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Abstract

Matter theories are not predictive if they couple to geometry with unknown dynamics:
it is not possible to anticipate how matter behaves in the future without knowing how
the geometry evolves. This thesis studies the completion of such matter theories to
predictive theories of matter and gravity. Einstein solved this problem for Maxwell’s
electrodynamics by providing the Einstein equations. Indeed, a recurring theme of the
work presented here is that general relativity is recovered as far as metric theories are
concerned.

We start with the definition of two axioms that guide the completion of matter theories
to predictive theories: gravity must be generally covariant and causally compatibility
with the matter theory. Both axioms are brought into precise mathematical form. The
foundation for the mathematical formulation is Lagrangian field theory on the jet bundle,
where the geometry may be given by fields of arbitrary tensorial nature or, by extension
of the approach, even nontensorial fields. In particular, the geometry need not be metric.

From the mathematical definitions follow partial differential equations and algebraic
equations whose solutions yield candidate gravitational Lagrangians. This finding reduces
the task of completing a matter theory with a gravitational theory to a computational
problem, which we state in the condensed form of an algorithm. Since the algorithm
provides a construction procedure for gravitational theories on the basis of general
covariance, it shall bear the name covariant constructive gravity.

Applying the construction algorithm to Maxwell’s electrodynamics reproduces general
relativity. Theories beyond Maxwell and Einstein turn out harder to construct, such
that we need to reduce the complexity of the problem in order to arrive at some
physical implications. One possibility is to make a perturbation ansatz, which transforms
the problem into simple linear algebra. Using this ansatz, we derive the second-order
gravitational field equations for a birefringent generalisation of Maxwell’s electrodynamics
and consider the binary star as a prototypical example. Interesting phenomenology
is obtained as result: a modification of Kepler’s third law, the emission of massive
gravitational waves, and a modified inspiral curve. These predictions demonstrate the
predictive power of covariant constructive gravity—given a generalisation of Maxwell’s
electrodynamics, it is possible to derive gravitational implications.

The second approach is symmetry reduction, which is shown to yield the Friedmann
equations if applied to a metric theory with cosmological symmetry. We sketch the
application to nonmetric theories, but leave the implementation open for future research.



Kurzzusammenfassung

Materietheorien, denen Geometrie mit unbekannter Dynamik zugrunde liegt, sind nicht
pradiktiv. Sie kénnen das Verhalten von Materie in der Zukunft nicht vorhersagen,
denn die Entwicklung der Geometrie ist nicht bekannt. In dieser Dissertation soll die
Vervollstandigung von solchen Materietheorien zu préadiktiven Theorien von Materie und
Gravitation untersucht werden. Einstein 10ste dieses Problem fiir die Maxwellsche Elek-
trodynamik, indem er die Einsteinschen Feldgleichungen postulierte. Auch im Folgenden
wird die Allgemeine Relativitatstheorie erneut hergeleitet werden, wann immer metrische
Theorien besprochen werden.

Zu Beginn werden die beiden Axiome présentiert, welche die Vervollstandigung von
Materietheorien leiten: Die Gravitationstheorie muss allgemein kovariant sein und eine
zur Materietheorie kompatible Kausalitat aufweisen. Mittels Lagrange-Feldtheorie auf
Jetbiindeln gelingt eine prézise mathematische Definition beider Axiome, wobei die
Geometrie durch beliebige tensorielle Felder gegeben sein kann — sogar eine Erweiterung
zu nicht-tensoriellen Feldern ist moglich. Insbesondere muss die Geometrie nicht zwingend
metrisch sein.

Die mathematische Formulierung der Axiome impliziert sowohl partielle Differentialglei-
chungen als auch algebraische Gleichungen, deren Lésungen potentielle Lagrange-Dichten
der Gravitation sind. Damit reduziert sich das Problem der Vervollsténdigung von Mate-
rietheorien mittels einer geeigneten Gravitationstheorie auf ein reines Rechenproblem,
welches in Form eines Algorithmus angegeben werden kann. Dieser konstruktive Zugang
zu modifizierten Gravitationstheorien, der auf dem kovarianten Lagrange-Formalismus
beruht, wird Kovariante Konstruktive Gravitation genannt.

Angewandt auf die Maxwellsche Elektrodynamik, reproduziert der Algorithmus die Allge-
meine Relativitdtstheorie. Theorien jenseits von Maxwell und Einstein sind weniger trivial
zu konstruieren, weshalb Methoden zur Reduktion der Komplexitat erforderlich sind,
um iiberhaupt physikalische Schliisse ziehen zu konnen. Ein Stoérungsansatz reduziert
das Problem auf Lineare Algebra. Mittels dieses Ansatzes lasst sich die zweite Storungs-
ordnung der gravitativen Feldgleichungen fiir eine doppelbrechende Erweiterung der
Maxwellschen Elektrodynamik herleiten. In diesem Beispiel stellt ein Doppelsternsystem
interessante Phanomenologie zur Schau: ein modifiziertes drittes Keplersches Gesetz,
die Abstrahlung von massiven Gravitationswellen, sowie eine verdnderte Dynamik der
Orbitperiode aufgrund der Strahlungsverluste. Solche Ergebnisse verdeutlichen die Vor-
hersagekraft der Kovarianten Konstruktiven Gravitation — aus einer Verallgemeinerung
der Elektrodynamik folgen gravitative Phénomene.



Des Weiteren ist es moglich, mittels Symmetriereduktion eine Gravitationstheorie mit be-
grenzter Giltigkeit herzuleiten. Am Beispiel einer metrischen Theorie mit kosmologischer
Symmetrie werden die Friedmann-Gleichungen wiederentdeckt. Die Anwendung dieser
Vorgehensweise auf nichtmetrische Theorien wird nur skizziert, ihre Implementierung
bleibt ein offenes Forschungsgebiet.
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1 Introduction to the constructive
gravity programme

Space tells matter how to move

Matter tells space how to curve
— John Archibald Wheeler,
Gravitation (1973)

1.1 The role of gravity in physics

As the title suggests, this thesis is primarily concerned with gravity. In the ensemble
of physical theories, gravity plays a special role. It serves a different purpose than
the theories we will call matter theories. The latter are subject to direct observations:
photons—quanta of the electromagnetic field—hit the observers retina, allowing her to
make inferences about the source of the particles. Another example are charged fermions,
again quanta of a corresponding matter field, which induce signals in a semiconductor
detector. Specific signatures in the signals may be associated with certain events that
contributed to the production of the incident fermions, such that the statistics of these
observations is able to falsify hypotheses about the underlying mechanisms.

How does gravity fit into this picture? The revolution of a binary star about its centre
of mass, commonly known to be caused by gravity, is not observed directly. Neither
are its gravitational spin-up and eventual merger. Rather, the stars emit photons that
are picked up by the astronomer, who concludes details about the trajectories. When
the LIGO and Virgo Collaborations announced the first observation of gravitational
waves [8], the ground-breaking detection was earth-bound, but in a certain sense not
direct: it amounts to the analysis of interference patterns from photons that bounced
off of mirrors at the end of the detector arms. General relativity predicts that these
arms should expand and contract under the influence of incident gravitational waves.
Eventually, the signature in the interference pattern was found to match the predictions
for a binary black hole merger.

From this point of view, gravity merely sets the stage for the propagation of matter
fields. This is witnessed by the matter dynamics, for example Maxwell’s equations for
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General Relativity

sources provides
gravity background

Standard Model of Particle Physics

Figure 1.1: Interplay of the standard model theories and general relativity. Matter
content sources the gravitational field equations. The gravitational field, in
turn, provides the background on which matter fields propagate. Together,
this yields a highly accurate fundamental description of the universe.

the electromagnetic potential. These are derived from the action functional

SMaxwell [A] = /d4£23 V _ggacgbdFachd

which depends on the potential A via the field strength tensor F' = dA. Maxwell’s theory
of the electromagnetic field has been a huge success as it is the foundation of many
applications throughout science. The quantum field theories for the electromagnetic
field, together with similar gauge theories and the fermonic sector, form the standard
model of particle physics (SMPP), which is widely regarded as the most precisely tested
physical theoryﬂ Still, these matter theories presuppose knowledge of the spacetime
metric g which enters the action for the electromagnetic field above and contributes
to other theories of the SMPP in a similar way. Consequently, the SMPP alone lacks
predictivity: collecting initial data of all physical fields is not enough for the physicist in
order to determine the fields in the future, since the metric tensor has to be specified
externally.

One of the many great contributions by Einstein was the prescription of field equations
that govern the dynamics of the metric tensor. [11] This theory is called general relativity

For example, the magnetic moment of the electron has been measured as g/2 =
1.00115965218073(28). [9] Its value as proposed by quantum electrodynamics has been cal-
culated as g/2 = 1.001 159652 182 03(73). |10] Both the experimentally measured value and the
value calculated from quantum electrodynamics agree to more than 12 significant figures.
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and may be derived from the Einstein-Hilbert action functional

SEinstein-Hilbert [g] = /d4x\/ _gR

Einstein’s theory provides the missing link between matter and gravity, completing the
SMPP to the joint model of SMPP and general relativity sketched in Fig. [I.1] which
is now predictive. It has also been verified numerous times, both via astronomical
observations and in terrd?| experiments, albeit to a lesser degree of certaintyf’}

Of course, the division of physical theories into matter theories and gravity is only a
metaphysical notion. Both make testable predictions about the outcome of experiments;
both have been shown to accurately describe reality in a variety of circumstances. But
exactly in this metaphysical idea lies the mindset of constructive gravity, which seeks to
address the search for other, hopefully more complete pictures of matter and gravity.

1.2 Modified gravity from refined matter theories

Under certain assumptions, Einstein’s general relativity is the unique theory that com-
pletes the SMPP to a predictive theory of matter and gravity. |14} |15 [16] The only two
unknown parameters that need to be fixed by measurements are Newton’s gravitational
constant and the cosmological constant. This remarkable finding constrains the search
for modified theories of gravity: if the mentioned assumptions are taken for granted, the
standard model of particle physics can only be completed by general relativity. It is,
however, well established that the joint theory of the SMPP and Einstein gravity cannot
be universal, due to several inconsistencies.

One example are extreme circumstances, such as the beginning of the universe or the
presence of black holes, where the whole formalism breaks down. [17] This is one of the
justifications for the efforts of finding a quantum theory of gravity.

Even in more benign situations, the observations do not always coincide with the
predictions from the SMPP and general relativity. The observed rotation curves of
galaxies, for example, do not match the expectations calculated from the visible matter
distributions. Starting from a certain minimum distance from the galaxy centre, stars
rotate with higher velocities than expected. [18, |19, [20] This discrepancy generally
increases with the radius. All proposed solutionsP_-I that may cure this inconsistency have

2earthbound
30nly four significant figures of the gravitational constant are known. [12] Measurements with higher

precision yield conflicting results. [13]
4See e.g. [21,122].
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one thing in common—they modify or extend the currently accepted theories of matter
and gravity.

There are more observations that demonstrate the need for modifications. [21] However
such adjustments play out, they are constrained by the uniqueness of Einstein’s general
relativity in one of the following ways:

1. Additional or modified matter fields that make use of the same metric tensor g as
the existing matter theories will still couple to general relativity.

2. Additional or modified matter fields that couple to a nonmetric geometry—e.g.
two metric tensors or a tensor of higher rank—render general relativity as theory
for a single metric tensor meaningless. A completely new description of gravity is
needed, which may be subject to similar uniqueness theorems.

3. Modifications to general relativity itself are incompatible with the uniqueness
theorem. This means that either the assumptions from which uniqueness follows
must be dropped or that the matter theories have to be modified accordingly—if
at all possible.

All three approaches are pursued, as they should be for a systematic search of modified
theories. Constructive gravity, the subject of this thesis, is a framework for the structured
treatment of approach number two. In most regards, its assumptions are very conservative,
as it tries to deviate only ever so slightly from the established models. For example,
where standard general relativity is restricted to field equations of second derivative
order, constructive gravity keeps this restriction. This is not because other efforts are not
deemed worthwhile—they certainly are, but different approaches towards modified gravity
research should be explored ceteris paribus, only making one change at a time. The focus
of constructive gravity lies on novel matter theories coupling to nonmetric geometries and
the corresponding gravitational implications within the existing meta-theory of classical
physics. Most importantly, because the framework is kept so close to the standard
models, a similar uniqueness theorem can be derived for nonmetric geometries. It will
not be as strong as for the SMPP and general relativity, but nevertheless provide a useful
parameterisation of modified theories of gravity that fall into the second category.

As far as the framework is concerned, any matter theory that is formulated as classical
field theory is fair game. The relevance of constructive gravity, however, crucially depends
on the kind of matter theory that is proposed. A complete overhaul of physics is generally
not desired—the existing models work very well in certain sectors. Any new theory must
reproduce this phenomenology in order to be epistemically significant. For this reason,
constructive gravity is considered a tool that guides the derivation of modified gravity
from refined matter theories.
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gravity: S, gravity [G]

sources determines provides
gravity candidates background

matter theory: S, .iior[®, G)

falsifies
theories

observer

Figure 1.2: Rationale of constructive gravity. The matter theory S| e, Which couples
the matter field ¢ to some geometry (G, determines the structure of the
gravitational theory Sy, In general, this theory will not be unique but
parameterised by a set of constants or functions, which results in multiple
candidates. Via the interdependence of matter and geometry, each candidate

yields phenomenology that can be used by the observer for tests of the theory.

1.3 Canonical and covariant approaches to constructive
gravity

The rationale of constructive gravity is pictured in Fig. [1.2 A matter theory, prescribed
by the action S, i1 [¢, G) serves as input. The round bracket next to the geometry G
indicates that the action functional depends on G only locally, i.e. not via a derivative,
while the matter fields ¢ enter with derivatives, typically of first order.

After successful application of constructive gravity, the corresponding gravity action

Seravity |G that closes the matter theory to a predictive theory of matter and gravity

is obtained. Staying very close to the established formalism of the SMPP and general
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relativity, this action is assumed to be of second derivative order in the geometry G, with
derived field equations also of second derivative order. In general, the gravity action is
not unique, it depends on unknown parameters or functions.

This completed theory may now be used for the bread and butter business of theoretical
physics: making predictions about the outcome of measurements. Comparisons with
experimentally obtained data will restrict the parameter ranges. If the measurements
turn out to be incompatible for all choices of parameters, the theory is falsified.

The essence of constructive gravity is the derivation of the gravity action from the matter
action, i.e. the step

Smatter[¢7 G) = Sg [G]

Effectively, this amounts to a generalisation of the uniqueness theorems for general
relativity, which can be interpreted as derivations of Einstein gravity from Maxwell
electrodynamics (or, more generally, the SMPP).

ravity

Canonical constructive gravity (also called canonical gravitational closure) [23, 24} 25,
20| is the first approach that follows this pattern and is based on the work of Hojman,
Kuchar, and Teitelboim (HKT) [15]. HKT showed that the ADM formulationﬂ of general
relativity is the unique representation of the so-called hypersurface deformation algebraﬁ.
The canonical approach to constructive gravity considers the hypersurface deformation
algebra in a frame that corresponds to an observer subject to matter dynamics. Crucial
for the definition of observer frames is the principal polynomial of the matter field
equations, which captures the causality of the evolution of matter fields (see Sect. .
It then imposes this algebra onto the constraint algebra of the canonical formulation of
the unknown gravitational theory. This amounts to a system of functional differential
equations, which is subsequently transformed into an infinite system of linear partial
differential equations. These equations are called the construction equations or closure
equations. Any solution to this system is a candidate Lagrangian for gravity.

In line with the already known results, general relativity has been shown to be the
unique solution to the closure equations of canonical constructive gravity if the procedure
is applied to Maxwell’s electrodynamics as underlying matter theory. [25] However,
based on previous work concerning matter theories that couple to arbitrary tensorial
geometries [28 29], the framework has been developed to be applicable to a wide range
of matter theories. Two important examples of modified gravitational theories have
been derived in linearised form. The first is area metric gravity [4], which completes

5The ADM formulation [27] is a canonical (i.e. Hamiltonian) formulation of general relativity. Due
to the diffeomorphism invariance of general relativity, the canonical formulation is a constrained
Hamiltonian system.

6A hypersurface is an embedding of a three-dimensional manifold in the four-dimensional spacetime
manifold. Different embeddings are related via deformations. The actions of such deformations on
hypersurface functionals form an algebra, the hypersurface deformation algebra. See also |15].
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a birefringent generalisation of Maxwell’s electrodynamicsﬂ Although only valid for
weak gravitational fields, this theory based on a physically well motivated refinement
of Maxwell’s electrodynamics offers interesting phenomenology when studying quantum
electrodynamics [30], gravitational lensing [31], or gravitational waves [3]. Bimetric
gravity |32, |33], the completion of a theory with two Klein-Gordon fields coupling to two
different metric tensorﬂ, is a second example. Another interesting sector of solutions is
the cosmological sector, which has also been studied in the past. [34]

Covariant constructive gravityﬂ is a complementary approach. More in the tradition
of Lovelock’s proof [14} 35, 36] for the uniqueness of the Einstein-Hilbert Lagrangian,
it derives the gravitational theory that completes a given matter theory by imposing
two conditions directly on the spacetime formulation of gravity—hence the attribute
“covariant”. The two conditions will be called the azioms of covariant constructive gravity.
Informally, they may be formulated as:

1. The dynamical laws that govern the gravitational field are generally covariant, i.e.
are independent of the choice of a coordinate system.

2. The causality of the gravitational field equations is compatible with the causality
of the matter field equations. In particular, a consistent co-evolution of all physical
fields is guaranteed.

The motivation for these axioms is twofold. Firstly, they once again enforce the principle
that any modified theory of gravity should be close, formally, to general relativity—which
implements general covariance and has the same causality as the SMPP. This suggests
that also modified theories of gravity should be independent of any coordinate choice
and at least be compatible with the matter causality.

Secondly, the approach should complement the canonical framework. General covariance
in the spacetime formulation is the equivalent for the conditions placed on the constraint
algebra in the canonical formulation. As the second axiom, causal compatibility has
been chosen because canonical constructive gravity claims to achieve something similar:
the observer frame is constructed using the principal polynomial of the matter theory,
which is why the hypersurface deformation algebra expressed in this frame contains
terms related to matter causality. These terms carry over to the gravitational constraint
algebra via the canonical construction procedure. This is often interpreted as the
gravitational theory inheriting the causality of the matter theory. But there is little
reason to believe so—the fact that the gravitational constraint algebra shares these terms
with the hypersurface deformation algebra just means that both are expressed using the
same frame. Whether this frame bears any significance for the gravitational theory is

"See Sect.
80r other theories that somehow make use of two metric tensors, see Sect.
9First proposed in Ref. [1].
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an unrelated question. In Ref. [37], it has been found”| that the canonical constraint
algebra of any diffeomorphism invariant theory implements the hypersurface deformation
algebra, supporting the suspicion that causality may be unrelated. Even though matching
causalities are not enforced by the canonical approach, it is still a sensible requirement
for a theory of gravity that closes matter theories, so it is explicitly included as second
axiom.

1.4 Outline

This thesis is dedicated to the development of the covariant approach. It aims to provide a
complete picture of the current state of research, from the foundations to the construction
procedure to testable predictions for an exemplary theory. At the end, every part of
Fig. will have been addressed.

After this chapter has introduced the rationale of covariant constructive gravity, Chap.
will be concerned with the mathematical foundations. We will walk through Lagrangian
field theory in the jet bundle formulation, which allows a precise definition of the
first axiom as equivariance condition for the Lagrangian with respect to spacetime
diffeomorphisms. This condition is locally equivalent to a system of first-order, linear
partial differential equations, the equivariance equations. For the derivation, we will
make a detour to the global version of the Lagrangian variation problem, which comes
with the definition of the so-called Cartan form. The Cartan form allows a quite elegant
presentation of Noether’s first and second theorem—especially the second theorem will
prove to be useful later on. Afterwards, we introduce the notions necessary for a
formulation of the second axiom. Causal compatibility will be phrased as conditions on
certain geometric constructs that arise from the causality of the field equations.

In Chap.[3] we turn to the implementation of the axioms. While deriving the mathematical
formalism, we already laid out most of the implementation details, so it suffices to give a
short summary. This will be in the form of a construction algorithm. We then consider
three examples of matter theories and discuss how the construction algorithm could be
applied. The first example will be Maxwell’s electrodynamics, for which we recover general
relativity as the unique solution. The other two examples, a birefringent generalisation of
Maxwell’s electrodynamics and a bimetric Klein-Gordon theory, have no known generic
solution, but we can nevertheless derive some interesting results.

Chap. 4] explores the perturbative application of the construction algorithm. The idea
is that for weak gravitational fields it suffices to derive a truncated power series of the
gravitational Lagrangian. We will see that with this approach the equivariance equations
assume a particularly simple form, such that basic linear algebra suffices in order to derive

10As a preliminary result, for theories of first derivative order.
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a perturbative equivalent of the “full” gravitational theory. This perturbative treatment
of the equivariance equations is backed by strong results from the theory of partial
differential equations. Also the second axiom is approachable by perturbation theory,
such that we can close the chapter presenting a perturbative version of the construction
algorithm.

While perturbative covariant constructive gravity amounts almost entirely to solving
linear equations, its application in practice would still be quite laborious without help
of the computer—the systems we have to deal with are simply too complex and large.
In order to enable us to tackle the problem in a later chapter, we use Chap. |p| for the
introduction of computational methods that have been developed with perturbative
constructive gravity in mind. These are essentially two programmes written in the
functional programming language Haskell: one for the generation of the perturbation
ansatz and another one for the set-up and solution of the perturbative equivariance
equations.

In Chap. [6] we will finally put covariant constructive gravity to the test. Coming back to
the birefringent generalisation of Maxwell’s electrodynamics, we apply the perturbative
construction procedure—using the computational methods introduced before—and obtain
second-order gravitational field equations that close this novel matter theory for sufficiently
weak fields. A thorough analysis of the linearised (wiz. first-order) field equations already
reveals interesting properties such as the emergence of massive gravitational waves.
Afterwards, we will include the second-order terms and study the emission of gravitational
waves from a binary star in this modified theory of gravity—focusing on the gravitational
radiation emitted into the far zone, its effect on test matter, and the corresponding
radiation loss of the binary system itself.

Another option to circumvent the complexity of the “full” construction algorithm, next
to perturbation theory, is symmetry reduction. Chap. [7|shortly presents a way in which
symmetry reduction may be performed within the framework of covariant constructive
gravity. We will see that this procedure, when applied to metric theories with cosmological
symmetry, indeed reproduces the Friedmann equations. How this may be extended
to theories like birefringent electrodynamics is discussed, but the implementation is
considered far beyond of our scope.

We finish the thesis with a discussion of the findings and proposals for future research.



2 The axioms of covariant constructive
gravity

In this chapter, we will cast the two axioms of covariant constructive gravity in precise
mathematical language. The basis for our theory is Lagrangian field theory defined in
terms of jet bundles, whose basic notions we collect first. In particular, we will encounter
the Cartan form, which is central for the global, coordinate-independent treatment of the
Lagrangian variation problem. With this machinery at hand, we define the first axiom
as equivariance condition for the Lagrangian with respect to spacetime diffeomorphisms.
We then derive a few consequences that follow from this axiom: most importantly, a
system of partial differential equations for a local representative of the Lagrangian, but
also the existence of a stress-energy-momentum tensor. The former is fundamental for
an algorithmic approach towards implementing the axiom, the latter is very useful for
proving Noether’s theorems in this setting. At the end of this chapter, we show how the
relevant objects for a mathematical formulation of the second axiom are constructed.
Finally, we present the second axiom using the terminology established so far.

The two axioms of covariant constructive gravity have been motivated in Sect. Let
us recall the informal definitions as phrased in Ref. [1].

Axiom I (diffeomorphism invariance). “The dynamical laws that govern gravity are
invariant under spacetime diffeomorphisms.” (1|

Axiom II (causal compatibility). “Provided that spacetime is additionally inhabited by
matter fields, their dynamics is causally compatible with the gravitational dynamics.” [1]

For a more precise formulation of the axioms, which will enable us to derive their
consequences for gravitational theories coupled to novel matter, an introduction of the
basic concepts of Lagrangian field theory is in order.

10



2 The axioms of covariant constructive gravity

2.1 Lagrangian field theory

For the purpose of the present work, a Lagrangian field theory will be a geometric
formulation of certain conditions on sections o € I'(7w)—called fields—of some bundle
E -~ M. These conditions select the physical realisations of fields admissible by the
theory and constitute the dynamical laws. The bundle 7 shall be constructed from a
tensor bundle, i.e. be a sub-bundle of some tensor bundle 77 M. It is possible to extend
the framework to include other bundles, with the caveat that a lift of the action of the
diffeomorphism group on M to E may have to be specified manually. Although not
relevant for much of the development of the theory, the base manifolds to be considered
later for concrete examples will be spacetime manifolds of dimension 4.

Example 2.1.1. Two examples for Lagrangian field theories are

o Einstein gravity on the symmetric sub-bundle of T2 M of inverse metric tensonﬂ
with dynamical laws given by the Finstein equations, and

o Mazwell electrodynamics on the bundle T* M of potential one-forms with dynamical
laws given by the Maxwell equations.

Both theories are Lagrangian because they derive their dynamical laws in a certain
geometric manner. The mechanism will be explained in the following, but first, let us fix
some of the notation involved.

A bundle is denoted as E —s M. , where F is the total space, M is the base manifold, 7 is
the submersion. As a shorthand, it is common to write just 7—it is then understood that
total space and base manifold are domain and co-domain of 7, respectively. The dimension
of M is written as n, the dimension of a typical fibre F of m as m. Coordinate functions

on E are denoted by (z*,u“). Such coordinates extend to the kth jet bundle J*E ﬁ) M
A A A A

over 7 as (x%,u U UG s e U ) The literature on jet bundles mostly employs
multi-indices for higher-order jet bundles (see e.g. Ref. |38]), which is certainly the right
approach for studying the properties of jet bundles, but for practical calculations on the
second-order jet bundle performed below the intertwiner technique (see Def. will
be used. This technique is equally able to take care of ambiguities regarding symmetric
indices. Prolongations of sections o are denoted with j*(o), projections between jet
bundles of different orders with m; ;, (o). The latter are submersions in their own right
and thus also define bundle projections. Total derivatives are written as D,. Throughout,

the Einstein summation convention is used.

!The equivalent formulation as a theory for a metric tensor field takes place on the bundle 7% M.

11



2 The axioms of covariant constructive gravity

Definition 2.1.2 (Lagrangian [38]). Let M be a smooth manifold of dimension n and

E - M a smooth fibre bundle over M with typical fibre F. A Lagrangian & of order k
is an element
Z e o Tk (2.1)

In other words, £ is a horizontal n-form on the k-th-order jet bundle 7, of .

Assuming M to be orientable with volume form € A" M, a Lagrangian £ is equivalently
characterised by its Lagrangian density L € C*(Jx),

L = LmiQ. (2.2)

The claim of (2.2]) becomes apparent in local coordinates, where a horizontal n-form on

T}, appears as
/\gﬂ'k > % =L ut ud, . )dxt A A dam. (2.3)

From ([2.3]) and ([2.2]), it is also clear how the notion of a Lagrangian as a horizontal n-form
captures in a geometric way the notion used elsewhere as a bundle map J*E — A" M
(see |38, 139, 11]).

From now on, we will consider smooth, orientable base manifolds M and smooth bundles
over the base manifold. Depending on the context, the symbol €2 will denote either the
form on M or the pullback to various bundles over M.

Definition 2.1.3 (local action functional [38]). Given a Lagrangian £ € \" 7, and a
compact n-dimensional submanifold C' C M, the local action functional is defined as the
map

o> Slo] = / (o) & (2.4)
C

for all local sections o of m with support on C.

Lagrangian field theory now stipulates that sections o € I'(m) are physical if they are
extremals of the action functional. The well-known Fuler-Lagrange equations from the
calculus of variations provide a necessary condition in local coordinates which such
sections must satisfy.

Proposition 2.1.4 ([38]). Let L € C*°(J*T) be a Lagrangian density. Let C be a compact
submanifold of M and o be a local section of ™ such that the local action functional S|o]
is defined. If o is an extremal of S, it satisfies the Euler-Lagrange equations

(ija)* (i(_l)ll)il “'Dilaf{%> =0. (2-5)

=0 s

12



2 The axioms of covariant constructive gravity

Proof. See [38]. O

The intrinsic equivalent to the Euler-Lagrange equations in local coordinates introduces
a new object, the Cartan form, which plays a central role in the geometrisation of
Lagrangian field theory.

Proposition 2.1.5 ([38]). Given a Lagrangian £ = L) € /\g Ty, there exists an n-form
QL € /\g Tok—1Jk—1 ) /\T Tor_1, Such that, globally, the variation of the Lagrangian is
given by

and extremals of £ are extremals of ©; in the sense that
Wﬁkq,k(jka)*g = (7 1o)*er. (2.7)
Such a form ©p, is called a Cartan form.

Proof. See [38]. O

This definition generalises the local derivation of (2.5)): the variation JL is obtained by
lifting d.Z to 7y, and cancelling nonhorizontal terms (over E) by adding a derivative,
which corresponds to repeated integrations by parts.

A possibld?] coordinate expression for 6 is [38]

i L )
Op =L+ Z Z (M—L> pep, M (i0,2), (28)
Ds

s=0 1=0 Jt1---iP1

where the forms @/J;‘lmp = du;‘lmp — u;‘lmp ,dr? span the contact system of m; (see
[38]).

Straight-forward application of (2.6)) to (2.8]) yields the well-known coordinate expres-
sion
- ! oL A
0L= Y (-1)'D; ~D; —— | u* A Q (2.9)
1=0 ' 'ouf
1777
for the Fuler-Lagrange form, reconciling the intrinsic formulation using the Cartan
form with the explicitly coordinate—dependentlﬂ formulation using the Euler-Lagrange
equations.

In later sections, we will restrict our attention to Lagrangians of second derivative order.
As it turns out, the Cartan form for such a theory is unique.

2Generally, © , is not uniquely defined. [38]
3Which is not to say ill-defined.

13
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Proposition 2.1.6 ([38]). The Cartan form is unique for second-order Lagrangians.

Proof. See [38]. O

2.2 Axiom I: diffeomorphism invariance

In the language of jet bundles, the first axiom can be formalised as equivariance con-
dition under a certain group action on the Lagrangian. The group in question is the
diffeomorphism group Diff(M), acting on M by function application. By virtue of the
pushforward-pullback construction, sub-bundles of tensor bundles carry a canonical action
of Diff(M) as bundle automorphisms, denoted as ¢ € Aut(E) for every ¢ € Diff(M).
We call this the [lift of the diffeomorphism . This action, in turn, lifts naturally to the
jet bundles over E.

Definition 2.2.1 (prolongation of morphisms [38]). Let E 5 M and H—5 N be two
bundles. The kth-order jet bundle lift of a bundle morphism (F, f) from wg to wy is the

unique bundle morphism (5%(F), f) from JFny to J¥my such that for any section ¢ of
Ty the identity 5 (F) o j¥¢o f1 =8 (Fogo f~1) holds.

A proof for the existence and uniqueness of this construction can be found in Ref. [3§].
With the notion of the lift of a bundle automorphism at hand, we now give the first
axiom a precise meaning.

Definition 2.2.2 (diffeomorphism invariant theory). A Lagrangian field theory is called
diffeomorphism invariant if its Lagrangian £ € /\g ™, 48 invariant with respect to the

lifted action of Diff(M) on JEE, i.e. if for all p € Diff(M)

o)l = <. (2.10)

This definition applies not only to tensor bundles and the diffeomorphism group—all we
need is a well-defined action as bundle automorphism. For tensor bundles, however, there
is always the canonical action built from the pushforward action on tangent vectors

o T,M — T, M (2.11)
and the pullback action on cotangent vectors]

*\—1 . * *
(")t TpM — T3 M. (2.12)

4The action is inverted in order to still define a covariant functor, in the sense that it maps from the
cotangent space at p to the cotangent space at (p).

14



2 The axioms of covariant constructive gravity

Using a coordinate chart (U, z) containing p and (V,y) containing ¢(p), the bundle
automorphisms act on coordinate-induced component functions of vector fields as

(0.0, wiew) = 2L D) X (a(o) 213)
and on component functions of covector fields ag|
(Vo) = 2 et (2.14)
¢(p)

We wish to encode (2.10)) as local conditions on the Lagrangian density. To this end,
consider a coordinate representation . = L, d"z.

Proposition 2.2.3. Let £ = L, d"x be a coordinate representation of a diffeomorphism
invariant Lagrangian, induced by a coordinate chart (U,x) on M. It follows from the
invariance condition that L, is diffeomorphism equivariant, i.e. it holds for all
@ € Diff(M) that, over the intersection of U and ¢(U),

Lig) 0 (0p) = |dpe | L. (2.15)

|d()| denotes the determinant of the Jacobian of ¢ in terms of the coordinate chart

(U,x).

Proof. The result follows from the coordinate expression (2.14)) for the pullback of one
forms, which extends to horizontal forms on the jet bundle. ]

Covariant constructive gravity derives its calculational power from the observation that
the infinitesimal version of is equivalent to a system of linear partial differential
equations (PDEs) for the Lagrangian density L. For the derivation of this theorem
and the remainder of the chapter, we will work on the second jet bundle, as we are
ultimately interested in investigating field theories of second derivative order. We will
also drop the chart label from coordinate-dependent quantities. In order to lighten the
notation, partial derivatives of functions on J2M are denoted L ,, for derivatives with
respect to coordinates on M and L.4, L ,*, L " for derivatives with respect to fibre
coordinates.

