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Abstract

Matter theories are not predictive if they couple to geometry with unknown dynamics:
it is not possible to anticipate how matter behaves in the future without knowing how
the geometry evolves. This thesis studies the completion of such matter theories to
predictive theories of matter and gravity. Einstein solved this problem for Maxwell’s
electrodynamics by providing the Einstein equations. Indeed, a recurring theme of the
work presented here is that general relativity is recovered as far as metric theories are
concerned.

We start with the definition of two axioms that guide the completion of matter theories
to predictive theories: gravity must be generally covariant and causally compatibility
with the matter theory. Both axioms are brought into precise mathematical form. The
foundation for the mathematical formulation is Lagrangian field theory on the jet bundle,
where the geometry may be given by fields of arbitrary tensorial nature or, by extension
of the approach, even nontensorial fields. In particular, the geometry need not be metric.

From the mathematical definitions follow partial differential equations and algebraic
equations whose solutions yield candidate gravitational Lagrangians. This finding reduces
the task of completing a matter theory with a gravitational theory to a computational
problem, which we state in the condensed form of an algorithm. Since the algorithm
provides a construction procedure for gravitational theories on the basis of general
covariance, it shall bear the name covariant constructive gravity.

Applying the construction algorithm to Maxwell’s electrodynamics reproduces general
relativity. Theories beyond Maxwell and Einstein turn out harder to construct, such
that we need to reduce the complexity of the problem in order to arrive at some
physical implications. One possibility is to make a perturbation ansatz, which transforms
the problem into simple linear algebra. Using this ansatz, we derive the second-order
gravitational field equations for a birefringent generalisation of Maxwell’s electrodynamics
and consider the binary star as a prototypical example. Interesting phenomenology
is obtained as result: a modification of Kepler’s third law, the emission of massive
gravitational waves, and a modified inspiral curve. These predictions demonstrate the
predictive power of covariant constructive gravity—given a generalisation of Maxwell’s
electrodynamics, it is possible to derive gravitational implications.

The second approach is symmetry reduction, which is shown to yield the Friedmann
equations if applied to a metric theory with cosmological symmetry. We sketch the
application to nonmetric theories, but leave the implementation open for future research.



Kurzzusammenfassung

Materietheorien, denen Geometrie mit unbekannter Dynamik zugrunde liegt, sind nicht
prädiktiv. Sie können das Verhalten von Materie in der Zukunft nicht vorhersagen,
denn die Entwicklung der Geometrie ist nicht bekannt. In dieser Dissertation soll die
Vervollständigung von solchen Materietheorien zu prädiktiven Theorien von Materie und
Gravitation untersucht werden. Einstein löste dieses Problem für die Maxwellsche Elek-
trodynamik, indem er die Einsteinschen Feldgleichungen postulierte. Auch im Folgenden
wird die Allgemeine Relativitätstheorie erneut hergeleitet werden, wann immer metrische
Theorien besprochen werden.

Zu Beginn werden die beiden Axiome präsentiert, welche die Vervollständigung von
Materietheorien leiten: Die Gravitationstheorie muss allgemein kovariant sein und eine
zur Materietheorie kompatible Kausalität aufweisen. Mittels Lagrange-Feldtheorie auf
Jetbündeln gelingt eine präzise mathematische Definition beider Axiome, wobei die
Geometrie durch beliebige tensorielle Felder gegeben sein kann – sogar eine Erweiterung
zu nicht-tensoriellen Feldern ist möglich. Insbesondere muss die Geometrie nicht zwingend
metrisch sein.

Die mathematische Formulierung der Axiome impliziert sowohl partielle Differentialglei-
chungen als auch algebraische Gleichungen, deren Lösungen potentielle Lagrange-Dichten
der Gravitation sind. Damit reduziert sich das Problem der Vervollständigung von Mate-
rietheorien mittels einer geeigneten Gravitationstheorie auf ein reines Rechenproblem,
welches in Form eines Algorithmus angegeben werden kann. Dieser konstruktive Zugang
zu modifizierten Gravitationstheorien, der auf dem kovarianten Lagrange-Formalismus
beruht, wird Kovariante Konstruktive Gravitation genannt.

