s′)ω

ω F (t)〉 (II.193)

giving the claimed result, when taking the vacuum expectation value.
And for the second with sh(a− b) = sh(a)ch(b)− ch(a)sh(b): (Note that [zk, zk] = 0)

1

2

N∑
k=2

k−1∑
l=1

[zk, zl] =
~κφ

2

ˆ βN

β1

ds

ˆ s

β1

ds′ (〈ch(c(βN − s′)ω)F (s′),
1

ω
sh(c(βN − s)ω)F (s)〉−

− 〈ch(c(βN − s)ω)F (s),
1

ω
sh(c(βN − s′)ω)F (s′)〉) =

=
~κφ

2

ˆ βN

β1

ds

ˆ s

β1

ds′〈sh(c(βN − s− βN + s′)ω)F (s′),
1

ω
F (s)〉 =

= −~κφ
2

ˆ βN

β1

ds

ˆ s

β1

ds′ 〈sh(c(s− s′)ω)F (s),
1

ω
F (s′)〉L2

(II.194)
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where we used numerous times the self-adjointness of ω and that F is real-valued.

We use the mentioned Lemma to evaluate the measure (II.182):

µ(W [F ]) = 〈Ω, eiz(fN ,βN−βN )eiz(fN−1,βN−βN−1)...eiz(f1,βN−β1)Ω〉H =

= exp
(~κφ

4

ˆ
dsds′〈F (s), ec(s−s

′)ω 1

ω
F (s′)〉 − ~κφ

2

ˆ
s′≤s

dsds′〈sh(c(s− s′)ω)F (s),
1

ω
F (s′)〉

)
= exp

(~κφ
4

ˆ
s′≥s

dsds′〈F (s), ec(s−s
′)ω 1

ω
F (s′)〉+

~κφ
4

ˆ
s′≤s

dsds′〈F (s), e−c(s−s
′)ω 1

ω
F (s′)〉

)
= exp

(~κφ
4

ˆ
dsds′〈F (s), e−c|s−s

′|ω 1

ω
F (s′)〉L2

)
(II.195)

It is worthwhile to note that this expression is indeed well-defined, as the operator eβω acting on all Schwarz
functions F is only well-defined if β < 0.
Finally we will realise that

C :=
~κφ

2
e−|x

0|ωω−1 = ~κφ(−∂2/∂(x0)2 + ω2)−1 (II.196)

To see this we write the integral kernel of the latter:

((− ∂2

∂(x0)2
+ ω2)−1F )(x) :=

ˆ
dD+1y G(x− y)F (y) (II.197)

such that

(− ∂2

∂(x0)2
+ ωx)G(x− y) = δx,y (II.198)

This is solved by the Greens function

G(x) =

ˆ
dD+1k

(2π)D+1

eikµx
µ

k2
0 + ω(k)2

(II.199)

with ω(k)2 = k̄2 + p2 and using
´
dk exp(ik(x − y)) = 2πδx,y. And indeed upon performing the k0 integral

via the residue theorem with the contours γ± being closed around the infinite half circle in the upper or lower
complex plane respectively depending on the sign of x0:

ˆ
dk0

2π

eik0x
0

k2
0 + ω(k)2

=

ˆ
dk0

2π

e±ik0|x
0|

k2
0 + ω(k)2

= ±ie
±i|x0|(±iω(k)

±iω(k)2
=
e−|x

0|ω(k)

2ω(k)
(II.200)

and what remains is just the integral kernel of e−|x
0|ωω−1/2 since

G(x− y) =

ˆ
dkD

(2π)D
eik̄·(x̄−ȳ) e

−|x0|ω(k)

2ω(k)
=
e−|x

0|ω

2ω
δx̄,ȳ (II.201)

So we find µ to be again a Gaussian measure, i.e.

µ(W [F ]) = exp

(
~κφ

2
〈F, (−∂2

0 + ω2)−1F 〉L2(RD+1)

)
(II.202)

II.D.3 Reconstructing the Canonical Formulation from the Measure

In the converse argument of the OS reconstruction we are given a measure µ which is reflection positive and
invariant under time reflections and translations. Indeed, the measure (II.202) satisfies these criteria, which
we show in the same way as [128]: Time translation and time reflection are obviously leaving the measure
invariant, however for OS3 we need to do more work and consider the operator from the last line of (II.195),
i.e. e−c|s−s

′|ωω−1 which describes the measure completely. We see for Ft(x) := f(x̄)δt,x0

〈θFt, (−∂2
0 + ω2)Ft〉L2(RD+1) =

ˆ
dsds′〈θFt(s), e−c|s−s

′|ω 1

ω
Ft(s

′)〉 =

=

ˆ
dsds′ δs,−tδs′,t′〈f, e−|s−s

′|ω 1

ω
f〉L2

= 〈f, e−(t+t)ω 1

ω
f〉L2

≥ 0 (II.203)
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which extends due to Cauchy-Schwarz (II.12) to linear combinations thereof, i.e

F (t, x) :=

N∑
k=1

δ(t, tk)fk(x), G(t, x) :=

M∑
l=1

δ(t, sl)gl(x) (II.204)

with 0 < t1 < ... < tN , 0 < s1 < ... < sM and fk, gl ∈ S(RD). Thus on the history Hilbert space
V := L2(Γ, dµ)

〈eiΦ[F ], eiΦ[G]〉V = µ(eΦ[G−θF ]) = e
− 1

2 〈G−θF,C(G−θF )〉L2(RD+1) =

= e−
1
2 〈G,C G〉e−

1
2 〈F,C F 〉e

1
2 (〈θF,C G〉+〈G,Cθ F 〉) (II.205)

which can be used to show that the measure is indeed reflection positive. The proof for this is the following
lemma from [135]:

Lemma II.D.2. The Gaussian measure µ satisfies reflection positivity if C does.

Beweis. We think of a =
∑
J zJe

iΦ[FJ ] ∈ V as an element
∑
J zJuJ in some Hilbert space U with basis

{uJ}J . Then a positive operator A on U is such that: (zJ ∈ C)∑
IJ

zIzJA(uI , uJ) ≥ 0 (II.206)

Then, on U ⊗ U the tensor product of two positive operators A,B is again positive: (cIJ ∈ C)∑
IJKL

cIJcKLA(uI , uK)B(uJ , uL) ≥ 0 (II.207)

(as can be seen by decomposing into eigenvectors of A,B respectively). But as the elements Ψ =∑
IJ zIδIJuI ⊗ uJ ∈ U ⊗ U generate a subspace of U ⊗ U , A ⊗ B is still positive thereon. By itera-

tion it follows that N(., .) = exp(A(., .)) is positive.
Finally, since 〈θ., C .〉 is a positive form by (II.203), it follows that exp(〈θ., C .〉) is also positive, which
finishes the claim together with (II.205).

Hence the necessary Osterwalder-Schrader axioms are satisfied.
According to Lemma II.C.1 we must determine the equivalence classes with respect to the Null space N of
〈., .〉V in order to define the canonical Hilbert space H. For this, we must at first understand the structure of
V :

Lemma II.D.3. The span of the vectors eiΦ[F ] with F of the form (II.204) lies dense in V .

Proof. Let H ∈ V = L2(Γ, dµ) of positive and compact time support in (0, T ] and consider

FN (t) :=

N−1∑
k=1

δ(t, tk)fNk (x̄), fNk (x̄) :=

ˆ tk+T/(2N)

tk−T/(2N)

dt H(t, x̄) (II.208)

with tk = kT/N, k = 1, ..., N − 1. It follows

||eiΦ[H] − eiΦ[FN ]||2V = µ(eiΦ[H−θH]) + µ(eiΦ[FN−θFN ])− µ(eiΦ[H−θFN ])− µ(eiΦ[FN−θH]) (II.209)

For instance the second term yields in the exponent

〈FN , C FN 〉L2(RD+1) =
~κφ

2

N−1∑
k,l=1

〈FNk , e−c|tk−tl|ωω−1FNl 〉L2
(II.210)

which is just a Riemann sum approximation of 〈H,C F 〉L2(RD+1). The other calculations are similar and show
that

||eiΦ[H] − eiΦ[FN ]||2V −→
N→∞

0 (II.211)

And we have already seen that by linear combinations and functional derivative any vector can be constructed
from the eiΦ[H]. Hence the span of these vectors is dense in V .
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Now we will show that the equivalence classes with respect to N are exactly given by functions of time
zero support. Indeed for any G of positive sharp time support as in (II.204) we define the time zero function

G0(t, x̄) := δ(t, 0)(
∑
l

e−cslωgl)(x̄) (II.212)

Then follows from

〈θF,C G〉L2(RD+1) = 〈F,CθG〉L2(RD+1) =
~κφ

2

ˆ
dsds′ 〈e−c|s−s′|ωF (s), ω−1G(−s′)〉L2 =

=
~κφ

2

ˆ
dsds′ 〈e−(s+s′)ωF (s), ω−1G(s′)〉L2 =

=
~κφ

2

∑
k,l

〈e−ctkωfk, ω−1e−cslωgl〉L2 = 〈θF,C G0〉L2(RD+1) (II.213)

that for all F (using (II.205))

〈eiΦ[F ], eiΦ[G] − zeiΦ[G0]〉V = 0 (II.214)

with z := exp(− 1
2 (〈G,C G〉L2(RD+1) − 〈G0, C G0〉L2(RD+1))). Thus we conclude that any vector of positive

time support can be approximated by the eiΦ[H], H ∈ S(RD+1) of positive time support. By Lemma II.D.3 this
allows to approximate it instead by the eiΦ[F ] with F of sharp time support, which due to the last computation
(II.214) is equivalent to vectors of time zero support. Hence H is the completion of the span of vectors of
sharp time zero support F 0 = δ(t, 0)f , for which we have by (II.195)

〈eiΦ[F 0], eiΦ[F ′0]〉H′ = e−
~κφ
4 〈f,ω

−1f〉L2 = 〈eiφ̂[f ], eiφ̂[f ′]〉H (II.215)

displaying H = L2(S(RD), dν) where ν is a Gaussian measure. Here eiφ̂[f ] := [eiΦ[F 0]] denotes the equivalence
class of the sharp time zero support vector.
Following the OS reconstruction we set Ω := 1 = [1] and determine the Hamiltonian Ĥ via the finite time
translations: (use (II.214) for the second line)

〈eiφ̂[f ],e−βĤ/~eiφ̂[f ′]〉H := 〈eiΦ[F 0], R eiΦ[T−βF
′0]〉E = µ(eiΦ[TβF

′0−F 0]) = (II.216)

= µ(eiΦ[(e−cβωf ′−f)δt,0]) = e−
1
2 (〈TβF ′0,CTβF ′0〉−〈e−cβωf ′δ0,.,Ce−cβωf ′δ0,.〉)〈eiφ̂[f ], eφ̂[e−cβωf ′]〉H

(II.217)

And as the span of ŵ[f ]Ω := exp[iφ̂[f ]Ω is dense in H it follows:

e−βĤ/~ŵ[f ]Ω = e−
~κφ
4 (〈f,ω−1f〉−〈e−βcωf,ω−1e−βcωf〉)ŵ[e−βcω]Ω (II.218)

which we find to be in correspondence with (II.180).
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Kapitel III

Renormalisation

Although the last chapter presented all the necessary tools for developing a quantum field theory (QFT), as of
today no interacting QFT in four spacetime dimensions has been constructed so far that satisfies the Wightman
axioms. Instead, many experiments could be described with high precision using perturbation theory. However,
in general very little is known about the convergence of the perturbation series. To make matters worse, we
found a lot of ambiguities arising during quantisation. In the canonical formulation, the ambiguities were 1) the
non-commutative ?-product and the sub set E on which it is implemented and 2) its representation (π,H,Ω)
or, in other words, the state ω. These are mutually independent choices and, in the context of a field theory,
they are all non-trivial.
In this regard, the situation improves slightly when we investigate systems with finitely many degrees of freedom.
This is typically the case in mechanics where a classical D-dimensional particle can be described by 2D numbers,
i.e. its position in coordinate space q and its momentum p. (In contrast to this, a field will have arbitrary values
at any point in space, of which there are uncountably many.) The choice of the state ω on the quantum algebra
becomes very simple, if we restrict our attention to the subclass of states, which are regular and whose GNS
representation is irreducible. This means that their Weyl elements w[x, y](q, p) = exp(i(yq̂+xp̂)/~) ∈ C∞(F)
are strongly continuous. Indeed, due to the famous Stone-von Neumann theorem [192–195], every such
representation is equivalent to a single one, namely the Schrödinger representation (πS , L2(R, dx)). This is
the representation of the Fock state ωl which reads for one particle in one dimension:

ωl ( w[x, y] ) = exp (−1

4
(
x2

l2
+
y2l2

~2
) ) (III.1)

where l > 0. This mathematical proof tells us that, for any representation (πj ,Hj) we consider, there is a

unitary map Uj : Hj → L2(R, dx) such that for all a ∈ A we have πS(a) = Ujπ(a)U†j . This simplifies the
situation drastically as it not only provides a uniqueness result, but moreover tells us how to find straightfor-
wardly the corresponding quantum theory, whose predictions can then be put to the test. However, the crucial
condition for this theorem to work is that the system under consideration has finitely many degrees of freedom
and is regular in its Weyl elements.1

Hence, it is not applicable to a field theory which carries infinitely many degrees of freedom on a continuous
manifold. However, a possible alternative, due to which we can maybe hope to use this theorem (at least in
some cases) again, comes from the following line of thoughts: The infinitely many degrees of freedom come
from points in space which have arbitrary close neighbours, yet it is clear that this might be information to
which we - as humans - do not have access: Our measurement apparatus will always be far from perfect and we
do not expect to measure a field directly at a point in space. Instead, we are normally able to detect what the
mean value of the field over a certain region is. Consider different ways to split our spatial manifold into disjoint
unions of small regions Bε where ε serves as a parameter to label those discretisations.2 For each region Bε
we associate a characteristic function χε, which is vanishing everywhere outside of Bε and constant inside. We
assume that, through our experiment, we will detect φ[χε], π[χ′ε] ∈ C, in other words with each region χε we
can associate an observable, e.g. the spatial Weyl elements w[χε, χ

′
ε] = exp(i(φ[χε] + iπ[χ′ε])) ∈ C∞(F) for

the field value and its momentum dependent analogues. If we would choose as the subalgebra of observables

1We will later encounter a system of finitely many degrees of freedom, for which the Weyl elements are indeed not
strongly continuous. This particular example is a proposal for a quantum theory of cosmology and called Loop Quantum
Cosmology.

2We will demand that ε is valued in some partially ordered index set, where ε > ε′ ⇔ for all Bε′ we find some Bε such
that Bε′ ⊂ Bε.
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A the span of these functions for a finite set of regions which parcel our (compactified3) manifold, then we call
this the discretisation of the continuum algebra labelled by the discretisation parameter ε. Here, we associate
ε → 0 with increasingly better resolution. It might be tempting to think about this set of discrete functions
as the basic variables of a new system with finitely many degrees of freedom, that we could hope to quantise
along the lines of the Stone-von Neumann theorem. The idea would be to choose as algebra the span of
block functions, i.e. a ∈ Aε implies a =

∑
nm cnmw[χn,ε, χm,ε] for some choice χn,ε where n is a label for

all regions Bε at a fixed resolution ε. Then we could write any state (if some exist) which is regular in those
Weyl elements as a direct product of Fock states ωl for each block. However, we must not forget about time
evolution and have to determine the expectation value ωε(H) for the Hamiltonian H. Yet this is typically not
a function of the field at this coarse resolution. In other words, it cannot be written as H ′({w[χε, χ

′
ε]}) and

hence its action is not a priori defined in this Hilbert space.
However, it might not even be necessary to consider the full Hamiltonian: since we are only able to measure
the mean value of the field on some regions Bε, all that we want our theory to predict is how these values
change over time given some initial data. So instead of the Hamiltonian H we are interested in a map from
coarse resolution onto itself that agrees with the predictions from the Hamiltonian. We will call this map the
discretised Hamiltonian Hε. Indeed, it is a whole family of Hamiltonians, one for each label ε, and it is a priori
not clear how they are built as functions Hε({w[χε, χ

′
ε]}, ε), knowing only their continuum origin H.

A (necessary but not sufficient) idea as a criterion to determine Hε for a given theory is to consider a very small
discretisation ε. If the parcellation Bε of our manifold is sufficiently small, then every continuous field φ can
be well approximated by stair-case functions φApp,ε over the χε, up to mistakes of order ε and similar for its
momentum. In other words, for ε→ 0 we find better and better approximations, such that the error vanishes
in the end. In the same spirit, we could hence approximate the Hamiltonian H ≈ HApp,ε, which is a functional
over the field, up to some error in ε. Choosing this approximation for our discretised family Hε := HApp,ε

would guarantee us that, in the so called continuum limit ε→ 0, we are to obtain the original theory. However,
as we said, this criterion does not yet automatically determine the correct discretised Hamiltonian as, by the
same logic, we could also choose Hε := HApp,ε + εf for any function f such that εf → 0 for ε → 0. Thus,
this criterion of the continuum limit has introduced a whole new range of possible choices for the quantum
Hamiltonian, i.e. quantisation ambiguities!4

It seems that this procedure has only transferred the ambiguities from 2) to a new set of ambiguities
and there would have been no gain. However, this is not the case as the criterion for the continuum limit
is a necessary but by far not a sufficient condition for determining the discrete Hamiltonian Hε. The main
feature is that all Hε are restrictions of the continuum Hamiltonian to the discrete observables. However, their
action on the coarse observables is supposed to be exactly the same as the continuum Hamiltonian at any
resolution. This is a far stronger demand than that the family Hε should agree in its continuum limit. Hence
it is expected to bring new insight. It is known in the literature as cylindrical consistency condition and it
tells us the following: If we have a field whose information can be fully grasped at coarse resolution 2ε, then
a finer resolution ε will of course not contain any new insight. The physical predictions, when looking at an
observable at resolution ε or 2ε, do not change, i.e.

ω2ε( w[χ2ε] ) = ωε( w[I2ε→εχ2ε] ) (III.2)

where the injection map I2ε→ε is telling us that we should regard the block B2ε as composed of its smaller
sub blocks at resolution ε with respect to which ωε is defined. This must be true for any observable and
especially for the family of Hamiltonians Hε. Once the Hamiltonian is chosen on a given resolution as a fixed
function H(χε, ε), then, via (III.2), we can determine the corresponding function H ′(χ2ε, 2ε) at any other
coarser resolution.
Note, however, that H ′(..., ε) might in general be different from H(..., 2ε), in other words, the physical pre-
dictions of the theory depend on the resolution with respect to which an experiment takes place. For this not
to be the case, our family Hε must not change under the cylindrical consistency condition Hε → H2ε implied
by (III.2). Hence, it must be a fixed point of this map.
In total: the discrete projections of a continuum theory can be uniquely quantised (up to the choices 1) ) by
picking as Hamiltonian a cylindrically consistent fixed point!

3In order to get a finite set of observables, we have indeed to consider compact manifolds. In case M is not compact,
we will hence introduce infrared cut-offs: a spatial one called R and a temporal one called T . After having constructed
our QFT, these will be removed in the statistical physics sense. Note hence that, in the following, everything depends in
principle on the parameters T and R.

4That these ambiguities indeed carry non-trivial consequences will be demonstrated in the last chapter of this thesis V.
Loop Quantum Gravity. We study the differences in predictions arising for chosen discretisations of the Hamiltonian in the
field theory GR (which we introduce in the next chapter).
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As our task of defining an interactive quantum field theory is crucially dependent on finding a non-trivial
fixed point, we will invoke a procedure by which one can hope to find this fixed point: the renormalisation
group.
Although we have been talking so far only about the canonical point of view, the renormalisation group (RG)
was originally designed for applications in the context of covariant quantisation. Inspired by the seminal paper
from Gell-Mann and Low [100] and the block-spin transformations by Kadanoff [101], it was developed by
Wilson and Kogut [102–105] and later extended by many others [106–114]. However, while stemming from the
same philosophy, the technical implementation was quite different as one had to deal with defining a spacetime
path integral formalism. The details of this approach will be outlined in III.A. Standard Renormalisation.
Indeed, the rigorous definition of the path integral in the presence of finitely many degrees of freedom is possible
even for interacting theories, at least while on Minkowski space. The starting point of the renormalisation

programme is an (arbitrary) naive discretisation family of spacetime measures N,M → µ
(0)
N,M which only

satisfy the continuum limit condition (Here, M = 1
ε refers to a spatial UV cut-off, whereas N is the inverse

of some temporal UV cut-off). We will choose the same ad hoc prescription at all spatial and temporal
resolutions N,M . Then, we define the history fields ΦN,M at discrete resolution simply as the continuum
history field smeared with test function of the same coarse resolution, i.e. ΦN,M [F ] := Φ[F ]. The coarse
functions F are of a special kind, namely: for each resolution N,M we consider a set of finitely many numbers
FN,M (n,m) ∈ R, one for each region Bn,m of the parcellation of M. The space of all FN,M is called LN,M .
Then, a function of coarse resolution N,M is exactly F = IN,MFN,M :=

∑
n,m χn,m(x, t)FN,M (n,m), in

other words, on region Bn,m the function has the constant value FN,M (n,m). The map IN,M which associates
the set of numbers with a function in the continuum is called injection map. Now, knowing the measure of a
distinct element in the spacetime configuration space, i.e. the time dependent Weyl element W [FN,M ] with
WN,M [FN,M ](Φ) := exp(iΦN,M [FN,M ]) gives us full control as every other observable can be constructed by

suitable linear combinations and derivatives. From this initial family of measures µ
(0)
N,M , we will now construct

a sequence of measure families µ
(n)
N,M , where each element is obtained from the previous one by integrating

out the degrees of freedom at resolution M/2 and N/2 that do not contribute to resolution N,M . If this
series converges to a point in the space of all possible measures, this measure, called µ∗N,M , will automatically
satisfies the spacetime version of the cylindrical consistency condition, namely

µN,M (WN,M [FN,M ]) = µ(W [IN,MFN,M ]) = µ2nN,2mM (W2nN,2mM [IN,M→2nN,2mMFN,M ]) . (III.3)

where the injection map IN,M→2N,2M is telling us that we should regard any block of resolution N,M as
composed of its smaller sub blocks at resolution 2N, 2M with respect to which µ2n,2M is defined.

While well understood and having a huge success in the field of covariant quantum theory, the canonical
side of the renormalisation group has been largely undeveloped. Thus, we try to develop a background inde-
pendent version of it in the canonical context as derived in the papers [128–131]. First, let us emphasise that
we will not use the Fock state indicated above for our initial discretisation: Assuming we are given an initial

guess for a Hamiltonian Ĥ
(0)
M , we will consider the vacuum vector Ω

(0)
M annihilated by the Hamiltonian and

choose it to build the state for the corresponding vacuum expectation values. However, in this framework, we

do not just have to renormalise and search for the fixed point of the Hamiltonian sequence H
(n)
M , but also for

the fixed points of the associated vacuum vector sequence Ω
(n)
M and the generated Hilbert spaces H(n)

M .
The reason for this is rooted in the fact that in this language we have an easier transition to the results
obtained in chapter II. Quantum Field Theory. There, we were able to show that there is a bijection between
these so-called OS data, which describe completely a canonical theory, and a subset of all possible spaceti-
me measures, namely those which are satisfying (a subset of) the Osterwalder-Schrader axioms. Hence, by
adapting our formulation to this description, we can revert to the way the RG is treated in the covariant setting.

This motivates us to try to close the following diagram, figure III.1. We want to develop a framework
of Hamiltonian renormalisation in such a way that we determine a flow for the sequences of the triple

(H(n)
M , Ĥ

(n)
M ,Ω

(n)
M ) which leads to the same fixed point we would have obtained after Osterwalder-Schrader

reconstruction of the fixed point of the spacetime measure sequence µ
(n)
M . Indeed, it will turn out that the

discretisation of a measure obtained from OS construction is already a fixed point of temporal renormalisation
and hence we will drop the label N . Although this means that we must renormalise three quantities instead
of one, the task will be much simplified as it is easier to study the flow of these objects instead of a flow on
the space of path integral measures.
As it turns out, one will only be partially successful with this strategy: As the OS reconstruction demands
that the elements of the obtained Hilbert space are equivalence classes with respect to the null space of
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(H(n)
M , Ĥ

(n)
M ,Ω

(n)
M )

µ
(n)
M

(H(n+1)
M , Ĥ

(n+1)
M ,Ω

(n+1)
M )

µ
(n+1)
M

Ham. RG

(III.3)

OS reconstr.OS constr.

Abbildung III.1: The path-integral induced Hamiltonian renormalisation group is developed such that its fixed point
theory must agree with the fixed point covariant measure.

the measure, it is essential to construct it! Of course, this is contrary to the original purpose of simplify-
ing the task of renormalisation. Yet, it is a procedure by which a cylindrically consistent quantum theory can
be obtained. Hence, we will give a brief overview over the path-integral induced Hamiltonian renormalisation:

1. Pick an initial discretisation family (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ), labelled by M . Determine the history space mea-

sure µ
(0)
M via OS construction.

2. Determine the family µ
(n+1)
M via

µ
(n+1)
M (WM [FM ]) := µ

(n)
2M (W2M [IM→2MFM ]) . (III.4)

Use this to define the equivalence class [.]
µ
(n+1)
M

of the OS reconstruction and give rise to a map J
(n)
M→2M

such that it embeds H(n+1)
M into H(n)

2M .

3. Set Ω
(n+1)
M = [1]

µ
(n+1)
M

= (J
(n)
M→2M )†Ω

(n)
2M . Let H(n)

M be the span of the [WM [FM ]]
µ
(n+1)
M

. Determine

〈., .〉H(n)
M

or equivalently the Hilbert space measure dν
(n)
M by demanding that J

(n)
M→2M is an isometry. Set

Ĥ
(n+1)
M := (J

(n)
M→2M )†Ĥ

(n)
2MJ

(n)
M→2M . (III.5)

4. Start over at step 2 until you run into a fixed point (H∗M , Ĥ∗M ,Ω∗M ) and µ∗M for n→∞.

But, as this procedure demands the construction of the history-space measure µ∗M , it is not worthwhile
to use it: instead, one would simply perform an OS reconstruction at the end after having performed just the
renormalisation of the history-space measure (which has to be carried out anyway). Thus, we will propose an
alternative route of renormalisation in III.B. Hamiltonian Renormalisation, which is called direct Hamilto-
nian renormalisation in [128]. The philosophy behind this incarnation is as follows: Originally, we wanted to
study the continuum QFT. But although we were not able to construct the state ω explicitly, we assume that
such a continuum Hilbert space H equipped with continuum Hamiltonian Ĥ exists. Then, all Hilbert spaces of
discrete resolution HM should be embeddable in this continuum Hilbert space, via some resolution-dependent
isometric embedding map jM . Any operator, defined on H, is then also defined on the sub space, which is the
image of any jM . E.g., for the Hamiltonian Ĥ in H, this motivates to define on HM :

Ĥ∗M := j†M Ĥ jM . (III.6)

To compare vectors in two Hilbert space of different resolution M,M ′, we could use jM , jM ′ to embed both
into H. This motivates to consider the concatenation jM→M ′ := j†M ′ ◦ jM , called the “coarse graining map”.
It offers itself, to choose a M ′ as refinement of M , for example on a cubic lattice M < M ′ = 2M . This
motivates the following (improved) renormalisation procedure:

1. Pick an initial discretisation family (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ), labelled by M , whereH(0)

M is spanned by π(wM [fM ])Ω
(0)
M

for different fM ∈ LM .

2. Set Ω
(n+1)
M = (j

(n)
M→2M )†Ω

(n)
2M . Set H(n+1)

M = span{π(w2M [IM→2MfM ])Ω
(n)
M ; fM ∈ LM}. Demand

the embedding jM to be isometric, which is equivalent to

ν
(n+1)
M (wM [fM ]) := ν

(n)
2M (w2M [IM→2MfM ]) (III.7)
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and for the Hamiltonian

Ĥ
(n+1)
M = (j

(n)
M→2M )†Ĥ

(n)
2M j

(n)
M→2M . (III.8)

3. Start over at step 2 until you run into a fixed point (H∗M , Ĥ∗M ,Ω∗M ) for n→∞.

The advantage of the latter scheme is that the direct Hamiltonian renormalisation is better executable as
it sidesteps the necessity to renormalise the spacetime measure at each step. However, it remains to be con-
firmed that this modified scheme results in physically viable fixed points as the original path-integral induced
Hamiltonian renormalisation did.

Having now defined the toolbox by which we hope to find a cylindrically consistent theory, we shall test it
in the simplest example over which we have full control: the free Klein Gordon scalar field.
In section III.C. Example: Klein Gordon field I - Derivation, we will use both schemes to determine the fixed
point in one spatial dimension. It turns out in [129] that one can determine its analytical structure explicitly
as the initial Hilbert space measure suggests itself to be picked as a Gaussian measure, a property which will
be preserved in each renormalisation step. Hence, we find

ν∗M ( w[fM ] ) = exp( −~κφ
4
〈fM , C∗MfM 〉M ) (III.9)

with an involved fixed point covariance matrix C∗M . It is interesting to note that both schemes differ drastically
already after the first renormalisation step as the path-integral induced Hamiltonian renormalisation develops
a dependence on infinitely many independent field species at the finite resolution M . These contributions
appear due to the necessity to deal with the equivalence classes of the spacetime measure. However, all but
one field species will develop an infinite mass in the continuum limit and vanish again. This demonstrates that
at least for free QFT the direct Hamiltonian renormalisation makes more immediate contact to the projections
of the continuum theory than the path-integral induced Hamiltonian renormalisation does, albeit resulting in
the same continuum theory. This motivates to study the direct Hamiltonian renormalisation further, although
it remains to be seen whether this continues to hold in the case of interacting theories. This is an important
question for further studies.

But there remain a lot of open questions regarding this procedure. While we have only constructed the
fixed point as it stands, we have not shown that the procedure, as advocated above, really works. To be
concrete, in the previous section, we merely found the fixed point by close investigation, not by iterating the
flow n→∞. As, in more general situations, it might not be possible to circumvent this step, we will present
a more thorough investigation of the flow in section III.D. Example: Klein Gordon field II - Properties.
Afterwards, we must remember that there were still arbitrary choices during the renormalisation procedure.
For one, the choice of the coarse graining map is only restricted by a few conditions, e.g. it must be cylin-
drically consistent. Moreover, several different initial discretisations could have been chosen in the beginning.
We restrict the possible choices by demanding that the naive continuum limit of the classical Hamiltonian

H
(0)
M shall reduce to the continuum Hamiltonian function. As the renormalisation procedure is supposed to

only introduce corrections of order of the lattice spacing, i.e. O(ε), we hope that the property to give the
correct continuum limit is being kept at all iterations. However, this criterion is far from sufficient, as we have
already discussed: There are a lot of quantisation ambiguities and it is not clear whether they might all lead
to different cylindrically consistent fixed points if we investigate a given cylindrically consistent flow of these
starting points. If there exists a unique fixed point for all discretisations, then we refer to it as universal. To
the best of our knowledge, the universality property, in this sense, is not well understood for general theories.
However, in [130] we discussed that, for the free field, the fixed point described by (III.9) is obtained in the
limit n→∞ for a whole class of possible discretisations and is hence at least partly subject to the universality
feature.
But, nonetheless, it is highly dependent on the choice of injection map jM→2M which we will also discuss.
In the literature, there exist, moreover, different renormalisation group schemes not implementing cylindrical
consistency, which are not suitable for our purposes.

Lastly, we will extend the computations from above to the case of arbitrary spatial dimensions in III.E.
Example: Klein Gordon field III - Rotational Invariance. As the title already suggests, this extension enables
us to study the restoration of continuum properties such as rotational invariance.
In [131] the injection map IM→2M in several dimensions was chosen to be the product of injection maps for
each spatial direction separately. Then, the techniques developed for one spatial dimension can be transferred
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to any number of spatial dimensions D. To illustrate this, we work out the case of D = 2 explicitly.
The continuum Klein Gordon field, described by covariance C, is a theory which is rotationally invariant, i.e.
for the representation Π of the rotation group on the finite spatial torus we have, for all angles α ∈ [0, 2π),

〈f, C f ′〉 = 〈 Π(α)f, C Π(α)f ′ 〉 (III.10)

for all functions f, f ′ which are time independent. A natural question to study is how such a symmetry
transfers to coarse projections on a lattice which itself is not rotationally invariant. However, by considering
the whole family of discretisations at all resolutions M , a peculiar feature occurs: first, we consider the
realisation from [212, 213] that every rotation can be arbitrarily well approximated by successively rotating
several times around a single angle θ, given θ/(2π) is irrational. For example, one can choose cos(θ) = 3/5
and rotational invariance is obtained once invariance for rotations by θ is shown. The second observation is
that a lattice at resolution M , rotated by the aforementioned choice for θ can be completely embedded in
its unrotated refinement at resolution 5M . This allows us to approximate CθM , the covariance of the rotated
lattice, completely by C5M , the covariance at finer resolution. The condition for rotational invariance of the
fixed point can then be written in terms of its Fourier transform as

ĉ∗M
!
= ĉ∗θM + O(ε5) = P (ĉ∗5M ) + O(ε5) (III.11)

where cM is the rescaled, unit-free CM and P is an involved, but explicit function. And indeed, this criterion
will be met when investigated with numerical methods. This indicates the restoration of continuum symmetries
even at the coarse resolutions, which gets increasingly better as the resolution becomes finer, see figure III.2.

Abbildung III.2: The rescaled fixed point covariance c∗M as obtained by the direct Hamiltonian renormalisation procedure
in D = 2. The matrix element is translation invariant c∗M (m,m′) = c∗M (m −m′), m ∈ Z2

M , and plotted from m −m′ ∈
[−M/2,M/2]2 with centre point m = (0, 0) in the middle of both pictures. The values on the corners agree with each other,
due to the periodic boundary conditions, and represent the covariance for maximally separated points. Blue colours indicate
small numerical values, while orange colour indicates higher values. Due to the exponential increase towards the middle, the
values of the points closest to (0, 0) lie above of the plotted range and are depicted in white. The covariances for resolution
M = 10 (left) and for M = 80 (right) show an improvement of rotational invariance for higher resolutions.

This finishes a complete analysis of the Klein Gordon field and justifies the method of direct Hamiltonian
renormalisation. Hence the stage is set to apply it in a more difficult context, e.g. Quantum Gravity.
In the remainder of this chapter, we now quote the calculations of the papers [128–131] and supplement them
by further thoughts.

III.A Standard Renormalisation

In this section we review the renormalisation approach as it was originally pioneered by Gell-Mann and Low [100]
and Kadanoff [101]. The formulation here is mainly the one designed in the seminal papers by Wilson and
Kogut [102–104]. It is manifestly designed for the covariant approach and hence called the path integral renor-
malisation group method. Although it is well documented in the literature, we will review the main ingredients
for completeness and to introduce language adaptations from [128] that will be used in the remainder of this
chapter.
We base our work on a triangulation of a manifold M ∼= R × σ with σ = RD equipped with flat Minkowski
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metric ηµν .5 Then it is logical to consider a regular discretisation, e.g. a hypercubic lattice, with distinct lattice
spacings for time and space direction. Although they are often considered to be the same, we will carefully
distinguish between the two, as it is our aim in the subsequent sections to achieve the transition to a Hamil-
tonian version of renormalisation, wherein time will be continuous and hence fundamentally different from the
still discretised space. Thus, in the following we choose an infrared (IR) spatial cut-off R ∈ R+ and an IR
temporal cut-off T ∈ R+. In other words, we consider the compactified manifold M→MT,R

∼= [0, T )× σR
with σR ∼= [0, R]D. On the compactified manifold we introduce the ultraviolet (UV) cut-offs ε (spatial) and δ
(temporal).

III.A.1 Construction of coarse Observables from the Continuum

Instead of dealing with test functions F on M we are now much more interested in functions supported on
the finally many points of MT,R which are labelled by the parameters R, ε, T, δ. Indeed, there are M = R/ε
many lattice cells in each spatial direction and N = T/δ many cells in temporal direction. We will thus adopt
the following notation: LN,M := `2(ZN × ZDM ) is the space of all functions FN,M : ZN × ZDM → R with
ZM := {0, 1, ...M − 1}; LT,R := L2([0, T ) × [0, R)D, dD+1x) is the space of all square-integrable functions
F :MT,R → R; lastly L := L2(M, dD+1x) is the space of all square-integrable functions Fc :M→ R.
We will understand the transition from MT,R to M in terms of a thermodynamical limit and are hence
foremost interested in the relation between the truncated lattice space ZN × ZDM and MT,R. To understand
this relation, we must postulate a way by which physical quantities like the Weyl elements W [F ](Φ), which
are supported onMT,R and on the space of which the final measure µ will be a functional, can be thought of
as quantities on the lattice. The first step for this will be to relate test functions FN,M on the lattice with a
certain subset of functions F onMT,R, which we will refer to in the following as embedding LN,M into LT,R:

Definition III.A.1 (Evaluation & Injection maps for scalar fields). In case of a scalar field theory we
consider the discretised fields:

ΦN,M (n,m) := Φ[χnδ,mε] (III.12)

We call the evaluation map E and the injection map I the following maps:

EN,M : LT,R → LN,M

F 7→ (EN,MF )(n,m) := F (nδ,mε) (III.13)

IN,M : LN,M → LT,R

FN,M 7→ (IN,MFN,M )(t, ~x) :=
∑

n∈ZN ,m∈ZDM

FN,M (n,m)χnδ,mε(t, ~x) (III.14)

where n ∈ ZN ,m ∈ ZDM and

χnδ,mε(t, ~x) = χ[nδ,(n+1)δ)(t)

D∏
a=1

χmaε,(ma+1)ε(x
a) (III.15)

Also, we can introduce a scalar product on LN,M , namely

〈FN,M , F ′N,M 〉N,M := δεD
∑

n∈ZN ,m∈ZDM

FN,M (n,m)F ′N,M (n,m) (III.16)

As one can see, in case of the scalar field EN,M = I†N,M where the adjoint is with respect to (III.16). However,
in a more general situation, such a Hilbert space structure may not be available and in that case EN,M and
IN,M are considered as independent.
One should also note that, defined in this way, these are arbitrary choices. In order to justify it, we note that
they obey the following physically sensible properties:

Lemma III.A.1. The evaluation and injection maps are satisfying

5Indeed, while an obvious choice for studying QFT phenomena in our surroundings, nothing about this choice is impe-
rative. We merely adopted it to simplify the bookkeeping problem in the following. Once we turn our attention towards
the renormalisation of a quantum theory of Gravity, we might be interested in more irregular versions of σ. The strategy
outlined in the following will still work in principle, albeit being more involved.
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1. Embedding Consistency: i.e. the embedding of an abstract lattice function carries the same infor-
mation as the abstract information

EN,M ◦ IN,M = idN,M , I†N,M ◦ IN,M = idN,M (III.17)

2. Cylindrical Consistency: i.e. the embedding of an abstract lattice function is independent on which
sublattice it is defined on. For some 2 ≤ p ∈ N, where we will pick in the following p = 2:6

IN,M→pN,pM := EpN,pM ◦ IN,M , IpN,pM ◦ IN,M→pN,pM = IN,M (III.18)

Proof. 1. As already mentioned for a scalar field EN,M = I†N,M . Then

(EN,M ◦ IN,MFN,M )(n,m) =
∑
n′,m′

FN,M (n′,m′)χn′δ,m′ε(nδ,mε) = FN,M (n,m) (III.19)

For 2. we note that for all FN,M ∈ LN,M with n′ ∈ Z2N , m
′ ∈ ZD2M

(IN,M→2N,2MFN,M )(n′,m′) = FN,M (bn
′

2
c, bm

′

2
c) (III.20)

where b.c denotes the component wise Gauss bracket. Now note that M → 2M implies ε = R/M → ε/2 and
hence

(I2N,2M ◦ IN,M→2N,2MFN,M )(t, ~x) =
∑

n′∈Z2N ,m′∈ZD2M

FN,M (bn
′

2
c, bm

′

2
c) χn′δ/2,m′ε/2(t, ~x) =

=
∑

n∈ZN ,m∈ZDM

FN,M (n,m)
∑

n′∈Z2N ,m′∈ZD2M ;bn′/2c=n,bm′/2c=m

χn′δ/2,m′ε/2(t, ~x) =

=
∑

n∈ZN ,m∈ZDM

FN,M (n,m)
∑

r∈{0,1},s∈{0,1}D
χ[(n+r/2)δ,(n+r/2+ 1

2 )δ)(t)

D∏
a=1

χ(ma+sa/2)ε,(ma+sa/2+ 1
2 )ε(x

a)

=
∑

n∈ZN ,m∈ZDM

FN,M (n,m)χnδ,mε(t, ~x) = (IN,MFN,M )(t, ~x) (III.21)

We see that (III.16) agrees by (III.17) with the scalar product of the continuum:

〈IN,MFN,M , IN,MF ′N,M 〉 =

ˆ
dx (IN,MFN,M )(IN,MF

′
N,M ) = (III.22)

=

ˆ
dx
∑
n,m

FN,M (n,m)χnδ,mε(x)
∑
n′,m′

F ′N,M (n′,m′)χn′δ,m′ε(x)

=
∑

n,n′,m,m′

FN,M (n,m)F ′N,M (n′,m′) δn,n′δm,m′δε
D = 〈FN,M , F ′N,M 〉N,M

The notation for discrete fields ΦN,M (n,m) smeared with discrete test functions is as usual:

ΦN,M [FN,M ] = δεD
∑
n,m

ΦN,M (n,m)FN,M (n,m) (III.23)

It suggests itself, to define a discretisation of the Weyl elements W [F ](Φ) = exp(iΦ[F ]) as

W [IN,MFN,M ](Φ) =: WN,M [FN,M ](ΦN,M ) (III.24)

Thus, upon choosing a specific injection map IN,M we can express everything in terms of the discrete WN,M

on any resolution N,M . As the to-be-constructed measure µN,M is supposed to be a functional on the space
of those, it transpires that the fixed point theory will depend on the choice of IN,M .

6Note that the factor 2 in (III.18) bears no physical significance. It is sufficient to pick a specific value in order to
construct a fixed point measure µ∗, however one could also choose any other resolution. Yet, it is not clear a priori whether
the renormalisation procedure for all factors p results in the same fixed point. We will come back to this in section III.E.
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III.A.2 Cylindrically Consistent Renormalisation

We will now turn towards the construction of a cylindrically consistent measure, i.e. a measure independent of
the resolution used in the approximation. On ΓN,M , the set of coarse history fields of resolution N,M , (i.e.

for the scalar field ΓN,M = RNMD

), a measure regular with respect to the Lebesque integral must be of the
form (ON,M : ΓN,M 7→ R)

µ(ON,M ) :=

ˆ
ΓN,M

∏
n,m

dµ(Φ(n,m)) ρN,M (ΦN,M ) ON,M (ΦN,M ) (III.25)

where ρ is some function. For example it could be chosen as the exponential of the Euclidian action

ρ
(0)
N,M = exp(−S(0)

N,M ), S
(0)
N,M [ΦN,M ] := S[IN,M

ΦN,M
δεD

] (III.26)

However, this choice is ambiguous. There are infinitely many other choices, which like (III.26) have the property
that as N,M → ∞ one finds SN,M [ΦN,M ] → S[Φ] where S[Φ] is the continuum Euclidian action restricted
to MT,R. For any of these arbitrary choices one obtains a corresponding initial measure µ(0). It is completely
determined by its values on the Weyl elements, in other words the generating functional

µ
(0)
N,M (WN,M [FN,M ]) (III.27)

This is an initial guess for a measure on coarse resolution N,M . However, it is in general not the cylindrical
projection of the continuum measure for resolution N,M . The latter one is defined as

µN,M (WN,M [FN,M ]) := µ(W [IN,MFN,M ]) (III.28)

However assuming the existence of a continuum measure, µN,M must automatically obey the following pro-
perty:

Theorem III.A.1 (Projective Family). If a measure µN,M on ΓN,M is the cylindrical projection of a
continuum measure for all N,M then holds the cylindrical consistency condition

µN,M (WN,M [FN,M ]) = µ2nN,2mM (W2nN,2mM [IN,M→2nN,2mMFN,M ]) (III.29)

for all FN,M ∈ LN,M and N,M,n,m ∈ N.

Proof. For the coarse graining map IN,M→2N,2M defined in (III.18) we can establish the following consis-
tency condition:

I2N,2M→4N,4M ◦ IN,M→2N,2M = E4N,4M ◦ (I2N,2M ◦ IN,M→2N,2M ) =

= E4N,4M ◦ IN,M = IN,M→4N,4M (III.30)

which also implies that ∀n,m ∈ N

I2nN,2mM ◦ IN,M→2nN,2mM = IN,M , (III.31)

I2nN2mM→2n+n′N,2m+m′M ◦ IN,M→2nN,2mM = IN,M→2n+n′N,2m+m′M (III.32)

In other words, considering a lattice function as a special continuum function is independent on what sublattice
it is actually defined on.
This means for the cylindrical projections of µ:

µN,M (WN,M [FN,M ]) = µ(W [IN,MFN,M ]) = µ(W [I2nN,2mM ◦ IN,M→2nN2mMFN,M ]) =

= µ2nN,2mM (W2nN,2mM [IN,M→2nN,2mMFN,M ]) (III.33)

As any continuum measure implies that its cylindrical projections at coarse resolution must obey (III.28)
the remaining task is to find these objects. Renormalisation is now merely a prescription, of how to obtain
the measure µ:

Given an initial family of measures {µ(0)
N,M}N,M by some naive discretisation, we construct the sequence of

families ({µ(n)
N,M}N,M )n∈N0

inductively from µ
(0)
N,M by the so called block spin transformation

µ
(n+1)
N,M (WN,M [FN,M ]) := µ

(n)
2N,2M (W2N,2M [IN,M→2N,2MFN,M ]) (III.34)
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Note that (III.34) indeed defines an entire new family of measures from the old one, because 1. each measure
is completely defined in terms of its generating functional and 2. one performs (III.34) coherently for all M,N .
Given a fixed point family µ∗N,M , e.g. obtained by taking the limit of n → ∞ if it is convergent, we would
like to relate it with a continuum measure µ∗. Note however, that in general more work could be needed, as
cylindrical consistency, albeit a necessary criterion, is not sufficient to guarantee the existence of a continuum
measure. An improvement of this situation will be achieved in the next section, where we develop a Hamiltonian
formulation of renormalisation.
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III.B Hamiltonian Renormalisation

As the idea of renormalisation was to fix the quantisation ambiguities, which arise due to a regularisation while
constructing the history space measure, it is logical to use this tool also to fix the ambiguities which arise
during the canonical quantisation program. Although the ambiguities presented themselves there in a totally
different fashion, we already saw that there is a correspondence between the ambiguities in both schemes by
the Osterwalder-Schrader reconstruction and its inverse the OS construction.

In order to fix the quantisation ambiguities in the Hamiltonian formulation of a quantum theory, one could
hence go to the corresponding covariant formalism, construct a fixed point measure µ∗ and perform OS re-
construction to obtain back the Hamiltonian framework. This is what is usually done in the literature. The
idea of this thesis is now to circumvent the construction of the history space time measure by transferring the
formalism of renormalisation directly into the Hamiltonian framework. Instead of performing the search for a
fixed point of (III.34) for the OS measure µ we try to find an equivalent renormalisation condition for the OS
data (H, Ĥ,Ω). This equivalent condition will be developed in the first subsection, by making the diagram in
figure III.1 close.

Albeit it is possible to develop such a scheme (following the derivation from [128]), it will transpire that
the construction of the measure is needed as an intermediate step! Hence, the framework fails at its original
aim of simplifying the search for a discretisation error free quantum theory. Yet it motivates a renormalisation
scheme for a purely Hamiltonian renormalisation, which will also yield as fixed points cylindrically consistent
theories7. This alternative scheme was developed in [128] and we quote their results in the second subsection.

III.B.1 Path-Integral (PI) induced Hamiltonian Renormalisation

We assume that we are given a family of naively discretised canonical quantum theories described by the OS

data (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ) labelled by M . Since the Hamiltonian is the generator of a contraction semi-group

with a continuous parameter, time takes necessarily a special role. By the OS construction we obtain a cor-

responding measure family µ
(0)
M , which has still spatially discrete support, while continuous in time. Hence,

we can define from this the cylindrical projections µ
(0)
N,M for finite time resolutions labelled by N in the spirit

of (III.28) by introducing an injection map IN purely for temporal functions. This however implies that the
history space measure is already cylindrically consistent in time. In other words: starting with the OS data we
obtain a measure where the renormalisation in time direction has already been taken care of!
For the remainder of this section, we will thus assume that all measures involved are renormalised in time.

We begin by introducing purely spatial injections maps IM : LM → LR for each M . They are satisfying
the conditions from Lemma III.A.1.

Lemma III.B.1. The spatial block spin transformation induced by the map IM→2M defined from IM by

(III.18) maps OS measures µ
(n)
M to OS measures via

µ
(n+1)
M (WM [FM ]) := µ

(n)
2M (W2M [IM→2MFM ]) (III.35)

for all FM ∈ [0, T ) × LM
8. In other words it does not leave the space of time translation invariant,

reflection invariant and reflection positive measures.

Proof. As IM→2M acts at each time step only on the spatial arguments of FM , it commutes with time
reflection θ and time translation Ts defined in (II.152).
Thus follows time translation invariance:

µ
(n+1)
M (U(s)WM [FM ]) = µ

(n+1)
M (WM [TsFM ]) = µ

(n)
2M (W2M [IM→2MTsFM ]) = µ

(n)
2M (W2M [TsIM→2MFM ])

= µ
(n)
2M (U(s)W2M [IM→2MFM ]) = µ

(n)
2M (W2M [IM→2MFM ]) = µ

(n+1)
M (WM [FM ]) (III.36)

7The price to pay for this new Hamiltonian renormalisation scheme is, that the set of fixed points obtained as the limit
n→∞ of some naive discretised theory might be very different from the fixed points of the measure induced renormalisation.
In the later discussed example of the free field one can see that the fixed points agree, however the trajectories in “theory
space” leading to them will differ.

8Note that we could also consider FM depending on multiple times, FM ∈ [0, T )n × LM . By decomposing into several
Weyl elements at each coinciding point of time however it is sufficient to show the invariance of the new measure for only
one time dependence.
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Time reflection invariance:

µ
(n+1)
M (R WM [FM ]) = µ

(n+1)
M (WM [θFM ]) = µ

(n)
2M (W2M [IM→2MθFM ]) = µ

(n)
2M (W2M [θIM→2MFM ]) =

= µ
(n)
2M (R W2M [IM→2MFM ]) = µ

(n)
2M (W2M [IM→2MFM ]) = µ

(n+1)
M (WM [FM ]) (III.37)

Reflection Positivity:

µ
(n+1)
M (WM [FM ]∗(R WM [FM ])) =

∑
α

zαµ
(n+1)
M (WM [Fα,M (F ∗M , θFM )]) =

=
∑
α

zαµ
(n)
2M (W2M [IM→2MFα,M (F ∗M , θFM )]) =

∑
α

zαµ
(n)
2M (W2M [Fα,M ((IM→2MFM )∗, θIM→2MFM )])

= µ
(n)
2M (W2M [IM→2MFM ])∗(R WM [IM→2MFM ])) ≥ 0 (III.38)

where we used the Weyl relations (II.98) and that for a free scalar field

IM→2MF
∗
M = (IM→2MFM )∗, IM→2MFα,M (FM , F

′
M ) = Fα,M (IM→2MFM , IM→2MF

′
M ) (III.39)

which is easily verified, using F ∗ = −F and Fα(f, f ′) = f + f ′ and linearity of IM→2M . .

Consequently, we know that we can indeed use the OS reconstruction to obtain new OS data, which we call

accordingly (H(n+1)
M , Ĥ

(n+1)
M ,Ω

(n+1)
M ).

In the OS reconstruction of a measure µ
(n)
M the Hilbert space H(n)

M is the closure of the equivalence classes

[.]
µ
(n)
M

of Ψ with respect to the Null space N induced by µ
(n)
M . The Ψ are here the finite linear combination

of the Weyl elements WM [FM ] with T− supp(F ) ⊂ R+, i.e. of positive time support. Let us hence define a
map between two Hilbert spaces, neighbouring in the renormalisation sequence:

J
(n)
M→2M : H(n+1)

M → H(n)
2M (III.40)

[WM [FM ]]
µ
(n+1)
M

7→ [W2M [IM→2MFM ]]
µ
(n)
2M

Being defined on a dense domain in H(n+1)
M , its action generalises straightforwardly to the closure.

Lemma III.B.2. The map J
(n)
M→2M as given by (III.40) defines for each n an isometric embedding, i.e.

(J
(n)
M→2M )†J

(n)
M→2M = idH(n+1)

M

(III.41)

Hence

P
(n)
2M := J

(n)
M→2M (J

(n)
M→2M )† (III.42)

are projectors for each n onto the subspace J
(n)
M→2MH

(n+1)
M ⊂ H(n)

2M , i.e.

(P
(n)
2M )2 = P

(n)
2M , P

(n)
2MJ

(n)
M→2M = J

(n)
M→2M , (J

(n)
M→2M )†P

(n)
2M = (J

(n)
M→2M )† (III.43)

Proof. We compute the scalar product as given in the OS reconstruction between two Weyl elements in

H(n+1)
M to show the isometry of J

(n)
M→2M : (we make use of the Weyl relations for the second line)

〈[WM [FM ]]
µ
(n+1)
M

, [WM [F ′M ]]
µ
(n+1)
M

〉H(n+1)
M

= µ
(n+1)
M ((WM [FM ])∗WM [θF ′M ]) =

= µ
(n)
2M ((W2M [IM→2MFM ])∗W2M [θIM→2MF

′
M ]) = 〈[W2M [IM→2MFM ]]

µ
(n)
2M

, [W2M [IM→2MF
′
M ]]

µ
(n)
2M

〉H(n)
2M

= 〈J (n)
M [WM [FM ]]

µ
(n+1)
M

, J
(n)
M [WM [F ′M ]]

µ
(n+1)
M

〉H(n)
2M

(III.44)

The properties of the projection P
(n)
2M follow now straightforwardly:

(P
(n)
2M )2 = J

(n)
M→2M ((J

(n)
M→2M )†J

(n)
M→2M )(J

(n)
M→2M )† = P

(n)
2M (III.45)

The other two follow similarly.
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Lemma III.B.3. The determining equation for the Hamiltonian after a renormalisation step reads:
(β > 0)

e−βĤ
(n+1)
M = (J

(n)
M→2M )†e−βĤ

(n)
2MJ

(n)
M→2M (III.46)

Proof. We show the property for arbitrary matrix elements in a dense domain:

〈[WM [FM ]]
µ
(n+1)
M

, e−βĤ
(n+1)
M [WM [F ′M ]]

µ
(n+1)
M

〉H(n+1)
M

= µ
(n+1)
M ((WM [FM ])∗WM [θTβF

′
M ]) =

= µ
(n)
2M ((W2M [IM→2MFM ])∗W2M [IM→2MθTβF

′
M ]) = µ

(n)
2M ((W2M [IM→2MFM ])∗W2M [θTβIM→2MFM ])

= 〈[W2M [IM→2MFM ]]
µ
(n)
2M

, e−βĤ
(n)
2M [W2M [IM→2MF

′
M ]]

µ
(n)
2M

〉H(n)
2M

=

= 〈J (n)
M→2M [WM [FM ]]

µ
(n+1)
2M

, e−βĤ
(n)
2MJ

(n)
M→2M [WM [F ′M ]]

µ
(n+1)
M

〉H(n)
2M

(III.47)

Equation (III.46) incorporates a lot of information. For once setting β = 0 recovers the isometry condition

for J
(n)
M→2M . Moreover taking the l-th derivative and afterwards evaluating at β = 0 yields

(Ĥ
(n+1)
M )l = (J

(n)
M→2M )†(Ĥ

(n)
2M )lJ

(n)
M→2M (III.48)

For l = 1 it transpires that the whole sequence of Hamiltonians and hence also the limit fixed point will
be symmetric if the initial discretisations are. Moreover it seems that this equation should be sufficient to

determine Ĥ
(n+1)
M , however there are additional conditions arising for further l ≥ 2. For example there are two

ways we can express (Ĥ
(n+1)
M )2 by combining l = 1 and l = 2:

(J
(n)
M→2M )†(Ĥ

(n)
2M )2J

(n)
M→2M = (J

(n)
M→2M )†Ĥ

(n)
2MP

(n)
2M Ĥ

(n)
2MJ

(n)
M→2M (III.49)

Multiplying this with (J
(n)
M→2M )† from the right and with J

(n)
M→2M from the left yields

P
(n)
2M (Ĥ

(n)
2M )2P

(n)
2M = P

(n)
2M Ĥ

(n)
2MP

(n)
2M Ĥ

(n)
2MP

(n)
2M (III.50)

which is equivalent to

0 = P
(n)
2M Ĥ

(n)
2M (idH(n)

2M

− P (n)
2M )Ĥ

(n)
2MP

(n)
2M = P

(n)
2M Ĥ

(n)
2M [P

(n)
2M ]⊥Ĥ

(n)
2MP

(n)
2M =

= (P
(n)
2M Ĥ

(n)
2M [P

(n)
2M ]⊥)(P

(n)
2M Ĥ

(n)
2M [P

(n)
2M ]⊥)† =: A†A (III.51)

where we used that [P
(n)
2M ]⊥ = ([P

(n)
2M ]⊥)2 is also a projection towards the orthogonal complement.

It follows that for all Ψ ∈ H(n)
2M we have 〈Ψ, A†AΨ〉 = ||AΨ||2 = 0 thus A ≡ 0. Consequently using first

A† = 0 and then A = 0 we get

Ĥ
(n)
2MP

(n)
2M = P

(n)
2M Ĥ

(n)
2MP

(n)
2M = (P

(n)
2M Ĥ

(n)
2MP

(n)
2M )† = P

(n)
2M Ĥ

(n)
2M (III.52)

In summary we see that [Ĥ
(n)
2M , P

(n)
2M ] = 0 hence Ĥ

(n)
2M preserves the subspace P

(n)
2MH

(n)
2M .

A consequence of this relation is that one must (at least for the free field) think of the elements in H(n)
M

for example either as single field species at an increasing number of time (as n→∞) or multiple interacting

field species, but not as vectors in the span generated by the sharp time zero fields acting on Ω
(n)
M .

We assume that would be not the case, then, at some n, a representative of the equivalence class is given as

[WM [FM ]]
µ
(n)
M

=

N∑
k=1

λkwM [fM,k]Ω
(n)
M (III.53)

with the spatial Weyl elements wM at sharp time zero, some smearing functions fM,k and λk ∈ C. Then
follows

J
(n)
M→2M [[WM [FM ]]

µ
(n)
M

=

N∑
k=1

λkwM [IM→2M [fM,k]]ΩnM (III.54)
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i.e. for each m ∈ ZDM the excitation on all m′ ∈ ZD2M with bm′2 c = m will be the same. (III.52) implies now,
that this property will not change under time evolution, in other words if the field is constant on a block of
coarse resolution with respect to a fine lattice it will never develop excitations that could only be resolved with
the mentioned finer resolution. This property is certainly violated for the cylindrical projections of a continuum
theory.

We study this complications that arise due to the presence of the equivalence class [.]
µ
(n)
M

later in the

example of the free field: Albeit starting with H(0)
M being the span of sharp time zero fields, already after

one renormalisation step this will be no longer the case. Instead, we could label [[WM [FM ]]
µ
(n)
M

for the free

field as spatial Weyl elements at an increasing number of sharp times as n → ∞. Due to this, however, the

H(n)
M do not qualify immediately as cylindrical projections by IM of a continuum Hilbert space spanned by

the continuum w[f ]Ω. The dependence of the equivalence class is crucial for determining the structure of

the new Hilbert space H(n+1)
M during the renormalisation sequence. However this means we do not acquire

the wanted simplification regarding the renormalisation procedure, as we have to compute the history space

measure µ
(n+1)
M at each intermediate step in order to determine the new Hilbert space H(n+1)

M .
This drawback motivates to define a new renormalisation prescription which stays completely in the Hamilto-
nian framework and is simpler to execute, which we will present in the next subsection. But before we continue
with this, let us lastly summarise the path-integral induced Hamiltonian renormalisation:

1. Pick an initial discretisation family (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ), labelled by M . Determine the history space mea-

sure µ
(0)
M via OS construction.

2. Determine the family µ
(n+1)
M via

µ
(n+1)
M (WM [FM ]) := µ

(n)
2M (W2M [IM→2MFM ]) . (III.55)

Use this to define the equivalence class [.]
µ
(n+1)
M

of the OS reconstruction and give rise to a map J
(n)
M→2M

such that it embeds H(n+1)
M into H(n)

2M .

3. Set Ω
(n+1)
M = [1]

µ
(n+1)
M

= (J
(n)
M→2M )†Ω

(n)
2M . Let H(n)

M be the span of the [WM [FM ]]
µ
(n+1)
M

. Determine

the Hilbert space measure dν
(n)
M by demanding that J

(n)
M→2M is an isometry. Set

Ĥ
(n+1)
M = (J

(n)
M→2M )†Ĥ

(n)
2MJ

(n)
M→2M . (III.56)

4. Start over at step 2 until you run into a fixed point (H∗M , Ĥ∗M ,Ω∗M ) and µ∗M for n→∞.

III.B.2 Direct Hamiltonian Renormalisation

Assuming a canonical quantum field theory in the continuum (H, Ĥ,Ω) on a compactified manifold σR =
[0, R)D, we might look at its projections onto a discretised spatial manifold, e.g. σM = ZDM . We can follow
the construction of observables outlined above: Like in (III.12) we call the spatially discretised fields

φM (m) := φ[χmε], wM [fM ](φM ) := w[IMfM ](φ) = exp(iφ[IMfM ]) (III.57)

where ε = εM and ∈ ZDM , fM ∈ LM . We had also already introduced the spatial injection maps IM . It
follows that the cylindrical projections νM of the continuum Hilbert space measure ν (which describes the
scalar product on H) must also represent a projective family following theorem III.A.1, i.e. ∀n ∈ N

νM (wM [fM ]) = ν2nM (w2nM [IM→2nMfM ]) (III.58)

Moreover, let us introduce the map jM : HM → H with jMwM [fM ] 7→ w[IMfM ]. Since the continuum
theory exists, we can compute the matrix elements of the continuum Hamiltonian on observables of coarse
resolution M and use this to define an operator ĤM on the lattice: ∀f, f ′ ∈ LM

〈w[IMf
′
M ]Ω, Ĥw[IMfM ]Ω〉H = 〈wM [f ′M ]ΩM , j

†
M ĤjMwM [fM ]ΩM 〉HM =: 〈wM [f ′M ]ΩM , ĤMwM [fM ]ΩM 〉HM

(III.59)

with ΩM := jMΩ. These realisations lead us to the following definition of a direct Hamiltonian renormalisa-
tion: We follow in our notation closely the notation introduced in the previous section, so the reader may see
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how slightly yet crucially they differ:

Starting from initial OS data (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ) where H(0)

M is spanned by the spatial Weyl elements
wM [fM ], we define the maps

j
(n)
M→2M : H(n+1)

M → H(n)
2M

wM [fM ]Ω
(n+1)
M 7→ w2M [IM→2MfM ]Ω

(n)
2M (III.60)

Hence we can straightforward identify for the vacuum vector ( by setting fM = 0) that

j
(n)
M→2MΩ

(n+1)
M = Ω

(n)
2M (III.61)

Without any recourse to a history space measure, the map j
(n)
M→2M is right now largely arbitrary as we have

not fixed anything. We now demand two conditions for j
(n)
M→2M , which in order to be fulfilled will determine

for each step n the exact form of the OS data of step n+ 1.