5As for any group homomorphism, we have (¢*)~! = (¢~ 1)*.
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2 The axioms of covariant constructive gravity

Since the bundles in question are (sub-bundles of) tensor bundles T,* M, it is possible
to restrict to coordinates which are linear on the fibres. The intertwiner techniqud|
relates such coordinates to coordinates on 1" M itself by virtue of two special bundle
morphisms.

Definition 2.2.4 (intertwiners). Let E s M be a sub-bundle of T M. A pair of vector
bundle morphisms (1,J),
I} E—T"M,

(2.16)
J: T"M — E,

which cover id,; and satisfy J o I = idg is called a pair of intertwiners for .

It follows from the property J o I = idy that J is a surjection and I is an injection.
Expressed in adapted coordinates, it is clear how the coordinate representations of I and
J relate fibre coordinates to each other,

A1l 71Oy A
Up b, = tb,.b,4 W
Ab;...b ay...a
ut = Ja, "a," '“bll.“b:ﬁ (2.17)

B __ 701.-.0y, Bb,...b,
514 - IbllbnA ’ al"l'anL *
Concrete implementations of I and J will be introduced in Chap. 3| Intertwiners for the
symmetric sub-bundle of T M are used to deduplicate second-order derivative indices by
defining N
ut = J ufj,
(2.18)
uzg %Rt A

Proceeding to derive the infinitesimal version of axiom I, we first need to specify what
is meant by infinitesimal. As the symmetry group in question is the diffeomorphism
group on the base manifold, the infinitesimal equivalent is the corresponding Lie algebra
[(T'M) of sections of the tangent bundle over M. The Lie bracket is given by the Lie
bracket of vector fields. In a given coordinate chart, an element £ € I'(T'M) defines an
infinitesimal diffeomorphism as

S (2.19)

From (2.13) and (2.14)), we know how an infinitesimal diffeomorphism (2.19)) acts on
vectors and covectors. Dropping chart labels because everything takes place in the chart
(U, x), the actions are given by

X' b X 4 X9 (2.20)

SFirst described for a similar setting in Ref. [40], later introduced in the context of covariant constructive
gravity [1].
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and '

On higher-ranked tensor bundles, the action generalises to
T4 T4+ CAgm TEE, (2.22)

with Cij”m = 5%53” for the special case of vectors and C’ijnm = —767, for covectors.
From this, we can read off the Lie algebra morphism which maps vector fields on M
to vector fields on E and is induced by the group homomorphism from Diff(M) to
Aut(E):

INTM) —TI(TE)

2.23
£ € i=Ema,, + CABnmung;;aA. (2:23)

The constant coefficients C’AB”m will be called Gotay-Marsden coefficients after the
authors of Ref. [39], where this formalism is developed in a more general setting—but
only for the first jet bundle. In the language of this reference, a tensor field theory is of
differential index 1.

As it turns out, the map £ = £ indeed defines a homomorphism between Lie algebras.

Proposition 2.2.5. The map (2.23)) is a Lie algebra homomorphism, i.e. it holds for all
&Y el (TM) that
€ ¥p] =& Yp (2.24)

Proof. The map & — &y is the differential of the lift ¢ — ¢ of diffeomorphisms
¢ € Diff(M) to vector bundle automorphisms ¢y € Aut(E). This lift is a Lie group
homomorphism, i.e. (¢p o))y = ¢p oy Eq. follows from the functoriality of the
Lie algebra. Note that Diff(M) is not a finite-dimensional Lie group, so the results from
the theory of finite-dimensional Lie groups are not applicable as they are. See e.g. [41].

]

A useful corollary of the homomorphism property of the Lie algebra lift £ — £, which
will play a role in Sect. is the following fact about Gotay-Marsden coefficients.

Corollary 2.2.6. The Gotay-Marsden coefficients C’AB"m corresponding to a tensor
field theory satisfy the relation

CAB”mCBqu - CAqucBCnm =c40 o — A 54, (2.25)
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Proof. Expanding ([2.24) and making use of the coordinate expression ([2.23)) yields the
identity

n A n A mn n m
[CAB m Bqu -C quCBC m (C Cqm(sp - CAC pégq,)] é,n¢?q =Y, (226)
from which the result follows, as £ and @ can be chosen arbitrarily. O

If required for calculations, Gotay-Marsden coefficients are easily expressed using inter-
twiners.

Proposition 2.2.7. Let E s M be a sub-bundle of the tensor bundle T M with a
pair (I1,J) of intertwiners. If the tensors in E are purely contravariant, i.e. s = 0, the
Gotay-Marsden coefficients are

CAgn =1 Iyt ga (2.27)

ay..a,_m:

If the tensors in E are purely covariant, i.e. r = 0, the Gotay-Marsden coefficients are

C,br =—s-18 Jor e, (2.28)

ay...a,_1m

Note that in the latter case of a purely covariant tensor bundle, a fibre coordinate function
is denoted by u , with a lower index.

The Gotay-Marsden coefficients are the defining objects for the PDE version of the
invariance of L under infinitesimal diffeomorphisms. This constitutes the central result
concerning the first axiom and shall be proved in the following.

Theorem 2.2.8. Let L be the local Lagrangian density of a second derivative order
Lagrangian ¥ = Ld*x € /\g . If L is diffeomorphism invariant, i.e. satisfies the
invariance condition of the first axiom of covariant constructive gravity, its local
representation L satisfies a system of first-order linear partial differential equations given

by

0=1L,, (2.29a)
0= L;ACABnmUB + L:Ap [CAB”m5§ - 5;;6%16;}] qu

+ Lt [CAgn, 0] — 20807 L) | uP ; + Loy, (2.29b)
0=L Mt ul + L, [Ch" 200 — 640764, WP, (2.29¢)
0=1LJcA," JriyB, (2.29d)
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Proof. Given a vector field X on E, the lift to the total space J2E of the second jet
bundle is uniquely defined. [38] Applying this lift to the vector field &5 corresponding to
€ € I'(T'M) yields the vector field

§2p =E8"0,
+0An BgmaA_i_Cerpgma p_uAgmap
+CAn uBema T — 2] [T udema T (2.30)

CAn Bmap+20AnJPQB€maI JPQAgmaf
CABnmJ}?tugﬁpqa I
Like before, the map £ + &2 constitutes a Lie algebra morphism from I'(T'M) to
[(TJ?E).

Assuming that (2.15)) holds, we obtain the infinitesimal version by acting on L with
€ 2 for the left-hand side and approximating |dp| ™! as 1 — &'y, for the right-hand side.
Equating both sides yields

0=L,¢m
+{L.,C" uP + L P [CA5", 68 — 6568,60] u
L, [CAg™, 6] — 265071 ] u®B, + Loy, }gm (2.31)

+{L  PCA" uP + L [CApn, 27T — 65 JF 04 | uP S
+L:AICA n Jpq B€

npg°
Since (2.31)) holds for any & € T'(T'M ), the individual contributions for &, 9¢, O, Q0IE
are satisfied separately. O

On a four-dimensional spacetime manifold, Thm. yields a system of 140 linear PDEs
of first order for the Lagrangian density L. Any diffeomorphism invariant tensor field
theory of second derivative order must satisfy this system and, conversely, any solution
to the system provides a candidate for a diffeomorphism invariant theory. Thus, the
search for such theories has been reduced to the mathematical task of solving PDEs of a
certain (simple!) form. The only ingredients which depend on the specific theory at hand
are the Gotay-Marsden coefficients, such that it is possible to derive certain properties of
the system without knowledge of the concrete tensor bundle.

The literature on this kind of PDEs is very extensive (see e.g. [42]) with many applications
throughout science. There are strong results on the properties and solutions which provide

a good basis for our work with Eqns. (2.29a)—(2.29d)) in the following.

The PDE system will be referred to as equivariance equations from now on. In a similar
form, these equations already appear in Ref. [39] during the derivation of conservation

19



2 The axioms of covariant constructive gravity

laws arising from diffeomorphism invariance. As they were not meant to be solved for the
Lagrangian density, the presentation is not as explicit as here. Also note that Ref. [39)
considers theories of arbitrary differential index but only the first jet bundle, whereas the
present derivation takes place on the second jet bundle but is restricted to a differential
index of 1, i.e. tensor field theories of second derivative order. The extension to theories
with arbitrary differential index is possible—there will be a series of Gotay-Marsden
coefficients
m A m A n ¢em A np em
g =Em0, +C%p, M+ Cg", 8L +Cp + .. (2.32)

m>,np o

which follow from the action of the diffeomorphism group on the bundle. [39]

2.3 Noether theorems

Diffeomorphism invariance of the Lagrangian as required by the first axiom results in a
number of interesting properties of the theory. Among these are identities for the Euler-
Lagrange equations and conservation laws for the dynamics given by the Euler-Lagrange
equations, which are examples for the well-known Noether theorems. In analogy to the
derivation for theories of first derivative order in Ref. [39], we shall now prove a version
of the Noether theorems for the second-order formalism developed above.

The first step is to realise that the Cartan form for a diffeomorphism invariant Lagrangian
is itself diffeomorphism invariant.

Proposition 2.3.1 ([43, 44]). Let £ be a diffeomorphism invariant Lagrangian, i.e.
Flep)' ¥ = L. Any corresponding Cartan form ©; satisfies the diffeomorphism
invariance condition

¥ Hpp)* O = Oy (2.33)

Proof. See |43, |44]. O

Using the infinitesimal version £; , \ © = 0 of the diffcomorphism invariance of ©,
the first Noether theorem follows as a direct consequence.

Theorem 2.3.2 (first Noether theorem [39]). Let £ be a diffeomorphism invariant
Lagrangian and ©;, a corresponding Cartan form. For any lifted generator & jor 1y of the
diffeomorphism action and any section o € I'(7) satisfying the Euler-Lagrange equations
§2F(0)*(8L) = 0, it follows that the current defined as

j(o) = (o) i, O (2.34)
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is a closed differential form, i.e.

0 = dj(o). (2.35)

Proof. Applying the Cartan formula to the infinitesimal diffeomorphism invariance
condition for ©; (which follows from Prop. [2.3.1)) gives

0_

- £§J2k—1

E@L - dL&JZkflEGL + L§J2k71Ed®L (236)

such that
d ((J%_lg)*bg GL) = (7*""o)*(d Le e, O1)
— 2k—1 _\*
- _<j 0) (LfJgk,lEd@L>'
One of the defining properties of the Cartan form ©; is that extremals of . are extremals
of ©,. Because o, satisfying the Euler-Lagrange equations, is an extremal of ., it also
satisfies the condition [45]

J2k-1pg

(2.37)

0= (5%"10)"(1zdO}) (2.38)
for extremals of ©;. The condition holds for arbitrary vector fields = on J?*"1F,
including the vector fields & ;211 5. ]

Eq. defines a current which is conserved on shell, i.e. whenever the Euler-Lagrange
equations hold. Thm. 3.1 of Ref. [39] already shows—for theories defined on the first jet
bundle—how the current arises from the so-called stress-energy-momentum tensor. This
result can now be generalised to tensor field theories of second derivative order. For the
following calculations, we introduce the abbreviations w = d"x, w; = 1y w, w;; = g, Ly, W,
and so forth.

Theorem 2.3.3 (Gotay-Marsden stress-energy-momentum tensor). Let ©; be the diffeo-
morphism invariant Cartan form corresponding to a diffeomorphism invariant Lagrangian
of second derivative order (k = 2). For any local section o of the underlying bundle, there
exists a unique (1,1)-tensor density T (o) on the base manifold M such that for all vector
fields & with compact support on M and embedded hypersurfaces is: 3 — M

[sito) = [Taiens,. (2.39)
b b

The tensor density T (o) s called the Gotay-Marsden stress-energy-momentum (SEM)
tensor density.

Proof. With the Cartan form for a second-derivative-order theory being uniquely defined
(see Prop. [2.1.6]), there is always the coordinate expression (2.8). Setting k = 2 and
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making use of intertwiners for second-derivative indices, this expression reads

®L - LQ
oL oL
+ W(dUA Ada:'q) ANw; — D, a—JJ (du? ufda:q) Aw; (2.40)
8L
+— Ju? J}p(du —uf L dz?) A w;.

Note that, because the Cartan form is horizontal over the first jet bundle, there is no
appearance of the forms du and du Jx 0 the coordinate expression for ©,. Thus, the

pairing with & ;s 5 for the calculamon of j( ) makes use only of the coefficients £, €4, and
Ef. Performing the pairing and the subsequent pullback with respect to the prolongation
of o, the current is obtained as

jlo) = ijwj
L4~ a;‘;gQ)w. — DL (A — aheNw, (2.41)
+ L, TP (&L — oALL 9w,

where L and its derivatives are to be understood as being evaluated at prolongations of
the section o.

Using &4 = C45", wBem and &' = D, (C45™ uBEm) — uflém from Eq. (2.30) yields
the current in its expanded form, which is
jlo) = [Lér, — L, ”UA + DL, o, — L TP L 06w,
+ (4" (L 0P — DL 1 JPaP + L JiPeB) — L 1 J] o4 €mw,  (2.42)
[ :AIJ}pCABn B]g np ]
The key to proving the identity (2.39)) is to express the integrals with contributions from
¢, and €7 as volume integrals using Gauss’s theorem and to then repeatedly simplify
the integrand by employing the diffeomorphism equivariance equations (2.29) and a
variant of integration by parts, in analogy to the operations performed in Ref. [39] for

first-order theories. This reference also explains how the region V has to be chosen in the
following.

Applying this procedure to the terms containing two derivatives of £ eliminates these
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2 The axioms of covariant constructive gravity

terms, at the cost of new terms containing lower derivatives:

I 7iPA n Bem
/L:AJICBmU Wi
by

Np~J

P

- /Dj[L:AIJngABnmUB Tplw
1%

= [ADL IO I, + LA Oyt 0P8, b
v 0 @209

— [DDI L O, 0P — D DL AT O o (249
|4

= /{Dp(Dj [L=AIJ¥pCABnmUB]€%) _Dn<Dij [L=AIJ¥pCABnmUB]€m)
.

+D,D,D;[L JJFCAL" oB] &M hw
o @299)
= [D LA IO 0 e, = DD L A TP Oy, 0P, )
>

The original contributions from (2.42)) together with the new contributions from ({2.43)
containing first derivatives of £ combine to

/[L:AjCABnmUB+2L IJ]pCABnm ]}39 :AIJ;na,én] oy
5 o
= /Dj[sﬁf%]w
1%
/ {D;Shem +SJ” T fo (2.44)
e
/ (D, (D,Si*¢™) — D, D, sﬂ“gm}w
\—,—/
0 2259
— / D, Sit&mw,
P
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2 The axioms of covariant constructive gravity

Putting together (2.42))—(2.44)) finally gives

+ L:Aﬂag + DjL:AjUB —D,D,L, AIJ}‘%B)CABnm}g%n (2.45)
-2.29b
= [ {-[L.a—D,L " +D,D,L JI|CA%" oP}mw,,
>

from which the Gotay-Marsden stress-energy-momentum tensor density is easily read off
as

oL
Tr(o)= _M_ACABnmUBv (2.46)
where 2 = L., — D L ,»+ D D L ,’J¢? denotes the variational derivative. O

According to , the Gotay-Marsden stress-energy-momentum tensor density vanishes
identically on shell, i.e. for sections solving the Euler-Lagrange equations—a recurring
theme in the analysis of generally covariant theories. The first-order version of Thm. [2.3.3]
proven in Ref. [39], settled a long-standing debate about SEM tensors densities by
providing a definition which is based on Noether theory and naturally satisfies a generalised
Belinfante-Rosenfeld formulaﬂ

In addition, the Gotay-Marsden SEM tensor density lends itself for a concise formulation
of Noether’s second theorem, based on a previous result [39] for first-order theories.

Theorem 2.3.4 (second Noether theorem). Consider a second-derivative-order Lag-
rangian with local representative L on a tensor field bundle. If the Lagrangian is
invariant with respect to diffeomorphisms, the corresponding Gotay-Marsden stress-
energy-momentum tensor density T satisfies the differential relation

oL,

Proof. Starting from the first expression for T, obtained in Eq. (2.45]), which is

g =Ly — L "ut, —2L LI L) ut

: . 2.48
+ [Loa"u + L:AJqu +D;L,'u? — D;D,L LI uP|CAg", 24

"For general relativity, the Belinfante-Rosenfeld formula [46, |47 relates the SEM tensor density obtained
from Noether theory by considering translations to the Hilbert SEM tensor density, which is defined as
the source density of the Einstein equations. [39] This comes with a seemingly ad hoc symmetrisation
of the Noether SEM tensor density. The generalised Belinfante-Rosenfeld formula [39] relates the
Gotay-Marsden SEM tensor density to the Noether SEM tensor density without such choices,
just by considering currents and spacetime diffeomorphisms.
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2 The axioms of covariant constructive gravity

the identity (2.47) follows via a direct computation of the divergence. Two terms in the
intermediate result are reduced using the equivariance equations (2.29¢)) and (2.29d)). [

With the Gotay-Marsden SEM tensor density replaced by its definition, Eq. (2.47)) indeed
reveals the differential relation

oL oL
_Dn <5U_ACABnmU’B) = &L—AuAm (249)

for the FEuler-Lagrange equations, which is exactly the statement of Noether’s second
theorem. The identity holds off shell, i.e. for any section of the tensor bundle regardless
of whether it satisfies the Euler-Lagrange equations.

2.4 Axiom Il: causal compatibility

This section follows very closely Sect. I1.B of Ref. [1].

For the mathematical formulation of the second axiom, we utilise the close relation of the
causal structure of field equations to the short-wavelength limit of the theory. |28, |26]
First, we restrict to Lagrangians which are degenerate in the sense that the Euler-Lagrange
equations—although defined on J*E—depend only on second derivatives and lower, i.e.

0L = mhy 0L (2.50)

for k = 2. This makes the theory immune from Ostrogradsky instabilities (48], which
afflict theories of higher derivative orders. In addition, the formalism is being kept very
close to Finstein gravity, whose Lagrangian is likewise degenerate—so we are still right
on track in sticking closely to the established formalism and just inject different matter
dynamics at the very beginning. Given the Fuler-Lagrange equations E 4 = 0 (henceforth
called field equations) of the degenerate second-order theory, we enter the limit of short
wavelengths by considering the Wentzel-Kramers-Brillouin (WKB) ansatz for a local
section o of

oA (z™) = Rele "5 [at (™) + O]} (2.51)
FEvaluating the field equations at this ansatz and taking the limit A — O gives to leading
order

ok ii
(au;;‘) I kik; a® =0, (2.52)

Typ(k)
which depends on the wavefront S only via the wave covector k = —dS. Eq. (2.52)) is

a linear equation for the amplitudes a® with coefficients from the r x r matriz T 4 5(k),
where r denotes the fibre dimension of the theory. This matriz, called the principal
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2 The axioms of covariant constructive gravity

symbol of the field equations, plays an important role in the short-wavelength limit: if
the theory admits solutions with nontrivial amplitudes a®, the principal symbol T 4 5(k)
must necessarily be noninjective. By virtue of this condition, the principal symbol selects
the physically admissible wave covectors in the WKB ansatz. As a square matriz is
noninjective if and only if its determinant vanishes, admissible wave covectors can
equivalently be characterised by a vanishing condition on the determinant of T 4g(k).

There is, however, a problem with this approach: in the presence of gauge symmetries,
there are nontrivial solutions equivalent to the trivial solution a® = 0. These solutions
will also be contained in the kernel of the principal symbol, rendering the naive conditions
on wave covectors formulated above meaningless. More specifically, assuming a gauge
symmetry with s-dimensional gauge orbits, there are exactly s independent functions
Xé)(@ which are equivalent to the trivial solution and span an s-dimensional subspace
of the kernel of T y5(k). In order to allow for solutions which are not equivalent to the

trivial solution, the kernel needs to be of dimension greater or equal than s + 1.

In the case of a diffeomorphism invariant theory, we have s = 4 and it follows from the

equivariance equation (2.29d|) that
0 =Ty p(k)CP"uk, = Typ(k)x ) (k). (2.53)

The condition that the kernel of the principal symbol be of dimension s + 1 or higher is
equivalent to imposing that the order-s adjugate matriz

0° det(Typ(k))
A,...A B,..B, k) =
@ (k) 0Ty 5. (k) . Tp_p (k)

58

(2.54)

vanish.ﬂ In this situation, where we have a square r X r matriz with s vectors (X(z'))
spanning a subspace of the kernel, we can use the general result (49, 26]

1% v > A’L : B]
QAI"'ASBI'"BS (k) frg 6”1"'HS€ 1%s [Hl X(,uz)] [Hl X(Vj)
= J=

to arrive at the so-called principal polynomial P (k).

1=1...s

P(k) (2.55)

Definition 2.4.1 (principal polynomial [26]). Consider a bundle E s M with fibre
dimension r and a Lagrangian field theory on a jet bundle over w that results in Fuler-
Lagrange equations of second derivative order. Assume the s vectors (Xé)(k:))i:l__s to be

8The vanishing of the order-s adjugate matrix is equivalent to the vanishing of all order-s subdetermin-
ants, which are obtained by removing all possible combinations of s rows and and s columns from the
matrix and calculating the determinant of each such reduced matrix. This is why the adjugate matrix
is of dimension (2) X (:) for theories with fibre dimension r and s-dimensional gauge symmetries.
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2 The axioms of covariant constructive gravity

generators of the gauge transformations of the theory. In particular, the Xé) span the

left and right kernel of the principal symbol T y5(k). Choosing s rows and columns of T
such that the order-s adjugate matriz entry Q4v-AsBr-Bs does not vanish, we define the
principal polynomial as the quotient

QA1-~~ASB1~~BS

s AT B
€H1 s €V1Vs [Hi:1 X(uq;)] [Hj:l X(”Jj)}

P(k) = (2.56)

The principal polynomial is a homogeneous polynomial of order 2r — 4s in the components
k, of the wave covector and has—as is clear from the derivation above—the important
property that in order for an ansatz to describe a nontrivial solution in the short-
wavelength limit the wave covector k = —dS must be a root of P. Thus, the complete
information about the propagation of waves in the infinite frequency limit is encoded in
the principal symbol. This is an example for the more general result that the eligibility of
a theory as a physically relevant theory hinges on properties of P. More specifically, it
has been shown that a theory can only be predictive, interpretable, and quantizable if
the principal polynomial satisfies certain algebraic conditions, which further propagate to
conditions on the underlying geometry. [28, |29/

The principal polynomial is also closely related to the Cauchy problem of the field equations,
as a Cauchy problem can only be well-posed within a region of M if P restricts to a
hyperbolicﬂ polynomial in this region. Furthermore, given a theory with hyperbolic
principal polynomial, admissible initial data hypersurfaces are characterised by the
condition that the surface normal be hyperbolic with respect to P. [50, 51| Predictivity
is the raison d’étre for physical theories, which is why we will restrict our attention to
tensor field theories with hyperbolic principal polynomials.

Two geometric objects are important for the formulation of the axiom of causal compatib-
ility: the vanishing set V,, € T;M of P and the set C,, € T M of all hyperbolic covectors
with respect to P. Both sets are defined at each point and thus form distributions V.
and C on M. The vanishing set V,, consists of all admissible wave covectors in the
infinite frequency limit, restricting the propagation directions of fields in spacetime. The
set C, € Ty M, on the other hand, contains the information about possible choices of
initial data hypersurfaces. It constitutes a convex cone [52] and is commonly called the
hyperbolicity cone /28, |29/.

Let us now consider the situation where a theory for some matter field coupled to
geometry has been prescribed, say on a bundle E ., @ JYE, .., and the principal
polynomial P, is hyperbolic. Both distributions V,,,, and C,,,, exist and they contain

9A homogeneous polynomial 2 of degree d is hyperbolic if there exists a covector h such that P(h) # 0
and any shifted covector h + Aw intersects the vanishing set of P exactly d times. Such a covector
h is said to be hyperbolic with respect to 2.
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2 The axioms of covariant constructive gravity

all relevant information about the causality of the matter theory. The objective of covariant
constructive gravity is to close the matter theory by providing a dynamical theory of the
geometry, defined on the bundle JQEgmv. As a resull, we obtain distributions V., and

Cyrav 0f vanishing sets and hyperbolicity cones for the gravitational theory. The principle
of causal compatibility between matter theory and gravitational theory now mandates

following relation between both pairs of distributions.

Definition 2.4.2 (causally compatible gravitational closure). Consider two bundles

E, . —MandE,, — Manda Lagrangian matter field theory on E,,,, @y JE, .

grav mat
whose Fuler-Lagrange equations are linear in the matter field. The corresponding principal
polynomial P, .. shall be hyperbolic and thus defines the vanishing set distribution V,,,,
and the hyperbolicity cone distribution C,,,,. We say that a gravitational Lagrangian field

theory on J?E with Euler-Lagrange equations of second derivative order, a principal

grav
polynomial P ..., and distributions V,,,, Cy., is causally compatible with the matter
field theory if
Cgmv = Cmat and Vmat g ngv‘ (257>

The first condition immediately implies that P ., is hyperbolic as well. Furthermore, it
ensures that both theories share their initial value surfaces and allow for a unified observer
definition (28, 29]. As recent measurements showed with a high degree of certainty that
gravitational waves propagate at the speed of light [55], we include the second condition
for the distribution of vanishing sets into the definition of causal compatibility. It requires
that wave covectors of the matter theory are admissible wave covectors of the gravitational
theory, but leaves open the possibility for different modes of propagation.

Before closing this section about the second axiom, a remark about its practical implica-
tions is in order. As we will see during the perturbative implementation of the covariant
constructive gravity programme, the requirement of diffeomorphism invariance alone
already restricts the principal polynomial of the gravitational field equations quite a
lot, such that up to the third iteration of the perturbative construction procedure we
will not need to enforce Eq. explicitly—at least for our chosen example. For the
nonperturbative construction of general relativity, the condition will not be needed at all.
This hints at the promising possibility that the second axiom may actually be weakened
by the extent to which it may already be implied by the first axiom.
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3 The construction algorithm

Having introduced the axioms of covariant constructive gravity and cast them in precise
mathematical language, we consolidate the results and state the algorithm for the con-
struction of modified gravity Lagrangians from novel matter theories. After a discussion
about practical implications in general, we proceed with sketching the application to a
few examples.

3.1 General formulation

The results obtained so far allow us to formulate a comprehensive algorithm for the
construction of gravitational Lagrangians, which has already been presented in Ref. [1].
These Lagrangians are the most general conceivable Lagrangians within our formalism
that satisfy both axioms of covariant constructive gravity. All that has to be provided
is a matter theory that couples to geometry and the algorithm will yield all candidates
for gravitational theories that determine the so far undetermined dynamics of the
gravitational field, finally giving the theory predictive power. In this sense, the task of
searching for modified gravitational theories boils down to the solution of PDE systems
to ensure general covariance and of algebraic equations to match the causalities.

Algorithm 1: Gravitational closure using covariant constructive gravity [1]

U rav
N Vs , matter bundle E

mat

Tmat
Data: Geometry bundle E, . — M, Lagrangian
matter field theory on E,,, @ J LE ¢ with linear field equations
Result: Most general diffeomorphism invariant and causally compatible

gravitational Lagrangian field theory on J?E

grav

compute the Gotay-Marsden coefficients (2.27) for E,,,,

set up the equivariance equations ([2.29a))—([2.29d))

solve the equivariance equations for the gravitational Lagrangian density Ly,
compute the Euler-Lagrange equations corresponding to Ly,

restrict the gravitational theory to second-derivative-order field equations
calculate the principal polynomials P gray and Py o

solve the causal compatibility conditions Cy,,, = Cyar and Vg C Vo

29



3 The construction algorithm

Let us comment on the algorithm step by step: the first step, calculating the Gotay-
Marsden coefficients, is trivial. The coefficients follow from the prescribed or inherited
action of diffeomorphisms on the geometry bundle. For purely covariant or contravariant
tensor bundles, Prop. already gives the final expression. These coefficients have to
be inserted into Eqns. (2.29a)—(2.29d) in order to execute step 2. As a result, we obtain
a system of linear, first-order partial differential equations for the Lagrangian density L
with coefficients that are linear in the independent variables. More precisely, the PDEs

are of the form .
0= Ajz'u ; + Bu, (3.1)

u is the dependent variable, z* are the independent variables and the coefficients Az
and B are constants. Conceptually, much about the solutions of such PDEs is known
[42], although it is in most cases practically infeasible to solve the system, due to its
sheer size and the number of independent variables. However, as we will see in Chap. [6]
the system admits a property called involutivity, from which we can infer strong results
about solutions and derive a perturbative solution strategy.

For a known solution, it is only a matter of applying Eq. to the Lagrangian
in order to compute the Euler-Lagrange equations for step 4. Restricting to second-
derivative-order field equations, as required by step 5, could be done now by imposing
that higher-derivative-order terms vanish. In practice, however, such restrictions will
be placed at an earlier stage, in order to rule out higher orders from the beginning. A
similar pattern emerges for steps 6 and 7: placing restrictions on the computed entities is
possible, but may be hard to enforce after the fact. So it is worth keeping this requirement
in mind early on.

3.2 Example: Einstein gravity

As already outlined in the introduction, Einstein gravity can be thought of as the
gravitational closure of Maxwell electrodynamics in four dimensions. This theory provides
dynamics for sections A in the bundle T* M of one-forms, parameterised with sections g
in the bundle S(TZ M) of contravariamﬂ symmetric tensors of rank two. A is commonly
known as the electromagnetic potential, g as the metric tensor. The dynamics of the
electromagnetic field is given by the Lagrangian density

LMaxwell - —det ggacgbdFachd’ (32)

IMany descriptions regard the covariant inverse metric as fundamental. In this case, the contravariant
metric tensor appearing in the Lagrangian density is the inverse of the metric field. Both
descriptions will yield slightly differing intermediate results during the construction procedure, but
are fundamentally equivalent.

30



3 The construction algorithm

where the electromagnetic potential enters via the field strength tensor F' = dA and we
write “det ¢” for the determinant of the covariant metric tensor, which is the inverse of
the contravariant metric tensor chosen here as fundamental field.

We now collect the ingredients for the construction algorithm. The fibre dimension of
the bundle S(TZM) is 10, such that a suitable pair of intertwiners (I, J) between this

bundle and the unrestricted tensor bundle T2M is given by

1
0
=1,
0
0
a 0
Isb: 0
0

and
1
0
‘]alb_ 0
0
0
0
Ja5b: 0
0

S OO ocooco o

o o= O oo oo

S OO0 o0ooco o

S OO0 ocooco o

ab

0 0
0 w1
0 157 = 0
0 0
o\ “ 0
0 w10
0 5" = 0
0 0
0

0

=1\,

0

0 0
0 9 :
of e = 0
o/ 0
0 0
0 s |0
0 »Jap = 0
0 0

ab

0

0

ng: 0

0

CoOO0O0 OFROO oo o —

OO0 ONFO O o o oue

—FO 00O OO0OFRO oo oo

O OO OOoNNO oo o o

IS
S

0 0
0 w0
o B =11
0 0
o\ “ 0
0 o
ol =10
0 0
0\ “° 0
0 0
1| =
0 0
0 0
0 0
I3 =
0 N
o) 0
0 0
0 - o
o =10
0/ 0
0 0
0 0
% 7‘];1?: 0
0/ 0

CO00 ROOO oo oo

OO OO NMNHFO OO ocoocoo

CO0O0 OC000 oo o

o O OO o O O O o O Owi-

ab

0 0

0 aw |0

0 I = 0

0 1

o\ * 0
1 S
0 5" = 0
0 0
0 ab

0

0 )

1

0 0
ol ., 0
0 Jap = 0
0 ab %
0 0
1

= 0
2 8 _

0| Ja=1o
0 , 0
0

0

0

1

)
=

cCooco oo o

cooco ©ooo

oroco @9Eee

or oo <

IS
S

oo oo o O O
Q
=l

(3.3)
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oo o OO one
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(3.4)

The intertwiner I distributes the ten degrees of freedom for a symmetric tensor of
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dimension 4 across the components of a generic rank-2 tensor

ab

I%(c u?) = : (3.5)

while J projects such symmetrically distributed components back to the ten degrees
of freedom, discarding possible antisymmetric contributions. Note that I and J could
also be chosen such that the matrix representations coincide, using factors of % for
off-diagonal entries in both intertwiners. This has the apparent advantage that I and
J do not need to be distinguished from each other. However, a disadvantage of using
them interchangeably is that this would obscure the different roles that I and J play,
especially if they are used not only in setting up the equivariance equations, but also for
manipulating them. The irrational coefficients like %2 would also further complicate the
computer-aided treatment introduced in Chap. o, which for purely rational intertwiners
yields purely rational results.

Prop. yields the Gotay-Marsden coefficients from (I, .J) as
cAgn = 2I§nJI‘;‘m. (3.6)
Contracting these coefficients with I and J leads to the spacetime expression
ab n a¢b) on
C, " = 20110060, (3.7)

which serves as a good sanity check: contracting again with a metric g and the derivatives
of a vector field £ results in the well-known transformation of g w.r.t. infinitesimal
diffeomorphism generated by &,

g™ = 29" € . (38)

The second ingredient is the principal polynomial of electrodynamics, which reduces toE|
the homogeneous quadratic polynomial [28]

‘?Maxwell(k> = g(kﬂ k) (39>

From this result follows the standard notion of causality in relativity: light rays with
codirection k are constrained to the vanishing set V and, thus, satisfy g(k, k) = 0. The
wave covectors related to massive observers lie within the hyperbolicity cone C, which

2Computing the principal polynomial may lead to a result of higher degree than (3.9). For the second
axiom of covariant constructive gravity, however, only the reduced form without repeating factors is
of relevance—because the causal structure is already determined by the reduced polynomial [2§].
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3 The construction algorithm

restricts them to g(k, k) > 0 (adopting the mostly minus convention (+ — ——) for the
signature of the metric). For more details, we refer the reader to the theory developed in
Refs. [28, 29, [23} [26] and the corresponding examples.