Angewandt auf die Maxwellsche Elektrodynamik, reproduziert der Algorithmus die Allge-
meine Relativitätstheorie. Theorien jenseits von Maxwell und Einstein sind weniger trivial
zu konstruieren, weshalb Methoden zur Reduktion der Komplexität erforderlich sind,
um überhaupt physikalische Schlüsse ziehen zu können. Ein Störungsansatz reduziert
das Problem auf Lineare Algebra. Mittels dieses Ansatzes lässt sich die zweite Störungs-
ordnung der gravitativen Feldgleichungen für eine doppelbrechende Erweiterung der
Maxwellschen Elektrodynamik herleiten. In diesem Beispiel stellt ein Doppelsternsystem
interessante Phänomenologie zur Schau: ein modifiziertes drittes Keplersches Gesetz,
die Abstrahlung von massiven Gravitationswellen, sowie eine veränderte Dynamik der
Orbitperiode aufgrund der Strahlungsverluste. Solche Ergebnisse verdeutlichen die Vor-
hersagekraft der Kovarianten Konstruktiven Gravitation – aus einer Verallgemeinerung
der Elektrodynamik folgen gravitative Phänomene.



Des Weiteren ist es möglich, mittels Symmetriereduktion eine Gravitationstheorie mit be-
grenzter Gültigkeit herzuleiten. Am Beispiel einer metrischen Theorie mit kosmologischer
Symmetrie werden die Friedmann-Gleichungen wiederentdeckt. Die Anwendung dieser
Vorgehensweise auf nichtmetrische Theorien wird nur skizziert, ihre Implementierung
bleibt ein offenes Forschungsgebiet.

iii



Acknowledgements

Thank you, Frédéric, for introducing me to your way of thinking about physics. Having
a clear mathematical foundation is fundamental for asking the right questions later
on—but the mathematics does never become an end in itself. Together with the whole
Constructive Gravity Group, we embraced this principle and delivered interesting results
using innovative methods, despite facing challenging conditions. It has been great
working together with Maximilian, Florian, Hans-Martin and all the Bachelor and Master
students. I especially enjoyed the deep dive with Tobias into the covariant approach and
the computer-aided solution methods. What we two achieved in relatively short time
makes me proud.

The students at the chair for Theoretical Physics III should not remain unmentioned. It
was always nice having them around, be it for stimulating discussions, coffee breaks, or
the occasional game of table football. I also had the privilege of getting to know a lot of
wonderful coworkers during my former employment at Interflex Datensysteme GmbH
and now at TNG Technology Consulting GmbH. By now, I see it as an advantage not
to be solely occupied with academic work—leaving the comfort zone is the best way to
move forward. I sure will embrace the versatility I learned during these times.

I am very grateful to Prof. Gerd Leuchs from the Max Planck Institute for the Science of
Light for supervising my PhD.

Finally, and above all, I am indebted to my friends and family for their unconditional
support throughout this challenging time. Without my parents, nothing of this would
have been possible. Without you, Jennifer, it could not have been this enjoyable.

iv



Contributions

Where not stated otherwise, this thesis contains original research. Parts have been
researched in close collaboration with Tobias Reinhart and published as Ref. [1], building
up on previous results [2].

Some of the calculations involved in Chap. 6 have already been performed for Ref. [3].
The remainder of this chapter, excluding the results on radiation loss, is published as
Ref. [4], albeit in a more compact form.

Many calculations rely on heavy use of computer algebra. Two Haskell packages have been
developed specifically with this purpose in mind: sparse-tensor [5], which originates
from joint development with Tobias Reinhart, and safe-tensor [6]. Haskell code for
the example in Chap. 6 that makes use of these packages is available as Ref. [7].

Complete sections paraphrasing content of Refs. [1] and [4] are introduced as such and
typeset in italic style. They may, however, contain additional, previously unpublished
details.