Definition III.B.1. We call the map j
(n)
M→2M defined by (III.60) a renormalisation isometry iff

1. it is isometric, i.e.

(j
(n)
M→2M )†j

(n)
M→2M = idH(n+1)

M

(III.62)

2. it determines the flow of the Hamiltonian (and keeps it symmetric), i.e.

Ĥ
(n+1)
M := (j

(n)
M→2M )†Ĥ

(n)
M j

(n)
M→2M (III.63)

It is easy to see that (III.62) induces the mentioned cylindrical consistency condition (III.58) for the Hilbert
space measure. Recall for this that νM ( . ) = 〈ΩM , . ΩM 〉HM . (III.63) is the sufficient part of the stronger
condition (III.46), however without imposing the remaining conditions. This helps us in circumventing that

the field content changes. Note also that this condition defines the operator on H(n+1)
M which has exactly the

same matrix elements as the Hamiltonian Ĥ
(n)
2M when projected, which is a necessary condition in order to be

the coarse version of a continuum Hamiltonian as discussed in (III.59).

We want to also to remark that the flow between Hamiltonians and vacua is consistent since

Ĥ
(n+1)
M Ω

(n+1)
M = (j

(n)
M→2M )†Ĥ

(n)
2M j

(n)
M→2MΩ

(n+1)
M = (j

(n)
M→2M )†Ĥ

(n)
2MΩ

(n)
2M = 0 (III.64)

Let us finish this section with a quick summary of the direct Hamiltonian renormalisation:

1. Pick an initial discretisation family (H(0)
M , Ĥ

(0)
M ,Ω

(0)
M ) labelled by M and H(0)

M spanned by wM [fM ]ΩM .

2. Set Ω
(n+1)
M = (j

(n)
M→2M )†Ω

(n)
2M . Set H(n+1)

M = span{w2M [IM→2MfM ]ΩM ; fM ∈ LM}. Set

ν
(n+1)
M (wM [fM ]) := ν

(n)
2M (w2M [IM→2MfM ]) (III.65)

and for the Hamiltonian

Ĥ
(n+1)
M = (j

(n)
M→2M )†Ĥ

(n)
2M j

(n)
M→2M (III.66)

3. Start over at step 2 until you run into a fixed point (H∗M , Ĥ∗M ,Ω∗M ) for n→∞.

III.B.3 Relating to the Continuum via inductive Limits

Above scheme was derived assuming the existence of a continuum theory and motivated by staying as close as
possible to the path-integral induced scheme. To re-establish contact with the continuum, after having found
the discrete cylindrically consistent theories, we would hope to understand the family of Hilbert spaces as an
inductive limit. There are excellent accounts in the literature [140–146] so we will only briefly collect the basic
notions of inductive limits and apply them to our case by quoting from [128].
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Definition III.B.2. Let (I, <) be a partially ordered index set. We call a system of Hilbert spaces
{Hi}i∈I an inductive system of Hilbert spaces iff for each i < j there exist isometric injections

Ji→j : Hi → Hj (III.67)

with Ji→i = idHi and consistency Ji→k = Jj→k ◦ Ji→j for all i < j < k.
A family of operators {Ai}i∈I with dense and invariant domains Di is called inductive system of operators
iff for i < j

Ji→jDi ⊂ Dj , AjJi→j = Ji→jAi (III.68)

Lemma III.B.4. 1. For every inductive system of Hilbert spaces there exists a unique (up to unitary
equivalence) Hilbert space H and isometric injections Ji : Hi → H for each i ∈ I such that for all i < j

JjJi→j = Ji (III.69)

2. For every inductive system of operators there exists an operator A on a dense D ⊂ H, with JiDi ⊂ D,
such that ∀i ∈ I:

Ji Ai = A Ji (III.70)

If, moreover, every Ai is essentially self-adjoint with core Di then so is A on D.

Proof. 1. We call vectors ψi ∈ Hi, ψj ∈ Hj equivalent iff there exists k such that for any i, j < k we have
Ji→kψi = Jj→kψj . Indeed, when it is true for one k it holds for all k′ ∈ I: Take l > k, k′ then by equivalence
for k we have

0 = Jk→l(Ji→kψi − Jj→kψj) = Ji→lψ − Jj→lψj = Jk′→l(Ji→k′ψi − Jj→k′ψj) (III.71)

However, since isometries are automatically injective it follows: Ji→k′ψi = Jj→k′ψj . We consider the equiva-
lence classes [ψi] and equip them with the inner product

〈[ψi], [ψj ]〉H := 〈Ji→kψi, Jk→jψj〉Hk (III.72)

where k is any i, j < k. This is independent of the representative because for any i, j < k′ we find k, k′ < l
and have by isometry and consistency:

〈Ji→kψi, Jj→kψj〉Hk = 〈Jk→lJi→kψi, Jk→lJj→kψj〉Hl = 〈Ji→lψi, Jj→lψj〉Hl =

= 〈Jk′→lJi→k′ψi, Jk′→lJj→k′ψj〉Hl = 〈Ji→k′ψi, Jj→k′ψj〉Hk′ (III.73)

The inductive limit Hilbert spaceH is now the completion of the formal finite linear combinations of equivalence
classes.
The required maps can be defined as

Jiψi := [ψi] (III.74)

Then, we have indeed for any i < j:

JjJi→jψi = [Ji→jψi] = [ψj ] = [ψi] = Jiψi (III.75)

where we used that ψi and ψj = Ji→jψi are equivalent (choose k = j > i). The Ji are injections since
Jiψi = [ψi] = 0 means that Ji→jψi = 0 for some i < j hence ψi = 0. they are also isometric since (pick
k = i)

〈Jiψi, Jiψi〉H = 〈[ψi], [ψ′i]〉H = 〈ψi, ψ′i〉Hi (III.76)

Thus, it remains to show uniqueness up to unitary equivalence. For this, assume that two inductive limits
(H, {Ji}i∈I) and (H′{J ′i}i∈I) have been found. We define

U : H → H′
J ′iψi 7→ Jiψi (III.77)
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and extend by linearity to the dense domain of the finite linear combinations of the Jiψi. It has the inverse
on its image: U−1(J ′iψi) = Jiψi and is isometric (pick any i, j < k)

〈UJiψi, UJjψj〉H′ = 〈J ′iψi, J ′jψj〉H′ = 〈J ′kJi→kψi, J ′kJj→kψj〉H′ = 〈Ji→kψi, Jj→kψk〉Hk = 〈Jiψi, Jjψj〉H
(III.78)

and can therefore be extended to a unitary operator to all of H by continuity.
2. We define D to be the finite linear combinations of the vectors Jiψi, ψi ∈ Di. As the Di are dense in Hi
it follows that D is dense in H. Then we define and extend by linearity

A (Jiψ) := Ji Ai ψi (III.79)

This definition is consistent for suppose that Jiψi = Jjψj then for i, j < k it is Ji→kψi = Jj→kψj and

A(Jiψi − Jjψj) = A(JkJi→kψi − JkJj→kψj) = JkAk(Ji→kψi − Jj→kψj) = 0 (III.80)

Finally, by the basic criterion of essential self-adjointness, we know that (Aj ± i idHj )Dj is dense in Hj . It
follows that for any j

(A± i idH)JjDj = Jj(Aj ± i idHj )Dj (III.81)

is dense in JjDj , hence (A± i idHj )D is dense in H and A is essentially self-adjoint.

These concepts of inductive limits are now applicable in the context of renormalisation of theories, as upon
having found a fixed point (H∗M , Ĥ∗M ,Ω∗M ) by the direct Hamiltonian renormalisation the maps jM→2M give
rise to the concatenations

jM→2nM := j2n−1M→2nM ◦ ... ◦ jM→2M (III.82)

which are satisfying the conditions of (III.67). There are numerous partially ordered and directed label sets
in this case, namely Ik = {M := (2k + 1)2n, n ∈ N0} for each k ∈ N0. Hence the existence of the
continuum Hilbert space Hk is guaranteed by the previous Lemma, as well as the existence of embedding
maps jM : HM → Hk . If there is no dependence on k, i.e. H = Hk ∀k, we call the theory partially
universal.9

However, it is important to point out that while we have determined a family of perfect discretised Hamiltonian
operators obeying

j†M→M ′ĤM ′jM→M ′ = ĤM (III.83)

for all M < M ′, this condition is not equivalent with (III.68), i.e. the condition which would have guaranteed
the existence of a continuum Hamiltonian operator. Sadly, the latter condition is stronger than the one we
obtain from the Hamiltonian renormalisation, hence we are not obtaining a continuum Hamiltonian operator
via this prescription. Instead, we can construct a consistently defined symmetric quadratic form. Under certain
assumptions, we can hope to find its Friedrichs extension as a self-adjoint positive operator [186].
Hence, the situation in the direct Hamiltonian renormalisation is equally good as in the standard renormalisation
of a spacetime measure, where cylindrical consistency is a necessary criterion as well.

9We will later see an example for partially universality in case of the free field.
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III.C Example: Klein Gordon field I - Derivation

In order to make the above formalism concrete we will know study a concrete example, namely the massive
free scalar field, also known as Klein Gordon field. Its continuum quantum theory has been excessively studied
in section II.D of the last chapter. Now we will artificially discretise it and study whether the fixed point
theory obtained via both renormalisation schemes yields an inductive limit Hamiltonian which agrees with the
known continuum dynamics. By this we put both renormalisation prescriptions to a necessary test, which both
will pass: We will explicitly determine the corresponding fixed point structure and show that the resulting
Hamiltonian theories indeed correspond to the continuum theories constructed earlier.

Hence, we introduce as described above a spatial IR cut-offs R and work on finite lattices with M points
in each spatial direction. We introduce maybe a natural but still ad hoc discretised version of the Hamiltonian
and apply both the renormalisation procedures derived in the previous sections. For this, we can copy the
calculations from [129] and will do so in the following.

The common starting point for both renormalisation trajectories is a family of either Gaussian, reflecti-

on positive measures µ
(0)
M or equivalently OS data (H(0)

M , Ĥ
(0)
M ,Ω

(0)
M ) originating from some spatial (lattice)

discretisation of the classical continuum theory. In what follows, we construct such a discretisation explicitly
using a choice of the coarse graining map.
The fields at finite IR cut-off are supposed to obey periodic boundary conditions and the corresponding one
particle Hilbert space is LR := L2([0, R)D, dDx). In the presence of an additional UV cut-off we define the
one particle Hilbert space as LRM := `2(ZDM ) with ZM := {0, 1, ..,M − 1}. These are the square summable
finite sequences fRM with norm squared

||fM ||2LM := εDM
∑
m∈ZDM

|fM (m)|2, εM :=
R

M
(III.84)

which is the spatial version of (III.16). In this chapter we explicitly state the dependence of the lattice spacing
on M , i.e. ε = εM . Not also that the prefactor εDM is consistent with the interpretation that fM (m) = f(mεM )
for some f ∈ LR so that ||fM ||LM = ||f ||LR .
Using the spatial injections IM and evaluations EM we already established for (III.35), we consider the
discretised classical fields

φM (m) := (I†Mφ)(m) =

ˆ
[0,R)D

dDx χmεM (x) φ(x), πM (m) := (EMπ)(m) := π(mεM ) (III.85)

Notice that (III.85) defines a partial symplectomorphism

{πM (m), φM (m′)} =

ˆ
dDx χmεM (x) {π(x), φ(m′εM )} = χmεM (m′εM ) = δmm′ (III.86)

The Hamiltonian (II.166) gets hence identified with following discretised family

H
(0)
M :=

c

2

∑
m∈ZDM

(κφε
D
Mπ

2
M (m) +

1

κφεDM
φM (m)[(ω

(0)
M )2 · φM ](m)) (III.87)

Here we have defined ω
(0)
M in terms of a suitable, self-adjoint (with respect to LM ) discretisation ∆M of the

Laplacian, that is, if the continuum ω is a certain function G = G(−∆R, p
2) of the continuum Laplacian ∆R

on [0, R)D then ω
(0)
M is the function G(−∆M , p

2).
It is not difficult to check that (III.87) converges to

H :=
c

2

ˆ
[0,R)D

dDx [κφπ
2 +

1

κφ
φω2

Rφ] (III.88)

on smooth fields as M →∞.
The form (III.87) of the Hamiltonian motivates to follow the strategy of (II.167) and introduce discrete

annihilation functions

a
(0)
M :=

1√
2~κφ

[

√
ω

(0)
M

εDM
φM − iκφ

√
εDM

ω
(0)
M

πM ] (III.89)
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so that upon choosing them as the non-commutative algebra of observables we introduce the ordering

H
(0)
M = ~c

∑
m∈ZDM

(a
(0)
M )∗ ω

(0)
M · a

(0)
M (III.90)

The quantisation of this system is now analogous to the quantisation of finitely many harmonic oscillators

and hence well understood. By promoting a
(0)
M to the annihilation operators â

(0)
M we introduce the vacuum Ω

(0)
M

with the property a
(0)
M (m)Ω

(0)
M = 0, ∀m ∈ ZDM . Consequently ĤΩ

(0)
M = 0. The corresponding Hilbert space

spanned by the polynomials of â∗M (m) acting on the vacuum is found to be L2(RMD

, dν
(0)
M ). We choose the

ground state representation ΩM = 1 and find up to normalisation (compare to (II.215))

dν
(0)
M (φM ) = exp(~κφ〈φM (ω

(0)
M )φM 〉M ) dφM

D

M ,⇒
ν

(0)
M (eiφM [fM ]) = e−

1
2 〈fM ,cMfM 〉M (III.91)

where we will call cM = ~κφ2ω
(0)
M the covariance. Hence, we have constructed explicitly a family of OS data

(H(0)
RM , H

(0)
RM ,Ω

(0)
RM ) which certainly is not a fixed point family.

We sidestep the introduction of a temporal cut-off T and its corresponding temporal renormalisation and

directly construct the Wiener measure family µ
(0)
M on the history spaces ΓM of fields ΦM corresponding to

the OS data constructed above. The construction is entirely identical to the continuum calculation, hence we

know that the Wiener measure family µ
(0)
M is described by a Gaussian measure with the covariance

C
(0)
M =

~κφ
2

(− 1

c2
∂2
t + [ω

(0)
M ]2) (III.92)

We set c=1 in the following subsections and restrict our attention to the case D = 1. The generalisation to
more dimension will be undergone in the section III.E.

III.C.1 Flow of the PI induced Hamiltonian Renormalisation

Following the general programme, the first step in [129] was to calculate the flow of the sequence of measure

families µ
(0)
M and its fixed point. As we follow them closely, we consider the maps IM→2M which is an isometric

injection,

〈IM→2M · fM , IM→2M · f ′M 〉L2M
= 〈I2M ◦ IM→2M · fM , I2M ◦ IM→2M · f ′M 〉LR
= 〈IM · fM , IM · f ′M 〉LR = 〈fM , f ′M 〉LM (III.93)

where we used the isometry of IM and (III.18). Explicitly for m ∈ ZD2M

[IM→2M · fM ](m) =
∑

m′∈ZDM

χm′εM (mε2M )fM (m′) = fM (bm/2c) (III.94)

where bm/2ca := bma/2c, a = 1, .., D denotes the component wise Gauss bracket.
The path integral flow is defined by

µ
(n+1)
M (eiΦM [FM ]) := µ

(n)
2M (eiΦ2M [IM→2MFM ]) (III.95)

and it follows immediately that the flow generates a family of Gaussian measures with covariances C
(n)
M since

the initial family is such. Namely we find10

C
(n+1)
M = (1L2

⊗ IM→2M )† C
(n)
2M (1L2

⊗ IM→2M ) (III.96)

where the notation is to indicate, that no temporal renormalisation takes place.
In the continuum the kernel of the covariance is defined as

〈F,CR · F 〉L2⊗LR =:

ˆ
R2

ds ds′
ˆ

[0,R)2D
dDx dDy F (s, x) CR((s, x), (s′, y)) F (s′, y) (III.97)

10Note that this simple consequence, i.e. the new measure is again of Gaussian nature with changed covariance, is the
crucial point due to which the renormalisation can be carried out analytically. In general, the nature of the measure itself
can change drastically and such an easy relation may no longer be valid.
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It follows

〈1L2
⊗ IM · FM , CR · 1L2

⊗ IM · FM 〉L2⊗LR = (III.98)

= 〈FM , [(1L2
⊗ IM )†CR(1L2

⊗ IM )]FM 〉L2⊗LM =: 〈FM , CMFM 〉LM
which shows that

CM ((s,m), (s′,m′)) = ε−2D
M 〈χmεM , CR((s, .), (s′, .))χm′εM 〉LR (III.99)

Note that the continuum kernel family is automatically a fixed point of (III.96) due to IM = I2M ◦ IM→2M .
Expression (III.99) tends to CR((s,mεM ), (s′,m′εM )) as M →∞.

Explicitly, we have in terms of the kernel of the covariance for the flow of the discretised covariance

〈FM , C(n+1)
M FM 〉L2⊗LM = ε2DM

∑
m′1,m

′
2∈ZDM

ˆ
dsds′ FM (s,m′1)FM (s′,m′2)C

(n+1)
M ((s,m′1), (s′,m′2))

= 〈(1L2
⊗ IM→2M ) · FM , C(n)

2M (1L2
⊗ IM→2M ) · FM 〉L2⊗LR2M

= ε2D2M
∑
m1,m2

ˆ
dsds′ (1L2

⊗ IM→2M · FM )(s,m1)(1L2
⊗ IM→2M · FM )(s′,m2)C

(n)
2M ((s,m1), (s′,m2))

=
ε2DM
22D

ˆ
dsds′

∑
m1,m2∈ZD2M

FM (s, bm1/2c)FM (s′, bm2/2c)C(n)
2M ((s,m1), (s′,m2))

=
ε2DM
22D

∑
m′1,m

′
2∈ZDM

ˆ
dsds′ FM (s,m′1)FM (s′,m′2)

∑
bm1/2c=m′1,bm2/2c=m′2

C
(n)
2M ((s,m1), (s′,m2)) (III.100)

from which we read off that for all FM :

C
(n+1)
M ((s,m′1), (s′,m′2)) = 2−2D

∑
δ1,δ2∈{0,1}D

C
(n)
2M ((s, 2m′1 + δ1), (s′, 2m′2 + δ2)) (III.101)

This condition describes the renormalisation flow and deducing its corresponding fixed point gives us the
Gaussian measure of the continuum theory restricted to spatially coarse observables.

A simplification can be achieved by making use of the translation invariance of the (discrete) Laplacian and
thus the corresponding covariances CM ((s,m), (s′,m′)) = CM (s− s′,m−m′), a property which is preserved
by inspection under the block spin transformation (III.101). This suggests using Fourier transform techniques.
Recall that LR is equipped with the orthonormal basis R−D/2eikRn·x, n ∈ ZD, x ∈ [0, R)D where kR = 2π

R .
If we restrict x to the lattice points x = mεM , m ∈ ZDM then eikRn·x = eikMn·m, kM = 2π

M and we may
restrict n to ZDM as well, due to periodicity of the argument of the exponential function. Indeed, we may define
Fourier transform and its inverse on LM by

fM (m) =:
∑
n∈ZDM

f̂M (n) eikMn·m, f̂M (n) =: M−D
∑
m∈ZDM

fM (m) e−ikMn·m (III.102)

The discrete Fourier transform has the advantage that it diagonalises the Laplacian [∆Me
ikMn· .](m) =

= −∆̂M (kMn)eikMn·m with ∆̂M (kMn) ∈ R. And if C
(n)
M = G(−∂2

t ,−∆M , p
2) then we have

[C
(n)
M · FM ](s,m) = εDM

∑
m′∈ZDM

ˆ
ds′ C

(n)
M (s− s′,m−m′)FM (s′,m′) (III.103)

=
∑
n∈ZDM

ˆ
dk0

2π
F̂M (k0, n) G(k2

0,−∆̂M (nkM ), p2) ei(k0(s−s′)+kMn·(m−m′))

=
∑

m′∈ZDM

ˆ
ds′ FM (s′,m′)[M−D

∑
n∈ZDM

ˆ
dk0

2π
ei(k0(s−s′)+kMn·(m−m′))G(k2

0,−∆̂RM (nkM ), p2)]

If we define Ĉ
(n)
M (k0, n) := R−DG(k2

0,−∆̂M (kMn), p2) we find:

C
(n)
M (s− s′,m−m′) =

∑
n∈ZDM

ˆ
dk0

2π
ei(k0(s−s′)+kMn·(m−m′))Ĉ

(n)
M (k0, n) (III.104)
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for the discretised family.
Since for general ωR it is explicitly only possible to study the flow of the covariance in terms of its Fourier

transform we translate (III.101) in terms of the Fourier transform

C
(n+1)
M ((s,m′1), (s′,m′2)) =

∑
l′∈ZDM

ˆ
dk0

2π
ei(k0(s−s′)+kM l′·(m−m′)) Ĉ

(n+1)
M (k0, l

′) (III.105)

= 2−2D
∑
l∈ZD2M

ˆ
dk0

2π
Ĉ

(n)
2M (k0, l)

∑
δ1,δ2∈{0,1}D

ei(k0(s−s′)+k2M l·(2(m′1−m
′
2)+δ1−δ2))

= 2−2D
∑
l′∈ZDM

ˆ
dk0

2π

∑
δ1,δ2,δ3∈{0,1}D

Ĉ
(n)
2M (k0, l

′ + δ3M)ei(k0(s−s′)+k2M (l′+δ3M)·(2(m′1−m
′
2)+δ1−δ2))

= 2−2D
∑
l′∈ZDM

eikM l
′·(m′1−m

′
2)

ˆ
dk0

2π

∑
δ1,δ2,δ3∈{0,1}D

Ĉ
(n)
2M (l′ + δ3M)ei(k0(s−s′)+k2M (l′+δ3M)·(δ1−δ2))

whence

Ĉ
(n+1)
M (k0, l

′) = 2−2D
∑

δ1,δ2,δ3∈{0,1}D
Ĉ

(n)
2M (k0, l

′ + δ3M)eik2M (l′+δ3M)·(δ1−δ2) (III.106)

We will now carry out the details of this procedure for illustrative purposes for the case D = 1 and the
Poincaré invariant choice

ωR =
√
−∆R + p2 (III.107)

More general models in all dimensions will be discussed in the last section of this chapter III.E. For D = 1
(III.106) becomes with l′ ∈ ZM

Ĉ
(n+1)
M (k0, l

′) =
1

2

∑
δ3∈{0,1}

Ĉ
(n)
2M (k0, l

′ + δ3M)[1 + cos(k2M (l′ + δ3M))] (III.108)

=
1

2
{Ĉ(n)

2M (k0, l
′)[1 + cos(k2M l

′)] + Ĉ
(n)
2M (k0, l

′ +M)[1− cos(k2M l
′)]}

We start the flow with Ĉ
(0)
M (k0, l

′) := ĈM (k0, l
′) where CM (k0, l

′) corresponds to a naive discretisation of
the Laplacian. For it, we take a popular choice in D = 1:

(∆M · fM )(m) :=
1

ε2M
[fM (m+ 1) + fM (m− 1)− 2fM (m)] (III.109)

Going over to Fourier picture, we see that

−∆̂M (l)eikMn·l = (∆Me
ikMn·.)(l) = ε−2

M (eikMn(l+1) + eikMn(l−1) − 2eikMnl) = 2ε−2
M (cos(kMn)− 1)eikMnl

Thus, from (III.92) and (III.104) with l ∈ ZM

Ĉ
(0)
M (k0, l) = R−1 ~κφ

2

1

2ε−2
M [1− cos(kM l)] + k2

0 + p2
(III.110)

It is equivalent to study the flow of ĉM (l) := 2RĈM (l)/(~κφ) and it is convenient to introduce the abbrevia-

tions t := kM l, q :=
√
k2

0 + p2εM . Hence

ĉ
(0)
M (l) =

ε2M
2[1− cos(t)] + q2

(III.111)

For reasons that will become transparent in a moment we rewrite (III.111) as follows: Let

a0(q) := 1 + q2/2, b0(q) := q3/2, c0(q) := 0 (III.112)

then trivially

ĉ
(0)
M (l) =

ε2M
q3

b0(q) + c0(q) cos(t)

a0(q)− cos(t)
(III.113)
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The purpose of doing this trivial rewriting is that it turns out that the parametrisation by 3 functions an, bn, cn
of q in the Ansatz

ĉ
(n)
M (l) =

ε2M
q3

bn(q) + cn(q) cos(t)

an(q)− cos(t)
(III.114)

is invariant under the renormalisation flow. Namely, by (III.108) (note t = kM l → k2M l = t/2, q =√
k2

0 + p2εM →
√
k2

0 + p2ε2M = q/2 and cos(k2M (l +M)) = − cos(t/2))

ĉ
(n+1)
M (l) =

ε2M
q3

bn+1(q) + cn+1(q) cos(t)

an+1(q)− cos(t)
(III.115)

=
1

2
{ĉ(n)

2M (l)[1 + cos(k2M l)] + ĉ
(n)
2M (l +M)[1− cos(k2M l)]}

=
ε22M

2(q/2)3
{bn(q/2) + cn(q/2) cos(t/2)

an(q/2)− cos(t/2)
[1 + cos(t/2)] +

bn(q/2)− cn(q/2) cos(t/2)

an(q/2) + cos(t/2)
[1− cos(t/2)]}

=
ε2M
q3

1

an(q/2)2 − cos2(t/2)
{[bn(q/2) + cn(q/2) cos(t/2)][an(q/2) + cos(t/2)][1 + cos(t/2)]

+[bn(q/2)− cn(q/2) cos(t/2)][an(q/2)− cos(t/2)][1− cos(t/2)]}

=
ε2M
q3

1

an(q/2)2 − 1
2 [1 + cos(t)]

{2an(q/2)bn(q/2) + 2 cos2(t/2)[bn(q/2) + cn(q/2) + an(q/2)cn(q/2)]}

=
ε2M
q3

1

[2an(q/2)2 − 1]− cos(t)
{2[2anbn + bn + cn + ancn](q/2) + 2[bn + cn + ancn](q/2) cos(t)}

where we used the double-angle relation: 2 cos(t/2)2 = 1 + cos(t). We deduce the recursion relations

an+1(q) = 2an(q/2)2 − 1

bn+1(q) = 2[2anbn + bn + cn + ancn](q/2)

cn+1(q) = 2[bn + cn + ancn](q/2) (III.116)

The corresponding fixed point equations become coupled functional equations

a∗(q) = 2a∗(q/2)2 − 1

b∗(q) = 2[2a∗b∗ + b∗ + c∗ + a∗c∗](q/2)

c∗(q) = 2[b∗ + c∗ + a∗c∗](q/2)

The easiest of these three equations is the first one, as it involves only one function and we easily recognise
the functional equation of the cosine or hyperbolic cosine. Now, a0(q) > 1 for q > 0 and assuming this to be
the case also for an(q) we get an+1(q) = 2an(q/2)2 − 1 > 1 for q > 0. It follows a∗(q) > 1 for q > 0 so that

a∗(q) = ch(q) (III.117)

Next we observe
d∗(q) := (b∗ + c∗)(q) = 4[1 + a∗(q/2)][b∗ + c∗](q/2) (III.118)

which is a homogeneous linear functional equation as a∗ is already known. If we define [b∗+c∗](q) = qnP (ch(q))
where P is a polynomial then we have a chance to satisfy the fixed point equation since qn can take the factor
of 4 into account and the right hand side depends only on ch(q/2) as well as the left hand side. To see this,
remember that ch(q) = 2ch2(q/2)− 1.

Let P =
∑N
k=0 zkchk(q), then in terms of x = ch(q/2) the fixed point condition becomes

2n
N∑
k=0

zk[2x2 − 1]k = 4(x+ 1)

N∑
k=0

zkx
k = 4{z0 + zNx

N+1 +

N∑
k=1

[zk + zk−1]xk} (III.119)

We may assume that zN 6= 0, otherwise decrease the degree of the polynomial. Then we must have 2N = N+1
i.e. N = 1. It follows

2n{z0 − z1 + 2z1x
2} = 4{z0 + (z0 + z1)x+ z1x

2} (III.120)

i.e.
n = 1, z1 = −z0 ⇒ zq(ch(q)− 1) =: d∗(q) (III.121)

where z is a constant to be determined later.
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Finally we have

c∗(q) = 2(b∗ + c∗)(q/2) + 2a∗(q/2)c∗(q/2) = 2d∗(q/2) + 2a∗(q/2)c∗(q/2) (III.122)

which is an inhomogeneous linear functional equation as a∗, d∗ are already known. The general solution will
therefore be the linear combination of a special solution c1 of the inhomogeneous equation and the general
solution c2 of the corresponding homogeneous equation. Explicitly

0 = −c1(q) + zq(ch(q/2)− 1) + 2ch(q/2)c1(q/2) = −[c1(q) + zq] + ch(q/2)[2c1(q/2) + zq] (III.123)

which is solved by c1(q) = −zq. This leaves us with

c2(q) = 2ch(q/2)c2(q/2) (III.124)

which is the functional equation of c2(q) = z′sh(q) where again z′ is a constant to be determined later. In
total this means

c∗(q) = z′sh(q)− zq (III.125)

To see which values z, z′ are chosen by the initial functions of the fixed point equation we notice that
d0(q) = q3/2 and assume limq→0 2dn(q)/q3 = 1 up to some n then also

lim
q→0

2dn+1(q)

q3
= lim
q→0

8[ch(q/2) + 1]dn(q/2)

q3
= lim
q→0

2dn(q/2)

(q/2)3
= 1 (III.126)

Thus also limq→0 2d∗(q)/q
3 = 1 whence z = 1. Finally we have c0(q) = 0 hence limq→0 c0(q)/q3 regular. We

assume this to be the case up to some n i.e. cn(q) = O(q3). Then

cn+1(q)/q3 = 2dn(q/2)/q3 + 2an(q/2)cn(q/2)/q3 (III.127)

is also regular at q = 0 hence so must be c∗(q). It follows z′ = 1.
We summarise: The fixed point equation is uniquely solved by

a∗(q) = ch(q)

b∗(q) = qch(q)− sh(q)

c∗(q) = sh(q)− q (III.128)

III.C.2 Comparison to the Continuum

We now compare this to the cylindrical projections of the known continuum theory. As those have been
computed first in [129] we quote their calculations.

The continuum theory is described by the covariance CR =
~κφ

2 (−∂2
t − ∆R + p2)−1 or equivalently cR =

2R
~κφCR = R(−∂2

t −∆R+p2)−1 which can now be directly compared to (III.111). The corresponding cylindrical

projection at resolution M is

cM ((s,m), (s′,m′)) = ε−2
M ([1L2 ⊗ IM ]†cR[1L2 ⊗ IM ])((s,m), (s′,m′))

= ε−2
M

ˆ (m+1)εM

mεM

dx

ˆ (m′+1)εM

m′εM

dy cR((s, x), (s′, y)) (III.129)

where cR(x, y) is the continuum kernel. To compute it, we employ again Fourier transformation and use the
fact that the functions enR(x) = einkRx/

√
R, kR = 2π/R form an orthonormal basis on LR = L2([0, R), dx).

Hence

cR((s, x), (s′, y)) = R(−∂2
s −∆Rx + p2)−1δR(s, s′)δR(x, y) (III.130)

=

ˆ
dk0

2π

∑
n∈Z

e−nR(y) R(−∂2
s −∆Rx + p2)−1eik0(s−s′) enR(x)

=

ˆ
dk0

2π

∑
n∈Z

ei(k0(s−s′)+kRn(x−y))

(nkR)2 + k2
0 + p2
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It follows

cM ((s,m), (s′,m′)) = (III.131)

= ε−2
M

∑
n∈Z

ˆ
dk0

2π

eik0(s−s′)

(nkR)2 + k2
0 + p2

[

ˆ (m+1)εM

mεM

dx eikRnx][

ˆ (m′+1)εM

m′εM

dy e−ikRny]

= ε−2
M

∑
n∈Z

ˆ
dk0

2π

eik0(s−s′)

(nkR)2 + k2
0 + p2

[εMδn,0 +
1− δn,0
ikRn

(eikRn(m+1)εM − eikRnmεM )]×

×[εMδn,0 −
1− δn,0
ikRn

(e−ikRn(m′+1)εM − e−ikRnm′εM )]

=
∑
n∈Z

ˆ
dk0

2π

ei(k0(s−s′)+kMn(m−m′)

(nkR)2 + k2
0 + p2

[δn,0 + 2
1− δn,0
(kMn)2

(1− cos(kMn)]

To compare this expression to ĉM (k0, l), l ∈ ZM we write n = l +NM, N ∈ Z and split the sum

cM ((s,m), (s′,m′)) =
∑
l∈ZM

ˆ
dk0

2π

∑
N∈Z

ei(k0(s−s′)+kM l(m−m′))

([l +NM ]kR)2 + k2
0 + p2

2(1− cos([l +NM ]kM ))

([l +NM ]kM )2
(III.132)

where we declare the last fraction to equal unity at l = N = 0. Comparing with the first line of (III.105) we
see that the sum involved in (III.105) coincides with the definition of ĉM (k0, l) .

We now carry out the sum over N by employing the Poisson summation formula

Theorem III.C.1 (Poisson Summation Formula). Consider f ∈ L1(R, dx) such that the series
∑
n∈Z f(y+

ns) is absolutely and uniformly convergent for y ∈ [0, s], s > 0. Then∑
n∈Z

f(ns) =
∑
n∈Z

ˆ
R
dx · e−i2πnxf(sx) (III.133)

Beweis. See e.g. the book about Fourier analysis by Bochner [214].

In our case we choose

f(x) :=
1

([l + xM ]kR)2 + k2
0 + p2

2(1− cos([l + xM ]kM )

([l + xM ]kM )2
(III.134)

to which the Poisson resummation may be applied as f is smooth and decays at infinity as 1/x4. We find with
q =

√
k2

0 + p2εM

ĉ∞M (k0, l) =
∑
N∈Z

1

([l +NM ]kR)2 + k2
0 + p2

2(1− cos([l +NM ]kM ))

([l +NM ]kM )2

= ε2M
∑
N∈Z

ˆ
dx e−i2πNx

1

([l + xM ]kM )2 + q2

2(1− cos([l + xM ]kM ))

([l + xM ]kM )2

= ε2M
∑
N∈Z

ˆ
dx e−i2πNx

1

(kM l + 2πx)2 + q2

2(1− cos(kM l + 2πx))

(kM l + 2πx)2

= ε2M
∑
N∈Z

ˆ
dx

2π
e−iNx

1

(kM l + x)2 + q2

2(1− cos(kM l + x))

(kM l + x)2

= ε2M
∑
N∈Z

eikMNl
ˆ

dx

2π

2e−iNx(1− cos(x))

x2(x2 + q2)
(III.135)

We have
2(1− cos(x))e−iNx

x2
=
e−iNx − e−i(N−1)x

x2
+
e−iNx − e−i(N+1)x

x2
(III.136)

For any N (III.136) is holomorphic in the entire complex plane and for N ≥ 1 decays on the lower infinite
half-circle and for N ≤ −1 decays on the upper infinite half-circle. It follows that the integrand is holomorphic
everywhere in the whole complex plane except at x = ±iq and the contour can be closed as described for
N 6= 0. Thus we find by the residue theorem

ˆ
dx

2π

2e−iNx(1− cos(x))

x2(x2 + q2)
=

 −
2πi
2π

2e−iNx(1−cos(x))
x2(x−iq) x=−iq

N ≥ 1

2πi
2π

2e−iNx(1−cos(x))
x2(x+iq) x=iq

N ≤ −1
=
e−|N |q(ch(q)− 1)

q3
(III.137)
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For N = 0 the first term in (III.136) decays on the upper while the second decays on the lower infinite half
circle. However, the two terms are not separately holomorphic at x = 0, only their sum is. We thus write
the integral as a principal value integral limδ → 0 where we leave out the interval [−δ, δ] and then close
the contour for the first/second term with a small half-circle of radius δ in the upper/lower complex plane,
subtract that added contribution and apply the residue theorem. We find

ˆ
dx

2π

2(1− cos(x))

x2(x2 + q2)2
= −2πi

2π

(1− e−ix)

x2(x− iq)x=−iq
− lim
δ→0

ˆ
x=δeiφ, φ∈[−π,0]

dx

2πx

1− e−ix
x

1

x2 + q2

+
2πi

2π

(1− eix)

x2(x+ iq)x=iq

+ lim
δ→0

ˆ
x=δeiφ, φ∈[0,π]

dx

2πx

1− eix
x

1

x2 + q2

=
q + e−q − 1

q3
(III.138)

It remains to compute the geometric sum in (III.135) with kM l = t

ĉM (l)

ε2M
=

q + e−q − 1

q3
+

ch(q)− 1

q3
(−2 +

∞∑
N=0

{e−N [q+it] + e−N [q−it]})

=
q + e−q − 1− ch(q) + 1

q3
+

ch(q)− 1

q3
(−1 +

1

1− e−[q+it]
+

1

1− e−[q−it] )

=
q − sh(q)

q3
+

ch(q)− 1

q3

2− 2e−q cos(t)− [1 + e−2q − 2e−q cos(t)]

1 + e−2q − 2e−q cos(t)

=
q − sh(q)

q3
+

ch(q)− 1

q3

sh(q)

ch(q)− cos(t)

=
1

q3

1

ch(q)− cos(t)
{[ch(q)− 1]sh(q) + [q − sh(q)]ch(q)− [q − sh(q)] cos(t)}

=
1

q3

1

ch(q)− cos(t)
{[qch(q)− sh(q)] + [sh(q)− q] cos(t)} (III.139)

Comparing with (III.114) and (III.128) we see that we obtain perfect match! The fixed point equations of
the naively discretised covariance of the history field measure have found the precise cylindrical projections of
its continuum covariance [−∂2

t −∆R + p2]−1. It is therefore clear that the fixed point path integral precisely
delivers the continuum OS data via OS reconstruction that we started from and that we artificially discretised.
Moreover, it is easy to see that the continuum limit limM→∞ cM (l) = [k2

0 + m2 + (lkR)2]−1 coincides with
the continuum covariance.

III.C.3 Matrix elements of the Hamiltonian from PI induced Renormalisa-
tion

We carry out the explicit OS reconstruction of the measures µ
(n)
R . This is taken from [129]. To do this recall

that these are determined by the covariances of their Fourier transform which up to a factor follow the flow
(l ∈ ZM ), see (III.108)

ĉ
(n+1)
M (k0, l) =

1

2
{ĉ(n)

2M (k0, l)[1 + cos(t/2)] + ĉ
(n)
2M (k0, l +M)[1− cos(t/2)]},

ĉ
(0)
M (k0, l) =

ε2M
2[1− cos(t)] + q2

, t = kM l, q =
√
p2 + k2

0εM (III.140)

We conclude that while c
(0)
M (k0, l) displays only one simple pole with respect to q2, the number of poles gets

doubled at each renormalisation step. For instance

ĉ
(1)
M (k0, l) =

ε2M
8
{ 1 + cos(t/2)

2[1− cos(t/2)] + q2/4
+

1− cos(t/2)

2[1 + cos(t/2)] + q2/4
} (III.141)

One can convince oneself that ĉ
(n)
M (k0, l) displays 2n distinct simple poles in q2. Thus, in the parametrisation

ĉ
(n)
M (k0, l) =

ε2M
q3

bn(q) + cn(q) cos(t)

an(q)− cos(t)
(III.142)
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an(q) must be a polynomial of order 2n in q2 whose poles can in principle be read off from the flow equation
(III.140). These poles are certain mutually distinct functions of t as one easily sees from the inductive definition
(III.140). The flow equation (III.140) for the covariance at resolution M is a superposition of covariances at
resolution 2M with merely t dependent, positive coefficients 1±cos(t/2) (i.e. they do not depend on q). Since

c
(0)
M (k0, t) has its q dependence only in the pole and a single positive coefficient, this feature is preserved for the

entire flow. We may therefore display an alternative parametrisation of (III.142) as follows: Let −[λ̂
(n)
MN (t)]2

with N = −2n−1 + 1,−2n−1 + 2, .., 0, 1, .., 2n−1 denote the poles of c
(n)
M (k0, l) for n > 0 with respect

to q2 (from the induction (III.140) it follows that the poles are strictly non-positive) and ĝ
(n)
MN (t)ε2M the

corresponding, positive coefficient functions. Then, for n > 0

ĉ
(n)
M (k0, l) =

2n−1∑
N=−2n−1+1

ĝ
(n)
MN (t)ε2M

q2 + [λ̂
(n)
MN (t)]2

(III.143)

If we trivially extend ĝ
(n)
MN ≡ 0 for N > 2n−1, N ≤ −2n−1 we may extend the sum over N to infinity

ĉ
(n)
M (k0, l) =

∑
N∈Z

ĝ
(n)
MN (t)ε2M

q2 + [λ̂
(n)
MN (t)]2

(III.144)

which now provides a universal parametrisation for the c
(n)
M (k0, t). The flow is now in terms of the poles and

their respective coefficient functions. More and more coefficient functions are switched on from zero to a
positive function as the flow number n increases. We even know what the fixed point values of this flow are,
if we look at (III.132)

[λ̂∗MN (t)]2 = (t+ 2πN)2, ĝ∗MN (t) = 2
1− cos(t)

(t+ 2πN)2
(III.145)

The first question is, what null space of the reflection positive inner product for a covariance of the form
(III.144) results. It is convenient to introduce the renormalisation invariant lattice Laplacian

(∆MfM )(m) := fM (m+ 1) + fM (m− 1)− 2fM (m) (III.146)

on LM which in Fourier space corresponds to multiplication by 2(cos(kM l)−1) = 2(cos(t)−1). The functions

λ̂
(n)
MN (t), ĝ

(n)
MN (t) can now be considered as the eigenvalues of corresponding operator valued functions of ∆M

which we denote by λ
(n)
MN , g

(n)
MN respectively. We also set

[ω
(n)
MN ]2 :=

[λ
(n)
MN ]2

ε2M
+ p2 (III.147)

Then for the corresponding reflection positive inner product for functions FM , GM of positive time support

〈[eiΦM [FM ]]
µ
(n)
M

, [eiΦM [GM ]]
µ
(n)
M

〉H(n)
M

= µ
(n)
M (eiΦM [θ·GM−FM ]) (III.148)

= µ
(n)
M (eiΦM [FM ])µ

(n)
M (eiΦM [GM ]) exp(−

∑
N

ˆ
dsds′

ˆ
dk0

2π
eik0(s−s′)〈FM (s),

g
(n)
MN

k2
0 + (ω

(n)
MN )2

GM (−s′)〉LM )

= µ
(n)
M (eiΦM [FM ])µ

(n)
M (eiΦM [GM ]) exp(−

∑
N

ˆ
dsds′

ˆ
dk0

2π
eik0(s+s′)〈FM (s),

g
(n)
MN

k2
0 + (ω

(n)
MN )2

GM (s′)〉LM )

= µ
(n)
M (eiΦM [FM ])µ

(n)
M (eiΦM [GM ]) exp(−

∑
N

ˆ
ds

ˆ
ds′ 〈FM (s),

gMN e−(s+s′)ωMN

2ωMN
G(s′)M 〉LM )

We now extract representatives of the equivalence classes of the inner product (III.148) corresponding to fields
not at a single sharp time zero, but rather a countably infinite set of sharp times. To see how this comes
about, we compute, noticing the time support of G and dropping all labels for the sake of the argument

ˆ
ds e−sωG(s,m) =

∑
l

ˆ
dk0

2π

ˆ ∞
0

ds ei(k0s+kM lm)e−sω(l)Ĝ(k0, l)

=
∑
l

ˆ
dk0

2π

1

ω(l)− ik0
eikM lmĜ(k0, l) = −

∑
l

eikM lmĜ(k0 = −iω(l), l) (III.149)
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by the residue theorem. Here we used that G(s) = 0 for s < 0 implies that its Fourier transform Ĝ(k0) is
holomorphic on the lower complex half plane with at most polynomial growth at infinity. Hence the residue
theorem applies. It follows that the value of the first expression in (III.149) remains unchanged if we replace
Ĝ(k0, l) by Ĝ′(k0, l) = h(k0, l) Ĝ(−iω(l), l) where h is a fixed function holomorphic in the lower half plane
such that h(−iω(l), l) = 1, e.g. h ≡ 1.
If we have finitely many frequencies ωN > 0 labelled by N ∈ Z then likewise we consider the functions
ĜN (l) := Ĝ(−iωN (l), l) and can replace Ĝ(k0, l) by

Ĝ′(k0, l) =
∑
N

hN (k0, l) ĜN (l), hN (−iωN ′(l), l) = δN,N ′ (III.150)

A possible choice is

hN (k0, l) :=
∏
N ′ 6=N

e−iτk0 − e−τωN′ (l)
e−τωN (l) − e−τωN′ (l) (III.151)

where τ > 0 is any fixed positive real number. (III.151) is well defined because the pole values ωN (l) are
mutually distinct for different N and equal l. It is holomorphic everywhere and a polynomial in e−ik0τ where
the order coincides with the number of different frequencies ωN reduced by one, in our case this number is
given by 2n−1. Thus it becomes a constant at the lower half circle in the complex plane of infinite radius and
the residue theorem applies. We conclude that the function G′(s,m) itself, at the n-th renormalisation step,
has the form

G′(s, l) =

2n−1∑
r=0

δ(s− rτ) gr(l), gr ∈ LM (III.152)

i.e. they depend on 2n sharp points of time rather than a single one, except for n = 0! It follows that
[eiΦM [GM ]]

µ
(n)
M

can be identified with the representative

µ
(n)
M (eiΦM [GM ])

µ
(n)
M (eiΦM [G′M ])

eiΦM [G′M ] (III.153)

or in other words

eiΦM [GM ] − µ
(n)
M (eiΦM [GM ])

µ
(n)
M (eiΦM [G′M ])

eiΦM [G′M ] (III.154)

is a null vector with respect to the reflection positive inner product defined by µ
(n)
M . The OS Hilbert space

H(n)
M can thus be thought of as the completion of the finite linear span of the eiΦM [G′M ] with G′M of the form

(III.152) and Ω
(n)
M ≡ 1.

We compute the corresponding Hamiltonian. This amounts to computing the representative of the equi-
valence class of eiΦM [Tβ ·FM ] for FM of the form (III.152). We have

(Tβ · FM )(s) = FM (s− β) =
∑
r

δ(s− β, rτ) frM =
∑
r

δ(s, β + rτ) frM (III.155)

whence
̂Tβ · FM (k0, l) =

∑
r

e−ik0(β+rτ) f̂rM (l) (III.156)

Thus

̂Tβ · FM
′
(k0, l) =

∑
N

hMN (k0, l) ̂Tβ · FM
′
(−iωMN (l), l) =

=
∑
N

hMN (k0, l)
∑
r

e−ωMN (l)(β+τr) f̂rM (l) (III.157)

where hMN is defined as in (III.152) with ωN replaced by ωMN and we suppressed the renormalisation step
label n for notational convenience. If we decompose

hMN (k0, l) =:
∑
r

e−irτk0 hrMN (l) (III.158)

we obtain
̂Tβ · FM

′
(k0, l) =

∑
r

e−ik0τr
∑
r′

[
∑
N

hrMN (l) e−ωMN (l)(β+τr′)] f̂rM (l) (III.159)
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Accordingly, the time evolution is described by the matrix

Ar,r
′

M (β, l) :=
∑
N

hrMN (l) e−ωMN (l)(β+τr′) (III.160)

or in position space by the corresponding matrix valued operator where ωMN (l) is replaced by the corre-
sponding operator. It follows that we can describe the time translation contraction semigroup on the chosen
representatives, reintroducing the renormalisation step label, by

e−βH
(n)
M eiΦM [FM ] =

µ
(n)
M (eiΦM [FM ])

µ
(n)
M (eiΦM [A

(n)
M (β)·FM ])

eiΦM [A
(n)
M (β)·FM ], FM =

∑
r

δrτf
r
M (III.161)

where A
(n)
M (β) is the purely spatial matrix valued operator whose Fourier transform is displayed in (III.160).

It is instructive to verify the semigroup law

A
(n)
M (β1) ·A(n)

M (β2) = A
(n)
M (β1 + β2) (III.162)

which rests on the van der Monde identity for polynomials of degree d = 2n − 1

p(x) =

d∑
r=0

ar x
r, p(xr) = pr, x0 < x1 < .. < xd ⇒ p(x) =

d∑
r=0

pr
∏
r′ 6=r

x− xr′
xr − xr′

(III.163)

We prove it by applying (III.150) to hMN ′(ωMN (l)τ, l) in∑
r′

Ar,r
′

M (β1, l)A
r′,r′′

M (β2, l) =

=
∑
NN ′

hrMN (l)[
∑
r′

e−ωMN (l)τr′hr
′

MN ′(l)]e
−ωMN′ (l)τr

′′
e−ωMN (l)β1−ωMN′ (l)β2 =

=
∑
NN ′

hrMN (l)δN,N ′e
−ωMN′ (l)τr

′′
e−ωMN (l)β1−ωMN′ (l)β2 = Ar,r

′′

M (β1 + β2) (III.164)

As n→∞ and for fixed finite M , the Hilbert space can thus no longer be thought of as described by a single
sharp time zero field but rather by sharp time fields at an exponentially increasing (with n) number of sharp
times. At the fixed point thus, the number of this sharp points of time is actually infinite. How can this be
reconciled with the fact that in the continuum the Hilbert space can be described by a single field at sharp
time zero? The answer lies in the continuum limit M → ∞: If we inspect (III.145) then we see that at fixed
l ∈ ZM we obtain for the coupling “constants” ĝMN (l) → δN,0 as M → ∞. At the same time ωMN (l)
diverges for all N except N = 0 and the time contraction for all modes except for N = 0 “freezes”. Thus in
the continuum limit, the theory is described by a single dispersion relation and thus the single sharp time zero
description that we are used to applies.

The description using fields at more than one sharp time that we have arrived at means that we cannot
express the Hamiltonian in terms of a single time zero field and its conjugate momentum. Thus our discussion
suggests to introduce instead an infinite number of sharp time zero field species φNM and their conjugate
momenta πMN , that is, the non-vanishing commutators are

[πMN (m), φMN ′(m
′)] = i~δN,N ′δm,m′ , m,m′ ∈ ZM (III.165)

At finite n of course we only have N ∈ {−2n−1 + 1, .., 0, .., 2n−1}, i.e. we have only d = 2n field species.
Accordingly, instead of LM = l2(M) we consider LM = l2(M)d as the one particle Hilbert space and the
Hamiltonian

H ′M :=
1

2

∑
(m,N),(m′,N ′)

[πMN (m)DM ((m,N), (m′, N ′))πMN ′(m
′)

+φMN (m)EM ((m,N), (m′, N ′))φMN ′(m
′)]

=:
1

2
[〈πM , DMπM 〉LM + 〈φM , EMφM 〉LM ] (III.166)

for certain operators DM , EM on LM . Then we claim that it is possible to choose DM , EM such that the
Wiener measure corresponding to (III.166) reproduces the path integral measure. To see this, we drop all labels
for simplicity

H =
1

2
[〈π,Dπ〉+ 〈φ,Eφ〉] (III.167)
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where D,E are self-adjoint, positive and symmetric on LM and in general not commuting. We define annihil-
ators and frequency

a =
1√
2

[〈κ, φ〉 − i〈κ−1, π〉], H = 〈a∗, ω′a〉 (III.168)

Note that κ, ω′ are operators on LM . This leads to the identities

κ†ω′κ = E, (κ−1)†ω′κ−1 = D (III.169)

which are solved by

κ = κ† > 0, κ =

√
E1/2

√
E−1/2D−1E−1/2E1/2, ω′ = (ω′)† > 0, ω′ = κDκ (III.170)

Now a simple computation similar to the one for the continuum that generalises the choice κ =
√
ω′ shows

that the Wiener measure corresponding to (III.168) yields

µ(eiΦ[F ]) = e−
1
2

´
ds
´
ds′<F (s), e

−|s−s′|ω′

2κ2
F (s′)> (III.171)

We now pick the sharp time zero Weyl elements to be

wM [f ′M ] := ei
∑
N φMN [f ′MN ], f ′M = {f ′MN}N ∈ L2n

M (III.172)

and also WM [F ′M ] =
∏
N WMN [F ′MN ], WMN [F ′MN ] = eiΦMN [F ′MN ]. Then the corresponding Wiener mea-

sure gives

µ′M (WM [F ′M ]) = exp(−1

2

∑
N

ˆ
ds

ˆ
ds′ 〈F ′M (s),

e−|s−s
′|ω′M

2κ2
M

F ′M (s′)〉) (III.173)

We can use our knowledge from the continuum theory to infer that the Hilbert space corresponding to the
reflection positive inner product of µ′M is labelled by time zero smearing functions F ′M (s) = δ(s, 0)f ′M and
that the Hamiltonian is defined by

e−βH
′
M eiφM [f ′M ] =

µ′M (eΦM [δ0f
′
M ])

µ′M (eΦM [δ0e
−βω′

M f ′M ]))
eiφM [e−βω

′
M f ′M ]) (III.174)

To match this to (III.161) we perform a trivial relabelling between r, r′,∈ {0, ..., d − 1} and N,N ′ ∈
{−2n−1 + 1, .., 2n−1} in order to write the matrix elements of AM in the form AM ((m,N), (m′, N ′);β).
Then the semigroup property (III.162) implies that there exists a positive self-adjoint generator ωM on LM ,
such that AM (β) = e−βωM . Next, for

FM =

d−1∑
r=0

δrτf
r
M =:

2n−1∑
N=−2n−1+1

δ(N+2n−1−1)τ fMN (III.175)

we find a positive matrix BM on LM such that

µM (eiΦM [FM ]) = e−
1
4<fM ,BMfM>LM (III.176)

If we now compare (III.161), (III.176) and (III.173), (III.174) we see that we obtain perfect match provided
that we pick

ω′M := ωM , κ−2
M := BM (III.177)

Accordingly, the path-integral induced Hamiltonian theory does have an interpretation in terms of sharp
zero-time fields, however, at the price of introducing more and more field species at each renormalisation step.
These field species are mutually commuting, however, the Hamiltonian couples them to each other according
to the matrices DRM , ERM constructed above.

To perform a consistency check on this method, we show that it works for the naively discretised measure,
i.e. n = 0. In general we have

[κ̂−2
(n)M ]rr

′
=

ˆ
dk0

2π
eik0(r−r′)Ĉ

(n)
M (k0, l) (III.178)

with r, r′ ∈ Z2n and

[ω
(n)
N ]2 =

2

εM
4n[1− cos(2−n(t+ 2πN))] + p2 (III.179)
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When we use this for (III.140), we obtain

[κ̂2
(0)M ]00 = (

ˆ
dk0

2π

ε2M
2(1− cos(t)) + p2 + k2

0

)−1 = (
2

ε2M
(1− cos(t)) + p2)1/2 (III.180)

and as [A
(n)
M ]00 = e−βω

(0)
M0 we identify immediately ω′M = ω

(0)
M0 and consequently

Ê =
2

ε2M
(1− cos(t)) + p2, D̂ = 1 (III.181)

which is consistent with the naive discretisation of the Hamiltonian we started with.
We will also briefly comment on the case n = 1 as this is the first non-trivial appearance of mixing time fields.
First n = 1 implies that r = {0, 1}. To diagonalise κM we note that (III.178) depends on the covariance

Ĉ
(1)
M (k0, l), which is an even function in k0. We claim that the map

U(r, r̃) = ei(r−1)(r̃−1)π (III.182)

diagonalises κM , which is easy to check. Consider e.g. the matrix element r̃ = 0, r̃′ = 1 of (U†κMU)(r̃, r̃′)
then

ˆ
dk0

1∑
r,r′=0

eiπ(r−1)eik0(r−r′)eiπ·0Ĉ
(1)
M (k0, l) = e−iπ

ˆ
dk0(eiπ + 1 + e−ik − eik)Ĉ

(1)
M (k0, l) = 0 (III.183)

because it is the integral of an even times an odd function. Evaluating in this way:

Uκ̂−2
M U† =

( ´
dk02(sin(k0) + 1)Ĉ

(1)
M (k0, l) 0

0
´
dk02(cos(k0) + 1)Ĉ

(1)
M (k0, l)

)
= (III.184)

=

(
2
´
dk0Ĉ

(1)
M (k0, l) 0

0
´
dk02(cos(k0) + 1)Ĉ

(1)
M (k0, l)

)
=:

1

ωM0(l)ωM1(l)

(
a2 0
0 b2

)
again because of odd times even.
We can read off directly the hrMN from

hN (k0, l) = (−)N
e−iτk0 − e−τωN (l)

e−τω0(l) − e−τω1(l)
(III.185)

Then we will use that ω′M = ∂βAM (β) |β=0 and transform this into the basis where κ̂ is diagonal. After some
calculations one finds

iUω′MU
† =

(
e d
d̄ ē

)
(III.186)

and arrives thus at the end result

UDU† =
1

c

1

ωM0(l)ωM1(l)

(
a2e abd
abd̄ b2ē

)
, UEU† =

ωM0(l)ωM1(l)

c

(
a−2e a−1b−1d

a−1b−1d̄ b−2ē

)
(III.187)

where the quantities ab, c, d, e are given as follows:

a :=
√
ωM1(l)2(1 + cos(t/2)) + ωM0(l)2(1− cos(t/2)) (III.188)

b :=
√
ωM1(l)2(1 + cos(t/2))(1 + cos(ωM0(l))) + ωM0(l)2(1− cos(t/2))(1 + cos(ωM1(l))) (III.189)

c :=
1

e−τωRM0(l) − e−τωM1(l)
(III.190)

d := i(eτωM0(l) + i)(eτωM1(l) + i)(ωM0(l)− ωRM1(l)) (III.191)

e := −i(eτωRM0(l) + i)(eτωM1(l) − i)ωM0(l) + i(eτωM0(l) − i)(eτωM1(l) + i)ωM1(l) (III.192)

Thus, we see that it is possible to write the interaction between the different field species explicitly However,
as the interaction becomes quite involved we refer from using this framework in the following and stick to the
direct Hamiltonian renormalisation, where the interpretation is more straightforward.
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III.C.4 Direct Hamiltonian Renormalisation

We now quote the direct Hamiltonian renormalisation from [129] in terms of the single canonical field species
φM at sharp time zero.

Implementing Isotropy

As already remarked before, implementing isotropy of

j
(n)
M→2Me

iφM [fM ]Ω
(n+1)
M := eiφ2M [IM→2M ·fM ]Ω

(n)
2M (III.193)

is equivalent to studying the flow of the family of Hilbert space measures

ν
(n+1)
M (eiφM [fM ]) := ν

(n)
2M (eiφ2M [IM→2M ·fM ]) (III.194)

Again it is clear that the family stays Gaussian if the original family is. Let (2ω
(0)
M )−1 be the covariance of

ν
(0)
M . We have the basic identity (in the sense of the spectral theorem)

1

2ω
(0)
M

=

ˆ
dk0

2π

1

k2
0 + (ω

(0)
M )2

(III.195)

which, as in the previous section, can be written in terms of q2 = (p2 + k2
0)ε2M and ∆M (or t = kM l, l ∈ ZM

when Fourier transforming). We now make the self-consistent assumption that the covariance of ν
(n)
M can also

be written in the form
1

2ω
(n)
M

=

ˆ
dk0

2π
c(n)(q,∆M ) (III.196)

If we compare this to (III.111) then we see that the work has already been done in the previous subsection.

Namely, precisely the flow of ω
(n)
M has been computed there, the difference with the current section is that

we restrict the smearing fields to the special time dependence FM = δ0 fM . The integral over k0 could be
explicitly carried out using the residue theorem, in particular for the fixed point covariance in the form displayed
in (III.132), which now reads explicitly

c∗M (m,m′) =
∑
l∈ZM

ˆ
dk0

2π
ĉ∗M (k2

0 + p2, kM l), ĉ∗M (q, t) =
ε2M
q3

qch(q)− sh(q) + (sh(q)− q) cos(t)

ch(q)− cos(t)

(III.197)

However, for what follows we do not need to do this.