Before proceeding, let us emphasise that there are only two things needed from the
matter theory, which is Maxwell electrodynamics in this case:

1. the Gotay-Marsden coefficients CA5" = 21 g"JIf‘m and

2. the principal polynomial Py, wen (k) = g(k, k).
The equivariance equations f for the metric gravitational Lagrangian are a
system of 140 PDEs for one variable dependent on 154 independent Variableﬂ. Because
the system admits the aforementioned property called involutivity, which will play a
major role in Chap. 4| and therefore will be considered in more detail there, we can make
use of a very strong result about the solutions of this system [42]: there are 154—140 = 14
functions v, of the independent variables, such that any solution of the homogeneous

system, denoted here as
0= A"y, (3.10)

is of the form f(vq,...,1,) for any suitably differentiable function f. Any particular
solution w of the inhomogeneous system

0= Ay ;+ B’ (3.11)
yields, by virtue of the product rule, the general form of a solution,

U=w- f(thy; s thyy) (3.12)

Now, the dynamics of general relativity as derived by Einstein are given by the manifestly
diffeomorphism equivariant Einstein-Hilbert Lagrangian density

1
LEinstein—Hilbert = % V — det g(R - 2A)7 (313)
from which we readily recognise two solutions,

w=+/—detg and ¢; =R. (3.14)

The constants k and A are known as gravitational constant and cosmological constant,
respectively, and R is the Ricci scalar curvature. Together with the homogeneous solution
1, = R, the remaining 13 homogeneous solutions v, ..., %, are known in the literature
as the fourteen curvature invariants [54} 55

3The dimension of the second jet bundle over the metric bundle is 4+10+4 x 10+ (4@71) x 10 = 154.
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While the system of equivariance equations alone admits a multitude of solutions ,
it has been shown by Lovelock [14} 35, |36] that only Einstein’s general relativity
admits second-derivative-order field equations. Step 5 of the construction algorithm
therefore restricts the gravitational theory closing Maxwell electrodynamics to general
relativity with its two undetermined constants exactly. The causality conditions do not
have to be implemented anymore, since they follow trivially—the causal structures of
Maxwell electrodynamics and Einstein gravity coincide.

There is another interesting result that follows from the equivariance equations. Restrict-
ing to the zeroth jet bundle and switching from abstract indices to indices inherited from
the tangent bundle, we retrieve the equivariance equations for a density w(x?, g*°) as

?
and 0 = 2 g 4 57w, (3.15)

0=
w7m ag

If we solve the first equation by restricting further to w = w(g®) and manipulate the
second equation by contraction with the covariant metric, we obtain

w 1

% = —59abt- (3.16)
This equation is obviously symmetric in the indices and therefore boils down to a system
of 10 PDEs for the function w of the 10 independent variables ¢g®. As the system is
completely determined, the known solution w = y/— det g, which can be easily verified
by straightforward differentiation, is the unique solution. Using our framework, we thus
have provided a derivation of the well-known fact that the only scalar densities that can
be constructed from the metric tensor are powers of the metric determinant.

The same result holds for the equivariance equations restricted to the first jet bundle,
which are

0=1L,,, (3.17a)
0= 2L:amgan + 2L:ampgi?n _ L:abngflrlr)w (317b)
0 = LiamPg™a. (3.17¢)

Eq. is a system of 40 individual equations for the 40 derivatives of L with respect
to the first derivatives of the metric tensor. The rank of this subsystem is ful]EL which
completely eliminates any possible dependence of L on the first derivatives of g. The
remaining system is equivalent to the zeroth-order system with the unique solution
L = /—det g, demonstrating with a very quick derivation that there is no nontrivial

4If in doubt, such statements concerning our linear PDE systems can be verified without much
computational effort by evaluation at randomly chosen points in the jet bundle. At worst, the rank
at such points will be less than at a generic point.
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diffeomorphism equivariant Lagrangian density of first derivative order for the metric
tensor.

Before proceeding with the next example, it should be emphasised that the insights gained
about metric gravitational theory compatible with Maxwell electrodynamics are not new
as fare as the results are concerned. Rather, we have seen how the developed framework
readily reproduces the known results without much effort and yet again confirms earlier
derivations.

3.3 Example: area metric gravity

As a first example for a modified theory of gravity that follows from covariant constructive
gravity, we consider area metric gravity. The starting point is a generalisation of Maxwell
electrodynamics.

Definition 3.3.1 (generalized linear electrodynamics). Let M be a four-dimensional
spacetime manifold. The bundle E constructed as a subbundle of Ty M by imposing
the linear conditions

area’

Gabcd — chab — _Gbacd (318)

on the tensor components, is called the area metric bundle. Given a scalar density w of
weight 1, sections G of this bundle serve as coefficients for the Lagrangian density of
generalised linear electrodynamics (GLED),

Lerpp = WGGadeFachd- (3.19)

It is easy to see that GLED is a generalisation of Maxwell electrodynamics by settinﬂ

1 -1
Gabcd — gacgbd _ gadgbc 4 6abcd and we = ( Gabcd) (320)

1
VR P detg ﬂﬁabcd
in the GLED Lagrangian density (3.19)), which reproduces the Maxwell Lagrangian
density (3.2). Not restricting the area metric field to the specific form (3.20]) but leaving
all 21 independent components unconstrained yields, of course, a more general theory.

GLED as generalisation of Maxwell electrodynamics is the result of an axiomatic approach
to classical electrodynamics called premetric electrodynamics [56, 57). This approach
makes a few assumptions like conversation of charge and magnetic flux, the existence of

®Note that wg as defined in Eq. (3.20) is a valid scalar density of weight 1 not only for this special
choice of G, but also for general area metric fields. Without loss of generality, we will keep making
use of this density—any other density is obtained by multiplication of w with a scalar.
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3 The construction algorithm

a Lorentz force law, and a superposition principle. As a consequence, the indeterminates
of such a theory are reduced to the so-called constitutive tensor x, which is already
known from electrodynamics in media, but now also determines the behaviour of the
electromagnetic field in in vacuo. In our language, y is the area metric tensor G.

The causality of GLED crucially depends on the area metric via the principle polynomial
58]
1 2 mnra Ybpscydqtu
‘SDGLED(k> = _ﬁwGemnpqerstuG G G kakbkckd7 (321)

which is generally irreducible and of rank 4. Consequently, the null surfaces are no longer
metric light cones, but more complex quartic surfaces. For example, P pp could factor
into the product of two metrics, in which case the vanishing set at a point would be the
union of two metric light cones with different opening angles. In this example, the phase
velocity of a wave depends on the light cone in which the wave covector lies. The two
options can be seen as new polarisation degree of freedom, such that the speed of light
is determined by the polarisation—an effect commonly known as birefringence. While
in classical electrodynamics this is only possible in nonlinear media, GLED allows for
birefringence in vacuo.

Just like in Maxwell electrodynamics, where only metrics of Lorentzian signature meet the
requirement of a hyperbolic principal polynomial, GLED only satisfies certain conditions
regarding its causality—like hyperbolicity of the principal polynomial—if the area metric
belongs to certain algebraic subclasses. |28, |29] The constructions that follow respect
this requirement. In fact, we will work in a perturbative setting where the area metric to
zeroth order belongs to an appropriate subclass. Perturbations must be such that the
subclass does not change—akin to signature change in general relativity, which is also
mostly excluded.

Much of the remainder of this thesis is dedicated to the application of the construction
algorithm to GLED, which should yield the gravitational theory completing general linear
electrodynamics to a predictive theory of matter and gravity. This new theory shall bear
the name area metric gravity.

We again start with the definition of suitable intertwiners. It is often useful to interpret
the components G*? of an area metric, which consist of two antisymmetric pairs and is
symmetric in these pairs, as symmetric 6 by 6 matrix

abl[cd

(0101 (0102 (70103 (0112 (70113 (70123 [ab][cd]
(0202 (0203 (70212 (70213 (710223
(70303 (70312 (0313 (70323

Glablled] — . G212 1213 (1223 . (3-22)
G313 (71323
G2323
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3 The construction algorithm

Intertwiners can then be chosen such that I distributes abstract components G, ..., G?!
over such a matrix, i.e.

[ab][cd] [ab][cd]

I{ab} [ed] Iéab} [ed] _

, (3.23)

S O OO O
O O OO OO
S O OO oo
O O OO oo
OO OO oo
O O OO OO
SO OO+ O
O O OO O
OO OO oo
O O OO OO
OO OO oo
S O OO OO

and so on. The surjections J project back to abstract indices, where the multiplicities

are either 4 for components like G%123 or 8 for components like G101
100000 00000
00000O 100000
000O0O0O 00 0O0O0O

1 _ 2 _

Tavea =10 0 0 0 0 0 » e = {0 0 0 0 0 0 , (3.24)
0 00O0O0O 00 0O0O0O
0 00O0O0O 0 00O0O0O

[ab][cd] [ab][cd]
et cetera.

As usual, the Gotay-Marsden coefficients follow from Prop.[2.2.7 Since the fibre dimension
of TgtM is 4 and the tensors are purely contravariant, the coefficients are

CAgn,, =4I J4 (3.25)

qrm>

or, using the spacetime representation,

abed n o __ la| ¢n 5l0] cle ¢d]
caved, n = 4ol oplsles] , (3.26)
[abl<[cd]

lefle[gh]

where e XY‘X = %e xy+ %ey x denotes idempotent symmetrisation of the expression e

in X and Y.

Y

Having computed the intertwiners and Gotay-Marsden coefficients, the equivariance
equations (12.29a))—(2.29d|) are ready to be set up. Since the second area metric jet bundle

is of dimension
44+2—1
dim(JzEarea) =44+214+4x21+ ( + 5 ) x 21 = 319, (3.27)

the system of equivariance equations consists of 140 linear, first-order PDE for one
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function of 319 independent variables. The claim of covariant constructive gravity is that
solutions to this system are candidates for gravitational Lagrangians. Unfortunately, it
is computationally infeasible to present such a Solutionlﬂ and, unlike for metric gravity,
there are no known curvature invariants for us to rely on.

Therefore, we will resort to perturbation theory in order to derive results for weak
gravitational fields in Chap. [6] and also shortly explore the possibility of directly solving
the cosmological sector of area metric gravity in Chap. [7]

3.4 Example: bimetric gravity

A lot of work has already been done in order to answer the question: What would gravity
look like if there were two metrics instead of one? From the perspective of covariant
constructive gravity (and gravitational closure in general), this question is meaningless
without reference to a bimetric matter action. The question should rather be: How can
matter theories that couple to two different metrics be completed by a bimetric gravitational
theory?

Let us consider two examples for bimetric matter theories. The first theory prescribes
the dynamics for two scalar fields, each field coupling to its own metric.

Definition 3.4.1 (bimetric Klein-Gordon theory). Let M be a four-dimensional spacetime
manifold. The bundle Ey,opie = S(TEM) & S(TEM) constructed as the direct sum of
two metric bundles is called the bimetric bundle. Sections (g,h) of this bundle serve as
coefficients for the Lagrangian density of the bimetric Klein-Gordon theory

Loke =V —det gg™¢ o, — mGe? + vV —det hh® 1, — m3y?, (3.28)

where ¢ and 1 are smooth functions ¢,: M — R called scalar fields with nonnegative
masses My and m.,.

As second example, we use a generalisation of the Proca theory, a theory for a massive
electromagnetic potential.

Definition 3.4.2 (bimetric Proca theory [32]). Consider again the bundle Ey;,opric-
Sections (g, h) of this bundle together with a scalar density Wig,n) constructed from g and

6Strictly speaking, two solutions are known: the scalar density w¢ defined in Eq. and a different
choice for w which is computed from the determinant of the 6 x 6 matrix , which is also a
valid scalar density. However, these solutions do not depend on derivatives of the area metric and as
such would not yield dynamic field equations if used as Lagrangian density.
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h serve as coefficients for the Lagrangian density of the bimetric Proca theory
Lbi-Pmca = W(g,h) (_gacgbdFachd + mzhabAaAb> (329>

for an electromagnetic potential one-form A with field strength F' = dA.

Both theories couple matter fields to geometry defined on E; .. Consequently, the first
steps in executing the construction algorithm are identical: define suitable intertwiners,
calculate Gotay-Marsden coefficients, set up and solve the equivariance equations. A
possible choice of intertwiners is to just reuse the intertwiners and defined for
the metric bundle. Representing elements of the unrestricted bundle T2 M @& T3 M as
two matrices, I fb, vy I fé’ distribute the 10 degrees of freedom for the first metric over
the first matrix, while I#), ..., I distribute the 10 degrees of freedom for the second
metric over the second matrix. The intertwiner J is defined equivalently.

Considering how one metric transforms with respect to diffeomorphisms,

e i o GRS S (3.30)
we can reuse the Gotay-Marsden coefficients (3.6) for a single metric and obtain the
transformation behaviour of two metrics as

A A A n m C
g g Coc"nEm 0 g
(1) = (70) + (T on ) (o) o

The matrix introduced in this equation constitutes the Gotay-Marsden coefficients for
the bimetric bundle. A lighter notation is to just write GA for the bimetric field, where
indices A range from 1 to 20 and split into two ranges, denoted by A (from 1 to 10) and

A (from 11 to 21), respectively. The original metrics g and h are included in G as GA

and GA. Using this notation, the matrix in Eq. (3.31)) is a block matrix representation
of the bimetric Gotay-Marsden coefficients CA5" : the coefficients are zero if A and
B come from different ranges, while for the same ranges, they amount to the metric

coeflicients.

With the Gotay-Marsden coefficients at hand, the equivariance equations (12.29al)—([2.29d])
follow as usual. This time, the bimetric bundle is of dimension

4421

dim(J2 By i) = 4+ 20 4+ 4 x 20 + ( ) x 20 = 304, (3.32)

making the system a PDE system with 140 equations for one function dependent on 304
independent variables. The same remarks as for the construction of area metric gravity
apply: it is notoriously hard to solve such a system ezactly, but the method offers a lot
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of potential for perturbative or symmetry-reduced solutions. In the context of canonical
gravitational closure, the former has already been pursued successfully, at least to second
order in the perturbation expansion. |32} 33]

Some solutions are, of course, already known: the metric determinants are diffeomorphism
invariant densities and the fourteen curvature invariants for each metric are diffeomorph-
ism invariant scalars, i.e. solutions to the homogeneous system. This gives generic
solutions of the form

\/ —detg : f(?ﬂgg), 7w(1€1)7w(1h)7 aw(lz)>

(3.33)
or V—deth- 0, .., 9 M ).

More scalars come easily to mind, like the contraction g*°h,, (using the inverse h,;, of

ab . y/—detg . . . .
h®”) and the ratio deth” Adding these to the 28 curvature invariants, a more generic

solution would be

v—detg
vV—deth

From the strong results about such system, which will be proven in the next chapter, we
know that this premature analysis is by no means exhaustive—the number of functionally
independent scalars that can be constructed from a bimetric tensor and its derivative up
to second order must be 304 — 140 = 164.

V=deth - f@? 0 el g%, ). (3.34)

By the second axiom of covariant constructive gravity, the space of admissible Lagrangians
will be smaller than the solution space of the PDE system we just discussed. The input
we need from the matter theory is the principal polynomial. Quite surprisingly, the
polynomials of the bimetric Klein-Gordon theory and the bimetric Proca theory coincide,
given by the expression

‘ngimetrich) = g<k7 k>h(k7 k) (335>

This is an intuitive result for the bimetric Klein-Gordon field, where the field equations
for both scalar fields do not couple. For the bimetric Proca theory, however, a naive
inspection of the field equations seems to suggest that the principal polynomial is just
given by the first metric which provides the coefficients for the kinetic term. Only after
the field equations have been brought into involutive form, new equations emerge which
ultimately yield the principal polynomial (3.35). [32]

As a consequence of this coincidence, the gravitational theories that are eligible as
completions for both discussed bimetric matter theories are the same. This also restricts
the causally relevant sectors of both theories to the sector where g and h are Lorentzian
metrics with overlapping hyperbolicity cones—only then the product of both metrics is a
hyperbolic polynomial.
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gravitational theories

Following the presentation of the axioms of covariant constructive gravity and the
construction algorithm, we now develop a perturbative approach for the implementation
of both axioms. The equivariance equations turn out to lend themselves to an iterative
solution strategy where the expansion coefficients of a power series ansatz are determined
iteratively, power by power. A first approximation of the gravitational theory valid
for weak fields is obtained already after the second iteration, which yields a quadratic
Lagrangian with linear field equations. In a sense, this is the free theory without self-
coupling. In order to investigate the lowest-order effects of gravitational self-coupling,
which we will dare in the subsequent chapter, the next order is indispensable. Therefore,
after establishing the general principle, we focus on the perturbation theory up to third
order in the Lagrangian.

The development in this chapter follows closely the presentation in Ref. [1], but is at
times more detailed.

4.1 Perturbative implementation of axiom |

Let us state again, for reference, the equivariance equations (2.29b)—(2.29d)) we are going
to solve perturbatively:

= L oCA5" uB + L P [CAgm, 69 — 5568,07] u
+ L, [CA",, 0] —264J7"1 m]u S+ L%,
o=1r"c*,m B+L:AI (45" 2070 — 5478764, ] uP
0=1L_JcA," Jriy

The first equivariance equation 0 = L . has been omitted, because from now on we will
consider it solved by restricting the pmblem to Lagrangian densities L that depend only
on the fibre coordinates.
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4 Perturbative construction of gravitational theories

Perturbation theory starts with choosing an expansion point p € J*E. Let p have fibre
coordinates (N4, NAp, NAI). The deviation of any point ¢ € J*E with fibre coordinates

(G4, GAp, G#,) is then defined as the difference
(HA, HA, HA)) == (G — N4,G* — N4, G4, — H*)). (4.1)
Around p, this results in the formal power series ansatz
L=a+a,H*+a,’HY +a, HY,
+a,pH*H? +a, " HAH? +a,,'H HP,
+ta,P Rt HA HE +a,P ) HA HP +a,' JHAHP,

q
+apc HAHPHC + ...

(4.2)

which is called formal because at this point there is no assumption about the convergence
of the power series. We do, however, make two assumptions about admissible expansion
points, in order to justify the interpretation of perturbatively constructed theories as valid
theories for weak gravitational fields.

1. The expansion point represents a flat instance of the gravitational field, i.e. both
NAp and NAI vanish.

2. At the expansion point, the matter theory that is used to bootstrap the construction
procedure reduces to a theory that is equivalent to a matter theory on Minkowski
spacetime.

Both restrictions for p ensure that the limit of weak gravitational fields can match our
observations for situations with weak gravity: matter fields couple to flat geometry in the
sense that there are coordinate charts where the geometric coefficients are constant and
this geometry is determined by the Minkowski metric. Curvature effects and effects from
non-Lorentzian geometry are expected to arise as deviations from this ground state. After
all, this is just another incarnation of the correspondence principle for modified gravity.

The first assumption is easily implemented: in the chosen coordinate chart, p takes the
form (N4,0,0). The best way to make sense of the second assumption is by considering
a few examples:

Example 4.1.1 (flat Lorentzian expansion points). Let us choose appropriate expansion
points (N4,0,0) for GLED and bimetric theories introduced in Sections and

respectively. In order to satisfy the second assumption made for expansion points, we
construct N4 from the Minkowski metric n®® = diag(1,—1,—1,—1)% in the following
ways.
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4 Perturbative construction of gravitational theories

1. For bimetric theories, a suitable expansion point is given by NA = J;})n“b nd

N4 = J;})n“b, i.e. setting both metrics g and h equal to n. Where a scalar density is
needed, we choose w = \/— detn = 1. This choice reduces the bimetric Klein-Gordon
theory to the standard Klein-Gordon theory for two scalar fields on Minkowski
spacetime

LQKG‘N = ﬁab¢,a¢,b - miﬁbQ + n“bw,aw,b - min- (4-3)

Similarly, the refined Proca theory reduces to the standard Proca theory

Lbi—PToca|N = _nacnbdFachd + m2nabAaAb' (44)

2. For GLED, we choose the expansion point N4 = Jabc (naenbd — padpbe 4 eabed),

Using the density wg = (37€4peq G Y, which at G* = N4 results in wy =1,
the Lagrangian density for GLED reduces to

Larep = znacnbdFachda (4‘5)

i.e. Mazwell electrodynamics on Minkowski spacetime.ﬂ

Both choices of expansion points ensure that the perturbatively constructed gravitational
theories provide to zeroth order in the deviation a background on which known physics is
reproduced. Nowvel physics—the coupling of matter fields to nonmetric geometries and the
self-coupling of such geometries—should emerge as effect of first and higher orders in the
deviation from the Minkowski background.

Having defined an expansion point, the equivariance equations can—in principle—be
solved perturbatively by repeating the following process: all equations in the system
contain derivatives of first order, so the expansion coefficient a of zeroth order remain
undetermined. In order to determine the expansion coefficients a,, a,”, and aAI,
substitute the formal power series ansatz (4.2)) for the Lagrangian density L in the
equivariance equations, evaluate the result at N (i.e. set the deviation H to zero) and
solve the resulting linear equations for the first-order coefficients. Next, differentiate each
PDE once with respect to every independent variable, substitute again the power series
ansatz, evaluate at N and solve the linear system for the expansion coefficients of second
order. Now repeat this process of differentiation, substitution, evaluation, and solving of
linear equations ad infinitum-—or up to the desired perturbation order.

'The term €2b¢4F , F., is a burface term and thus does not contribute to the field equations. As such,
it has been omltted in Eq.
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4.2 Involution analysis

For the previously described perturbative solution process to play out as desired, the PDE
system must observe an important property: we need to be sure that each step really
determines all expansion coefficients for the corresponding order to the extent that this is
possiblﬁ. This is not always guaranteed, as a simple example demonstrates.

Example 4.2.1 (integrability conditions [59]). Consider the linear, first-order PDE
system
u, +yu., =0,
2T e (4.6)
u, =0
for one function u which depends on three independent variables x,y, z. Making a formal
power series ansatz, inserting this ansatz into the system (4.6), and evaluating at the
expansion point yields a linear system of rank two for the three expansion coefficients of
first order.

There are, however, hidden equations governing the first order, which emerge after
differentiating the first equation with respect to y and the second equation with respect to
z and x. This gives new PDEs

Uy T YU gy T U, =0,

(4.7)

Uy =Y

Uy

The second derivatives in the first equation can be cancelled using the second and third
equation, yielding the first-order PDE u , = 0. Such a new equation that is algebraically
independent of the original PDEs 1s called an integrability condition. Including it
in the first-order system and simplifying a bit, we get

(4.8)

Only after performing this procedure of making explicit the hidden first-order PDEs, we
know for sure that the expansion coefficients of first order are determined already after the
first iteration. In this case, the resulting linear system has full rank, leaving no coefficient
undetermined.

20f course, the equivariance equations, in general, will not determine all expansion coefficients. Rather,
the solutions will be parameterised exactly by the coefficients that cannot be determined.
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Luckily, the system of equivariance equations suffers mone of these maladies, as we
will prove in the following. The mathematical framework that allows to make such a
statement is involution theory [42]. Within this framework, a PDE of order q is defined
geometrically as fibred submanifold R, C JYE of some jet bundle manifold JqEﬂ A local
coordinate representation of R, yields a system of equations, more closely resembling
what a PDE looks like in the nongeometric picture. Note that we deliberately call R,
a partial differential equation, rather than using the plural, as this approach makes no
difference between systems or scalar equations. A solution to a PDE is just a local section
o of E such that the image of j9o is contained within R, .

Two geometric operations will be performed repeatedly on PDEs for their involution
analysis: prolongation and projection. The former maps a PDE R, to some PDE
R,., by, in local coordinates, adding to R, all possible derivatives of order r of the
individual equations—the equivalent geometric construction is a bit more involved. On the
contrary, it is simpler to define projections geometrically, which is as bundle projections
Ry_)r = Ty.q-r(Ry). Using a local representation of R,, the projection is performed by
eliminating derivatives of higher orders using only algebraic manipulations such that
equations of order ¢ —r remain. The maximal set of such equations is a representation
of R,_,.. For linear systems, the task of projecting a PDE to lower order is solved by
linear algebra with tools like Gaussian elimination and has already been demonstrated
earlier in Example[{.2.1]

With this, the main result can be established.

Theorem 4.2.2 (formal integrability of equivariance equations). The equivariance
equations are a formally integrable partial differential equation R, with ¢ =1, i.e. it holds

for all v > 0 that Réfgr =R,

Formal integrability as defined in Thm. captures in geometric terms the requirement
a PDE must satisfy in order for the iterative solution strategqy to succeed. Otherwise, a
truncated power series solution—uwhich will later serve as approzimate solution for weak
gravitational fields—could never be trusted, as prolongations of the PDFE to higher orders
could always yield additional constraints on the coefficients of the truncated series.

The equivariance equations fall into such a simple category that their formal integrability
can be proven in a very straightforward way. According to Example 2.3.12 of Ref. [42],
the possible integrability conditions for a PDE of order ¢ = 1 for a single dependent
variable are given by a certain commutator of the local PDE representatives. See [42] for
the details. Adapting this technique to the system of equivariance equations, we can prove
that the integrability conditions are already contained in the system to begin with.

3Note that this jet bundle is not the jet bundle on which the Lagrangian density is defined. For the

equivariance equations, the order g is 1 and the underlying bundle E is J 2Egeometry.
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Proof of Thm. [{.2.3 The system ([2.29a)~(2.29d)) of equivariance equations is equivalent

(by its derivation) to the equation

for all vector fields & over M. With £ 2, we denoted the lift to the second jet bundle
over the field bundle. Applying the same technique as in Example 2.53.12 of Ref. [42], we
generate all possible integrability conditions by acting with a second vector field ¢ j2
on Fq. and subtracting the same equation with the réles of & and v interchanged.
These conditions turn out to be

0=[r2p Ypll+ L&Y,
— (YppL+ L) &N
+ (§J2EL +L- f%) Y,
=&, ] ogL + L - [§, 4],
— (’(PﬂEL + L- "qu%) &,
+ (Eppl+ L) Y0,
which is a linear combination of equations that are already contained in the system. Note

how the Lie algebra homomorphism property of the vector field lift is crucial for this
result.

(4.10)

Since it is impossible to generate integrability conditions that are not already present in
the system, the equivariance equations are formally integrable. O

For more involved PDEs, formal integrability is in practice proven by showing that the
system is involutive, from which formal integrability follows. This comes with an algebraic
condition on the PDE, which boils down to calculating a matriz rank for our particular
PDE. However, it has still to be checked that a single prolongation does not generate new
integrability condition—which amounts to the calculation above. So in this case, nothing
would be gained by purswing this approach. See [42,|37] for a proof of involutivity.

4.3 Lorentz invariant ansatze

In order to implement the second assumption for suitable expansion points in the power
series ansatz, we choose coordinate representations where the flat geometry is Lorentz
invariant, i.e. satisfies the Lorentz invariance conditions

0=NACE, " (K;)m (4.11)

n
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where K ;) are the 6 generators {nm[ré;ﬂ | < s} of the Lorentz group. This special
symmetry of the expansion point carries over to the equivariance equations and causes
rank defects, for example in the second equivariance equation . At a generic
(non-Lorentz invariant) point p = (z*, M*4,0,0), it reads

0= L,4|,C*%", M5 + L| o7, (4.12)

and is, in general, of rank 16. Evaluating the same equation at p, = (z*, N*,0,0) and
contracting with Lorentz generators K ;), we obtain the 6 vanishing linear combinations

0= L:A|pOCABnmNB(K(i))ZL + LI, m (K i) 3w (4.13)
=0. '

In the end, only 10 equations remain linearly independent. While at the first glance this
seems to reduce the number of determinable expansion coefficients, the converse is actually
true: consider again the second equivariance equation and calculate the prolongation with
respect to the variables u. Evaluated at Do, this gives

0= L:A=B‘poCBC”mNC T L=B‘poCBA”m + Loalp, O (4.14)
which contracted with the Lorentz generators reduces again to first-order equations

Comparing this equation with Eq. (4.11)) emphasises its significance: it mandates Lorentz
invariance of the expansion coefficients L:B|p0 =ag.

Similar results hold for all other expansion coefficients and are obtained exactly the same
way: calculate prolongations of the second equivariance equation, evaluate at the Lorentz
invariant expansion point, and contract with the Lorentz generators. While this yields new
independent equations of order q by prolongation to order ¢+ 1 and subsequent projection,
it is important not to conflate the Lorentz invariance conditions on expansion coefficients
with integrability conditions from involution theory. The former are an artefact of the
expansion point with additional symmetries and are as such only valid exactly there, while
an integrability condition would not be restricted to singular points.

When solving the equivariance equations iteratively, we could just include the Lorentz
invariance conditions and solve them together with the original equations. A better way
is to exploit the nature of the additional conditions and implement Lorentz invariance of
the expansion coefficients before substituting the ansatz in the equivariance equations.
For example, working on the metric bundle, rather than including the 60 equations
agCP, " (K

n

(4.16)
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for the 10-dimensional ansatz ag, we implement Lorentz invariance by reducing ap to
the ansatz
ag=c-J¥n., (4.17)

with just one undetermined coefficient. Not only did we get by without adding equations
to the system, but we reduced the number of unknowns significantly.

A particular reduction we can perform right now is to set expansion coefficients with an

odd number of indices to zemE] Assuming that the number of indices on the geometry is

everﬂ this removes all coefficients with odd total number of derivatives from the ansatz,
p I

e.g.a, g =0.

4.4 Perturbative implementation of axiom Il

Before deriving consequences from the second axiom for the perturbatively constructed
solutions, we can already infer restrictions on the perturbation ansatz. As the matter
Lagrangians considered here depend on the geometry only locally, and so do the corres-
ponding principal polynomials, a matching gravitational polynomial must also depend on
the geometry locally, i.e. not via derivatives. In order to enforce this, we remove ansdtze
with a total number of derivatives greater than two and obtain the general ansatz

L=a+a,H*+a, H* +a,gH*H® + a, ;' H*H® +a,’ ,"HA HP (418)
+ (ZABCHAHBHC 4 aABCIHAHBHCI + aABquHAHBpHCq 4o '
As discussed before, all expansion coefficients are Lorentz invariant.

Now, consider a solution of the equivariance equations for the ansatz , truncated
at order q. The corresponding field equations will be of order ¢ — 1 and the principal
symbol, consequently, of order ¢ — 2. The second axiom of covariant constructive gravity
is implemented perturbatively by matching the expansion

0 1 -2
Prnar = (P + (Pha) s HA oo (PR 4 4 JHAY . HA2 4 0(q— 1) (4.19)
of the matter polynomial with the expansion

P grao = (Pyra) + (Pra) aHA + - 4 (P ) 4 a, JHAY o HA2 +0(g— 1) (4.20)

4For field bundles that are defined as proper subbundle of some “unrestricted” tensor bundle, the
number of indices refers to the rank of the latter.
5Otherwise, we would not be able to define a Lorentz invariant expansion point to begin with.
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of the gravitational polynomial. Note that a “match” does not necessarily mean that
both polynomials coincide, but rather that the causalities are compatible in the sense of

Def. (243

While the expansion generally follows from a closed form for the matter principal
polynomial, we only have the currently constructed orders of the gravitational Lagrangian
at our disposal when calculating terms from FEq. . The process to arrive at the
gravitational polynomial from there by expanding the definition , however, 1is
straightforward. We restrict our attention to the order g — 1 = 2 in the field equations,
which is the mazimum order we will consider for a concrete example later, but the
calculations can be generalised to higher orders if necessary.

The principal polynomial was defined in Def. as the quotient of a nonvanishing
entry from the order-s adjugate Q(k) corresponding to the symbol T' (k) and an expression
built from the generators X(i)(k) of the gauge symmetry,

QAl...ASBles
Vq...V s A’L i W |
€l Hs g1 Vs [Hizl X(Mi)] [Hj:l XO}JJJ

We start the expansion of Eq. (4.21)) with separating the perturbation orders in the vectors
X(n)(k) as

P(k) = (4.21)

X(py (k) = CAp™ NPk, + CAp™, HPk,, = (x)5 (k) + ()5, (W HP. (4.22)

From there, the denominator in Eq. ({&.21)), which will be abbreviated as fA1-AsBi-Bs (k)
in the following, can be expanded into

fAl.A.ASBl...BS (k) — (f(0)>A1“‘AsBl‘“BS (k) + (f(l))gl...AsBl...Bs (k)HC 4 0(2)_ (4'23)

For the numerator, we choose a submatriz T41AsB1Bs (k) of the principal symbol T (k)
which is of full rank, i.e. has a nonvanishing determmant.@ The determinant of this
submatriz will be (up to, possibly, an irrelevant sign) the entry of the adjugate matrix
entering the principal polynomial definition (4.21)). Recalling the expansion of the matrix

6This sounds like a hard problem in practice, but turns out to be quite feasible. While the matrices
contain symbolic entries given by undetermined expansion coefficients of the Lagrangian density and
covector components k,, ranks can actually be calculated using randomly drawn numeric values for
the symbolic entries. In the worst case, we introduce additional linear dependencies and obtain a
lower rank. If the rank obtained by such a calculation is maximal, on the other hand, we have nothing
to worry about and can trust the result. For the examples encountered later on, it is possible to
perform all calculations with arbitrary precision arithmetic on integers and use fraction-free Gaussian
elimination, yielding results without any numerical instabilities.
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4 Perturbative construction of gravitational theories

determinant

det(A + €B) = det(A) det(I + €A 1 B) = det(A)(1 + e Tr(A71B)) + O(e?), (4.24)
and expanding the submatriz of the principal symbol as

TArABrBy (k) = (T(O))Al..,AsBl...Bs(k> + (T(1))?71 Ag By B () HC + 0(2),  (4.25)
we arrive at the expansion of QAr+AsBr-Bs (k)

j:QAl"'AsBl"'Bs (k‘) — det(TAl”'AsBl“'BS (k))
= det((Tig) v+ B2 ()
_ A,.. A B;...
X [1+ (T(p)) - AePrBe (k)1 (T ) ) Yo (k)HC]  (4.26)
+ 0(2)
:(D<O))A1-~A531~~Bs (k) + (D(l))él...AsBl...BS (k:)HC
The last equality introduces abbreviations D o) and Dy for the expansion coefficients of

Q. In order to take the quotient of QQ and f, it remams to calculate the multiplicative
1nverse

fAl"'AsBl"'Bs (k)_l :(f<0))A1"'AsB1"'Bs (k>_1
X [1— (fo)) A AeBrBa(l) = (fq) et PP (k) HO) (4.27)
+0(2).