[1] Nils Alex and Tobias Reinhart. “Covariant constructive gravity: A step-by-step
guide towards alternative theories of gravity”. In: Physical Review D 101.8 (Apr. 2020),
p. 084025. doi: 10.1103/physrevd.101.084025

[2] Tobias Reinhart and Nils Alex. “Covariant Constructive Gravity”. In: Proceedings
of the Fifteenth Marcel Grossman Meeting on General Relativity (in press). arXiv:
arXiv:2009.07540 [gr-qc]

[3] Nils Alex. “Solutions of gravitational field equations for weakly birefringent spacetimes”.
In: Proceedings of the Fifteenth Marcel Grossman Meeting on General Relativity (in
press). arXiv: arXiv:2009.07540 [gr-qc]

[4] Nils Alex. “Gravitational radiation from birefringent matter dynamics”. In: Physical
Review D 102.10 (Nov. 2020), p. 104017. doi: 10.1103/physrevd.102.104017

[5] Tobias Reinhart and Nils Alex. sparse-tensor: typesafe tensor algebra library [Hackage].
Aug. 2019. url: https://hackage.haskell.org/package/sparse-tensor

v

https://doi.org/10.1103/physrevd.101.084025
https://arxiv.org/abs/arXiv:2009.07540
https://arxiv.org/abs/arXiv:2009.07540
https://doi.org/10.1103/physrevd.102.104017
https://hackage.haskell.org/package/sparse-tensor


Contributions

[6] Nils Alex. safe-tensor: dependently typed tensor algebra (version v0.2.1.0) [Zenodo].
Version v0.2.1.0. Sept. 2020. doi: 10.5281/zenodo.4030851

[7] Nils Alex. area-metric-gravity: 3+1 split of area metric gravity to second order
[Zenodo]. Sept. 2020. doi: 10.5281/zenodo.4032251

vi

https://doi.org/10.5281/zenodo.4030851
https://doi.org/10.5281/zenodo.4032251


Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction to the constructive gravity programme . . . . . . . . . . . . . 1
1.1 The rôle of gravity in physics . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modified gravity from refined matter theories . . . . . . . . . . . . . . . 3
1.3 Canonical and covariant approaches to constructive gravity . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The axioms of covariant constructive gravity . . . . . . . . . . . . . . . . . 10
2.1 Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Axiom I: diffeomorphism invariance . . . . . . . . . . . . . . . . . . . . . 14
2.3 Noether theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Axiom II: causal compatibility . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The construction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Example: Einstein gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Example: area metric gravity . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Example: bimetric gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Perturbative construction of gravitational theories . . . . . . . . . . . . . . 41
4.1 Perturbative implementation of axiom I . . . . . . . . . . . . . . . . . . 41
4.2 Involution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Lorentz invariant ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Perturbative implementation of axiom II . . . . . . . . . . . . . . . . . . 48
4.5 The perturbative construction algorithm . . . . . . . . . . . . . . . . . . 51

vii



Contents

5 Computational methods for perturbative constructive gravity . . . . . . . 53
5.1 Ansatz generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Equivariance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Application: gravitational radiation from birefringent matter dynamics . . 70
6.1 Construction of third-order area metric Lagrangians . . . . . . . . . . . . 70

6.1.1 Solving axiom I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Solving axiom II . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 3+1 decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.4 Linearised field equations . . . . . . . . . . . . . . . . . . . . . . 86

6.2 The binary star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Iterative solution strategy for gravitational field equations . . . . 94
6.2.2 Solution in Einstein gravity . . . . . . . . . . . . . . . . . . . . . 96
6.2.3 Solution in area metric gravity . . . . . . . . . . . . . . . . . . . 104

6.3 Phenomenology of area metric gravitational radiation . . . . . . . . . . . 112
6.3.1 Effect on test matter . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Binary star spin-up . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Outlook: symmetry-reduced constructive gravity . . . . . . . . . . . . . . . 123
7.1 The cosmological bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Recovering the FLRW model . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Towards area metric cosmology . . . . . . . . . . . . . . . . . . . . . . . 128

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Ansätze for third-order area metric gravity Lagrangians . . . . . . . . . . . 132

B Solution of the equivariance equations . . . . . . . . . . . . . . . . . . . . . 136

C Linearised field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

viii



List of Figures

1.1 Interplay of the standard model theories and general relativity . . . . . . 2
1.2 Rationale of constructive gravity . . . . . . . . . . . . . . . . . . . . . . 5