Computing the direct Hamiltonian flow

The fixed point sequence is defined by the matrix element equations

〈eiφM [fM ]Ω
(n+1)
M , Ĥ

(n+1)
M eiφM [f ′M ]Ω

(n+1)
M >H(n+1)

M

:= 〈eiφ2M [IM→2M ·fM ]Ω
(n)
2M , Ĥ

(n)
2M eiφ2M [IM→2M ·f ′M ]Ω

(n)
2M 〉H(n)

2M

(III.198)

Let us define

a
(n)
M :=

1√
2

[(ω
(n)
M )1/2φM − i(ω(n)

M )−1/2πM ] (III.199)

Then
ν

(n)
M (eiφM [fM ]) = e−

1
4 〈fM ,(ω

(n)
M )−1 fM 〉 = 〈Ω(n)

M , eiφM [fM ]Ω
(n)
M 〉 (III.200)

is the Fock measure labelled by (III.196) and Ω
(n)
M is the Fock vacuum annihilated by (III.199). Then

e−iφ2M [IM→2M ·f ′M ] a
(n)
2M (m) eiφ2M [IM→2M ·f ′M ]

= a
(n)
2M (m)− i [ φ2M [IM→2M · f ′M ] , aM (m) ]

= a2M (m) + i

√
~κεD/22M

2
([ω

(n)
2M ]−1/2IM→2M · fM )(m)1H(n)

M

(III.201)
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We now prove by induction that

Ĥ
(n)
M = 〈a(n)

M , ω
(n)
M · a(n)

M 〉LM (III.202)

which is consistent with Ĥ
(n)
M Ω

(n)
M = 0. By construction, (III.202) holds for n = 0 and all M and we assume

it to hold up to n and all M . Then

〈eiφ2M ,IM→2M ·fM ]Ω
(n)
2M , Ĥ

(n)
2M eiφ2M [IM→2M ·f ′M ]Ω

(n)
2M 〉H(n)

2M

= εDM
∑
m,m′

ω
(n)
2M (m,m′) 〈a(n)

2M eiφ̂2M [IM→2M ·fM ]Ω
(n)
2M , a

(n)
2M eiφ2M [IM→2M ·f ′M ]Ω

(n)
2M 〉H(n)

2M

=
~2κ

2

∑
m,m′

ω
(n)
2M (m,m′) ([ω

(n)
2M ]−1/2 · IM→2M · fM )(m) ([ω

(n)
2M ]−1/2 · IM→2M · f ′M )(m′), ×

×〈eiφ2M [IM→2M ·fM ]Ω
(n)
2M , e

iφ2M [IM→2M ·f ′M ]Ω
(n)
2M 〉H(n)

2M

=
~2κφ

2
〈IM→2M · fM , IM→2M · f ′M 〉L2M

〈eiφ2M [IM→2M ·fM ]Ω
(n)
2M , e

iφ2M [IM→2M ·f ′M ]Ω
(n)
2M 〉H(n)

2M

=
~2κφ

2
〈fM , f ′M 〉LM 〈eiφ̂M [fM ]Ω

(n+1)
M , eiφM [f ′M ]Ω

(n+1)
M 〉H(n+1)

M

=: 〈eiφM [fM ]Ω
(n+1)
M , Ĥ

(n+1)
M eiφM [f ′M ]Ω

(n+1)
M 〉H(n+1)

M

(III.203)

where we have made use of isometry of both IM→2M and j
(n)
M→2M . Thus the matrix elements of Ĥ

(n+1)
M are

consistent with (III.202). The fixed point Hamiltonian Ĥ∗M is then simply (III.202) with ω
(n)
R replaced by ω∗M .

We claim that
H∗M = J†MHRJM (III.204)

where HR is the continuum Hamiltonian and JM : H∗M → H∗R the isometric embedding of Fock spaces which
is granted to exist due to the equivalence of the fixed point family to an inductive limit Hilbert space family.
Indeed, in our case this is simply given by

JMe
iφM [fM ] Ω∗M = eiφ[IM ·fM ] Ω∗R (III.205)

This follows because the isometry check and J2MJM→2M = JM are equivalent to the corresponding statements
for IM , IM→2M and to the statement (ω∗M )−1 = I†M (ω∗R)−1IM for the fixed point covariances of the Hilbert
space measures. To prove (III.204) we compute, using the same steps as in (III.203)

〈eiφM [fRM ]Ω∗M , [J†M ĤRJM ] eiφM [f ′M ] Ω∗M 〉HM
= 〈eiφR[IM ·fM ]Ω∗R, ĤR eiφR[IM ·f ′M ] Ω∗R〉H∗R
=

~2κφ
2
〈IM · fM , IM · f ′M 〉LR 〈eiφ[IM ·fM ]Ω∗R, eiφ[IM ·f ′M ] Ω∗R〉H∗R

=
~2κφ

2
〈fM , f ′M 〉LM 〈eiφM [fM ]Ω∗M , eiφM [f ′M ] Ω∗M 〉H∗M

= 〈eiφM [fM ]Ω∗M , ĤM eiφM [f ′M ] Ω∗M 〉HM (III.206)

as claimed. Thus, not only does there exist a consistent family of Hamiltonian quadratic forms but indeed
a fixed point Hamiltonian H∗R. This Hamiltonian coincides with the one HR of the continuum because we
checked in the previous subsection that the fixed point covariances ω∗M are obtained from the continuum

covariance ωM by [ω∗M ]−1 = I†Mω
−1
R IM .

It is instructive to check that
ω−1
R = lim

M→∞
(ω∗M )−1 (III.207)

by using the explicit presentation (III.139). To do this note that with q2 = (k2
0 + p2)ε2M and t = kM l

we have 1
q3 [qch(q) − sh(q)] → 1 as M → ∞ and 1

q3 [sh(q) − q] → 1 as M → ∞ and cos(t) → 1 and
ε2M

ch(q)−cos(t) → 1
k20+p2+(kRl)2

. Note also that (III.132) is an instance of the theorem of Mittag-Leffler (see

theorem III.E.1) applied to (III.139) that allows to write a meromorphic function as a linear combination of
simple pole functions and an entire holomorphic function.
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III.D Example: Klein Gordon field II - Properties

The previous section presented an application of the renormalisation procedure. We have seen that a fixed
point of the renormalisation flow in both schemes corresponds to cylindrically consistent projections of a
continuum theory. However, while it was possible in this example to find the fixed point (Ĥ∗M ,H∗M ,Ω∗M ) by
merely studying the fixed point equation thoroughly, this might not be the case anymore in a general situation.

Instead, one could consider an initial naive discretisation (Ĥ
(0)
M ,H(0)

M ,Ω
(0)
M ) and compute the flow of n→∞.

Obviously, the question arises whether this procedure would lead us to the same fixed point, as the one we
found by “looking” at the block-spin transformation. For this purpose this section will investigate the properties
of the renormalisation procedure as advocated above. Answering among others, how both schemes compare
to each other, how the choice of naive discretisation matters and whether the transformation (III.34) leads to
the known fixed point and if different choices than p = 2 in IM→pM have impact.
These questions have been studied and answered in [130], hence in the subsections III.D.2-III.D.5 we will copy
the calculations therein.

III.D.1 Comparison of the Renormalisation Flow schemes

Upon taking the continuum limit, the path-integral induced Hamiltonian flow agrees with the direct Hamil-
tonian flow, which is in case of the free scalar field a theory of a single field species. It might be surprising
that at coarse resolutions both fixed point theories do look very differently. However, this can be explained as
follows:
Given a continuum spacetime measure µ, one can either first consider the cylindrically consistent projecti-
ons of the mentioned measure, µM , and afterwards use the OS reconstruction on it to obtain the OS data
(HM , ĤM ,ΩM ) at the same coarse resolution.
Alternatively, starting again from µ we perform first an OS reconstruction to obtain the triple (Ĥ,H,Ω) and af-
terwards project this onto a coarse resolution, i.e. one constructs an (in general different) triple (H′M , Ĥ ′M ,Ω′M ).
If these two quantities do not match, this merely implies that the considered diagram does not close. But
although the theories at coarse resolution look different, they still define the same continuum theory.

In case of the free scalar field this is exactly what happens, as we find that the flow of the path-integral
induced Hamiltonian renormalisation increases the number of fields species with each step n at finite resolution
M , due to the necessity to construct representatives with respect to the null space of the corresponding history
space measure. This is exactly, what has been circumnavigated for the direct flow: instead, it stays within a
single field species regime for all steps n at every finite resolution M .
But with both defining the same continuum theory, we would be in principle free to choose the scheme, which
is technically simpler to execute. Hence, by such practical implications the direct Hamiltonian renormalisation
is (at least for the free field) favoured.

Moreover, there is the conceptual advantage of the direct Hamiltonian renormalisation: namely, we would
like to obtain the matrix elements of the Hamiltonian at finite resolution. And as we have seen the finite
resolution Hamiltonian Ĥ∗M of the direct flow is much closer to what we, intuitively, would imagine this object
to look like. In contrast to it, the path-integral induced flow has introduced an infinite number of field species
at the cylindrically projected level.
Hence, as the first scheme is presenting a more intuitive picture for the interpretation of the objects at finite
resolution, we will prefer to work with it in the following.

III.D.2 Convergence and stability of the renormalisation sequence

Let us quickly summarise the results and definitions (III.194),(III.16),(III.102) and (III.108) needed and obtained

in the previous section for ν
(n)
M , the Hilbert space measure of the 1+1-dimensional Klein-Gordon field of mass

p (up to numerical prefactors which are not important for what follows)

ν
(n)
M (wM [fM ]) = e−

1
2 〈fM ,c

(n)
M fM 〉M

〈fM , c(n)
M fM 〉M := ε2M

∑
m,m′∈ZM

f̄(m) c
(n)
M (m,m′) fM (m′)

c
(n)
M (m,m′) : = c

(n)
M (m−m′) =

ˆ
R

dk0

2π

∑
l∈ZM

eikM l(m−m
′) ĉ

(n)
M (k0, l)

ĉ
(n+1)
M (k0, l) =

1

2

(
(1 + cos(lkM/2)ĉ

(n)
2M (k0, l) + (1− cos(lkM/2)ĉ

(n)
2M (k0, l +M)

)
(III.208)
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where kM := 2π
M . There we started the recursion with the naive discretisation (∆

(0)
M fM ) := ε−2

M [fM (m+ 1) +
fM (m− 1)− 2fM (m)] of the Laplacian and found that the recursion can be parametrised by three functions
an, bn, cn of qM :=

√
k2

0 + p2εM

ĉ(n)(k0, l) =
ε2M
q3
M

bn(qM ) + cn(qM ) cos(tM )

an(qM )− cos(tM )
(III.209)

with tM = lkM . The flow is then defined in terms of the recursion relations for the parametrising functions

an+1(q) := 2[an(q/2)]2 − 1,

bn+1(q) := [2anbn + bn + cn + ancn](q/2),

cn+1(q) := 2[bn + cb + ancn](q/2) (III.210)

with the initial values

a0(q) = 1 + q2/2, b0(q) = q3/2, c0(q) = 0 (III.211)

corresponding to the above chosen naive discretisation of the Hamiltonian. From these the existence of a fixed
point was found:

a∗(q) = ch(q), b∗(q) = qch(q)− sh(q), c∗(q) = sh(q)− q (III.212)

Let us now check whether this fixed point is actually a limit of the recursion or merely an accumulation
point. Moreover, the stability of the fixed point with respect to perturbing the initial values was not considered.
In what follows we supply the analysis from [130].

Convergence properties

A necessary condition for convergence of the flow is that

an(q) = 2an−1(q/2)2 − 1 (III.213)

with starting value a0(q) = 1 + 1
2q

2 really runs into its fixpoint

cosh(q) =
∑
n

1

(2n)!
q2n = 1 +

1

2
q2 +

1

24
q4 + ... (III.214)

We will examine this by computing the flow of the coefficient of each power of q2 separately. This maps the
problem of dealing with recursive functional equations to recursive relations of sequences, see e.g. [215, 216].
One immediately sees that the constant and the quadratic term always remain the same under the flow, i.e.

a
(0)
n = 1, a

(2)
n = 1

2 for all n where an(q) =
∑2n+1

k=0 a
(k)
n qk. In fact, it is easy to see that all odd powers of q

vanish and that an is a polynomial of order 2n in q2. For the remaining coefficients we note:

Lemma III.D.1. Suppose f, g ∈ R, f 6= 1. Then for a sequential recursive relation of the form

an = fan−1 + g (III.215)

we find a solution as:

an = fn(a0 −
g

1− f ) +
g

1− f (III.216)

Beweis. It is obviously true for n = 1 as a1 = fa0 + g
1−f (1 − f) = fa0 + g. Assuming thus the claim

holds for n it follows

an+1 = f

(
fn(a0 −

g

1− f ) +
g

1− f

)
+ g = fn+1(a0 −

g

1− f ) +
g

1− f (III.217)

The lemma can be extended to f = 1 using de l’Hospital’s theorem.
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Lemma III.D.2. Suppose that f(n), g(n) are sequences with f(n) 6= 0 ∀n. Then a sequential recursive
relation of the form:

an+1 = f(n)an + g(n) (III.218)

is solved by

an =

(
n−1∏
k=0

f(k)

)a0 +

n−1∑
j=0

g(j)∏j
k=0 f(k)

 (III.219)

Beweis. Let An := an/(
∏n−1
k=0 f(k)), n ≥ 1 and A0 := a0. Then by the recursion relation

An+1 −An =
g(n)∏n
k=0 f(k)

(III.220)

hence

An −A0 =

n−1∑
j=0

Aj+1 −Aj =

n−1∑
j=0

g(j)∏j
k=0 f(k)

⇒ a(n) =

(
n−1∏
k=0

f(k)

)A0 +

n−1∑
j=0

g(j)∏j
k=0 f(k)

 (III.221)

It is instructive to verify that Lemma III.D.2 reduces to the previous one when f(n), g(n) do not depend
on n.

Since a0(q) is quadratic and the recursion is quadratic as well, we see that the highest power for an(q) is
always 2n+1. Now, we apply the Cauchy-product-rule( ∞∑

k=0

akq
k

)( ∞∑
k=0

bkq
k

)
=

∞∑
k=0

 k∑
j=0

ak−jbj

 qk (III.222)

to get (using that all the coefficients of all odd powers vanish)

an+1(q) =

2n+2∑
k=0

a
(k)
n+1q

k = 2

2n+1∑
k=0

a(k)
n

(q
2

)2

− 1 = 2

2n+2∑
k=0

 k∑
j=0

a(j)
n a(k−j)

n

 2−kqk − 1 (III.223)

So as long as k ≥ 4:

a
(k)
n+1 =

k∑
j=0

a(j)
n a(k−j)

n 2−k+1 = 2−k+2a(k)
n + 2−k+1

k−1∑
j=1

a(j)
n a(k−j)

n (III.224)

which is now a linear relation for a
(k)
n , i.e. we can apply Lemma III.D.2. Now since all a

(k)
l = 0, ∀l ≤ b ln(k/2)

ln 2 c
also our starting value is zero and we get:

a(k)
m = (2−k+2)m

m−1∑
t=0

(2−k+2)−(t+1)

2−k+1
k−1∑
j=1

a
(j)
t a

(k−j)
t

 =

m−1∑
t=0

1

2
(2−k+2)m−t

k−1∑
j=1

(
a

(j)
t a

(k−j)
t

)
(III.225)

It is easy to compute, e.g.:

a(4)
n =

1

4!
(1− 2−2n) (III.226)

and use this to claim

a(2k)
n =

1

(2k)!

(
1 +O(2−n)

)
, a(2k+1)
n = 0 (III.227)
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which is the above equation for k ≤ 2. And assuming it holds for ∀j ≤ k

a(2k)
m = (2−2k+2)m

m−1∑
t=0

(2−2k+2)−t
1

2

2k−1∑
j=1

a
(j)
t a

(2k−j)
t = 22(1−k)m

m−1∑
t=0

22(k−1)t 1

2

k−1∑
j=1

a
(2j)
t a

(2k−2j)
t =

=

m−1∑
t=0

22(1−k)m−t 1

2

k−1∑
j=1

1

(2j)!(2k − 2j)!

(
1 +O(2−t)

) (
1 +O(2−t)

)
(III.228)

We now expand the function of 2−t appearing in (III.228) as a power series
∑
i ci(2

−t)i with some coefficients
ci ∈ R, such that the ci are independent of t and finite. It follows:

a(2k)
m =

1

(2k)!

k−1∑
j=1

(2k)!

(2j)!(2k − 2j)!

1

2
22(1−k)m

(
m−1∑
t=0

22(k−1)t +
∑
i

ci(2
−t)i

)
=

=
1

(2k)!

 k∑
j=0

(
2k
2j

)
− 2

 22(1−k)m−1

(
1− 22(k−1)m

1− 22(k−1)
+
∑
i

ci
1− 2−im

1− 2−i

)

=
1

(2k)!

2k−1∑
j=0

(
2k − 1
j

)
− 2

 2−m2(k−1)−1

22(k−1) − 1

(
22(k−1)m − 1 +

∑
i

ci
22(k−1) − 1

1− 2−i
(1− 2−mi)

)

=
1

(2k)!
(22k−1 − 1)

1

22(k−1) − 1

(
1− (2−m)2(k−1) +O(2−m)

)
=

1

(2k)!
(1 +O(2−m)) (III.229)

where we used

(
k
j

)
:= k!

j!(k−j)! to obtain line 2 and Pascals rule

(
k + 1
j

)
=

(
k
j

)
+

(
k

j − 1

)
for

line 3 and
∑k
j=0

(
k
j

)
= 2k for line 4.

Having shown (III.227), we have also shown that the flow drives the initial value indeed to the fix-point as
n→∞.

Studying the flow of dn(q) = bn(q) + cn(q), however, is considerably more difficult. Although being
described by the linear recursion relation dn+1(q) = 4(1 + an(q/2))dn(q/2), not knowing the analytic form
of the an(q) entering in each step makes it analytically impossible to evaluate exactly whether d0 = q3/2
flows indeed into d∗(q) = q(cosh(q)− 1). Instead, we will present the numerical evidence, that it approaches
the fixed point rather fast, see figure III.3. We plot the functional dependence as a function of q for different
iterations in steps n. At fixed n the deviation from the fixed point is bigger for higher values of q since an(q)
is a polynomial of degree 2n. At fixed q the deviation decreases as we increase n.
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Abbildung III.3: The flow of an(q) (left) and dn(q) (right) for q ∈ {1, 10} in a logarithmic plot. We used dashed lines for
the iterations n = 0, 1, 3, 10 in different colours and compare this to the corresponding fixed point functions (a∗(q) = ch(q),
d∗(q) = q(1 − ch(q)) as solid blue line. The fixed point is approached from below extremely fast in both cases, such that
the blue line is almost indistinguishable from the orange dashed line for n = 10 in the depicted interval. The pictures have
been taken from [130].
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Stability properties with respect to initial conditions

While we have supplied analytical and numerical evidence that starting from the naive lattice Laplacian with
only next neighbour contributions the flow indeed converges to the fixed point found, the question arises how
stable the fixed point is under changing the initial discretisation of the covariance. In particular, the fact that
the flow studied in the previous section was parametrised by three functions only, rests on the form of the
initial discretisation. If we also consider initial discretisations that involve next to next neighbour contributions,
then a parametrisation by three functions is no longer sufficient as we will see. The most general, translation
invariant, symmetric form of the lattice Laplacian on a one dimensional lattice consisting of M points is given
by (note the periodicity of the function)

(∆MfM )(m) =
1

ε2M

bM/2c∑
k=0

∆M (k)[fM (m+ k) + fM (m− k)] (III.230)

where the M coefficients ∆M (k) are such that for fM = EMf, f ∈ C∞([0, R)) the Taylor expansion up
to second order in εM yields f ′′(mεM ). We call this a physically allowed discretisation. This gives the two
constraints

bM/2c∑
k=0

∆M (k) = 0,

bM/2c∑
k=1

∆M (k)k2 = 1 (III.231)

leaving M − 2 free parameters for the allowed discretisations. As an example, consider the next to next
neighbour case, i.e. ∆M (k) = 0, k > 2 leaving one free parameter γ

(∆γ
MfM )(m) =

ε−2
M

1 + 4γ
([f(m+ 1) + f(m− 1)− 2f(m)] + γ[f(m+ 2) + f(m− 2)− 2f(m)]) (III.232)

The case γ = 0 reproduces the naive next neighbour Laplacian, thus γ ∈ R labels its next to next neighbour
type of perturbation.

As an example, we consider a choice for γ within the next to next neighbour discretisation class which
makes ∆MEMf agree with EM∆f up to order ε4M . The power expansion of f(x± ε), ε ≡ εM and f(x± 2ε)
results in the following linear system:

f(x+ ε)− f(x)
f(x+ 2ε)− f(x)
f(x− ε)− f(x)
f(x− 2ε)− f(x)

 =


1 1/2 1/6 1/24
2 2 4/3 2/3
−1 1/2 −1/6 1/24
−2 2 −4/3 2/3




εf ′(x)
ε2f ′′(x)
ε3f (3)(x)
ε4f (4)(x)

 (III.233)

If one inverts the appearing matrix, one can read of the contributions for f ′′ which are

(∆f)(x) = f ′′(x) =
1

12ε2
(−f(x+ 2ε)− f(x− 2ε) + 16f(x+ ε) + 16f(x− ε)− 30f(x)) (III.234)

This corresponds to the choice γ = − 1
16 .

Its eigenvalues in the Fourier basis are (using cos(2x) = 2 cos(x)2 − 1)

(∆eikn.)(x) =
eiknx

12ε2
(
−eikn2 − e−ikn2 + 16(eikn + e−ikn)− 30

)
=

= −e
iknx

6ε2
(cos(2kn)− 16 cos(kn) + 15) =

= − 1

3ε2
eiknx

(
(cos(kn)− 4)2 − 9

)
=: ∆̂(n)eiknx (III.235)

Accordingly, the initial covariance is now, described by (recall q2 = (k2
0 + p2)ε2M , the appearing constants are

irrelevant for what follows)

Ĉ
(0)
M (k0, l) = R−1 ~κφ

2

3ε2M
(cos(kM l)− 4)2 − 9 + 3ε2M (p2 + k2

0)

= R−1 ~κ
2

3ε2M
cos(kM l)2 − 8 cos(kM l) + 7 + 3q2

(III.236)
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Let C
(n)
M = ~κφc(n)

M /R. The renormalisation flow (for D = 1) is given by

ĉ
(n+1)
M (l, k0) =

1

2

(
[1 + cos(k2M l)]ĉ

(n)
2M (l, k0) + [1− cos(k2M l)]ĉ

(n)
2M (l +M,k0)

)
(III.237)

We claim that this transformation leaves invariant the following functional form parametrised by six functions
an, ..., fn (t = kM l)

Ĉ
(n)
M (t) =

ε2M
q3

fn(q) cos(t)2 + en(q)cos(t) + dn(q)

cn(q) cos(t)2 − bn(q) cos(t) + an(q)
(III.238)

The initial data can be read off from (III.236)

a0 = 7 + 3q2, b0 = 8, d0 = 3q3, e0 = 0, f0 = 0, c0 = 1 (III.239)

After one renormalisation step, the denominator becomes the product

2[cn cos(t)2 − bn cos(t) + an][cn cos(t)2 + bn cos(t) + an] =

= 2
(
c2n cos(t)4 + a2

n + 2ancn cos(t)2 − b2n cos(t)2
)

=

= 2
(
c2n/4 + c2n/4 cos(2t)2 + c2n/2 cos(2t) + ancN cos(2t) + ancn − b2n cos(2t)− b2n + a2

n

)
=

= [c2n/2] cos(2t)2 − [b2n − c2n − 2ancn] cos(2t) + [c2n/2 + 2ancn − b2n + 2a2
n] (III.240)

Remembering that under the renormalisation we have t 7→ t/2, q 7→ q/2, we can read off the recursion
relations

cn+1(2q) := cn(q)2/2 (III.241)

bn+1(2q) := b2n(q)− cn(q) (cn(q) + 2an(q)) (III.242)

an+1(2q) := cn(q) (cn(q)/2 + 2an(q))− b2n(q) + 2a2
n(q) (III.243)

For cn we can immediately see that n → ∞ flows into the fixed point c∗(q) = 0. Then the fixed point
condition for (III.242) becomes b∗(2q) = b∗(q)

2. This functional equation has the one parameter set of
solutions α 7→ b∗(q) = eαq. Our initial condition (III.239) started with a function b0(q) that was even in q and
(III.242) does not change this behaviour. Thus the only choice is: α = 0, b∗(q) = 1.
Consequently, we find the fixed point condition for (III.243)

a∗(2q) = 2a∗(q)
2 − 1 (III.244)

already familiar from the next neighbour discretisation class and which is solved by the functions cos and cosh.
Looking now at the numerator from (III.237)

2(1 + cos(t/2))
[
fn cos(t/2)2 + en cos(t/2) + dn

] [
cn cos(t/2)2 + bn cos(t/2) + an

]
+

+ 2(1− cos(t/2))
[
fn cos(t/2)2 − en cos(t/2) + dn

] [
cn cos(t/2)2 − bn cos(t/2) + an

]
=

= [fncn + fnbn + encn] cos(2t)2+

+ 2[fncn + fnbn + encn + fnan − enbn + dncn + enan + bndn] cos(2t)+

+ 2[fncn/2 + fnbn/2 + encn/2 + fnan + enbn + dncn + enan + bndn + 2andn] (III.245)

Hence, the remaining recursion relations are

fn+1(2q) := (fncn + fnbn + encn) (q) (III.246)

en+1(2q) := 2 ((fn + en + dn)cn + (an + bn)fn + enbn + dnbn + enan) (q) (III.247)

dn+1(2q) := 2

(
1

2
(2dn + fn + en)cn +

1

2
(2an + bn)fn + 2andn + enbn + bndn + enan

)
(q) (III.248)

Plugging in the already known results (i.e. c∗ = 0, b∗ = 1 and a∗ ∈ {cosh(q), cos(q)}) we find that the fixed
point of fn must obey

f∗(2q) = f∗(q) (III.249)

The only scale invariant function in one variable is a constant, i.e f∗ = K. To see which value of K is picked by
the initial conditions it is sufficient to compute the flow at q = 0. We notice that d0(0) = e0(0) = f0(0) = 0
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and that (III.246)-(III.248) is a homogeneous system of equations of first order as far as the functions dn, en, fn
are concerned. This means, by induction, that the values of dn, en, fn at q = 0 remain zero for the entire flow.
It follows that: K = 0. The remaining fixed point conditions reduce then to those for the next neighbour class
discretisation, i.e. compare to (III.210)

2e∗(2q) = 2(2 + a∗)e∗ + 2d∗, d∗(2q) = (2a∗ + 1)d∗ + (a∗ + 1)(2e∗) (III.250)

It follows that both the (unique) choice from the next neighbour class and the above choice from the next to
next neighbour class have the same unique fixed point.

Concerning the convergence of the system towards the fixed point, the situation is more involved than for the
next neighbour class. While by similar methods cn(q) is explicitly computable as

cn(q) = 2−
∑n
k=0 2k = 21−2(1+n)

(III.251)

it turns out that if we start with the initial values from (III.239) one finds that the flow of an, bn, dn, en, fn
for each coefficient of the respective power series diverges. Consider for instance an(0). As cn(q) approaches
zero exponentially fast this means the for higher iterations we approach for an(0) the recursive equation
an+1(0) = 2an(0)2 − 1. Let δn = an(0) − 1 then δn+1 = 2δn(2 + δn). This means that the error δn
grows exponentially, i.e. an(0) appears to be a relevant coupling in the terminology of statistical physics. For
starting values |a0(0)| > 1 the sequence diverges. For starting values |a0(0)| < 1 the sequence displays chaotic
behaviour and does not converge to the fixed point but there may be a subsequence that does. Our chosen
discretisation picks a0(0) = 7 so certainly an(0) by itself does not converge.

Note however, that the convergence of the coefficient function sequences an, .., fn is only sufficient for
the convergence of the covariance. Indeed, since the covariance is a homogeneous rational function of those
six functions, that is, a fraction with both numerator and denominator linear in those functions, after each
renormalisation step a common rescaling of those functions by any (non vanishing) other function such as a
(non vanishing) constant leaves the covariance unaffected. It turns out that a common rescaling by bn(0) after
each renormalisation step leads to modified sequences

a′n(q) :=
an(q)

bn(0)
, .. f ′n(q) :=

fn(q)

bn(0)
(III.252)

which now converge as the numerical evidence suggests. Even more, the convergence takes place independently
of the value of γ except for γ = γ0 = − 1

4 which plays a special role as the discretisation of the Laplacian
blows up here.

We plot both the individual functions at γ = −1/16 and the total covariance at two values of γ smaller
and bigger than γ0. The convergence of the covariance is faster for γ > γ0 since for γ < γ0 the denominator
can become small. However, the position of those minima moves to infinity as the flow proceeds. It is clear
from this section how one would repeat the analysis, e.g., for the next to next to next neighbour class where
one would have a two-parameter freedom. We leave this for future work.
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Abbildung III.4: The flow of the rescaled a′n(q) (left) and b′n(q) (right) for q ∈ {1, 10} in a logarithmic plot. We used
dashed lines for the iterations n = 0, 1, 3, 7, 10 in different colours and compare to this the corresponding fixed point functions
(a∗(q) = ch(q), b∗(q) = 1) as a solid blue line. The fixed point is approached from below extremely fast in both cases, such
that the blue line is almost indistinguishable from the orange dashed line for n = 10 in the depicted interval. Note that we
do not display c′n(q) which approaches zero exponentially fast. The pictures have been taken from [130].
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Abbildung III.5: The flow of the rescaled d′n(q) (left) and e′n(q) (right) for q ∈ {1, 10} in a logarithmic plot. We use
dashed lines for the iterations n = 0, 1, 3, 7, 10 in different colours and compare to this the corresponding fixed point functions
(d∗(q) = qch(q)− sh(q), e∗(q) = sh(q)− q) as a solid blue line. The fixed point is approached from below extremely fast in
both cases, such that the blue line is almost indistinguishable from the orange dashed line for n = 10 in the depicted interval.
Note that we do not display f ′n(q) which approaches zero exponentially fast. The pictures have been taken from [130].
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Abbildung III.6: The flow of the total covariance Ĉ(n)(q, t = 2π/10) as function of q ∈ [1, 20) for various iterations
n = 1, 3, 5 of the RG map. On the left the naive discretisation to start the flow with was γ = 1/3 > γ0 and on the
right it was γ = −1/3 < γ0. On the left, we find that the fixed point is approached very rapidly and on the right we see
that, although the number of poles grows, they get shifted towards infinity for increasing n. The pictures have been taken
from [130].

III.D.3 Universality Properties

The flow - and correspondingly the final fix-point - of the measure family imposes the cylindrical consistency
condition on the coarse graining maps, hence only a certain subset of all possible coarse graining maps IM→2M

can be considered. However, it transpired in [130] that the block-spin-map considered so far is not unique. In
this subsection we quote the investigations on other suggestions from there, e.g. the deleting-map, which is
also cylindrically consistent. Moreover, in this subsection we study the latter in the context of direct Hamil-
tonian renormalisation. In the following subsection, III.D.4, we will make the comparison to the literature and
compute the fixed points of deleting and block-spin map in the path integral context in the formalism which
is used in the standard literature.

To review the notation, we consider the discretised Weyl element smeared with the test function fM :

wM [fM ] = exp

(
i
∑
m∈ZM

φM (m)fM (m)

)
(III.253)

which allows us to define the generating functional of the Hilbert space measure νM as:

νM (wM [fM ]) =

ˆ
dνM (φM )eiφM [FM ] (III.254)

where in practice dνM (φM ) is a suitable weight function times M -copies of the Lebesque measure in φM (m).
The map (IM→2MfM )(m) = fM (bm/2c), m ∈ Z2M which we had considered so far allows us to rewrite

the cylindrical consistency condition

νM (wM [fM ]) = ν2nM (w2nM [IM→2nMfM ]) (III.255)
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e.g. for n = 1 as

ˆ
dνM (φM )eiφM [fM ] =

ˆ
dν2M (φ2M )eiφ2M [IM→2MfM ] =

=

ˆ
dν2M (φ2M )e

i
∑
m∈Z2M

fM (bm/2c)φ2M (m)

=

ˆ
dµ2M (φ2M )e

i
∑
m′∈ZM

fM (m′)(φ2M (2m′)+φ2M (2m′+1)) (III.256)

which shows that IM→2M indeed represents a block-spin-transformation in the usual sense.
However, the flow of measures certainly depends on the chosen block-spin-transformation and thus also

the fixed points could depend on it. The degree of independence of the choice of such a map ĨM→2M is loosely
referred to as universality. For example, the deleting map is defined by

(
IDelM→2MfM

)
(m) =

{
2αfM (m/2) if m ∈ 2ZM
0 else

(III.257)

As one can check, this map passes the cylindrical consistency condition from Lemma III.A.1 for any α ∈ R

IDel
2nM→2n+n′M

◦ IDelM→2nM = IDel
M→2n+n′M

(III.258)

However, the only way to guarantee that this map is isometric is α = D/2 because

〈fM , f ′M 〉M = εDM
∑
m∈ZDM

f̄M (m)f ′M (m) = 〈IDelM→2MfM , I
Del
M→2Mf

′
M 〉M =

= εD2M
∑

m∈2ZD2M

22αfM (m/2)f ′M (m/2) = 22α−DεDM
∑
m∈ZDM

fM (m)f ′M (m) (III.259)

We refrain from constructing explicit evaluation and injection maps, since they are irrelevant for determining
the fixed point as well as taking the inductive limit. We will study it below and compare with the transformation
used in the previous section.

The set of coarse graining transformations satisfying cylindrical consistency is infinite (e.g. one could use
IM→pM instead of IM→2M where p is any prime number). Yet, these are indeed non-trivial conditions, and
not all renormalisation-flows studied in the literature fulfil these conditions. E.g. in the literature it is standard
to consider the approximate blocking kernel (see e.g. [106, 112–114] and reference therein)

eiφ2M [IκM→2MFM ] :=

ˆ
dφ̃Me

−2κ[
∑
m∈ZM

(φ̃M (m)− 1
2

∑
m′∈Z2M,bm′/2c=m φ2M (m′)]2

eiφ̃M [fM ] (III.260)

For κ → ∞ the exponential tends to the δ-Dirac-distribution and reproduces the renormalisation map,
IM→2M = limκ→∞ IκM→2M which as we know satisfies the cylindrical consistency condition.

We review the renormalisation flow based on the approximate blocking transformation in the next section.

To see that our renormalisation flow n 7→ ν
(n)
M is consistent with the flow used in the literature (which we

will be defined in (III.272)) in terms of action functionals we write dν
(n+1)
M (φM ) = dMφMe

−βS(n+1)
M (φM ) with

S
(n+1)
M (φM ) being a function of φM (“action functional”), then:

ν
(n+1)
M (wM [fM ]) =

ˆ
dMφM

(
e−βS

(n+1)
M (φM )

)
eiφM [fM ] (III.254)

=

ˆ
dν

(n)
2M (φ2M )eiφ2M [IκM→2MfM ]

(III.260)
=

ˆ
dM φ̃M

(ˆ
dν

(n)
2M (φ2M )e

−2κ[
∑
m∈Z(φ̃M (m)− 1

2

∑
m′∈Z2M,bm′/2c=m φ2M (m′)]2

)
eiφ̃M [fM ] (III.261)

Cylindrical Inconsistency of the Approximate Blocking Kernel

We check whether (III.258) holds for any ∞ > κ > 0. If true, then a necessary implication would be that

eiφ4M [IκM→4MfM ] ?
= eiφ4M [Iκ2M→4M◦I

κ
M→2MfM ] (III.262)
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which reads explicitly
ˆ
d2M φ̃2Me

−2κ
∑
m∈Z2M

[φ̃2M (m)− 1
2

∑
m′∈Z4M,bm′/2c=m φ4M (m′)]2×

×
ˆ
dMφ′Me

−2κ
∑
n∈ZM

[φ′M (m)− 1
2

∑
n∈Z2M,bn′/2c=n φ̃2M (n′)]2

?
=

ˆ
dMφ′Me

−2κ
∑
m∈ZM

[φ′M− 1
4

∑
m′∈Z4M,bm′/4c=m φ4M (m′)]2

eiφ
′
M [fM ] (III.263)

We evaluate the Gaussians on the left hand side:ˆ
d2M φ̃2M exp(−2κ

∑
m∈Z2M

φ̃2M (m)2 − κ/2
∑

m∈Z2M

φ̃2M (m)2)×

× exp(−κ/2
∑
n∈ZM

φ̃2M (2n)φ̃2M (2n+ 1)) exp(−2κ
∑

m∈Z2M

φ̃2M (m)A(m)) (III.264)

where we defined A(m) :=
∑
m′∈Z4M ,bm′/2c=m φ4M (m′) + φ′M (bm/2c).

We perform the integrals over φ̃2M (2n + 1), n ∈ ZM first and then perform the remaining integral over
φ̃2M (2n), n ∈ ZM , denoted by dM φ̃2M , resulting in

ˆ
dM φ̃2M

√
2π

5κ

M

e
κ/10

∑
n∈ZM

( 1
2 φ̃2M (2n)+2A(2n+1))2

e
−5κ/2

∑
n∈ZM

φ̃2M (2n)2
e
−2κ

∑
n∈ZM

φ̃2M (2n)A(2n)
=

=

√
2π

5κ

M

e
2κ/5

∑
n∈ZM

A(2n+1)2
ˆ
dM φ̃2Me

∑
n∈ZM

φ̃2M (2n)2(1/40−5/2)κ−
∑
n∈ZM

φ̃2M (2n)(2κA(2n)−κ/5A(2n+1))

=

√
2π

5κ

M√
40π

99κ

M

e
2κ
5

∑
n∈ZM

A(2n+1)2
e

10
99κ

∑
n∈ZM

(2A(2n)−1/5A(2n+1))2
(III.265)

It is transparent, that e.g. the coefficients of the φ′M (n)2, n ∈ ZM appearing in the exponent of the last line
above do not sum up to −2κ. It follows that IκM→2M does not fulfil the cylindrical consistency condition for
any finite κ and we exclude it from the list of acceptable blocking kernels.

Continuum theory for different blocking-kernels

Both the deleting kernel and the kernel we used so far are cylindrically consistent. How do their flows compare
to each other?

To answer this question, we investigate the path-integral induced flow of the covariance

C
Del,(n+1)
M = (1LT ⊗ IDelM→2M )†C

Del,(n)
2M (1LT ⊗ IDelM→2M ) (III.266)

which can be computed using the same methods as before:

〈FM , CDel,(n+1)
M FM 〉M =

= ε2D2M
∑

m1,m2∈ZD2M

ˆ
ds

ˆ
ds′×

× (1LT ⊗ IDelM→2MFM )(s,m1)(1LT ⊗ IDelM→2MFM )(s′,m2)C
Del,(n)
2M ((s,m1), (s′,m2)) =

=
22α

22D
ε2DM

ˆ
ds

ˆ
ds′

∑
m1,m2∈ZDM

FM (s,m1)FM (s′,m2)C
Del,(n)
2M (s,m1), (s′,m2)) (III.267)

Which tells us that the flow of the covariance is given by

C
Del,(n+1)
M ((s,m1), (s′,m2)) = 22(α−D)C

Del,(n)
2M ((s,m1), (s′,m2)) (III.268)

and consequently, also for their discrete Fourier transforms. We find this to drive the D = 1 starting covariance

Ĉ
(0)
M (k0, l) = R−1 ~κ

2

1

ε−2
M (1− cos(kM l)) + k2

0 + p2
(III.269)
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to zero or infinity unless α = D. This demonstrates two things: First, the isometry of the coarse graining map
is not a necessary condition in order to define a suitable flow. On the other hand, by far not every map defines
a meaningful flow.

Picking α = D we compare the continuum limits M → ∞ of both fixed point covariances computed by
the block spin and deleting kernel respectively

lim
M→∞

C∗M (k0, l) =
~κ
4R

1

p2 + k2
0 + (2πl)2

= lim
M→∞

CDel,∗M (k0, l) (III.270)

Thus the two continuum theories they define are identical when α = D. Note that, trivially, the cylindrical
projections of the same continuum covariance with respect to two different projections corresponding to dif-
ferent blocking kernels are of course different.

III.D.4 Comparison with the literature

To show that the work from the papers [128–131] is indeed original, we must make a comparison to how
renormalisation was treated in the literature earlier on. The mainstream focused of course on the path integral
renormalisation based on seminal work by Wilson, Bell and Hasenfratz et. al. using the example of the massless
2-dimensional Klein-Gordon field and the averaging blocking kernel [106,112–114]. Their methods are quoted
below, once for their own applications and afterwards for their applications in [130], where one considered for
the first time also the deleting blocking kernel introduced in the last subsection.

We start with the Euclidian action for free massless scalar field in d = 1 + 1:

S :=
β

2

ˆ
RD+1

dtdDx[
1

c
Φ̇2 − cΦω2Φ] =:

β

2

ˆ
ddx ΦG2Φ

and a discretisation thereof (εM := 1/M):

SM (φM ) =:
βε2M

2

∑
n∈Z2

M

∑
m∈Z2

M

ΦM (m)G2
M (m,n)MΦM (n) (III.271)

where M is the UV cut-off, that is, we consider a periodic lattice of unit length in each spacetime direction.
The discretisation is translation- and reflection invariant G2

M (m,n) = G2
M (||m− n||). The transformation of

Euclidian actions

C · e−βS′M (ΦM ) :=

ˆ
(
∏
m

dΦ̃2M (m))e−βS2M (Φ̃2M )e
−2κ

∑
n∈Z2

M
(ΦM− 1

4

∑
n′∈Z2

2M
,n=bn′/2c) Φ̃2M )2

(III.272)

defines the approximate block spin transformation, where C is some unimportant, ΦM -independent constant
and the exponential on the right hand side is called the averaging blocking kernel that relates the fields ΦM
on the coarser lattice to those Φ2M on the finer. In the limit κ → ∞ the kernel becomes an exact Dirac δ
Distribution, which fixes the new ΦM to be an average of all the fields in the old block.

The action is diagonalised using the discrete Fourier transform: ΦM (m) =: 1
M2

∑
l e
ikM l·mΦ̂M (l) and

G2
M (r) =: 1

M2

∑
l e
ikM l·rĜ2

M (l), with kM := 2π
M , l ∈ Z2

M . We obtain

ε2M
∑

n,m∈Z2
M

ΦM (m)G2
M (m,n)ΦM (n) = ε4M

∑
l∈Z2

M

Φ̂M (l)Ĝ2
M (l)Φ̂M (−l) (III.273)

In the literature [106] one considers the Hamiltonian H(φ) = 1
2

´
dxφ(−∆)φ and plugs its discretisation

straightforwardly into (III.272).

Averaging Blocking Kernel

This is a recapitulation of the strategy from the literature introduced by [106] and refined in [114]. In order
to find the fixed point, one studies the generating functional Z(βJ) of J ∈ LM

Z(βJ) =
1

Z

ˆ
dΦMe

− β2 ε
2
M

∑
m,n∈Z2

M
ΦM (m)G2

M (m−n)ΦM (n)
e
βε2M

∑
n∈Z2

M
JM (n)ΦM (n)

=
1

Z

ˆ
dΦ̂Me

− β2 ε
4
M

∑
l∈Z2

M
Φ̂M (l)Ĝ2

M (l)Φ̂M (−l)+βε4M ĴM (−l)Φ̂M (l)
(III.274)
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with Z being the partition function and dΦM is the M2− dimensional Lebesgue measure. In a first step, one
shifts the variables

Φ̂M (l) =
ĴM (l)

Ĝ2
M (l)

+ χ̂M (l) (III.275)

such that the integral over the χ̂M can be computed and cancels the factor 1/Z:

Z(βJ) =
1

Z

ˆ
dχ̂M exp

−β
2
ε4M

∑
l∈Z2

M

χ̂M (l)Ĝ2
M (l)χ̂M (−l) +

3β

2
ε4M

∑
l∈Z2

M

ĴM (l)ĴM (−l)
Ĝ2
M (l)

 =

= exp

3

2
βε4M

∑
l∈Z2

M

ĴM (l)ĴM (−l)
Ĝ2
M (l)

 (III.276)

If we expand this expression and (III.274) both to second order in ĴM , we get:

(βε4M )2

Z

∑
l,l′∈Z2

M

ĴM (−l)ĴM (−l)
ˆ
dφ̂M Φ̂M (l)Φ̂M (l′) exp

−β
2
ε4M

∑
l2∈Z2

M

Φ̂M (l2)Ĝ2
M (l2)Φ̂M (−l2)


=

3

2
βε4M

∑
l∈Z2

M

ĴM (l)ĴM (−l) 1

Ĝ2
M (l)

(III.277)

Since this expression holds for all ĴM it follows

1

Z

ˆ
dΦ̂M Φ̂M (l)Φ̂M (l′)e

− β2 ε
4
M

∑
l2∈Z2M

Φ̂M (l2)Ĝ2
M (l2)Φ̂M (−l2)

=

(
3

2βε4M

)−1
δ(l + l′)

Ĝ2
M (l)

(III.278)

This can be used in order to compute the 2-pt-function, which we translate into Fourier space:

〈ΦM (n)ΦM (n′)〉 =
1

Z

ˆ
dΦMΦM (n)ΦM (n′) exp(−βSM (ΦM ))

=
M−4

Z

∑
l,l′∈Z2

M

ei(kM ln+kM l
′n′)

ˆ
dΦ̂M Φ̂M (l)Φ̂M (l′)e

− β2 ε
4
M

∑
l2∈Z2M

Φ̂M (l2)Ĝ2
M (l2)Φ̂M (−l2) (III.278)

=

=
∑

l,l′∈Z2
M

eikM (ln+l′n′)δ(l + l′)
1

Ĝ2
M (l)

3

2β
=

=
∑
l∈Z2

M

eikM l(n−n
′) 1

Ω̂2
M (l)

(
3

2β

)
≈
ˆ

[0,2π]2

d2k

(2π)2
eik(n−n′) 1

ε2M Ĝ
2
M (k)

(
3

2β

)
(III.279)

The approximation in the last line becomes exact in the continuum limit M → ∞ in which we may replace
kM l = 2πl/M by k ∈ [0, 2π].

For the renormalisation flow defined by (III.272), we can compute the 2-pt-function of the coarser lattice
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in terms of the 2-pt-function on the finer lattice:

〈Φ̂M (n), Φ̂M (n′)〉M = (III.280)

=
1

Z

ˆ
dΦM (ΦM (n)ΦM (n′)) exp

−β
2
ε2M

∑
m,m′∈ZM

ΦM (m)(G2)′M (m−m′)ΦM (m′)

 =

=
1

ZC

ˆ
dΦM (ΦM (n)ΦM (n′))

ˆ
dΦ2M exp

−2κ
∑
m∈Z2

M

(ΦM (m)− 1

4

∑
m′′∈Z2

2M ,m=bm′′/2c

Φ2M (m′′))2


× exp

−β
2
ε22M

∑
m,m′∈Z2

2M

Φ2M (m)G2
2M (m−m′)Φ2M (m)

 =

=
1

ZC

ˆ
dΦ2M exp

−β
2
ε22M

∑
m′,m′′∈Z2M

Φ2M (m′)G2
2M (m′ −m′′)Φ2M (m′′)

×
×
ˆ
dΦM (ΦM (n)ΦM (n′)) exp

−2κ
∑
m∈ZM

(ΦM (m)− 1

4

∑
m′∈Z2M ,m=bm′/2c

Φ2M (m′))2


where we used (III.272) in the second step. Here the appearing integrals over ΦM (ñ) are all Gaussians (except
for ñ = n, n′) and cancel with the constant C. The remaining give back the normalisation

√
π/(2κ) twice for

n 6= n′ and once if n = n′. Thus (III.280) becomes

=
1

Z

ˆ
dΦ2Me

−βS2M (Φ2M )

2κ

π
(1− δn,n′)

∑
m,m′∈Z2

2M

1

16
Φ2M (m)Φ2M (m′)

(ˆ
dφe−2κφ2

)2

+

+

√
2κ

π
δn,n′

1

16

∑
m,m′∈Z2

2M

Φ2M (m)Φ2M (m′)

(ˆ
dφe−2κφ2

)
+

√
2κ

π
δn,n′

ˆ
dφφ2e−2κφ2

)

=
1

16

∑
m,m′∈Z2

2M ,n=bm/2c,n′=bm′/2c

〈Φ̂2M (n)Φ̂2M (n′)〉2M +
1

4κ
δn,n′ (III.281)

Iterating this transformation j−times yields

〈Φ̂M (n)Φ̂M (n′)〉M = (III.282)

=

(
1

4

)2j ∑
m,m′∈Z2

2jM
,n=bm/2jc,n′=bm′/2jc

〈Φ̂2jM (n)Φ̂2jM (n′)〉2jM +
1

4κ
(1 +

1

4
+

1

42
+ ...+

1

4j−1
)δn,n′

Simultaneous with the limit j → ∞, we consider the original lattice to become infinitely fine, such that the
summations in the first term on the right-hand side go over to integrals for which we must absorb the factor 2−j .

Moreover, it is assumed safe in [114] to perform the limit of the 2-pt function separately and plug in the
standard 1

p2 propagator for the infinitely fine lattice. Following their strategy, we arrive for large j at

〈Φ̂M (n)Φ̂M (n′)〉 ≈
ˆ 1/2

−1/2

d2x

ˆ 1/2

−1/2

d2x′

(ˆ ∞
−∞

d2p

(2π)

eip·(n+x−n′−x′)2εM

p2

)
+

1

3κ
δn,n′ (III.283)

Now we compare (III.283) with (III.279) - which was the 2-pt function at a fixed point - by diving the pi
integration into a summation of the integer li and an integration over ki, i.e. p = k + 2πl such that:

ˆ π

−π

d2k

(2π)2
eik(n−n′) 1

Ĝ2
M (k)

3

2βε2M
=

=

ˆ 2π

0

d2k

(2π)2

∑
l∈Z2

1

(k + 2πl)2

ˆ −1/2

1/2

dx

ˆ −1/2

1/2

dx′ei(k+2πl)(n+x−n′−x′) +

ˆ π

−π

d2k

2π
eik(n−n′) 1

3κ
(III.284)
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It follows:

1

ε2M Ĝ
2
M (k)

=
2β

9κ
+
∑
l∈Z2

2β/3

(k + 2πl)2
ei2πl(n−n

′) (−1)

(k/2 + πl)2

[ei(k+2πl)x]
1/2
−1/2

2i

[e−i(k+2πl)x′ ]
1/2
−1/2

2i
=

=
∑
l∈Z2

2β/3

(k + 2πl)2

1∏
µ=0

sin(kµ/2 + πlµ)2

(kµ/2 + πlµ)2
+

2β

3κ
(III.285)

This is the final expression for the covariance at the fixed point as found in the literature.

Deleting Blocking Kernel

Now, we repeat the analysis of the previous paragraph for the deleting kernel

e
−2κ

∑
m′∈Z2

M
(ΦM (m)−Φ2M (2m))2

(III.286)

In the previous section it was applied only in the spatial direction, but in order to relate with the literature we
will use it here in the covariant context.

We compute the flow defined by this kernel by looking again at the 2-pt-function on a coarse lattice in
terms of the 2-pt-function on the finer lattice:

〈Φ̂M (n)Φ̂M (n′)〉M =

=
1

Z

ˆ
dΦM (ΦM (n)ΦM (n′)) exp

−β
2
ε2M

∑
m,m′∈Z2

M

ΦM (m)(G2)′M (m−m′)ΦM (m′)

 =

=
1

Z · C

ˆ
dΦM (ΦM (n)ΦM (n′))

ˆ
dΦ2M×

× exp

−2κ
∑
m∈Z2

M

(ΦM (m)− Φ2M (2m))2 − β

2εM

∑
m,m′∈Z2

2M

Φ2M (m)G2
2M (m−m′)Φ2M (m′)


=

1

Z · C

ˆ
dΦ2M exp

− β

2εM

∑
m,m′∈Z2

2M

Φ2M (m)G2
2M (m−m′)Φ2M (m′)

×
×
ˆ
dΦM (ΦM (n)ΦM (n′)) exp

−2κ
∑
m∈Z2

M

(ΦM (m)− Φ2M (2m))2

 (III.287)

where we used (III.286) in the second step. The integrals over Φ2M (m) are all Gaussian, except for m = n, n′,
and cancel with the constant C. The remaining integrals return two or one factors of the normalisation√
π/(2κ) and (III.287) becomes

=
1(
π
2κ

)
Z

ˆ
dΦ2Me

−βS2M (Φ2M )

(1− δn,n′)
∏

i=n,n′

ˆ
dΦM (i) ×

× (ΦM (i)− Φ2M (2i) + Φ2M (2i)) e−2κ
∑
i=n,n′ (ΦM (i)−Φ2M (2i))2+

+ δn,n′

√
π

2κ

ˆ
dΦM (n) (ΦM (n)− Φ2M (2n) + Φ2M (2n))

2
e−2κ(ΦM (n)−Φ2M (2n))2

)
= 〈Φ̂(2n)Φ̂(2n′)〉2M +

1

4κ
δn,n′ (III.288)

After j steps of iteration

〈Φ̂M (n)Φ̂M (n′)〉(j) = 〈Φ̂2jM (2jn)Φ̂2jM (2jn′)〉+
j

4κ
δn,n′ (III.289)

In the limit j →∞ the last term is problematic unless we take first the limit κ→∞. Note that Φ2jM (2jn) =
Φ(2jnε2jM ) = Φ(nεM ) in terms of the continuum field. For the 2-pt-function in the continuum we take the
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standard 1/p2 propagator. In total

〈Φ̂M (n)Φ̂M (n′)〉M =

ˆ ∞
−∞

dp

(2π)

1

p2
eip(n+ 1

2−n
′− 1

2 )(2εM ) (III.290)

Now we compare this to (III.279) by diving the p integration again into a summation of the integer l and an
integration over k, i.e. p = k + 2πl, whence

ˆ π

π

dk

2π
eik(n−n′) 1

Ĝ2
M (k)

(
3

2βε2M

)
=

ˆ π

−π

dk

2π

∑
l∈Z2

M

2εM
(k + 2πl)2

ei(k+2πl)(n−n′) (III.291)

⇒ 1

ε2M Ĝ
2
M

=
∑
l∈Z2

M

2β/3

(k + 2πl)2
(III.292)

We see that the determining equation for ĜM looks different than in case of the averaging blocking kernel. This
was to be expected, since, to the best of our knowledge, there are no indication that the universality properties
of the renormalisation group should improve, when considered in the covariant setting. The advantage of the
deleting blocking kernel over the averaging blocking kernel, which has been considered e.g. in [114], is that it
presents a cylindrically consistent fixed point. The averaging blocking kernel is only consistent if we perform
the limit κ→∞.
In summary, in the case of the free field the search for a fixed point of the renormalisation group flow could
be finished analytically in the covariant setting. However, an immediate drawback of the strategy here is that
it requires explicit knowledge of continuum 2-pt function, e.g. in (III.283). For the application we have in
mind, this information will in general be not available and we would rather follow the strategy of the direct
Hamiltonian renormalisation as discussed in subsection III.C.4 Direct Hamiltonian Renormalisation.

III.D.5 Perfect Lattice Laplacian

The adjective “perfect” is used in renormalisation theory in order to characterise quantities at finite resolution
of the fixed point theory. For instance, the family of fixed point covariances labelled by the finite resolution
(lattice) parameter M in the free field theory case defines an effective covariance which can be interpreted as
the result of integrating the spacetime Weyl element against the exponential of an effective action at the given
resolution. This action is called “perfect action”, actually a whole family thereof. In this section we investigate
the family of “perfect Laplacians” which can be extracted from the family of fixed point covariances and study
the decay behaviour of the contribution of lattice points in r-th neighbour relation to a given lattice point.

To avoid confusion, in the literature the term “perfect lattice Laplacian” mostly refers to the Euclidian
d’Alembert operator, i.e. the operator � = ∂2

t + ∆ involving time where ∆ is the spatial Laplacian. In our
case, we are more interested in the “perfect spatial lattice Laplacian” which refers to ∆. These two quantities
are defined in terms of the finite resolution operators given by the fixed point theory. We have direct access
to the fixed point family of spacetime covariances

M 7→ C∗M := (1L2 ⊗ IM )†(p2 −�)−1(1L2 ⊗ IM ) (III.293)

of our renormalisation flow whose Fourier transforms Ĉ∗M (k0, l), l ∈ ZM were explicitly computed. We can
now define the perfect Euclidian d’Alembertian as −�∗M := (C∗M )−1 − p2. Recall the continuum covariance
(dropping all prefactors, εM = R

M , kM = 2π
M )

C =
1

2
(−∂2

t −∆ + p2)−1 (III.294)

The initial datum for the RG-flow was defined in terms of the naively discretised Laplacian, i.e. (∆
(0)
M fm)(m) =

(fM (m+ 1) + fM (m− 1)− 2fM (m))/ε2M , with covariance

C
(0)
M =

1

2
(−∂2

t −∆
(0)
M + p2)−1 (III.295)

Its flow in Fourier space gave the fixed point

2

ε2M
Ĉ∗M (k0, l) =

1

q3

(cosh(q)q − sinh(q) + (sinh(q)− q) cos(t))

cosh(q)− cos(t)
(III.296)
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with t = kM , q
2 = (k2

0 +p2)ε2M . The Fourier transform of the perfect d’Alembertian family M 7→ �∗M is given
by the inverse of (III.295):

−�̂∗M + p2 := ε−2
M

q3[ch(q)− cos(t)]

ch(q)q − sh(q) + (sh(q)− q) cos(t)
(III.297)

The partially discrete kernel (�∗MFM )(s,m) =:
´
ds′
∑
m′∈ZM �∗M (s− s′,m−m′)FM (s′,m′) reads explicitly

�∗M (s, r) =

ˆ
dk0

2π

1

M

∑
l∈ZM

eikM lr+isk0 [p2 − ε−2
M

q3[ch(q)− cos(t)]

ch(q)q − sh(q) + (sh(q)− q) cos(t)
] (III.298)

We want to find out whether that �∗M (s, r) decays exponentially fast with the spatial neighbour parameter
r. To do this, we define the forward and backward lattice shifts as follows

(δ+kf)(m) = f(m+ k), (δ−kf)(m) = f(m− k) (III.299)

with k = −bM/2c, ..., bM/2c which implies (δ+)n = δ+n and δ+δ− = δ−δ+. Note that δ±k+αM = δ±k for
all α ∈ Z.

Now cos(t) is an eigenvalue of d := [δ+ + δ−]/2 in Fourier space

(deit .)(m) =
1

2
(eitm+it + eitm−it) = cos(t)eitm (III.300)

so that

�∗M (s, r) =

ˆ
dk0

2π
eisk0 ([p2 − ε−2

M

q3[ch(q)− d]

ch(q)q − sh(q) + (sh(q)− q)d ] · Kδ0)(r) (III.301)

where r 7→ Kδ0,r ≡ Kδ(0, r) is the Kronecker δ supported at 0 and the operator d acts on the variable
r in this formula. Similarly, we may introduce the operator Q2 := ε2M (p2 − ∂2

s ) and the function A(Q) :=
(sh(Q)−Q)/(Qch(Q)− sh(Q)). Then

ε2M∆∗M (s, r) := ε2M (�∗M − ∂2
s )(s, r) = ([Q2 − Q3

Qch(Q)− sh(Q)

ch(Q)− d

1 +A(Q)d
] · δ0 ⊗ Kδ0)(s, r) (III.302)

where δ0 is the Dirac δ distribution for the temporal degree of freedom.
The first term in (III.302) gives a contribution on r = 0 only. Hence, to study the decay behaviour for
spatial directions, we focus on the second term: By integrating respectively summing (III.301) against time-
independent functions f(s, r) = fM (r), f ′(s′, r′) = f ′M (r′) we obtain δk0,0, in other words Q2 = q2

0 := p2ε2M
and

〈f ′,�∗Mf〉 = 〈f ′M ,∆∗MfM 〉M (III.303)

The idea is now to expand its denominator into a geometric series with respect to the operator d and to extract
the coefficients of δ±k. To expand it into a Neumann-series, we must check for convergence of the series. This
will be guaranteed if ||A(q0)d|| ≤ 1 in the operator norm ||.||.
First, note that A(q0) ≤ 1

2 for all q0 ≥ 0, because

2(sh(q0)− q0) ≤ q0ch(q0)− sh(q0) ⇔
3sh(q0) ≤ q0ch(q0) + 2q0 ⇔∑

k

3

(2n+ 1)!
q2n+1
0 ≤

∑
k

1

(2n)!
q2n+1
0 + 2q0 (III.304)

which can be checked by comparing all powers of q0 separately.
Since δ± are norm preserving, we use the Cauchy-Schwarz inequality to see that ||d|| ≤ 1. Thus, on the
functions of independent time support

||A(q0)d|| = |A(q0)| · ||d|| ≤ 1/2 (III.305)
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and we can expand (III.302) into a geometric series.
This gives

ch(q0)− d

1 +A(q0)d
= (ch(q0)− d)

∞∑
N=0

(−dA(q0))N =

∞∑
N=0

(−A(q0))N
(
ch(q0)2−N [δ+ + δ−]N − 2−N−1[δ+ + δ−]N+1

)
=

=

∞∑
N=0

(−A(q0)/2)N

(
ch(q0)

N∑
k=0

(
N
k

)
δ+kδ−(N−k) − 1

2

N+1∑
k=0

(
N + 1
k

)
δ+kδ−(N+1−k)

)
=

=
∑
r∈Z

δ+2r

(
ch(q0)

∞∑
n=0

(
2n
n+ r

)
(−A(q0)/2)2n − 1

2

∞∑
n=1

(
2n
n+ r

)
(−A(q0)/2)2n−1

)
+

+

∞∑
r=1

δ+2r−1

(
ch(q0)

∞∑
n=0

(
2n+ 1
n+ r

)
(−A(q0)/2)2n+1 − 1

2

∞∑
n=0

(
2n+ 1
n+ r

)
(−A(q0)/2)2n

)
+

+

∞∑
r=1

δ−2r+1

(
ch(q0)

∞∑
n=0

(
2n+ 1
n− r + 1

)
(−A(q0)/2)2n+1 − 1

2

∞∑
n=0

(
2n+ 1
n− r + 1

)
(−A(q0)/2)2n

)
(III.306)

where have chosen 2r := k− (N − k)⇒ N =: 2n and 2r := k− (N + 1− k)⇒ N =: 2n− 1 respectively for
the even powers of δ± and similar for the odd contributions. During this procedure, we used Fubini’s theorem
to exchange the summation order of r, n.
Indeed, for A(q) ≤ 1/2 each sum over n converges separately:

∞∑
n=0

(
2n
n+ r

)
· (A(q)/2)2n ≤

∞∑
n=0

(2n)n+r

(n+ r)!
· 4−2n ≤

∞∑
n=0

4−2n

e

(
2n e

(n+ r)

)n+r

=

=

∞∑
n=0

2rer−1

(
1

1 + r/n

)n+r (e
8

)n
≤
∞∑
n=0

2rer−1
(e

8

)n
=

2r+3er−1

8− e (III.307)

where we have used a standard approximation for the factorial, i.e. (n/e)ne ≤ n!, and summed a geometric
series. Thus, the inner sums over n in (III.306) are finite. The convergence and

∞∑
n=0

(
2n
n+ r

)
z2n =

∞∑
n=0

(
2n
n− r

)
z2n =

∞∑
k=0

(
2k + 2r

k

)
z2k+2r (III.308)

allow to identify the series with a generalised binomial series Bt(z). These kinds of sums were introduced by
Lambert in 1758 [217] and he showed later that its powers r ∈ Z obey the following property [218]

Bt(z)r =

∞∑
k=0

(
tk + r
k

)
r

tk + r
zk (III.309)

∀t ∈ Z and z ∈ R such that the series converges. A modern proof of this statement can be found in [219].
Further, we quote the following identities from [220]

B2(z)r√
1− 4z

=

∞∑
k=0

(
2k + r
k

)
zk, B2(z) =

1−
√

1− 4z

2z
(III.310)

Using this, we can compute the series explicitly: Let s ∈ {0, 1}
∞∑
n=0

(
2n+ s
n+ r

)
(−A(q0)/2)2n =

∞∑
k=0

(
2k + 2r − s

k

)
(A(q0)/2)2k(A(q0)/2)2r−2s =

=
(A(q0)/2)2r−2s√
1− 4(A(q0)/2)2

B2(A(q0)2/4)2r−s =
(A(q0)/2)2r−2s√

1−A(q0)2

(
2

A(q0)2

)2r−s

(1−
√

1−A(q0)2)2r−s =

=
2s(1−

√
1−A(q0)2)−s√

1−A(q0)2

(
1−

√
1−A(q0)2

A(q0)

)2r

∼ exp
(
r · 2 log[1/A(q0)−

√
1/A(q0)2 − 1]

)
=: erΘ(q0)

(III.311)
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For finite q0, we have 0 < A(q0) ≤ 1/2 and the logarithm is always well-defined and negative, since it holds
that 1−

√
1−A(q0)2 ≤ A(q0).