Finally, the product of Q and f~! yields the expansion
+P(k) = PO (k) + (PW)o(k)HC + O(2), (4.28)

of the principal polynomial with coefficients

(D(O))Al A BB ()

O) (k) =

PR G .
Py = Pa)et 2o = (et ) - PO |
(1) () —

(fr0)) - A oB1--Bs (k)

The thus obtained relevant order of the gravitational principal polynomial may be compared
with an expansion of the principal polynomial originating from the matter theory. Focusing
not on an exact correspondence, but rather on the perturbative version of axiom II to
second order,

Crat = Coraw +0(2) and V,,CV_ . +0

grav mat grav ( )

(4.30)
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restricts the perturbative solution of the equivariance equations to the causally compatible
sector.

4.5 The perturbative construction algorithm

Having elaborated in detail all the steps necessary in order to construct approximate
solutions to the equivariance equations and causal compatibility conditions, it is worthwhile
to take a step back and collect the results in the form of a concise algorithm.

Algorithm 2: Perturbative gravitational closure using covariant constructive gravity

Data: Geometry bundle E,,, 5 M, matter bundle E,, — M, Lagrangian

matter field theory on E .., @ JYE, ., with linear field equations, expansion

mat

order q¢ > 2, Lorentz invariant expansion point (N4,0,0)
Result: Truncated power series of the most general diffeomorphism invariant and
causally compatible gravitational Lagrangian field theory on J*E

compute the Gotay-Marsden coefficients for E .,

construct a basis for the Lorentz invariant expansion coefficients in the ansatz (4.18))
calculate prolongations up to order q of the equivariance equations ([2.29b])—(2.29d))
evaluate the prolongations at the expansion point N

solve the resulting linear system for the expansion coefficients

compute the expansion of the gravitational principal symbol T, (k)

choose a submatriz TA1-A4B1-Ba(k) of T yra(k) which is of full rank

compute the expansion (4.26)) of the submatriz determinant (the numerator)

grav

© 00w N O A W N

e e
N = O

compute the expansion of fAr+AsBr-Bi(k) (the denominator)

from the numerator and denominator, compute the expansion of P yran(k)
expand P, .. up to order q — 2

impose C,. ., =C,_ . andV, ..V, up to order q—2

grav mat = V grav

The perturbative approach has reduced most of the task of closing a matter field theory
with a diffeomorphism invariant and causally compatible gravitational theory to linear
algebra—at the cost, of course, that the resulting theory is only an approximation for
weak gravitational fields. This approrimation, however, is final in the following sense:
because the equivariance equations have been proven to be formally integrable, we can be
sure that the truncated power series obtained from the algorithm is as definite as it gets.
142] No prolongation of the equivariance equations to orders higher than q will yield new
restrictions on the expansion coefficients up to order q. It is still not possible to make a
statement about the convergence of the formal power series, so it remains unclear whether
this procedure would yield an exact solution if—somehow—performed up to ¢ = oco.
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4 Perturbative construction of gravitational theories

Also note that the expansions of the objects relevant for the calculation of P ., (k) in
steps 6-10 have only been stated explicitly for the case ¢ = 3. This does not take away
from the generality of the algorithm for higher orders, as the necessary expansions follow
the same pattern: essentially, one has to consider an expression of the form

det(A + €B)

4.31
a-+eb ( )

and expand to whichever order in € is desired.

Let us close with a list of the equivariance equations and their first prolongations evaluated
at an expansion point N = (N4,0,0). We will perform the construction algorithm for
the order ¢ = 3 in Chap. [0, so it shall suffice to limit ourselves to this order here as
well. We use the reduced power series ansatz Eq. . The unprolonged equivariance
equations evaluated at N are

0=a,C%", NP +ad],

4.32
— aA[CAB(nmJIp(IJNB' ( )
The first prolongations evaluate to
0=a,C%", +2a,5C"",, N + apdy,
0=a,/[CA", 0] —265J7" L), 1+ a5/ CA™ N+ ag’sn,, 4.33)
4.33

0=2a,% 9" "™ NO4a,ljC"," 2JP — 54 P60 ],
0=ag,'C" mer)q)Nc +a,Ct", 7,
and the second prolongations finally yield
0=2a,cC"g", +2a,5C"",, +6a,5cC4p", NP + 2a5:0;,
0=2a,"[CA5", 00 — d56064 ] +2a, 57 CAp" NP +2a 061,
0=ac,'[CA5",0] —205J7" L) 1+ 20,057 CAp" NP + ag 5707, (4.34)
0=2a,,",1C*, ™ NP 4a, J[C4," 2JP7 — 54,760 ],

0=2ap.,/C", me‘?)ND +ag oty g,
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perturbative constructive gravity

The results from the previous chapter provide us with a comprehensive algorithm for
the perturbative construction of gravitational theories. While consisting almost entirely
of linear algebra, the execution of the algorithm is not feasible without the help of
the computer. Therefore, we dedicate this section to the presentation of two Haskell
libraries: the first one, sparse-tensor, implements the generation of Lorentz invariant
perturbation ansitze. The second library, safe-tensor, is designed for safe and efficient
evaluation and solution of the equivariance equations.

5.1 Ansatz generation

A central finding of Chap. |4is that the perturbation ansétze inherit the Lorentz invariance
of the expansion point. This has important practical ramifications: for example, instead
of the 10 coefficients a 4 in the expansion of a metric Lagrangian, we can just work with
the one-dimensional Lorentz invariant coefficient ¢ - J4b7,,. That means, before even
considering the equivariance equations, the dimensionality of the ansatz can already be
reduced a lot.

It can be shown that a constant Lorentz invariant tensor, say T7°%¢¢, is comprised of
the Minkowski metric  and the totally antisymmetric symbol , such that for this
example

Tabcd —A. eabcd +B. nabncd +C- nacnbd +D. nadnbc. (51>

The coefficients A, B, C, D can be chosen freely, leaving us with 4 degrees of freedom
instead of 64. If the tensor shall have certain symmetries, e.g. the symmetries of an area
metric tensor, we find an ansatz by applying the symmetry projections to the generic
rank-4 ansatz (5.1), which yields in this case

C—D
Sabcd —A- 6abcd + T (nacnbd . nadnbc) ) (52)

1See e.g. |60, 61].
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5 Computational methods for perturbative constructive gravity

Two coeflicients A and % would parameterise such an ansatz.

In order to execute the perturbative construction algorithm, we need to find a basis for
the ansatze up to the desired perturbation order. This is, in principle, achieved by
listing all possible products of € and 7 and assigning to each term a unique coefficient.
Each product will contain at most one €, because the product of two e symbols amounts
to a linear combination of products of Minkowski metrics.

The ansétze we want to construct exhibit certain symmetries. Some stem from the field
bundle itself (e.g. the symmetry of a metric or the symmetries of an area metric), but
there are also symmetries inherited from second derivatives or products of perturbations.
Consider, for example, the area metric ansatz

aABCIHAHBHCI. (5.3)
Expressed using spacetime indices, this ansatz reads

ij rrabed h rypqrs
Aabed efgh pqrs H* Hefg H 27" (54)
Of course, the individual index sets abcd, efgh, and pqrs inherit the area metric symmet-
ries from the perturbation H. The indices i, j are symmetric due to the commutativity
of partial derivatives. The product of H®? and H¢/9" enforces a block symmetry of
the ansatz under the exchange of the index sets abed and efgh. We construct such an
ansatz like before, by applying the respective projections to the ansatz, which collapses
many individual terms with different coefficients to symmetric terms sharing a common
prefactor. Note that we deal with the mixed index positions by constructing a purely
covariant ansatz and raising the derivative indices using an 7 afterwards, e.g.
%b”Habz‘j = 0" dabi’j’ Habij' (5.5)
One thing has not been considered so far: it is not clear, a priori, whether the constructed

ansatze really form a basis. We need to be sure that a representation like Eq. (/5.1
uniquely determines the ansatz. In general, this will not be the case, as the ansatz

Tabcdef — Al . 6abcdnef + A2 X 6abcendf + A3 A 6(:Lbcfnde + A4 X 6abdencf 4.
5.6
S A16 . nabncdnef+ A17 . nabncendf_i_ ( )

abed

for a rank-6 tensor demonstrates. The 15 terms of the type €20¢4n¢f are linearly dependent

via the identity

0= 56[abcdne}f _ Gabcdnef o 6abcendf o 6abedncf o 6aecdnbf o Gebcdnaf- (57>

Because of this circumstance, we cannot consider two ansatz terms distinct just because

54



5 Computational methods for perturbative constructive gravity

their representations as linear combinations of € and 7 products differ. Rather, we
need to inspect the actual components of the tensors in order to make a decision. For
the ansatz in Eq. , this would mean that we evaluate the 4% components T*b¢def
which gives 4096 linear combinations of the 30 coefficients A, ... A3,. An ansatz without
linearly dependent terms would exhibit 30 linearly independent combinations, which
could be checked by calculating the rank of the 4096 x 30 matrix representing the linear
combinations—it should be equal to 30. In this case, it will be less than 30 because we
already know of at least one linear dependence. Gaussian elimination of the matrix tells
us which coefficients can be used as basis: exactly those whose corresponding column
contains, for some row, the first nonzero entry in this row. The other coefficients are
linearly dependent on the basis coefficients and can thus safely be set to zero.

Let us demonstrate this reduction of linearly dependent ansatz coefficients with the help
of an example. Pretend that, after evaluation of a tensor with four indices, the matrix

A B C D
0000 /1 1 —2 0
0101(0 2 —6 —4) (5.8)
0123\3 0 3 1

is obtained. In practice, matrices will often reduce to such simple forms, because they
contain many zero or duplicate rows that can be removed. Gaussian elimination may
yield (depending on the pivoting)

A B C D
3.0 3 1

(0 2 —6 —4> (5.9)
o0 o0 2/

from which we read off the linearly independent columns A, B, and D. The superfluous
ansatz coefficient C' can be set to zero.

The Haskell package sparse—tensozﬂ exports the module Math.Tensor.LorentzGener
ator, which implements the procedure outlined above. Haskell is a purely functional
language with lazy semantics by default. [62] In practice, this means that the programmer
does not modify state but composes expressions, which are evaluated only when asked
for. Consider, for example, a routine that sums up the elements of an array. First, let us
look at an implementation in C.

2See [5]. The source code is publicly available at https://github.com/TobiReinhart/sparse-tensor.
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int sum(int array[], int length) {
int result = 0;

for (int i = 0; i < length; ++i) {

result += arrayl[i];

// perform_side_effect(); <-- posstible side effect!
}

return result;

3

Listing 5.1: C implementation of the sum function.

Note how state—in the form of the result variable—is created, modified, and eventually
returned. At any point of the programme, it is possible to perform arbitrary side effects,
which could modify the input data, alter the local state (consisting of counter variable i
and result variable result), print something to the user’s screen, and so on.

In Haskell, on the other hand, a naiveﬂ implementation of the sum function reads quite
differently.

sum :: [Int] -> Int
sum xs = go O xs
where

go acc [] = acc
go acc (y:ys) = go (accty) ys

Listing 5.2: Haskell implementation of the sum function.

The sum function in Listing demonstrates how functional programming approaches
certain tasks. The input is a List of integers, a functional data structure that matches
either the empty list [] or an integer appended to some list, e.g. 5 : xs. Data is
consumed by matching on patterns and results are produced by building up expressions,
in this case repeated applications of the (+) function in line 5. It is, by design, impossible
to slip in side effects, which is why functions in Haskell are pure. This leads to the
important property called referential transparency, meaning that expressions can be
replaced by their values without changing the behaviour of the programme.

Because of its purity and, importantly, the powerful type system based on System F
[63], Haskell allows to write programmes that are both efficient and safe. As we will

3Performance considerations put aside.
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5 Computational methods for perturbative constructive gravity

see, the objects with which we are concerned have natural representations as functional
data types and the manipulations that need to be performed translate into efficient, pure
functions operating on these types.

We will only sketch the implementation of the ansatz generation procedure outlined
above. Performance optimisations like strictness annotations and unpacking are not
given explicitly. For all details, see Ref. and the documentation [5] of the package.
There are more differences between the presentation here and the production code, which
have been introduced deliberately for lighter reading.

As already mentioned, an ansatz has a representation as a functional data structure. Let
us begin with the individual 1 and € tensors in Listing [5.3

-- data type representing an \eta {a b} tensor

data Eta = Eta Char Char deriving (Eq, 0rd)
-- data type representing an \epsilon{a b c d} tenmsor

data Epsilon = Epsilon Char Char Char Char deriving (Eq, Ord)

Listing 5.3: Haskell representation of  and e tensors.

These types are, essentially, named wrappers for the index labels. We also need a type
that represents a coefficient. For our purposes, an integer prefactor (because we will
never perform division) and a variable label, also an integer, will suffice. See Listing [5.4]

-- data type representing a coefficient c * A_1
data Coeff = Coeff Int Int

Listing 5.4: Haskell representation of a scaled ansatz coefficient.

Now, the central type for the generation of ansétze is a list of trees, called forest. From
now on, we leave € tensors out of the picture. As they appear at most once, we will
always sort the trees such that an e—if present—is the root. In everything that follows,
a distinction has to be made when operating on the roots of ansatz trees, but everything
else concerns only trees of 1 tensors. With this caveat, the data type is as shown in
Listing [5.5

data Forest a b = Forest [(a, Forest a b)] | Leaf b
type Ansatz = Forest Eta Coeff

Listing 5.5: Haskell representation of an ansatz consisting only of 7 tensors.

We will always keep the forests sorted in two ways: the list of trees
[(Eta, Forest Eta Coeff)] is sorted, meaning that e.g. 7% comes before n°¢, but

o7



5 Computational methods for perturbative constructive gravity

also all 7 tensors appearing in the inner forest must come after the outer n tensor—so it
is forbidden to insert an 9%’ below a node n°?.

Eta 'a' 'b'
I
+--—— Eta 'c' 'd’
I I
| +--—— Eta 'e' 'f' - Coeff 1 1
I
+---— Eta 'c' 'e'
I I
I +--—— Eta 'd' 'f' - Coeff 1 2
I
+-—-- Eta 'c' 'f'
I
+--—— Eta 'd' 'e' - Coeff 1 3

Eta 'a' 'c'

+---—- Eta 'b' 'd'
| |
| +-——— Eta 'e' 'f' - Coeff 1 4
I
+--—— Eta 'b' 'e'
| |
| +--—— Eta 'd' 'f' - Coeff 1 5
I
+--—-- Eta 'b' 'f'
|
+-—--— Eta 'd' 'e' - Coeff 1 6

Listing 5.6: First 6 n-only terms of an ansatz tensor with 6 indices.

An example representation of the first 6 n-only terms for the ansatz
Al . nabncdnef 4ot AG . ,r]acnbfnde (510)

is given in Listing Such a sorted tree is easily traversed for updates, insertions,
deletions, et cetera. Also, the evaluation of specific components is greatly simplified:
Eta 'a' 'b' only has to be evaluated once, and very importantly, for components where
n® = 0, the whole tree can be discarded. Let us give one example for an operation on
ansatz forests, namely the sum of two anséitze in Listing
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5 Computational methods for perturbative constructive gravity

addAnsatz :: Ansatz -> Ansatz -> Ansatz
addAnsatz (Leaf coeffl) (Leaf coeff2) = Leaf (addCoeffs coeffl coeff2)
where

addCoeffs :: Coeff -> Coeff -> Coeff
addCoeffs (Coeff cl varl) (Coeff c2 var2)

| varl == var2 = Coeff (cl+c2) varl
| otherwise = error "adding distinct variables"
addAnsatz (Forest fsl) (Forest fs2) = Forest (addForests fsl fs2)
where
addForests :: [(Eta, Forest Eta Coeff)]

-> [(Eta, Forest Eta Coeff)]
-> [(Eta, Forest Eta Coeff)]
addForests [] ys = ys
addForests xs [] = xs
addForests (x:xs) (y:ys) =
case fst x “compare” fst y of
LT -> x : addForests xs (y:ys)
EQ -> let innerAnsatz = addAnsatz (snd x) (snd y)
in (fst x, innerAnsatz) : addForests xs ys
GT -> y : addForests (x:xs) ys
addAnsatz _ _ = error '"cannot add incompatible ansatze"

Listing 5.7: Sum of two ansatz forests.

The occurrence of error functions means that the function addAnsatz is partial, i.e. does
not compute an output for every input. This could be cured by refining the return type
of the function, but doing so is not really necessary for this use case, as the input is under
our control: we will neither add incompatible ansatze, nor will two leaves with distinct
variables be added. The curious reader may be referred to the next section, where we
actually introduce methods for catching such runtime errors already at the type level.

Ansatz generation proceeds as follows: starting with the empty forest, we consider each
possible ansatz term separately, one at a time, for example n®n°@n¢f. For each such term,
it is first checked whether the ansatz already contains the term, utilising fast lookup in
the sorted forest. If it is contained, we can discard the term and proceed with the next
one. If, on the other hand, the term is new, it is assigned a new variable, symmetrised,
and added to the ansatz.

When all possible ansatz terms have been added (or discarded, for that matter), the
linear dependencies are identified and removed, like explained before. For the linear
algebra part, the package hmatrix |64] is used together with a custom implementation
of Gaussian elimination that is tested for sufficient stability.

29



5 Computational methods for perturbative constructive gravity

For the handling of larger ansatze—up to 18 indices at the time of writing, which is
enough for fourth-order area metric Lagrangians—a second mode has been implemented.
In order for the matrix not to become too large, its is checked before insertion whether a
given symmetrised term would be linearly dependent on the already existing terms. This
entails keeping track of the evaluation matrix, as re-evaluating the ansatz tensors for each
term that is added would be too expensive. However, we do not have to perform Gaussian
elimination, because it is not necessary to identify which column would introduce a rank
defect—it is always the new one, because we ensure that the matrix rank is maximal
with our construction. So, fast and numerically stable singular value decomposition can
be used for computing ranks.

Overall, the second method is a bit slower for ansdtze with 14 indices (needed for third-
order area metric Lagrangians) than the first method, taking a couple of seconds to
compute on modern workstation hardware. For the fourth-order ansitze, however, it is
the only option. With all the optimisation work that has been done, like exploiting the
symmetries in order to reduce the number of terms that are even considered for insertion
or, likewise, reducing the number of index combinations to be probed (see [37] or the
source code and documentation [5]), the computation times have been reduced drastically.
The largest fourth-order ansétze with 18 indices are computed within about three hours,
using three gigabytes of memory. To the knowledge of the author, the methods developed
for the canonical approach [65] (to which the method presented here is applicable as well)
do not achieve this efficiency.

We will encounter the generated ansitze in Chap. [6] when constructing perturbative area
metric gravity. But first, let us walk through the second Haskell package developed in
the course of this thesis.

5.2 Equivariance equations

In principle, sparse-tensor provides the machinery for setting up and solving the
equivariance equations. It even contains some safeguards against composing tensors of
incompatible ranks, but not nearly enough in order to safely mirror Eqns. — in
a Haskell programme. For this purpose, the package saf e—tensorﬂ has been developed,
which implements index-based tensor calculus as known from mathematical physics.
safe-tensor makes it comparably easy and, above all, safe to perform all kinds of
operations on tensors, including transpositions of indices, contractions, symmetrisations,
tensor products, and tensor sums.

4See [6]. The source code is publicly available at https://github.com/nilsalex/safe-tensor, the
package is also available via hackage at https://hackage.haskell.org/package/safe-tensor.
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5 Computational methods for perturbative constructive gravity

Central for the design of the tensor type provided by the package is the generalised
rank of a tensor. The tensors we deal with, a good example being the Gotay-Marsden
coefficients C’AB”m, can be considered as multilinear maps over different vector spaces.
Applying this interpretation to C, we get a map

c: v

area

x V

area

xV*xV =R (5.11)

with V.

area
manifold.

being a fibre of the area metric bundle and V a tangent space to the base

Concrete calculations employ a basis (e;);_; ,, of V and a corresponding dual basis
(€),—1_, of V* where n denotes the dimension of the base manifold. Such bases carry
over to fibres hke Virea OF Vietric- Representations such as C45"  for C are understood
in terms of these bases. For the definition of the generic rank of these representations, we
assign each type of vector space a label, e.g. STH for Vand STArea for V, ... The indices
corresponding to each space and the dual complete the list of labels to the generic rank.

For the example of the Gotay-Marsden coefficients, we have

ank(CA" V= {(ST, 4, {n} , {m}),(STArea,21,{A},{B}}. (5.12)
lz:l:el dime;;lsion contr:/dvariant coxglji;nt

Note that the contravariant and covariant indices are each provided as set, i.e. they

cannot contain duplicates and have no specific orderﬁ It is permitted, however, for

the set of covariant indices and the set of contravariant indices to have a nonempty
intersection—these are candidates for contractions.

Let us consider more examples:

rank(n®) = {(ST, 4, {a,b},{})} (5.13)
rank(n®®) = {(ST, 4, {a,b},{})} (5.14)
rank(n ) = {(STSym2, 10, {}, {O} ] (5.15)
rank(C” N ) ={(ST,4,{p},{p}), (STArea, 21,{A, B}, {A})} (5.16)

The contraction of a rank is obtained by removing duplicate indices. If as a result there
are no indices associated to a vector space, it is also removed from the generalised rank.
Revisiting the previous example (5.16]), application of the contraction yields

contract(rank(C” ,? NA)) {(STArea, 21,{B},{})}. (5.17)

5Meaning: tangent space to spacetime.

8For this reason, we are allowed to sort the index lists in our implementation, which results in more
efficient operations.

"Index labels can be arbitrary!
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5 Computational methods for perturbative constructive gravity

The rules of the tensor calculus we are going to implement can now be stated using the
generalised rank of a tensor. Note that some rules already follow from the definition of a
generalised rank, but are stated again for completeness.

1.
2.

d.

Each tensor carries a generalised rank as defined above.

Transpositions of indices corresponding to the same set do not change the generalised
rank, i.e. rank(74?) = rank(74%*). Transpositions of indices corresponding to
different sets (that is, transpositions across different vector spaces or covariant and
contravariant indices) are not defined.

Contractions are always allowed. If for some vector space the intersection of
covariant and contravariant indices is nonempty, the rank is reduced as described.
Otherwise, a contraction has no effect.

. Taking the product of two tensors merges both ranks and is thus only allowed if

the two tensors do not share indices corresponding to the same vector space in the
same (upper or lower) position. For example

rank (749 SBP)y = {(ST, 4, {abp}, {a}), (STArea, 21, {4, B}, {})}. (5.18)

Adding and subtracting two tensors is only allowed if both ranks coincide. The
result has, of course, the same rank.

Listing [5.8| contains the definition of the Rank type as used by the safe-tensor package.
The function sane can be specialised to the type sane :: Rank -> Bool. It provides a
check for whether a given generalised rank satisfies all constraints and can be used to
decide whether a certain tensor can be defined or, more importantly, whether a certain
operation would yield a tensor of invalid rank and is thus forbidden.

Listing 5.8: Generalised rank type implementation in Haskell and the corresponding

validity check. The type Rank and the function sane are the foundation for
the tensor type to be defined later. Rank contains all the information of
a generalised rank: vector space labels, dimensions, and index lists. sane
ensures that the constraints are satisfied: the list of sub-ranks for the
individual vector spaces must be strictly ascending, but also the index lists
itself. The listing is printed on the next page. Note that the safe-tensor
package [6] does not export a module called Rank, but the definitions are
part of a larger module.
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5 Computational methods for perturbative constructive gravity

module Rank where

-- type for monempty lists: data NonEmpty a = a :/ [a]
import Data.List.NonEmpty (NonEmpty ((:[)))

-- type-level natural numbers and symbols

import Data.Singletons.TypeLits (Nat, Symbol)

-- vector space, contains a label vId and the dimension vDim
data VSpace a b = VSpace {vId :: a, vDim :: b} deriving (Ord, Eq)

-- indezx list, is either of mized type or purely co/contravariant
data IList a

= ConCov (NonEmpty a) (NonEmpty a)

| Cov (NonEmpty a)

| Con (NonEmpty a)

deriving (Ord, Eq)

-- generalised rank, a list of vector spaces with assoc. index lists
type GRank s n = [(VSpace s n, IList s)]

-- generalised rank used for type-level computations
type Rank = GRank Symbol Nat

—-— check whether a generalised rank is wvalid
sane :: (Ord a, Ord b) => [(VSpace a b, IList a)] -> Bool
sane [] = True
sane [(_, is)] = isAscendingIList is
sane ((v, is) : (v', is') : xs8) =
v < v' &% isAscendinglIlist is && sane ((v', is') : xs)

-- index lists are strictly ascending if the nonempty lists are
isAscendinglIlist :: Ord a => IList a -> Bool
isAscendingIList (ConCov x y) =
isAscending x && isAscending y
isAscendingIList (Con x) = isAscending x
isAscendingIList (Cov x) = isAscending x

isAscending :: Ord a => NonEmpty a -> Bool
isAscending (x :| [1) = True
isAscending (x :| (y : ys)) =

x < y && isAscending (y :| ys)
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5 Computational methods for perturbative constructive gravity

In order to make such decisions at the type level, we leverage the machinery provided
by the singletons package . With the help of the metaprogramming technique
Template Haskell [67], singletons serves us twofold: first it lifts the function sane
to type Sane :: forall a b. [(VSpace a b, IList a)] -> Bool, which may be
interpreted as a function at the type level.

We use the type Sane together with a second type TailR derived from the function
tailBEl for the definition of the Tensor type in Listing m

-- (...) skipping some language extensions
module Math.Tensor.Safe where
-- (...) skipping some imports

data Tensor :: Rank -> Type -> Type where

ZeroTensor :: forall (r :: Rank) v. Sane r ~ 'True =>
Tensor r v

Scalar :: forall v.
lv => Tensor '[] v

Tensor :: forall (r :: Rank) (r' :: Rank) v.
(Sane r ~ 'True, TailR r ~ r') =>

[(Int, Tensor r' v)] -> Tensor r v

deriving instance Eq v => Eq (Tensor r v)
deriving instance Show v => Show (Tensor r v)

instance NFData v => NFData (Tensor r v) where
rnf ZeroTensor = ()
rnf (Scalar v) rnf v
rnf (Tensor ts) rnf ts

instance Functor (Tensor r) where
fmap _ ZeroTensor = ZeroTensor
fmap f (Scalar s) = Scalar (f s)
fmap f (Tensor ts) = Tensor (fmap (fmap (fmap f)) ms)

Listing 5.9: The Tensor GADT and its instances.

The Tensor type is a so-called generalised algebraic datatype, short GADT, which means
that the type of each constructor can be specified explicitly. There are three of such
constructors:

8This function yields, for a nonempty rank, the “tail” of the rank after removing the first index.
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5 Computational methods for perturbative constructive gravity

e ZeroTensor yields the zero tensor for any valid Rank type. It is useful to introduce
this special value, because it allows to short-circuit a lot of calculations: for example,
when this constructor is encountered while calculating a sum, it can be ignored. For
a product, on the other hand, we can automatically return the result ZeroTensor
and need not inspect the second factor.

e Scalar as the base case for the recursive definition of a tensor wraps for the empty
Rank type ' [] a value of type v. It should be interpreted as the result of a “fully
applied” tensor.

» Tensor is the recursive case. It is constrained to valid Rank types and is existentially
quantified by the existence of a second Rank type, which is constrained to be
the “tail” of the first rank. For this constructor, the value amounts to a list
[(Int, Tensor r' wv)] of index values and associated tensors with lesser rank r'.
It should be understood as partial application of a tensor, by inserting all possible
basis vectors/covectors in the “first available slot” of the tensor (which is, after all,
a multilinear map) and collecting the resulting subtensors.

A few instances have been defined for the Tensor type. Eq and Show have generic
implementations, while the NFData implementation just amounts to recursive evaluation.
The Functor instance is the first manipulation we define for the Tensor type: it allows
to apply functions directly to the values of the tensor, for example scalar multiplication
as defined in Listing [5.10

scalarMult :: forall r v. Num v => v -> Tensor r v -> Tensor r v
scalarMult s = fmap (s*)

Listing 5.10: Scalar multiplication leveraging the Functor instance.

Tensors of the same rank are added by merging the tensors, performing a recursive addition
whenever an index is present in both summands. The requirement that both ranks
coincide is encoded as constraint on the types. See Listing for the implementation.
In Listing , the addition of two tensors is demonstrated using the interactive rep]lﬂ
ghci. The tensor delta_ab represents the Kronecker delta 6, while delta_ac represents
02. Consequently, the expression delta_ab &+ delta_ac is ill-typed. On the other
hand, delta_ab &+ delta_ab is well-typed and yields the expected result 2 - 5.

9read-eval-print loop
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(&+) :: forall (r :: Rank) (r' :: Rank) v.

((r ~r'), Num v) =>

Tensor r v -> Tensor r' v -> Tensor r v
(&+) ZeroTensor t =t
(&+) t ZeroTensor =t
(&+) (Scalar s) (Scalar s') Scalar (s + s')
(&+) (Tensor xs) (Temsor xs') = Tensor xs''

where
xs'' = unionWith (&+) xs xs'
unionWith :: (a -> a -> a) -> [(Int, a)] -> [(Int, a)] ->

[(Int, a)]
unionWith f [] ys = ys
unionWith f ys [1 = ys
unionWith f ys@((iy,vy):ys') zs@((iz,vz):zs') =
case 1y “compare” iz of

LT -> (iy,vy) : unionWith f ys' zs

EQ -> (iy,f vy vz) : unionWith f ys' zs'

GT -> (iz,vz) : unionWith f ys zs'

Listing 5.11: Recursive addition of tensors.

> let delta_ab = delta :: Tensor '[ '( 'VSpace "ST" 4, 'ConCov ("a"

o o) e o'l '[1))] Int

> let delta_ac = delta :: Tensor '[ '( 'VSpace "ST" 4, 'ConCov ("a"
o oty (e il "[))] Int

> delta_ab + delta_ab == fmap (2%) delta_ab

True

> delta ab + delta_ac
<interactive>:6:1: error:

e Couldn't match type ‘"b"’ with ‘"c"’ arising from a use of ‘&+’

e In the expression: delta_ab &+ delta_ac

In an equation for ‘it’: it = delta_ab &+ delta_ac

Listing 5.12: Addition of tensors in the interactive repl ghci. The addition of two tensors
with the same rank produces a result, while addition of tensors with different

ranks yields a type error.
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More intricate operations make use of the second feature from the singletons package,
which are the singleton types that are generated for our lifted rank types. Singleton
types are inhabited by only one value. As such, they are able to bridge the gap between
compile time and run time, which are usually separate phases in Haskell. See [66] for
more details. With singletons, we can implement e.g. typesafe tensor multiplication as
sketched in Listing [5.13

(&*) :: forall (r :: Rank) (r' :: Rank) (r'' :: Rank) v.
(Num v, 'Just r'' ~ MergeR r r', SingI r, SingI r') =>
Tensor r v -> Tensor r' v -> Tensor r'' v

(&+) = mult (sing :: Sing r) (sing :: Sing r')

mult :: forall (r :: Ramk) (r' :: Ramk) (r'' :: Rank) v.

(Num v, 'Just r'' ~ MergeR r r') =>

Sing r -> Sing r' -> Tensor r v -> Tensor r' v -> Tensor r'' v
mult _ _ (Scalar s) (Scalar t) Scalar (s*t)

mult _ _ (Scalar s) t@(Temsor _) = fmap (s*) t
mult _ _ tO(Tensor _) (Scalar s) = fmap (*s) t
mult sr sr' (Tensor ms) (Tensor ms') = _ -- omitted

mult sr sr' ZeroTensor ZeroTensor =
case saneMergeRProof sr sr' of
Sub Dict -> ZeroTensor
—-— more ZeroTensor cases omitted

Listing 5.13: Typesafe tensor multiplication implemented using singletons. The ranks
must satisfy a SingI constraint. With this constraint, the singleton values
can be retrieved and passed to the implementation of the multiplication
function.

The tensor multiplication makes us of a new function, mergeR, which takes two ranks
and returns the rank of the tensor product—if the ranks allow to take this product.
Lifted to the type level, this encodes the requirement that the ranks be compatible in
the constraint 'Just r'' ~ MergeR r r'. The SingI instances are used in order to
retrieve the singleton values corresponding to the rank type. These are passed to the
implementation function mult.