6.1 Binary star spin-up due to radiation loss . . . . . . . . . . . . . . . . . . 121

ix



List of Tables

6.1 Summary of the Lorentz invariant expansion coefficients for the area
metric gravity ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 The 17 gauge-fixed degrees of freedom in linearised area metric gravity . 85

x



List of Listings

5.1 C implementation of the sum function . . . . . . . . . . . . . . . . . . . . 56
5.2 Haskell implementation of the sum function . . . . . . . . . . . . . . . . . 56
5.3 Haskell representation of 𝜂 and 𝜖 tensors . . . . . . . . . . . . . . . . . . 57
5.4 Haskell representation of a scaled ansatz coefficient . . . . . . . . . . . . 57
5.5 Haskell representation of an 𝜂 ansatz tensor . . . . . . . . . . . . . . . . 57
5.6 First 6 𝜂-only terms of an ansatz tensor with 6 indices . . . . . . . . . . 58
5.7 Sum of two ansatz forests . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 Generalised rank type implementation in Haskell . . . . . . . . . . . . . 62
5.9 The tensor GADT and its instances . . . . . . . . . . . . . . . . . . . . . 64
5.10 Scalar multiplication of tensors . . . . . . . . . . . . . . . . . . . . . . . 65
5.11 Recursive addition of tensors . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.12 Interactive addition of tensors . . . . . . . . . . . . . . . . . . . . . . . . 66
5.13 Typesafe tensor multiplication . . . . . . . . . . . . . . . . . . . . . . . . 67
5.14 Opaque tensor type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.15 Addition of opaque tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



1 Introduction to the constructive
gravity programme

Space tells matter how to move
Matter tells space how to curve

— John Archibald Wheeler,
Gravitation (1973)

1.1 The rôle of gravity in physics

As the title suggests, this thesis is primarily concerned with gravity. In the ensemble
of physical theories, gravity plays a special rôle. It serves a different purpose than
the theories we will call matter theories. The latter are subject to direct observations:
photons—quanta of the electromagnetic field—hit the observers retina, allowing her to
make inferences about the source of the particles. Another example are charged fermions,
again quanta of a corresponding matter field, which induce signals in a semiconductor
detector. Specific signatures in the signals may be associated with certain events that
contributed to the production of the incident fermions, such that the statistics of these
observations is able to falsify hypotheses about the underlying mechanisms.

How does gravity fit into this picture? The revolution of a binary star about its centre
of mass, commonly known to be caused by gravity, is not observed directly. Neither
are its gravitational spin-up and eventual merger. Rather, the stars emit photons that
are picked up by the astronomer, who concludes details about the trajectories. When
the LIGO and Virgo Collaborations announced the first observation of gravitational
waves [8], the ground-breaking detection was earth-bound, but in a certain sense not
direct: it amounts to the analysis of interference patterns from photons that bounced
off of mirrors at the end of the detector arms. General relativity predicts that these
arms should expand and contract under the influence of incident gravitational waves.
Eventually, the signature in the interference pattern was found to match the predictions
for a binary black hole merger.

From this point of view, gravity merely sets the stage for the propagation of matter
fields. This is witnessed by the matter dynamics, for example Maxwell’s equations for

1



1 Introduction to the constructive gravity programme

General Relativity

Standard Model of Particle Physics

sources
gravity

provides
background

Figure 1.1: Interplay of the standard model theories and general relativity. Matter
content sources the gravitational field equations. The gravitational field, in
turn, provides the background on which matter fields propagate. Together,
this yields a highly accurate fundamental description of the universe.

the electromagnetic potential. These are derived from the action functional

𝑆Maxwell[𝐴] = ∫ 𝑑4𝑥√−𝑔𝑔𝑎𝑐𝑔𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑,

which depends on the potential 𝐴 via the field strength tensor 𝐹 = 𝑑𝐴. Maxwell’s theory
of the electromagnetic field has been a huge success as it is the foundation of many
applications throughout science. The quantum field theories for the electromagnetic
field, together with similar gauge theories and the fermonic sector, form the standard
model of particle physics (SMPP), which is widely regarded as the most precisely tested
physical theory1. Still, these matter theories presuppose knowledge of the spacetime
metric 𝑔 which enters the action for the electromagnetic field above and contributes
to other theories of the SMPP in a similar way. Consequently, the SMPP alone lacks
predictivity: collecting initial data of all physical fields is not enough for the physicist in
order to determine the fields in the future, since the metric tensor has to be specified
externally.

One of the many great contributions by Einstein was the prescription of field equations
that govern the dynamics of the metric tensor. [11] This theory is called general relativity

1For example, the magnetic moment of the electron has been measured as 𝑔/2 =
1.001 159 652 180 73(28). [9] Its value as proposed by quantum electrodynamics has been cal-
culated as 𝑔/2 = 1.001 159 652 182 03(73). [10] Both the experimentally measured value and the
value calculated from quantum electrodynamics agree to more than 12 significant figures.