Thus, the perfect spatial lattice Laplacian is on the subspace of functions of independent time support explicitly
given by

ε2M∆∗M =(q2
0 +

q3
0A(q0)−1

q0ch(q0)− sh(q0)
) 1− (III.312)

− q3
0

√
1−A(q0)2

−1

q0ch(q0)− sh(q0)
(ch(q0)A(q0) + 1) ·

(∑
r∈Z

δ+2r e
|r|Θ(q0)

A(q0)
−
∞∑
r=1

(δ+(2r−1) + δ−(2r−1))
e|r|Θ(q0)

1−
√

1−A(q0)2

)

Lastly, we must account for the periodic boundary conditions. Remembering that the lattice identifies the
points r and r + αM with α ∈ Z, we add all corresponding contributions together. For the even powers of
the shift operator:

∑
r∈Z

δ2re|r|Θ(q0) =

bM/4c∑
r=−bM/4c

δ2re|r|Θ(q0)
∑
α∈Z

eM |α|Θ(q0) =

bM/4c∑
r=−bM/4c

δ2re|r|Θ(q0)[
2

1− ( 1
A(q0) −

√
1

A(q0)2 − 1)2M
− 1]

and the same geometric sum appears for the odd powers. For big lattices, i.e. M >> 1, we see that due to
0 < A(q0) ≤ 1/2 the term in the brackets [...] approaches 1 very fast.
In total, we conclude that the perfect spatial Laplacian decays exponentially with r and has a damping factor
of Θ(q0 = pε2M ). So, although it features non-local contributions, these are highly suppressed.
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III.E Example: Klein Gordon field III - Rotational Invariance

Along the lines of [131] we will now study the natural extension of the toy model “Klein Gordon field” from
the previous sections to multiple dimensions. Hence, we keep the general action:

S :=
1

2κ

ˆ
RD+1

dtdDx[
1

c
φ̇2 − cφωφ] (III.313)

with (n = 1, 2, ..)

ω2 = ω2(p,∆) =
1

p2(n−1)
(−∆ + p2)n (III.314)

where p = mc
~ is the inverse Compton length. Following [129] we will study here the Poincare invariant case

with n = 1, other models with n 6= 1 can be studied with the methods developed for n = 1 by contour integral
techniques.

After performing the Legendre transform, introducing the IR cut-off and discretising the theory for various
resolutions M , one considers the lattice Hamiltonian family (~ = 1)

HM :=
c

2

∑
m∈ZDM

(
κεDMπ

2
M (m) +

1

κεDM
φM (m)(ω2

M · φM )(m)

)
(III.315)

with (π := φ̇/κ)

φM (m) :=

ˆ
[0,1)D

dDxχmεM (x)φ(x), πM (m) := (EMπ)(m) = π(mεM ) (III.316)

and ω2
M = ω2(p,∆M ) is to be understood in terms of ∆M the naively discretised Laplacian, which reads e.g.

in two dimensions:

(∆
(0)
M fM )(m) :=

1

ε2M
(fM (m+ e1) + fM (m+ e2) + fM (m− e1) + fM (m− e2)− 4fM (m)) (III.317)

with ei being the unit vector in direction i. One can write down the explicit action of the coarse graining map
for projecting a lattice on a finer version with twice as many lattice points:

(IM→2MfM )(m) =
∑

m′∈ZDM

χm′ε2M (mε)fM (m′) = fM (bm
2
c) (III.318)

where bxc denotes the component wise Gauss bracket. According to the same argument as in the one dimen-
sional case, the cylindrical consistency condition (III.58) demanded that the measures on both discretisation,
M and 2M , agree. Being a free field theory, one can show that the measure can be written as a Gaussian
measure described at the fixed point by a covariance c∗M , thus (III.58) reads explicitly

e−
1
2 〈IM→2MfM ,c

∗
2MIM→2MfM 〉2M = e−

1
2 〈fM ,c

∗
MfM 〉M (III.319)

Thus by studying the flow defined by

c
(n+1)
M := I†M→2Mc

(n)
2MIM→2M (III.320)

we know that the existence of a fixed point c∗M describes a Gaussian measure family, which is equivalent to
corresponding Hilbert spaces H∗M with vacua Ω∗M which are all annihilated by the correspondingly defined
Hamiltonians H∗M .

III.E.1 Determination of the fixed point covariance

We quote the calculations from [131]. The flow defined by (III.320) may lead to various fixed points (or none at

all) depending on the initial family c
(0)
M . Thus, the naive discretisation should be of such a form that it captures

important features of the continuum theory. For example, we will demand the covariance to be translation
invariant, which is a property of the discretised Laplacian and will remain true under each renormalisation

89



step.
We begin by rewriting (III.315) in terms of discrete annihilation and creation operators

a
(0)
M (m) :=

1√
2~κ

√ω
(0)
M

εDM
φM − iκ

√
εDM

ω
(0)
M

πM (m)

 (III.321)

where

[ω
(0)
M ]2 := p2 −∆

(0)
M (III.322)

which after some standard algebra displays the Hilbert space measure as:

ν
(0)
M (wM [fM ]) = νM

(
ei〈fM ,φM 〉M

)
= exp

(
−1

4
〈fM ,

~κ
2
ω−1
M fM 〉M

)
(III.323)

Hence our starting covariance is given as:

c
(0)
M =

~κ
2

[ω
(0)
M ]−1 (III.324)

Using the discrete Fourier transform (kM = 2π
M )

fM (m) =
∑
l∈ZDM

f̂M (l)eikM l·m, f̂M (l) := M−D
∑
m∈ZDM

fM (m)e−ikMm·l (III.325)

we diagonalise the discretised Laplacian appearing in ω
(0)
M . Thus, the initial covariance family becomes in

D = 2 (dropping the factor 2
~κ in what follows)

ĉ
(0)
M (l) =

1√
− 1
ε2M

(2 cos(kM l1) + 2 cos(kM l2)− 4) + p2
=

=

ˆ
R

dk0

2π

ε2M
[k2

0 + p2]ε2M + (4− 2 cos(kM l1)− 2 cos(kM l2))
(III.326)

with l ∈ Z2
M and we used the residue theorem. We rewrite the integrand of (III.326) as (ti = kM li, q

2 :=
(k2

0 + p2)ε2M )

ĉ
(0)
M (k0, l) =

1

2

ε2M
[q2/4 + (1− cos(t1))]− [−q2/4− (1− cos(t2))]

(III.327)

Since 1 + q2/4 > cos(t),∀p > 0, t ∈ R one deduces that the first of the square brackets in (III.327) is always
positive, the other one always negative. Consequently, they lie in different halfplanes of C. This can be used
to artificially write this as an integral in the complex plane, by inverting the residue theorem: Given z1, z2 ∈ C
with Re(z1) > 0, Re(z2) < 0 and a curve γ going along iR from +i∞ to −i∞ and closing in the right plane
on a half circle with radius R→∞, we can write:˛

γ

dz
1

(z − z1)(z − z2)
= 2πi

1

z1 − z2
(III.328)

since the integrand decays as z−2 on the infinite half circle. We have chosen the orientation of γ counter clock
wise. Note that this seemingly breaks the symmetry between t1 and t2. However, this is only an intermediate
artefact of the free choice of γ which will disappear at the end of the computation.

Substituting z → z/2 the initial covariance can thus be written

ĉ
(0)
M (l) = −

˛
γ

dz
1

8πi

ε2M

ε2M (
p2+k20

2 − z)/2 + 1− cos(t1)

ε2M

ε2M (
p2+k20

2 + z)/2 + 1− cos(t2)
(III.329)

In order to shorten our notation, we will introduce: q2
1,2(z) := ε2M ([k2

0 + p2]/2∓ z). The starting point of our
RG flow is now factorised into two factors which very closely resemble the 1+1 dimensional case. This is the
promised factorising property.

Let us now focus on the precise action of the map (III.320), by writing it in terms of its kernel c
(n)
M (m′1,m

′
2) =

c
(n)
M (m′1 −m′2):

C
(n+1)
M (m′1 −m′2) = 2−2D

∑
δ′,δ′′∈{0,1}D

C
(n)
2M (2m′1 + δ′ − 2m′2 + δ′′) (III.330)

90



and correspondingly for the Fourier transform for D = 2

ĉ
(n+1)
M (l) = 2−4

∑
δ,δ′,δ′′∈{0,1}2

ĉ
(n)
2M (l + δM)eik2M (l+δM)·(δ′−δ′′) =

=
1

24

∑
δ1,δ2∈{0,1}

ĉ
(n)
2M (l1 + δ1M, l2 + δ2M)

(
eik2M (l1+l2+(δ1+δ2)M)+

+e−ik2M (l1+l2+(δ1+δ2)M) + eik2M (l1−l2+(δ1−δ2)M) + e−ik2M (l1−l2+(δ1−δ2)M)

+2eik2M (l2+δ2M) + 2e−ik2M (l2+δ2M) + 2eik2M (l1+δ1M) + 2e−ik2M (l1+δ1M) + 4
)

(III.331)

where we wrote explicitly all 16 terms stemming from the different combinations of (δ′ − δ′′).

=
1

24

∑
δ1,δ2=0,1

ĉ
(n)
2M (l1 + δ1M, l2 + δ2M) (4 + 4 cos(k2M (l2 + δ2M)) + 4 cos(k2M (l1 + δ1M)) +

+2 cos(k2M (l1 + δ1M) + k2M (l2 + δ2M)) + 2 cos(k2M (l1 + δ1M)− k2M (l2 + δ2M)))

=
1

22

∑
δ1,δ2=0,1

ĉ
(n)
2M (l1 + δ1M, l2 + δ2M)×

(1 + cos(k2M (l2 + δ2M)) + cos(k2M (l1 + δ1M)) + cos(k2M (l1 + δ1M)) cos(k2M (l2 + δ2M)))

=
1

4

∑
δ1,δ2=0,1

(1 + cos(k2M (l1 + δ1M)) (1 + cos(k2M (l2 + δ2M)) ĉ
(n)
2M (l1 + δ1M, l2 + δ2M) (III.332)

where we have used in the second step, that 2 cos(x) cos(y) = cos(x+ y) + cos(x− y).

One realises that both directions completely decouple in the renormalisation transformation. Since the
initial covariance factorises under the contour integral over γ this factorisation is preserved under the flow
and implies that the flow of the covariance in each direction can be performed separately. At the end we
then compute the resulting integral over z along γ. In addition, the decoupling of the flow (III.320) and
the factorisation of the initial family of covariances (III.329) for the naive discretisation of the Laplacian are
features that occur independently of the dimension D. For the decoupling this follows immediately from the
corresponding generalisation of (III.331) as the sum over δ′, δ′′ is carried out on the exponential function which
contains both linearly in the exponent. For the factorisation we note the following iterated integral identity for
complex numbers kj , j = 1, .., D with strictly positive real part

1

k1 + ..+ kD
= (2πi)D−1

˛
γ

dz1

z1 − k1

˛
γ

dz2

z2 − k2
..

˛
γ

dzD−1

zD−1 − kD−1

1

z1 + ..+ zD−1 + kD
(III.333)

in which γ is always the same closed contour with counter clock orientation over the half circle in the positive
half plane followed by the integral over the imaginary axis. Because of that the real part of each of the
integration variables zj is non negative so that the last fraction has a denominator with strictly positive real
part. Accordingly, the only pole of the integrand for the zj integral in the domain bounded by γ is kj and
the claim follows from the residue theorem. It transpires that the strategy illustrated for the case D = 2 also
solves the case of general D and it therefore suffices to carry out the details for D = 2.

The flow now acts on the integrand of the contour integral and we can do it for each z separately. The
flow in each direction is thus described by exactly the same map as in the one dimensional case in [129]. We
can therefore immediately copy the fixed point covariance from there. We just have to keep track of the z
dependence. In direction i = 1, 2 the covariance can be parametrised by three functions of qi(z) (ti = kM li,
li ∈ ZM )

ĉ
(n)
M (k0, li, z) =

ε2M
q3
i (z)

bn(qi(z)) + cn(qi(z)) cos(ti)

an(qi(z)− cos(ti)
(III.334)

The initial functions are

a0(q1,2) = 1 +
q2
1,2

2
, b0(q1,2) =

q3
1,2

2
, c0(q1,2) = 0

Before plugging in the fixed points, however, one has to check whether the flow will drive the starting values
into a finite fixed point, i.e. all the numerical prefactors that are picked up in front of the covariance should
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cancel each other. Indeed, one RG steps corresponds to

(2πi)ĉ
(n+1)
M (k0, l) = −1

4

˛
γ

dz

 ∑
δ1=0,1

(1 + cos(k2M (l1 + δ1M)))ĉ
(n)
2M (k0, l1, z)

×
×

 ∑
δ2=0,1

(1 + cos(k2M (l2 + δ2M)))ĉ
(n)
2M (k0, l2,−z)

 (III.335)

Note that εM → ε2M = εM/2 whence

q2
1,2 := ε2M (

p2 + k2
0

2
∓ z)→ 1

4
ε2M (

p2 + k2
0

2
∓ z) = q2

1,2/4 (III.336)

Collecting all powers of 2, we get 1. minus two from the ε2M in the numerator of the factor for both directions,
that is altogether minus four; 2. the RG map gives an additional minus two because of the 1/4 prefactor; and
3. due to (III.336) the factor q−3

1 q−3
2 gives a power of plus six. Hence the overall power of two is zero.

Accordingly, we find the same fixed points as in [129]:

a∗(q1,2) = ch(q1,2) (III.337)

b∗(q1,2) = q1,2ch(q1,2)− sh(q1,2) (III.338)

c∗(q1,2) = sh(q1,2)− q1,2 (III.339)

where we write shorthand for the hyperbolic functions: ch(q) := cosh(q) and sh(q) := sinh(q). Thus we find
with tj = kM lj

ĉ∗M (k0, l) = −
(
ε4M
2πi

) ˛
γ

dz
∏
j=1,2

1

q3
j

qjch(qj)− sh(qj) + (sh(qj)− qj) cos(tj)

ch(qj)− cos(tj)
(III.340)

Note that it is not necessary to pick a square root of the complex parameter q2
1,2(z) = ε2M (

k20+p2

2 ∓ z) since
the integrand only depends on the square, despite its appearance (in other words, one may pick the branch
arbitrarily, the integrand does not depend on it). It follows that the integrand is a single valued function of z
which is holomorphic everywhere except for simple poles which we now determine, and which allow to compute
the contour integral over γ using the residue theorem.

There are no poles at q2
1,2 = 0 since the functions [qch(q)− sh(q)]/q3, [sh(q)− q]/q3 are regular at q = 0.

Hence the only poles come from the zeroes of the function ch(q) − cos(t). Using ch(iz) = cos(z) and the
periodicity of the cosine function we find iq = ±[t + 2πN ] with N ∈ Z or q2 = −(t + 2πN)2. In terms of
qj , j = 1, 2 this means that

(k2
0 + p2)/2∓ z = − (tj + 2πN)2

ε2M
⇔ z = zN = ±[(k2

0 + p2)/2 +
(tj + 2πN)2

ε2M
] (III.341)

It follows that the second factor involving q2 has no poles in the domain bounded by γ because they all lie
on the negative real axis while those coming from the factor involving q1 lie all on the positive real axis. We
will denote the latter by zN . The poles coming from the zeroes of ch(q1)− cos(t1) are simple ones as one can
check by expanding the hyperbolic cosine at zN in terms of z − zN , in other words

lim
z→zN

z − zN
ch(q1(z))− cos(t1)

= lim
z→zN

1

sh(q1(z))q′1(z)
= lim
z→zN

2q1(z)

sh(q1(z))[q2
1(z)]′

= − 2q1(zN )

ε2M sh(q1(zN ))
(III.342)

which is again independent of the choice of square root. We have used de l′ Hospital’s theorem in the second
step. Note that q1(zN )2 = −(t1 +2πN)2 implies q2(zN )2 = q2 +(t1 +2πN)2 := q2

N where q2 := ε2M (k2
0 +p2).

Performing the integral we finally end up with:

ĉ∗M (l) = −2ε2M
∑
N∈Z

cos(t1)− 1

(2πN + t1)3
(2πN + t1)× (III.343)

×
√
q2 + (2πN + t1)2[ch(

√
q2 + (2πN + t1)2)− cos(t2)] + sh(

√
q2 + (2πN + t1)2)(cos(t2)− 1)

(q2 + (2πN + t1)2)3/2[ch(
√
q2 + (2πN + t1)2)− cos(t2)]]

One sees that everything remains finite for ε→ 0 as the individual parts contribute with inverse powers of εM :
(cos(t)−1) goes with O(ε2M ), since t = 2πεM l depends linearly on εM . So does q and thus (q2+(t+2πN)2) =
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O(ε2M ) if N = 0 or a constant else.
We split the sum in the nominator of (III.343) in two parts. In first term we can explicitly compute the sum
and obtain:

− 2
∑
N∈Z

(cos(t)− 1)

(2πN + t)2(q2 + (2πN + t)2)
=

[qch(q)− sh(q)] + [sh(q)− q] cos(t)

q3[ch(q)− cos(t)]
(III.344)

for q > 0, and in our case we know that t = 2π
M l, l ∈ ZM . To prove this let us first check the degenerate case

of l = 0, which will cause the sum to collapse. Only the term N = 0 will remain:

−2
∑
N∈Z

−1/2 · l2 + 1/4!l4 + . . .

(2π(N + l/M))2(q2 + (2π)2(N + l/M)2)

∣∣
l=0

=
1

q2 + (2π)2 · 0 ·
∑
N∈Z

δ(N+l/M, 0) =
1

q2
(III.345)

on the other hand:
[qch(q)− sh(q)] + [sh(q)− q] cos(0)

q3(ch(q)− cos(0))
=

q ch(q)− q
q3(ch(q)− 1)

=
1

q2
(III.346)

Hence, the claim is true for t = 0. For t 6= 0, we invoke the following theorem due to Mittag-Leffler:

Theorem III.E.1. (Mittag-Leffler) Let a1, a2, . . . be a sequence with no finite convergence points and
let Pk be polynomials without constant terms. Then there are functions meromorphic in the whole plane

with poles precisely at ak and corresponding singular part Pk

(
1

z−ak

)
. In other words, the residual of n-th

order in ak is exactly the prefactor of the n-th power of Pk. The most general such meromorphic function
may be written as

f(z) = g(z)−
∞∑
k=1

Pk

(
1

z − ak

)
− hk(z) (III.347)

with g being entire, i.e. everywhere analytic, and hk are suitably chosen polynomials, in such a way, that
the convergence of the series is ensured.

Proof. The proof can be found in most standard books on complex analysis, e.g. [221].

It implies that any given meromorphic function f(z) in C with poles ak and corresponding principal parts
of the unique Laurent expansion of f(z) in a neighbourhood of ak can be expanded in this series, where g(z)
is determined by f(z).
We apply this theorem onto the function:

f(z) :=

√
z2 + q2ch(

√
z2 + q2)− sh(

√
z2 + q2) + [sh(

√
z2 + q2)−

√
z2 + q2] cos(t)√

z2 + q2
3
[ch(

√
z2 + q2)− cos(t)]

(III.348)

which has poles in aN = ±i
√
q2 + (t+ 2πm)2 of first order:

Resam

(
1

ch(
√
x2 + q2)− cos(t)

)
=

1

±i
√
q2 + (t+ 2πN)2

t+ 2πN

sin(t)
(III.349)

Thus the sum of the Pk
(

1
z−aN

)
becomes:

∑
N∈Z

sh(i(t+ 2πN))

sin(t)

cos(t)− 1

i3(t+ 2πN)2
×

×
(

1

+i
√
q2 + (t+ 2πN)2

1

z − i
√
q2 + (t+ 2πN)2

+
1

−i
√
q2 + (t+ 2πN)2

1

z + i
√
q2 + (2πN)2

)

=
∑
N∈Z

cos(t)− 1

−i(t+ 2πN)2
√
q2 + (t+ 2πN)2

(
1

z − i
√
q2 + (t+ 2πN)2

− 1

z + i
√
q2 + (t+ 2πN)2

)

=
∑
N∈Z

(−1/i)
cos(t)− 1

(t+ 2πN)2
√
q2 + (t+ 2πN)2

(
z + i

√
q2 + (t+ 2πN)2 − z + i

√
q2 + (2πN)2

z2 + (q2 + (t+ 2πN)2)

)

= −2
∑
N∈Z

cos(t)− 1

(t+ 2πN)2(z2 + q2 + (t+ 2πN)2)
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As this sum is already convergent for every z, we can neglect all the counter terms hk and set them equal to
zero when applying the Mittag-Leffler theorem. Consequently we know of the existence of an entire g(z) such
that:

f(z) = g(z)− 2
∑
N∈Z

cos(t)− 1

(t+ 2πNm)2(z2 + q2 + (t+ 2πN)2)
(III.350)

Writing z = x+ iy it is easy to see, that the infinite sum tends to 0 locally uniformly in x as y → ±∞. The

same is true for f(z) since it consists of four terms, each going either as
√
z2 + c

−2
or
√
z2 + c

−3
. Thus,

the same is true for g(z) which is therefore bounded and entire, hence by Liouville’s theorem constant. Since
g(iy)→ 0 as y → +∞ the constant is zero. Lastly, we choose z = 0 and the claim (III.344) is shown!

We end up with

ĉ∗M (k0, l) =ε2M
[qNch(qN )− sh(qN )] + [sh(qN )− qN ] cos(t2)

q3
N [ch(qN )− cos(t2)]

+

− 2ε2M
∑
N∈Z

cos(t1)− 1

(2πN + t1)2

1

q3
N

qNch(qN )− sh(qN ) + (sh(qN )− qN ) cos(t2)

ch(qN )− cos(t2)
(III.351)

The result has no manifest symmetry in t1 ↔ t2 but from the derivation it is clear that it must be. Note
that each term in the sum remains finite for ε → 0 as the individual parts contribute inverse powers of εM :
(cos(t) − 1) scales as O(ε2M ), since t = kRεM l depends linearly on εM as well as q = ε2M (p2 + k0)2. Thus
(q2 + (t+ 2πN)2) = O(ε2M ) if N = 0 or approaches a constant else.

III.E.2 Consistency check with the continuum covariance

The mere existence of a fixed point measure family described by the covariance (III.351) of the flow induced
by (III.320) does not necessarily mean that it has any relation with the known continuum theory. We will thus
invoke the consistency check also presented in the section III.C. Example: Klein Gordon field I - Derivation,
which consists of looking at the cylindrical projection at resolution M of the continuum covariance c := 1

2ω
−1

in D = 2. The details are taken from [131]. Using that the covariance is given by (III.314), we find its projection
to be

cM (m,m′) = ε−4
M (I†M c IM )(m,m′) =

= ε−4
M

ˆ (m1+1)εM

m1εM

dx1

ˆ (m2+1)εM

m2εM

dx2

ˆ (m′1+1)εM

m′1εM

dy1

ˆ (m′2+1)εM

m′2εM

dy2 c(x, y) (III.352)

see [129] for more details. Using that the en(x) := 1
Re

ikRn·x, kR = 2π/R define an orthonormal basis of
LR = L2([0, R)2, d2x) one finds the resolution of identity

1

R2

∑
n∈Z2

eikR(x−y)·n = δR(x, y) := δR(x1, y1)δR(x2, y2) (III.353)

We use this to write the covariance as

c(x, y) =
1

2

(
−∆Rx + p2

)−1/2
δR(x, y) =

ˆ
dk0

2π

(
−∆Rx + k2

0 + p2
)−1

δR(x, y) (III.354)

=

ˆ
dk0

2π

∑
n∈Z2

enR(y)
(
−∆Rx + p2 + k2

0

)−1
enR(x) =

1

R2

∑
n∈Z2

eikRn·(x−y) 1

n2k2
R + k2

0 + p2

Now we can perform the integrals, e.g.ˆ (m1+1)εM

m1εM

dx1e
i(2π)n1x1 =

1

ikRn1

(
eikRn1(m1+1)εM − eikRn1m1εM

)
(III.355)

where the case n1 = 0 is obtained using de l’Hospital. We find with kM = 2π/M

cM (m,m′) = ε−4
M

1

R2

ˆ
dk0

2π

∑
n∈Z2

1

n2k2
R + p2 + k2

0

(ˆ (m1+1)εM

m1εM

dx1e
i(2π)n1x1

)
× (III.356)

×
(ˆ (m2+1)εM

m2εM

dx2e
i(2π)n2x2

)(ˆ (m′1+1)εM

m′1εM

dy1e
i(2π)n1y1

)(ˆ (m′2+1)εM

m′2εM

dy2e
i(2π)n2y2

)

= R−2

ˆ
dk0

2π

∑
n∈Z2

1

n2k2
R + p2 + k2

0

eikMn·(m−m
′) 4

k4
Mn

2
1n

2
2

[1− cos(kMn1)] [1− cos(kMn2)]
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We proceed exactly as earlier and thus split the sum over nj = lj +MNj with lj ∈ ZM and N ∈ Z2

cM (m,m′) = R−2ε4M

ˆ
dk0

2π

∑
m∈Z2

M

eikM l·(m−m
′)
∑
N∈Z2

× (III.357)

× [1− cos(kM (l1 +MN1)] [1− cos(kM (l2 +MN2)]

(l +MN)2k2
M + ε2M (p2 + k2

0)

4

k4
M (l1 +MN1)2(l2 +MN2)2

from which we read off the Fourier transform of cM (m) = R−2
∑
l∈Z2

M
ekM l·mĉM (l)

ĉM (k0, l) = ε4M
∑
N∈Z2

× (III.358)

× [1− cos(kM (l1 +MN1)] [1− cos(kM (l2 +MN2)]

(l +MN)2k2
M + q2

4

k4
M (l1 +MN1)2(l2 +MN2)2

Using the contour integral idea as in the previous subsection we obtain

ĉM (k0, l) =− 1

2πi

˛
γ

dz
∏
j=1,2

[
∑
Nj∈Z

ε2M
1− cos(kM (lj +MNj))

(lj +MNj)2k2
M + qj(z)2

2

k2
M (lj +MNj)2

] (III.359)

where qj(z) is the same as in the previous subsection. Now the two sums of the formula above are exactly the
same that occurred in (III.134) with q2 replaced by qj(z)

2 and t replaced by tj = ljkM . Thus, we can copy
the result from there and find

ĉM (k0, l) = − ε
4
M

2πi

˛
γ

dz
∏
j=1,2

1

q3
j

qj(z)ch(qj)− sh(qj) + [sh(qj)− qj ] cos(tj)

ch(qj)− cos(tj)
(III.360)

with qj ≡ qj(z). Comparing (III.360) and (III.340) we see that both agree, thus the fixed point covariance
family indeed coincides with the continuum covariance family.

III.E.3 Fixed points of the free scalar field for changed RG-flows

The aim of this section is to change the block-spin-transformation we have used so far and to check whether
the fixed point is changed as well. For this, we quote from [131]. As has already been discussed in the third
subsection of III.D. Example: Klein Gordon field II - Properties not every coarse graining map fulfils the
cylindrical consistency relation which induces a corresponding relation on the family of coarse grained measures.
Note that coincidence of continuum measures with their cylindrical (finite resolution) projections can only be
deduced if one uses the same blocking kernel (which defines those projections). Thus, it a natural question to
ask whether other maps of the kind IM→M ′ apart from M ′ = 2M will also lead to physically relevant theories.
Due to the cylindrical consistency property of IM→M ′ it is apparent that this is the case for all M ′ = 2nM
for n ∈ N. A natural extension would be to consider powers of any prime number. In this section we present
how at least for the choice for M ′ = 3M and M ′ = 5M this indeed gives the same fixed point covariance
and argue that it should be true for every choice of prime number. This would be useful because the set
N is partially ordered and directed by <, but given m1,m2 ∈ N we do not always find m3 > m1,m2 with
m3 = m12n1 = m22n2 .

If one considers IM→uM with u ∈ P a prime number then the coarse graining map is given by

[IM→uMfM ](m) = fM (bm
u
c) (III.361)

where b.c is the component wise Gauss bracket. This map is easily checked to be cylindrically consistent, i.e.
IukM→uk+lM ◦ IM→ukM = IM→uk+lM . To see this, we note that bm/ukc = m′ if m = m′uk + r, r =
0, ...uk − 1 so that bbm/ulc/ukc = m′ for bm/ulc = m′uk + r, k = 0, .., uk − 1 that is for m = (m′uk +
r)ul + s, s = 0, ..ul − 1 i.e. m = m′uk+l + t, t = 0, .., uk+l − 1 i.e. m′ = bm/uk+lc.

We now use these maps on our Gaussian example. For their covariances this implies

〈fM , C(n+1)
M fM 〉 = ε2DM

∑
m′1,m

′
2∈ZDM

fM (m′1)fM (m′2)C
(n+1)
M (m′1,m

′
2)

= 〈IM→uMfM , C(n)
uMIM→uMfM 〉 = ε2DuM

∑
m1,m2∈ZDuM

fM (bm1

u
c)fM (bm2

u
c)C(n)

uM (m1,m2)

=
ε2DuM
u2D

∑
m′1,m

′
2∈ZDM

fM (m′1)fM (m′2)
∑

bm1/uc=m′1,bm2/uc=m′2

C
(n)
uM (m1,m2) (III.362)
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This allows to deduce by direct comparison:

C
(n+1)
M (m′1,m

′
2) = u−2D

∑
δ′,δ′′∈{0,1,..,u−1}D

C
(n)
uM (um′1 + δ′, um′2 + δ′′) (III.363)

Again we employ translational invariance, i.e. C
(n)
M (m1,m2) = C

(n)
M (m1 − m2) and find for the Fourier

transform: (kM = 2π
M = ukuM )

C
(n+1)
M (m′1,m

′
2) =

∑
l′∈ZDM

eikM l
′(m−m′)Ĉ

(n+1)
M (l′)

=u−2D
∑
l∈ZDuM

Ĉ
(n)
uM (l)

∑
δ′,δ′′∈{0,1,...,u−1}D

eikuM l·(u(m′1−m
′
2)+δ′−δ′′)

=u−2D
∑
l′∈ZDM

eikM l
′(m′1−m

′
2)

∑
δ′,δ′′,δ∈{0,1,...,u−1}D

Ĉ
(n)
3M (l′ + δM)eikuM (l′+δ)·(δ′−δ′′)

(III.364)

whence

Ĉ
(n+1)
M (l′) = u−2D

∑
δ∈{0,1,...,u−1}D

Ĉ
(n)
uM (l′ + δM)

D∏
i=1

sin(u2 kuM (l′i + δiM))2

sin( 1
2kuM (l′i + δiM))2

(III.365)

where we have used that the exponentials decouple, and that the geometric series can be performed explicitly

∑
δ,δ′∈{0,...,u−1}

eia(δ−δ′) =
1− eiau
1− eia

1− e−iau
1− e−ia =

sin(u2a)2

sin( 1
2a)2

(III.366)

Since (III.365) states that the flow decouples in general and since we can write the initial covariance also in a
decoupled form, this allows us to limit our further analysis to the D = 1 case without loss of generality.

The following explicit calculations are performed for the prime u = 3 as this illustrates what needs to be
done also in the general case. The initial data of the RG-flow is given for D = 1 with t = kM l, q

2 = ε2M (k2
0 +p2)

by

ĉ
(0)
M (k0, l) =

ε2M
2(1− cos(t)) + q2

(III.367)

In order to compute this flow, it is useful to recall the trigonometric addition theorems for the cosine function

cos(x) + cos(y) = 2 cos

(
x+ y

2

)
cos

(
x− y

2

)
, cos(x) cos(y) =

1

2
(cos(x− y) + cos(x+ y)) (III.368)

to note the following explicit values

cos(
1

6
2π) =

1

2
, cos(

1

3
2π) = −1

2
, cos(

2

3
2π) = −1

2
(III.369)

and to employ the Chebyshev recursive method, which states that for N ∈ N:

cos(Nx) = 2 cos(x) cos((N − 1)x)− cos((N − 2)x) (III.370)

which is an easy expansion into exponentials and finds application in what follows for the case N = 3 and
x→ x/3 to express cos(x) = 2 cos(x/3) cos(2/3x)− cos(x/3).

Equipped with these tools, we start to compute the RG flow of IM→3M by finding a common denominator
of the sum in (III.365) assuming ĉ(n) could have been written in the form

ĉ
(n)
M (k0, l) =

ε2M
q3

bn(q) + cn(q) cos(t)

an(q)− cos(t)
(III.371)

with suitably chosen functions an, bn, cn of q as we already know is true for (III.367). Then, the common
denominator after one renormalisation step is generated by the linear combination of the of the three fractions
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in (III.365) and is given by:[
an(q)− cos

(
t

3

)][
an(q)−

(
t

3
+M

2π

3M

)][
an(q)− cos

(
t

3
+

2

3
2π

)]
=

= an(q)3 − an(q)2

[
cos

(
t

3

)
+ cos

(
t

3
+

1

3
2π

)
+ cos

(
t

3
+

2

3
2π

)]
A

+ an(q)

[
cos

(
t

3

)
cos

(
t

3
+

1

3
2π

)
+ cos

(
t

3

)
cos

(
t

3
+

2

3
2π

)
+ cos

(
t

3
+

1

3
2π

)
cos

(
t

3
+

2

3
2π

)]
B

−
[
cos

(
t

3

)
cos

(
t

3
+

1

3
2π

)
cos

(
t

3
+

2

3
2π

)]
C

Each of the three prefactors in front of each power of an(q) can now be evaluated precisely with the methods
stated above. We obtain:[

cos

(
t

3

)
+ cos

(
t

3
+

1

3
2π

)
+ cos

(
t

3
+

2

3
2π

)]
A

= 0 (III.372)[
cos

(
t

3

)
cos

(
t

3
+

1

3
2π

)
+ cos

(
t

3

)
cos

(
t

3
+

2

3
2π

)
+ cos

(
t

3
+

1

3
2π

)
cos

(
t

3
+

2

3
2π

)]
B

= −3

4

(III.373)[
cos

(
t

3

)
cos

(
t

3
+

1

3
2π

)
cos

(
t

3
+

2

3
2π

)]
C

=
1

4
cos(t) (III.374)

So we get for the denominator
1

4

([
4an(q)3 − 3an(q)

]
− cos(t)

)
(III.375)

which is again of the form that (III.371) had. Moreover, we note that the t-independent part of (III.375) is
exactly the right hand side of the triple-angle formula for cos, cosh:

a(3q) = 4a(q)3 − 3a(q) (III.376)

hence with the choice of a(q) = ch(q) we have found a fixed point for the flow induced onto the an(q).
For the numerator, we continue in the same manner. After some pages of calculation, one finds it to be given
by

(3 + 4 cos(t/3) + 2 cos(2/3t))(bn − cn · cos(t/3))(an − cos(t/3 + 2π/3))×
× (an − cos(t/3 + 2/3 · 2π))(3 + 4 cos(t/3 + 2π/3) + 2 cos(2t/3 + 2/3 · 2π))(an − cos(t/3))×
× (an − cos(t/3))(an − cos(t/3 + 2/3 · 2π))(3 + 4 cos(t/3 + 2/3 · 2π) + 2 cos(2/3t+ 4/3 · 2π))×
× (bn − cn · cos(t/3 + 2/3 · 2π))(an − cos(t/3 + 2π/3)(bn − cn · cos(t/3 + 2π/3)))

= . . . =

(
−3

4
+ 6an + 9a2

n

)
bn − 6an(1 + an)cn +

3

4

(
4(1 + an)bn − (3 + 4an + 4a2

n)cn
)

cos(t) (III.377)

Thus, also the numerator is cast again into an expression of the form bn+1 +cn+1 cos(t). We can already make
use of the fact, that at the fixed point one has a = cosh(q). Making an educated guess and trying whether

b = qch(q)− sh(q), c = sh(q)− q (III.378)

are solutions of the fixed point equation determined by (III.377) one uses the triple-angle formula for the sine
function

sin(3x) = 2 cos(x) sin(2x)− sin(x) = −2 cos(2x) sin(x)− sin(x) (III.379)

and obtains indeed by plugging (III.378) into (III.377):

3(1 + cosh(q))(qch(q))− 1

4
(3 + 4ch(q) + 4ch(q)2)(−sh(q) + q) =

3

4
[−3q + sh(3q)] (III.380)

and(
−3

4
+ 6ch(q) + 9ch(q)2

)
(ch(q)− sh(q))− 6ch(q)(1 + ch(q))(−sh(q) + q) =

3

4
[3qch(3q)− sh(3q)]

(III.381)
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which presents indeed the triple angle formula, up to the common prefactor of 3/4. The factor 1/4 gets
cancelled by the pre factor of 1/4 in front of an in (III.375). The factor 3 cancels against a factor 3−1 which is
obtained as follows: the map itself was defined with a prefactor 3−2, the factor q−3 gives 33 and the ε2M gives
3−2 which altogether gives a factor 3−1. Hence we have indeed found exactly the same fixed point under the
under M → 3M coarse graining map as we found for the M → 2M coarse graining map!

We did the same calculations also for the prime u = 5 which is considerably more work, but all steps are
literally the same and also the fixed point is the same. For reasons of space, we do not display these calculations
here and leave it to the interested reader as an exercise. For the general prime we do not have a proof available
yet but hope to be able to supply it in a future publication. However, we do not expect any changes. In any
case, for whatever primes the fixed point stays the same (it holds at least for u = 2, 3, 5) the statement is
also true for all dimensions due to the factorising property. This factorising property also makes it possible to
study in higher dimensions more complicated hypercuboid like coarse graining block transformations rather
than hypercube like ones. In order to illustrate this, we give some details for the case D = 2 dimensions of
a rectangle blocking with u1 = 2 for the first direction and u2 = 3 for the second. The map is consequently
I(M1,M2)→(2M1,3M2) = IM1→2M1 × IM2→3M2 . The naively discretised Laplacian on a lattice with different
spacings εM1 , εM2 is given as (here: 2εM1 = 3εM2)

(∆MfM ) (m) := (III.382)

=
1

ε2M1

(fM (m+ e1) + fM (m− e1)− 2fM (m)) +
1

ε2M2

(fM (m+ e2) + fM (m− e2)− 2fM (m))

Hence the same strategy from (III.328) works again and gives us:

Ĉ
(0)
M (k0, l) =

(
− 1

ε2M1

(2 cos(kM1 l1)− 2)− 1

ε2M2

(2 cos(kM2 l2)− 2) + p2 + k2
0

)−1

(III.383)

=
1

2πi

˛
γ

dz
1

z + (k2
0 + p2)/2− 2

ε2M1

− 2
ε2M1

cos(kM1
l1)

1

z − (k2
0 + p2)/2 + 2

ε2M2

+ 2
ε2M2

cos(kM2
l2)

= − 1

23πi

˛
dz

ε2M1

ε2M1
(z + k2

0 + p2/2)/2 + 1− cos(kM1 l1)

−ε2M2

ε2M2
(−z + k2

0 + p2/2)/2 + 1− cos(kM2 l2)

So both directions decouple and yield, as already shown the same fixed point! It remains to compute the
integral which is exactly the same as (III.340).

A further immediate consequence is that at this fixed point, one could also consider the flow of arbitrary
concatenations of different coarse-graining maps, independently for each direction, e.g. ...I6M→12MI2M→6M

IM→2M ... and we see that all of them have the same fixed point. We conclude that the fixed point is quite
robust under rather drastic changes of the coarse graining map.

III.E.4 Rotational Invariance of the lattice fixed point theory

We now turn our attention towards the much discussed question of rotational invariance [114,212,213,222–
225]. By this we mean that most Hamiltonians for continuum theories on Minkowski space have SO(D) as
a symmetry group besides spatial translation invariance. On the one hand, a fixed lattice certainly breaks
rotational invariance and in the case of a hypercubic lattice reduces the invariance to rotations by multiples
of ±π/2 around the coordinate axes. On the other hand, it is clear that the cylindrical projections of a ro-
tationally invariant measure in the continuum with respect to smearing functions adapted to the family of
hypercubic lattices in question must carry an imprint of that continuum rotation invariance. In other words,
there must exist a criterion at finite lattice resolution, whether the corresponding lattice measure qualifies as
the cylindrical projection of a continuum rotationally invariant measure.

In this section we identify such a notion of rotational invariance at finite resolution at least for the case
of scalar field theories. This has been done first in [131]. We then successfully test this criterion for the fixed
point covariance ĉ∗M (k0, l = (l1, l2)) in D = 2 for the free Klein Gordon field. Due to the factorisation property
and due to the possibility of presenting any rotation in terms a composition of rotations about the coordinate
axes, we can reduce our attention to two spatial dimensions. For this purpose, we will adopt the strategy
from III.D.5. Perfect Lattice Laplacian and smear the covariance with some time-independent test functions
f(s, r) = fM (r), f ′(s′, r′)f ′M (r′) to obtain δk0,0. Hence, in the remainder of this section, we suppress the
label k0 for most of the time.
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We follow closely the calculations from [131]. This presents an example for how the Hamiltonian renorma-
lisation scheme is able to detect the restoration of continuum properties of the classical theory which upon
naive regularisation were lost in the quantisation process.

The lattice rotational invariance condition

Given the IR-restricted compact submanifold of σ, i.e. the D-dimensional torus σR with periodic boundary
conditions and length R, one must be precise what one means by rotations. In order to rotate the system
around x0 ∈ σR one uses the Euclidian metric on the torus to identify all points as a set Sr which have
distance r > 0 to the central point x0. We then choose Sr in order to construct a representation of SO(D) on
it, e.g. in D = 2 one has Π : SO(2) 7→ GL(σR) with Π(2π) = id and Π(α)Π(β) = Π(α+ β), where we label
the elements of the one-dimensional SO(2) by α, β ∈ [0, 2π). Without loss of generality we will consider in
the following x0 = 0. Indeed, upon considering a chart in Cartesian coordinates that includes some complete
Sr with r < R/2 this means we can write the action of a rotation on one of those Sr as a matrix (x ∈ Sr)

Π(α) · x =

(
cos(α) sin(α)
− sin(α) cos(α)

)
· x (III.384)

Note that the rotations for Sr≥R/2 are not described by a linear transformation due to the non-trivial boundary
conditions. However, any r < R/2 will serve our purposes.

In the remainder of this section we limit the analysis to D = 2 as, once rotational invariance is established
for all rotations in an arbitrary plane, any other rotation can be understood as multiple rotations in suitable
planes. Further we employ the ideas of [212, 213]: instead of considering arbitrary angles in [0, 2π), it suffices
to show invariance under rotations of only one angle θ given that θ/(2π) is irrational. This is because the
sequence

N→ [0, 2π); n 7→ θn := n · θ mod 2π (III.385)

lies dense in [0, 2π), i.e. ∀θ′ ∈ [0, 2π) there exists a partial sequence j 7→ θnj → θ′. Hence we can define the
rotation by the angle θ′ as

Π(θ′) := lim
θnj→θ′

Π(θ)nj (III.386)

It follows, assuming suitable continuity properties, that invariance under all these angles would be established,
once it is shown for θ. In this paper we specialise to the angle θ defined by cos(θ) = 3/5, sin(θ) = 4/5 as it
is indeed irrational. A proof for this and further properties can be found in [213].

By the above considerations we can give meaning to the term rotational invariance as a condition on
the continuum Hilbert space measure ν. It is called rotationally invariant provided that for any measurable
function g we have ν(g) = ν(r(θ)∗ · g) where (r(θ)∗ · g)[φ] = g[r(θ) · φ] and [r(θ) · φ](x) = φ(Π(−θ) · x).
Since ν is defined by its generating functional, we may restrict to the functions g = w[f ] for which in case of
a scalar theory r(θ)∗w[f ] = w[r(−θ) · f ]. We now translate this into a condition on the cylindrical projections
νM of ν defined by νM (wM [fM ]) := ν(w[IMfM ]) where

(IMfM )(x) :=
∑
m∈Z2

M

fM (m)χmεM (x), χmεM (x) =
∏
a=1,2

χ[maεM ,(ma+1)εM )(x
a) (III.387)

It follows that r(−θ) · IMfm cannot be written as linear combinations of functions of the form IMf
′
M because

r(−θ) ·χMεM is the characteristic function of the rotated block. Hence the rotational invariance of ν does not
have a direct translation into a condition of the νM . While we can define a new embedding map by

IθM : LM → L (III.388)

fM 7→ [IθMfM ](x) :=
∑
m∈Z2

M

fM (m)χmεM (Π(θ) · x) (III.389)

the renormalisation flow defined by it may result in a fixed point covariance family c∗θM different from c∗M .
It is therefore a non-trivial question to ask what one actually means by rotational invariance of a discrete
lattice theory or more precisely of a family of corresponding measures.

The idea is to consider both families (i.e. the unrotated theory described by the covariances c∗M and the
rotated one described by the covariances c∗θM ) as coarse-grained versions of common finer lattices with spacing
ε5M which is why we chose the above particular angle θ. The rotation of the coarse, unrotated lattice is a
sublattice of the fine unrotated lattice called discrete rotation and is defined by

Dθ : Z2
M → Z2

5M ; m 7→ Π(θ) ·m (III.390)
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This map can be extended to

DθZ2
5M → Z2

5Mm 7→ bΠ(θ) ·mc (III.391)

which maps the whole rotated finer lattice into the unrotated finer lattice.

C∗M C∗θM

C∗5M C∗θ5M

Dθ

C∗M := I†M→5MC
∗
5MIM→5M C∗θM := [IθM→5M ]†C∗θ5MI

θ
M→5M

Abbildung III.7: Fixed point covariances C∗M , C
∗
θM on lattices rotated relative to each other by the irrational angle θ

(such that cos(θ) = 3/5) can be related by a common refined unrotated lattice and a map Dθ, called discrete rotation.

The condition that we are about to derive holds for general measures, but we also note in tandem the
corresponding specialisation to Gaussian ones for a later test on our model free theory. Suppose then that ν∗

is a rotationally invariant (Gaussian) measure, that is, for its generating functional (covariance) we have

ν∗(w[f ]) = ν∗(w[Π(θ) · f ]) (c∗ = Π(θ)†c∗Π(θ)) (III.392)

This means that for the cylindrical projections we have the identity

ν∗M (wM [fM ]) = ν∗(w[IMfM ]) = ν∗(w[Π(θ)IMfM ]) (c∗M = [Π(θ)IM ]†c∗[Π(θ)IM ]) (III.393)

Now

(Π(θ)IMfM )(x) =
∑
m∈Z2

M

fM (m)χm,εM (Π(θ)−1 · x) (III.394)

Let Bm,M be the square (block) of which χm,εM is the characteristic function. Then

(Π(θ) · χm,εM )(x) = χm,εM (Π(θ)−1 · x) = χΠ(θ)·Bm,M (x) (III.395)

is the characteristic function of the rotated block of the coarse lattice with base (lower left corner) now at
Π(θ) ·m ∈ Z2

5M . Since we have the disjoint decomposition

Bm,M = ∪m′∈Z2
5M∩Bm,M Bm′,5M (III.396)

we have

Π(θ)Bm,M =
∑

m′∈Z2
5M∩Bm,M

Π(θ)Bm′,5M ≈
∑

m′∈Z2
5M∩Bm,M

BDθ·m′,5M (III.397)

where we have replaced in the last step the rotated blocks of the fine lattice, which before rotation compose the
unrotated block of the coarse lattice, by those unrotated blocks of the fine lattice with the bases at the points
defined by Dθ. This is an approximation only, but it is better than one might think because the difference
between the two functions only affects those blocks BDθ·m′,5M which intersect the boundary of BΠ(θ)·m,M .
We will come back to the quality of this approximation below.
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In any case, the last line in (III.397) defines an embedding IθM→5M : LM → L5M by

(IθM→5MfM )(m′) =
∑

m′′∈Z2
5M

δm′,Dθ·m′′
∑
m∈Z2

M

δm′′∈Bm,M fM (m) (III.398)

such that I5M ◦ IθM→5M approximates Π(θ) · IM in the sense specified below. Thus

ν∗M (wM [fM ]) ≈ ν∗(w[I5MI
θ
M→5MfM ]) = ν∗5M (w5M [IθM→5MfM ]) (III.399)

or for the Gaussian case

c∗M ≈ [(I5M ◦ IθM→5M ]†c∗[I5M ◦ IθM→5M ] = [IθM→5M ]†c∗5MI
θ
M→5M (III.400)

To write this just in terms of a single measure (covariance), we use cylindrical consistency

ν∗M (wM [fM ]) = ν∗5M (w5M [IM→5MfM ]) or c∗N = I†M→5Mc
∗
5MIM→5M to find

ν∗5M (w5M [IθM→5MfM ]) ≈ ν∗5M (w5M [IM→5MfM ]) (III.401)

or

I†M→5Mc
∗
5MIM→5M ≈ (IθM→5M )†c∗5MIM→5M (III.402)

as a lattice version for rotational invariance for (Gaussian) measures for scalar field theories.
To specify the quality of the approximation depends on the details and properties of the corresponding

measure family. The following result is targeted to the class of Gaussian measures.

Lemma III.E.1. Suppose that c∗ is the covariance of a rotationally invariant Gaussian measure whose
kernel is differentiable in the sense of distributions. Then

{c∗M − [IθM→5M ]†c∗5MI
θ
M→5M}(m1,m2) = O(ε5M ) (III.403)

for all m1,m2 ∈ Z2
M . The coefficient of ε5M is independent of M . Note that c∗M (m1,m2) = O(ε4M ) in

D = 2.

Beweis. Let Bθm,M = ∪m′∈Z2
5M∩Bm,MBDθm

′,5M and Sθm,M := Π(θ)Bm,M ∩ Bθm,M . Denote ∆θ+
m,M =

Π(θ)Bm,M−Sθm,M and ∆θ−
m,M = Bθm,M−Sθm,M . The sets ∆θ±

m,M are homeomorphic since Bθm,M consists of

the squares of Z2
5M whose lower left corner lies in Π(θ)Bm,M . Thus Bθm,M lacks parts of Π(θ)Bm,M at the

left two boundaries of Π(θ)Bm,M while Bθm,M exceeds Π(θ)Bm,M at its two right boundaries. Hence ∆θ±
m,M

are complementary disjoint sets whose joint measure is equal to the measure of an integer number of squa-
res of the lattice Z2

5M . They also have the same Lebesgue measure because Π(θ)Bm,M has measure ε2M due
to rotational invariance of the Lebesgue measure and Bθm,M has measure 52ε25M = ε2M because Dθ is injec-

tive as is easy to check so that Bθm,M consists of 25 squares of the lattice Z2
5M . Let h : ∆θ+

m,M 7→ ∆θ−
m,M be

the corresponding homeomorphism which can be written in the form h(x) = x+g(x)εM with ||g(x)|| ≤
√

2
as the maximal distance between points in the two sets is

√
2εM . Then by rotational invariance we obtain

the third line in:

{c∗M − [IθM→5M ]†c∗5MI
θ
M→5M}(m1,m2) =

= {
ˆ
Bm1,M

d2x

ˆ
Bm2,M

d2y −
ˆ
Bθm1,M

d2x

ˆ
Bθm2,M

d2y}c(x, y)

= {
ˆ

Π(θ)Bm1,M

d2x

ˆ
Π(θ)Bm2,M

d2y −
ˆ
Bθm1,M

d2x

ˆ
Bθm2,M

d2y}c(x, y)

= {
ˆ
Sθm1,M

d2x

ˆ
∆θ+
m2,M

d2y +

ˆ
∆θ+
m1,M

d2x

ˆ
Sθm2,M

d2y +

ˆ
∆θ+
m1,M

d2x

ˆ
∆θ+
m2,M

d2y

−
ˆ
Sθm1,M

d2x

ˆ
∆θ−
m2,M

d2y −
ˆ

∆θ−
m1,M

d2x

ˆ
Sθm2,M

d2y −
ˆ

∆θ−
m1,M

d2x

ˆ
∆θ−
m2,M

d2y}c(x, y)

=

ˆ
Sθm1,M

d2x

ˆ
∆θ+
m2,M

d2y[c(x, y)− c(x, y + g(y)εM )] +

ˆ
∆θ+
m1,M

d2x

ˆ
Sθm2,M

d2y[c(x, y)− c(x+ g(x)εM , y)]

+

ˆ
∆θ+
m1,M

d2x

ˆ
∆θ+
m2,M

d2y[c(x, y)− c(x+ g(y)εM , y + g(y)εM ] (III.404)

from which the claim now follows by considering a power series expansion of c.
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The lemma does not tell us anything about the size of the coefficient of ε5M and thus of the actual quality
at given M , however, assuming that the coefficient is finite, for sufficiently large M the approximation error
is as small as we want compared to the value of the discrete kernel c∗M (m1,m2).

We translate the approximant c∗Mθ := [IθM→5M ]†c∗5MI
θ
M→5M whose coefficients are explicitly given by

(using translation invariance and (III.398))

c∗Mθ(m) =
1

54

∑
δ1,δ2∈{0,...,4}2

c∗5M (Dθ(5m+ (δ1 − δ2))) (III.405)

into the corresponding Fourier coefficients over which we have better analytic control

c∗θM (m) =
∑
l∈Z2

M

eikM l·mĉ∗θM (l) (III.406)

=
1

54

∑
l′∈Z2

5M

∑
δ1,δ2∈{0,...,4}2

eik5M l
′·Dθ(5m+(δ1−δ2))ĉ∗5M (l′) =

=
1

54

∑
l′∈Z2

5M

∑
δ1,δ2∈{0,...4}2

eik5M (D−1
θ l′)·(5m+δ1−δ2)ĉ∗5M (l′) =

=
1

54

∑
l∈Z2

M

∑
δ∈{−2,...,2}2

eikM l·meikMMδ·m
∑

δ1,δ2∈{0...4}D
eik5M (l+Mδ)·(δ1−δ2)ĉ∗5M (Dθ(l +Mδ))

where we used the fact that Dθ is a bijective map to obtain the third line, as well as for the fourth line, where
we have relabelled Dθl

′ → l′ and split l′ = l +Mδ. We have chosen the interval δ ∈ {−2, ..., 2}2 because of
its symmetry regarding rotations around the point x0 = 0, which are considered here, using the periodicity of
the boundary conditions. Performing the sum over δ1, δ2 and comparing coefficients we obtain

ĉ∗θM (l) =
1

54

∑
δ∈{−2...2}2

2∏
i=1

sin( 5k5M
2 [li +Mδi])

2

sin(k5M2 [li +Mδi])2
ĉ∗5M (Dθ(l +Mδ)) (III.407)

which can now be readily numerically compared to c∗M (l) (after writing it as an integral over k0).

We remark that for rotational invariance under an arbitrary angle θ′ we pick an approximant n · θ mod
2π for sufficiently large n ∈ N. Then, the whole analysis can be repeated using the M → 5nM refinement
since Π(θ)n is a matrix with rational entries with common denominator 5n. Since the sets ∆θ±

m,5n involve an

order of 4 × 5n boundary squares of respective measure ε25nM = ε2M5−2n the relative error here would even
be smaller, i.e. of order 5−nεM .

III.E.5 Numerical investigation for rotational invariance

In this subsection, we test our criterion numerically using the fixed point theory in D = 2, which we know to
be rotationally invariant in the continuum. We do not perform this numerical investigations anew, but cite the
work from [131].
First, we verify that the family of covariances c∗M is invariant under rotations by ±π/2. It suffices to consider
the rotation Π(π/2) and apply this to (III.340) which is symmetric under exchange of t1 ↔ t2 (since we could
have interchanged the roles of those in the contour integral). We have

〈r(π/2)fM , c
∗
Mr(π/2)f ′M 〉M =

= ε4M
∑

m,m′∈Z2
M

fM (Π(π/2) ·m)f ′M (Π(π/2) ·m′)
∑
n∈Z2

M

eikMn·(m1−m2)ĉ∗M (n1, n2)

= ε4M
∑

m,m′∈Z2
M

fM (m)f ′M (m′)
∑
n∈Z2

M

eikMn·Π(π/2)−1(m−m′)ĉ∗M (n1, n2)

= ε4M
∑

m,m′∈Z2
M

fM (m)f ′M (m′)
∑
n∈Z2

M

eikMn·(m−m
′)ĉ∗M ((Π(π/2)−1 · n)1, (Π(π/2)−1 · n)2) (III.408)
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Abbildung III.8: The covariance c∗M (m) of the fixed point theory in D = 2 spatial dimensions. We have chosen the IR
cut-off R = 1, mass p = 1, and k0 = 0. The torus [0, 1)2 is approximated by a lattice with M = 40 points in each direction,
where the point m = (0, 0) lies in the centre of the plotted grid. As one can see, the contributions from next neighbour
frequencies are highly suppressed.

Abbildung III.9: For lattices of size M = 10, 40, 80, 160 the relative deviation ∆ĉ∗M (l) = [|ĉ∗M − ĉ∗θ,M |/ĉ∗M ](k0 = 0, l) is

plotted for l ∈ Z2
M with mass p = 1 and IR cut-off R = 1 . High values of ∆ĉ∗M indicate non-invariance of the covariance at

given resolution under rotations. (The grey data point lies outside the plotted range of [0, 1), with numerical value ≈ 40.)
We find that the relative deviation is non-vanishing everywhere at finite resolution, however it decreases with M−1 because
ĉ∗M − ĉ∗θM ∼ O(ε5M ) ∼ ĉ∗M εM . This is the approximative behaviour of a rotationally invariant fixed point theory. For
M = 160 the computed covariance features already rotational invariance to a high precision.

Thus, for π/2 equation (III.403) becomes the condition:

ĉ∗M (n1, n2) = ĉ∗M (−n2, n1) , ∀n = (n1, n2) ∈ Z2
M (III.409)

which is fulfilled in case of the free scalar field (III.340) due to its symmetry and cos(−ti) = cos(ti).

We will now investigate numerically whether the fixed point covariance satisfies the criterion for rotational
invariance (III.403). As a sufficient example, we consider the afore-mentioned irrational angle θ, such that
cos(θ) = 3/5. Moreover, we will set the IR cut-off to R = 1 for simplicity and without loss of generality the
number of spatial dimensions to D = 2. As the value of the mass p and the parameter k0 in (III.351) only
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appear in the combination q2 := (p2 + k2
0)ε2M , it suffices to fix the latter one to account for both. Here, we

choose q2
1 := p2 + k2

0 = 1.
First, we present the covariance c∗M itself for M = 40 in figure III.8 where the point m = (0, 0) lies in the
centre. Due to the periodic boundaries the values on the corners do agree with each other. One can see that
the next neighbour interactions drop rapidly with m ∈ Z2

M = {0, 1, ...,M − 1}2. The same is true for its
Fourier transform ĉ∗M . Moreover, the covariance at finite resolution is not invariant under arbitrary rotations,
but, heuristically, it appears that the asymmetry could be smoothed out with increasing resolution M .