The simplest cases of the mult function are the cases matching on ZeroTensor—they
just yield a ZeroTensor. However, it first has to be proven that the rank r'' satisfies
the constraint Sane r'' ~ 'True. This is the job of the pattern match on the result
of saneMergeRProof sr sr'. For the time being, this proof (and all other proofs) are
implemented by coercion, trusting in this case the function mergeR. In principle, it is
possible to have Haskell check such proofs, although its capabilities in this regard are
limited, as Haskell is not total.
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5 Computational methods for perturbative constructive gravity

The product of two Scalar values is equally as simple, as it yields the product of the
wrapped numerical values. Multiplication of a Scalar with a Tensor and wvice versa
amounts to scalar multiplication introduced above. For the remaining product of two
Tensor values, which is omitted above because it is quite lengthym, we inspect the
foremost indices of both tensors. If the left tensor has a “lesser” index, we descend into
the subtensors of the left tensor and multiply each subtensor with the right tensor. If
the foremost index of the right tensor is “lesser”, we proceed the other way around.
Eventually, one of the base cases matching on a Scalar is reached.

Transpositions of indices and contractions are implemented similarly by descending into
the relevant subtensors and manipulating the functional data structure appropriately.
With the module Math.Tensor.Basic, the safe-tensor package exports all necessary
basic tensors for setting up the perturbative equivariance equations for metric
and area metric theories—including Kronecker deltas, bundle intertwiners, Gotay-Marsden
coefficients, Minkowski metrics, and Levi-Civita symbols.

Because handling the refined tensor type defined in the Math.Tensor.Safe module is at
times quite unwieldy, the package also provides an opaque variant. Values of this opaque
type are constructed from a tensor that has a generalised rank, but the rank cannot be
extracted—it is hidden. The opaque type is exported by the Math.Tensor module, see
Listing for the definition.

-— (...) skipping some language extensions
module Math.Tensor where
-- (...) skipping some imports

data T :: Type -> Type where
T :: forall (r :: Rank) v. Singl r => Tensor r v -> Tensor r v

Listing 5.14: Opaque tensor type with existentially quantified rank.

With the opaque type T, tensor operations are always well-typed, but may not always
yield a result because of rank mismatches. This is implemented utilising the MonadError
type class, for example in the definition of tensor addition presented in Listing

10See [6] for the complete implementation.
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(.+) :: (Eq v, Num v, MonadError String m) => Tv -> T v ->m (T v)
(.+) ol 02 =
case ol of
T (t1 :: Tensor rl v) ->
case 02 of
T (t2 :: Tensor r2 v) ->
let srl = sing :: Sing ril
sr2 = sing :: Sing r2
in case srl J~ sr2 of
Proved Refl ->
case sSane srl %~ STrue of
Proved Refl ->
return $ T (t1 &+ t2)

Disproved _ ->
throwError "Rank of summands is not sane."
Disproved _ ->

throwError "Generalised tensor ranks do not match."

Listing 5.15: Addition of opaque tensors.

Finally, let us discuss how equivariance equations can be set up and solved with this
package. There is a compatibility layer safe-tensor-sparse-tensor-compat [6], which
uses the ansatz generation capabilities from sparse-tensor to provide ansétze for the
construction of area metric gravity Lagrangians. The scalar type of these ansétze is not
a plain numeric type but amounts to linear combinations of the ansatz coefficients. Data
types and functions dealing with such linear combinations are provided by the module
Math.Tensor.LinearAlgebra. Using the ansitze, the predefined basic tensors (such as
Kronecker deltas, intertwiners, etc.), and the various tensor operations, all equivariance

equations can be composed as given by Eqns. (4.32)—(4.34)).

Having composed the equations, it is just a matter of evaluating all components in order
to retrieve the linear system that determines the ansatz coefficients. With all basic
tensors, intertwiners, and Gotay-Marsden coefficients being purely rational, the linear
system itself contains only rational numbers. safe-tensor can also perform the last step,
which is solving the linear system. This is done using fraction-free Gaussian elimination
using 64-bit integers. FEach solution is verified afterwards using rank computations
by numerically stable singular value decomposition—eliminating worries that integer
overflows may have invalidated the result.
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6 Application: gravitational radiation
from birefringent matter dynamics

So far, we have developed the general framework of covariant constructive gravity and
derived a perturbative equivalent. A few examples illustrated the constructions, but the
presentation focused on broad applicability to various geometries, without any specific
bundle or matter theory in mind. In this chapter, we shift our focus and consider
in depth the application of the framework to generalised linear electrodynamics, a
birefringent generalisation of Maxwell electrodynamics introduced in Chap. |3l Applying
the perturbative construction procedure to third order yields gravitational field equations
to second order. We will carefully analyse a 341 split for the linear part of this theory and
restrict to a certain sector with, in a very specific sense, physically sane phenomenology.
Afterwards, we solve the two-body problem to first order and obtain the orbits of a
binary system in area metric gravity. Building up on this solution, the second order
of the field equations is used to derive the emission of gravitational radiation from the
binary system and the radiative loss, which causes spin-up of the system. The binary
star subject to area metric gravity turns out to exhibit qualitatively new behaviour as
compared to Einstein gravity, e.g. additional massive modes of gravitational radiation
and a modification of Kepler’s third law.

To a large extent, the work presented in this chapter has been published as Ref. [4]. The
results on radiation loss are not part of this publication.

6.1 Construction of third-order area metric Lagrangians

The matter theory in question is generalised linear electrodynamics (GLED) as defined in

Def. with the Lagrangian density
Lappp = waG™ FyFeg,

where we choose without loss of generality the scalar density

1 —1
(,UG — <ﬁ€adeGade> . (61)
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6 Application: gravitational radiation from birefringent matter dynamics

The principal polynomial of GLED 1is quartic and takes the form

1
j)GLED<k> = _ﬂwé’GmnpqerstuGmnraGbpschqtukakbkck}d.

As appropriate Lorentz invariant expansion point constructed from the Minkowski metric
n, we already determined in Fxample

NA — J;})Cd(nacnbd - 77adnbc + Eabcd). (62)
Before solving the system of equivariance equations perturbatively around N, let us
reconsider the reduced power series ansatz . In addition to dropping terms with
a total number of derivatives that is odd or greater than 2, and dropping non-Lorentz
invariant expansion coefficients, we can also discard the linear term a 4 H A This term
would yield a constant in the Euler-Lagrange equations, causing the flat expansion point N
to no longer constitute a solution to the vacuum field equations. However, the perturbation
ansatz stipulates that we perturb around a solution of the field equations. Since it is
obvious that Eq. implies from vanishing coefficients a 4 that also the coefficient a
vanishes, we readily drop both and make the further reduced ansatz

L=a, H4
+ CLABHAHB + aAquHApHBq + aABIHAHBI
+a,pcHAHPHC + a,pg’ T HAHP,HE +a,p ' HAHPHE,
+ (9(H4).

(6.3)

6.1.1 Solving axiom |

Step one of the perturbative construction algorithm consists in computing the Gotay-
Marsden coefficients for the gravitational bundle. For area metric gravity, we found in

Sect.
A n A
Cogt, = 4I§qu

pgrm>

which followed from the general result (2.27)) for purely contravariant tensor bundles.

Proceeding with step two, we need to construct a basis for the Lorentz invariant expansion
coefficients

(a4 aup 0,5 aup" anpeans’t aapc’) (6.4)
in the ansatz (6.3)). This task is solved using the Haskell library sparse-tensor [5]
discussed in Chap. [, The result is a basis of dimension 237, enumerated in full in

Appendiz [A] and summarised in Table[6.1 It should be emphasised that the requirement
of Lorentz invariance, which is not a direct stipulation but follows via the equivariance

71



6 Application: gravitational radiation from birefringent matter dynamics

coefficient dimension gravitational constants

a,! 3 (€35, -+ €40)
aap 6 (€1y..v,€6)
a5 15 (€1 .eey€97)
a,p 16 (€99 .- €37)
AaBC 15 (€415 €55)
a5 c" 110 (€565 -+ €165)
appc’ 72 (1665 -+ » €237)

Table 6.1: Summary of the Lorentz invariant expansion coefficients for the area metric
gravity ansatz ([6.3) obtained from the Haskell library sparse-tensor [5|. The
dimension is the number of linearly independent basis tensors returned from
the computer program. Assigning labels from 1 to 237 to all basis tensors,
an ansatz is represented by real numbers e, ... e55; using its unique basis
decomposition. These numbers parameterise the gravitational theory and
are thus referred to as gravitational constants. For a complete picture of the
decomposition of ansdtze using basis tensors, refer to Appendix [A] or the
computer code in Ref. [7].

equations from a physically motivated assumption about the expansion point, drastically
reduces the dimensionality of the ansatz from

21-22 84-85 21-22-23 21-22 84 -85
+21-210 + 5 + + -210+ 21 -

210 + 6 5

= 133672

to only 237. In principle, the correctness of the ansatz can be verified by showing that it
is the most generic solution to the ansatz equations|]| All we have to show is that the
dimensionality of the ansatz equals the corank of the linear system of ansatz equations.
For the ansatz including third-order coefficients, the system is quite large—considering
that the coefficient space is already of dimension 133672—such that, on standard hardware,
the rank cannot be computed naively by storing the matriz in memory and using methods
like singular value decomposition or fraction-free Gaussian elimination. It is rather easy,
however, to use the aforementioned methods and work out the corank of the linear system
determining the Lorentz invariant ansatz coefficients to second order, as the dimension
of this ansatz space is only 210 + L222 +21-210+ 842& = 8421. Confirming the number
of obtained basis ansdtze up to second order, the corank of the corresponding system is
indeed 40.

With the 237 ansatz coefficients at hand, solving the equivariance equations as required

'Eq. (#.15) and similar.
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6 Application: gravitational radiation from birefringent matter dynamics

for step five is only a matter of inserting the ansatz in the system and its first two
prolongations as displayed in FEqns. f, extracting a system of linear equations
for the gravitational constants, and solving this system. This task is again performed
using efficient computer algebra, implemented in the Haskell library safe-tensor, which
is introduced in Chap.[3. The procedure is roughly as follows: a compatibility layer with
sparse-tensor is used in order to construct the ansatz tensors and make them available
as Tensor types with generalised rank (see Sect. . Together with predefined tensors
like Kronecker deltas, intertwiners, Gotay-Marsden coefficients, or the Minkowski metric,
the ansatz tensors are used in order to construct the (prolonged) equivariance equations
evaluated at N. FEach tensorial equation is a value of type Tensor and, as such, can be
evaluated into a list of its components. Every component is a linear equation for the
237 gravitational constants. Collecting all components for all tensorial equations, we
obtain a matriz representing the linear system for the constants ey ... eqs7. The system is
small enough to be brought into reduced row echelon form applying fraction-free Gaussian
elimination and backward substitution using 64-bit z'ntegerﬂ which yields a solution that
parameterises the constants with a few remaining indeterminate gravitational constants.
As an example for the process, let us walk through the solution for the linear expansion
coefficient aAI.

Example 6.1.1 (solution of the equivariance equations to first order). Having set a4, = 0,
the remaining expansion coefficient for the linear order is aAI, which is determined in
part by the second unprolonged equation (4.32). A suitable basis for this coefficient is

a“AI = Jjde’]z{q [61 ' nacnbdnpq + €o - 77ac5zz:5§ + €3 - eobbcdnpq] (65)
with three gravitational constants ey, ey, es. Inserting this ansatz into the unprolonged
equation

0=a,lc*y" JPONB = T (6.6)

yields a tensorial equation 0 = T'P9 with 256 components. Each component is of the
form

The collection of all components is a system of 256 linear equations for three variables.
A lot of these equations are redundant, because they are trivial or linearly dependent. A
naive reduction by eliminating trivial equations and choosing only one representative for
equations that are multiples of each other already reduces the system to the single equation

0 — 261 + 62 + 463. (68)

Setting e.g. e = —2e; — 4es solves the equivariance equation for the coefficient aAI,

2Exploiting the observation we made earlier that, using intertwiners with purely rational components,
all coefficients in the system remain rational.
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leaving it parameterised by two gravitational constants e; and es.

Applied to the whole system of equivariance equations, we obtain a parameterisation
of the solution (displayed for the first two orders in Appendiz @ by 50 independent
gravitational constants. A subset of 16 constants governs linearised area metric gravity
via the quadratic Lagrangian density, from which—as we will encounter later—only
10 independent linear combinations play a réole for the Euler-Lagrange equations. The
procedure outlined here is implemented in Haskell using the aforementioned libraries.
Source code and results are published as Ref. [7].

6.1.2 Solving axiom Il

The pedestrian approach towards implementing causal compatibility of the just constructed
gravitational theory with GLED s to carefully execute steps 6-12 of the perturbative
construction algorithm. This way, we obtain an approximation of the area metric gravity
principal polynomial and have to match the causal structure with a first-order expansion
of the GLED principal polynomial. While entirely feasible, this approach is less illustrative
than the constructive approach we employ instead. The underlying realisation behind this
technique is that the diffeomorphism invariance of the gravitational theory dramatically
restricts the possible principal polynomials. In fact, we will see that for third-order area
metric Lagrangians, the admissible principal polynomials are already causally compatible
with the corresponding expansion of the GLED polynomial. There is no causality mismatch
left to be fixed.

To this end, recall the GLED polynomial (3.21), which using the scalar density (6.1)
assumes the form

1
dGabcd ) 2 Emn}oq €rstu

Parep(k) = — GGGtk Ry k k. (6.9)

i (Eabc

Ezxpanding this expression to linear order in the perturbation yields

1 1 2
P kY=<|1——e(H k k —H(k k H?
aenlh) = { [1 = gge )| ko) + 5 H R | w00
= [Pl + O(H?),
where the abbreviations
e(H) = e pogH®? and H(k,k) =n, H"kk, (6.11)
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6 Application: gravitational radiation from birefringent matter dynamics

have been introduced. In the following, we will also make use of the contraction
TI(H> = nacndeade' (6]‘2>

Up to first order, we find that the GLED polynomial factors into the square of a metric
polynomial Pé‘ngE?‘D' This has a remarkable consequence: for weak gravitational fields,
where the approximation to first order is sufficiently good, the physics of point particles
adhering to GLED dynamics is indistinguishable from the Maxwellian setting with a

metric perturbation h by virtue of the identification

hob = [1 - 21—46(H)] " + %ncdﬂacbd — (P50 (6.13)
This effect only holds in the limit of geometric optics—the GLED field equations do not
reduce to Mazwell equations with a metric perturbation. Consequently, even to first order
in the area metric perturbation, nonmetric effects can be observed. An in-depth study
of classical and quantum electrodynamics on weakly birefringent backgrounds based on
exactly this realisation has been conducted in Ref. [30)].

We will now proceed to show that the possible principal polynomials arising from third-order

area metric gravity Lagrangians as constructed in the previous section are only mildly
more general than the effectively quadratic first-order GLED polynomial (6.10). This
issue is approached by first considering the corresponding Euler-Lagrange equations.

Proposition 6.1.2. Let £ " M be a sub-bundle of some tensor bundle over M. Consider
a Lagrangian field theory on J*7 that is degenerate in the sense that the Euler-Lagrange
equations are of second derivative order, i.e. are also defined on J?m. If the Lagrangian
field theory is diffeomorphism invariant with respect to the diffeomorphism action on
the second jet bundle, it follows that the Euler-Lagrange equations are diffeomorphism
equivariant. In particular, a local representation of the Euler-Lagrange equations

exhibits the transformation behaviour

0By =—E487, — EgCB,n ¢m (6.15)

7n,

where CBA”m are the Gotay-Marsden coefficients corresponding to the field bundle. In
other words, the Fuler-Lagrange equations transform as tensor density of weight 1.

Proof. The claim follows from expanding the left-hand side of Eq. (6.15)) as
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then replacing E 4, with its definition (6.14)) and simplifying the result using the equivariance
of the Lagrangian density L. Rather than performing this tedious calculation, we can
alternatively consider the geometric definition of the Fuler-Lagrange form and
deduce that it must transform covariantly (for a contravariant tensor bundle) with density
weight of one, i.e. according to the local expression . ]

This transformation behaviour carries over to the principal symbol of the Fuler-Lagrange
equations, which is also a tensor density of weight 1.

Proposition 6.1.3. Consider the same Lagrangian field theory as in Prop.[6.1.3. The
principal symbol
TAB(k> = EA:BIqukpkq (6'17>

of the corresponding Euler-Lagrange equations E 4, where k € T* M denotes a covector,
transforms as a tensor density of weight one, i.e. an infinitesimal diffeomorphism acts as

55TAB<I<?) = _TAB(k>§,TZz - TCB(k’)CCAnm nﬁ - TAC(k>CCBnm TZ (6-18)

Proof. The idea of the proof is as before: we insert the just proven transformation
behaviour of the Euler-Lagrange equations E 4 and of covectors k, which is

Ocky = =k, 870, (6.19)
into the transformation

0cTap(k) = (Typ(k)).coeu® + (Tap(k)).o"0cuC, + (Tap(k)).o'0cu’;
T yp (6.20)

+ SRR ek,

This time, the calculation is rather trivial and the claim (6.17) follows almost immediately.
[

We are now in a position to prove the first part of the central result, which is that the
principal polynomial of area metric gravity is a scalar density. Note that we restrict our
considerations to the case of a principal symbol that is independent of the derivatives of
the derivatives of the gravitational field, as otherwise the causality could not be matched

anyway (see Sect. [{.4)).

Theorem 6.1.4. Let m be the area metric bundle. Consider a degenerate Lagrangian
field theory with a principal symbol that is independent of the derivatives of the area
metric field. The principal polynomial P(k) corresponding to the symbol, as defined in
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Def. is a scalar density of weight 57, i.e. transforms locally under infinitesimal
spacetime diffeomorphisms as

5eP(k) = =57 - P(k)E™,. (6.21)

Proof. From the transformation behaviour of area metric tensors and covectors, it follows
that an infinitesimal diffeomorphism acts on generators X{})(k;) = C’AB”iuBk:n of gauge
transforms as

55Xé)(k) = C’ABnmX ( )& — )(k)fT (6.22)

Now calculating the transformation behaviour of the pm’ncz’pal polynomial numerator
QA1-AaBr- By (dropping the covector k from the notation) we obtain

4
5€QA1‘..A4Bl‘..B4 _ 5£ 9" detT
:55 21! Al A216B1 BQITA 5Bs * TA21321
1
A Ay . B:...B
17! e 21[5§TA5B5]TAGBG "'TAlezl (623)
=_17. 5€QA1...A4B1...B4£%
17
17,&1 AnChy " P PaTy g Ty, p &

17
A LA B,..B B n
— — A AneBiBa By n T o

17! TA21BQ1£»TZ'

This is further simplified using the identity 0 = elA1-A21 XAl from which we derive after
a few index relabellings

0=22.¢eA-AaC ] " EBI“'B21TAB5TAGBG"'TA21321€%

m

4 ALA An B,..B m
=17 - etr-Aa () A, '€ 1 leAB5TAGBG“'TA21BQ1£v”

n A ...Ay; .B,..B m
—cA et 21TAsBs TA21BQ1£,H

AA,A3A Ay A1 M B ..B m
4 234 21() A mE 1 21TA5BSTAGBG "'TA21321§,n (624)

A AALA,. A Ay m _B.,.B m
+ e 83 A () A mE ! 21TA5B5TA6B6 ...TA21321§’n

A A, AA,. A A3 n  _B...B m
+€ 1422 4 210 A mE 1 QITASBSTA6B6 '“TAngglg,n

A A ALA. A Ay n _B,..B m
+ et A O T €T Py g Ty gy Tay, B, S

Applying the same technique to the index set [By ... Boy B] and carrying out the contraction
C’AA”m = 21-97, the identity can be applied to the second and third terms in Eq. (6.23)),
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6 Application: gravitational radiation from birefringent matter dynamics

such that we finally obtain
5£QA1...A4B1...B4 — _5K9. QAI...A4Bl...B4§Tn
A AA,A;AB,; ... A A AA;ALB, ...
_|_C’1”Q 2 A3 Ay B, B4€W+C2HQ1 3A4B; 34577771
+CA3 n QA 1A, AA,B; .. B4£m+CA4 n QA1A2A3ABl...B4£m (6.25)
+CBl n QA1 A4BBQB3B4§m+CBz n QAl ALB, BBBB4€m

+6‘33 n QAI...A4BIBQBB4€TZ_|_CB4 n QAl A,B,B, BBBgm_

A similar calculation, this time using the identity 0 = e 919239 Xl yields the trans-
formation of the denominator fArAaBiBa

4
A, B.
5€fA1...A4B1--~B4 = (55 Eal,,,a4€b1...b4 H X(ali)x(bz)

2
—_9. fA1-~~A4Bl-~~B4£%
+CA1 n fAA2A3A4Bl...B4£’mn+CA2AnmfA1AA3A4Bl...B4€m (626)
+CA3 n fAlAzAA4Bl...B4£m_|_CA4 n fAlAZASABl...B4€m
+CBl n fAl A4BB2B3B4§m+CBz n fAl AL B, BB3B4£m

+CBs n fAl AyB, B2BB4£m_|_OB4 n fAl A,B,; B2B3B§m.

Putting both numerator and denominator together proves the claim
5§T(k) = —=57-P(k)E, (6.27)
]

An equivalent formulation of the fact that P (k) is a density of weight 57 is that the
symmetric coeﬁ?cientﬂ P10 constitute a tensor density of the same weight, i.e. live
on the bundle of symmetric tensor densities of contravariant rank 26 with weight 57. For
this geometry, the equivariance equations on the “zeroth jet bundle” (since the polynomial
must not depend on derivatives of the geometry) are

a1.-Q26  _
P m =0,

)

p- aze CA — _57. Pal...a%dgl 426 - P"(al'““%égfﬁ).

m

(6.28)

The second part of the central result follows from these equations. All we have to do is
construct the perturbative solution to first order and see that it is impossible not to have

3Recall that the principal polynomial for area metric gravity is homogeneous and of degree 26.

78



6 Application: gravitational radiation from birefringent matter dynamics

the causality match GLED causality to the same order.

Theorem 6.1.5. Let P, be the principal polynomial of area metric gravity as considered
in Thm. |0.1.4. To first order in the expansion G = N + H of the area metric field,
where N is the Lorentz invariant expansion point , P is equivalent to the GLED
principal polynomial P o pp in the sense that

area

P area = [WPG ) + O(H?), (6.29)

area

where w denotes a density of weight % on the area metric bundle and P(GSLE)D is the

expansion of the GLED polynomial to first order. In particular, to first order in the
perturbation, both principal polynomials describe the same null surfaces and hyperbolicity
cones.

Proof. Knowing that the principal polynomial of area metric gravity transforms as a
density of weight 57, we can construct possible candidates by solving the equivariance
equations (6.28)). To this end, we make the ansatz

P area(k) = n(k, k)2
+ A-e(H)n(k, k)3 + B-n(H)n(k, k) +C - H(k,k)n(k, k)2 (6.30)
+ O(H?).

An overall factor would be irrelevant, so it has already been dropped when setting the
coefficient of the constant term to 1. The generality of the ansatz can, as always, be
verified by calculating the corank of the ansatz equations, which will yield /—the number
of ansatz tensors in Eq. . FEvaluating the equivariance equation at the ansatz and
contracting the 26 symmetric indices with covector components, for the sake of a cleaner
presentation, yields an equation where we can cancel a common factor of n(k,k)*2. The
remaining equation has a covariant and a contravariant spacetime index, such that a
decomposition into the trace

1
0=[24A+12B + 3C + 57 — 73]5;2 (6.31)
and the tracefree part
1
0 = [4C — 26][57"* 8%, K Ky, — 0k, 1) (6.32)

lends itself for a first attempt to retrieve scalar equations from the system. As it turns
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out, these two equations are already maximal. Parameterising the solution with B yields

?area(k) = 77(k‘, k)13
= B2 )Y B () — ()™ + 5 H By )
+OU) (6.33)
13
N {[1 N 123~513€(H) * % (77(H) - %€(H>>] 0k, k) + %H(k:, k)}

where for the last equality we completed the thirteenth power as

1 \13
l+e= (1 + E6> + O(?). (6.34)
In order to relate the quadratic polynomial that determines the first order of P ,..(k)

to ?(GSL%D via a scalar density, as claimed in Eq. (6.29), we consider the equivariance
equations

57 6.35
w.ACH " = =22 w0}, (039

for such a density w of weight ‘;’—g This time, the Lorentz invariant ansatz is just
w=1+A-¢(H)+ B-n(H)+ O(H?) (6.36)

and reduces the equivariance equations to the single condition

24A 4+ 12B = —?—;, (6.37)

such that the most general scalar density of weight El’—g is to first order given by

o7

— el H) + Blg(H) — Se(H)] + O(H?). (6.38)

2

The result now follows from multiplication of Péfei) with w, which yields exactly the
area metric gravity polynomial . To first order, the principal polynomial of area
metric gravity is determined by a quadratic polynomial which reduces to the quadratic
first-order GLED polynomial up to a factor. Because such an overall factor is irrelevant
for vanishing sets and hyperbolicity cones, the polynomials must be considered identical
for the purpose of comparing their causal structure. ]

w=1
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6 Application: gravitational radiation from birefringent matter dynamics

Having fized the causality of third-order perturbative area metric gravity—by proof, rather
than by explicit calculation—the construction procedure up to this order is completed.
Third-order area metric gmm’tgﬂ is determined by the ansatz which is constructed from
the Lorentz-invariant basis tensors —. From the 237 gravitational constants—
the coefficients in the basis expansion—¥50 constants turn out to be independent, 10 of
which govern the linearised field equations. The relations between gravitational constants
are collected in Appendiz[B. In the following, we will examine the linear theory, which
forms the basis for predicting first-order and, later on, second-order effects of area metric
gravity.

6.1.3 3+1 decomposition

As remarked in Sect. the expansion point should be an area metric of a certain
subclass in order to guarantee hyperbolicity of the GLED principal polynomial—which
encompasses, by the previously proven result, hyperbolicity of the second-order area metric
gravity field equations. Indeed, N is of subclass I according to the classification in Ref.
[68]. Thus, we can turn to a 3+ 1 formulation, starting with the definition of a slicing.

Definition 6.1.6 (slicing). Consider a spacetime manifold M of dimension four. Any
diffeomorphism
¢: X XR—->M (6.39)

from a three-dimensional spatial manifold ¥ and the reals to M is called a slicing of M.

Such a slicing always exists, as we only consider matter theories that have a well-defined
initial value problem. It is, however, not unique: any diffeomorphism : M — M yields
a new slicing ¢ = o ¢. Since the spatial manifold is of dimension three and not four,
working with slicings comes with new indices running from one to three. These will be
denoted with lowercase Greek letters, while lowercase Latin letters represent spacetime
indices running from zero to three.

Every tangent space Ty s )M has a holonomic basis

0 o 0
prh (a%) (6.40)

where the vectors on the right are understood as pushforwards of holonomic basis vectors
on T, X and T\R. The same construction yields a holonomic basis

dz® = (dt,dz®) (6.41)

4With second-order field equations and, therefore, a principal polynomial of first order.
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6 Application: gravitational radiation from birefringent matter dynamics

for the cotangent spaces T'; s(sn M. The bundle T ,,,, constructed as subbundle of T M,
inherits a 3+ 1 split from the decomposition of tangent and cotangent spaces, and so does
the second jet bundle of

area*

Based on a slicing, we now introduce an observer deﬁnitw?ﬂ for arbitrary tensor theories.
Only the principal polynomial is needed for this notion.

Definition 6.1.7 (observer frame, lapse and shift). Let P be the principal polynomial of
a field theory on a tensor bundle. An observer frame consists of a nonholonomic frame

0
T, 6.42
(T 0= 52) (6.42)
and a dual coframe

(n=M\-dt,ev), (6.43)

where the temporal direction and codirection must satisfﬂ

1 DP(n)

P(n)=1 d T= . 44
(n) o deg P P(n) (6.44)

In the following, we assume P(n) =1 to be solved by choosing an appropriate basis on
TR and setting A = 1.

The holonomic time direction % decomposes in the observer frame as

0 L0
o = NT+N° o (6.45)

with the lapse N and shift N¢.

Essential for the 3 + 1 split is the parameterisation of the geometry with quantities an
observer can measure in her frame, as well as lapse and shift. For example, using the
completeness relation

10 1
id=T®n+ea®ea—Na® —NN“ea(@n—f—ea@eo‘, (6.46)
a vector field v decomposes as
v=void =v(n)T + v(e¥)e,. (6.47)

Ssee also Ref. [23]
6 D P denotes the formal derivative of P as a polynomial.
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6 Application: gravitational radiation from birefringent matter dynamics

The holonomic components are thus determined by lapse N, shift N¢, and the observer
quantities v(n) and v(e®) as

1
v(dt) =v(n) and v(dz®)= —NN“v(n) + v(e®). (6.48)
Obviously, the information contained in N, N, v(n), and v(e*) is redundant—/four
holonomic components are represented using 8 observer quantities. This is where the
frame conditions (6.44)) come into play: consider the decomposition of the area metric

field into |25]

1
G(dt,dz®,dt, dzP) = mG(n,e“,n,eB), (6.49)
2 1
G(dt,dz®,dxP, dx") = —WG(n, €, n, )N ¢ NG(n, €, e’ ), (6.50)

4 2
G(dz®,dxP, dx",dz®) = — NG (n, e’ n, )N + Z NG (n, %, eV, )
N N (6.51)
+ NNHG(TL, e e, )+ G(er, 8, e, €0).

So far, the situation seems to be similar—21 area metric components are determined
by 21 observer quantities plus lapse and shift. The difference to the decomposition of
a vector is that the frame conditions depend—uia the principal polynomial—on
the area metric, which introduces dependencies among area metric, lapse, and shift. To
formulate these conditions, it is more convenient to redefine the observer quantities as
(25

GoB = —G(n, e, n,ed),

= 1 — [} v (6%

Gaﬁ = 5(&]@) 16/3/U,G(n,€ ,6”,6 ) - 6 Jeg) (652)
~ 1

Gop = Z(wé>72€auueﬂpaG(eu7 €€, ¢%),

with the spatial density

wg = Vdet G-, (6.53)

By definition, GoP and éaﬁ are symmetric. The frame conditions (6.44)) translate into
the two additional properties [25]

0=G*, and 0=GHoG",, (6.54)

i.e. éo‘ﬁ is tracefree and symmetric with respect to GoB. In total, lapse and shift and
the observer quantities éaﬂ, éaﬁ, éoz,é’ have 1 +3 + 6 + 5+ 6 = 21 degrees of freedom,

such that they are in one-to-one correspondence with the area metric field G**“?. Note
the similarity to the 3+ 1 decomposition of the metric tensor ¢g°® into shift N®, lapse N,
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6 Application: gravitational radiation from birefringent matter dynamics

and spatial metric §*® —the purely temporal and spatiotemporal components of the metric
are parameterised only by shift and lapse, due to the frame conditions ((6.44]).

Around the perturbation point N, the area metric observer quantities expand as

N=1+A4,
Ne = pe,
G =y 4 pob, (6.55)
G =K%,

~

Gaﬁ = ’YOL,B + lOé,B

With v we denote the positive-definite spatial part of the Minkowski metric, i.e. n®? =
—~*B . From now on, spatial indices are raised and lowered at will using v and its inverse.
The perturbations A, b, h, k, and | are again in one-to-one correspondence with the 21
perturbations H, by virtue of

HOaO,B — 2A,yaﬁ . haﬂ’
HOPY = — AePY 4 2plByler 4 %eo‘ﬁ"’vwh“” + e“mk’“u, (6.56)

HaBYy — QVO‘[VWCS]BVWWV 4+ €ua66w5lw_

A set of perturbations that is more convenient to work with is given by the linear
combinations

u = poB B B = poB B B = 2k, (6.57)

Using these fields rather than the original ones, the field equations assume a particularly
simple form. In fact, we find in Sect. that this choice yields decoupled equations
for the individual fields.

Area metric gravity as constructed in the framework of covariant constructive gravity
is—by the first axiom—diffeomorphism invariant. For the linear theory, this invariance
manifests itself in the presence of a gauge symmetry

H'#4 = HA + Cc45m NBem (6.58)
generated by vector fields & € I'(T'M). As a result, the Euler-Lagrange equations are
underdetermined, as solutions can only be obtained up to a gauge transform.

In order to have a determined system for our following analysis, we fix the gauge by
reducing the number of perturbation fields in a way that can always be reproduced using
appropriate gauge transforms. The tool that makes the gauge fixing quite straightforward
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perturbation kind dof per field fields total dof
scalar 1 A, (7, ‘N/, V. W 5
transverse vector 2 B U W« 6
transverse traceless tensor 2 UesB yeB yyob 6

Table 6.2: The 17 gauge-fixed degrees of freedom (dof) in linearised area metric gravity.
Transverse vectors are divergence free, i.e. satisfy 0 = 9,U®. Transverse
traceless vectors are symmetric, tracefree, and divergence free, i.e. 0 = Ul*#!
0 =",5U @B and 0 = 9,U*P. Together with the four gauge-fixed fields B = 0,
V*=U% and U = —V, the area metric perturbation in this particular gauge
is reproduced using Eq. .

is Helmholtz’ theorenﬂ which allows us to decompose the spatial vector field b into a
so-called longitudinal scalar B and a divergence-free transverse vector B® satisfying
0,B* =0 as

b = 0“B + B“. (6.59)

Applied to a tensor of rank 2, the Helmholtz theorem yields a decomposition
uf = U*P 4 200UP) 4 B[] + AP (6.60)

In this decomposition, U is the transverse traceless (TT) tensor satisfying 0,U%" =0
and ’yaBUaB = 0. The vector U® is again a transverse vector, U and U are scalars, and
A,p=0,05 — %’yaﬁA, with the Laplacian A, denotes the traceless Hessian. The same

decomposition B
v = VB 20V 4 BT 4 APV (6.61)

applies to v*P. Being traceless, the field w™? is missing the trace scalar VT/, but otherwise
admits a similar deconstruction into transverse traceless tensor W8 , transverse vector
W and longitudinal scalar W. At last, we have the lapse perturbation A, which is
already a scalar.