2



1 Introduction to the constructive gravity programme

and may be derived from the Einstein-Hilbert action functional

𝑆Einstein-Hilbert[𝑔] = ∫ 𝑑4𝑥√−𝑔𝑅.

Einstein’s theory provides the missing link between matter and gravity, completing the
SMPP to the joint model of SMPP and general relativity sketched in Fig. 1.1, which
is now predictive. It has also been verified numerous times, both via astronomical
observations and in terra2 experiments, albeit to a lesser degree of certainty3.

Of course, the division of physical theories into matter theories and gravity is only a
metaphysical notion. Both make testable predictions about the outcome of experiments;
both have been shown to accurately describe reality in a variety of circumstances. But
exactly in this metaphysical idea lies the mindset of constructive gravity, which seeks to
address the search for other, hopefully more complete pictures of matter and gravity.

1.2 Modified gravity from refined matter theories

Under certain assumptions, Einstein’s general relativity is the unique theory that com-
pletes the SMPP to a predictive theory of matter and gravity. [14, 15, 16] The only two
unknown parameters that need to be fixed by measurements are Newton’s gravitational
constant and the cosmological constant. This remarkable finding constrains the search
for modified theories of gravity: if the mentioned assumptions are taken for granted, the
standard model of particle physics can only be completed by general relativity. It is,
however, well established that the joint theory of the SMPP and Einstein gravity cannot
be universal, due to several inconsistencies.

One example are extreme circumstances, such as the beginning of the universe or the
presence of black holes, where the whole formalism breaks down. [17] This is one of the
justifications for the efforts of finding a quantum theory of gravity.

Even in more benign situations, the observations do not always coincide with the
predictions from the SMPP and general relativity. The observed rotation curves of
galaxies, for example, do not match the expectations calculated from the visible matter
distributions. Starting from a certain minimum distance from the galaxy centre, stars
rotate with higher velocities than expected. [18, 19, 20] This discrepancy generally
increases with the radius. All proposed solutions4 that may cure this inconsistency have

2earthbound
3Only four significant figures of the gravitational constant are known. [12] Measurements with higher

precision yield conflicting results. [13]
4See e.g. [21, 22].

3



1 Introduction to the constructive gravity programme

one thing in common—they modify or extend the currently accepted theories of matter
and gravity.

There are more observations that demonstrate the need for modifications. [21] However
such adjustments play out, they are constrained by the uniqueness of Einstein’s general
relativity in one of the following ways:

1. Additional or modified matter fields that make use of the same metric tensor 𝑔 as
the existing matter theories will still couple to general relativity.

2. Additional or modified matter fields that couple to a nonmetric geometry—e.g.
two metric tensors or a tensor of higher rank—render general relativity as theory
for a single metric tensor meaningless. A completely new description of gravity is
needed, which may be subject to similar uniqueness theorems.

3. Modifications to general relativity itself are incompatible with the uniqueness
theorem. This means that either the assumptions from which uniqueness follows
must be dropped or that the matter theories have to be modified accordingly—if
at all possible.

All three approaches are pursued, as they should be for a systematic search of modified
theories. Constructive gravity, the subject of this thesis, is a framework for the structured
treatment of approach number two. In most regards, its assumptions are very conservative,
as it tries to deviate only ever so slightly from the established models. For example,
where standard general relativity is restricted to field equations of second derivative
order, constructive gravity keeps this restriction. This is not because other efforts are not
deemed worthwhile—they certainly are, but different approaches towards modified gravity
research should be explored ceteris paribus, only making one change at a time. The focus
of constructive gravity lies on novel matter theories coupling to nonmetric geometries and
the corresponding gravitational implications within the existing meta-theory of classical
physics. Most importantly, because the framework is kept so close to the standard
models, a similar uniqueness theorem can be derived for nonmetric geometries. It will
not be as strong as for the SMPP and general relativity, but nevertheless provide a useful
parameterisation of modified theories of gravity that fall into the second category.