Next, we consider the quality of the approximant to the rotated covariance as M varies. This approximant,
c∗Mθ, is the Fourier transform of (III.407) and should agree with the unrotated covariance c∗M up to a mistake
O(ε5M ), given the fixed point covariance restores rotational invariance in the continuum. As the same must be
true for their Fourier transforms, we consider ĉ∗Mθ and ĉ∗M on lattices of different size M and study whether
their deviation decays appropriately. Both covariances are of order O(ε4M ), hence their relative deviation should
decay with O(εM ):

∆ĉ∗M (l) :=
|ĉ∗M (0, l)− ĉ∗Mθ(0, l)|

ĉ∗M (0, l)
∼ O(εM ) (III.410)

That it decays indeed fast, is shown in figure III.9 for lattices of size M = 10, 40, 80 and 160. Although at low
resolution the covariance features a high discrepancy with the approximant ĉ∗Mθ, the relative deviation ∆ĉ∗M
becomes smaller as the resolution of the spatial manifold increases. Only in a neighbourhood of the centre
of the grid, i.e. the point around which we rotate, the approximation fails. But, this neighbourhood shrinks
linearly with the resolution M . For M = 160 the computed covariance already features rotational invariance
to a high precision.
To study the decay behaviour of ∆ĉ∗M (l) further, one could now consider the characteristic function χB of a
region B ⊂ [0, 1)2 and compare, for different resolutions M , the mean ∆ĉM [χB ] of the relative deviation in
this region, i.e. the mean of ∆ĉ∗M (l) over all l ∈ Z2

M such that supp(χl) ⊂ B. For example, for l0 = (0, 2) ∈ Z2
5

let the support of χl0 be the region of interest, i.e. on resolution M0 = 5 we have ∆ĉM0
[χl0 ] = ∆ĉ∗5(l0). At

any other M ∈ 5N, we consider the refinement in Z2
M , i.e. the points M

5 l0 + δ for δ ∈ [0,M/5− 1]2. We find
that the mean

∆ĉM [χl0 ] :=
1

(M/5)2

∑
δ∈[0,M/5−1]2

∆ĉ∗M (
M

5
l0 + δ) (III.411)

is decaying with M−1, see figure III.10 for two examples. It confirms that (III.403), i.e. the condition for
rotational invariance, is satisfied up to an error of εM = M−1 to a very high precision for the considered
examples and thus indicates that rotational invariance will be recovered in the continuum.
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Abbildung III.10: The decay behaviour of the mean ∆ĉM [χ] of the relative deviation over a region with characteristic
function χ is presented. For two distinct regions, we compute it at different resolutions M . On the left, χ(0,2) is the
characteristic function of this block that can be associated with the point m0 = (0, 2) on resolution M = 5. The values for
∆ĉM [χ] are shown in blue and we approximate the decay behaviour by the function f(M) = 3.5 M−1 (in orange). Similarly,
χ = 1 is associated with the whole torus [0, 1)2 and is presented on the right. Here, the decay is best approximated by
f(M) = 140 ×M−1 in orange. These two are arbitrary cases, however we expect the decay to be of this form for each
region. This confirms that the decay behaviour is sufficiently fast to account for a rotationally invariant fixed point theory.
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Kapitel IV

General Relativity

Some of the best verified theories of modern physics are the two theories of relativity published by Einstein
in 1905 and 1916 [15, 16]. Firstly, Special Relativity set the stage by proposing that the speed of light should
always be constant in every inertial frame. This presented a radical, yet extremely simple interpretation of the
involved formulas other physicists (such as Lorentz) had developed at the end of the 19th century to explain
the nature of the universe [226–230].
In consequence, no massive object can be accelerated to the speed of light c. Approaching it, the energy of
further acceleration would mostly increase its (relativistic) mass. Hence, only the massless light ray can travel
at c, and not even an interaction between particles, like electromagnetism, can exchange information faster.
Mathematically, this was achieved by not treating space and time separately - as one was used to - but as
a joint object: spacetime [231]. By treating time as a new coordinate, special relativity proposes to use the
Minkowski metric ηµν with diagonal entries (−c2,+1,+1,+1), which ensures the constant nature of the speed
of light. This is known as a metric with Lorentzian signature, a perfect description for a special relativistic
world.
The theory of General Relativity (GR) followed when Einstein introduced a possible foundational principle for
a theory of gravitation, known as the equivalence principle. Einstein stated in 1907 that it assumes “the
complete physical equivalence of a gravitational field and a corresponding acceleration of the reference
system” [232]. A common example is that being at rest in a closed room on the surface of the earth (where we
are exposed to a gravitational field) is physically indistinguishable from being inside an accelerated spaceship.
Now, since in general accelerated frames the Minkowski metric tensor is transformed into a metric field g, the
idea arose that the gravitational field is described by a general Lorentzian metric field g. Of course, gravity
must be influenced by and in return influences itself the planets and stars, which are the constituents of the
matter in the universe, described by the energy-momentum tensor T . This influence is captured in the famous
Einstein field equations

Rµν −
1

2
R gµν = κ Tµν , (IV.1)

with the constant of proportionality, κ, called the gravitational coupling constant. The left-hand side consists
of involved functions of the metric g, the object by which we measure distances. “Distance” is a concept that
is tightly connected with geometry and thus (IV.1) contains R, the geometric curvature of spacetime. Indeed,
these formulas tell us that matter curves spacetime and the gravitational force is nothing more than a purely
geometrical object. The mathematical framework needed to deal with geometry will be explained in section
IV.A. Differential Riemannian Geometry.
To view the consequences of such an identification, let us look at two examples: A light ray is an object of no
mass (hence the only object travelling at the maximal velocity c) so it should not be affected by gravitational
force as Newton understood it (for him, the gravitational force between two particles was proportional to
their mass). Yet, if gravitation in truth changes the curvature of spacetime, it is reasonable to assume that
light will follow the curvature and deviate from its original path. This was confirmed by Eddington, who saw
during an eclipse that stars near the sun shifted their position to a degree only explicable by the theory of
GR [233]. Another example (which we will come back to later in IV.D. Example: Cosmological Models) is
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) model for our universe [20–32]. These special solutions
of (IV.1) allow for various possibilities of the shape of the universe. For example, it could be looking like
the three-dimensional pendant to the surface of a sphere. A sphere, as an object with positive curvature, is
drastically different from an infinitely spread plane. E.g., launching a rocket which travels always in the same
direction would allow the rocket to return automatically back to the point it started from only in the first case.
Having ascertained that geometry describes how the gravitational effects in our universe look like, we will start
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to investigate the Einstein field equations further. An important property of them is that their physical effects
are independent of the coordinates. This is a rather intuitive property: imagine two people looking at the same
experiment under different angles. Although what they individually see differs, the physical observations they
describe will be the same. Since GR is a theory defined on a spacetime, we point out that this works also
for the time axis: if everything stays the same and we consider the same observer, it doesn’t matter whether
we measure an observable, i.e. conduct an experiment, with respect to clocks running at different speeds.
Switching between two frames of observation is commonly referred to as a change of coordinate systems or a
diffeomorphism. Hence, GR turns out to be diffeomorphism invariant.

However, the formulation of GR also comes with a drawback. Namely, it could allow for solutions featuring
closed causal curves, i.e. time-travel possibilities. We want to avoid those possibilities and ask for situations
where we have a well posed initial value formulation. This means that the spacetime is predictable knowing
the initial data of the metric on a spacelike hypersurface σ. Then, one can show that our whole spacetime
looks like σ × R where the real line takes the role of label for the spatial hypersurfaces [40, 234, 235]. Hence,
we might call it coordinate time in the following.
This assumption - a physically sensible one - allows us to rewrite (IV.1) in its initial value formulation. This
will be done in section IV.B Hamiltonian Formulation of General Relativity, where we will derive the
corresponding Hamiltonian theory [56], i.e. we will find a function H(t) with which we can compute how
all observables evolve in the coordinate time t. In other words, this function is a Hamiltonian generating
translation in time. However, we had established that GR is invariant under diffeomorphisms, hence especially
under time translations. But then the generator should vanish. Hence, if we are discussing a solution for GR,
it must necessarily be true that H(t) = 0 for all t. And indeed, we will see that the Hamiltonian is constrained
to vanish. This is a rather unsatisfactory realisation often called the problem of time. A vanishing Hamiltonian
should imply that there is no time evolution of physical observables and everything will remain “frozen”, which
is in drastic contrast with our everyday observations.
To resolve this seemingly contradicting result, we must look at the detailed structure of the Hamiltonian,
which has two constituents

H(t) =

ˆ
σ(t)

d3x ( Hgeometry(x, t) +Hmatter(x, t) ) = 0, (IV.2)

where the first term evolves only the gravity part, which we remember to be just geometrical effects, and
the second contains the interaction of gravity with the matter of our universe. As such, it derives from the
right-hand side of the equation (IV.1). Assume for simplicity that we would have a universe where the only
matter appearing is some simple clock. Whenever the clock ticks the matter Hamiltonian changes and, since
the whole of (IV.2) must be zero, consequently the geometry must change. So, we see that time evolution
happens if we can relate it to a certain clock measuring it. This so-called relational formalism faithfully des-
cribes how we experience time in reality: we cannot grasp time itself, but we can observe how far the pointer
of a clock has moved during a measurement. We should not give too much weight to the coordinate time t,
but rather we should label evolution by some value of a suitable clock matter field, which we will call φ.
A question, giving rise to a lot of debate, is what exactly the Hamiltonian for the clock field should look
like. Many proposals exist, which can be applied in various applications. We will present here one, which is
very often used in the context of isotropic spacetimes: In principle, everything can work as a clock and thus
the galaxies, thinly spread in the universe, with all the star formations happening inside them make perfect
candidates. However, they are far too complicated to be used for actual computations by which we would like
to describe the evolution of our universe. So, one must find a simplification that is feasible and yet possesses
the key features of a “galaxy clock”. For example, studying the sky our observable universe looks extremely
isotropic, i.e. it is symmetric in the sense that in every direction we see approximately the same density of
galaxies. This is also visible in the famous cosmic microwave background, which is isotropic to roughly one
part in 100.000 [20, 21]. We conclude that we occupy no exceptional point in space, a concept which has
become known as the cosmological principle. Hence, the whole universe should look isotropic everywhere and
thus also our clock field should obey this symmetry. When studying isotropic spacetimes we will hence, among
the many approximations which have proven themselves useful, restrict our attention to a homogeneously
spread, free massive scalar field, which in the literature is also called Klein-Gordon field and which we have
already encountered in the previous chapters. Using it as a clock field we compute an explicit example for our
universe at large scales in IV.D. Example: Cosmological Models.
This clock field has proven useful for many cosmological applications, for example a generalisation thereof is
one of the standard techniques to describe inflation [236]. A remarkable property of this scalar field clock for
the case of an isotropic universe is that, with each passing instance of the coordinate time t, the value of the
clock φ will strictly increase, which is indeed a useful property for a clock. However, it also means when looking
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at (IV.2) that with a changing matter field the geometry part must change as well, hence excluding a stable,
static universe, which is isotropic. This is in agreement with today’s observations of the galaxies drifting apart.
As the universe expands, this implies in consequence that at some point in the far past there must have been
a moment where the universe was infinitesimal small. All matter was condensed in a single point with infinite
energy density, the famous Big Bang singularity!

A singularity, like this one, is an indication that the theory left its domain of validity. In particular, we
would expect that the epoch where the scale factor of the universe was very small is in truth dominated by
quantum effects. Hence, to resolve the singularity we will discuss a possible candidate for a theory of quantum
gravity in the last chapter of this thesis, V. Loop Quantum Gravity. For the approach discussed there, it is
necessary to express GR in new variables which will be introduced in IV.C.1. Ashtekar-Barbero Variables.
Instead of using the metric g itself, Ashtekar built two functions containing it, (AIa, E

b
J). These are covector

and vector fields on σ, indexed by I, J = 1, ...3, which form a canonical pair [53–55], i.e. their Poisson bracket
is proportional to a Dirac δ distribution:

{ AIa(x) , EbJ(y) } =
κβ

2
δIJδ

b
aδ

(3)(x, y). (IV.3)

The constant β 6= 0 can be any non-vanishing complex number, labelling a whole family of possible choices.
Indeed, under certain constraints (i.e. vanishing of a specific function GJ(AIa, E

J
b ) = 0 called Gauss cons-

traint) this formulation becomes equivalent to GR. Moreover, the Ashtekar-Barbero variables have the form
of a gauge theory, i.e. we can now use the whole mathematical toolbox known from other gauge theories
like, e.g. electromagnetism and quantum chromodynamics. As mentioned, we will see the advantage of this
especially in the last chapter of this thesis, where we will aim at a possible definition of a theory of Quantum
Gravity. Thanks to the formulation of Ashtekar, this ambitious program can be carried out in exact analogy
to the experimentally verified quantum gauge field theories.

IV.A Differential Riemannian Geometry

In this chapter we collect the basic notions from differential geometry. Textbooks covering further details are
for example [237, 238].

IV.A.1 Manifolds and Tensors

Definition IV.A.1 (Manifolds, hypersurfaces). An m-dimensional Ck manifoldM is a topological space,
i.e. a set of points, with a collection of open subsets (UI)I∈I (with arbitrary index set I) such that

1. M = ∪I∈IUI , i.e. the subsets form an open cover of M.

2. There exists a homeomorphism xI : UI → xI(UI) ⊂ Rm called chart.

3. For all I, J ∈ I with UI ∩UJ 6= 0, the map xI→J := xJ ◦ x−1
I : xI(UI ∩UJ)→ xJ(UI ∩UJ) is a Ck

map between open subsets, i.e. xI→J is k-times continuously differentiable.

A subset σ ⊂M of an m-dimensional manifold M is called a hypersurface if

1. σ is equipped with the induced (subspace) topology of M, i.e. its open sets are given by VI := σ∩UI
where UI ⊂M are open.

2. The dimension of σ is dimσ = m− 1 and for x′I := xI |VI the map x′I→J := x′J ◦ x′I
−1

is Ck.

3. There exists an embedding map ψ : σ → M such that ψ(VI) is open ∀VI and σ → ψ(σ) is an
injection, i.e. not self-intersecting.

In the following we consider functions f :M→ C which are smooth, i.e. f ∈ C∞, iff f ◦ x−1
I is smooth on

xI(UI) ⊂ Rm.

Definition IV.A.2 (Vector fields, one-forms). A smooth vector field v on M is a linear map

v : C∞(M)→ C∞(M)

f 7→ v[f ], (IV.4)

such that v[fg] = v[f ]g + fv[g] and annihilates constants.
The space of all smooth vector fields shall be denoted by T 1(M), on which we define the linear maps
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ω : T 1(M) → C∞(M), which are called one-forms. Calling T1(M) the space of all one-forms we define
the exterior derivative d as the map

d : C∞ → T1(M)

f 7→ df s.t. df [v] := v[f ] (IV.5)

for all v ∈ T 1(M).

In any chart (U, x) we can consider at each p the components xν := x(p)ν ∈ Rm and the special vector fields
∂µ defined by the condition

(∂µx
ν)(p) = δνµ. (IV.6)

Indeed the ∂µ form a basis of T 1(M) as for all v one can express v(p) = vµ(x)∂µ, which is independent of
the chart in use. Similar we find a basis for T1(M) as dxν so that

(dxν(∂µ))(p) = δνµ. (IV.7)

In particular we find for all f ∈ C∞(M)

df = (∂µf)dxµ (IV.8)

Definition IV.A.3 (Diffeomorphisms). Let (UI , xI)I∈I be the charts of an m-dimensional manifold M.
A map ϕ :M→M is called C∞ iff for each I, J ∈ I the map xI ◦ ϕ ◦ x−1

J is well defined and also C∞.
If ϕ is C∞ and has an inverse which is also C∞ we call it a diffeomorphism. The diffeomorphisms of a
manifold M form a group which is denoted by Diff(M).

Definition IV.A.4 (Tensor fields, n-forms). An (a, b)-tensor field t : T1(M)...T1(M)×T 1(M)...T 1(M)→
C∞(M) is a functional, linear in each entry, which writes explicitly

t(p) = tµ1...µa
ν1...νb

(p) (∂µ1
⊗ ...⊗ ∂µa ⊗ dxν1 ⊗ ...⊗ dxνb)(p) (IV.9)

where tµ1...µa
ν1...νb

∈ R and transforms under a change of coordinate systems xI , xJ according to

(tI)
µ1...µa
ν1...νb

(xI(p)) = (ϕ∗I→J tJ)µ1...µa
ν1...νb

(xI(p)) := (tJ)
µ′1...µ

′
a

ν′1...ν
′
b

(xJ(p))

(
a∏
k=1

∂xµkI (p)

∂x
µ′k
J (p)

)(
b∏
l=1

∂x
ν′l
J (p)

∂xνlI (p)

)
,

(IV.10)

where ϕ∗I→J is called the pull-back of a diffeomorphism1 between both charts, such that xJ = ϕI→J ◦ xI .
The space of all tensor fields of type (a, b) is denoted as T ab (M).
The special case of ω ∈ T 0

n(M) is called an n-form iff its component functions ων1...νn are totally skew.
On their space, Ωn(M), we define the exterior product by

∧ : Ωk1(M)× Ωk2(M)→ Ωn(M)

ω1 × ω2 7→ (ω1 ∧ ω2) (IV.11)

such that

(ω1 ∧ ω2)(v1...vn) :=
1

k1!k2!

∑
π∈Sn

sgn(π)ω1(vπ(1)...vπ(k1))ω2(vπ(k1+1)...vπ(n)) (IV.12)

with n = k1 + k2 and π ∈ Sn is a permutation. The exterior derivative d : Ωn(M)→ Ωn+1(M) is given
by

dω(v0, ...vn) =

n∑
k=0

(−1)kvk[ω(v0, ..., �vk, ..., vn)] +

n∑
k≤l=0

(−1)k+lω([vk, vl], v0...�vk, ..., �vl, ..., vn), (IV.13)

where [v, w][f ] := v[w[f ]]− w[v[f ]].

The definition of d is in agreement with (IV.5) and implies moreover d(ω1∧ω2) = dω1∧ω2 + (−1)k1ω1∧dω2

for ωi ∈ Ωi(M), dωm = 0 if m = dimM and d2 = 0.
In the following, if a tensor field t ∈ T ab (M) is defined globally we will employ the abstract index notation
tµ1...µa
ν1...νb

and drop the index I of the locally defined component functions.

1In physics jargon this is called a passive diffeomorphism, i.e. a map between some of the various coordinate systems.
Later on, the phrase diffeomorphism invariance of e.g. an action will mean that such smooth changes of coordinates do not
affect the value of the action functional.
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IV.A.2 Metric and Spacetime

Definition IV.A.5 (Metric). A metric tensor field g ∈ T 0
2 (M) is a symmetric, non-degenerate tensor

field2. As n, the number of negative eigenvalues is independent of any chosen basis we call the metric of
Lorentzian signature if n = 1 and of Euclidian signature if n = 0. We call the pair (M, g) a spacetime.

As g is non-degenerate there exists its inverse g−1 whose components will be simply denoted gµν . Hence
gνµgµρ = δνρ . For a vector vµ we will adopt the notation vµ := gµνv

ν for its dual, and similar for tensor fields.

Definition IV.A.6 (Covariant Differential). A map ∇′ : T ab (M) → T ab+1(M), tµ1...µa
ν1...νb

7→ ∇′νb+1
tµ1...µa
ν1...νb

is called affine connection or covariant differential if it obeys the following properties:

1. Linearity: for all t1, t2 ∈ T (M) and z1, z2 ∈ C:

∇′(z1t1 + z2t2) = z1∇′t1 + z2∇′t2. (IV.14)

2. Leibniz rule: for all t1, t2 ∈ T (M):

∇′ (t1 ⊗ t2) = (∇t1)⊗ t2 + t1 ⊗ (∇t2). (IV.15)

3. Commutativity with contraction: for all t ∈ T (M):

∇′(t[.., ω, .., v, ..]) = (∇′t)[.., ω, .., v, ..] + ...+ t[..,∇′ω, .., v, ..] + ...+ t[.., ω, ..,∇′v, ..] + ... (IV.16)

4. Consistency with the notion of tangent vectors as directional derivatives on scalar fields: for all
f ∈ C∞ and v ∈ T 1(M):

v[f ] = vµ∇′µf . (IV.17)

5. Torsion free3: for all f ∈ C∞:

∇′µ∇′νf = ∇′ν∇′µf . (IV.18)

The existence of such covariant derivatives is found by considering (∇0t)µ1...µa
νb+1ν1...νb

:= ∂tµ1...µa
ν1...νb

/∂xνb+1 , which
obeys all five criteria. However, uniqueness of these operators is in general not given. We will define the
components of ∇′ acting on a vector field ∂µ as

Γρµν∂ρ := ∇′µ∂ν . (IV.19)

It follows then from ∇′(δµ[xν ]) = ∇′(dxν(∂µ)) = 0 that ∇′µdxν = −Γνµρdx
ρ and combined with (IV.17) we

can write the explicit components of (IV.16) as

∇′µtµ1...µa
ν1...νb

:= ∂µ[tµ1...µa
ν1...νb

] +

a∑
k=1

Γµkµρt
µ1...�µkρ...µaν1...νb

−
b∑
l=1

Γρµνlt
µ1...µa
ν1...�ν lρ...νb

(IV.20)

Definition IV.A.7 (Curves, tangential vectors). A smooth curve in M is a C∞ map c : [a, b] ⊂ R →
M, s 7→ c(s). For each c one may define the tangential vector field vc(s) along c as

vc(s)[ . ] :=

(
dxµI (s′)

ds′

)
s′=s

∂µ( . ) |xI(c(s)) (IV.21)

Given p := c(0) we would call c the integral curve of v through p. Conversely, given a vector field v and a
point p there exists a unique integral curve cvp of v through p and we assign to it a one-parameter group of
diffeomorphisms

ϕvs(p) := cvp(s) . (IV.22)
2In physics jargon one uses sometimes the notation ds2 = g = gµνdxν ⊗ dxν when expressing the metric in a basis and

calls ds2 the line element.
3This condition is sometimes dropped. However, when talking about GR, it can be used to ensure that one can assign

for a given metric g a unique (torsion-free) connection ∇, which is compatible with respect to g, i.e. ∇g = 0 (see theorem
IV.A.1).
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Definition IV.A.8 (Lie derivative). Given a smooth vector field v, we define the Lie derivative of a
tensor t ∈ T ab (M) to be

(Lvt)(p) :=

(
d

ds

)
s=0

((ϕvs)
∗t)(p) . (IV.23)

A tensor field t is said to be invariant under a diffeomorphism ϕ iff ϕ∗t = t and symmetric under the
flow of v iff Lvt = 0.

Since Lv is linear in v we consider for the moment the coordinate system xI in which va = ∂/∂x1
I , in which

(IV.23) explicitly reads

(Lvt)µ1...µa
ν1...νb

=
∂

∂x1
I

tµ1...µa
ν1...νb

. (IV.24)

Thus, for a vector field w it follows:

Lvwµ =
∂

∂x1
I

wµ = vν∂νw
µ − wν∂νvµ = [v, w]µ (IV.25)

which is independent of the choice xI . And consequently also Lvf = v[f ] for f ∈ C∞, which implies for a
one-form ω via Leibniz rule

wµLvωµ = Lv(ωµwµ)− ωµ[v, w]µ = v[ωµw
µ]− ωµvν∇′vwµ + ωµw

ν∇′νvµ = wµ(vν∇′νωµ + ων∇′µvν)

(IV.26)

which has to be true for all w and hence uniquely determines Lvω. Continuing in this manner inductively we
find:

Corollary IV.A.1. Let t ∈ T ab (M) and v ∈ T 1(M) then for any covariant differential ∇′ it holds:

Lvtµ1...µa
ν1...νb

= vµ∇′µtµ1...µa
ν1...νb

−
a∑
k=1

tµ1...�µkµ...µaν1...νb
∇′µvµk +

b∑
l=1

tµ1...µa
ν1...�ν lµνb

∇′νkvµ (IV.27)

Given a covariant derivative the notion of parallel transport of a tensor t along a curve with tangent v is

vµ∇′µtµ1...µa
ν1....νb

= 0 . (IV.28)

Concretely, for a vector wµ(p) this means vµ∂µw
ν + vµΓνµρw

ρ = 0, which is an ordinary differential equation.
Hence, given wµ(p = c(0)) this defines for all parameters s of the curve uniquely wµ(c(s)), the parallel
transported vectors4.

Theorem IV.A.1 (Levi-Civita Connection). Given a spacetime (M, g) there exists a unique (torsion-
free) metric-compatible covariant derivative ∇, i.e. ∇g = 0. We call it the Levi-Civita connection and
its components the Christoffel symbols, which are given by

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (IV.29)

Proof. First we use the torsion-freeness on ∇′µ∇′νf = ∂µ∂νf − Γρµν∇′ρf to get

2Γρ[µν]∇′ρf = [∂µ, ∂ν ]f =: cρµν∂ρf = cρµν∇′ρf (IV.30)

displaying the symmetry property Γρµν = Γρνµ for a coordinate system. Requiring ∇g = 0 implies by (IV.20)

0 = ∇ρgµν = ∂ρgµν − Γσρµgσν − Γσρνgµσ (IV.31)

⇔ Γνρµ + Γµρν = ∂ρgµν (IV.32)

We switch in (IV.32) the indices ρ↔ µ and add it to itself and subtract moreover a cyclic permutation of the
indices of (IV.32), too. Using (IV.30) with Γρµν = Γρ(µν) + Γρ[µν]

2Γρµν = ∂µgνρ + ∂νgµρ − ∂ρgµν − cρµν + cνµρ + cµρν (IV.33)

Dividing by two and multiplying with the inverse metric gives (IV.29), if we are in a coordinate system (where
cρµν = 0 for all µ, ν, ρ).

4Sometimes, one wants that the scalar product of two vectors at a given point, i.e. gµνwµw̃ν , does not change if parallelly
transported along a curve with tangent field v. Thus wµ, w̃ν are separately transported via (IV.28) and we require

vρ∇′ρ(gµνw
µw̃ν) = 0

After applying the Leibniz rule, one sees that is this true for any curve if only if ∇′ρgµν = 0. This motivates to consider the
following Levi-Civita connection.
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IV.A.3 Riemann Curvature

Definition IV.A.9 (Riemann curvature, Ricci scalar). Given a spacetime (M, g) and its metric-compatible
Levi-Civita connection ∇ the Riemann curvature tensor in T 1

3 (M) is defined by its components

Rσµνρ = −2∂[µΓσν]ρ + 2Γλρ[µΓσν]λ . (IV.34)

The following contractions are called the Ricci tensor and Ricci scalar respectively

Rµρ = Rσµσρ, R = gµρRµρ . (IV.35)

The action of the Riemann curvature tensor on one-forms ω can be written more compactly as

2∇[µ∇ν]ωρ = 2∇[µ(∂ν]ωρ − Γσν]ρωσ) = −2Γσρ[µ∂ν]ωσ − 2∂µ(Γσν]ρωσ) + 2Γλρ[µΓσν]λωσ =

= (−2∂[µΓσν]ρ + 2Γλρ[µΓσν]λ)ωσ = Rσµνρωσ , (IV.36)

where we have used several times the beforehand established symmetry property Γρ[µν] = 0. Thus for any

vectorfield v follows by the Leibniz property

0 = 2∇[µ∇ν](ωρv
ρ) = 2ωρ∇[µ∇ν]v

ρ + 2vρ∇[µ∇ν]ωρ = ωρ(2∇[µ∇ν]v
ρ + vρRσµνρ) (IV.37)

which gives the general action of Rσµνρ on vector fields and, by using metric compatibility of ∇, this yields
finally the following symmetry property:

0 = ∇[µ∇ν]gρσv
ρṽσ = vρṽσ∇[µ∇ν]gρσ − gρσvρRσµνλṽλ − gρσ ṽσRρµνλvλ = vρṽλ(gρσR

σ
µνλ + gσλR

σ
µνρ) .

(IV.38)

Moreover, we can relate Rσµνρ with the parallel transport along curves. Consider two commuting vector fields

k1, k2, i.e. tangents of some coordinate system x1
S , x

2
S , and the integral curves ck

1

p , c
k2

p , c
k1

ck2 (∆x2)
, ck

2

ck1 (∆x1)

with ∆x1,∆x2 ∈ R. Hence e.g. along ck1p we find x2
S = 0. For all one-forms ω we transport the vector vν(p)

along the loop formed by those curves. The displacement along the first segment is to first order in ∆x1:

vµωµ(∆x1, 0)− vaω(0, 0) ≈ ∆x1
S(

∂

∂x1
S

vaωa)(∆x1/2S , 0) = ∆x1
S((k1)µ∇µvµων)(∆x1

S/2, 0) =

= ∆x1
S(vν(k1)µ∇µων)(∆x1

S/2, 0) , (IV.39)

where we used in the last step the fact that we are parallel transporting v, (IV.28). Similarly, one finds that
to first order in ∆x2

S

(vν(k1)µ∇µων)(∆x1
S/2,∆x

2
S) =

= vν(k1)µ∇µων(∆x1
S/2, 0) + ∆x2

S((k2)µ∇µvν(k2)µ
′∇µ′ων)(∆x1

S/2,∆x
2
S/2) (IV.40)

Now, the k1, k2 were chosen such that they commute with each other. It follows that δva, the displacement
of the vector va after going along the whole loop, reads:

δ(vaωa) = ∆x1
S∆x2

Sv
ν(k1)µ(k2)µ

′∇[µ∇µ′]ων (IV.41)

which has to be true for all ω and thus displays a connection between the displacement of δva and Rσµνρ.
Hence vanishing of the Riemann curvature is the condition for parallel transport of vectors along a curve to
be trivial5. If that is the case, we say that the connection ∇ is flat.

IV.B Hamiltonian Formulation of General Relativity

We now turn to vacuum6 GR, which we will define on some orientable, globally-hyperbolic7 4-dimensional
manifoldM∼= R×σ with ∂M = ø and whose degrees of freedom are given by the components of the metric
tensor field and whose action is the Einstein-Hilbert action [16, 239].

5Equivalently the (later-introduced) holonomy (IV.152) of the curve is trivial
6If one would add a matter Lagrangian LM to the Einstein-Hilbert action, one obtains on the right hand side of (IV.43)

the corresponding energy density tensor 8πGTµν/c4.
7This means there exists a Cauchy surface σ, i.e. a hypersurface such that gν is completely determined by the initial

conditions on σ. By Gerochs splitting theorem follows automatically that M∼= R× σ, i.e. we have not neglected anything
with this assumption [40,234,235].
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IV.B.1 Einstein-Hilbert action

Theorem IV.B.1 (Einstein-Hilbert action, Einstein field equation). The field theory of the metric tensor
described by the Einstein-Hilbert-action

SEH =
1

κ

ˆ
M

d4x R
√
−det(gµν) (IV.42)

where κ = 16πGc−4 is the gravitational coupling constant, can be cast into the following set of differential
equations, called Einstein field equations

Rµν −
1

2
Rgµν = 0 (IV.43)

Proof. We start by calculating the variation of the Lagrangian (g := det(gµν)):

δ(R
√
g) =

√−ggµν(δRµν) +
√−gRµνδgµν +Rδ

√−g (IV.44)

As one can show, by expressing the determinant as contractions with the Levi-Civita symbol, it holds δg =
ggµνδgµν and thus

δ
√−g =

i

2
√
g
δg =

1

2

√−g(gµνδgµν) = −1

2

√−g(gµνδg
µν) (IV.45)

Since δΓρµν is the difference of two connections it is a tensor. Hence, one can compute

∇µ(δΓρνσ) = ∂µΓρνσ + ΓρµλδΓ
λ
νσ − Γλµ(νδΓ

ρ
σ)λ (IV.46)

and it follows

∇µ(δΓρνσ −∇ν(δΓρµσ) = 2δ(∂[µΓρν]σ + Γρλ[µδΓ
λ
ν]σ − Γλσ[µδΓ

ρ
ν]λ) = δRρσµν (IV.47)

Moreover, we can replace the density one vector field divergence ∇µ with ∂µ and get

√−ggµνδRρµρν =
√−g∇ρ(gµνδΓρνµ − gµρδΓσµσ) = ∂ρ

√−g(gµνδΓρνµ − gµρδΓσµσ) (IV.48)

which is a total derivative and hence gives, due to Stokes theorem, only a boundary term, which vanishes by
definition of M. The remaining terms account to:

δSEH =
1

κ

ˆ
d4x δgµν

√−g
(
Rµν −

1

2
Rgµν

)
(IV.49)

which yields the Einstein field equations as extrema.

IV.B.2 Arnowitt-Deser-Misner Variables

Good references for further details on the Hamiltonian formulation are [50, 244].

Definition IV.B.1 (Spatial metric, shift and lapse function). Upon splitting M into a foliation of non-
intersecting hypersurfaces σt ∼= σt=0 =: σ, we use the parameter t ∈ R as a coordinate and upon choosing
a set of spatial coordinates xa, a ∈ {1, 2, 3}, we may express the metric tensor as

g = gµν dx
µ ⊗ dxν =: (−N2 + qabN

aN b) dt⊗ dt+ 2Naqab dx
b ⊗ dt+ qab dx

a ⊗ dxb (IV.50)

Here we call N = N(t, x) the lapse function, Na = Na(t, x) the shift function and qab = qab(t, x) the
spatial or intrinsic metric on σ.

Due to M∼= R× σ there exists a set of diffeomorphism ϕt such that σt = ϕt(σ). We define the vector fields

T (p) :=
∂ϕ

∂t
(t, x) |ϕ(t,x)=p, Sa(p) :=

∂ϕ

∂xa
(t, x) |ϕ(t,x)=p (IV.51)
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Theorem IV.B.2. Given (M ∼= R × σ, g) and (σt, ϕt(σ)) as before. If we split T into a normal and a
tangential part (i.e. nµgµνS

ν
a = 0)

T = N n+Na Sa (IV.52)

where n is the unit timelike normal of σt (i.e. gµν(p)nµ(p)nν(p) = −1). Then, we can choose N and Na

as lapse respectively shift fields and

qab(t, x) |t=0= (ϕ∗q)ab(t, x) = (SµaS
ν
b qµν)(p) |p=ϕ(t=0,x), qµν := gµν + nµnν (IV.53)

Proof. First:

dxµ =
∂ϕ(t, x)µ

∂t
dt+

∂ϕ(t, x)µ

∂xa
dxa = (nµN +NaSµa )dt+ Sµa dx

a (IV.54)

Then using nνS
ν
b = 0 and nµnµ = −1

gµν dx
µ ⊗ dxν = gµν

[
(nµN2nν +NaN bSµaS

ν
b + 2nµSνbN

bN) dt⊗ dt +

+2(Sµan
νN +N bSµaS

ν
b ) dxa ⊗ dt+ SµaS

ν
b dx

a ⊗ dxb
]

= (−N2 +NaN bqab) dt⊗ dt+ qabN
b dxa ⊗ dt+ qab dx

a ⊗ dxb (IV.55)

which was the claim.

Note also qµνn
µ = nν + (nµn

µ)nν = 0 = qµνn
ν , a property by which we call qµν spatial. With qρµ = qµνg

νρ

follows qρµ = qµνg
νρ = qµν(qνρ + nνnρ) = qµνq

νρ . Thus, we can use either g or q in order to raise and lower
indices of q and indeed of any spatial tensor tµ1...µa

ν1...νb
, i.e. with nνitµ1...µa

ν1...νb
= nµit

µ1...µa
ν1...νb

= 0 for all i.
From this follows quickly that

det(ϕ∗g) = −N2 det(qab) (IV.56)

Theorem IV.B.3 (Extrinsic curvature). Given the same structure as before. Consider the extrinsic
curvature Kµν , which is the spatial projection of the parallel transport of the normal n, i.e.

Kµν := qρµq
σ
ν∇ρnσ (IV.57)

Then it holds for Kab(t, x) |t=0:= (ϕ∗K)ab(t = 0, x) that

K := qµνKµν = qabKab, Kab =
1

2N
(q̇ab − (LN̄q)ab) (IV.58)

Proof. For the first property it suffices to ensure that qab, the inverse of qab, fulfils:

qµν = qabSµaS
ν
b (IV.59)

For this: qµνnµ = qµνnν = 0 due to Sµanµ = 0 as Sµa is tangential. As for the spatial-spatial components:

(qρσ)qµρqσνS
µ
aS

ν
b = qµνS

µ
aS

ν
b = qab = qcdqacqbd = (qcdSρcS

σ
d )qµρqσνS

µ
aS

ν
b (IV.60)

For the second property we notice that

(Lng)µν = nρ∇ρgµν +∇µnν +∇νnµ = 2∇(µnν) (IV.61)

which implies

Kµν =
1

2
qρµq

σ
ν (Lng)ρσ =

1

2

(
qρµq

σ
ν (Lnq)ρσ + qρµq

σ
ν (Lnnρnσ)

)
=

1

2
qρµq

σ
ν (Lnq)ρσ =

1

2
(Lnq)µν (IV.62)

since qσνnσ = 0 and (Lnq)ρσ being already spatial, since

nρ(Lnq)ρσ = nρnκ∂κqρσ + nρ(∂ρn
κ)qκσ + nρ(∂σn

κ)qρκ = nρ∂ρ(n
κqκσ) = 0 (IV.63)

Now we use that ∂aT
µ = ∂a∂0ϕ

µ = ∂0∂
µ
aϕ = ∂0S

µ
a and the chain rule Sµa ∂µ = ∂a, T

ρ∂ρ = ∂t for:

SµaS
ν
b (∂µT

ρ)qνρ = Sνb (∂aTρ)qνρ = ∂0(Sνb S
ρ
aqνρ)− Sρa(∂0S

ν
b )qνρ − SρaSνb (∂0qνρ)

= ∂0qab − SµaSνb (∂0qµν)− Sµa (∂bT
ρ)qρµ = q̇ab − SµaSνb q̇µν − SνaSνb (∂µT

ρ)qρν (IV.64)

⇒ 2Sµ(aS
ν
b)(∂µT

ρ)qνρ = q̇ab − SµaSνb q̇νµ (IV.65)
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which implies

SµaS
ν
aLT qµν = SµaS

ν
b T

ρ∂ρqµν + 2SµaS
ν
b (∂(µT

ρ)qν)ρ = SµaS
ν
b ∂0qµν + q̇ab − SµaSνb q̇νµ = q̇ab (IV.66)

Also note that for S := SaN
a it holds:

SµaS
ν
b (LSq)µν = Sµc S

ν
b (SρcN

c)∂ρqµν + 2SµaS
ν
b qρ(ν(∂µ)S

ρ
cN

c)

= N c(∂cqab)−N cqµν∂c(S
µ
aS

ν
b ) + 2SµaS

ν
b qρ(ν((∂µ)N

c)Sρc −N c(∂µ)S
ρ
c )) =

= N c(∂cqab) + 2(∂(aN
c)qb)c − 2N cqµν(∂cS

µ
(a)Sνb) + 2N cqρνS

ν
(bS

µ
a)(∂µS

ρ
c ) =

= LN̄qab − 2N cqµνS
ν
(b(∂a)S

µ
c ) + 2N cqρνS

ν
(b(∂a)S

ρ
c ) = LN̄qab (IV.67)

We can now plug (IV.67) and (IV.66) together into the spatial pull-back of (IV.62) and obtain the wanted
result

Kab = SµaS
ν
b

1

2N
(LT q − LSq)µν =

1

2N
(q̇ab − (LN̄q)ab) (IV.68)

Definition IV.B.2 (Spatial Ricci scalar). We define the Ricci scalar of spatial geometry8 as:

R(3) := −K2 +KµνK
µν + qµρqνσR(4)

σµνρ (IV.69)

with R
(4)
σµνρ being the Riemann curvature from (IV.34) for (M, g).

Lemma IV.B.1 (Codazzi equation). The relation between the four-dimensional Ricci scalar and spatial
Ricci scalar is as follows:

R(4) = R(3) +KµνK
µν −K2 − 2∇µvµ (IV.70)

with vµ = nν∇νnµ − nµ∇νnν .

Proof. From its definition (IV.34) follows that (R(4))σµνρ = −(R(4))σνµρ and we had already seen that

R
(4)
σµνρ = −R(4)

ρµνσ in (IV.38). Hence with (IV.36):

qµρqνσR(4)
σµνρ = (gµρ + nµnρ)(gνσ + nνnσ)R(4)

σµνρ = R(4) + (gµρnνnσ + gνσnµnρ)R(4)
σµνρ =

= R(4) + 2gµρnν∇[µ,∇ν]nρ − 2gνσnµ∇[µ,∇ν]nσ =

= R(4) + 2∇[µ(nν∇ν]n
µ − nµ∇ν]n

ν)− ((∇[νn
µ)∇µ]n

ν + (∇[µn
µ)∇ν]n

ν) =

= R(4) +∇µ(nν∇νnµ − nµ∇νnν) (IV.71)

Using that KµνK
µν = KabK

ab under pull-back, (IV.56) and that ∇µvµ is a total derivative and drops
out in an integral over M we can rewrite the Einstein Hilbert action:

SEH =
1

κ

ˆ
dt

ˆ
d3x N

√
det(q)(R(3) +KabK

ab −K2) (IV.72)

One can perform a Legendre transformation of the system to obtain the associated Hamiltonian theory [56].
For this one introduces the following canonical momenta (i.e. {qab, P cd} = κδc(aδ

d
b)δ

(3)(x, y) etc.):

π :=
δ

δṄ
SEH = 0, πa :=

δ

δṄa
SEH = 0, P ab :=

δ

δq̇ab
SEH =

1

κ

√
det(q)(Kab −Kqab) (IV.73)

Theorem IV.B.4. Action (IV.72) is equivalent to the Hamiltonian density with Lagrange multipliers
v, va

HGR =

ˆ
σ

d3x (πv + πav
a +NaCa +NC) (IV.74)

where the (spatial) diffeomorphism constraint Ca and the scalar constraint C are given by

Ca :=P bc∂aqbc − 2∂bP
b
a (IV.75)

C :=
κ√

det(q)
(P abPab −

P 2

2
)−

√
det(q)

κ
R(3) (IV.76)

8Indeed, it can be shown that this is the usual Ricci scalar (IV.35) of the spatial geometry on σ with a unique covariant
differential D compatible with qµν , i.e. R(3) = R(q) := qabRcabc(q).
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Proof. Note that we can invert P ab by taking the trace: (q := det(q))

P := qabP
ab = − 2

κ

√
qK ⇒ Kab =

κ√
q

(P ab − qabP
2

)⇒ KabKab −K2 =
κ2

q
(PabP

ab − P 2

2
) (IV.77)

With the extremal values vab = q̇ab = 2NKab + (LN̄q)ab follows

P abvab = 2N
κ√
q

(PabP
ab − P 2

2
) + P ab(LN̄q)ab (IV.78)

which implies for the Hamiltonian density

HGR =

ˆ
σ

d3x
(
πv + πav

a + P abvab − L(qab, N,N
a, vab)

)
=

=

ˆ
σ

d3x

(
πv + πav

a + P ab(LN̄qab) +N(
κ√
q

(P abPab −
P 2

2
−
√
q

κ
R(3))

)
=

=

ˆ
σ

d3x
(
πv + πav

a + P abN c∇cqab − 2P abqc(b∇a)N
c +NC

)
(IV.79)

where one can use integration by parts on P abqc(b∇a)N
c in the last line and that the covariant derivative can

be replaced with the standard derivative for density weights zero to obtain the claim.

The name diffeomorphism constraint is indeed justified: By introducing the notion of smeared quantities, e.g.
~C[ ~N ] :=

´
d3x Na(x)Ca(x) one can find that

{~C[ ~N ], qab} = (L ~Nq)ab, {~C[ ~N ], P ab} = (L ~NP )ab (IV.80)

So ~C[ ~N ] generates diffeomorphisms of σ along the integral curves of ~N on σ.

Lemma IV.B.2 (Hypersurface Deformation Algebra or Dirac Algebra). The constraint analysis9 of
(IV.74) starting with primary constraints π = πa = 0 yields the Hypersurface Deformation algebra as
secondary constraints:

{~C[ ~N ], ~C[ ~N ′]} =− ~C[[ ~N, ~N ′]] (IV.81)

{~C[ ~N ], C[f ]} =− C[ ~N [f ]] (IV.82)

{C[f ], C[g]} =− ~C[q−1(gdf − fdg)] (IV.83)

In other words the complete Hamiltonian density (IV.74) is constrained to vanish10.

Proof. It is straightforward to see that 0 = π̇ = {H,π} = C and 0 = π̇a = {H,πa} = Ca = 0 drop out
as the secondary constraints. It remains to show that their algebra closes, which is quite technical and, hence,
we refer to the literature, e.g. [50].

IV.C Connection Formulation of General Relativity

The following subsections address the first steps towards defining a theory for Quantum Gravity. For this we
want to follow the Dirac programme introduced in chapter II. However, for the ADM formulation introduced
in the last section nobody has succeeded so far in finding (in all generality) a rigorously defined, background
independent representation of a suitable quantum algebra which also supports the Hamiltonian constraint
operator.
But the situation changed drastically when Ashtekar introduced new canonical variables in 1986-88. Hence,
in this section we follow his strategy to rewrite GR in the connection formulation and introduce a possible
candidate for an algebra of observables, i.e. the holonomy-flux algebra.

9This physical procedure to treat singular Lagrangians was originally worked out by Dirac: If a function f is constrained
to vanish for a system at all times, it follows that also its time derivative has to vanish, ḟ = {H, f} = 0. However this
condition may yield a further (so-called) secondary constraints, for which the same argument must apply. The whole set of
conditions obtained by this iterative procedure is called the constraint algebra.

10This is known as the problem of time in GR. It comes about as the Hamiltonian density H only generates gauge
transformations and not an observable time evolution. A way out of the situation is to couple GR to some matter fields,
which can serve as clocks [147–153]. This yields a physical Hamiltonian which is in general different from H. We will come
back to this strategy in section IV.D where we will use a massless scalar field (IV.208) as reference frame.
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IV.C.1 Derivation of the Ashtekar-Barbero Variables

With the intent of ultimately defining a theory of Quantum Gravity, major developments were made when
reformulating GR in terms of a gauge theory of Yang-Mills type. Originally motivated by the discoveries of
Sen [57–59], this was achieved first by Ashtekar [53–55] and later improved by Barbero [60, 61] by making
explicit use of dimM = 4 as will be reviewed in the following.

Definition IV.C.1 (3-bein & co-3-bein). One defines the co-3-bein fields eIa on σ (with spacetime indices
a and internal indices I = 1, .., 3) such that

qab = δIJe
I
ae
J
b (IV.84)

Note that tensorial indices are pulled via qab while we define internal ones to be raised and lowered with
δIJ . Since also qab is by definition invertible there exists an inverse, called 3-bein eaI , such that

eaIe
I
b := δIJe

IaeJb = qabqbc = δab , eIae
a
J = eaIqabe

b
J = eaIe

K
a δKLe

L
b e

b
J = δIJ (IV.85)

This will always be possible as one can see by counting the degrees of freedom: qab has 6 (due to being
symmetric), while eIa has 9 dof. This reflects that we have introduced some gauge degrees of freedom, as qab
is invariant under local SO(3) rotations eIa 7→ OIJ(x)eJa since δIJO

I
K(x)OJL(x) = δKL.

Definition IV.C.2 (Spin connection). Let D be the unique covariant derivative which is compatible with
the spatial metric qab, i.e. Dq = 0. We define its extension acting on generalised tensors with additional
internal indices by

Dat
a1..an
b1..bm J1..Jp

:= (Dat
a1..an
b1..bm

)
J1..Jp�Ji

+

p∑
i=1

ΓMa εJiML�Ji
ta1..an
b1..bm J1..�JiL..Jp

(IV.86)

where the spin connection Γ is given by

ΓLa := −1

2
εLJKebK

(
∂be

J
a − ∂aeJb + ecJe

M
a ∂be

M
c

)
(IV.87)

Lemma IV.C.1. For the spin connection defined in (IV.87) holds

Dae
J
b = 0 (IV.88)

Proof. Assuming Dee
a
J = 0 we determine the structure of ΓeJK := ΓLe εJLK . First note that Γe(JK) = 0

since

2Γe(JK) = ∂eδIJ + Γ L
eJ δLK + Γ L

eKδJL = DeδJK = De(e
a
Je
b
Kqab) = 0 (IV.89)

Also note for the connection associated with D, i.e. Γabc = 1
2 (∂bqac + ∂aqbc − ∂cqab) that

D[ae
J
b] = 0 = ∂[ae

J
b] + Γ[aJKe

K
b] − Γc[ab]e

J
c = ∂[ae

J
b] + Γ[aJKe

K
b] (IV.90)

By defining γJKL := 2ea[Ke
b
L]∂aebJ and ΓKJL := eaKΓaJL, it can be rewritten:

0 = γJKL + ΓKJL − ΓLJK = 2eaKe
b
L

(
∂[ae

J
b] + ΓaJL′e

L′

b − ΓbJK′e
K′

a

)
(IV.91)

Using Γe(JK) = 0 gives

2ΓKJL = (ΓKJL − ΓLJK) + (ΓJLK − ΓKLJ)− (ΓLKJ − ΓJKL) = −(γJKL + γLJK − γKLJ) (IV.92)

Upon plugging together:

−ΓLa =
1

2
εLJKΓaJK =

1

2
εLJK(eMa ΓMJK) = −1

4
εLJKeMa (γJMK + γKJM − γMKJ) =

=
eMa
4
εLJK(2γJKM − γMJK) =

eMa
4
εLJK(4eb[Ke

c
M ]∂becJ − 2eb[Je

c
K]∂becM ) =

= −e
b
K

2
εLJK(2∂[aeb]J − ecJeMa ∂beMc ) (IV.93)
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Definition IV.C.3 (Ashtekar-Barbero variables). The Ashtekar-Barbero variables coordinatise the pha-
se space of an SU(2) Yang-Mills theory, described by an SU(2) connection (gauge potential) AJa :=

εJKLA
(KL)
a /2 and a non-abelian electric field EaJ , which satisfy the algebra:

{EaJ(x), EbK(y)} =0 (IV.94)

{AJa (x), AKb (y)} =0 (IV.95)

{EaJ(x), AKb (y)} =
κβ

2
δab δ

J
Kδ

(3)(x, y) (IV.96)

with β ∈ R− {0}, the so-called Immirzi parameter. This phase space is subject to the Gauss constraint:

GJ = DaEaJ = ∂aE
a
J + εJKLA

K
a E

a
L = 0 (IV.97)

Theorem IV.C.1 (Ashtekar, Barbero, Sen, Immirzi, 1986-94). The phase space of the Ashtekar-Barbero
variables becomes identical with the phase space of the ADM framework of GR under the identification:

AJa := ΓJa + βKabe
b
J , EaJ :=| det(e) | eaJ , (εabceJa =

sgn(det(e))√
det(q)

εJKLEaKE
b
L) (IV.98)

with det(e) := det({eIa}Ia). This results in

Qab(A,E) := δJKEaJE
b
K

1

| det(E) | , Pab(A,E) :=
1

βκ
(Qc(aQb)d −QabQcd)(AJc − ΓJc )QdeEeJ (IV.99)

having the same Poisson brackets as P ab, qab as long as the Gauss constraint GJ = 0 holds.

The astonishing fact is, that this works only in D = 3 dimension: the connection is valued in the Lie algebra
of SU(2) ∼= so(3) which has dimension 1

2D(D − 1) = D. Thus, one has as many A-fields as E.
Proof. Notice that det(E) = det(e−1) | det(e) |3= ± | det(e) |2⇒| det(E) |= det(q), which can be easily
checked if written as ε-contractions. Hence

Qab =
| det(e) |2

det(q)
eaJe

b
Kδ

JK = qab ⇒ {Qab(x),Qcd(y)} = 0 (IV.100)

In an intermediate step note that

εabcE
a
IE

b
JE

c
K = det(E)εIJK , εIJKEaIE

b
JE

c
k = det(E)εabc (IV.101)

as either I = J and similar imply 0 = 0 and {IJK} = σ{123} implies εabcEIaE
j
bE

K
c = εabcE1

aE
2
bE

3
c×

sgn(σ{IJK}) = det(E)εIJK . The same argument holds of course also for exchanging spacetime and internal
indices. From here one deduces that

eJa ε
abc =

| det(e) |
det(E)

εJKLEbKE
c
L =

sgn(det(e))√
det(q)

εJKLEbKE
c
L (IV.102)

as was claimed in (IV.98) and furthermore

{AJd ,det(E)} =
1

2
εILKEaIE

b
L{AJd , EcK}εabc = −κβ

4
εILJεabdE

a
IE

b
L = −κβ

4
εabdε

fabeJf

√
det(q)

sgn(det(e))
=

= −κβ
2

det(e)eJd =: −κβ
2

det(E)EJd (IV.103)

With this and ΓJa = ΓJa (e) |EaJ=|det(e)|eaJ one evaluates

{Pab(x),Qef (y)} =
1

βκ
(Qc(aQb)d −QabQcd)QdgEgJ)(x){AJc (x),Qef (y)} =

=
1

βκ
(Qc(aQb)d −QabQcd)QdgEgJ)(x)Qem(y){AJc (x),Qmn(y)}Qnf (y) =

=
1

2
(Qc(aQb)d −QabQcd)QemQnfQdg(δmc Qgn + Qmgδnc −

1

2
Qmnδgc )(x)δ(3)(x, y) =

=
1

2
(Qc(aQb)d −QabQcd)(Qe(cQd)f −

1

2
QefQdc)(x)δ(3)(x, y) = δae δ

b
fδ

(3)(x, y) (IV.104)
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Prior to the last bracket let us state that

δ

δEbJ
F (E) :=

δ

δEbJ

ˆ
d3x ΓLb E

b
J = ΓJb (IV.105)

since (e := det(e))

EaLδΓ
L
a =

1

2
| e | εLJK

(
δ(2eb[Ke

a
L]∂be

J
a + ebKe

a
J∂be

L
a )− (δeaL)ebK(2∂[be

J
a] + ecJe

b
Ke

M
a ∂be

M
c )
)

=

=
1

2
| e | εLJK

(
δ(ebKe

a
L)∂be

J
a + ebKe

a
L∂bδe

J
a − 2(δe

[a
L )e

b]
K∂be

J
a − (δeaL)eMa e

b
Ke

C
J ∂be

M
c

)
=

=
1

2
| e | εJKL

(
ebKe

a
Lδ∂be

J
a − δ(eaLeMa )ebKe

c
J∂be

M
c + (δeMa )∂be

M
c e

b
Ke

c
J

)
=

=
1

2

(
εcbaeJc δ∂be

J
a + εcbdeLd e

a
L(∂be

M
c )(δeMa )

)
=

=
εabc

2
(−eJc ∂bδeJa − (∂be

M
c )δeMa ) = −ε

abc

2
∂b(e

J
c δE

J
a ) = d(eJ ∧ δeJ) (IV.106)

where we have used again a version of (IV.101) to obtain the fourth line. But by being a total derivative the
term drops in the integral yielding (IV.105).
Finally the third bracket:

{Pab(x),Pcd(y)}(βκ)2 = (Qe(aEb)J −QabEeJ)(x)(AKf − ΓKf )(y){AJe (x), (Qf(cE
d)
K −QcdEfK)(y)}−

− (Qf(cE
d)
K −QcdEfK)(y)(AJe − ΓJe )(x){AKf (y), (Qe(aEb)J −QabEeJ)(x)}+

+ (Qe(aEb)J −QabEeJ)(x)(Qf(cE
d)
K −QcdEfK)(y){AJe − ΓJe )(x), (AKf − ΓKf )(y)} (IV.107)

where the last bracket is found to vanish due to (IV.105):

{(AJe − ΓJe )(x), (AKf − ΓKf )(y)} = {AJe (x), AKf (y)}+ {AJe (x),ΓKf (y)} − {ΓJe (x), AKf (y)}+ {ΓJe ,ΓKf } =

=
βκ

2

(
δΓKf (y)

δEeJ(x)
− δΓJe (x)

δEfK(y)

)
=
βκ

2

(
δ2

∆EeJ(x)δEfK(y)
− δ2

δEfK(y)δEeJ(x)

)
F (E) =

= 0 (IV.108)

After some calculation one finds

{Pab(x),Pcd(y)} =
δ(x, y)

4βκ
(QacG[bd] −QadG[bc] + QbcG[da] −QbdG[ac]) (IV.109)

with (using IV.102)

G[ab] = EcJE
[a
J E

b]
K(AKc − ΓKc )

1

det(E)
= εabdELd εLJK(AJc − ΓJc )EcK (IV.110)

However, since Dae
J
b = 0⇒ Dae

b
J = 0⇒ DaE

b
J = 0 it follows

DaE
a
J = ∂aE

a
J + ΓLa εJLKE

a
K = 0⇒ εLJK(AJc − ΓJc )EcK = ∂cE

c
J + εJLKA

L
aE

a
K = GJ (IV.111)

In other words G[ab] (and thus (IV.109)) is zero if the Gauss law (IV.97) holds, which was the claim.

Theorem IV.C.2. The Hamiltonian density of GR, given by (IV.75) and (IV.76), can be rewritten in
terms of the Ashtekar-Barbero variables as

Ca =
2

κβ
F Jab(A)EbJ (IV.112)

C :=
4

κ2β

(
F Jab(A)− 1 + β2

β6

4

κ2
εJMN{{V,CE [1]}, AMa }{{V,CE [1]}, ANb }

)
εabc{V,AJc } (IV.113)

where the spatial volume V , the curvature of the Ashtekar connection F Jab(A) and the Euclidian part of
the scalar constraint, CE, are explicitly

V :=

ˆ
σ

d3x
√
| det(E) | (IV.114)

F Jab(A) := 2∂[aA
J
b] + εJKLA

K
a A

L
b (IV.115)

CE :=
4

κ2β
sgn(det(e))F Jabε

abc{V,AJc } =
1

κ
F JabεJKL

EaKE
b
L√

det(q)
(IV.116)
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This theorem bears significant importance for the (later discussed) purpose of developing a quantum theory
of gravity: It allows to express the physical constraints without the problematic factor 1/ det(q). We will later
see that this is the key for a rigorous quantisation of the Hamiltonian of GR in Ashtekar-Barbero variables in
the way originally intended by Dirac.
For the proof of the theorem we need first the following Lemma due to Thiemann [74, 75].

Lemma IV.C.2 (Thiemann identities). It holds

{V,AJa} =
κβ

8
sgn(det(e))εJKLεabc

EbKE
c
L√

| det(E) |
(IV.117)

{{V,CE [1]}, AJa} =
κβ3

2
sgn(det(e))Kabe

b
J (IV.118)

Proof. We already computed in (IV.103) that {AJd ,det(E)} = −κ2 det(e)eJd . Thus follows with (IV.102)
that

δV

δEaJ
=

1

2
eJa =

1

4
sgn(det(e))εJKLεabc

EbKE
c
L√

det(q)
(IV.119)

which is the first claim. Also with CE [1] = sgn(det(e))/(κ)
´
σ
d3xF Iabε

abceLc δIL we compute

sgn(det(e))
δCE [1]

δAJd (x)
= − 2

κ
δd[bε

abc∂a]e
L
c δJL +

2

κ
εIKMδ

J
MA

K
a ε

adceLc δIL = − 2

κ
εadc(εJKLA

K
a e

L
c + ∂ae

J
c ) =

= − 2

κ
εadc(AKa εJKLe

L
c − ΓKa εJKLe

L
c + ∂ae

J
c + ΓKa εJKLe

L
c ) =

= − 2

κ
εadc(βKabe

b
KεJKLe

L
c +DaE

J
c ) = − 2

κ
εadcβKabe

b
KεJKLe

L
c (IV.120)

From both follows:

K : = {V,CE [1]} =
βκ

2

ˆ
σ

d3x
δV

δEdJ(x)

δCE [1]

δAJd (x)
= −β2/2sgn(det(e))

ˆ
σ

d3x eJdKabe
b
K(efKe

M
f )εJMLe

L
c ε
adc =

= β2sgn(det(e))

ˆ
σ

d3x Kabe
b
Ke

f
K det(e)δaf = β2sgn(det(e))

ˆ
σ

d3x Kabe
b
KE

a
K (IV.121)

Now one can easily see with (IV.105) that

sgn(det(e)){K,AJd} =
βκ

2
β2 δ

δEaJ(x)

ˆ
σ

d3y Kabe
b
KE

a
K =

β3κ

2

δ

δEdJ(x)
(

ˆ
d3x(AKa E

a
K − F [E])

=
β3κ

2
(AJa − ΓJa ) =

β3κ

2
Kabe

b
J (IV.122)

which finishes the Lemma.

Proof of theorem IV.C.2. Before looking at the expression which will turn out to be the diffeomorphism
constraint in Ashtekar-Barbero variables, let us look at the following equation (for any vector field v):

D[aDb]v
J
c = D[a(ΓMb] εJMKv

K
c + (Db]vc)

J) = (IV.123)

= (D[aDb]vc)
J + εJMK(ΓM[a (Db]vc)

K − ΓM[b (Da]vc)
K + (∂[aΓMb] )vKc − ΓM[b ΓNa]εKNLv

L
c ) =

= (D[a, Db]vc)
J + (∂[aΓMb] )εJMLv

L
c + ΓMb ΓNa εKJ[M εN ]LKv

L
c =

= Rdabc(q)q
devJe + ((∂[aΓMb] ) + ΓMb ΓNa εKNM

1

2
)εJMLv

L
c =: Rdabc(q)v

J
d +

1

2
FKab (Γ)εJKLv

L
c

where we defined FKab (Γ), the curvature of the spin-connection. As the left hand vanishes for vJc = eJc this
leads to

F Jab(Γ)EbJ =
1

2
εLKJE

b
Je
c
Le

d
KRdabc(q) = det(e)/2εbcdRdabc(q) = −det(e)

2
εbcdRa[bcd] = 0 (IV.124)

since for all one-forms ω:

0 = (d2ω)bcd = 2∇[b∇cωd] = ∇[b∇cωd] −∇[c∇bωd] = Ra[bcd]ωa (IV.125)
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The curvature of the spin connection is related to the curvature F Jab = F Jab(A) by

F Jab = 2∂[aA
J
b] + εJKLA

K
a A

L
b = F Jab(Γ) + 2βD[aK

J
b] + β2εJKLK

K
a K

L
b (IV.126)

such that in the following contraction we can use (IV.124) for the first term:

F Jab(A)EbJ = F Jab(Γ)EbJ + β(DaKbce
c
JE

b
J −DbKace

c
JE

b
J) + β2εJKLKace

c
KKbde

d
LE

b
J =

= −β
√

det(q)Db(K
b
a − qbaK) + β2

√
det(q) det(e)εcdbKacKbd =

= −βκDbP
b
a (IV.127)

where we have used K[bd] = 0 for the last line. Finally we obtain (IV.112) when removing the density weight

due to metric compatibility (q := det(q), P ba =:
√

det(q)pba)

DbP
b
a = Db(

√
det(q)pba) =

√
qDbp

b
a =
√
q(∂bp

b
a + Γbbcp

c
a − Γcbap

b
c) =

=
√
q

(
∂cp

c
a +

1

2
pcaq

be∂eqbc +
1

2
pcaq

be∂[cqb]e −
1

2
pbcq

ce∂eqba −
1

2
pbe∂[aqb]e

)
=

= ∂c(
√
qpca) +

1

2
P caq

be(∂eqbc − ∂bqce)−
1

2
P be∂aqbe −

1

2
P be(∂eqba − ∂bqae) =

= ∂cP
c
a −

1

2
P ce∂aqbe = −1

2
Ca (IV.128)

For the scalar constraint we first rewrite part of CE = 1
κsgn(det(e))F IabεJKL

EaKE
b
L√

det(q)
, namely

F Jab(A)εJKLE
a
KE

b
L = (F Jab(Γ)EaKE

b
L + 2βD[aKb]ce

c
JE

a
KE

b
L + β2εJMNKace

c
MKbde

d
NE

a
KE

b
L)εJKL =

= Rdabc(q)e
c
Ke

d
LE

a
LE

b
K + 2βDaKbcε

cba det(E)− β2(KabK
ab −K2) | det(E) |

= (−Rbd(q)qbd − β2(KabK
ab −K2)) | det(E) | (IV.129)

which tells us that s := sgn(det(e))

C =
√

det(q)/κ(KabK
ab −K2 −R(3)(q)) = CE +

1 + β2

κ

√
det(q)(KabK

ab −K2) =

= CE − s
1 + β2

κ
Kace

c
MKbde

d
N εMNJε

JKL EaKE
b
L√

det(E)
=

= s
4

κ2β

(
F Jab −

1 + β2

κ2β6
4{K,AMa }{K,ANb }εMNJ

)
εabc{V,AJc } (IV.130)

Lastly, we substitute the lapse function N → sgn(det(e))N and obtain the claim.

IV.C.2 The Holonomy-flux algebra

By introducing the new SU(2)-phase space variables (AIa, E
b
J) one also introduced a new constraint into the

framework of GR, namely the Gauss constraint GJ from (IV.97). Thus, we have to complete the constraint
analysis with respect to it and ensure that no new conditions arise from the Poisson brackets with C[N ] and
~C[ ~N ].
For this purpose we will express the constraint in terms of smearings of the fundamental variables, connection
AIa(x) and electric field EaI (x). Smearing can be done in general e.g. with any test function, however to ensure
a nice behaviour under gauge transformations it will turn out to be useful to smear along distributional objects,
i.e. curves and surfaces.
We will make all of this precise in the following. References covering further details and including the theorems
mentioned below are for example [48, 50].