Explicitly carrying out the gauge transform (6.58) and carefully inspecting the components
of H'A, we find that the vector field & can always be chosen such that the four gauge
conditions

0=B, 0=U-V* 0=U+V (6.62)

are satisfied [65]. This choice reduces the degrees of freedom to 17, which are summarised
in Table[6.2.

Let us briefly collect the results of a similar decomposition and gauge fizing for metric

"The Helmholtz theorem is only valid for certain classes of functions. Applicability to linearised area
metric gravity, i.e. sufficiently well-behaved perturbations, is assumed.
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6 Application: gravitational radiation from birefringent matter dynamics

gravity perturbed around the Minkowski metric. This will be of use later when we compare
area metric gravity with metric gravity and highlight the differences. The metric tensor
has 10 degrees of freedom and, as already remarked, decomposes into shift N®, lapse N,
and spatial metric g*° by virtue of the relations

1
N

g(dt,dz®) = —— (6.63)

g(d‘xaadmﬁ) = N2 -9
Around m, the observer quantities expand as

N=1+A4,
Ne = b, (6.64)
gaﬁ — ’Yaﬁ + gpaﬁ.

Like before, we use the Helmholtz theorem to write
b = 0*B + B“ (6.65)

and
P = B 420V P) + CyP + AP D, (6.66)

A possible choice of gauge conditions is to set B, D, and V* to zero, leaving us with 6
degrees of freedom in the fields A, B®, C, and E“P.

6.1.4 Linearised field equations

Applying the 3 + 1 decomposition of the area metric field to the Lagrangian density
constructed in Sect. yields an expression that is determined only by lapse, shift, and
observer quantities. The corresponding field equations are obtained by the variations

0L 4L oL oL oL

IN' N’ 6GB’ 6G," 6G,, (6:67)
with respect to all of these fields—as opposed to the “single” variation
oL
SCabed (6.68)

with respect to the area metric in the spacetime picture.
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For the linearised field equations, we automatically obtain a Helmholtz decomposition of
the Euler-Lagrange equations: the variation with respect to the lapse N is a scalar and
contains only contributions from scalars, the variation with respect to the shift N¢ is
a vector and contains only contributions from vectors. The same holds for the scalar
and vector constituents of the observer quantities G. Also the variations with respect to
transverse traceless tensors are again tensors and only comprised of tensors. As a result,
the field equations already decouple to a large extent. For this reason, the terminology
of the individual scalar, vector, and tensor fields as modes of the gravitational field is
justified.

Performing the 3 + 1 split is a computationally heavy task. Essentially, the perturbation
has to be inserted into the ansdtze —, the resulting expression must be
simplified, then varied with respect to the different modes, and simplified again. In order
to gain confidence in the result, speed up the computation, and—uvery importantly—have
a calculation that can be reproduced and amended, the task has been offloaded to the
computer algebra system cadabra [69,70]. The code is available at Ref. [7].

The result of this computation finally yields the field equations of perturbative area
metric gravity in a gauge-fived 3 + 1 setting. Of the 16 undetermined gravitational
constants k; that determine the expansion coefficients e; (see Appendz’x@, ten independent
linear combinations s; (listed in Appendizx @ make up the linearised field equations

(C-2)—(C.4).
An important sanity check is provided by the second Noether theorem ([2.47))

oL

oL oL
— D g _ A __D An Bl __ A )
0 nTm 5UAU’ m n[duAC B mW ] 5uAu m? (6 69)
whose expansion around N amounts to
oL A n B 2

Inverting the relation between spacetime area metric and observer fields, we can
make use of the chain rule in order to express the variations with respect to the area
metric in terms of variations with respect to the observer quantities. This renders the
perturbative expansion of the Noether theorem in the particularly simple form

oL oL oL oL
B — = _— 4
0, 5, and 0 =0, 5o Js

0=20

o — (6.71)

(5ua67

which is indeed satisfied by the system f. As a consequence of the diffeomorphism
invariance of the theory, the field equations have four dependencies among themselves.
This is, of course, expected—not only from the Noether theorem, but also from the fact that
gauge-firing the observer quantities by constraining four fields reduces the 21 unknowns
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by four. In order for the system of 21 field equations not to be overdetermined, it must
express additional dependencies. These considerations are reminiscent of the rich field
of constraint analysiﬁ which is predominantly studied in the Hamiltonian picture and
also plays a role in canonical constructive gravity. For some results in the context of
covariant constructive gravity, limited to first-derivative-order theories, see Ref. [37].

While the Noether identities are expected and, in fact, indispensable, a thorough analysis of
the linearised field equations reveals further properties that are impossible to reconcile with
our premises. After all, the axioms of covariant constructive gravity are only necessary
conditions for a theory to be viable. Any such constructed theory needs to be further
specified by finding appropriate values for the gravitational constants. This also applies
to Einstein gravity—the Newtonian and cosmological constants only match observations
for specific ranges, where some possibilities like a negative Newtonian constant can be
dismissed outright.

The first restriction of the area metric gravity parameter range we will make is to match
the weak gravitational field sourced by a point mass with a modest generalisation of the
FEinstein equivalent. More specifically, we consider the gravitational field sourced by a
point mass M which is at rest at the coordinate origin and thus describes the worldline

73(A) = ASE. (6.72)

If the point particle M is an idealisation of a matter field that obeys GLED dynamics, its
action is given by (28, |29/

=

St = =M [ ANP (€7 (), (©.73

where £~ is the inverse of the Legendre map associated with the principal polynomial.
In the Einstein equivalent, this action coincides with the common notion of the length of
the particle worldline as measured using the covariant metric tensor. The full expansion
for arbitrary curves vy is employed in the following section, it suffices here to consider the
special case and find the only nonvanishing contribution

5Smatter _ (3)
AL = Mo (7). (6.74)

With the matter distribution being stationary, we consider a stationary ansatz for the
solution to the field equations by assuming that the time derivatives of the gravitational

field vanish. Using the source (6.74) as the left-hand side of the linearised field equations
(C.2)~(C.4) yields vector and tensor equations that are trivially sourced by zero and as

8See e.g. (71} /72].
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such only admit the trivial solution B® = U* = W =0 and Uep = yob — yyeb = Oﬂ
The scalar equations take the form

VA

Elgscazar) — M) (2)50 + Z[a, S+ b, AS, + ¢, AAS (6.75)
J

for constant coefficients a, ., b

ij» Dijs Cij and scalar fields S

As solution to the scalar equations we obtairm certain combinations of long-ranging Cou-
lomb solutions % and short-ranging Yukawa solutions o %e_’““. While the coefficients
of these combinations depend in an intricate way on the gravitational constants and are
impossible to present in general, it is feasible to make a generic argument concerning
the phenomenology of the linearised result: the solution to the scalar field equations
corresponds to the linearised Schwarzschild solution of general relativity for a central
mass M corrected by short-ranging Yukawa potentials if and only if two linear conditions

on the gravitational constants s, hold.

This statement concerns the metric limit of area metric gravity, which is reached using
the metrically induced area metric (3.20)). Inserting the metric 3+ 1 decomposition ((6.63)
and its perturbative expansion (6.64)) in the expression for the induced area metric yields

éaﬁ — g‘a,ﬁ — ,.yaﬂ + QOa/B,
G5 =0, (6.76)
Gaﬂ = (g\il)aﬁ ~ YaB — Paps

from which we read off the induced perturbations

uP =20 P =0, w¥ =0. (6.77)

If the metric perturbation is now given by the expansion of the Schwarzschild solution
[75] to first order,

1
Ao~ and P =248, (6.78)
r

the metrically induced area metric scalar fields amount to first order to

U =4A, (6.79)
A x 1
T

9See 3], where it is shown how the Fourier transform yields a linear system of full rank. Maple code
for this calculation is available at Ref. [7].
10See [3] and the Maple code at Ref. [7].
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The condition stated above requires that the area metric deviations from these fields
amount to short-ranging Yukawa corrections, i.e. informally

4A — U = (Yukawa corrections),
V= (Yukawa corrections),
. (6.80)
W = (Yukawa corrections),
V= (Yukawa corrections).
These conditions are equivalent to the vanishing of the linear combinations
s +4s, =0 and sg=0, (6.81)

which we from now on implement, reducing the number of first-order gravitational
constants by two to eight. Thus, we have ruled out the possibility of deviating too much@
from FEinstein gravity already in the regime of weak birefringence and restricted perturbative
area metric gravity to a phenomenologically plausible sector. In this subtheory, the scalar
fields around a point mass reduce to

V(z)=0,
W) =0,
V@) = 4o e

M1 1
= — | = — —HT
Alw) = oot 7877,

where we redefined the relevant gravitational constants using the more convenient set

12 = 851539
953 — 245,85 + 85,837 + 1653
1
o= 25,
B (351 + 4s5)? (6.83)
b= 65, (957 — 245,55 + 85,837 + 1652)’
Y= —8(3sy +4s3)

6(9s7 — 245,83 + 851837 + 1652)

With the reduction from ten to eight gravitational constants, the linearised field equations

"Tn the specific sense explained above.
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assume a simpler form. There are reduced scalar field equations

5L_S_TF—A A 45,72y 4 LAY
gueB | T Ces|TAT Y TS T TS
§L 15TF -
|:6rU—046 = AO&B 511DV+813V+814DW+816W],
5L 1S-TF -
|:5U)—Oéﬁ = Aaﬁ 514|:|V+816V_511DW_813W:|,
A 25, S1 75 Sy .\ r 3s 5283~
il _ —IAA LT AT 4 (-2 — Z3A
S1 a7 51
SAV — LAAV 6.84
NS } (6.84)
5L 5™ Asy 3s 5 28y -
oF _ —5 + BVAA 4+ (=L —3A
5 3 ~ ~
+ 53,V — (% — 283 + S37) AV + 55V
S1 283, .« 283
— — —)A —2AA
* 2 3 JAV + 9 V]
5L1° -~ - 2
{56_“} — 9.0, { — 25,0 + (=33, +4s,)V + %Av] ,
5L . .2

vector field equations

5L 1Y 1 )
[&L_O‘B - 58758(& |:2B5) + U,B):| s
sL 1V
(S’Uaﬁ = 28(04 SllmUﬁ) + 813U,3) + 814DW5) + SlGWIB) ,
sL 1"
SweB - 26(04 814DU5) + 816U6) - 811DW,3) - 513W3) ) (6.85)
sL1v .
sl ]
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and traceless tensor field equations

LI sy

[(5u0‘5_ T oq ek
sL 1"

Lﬁ)aﬁ =511 0Vog + 513V + 5148Wo 5+ 516 W, (6.86)
(SL 1 TT

{5100‘5 = 51400Vop + 516Vap — 5110Wo5 — 513Wos-

The second observation we want to make concerns the subset

SL S-TF
|:(5IU—O£ﬁ:| - AO&B |:811|:|V+813V+514|:|W+816W:|,

5L 15TF (6.87)
[5waﬁ:| — Aaﬁ |:814DV+316V_811[1W_813W:|

of the reduced scalar equations (6.84)), whose pattern is repeated in the vector equations
(6.85)) for the modes U* and W as well as in the tensor equations (6.86)) for the modes
VB and WP . Linear combinations of these equations in vacuo yield the equivalent
system

0=0V + 12V + oW,

9 (6.88)
0=0W4+vW —aV,

with constants

811813 + S148 S11S16 — S1aS
,2 — 211%13 14516 0 o — 211516 13514 (6.89)

2 2 2 2
511 1+ 514 571 1+ 574

Performing a spatial Fourier transform of the vacuum scalar equations (6.88)), we can
translate them into a system of linear, first-order ordinary differential equations for the
modes v(t, k) and w(t, k)

D 0 0 10 v

d | © 0 0 0 1| |w

dt | v —(k* +1v?) —0 0 0 v (6.90)
i o ~(k2+v%) 0 0/ \@

What is now interesting about this system are the eigenvalues of the time evolution, which
are the four complex roots

A, = £iv/(k2 +12) +io. (6.91)

Most importantly, there are always N\, such that Re(\;) > 0 unless o vanishes. As a
consequence, there will always be diverging modes under time evolution if o is not zero.
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6 Application: gravitational radiation from birefringent matter dynamics

This finding is not restricted to the scalar modes we analysed, but also holds for the vector
and transverse traceless tensor modes that are coupled in the same way. Such a theory
would not only be physically implausible, it would be fundamentally broken. We set o to
zero by imposing the additional condition

511516 — S13514 = 0 (6.92)

and have thus reduced linearised area metric gravity to a theory parameterised by seven
remaining gravitational constants, of which there are five combinations that determine
the results obtained above: the two constants  and v appear as masses in wave equations
and screened Poisson equations, respectively, and three constants o, 3, and v further
parameterise the linearised Schwarzschild solution.

Note that with ¢ = 0 the wave equations for W, V, U*, V&, U, VB and WP
decouple, e.g. the system of transverse traceless tensor equations can be transformed by
taking linear combinations into

sL 1" _Siop
Suef| 4 ap
TT 4 TT
S11 oL S14 oL 5

=0V, 5+ vV, 3, 6.93

5%1 + 3%4 [57’&6] 5%1 + 3%4 Lwaﬁ_ g g ( )
2 214 2 [ aB] g2 L 2 { ap =W, + W

sy + 814 L0V 811 + 814 [Ow |

Similar decoupled wave equations are obtained for the mentioned vector and scalar modes.
It is also possible to find a linear combination of scalar field equations (6.84) such that

the mode V obeys a massive wave equatz’o
(source terms) = OV + 2V (6.94)

Counting the wave equations we already found, there are at least 13 propagating degrees
of freedom. This is already the maximum number, because our system for 17 degrees of
freedom must exhibit four constraint equations arising from the gauge symmetry. In fact,
the four remaining degrees B, (7, and A are determined by field equations with less than
two time derivatives, as can be read off from Eqns. (6.84)—(6.86)). Such equations as part
of an initial value problem are usually associated with constraints, as they are not capable
to evolve initial data, but only to constrain it.

Summing up, the phenomenologically relevant subsector of linearised area metric gravity
admits two massless propagating degrees of freedom in the form of the tensor mode

12Not denoting linear combinations of Lagrangian variations explicitly but just referring to them as
source terms.
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6 Application: gravitational radiation from birefringent matter dynamics

U®B. Furthermore, there are 11 massive propagating degrees of freedom with mass p,
represented by the fields W, V, V, U*, W, V8 and WP, The remaining four degrees
of freedom A, U, and B* do not propagate but follow from constraints.

This again constitutes an important sanity check: the count of propagating degrees of
freedom is as expected and yields 21 — 2 x 4 = 13, just like in general relativity where we
have 10 — 2 x 4 = 2 degrees of freedom. In the latter theory, only the transverse traceless
part of the spatial metric tensor propagates and does so according to a massless wave
equation. For area metric gravity, the only massless propagating modes turn out to be
the transverse traceless tensor U*P | which is exactly the perturbation induced by the

propagating metric modes (see (6.77)) ).

All other modes, which are not inducible by the propagating metric modes, follow massive
wave equations with mass . In the next section, it will become clear that the generation
of such modes from matter distributions is suppressed, e.q. a binary star only radiates on
nonmetric tensor modes or on vector or scalar modes when its angular frequency exceeds
a certain threshold. This is another realisation of the correspondence principle, which
demands that Finstein gravity approximate area metric gravity in certain limits.

6.2 The binary star

As example for a matter distribution that gravitates according to area metric gravity, we
consider a binary star. The system shall be approachable without too much computational
effort, while at the same time exhibiting exciting new physics beyond Einstein gravity—a
configuration of two point masses that circle each other turns out to meet both requirements.
First, let us introduce a method to construct a solution up to the second perturbation
order.

6.2.1 Iterative solution strategy for gravitational field equations

Covariant constructive gravity closes matter theories by providing previously unknown
dynamics for geometry to which the matter field couples. Let ¢ be the matter field in
question, coupling locally to a geometric field G. Starting from the matter actz’orE]
S matterl®s G), the closure procedure yields the joint action

S[G, ¢] = ngvity[G] + KSmatter[QS? G)? (695>

13Round parentheses indicate local dependencies.
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6 Application: gravitational radiation from birefringent matter dynamics

where S ity 1S the action of the constructed theory compatible with the matter theory.
The constant k controls the scale of coupling between both fields. Abbreviated as

) ) 0
el = S f16.6) = (6.96)

grav .
) T[¢7 G) - (SG )

oG

the variations with respect to the matter field and the gravitational field yield the Euler-
Lagrange equations

e|lG] = —kT[¢,G) and flp,G)=0. (6.97)

Such a tightly coupled system is hard to solve in general. Fortunately, it is not our
objective to obtain exact solutions—we have expanded the field equations up to second
order and only seek to derive effects up to this finite order. Proceeding similarly as in
Ref. [74], a solution is constructed iteratively by expanding the geometry formally as

G=N+Y rFHy,. (6.98)
k=1

Truncations of Eq. (0.98) at order k yield approzimations Gy, of the geometry. The
constituents e and T of the Fuler-Lagrange equations expand as

e[N + H] = e + e [H] + e [H] + O(H?),

T(¢,N + H) = Tjg)[¢] + Ty)lo, H) + O(H?), (6.99)

where H contributes linearly to the first-order terms and quadratically to the second-order
terms. We now solve the equations for the gravitational field up to second order by
considering the orders zero to two in K.

For the zeroth iteration, the Euler-Lagrange equations (6.97) are evaluated at G = N,
resulting in the equation

e[N] = ¢ =0. (6.100)

This just enforces that the expansion point N must solve the gravitational field equations
in vacuo. Since we explicitly consider this condition when perturbatively constructing

theories, Eq. (6.100) is solved trivially.

Proceeding with the first iteration, we evaluate at Gy = N + kHyy. Since e = 0
already holds from the previous iteration, the first of the two equations simplifies to

e [Hpy) = —Tig) o). (6.101)

Figuratively speaking, the first correction of the gravitational field is sourced by the matter
content on a flat background. Having solved this equation for H ), the perturbation may
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be used in order to solve the second equation
fl6,G 1)) =0+ O(x?). (6.102)

The interpretation is similar: a deviation from the flat gravitational field, caused by the
presence of matter, makes also the matter field deviate from its unperturbed configura-
tion.

The second iteration yields an equation for the second-order perturbation H o by inserting
G = N+£kHg;) +H2H(2> in the first field equation and simplifying using the lower-order
equations. We obtain the result

ey Hig)) = =k Tg)[¢] — Ty)d, Hiyy) — e [Hp)) + O(k), (6.103)

where it has to be noted that ¢, having been fixed in Eq. (6.102)), has a dependence on
kH ). Therefore, contributions from T (6] must only be considered up to order k' and

contributions from T y)[¢, Hy)) only up to order k0.

The second-order perturbation H o is thus sourced by both the first-order deviations of
the gravitational field and the induced motion of the matter field, as will become clear
when explicitly solving the binary star in the following section. Aborting the iterative
solution procedure at this point, we have found the approximation

Goy = N + kHy) + K> Hy, (6.104)

of the geometry G coupled to ¢ and, as a bonus, the trajectory of the matter field ¢ on
the linearised background G ).

6.2.2 Solution in Einstein gravity

Before proceeding to make use of the iterative solution strategy and solving the binary
star in area metric gravity, let us consider the same problem in FEinstein gravity. We
will, of course, only reproduce well-established results, but also gain confidence in the
approach and become acquainted with the calculations. It is also advantageous to have the
metric theory at hand in order to distinguish the uniquely area metric features later on.
State-of-the-art methods derived from Einstein gravity (see e.q. Ref. [74]) extend to higher
perturbation orders and much more complex matter configurations than the relatively
simple case considered here, but they are not applicable to area metric gravity. Rather,
we make use of our hand-crafted approach that accommodates nonmetric geometries just
as well.

A binary star consists of two slowly moving point masses m; describing two worldlines
v;: R — M. The metric field is a section g of the metric bundle and defines the matter
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action S via the length functionam

matter

S matter[ V(1) V(2), 9) = Z m;c / dk\/g—l(‘y(i)()\),ﬁ(i)()\)). (6.105)

i=1,2

FEinstein gravity completes Eq. (6.105)) to a predictive theory by providing dynamics for
the metric g in terms of the Finstein-Hilbert action

CS a
. pu— —_ . 1
Sorainld] = 15— /d z+/—det gR (6.106)

We use the parameterisation 78')()‘) = c\ and obtain by variation the Euler-Lagrange
equations

za Ab

1 8rG ORG
V= ety R~ SgR| = T ST 89 — i (1)) — (6.107)
¢ e 9 (Vi) V)
and
0= 58, + %4835 (6.108)

The first equation (6.107)) consists of the densitised Einstein tensor on the left-hand
side and the stress-energy-momentum tensor of the point particle on the right-hand side.
Eq. (6.108) is the geodesic equation on a pseudo-Riemannian manifold with the Christoffel

symbols I'*, .. Using the slow-motion condition

1
—Ae 1 6.109
C'Y(z) < 1, ( )
the geodesic equation simplifies to
S d Ls0 — _pao 6.110
Vi — ¢ an 2 Y@ = —+ oo (6.110)

In order to construct the second-order solution for the metric tensor in this setting, we
expand g as
9*" ="+ h =0 + Gh) + G*hi + O0(G?), (6.111)

using the Newtonian constant G as coupling constant. Adopting the 3 + 1 decomposition
(6.63) f for the metric tensor as well as the gauge B =D =0 and V* = 0, the

perturbation is given by

% = 24, RpO* =B RS = _EB 480, (6.112)

M From now on, we do not use geometrised units but state every occurrence of the speed of light ¢ and
Newton’s constant G explicitly.
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with scalar modes A and C, vector modes B%, and transverse traceless tensor modes
Eo8,

Since the variation e|g] of the FEinstein-Hilbert Lagrangian with respect to the metric
tensor is given by the Finstein tensor, which is derived from the Riemann curvature
tensor, the zeroth-order equation e[n] = 0 is already solved—the flat Minkowski metric n
has zero curvature.

The first-order equation

emylhwy) = =Ty v2)] (6.113)
is obtained from the full Fuler-Lagrange equations (6.107)) using the well-known expansion
of the Einstein tensor to linear orde@ for the left-hand side and—since the right-hand

side already contains a factor G—the zeroth order of the matter distribution. Split into
spatial and temporal components, we get

e?% [h] = AC,
1 .
ap Lopes L gaph) 4 o8 [ 2 1 N 1
e(l)[h]:—ﬁﬂE + 0'“BP) + ~ C—gA(—A—FiC) + A —A+§C ,
(6.114)
and the only nonzero contribution’
8 L
Tay, Yol = — 2 Z m; 6@ (& — 7, (1))
i=1,2 (6.115)
&t
- - _2/)(-'17, t)v
such that the first iteration boils down to the Poisson equation
8 ®)(z _ 7
ACy =5 D mdBN (& =) (1) (6.116)

i=1,2

The remaining equations are not sourced by matter and, thus, yield the trivial results

A(l) = %C’(l) and Ble) =0. For E(oi’?, we obtain the massless wave equation in vacuo,

0=0EY, (6.117)

. : af 1
which we solve by setting E(1) to zero

15The prefactor given by the metric determinant is irrelevant: it expands as 1+%na Bho‘ﬁ and contributes
only to zeroth order, because the expansion of the Einstein tensor has no zeroth order.

6Implementing the slow-motion condition.

17 Allowing for nonvanishing solutions would place the binary star not on a flat background but on a
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Solving Fq. (6.116|) yields the linearised solution

1 2
By =0, Ay =50, Cu =3¢, (6.118)

af _
ET =0 =3

(1) ’

effectively composed of one scalar field, the Newtonian potential

o) = — [ gty

|2 — g
T m  m (6.119)
2= F0y @] [Z =)@

According to the iterative solution procedure, the worldlines ;) can now be fized by
solving their equations of motion (6.108)) on the linearised background (6.118]). These
equations are governed by the Christoffel symbols, which expand as

1 1.
re,, = —iaahoo — Ehao + O(h?), (6.120)

such that on the linearised background provided by the first iteration

o C2Fa
T 00 (6.121)
— —GO"p+0(G?).

After all, slowly moving matter obeys—to first order—the Newtonian laws of gravity!

The equations of motion come with the same inconsistencies that plague Newtonian
gravity: as is obvious from the formula , the potential sourced by a point mass
diverges at the very location of the mass itself. Consequently, whenever a particle “feels”
its own field, which is certainly the case in Eq. , infinities are involved. The culprit
is the idealisation of the matter distribution as point masses. One of the remedies pointed
out in Ref. [T4] is to forgo this idealisation and model the stars as extended fluids—taking
the limit of negligible extension where necessary. Alternatively, the diverging integrals
may be reqularised, which has the same impact on the results. Effectively, both approaches
are implemented the same way: we keep the point mass idealisation but discard diverging
integrals, i.e. when solving for the trajectory of the first particle, the diverging term

3) /= =
ml/d3§5( 1(917(1)(75)) (6.122)
15— 1) (D)

background filled with gravitational radiation. As long as this radiation is weak enough in order
not to interfere with the second-order field equations, it can be included without affecting the
phenomenology. For simplicity, however, it is customary to choose the zero solution.
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does not contribute. This also holds, mutatis mutandis, for the second particle.

With this regularisation, the stars are subject to the equations of motion

) 76~ 6)
joo= =Gy myj———— (6.123)
v ‘T PR =P

which is the centuries-old Kepler problem. The solutions are given by the various conic
sections, depending on the initial conditions. We will consider the bound states and
within this sector the configurations with exactly circular orbits. As it will turn out, the
additional complexity introduced by eccentricities is immaterial for at least some of the
new effects that come with the area metric generalisation. In this configuration, the bodies
have constant separation r and move on trajectories

. me . m,
Aoy (t) = 20, ) () = ——Lr, (6.124)

where m = my + my, denotes the total mass. The vector n is one of the three basis

vectors
cos wt —sinwt 0
n=|sinwt|, A=/ coswt |, €,=[0 (6.125)
0 0 1

that span the orbit-adapted frame [74]. Both masses reside in the orbital plane spanned
by n and X, to which €, is perpendicular. The frame rotates around the azis €, with
angular frequency w according to Kepler’s third law

2_Gm

=5 (6.126)

w

Based on this configuration of matter content and gravitational field, the second iteration
yields the corrections sourced by both the first-order gravitational field itself and by
the influence of the gravitational field on the masses. We are only concerned with the
propagating degrees of freedom, as our interest lies in radiation emitted into the far zone,

so it suffices to consider the purely spatial part from Eq. 6.103@
e(af)[h@)] = —GflT(%)ﬁhu); Y2yl — T(O{)B[Vu)ﬁ(z)» hay) — e(agf[hu)] +0(G).  (6.127)

Again the functionals e?f)ﬁ can be read off from the left-hand side of the full FEuler-Lagrange
equations (6.107) and the functionals T(?‘)B follow from the right-hand side.

The contribution from e?{f[h@)] is already known from FEq. (6.114). Its projection to the

8Note that the labels on the worldlines V(i) do not denote perturbation orders but the individual stars.
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transverse traceless tensor part is given by

el (6.128)

o 1
’B[h(z)]TT = _§DE(2)

‘)
We find that the first-order matter functional Ta‘)ﬁ[fy(l),’y@),h(l)) does not contribute,
because each derivative of a spatial trajectory comes with a factor w, such that the whole
functional is proportional to w? o< G. This is already of higher order than considered in
the second iteration equation (6.127)). Reading oﬁ.the term 7"(%’)6[7(1),7@)] and p@jecting
onto the transverse traceless tensor mode, we arrive at the intermediate expression

TT
167 N N ca s a
OEs — — o > mid® @ =3, OG0 |+ 260 hay)) T (6.129)

1=1,2

It remains to derive the contribution from 6?2‘; [h1y). This is the first and only time where
the second order of the Einstein field equations is needed. Thankfully, the field equations
have to be evaluated at the result of the first iteration, h(yy, which assumes a particularly
simple form where all fields are derived from only the Newtonian potential ¢. Evaluation
of the Finstein field equations at this solution yields the transverse traceless tensor part

et = _34 996856 — 20%(0%¢)] ™" . (6.130)

C

We are thus left with the wave equation (6.129)), which is of the kind
O(Z,t) = dmp(Z, t). (6.131)

Such an equation is solved by convolution of the source with the retarded Green’s function

(3, t) = /d?’g@(T’ y) (6.132)

2 — 3|’
where the source is evaluated at the retarded time

1
r=t——lz—g. (6.133)

For radiation into the far zone, we are only interested in the result at points in spacetime
with R = |Z| > r. A first approzimation in this regime is given by the zeroth order
T —y ~ R, which yields the simplified integral

1

wlat) =3 [ PGelr), (6.134
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where from now on T =t — R/c. This approzimation is valid to lowest order, because for
the first part of the source (the first summand in Eq. (6.129)) ), the integration variable y
is confined to the matter distribution, a region of radius r, such that

T
=0

el e T
72—y < |Z|+|y| < |Z|+r=R(1+—=) — R. (6.135)

7

For the second part, the source occupies an unbounded region but decreases in magnitude
with |3]~*, allowing for a similar argument.

The integrals that remain to be evaluated are

K= [ @5 3 md @~ ()i il (6.136)

i=1,2

and, after dropping a boundary term,
Ues = / d350% 0P . (6.137)

Evaluating K, whose integrand is a simple delta distribution, gives

G 2
Kb = T yays, (6.138)
r
Here, the reduced mass
_ mymy

makes its first appearance. In order to evaluate the second integral, we first substitute the
Newtonian potential with the unevaluated integral expression (6.119)), such that

« / 17 g [0 1467 144
U B—/d?’ /d3 /d3 —— 5 )~ (" —y)W* —y"?).  (6.140)
5=y Py —y"[?

The integration over y now yields

—

77 ‘a1« B 18
o ) 5 PY o Y Yy Y Yy
U 5:27r/d3y oy )/d3 - ( le {7 g | !?J’—)(z/7’|2 ) . (6.141)

which corresponds to the repeated application of delta distributions. Making sure not to
include diverging terms, as explained earlier, the evaluation yields

4 2
pes = M ap  pag), (6.142)

r
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We finally put together both parts with the proper constants and the prefactor of 1/R.
The result is the lowest nontrivial order of the gravitational field that is radiated away
into the far zone from a binary star in circular motion,

af 47] (Gm)Q

2
Che) =GRy

AN — nonB)TT (6.143)

parameterised by properties of the matter distribution (total mass m, reduced mass n,
separation r), the speed of light ¢, and Newton’s gravitational constant G. This is in exact
accordance with the literature [74)] and, of course, no surprise. Contemporary methods
employ what is called post-Minkowskian and post-Newtonian theory [74)], which provide a
framework for more complex calculations. However, the pedestrian approach presented
here is derived from the same full theory and is thus equally valid.

The strength of this solution procedure is that it does not presuppose knowledge of the
ezact (i.e. unperturbed) dynamics and is not restricted to metric theories. Both properties
are important for the analysis of the binary star in area metric gravity, a nonmetric
theory of gravity for which there are no known exact dynamics. Even though we followed
a top-down approach and derived the perturbative expansion of the Finstein field equations
from its full form, it would have been possible to construct this expansion from the bottom
up, order by order. In the following section, this will be the only option.

Finally, it should be noted (see also the discussion in Ref. [74)]) that the radiation emitted
by the binary star is indeed an effect of second order. The presence of the masses alone
sources a gravitational field, which to first order is given by the Newtonian potential.
Under the influence of this field, the masses are confined to circular orbits—a first-order
effect. This refined motion, together with the first order of the gravitational ﬁelaF_gL is the
source of the gravitational radiation produced in the second iteration. Knowledge of the
first-order field equations is not sufficient in order to derive the result , contrary
to the impression that the reading of derivations in the older literature might leave [75].
Whoever arrives at the conclusion , or its generalisation for more general matter
configurations called quadrupole formula, using only the linearised gravitational field
equations either did so out of pure luck, by silently slipping in knowledge about the second
order, or by having inadvertently constructed this order during the process. If, for exzample,
the derivation involves some basic assumptions about the theory, such as restrictions
concerning derivative orders, and also diffeomorphism invariance, it is no surprise that a
correct formula may be obtained—after all, as discussed in Chap.[3, Einstein gravity is
unique if certain assumptions are met.