As far as the framework is concerned, any matter theory that is formulated as classical
field theory is fair game. The relevance of constructive gravity, however, crucially depends
on the kind of matter theory that is proposed. A complete overhaul of physics is generally
not desired—the existing models work very well in certain sectors. Any new theory must
reproduce this phenomenology in order to be epistemically significant. For this reason,
constructive gravity is considered a tool that guides the derivation of modified gravity
from refined matter theories.

4



1 Introduction to the constructive gravity programme

gravity: 𝑆gravity[𝐺]

matter theory: 𝑆matter[𝜙, 𝐺)

sources
gravity

provides
background

determines
candidates

observer

falsifies
theories

Figure 1.2: Rationale of constructive gravity. The matter theory 𝑆matter, which couples
the matter field 𝜙 to some geometry 𝐺, determines the structure of the
gravitational theory 𝑆gravity. In general, this theory will not be unique but
parameterised by a set of constants or functions, which results in multiple
candidates. Via the interdependence of matter and geometry, each candidate
yields phenomenology that can be used by the observer for tests of the theory.

1.3 Canonical and covariant approaches to constructive
gravity

The rationale of constructive gravity is pictured in Fig. 1.2. A matter theory, prescribed
by the action 𝑆matter[𝜙, 𝐺) serves as input. The round bracket next to the geometry 𝐺
indicates that the action functional depends on 𝐺 only locally, i.e. not via a derivative,
while the matter fields 𝜙 enter with derivatives, typically of first order.

After successful application of constructive gravity, the corresponding gravity action
𝑆gravity[𝐺] that closes the matter theory to a predictive theory of matter and gravity
is obtained. Staying very close to the established formalism of the SMPP and general

5



1 Introduction to the constructive gravity programme

relativity, this action is assumed to be of second derivative order in the geometry 𝐺, with
derived field equations also of second derivative order. In general, the gravity action is
not unique, it depends on unknown parameters or functions.

This completed theory may now be used for the bread and butter business of theoretical
physics: making predictions about the outcome of measurements. Comparisons with
experimentally obtained data will restrict the parameter ranges. If the measurements
turn out to be incompatible for all choices of parameters, the theory is falsified.

The essence of constructive gravity is the derivation of the gravity action from the matter
action, i.e. the step

𝑆matter[𝜙, 𝐺) ⇒ 𝑆gravity[𝐺].

Effectively, this amounts to a generalisation of the uniqueness theorems for general
relativity, which can be interpreted as derivations of Einstein gravity from Maxwell
electrodynamics (or, more generally, the SMPP).

Canonical constructive gravity (also called canonical gravitational closure) [23, 24, 25,
26] is the first approach that follows this pattern and is based on the work of Hojman,
Kuchař, and Teitelboim (HKT) [15]. HKT showed that the ADM formulation5 of general
relativity is the unique representation of the so-called hypersurface deformation algebra6.
The canonical approach to constructive gravity considers the hypersurface deformation
algebra in a frame that corresponds to an observer subject to matter dynamics. Crucial
for the definition of observer frames is the principal polynomial of the matter field
equations, which captures the causality of the evolution of matter fields (see Sect. 2.4).
It then imposes this algebra onto the constraint algebra of the canonical formulation of
the unknown gravitational theory. This amounts to a system of functional differential
equations, which is subsequently transformed into an infinite system of linear partial
differential equations. These equations are called the construction equations or closure
equations. Any solution to this system is a candidate Lagrangian for gravity.

In line with the already known results, general relativity has been shown to be the
unique solution to the closure equations of canonical constructive gravity if the procedure
is applied to Maxwell’s electrodynamics as underlying matter theory. [25] However,
based on previous work concerning matter theories that couple to arbitrary tensorial
geometries [28, 29], the framework has been developed to be applicable to a wide range
of matter theories. Two important examples of modified gravitational theories have
been derived in linearised form. The first is area metric gravity [4], which completes

5The ADM formulation [27] is a canonical (i.e. Hamiltonian) formulation of general relativity. Due
to the diffeomorphism invariance of general relativity, the canonical formulation is a constrained
Hamiltonian system.