Definition IV.C.4 (Pauli matrices). Consider a basis of the Lie-algebra su(2), namely τI := −iσI/2
where σI are the Pauli matrices11. Explicitly the τI are given by (I = 1, 2, 3)

τ1 := −1

2

(
0 i
i 0

)
, τ2 := −1

2

(
0 1
−1 0

)
, τ3 := −1

2

(
i 0
0 −i

)
(IV.131)

11By this choice of basis one identifies the structure function of su(2) with εIJK , the Levi-Civita symbol as is appearing
e.g. in (IV.97).
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which indeed are satisfying the algebraic relation of su(2), i.e.

[τI , τJ ] = εIJKτK (IV.132)

Lemma IV.C.3 (Infinitesimal gauge transformations). The infinitesimal smeared Gauss constraint
(ΛJ ∈ S)

G(Λ) :=

ˆ
σ

d3x ΛJGJ = −
ˆ
σ

d3x EaJ(∂aΛJ + εJKLA
K
a ΛL) (IV.133)

produces the following infinitesimal transformations:

{G(Λ), Aa} =
βκ

2
(−∂aΛ + [Λ, Aa]) (IV.134)

{G(Λ), Ea} =
βκ

2
[Λ, Ea] (IV.135)

{G(Λ), G(Λ′)} = −βκ
2
G([Λ,Λ′]) (IV.136)

with Aa := AJaτJ , Ea := EaJτJ and Λ := ΛJτJ .

Proof. With δAa(x)/δAIb(y) = τIδ
b
cδ(x, y) follow the first two relations immediately from

δG(Λ)

δEbI
= −(∂bΛ

I + εIKLA
K
b ΛL),

δG(Λ)

δAIb
= −EbJεJILΛL (IV.137)

and since [Λ,Λ′]I = εIJKΛJΛ′
K :

{G([Λ]), G[Λ′])} = (−βκ
2

)(−εILJΛLEbJ)(−∂bΛ′I + εIKMΛ′
K
AMb )− (Λ↔ Λ′) =

= −βκ
2

(
εILJE

b
J∂bΛ

LΛ′
I

+ εILJεIKM (ΛLΛ′
K − Λ′

L
ΛK)EbJA

M
b

)
=

= −βκ
2
EbJ

(
∂b(εILJΛLΛ′

I
)− 2Λ[MΛ′

J]
AMb

)
=

= −βκ
2
EbJ

(
∂b[Λ,Λ

′]J + εJKL(εLJ
′K′ΛJ

′
Λ′
K′

)AKb

)
= −βκ

2
G([Λ,Λ′]) (IV.138)

Corollary IV.C.1 (Hamiltonian flow). Given a function F (A,E) over the phase space. Its Poisson
bracket with the Gauss constraint G(Λ) vanishes, iff αΛ

s , the Hamiltonian flow of the Gauss constraint,
is the identity map for all s ∈ R and Λ ∈ su(2), i.e.:

αΛ
s F (A,E) := exp(s{G(Λ), . })F =

∞∑
n=0

sn

n!
{G(Λ), F}(n)

!
= F (A,E) (IV.139)

Note that the Hamiltonian flow defines an algebra isomorphism, where αΛ
s (f+g) = αΛ

s f+αΛ
s g and αΛ

s (fg) =
(αΛ
s f)(αΛ

s g), where the first rests on linearity and the second on the Cauchy product rule and Leibniz rule:
(f (k) := ∂kxf)

(
∑
k

1

k!
f (k))(

∑
l

1

l!
g(l)) =

∑
n

n∑
k=0

f (k)g(n−k)

k!(n− k)!
=
∑
n

n∑
k=0

(
n
k

)
f (k)g(n−k) =

∑
n

1

n!
(fg)(n) (IV.140)

Also due to the Jacobi identity {G(Λ), {f, g}} = {{G(Λ), f}, g} + {f, {G(Λ), g}} we get: αΛ
s {f, g} =

{αΛ
s f, α

Λ
s g}.

So we can compute its action on more involved functions, as soon as we know it on the basic variables:

Lemma IV.C.4. Let (12 := idSU(2))

gΛ
s := exp(sΛ) = cos(||Λ||s

2
)12 +

2Λ

||Λ|| sin(||Λ||s
2

) ∈ SU(2) (IV.141)

where ||Λ|| =
√
δIJΛIΛJ then with s′ = 2

βκs

αΛ
s′Aa = −(∂ag

Λ
s )(gΛ

s )−1 + gΛ
s Aa(gΛ

s )−1 (IV.142)

αΛ
s′E

a = gΛ
s E

a(gΛ
s )−1 (IV.143)

αΛ
s′Fab = gΛ

s Fab(g
Λ
s )−1 (IV.144)
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Proof. For (IV.141) note that τIτJ = −δIJ/4 + εIJKτK/2 and hence ΛΛ = −ΛIδIJΛJ/4 = −||Λ||2/4.
Now∑

n

sn

n!
Λn =

∑
n

(s||Λ||)2n

(2n)!
(−1

4
)2n12 +

∑
n

(s||Λ||)2n+1

(2n+ 1)!
(−1

4
)2n Λ

||Λ|| = cos(||Λ||s
2

)12 +
2Λ

||Λ|| sin(||Λ||s
2

)

(IV.145)

It is a straightforward calculation using (IV.134-IV.135)

αΛ
s′E

a =
∑
n

sn

n!
[Λ, Ea](n) =

∑
n

n∑
k=0

sn

n!
(−)n−k

(
n
k

)
ΛkEaΛn−k =

∑
n

∑
k

sk

k!
ΛkEa

(−)n−k

(n− k)!
Λn−k =

= gΛ
s E

a(gΛ
s )−1 (IV.146)

αΛ
s′Aa =

∑
n

s′
n

n!
(
βκ

2
)n−1[Λ, {G(Λ), Aa}](n−1) =

= −
∑
n

sn

n!

∑
k

(
n− 1
k

)
Λk(∂aΛ)(−)n−1−kΛn−1−k + gΛ

s Aa(gΛ
s )−1 (IV.147)

To calculate further note that

k∑
l=0

(
k
l

)
(−)l = (1− 1)k = 0,

k∑
l=0

(
n
l

)
(−)l = (−)k

(
n− 1
k

)
(IV.148)

Then we find:

−(∂a
∑
k

sk

k!
Λk)(

∑
n

(−s)n
n!

Λn) = −
∑
n

n∑
l=0

sl

l!

(−s)n−l
(n− l)! (∂aΛl)Λn− l =

= −
∑
n

sn

n!

n∑
l=0

(
n
l

)
(−)n−l

l−1∑
k=0

Λk(∂aΛ)Λn−l+l−1−k =

= −
∑
n

sn

n!

n−1∑
k=0

Λk(∂aΛ)Λn−1−k(−)n−1−k
n∑

l=k+1

(−)k+1−l
(
n
l

)
(IV.149)

which equals (IV.147) by
∑n
l=k+1(−)k+1−l

(
n
l

)
=
∑k
m=0

(
n
m

)
(−)m+1−k−1 = (−)k−k

(
n− 1
k

)
.

Lastly

2

βκ
{G(Λ), Fab(x)} =

ˆ
σ

d3z(−∂cΛJ + [Λ, Ac]
J)(2∂[aδ

c
b]δ

(3)(x, z)τJ + 2AI[aδ
c
b]τLε

IJLδ(3)(x, z)) =

= −2∂[a∂b]Λ−+∂[a[Λ, Ab]] + 2[∂[bΛ, Aa]] + 2[A[a, [Λ, Ab]]] =

= [Λ, (2∂[aA
K
b] +AI[aA

J
b]ε
IJK)τK ] = [Λ, Fab] (IV.150)

where we used that ∂xδ(x − z) = −∂zδ(x − z). From here on the computation proceeds analogously to
(IV.146).

This allows to establish for example gauge invariance of the Volume element: Using τJτK = −δJK12/4 +
εJKLτL/2 we get the unique Killing form kIJ = k(τI , τJ) := −2tr(τIτJ) = δIJ and that tr(τJτKτL) =
−εJKL/4 and with this one sees that a finite gauge transformation leaves det(E) invariant:

det(E) =
1

3!
εabcε

IJKEaIE
b
JE

c
K ∼ tr(EaEbEc)εabc 7→

7→ tr((gEag−1)(gEbg−1)(gEcg−1))εabc = tr(EaEbEc)εabc (IV.151)

By F IabE
a
I = −2tr(FabE

a) combined with cyclicity of the trace, we see that the diffeomorphism constraint
is already invariant under gauge transformations and a similar calculation establishes the same for the scalar
constraint, i.e. it would not map out of the gauge invariant sector of the theory and no new constraints arise.
However, this becomes even more apparent if we rewrite everything in a regularised version using holonomies:
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Definition IV.C.5 (Holonomy). Let e : [0, 1]→ σ, t 7→ e(t) be a piecewise analytic curve in σ. Let A be
a globally defined SU(2) connection. The holonomy h(e) := ht(e) |t=1 of A along e is the unique solution
of the ordinary differential equation (called parallel transport equation)

d

dt
ht(e) = ht(e)Ae(t) (IV.152)

where

ht=0(e) = 12, Ae(t) := ėa(t)AIa(e(t))τI (IV.153)

Theorem IV.C.3. .

1. The explicit solution of (IV.152) is the path ordered exponential

ht(e) = P exp

(ˆ t

0

ds Ae(s)

)
= 12 +

∞∑
n=1

ˆ t

0

ds1

ˆ s1

0

ds2 ...

ˆ sn−1

0

dsn Ae(sn)...Ae(s1) (IV.154)

such that the later parameter values are always ordered to the right.

2. The holonomy h(e) is independent of a reparametrisation of the curve e 7→ e ◦ f, f : [a, b] → [0, 1]
with ḟ(t) > 0 for all t ∈ [a, b], f(a) = 0, f(b) = 1.

3. Under a gauge transformation of the connection (see (IV.142))

Aa 7→ Aga := −(dg)g−1 + gAg−1 (IV.155)

where g : σ → SU(2), it holds (b(e) = e(0) the beginning point and f(e) = e(1) the final point of the
path)

h(e) 7→ hg(e) = g(b(e))h(e)g(f(e))−1 (IV.156)

4. Indeed, the holonomy is SU(2) valued, that is

h(e)† = h(e)−1, det(h(e)) = 1 (IV.157)

5. Given two curves e1, e2 such that e1 ∩ e2 = f(e1) = b(e2). For the connected path

(e1 ◦ e2)(t) :=

{
e1(2t) 0 ≤ t ≤ 1/2

e2(2t− 1) 1/2 ≤ t ≤ 1
(IV.158)

and for e−1(t) := e(1− t), the inversion of a curve e, we have respectively

h(e1 ◦ e2) = h(e1)h(e2), h(e−1) = h(e)−1 (IV.159)

Proof. For 1. we use the Picard-Lindelöf theorem [240] which guarantees the uniqueness of a solution of
(IV.152). This leaves for us to check (IV.154)

d

dt
ht(e) = 0 +

∑
n=1

[ˆ s1

0

ds2 ..

ˆ sn−1

0

dsn Ae(sn)...Ae(s2)Ae(s1)

]
s1=t

=

=

∞∑
n=1

ˆ t

0

ds1 ...

ˆ sn−2

0

dsn−1 Ae(sn−1)...Ae(s1)Ae(t) = ht(e)Ae(t) (IV.160)

and this is indeed the path ordered exponential since it is the integration over an n-simplex [241]:

P
( ∞∑
n=0

1

n!

ˆ t

0

dt1..dtn Ae(ta)..Ae(tn)

)
=

∞∑
n=0

ˆ t

0

ds1...

ˆ sn−1

0

dsnAe(sn)...Ae(s1) (IV.161)

Point 2. is a simple consequence of coordinate change s = f(t):

ˆ 1

0

dsėa(s)Aa(e(s))
∂f

∂t
ėa(f(t))Aa(e(f(t)) =

ˆ b

a

dt(e ◦ f)′(t)Aa(e ◦ f)(t)) (IV.162)
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For 3. we again use the uniqueness of solutions of

d

dt
hgt (e) = hgt (e)ė

a(t)(−(dg)g−1 + gAg−1)a(e(t)) (IV.163)

for which we try hgt (e) = g(b(e))ht(e)g(e(t))−1 and use that ht(e) fulfils (IV.152):

d

dt
hgt (e) = g(b(e))(

d

dt
ht(e))g(e(t))−1 + g(b(e))ht(e)

d

dt
g(e(t))−1 =

= g(b(e))ht(e)g(e(t))−1g(e(t))Ae(t)g(e(t))−1 + g(b(e))ht(e)g(e(t))−1g(e(t))ėa(t)
∂g−1

∂xa
(e(t)) =

= hgt (e)ė
a(t)(gAg−1)(e(t))− hgt (e)ėa(t)(

∂g

∂xa
g−1)(e(t)) (IV.164)

Since also the initial conditions remain the same hg0(e) = g(b(e))12g(b(e))−1 = 12 one obtains the claim.
We will first show 5. and consider

h(e1 ◦ e2) =

∞∑
n=0

ˆ 1
2

0

ds1...dsn Ae(sn)...Ae(s1) +

ˆ 1

1
2

ds1(
∑
n=0

ˆ 1
2

0

ds2..dsnAe(sn)..Ae(s2))Ae(s1)+

+

ˆ 1

1
2

ds1

ˆ s1

1
2

ds2(
∑
n=0

ˆ 1
2

0

ds3..Ae(s3))Ae(s2)Ae(s1) + ... =

= h(e1)

(
12 +

ˆ 1

1
2

ds1Ae(s1) +

ˆ 1

1
2

ds1

ˆ s1

1
2

ds2 Ae(s2)Ae(s1) + ...

)
= h(e1)h(e2) (IV.165)

To show the second point of 5., consider

Ae−1(t) = (e−1).(t)Aa(e−1(t) = −ė(1− t)Aa(e(1− t)) = −Ae(1− t) (IV.166)

which implies

ˆ 1

0

ds1...

ˆ sn−1

0

dsnAe−1(sn)...Ae−1(s1) = (−)n
ˆ 1

0

dt1...

ˆ 1

tn−1

dtnAe(tn)...Ae(t1) (IV.167)

To shorten the notation we introduce Aba(s) :=
´ b
a
dtAe(t). Now

h(e)h(e−1) = 1 +A1
0(s1)−A1

0(t1) +

∞∑
n=2

(−)n
n∑
k=0

(−)kAsk10 (sk)...A1
0(s1)A1

tn−k−1
(tn−k)... (IV.168)

For n ≥ 2:

A1
tn.1(tn)...A1

0(t1)−A1
0(s)A1

tn−2
(tn−1)...A1

0(t1) +

n∑
k=2

... =

= A1
tn−1

(tn)...A1
0(t1)− (A1

tn−1
(s)A1

tn−2
(tn−1) +Atn−1

0 (s)A1
tn−2

(tn−1))...A1
0(t1) +

n∑
k=2

... =

= −As10 (s2)A1
tn−2

(s1)A1
tn−3

(tn−2)...A1
0(t1) +

n∑
k=2

... (IV.169)

We iterate, from k → k + 1:

(−)k−1Ask−1

0 (sk)...A1
tn−k

(s1)A1
tn−k−1

(tn−k)...A1
0(t1) + (−)kAsk−1

0 (sk)...A1
0(s1)A1

tn−k−1
(tn−k)... =

= (−)kAsk−1

0 ...(−A1
tn−k

(s1)A1
tn−k−1

(tn−k) +A1
0(s1)A1

tn−k−1
(tn−k))... =

= (−)kAsk0 (sk+1)...As10 (s2)A1
tn−(k+1)

(s1)A1
t−(k+1)−1(tn−(k+1))...A1

0(t1) (IV.170)

Thus, all powers of n 6= vanish separately and it follows h(e−1) = h(e)−1.
Lastly, 4. follows from the initial condition ht=0(e) = 12 and (remember (IV.45))

d

dt
det(ht(e)) = det(ht(e))tr(ht(e)

−1 d

dt
ht(e)) = det(ht(e))tr(Ae(t)) = 0⇒ 1 = det(h0(e)) = det(ht(e))

(IV.171)
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and remembering that τ †J = −τJ for J = 1...3

h(e)† =

∞∑
n=0

ˆ
...

ˆ
dsn (Ae(sn)...Ae(s1))† =

∞∑
n=0

ˆ
...

ˆ
dsn A

J1
e (s1)τ †J1 ...A

Jn
c (sn)τ †n

=

∞∑
n=0

(−)n
ˆ
...

ˆ
dsn Ae(s1)..Ae(sn) (IV.172)

which is exactly h(e−1) as one can see by a similar iteration as for h(e−1) and the simplex argument for
(IV.161).

Theorem IV.C.4 (Non-Abelian Stokes theorem). (cf. [50,242] for example) The complete information
about the connection is contained the set of all holonomies: Given a curve e we define eε(t) := e(tε) for
0 < ε < 1. Then:

lim
ε→0

1

ε
(h(eε)− 12) = Ae(t = 0) (IV.173)

Also, curvature can be expressed in terms of holonomies: Consider a closed path (loop) assuming the form
of a plaquette at x = eu(0) ∈ σ

�εx,uv(t) := euε ◦ evεε ◦ (euεε )−1 ◦ (evε )
−1 (IV.174)

where u = ėu(0) = ėuε(0) and v = ėv(0) = ėvε(0)12. For the concatenation to be well defined we have to
demand that the different paths have connected start/end points, i.e. euε (1) = evεε (0), and so forth until
evε (0) = εuε (0). If [u, v] = 0 one gets

lim
ε→0

1

2ε2
(h(�εx,uv)− h(�εx,uv)

−1) = lim
ε→0

1

ε2
(h(�εx,uv)− 12) = uavbFab(x) (IV.175)

Proof. Using the theorem of monotone convergence [243]:

lim
ε→0

1

ε
(−12 + h(eε)) = lim

ε→0

1

ε
(−12 + 12 +

∑
n=1

εn
ˆ 1

0

ds1...ė
a(s1ε)A

J1
a (e(s1ε))τJ1 ...) =

= lim
ε→0

ˆ 1

0

dsėa(sε)AJa (sε)τJ +O(ε) =

ˆ 1

0

dsėa(0)AJa (0)τJ = Ae(t = 0) (IV.176)

and the second claim we establish in the following way: by cutting the path ordered exponential of each of
the four holonomies after the first two terms in the series. Then for the terms linearly depending on Ae we
perform a power series expansion in s which stops at linear order, and respectively for the quadratic terms the
expansion is in terms of (s1, s2)/(s, t) stopping at zeroth order:

lim
ε→0

1

ε2
(h(eu)h(evεε )h−1(euεε )h−1(ev)− 12) =

= lim
ε→0

1

ε2

(ˆ ε

0

dsėu(s)aAa(e(s)) +

ˆ ε

0

ds[ėvεε (0)aAa(evεε (0)) + d
d

dt
(ėvεε (t)aAa(c̃vεε (t)) |t=0]+

+ ε(ėuεε )−1(0)aAa((euεε )−1(0)) +
ε2

2
[(ėuεε )−1(t)b(∂b(ė

uε
ε )−1(t)a)Aa((euεε )−1(t))]t=0+

+ ε(−v(x+ εv)a)Aa(x+ εv) +
ε2

2
[v(x)b(v(x)a)Aa(x) + v(x)av(x)b∂bAa(x)]+

+

ˆ ε

0

ds1

ˆ s1

0

ds2 ė
u(s1)aAa(eu(s1))ėu(s2)bAb(e

u(s2))+

+

ˆ ε

0

ds1

ˆ s1

0

ds2 [ėvεε (0)aAa(evεε (0))ėvεε (0)bAb(e
vε
ε (0))]+

+
ε2

2
(−u(x+ εv + εu)a)(−u(x+ εv + εu)b)Ay(x)Ab(x) +

ε2

2
vavbAa(x)Ab(x)+

+

ˆ ε

0

ds

ˆ ε

0

dt ėu(s)aAa(ea(s))ėvεε (t)bAb(c
vε
ε (t)) + ε2u(x)a(−u(x+ εu+ εv)bAa(x)Ab(x)+

+ ε2(−uavb − vaub − vavb + uavb)AaAb

)
=

= ub(∂bv
a)Aa(x)− vb(∂bua)Aa(x)− vbua∂bAa(x) + vaub∂bAa(x) + (−vaub + uavb)Aa(x)Ab(x) =

= [u, v]aAa(x) + uavb2∂[aAb] + uavb[Aa(x), Ab(x)] = uavbFab(x) (IV.177)

12The extra ε dependence in the paths euε, eεv is due to the fact that they are supposed to form a loop.
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where we used [u, v] = 0 in the last step. Finally use antisymmetry, i.e. Fabu
avb − Fabvaub = 2Fabu

avb.

Definition IV.C.6 (Faces, electric fluxes). A face S is a finite union of connected, entire analytic
embedded 2-dimensional submanifolds SI of σ, whose closures intersect at most in their boundaries,
which are themselves piecewise analytic paths, and are such that S is orientable (∃ U ⊃ S such that
U − S = U1 ∪U2 where U1, U2 are disjoint non-empty open sets). Moreover, we demand the closure of S
to be contained in a compact set.
Let f be a Lie-algebra valued, scalar function of compact support. The corresponding electric flux of the
vector density EaJ through a face S is defined by

Ef (S) :=

ˆ
S

fJ ∗ EJ =

ˆ
s

dxa ∧ dxb εabcEcJfJ (IV.178)

Following a strategy from [154], we restrict the set of all possible paths e and faces S to a subset, where for
each path e therein one can assign a face Se carrying the same orientation as e such that (1) the faces Se are
mutually non-intersecting, (2) only e intersects Se and (3) this intersection happens only in one point and is
transversal. While one could also consider the general set of all paths and faces, for the purpose of this chapter
the mentioned subset will be sufficient and, in an abuse of notation, we will still call it the holonomy-flux
algebra.

Lemma IV.C.5 (Holonomy-flux Poisson bracket). Consider a holonomy h(e) and an electric flux Ef (S)
such that S is intersected transversal by e = e1 ◦ e2 with ei ∈ Ui. The Poisson bracket between both is:

{Ef (S), h(e)} =
βκ

2
σ(S, e)h(e1)τJh(e2)fJ(S ∩ e) (IV.179)

where σ(S, e) = +1 if the tangent of e points upwards with respect to the conormal of the surface at the
intersection point and −1 otherwise.13

Proof. We write e = eε1 ◦eε ◦eε2 such that eε is the segment including the intersection point S∩e. Consider
embeddings (with e( 1

2 ) = S(0, 0) = e ∩ S)

S : (−1, 1)2 → σ : (u, v) 7→ S(u, v), eε : (
1

2
− ε, 1

2
+ ε)→ σ : t 7→ e(t) (IV.180)

Then compute by expanding h(eε) in terms of ε:

{Ef (S), h(e)} = lim
ε→0

h(eε1){Ef (S),12 +

ˆ 1

0

dsAeε(s) +O(ε2)}h(eε2) = (IV.181)

= lim
ε→0

h(eε1)

ˆ
(−1,1)2

dudv εabc
∂Sb

∂u

∂Sc

∂v
fJ(S(u, v))

ˆ 1
2 +ε

1
2−ε

dt ėd(t){EaJ(S(u, v)), Ad(e(t))}h(eε2) =

=
βκ

2
lim
ε→0

h(eε1)

ˆ
dtdudv ėa(t)

∂Sb

∂u

∂Sc

∂v
εabcτkf

k(S(u, v))δ3(e(t)− S(u, v))h(eε2) =

=
βκ

2
lim
ε→0

h(eε1)

ˆ
d3xδ3(x)

det(ė(t),−S,u,−S,v)
| ė, S,u, S,v |

τJh(eε2)fJ(S ∩ e) =
βκ

2
σ(s, e)h(e0

1)τJh(e0
2)fJ(S ∩ e)

where we performed the coordinate change t, u, v 7→ x(t, u, v) = e(t)−S(u, v) for the fourth line, which gave
us as Jacobian the absolute value of the inverse determinant.

Corollary IV.C.2 (Regularised scalar constraint). In terms of holonomies we can circumvent to choose
any coordinate chart and due to their nice transformation under SU(2) we find the manifestly SU(2) inva-
riant formulation for the scalar constraint as the limit C[N ] = limε→0 C

ε[N ] (note
´
d3x = limε→0

∑
�∈T (ε) ε

3)
with

Cε[N ] := CεE [N ] +
43(1 + β2)

κ4β7

∑
v∈T (ε)

N(v)
∑
ijk

ε(i, j, k)

Tv
×

× tr
(
h(ei){h(ei)

†, {V,CεE [1]}}h(ej){h†(ej), {V,CεE [1]}}h(ek){h†(ek), Vε(v)}
)

(IV.182)

CεE [N ] :=
−4

κ2β

∑
v∈T (ε)

N(v)
∑
ijk

ε(i, j, k)

Tv
tr
(
(h(�εv,ij)− h†(�εv,ij))h(ek){h†(ek), Vε[σ]}

)
(IV.183)

13Due to those smearings the distributional character of the Poisson bracket is lost and, moreover, one has a background
independent formulation for the algebra, as the right-hand side does not depend on the metric.
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where T (ε) is some cubulation of σ. Its dual is a lattice with six-valent vertices v such that for each
vertex one can associate one cell. The volume of each cell, Vε(v), vanishes for ε → 0. Also we defined
Vε[σ] :=

∑
v Vε(v). Tv = 23 is number of all contributing triples of edges ei which meet at v. By this, we

mean those triples for which ε(i, j, k) := sgn(det(ėi, ėj , ėk)) does not vanish. Lastly, we have labelled all
adjacent edges of v as outgoing.

Proof. We only sketch the main steps, for all details consult [50, 74, 75]. Consider CE . Note, that we can
express δIJ/2 = −2 tr(τIτJ) and εIJK = −4 tr(τIτJτK) to obtain

CE(x) =
4

κ2β
tr(Fab(x)εabc{V,Ac(x)}) (IV.184)

First, we approximate the Integral by a sum over all cells of the mentioned cubulation, labelled by v. Then for
all x in cell v

εabcFab(x) ≈ εabcFab(v) +O(ε) = εabc
23Fab(v)

23
+O(ε) =

1

23

∑
ijk

(ėk)cε(i, j, k)Fab(ėi)
a(ėj)

b +O(ε)

(IV.185)

where we chose the tangent vectors to have absolute value 1. Now, we plug in (IV.175) and (ė = ~eaε)

h(e){h(e)†, V } = (12 + ε

ˆ 1

0

dtėc(t)Ac(e(t)) +O(ε2)){12 − ε
ˆ 1

0

dtėc(t)Ac(e(t)) +O(ε2), V ε[σ]} =

= −ε
ˆ 1

0

dt {Aa(tε~ea), V ε[σ]} = ε

ˆ 1

0

dt δ~ea(t)∈Sea
βκ

2

δV ε[σ]

δEI(Se)
τI = −ε{Aa(e(0)), V }+O(ε2)

(IV.186)

to obtain the claim. Note that we used: δV ε[σ]/δEI(Se) ≈ δV/δEI(e(0)) +O(ε).
For C ≈ Cε +O(ε) we proceed similar.

IV.D Example: Cosmological Models

To illustrate the rather involved nature of the previous sections, we will now have a look at a concrete example.
This will put the formalism developed so far into action. We present how calculations therein are explicitly
performed and make contact with physical observations. The chosen example for this section is one of the few
completely analytically solvable models, which also bears significant physical importance: isotropic cosmology
described by the Friedmann-Lemâıtre-Robertson-Walker (FRLW) metric [22–31].
By this we mean spacetimes, whose spatial hypersurfaces (according to the cosmological principle) have a high
degree of symmetries, i.e. the metric on them is invariant under translations and rotations. In other words,
there is no preferred point or direction in the spatial slice. The observable universe appears to be subject to
those spatial symmetries at large scales and hence these models have led to several predictions, which could be
verified with high precision. Most prominent among them is the Big Bang singularity and the cosmic microwave
background [20]. There are excellent textbooks covering this subject, e.g, [32, 244, 245], so we will only give
a brief overview.

IV.D.1 Robertson-Walker metric & Killing fields

We start by giving a precise mathematical meaning to the condition “being invariant under spatial translations
and rotations”, which obviously will be connected to the notion of diffeomorphisms (see Definition IV.A.3).
For the moment we consider only a subset, namely those which for a given spatial metric q leave the latter
invariant, i.e. in a given coordinate chart x : σ → R3

ϕ : U → σ, q = ϕ∗q, qab(x(p)) =
∂ϕ(x(p))c

∂xa
∂ϕ(x(p))d

∂xb
qcd(ϕ(x(p))) (IV.187)

In which case we will call ϕ an isometry (of the spatial metric). If for each pair of points p, p′ ∈ σ there exists
such an isometry with ϕ(p) = p′ then we call a space homogeneous, which corresponds to invariance under
translations. Similarly, in order to incorporate invariance under rotations, we call a pair (σ, q) isotropic, iff at
any point p ∈ σ we find for all unit vectors v1, v2 ∈ T 1(σ) with qabv

a
i v
b
i = 1 an isometry ϕ with ϕ(p) = p

and ϕ(v1) = v2. The latter property indicates that ϕ belongs to the subspace of diffeomorphisms that leaves
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p invariant and is isomorphic to SO(3), i.e. the group of three-dimensional special orthogonal transformations
which leave p invariant.
Given ϕt, a one-parameter group of such isometries, t ∈ R, with the properties that ϕt ◦ϕs = ϕt+s and hence
ϕ0 = idσ. Then there is a unique way to invert (IV.22) and find a tangential vector, k, for this parameter
group by looking at its infinitesimal action. Let ε� 1 then we define:

ϕε(x(p))a =: x(p)a + εka(x(p)) +O(ε2) (IV.188)

As usual we omit in the following the dependence of x := x(p). In first order in ε we can express (IV.187) as

qab = (δda + ε
∂kd

∂xa
)(δeb + ε

∂ke

∂xb
)(qde + εkc

∂qde
∂xc

) +O(ε2) ⇒ 0 =
∂kc

∂xa
qcb +

∂kc

∂xb
qac + kc

∂qab
∂xc

(IV.189)

By introducing ka := qabk
b and remembering the (spatial) Christoffel symbols (IV.29) this is equivalent to

0 =
∂ka
∂xb

+
∂kb
∂xa

+ kc(
∂qab
∂xc

− ∂qcb
∂xa

− ∂qac
∂xb

) = 2∂(akb) − 2Γcabkc . (IV.190)

Remembering metric compatibility Dq = 0 for a (spatial) Lie derivative (IV.27), we obtain the Killing equation:

L′kqab = 2qc(aDb)k
c = D(akb) = 0 (IV.191)

and every vector field ka fulfilling it - and thus being in 1-1 correspondence with an isometry group ϕt - is
called a Killing vector.

As we are interested in spaces with a high degree of symmetry, one would assume that we are looking for
those with the maximal number of linear independent Killing vectors. Indeed, one can show that there are
at most n(n + 1)/2 many Killing fields in a manifold with dimσ = n. Moreover, a space with this maximal
number of Killing fields will be automatically isotropic and homogeneous. Hence, it is sufficient to find the full
set of Killing vectors in order to determine that a spacetime is a suitable candidate for our large-scale universe.
We will make this now precise by determining the six Killing vectors of the so-called Robertson-Walker metric
and hence proving it to describe a spatially isotropic and homogeneous universe:

gk := −dt2 + a(t)2

(
1

1− kr2
dr2 + r2dθ2 + r2 sin(θ)2dφ2

)
(IV.192)

where k ∈ {0,±1} and a(t) is function just depending on the foliation parameter t, called the scale factor.
Also we have used spherical coordinates: θ ∈ [0, π), φ ∈ [0, 2π) and r ∈ [0, 1) if k = +1 else r ∈ R+.

However, to find its Killing vectors it is easier to transform into Cartesian coordinates, i.e. we introduce
xi(r, θ, φ) ∈ R with

x1 = r sin(θ) cos(φ), x2 = r sin(θ) sin(φ), x3 = r cos(θ) (IV.193)

Using that sin(a)2 + cos(a)2 = 1, one can easily see that under a coordinate change as in (IV.10):

δijdx
idxj =(dx1)2 + (dx2)2 + (dx3)2 = (sin(θ) cos(φ)dr + r cos(θ) cos(φ)dθ − r sin(θ) sin(φ)dφ)2+

+ (sin(θ) sin(φ)dr + r cos(θ) sin(φ)dθ + r sin(θ) cos(φ)dφ)2 + (cos(θ)dr − r sin(θ)dθ)2

=(sin θ2 cosφ2 + sin θ2 sinφ2 + cos θ2)dr2 + r2(cos θ2 cosφ2 + cos θ2 sinφ2 + sinθ2)dθ2+

+ r2(sin θ2 sinφ2 + sin θ2 cosφ2)dφ2 = dr2 + r2 sin θ2dφ2 + r2dθ2 (IV.194)

and (r2 = (x1)2 + (x2)2 + (x3)2)

(δijx
idxj)2

1− kδlmxlxm
=

1

1− kr2

(
(r sin θ2 cosφ2dr + r2 sin θ cosφ2 cos θdθ − r2 sin θ2 cosφ sinφdφ)

+(r sin θ2 sinφ2dr + r2 sin θ sinφ2 cos θdθ + r2 sin θ2 sinφ cosφdφ) + (r cos θ2dr − r2 cos θ sin θdθ)
)2

=
1

1− kr2

(
rdr + r2(sin θ cos θ(cosφ2 + sinφ2)− sin θ cos θ)dθ

)2
=

r2dr2

1− kr2
(IV.195)

Plugging both together we realise that the Robertson-Walker metric from (IV.192) reads explicitly

gk = −dt2 + a(t)2

(
δijdx

idxj +
k

1− kr2
(δijdx

idxj)2

)
(IV.196)
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If we call the spatial part qab := a2δab + a2k
1−kr2x

axb we can find its inverse qab = (δab − kxaxb)/a2 since

qabqbc = δac − kxaxc +
k

1− kr2
xaxc − k2

1− kr2
xaxc(xbxb) = δac − kxaxc + kxaxc

1− kr2

1− kr2
= δac (IV.197)

It is instructive to compute Γ(q), the (spatial) Christoffel symbols of the purely spatial part, i.e. q, with (IV.29):

∂aqbc =
a2k

1− kr2
2δ(j
a x

i)δbiδcj +
2a2k

1− kr2
δibδakδcjx

ixjxk = (IV.198)

=
a2k

1− kr2

(
δcjx

j(δab + k
δibδjax

ixj

1− kr2
) + xjδjb(δac + k

δaix
iδckx

k

1− kr2
)

)
=

2k

1− kr2
qa(bδc)jx

j

Γabc(q) =
1

2
qad(2∂(bqc)d − ∂dqbc) =

k

1− kr2
qad
(
qb(cδd)j + qc(bδd)j − qd(bδc)j

)
xj =

k

a2
qbcx

a (IV.199)

by which we get full computational control over the spatial metric. E.g. with these at hand we can check that
the Killing vector fields corresponding to rotations in the mn-plane, called k[mn], and those corresponding to
translations in direction m, called km, are given by

k[mn] := xiδi[m∂n], km :=
√

1− kr2∂m (IV.200)

To show this we use several times qab/a
2 = δab + k

1−kr2x
axb in (IV.191) and realise that kc[mn]δcjx

j = 0:

∂(a(qb)ck
c
[mn])− Γcab(q)qcdk

d
[mn] = a2δi[mδ

c
n]δ

i
(a(δb)c +

k

1− kr2
δb)jδckx

jxk)+ (IV.201)

+
k

1− kr2
(qabδcjx

jkc[mn] + qc(aδb)jx
jkc[mn])− kqabxckd[mn](δcd +

k

1− kr2
δciδdjx

ixj) =

=
a2k

1− kr2
(xjδj(bδa)[mδn]kx

k + xkδk[mδ
c
n]δc(aδb)jx

j +
k

1− kr2
xiδi(bδa)kx

kkc[mn]δcjx
j) = 0

and with (1− kr2)xj(δjm + k
1−kr2 δjix

iδmkx
k) = xjδjm also

∂(a(qb)ck
c
m)− Γcab(q)qcdk

d
m =

k kcm
1− kr2

(qabδcjx
j + qc(aδb)jx

j)− kx
jδj(aqb)m√
1− kr2

− k

a2

√
1− kr2qabx

cqcm

=
k√

1− kr2
xj(qabδmj + qm(bδa)j − δj(aqb)m −

qjm
a2

qab(1− kr2)) = 0

(IV.202)

With this we have found the maximal set of six Killing vector fields for each three dimensional spatial hyper-
surface, hence the Robertson-Walker metric gk for each k ∈ {0,±1} indeed describes a homogeneous and
isotropic universe.14

Since we have computed the spatial Christoffel symbols above, it is easy to verify further physical properties of
this spacetime, e.g. that it is of constant curvature k everywhere; as when computing the Ricci tensor (IV.35):

Rab = −2∂[aΓcc]b(q) + 2Γdb[a(q)Γcc]d(q) =
k

a2
qab(3− 1)− k2a−2

1− kr2
(xc2q[ac]δbjx

j + qbar
2 − xcqcbδajxj)+

+
k2

a2
(qabr

2 − xcqcbxdδda)(1 +
kr2

1− kr2
) = 2kqab/a

2 (IV.203)

and consequently R = 6k/a2 on the whole σ.15

We finish this section by another coordinate transformation, whose details are due to [248]. Namely upon
defining r =: Sk(r̃) = 1√

κ
sin(
√
κr̃) one shows easily from (IV.192) calling dΩ2 := (dθ2 + sin θ2dφ2) that

q =
dr2

1− kr2
+ r2dΩ2 =

cos(
√
kr̃)2

1− sin(
√
kr̃)2

dr̃2 + Sk(r̃)2dΩ2 = dr̃2 + Sk(r̃)2dΩ2 (IV.204)

14Moreover, these three are the only possible cases for an isotropic universe. However, as we are only interested in some
example we refrain from presenting this proof here and refer instead to the literature [246,247].

15Take note that this is only the spatial Ricci scalar of the hypersurface. For R(4) as appearing in the Einstein field
equation (IV.43) we have to repeat the above calculations with the four dimensional covariant derivative ∇. (see next
paragraph)
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Lastly, we change r′ := 2 tan(
√
kr̃/2)/

√
k and remember ∂x tan(x) = 1/ cos(x)2 as well as sin(2x) =

2 sin(x) cos(x) for

1

(1 + k
4 r
′2)2

(
dr′

2
+ r′

2
dΩ2

)
=

1

(1 + tan(
√
kr̃/2)2)2

(
dr̃2

cos(r̃)4
+

4

k
tan(
√
kr̃/2)2dΩ2

)
=

= dr̃2 +
1

k
(2 sin(

√
kr̃/2) cos(

√
kr̃/2))2dΩ2 = dr̃2 + Sk(r̃)2dΩ2 (IV.205)

Consequently, it tells us that all constant curvature spaces are conformally flat, i.e. related to the flat metric
by a conformal factor: qk = Ψkq0. This knowlegde was originally due to Riemann [246, 249–251].
Let us quickly state the range of r′: For k = +1, we had r ∈ [0, 1) on which interval the transformations
r 7→ r̃(r) and r̃ 7→ r′(r̃) are both invertible, hence we deduce with 2 tan(arcsin(1)/2) = 2 readily that
r′ ∈ [0, 2). For k = 0 the transformation is simply the identity r 7→ r′(r) = r. In the case k = −1, using
tanh(x/2) = (ex − 1)/(ex + 1) and arcsinh(r) = ln(r +

√
r2 + 1) yields

r′(r) = 2 tanh(
1

2
arcsinh(r)) = 2

r +
√

1 + r2 − 1

r +
√

1 + r2 + 1
→
r→∞

2, r′(r = 0) = 0 (IV.206)

and due to strict monotony of both functions follows that we compactified the interval r ∈ R+ to r′ ∈ [0, 2).
For the sake of completeness we write the full spacetime metric in terms of new adapted Cartesian coordinates
x′
i
(r′, θ, φ) as in (IV.193):

gk = −dt2 + a(t)2 δijdx
′idx′

j

(1 + k
4 r
′2)2

(IV.207)

IV.D.2 Deparametrisation with scalar field

In order to study the dynamical evolution of a universe described by a Robertson-Walker metric we must
implement the Einstein field equation. However, as already discussed before, in order to talk about evolution
one needs a reference frame, which serves as a clock. A minimal candidate for this is represented by a free
massless scalar field φ, described by the action

Sφ =

ˆ
M
d4x L = −

ˆ
M
d4x

1

2

√−ggµν(∂µφ)(∂νφ) (IV.208)

Indeed, this is the massless version of (II.164) where we are using natural units, i.e. c = 1 and set κφ = 1.
We expect the galaxy clusters, that are scattered in the known universe, to be spread homogeneously and will
demand in the following that ∂aφ = 0 for a = 1, 2, 3. Moreover, when calculating the Euler-Lagrange equation,
to which this scalar field must obey in case of a background Robertson-Walker metric, i.e. g00 = −1, we find

0 = −∂µ
∂L

∂(∂µφ)
+
∂L
∂φ

= φ̈ (IV.209)

In other words, the velocity of the field is a constant and - assuming it is not vanishing - this implies that the
scalar fields serves as good clock by assigning a unique value φ(t) = φ(t, x) to each spatial slice σt.
As the matter Einstein field equations (IV.43) are consequently obtained by variation of the total action
S = SEH + Sφ we compute the additional part and call it κTµν , with the energy density tensor:

Tµν = 2
1√−g

δSφ
δgµν

= (∂µφ)(∂νφ)− 1

2
qµνg

ρσ(∂ρφ)(∂σφ) = φ̇2δ00
µν −

1

2
gµν φ̇

2g00 =: ρδ00
µν + P (gµν + δ00

µν)

(IV.210)

where we used (IV.45) and that due to homogeneity we demanded ∂aφ = 0. We obtain a relation between
the newly defined mass density and pressure: ρ = p = φ̇2/2.
We shall compute the missing Christoffel symbols of the full spacetime metric gk where we can use our
knowledge from the last section regarding Γ(q) (IV.199): (a = a(t))

Γcab = Γcab(q) =
k

a2
xcgab, Γ0

ab =
ȧ

a
gab, Γµ0b =

1

2
gµν∂0gνb =

ȧ

a
δµb (IV.211)

130



and as before

R00 = −3∂0
ȧ

a
− (

ȧ

a
)2(δλσδ

σ
λ − δσλ00 ) = −3

ä

a
(IV.212)

R0b = −2∂0
k

a2
xcgcb + 2∂c

ȧ

a
δcb + 2

ȧ

a
δλb

k

a2
xsgsλ − 2

k

a2
xλgbs

ȧ

a
δsλ = 0 (IV.213)

Rbc = ∂0
ȧ

a
gbc − 2∂[b(gs]cx

s k

a2
)− δlcgbl

ȧ2

a2
+ 2

ȧ2

a2
gb[cδ

s
s] + 2

k2

a4
xlgb[cgs]lx

s = (IV.214)

= (
ä

a
+
ȧ2

a2
)gbc −

k

a2
gbc(1− 3) +

ȧ2

a2
gbc − 2

k

a2
xsgc[bδs]jx

j k

1− kr2
+ 2

k2

a4
gb[cgs]jx

sxj =

= (äa+ 2ȧ2 + 2k)
gbc
a2
− 2

k2

a2
xsxj

(
gc[bδs]j

1

1− kr2
− gb[cδs]j −

kr2

1− kr2
gb[cδs]j

)
=
äa+ 2ȧ2 + 2k

a2
gbc

From this follows straightforwardly the Ricci scalar: R = 6(äa + ȧ2 + k)/a2. With this we can write down
(IV.43) explicitly and find for the 00-component:

−3
ä

a
+ 3

äa+ ȧ2 + k

a2
= κρ ⇒ ȧ2 + k

a2
= κρ (IV.215)

and similar for the spatial components (where we can drop the non-degenerate gab by multiplying with its
inverse):

(−2
äa

a2
− ȧ2

a2
− k

a2
)gab = κp gab ⇒ ä

a
= −κ

2
(p+

ρ

3
) (IV.216)

where we reinserted (IV.215). Together, these two equations are known as the Friedmann equations. For every
initial choice of scalar field (ρ, p) one has a set of ordinary differential equations, determining a = a(t) = a(t(φ))
where we remember that to each coordinate value t we can assign a physical value of our clock, the scalar field
φ. A prominent consequence of these equations is that given only ρ ≥ 0, p ≥ 0 (IV.216) implies that ä < 0.
In other words, since we are measuring today ȧ > 0 due to redshift [252–255] the universe must have been
expanding forever and consequently originated from a point where a = 0, thus the metric becomes degenerate
and the density of matter and the curvature of spacetime was infinite. This singular state has become known
as the Big Bang.

We will now investigate how the situation presents itself when attacked from the Hamiltonian point of
view. This is where the terminology deparametrisation stems from, as one can show that in case of an
isotropic spacetime the scalar field introduced in (IV.208) continues to serve as a good clock with respect to
which evolution is governed by a physical Hamiltonian Hphys which is a function involving the original scalar
constraint from (IV.113). As a generalisation we consider the case of a non-trivial lapse function N in the
Robertson-Walker metric (IV.192).
In the beginning, we must perform a Legendre transformation of the full action SEH +Sφ. While the first part
has already been done, the second is

πφ =
∂L
∂φ̇

= −√−gg0µ(∂µφ) =

√−g
N2

φ̇ ⇒ Hφ =

ˆ
σ

d3x
(
πφφ̇− L

)
=

ˆ
σ

d3x
N√
q

π2
φ

2
(IV.217)

where we used g00 = −N−2, (IV.56) and that isotropy means ∂aφ = 0 and Na = 0. Since one of the primary
constraints from GR was π := ∂

∂Ṅ
S = 0, implementing its stability analysis yields due to the lapse appearing

in Hφ the new total scalar constraint, which is bound to vanish:

0 = π̇ = {Hφ +HGR, π} = Cφ + C =
π2
φ

2
√
q

+ C =: Ctot (IV.218)

This can be solved for πφ = Hphys :=
√
−2
√
qC in order to fulfil the constraint, Ctot[N ] = 0. This means

that φ is pure gauge and thus a reduction the extended phase space (AIa, E
a
I , φ, πφ) is again isomorphic to

(AIa, E
a
I ).16

As we are interested in physical observables, O, these should be objects which are not dependant on our choice
of coordinate system. As a change of coordinates can be achieved by the means of a diffeomorphism on M,

16This could have also been done with a massive scalar field, yielding the additional term
√
qφ2m2/2. However, upon

solving for πφ and declaring it the to be the physical Hamiltonian pφ =: Hphys(φ) this objects depends on the clock, i.e.
dynamics is governed by a time-dependent Hamiltonian. To keep the analysis simpler we do not include any potential.
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especially the diffeomorphism associated with Nn (see theorem IV.B.2) should leave the observable invariant,
i.e. LNnO = 0 by definition IV.A.8. It can be shown that the generator of these diffeomorphism equals

LNnO = {Ctot[N ],O} = 0 (IV.219)

In other words this is a gauge freedom and the observable O should not depend on this gauge.
In order to impose (IV.219) we will first choose a specific lapse function. Note that this choice does not change
the dynamics of the theory under consideration, as it corresponds merely to a change of the coordinate time.
A convenient choice is N = V , which implies Ctot[N ] =

´
σ
(π2
φ − 2

√
qHphys). Now we can use (IV.219) to

find the evolution of O(φ) with respect to the clock field φ. Similar constructions can also be carried out with
other forms of matter, but since we only wanted to give a proof of principle we refer for those approaches to
the literature [147–153].
The problem to understand the evolution of observables related to our system (e.g. the volume of the isotropic
universe, which can be expressed as (IV.114)) reduce hence to expressing C in terms of the Ashtekar-Barbero
variables. (IV.207) is already given in a form from which we can easily read off lapse, shift and spatial metric
as expressed in (IV.50):

N = 1, Na = 0, qab = a(t)2z−2
r′ δab (IV.220)

with zr′ := 1 + kr′
2
/4. Since qab is in a diagonal form, it is easy to define the co-3-bein eIa and its inverse:

eIa =
a

zr′
δIa, eaI =

zr′

a
δaI (IV.221)

Due to the appearance of δIa the computation for the spin-connection gets hugely simplified, as well as for the
extrinsic curvature (remember ebIe

J
b = δJI )

Kab =
1

2N
q̇ab =

ȧ

Na
qab =:

c

βa
eIaδIJe

J
b (IV.222)

ΓLa = −1

2
εLJKebK

(
2∂[be

J
a] + ecJe

M
a ∂be

M
c

)
=

= −1

2
εLJbzr′

(
δJa
−k
4zr′

2δbjx
′j − 0 + δJa

−k
4zr′

2δbjx
′j
)

=
k

2
εLajx

′jz−1
r′ (IV.223)

which gives us for the connection and the electric field:

EaI =| det({eJb }Jb ) | eaI = a2z−2
r′ δaI =: pz−2

r′ δaI AIa = ΓIa + βKabe
b
I =: z−1

r′ (
k

2
εIajx

′j + c δIa) (IV.224)

Consequently, the whole kinematical information of the phase-space of an isotropic spacetime with constant
curvature k can be described by the pair (c, p).
It is easily verified that this solution satisfies the Gauss constraint:

GJ = ∂aE
a
J + εJKLA

K
a E

a
L =

pk

2z3
r′

(
−2x′

J
+ x′

I
εJKaε

KaI
)

= 0 (IV.225)

For (IV.113), the scalar constraint, note that the Poisson brackets must be evaluated via (IV.117) and (IV.118)
before plugging in (IV.224):

CE =
1

κ
F JabεJKL

EaKE
b
L√

det(E)
=

√
p

κ
z−1
r′

(
2∂[aA

J
b]ε
Jab + 2A[a

a A
b]
b

)
=

=

√
p

κz3
r′

(
zr′kεJ[ba]ε

Jab − k2

4
2x′

i
δi[aεb]jJx

′jεJab + 9c2 − 3c2 − k2

4
εabjx

′jεbaix
′i
)

=

=

√
p

κz3
r′

(
−6k − 6k2

4
r′

2
+ 6c2 + k2r′

2
+

1

2
k2r′

2
)

=
6
√
p

κz3
r′

(−k + c2) (IV.226)

C − CE = −1 + β2

κ
εJMNK

M
a KN

b εJKL
EaKE

b
L√

det(E)
= −1 + β2

β2

6
√
p

κz3
r′
c2 (IV.227)

One can extract several physically interesting observations from these expressions. For example, upon recalling
(IV.129) and the first line of (IV.130) we see that

β2C + CE =

√
q

κ

(
β2(−R(3) +KabK

ab −K2) + (−R(3) − β2(KabK
ab −K2))

)
= −(1 + β2)

√
q

κ
R(3)

(IV.228)
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and hence in case of isotropy we get explicitly:

β2C + CE =
6
√
p

κz3
r′

(
−(1 + β2)c2 + (1− β2)(−k + c2)

)
= −(1 + β2)

√
q

pκ
6k (IV.229)

which with a2 = p yield together R = 6k/a2, which is in agreement with (IV.203).
Similarly, using (IV.218) we find the total physical Hamiltonian of our system to be:

Hphys =
√
−2
√
qC =

(
12

κ

p2

z6
r′

(c2/β2 + k)

)1/2

=

√
12

κ
(1 +

k

4
r′

2
)−3a2

√
ȧ2/N2 + k (IV.230)

One can perform a symplectic reduction: Let f1, f2 be two functions on the phase space spanned by (AIa =
cδIa, E

b
J = pδbJ) and Xfi the Hamiltonian flow generated by fi. The Poisson bracket between f1, f2 can be

rewritten as the symplectic form dEaI ∧ dAIa evaluated on the Xfi and hence:

{f1, f2}E,A =

ˆ
σ

d3x
δf[1

δEaI

δf2]

δAIa
= (

ˆ
σ

dEaI ∧ dAIa)(Xf1 , Xf2) = (IV.231)

= (

ˆ
σ

δaI dp ∧ z−1
r′ (

k

2
εIajdx

′j + δIadc))(Xf1 , Xf2) = (δIIdp ∧ dc
ˆ
σ

z−1
r′ )(Xf1 , Xf2) = (IV.232)

= 3V0{f1, f2}p,c

with the formal definition V0 :=
´
σ
d3x′z−1

r′ . We can deduce that this induces the Poisson bracket {p, c} = κβ
6V0

.

Choosing the scale factor a(t(φ))2 = p as observable ,which depends on time (the clock φ), we can compute
its time evolution . This yields an exponential expansion of the scale factor, which also deploys the same initial
Big Bang singularity as does the Friedmann equation.

IV.D.3 Classical Discretisation Ambiguities

In this paragraph we will investigate the subtleties arising, when one introduces e.g. a cubulation T (ε) of the
spatial slice σ with respect to some parameter ε. We will see that even on the classical level the Hamiltonian
picks up an arbitrariness that can only be resolved when taking the continuum limit, i.e. ε→ 0.
In Corollary IV.C.2 we already presented one possible way to regularise the scalar constraint of GR, by C =
Cε +O(ε). To provide a concrete example, we will show how this purely classical discretisation reads for our
isotropic model (IV.226,IV.227). In order to do so, we have to compute the holonomies along the curves ep,i
of a chosen cubulation. Here we will pick a family of cubic lattices (labelled by ε), so that their axes can be

oriented along a fiducial Cartesian system of coordinates of the 3-geometry, defined by dx′
|i|

.17 Further, we
restrict to an artificial model on the compact spatial manifold σ = T 3, i.e. the three torus. This is reminiscent
to the k = 0 model of an FRLW universe, with the exception of having a finite volume V < ∞. The edges
ep,i(t) are labelled by their starting point p, a vertex on the lattice, and the direction i ∈ {±1,±2,±3}
along which they leave p with ėap,i(t) = sgn(i)δa|i|. Along this curve the value ε|i|ajx

′j(ep,i) remains constant

and hence all matrices Aa(ep,i(t)) for all t in the same edge ep,i commute with each other. Although the
computation could also be done in a lengthy way for k = ±1, for sake of brevity we will stick to the flat metric
in the following.
Since zr′ = 1 and (IV.224) reduces to EaI = pδaI and AIa = cδIa we find for (IV.154), using that each τI
commutes with itself, (I := |i|)

hε(ep,i) = P exp(

ˆ ε

0

ds ėap,iA
J
a (ep,i(t))τJ) = exp(sgn(i)cετI) (IV.233)

Using (IV.141) we can compute the curvature which by (IV.175) can be written as the holonomy along a
closed path, for which we choose a small rectangle in the i− j plane:

h(�εij) = esgn(i)εcτIesgn(j)εcτJ e−sgn(i)εcτIe−sgn(j)εcτJ =

= 12 + esgn(i)εcτIesgn(j)εcτJ [e−sgn(i)εcτI , e−sgn(j)εcτJ ] =

= 12 + esgn(i)εcτIesgn(j)εcτJ 4sgn(ij) sin(
εc

2
)2εIJKτK (IV.234)

17As the lattice family is only an intermediate object of no physical relevance, this choice is arbitrary, as long as all cells
of its dual complex are of vanishing volume for ε→ 0.
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and with τIτJ = −δIJ/4 + εIJKτK , τIτJ + τJτI = 0 and h(e)† = h(e−1): (no sum over I, J)

h(�εij)− h(�εji) = 4 sin(
εc

2
)2
(

2sgn(ij) cos(
εc

2
)2ε[IJ]KτK + 2 sin(

εc

2
)2τ[IτJ]εIJKτK

+ sin(
εc

2
) cos(

εc

2
)(sgn(j)τI + sgn(i)τJ + sgn(i)τJ + sgn(j)τI)εIJKτK

)
= 2sgn(ij) sin(εc)2εIJKτK + 25 sin(

εc

2
)412 (IV.235)

Now using that
∑
i,j ε(i, j, k)sgn(ijk)ε|i||j|K = 8δ|k|K and Tv = 23 we find for (IV.183)

CεE =
−4

κ2βTv
ε(i, j, k)tr

(
(h(�εij)− h(�εji)h(ek){h(e−1

k ), Vε}
)

=

=
−4

κ2βTv
ε(i, j, k)2sgn(ij) sin(εc)2εIJKtr(τKτ|k|)(−sgn(k)ε){c, p}3

2

√
pV0 =

=
1

κTv
48ε
√
p sin(εc)2 =

6ε3

κ

√
p

sin(εc)2

ε2
(IV.236)

where we have chosen Vε = V and used {p, c} = κβ/(6V0). With this we see that indeed we recover the
known expression in the continuum limit:

CεE [1] =
∑
v

ε3CεE −→
ε→0

ˆ
σ

d3x
6

κ

√
p

sin(εc)2

ε2
= CE(1) (IV.237)

where we used that σ is completely triangulated with cells of coordinate volume ε3. Assuming a compact
spatial manifold gives thus

∑
v ε

3 = V0

ε3 ε
3 = V0. With this we see also:

{CεE [1], V } =
6

κ
V 2

0

3

2

√
p{ sin(εc)2

ε2
, p} = −3β

2
V0p

sin(2εc)

ε
(IV.238)

And thus for the full scalar constraint (IV.182):

Cε = CεE +
43(1 + β2)

κ4β7

ε(i, j, k)

Tv
tr({sgn(i)εc, {CεE , V }}{sgn(j)εc, {CεE , V }}{sgn(k)εc, V }) =

= CεE +
43(1 + β2)

κ4β7

1

Tv
ε3
(

3β

2
V0

sin(2εc)

ε
{c, p}

)2

V0
√
p

3

2
{c, p}tr(8εIJKτIτJτK) =

= CεE −
1 + β2

κβ2

2

Tv
6

sin(2εc)2

ε2
√
pε3 =

6ε3

κ

√
p

(
sin(εc)2

ε2
− 1 + β2

β2

sin(2εc)2

4ε2

)
(IV.239)

Again the continuum limit ε→ 0 yields the correct result. It is worthwhile to point out that due to (IV.229) we
know that β2C +CE ∼ R(3) = 0, however β2Cε +CεE = O(ε). Thus, while recovering the correct expression
for ε → 0, we see that for finite ε the theory is not capturing isotropic flat spacetime. In fact, this has quite
drastic influence on the evolution of observables, such as the volume of the spatial slice. See figure IV.1 for
further details.
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Abbildung IV.1: Plot of the Volume V = p3/2 of the compact spatial slice σ = [0, 1)3 reminiscent of the flat FRLW
model for our universe against the physical time φ, i.e. the clock field. (β = κ = 1, φ(t = 0) = 0.66). In blue, the classical
trajectory governed by the Hamiltonian (IV.226) & (IV.227) is plotted, where the universe stems from a singularity at
φ = 0. In orange, a naive discretisation (IV.239) has been used to compute the dynamics. While in agreement at late times,
φ >> 1, the lattice effects are significant in the early universe and even predict the replacement of the singularity with an
asymmetrical “Big Bounce”. However, as of today it is up to discussion, whether the details of this old, contracting universe
are really physical.

We want to finish this chapter with an even stronger disclaimer of why the corrections obtained in (IV.239)
are probably not supposed to give rise to physical predictions.
Consider Z ∈ N+ with Z < ∞. Then there exists a N = N (Z) ∈ N such that N (Z) < ∞ and one finds
solution {gn}n∈{1..N} of

N∑
n=1

gnn = 1,

N∑
n=1

gnn
i = 0 ∀i : 2 ≤ i ≤ Z (IV.240)

Let us call g0 :=
∑N
n=1 gn. Then define the following set of curves: For n ∈ {1...N} we choose ne(t) such

that nė(t)a = δai n and ne(t = 0) = x (without loss of generality we set in the following x = 0). Furthermore
we call neε(t) := ne(tε). Then we see (using linearity to exchange a finite with an infinite sum)

N∑
n=1

gnh(neε)− 12g0 =

N∑
n=1

gn

∞∑
k=1

ˆ 1

0

dt1 ...
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0

dtk ae(tk)...Ae(t1) =

=

N∑
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gN

∞∑
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ˆ
...

ˆ
(nεδai Aa(neε(tk))... =

N∑
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∞∑
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ˆ
...

ˆ
(nε)k

∑
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(nε)l1
1

l1!
∂(l1)Ai(0)...

=

∞∑
k=1

∑
l1..lk

( N∑
n=1

gnn
k+

∑
li

)
εk+

∑
li

1

l1!...lk!
∂(l1)Ai(0)..∂(lk)Ai(0) = εAe(0) +O(εZ+1) (IV.241)

In other words, we have significantly improved the approximation (IV.173) in the Non-Abelian Stokes theorem.
By the same calculation one also gets:

N∑
n=1

gnh(neε){h(neε)
†, V } = {Ai(x), V }+O(εZ+1) (IV.242)

1

2ε2

N ′∑
m=1

g′m(h(m�εx,uv)− h(m�εx,uv)
−1) = uavbFab(x) +O(εZ+1) (IV.243)
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for coefficients g′m such that
∑N ′
m=1m

ig′m = δ(2, i) for i ≤ Z. Hence for any Z ∈ N we can construct a
regularisation along the lines of corollary IV.C.2 as

ZCε := ZCεE +
43(1 + β2)

κ4β7

∑
ijk

ε(i, j, k)

Tv

N∑
n,m,l

gngmgl×

× tr
(
h(nei){h(nei)

†, {V, ZCεE [1]}}h(mej){h†(mej), {V, ZCεE [1]}}h(lek){h†(lek), Vε(v)}
)

(IV.244)

ZCεE :=
−4

κ2β

∑
ijk

ε(i, j, k)

Tv

N∑
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N ′∑
m

gng
′
mtr

(
(h(n�εv,ij)− h†(n�εv,ij))h(mek){h†(mek), Vε(v)}

)
(IV.245)

Going with this through the computation (IV.236) yields

ZCεE = ε
6
√
p

κ

∑
n

gnn

(∑
m

g′m sin(mεc)2

)
= ε

6
√
p

κ

(∑
m

g′m sin(mεc)2

)
+O(εZ+1) (IV.246)

where the bracket term will also be c2 +O(εZ+1). Also we get

ZCε − ZCεE = −1 + β2

κβ
6ε3
√
p

(∑
m

g′m m
sin(2mεc)

2ε

)2

(IV.247)

from which the reader can deduce that again no corrections lower than εZ+1 remain.
The main message we want to communicate with this example is that e.g. a quantum theory of isotropic
cosmology built on an arbitrary regularisation like (IV.239) is not expected to make any reliable physical pre-
dictions as soon as the phase space variables (p, c) reach the order of magnitude of the regularisation parameter
ε, as is the case once one approaches the Big Bang singularity.