"Via the contribution eq)[h(y,], where the second order of the field equations enters.
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6.2.3 Solution in area metric gravity

In the area metric gravity scenario, the point masses are subject to the action

Smatter[7(1)57(2)7G> = Z mzc/d)‘:pGLED(Ll(,Y(z)<)‘>>)4117 (6144)

i=1,2

which we already encountered when discussing the linearised Schwarzschild solution. This
time, the masses are not at rest, such that the “full” linearised expression for generic
worldlines is needed. It comes in very handy that the GLED polynomial is to first order
equivalent to the quadratic polynomial (see Eq. )

P p(k) = (1~ ooe(H)n(k, ) + S H K, ), (6.145)

which using the 3 + 1 split introduced in Sect. decomposes into

1 1
P (R) = 1k, 1)+ [=24] () + [26 ok + [— 50" = 53,047k K. (6.146)

Since the causality is effectively metric, the integrand in the point particle action (|6.144))
is given by the inverse of this metric. (28, 29] To linear order, the inverse is calculated
as

[77 + h]_lab = Nap — napnpthq + 0<h2)7 (6147)
such that we obtain the linearised action
Smatter[V(1): V2)s N + H) = ,_21:2 m;c / M mait ity + 249530 — 2ba30) 3
1 1 v af| ra 2B 2
+ 9 tas + 7 U 7(1-)'7(1')} +O(H?).
(6.148)

In addition to the linearised matter action , we also need the gravitational action
expanded to third order in the area metric perturbation. Sect. was dedicated to the
construction of third-order area metric Lagrangian densities £ = Ld*xz. The result of
this construction procedure will be used here in the action

c? 4 4
SoravityN + H] = 76— /d x L+ O(H?). (6.149)

Like before, the zeroth iteration is already solved by construction—the flat instance N of
the area metric field solves the vacuum field equations.
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Due to the slow-motion condition, the first-order field equations

€ 1>[H(1>] = —Ty [7(1)77(2)], (6.150)

which were derived in Sect. are only sourced by the variation of the matter action
(6.148]|) with respect to the lapse, via the equation

5Smatter . -
(——?ia——>(n[lfu)]—-cp(x,t) (6.151)

This is similar to the stationary case considered in Sect. with the difference that
the delta distribution is not centred at the origin but given as

- Z m;® (Z — T (D). (6.152)

i=1,2

Since the vector and transverse traceless tensor equations are not sourced at all, we solve
these by setting the respective modes to zero. Again, it is possible to add background
radiation to the solution, as long as it remains negligible. The scalar modes are solved by
superposition of the linearised Schwarzschild solutions , in the integral representation

as ]
io(d) pe Y

= —— [ d%jp { A Ea ]
/ |7 — ]

_ __/dB {7‘3 W y} (6.153)

mm m

1=1,2 L
Vi==2 2 m| === | '
S |7 — V() ()]

The constants «, B, v, and p are the four relevant first-order gravitational constants
(6.83) for stationary or slowly moving matter configurations.

For the second part of the first iteration, the matter trajectories have to be fived. We
again exploit the fact that the matter action is effectively metric, because as a consequence
of this circumstance, the stars are to this order subject to the same geodesic equation
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(6.121) as in Einstein gravity. The Christoffel symbols are derived from the effective
metric (6.147) with h°° = —2A, such that

i) = —c2 GO Ay, (6.155)

where the integrals (6.153)) have to be reqularised by, effectively, dropping the divergent

terms (see Sect.[6.2.9).
The equations of motion (6.155)) constitute a refined Kepler problem. Instead of the

Newtonian potential o< %, the stars move in modified potentials with additional Yukawa
terms o< %e*‘“". Still, this potential has a spherical symmetry and circular orbits remain
solutions to the geodesic equations. This is seen by making the ansatz (6.124)) and solving

for the angular frequency w, which yields the refined relation

L2 (Ga)m

3 1+ ge_“r(l + ur)|, (6.156)

i.e. a modification of Kepler’s third law.

Let us start solving the second iteration by considering the massless transverse traceless
tensor mode Ué? The contribution e<1)[H<2)] follows from the first of the linearised

transverse traceless tensor field equations (6.86)), which reads

5L 1™ 1
[W[ﬁ} = =000 (6.157)

As before, when solving the metric problem, the vectors tangent to the worldlines contribute
a factor of VG each, such that there is no contribution from Ty [y Yoy Hay)s but
only from the lower order T [’y(l),’y(z)]. FEvaluating this term by variation of the matter

action (6.148)) with respect to the field u®®, we obtain the equation
TT

(6.158)

05

CSG 1 8 1 ;
R N SB) (72 _ = o B gravity

The contribution from the second-order field equations is again calculated using cadabra
(69, |70]. The process is roughly as follows: first, the the third-order ansdtze (A.5)—(A.7)
and the corresponding coefficient relations are loaded into the programme. Then, the
Lagrangian is decomposed into observer quantities, shift, and lapse, according to the 3+ 1
decomposition introduced in Sect. . All fields, except for the field u®® which will be
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varied, are replaced with the solution from the first iteration, using abbreviations
3 o 1
X = [ &yp(§)=——=,
|7 — 9|
3 . e_/VL'i:_y'
Y=/dyp(y) ——
1z — |

This simplifies the Lagrangian significantly, because it only depends on the scalar fields X
and Y, as well as the field u®®. Performing the variation with respect to the remaining
tensorial field, projecting the result onto the transverse traceless tensor mode, and further
simplifying finally yields

TT
( 6Sgram'ty) [GH ]
5ua/3 @)

(6.159)

o —— [0 XPX + BOYOPY|TT (6.160)

The cadabra code can be found in Ref. [7].

Being also a massless wave equation, the differential equation (6.158|) is solved like before
in Sect. by convolution of the right-hand side with the retarded Green’s function of
the d’Alembert operator. Taking the same limit for the far zone, the solution is

Y D s | 28 ap]"
Uy = [GK 42 o+ et (6.161)
with a kinetic term
K= [ @5 3 md @A)l (6.162)
i=1,2

and the potential terms

i) — 337 [ B3 B oo (6 eI 5 e HIZl
(ap g | dy y ey )e(y”) S BCRER B
Z=g—y’ Z=y—y”’
(6.163)

Working out the integrals results in a first prediction for the gravitational radiation
produced by a binary star subject to area metric gravity. On the massless transverse
traceless tensor mode, radiation is emitted into the far zone R > r according to the
formula

8n (Gam)?

AR r [1+ f(r)][)‘a)‘ﬁ - nanﬁ] TT= (6.164)

2778
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where the correction term f(r) is given by
_ ﬁ —pr
f(r)y= a(l + pr)e HT. (6.165)

In order to point out the significance of Eq. , let us come back to the metric
radiation formula for the modes E*P. The area metric result amounts to the
metric result up to a correction proportional to f(r), which—being of Yukawa type—rfalls
off exponentially with the separation r. In formule,

GPUR) = 2(aG)2E L + f(r)]. (6.166)

Considering that the area metric perturbation induced by the metric perturbation
has the only nonvanishing modes U(az)ﬁ = 2Eg’gj, we arrive at the remarkable conclusion
that—on the metrically inducible modes and in the far zone—the radiation emitted by a
binary star in circular motion is qualitatively the same, but quantitatively refined. Both
Kepler’s third law and the amplitude of the emitted waves pick up Yukawa corrections,
which originate from the presence of mass terms in the scalar field equations for stationary
and slowly moving sources. These corrections can become arbitrarily small—0by restricting
the parameter range or considering large enough radii r. In this sense, gravitational
radiation as predicted in Finstein gravity is contained within the area metric result.

The remaining propagating modes of the area metric perturbation have all shown to be
governed by massive wave equations (see Sect. . Let us first consider the traceless
modes, i.e. the massive transverse traceless tensors, the vectors, and the traceless scalars.
Since the coefficients in the relevant wave equations f are the same for all of
these modes, regardless of whether the equations are of scalar, vector, or tensor type, all
propagating traceless modes can be considered on the same footing.

We define the tracefree auziliary field 0°° = v — %’yo‘ﬁvw,v“”. Taking appropriate linear
combinations of the linearised field equations (see e.g. (6.93)) ), the modes 9P decouple from
the modes w™?, such that the left-hand side e(l)[H(Q)] of the second iteration equations is
given by Dﬂéf + 1/217?‘2/)3 and Dw(o‘gf + ng(ag , respectively. Because the linearised matter
action (6.148)) does only depend on the trace of v*? and is entirely independent of w™,
there is no matter contribution to the second iteration. A calculation of the contribution
6(2)[H(1)], employing the previously outlined cadabra-based technique, yields the wave
equations
~af3 2~af o By TF
Do, + 170, = [0 Xo°Y ], (6.167)

Dng + Vzwgf = e[0°X0°Y]TT.
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The label [-]TF" denotes the idempotent projection

1
(LB TF = tlap) _ gfyuytwjfyaﬁ (6.168)

onto the tracefree symmetric part. Both § and € are combinations of gravitational
constants that include genuine third-order constants, i.e. coefficients for the third order
in the area metric Lagrangian expansion that are not solely determined by second-order

coefficients”|

Solving the wave equations (6.167)) is again a matter of convoluting the source terms with
a retarded Green’s function. This time, the differential equation is of the kind

(O+ m?)Y(x) = dnp(x) (6.169)
and thus solved by the massive propagator

3k sinfw, (2% —y")] 4 . -
Gre(@,y) = 0(2° — ZJO)/ (2m)3 sl >]elk'(x7y)

6.170
- . (6170)

where 0 is the Heaviside step function and the massive dispersion relation

wy, = \/ |E|2 + m? (6.171)

holds. The convolution integrals work out differently this time, depending on the value of

1. nonradiating solution: w, < cv

The gravitational fields decay exponentially with distance R from the binary system,
e.g. in the orbit-adapted frame they are given as

0 (Gm)Q ) coswyt  sinwyt 0 1 af
G26?2€ = % . g(r) e VR sinwyt —coswyt 4+ e VR %
0 0 0 1
(6.172)

20Earlier, the contrary was true: for the massless mode, the second iteration equation—although derived
from the third-order expansion—was completely determined by second-order coefficients of the
Lagrangian expansion. The perturbative equivariance equations can, and in general will, in each
iteration determine some higher-order coefficients by lower-order coefficients.
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with the abbreviations

_ 1[4 pr 4 g(ur)?le

g(r) = ( </;2)2 ) (6.173)
p=qfv2—(20)

For the traceless modes w™?, we obtain the same solution, but with prefactor
€ instead of 0. Note that the oscillating part has a “direct” dependence on the
coordinate time t. Characteristic behaviour of a radiating solution would be a
dependence through the retarded time T.

2. radiating solution: w, > cv

The nonoscillating part of the previous solution is not affected. Since it
decreases exponentially with R and we are interested in the far zone R >> r, it will be
dropped from now on—being shadowed by another contribution that is proportional
to %. This term radiates according to

~Cr 3577 Gm 2 o o
G2ty = ﬁ—( . : g(r)[nnf — X*N7, (6.174)

where the phase of the orbit-adapted frame is now % with

0 = wot — \J w3 — (cu)Qg =: wyt — JJ? (6.175)

FEarlier, for the massless modes, we had ¢ = wyT or, equivalently, % = wr. Again,
the solution for w™? is the same up to the prefactor of 6, which has to be replaced
with €. The dependence on coordinate time is only via a retardation term (6.175)).

The fact that radiation is “switched on” only above a certain angular frequency threshold
is an expected and welcome property. It is expected because of the mass v in the wave
equations. An analogy would be a massive particle in relativistic quantum field theory,
which requires a minimum energy—its mass—in order to be created. Farlier results
[70] in area metric gravity discovered a similar behaviour for electromagnetically bound
binaries, which has now been shown to extend to gravitationally bound systems, where
radiation is an effect of gravitational self-coupling. The result is certainly encouraging for
the viability of area metric gravity, as it once again keeps the theory very close to Einstein
gravity and introduces only modest modifications, assuming that parameters are chosen
appropriately. Without this property, it would be impossible to reconcile area metric
gravity with the metric theory, ruling it out as a candidate for a modified theory of gravity.
On the other hand, we observe a new quality: propagation of massive gravitational waves
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on nonmetrid®l] modes.

One propagating degree of freedom has not been considered so far. The scalar degree of

freedom V obeys a massive wave equation (6.94)), which is of mass p, but comes with an

additional complexity: it is a linear combination of scalar field equations, such that the
second iteration equation takes the form

~ ~ 1 3

oy + 127 = = [70a = (1+ 3

(2) T V(g V| 7PA +45

The three source terms p,,, p,, and p, denote the right-hand sides of the second iteration

equations (6.103)) that originate from variations of the actions with respect to u™?, v®P,

and A, respectively. Fxcept for the A variation, the trace has to be taken afterwards. For

our previous results, we only picked up zeroth-order contributions from the variations of

the matter action, such as
__—matrer 6.177
Gl (6.177)

because the fields would couple to the spatial components of the particle worldline tangents.
These come with factors of VG, rendering the first-order contributions a higher order
than considered for the second iteration. For the variation with respect to the lapse, this is
not the case, as an expansion of the GLED polynomial to second order shows. The lapse
perturbation comes with terms proportional to [72)]4 = c* = O(GY), which illustrates

) pu + %pv] . (6.176)

that we have to expect contributions Ty)[V1), V(2), H(1)) in the second iteration equation
B10).

Unfortunately, the second-order expansion of the GLED principal polynomial is not
effectively metric anymore. The straightforward way of applying the Legendre transform—
lowering indices with the help of the covariant metric—is not available in this case. In
fact, there is no closed expression for the Legendre transform corresponding to a quartic
polynomial. [29] While it is certainly possible to treat the problem perturbatively, it is
considered out of scope for the purpose of this thesis. After all, we do not seek to derive a
comprehensive solution, but rather wish to demonstrate the ramifications of novel matter
dynamics on the gravitational phenomenology. The results for the massless transverse
traceless tensor modes, as well as the massive tracefree modes, already allow to make
nontrivial predictions concerning the binary star, such that more extensive knowledge of
the remaining scalar modes is deemed dispensable.

2Tn the sense of not inducible by a metric tensor.
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6.3 Phenomenology of area metric gravitational radiation

The quintessence of Sect. is the prediction of gravitational waves emitted by a binary
star subject to area metric gravity. While compatible with the behaviour of Finstein gravity
in certain limits, the area metric result offers new features such as a modification of
Kepler’s third law, which determines the angular frequency, or radiation on massive modes.
All of these effects, however, concern the gravitational field and are thus inaccessible to
direct observations. This is because the geometric fields only play an auxiliary role in the
ensemble of physical fields. Observable effects of gravity involve the matter fields whose
dynamics are governed by the geometry in question.

In order to derive observable predictions from the previous results, we will first consider
a distribution of test matter and study the effect of a passing gravitational wave. This
yields the usual deformations known as geodesic deviation, possibly amended by novel
deformation patterns. A more direct effect of the radiation that is emitted by a binary
star is its enerqy loss, which makes the binaries reduce their distance and spin faster as
the system loses energy through radiation. This will serve as second prediction.

6.3.1 Effect on test matter

Let us probe the gravitational field using an arrangement of matter called a geodesic
sphere. [t is composed of freely falling point masses that are, at least initially, distributed
spherically on a spatial hypersurface. The masses are test masses, which is to say that
their gravitational field is negligible compared to the field we like to probe, the incident
gravitational wave. To first order, the dynamics of point masses in area metric gravity
are effectively metric (see Eq. (6.10) ). The standard procedures from metric gravity for
studying the motion of point masses are thus applicable, including the geodesic deviation
equation [75]

1 .

X = —R% 50X " (6.178)
for the spatial deviation vector X. Applying the 3 + 1 split of a metric tensor (see
Eqns. (6.63) and (6.64)) to the effective metric, the Riemann tensor R%ys, can be

expanded to linear order, such that the deviation equation assumes the form
g 1 e Lo aj 2 Ha
X = —§[go 5+ c(0b* + 0%bg) + 22095 A1XP. (6.179)

For small perturbations, the deviation due to purely spatial fields P is integrated as

X(t) = X*(0) — %gpa 5(£)XP(0). (6.180)
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This constitutes the starting point for the following predictions.

In Sect. all modes of gravitational radiation—except the trace modes—have been
found to be proportional to the various projections of

cos(p) sin(e) 0O o
MP = | sin(p) —cos(p) 0 (6.181)
0 0 1

onto the transverse traceless tensor, vector, and scalar traceless subspaces. The phase @
is either given by ¢ = 2wt for massless modes or Eq. (6.175|) for massive modes.

The tensor M“P is still expressed in the orbit-adapted frame (€, €,, €, ), whose orientation
is determined by the orbital plane. When considering the effect on test matter, it is more
instructive to switch to the detector-adapted frame (€, €y, €,) [74], which is oriented
such that the Z-axis points from the barycentre of the binary star to the test matter
distribution. A simple rotation around the x-axis transforms between both fmme@ such

that the detector-adapted frame is expressed in terms of the orbit-adapted frame as

1 0 0
ex=10|,6y=1| cost |,é,=|sin¢ |. (6.182)
0 —sin¢ coSs L

The angle v measures the inclination of the orbital plane as seen from the XY—plane@

Transforming M? accordingly and projecting onto the several modes, we obtain the
transverse traceless tensor mode

2(1+ cos?¢) cos cos ¢ sin ¢ 0
MT = cos ¢ sin ¢ —3(1+cos?t)cosp 0, (6.183)
0 0 0
the vector mode
0 0 sin ¢ sin ¢
MY = 0 0 —costsintcosy |, (6.184)
sinesingy —costsinecos @ 0

22 As the circular orbit is completely isotropic with respect to rotations around the z-axis, we can always
make this choice. Otherwise, we would need to parameterise the frame using two angles, i.e. first
perform a rotation around the z-axis and only afterwards around the z-axis. |74]

Z3Put differently, ¢ is the angle between the Z-axis (pointing towards the test matter distribution) and
the z-axis (the rotation axis of the binary star).
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and the traceless scalar mode

MSTF = sin? , cos ¢ (

[esy NI
o= O

0
0 ) . (6.185)

0 —1

Out of these, the TT part (6.183)) is already known from general relativity, where we found
as only radiating mode into the far zone the transverse traceless tensor perturbation

ag _ A0 (Gm)?
ctR r
e —
:=2d

Consequently, the right-hand side of the geodesic deviation equation (6.179)) is purely
spatial and we obtain the deviation

(MTT>045.

X(t) = X*(0) = —d x (MTT)4(t) XP(0), (6.186)

oscillating with the phase p(t) = 2wt = 2w(t — £). Geodesic spheres are thus deformed
in both lateral directions, but not in the direction of the incident wave. The deformation is
volume-preserving, because there is a phase shift of 5 between the lateral ares—elongation
into one direction comes with contraction into the other direction. As a result, the sphere
assumes the form of an ellipsoid with rotating azes, while its dimension in the Z-direction
stays constant.

Predictions of this effect exist since the inception of general relativity. [77, |78] The
confirmation of metric geodesic deviation due to incident gravitational radiation in 2015
by the LIGO and Virgo collaborations [§] marks the culmination of 100 years of general
relativity research.

As far as massless modes of radiation are concerned, geodesic deviation in area metric
gravity looks roughly the same: from Eq. (6.146), we know that the spatial part ¢*? of
the effective metric that constitutes the linearised principal polynomial and enters the

deviation equation (6.179)) amounts to

1 1
07 = Gut? + . (6.187)

If only the massless T'T mode is “switched on”, i.e. the angular frequency of the binary
star is below the threshold determined by the masses of the nonmetric modes, Fq.
grves

0 = 2d[1 + f(r)](MTT)2B, (6.188)

In such a case, the area metric deviation coincides with the metric deviation up to a
correction factor 1+ f(r). For large radii, but also for appropriate choices of gravitational
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constants, the factor becomes arbitrarily close to 1. In this limit, the metric result is
recovered. Otherwise, area metric gravity introduces a correction factor into the otherwise
unchanged effect—this could be called a quantitative refinement.

More intrusive modifications would come from vector or scalar contributions to Eq. (6.179)).
Taking a closer look at the corresponding deformation matrices f, it is
apparent what these could entail: more interesting patterns of deformations that include
contractions and expansions in the direction of the incident wave—an effect that is
unknown from Finstein gravity. Howewver, if nonmetric deformations can be observed
at all, they are well-hidden in the scalar modes, as a substitution of the area metric
perturbations in Eq. shows. The vector contribution from ©*? is cancelled by
the shift perturbation b using the vector field equations . What remains are the
massless TT perturbations U®?, whose effect has already been discussed, and a scalar
contribution. Without more knowledge of the radiation on all scalar modes, it is not
possible to give a definite prediction about the effect of scalar waves on test matter.

6.3.2 Binary star spin-up

While the gravitational radiation that causes geodesic deviation is produced as second-
order effect, the deviation per se has only been studied to first order in the previous
section. Similar results would hold for incident waves that have their origin in linearised
gravity, like the radiation that is emitted from nongravitationally bound systems [76].

An effect that cannot be observed in a solely linearised setting is radiation reaction:
during the iterative solution procedure, the matter trajectories have been fixed to first
order, which provides the background for the second-order gravitational field we were
interested in. This is by no means necessary—it is possible to solve for higher orders
n before fixing the matter fields, which then enables the prediction of the gravitational
field to order n + 1. The modern treatment of post-Newtonian and post-Minkowskian
general relativity proceeds in exactly this way. [74] Doing so, the matter trajectories
accumulate corrections, which are backreactions from the gravitational field sourced by
the matter content itself. In the context of a gravitationally bound matter distribution
which emits gravitational radiation to second order, these backreactions are often referred
to as radiation reaction.

In general relativity, the aforementioned modern perturbative treatment yields detailed
predictions for the deviation of a binary system from Kepler orbits. These calculations
are quite intricate, taking into account not only higher perturbation orders but also
the internal structure of the binaries. For a tentative qualitative result, however, we
do not need to go there. Noether’s second theorem (see Thm. provides us with
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a tool that resembles energy conservation equations@ Loosely speaking, gravitational
waves radiate away energy from the system, decimating the radius of the Kepler orbits,
which results—via Kepler’s third law—in the binary star spinning up. The qualitative
analysis from “energy conservation” yields a rate of change for the angular frequency
but cannot predict how exactly the trajectories are affected, e.g. how the phase shifts.
Still, the prediction@ for the orbital period decrease dP/dt of the Hulse-Taylor pulsar
PSR B1913+6 is in very strong agreement with the measurement, as the ratio amounts
to [79]

(dP/dt)

(dP/dt)

observed _ () 9983 + 0.0016. (6.189)

predicted

Again, let us first illustrate the calculation for metric gravity before diving into area
metric gravity. The total Lagrangian density of Maxwell electrodynamics and Einstein
gravity is

L= Lmatter + Lgravity‘ (6190>

Following a normal coordinate argumen@ from Ref. |39], the second Noether identity
(2.47) reduces to the vanishing of the divergence of the Gotay-Marsden stress-energy-
momentum tensor density, i.e.

0=29, [T (g)]. (6.191)

If the section g of the metric bundle satisfies the Euler-Lagrange equations, the integral
equation

oL
0 = /80 l:CABOOgB(Sg—A] dBCL’
; SL 5L . (6.192)
= o) C’ABOOQB 5mi§ter] d3$+/30 [CABO()QB—;HZRY d3x
b3 9 » g

over a spatial slice ¥ holds. Renaming the first term and making use of the Noether

24The notion of energy in general relativity and, more specifically, energy conservation is subject to
many debates. General relativity does not exhibit the kind of time-translation symmetry that is
usually the justification for the definition of energy. In the setting considered here, where the matter
content is localised to a specific region of spacetime and the geometry is asymptotically flat, such a
notion can be recovered from symmetries that hold asymptotically. |27] For our purposes, we do
not rely on the interpretation of certain quantities as energies or momenta. They are just derived
quantities from the fundamental fields. Changes in these quantities are interesting insofar as they
pertain to changes in the underlying fields.

25Considering, of course, the eccentric case with the appropriate parameters.

26For the metric tensor bundle, there are always local coordinates such that gab’ p = 0. In this coordinate
chart, the divergence of the SEM tensor density vanishes. Being a tensor density, it follows that the
components of the divergence vanish in any coordinate chart.
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identity ({6.191]) for the second term, this yields

oL oL ravi
0=0, /CABOOg ;—iwd%"‘/ao lCABOOQB%] d3z
3 b)) g
::}(matter (6193)
1 . 0L i
— K _ ) CA o B~ gravity d3r.
c matter /2 o l B 09 5g i €T
Finally, we apply the Gaufl theorem to the second integral, such that
y 5Lgrav1ty
%matter - C/ C B Og (5 A dS (6194)
S

oo

which should be understood as the limit of surface integrals over a family of appropriate
closed surfaces that approach infinity.

The variations of both Lagrangians have already been worked out for Eq. (6.107]). For
the matter part, we obtain to lowest nontrivial order

0L, otter 1 1 1
H atter = Q/EgoaTot;d?’x R~ —E[mc2 + §mnr2w2] = E[EO + E] (6.195)
with the constant energy E, = —mc? for the system at rest and the kinetic energy
1 1 Gm?
E=——mnr?w? = e (6.196)
2 2
Thus, the left-hand side of the balance equation (|6.194)) is given as
. 1.
%matter = ZE = 2_CnGm 7’2 (6197)

For the right-hand side, we have the full densitised Einstein tensor Gab — 1i—§G5L§;—“Z“y at

our disposal. To lowest order, the integral amounts to

5L ravit; C4
C/ CAp%—c 5 g"dS, / 90a 9" dS,
s 594 8@

0ad
87TG/ G dSs.

Since the integral is evaluated at infinity, only the radiation part is relevant. But this
part is given by transverse traceless tensor perturbations, such that divergences and
traces of the spatial perturbation h#*” can readily be dropped when extracting the lowest

(6.198)
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nonvanishing order of the integral (6.198]). Doing so, we arrive at

1
/S §odS, = — /S [0, Bph™ + 20,0 h,, h*|dS,,

1 - .
::ZEEL/m[hﬂyh“y%—2hﬂyh“”h£9 (6.199)
Soo
1 P 1 I
- — @ hl“/h dS + @ [hlU/h ] dS,

S S

oo oo

which we further simplified using the identity (letting N = 2*/R)
a,h*" = 1N0‘h’“‘” o ! 6.200
« - + R2 ( . )

for radiation terms o< % f(w(ct — R)).

It is now time to take the concrete form of the metric perturbation into account. Earlier,
we arrived at the result (6.143))

4n (Gm)?

v —
AR r

[nnf — X*AP] (TT)™ 4, (6.201)

where this time the projection onto the transverse traceless tensor mode is made explicit
using the projector [74]

1
TT — plt pY) _ _puwp
(TT)" o 52 op’ (6.202)

P?; =85 — N“Nj.

Under these circumstances, the contraction h ,,h*" is constant with respect to coordinate
time and thus does not contribute to the integral. The vectors n and A\ only depend
on the radius R and coordinate time ¢, such that the angular dependence is completely
contained within the TT projector. This reduces the integral to

/ gods, = ~ TG oy AA(TTY™ ), (6209

ST
where only the angular average

(X) = 4i /S XdQ (6.204)

™

of the projector remains to be calculated. Referring to Ref. [74] for the details, we just
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make use of the result 5

(TT)™ ) = 353“5[? (6.205)
and arrive at .
2567 Gm
SOO

Together with the left-hand side (6.197) of the balance equation ((6.194]), this yields a
first approximation for the spin-up of a binary star due to radiation loss. The separation
r of the stars decreases with the rate

. 64 (Gm)®

which translates into an increase of the angular frequency w, according to Kepler’s third
law.

This result for the lowest-order radiation loss approximation is in agreement with the
literature [74]. While we had prior knowledge of the full Lagrangian and the corresponding
Einstein equations, the approach is not restricted to such theories. A perturbatively
constructed third-order Lagrangian can be used just as well and will yield a comparable
prediction of binary star spin-up in area metric gravity.

The area metric calculation starts out similarly. Even though the right-hand side of the
Noether identity does not vanish this time, it can be neglected because it is always
of one order higher than the lowest order of the left-hand side, due to the appearance of
Gf?n =H fn. Let us also consider only radiation on the massless TT mode U*?. This is
sufficient in order to derive a nontrivial effect and it can be interpreted as the phase of
binary spin-up during which the angular frequency is not yet high enough in order for
the system to produce massive waves on the nonmetric modes.

As we did before when deriving Eq. , we start by inverting the relation (|6.50)
between the spacetime area metric perturbation and the perturbed observer quantities.
For the matter contribution on the left-hand side of the balance equation, this allows us
to calculate the variation by only varying with respect to A, as

6Lrnatter =4

5Lma er
CABOOGBéG—A Tjt + O(H?). (6.208)

The second variation in question behaves similarly, reducing the relevant variation of the
gravity Lagrangian to

SL . 0L i
gravity __ 4 gravity 4+ O(HZ) (6209)

A « B
CTp%0 §GA &b,
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Roughly the same result as for metric gravity is obtained for the matter part

4
ﬂmatter = E[EO + E]? (621[))
where E, = —mc? and
1 G
B = mmu? = _§mno‘ T4 fr) (6.211)

For the gravity part, we again use cadabra [69, 70| in order to derive the contributions
6Lgravity

from the transverse traceless U*? modes (6.164]) to —spa—. This yields via a similar
calculation as before the right-hand side

40/ Mgrﬂds _ < [(—i)U Uaﬁ+(i—4k: ) (UnsUP) | dS
o b, 4AmG g 8a’ 7 do TTFATOP

c2 . .
= — U,sU?dS
32maG é o

128 L, (1 + £(r)? (aGm)*

o 6
(6.212)
of the balance equations. Putting together both sides results in the rate of change

(B =L s e o = e

64 1 (aGm
5

aGmy, | f@»)]) . (6.213)

c2r

As always, it is first very instructive to consider the limit f(r) — 0 of Eq. (6.213]), which
reproduces the metric result

(6.214)

r=——"c

64 (aGm>3
E .

c3r
This again shows the correspondence of both theories for a suitable parameter range.

However, when the correction f(r) is not negligible, area metric gravity introduces an
interesting deviation from the binary star spin-up behaviour in metric gravity.

Fig. shows the evolution of the orbital period, obtained by integrating Eq.
and applying the refined Kepler law . For our convenience, we set all constants
and parameters of the system that are common to both area metric and metric gravity to
1, which makes the time scale somewhat arbitrary, but that should not concern us—most
interesting is the deviation of the area metric prediction from the metric result. This
deviation is controlled by the gravitational constants S and . With a coarse tuning of
the constants, it is possible to achieve two things: bringing the prediction arbitrarily close
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6 Application: gravitational radiation from birefringent matter dynamics

Spin-up of the binary star for different constants
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Figure 6.1: Binary star spin-up due to radiation loss. The orbital period decreases ac-
cording to Eqns. (6.156]) and (6.213]), which have been numerically integrated
using the scipy python package [80]. For reference, the metric result fol-
lowing is shown as well. Note that in general a binary star will not
spin up exactly like this, as the calculation neglects a lot of complications
like eccentricities and is based only on the first approximation provided by
the Noether theorem. Massive radiation modes are not considered as well.
However, this analysis highlights the potential deviations of area metric
gravity from Einstein gravity. For simplicity, a =G =n=m =c=1.
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6 Application: gravitational radiation from birefringent matter dynamics

to the metric prediction—again an incarnation of the correspondence principle—but also
generating hypotheticals that disagree with all observations. The latter are, of course,
easily falsified.

It is very tempting to perform a finer tuning, i.e. try and fit the predictions to observational
data and infer viable parameter ranges for § and u. This is certainly an interesting
approach, albeit with quite limited power at the current state: the analysis is very crude,
with the ambition to derive first qualitative and quantitative implications of area metric
gravity. Only binary stars without eccentricity have been considered. Also, the result
does not include massive modes of radiation, which further contribute to radiation
loss once their generation threshold is reached.

Still, with our approach that tried to limit the computational complexity, we eventually
derived novel, nontrivial behaviour of matter subject to area metric gravity.
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7 Outlook: symmetry-reduced
constructive gravity

In the previous chapters, we reduced the complexity of the covariant construction
procedure by considering a perturbative equivalent. Consequently, the result was an
approximation of the exact gravitational theory, valid for sufficiently weak gravitational
fields. A second approach towards reducing the complexity of the equivariance equations
is symmetry reduction, which assumes that the gravitational field exhibits certain
symmetries. Ideally, these symmetries bring the construction equations into a much
simpler form. The solutions of the reduced equations should be theories of gravity valid
in this symmetry-reduced sector, comparable to the Friedmann equations for spatially
homogeneous and isotropic Einstein gravity. In this chapter, we explore a possible
approach towards symmetry-reduced covariant constructive gravity by reducing the
bundle on which the procedure operates. Our main result will be that the Friedmann-
Lemaitre-Robertson-Walker (FLRW) model can be recovered without the need to know
the full Einstein-Hilbert Lagrangian beforehand. The area metric equivalent will not
be solved, only the construction equations are derived. For a more in-depth study of
symmetry reduction in the context of canonical constructive gravity, see Ref. [34].

7.1 The cosmological bundle

The introduction of the metric cosmological bundle follows the presentation in Ref. [1].

For the purpose of developing a symmetry reduction strategy, let us consider the cosmo-
logical symmetry, which assumes spacetime to be spatially homogeneous and isotropic
(see e.g. [81,82]). It is well known what this entails for the metric field: implicitly,
this symmetry comes with the assumption of a sliced spacetime, i.e. M = R x . In
appropriate coordinates on the product manifold, the covariant metric tensor then reads
[81, 83/

g=dt ®@dt — a(t)*y, (7.1)

where the spatial part is given by the positive scale factor a(t) > 0 and a constant
curvature metric y on E.

IRestricting the topology of the spatial manifold 3 to either R? or S3.
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7 Outlook: symmetry-reduced constructive gravity

More formally, we have a slicing ¢: R x X — M, which induces embeddings

P+ dx(p) = d(Ap)
of the spatial hypersurface ¥ into the spacetime manifold M. FEach slicing introduces a

time coordinate t := g o ¢~ 1. The corresponding vector field 0, defines the spatial and
spatiotemporal components of the metric tensor by virtue of the conditions

(7.2)

9(0,,0,) =1 and dt(X)=0= g(9,,X)=0. (7.3)

For the spatial components, we consider the pullback of the metric tensor onto the spatial
slice 3. This yields Riemannian 3-manifolds

(3,7, = —¢39) (7.4)

that are of constant curvature. For simplicity, let us restrict to zero curvature manifolds,
such that the spatial volume is determined only by the scale factor

a()) == +/dety,°. (7.5)

[

From these insights, we define the cosmological bundle for metric gravity.