Hence, the effect of these ambiguities and the task to find reliable discretised dynamics must not be
neglected, once a finite lattice is used in an intermediate step. This problem is of grave importance in the
context of quantum field theories. As we discussed in chapter III. Renormalisation, it might be possible that
a cylindrically consistent fixed point describes the correct dynamical predictions of a theory of Quantum Gravity.
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Kapitel V

Loop Quantum Gravity

One of the major unresolved problems of foundational physics is to find a consistent theory of Quantum Gravity
(QG). For more than 80 years, physicists have tried to tackle this problem, yet a completely satisfying answer
has not been found as of today. But without a reliable quantisation of GR we fall short in explaining the limits
of Einstein’s famous theory, e.g. the Big Bang singularity.
In this chapter, we will study one of the most prominent approaches towards this theory, namely Loop Quantum
Gravity (LQG). This is a mathematically rigorous, non-perturbative and background independent quantum
field theory developed in the spirit of constructive QFT as discussed in chapter II. Quantum Field Theory.
The so-called Dirac programme [42–45] of canonical quantisation has been expanded by various authors to
background independent representations [201–205,256,257]. We will briefly state the stages of this programme
in the way they appear in LQG and by this make contact with what has been said earlier about the construction
of quantum field theories. The novelty in this case comes from the presence of non-trivial constraints. E.g.
instead of a Hamiltonian generating time evolution we have to deal with the scalar constraint. In other words,
we cannot use the first one to single out a vacuum vector. The Dirac programme in LQG reads:1

1 The holonomies h(e) ∈ SU(2) and fluxes E(S) ∈ su(2) for all piecewise analytic edges e and surfaces
S built from the Ashtekar-Barbero variables are chosen as the elements of E . On those, the standard
commutation relations are implemented in terms of a non-commutative product, i.e. {., .} → −i/~ [., .].

2 Afterwards, one has to pick a state ω on the algebra of observables A (generated from E). As we saw,
this is related to finding a representation of the phase space variables of the theory, as operators in an
auxiliary Hilbert space Hkin and a suitable vacuum vector. To single out one of the many choices, we
impose the physical sensible restriction for the state to be diffeomorphism-invariant.

3 Additionally, the constraints have to be promoted to (self-adjoint) operators in Hkin. In the case of GR,

these are the Gauss constraint GJ , the diffeomorphism constraint ~C and the scalar constraint C.

4a Characterise the space of solutions of the constraints GJ , ~C and define the corresponding inner product
that defines the Hilbert space H ⊂ Hkin. Now, one can continue in this direction and also solves the
scalar constraint to define the physical Hilbert space Hphys ⊂ H.

4b Alternatively, after constructing H, the space on which the constraints GJ , ~C are solved, we invoke
the concept of deparametrisation. We remember from IV General Relativity that for example dust
fields can be used as clocks with respect to which (a part of) the scalar constraint becomes a true
Hamiltonian which generates time-translations. We then promote it to a self-adjoint operator and study
the evolution with respect to the clock field.

5 Find a (complete) set of gauge invariant observables, i.e. operators commuting with the constraints.
They represent the physical experiments whose outcomes our quantum theory can predict.

In the following sections we will undergo the first three steps of this construction. When implementing the
scalar constraint, we will find it is highly prone to different choices of regularisation. Hence, without renorma-
lising our theory as described in chapter III. Renormalisation, we should not continue with the programme
of canonical quantisation.

1Here, we state it explicitly in the version where the constraints are promoted to operators on the Hilbert space. There
is an alternative programme, where the constraints are already solved at the classical level.
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The first question we must address is why we choose the holonomy-flux algebra from among the many
possibilities to describe the theory of GR. As we remember, the phase space of GR was coordinatised by the
connection field AIa(x) and its canonical conjugated momentum EbJ(y) which had the non-vanishing Poisson-
bracket

{ AIa(x) , EbJ(y) } =
κβ

2
δ(3)(x, y) (V.1)

containing the Dirac δ distribution and the Immirzi parameter β 6= 0. In order to promote this into a relation
between operators (rather than operator-valued distributions) we must smear it with background independent
test functions. While for this aim a lot of smearings are possible, we want to choose one which behaves
especially nice under gauge transformations. This is the aforementioned holonomy-flux algebra, which for GR
has been considered mathematically precise for the first time in [258]. From the experience gained in non-
abelian Yang-Mills theories, we choose fluxes smeared in two dimensions and, instead of the connection, the
path-ordered exponentials of AIa along some curves. These are exponentials of Lie algebra elements and as such
SU(2)-valued. This puts us moreover in the advantageous position that we can use the Peter & Weyl theorem
(see theorem II.A.5), which tells us how a Hilbert space over a compact gauge group can be constructed.
Thus, it is the holonomy-flux algebra which will be considered in V.A. Kinematical Hilbert space of LQG as
subset E for which we want to develop a quantum theory. Then, we replace its product by a non-commutative
version to generate Â. With every polynomial function in the holonomies and fluxes we can associated a graph
γ, say Fγ ∈ Â. γ is such that in E(γ), i.e. the edges of γ, we find an edge for every holonomy in Fγ .
The next step is then the choice of a corresponding state. In the first chapters we saw that a lot of ambiguities
arose due to the many inequivalent irreducible representations of Â. However, in LQG the situation can be
significantly improved by demanding that the state shall be diffeomorphism-invariant. A state satisfying this
criterion is the Ashtekar-Isham-Lewandowski state ωAL [66] reading explicitly on Â

ωAL

(
F ({h(eI)}I ) ? Êf1(S1) ? ... ? ÊfN (SN )

)
=

{
0 if N > 0

µH(F ) else
(V.2)

where µH is the Haar measure over several copies of SU(2) on the graph with which F = Fγ can be
associated [67, 259–262]:

µH(F ) =

ˆ
SU(2)|E(γ)|

∏
e∈E(γ)

dµH(ge)Fγ({ge}e) (V.3)

The state ωAL serves as a candidate for a vacuum in the algebraical sense, by being a state where no metric
degrees of freedom have been excited.2 There is a uniqueness theorem [68], which tells us that ωAL is indeed
the only possible state, that is diffeomorphism-invariant (and satisfies certain regularity assumptions) [69–73].
For this reason, the state serves as the starting point for all further considerations.
We can also consider the GNS construction of this state, in order to obtain a Hilbert space Hkin and a re-
presentation of the algebra as operators thereon. The corresponding GNS vector to ωAL is the vacuum vector
ΩAL. We define holonomy and flux operators ĥab(e) and Ê(S) on Hkin which is the Cauchy completion of the
span of all cylindrical functions over all finite graphs. By a finite graph γ we understand a finite collection of
curves {eI}I meeting at their end points at most. E.g., Hγ ⊂ Hkin is the completion of the span of polynomial

functions of the holonomy operators ĥ(e), e ∈ E(γ) applied to ΩAL.3 Note that ΩAL is annihilated by all
Ê(S).
Thus, approximations to all possible geometries are supposed to be constructed from ΩAL by suitable acti-
ons of holonomy operators on it, a property because of which we call it cyclic. A geometry in which we are
especially interested to construct is one, by which the universe appears manifestly classical. A vector in Hkin
resembling this feature must be such that if we compute the expectation value of some observables, e.g. a
holonomy along a curve e, we are to obtain the classical value plus small corrections. If this is the case for all
observables we are interested in, we call it a coherent state. We will repeat the explicit construction of gauge
coherent states from [154–158,263,264]. Notably, they can be peaked on the classical variables of a holonomy
along a curve and on the flux through a surface associated with the mentioned curve. By representing what
could be called “Gaussian wavepackets” on the group SU(2), they are labelled by their spread, t ∈ R+, which

2One should not confuse this with a state describing an empty, i.e. flat universe, which comes equipped with the Minkowski
metric. Rather, this state corresponds to a state where “no space exists”, e.g. the expectation value for the volume of any
region vanishes.

3Albeit its innocent looking definition, this Hilbert space turns out to be non-separable due to the huge number of
possible graphs.
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we will typically choose to be of order ~. Later on, we will use this concept by choosing special coherent states
which are peaked over a classical flat Robertson-Walker spacetime and use them to compute the expectation
values of certain observables.

This, in return, means that we first have to understand how classical observables are quantised in the
context of LQG. We will repeat this in V.B. Quantisation of Geometric Operators and Constraints.
Since GR is a theory about geometry, its pivotal operators are those describing geometric quantities. Foremost,
the volume of certain regions is an object used in many other constructions, such as the scalar constraint. As
its classical expression was the square root over the determinant of the metric integrated over a region B, a
straightforward quantisation on Hγ is the one proposed by Ashtekar and Lewandowski in [266], i.e.

V̂AL(B) :=
(β~κ)3/2

25
√

3

∑
v∈V (γ)

√
|Q̂v|, (V.4)

Q̂v := i
∑

e∩e′∩e′′=v
sgn(det(ė, ė′, ė′′))εIJKÊ

I(Se)Ê
J(Se′)Ê

K(Se′′)

where V (γ) is the set of points where at least three edges meet. The three edges e, e′, e′′ are all incident,
i.e. share the vertex v as starting point, and we associate a suitable surface Se to each of them, which will
be infinitesimal close to the vertex.4 One should note that the square root in the definition of (V.4) is to be
understood in the sense of the spectral theorem. Hence, we must first diagonalise the operator Q̂v on a given
graph Hilbert space, before we can fully understand the action of the Ashtekar-Lewandowski volume. This fact
makes the analysis of many quantities very hard and only partial results have been achieved so far, e.g. the
matrix elements of Q̂v are known [270] and some advances in the spectral analysis of the volume operator can
be found in [271–273].
We like to point out that the situation is vastly different for another geometric operator, namely the area
operator [265]. Following the same strategy as for the volume, one obtains upon quantisation an operator
whose action on a given graph can be easily computed. It turns out, that its spectrum is discrete and bounded
from below, with minimal non-vanishing eigenvalue ∆. The interpretation of this would be that there is a
minimal area which can be measured during an experiment, and later we will see how this fact has been used
for defining symmetry reduced models for quantum cosmology.
Also, one was able to implement the Gauss und the diffeomorphism constraints properly. The first one can
be solved in numerous equivalent ways, leading to the subspace of H, called HG which is the span of the
(gauge-invariant) spin-network functions [274–278]. In contrast to this, the implementation of the diffeomor-
phism constraint is normally achieved via group averaging with respect to (a generalisation of) the spatial
diffeomorphism group Diff(σ).
The most complicated object to deal with, however, is the scalar constraint. By choosing the corresponding
element in Â, such that the volume operator appears on the right, the scalar constraint is automatically anni-
hilating the vacuum vector ΩAL. (In the presence of appropriate dust fields, the constraint can be associated
with a physical Hamiltonian, which has the same property.) We already saw in the last chapter that there
exists an approximation, Cε, of the scalar constraint using holonomies along loops of coordinate length 4ε.
In [74, 75] it was hence proposed to regularise the action of Ĉε on the vertex v of a finite graph γ (whose
edges will not be infinitesimally short) by adding infinitesimal loops between edges incident at v. This finishes
the full description of a continuum quantum theory of GR.
However, as we could see in the chapter about renormalisation, as soon as one introduces a regularisation,
one has to ask whether there are ambiguities which lead to different physical predictions. Another possible, yet
arbitrary alternative to the Thiemann regularisation mentioned above was introduced in [279–281], where
the structure of the scalar constraint was considerably changed. As it turns out, both regularisations agree
only in the continuum limit before quantisation. Due to the involved action, it has been difficult to investigate
the difference in these (and other possible) regularisations at the quantum level.

A possible strategy to solve these problems presents itself, when trying to regularise the system in a non
graph-changing way: From the philosophy advocated earlier, this corresponds to considering a given graph γ
(which shall be such that it could be used to give rise a dual cell complex of σ) as a possible discretisation of the
system and studying the projection of all observables on the mentioned coarse resolution. The first incarnation
of this approach is called Algebraic Quantum Gravity in [92–95].5 Here, one takes an infinite graph which

4It is worthwhile to note that there are also other proposals for volume operators in the literature, e.g. in [267]. However,
the quantisation given in the main body of the text is as of today the only one, which is consistent with the quantisation
of the fluxes as was shown in [268,269].

5However, in this approach it was not clear any more whether the hypersurface deformation algebra closes, which should
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can be embedded in any way into σ, hence especially such that its dual presents a decomposition of the
hypersurface. Then, the holonomies of Ĉε must be regularised in such a way that they keep the discretisation
as it is, e.g. attach loops along the minimal plaquettes adjacent to a vertex v, see figure V.1.6 If only finitely
many edges of this graph are excited then we establish with this construction the correspondence to systems
with finitely many degrees of freedom. Thus, we are now in a situation where the quantisation ambiguities of
different regularisations can be studied via the same methods of cylindrical consistency we motivated in III.
Renormalisation.

Abbildung V.1: Different ways to regularise the holonomy along a loop starting at v, as it appears in Ĉε. On the left,
the graph-changing regularisation is shown. On the right, the non graph-changing version, by which a single graph can be
considered as a discretisation of σ is depicted. Here, the regularisation ambiguities can hopefully be treated via the direct
Hamiltonian renormalisation.

Indeed, that different regularisations lead to severe changes of the physical predictions on some finite
resolution can be seen in a concrete example: a semi-classical universe imitating a variant of the flat Robertson-
Walker model. For this, we choose a cubic graph γ := ∪I∈IeI , I = {(k,m) : k ∈ Z3

M ,m ∈ {1, 2, 3}}
with M < ∞ and periodic boundary conditions. Then, we embed this graph into the manifold σ = [0, 1)3

such that the M3 points are evenly distributed with respect to some fiducial metric7. In this coordinate metric
the distance between two neighbouring points reads ε = 1/M . Finally, we choose as the element of Hkin
describing the system the vector Ψ(c,p) ∈ Hγ , which is a direct product of gauge coherent states peaked on
edges in the (flat) Robertson-Walker metric.
This procedure is made precise in V.C. Cosmological Coherent States Expectation Values. Here, we will
prepare the necessary tools in order to evaluate the expectation value of the scalar constraint in its non graph-
changing regularisation on these cosmological coherent states Ψ(c,p). The calculation, as has been performed
in [133], relies heavily on the fact that the expectation value on complexifier coherent states of operators with
a polynomial dependence on the volume operator can be considerably simplified. In [94], it was shown that

〈Ψ(c,p) , P ( V̂AL ) Ψ(c,p)〉 = 〈Ψ(c,p) , P ( V̂ kGT ) Ψ(c,p)〉 + O(tk+1) (V.5)

for any polynomial P . Here, V̂ kGT is the k-th Giesel-Thiemann volume, which is a mere power series in Q̂v.

Hence, the original problem of finding the spectrum of Q̂v can be circumvented as long as we are interested
only in corrections up to a finite order k + 1 in t ∼ ~.
It is then an algebraic task to determine the expectation value of polynomials in holonomies and fluxes on
each edge. We present their analytic form for arbitrary powers in the fluxes and up to quadratic order in the
holonomies. To obtain the corresponding expression of a geometric operator, it is a combinatorial task to put
these single building blocks together. We show the procedure in the case of the volume operator explicitly
and we will, moreover, provide a general algorithm by which more complicated operators, such as the scalar
constraint itself, can be investigated. It is of no surprise that we find in [132] that the expectation value of Ĉε

coincides at the zeroth order in ~ with the classical discretisation Cε as derived in (IV.239):

〈Ψ(c,p), Ĉ
ε[1]Ψ(c,p)〉 =

6V0

κ

√
p

(
sin(εc)2

ε2
− 1 + β2

β2

sin(2εc)2

4ε2

)
+ O(~), (V.6)

be the case if the regularised operator were to describe a quantum theory of GR. To deal with this, one introduced the
master constraint approach [86–91].

6This action is moreover diffeomorphism invariant, as under the action of ϕ ∈ Diff(σ) it gets transformed together with
the graph γ. In this sense one can call the graph “abstract” and only needs to deal with a subset of residual diffeomorphisms,
i.e. those which map the graph into itself.

7While, the model for the flat k = 0 Robertson-Walker metric is defined on σ = R3, we choose here a toy model, where
we study the same metric on a compact torus.
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where V0 is the coordinate volume of σ. As we have already discussed earlier, there are even more classical
discretisations. They can feature increasingly smaller errors in the regularisation parameter ε, however all of
them predict different times for the Bounce. It transpires that the details of the Big Bounce which resolves
the singularity via an effective Hamiltonian are not necessarily meaningful. In order to understand whether
one should trust (V.6) or the dynamics of the effective Hamiltonian from some other model, it is mandatory
to do more work and fix the quantisation ambiguities related with the dynamics.

We want to close this chapter with a remark that these ambiguities even appear in symmetry reduced
models of QG, see V.D. Loop Quantisation of Symmetry Reduced Models. One might hope that due to the
high degree of symmetries these models simplify enough such that these ambiguities do not occur anymore.
However, at least in the considered model this is not the case.
The most promising candidate is Loop Quantum Cosmology, where prior to quantisation one classically
restricts oneself to flat Robertson-Walker spacetime deparametrised by a dust field. Being an isotropic and
homogeneous universe, the system loses its field-type behaviour: the only freedom left over is the scale factor
a(t). To stay as closely as possible to LQG, the variables chosen to quantise are the volume of a fiducial
cell of the universe (or the compact manifold σ mentioned above) and its conjugate momentum. This has
been done first in [80, 81]. Since then it has been of increasing success and was investigated further, e.g.
in [82–85,282,283]. It became common to integrate further features from full Loop Quantum Gravity into this
framework, most notably the aforementioned finite area gap ∆. Demanding that the area of any loop while
regularising the Hamiltonian should not be smaller than ∆, introduced a compactification sin(εc)/ε of c, the
coordinate time derivative of the scale factor. Then one quantises, e.g., the scalar constraint analogously to
full QG. However, due to the finite parameter ∆, which has been introduced, the system became susceptible
to different choices in the regularisation of the Hamiltonian, too. On the other hand, this model featured a
resolution of the Big Bang in form of a Big Bounce. Furthermore, it is simple enough to study numerically the
exact evolution of a coherent state in the quantum cosmology Hilbert space through the mentioned Bounce.
This has been done for the first time in [284–286] using a regularisation which is widely spread in the literature.
However, by choosing the regularisation suggested in [288–290], which is taking the analogous regularisation
steps leading to (V.6), one obtains a vastly different picture [134]. We will compare these two cases in detail
in the following sections. Moreover, it is interesting to note that, although both systems are highly non-trivial,
the evolution of the volume v ∼ a(t)3/2 given by the effective Hamiltonian defined as the expectation value
on the coherent states follows in each case the trajectory of the mean value of the quantum state (a function
over the volume v) perfectly, hence justifying the prescript “effective”.
All in all, this shows that even in LQC the dynamics is not reliable unless the quantisation ambiguities have
been fixed. However, thanks to the previous active research in this field, all the tools are available to closely
investigate their influence. As a possible avenue to fix the ambiguities renormalisation group techniques can
be pinpointed, one incarnation thereof - which is purely in a Hamiltonian setting - has been discussed during
the course of this thesis.

V.A Kinematical Hilbert space of LQG

V.A.1 The unique Diff(σ)-invariant Ashtekar-Isham-Lewandowski State

The starting point for the quantisation of the kinematical Hilbert space is the holonomy-flux algebra from
Lemma IV.C.5. To construct it, we consider the connection Aa(x) along any curve e in the manifold to
construct the holonomy h(e) ∈ SU(2), i.e. the path-ordered exponential of the connection along e. Similarly,
we smear the densitised triad Ea against any 2-dimensional surface S to obtain the flux E(S) ∈ su(2). For a
curve e and a surface S we thus had

h(e) := P exp

(ˆ 1

0

dtAa(e(t))ėa(t)

)
, EI(S) :=

ˆ
S

εabcdx
a ∧ dxbEcJδIJ (V.7)

The set of (h,E) along all curves and surfaces constitutes the holonomy-flux algebra.
As in this algebra all curves and surfaces are contained, there are also especially those which are only continuous
and not differentiable. To exclude them in the following, we follow the strategy of [50, 258] and consider only
a subset of the holonomy-flux algebra, namely those elements which are defined with respect to piecewise
analytic surfaces and curves:8

8We demand certain analytic structures to avoid, for example, situations where a curve and a surface would intersect
in infinitely many points. On the other hand, we don’t want to demand more, e.g. entire analyticity: diffeomorphisms
preserving such a structure would be non-trivial everywhere, if they are non-trivial in an arbitrary small neighbourhood.
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Definition V.A.1. 1) A curve is called piecewise analytic if it contains finitely many real analytic
segments which meet in their boundaries. A real analytic segment is called an edge e.
2) A piecewise analytic surface is a finite union of real analytic surfaces called faces as follows:

• A face is an entire analytic 2-manifold without boundaries

• The faces are mutually disjoint and their closures meet in 1-dim submanifolds which themselves are
piecewise analytic paths

• The closure of the surface is a C0 2-dim connected submanifold contained in a compact set

• The surface is orientable

One can use this to define the Hilbert space by GNS construction. We sketch the main idea in the following:

Definition V.A.2 (Cylindrical functions). 1) A graph γ is a finite collection of edges e ∈ γ (Alternatively
we refer to the set of all edges in γ as E(γ)). The set of vertices of γ shall be denoted by V (γ).
2) A function F on the space of smooth connections is said to be cylindrical over γ, i.e. F ∈ Cyl∞ ,iff
there exists Fγ : SU(2)|E(γ)| → C such that

F (A) = Fγ({h(e)}e∈E(γ)) = (p∗γFγ)(A) (V.8)

where pγ(A) = {h(e)}e∈E(γ).
3) Let be λh : SU(2) → SU(2), g 7→ hg the diffeomorphism of left translation. For τ = cJτJ ∈ su(2) we
define the generator of left translation in direction τ or right-invariant vector field

(Rτf)(g) =
d

ds
|s=0 (λ∗exp(sτ)f)(g) (V.9)

4) With every flux Ef (S) (S being a surface and f : σ → su(2)) we associate a derivative Êf,S on the
space of cylindrical functions:

Êf,SF := {Ef (S), F} =
βκ

2

∑
e

σ(S, e)Rf(S∩e)(e)Fγ (V.10)

where R(e) acts only on the e-th copy of SU(2) in Fγ .

These objects will now give rise to the quantum algebra Â in LQG: namely consider Ẽ the set of all pairs
(Ê, F ) with F being a cylindrical function F ∈ Cyl∞ (such that there exists for each function a graph γ with
finitely many edges) and Ê being only one of those derivations which are of the form Êf,S with S being a

piecewise analytic surface. For two elements l = (Ê, F ), l′ = (Ê′, F ′) we define the involution l∗ = (Ê∗, F ∗)
as the complex conjugation of the entries and the Lie bracket as

[l, l′] =
(

[Ê, Ê′], Ê(F ′)− Ê′(F )
)

(V.11)

To obtain the subset mentioned in Def II.B.1 with whom the GNS construction can be undergone, we will
call E the set of all elements generated from Ẽ by (V.11). Hence, the set is by construction such that we can
construct the free algebra along the lines of (II.73)-(II.75) out of it. This finishes the formal construction of
the quantum algebra Â.

To talk about the action of diffeomorphisms on Â, we generalise the class of diffeomorphisms to allow also
those, which act non-trivial only in a compact set. Hence, these diffeomorphisms will not be analytic everywhere,
but only differentiable (to some order) at the boundary of the chosen compact set. These diffeomorphisms
motivated us to consider only piecewise analytic edges and surfaces. Then, the diffeomorphisms will preserve
the structure of the edges and surface, i.e. they are automorphisms on Â. (see [258] for more details)
It turns out that for the holonomy-flux ?-algebra there is only one state which is invariant with respect to all
of these diffeomorphisms:

Theorem V.A.1. (Lewandowski, Okolow, Sahlmann, Thiemann, ’06 & Fleischhack ’09) The only dif-
feomorphism invariant state on the quantum holonomy-flux algebra Â is the so-called Ashtekar-Isham-
Lewandowski state

ωAL(F (A) ? Êf1(S1)...ÊfN (SN )) =

{
0 ifN > 0

µH(F ) else
(V.12)
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where

µH(F ) =

ˆ
SU(2)|E(γ)|

∏
e∈E(γ)

dµH(ge)Fγ({ge}) (V.13)

with F = p∗γFγ is cylindrical over γ.

Beweis. For the proof we refer to the literature. A didactic presentation can be found in [50].

V.A.2 GNS Construction and the kinematical Hilbert Space Hkin

We will now state the result of the GNS construction of ωAL on a fixed graph γ = ∪IeI . The associated
Hilbert space to γ is the tensor product of square integrable functions on each edge, Hγ = ⊗e∈E(γ)He with
He = L2(SU(2), dµH), dµH being the unique Haar measure on SU(2). The holonomies get promoted to
bounded, unitary multiplication operators: for fe ∈ He it is

ĥmn(e)fe(g) := D
( 1
2 )
mn(g)fe(g) (V.14)

where D
( 1
2 )
mn(g) is the Wigner-matrix of group element g in the defining irreducible representation of SU(2)

corresponding to spin-1/2 [291]. The Peter-Weyl Theorem II.A.5 ensures that the functions D
(j)
mn(g) form an

orthogonal basis, hence He is the closure of functions of the form fe(ge) =
∑
j

∑
−j≤m,n≤j cjmnD

(j)
mn(ge),

where j ∈ N/2 (sums over magnetic indices m,n, ... will be suppressed in the following). Now, as Hγ =
⊗e∈E(γ)He, an orthogonal basis of it are the spin-network functions [274–276]

Tγ,~j,~m,~n({g}) :=
∏

e∈E(γ)

D(je)
mene(ge) (V.15)

The scalar product between two spin-network functions Tγ,~j,~m,~n, Tγ′,~j′,~m′,~n′ , which are defined on two different

graphs γ, γ′, is defined in the following way: Choose any γ̃ such that γ ⊆ γ̃ and γ′ ⊆ γ̃. Then we define

Tγ̃,~j∼,~m∼,~n∼ :=
∏

e∈E(γ)

D(je)
mene(ge)

∏
e∈γ̃−γ

D
(0)
00 (ge) (V.16)

and similar we extend Tγ′,~j′,~m′,~n′ to γ̃. Now, both functions are defined on the same graph and their scalar

product can be compute in the L2 sense: (we rename ~j := ~j∼ and similar)

〈Tγ̃,~j,~m,~n, Tγ̃,~j′,~m′,~n′〉 =
∏
e∈γ̃

ˆ
dµH(ge)D

(je)
mene(ge)D

(j′e)
m′en

′
e
(ge) (V.17)

ˆ
dµH(g)D

(j)
mn(g)D

(j′)
m′n′(g) =

1

dj
δjj′δmm′δnn′ (V.18)

where the dimension of spin-j SU(2)-irrep is dj = 2j + 1. Similarly, the fluxes become essentially self-adjoint
derivation operators:

ÊK(S)fe(g) := − i~κβ
2

σ(e ∩ S)fe1(ge1)RK(e2)fe2(ge2) (V.19)

where σ(e ∩ S) ∈ {0,±1} (depending on whether edge and surface meet non-transversally or under the
same/opposite orientation respectively), e = e1 ◦ e2 such that se = e ∩ S is the starting point of edge e2 and
g = ge1ge2 (which makes the splitting unique). Finally, the right-invariant vector field RK(e) was defined in
(V.9) and in the same way the left-invariant vector field LK(e) is defined as

RK(e)fe(g) :=
d

ds

∣∣∣∣
s=0

fe(e
sτKg), LK(e)fe(g) :=

d

ds

∣∣∣∣
s=0

fe(ge
sτK ) (V.20)

Let us note, that in general we need indeed all graphs consisting of piecewise analytic edges, because the
algebra of observables contains the holonomies along all these paths. And, if some paths were missing, these
could be obtained through the natural action of some element of the diffeomorphism group (see later).
However, there are also different ways to implement the action of the diffeomorphism group, e.g., in Algebraic
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Quantum Gravity [92] one considers an abstract (or algebraic) graph that is not embedded and only carries
the information which vertices are connected with each other. One can quantise the action of the infinitesimal
diffeomorphisms9 such that they preserve the algebraic graph and, hence, it suffices indeed to take only one
abstract graph into account.

As we are in the following interested in a non graph-changing regularisation of our observables, we will also
consider a single graph γ that defines a complete set of coordinates of the phase space which are to become
elementary operators. Moreover, let γ be such that we can define a polyhedral decomposition of σ dual to
γ in the following way designed by [154]: to each edge e of γ we assign an open face Se carrying the same
orientation as e and such that (1) the faces Se are mutually non-intersecting, (2) only e intersects Se and (3)
the intersection happens only in one point infinitesimal close the starting point of e and is transversal.
Then (V.19), the action of ÊK(Se) on a cylindrical function of γ, becomes proportional to the action of the
right-invariant vector field RK(e). However, note that the fluxes now longer commute with each other. In
other words, we find the resulting algebra on the mentioned given graph γ with edges e, e′:

[ĥab(e), ĥcd(e
′)] = 0, [RK(e), RL(e′)] = δee′ε

KL
MR

M (e)

[RK(e), ĥab(e
′)] = δee′D

′( 1
2 )
ac (τK)ĥcb(e)

(V.21)

with D
′( 1

2 )

ab (τK) as defined in (V.23). This is taken from [133], where it was explicitly computed in the spherical

basis, s ∈ {−1, 0,+1}, where τ± := ∓(τ1 ± iτ2)/
√

2 and τ0 := τ3. The generators thereof are

τ+ = i
√

2

(
0 1
0 0

)
, τ− = −i

√
2

(
0 0
1 0

)
τ0 = −i

(
1 0
0 −1

)
(V.22)

Lemma V.A.1. Let K ∈ {0,±1}, then the action of RK on the basis element is given by

RKD(j)
mn(g) := D′

(j)
mµ(τK)D(j)

µn(g), D′
(j)
mn(τK) = 2i

√
j(j + 1)dj(−1)j+n

(
j 1 j
n K −m

)
(V.23)

Beweis. First, recall that RKf(g) = (d/ds)s=0f(esτKg), so replacing f with D
(j)
mn, we get

RKD(j)
mn(g) =

(
d

ds

)
s=0

D(j)
mn(esτKg) =

∑
µ

(
d

ds

)
s=0

D(j)
mµ(esτK )D(j)

µn(g) (V.24)

so comparison with the definition in (V.23) reveals that

D′(j)mµ(τK) =

(
d

ds

)
s=0

D(j)
mµ(esτK ) (V.25)

so we are left with the task of performing this derivative. Given τ± and τ0, it is easy to see that esτK =∑∞
n=0 s

n(τK)n/n! gives

esτ+ =

(
1 is

√
2

0 1

)
, esτ− =

(
1 0

−is
√

2 1

)
, esτ0 =

(
e−is 0

0 eis

)
(V.26)

Consider for instance τ+. From [50] we have

D′(j)mn(τ+) =
∑
l

√
(j +m)!(j −m)!(j + n)!(j − n)!

(j + n− l)!(m− n+ l)!l!(j −m− l)!
d

ds

∣∣∣∣
s=0

bm−n+lcl (V.27)

with b = is
√

2 – so that the derivative in s gives i
√

2(m− n+ l)bm−n+l−1 – and c = 0. The only way for
this not to vanish is to have l = 0 (so that the sum collapses in a single term) and m − n − 1 = 0, i.e.
δm,n+1. For these values the factorials simplify, and the final formula is

D′(j)mn(τ+) = i
√

2
√

(j + n+ 1)(j − n)δm,n+1 (V.28)

9To be precise, one is not quantising ~C there, but a classically equivalent term which is part of the Master constraint.
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Similar computations reveal that

D′(j)mn(τ−) = −i
√

2
√

(j − n+ 1)(j + n)δm,n−1 (V.29)

and
D′(j)mn(τ0) = −2inδmn (V.30)

It is convenient to write these in terms of 3j-symbols, as in this way we have a unique formula and the
symmetry properties of these objects are apparent. Recalling the explicit formulae for 3j-symbols [291](

j 1 j
n 0 −m

)
= δmn(−1)j+n+1 n√

j(j + 1)dj(
j 1 j
n ±1 −m

)
= ±δm,n±1(−1)j+n

√
(j ∓ n)(j ± n+ 1)

2j(j + 1)dj

(V.31)

one can therefore write

D′(j)mn(τK) = 2i
√
j(j + 1)dj(−1)j+n

(
j 1 j
n K −m

)
(V.32)

which is the claim.

This concludes the description on the kinematical Hilbert space of LQG.

V.A.3 (Gauge) Complexifier Coherent States

We now have at our disposal a physical Hilbert space on the fixed graph γ. But while any state F ∈ Hγ can
be considered, later on we will focus on a subset of the gauge coherent state family. Let us therefore briefly
review the general definition and properties of this family as it was introduced in [154–156].
Following Hall [263, 264], one constructs a coherent state ψte,hC

e
for every edge e of the graph and forms the

tensor product over all edges. Explicitly, we obtain Ψt
γ,{hC}({g}) :=

∏
e∈E(γ) ψ

t
e,hC

e
(ge). To construct ψte,hC

e

one uses a complex polarisation of the classical phase space, i.e. a unitary map (A,E) 7→ AC that expresses the
complex connection as a function of the real phase space. For example, the left-polar decomposition prescribes

hCe := exp

(
− it

~κβ
τJE

J(Se)

)
h(e) ∈ SL(2,C) (V.33)

where h(e) is the classical holonomy along edge e and EJ(Se) are defined with respect to the surfaces Se
for each edge e as described above. The dimensionless quantity t := ~κ/`2 > 0 is called the semiclassicality
parameter, with ` being a length scale that the theory should provide.10

To construct the coherent state in He peaked on hCe ∈ SL(2,C), one first chooses a complexifier Ĉt,e
and exponentiates it: this gives rise to the coherent state transform, which for the choice of heat kernel
complexifier [154] reads

Ŵt,e := e−
1
~ Ĉt,e = e

t
8 δIJR

I(e)RJ (e) (V.34)

The (gauge-variant) coherent state is now obtained by applying Ŵt,e to the delta-function on SU(2), δh′ ,
and continuing analytically the result to h′ → hCe :

ψte,hC
e
(g) :=

(
Ŵt,eδh′(g)

)
h′→hC

e

=
∑
j

dje
− t2 j(j+1)Tr(j)((hCe )†g) (V.35)

where Tr(j)(.) denotes the trace in the spin-j irreducible representation and the explicit expression δh(g) =∑
j djTr(j)(hg−1) has been used.

As was shown in [155], these coherent states fulfil a number of useful properties:

10 As we will see later, t controls the spread in holonomy and flux of the coherent state: The smaller t, the smaller the
relative dispersions of h and E. It has been therefore argued [94] that the natural choice for `2 in a vacuum gravity context
is the inverse of cosmological constant, `2 = 1/Λ. Using κ = 16πG/c3, one then finds t ∼ 10−120.
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(1) Eigenstates of an annihilation operator. By defining â(e) := e−
1
~ Ĉt,e ĥ(e)e

1
~ Ĉt,e = e

3t
8 e−iτI Ê

I(Se)/2ĥ(e)
(where the action of the last exponential has to be understood via Nelson’s analytic vector theorem, see
e.g. page 202 of [186]), one finds that the coherent states are simultaneous eigenstates for each â(e):

âmn(e)Ψt
γ,{hC} = [hCe ]mnΨt

γ,{hC} (V.36)

(2) Overcompleteness relation. By considering the measure (pJ ∈ R, he ∈ SU(2))

dνt(e
iτJpJ/2he) := dµH(he)[

2
√

2e−t/4

(2πt)3/2

sinh(
√
p2)√

p2
e−p

2/tdp3] (V.37)

on SL(2,C), one can show that

ˆ
SL(2,C)

dνt(h
C
e ) ψte,hC

e
〈ψte,hC

e
, ·〉 = 1He (V.38)

(3) Sharp peakedness in holonomy and electric flux. For all h, h′ ∈ SL(2,C) there exists a positive function
Kt(h, h

′) decaying exponentially fast as t→ 0 for h 6= h′ and such that

| 〈ψth, ψth′〉 |2≤ Kt(h, h
′)||ψth||2||ψth′ ||2 (V.39)

Moreover, for holonomies and fluxes one finds

〈ψth, ĥmn(e)ψth′〉 = hmn(e)〈ψth, ψth′〉+O(t) (V.40)

〈ψth, ÊJ(Se)ψ
t
h′〉 = EJ(Se)〈ψth, ψth′〉+O(t) (V.41)

and that they saturate the Heisenberg uncertainty bound by occupying a phase space volume (with
respect to the Liouville measure) of order t3.

V.B Quantisation of Geometric Operators and Constraints

V.B.1 The Volume Operator

For the volume over a classical region B ⊂ σ the process of canonical quantisation on a given graph γ uses
the following regularisation:
We consider a partition of B into cubes � and get the classical identity

V (B) =
∑
�

ˆ
�
d3u

√
det(X∗Bq) (V.42)

for an embedding function XB into σ. We introduce the “face normals” of � at fixed values of ub. Then we
calculate

det([EaJ(XB(u))nba]bJ) = det(EaJ) · det(nba) = det(E)(det(
∂XB

∂u
))2 (V.43)

and with

det(X∗Bq) = (det(
∂XB

∂u
))2 det(q) (V.44)

we arrive at √
det(X∗Bq) =

√
|det(E · n) | (V.45)

Suppose that each � has coordinate volume ε3 then (u� ∈ �)

ˆ
�
d3u

√
det(X∗Bq) = ε3

√
det(X∗Bq)(X

∗
B(u�)) =

√
|det(E · nε2)| ≈

√
|det({EJ(�b)}bJ)| (V.46)
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where EJ(�b) is the flux through the b-th face of �. In the following we write in an abuse of notation
det(E(�)) := det({EJ(�)b)}bJ). Thus, we finally obtain:

V (B) ≈
∑
�

| det(E(�)) |1/2 +O(ε) (V.47)

det(E(�)) =
1

3!
εabcε

IJKEI(�
a)EJ(�b)EK(�c) (V.48)

We define this by its action on a spin-network function

det(Ê(�))Tγ,~j,~m,~n =

(
~κβ

2

)3
1

6
× (V.49)

×
∑

e,e′,e′∈E(γ)

(εabcσ(�a, e)σ(�b, e′)σ(�c, e′′))εJKLR
J(e)RK(e′)RL(e′′))Tγ,~j,~m,~n

As ε → 0 the only contributions comes from cubes that contain at least a trivalent vertex. Also, we can
choose each cube to contain only one vertex at most, else we shrink ε further. This leads, finally, to the
Ashtekar-Lewandowski volume operator 11 [266]

V̂ (B)Fγ({g}) =
∑

v∈V (γ)∩B

V̂vFγ({g}) =
(β~κ)3/2

25
√

3

∑
v∈V (γ)∩B

√
| Q̂v |Fγ({g}), (V.50)

Q̂v := i
∑

e∩e′∩e′′=v
ε(e, e′, e′′)εIJKR

I(e)RJ(e′)RK(e′′) (V.51)

with ε(e, e′, e′′) := sgn(det(ė, ė′, ė′′)) and all edges outgoing at the vertex v. (In case of an e being ingoing,
one simply replaces RK(e)→ LK(e).) Since the square-root is understood in the sense of the spectral theo-
rem, knowledge of the full spectrum of Q̂v is required before we can say how V̂v acts on general states.

Important for the purposes we have in mind, is the advantage of using the coherent states to simplify
the evaluation of expectation values of operators involving the Ashtekar-Lewandowski volume (V.50). Indeed,
given a coherent state ( which is peaked at each edge on |hmn(e)| � t, |EJ(Se)| � t), it was shown in [94]

that for every polynomial operator P (V̂v, ĥ) the following relation holds:

〈Ψt
γ,{hC}, P (V̂v, ĥ)Ψt

γ,{hC}〉 = 〈Ψt
γ,{hC}, P (V̂ GTk,v , ĥ)Ψt

γ,{hC}〉+O(tk+1) (V.52)

where we refer to V̂ GTv as the k-th Giesel-Thiemann volume operator. This is explicitly given by

V̂ GTk,v :=
(β~κ)

3
2

25
√

3

√
〈Q̂v〉

[
1Hγ +

2k+1∑
n=1

(−1)n

n!

(
0− 1

4

)(
1− 1

4

)
...

(
n− 1− 1

4

)(
Q̂2
v

〈Q̂v〉2
− 1Hγ

)n]
(V.53)

where Q̂v is as in (V.51) and we used the shorthand notation 〈Q̂v〉 := 〈Ψt
γ,{hC}, Q̂vΨ

t
γ,{hC}〉.12 This fact

enables us to compute the approximated expectation value (on these coherent states) of any polynomial
operator involving Ashtekar-Lewandowski volume, retaining control on the error we make in terms of powers
of the semiclassicality parameter t.

V.B.2 Gauss and Diffeomorphism Constraint

It remains to incorporate the constraints GJ , ~C[ ~N ], C[N ]. The Gauss constraint GJ is easily incorporated by
the fact that it is the generator of SU(2)-rotations, hence its solutions are states of Hγ which are invariant
under SU(2). These can be obtained by group averaging: let UG[g] be the operator that generates a local
g(x) ∈ SU(2) transformation and Fγ({g}) =

∏
e∈γ fe(ge), i.e. a tensor product over the edges; then the

corresponding gauge-invariant function is [292, 293]

FGγ (g) =

ˆ
D[{h}]UG[{h}]Fγ({g}) :=

 ∏
v∈V (γ)

ˆ
dµH(hv)

∏
e∈γ

fe(hsegh
−1
te ) (V.54)

11We can take care of the non-commutative nature of the Ê by introducing a regularisation procedure called “link-
splitting” [50]. With this one can show that all contributions where Ê acts on its copy of a different surface cancel.

12 We observe that the operator V̂ GTk,v depends explicitly on the coherent state Ψt
γ,{hC} which appears in (V.52), and it

therefore makes sense only in the context of equation (V.52).
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where v runs through all vertices in γ, and se, te denote the vertex at the beginning/end of edge e respectively.
Assume one implements the Gauss constraint via group averaging and is only interested in the expectation
value of observables which are themselves gauge-invariant (like we have already established for the scalar
constraint). These are ÔF such that UG[g]†ÔFUG[g] = ÔF for any SU(2) transformation UG[g]. Moreover,
it is easy to see by (V.35) that the coherent states are gauge-covariant: for a gauge transformation of g̃ at
x = se, the starting point of edge e, we get UG[g̃]ψte,hC

e
(g) = ψte,hC

e
(gg̃) = ψte,hC

e g̃
†(g). Conversely, for x = te′

the terminal point of edge e′, it is UG[g̃]ψt
e′,hC

e′
(g) = ψt

e′,hC
e′

(g̃g) = ψt
e′,g̃†hC

e′
(g). Combining both with the fact

that the coherent states are sharply peaked, we get

〈ΨG
(c,p), ÔFΨG

(c,p)〉 =

ˆ
D[{g̃}]

ˆ
D[{g̃′}]

∏
e∈E(γ)

〈ψe,He , UG[g̃se ]
†UG[g̃te ]

†ÔFUG[g̃′se ]UG[g̃′te ]ψe,He〉

=

ˆ
D[{g̃}]

ˆ
D[{g̃′}]

∏
e∈E(γ)

〈ψe,g̃−1
te
Heg̃

−1
se
, ÔFψe,g̃′−1

te
Heg̃′

−1
se

〉

=

ˆ
D[{g̃}]

ˆ
D[{g̃′}]

∏
e∈E(γ)

〈ψe,g̃−1
te
Heg̃

−1
se
, ÔFψe,g̃−1

te
Heg̃

−1
se
〉δ(g̃, g̃′) +O(t)

=

ˆ
D[{g̃}]〈Ψ(c,p), UG[g̃]†ÔFUG[g̃]Ψ(c,p)〉+O(t)

= 〈Ψ(c,p), ÔFΨ(c,p)〉+O(t) (V.55)

where in the second-to-last step we used the peakedness property of coherent states to write 〈ψe,He , ÔFψe,H′e〉
= 〈ψe,He , ÔFψe,He〉δ(He, H

′
e)+O(t), while in the last step we used the fact that the Haar measure is normali-

sed. We see also that the normalisation of the state obeys ||ΨG
(c,p)|| = ||Ψ(c,p)||+O(t). This result guarantees

that the expectation values have physical significance at leading order in t (i.e. O(t0)), without having to
impose the Gauss constraint. In other words, the expectation value of gauge invariant observables does at
classical order not dependent on the representative of the gauge orbit of the phase space point. Of course, the
corrections could be very large, thus the parameter t should be considered sufficiently small t → 0. Further
results on the general gauge-invariant coherent states can be found in [294, 295].

The vector constraint ~C[ ~N ] generates diffeomorphisms of the spatial manifold σ, and therefore cannot be
implemented as an infinitesimal operator due to the action of the diffeomorphism group Diff(σ) not being stron-
gly continuous. Nevertheless, diffeomorphism-invariance can still be implemented via finite diffeomorphisms
ϕ ∈ Diff(σ). In this thesis, we adopt the idea developed in the context of AQG [92], where one considers
abstract graphs, that is graphs which “forget” about their embedding in σ. In order to still reduce the number
of degrees of freedom accordingly for our theory, we will introduce a classically equivalent constraint which
can be promoted to an operator and implement it, instead of the vector constraint.
The object that is closely related to it – and that does admit a quantum counterpart – is M := qabCaCb/det(q)

[50]. Let M̂ = M(ĥ, Ê) be the corresponding operator, and let Ψt
γ,{hC} be a generic gauge coherent state.

Then follows, from the peakedness property of coherent states [156],

〈Ψt
γ,{hC}, M̂Ψ(c,p)〉 = M(ho, Eo)〈Ψt

γ,{hC},Ψ(c,p)〉+O(t) (V.56)

where ho and Eo represent schematically the leading orders (in t) of the expectation values of generic holonomy
and flux on the cosmological coherent state Ψ(c,p). As we will see later, the leading order of these operators
reproduces the classical value computed from data (c, p), so in fact we have M(ho, Eo) = Mclass. But now,
we observe that the classical Robertson-Walker metric solves the spatial constraints identically (it is homoge-
neous, hence spatial derivatives vanish): (Ca)class = 0. Since M is homogeneous in Ca, it immediately follows
that Mclass = 0, and so 〈Ψt

γ,{hC}, M̂Ψ(c,p)〉 vanishes at leading order in t. Since this is true for every Ψt
γ,{hC},

and since the whole set of gauge coherent states forms a basis, we conclude that M̂Ψ(c,p) = 0 +O(t).
In this sense, even though the state Ψ(c,p) is not diff-invariant, expectation values computed with it have
physical significance at leading order in t.

V.B.3 Quantisation of the Scalar Constraint

Finally, let us consider the implementation of the scalar constraint in the quantum theory. We had already
introduced in the last chapter the regularisation due to Thiemann and, indeed, it could be used to implement
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for the first time a rigorous quantisation of the scalar constraint in LQG (we refer to [74,75] for the details of
this construction).

Non Graph-Changing Regularisation

Among the various choices of further regularisations proposed for the scalar constraint, we will use the frame-
work first developed in AQG [93], where one chooses the scalar constraint to act in a non graph-changing way,
i.e. one regularises the curvature of the Ashtekar connection by Fab(x)ėaėb = [h(�ee′)−h(�ee′)†]/2ε2 +O(ε)
where �ee′ denotes a small loop starting at x along e and returning along e′ of coordinate length 4ε. Then,
we choose for the action of the loop-holonomy the operator ĥ(�ee′), which starts at a vertex v of the fixed
graph γ and goes along already existing edges in such a way that minimally many edges are traversed. Thus,
we simply define the total operator in its symmetrised version as follows:

Ĉ[N ] =
1

2

(
ĈE [N ] + Ĉ†E [N ]

)
− β2 + 1

2β2

(
ĈL[N ] + Ĉ†L[N ]

)
(V.57)

where the Euclidian part ĈE and the Lorentzian part ĈL are

ĈE [N ] :=
32

3iκ2~β
∑

v∈V (γ)

Nv
20

∑
e∩e′∩e′′=v

ε(e, e′, e′′)
1

2
×

× Tr
(

(ĥ(�ee′)− ĥ(�ee′)
†)ĥ(e′′)

[
ĥ(e′′)†, V̂v

])
(V.58)

ĈL[N ] :=
128

3iκ4~5β5

∑
v∈V (γ)

Nv
20

∑
e∩e′∩e′′=v

ε(e, e′, e′′)×

× Tr
(
ĥ(e)

[
ĥ(e)†, [ĈE [1], V̂v]

]
ĥ(e′)

[
ĥ(e′)†, [ĈE [1], V̂v]

]
ĥ(e′′)

[
ĥ(e′′)†, V̂v

])
(V.59)

and Nv is the value of lapse function N at v ∈ σ.

Deparametrisation with Gaussian Dust

Instead of dealing with vacuum GR, where one has to solve the scalar constraint C[N ], one can construct
observables, e.g., by adding matter to the theory and trying to find local coordinates such that the constraint
acquires the form C = P +H in terms of the conjugated momentum P to the matter degree of freedom. If
this form is achieved, one speaks of “relational observables” and “deparametrisation” [147–153]: the function
H becomes a physical, conserved Hamiltonian density which drives the physical evolution of the observables
with respect to the matter degree of freedom (which therefore plays the role of physical clock, τ). While not
all types of matter allow for this decomposition, a possible choice is Gaussian dust: in the framework of Torre
and Kuchǎr [147], the Lagrangian added to the Einstein-Hilbert action describing Gaussian dust is

LGD = −
√
| det(g) |

(%
2

(gµνT,µT,ν + 1) + gµνT,µ(WjS
j
,ν)
)

(V.60)

with the fields % and Wj having dimension cm−4, while the fields T and Sj have dimension cm. Performing
Legendre transformation, one can show that the time-evolution of an observable OF (associated with phase
space function F ) is encoded as the Schrödinger-like equation dOF (τ)/dτ = {H,OF (τ)}, where

H = C[1] =

ˆ
dx3C(x) (V.61)

is for this reason called the true Hamiltonian. We see that C is no longer a constraint whose vanishing
must be imposed, but in fact it generates time-translations. Thus, if one takes this viewpoint, the quantum
scalar constraint presented above is understood as the quantum operator producing the dynamics of geometric
degrees of freedom with respect to the classical observer provided by the dust.

V.C Cosmological Coherent States Expectation Values

In this section we will quote the work from [132, 133] by focussing on a subfamily of the coherent states
Ψt
γ,{hC}, which we claim to be suited to describe flat Robertson-Walker geometries at a given instance, i.e.

on the spatial manifold σ. The question of whether these states are actually stable under the dynamics is still
open and will not be addressed here.
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V.C.1 Choice of States

We follow [133] and introduce an infrared cut-off by restricting the spatial manifold σ to a compact submani-
fold, σR, which we equip with the topology of a 3-torus, that is, periodic boundary conditions. With respect
to a fiducial metric η we identify R as the coordinate length of the torus, which in principle allows us to
remove the cut-off by sending R → ∞. Thus, we are interested in a fixed graph γ, which is chosen to be a
the cubic lattice Z3

N embedded in σR for some finite N ∈ N. As such, we shall only consider a subalgebra of
the holonomy-flux algebra: the holonomies along the edges of γ and the fluxes across the surfaces of a dual
cell-complex.

The three directions of the lattice can be chosen adapted to the fiducial metric η, so that the coordinate
length of a side of the lattice is R. On the other hand, due to σR being compact, γ has a finite number
of vertices, N 3. Assuming the lattice to be regular with respect to η, we therefore find that the coordinate
distance between two neighbouring vertices is µ := R/N .
Now, we remember the calculations (IV.192),(IV.224) and (IV.233): the classical geometry that we want to
reproduce is described by a line element that, in these coordinates, reads

ds2 = −N2dt2 + a2(dx2 + dy2 + dz2) (V.62)

with N the lapse function and a the scale factor encoding the spatial geometry. In Ashtekar-Barbero variables,
we find for the connection and densitised triad respectively

AIa = cδIa, EaI = pδaI (V.63)

with c and p being the fundamental variables. One can now compute the holonomy and the flux along each
edge eI in direction I:

h(eI) = e−cµτI , EJ(SeI ) = pµ2nJ(I) (V.64)

where ~n(I) is the unit vector normal to SeI (so its components with respect to Cartesian coordinates are
nJ(I) = δJI ). Therefore, according to (V.33), the element HI ∈ SL(2,C) that should label the coherent state

ψteI ,HI ∈ HeI is (no sum over I)

HI = exp

(
− it

~κβ
pµ2τI

)
e−cµτI = exp

[(
−2cµ− i 2t

~κβ
pµ2

)
~n(I) · ~τ/2

]
=

= nI exp

[(
−2µc− i2µ

2p

`2β

)
τ3/2

]
n†I (V.65)

where in the third step we used the SU(2)-covariance of τI to move the rotation from its basis index to its
matrix indices. In particular, nI are the SU(2) elements that rotate the unit vector ẑ into the unit vector ~n(I),
and are explicitly given by

n1 =
1√
2

(
1 −1
1 1

)
, n2 =

1√
2

(
1 i
i 1

)
, n3 =

(
1 0
0 1

)
(V.66)

In this way, we have expressed HI in its holomorphic decomposition, which for a generic SL(2,C) element
reads n exp(z̄τ3/2)n′† for z ∈ C and n, n′ ∈ SU(2). While in general z, n and n′ are independent, in this
particularly simple case we find that n = n′ are fixed (though different for the three possible orientations of
the edges) and we read off

z = −2µc+ i
2µ2p

`2β
≡ ξ + iη (V.67)

The complex number z is therefore the only label of our coherent states, encoding the classical geometry
described by the canonical pair (c, p). In the derivation above the numerical values of c and p were computed
using an embedded lattice. In the following, however, we will refer to an abstract graph whose label z = ξ+ iη
is related to the numerical values c, p and µ according to (V.67).
Having the labels {hC} = {H}, we finally find our coherent states:

Ψ(c,p)({g}) :=
∏
e∈E(γ) ψ

t
e,hC

e
(ge) =

∏
I∈{1,2,3}

∏
k∈Z3

N
ψI,HI (gk,I)

ψI,HI (g) :=
1√
〈1〉z

∑
j∈N/2 dje

−j(j+1)t/2
∑j
m=−j e

izmD
(j)
mm(n†IgnI)

(V.68)
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where 〈1〉z := ||ψI,HI ||2 is the normalisation of the state and again ZN = {0, 1...,N − 1}.
These are states on the kinematical Hilbert space. As the next step, the implementation of the Gauss and
diffeomorphism constraint does not require further work, as we have already seen that the they are both solved
up to corrections of order t on the cosmological coherent states.

We conclude that the states introduced above can be considered as physical states. The remainder of
the section collects some general results about this particular subfamily, which will be used in the following
sections to perform computations. Because the extension to many edges is trivial, we can focus on a single
edge, and therefore we shall drop the index ‘I’. Moreover, we will sometimes write H(z) to indicate that the
SL(2,C) label H effectively depends only on z given in (V.67).

V.C.2 General Properties of Cosmological Coherent States

Consider ψe,H(z)(g) as in (V.68), with H(z) = nez̄τ3/2n† and z = ξ + iη as in (V.67). The first result
from [133] gives us a way to simplify expectation values of operators involving left-invariant vector fields.
In the following, we will change the basis of su(2): instead of I, J,K ∈ {1, 2, 3} we will consider the spherical
basis, s ∈ {−1, 0,+1}, where τ± := ∓(τ1 ± iτ2)/

√
2 and τ0 := τ3. The generators are thus

τ+ = i
√

2

(
0 1
0 0

)
, τ− = −i

√
2

(
0 0
1 0

)
τ0 = −i

(
1 0
0 −1

)
(V.69)

and satisfy the algebra [τ+, τ−] = 2iτ0, [τ±, τ0] = ±2iτ±.13

Lemma V.C.1. Let P (L, ĥ) be a polynomial operator, with LK the left-invariant vector field. Then:

〈ψe,H(z), P (L(e), ĥ(e))ψe,H(z)〉 = 〈ψe,H(−z), P (−R(e), ĥ(e)†)ψe,H(−z)〉 (V.70)

Beweis. Because of linearity, if suffices to consider a single basis element ĥa1b1(e)r1LK1 ..ĥanbn(e)rnLKn

with ri ∈ N0 and for arbitrary j, j′ in the defintion of ψe,H(z). We recall that ĥ is a multiplication operator,
while for R we find

RKD
(j)
ab (g†) = (−)b−aRKD

(j)
−b−a(g) = (−)b−a

d

ds

∣∣∣∣
s=0

D
(j)
−b−a(esτKg) =

=
d

ds

∣∣∣∣
s=0

D
(j)
ab ((esτKg)†) =

d

ds

∣∣∣∣
s=0

D
(j)
ab (g†e−sτK ) = − d

ds

∣∣∣∣
s=0

D
(j)
ab (g†esτK ) (V.71)

obtained using the properties of Wigner matrices. In light of this, we have

ˆ
dµH(g)D

(j′)
m′n′(n

†gn)D
( 1
2 )

a1b1
(g)r1LK1 . . . D

( 1
2 )

anbn
(g)rnLKnD(j)

mn(n†gn)δm′n′δmne
izme−iz̄m

′
=

=
d

ds1

∣∣∣∣
s1=0

...
d

dsn

∣∣∣∣
sn=0

ˆ
dµH(g)D

(j′)
m′m′(n

†gn)D
( 1
2 )

a1b1
(g)r1D

( 1
2 )

a2b2
(ges1τK1 )r2×

×D( 1
2 )

anbn
(ges1τK1 ...esn−1τKn−1 )rnD(j)

mm(n†g†es1τKnn)eizme−iz̄m =

= (−1)n
ˆ
dµH(g†)D

(j′)
m′m′(n

†g†n)D
( 1
2 )

a1b1
(g†)r1RK1 ...D

( 1
2 )

anbn
(g†)rnRKnD(j)

mm(n†g†n)eizme−iz̄m
′

=

= (−1)n
ˆ
dµH(g)D

(j′)
−m′−m′(n

†gn)D
( 1
2 )

a1b1
(g†)r1 ...D

( 1
2 )

anbn
(g†)rnRKnD

(j)
−m−m(n†gn)eizme−iz̄m

′
=

= (−1)n
ˆ
dµH(g)D

(j′)
m′m′(n

†gn)D
( 1
2 )

a1b1
(g†)RK1 ...D

( 1
2 )

anbn
(g†)rnRKnD(j)

mm(n†gn)ei(−z)me−i(−z̄)m
′

(V.72)

where in the second step we renamed the integration variable g → g† and made use of (V.71), in the

third step we used dµH(g) = dµH(g†) and D
(j)
mn(g†) = D

(j)
nm(g) = (−1)n−mD

(j)
−n−m(g), and in the last

we renamed −m → m,−m′ → m′ (recall that sums over such indices are understood). This gives the
statement.

13 This does not change the action of geometric operators such as volume (V.50), since they are by construction SU(2)-
scalars, and hence invariant under any basis transformation.
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Lemma V.C.2. Let M(R(e), ĥ(e))K1,...,Kn
a1b1,...,an′bn′

be a monomial operator, with index-structure stemming

from RKi(e) and ĥaibi(e) . Then:

〈ψe,H(z), P (R(e), ĥ(e))K1,...,Kn
a1b1,...,an′bn′

ψe,H(z)〉 = D
(1)
−K1,−S1

(n) . . . D
(1)
−Kn,−Sn(n)× (V.73)

×D( 1
2 )

a1a′1
(n)D

( 1
2 )

b′1b1
(n†) . . . D

( 1
2 )

an′a
′
n′

(n)D
( 1
2 )

b′
n′bn′

(n†)〈ψe,H(z)|n=n3
, P (R(e), ĥ(e))S1,...,Sn

a′1b
′
1,...,a

′
n′b
′
n′
ψe,H(z)|n=n3

〉

where we point out that H(z)|n=n3
= ezτ3/2.

Beweis. First, consider the action of RK on D
(j)
mn(n†gn):

RKD(j)
mn(n†gn) = D

(j)
mm′(n

†)
(
RKD

(j)
m′n′(g)

)
D

(j)
n′n(n) = D

(j)
mm′(n

†)D
′(j)
m′µ(τK)D

(j)
µn′(g)D

(j)
n′n(n) =

= D
(j)
mm′(n

†)D
′(j)
m′µ(τK)D(j)

µν (n)D(j)
νn (n†gn) =

= D
(1)
−K−S(n)D′(j)mν (τS)D(j)

νn (n†gn) (V.74)

where in the last step we used that∑
m′,n′

D
(j)
mm′(g

†)D
′(j)
m′n′(τK)D

(j)
n′n(g) =

∑
L

D
(1)
−K−L(g)D′(j)mn(τL) (V.75)

Hence, for the generic monomial, we express numerous times the product of two holonomies as a linear
combination with fixed coefficients c:

ˆ
dµH(g)D

(j′)
m′n′(n

†gn)ĥa1b1 ...R
KnD(j)

mn(n†gn) = (V.76)

= D
( 1
2 )

a1a′1
(n)D

( 1
2 )

b′1b1
(n†)...D

( 1
2 )

ana′n
(n)D

( 1
2 )

b′nbn
(n†)

ˆ
dµH(g)D

(j′)
m′n′(n

†gn)×

×D( 1
2 )

a′1b
′
1
(n†gn)RK1 ...D

( 1
2 )

a′nb
′
n
(n†gn)

(
D1
−Kn−Sn(n)D′

j
mµn(τSn)D(j)

µnn(n†gn)
)

=

= D
( 1
2 )

a1a′1
(n)D

( 1
2 )

b′1b1
(n†)...D

( 1
2 )

ana′n
(n)D

( 1
2 )

b′nbn
(n†)D1

−Kn−Sn(n)D′
j
mµn(τSn)×

×
ˆ
dµH(g)D

(j′)
m′n′(n

†gn)D
( 1
2 )

a′1b
′
1
(n†gn)RK1 ...RKn−1

∑
jn

cnjn,µ′nνn(µn)Djn
µ′nν

′
n
(n†gn) =

= D
( 1
2 )

a1a′1
(n)D

( 1
2 )

b′1b1
(n†)...D

( 1
2 )

ana′n
(n)D

( 1
2 )

b′nbn
(n†)D1

−Kn−Sn(n)...D1
−K1−S1

(n)×

×

D′jmµn(τSn)...D′
j
mµ1

(τS1)×
ˆ
dµH(g)D

(j′)
m′n′(g)

∑
jn...j1

c1j1,µ′1,ν1(µ1)...cnjn,µ′nνn(µn)Dj1
µ′1ν
′
1
(g)


where in the last line we used invariance of the Haar measure to replace n†gn→ g. We now see that the

term in brackets is nothing but the expansion of
´
dµH(g)D

(j′)
m′n′(g)ĥa1b1 ...R

KnD
(j)
mn(g), which was the

statement.

Lemma V.C.3. Let P (R,L, ĥ) be a polynomial operator on He. Then upon identifying the su(2) label
K with the numbers 0,±1:

〈ψe,H(z)|n=n3
, P (R,L, ĥ)LKψe,H(z)|n=n3

〉 = e−izK〈ψe,H(z)|n=n3
, P (R,L, ĥ)RKψe,H(z)|n=n3

〉

〈ψe,H(z)|n=n3
, LKP (R,L, ĥ)ψe,H(z)|n=n3

〉 = e−iz̄K〈ψe,H(z)|n=n3
, RKP (R,L, ĥ)ψe,H(z)|n=n3

〉
(V.77)

Beweis. Since D′
j
mn(τK) enforces n+K −m = 0, one gets

LKD(j)
mme

izm = D(j)
mµ(g)D′

(j)
µm(τK)eizm = e−izKD(j)

µm(g)D′
(j)
mµ(τK)eizm =

= e−izKRKD(j)
mm(g)eizm (V.78)
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where in the second step we exchanged the dummy indices µ ↔ m. This is the first property. For the

second, we expand P (R,L, ĥ)ψ =
∑
j cjmnD

(j)
mn(g) with some coefficients c:

∑
j

cjmn

ˆ
dµH(g)D

(j′)
m′m′(g)e−iz̄m

′
LKDj

mn(g) =
1

dj′
cj′m′ne

−iz̄m′D′
j′

m′n(τK) =

= e−iz̄K
1

dj′
cj′nm′e

−iz̄m′D′
(j′)
nm′(τK) =

= e−iz̄K
∑
j

cjnµe
−iz̄m′D′

j
nν(τK)

ˆ
dµH(g)D

(j′)
m′m′(g)Dj

νµ(g) =

= e−iz̄KRKP (R,L, ĥ)ψ (V.79)

having exchanged the dummy indices m′ ↔ n in the second step.

Now, if one uses both relation in (V.77), and the fact that [RK(e), LM (e)] = 0, one gets immediately the
following result.

Corollary V.C.1. The following cyclic property holds:

〈ψe,H(z)|n=n3
, RK1 ..RKnψe,H(z)|n=n3

〉 = e−2ηKn〈ψe,H(z)|n=n3
, RKnRK1 ..RKn−1ψe,H(z)|n=n3

〉 (V.80)

where z = ξ + iη.

As we will see in the next section, this property allows to greatly simplify the computations for the
expectation value of any product of R’s.

V.C.3 Expectation Values of Monomials on a Single Edge

In this section we will cite the computations of expectation values of the various monomials which appear in
the geometric operators from [133]. As on a given edge e we have ÊK(Se) = −itβ/4 RK(e) computing the
expectation value of RK(e) is supposed to give us at leading order a factor t−1. Hence, for a monomial to
the N -th power in Ê(Se) we will neglect all contributions of order t−(N−2) when computing the expectation
value of N many R(e).
Moreover, thanks to lemma 2, it suffices to express everything on cosmological coherent states with H(z)|n=n3 ,
and so we will use a shorthand notation for the non normalised expectation values:

〈P (R(e), ĥ(e))〉z := 〈1〉z〈ψe,H(z)|n=n3
, P (R(e), ĥ(e))ψe,H(z)|n=n3

〉 (V.81)

where 〈1〉z := ||ψI,HI ||2 is the normalisation of the state, which will be computed in the following subsection.

Monomials of right-invariant Vector Field

Consider first N right-invariant vector fields, all with magnetic index s1 = .. = sN = 0. We have

〈Rs1 ..RsN 〉z =

=
∑
j,j′

djdj′e
−j(j+1)t/2e−j

′(j′+1)t/2e−iz̄m
′
eizm

ˆ
dµH(g)D

(j′)
m′m′(g)D′

(j)
mµN (τ0)..D′

(j)
µ2µ1

(τ0)D(j)
µ1m(g)

=
∑
j,j′

djdj′e
−j(j+1)t/2−j′(j′+1)t/2(−2im)Ne−iz̄m

′
eizm

ˆ
dµH(g)D

(j′)
m′m′(g)D(j)

mm(g)

=
∑
j

dje
−j(j+1)t(−2im)Ne−2ηm =

∑
j

dje
−j(j+1)t(i∂η)Ne−2ηm =

= (i∂η)N
∑
j

dje
−j(j+1)t sinh(djη)

sinh(η)
= (i∂η)N 〈1〉z (V.82)

where we usedD′mn(τ0) = −2imδmn in the second step and the geometric sum
∑j
m=−j e

−2ηm = sinh(djη)/ sinh(η)
to go to the last line. It remains to compute 〈1〉z, the normalisation of the state, for which we follow close-
ly [154–156]. As the authors there have pointed out, this sum can be approximated after using the elementary
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Poisson Summation Formula III.C.1.

By realizing that for dj = 2j + 1 the term in the sum is even, we extend the sum to negative values, thus
bringing 〈1〉z in the form to apply this theorem:

〈1〉z =

∞∑
dj=1

dje
−(d2j−1)t/4 sinh(djη)

sinh(η)
=

1

2

∞∑
n=−∞

ne−(n2−1)t/4 sinh(nη)

sinh(η)
=

=
1

2

ˆ
R
du
∑
n∈Z

e−i2πnue−tu
2/4et/4u

sinh(uη)

sinh(η)
(V.83)

Upon completing the square, in the exponential one gets the term e−4π2n2/t which, for t→ 0, goes to 0 faster
than any polynomial, unless n = 0. We conclude that, for 1� t, only the n = 0 term of the sum contributes,
up to an error of order O(t∞). We thus find

〈1〉z =
1

2
et/4
ˆ
R
du ue−tu

2/4 e2ηu

sinh(η)
= 2et/4

√
π

t3
ηeη

2/t

sinh(η)
(V.84)

Because of the factor eη
2/t in 〈1〉z, the leading order of (V.82) in t is obtained when all N derivatives ∂η hit

eη
2/t, giving O(1/tN ).

Let us now consider the case where some indices s1, ..., sn are not equal to zero. Since D′
(j)
µi+1µi(τsi) implies

µi+1 = µi + si and we have µ0 = µN+1 = m it follows that
∑
i si = 0. Consequently, a single non-vanishing

si is impossible: we shall therefore consider a pair s1, s2 with opposite sign. Moreover, we will neglect all
contributions smaller than O(1/tN−1), since we saw that the leading order (for (V.82)) is ∼ 1/tN . Using the
algebra (for s1, s2, s 6= 0)

[Rs1 , Rs2 ] = −i(s1 − s2)R0,
[
Rs, R0

]
= −2isRs (V.85)

we find for the expectation value with a spacing C between s1 and s2

〈R0...Rs1

C︷ ︸︸ ︷
R0...R0 Rs2 ...R0〉z = 〈R0...R0Rs1R0...R0Rs2〉z =

= 〈
N−2︷ ︸︸ ︷

R0...R0 Rs1Rs2〉z − 2iCs2〈
N−3︷ ︸︸ ︷

R0...R0 Rs1Rs2〉z +O(1/tN−2) =

=
(
(i∂η)N−2 − 2iCs2(i∂η)N−3

)
〈Rs1Rs2〉z +O(1/tN−2) (V.86)

having used (V.80) in the first step and (V.85) in the second. We reduced the problem to evaluating the
expectation value 〈Rs1Rs2〉z. But this can be done without effort by combining the cyclicity property and the
algebra: it is

〈Rs1Rs2〉z = e−2ηs2〈Rs2Rs1〉z = e−2ηs2(〈Rs1Rs2〉z − 〈[Rs1 , Rs2 ]〉z) =

= e−2ηs2〈Rs1Rs2〉z + e−2ηs2i(s1 − s2)〈R0〉z =

= e−2ηs2〈Rs1Rs2〉z − e−2ηs2(s1 − s2)∂η〈1〉z (V.87)

which, solved for 〈Rs1Rs2〉z, gives

〈Rs1Rs2〉z =
e−ηs2

sinh(η)
∂η〈1〉z (V.88)

Again, the leading order is obtained when all ∂η hit eη
2/t. It follows that the term proportional to C in (V.86)

is negligible, and the other is already next-to-leading with respect to (V.82). Explicitly, we get

〈R0...Rs1

C︷ ︸︸ ︷
R0...R0 Rs2 ...R0〉z = −i e

−ηs2

sinh(η)
(i∂η)N−1〈1〉z +O(1/tN−2) (V.89)

A similar calculation reveals that four and more non-vanishing indices are of order O(1/tN−2), and will thus
be neglected.
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The final result up to linear quantum corrections thus reads:

〈Rs1 . . . RsN 〉z = (V.90)

=

[
δs1...sN0 (i∂η)N − i

sinh(η)

N∑
A<B=1

δs1..�sA..�sB ..sN0

(
δsAsB+1−1e

+η + δsAsB−1+1e
−η) (i∂η)N−1

]
〈1〉z

where we defined δs1...sN0 := δs10 ...δ
sN
0 . Making use of lemma 1, equation (V.70), one can straightforwardly

generalise this result to a monomial in left-invariant vector fields:

〈Ls1 ...LsN 〉z = (−1)N 〈Rs1 ...RsN 〉−z = (−1)2N 〈RsN ...Rs1〉z =

= 〈RsN ...Rs1〉z (V.91)

where in the second step we used the explicit expression (V.90) to find how a change in sign of z (or η)
influences the expectation value.

Monomials of Holonomy Operator

As is well known from recoupling theory, the product of Wigner matrices can be expressed as a linear combi-
nation of a single Wigner matrix [291]:

D
(j1)
ab (g)D

(j2)
cd (g) =

j1+j2∑
j=|j1−j2|

dj(−1)m−n
(
j1 j2 j
a c m

)(
j1 j2 j
b d n

)
D

(j)
−m−n(g) (V.92)

This property is extremely useful, since it allows to reduce the problem of computing 〈ĥa1b1 ...ĥanbn〉z to

computing 〈ĥ(j)
mn〉z (for the required values of j), by which we mean the operator whose action is to multiply

by D
(j)
mn(g).

From the explicit expression (V.68), we obtain (without normalisation)

〈ĥ(k)
ab 〉z =

∑
j,j′

djdj′e
−[j(j+1)+j′(j′+1)]t/2ei(zm−z̄m

′)

ˆ
dµH(g)D

(j′)
m′m′(g)D

(k)
ab (g)D(j)

mm(g) =

=
∑
j,j′

djdj′e
−[j(j+1)+j′(j′+1)]t/2eiξ(m−m

′)e−η(m+m′)

(
j k j′

m a −m′
)(

j k j′

m b −m′
)

=

= δabe
−iξaγka (V.93)

where in the second line we performed the integral, and in the third we used the observation that a = m′−m =
b to extract eiξ(m−m

′) = e−iξa from the sums and defined the quantity

γka :=
∑
j,j′

djdj′e
−t[j(j+1)+j′(j′+1)]/2e−η(m+m′)

(
k j j′

a m −m′
)2

(V.94)

If we interchange in γka the contracted indices j ↔ j′, m ↔ m′ everything is clearly invariant except for the
3j-symbol: (

k j j′

a m −m′
)
→
(
k j′ j
a m′ −m

)
=

(
k j j′

−a m −m′
)

(V.95)

As the index a appeared only in the 3j-symbol this leads to γka → γk−a, but since we only interchanged
contracted indices γka must stay invariant: we conclude that

γka = γk−a (V.96)

The various values of γka can now be computed with the Poisson Summation Formula. In paper [133] the
explicit computations are presented for k = 1/2 and k = 1 (which are sufficient for the Hamiltonian operator).
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The results are:

γ
1/2
1/2 = 〈1〉z

[
1 +

t

4η

(
3

4
η − tanh

(η
2

))
+O(t2)

]

γ1
0 = 〈1〉z

[
1 + t

2 sinh(η/2)

η sinh(η)
+O(t2)

]

γ1
1 = 〈1〉z

[
1− t

(
1

4
+

1

2η
tanh(η/2)

)
+O(t2)

]
(V.97)

Holonomies and right-invariant Vector Fields

In this section we present the strategy to compute expectation values of monomials involving both holonomies
and right-invariant vector fields. We consider a couple of explicit examples.
Let us start with the commutator of a holonomy with N right invariant vector fields. Using the algebra (V.21)
and dropping all terms of order O(1/tN−3) and lower (since the leading order is O(1/tN−1)), we find

〈ĥac[ĥ†cb, Rs1 ...RsN ]〉z = δac〈Rs1 ...RsN 〉z − 〈ĥabRs1 ...RsN ĥ†cb〉z =

= δab〈Rs1 ...RsN 〉z − 〈Rs1 ĥacRs2 ...RsN ĥ†cb〉z +D
′(1/2)
ad (τs1)〈ĥdcRs2 ...RsN ĥ†cb〉z =

= δab〈Rs1 ...RsN 〉z − 〈Rs1Rs2 ĥac...RsN ĥ†cb〉z +D
′(1/2)
ad (τs2)〈Rs1 ĥdcRs3 ...RsN ĥ†cb〉z+

+D
′(1/2)
ad (τs1)〈Rs2 ĥdcRs3 ...RsN ĥ†cb〉z −D′(1/2)

ae (τs1)D
′(1/2)
ed (τs2)〈ĥdcRs3 ...ĥ†cb〉z = ... =

=

N∑
A=1

D
′( 1

2 )

ab (τsA)〈Rs1 ...�R sA ...RsN 〉z−

−
N∑

A<B=1

D
′( 1

2 )
ac (τsA)D

′( 1
2 )

cb (τsB )〈Rs1 ...�R sA ...�R
sB ...RsN 〉z +O(1/tN−3) (V.98)

So, such term can be brought back to the expectation values of R’s only.
The other type of mixed term is of the form ĥabR

s1 ...RsN . From expression (V.68), we get (without normali-
sation)

〈ĥabRs1 ...RsN 〉z = e−iz̄b
∑
j,j′

djdj′e
−t[j(j+1)+j′(j′+1)]/2× (V.99)

×D′(j)mµN (τsN )...D′
(j)
µ2µ1

(τs1)

(
1
2 j j′

a µ1 −m′
)(

1
2 j j′

b m −m′
)
e−2ηm

where we again used (V.92) and performed the group integral. As we did previously for monomials in R’s, let

us consider the case s1 = ... = sN = 0 first. Using D′
(j)
mn(τ0) = −2imδmn, it is easy to see that

〈ĥabR0 . . . R0〉z = e−ηb(i∂η)Neηb〈ĥab〉z (V.100)

which has leading order O(1/tN ). Next, we have the possibility of a single index being nonzero, as well as a
pair. The order of these is next-to-leading with respect to (V.100). Indeed, using [R0, Rs] = 2isRs for C ≤ N ,
we get

〈ĥab
C︷ ︸︸ ︷

R0...R0 Rs

N−1−C︷ ︸︸ ︷
R0...R0〉z = 〈ĥab

C−1︷ ︸︸ ︷
R0...R0 Rs

N−C︷ ︸︸ ︷
R0...R0〉z + 2i〈ĥab

C−1︷ ︸︸ ︷
R0...R0 Rs

N−1−C︷ ︸︸ ︷
R0...R0〉z =

= 〈ĥabRs
N−1︷ ︸︸ ︷

R0...R0〉z +O(1/tN−2) =

= e−ηb(i∂η)N−1eηb〈ĥabRs〉z +O(1/tN−2) (V.101)

and

〈ĥabR0...R0RsR0...R0Rs
′
R0...R0〉z = (i∂η)N−2〈ĥabRsRs

′〉z +O(1/tN−2) (V.102)
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We thus reduced the problem to the evaluation of ĥabR
s and ĥabR

sRs
′
. Again, these can be computed by

usefully combining the cyclicity of lemma 3 with the algebra:

〈ĥabRs〉z = 〈Rsĥab〉z − 〈[Rs, ĥab]〉z = eiz̄s〈Lsĥab〉z −D′(1/2)
ac (τs)〈ĥcb〉z =

= eiz̄s
(
〈ĥabLs〉z + 〈[Ls, ĥab]〉z

)
−D′(1/2)

ac (τs)〈ĥcb〉z =

= eiz̄s
(
e−izs〈ĥabRs〉z +D

′(1/2)
cb (τs)〈ĥac〉z

)
−D′(1/2)

ac (τs)〈ĥcb〉z =

= e2ηs〈ĥabRs〉z + eiz̄s/2
(
eiz̄s/2D

′(1/2)
cb (τs)〈ĥac〉z − e−iz̄s/2D′(1/2)

ac (τs)〈ĥcb〉z
)

(V.103)

leading to

〈ĥabRs〉z =
seizs/2

2 sinh(η)

(
e−iz̄s/2D′(1/2)

ac (τs)〈ĥcb〉z − eiz̄s/2〈ĥac〉zD′(1/2)
cb (τs)

)
(V.104)

A similar computation gives

〈ĥabRsRs
′〉z = −i eηs

sinh(η)
〈ĥabR0〉z+

+
s

2 sinh(η)
eizs/2

(
e−izs/2D′(1/2)

ac (τs)〈ĥcbRs
′〉z − eizs/2〈ĥacRs

′〉zD′(1/2)
cb (τs)

)
(V.105)

Now, since (V.101) involves only N − 1 derivatives of η, we can only get an O(1/tN−1) contribution if all

derivatives hit eη
2/t in the normalisation appearing in 〈ĥab〉z = δabe

−iξa〈1〉z (which is correct at leading
order).
Using the same argument for (V.102), and putting the results together with the s1 = ... = sN = 0 case, we
finally obtain

〈ĥabRs1 . . . Rsn〉z =
[
δs1...sN0 δace

−ηb(i∂η)Neηb −

− sinh(η/2)

sinh(η)

N∑
A=1

δs1...�sA...sN0 (δsA+1 + δsA−1)esAη/2D
′( 1

2 )
ac (τsA)(i∂η)N−1 −

− i δac
sinh(η)

N∑
A<B=1

δs1...�sA...�sB ...sN0 (δsAsB+1−1 + δsAsB−1+1)esAη(i∂η)N−1

]
〈ĥcb〉z (V.106)

V.C.4 Expectation Values of the Volume Operator

The tools developed in the previous section shall now be exploited. We compute the expectation value of the
volume following closely the computations from [133].

Thanks to (V.52), the expectation value of the Ashtekar-Lewandowski volume coincides with the expec-
tation value of the (k = 1)-Giesel-Thiemann volume operator (V.53) up to next-to-leading order in t. But to
evaluate that, we only need the expectation values of Q̂Nv for N = 1, 2, 4 and 6. Although these are operators
on many edges, the expectation value reduces to the product of expectation values on each edge, so the only
quantity we need is the expectation value of a string of N right-invariant vector fields. This was derived in
(V.90), and restoring the dependence on n ∈ SU(2), it reads

〈ψe,H(z), R
k1 ..RkNψe,H(z)〉 =

(
2ηi

t

)N
D

(1)
−k1−s1(n)..D

(1)
−kN−sN (n) (δs1...sN0 + (V.107)

+
t

2η
[δs1...sN0

(
N(N + 1)

2η
−N coth(η)

)
− 1

sinh(η)

N∑
A<B=1

δs1..�sA..�sB ...sN0 (δsAsB+1−1 + δsAsB−1+1)esAη])

In 〈Q̂Nv 〉, one has a products of six such expectation values. The combinatorics is encoded in εkik′ik′′i R
ki(e1)Rk

′
i(e2)Rk

′′
i (e3),

which motivates us to consider the object

ε
(n)
sis′is

′′
i

:= εkik′ik′′i D
(1)
−ki−si(n1)D

(1)
−k′i−s′i

(n2)D
(1)
−k′i−s′i

(n3) (V.108)

Since ni are fixed SU(2) elements, the components of this tensor can be computed explicitly using (V.66),
and one fins in particular

ε
(n)
00s = δs0 (V.109)
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This is enough for our purposes: indeed, we are interested only in corrections linear in t, which means that

five of the six strings in the product must be comprised only of R’s with zero index. ε
(n)
00s then forces the third

index to be zero as well, so one obtains

〈(R0)N 〉z = δs1...sN0

(
2ηi

t

)N [
1 +

t

2η

(
N(N + 1)

2η
−N coth(η)

)]
(V.110)

that is, only the terms proportional to δs1..sN0 will contribute.
Now, the diffeomorphism-invariant quantity ε(ea, eb, ec) := sgn(det(a, b, c)) = sgn(abc)εabc with a, b, c ∈
{1, 2, 3} tells us that (calling RIa := RI(ea))

〈Ψ(c,p), Q̂
N
v Ψ(c,p)〉 = 〈Ψ(c,p), i

N
(
6εIJK(RI1 +RI−1)(RJ2 +RJ−2)(RK3 +RK−3)

)N
Ψ(c,p)〉 =

= (6i)N
3∏
i=1

(
N∑
n=0

(
N

n

)
〈(R0

i )
n〉z〈(R0

−i)
N−n〉z

)
=

= (6i)N

(
N∑
n=0

(
N

n

)
〈(R0)n〉z〈(R0)N−n〉z

)3

=

= (6i)N

(
N∑
n=0

(
N

n

)(
2ηi

t

)N [
1 +

t

2η

(
n(n+ 1)

2η
− n coth(η)

)]
×

×
[
1 +

t

2η

(
(N − n)(N − n+ 1)

2η
− (N − n) coth(η)

)])3

=

= (6i)N
(

2ηi

t

)3N [
2N +

t

2η2
(N2 + 3N)2N−2 − t

2η
N2N coth(η)

]3

(V.111)

where we used

N∑
n=0

(
N

n

)
= 2N ,

N∑
n=0

(
N

n

)
n = 2N−1N,

N∑
n=0

(
N

n

)
n2 = (N +N2)2N−2 (V.112)

Thus, we get

〈Ψ(c,p), Q̂
N
v Ψ(c,p)〉

〈Ψ(c,p), Q̂vΨ(c,p)〉N
= 1 +

3t

8η2
N(N − 1) (V.113)

with which one can now compute the expectation value of the Giesel-Thiemann volume operator. For k = 1,
it reads

V̂ GT1,v =
(β~κ)

3
2

25
√

3

〈Ψ(c,p), Q̂vΨ(c,p)〉1/2
128

× (V.114)

×
[

77 · 1+ 77
Q̂2
v

〈Ψ(c,p), Q̂vΨ(c,p)〉2
− 33

Q̂4
v

〈Ψ(c,p), Q̂vΨ(c,p)〉4
+ 7

Q̂6
v

〈Ψ(c,p), Q̂vΨ(c,p)〉6

]
so one finds (summing over all N 3 vertices in the lattice)

〈Ψ(c,p), V̂ (σ)Ψ(c,p)〉 =
(β~κ)

3
2

25
√

3
N 3
√

48

(
2η

t

)3/2 [
1 +

3t

4η2

(
7

8
− η coth(η)

)
+O(t2)

]
(V.115)

Let us discuss this result (V.115): the state lives on an abstract graph, at which point ξ and η are some labels
of the state. However, if we embed the graph in a manifold, these labels can be interpreted as the expectation
values of holonomies and fluxes of the lattice (with µ being the coordinate length of a link). Specifically,
they describe a (discrete) homogeneous and isotropic classical geometry, i.e. a flat Robertson-Walker metric

(on a compactified torus). In particular, η = 2µ2p
`2β by (V.67). Consequently, the number N of all edges of a

connected path along one direction is the fiducial torus length R over the spacing µ: N = R/µ. Hence, upon
identifying the semi-classicality parameter t = ~κ/`2, we find that at leading order the expectation value of
the volume of the whole spatial slice reduces to (leaving η implicit in the next-to-leading order to ease the
notation)

〈Ψ(c,p), V̂ (σ)Ψ(c,p)〉 = R3p3/2

[
1 + ~

3κ

4`2

(
7

8η2
− 1

η
coth(η)

)
+O(~2)

]
(V.116)
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Recalling that p ≥ 0 is the dimensionless number that appears in the phase space point (p, c) and R has
the dimension [cm], we see that the leading order of (V.116) is exactly the classical result and it is independent
of the value of ~ (as expected for the classical order) and of the fiducial lattice spacing µ.
The next-to-leading order correction, on the contrary, has an explicit dependence on µ (since η ∝ µ2). It is
interesting to observe that in the limit µ→ 0 the correction appears to diverges. However, one is not allowed
to draw this conclusion: indeed, for this statement one would have to interchange the limits of t, µ, which
is not always allowed. Especially in this case, we approximated the Ashtekar-Lewandowski volume with the
Giesel-Thiemann volume, which was derived for t << µ. If this was not the case, it is not to be expected that

we can use the replacement from [94]. Indeed, its authors pointed out that the expectation value of

√
Q̂v

on the coherent states will always stay bounded. Iterating the Cauchy-Schwarz inequality from (II.12) and
summing a geometric series: (n ∈ N)

〈ψ,Q2−n

v ψ〉 = ||Q̂
1

2n+1
v ψ|| ≤ ||Q̂

1
2
v ψ||

1
2 ||Q̂2−n

v ψ|| 12 ≤ ... ≤ ||Q̂
1
2
v ψ||1−2−n = 〈ψ, Q̂vψ〉1−2−n (V.117)

which we find to be finite even for µ→ 0 in (V.111).

However, the corrections at linear order in t for finite values of the parameter µ do have an impact. And it
is not clear whether the predictions of these expectation values are in agreement with those of some vectors
in a cylindrically consistent Hilbert space, which is just the projection of the continuum theory to resolution
ε = µ. Hence, it might be useful to apply the cylindrically consistent renormalisation procedure introduced in
chapter III Renormalisation by which we hope to obtain the cylindrically consistent Hilbert space, as well as
the consistent dynamics on it.
Moreover, it must be mentioned that for general operators these lattice effects will not only be restricted to
quantum corrections but might very well have also impact on the classical level. This will present itself in the
next subsection, where we shall turn our attention to the Hamiltonian operator and develop an algorithm by
which it can be analysed.

V.C.5 An Algorithm for computing Coherent State Expectation Values

We shall now turn our attention to the Hamiltonian operator (and other more general operators). Specifically,
we will use the tools presented in the section before to compute the “Cosmological Coherent States Expec-
tation Values” (CCSEV) of the Hamiltonian. In LQC it has been shown that, if one regards this expectation
value as the effective Hamiltonian on the (c, p)-phase space, the corresponding effective dynamics agrees with
the quantum evolution. Conjecturing that the same might be true for LQG, it is important to evaluate this
expectation value in the full theory and compare it with the one obtained in LQC.

The general procedure to obtain an involved expectation value of some operator rests on the following
algorithm:

1. Given an operator P which is a polynomial in ĥ, Ê and Q̂ (possibly involving commutators) on multiple
edges ev,i of the lattice (starting at vertex v along direction i). First we create a list Lcl of the monomials
of P . We search for commutators in P and replace them according to the holonomy-flux algebra (V.21).

2. We will permute the order of the operators for each P ∈ Lcl such that we arrive at the form ĥ...ĥR...RQ̂...Q̂.
For this, we successively replace the order of two elements in P ∈ Lcl by adding their commutator into
Lqu. We start this procedure with each Êk, e.g. for string X = X(h,Q)

..Êk(ev,i)X...→ XÊ(ev,i) ∈ Lcl ∧ [Êk(ev,i), X] ∈ Lqu (V.118)

After all Ê appear on the right, we explicitly make a distinction between i being positive, i+, or being
negative, i−. We can replace these respectively: (see Lemma V.C.3)

Êk(ev,i+)→ ERk(v, i+), Êk(ev,i−)→ Ee−izkRk(v + ei− ,−i−) (V.119)

where E = −i~κβ/4.
After this has been done for all Ê we will bring all Q̂ to right, by adding once again each commutator
into Lqu similar to (V.118).
As for the strings in Lqu they can be commuted by treating them abelian, as each commutator of them
would lead to corrections of order t2.
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3. For each P ′ ∈ Lcl, Lqu, we create its own new list l, whose generic element l(v,m) (initially equal to
1) can be thought of as a link: one per each combination of v ∈ Z3

N and m ∈ {1, 2, 3}. Moreover, we
replace

ĥab(ev,i)→ Dab(v, i), ĥ†ab(ev,i)→ (−)b−aD−b−a(v + ei,−i) (V.120)

We read P ′ from right to left and every time we encounter R,D we multiply it on the left of element
l(v,m). As this point we have:

P ′ =: c...
∏
v∈Z3

∏
m=1..3

l(v,m)Q
Nv
v (V.121)

where the c... are coefficients whose indices are contracted with the various operators in l(v,m).

4. As each l(v,m) = Da1b1(g)...Danbn(g)Rk1 ...Rkn′ has an ordering, where n′ many R appear on the right,

we define its association l̃(v,m):

l̃(v,m) :=

(
2ηi

t

)n′
〈Da1b1 ...Danbn〉zδ

k1...kn′
0 (V.122)

Afterwards, we replace in both l(v,m) and l̃(v,m) each appearance of Dab by the following:

Dab(g)→ D
(1/2)
aa′ (nm)Da′b′(g)D

(1/2)
b′b (n†m) (V.123)

where D
(1/2)
aa′ is the Wigner-D-function of the SU(2) element nm. Since j = 1/2 is the defining repre-

sentation, they equal (V.66).
Finally we collect all links together, for each element P ′ ∈ Lq:

P ′ =
∏
v∈Z3

∏
m=1,2,3

2Nv
(

2ηi

t

)Nv
(6i)Nv/3ENv l̃(v,m) =: P0 (V.124)

and for each element P ′ ∈ Lcl:

P ′ = P0

(
1 +

∑
v∈Z3

∑
m=1,2,3

1

l̃(v,m)

(〈l(v,m)〉z − l̃(v,m) + (1− δNv,0δNv+em,0[...]l̃(v,m))

)
(V.125)

[...] = (
t

22η
(Nv +Nv+em)∂η +

t

24η2
((Nv +Nv+em)2 − (Nv +Nv+em))− 1

2
(Nv +Nv+em))

where we use explicitly the formulas from the previous section for 〈l(v,m)〉, i.e. (V.90),(V.106) and those
for higher polynomials in D which are still left to be computed.

5. At the end, all elements P ∈ Lcl, Lqu have to be contracted with their pre-factors, divided by the
normalisation of each link and summed together.

This algorithm can be used to determine, e.g. the expectation value of the scalar constraint. We will only
write down the classical contribution of it, which has been computed for the first time in [132]:

〈Ĉε[1]〉 =
6V0

κ

√
p

(
sin(µc)2

µ2
− 1 + β2

β2

sin(2µc)2

4µ2

)
+O(t) (V.126)

This agrees with the classical expression once we choose the label µ = ε. This could now be considered as an
effective Hamiltonian, leading to a resolution of the initial singularity by a Big Bounce as discussed in figure
IV.1. However, we want to go even one step further and compare this with other proposals of Big Bounces in
the next section.

V.D Loop Quantisation of Symmetry Reduced Models

To stay as close as possible to the model considered above, we will continue to work on the toroidal and com-
pact manifold σ = [0, 1)3, whose coordinate volume shall be denoted by V0. We want to emphasise however,
that LQC in general is not restricted to this choice, see [284–286].
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V.D.1 Classical Symmetries and Regularisation

The philosophy advocated in LQC is the following : From studying the area operator in full LQG, it transpires
that it has a discrete spectrum, with smallest non-zero eigenvalue ∆, called the area gap. Now, for constructing
the Hamiltonian one considers regularisations which involve the curvature of the connection F Iab, which is the
holonomy of a loop, in other words the boundary of a small surface. It is argued that for its corresponding
operator the limit of the loop to zero cannot be taken. The viewpoint that this is not accidental, but a remnant
of the intrinsic quantum nature of geometry, leads to the idea that one should not regularise the holonomy
adapted to a graph. Instead, it is claimed that there exists an underlying structure, due to which F Iab is always
to be regularised in such a way that it attaches a loop, which is the boundary of a surface with area ∆.
If we assume such an underlying structure, it motivates to approximate the classical Hamiltonian in terms of
the minimal area loops.

However, this approximation is of course not unambiguous, and one has to carefully detect, which of the
many possible quantum predictions due regularisations involving the finite lattice spacing

µ̄2|p| = ∆ := (2
√

3πβ)`2Pl (V.127)

are the correct one. Indeed, this specific choice has become known in the literature as the µ̄-scheme or im-
proved dynamics. It can motivated in the following way: Let η be a fiducial metric whose axes of coordinates
are along the edges of a cubic lattice. Assuming the lattice is tightly embedded into σ = [0, 1)3 and each edge
carries the function which is the eigenvector to the minimal area eigenvalue ∆. Then the physical area of a
slice through σ along two axes of the coordinates can be measured in two different ways, which thus should
be equal: N2∆ = |p| = a2. On the other hand, the coordinate length ot the torus with respect to the fiducial
metric is 1 = Nµ̄ with µ̄ being the edge length in terms of the fiducial metric. Solving both for N yields
(V.127).
It is worth mentioning, that the motivation for the µ̄-choice originated from the fact that the fiducial length
scale of the mentioned loops is not computed by an arbitrary kinematic metric of the co-moving coordinates
but rather by a physical metric, knowing about the scale factor.

A simplification undergone in LQC is that for flat the Robertson-Walker metric (and only here) we find
(see (IV.227))

C|cos = − 1

β2
CE |cos = − 6

β2κ

√
pc2 (V.128)

This inspired people to only consider the discretisation of CE and to promote a term proportional to it to the
full scalar constraint operator, which hence can only be valid on the cosmological sector. Indeed, this classical
identity works only in the continuum as a discretisation of the general constraint lead us to a natural alternative
regularisation (IV.239) where Cε is manifestly not proportional to CεE . In the following, we will hence compare
how these regularisations compare against each other by adapting in both cases the fundamental ∆ area gap
as discretisation parameter.

While the first case has been excessively studied in [286], the second case was newly treated in [134]. First,
we will change the variables on the kinematical level:

b := cµ̄, V := p3/2, V = αv =: 2πβ
√

∆G~|v| (V.129)

Note that if larger values of p are considered, due to (V.127), the better the approximation c ≈ sin(b)/µ̄
becomes.
Moreover, it implies for the Poisson bracket:

{p, c} =
κβ

6V0
⇒ {V, b} =

√
∆
κβ

4V0
(V.130)

⇒ {v, b} =
κ

V08πG~
(V.131)

where V0 is the coordinate volume of the compact torus, we were considering. In the following we will set
V0 = 1.
As we discussed above, we will now pick the finite discretisation ε = µ̄ and regularise each loop �ε in CεE to
be the boundary of a surface with area ∆. The holonomy along an edge ei in direction i and of length ε reads
in the classical Robertson-Walker spacetime:

h(ei)|cos = exp(sgn(i)cετ|i|) (V.132)
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and the classical evaluation of the Euclidian part of the scalar constraint has already been carried out in
(IV.236):

CεE |cos(v) =
−4

κ2βTv
ε(i, j, k)tr

(
h(�εij − h(�ε)ji)h(ek){h(ek)†, Vε}

)
=

=
−4

κ2βTv
ε(i, j, k)2sgb(ij) sin(µ̄c)2εIJKtr(τKh(ek){h(ek)†, Vε}) =

= sin(b)

[ −8

κ2βTv
23tr(τKh(eK){h(eK)†, Vε})

]
sin(b) (V.133)

We contract this now with N(v) over all vertices v associated to regions of size ε−3. If we would solve the
Poisson brackets via symplectic reduction this yielded in total

CεE [N ]|cos =
6N

κµ̄2
V 1/2 sin(b)2 (V.134)

And doing the same for the full C, i.e. first regulating via ε and then evaluating it on cosmology at ε = µ̄
resulted in (IV.239)

Cε |cos [N ] =
6N

κµ̄2
V 1/3

(
sin(b)2 − 1 + β2

4β2
sin(2b)2

)
(V.135)

which we find to be manifestly different from CεE |cos. Thus, we see that if we first regularise and then eva-
luate on the cosmological level, the starting point of LQC (V.128) is not obtained. This could mean that the
philosophy of LQC includes first reducing to cosmology and then regularising. I.e., too consider (C|cos)

ε and
afterwards regularise which means sending b 7→ sin(b) +O(

√
∆).

V.D.2 Dirac Quantisation in LQC

We will only give a brief overview of how the kinematical Hilbert space is defined. For further details, we refer
to [82–84].

It became customary in LQC to work with the so-called “inverse volume corrections”. By this is meant
that instead of promoting (V.134) straightforwardly to an operator, we keep the regularised version of (V.133).
Following this strategy, we will promote this to the scalar constraint operator, as well as its pendant for Cε|cos.
We promote the volume to a multiplication operator on HLQC := L2(RBohr, dµBohr(v)) of square integrable
functions on the Bohr compactification of the real line [286, 287] and introduce a shift operator:

V̂ ψ(v) = V ψ(v) =: α|v|ψ(v), N̂ψ(v) = ψ(v + 1), ψ ∈ HLQC (V.136)

By the usual argument on position space, where its canonical conjugated variable becomes a derivative, we
find:

eikb̂/2ψ(v) = ek
∂
∂vψ(v) = ψ(v + k) (V.137)

which allows us to straightforwardly construct the following operator:

sin(b̂)ψ(v) :=
1

2i
(N̂ − N̂−1)ψ(v) (V.138)

and similar for cos(b̂). Now using (IV.141), we can build the SU(2)-valued operator for the symmetry reduced
holonomy:

h(ek)(b̂) := cos(b̂/2)12 + 2 sin(b̂/2)τk (V.139)

This enables us to evaluate the “inverse volume corrections”, for which we find after a short computation:

h(ek)(b̂)[h(e−1
k )(b̂), V̂ ]ψ(v) = −α

[
(
|v + 1|+ |v − 1|

2
− |v|)12 + i(|v + 1| − |v − 1|)τk

]
ψ(v) (V.140)

With all of the tools at hand, we can finally promote (V.133) in the symmetric ordering it was presented there,
to an operator on the Hilbert space of LQC.
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After several steps one finds

ĈεE |cos [N ]ψ(v) :=
3α2N

2κ2β~∆3/2

[
f(v + 2)N̂4 − (f(v + 2) + f(v − 2)) + f(v − 2)N̂−4

]
ψ(v) (V.141)

and for the full scalar constraint

Ĉε|cos[N ]ψ(v) = ĈεE [N ]− 33α6(β2 + 1)N

25~5β7κ6∆7/2
(G(v + 4)N̂8 −G0(v) +G(v − 4)N̂−8)ψ(v) (V.142)

with

f(v) = −|v|B(v), B(v) = (|v + 1| − |v − 1|)) , G(v) = |v|B(v)g0(v + 2)g0(v − 2), (V.143)

g0(v) = (|v + 3| − |v − 1|)f(v + 1)− (|v + 1| − |v − 3|)f(v − 1), (V.144)

G0(v) = |v + 4|B(V + 4)g0(v + 2)2 + |v − 4|B(v − 4)g0(v − 2)2 (V.145)

This finishes the Dirac procedure of Quantisation for the symmetry reduced model.

V.D.3 Comparison of Different Regularisations in LQC

We will quickly discuss how the two different operators of the previous subsection can be compared to each
other in the context of a coherent state evaluation.

If one considers a Klein-Gordon equation as dust, one could either set Θ̂LQC := − 1
β2 (V̂ ĈεE |cos[N ] +

ĈεE |cos[N ]V̂ )/2 to obtain the LQC description, or Θ̂′ := (V̂ Ĉε |cos [N ] + Ĉε |cos [N ]V̂ )/2 to obtain the newly
regularised theory. The dynamics is governed by a Schrödinger evolution equation

−i∂φΨ(v, φ) =

√
|Θ̂LQC |Ψ(v, φ) (V.146)

(and respectively for Θ̂′). This will be numerically evolved, starting with the states

Ψ(v, φ) =

ˆ ∞
0

dk exp(−(k − k0)2/4σ2)ek,0(v)ei
√

12πGkφ (V.147)

which are peaked on k0 ∈ R in Fourier space with spread σ. ek,0(v) is the asymptotic eigenstate of the
dynamics as derived in [286] and [134] respectively. The dynamics it produces is presented in figure V.2.

Abbildung V.2: The evolution of a wave packet, explicitly a function over the volume, close to the singularity in different
cosmological models of QG. We present |Ψ(v, φ)|, the absolute value of the function over v at different instances of the
clock field φ differently coloured depending on its numerical value. At late times φ ≈ 0 (on the left) and φ ≈ 1 (on the
right) the function has been chosen to be a coherent state (V.147) and has been evolved backwards through the “initial
singularity”. In the picture on the left (taken from [286]) one sees the standard LQC symmetric Bounce, which is obtained
from (V.141), and on the right (taken from [134]) one sees the evolution induced by (V.142). The latter one features an
asymmetric Bounce with a past universe dominated by a cosmological constant, which at clock time φ = 0 branches to a
symmetric copy of itself.

Let us discuss the choice Θ̂′ in detail: backwards, i.e. from bigger to lower φ values, we observe:
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1. An expanding phase following classical GR

2. Departure from classical dynamics

3. A Bounce resolving the classical singularity

4. Transition to a contracting deSitter phase

5. Transition through φ = 0 (future conformal infinity), where the universe (region) volume reaches infinity

6. Expanding deSitter phase

7. Another Bounce at −0.35G−1/2

8. Contraction phase of the dynamics approaching the classical solution in the far past

In fact, the effective Hamiltonian (V.135) coincides with the leading order of the expectation value with stri-
king agreement. It is also interesting to note that there exists a deSitter epoch, i.e. an epoch dominated by
a huge cosmological constant. On the one hand, this epoch is future/past complete and hence the sectors
for φ > 0 and φ < 0 constitute of separate universes from the classical spacetime perspective. On the other
hand, the trajectories of any observable as functions of φ have a unique analytic extension through that point.
Therefore, from the quantum theory perspective, it might be natural to consider both sections as being parts
of the same universe. Independently of which point of view one likes to take, it transpires that it is vastly
different than the dynamics in standard LQC where the Bounce is found to be symmetric.

Both models however, differ only in their corrections of order µ̄ (notably in the effective dynamics, the
Lorentzian part is ∼ sin(b)2 for standard LQC and ∼ sin(2b)2 for the LQG inspired regularisation). At the
moment where the Bounce occurs, b and µ̄ reach their maximal value, and the influence from these corrections
becomes dominant. This causes the Bounce, but at the same time implies that its details are highly influenced
by the choice of the aforementioned corrections (that is also what our analysis has shown). Hence, some
additional arguments are needed telling us which regularisation to favour. To the best of our knowledge a very
promising candidate could be a cylindrically consistent regularisation of the Hamiltonian. This motivates our
hope that understanding the details of the resolution of the initial singularity can be achieved by applying the
framework of direct Hamiltonian renormalisation developed in the third chapter to Loop Quantum Gravity.
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Kapitel VI

Conclusion and Outlook

In this chapter, we briefly summarise what the achievements of this thesis have been. Finally, we will comment
on directions which further research on this subject could explore.

We have closely investigated the procedure by which a mathematically well-defined quantum field theory
can be built. As it transpired, it was pivotal in this construction to choose the correct representation of the
algebra of observables out of infinitely many. By studying the projections of the theory at a given resolution,
it can be achieved to map the problem of defining a quantum theory of infinitely many degrees of freedom to
one of finitely many of degrees of freedom.
However, the observables of the field theory, e.g. the Hamiltonian as the generator of time translation, will not
be of a form where they can be written exactly as a function of observables at any finite resolution. Instead,
one has to approximate them accordingly and use this approximation to define the corresponding quantum
operators. However, the deviation from the continuum theory due to these approximations is now manifestly
integrated in the quantum theory and hence affecting the physical predictions of all quantities. Since there are
many approximations, we had to find a way to deal with these quantisation ambiguities.

In a concrete example, we could find out that these ambiguities indeed change the physical predictions
quite drastically: General Relativity presents a field theory describing the geometry of our universe. Its predic-
tions were hugely successful, e.g. isotropic models simulating the behaviour of our universe on large scales like
the Robertson-Walker metric. Its quantum theory, however, remains unknown as of today. Yet, its necessity is
obvious because of the breakdown of General Relativity, for example in the Big Bang singularity predicted by
the Robertson-Walker metric.
We studied a concrete discretisation of General Relativity and found that at a fixed resolution an approximation
to the dynamics would on the classical level resolve the Big Bang singularity by replacing it with a Big Bounce,
implying that prior to ours there was an old contracting universe. This Big Bounce remains in the theory during
the process of canonical quantisation where, at some point, an ad-hoc regularisation of the scalar constraint
had to be chosen. Further analysis showed that, in models of canonical Quantum Gravity, the choice of the
discretisation has non-trivial impact on the details of the singularity resolution. Due to the mathematical pre-
cise language of the earlier works in LQG, we are able to investigate and confirm this again by computing the
expectation value of the scalar constraint with respect to coherent states. It leads us to believe that one has to
be careful with the details of the resolution of the Big Bang until these quantisation ambiguities have been fixed.

In this thesis, we have now been extending already existing methods to resolve the ambiguities, i.e. we
introduced a Hamiltonian version of the renormalisation group. As renormalisation was originally created
in the path integral approach towards quantisation, the first task was to compare the latter with canonical
quantisation. We generalised ideas from the literature to present not only a way to obtain a Hamiltonian for-
malism from a history space measure (which is known as Osterwalder-Schrader reconstruction), but moreover
demonstrated that for each Hamiltonian theory obtained in this way, we can construct a corresponding history
space measure.
Due to this bijection, we were now able to develop a renormalisation procedure which remains completely in
the Hamiltonian framework and produces the same fixed point theory as the path integral renormalisation.
However, this Hamiltonian scheme came with a caveat: namely, it forced us to compute the renormalisation
of the path integral measure simultaneously. As it was originally our goal to circumvent the latter construc-
tion, we altered the path-integral induced Hamiltonian renormalisation minimally. The direct Hamiltonian
renormalisation was designed to stay as close as possible to the scheme dictated by the path-integral indu-
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ced Hamiltonian renormalisation flow and yield as fixed point still a cylindrically consistent theory. These are
quantum theories which are defined on coarse resolution but still capture the correct physical predictions of
an underlying continuum quantum theory.
Subsequently, we examined this procedure in the case of the “massive free scalar field”. This being a simple
non-interacting theory, we had full control over the continuum quantum field theory whose cylindrical projecti-
ons we wanted to obtain by renormalisation. We managed to find the exact analytic structure of the fixed point
in arbitrary dimensions. It is important to note that the fixed point of the path-integral induced Hamiltonian
renormalisation and the fixed point of the direct Hamiltonian renormalisation agree in their continuum limit
with each other and with the correct continuum quantum theory. This test case shows that at least in some
models the direct Hamiltonian renormalisation yields correct results. As it is considerably easier to handle than
its counterpart, we should perform more test on it, in order to use it eventually for the renormalisation of
Quantum Gravity.
Moreover, in the aforementioned example of the massive free scalar field, we were able to investigate further
properties of the direct Hamiltonian renormalisation. As its main goal is to eliminate the ambiguities that arise
due to the discretisation, we checked whether different initial discretisations lead to the same fixed point and
found the answer to be affirmative. A naive discretisation which approximates the Laplacian by only taking next
neighbour differences on the lattice into account was flowing into the same fixed point as a more sophisticated
discretisation that considered multiple next-to-next neighbour interactions. This indicates that we maybe do
not need to worry which regularisation to pick when trying to find a cylindrically consistent theory of more
involved systems.
Moreover, the choice of the coarse-graining map, which defined the flow, has not been unique and indeed diffe-
rent proposals are sufficient for cylindrical consistency. But the fixed point turned out to be even more robust,
as it does not matter in the renormalisation prescription what the details of the blockspin-transformation look
like. In other words, the renormalisation flow yielded a unique result, independent of the geometric details of
the cuboid that is coarse grained. We take from this the hope that any cylindrically consistent map can be
used for determining the fixed points of more involved theories such as General Relativity.
The fixed point theory we obtain includes a discretised version of the Laplace operator. Due to the fact that
it captures the most important properties of its continuum pendant, it is customary to call it perfect Lapla-
cian. We computed its exact analytic form and found that its matrix elements show an exponential drop-off
behaviour the further two points on the lattice are separated from each other. Hence, it presents a form of
locality which gets increasingly better the finer the resolution of the system becomes.
Finally, we were able to demonstrate for the free field how symmetries of the continuum are restored on the
lattice, most notably rotational invariance. While being a property which cannot be exactly implemented on
a cubic lattice, we found that one can nonetheless translate it into a non-trivial condition for the fixed point
theory. By numerical investigation, it transpired that the free massive scalar field satisfies this condition at fine
resolution to a high precision. This indicates that rotational invariance will be recovered in the continuum.

Due to all these considerations we could assure ourselves that the direct Hamiltonian renormalisation is
a promising candidate for fixing the quantisation ambiguities which arise during the regularisation process of
field theories. For General Relativity, upon introducing suitable reference frames the scalar constraint becomes
a physical Hamiltonian and the system fulfils the necessary subset of the Osterwalder-Schrader axioms (i.e.
without Euclidean invariance) needed for the methods discussed in this thesis. In this sense the procedure can
be applied to canonical Quantum Gravity and one can hope to obtain a cylindrically consistent formulation.
This leads us to the considerations for further research.

.

Further tests of the direct Hamiltonian renormalisation: As the above tests have yielded posi-
tive results, we can in principle use the framework directly for Quantum Gravity. On the other hand, one might
want to be cautious and verify the Hamiltonian renormalisation flow for other simple systems where at least
partial knowledge of the continuum theory is at hand. A promising example for this is the lower dimensional
interacting P (φ)2 QFT [296].
Another example is a compactified scalar field φ→ sin(φε)/ε in the free field Lagrangian. This would present
a good test to see what happens once compact fields enter the picture which is unavoidable in the context of
gauge theories, to which GR in its Ashtekar formulation belongs.

Extension of the Hamiltonian renormalisation to (non-abelian) gauge theories: When quan-
tising Yang-Mills theories, one is naturally lead to the framework of holonomies, which are defined along curves.
This is in contrast to the scalar fields smeared over 3-dimensional regions and hence implies that the definition
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of the injection maps IM→2M , which give rise to cylindrical consistency, must be considerably different.
The first to check would be free Maxwell QFT, which is a gauge theory over the abelian group U(1) and,
moreover, still a free theory. Hence, we again have control over the continuum QFT and can compare the
results of the renormalisation procedure. The next step would then be the extension to non-abelian gauge
groups, most notably SU(2) and SU(3), which describe weak and strong interaction respectively. This is also
a crucial prerequisite for studying GR as the Ashtekar connection is su(2)-valued.

Renormalisation of the U(1)3 approximation of Loop Quantum Gravity: Although LQG is
the quantisation of an SU(2) gauge theory, one could classically rewrite it using abelian holonomies. Albeit
spoiling the nice transformation properties of the holonomies under gauge transformations, this motivates to
consider an alternative quantisation using the group U(1)3. As shown in [93], this yielded indeed the correct
semi-classical limit of GR on a lattice.
Hence, a first step towards studying the properties of the renormalisation flow in LQG would be to use this
approximation, as the renormalisation of an abelian theory is considerably easier than of a non-abelian one.
Although it will not be the final answer, one could hope to gain useful insights for the general case when
studying the fixed points obtained in this case.

Renormalisation of full Loop Quantum Gravity: Once the aforementioned steps have been com-
pleted, one will hopefully have found a good candidate for the initial discretisation in LQG. Then, we can use it
to start the direct Hamiltonian renormalisation. It will be interesting to investigate how the volume transforms
under a renormalisation step and whether the Ashtekar-Lewandowski vacuum might not be annihilated by all
elements in the sequence (Ĉε)(n). Should this happen, it might suggest that some of the regularity properties
of the uniqueness theorem [68] had been too strong to be demanded.
Finally, we must determine the cylindrically consistent fixed point family (H∗M , Ĉ∗M ,Ω∗M ) of Loop Quantum
Gravity in order to make physical predictions.

Stable coherent states in Loop Quantum Gravity: The toolbox to obtain an effective Hamilto-
nian from the initial discretised quantum gravity theory used coherent states peaked on a Robertson-Walker
spacetime. However, it is not clear whether these states will remain sharply peaked under time evolution. If
the quantum effects blow up, the terminus “effective Hamiltonian” would have been assigned prematurely.
The solution must be to find coherent states which remain stable under time evolution and use them in order
to compute the effective Hamiltonian. A possible strategy to tackle this problem might be to use the concept
of Fourier Integral Operators [297–299].

Cosmological Coherent State Expectation Values in cylindrically consistent LQG: After
having achieved the fixed point theory of canonical QG, it must be put to the test and used to extract physics
from it. As the toolbox of the cosmological coherent state expectation values has proven successful for the
initial discretisation, it will hopefully translate to coherent states in the cylindrically consistent Hilbert space
and be applicable for the Hamiltonian obtained by deparametrisation from the fixed point scalar constraint.
Ideally, this happens after one has constructed the stable coherent states of cosmology.

Determine the cosmological subsector of LQG: While being a good starting point, the cosmolo-
gical coherent states are by no means perfect candidates for an LQG solution for continuum cosmology. One
could look at them as cylindrical projections of a yet unknown cosmology solution in the continuum Hilbert
space. Ultimately, one would like to find these states. First proposals in this direction have already been under-
gone in [300, 301], by introducing an “isotropy constraint” operator. The proposal in the literature, however,
lacks the same known regularisation ambiguities and must be suitably altered if its cylindrical projections fail
to annihilate the cosmological coherent states.

Extending the toolbox of the Cosmological Coherent States Expectation Values: There
are still crucial building blocks missing in order to compute the expectation values of every operator defined
on the kinematical Hilbert space of LQG. As the renormalised Hamiltonian might be of a type which is not
covered yet, this toolbox must be completed in time. It will then also include the possibility to compute the
expectation values of higher time derivatives of geometric operators.
As these tasks tend to become more and more involved with the increasingly hard combinatorial structure of
the operators, a natural extension would be to build a numerical code which is able to execute the calculations
that are part of the algorithm presented in this thesis.

Coherent States for different symmetric spacetimes: In this thesis, we only considered the flat
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Robertson-Walker metric, but it is (at least conceptually) straightforwardly extendible to other semi-classical
models. Among the most interesting ones are probably Robertson-Walker spacetimes with non-vanishing cur-
vature, as well as spherically symmetric situations, e.g. black holes.
Moreover, one should finally include the Standard Model and study the Yang-Mills degrees of freedom on
semi-classical spacetimes which could be viewed as an improvement of [302].
Next to different spacetimes, we might also consider different choices of the graph for each spacetime, e.g.
cubical or spherical lattices. For a cylindrically consistent projection, the details will look different in each case,
albeit the physical predictions should not change. However, as of today this is unconfirmed.

Implementing a cylindrically consistent version of Loop Quantum Cosmology: We had
discussed, in the main text, that even LQC is prone to the quantisation ambiguities that occur due to the
choice of a regularisation. Moreover, each ambiguity can be related to some choice in full canonical QG. Hence,
once the choices leading to the renormalised fixed point in full LQG are known, we can use them to construct
a consistent Hamiltonian for Quantum Cosmology, hopefully presenting a reliable quantum resolution of the
initial singularity.
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Notations and conventions

(M, gµν) Riemannian spacetime consisting of a manifold and a metric tensor, (−+ ++)
C(M) space of all continous functions from M to C
S(M) Schwartz fns. of rapid decrease, i.e. going to zero faster than any polynomial
(σ, qab) spatial hypersurface, embedded into M and equipped with a spatial metric
Diff(M) group of all smooth diffeomorphisms on M
Lv Lie derivative with respect to vector field va

∇ metric-compatible Levi-Civita connection with Christoffel symbols Γρµν
Rσµνρ, R Riemann curvature tensor and Ricci scalar
κ Gravitational coupling constant (16πGc−4)
N,Na lapse and shift function
Kab extrinsic curvature
C, Ca scalar or Hamiltonian constraint and (spatial) diffeomorphism constraint
AIa, E

a
I SU(2) connection and electric field, a = 1, 2, 3, I = 1, 2, 3

β Immirzi parameter
V (R) Volume of region R
F Iab curvature as a function of the connection A
GJ SU(2)-Gauss constraint
τI basis of su(2), (I = 1, 2, 3) with τI := −iσI/2 and σI being the Pauli matrices
αΛ
s Hamiltonian flow of certain gauge transformation smeared with Λ
h(e) holonomy along a path e of an associated SU(2) connection
Ef (S) electric flux through a surface S contracted with fJ .
gk, a(t) Robertson-Walker metric with curvature k and with scale factor a(t)
(c, p) symplectic reduction of (AIa, E

J
b ) for an isotropic spacetime

H Hilbert space endowed with a sesquilinear, positive definite scalar product 〈., .〉
L(H)/B(H) space of all/bounded operators on H
µG left- and right-invariant Haar measure of a compact Lie group G
(π(j),H(j)) irreducible representation of a unital algebra A
(Π(j),H(j)) irreducible representation of a Lie group G
A, ω ∗-Lie-algebra of observables with the positive functional ω, called state
(π,H,Ω) GNS triple with cyclic vector Ω (in 1:1 correspondence with state ω)
Wn Wightman n-point functions, defined in Minkowski space {(ti, x̄i)}i=1...n

Sn Schwinger n-point functions, defined in Euclidian space as Wn |ti→iβi
En Euclidian n-point functions, obtained from the generating functional S[F ]

Ĥ, φ̂ Hamiltonian- and canonical field-operators on H
U(t) operator of finite time translation t, generated by Ĥ with U(t) = exp(−itĤ)

R, T spatial and temporal infrared (IR) cut-offs
ε, δ spatial and temporal ultraviolet (UV) cut-offs
µM family of discretised path integral measures at resolution M

(HM , ĤM ,ΩM ) family of discretised OS data
IM , EM Injection and evaluation map of resolution M (with suppressed label R)
IM→2M cylindrically consistent coarse graining map
LT,R space of L2 functions on the compactified manifold [0, T )× [0, R)D

LN,M space l2(ZN ,ZDM ) with scalar product 〈., .〉N,M

ωAL unique, diffeomorphism invariant Ashtekar-Isham Lewandowski state

V̂AL(B), Âr(S) Ashtekar-Lewandowski volume operator and area operator
ψte,hC

e
Complexifier coherent state peaked at hCe ∈ SL(2,C) with spread t

Ψ(c,p) cosmological coherent state on graph γ of a (c, p)-Robertson-Walker metric
Rτ , Lτ Right- and left-invariant vector field in direction τ

D
(j)
mn(g) Wigner-D-matrix function of group element g ∈ SU(2)

µ̄ =
√

∆/|p| dynamical regularisation parameter of LQC, with area gap ∆ = (2
√

3πβ)`2Pl
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[18] K. Schwarzschild. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen
Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften18

[19] J. Droste. On the field of a single centre in Einsteins theory of gravitation and the motion of a particle in that
field. Proceedings Royal Academy Amsterdam19 (1917)

[20] A. Penzias, R. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s The Astrophysical Journal
142 (1965)

[21] Smoot Group The Cosmic Microwave Background Radiation Lawrence Berkeley Lab (1996)
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[192] J. von Neumann. Die Eindeutigkeit der Schrödingerschen Operatoren. Mathematische Annalen, Springer 104
(1931)

[193] J. von Neumann. Ueber einen Satz von Herrn M.H. Stone. Annals of Mathematics 33 (1932)

[194] M.H. Stone Linear Transformations in Hilbert Space III Operational Methods and Group Theory. Proceedings of
the National Academy of Sciences of the United States of America 16 (1930)

[195] M.H. Stone. On one-parameter unitary groups in Hilbert space. Annals of Mathematics 33 (1932)

[196] T. Körner. A Companion to Analysis: A Second First and First Second Course in Analysis. American Math. Soc.
(2004)

[197] W. Thirring. A Course in Mathematical Physics 3. Springer-Verlag (1981)

[198] O. Bratteli, D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics 1 & 2. Springer-Verlag
(2003-2004)

[199] A. Prasad. An easy proof. of the Stone-von Neumann-Mackey theorem. Expositiones Mathematicae 29 (2011)

[200] R. Feynmann. The principle of Least Action in Quantum Mechanics. World Scientific (1942)

[201] A. Ashtekar, J. Lewandowksi, D. Marolf, J. Mourao, T. Thiemann. A manifestly Gauge-invariant approach to
Quantum Theories of Gauge Fields. [arXiv:hep-th/9408108] (1994)

[202] A. Ashtekar, J. Lewandowksi, D. Marolf, J. Mourao, T. Thiemann. Quantization of diffeomorphism invariant
theories of connections with local degrees of freedom. J.Math.Phys 36 (1995)

[203] A. Ashtekar, J. Lewandowksi, D. Marolf, J. Mourao, T. Thiemann. Closed formula for Wilson loops for SU(N)
Quantum Yang-Mills Theory in two dimensions. J.Math.Phys 38 (1997)

[204] A. Ashtekar, J. Lewandowksi, D. Marolf, J. Mourao, T. Thiemann. SU(N) Quantum Yang-Mills theory in two
dimensions: A complete solution. J.Math.Phys. 38 (1997)

[205] A. Ashtekar, D. Marolf, J. Mourao, T. Thiemann. Constructing Hamiltonian quantum theories from path integrals
in a diffeomorphism invariant context. Class. Quant. Grav. 17 (2000)

[206] J. Goldstein. Semigroups of Linear Operators and Applications. Oxford University Press (1985)

[207] W. Rudin. Real and Complex analysis. McGraw-Hill Book Company (1987)

[208] J. Conway. A Course in Functional Analysis. Graduate Texts in Mathematics. Springer-Verlag (1990)

[209] J. Campbell. Proc Lond Math Soc 28 (1897)

[210] H. Baker. Proc. Lond. Math Soc 34 (1902)

[211] F. Hausdorff. Die symbolische Exponentialformel in der Gruppentheorie. Ahad. Wiss. Leipzig. 58 (1906)

[212] C. King. The U(1) Higgs Model - I. The Continuum Limit. Commun. Math. Phys. 102 649-677 (1986)

[213] C. King. The U(1) Higgs Model - II. The Infinite Volume Limit. Commun. Math. Phys. 103 323-349 (1986)

176



[214] S. Bochner. Vorlesungen über Fourier Integrale. Akad. Verl.-Ges. (1948)

[215] U. Krause, T. Nesemann. Differenzengleichungen und diskrete dynamische Systeme. De Gruyter GmBH (2012)

[216] James Sandefur. Discrete Dynamical Systems : Theory and Applications. Claredon Press (1990)

[217] I.H. Lambert, Observationes variae in Mathesin puram, Acta Helvetica 3 (1758). Reprinted in his Opera Mathe-
matica, volume 1, 16-51

[218] I.H. Lambert, Obervationes analytiques, Nouveaux Mémoires de l’Académie royale des Sciences et Belles-
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