Definition 7.1.1 (metric cosmological bundle). The cosmological bundle over a manifold
M which captures the information of a spatially homogeneous and isotropic metric
spacetime (M, g) is defined as

E(cosmological) —TM Dy VOI% (M), (76)

metric

i.e. the sum of the tangent bundle and the bundle of densities with weight %

A similar definition can be given for the area metric bundle. It has been shown [34] that
a spatially homogeneous and isotropic area metric manifold is determined by two spatial
degrees of freedom, which are a density-valued scale factor and a second scalar-valued
factorﬂ Consequently, the area metric cosmological bundle can be defined as follows.

2This already follows quite intuitively from the 3 4+ 1 decomposition in Sect. As opposed to
metric gravity, where a single three-metric determines all spatial components, we now have two
spatial metrics and one tracefree endomorphism which parameterise the 17 spatial degrees of freedom.
If the fields are to be isotropic, they must be given by two scale factors for the metrics; the tracefree
endomorphism must be zero. Instead of working with two density-valued functions, it is more
convenient to use a redefinition where one of the functions becomes scalar-valued.
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7 Outlook: symmetry-reduced constructive gravity

Definition 7.1.2 (area metric cosmological bundle). The cosmological bundle over a
manifold M which captures the information of a spatially homogeneous and isotropic area
metric spacetime (M, Q) is defined as

pcosmelogical) _ par gy Vols (M) @, Scalar(M), (7.7)

i.e. the sum of the tangent bundle, the bundle of %—densities, and the line bundle.

7.2 Recovering the FLRW model

The recovering of the FLRW model follows the presentation in Ref. [1], but provides
additional detail concerning the ansitze and the evaluation of the equivariance equations
for the ansatze.

Having defined the metric cosmological bundle T'M & ,, Vols (M), setting up the equivari-

ance equations ([2.29a))—([2.29d)) is just a matter of deriving the Gotay-Marsden coefficients.
For vector fields, Prop. yields

con =42 5m, (7.8)

while %-densz’tz’es transform according to the Gotay-Marsden coefficients

m

1
=g, .
C 30 (7.9)

In order for the field equations to be of second derivative order with a principal polynomial
that does not depend on derivatives of the geometry, we make the ansatz

L(a,0a,00a,U,0U,00U) =  fi(a)UmU"a ., +fs

(a) (@U™U
=+ f3(a>UmUna,ma n +f4<a)UmU,?La,m
+ @)UV a,  +fs(@URUYL (7.10)
+ [2(@ UL UY, +fs(@Uma,,
+ fola)UT, +/f10(a)
The functions f;, ..., f;, are arbitrary functions of the scale factor. Any occurrence of

of a vector field U would have to be contracted with a derivative of either a or U, such
that with our causality restrictions it is only appropriate to include linear and quadratic
terms in the ansatz.
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7 Outlook: symmetry-reduced constructive gravity

Taking the trace of the equivariance equation (2.29b)) restricts the functions fi, ...

to polynomials, as we obtain simple ordinary differential equations:

0=2f; — fia
0=3f,— faa
0= f3— fia
0=2f,— fia
0=2f; — fia
0=3fs— fea
0=3f;— fra
0=2fs — fia
0=3fy— foa

0 =3f10— floa

T R N A A

Y

, f10
fila) = kya?
fola) = “2‘13
f3(a) = rza
fala) = kya®
fs(a) = rza?
fol@) = g0 1y
f7(a) = Kqa®
fs(a) = rga?
fola) = rga®
fio(a) = Kyga

Evaluation of the remaining equivariance equations ([2.29b))—([2.29d)) further narrows down
the gravitational constants xq, ..., kg, leaving us with four independent constants in the
Lagrangian density

1
L= KX {aQUmU”amn + §a3Ume}m

3

+ K3 X {aUmU”amam +

2
+ Kg X [a Umra ,

1
+ =

3

3

2
+ —aQUme}%a’m + a2Ume}na7n +
2 5

a Ume;Laym +

a?’U’Tn]

boundary term

+ Kqg X {a‘g},

1
§Q3U7%U77;LL:|

1
—a3U’TnU;‘L]

9 (7.12)

where one constant, kg, only contributes to a boundary term, which will be dropped
from now on.

Let us couple the metric to a matter field by adding to the Lagrangian density (7.12) a

matter Lagmngz'arﬁ L

matter:

Expressed in coordinates where U®

const, variations with

3Not a density for the purposes of this section. We will always make the “densitisation” using \/—g = a>

explicit.
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7 Outlook: symmetry-reduced constructive gravity

respect to the fields a and U reproduce the well-known Friedmann equations 84/

a\? A &k
Z) 2 7.13
(a) 3~ 3" (7.13)

A K
S = 14
3 < (0 +3p), (7.14)

ISHIIESH

with combinations k and A of the gravitational constants Ky, ks, k1o and the derivative

a:=U(a).
For the field equations (7.13)) and (7.14) we introduced the energy density

— 1 ad(angatteT> p(s(asLmatter)
= {—gT“f e (7.15)
and the pressure
1 [ad(a®L,, )
I s matter ) 1
=33 {3 da (7.16)

An example for a matter field that couples to the FLRW metric is a spatially homogeneous
and isotropic scalar field ¢ in a potential V, with dynamics according to the action

Suaeld) = [ Vslaldondd) ~Violats = [ @U@ -V@lae. (117

The corresponding energy density and pressure as defined in Eqns. (7.15) and (7.16|) are
given by

p=(0)+V(e) (7.18)
p=()?—V(¢). (7.19)
Together, energy density and pressure constitute the metric stress-energy tensor

2 5( V _ngatteT‘>
YV -9 5gab

as can be verified by inserting the expressions (7.18) and (7.19) for p and p in above
equation.

T = = (p+p)UU" + pg™, (7.20)

Summing up, we have found the Friedmann equations (7.13) and (7.14) as the dynamical
equations for the remaining degrees of freedom in spatially isotropic and homogeneous
metric cosmology—without recurrence to the Einstein equation, just by performing the
symmetry reduction beforehand and applying the covariant construction procedure to
the reduced problem. The equations are parameterised by the gravitational constant k
and the cosmological constant A. All inferences that can be drawn from the Friedmann
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7 Outlook: symmetry-reduced constructive gravity

equations already follow from this simplified approach—demonstrating the potential of
symmetry-reduced covariant constructive gravity for investigations into the cosmological
sector of modified theories of gravity.

7.3 Towards area metric cosmology

In principle, the same procedure can be applied to the cosmological bundle of area metric
gravity, resulting in a parameterisation of all possible symmetry-reduced gravitational
theories for the area metric tensor. The only new ingredient as compared to metric
cosmology are the Gotay-Marsden coefficients for scalar fields, which are

m = 0. (7.21)
This is not surprising at all—the Gotay-Marsden coefficients define the transformation
behaviour with respect to spacetime diffeomorphisms. A scalar is, by definition, diffeo-
morphism invariant and the corresponding coefficients are thus zero. As a consequence,
the functional form of the dependence on the scalar is much less restricted, i.e. a result
equivalent to Eq. cannot be derived. Any solution will contain undetermined
functions, not only constants.

An in-depth study of the equivalent problem in canonical constructive gravity has been
performed in Ref. [34].

128



8 Conclusions

In this thesis, the concept of covariant constructive gravity has been put on a solid
mathematical footing. Lagrangian field theory on jet bundles turned out to be ideally
suited for the definition of the general covariance axiom. The equivariance equations that
follow from this axiom transform the implementation into a computational task, opening
up the constructive pathway towards modified theories of gravity. Using the Cartan form
that corresponds to a diffeomorphism invariant Lagrangian density, we have seen how
general covariance implies a version of the first and second Noether theorem—important
results that have proven very useful further down the line. Within this framework,
the axiom of causal compatibility has been formulated in terms of additional algebraic
conditions on the gravitational field equations.

From the equivariance equations and causality conditions, we derived a concise algorithm
which guides the construction of novel gravitational theories that implement general
covariance and are causally compatible to a given matter theory. Because it can be seen
as generalisation of Lovelock’s uniqueness theorem for Einstein gravity [14, |35, 36], we
could show that this construction procedure applied to Maxwell’s electrodynamics indeed
reproduces metric gravity as derived by Einstein.

Of course, covariant constructive gravity would not be that interesting if it were just
another tool that reproduces Einstein gravity. Its raison d’étre is the derivation of
modified theories of gravity that complete novel matter theories to predictive models
of the universe. The remainder of the thesis was dedicated towards achieving this
goal. First, we have discussed three examples of novel matter theories: birefringent
electrodynamics and two bimetric theories. While it is straightforward to set up the
construction procedure and derive general results concerning the solution space, finding
these solutions in practice is notoriously hard and turned out not to be feasible for the
examples in question.

Therefore, we investigated possibilities to arrive at results that are valid in certain
specific settings, without the need to know the “full” solutions. Our main strategy was
perturbation theory, which seeks to find solutions that are valid for small deviations
of the gravitational field from a Lorentz invariant background. With a corresponding
perturbation ansatz, the equivariance equations transform into a system of linear equa-
tions for the expansion coefficients. As a consequence of the Lorentz invariance of the
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8 Conclusions

background geometry, the expansion coefficients themselves are Lorentz invariant, which
reduces their dimensionality a lot—before solving any equivariance equation.

Many of the computations that are necessary in order to construct Lorentz invariant
ansitze and solve the perturbative equivariance equations have been delegated to the
computer. For this purpose, two Haskell packages have been developed and presented in
this thesis—with a focus on the package sparse-tensor which composes and solves the
equivariance equations. Methods from functional programming lend themselves for an
efficient and safe implementation of tensor algebra, enabling us to repeat and modify
calculations whenever required, without having to redo them by hand.

Chap. [6] was the culmination of this thesis, where we put all pieces together and derived
perturbative area metric gravity up to third perturbation order in the Lagrangian density.
From this Lagrangian, the linearised gravitational field equations and their second
perturbation order follows. Quite remarkably, the linearised field equations coincide with
the equations derived in the canonical framework [65, 3]—with an important caveat:
the field equations in the canonical picture as obtained by solving the canonical closure
equations |26, [65] are not causally compatible with the matter theory, i.e. their principal
polynomial does not reduce to the Minkowski metric.

In order to cure the causality, one of the eleven gravitational constants had to be fixed
[3], reducing their number to ten, which then equals the number of constants obtained
in the covariant framework. The reason for this mismatch is believed to lie in the
so-called ansatz equations, which enforce Lorentz invariance of the perturbation ansatz.
In perturbative covariant constructive gravity, these are already solved by considering
only Lorentz invariant ansitze to begin with. Canonical constructive gravity, on the other
hand, makes ansatze after performing the 3+1 split—effectively implementing a spatial
SO(3) symmetry. But this is a weaker requirement than the spatiotemporal SO(1, 3)
symmetry that follows from the equivariance equations. In the case of the linearised field
equations with causality mismatch, not all of the ansatz equations seem to be solved—one
condition on the gravitational constants is not yet implemented. To remedy this, one
has to find the equivalent of the ansatz equations in the canonical picture by prolonging
and projecting the PDE or otherwise ensure Lorentz invariance of the ansétze.

The comparison demonstrates that the presence of matter causality in the canonical
constraint algebra is not responsible for the causality of the gravitational theory. For
the linearised field equationsE]7 diffeomorphism invariance actually constrains the gravity
causality. Whether diffeomorphism invariance is enforced by imposing it directly on the
Lagrangian density or by requiring the canonical constraint algebra to implement the
hypersurface deformation algebra—in whichever frame—is secondary.

The ability to reason about the canonical closure programme using insights from covariant
constructive gravity shows how both approaches complement each other. Comparing

1But also for the second-order equations, as shown in Sect.
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the results of covariant and canonical constructive gravity on the one hand increases
the confidence, as they are so similar, but also provides impulses for improvements: the
canonical approach should embrace Lorentz invariance and also reconsider its claims
concerning causality, while the covariant approach could benefit from a canonical formu-
lation. The multisymplectic framework based on the Cartan form [45] seems ideal for
this task.

Building up on the third-order area metric Lagrangian, we inspected the binary star
with circular orbits, one of the simplest conceivable systems. Thanks to this simplicity,
however, it was possible to derive second-order effects that proved to be quite rich. A
binary star in area metric gravity emits massive gravitational waves—in addition to the
radiation already known from Einstein gravity. These new modes of radiation have the
potential to induce novel deformation patterns in test matter distributions and to alter
the spin-up behaviour of the binary star. For the massless modes of radiation that are
also observed in metric gravity, we made use of the second Noether theorem and obtained
a quantitative description of how a binary star is expected to decrease its orbital period
as it emits gravitational waves. Fig. shows a few exemplary cases, which demonstrate
the deviations from Einstein gravity that are expected in area metric gravity.

These results should be understood as conceptual, because much more work would be
needed for the prediction of the outcome of high-precision experiments. The ambition of
this thesis was to demonstrate in principle the predictive power of covariant constructive
gravity. Starting from a modification of Maxwell’s electrodynamics—by allowing for
birefringence in vacuo—it is possible to derive a compatible theory of gravity that
prescribes the dynamics of the new geometry used by the such refined matter theory.
The resulting gravitational theory has a limit where it corresponds to Einstein gravity,
but it also allows for interesting deviations: massive gravitational waves that are emitted
from a binary star which exceeds a certain angular velocity threshold, a modification of
Kepler’s third law, or a refined inspiral curve.

We finally explored the possibility of making similar predictions for symmetry-reduced
theories—proposing an approach that meets the minimal requirement of reproducing
metric cosmology. It will be exciting to see the application to novel matter theories.

The famous words by John Archibald Wheeler quoted at the beginning of Chap. (1| seem
to apply not only at the level of field equations—where matter fields source gravitational
fields, while gravitational fields determine the motion of matter fields—but also at
the level of theories. The gravitational field equations themselves are, to a certain
degree, determined by the dynamics of matter fields. Considering novel matter theories
that couple to nonmetric geometries has gravitational implications, which covariant
constructive gravity is able to quantify. Improving the predictions in order to make the
constructed theories testable in practice should be at the centre of upcoming research.
The standard model of particle physics and general relativity are not the definite models
of the universe—covariant constructive gravity can further the search for alternatives.

131



A Ansatze for third-order area metric
gravity Lagrangians

The following ansétze have been computed using the Haskell package sparse-tensor
(see [5] and Chap. [p]). Haskell code for generation and pretty printing as well as the
ansitze in machine-readable form are available at Ref. [7].

o first order (constants esg, €59, €40):
a ' HA = [638 “MNacbdpg T €39 NacMbpTdqg T €40 Eabcdnpq] xnPrpts Hobed | (A1)

« second order (constants ey, ..., esr):
a, s HAHB = [
€1 " NacMdMegMgn €2 * NacoeNdgMyn + €3 * Mae b fMegdn
tey- Naebg"cfMdn +e5- €abedllegfn + e - €abefllcgldn

:| % HabcdHefgh

(A.2)

aAquHApHBq - [

€7 NacModMpeNfgMhg T €8 " NacllbdTpgllegth T €9 * NacllopTdeN g hg
+ €10 " NacbeNdgMpfMhg + €11 * NacTbedgpgsn T €12 * NacbeNdq pg"fh
+ €15 NapMbeNefMagMhg t €14 * NapMoelegNanTiq T €15 * NacllofMegNanpg  (A-3)
+ €16 " €apedpefgMhg T €17 * €abedlpgMegn + €18 * €abpeTlefNdg"hg
+ €19 " €appellegNaqlfn + €20 * €apefepTdglhg T €21 * €abefNlegManllpg

< s Fabed prefon

a,p' HAHP = [

€92 * NacMbdNegMnlpg T €23 * NacMbdNegMphg T €24 * NacMbeNdg 1 Ipg
+ €25 * NacMbeNdgMpMhg T €26 * NaceMdpM fgThg T €27 * NaclbpTdgMeg fh
+ €98 * Naclo fegdn g T €29 * Nac o fNegdp"hg T €30 * NaclogMefManTlpg  (A-4)
+ €31 " €apedNeg rlpg T €32 * €abedllegfpThg + €33 * €ave flegMdnTpg
+ €34 * €apefllegMapThg T €35 * €abepTefNdgThg T €36 * €abepTlegNanfq

h
+ 637 : f‘efghnacnbdnpq} X T]prnquadeHefg TS

o third order (constants ey, ..., €937):
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A Ansétze for third-order area metric gravity Lagrangians

ArrBrC _
aABcH HPHY = €41
+ey3

+ €45

+ €49
+ é51

+ e53

+ e55

“Maclbdeg ikt + €42 " Naclbd leg ikt
“NacbdMeiMfiMgkMhi T €aa " MacTbdMei Mk Mgs M
“NacMeNdgM ikt T €46 * MacTbedi oMkt
tey7 -

%W%%MW+%WMWMMMMm®

* CabedegMn kM1 T €50 * €abedleg i ki1
* €abedMeiyiMgkMht + €52 * €abedei Mg
* €abefMegManinji T €54 * €ave fllegMdi Mkt
" €abefMeiNdi Mgkt | X Habed pefah priikl
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A Ansétze for third-order area metric gravity Lagrangians

P 9r7AyB C
aup ¢ HHZ H",

€56
+ e59
+ €g2
+ eg5
+ €gs
+ e
t ey
+ eqr -
+ €so
+ eg3
+ €sg
+ egg
+ €92
+ eg5
+ €9
+ €101

+ €104

+ei07

+ €110
+e113
+ €116
+ €119
+ €120
+ €125
+ €108
+ €131

+ €134

+ e137 -

+ €140
+ €143
+ €146
+ €149
+ €152
+ €155
+ €158
+ €161

+ €164

*NacMeMdiM oMk Mpijq T €81
*NacbeNdiMrpMgjMhkTq + €84
*NacMbeNdiM Mg Mg lpt + €87
*“NacopNdqTegnMikMj + €90
*NaeMb fMegNdphilljeg T €93
“NaeMfMegdiMh; Mok Mg T o6

* NaebMegMaiMhipg"t T €99

“NacTbdMeg r"piMjkMg + €57 °
*“NacbdNeg i MnkMpi Mg + €60
*NacbdNepTfilgiMhkiq + €63
*NacbeNdgM rpi kg + €66
“NaclbeNdg pThgMikMj1 + €69
*NacbeNdg™ fillhgMprMji + €72

NacMbeNdp™iMgi kMg T €75
NacMbeNdiNsgMhp ik g T €78

“NaeM fMegNdgMhilpk i1 T €102
*NaeMbfMepTdiNgkMhq'ljt T €105
NaeMb fMeildkNgp"hiTq T €108
*“NaeMopTefMdiNg;Mhe Mg T €111
“NaeMbile i MgkMhipg T €114
* €abedMegMfphillikMg T €117
* €abedMegMfiMhg IpkMjt T €120
* €abedMeil Mgk MhiMpg T €123
* €abe fMegMapTniMinTiq T €126
* €abefMegNdiMnMpkMiq T €129
* €abefMegMdilnkpgj + €132
* €abefMegMdqMhillpkMj1 + €135
€abe fepNdiNgkMhgMji T €138
* €abefMeillakNgpTniTq + €141
“€abepNefNdiNgiMiMq + €144
* €abepllegMantfillixMg T €147
" €abepTlegMail kMgt T €150
* €apeillefNdg Mk pi Mg T €153
" €abeile fMdgMhgpkj1 T €156
“€abeillefMdpTgkMhgMit + €159
“ €abeille fMakNgp Mg + €162

* €abeqMefNagMnpMikTj + €165

X nprnqs HadeHefgh,rH”kl,s

NacMbdNegMnMpgMikjt T €58

*NacbdNeg i Mk pg"j1 T €61
*NacbdNepT filgkMhiMjq + €64
*NacbeNdgM hTlpgMikMj1 + €67
*NaceMdgM ik Mpi Mg T €70
*NacbeNdpMfgMhiikThg + €73
*NacMeNapMfiMgkMhiNjq T €76
*NacMbeNdil fgMMniMpkhq + €79
*“NacMeMdiN oMk Mpg i1 T €82
*NacbeNdiN pNgkMhiNjq T €85
* NacMbeNdqMrgMhpMicMj + €88
* NaeMbfMegNanpilljxMg T €91
* NaeMb fMegMdpThqg ik T €94
*NaeMo fMegaiMniNp; Mg T €97 °

*Nacbdeg" fp"hi kg
*Nacodeg#iMhq pk 51
*NacbdMeill £5Mgk "1 pg
*Nacbedg" tphiljk g
*NacbeNdg" fiMnkpq"j1
“MNacveNdp fg"ng k51
*NacMbeNapiNgkMhe ;1
“MNaceNdiTl fg"Mhkpiq
*Nacbedi"l £g"hq lpk 51
*MNaceNdill £5Mgp" kg
“MNaceNdg" g hipk 51
*NaeofNegManpq"ik5
*NaebfMegMdi Mhpik g

naenbfncgndinhknpl qu

" €abedNegfiMnkMpi Mg T €118
" €abedMepMfiMgiMhkMg T €121
* €abefMegNdnMpiMjkMg + €124 °
* €abe fNegMdpMhgikj1 + €127
* €abefMegNdi Mk MpiMg T €130
*€abefMegNdiMhgpkj1 + €133
* €abefMepNdilgiMnkq + €136
* €abe fMeildiNgpThkg T €139
* €apepTlefNagMniNikMg + €142
* €abepTefMaiMgkMhiMjq + €145
* €abeplegMan gk T €148
* €abeille fldgMhp kMg + €151
* €apeillefNag M Mpijq T €154
“ €abeille fMdpMgiMnihq T €157
* €apeillefNajNgpnkq T €160

“ €abeillefMdrNgpniMjq T €163

“NaeM fMepNaigi Mg T €103
*NaeMo fMeiNdiNgp kMg T €106
*NaeMbgMe fManMpiMikMg T €109
*NaeMopTe fNdiMgkMhq"jt T €112

“NaeMb fMegMdiMhgMpkMt T €100 * Nae b fMegMdgThpMik"j1

*NaebofNepdi gk Thjq
*NaeofMeiNdjNgkhipq
*Naebg e fMdanpq"ik 51
*NaeMviMefNdjNgpTnk g

* €abedNegrMpiMikMg T €115 * €abedMegfh pgMik M1

CabedNeg fiTlnkpqj1
* €abedepT$iNgkhiq
€ave fMlegManpqikj1
€abe fMlegNdiThp kMg
" €abefNegNdi Mk ptjq
* €abe fNlegMdqhpTikj1
* CabefNepNdilgknijq
" €abefNcilld;Ngkhipq
* CabeplefNdgThg"ikj1
" €abepllefNdiNgkThq"ljt
* CabepllegMdilfinkTq
*€abeille fNlag"Mhipk g
* CabeillefNldgMhikpq"j1
* CabeillefNapTgkMnijq
" CabeillefMdjNgknilpq

" €abeille fNldkMg5hq Ipt

*CetghMaclbdlpi"likiq
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A Ansétze for third-order area metric gravity Lagrangians

TfAyByC _
Qgpc H"H°HY, =

€166
+ €169

+ €172
+ €175
+ €17s
+ €181

+ €184

+ €190
+ €193
+ €196
+ €199
+ €202
+ €205
+ €208
+ e

+ €214

+ €299
+ €303
+ €206
+ €229
+ €230

+ €935

“€abedNegM ik Mjtpg T €206
* €abedNegN ik MipTq T €209
* €abedNei Mgk Mt lpg T €212
* €abe fMegManiktlpg + €215
+ €17
* €abe fMeilldjNgkMhipg + €221

* €abeillefNdj Mgk Mhilpg T €224

* €abeillefMapMgkMniMjq T €230
* €abijNeeNdfMgkMhillpg T €233

* €abipNeeNa Mg Mhig T €236

*NacbdNegMrrMikMiMpg T €167
*NacbdMeg i MiNipMig T €170
*NacMdMei M MgkMhilpg + €173
*“NacbeNdgM rMikM51pg + €176
*NacMeMdgM i MmkNjpig + €179
“NacbeNdiM g MniMipg + €182
*NacMeNdiM Mgk Mhilpg + €185
+ 87

nacnbendinfkngl nhp’qjq + €188

*“NacbeNdi fpNgk Mg T €101
*NacbiNlakNegplhgj + €194
“Naeb fMegManMikMjpMg T €197 -
*NaeMbfMeiNakgiMhipg T €200
“NaeMbgMeiNdiN kMhiMpg + €203
* €abedegMrnMikMjpThq T €207 *

€abe fNegNaiMnkNipTg T €218

: eabeincfndk:ngjnhpnlq + €227 *

X npr,qqsHabcdHefthUk{m

" €abedegM fiMnpMik Mg T €210
* €abedeil Mgk MhpTg T €213
* €abefMegNanMikMipMq + €216
* €apefNegNdiMnpMikg T €219
* €abe fMeildjNgkMhpTiq + €222

* €abeillefNdjNgkMhpq + €225

* €abeillefMapMgklngMji + €231
* €abijNceNd Mgk MhpTiq T €234

* €abipTeeNdfNgkMniMjq T €237

“NacMbaNegraMikipMqg T €168
“NacbdMegiMhpMikig T €171
*NacbdMei Mgk Mhphq + €174
*NacpeNdgM rMikipThq + €177
*NacMbeMdgM i MhpMikMg + €180
“NacbeNdirgMniMipMg + €183
“NacMeNdi Mgk MhpTiq T €186
*NacMbeNdiMrpNgi kg + €189
*NacNbeNdpT ghgMikMj1 T €192
*NacbiNarNeiNfpNgiMhg + €195
Nae b fMeiNdi Mgk MhiMpg T €108
* NaeMbgMefManMikMiipg T €201
* NaeMbgMeidiM e Mhp g + €204

eabeincfndknglnhpnjq + €228
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*NacbdegMfpThg ik
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*NacbeNdg" fpThg"ik51
“NacveNdill fg"Mhpk g
“NacbeNdi Mg Thp g
*NacbedifpTlgknijq
*NacbeNdpTyilgi Mk ig
*NaebfMeganik51pq
“NaebfMcidi Mgk ThpTiq
*NaelbgefMan"ikNip g
*NaeMbiNegMak™ fp"hq"lj1
€abcdleg £iTlnk51"pq
€abedleg" fpThg"lik 51
" €abedei g5 pg
" CabefNegNdi k1 Tpq
* €abe fNlegNdpThgikj1
“CabefNeillargiMnilpg
" €abeillefNldkMg;Mhipq
*CabeillefMapTgiMnkTq
" €abepllefNdigiMhk g
" CabijNeedk fp"gt g

€iikiNacbdeg Fn1lpq
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B Solution of the equivariance
equations
The following relations for the ansatz coeflicients ey, ..., eq3, solve the perturbative

equivariance equations (4.32)-(4.34)) in terms of 50 indeterminate constants k..., ks.
See [7] for Haskell code that yields this result.

« first and second order (constants e, ..., e,0):
ey =k
62 - k2
2
= — 2k, — -k
€3 17 32
1
64 = 4k1 + gkz
es = ks

1
66 - _gkl - §k2 _3]{73

er = ky
69 — k‘6
e19 = k7
ey = kg
1 5
612 — §k6 _|_ §k7
16 7 5 4
€13 = — §k4 + 16k5 — §k6 — Ek'? + §k8
8 13 11 2
€1y = — §k4 + 8]{55 — FkG — ﬂk'? + gks
1 23 1
@15:k4_§ 6_51{;7_5%8
e16 = ky
e17 = Ky
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B Solution of the equivariance equations

3 3 3

1 1 1
1 1 1 1
€o0 = — Zk4 — gkﬁ + 3_2k7 — §k9
1 3 1
621 = kf4 — 3]{75 + ZkG — Ekﬁ — §k8 + ]{79 — 3k10
€9 = kyy
€93 = ko
€9y = ki3
€5 = k4
3
€96 = kg + Zk7 — k14
1
eyr = — kg + 5’“7
5 5 25 2 1
€og = §k4 + EkG - 4_8k7 — 2k — kg — §k13 - ka
3
a9 = kg + Zk7 — k14
4 5 1 1 1
€30 = — §k4 - gkﬁ + ﬂkb + 4k + 2k + §k13 + 5"714
e3; = ks
€30 = ki
1 1
€33 = ky — §k7 —3ky, — §k13 — 6ky5
1 3 3 1
€34 = §k6 + §k7 - §k12 - §k14 — 3ky6
1
1 3 1
€36 = — kg + §k7 - §k12 - §k14 — 3k 16
1 1 1 1 1 1
€37 = Ek‘zl + Ek’(s + 4_8k7 - gku - ﬂkm + kis + ka
3
39 = — 2k — 5"57
1 1
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B Solution of the equivariance equations

o third order (constants ey, ..., ey37): see [7].
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C Linearised field equations

From the 16 constants kq, ..., kg that govern the second-order expansion of the area
metric Lagrangian, only 10 linearly independent combinations contribute to the linearised
Euler-Lagrange equations. A possible basis is given by the 10 gravitational constants s;
below [[] These are obtained from a 34-1 and subsequent scalar-vector-tensor decomposition
of the linearised field equations (see [7]).

3
31 - 2k6 + 5]{77
3 9

83 — §k6 + gk'? - 6k12 - 2k14
1 3 1
S4= — §k6 - §k7 - §k14
3
1 11 1
511 = §k6 + §k7 + 2kg — 2ky3 — 5"314
S13 = — 2k,

Sy = — 2ky + 24k — kg — Zk7 + dkg — 12k + 24k, — 24Ky, — 6kyy — dkys
— kg, — 48Ky — 12Ky,
16 = — 24k, — 4k, — 24kq
Sqr = — 24ks + 2k + gk7 — Akg + 24k, — 12k, + 4ky5 — 4k,
Sqg = 24k, + 4k, (C.1)

IThe constants are not labelled with consecutive numbers, because the labels reflect how they have
been calculated: each constant from s; to s,4 is the prefactor of a certain term in the scalar field
equations, but also a linear combination of the 16 constants k;. The subset is a basis; every
coeflicient of the linearised field equations is a linear combination of the s;.
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C Linearised field equations

With the linearly independent subset (C.1) of gravitational constants, the scalar field
equations read

(SL STF 81 ~ ~ . 84 = 86
|:6uaﬁj| :AQ'B|:$1A_ZU+83V+S4V_gAV—’—SGW_gAW:|’
SL S-TF 3
SvB =A,p5|(s1 +4s4)A+ ( 1 +5,)0 + (T +3s,)V
- sy 4sy
+811V <3 +T+511)Av+813‘/+514mw+816w ,

5L S-TF . .
wO{

. S
+ (_36 +514)V — (_6

<%+54+311>DW_313W}
sL 1R 2s, 28~ 3s = 2s

—— = ZAIAA - DT 4 AT 4 (-2 — ZBAT

[5u0‘5} yaﬁ{ 3 U+ 6 U+ ( 1 +53)V 3 %

2 2
+ %IAV n %AAV n %AAW ,

5L 17 As, 35, © 28y -

5 3 ~ ~

2 255 2 2
Ty . 83)AV P (225 PHAAY 4 S6AAW
2 6 9 ' 3
5L1° - 4
L;b_a} :aaat{—ZsquL( 35, + 4sy) TV + ( ;1 8§4)AV+8§6AW},

6.[/ ~ 481 884

8s
— = —92s5.A 45.)A AA ZSAA 2
51 s AU + (=35, + 455) AV + (=L 3 3) vV + 3 W, (C.2)

where the label (S-TF) denotes the projection of a tensor onto the tracefree scalar and
(S-TR) means the projection onto the trace.
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C Linearised field equations

A subset of seven constants out of the ten constants s, parameterizes the vector field
equations

oL : ’ v : S
huo‘ﬁ} = %% [SlBﬂ) ~ 284Up) = 28665)M Upw T 286Wg) + (% —2s4)e

— pv
2 B) Wiw|
sr 1V : v
{(51)044 = 0q {(—51 — 454)35) + 48666)“ B,
. 3s vy
+ (81 + 484 +2811)Ug) + (—71 — 654 — 281;)AUg) + 23665)” U, + 2s13Up
+ 2814DWB) + 2816W,3):| 5
5L 1V : v
{(Sw—aﬁ} = 0q {4563ﬁ) + (s + 454)%)“ B,
. S U
3s
+ (_71 - 684 — 2811>|:|Wﬁ> — 2813W,3):| y
sL1Y : w . o
5b_a = A 281Ba - 484Ua - 486604 U:u'vy + 486Wa + (_81 - 484)6a W#,V 5
(C.3)
as well as the transverse traceless tensor field equations
5L 1" _Sigp
ducb T4 e
S . S e
+ (Zl + S4>Vaﬁ + (Zl + S4)AVO‘/B — 286€(au V/B)Ha’/
+ 56Wop + 86AW, 5+ (51 +255)€," W00
s 1™ s .. s .
{W] = <Zl+s4>UO¢/B+ (Zl+84)AU0€5+2866(CX“VU5)M7V
S
+ (Zl + 54+ 811) Vg + 813Vas + 51480Wo5 + 816 W
s 1M o S .
|:5w—aﬁj| = SGUOCB _|— SGAUaﬁ - (El + 234)6(0/“/[]5)“7”
S
+ 51400Vop + 816Vap — (Zl + 54+ 811) W, 5 — 513Wap (C.4)
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