6A hypersurface is an embedding of a three-dimensional manifold in the four-dimensional spacetime
manifold. Different embeddings are related via deformations. The actions of such deformations on
hypersurface functionals form an algebra, the hypersurface deformation algebra. See also [15].
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1 Introduction to the constructive gravity programme

a birefringent generalisation of Maxwell’s electrodynamics7. Although only valid for
weak gravitational fields, this theory based on a physically well motivated refinement
of Maxwell’s electrodynamics offers interesting phenomenology when studying quantum
electrodynamics [30], gravitational lensing [31], or gravitational waves [3]. Bimetric
gravity [32, 33], the completion of a theory with two Klein-Gordon fields coupling to two
different metric tensors8, is a second example. Another interesting sector of solutions is
the cosmological sector, which has also been studied in the past. [34]

Covariant constructive gravity9 is a complementary approach. More in the tradition
of Lovelock’s proof [14, 35, 36] for the uniqueness of the Einstein-Hilbert Lagrangian,
it derives the gravitational theory that completes a given matter theory by imposing
two conditions directly on the spacetime formulation of gravity—hence the attribute
“covariant”. The two conditions will be called the axioms of covariant constructive gravity.
Informally, they may be formulated as:

1. The dynamical laws that govern the gravitational field are generally covariant, i.e.
are independent of the choice of a coordinate system.

2. The causality of the gravitational field equations is compatible with the causality
of the matter field equations. In particular, a consistent co-evolution of all physical
fields is guaranteed.

The motivation for these axioms is twofold. Firstly, they once again enforce the principle
that any modified theory of gravity should be close, formally, to general relativity—which
implements general covariance and has the same causality as the SMPP. This suggests
that also modified theories of gravity should be independent of any coordinate choice
and at least be compatible with the matter causality.

Secondly, the approach should complement the canonical framework. General covariance
in the spacetime formulation is the equivalent for the conditions placed on the constraint
algebra in the canonical formulation. As the second axiom, causal compatibility has
been chosen because canonical constructive gravity claims to achieve something similar:
the observer frame is constructed using the principal polynomial of the matter theory,
which is why the hypersurface deformation algebra expressed in this frame contains
terms related to matter causality. These terms carry over to the gravitational constraint
algebra via the canonical construction procedure. This is often interpreted as the
gravitational theory inheriting the causality of the matter theory. But there is little
reason to believe so—the fact that the gravitational constraint algebra shares these terms
with the hypersurface deformation algebra just means that both are expressed using the
same frame. Whether this frame bears any significance for the gravitational theory is

7See Sect. 3.3.
8Or other theories that somehow make use of two metric tensors, see Sect. 3.4.
9First proposed in Ref. [1].
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1 Introduction to the constructive gravity programme

an unrelated question. In Ref. [37], it has been found10 that the canonical constraint
algebra of any diffeomorphism invariant theory implements the hypersurface deformation
algebra, supporting the suspicion that causality may be unrelated. Even though matching
causalities are not enforced by the canonical approach, it is still a sensible requirement
for a theory of gravity that closes matter theories, so it is explicitly included as second
axiom.

1.4 Outline

This thesis is dedicated to the development of the covariant approach. It aims to provide a
complete picture of the current state of research, from the foundations to the construction
procedure to testable predictions for an exemplary theory. At the end, every part of
Fig. 1.2 will have been addressed.

After this chapter has introduced the rationale of covariant constructive gravity, Chap. 2
will be concerned with the mathematical foundations. We will walk through Lagrangian
field theory in the jet bundle formulation, which allows a precise definition of the
first axiom as equivariance condition for the Lagrangian with respect to spacetime
diffeomorphisms. This condition is locally equivalent to a system of first-order, linear
partial differential equations, the equivariance equations. For the derivation, we will
make a detour to the global version of the Lagrangian variation problem, which comes
with the definition of the so-called Cartan form. The Cartan form allows a quite elegant
presentation of Noether’s first and second theorem—especially the second theorem will
prove to be useful later on. Afterwards, we introduce the notions necessary for a
formulation of the second axiom. Causal compatibility will be phrased as conditions on
certain geometric constructs that arise from the causality of the field equations.

In Chap. 3, we turn to the implementation of the axioms. While deriving the mathematical
formalism, we already laid out most of the implementation details, so it suffices to give a
short summary. This will be in the form of a construction algorithm. We then consider
three examples of matter theories and discuss how the construction algorithm could be
applied. The first example will be Maxwell’s electrodynamics, for which we recover general
relativity as the unique solution. The other two examples, a birefringent generalisation of
Maxwell’s electrodynamics and a bimetric Klein-Gordon theory, have no known generic
solution, but we can nevertheless derive some interesting results.

Chap. 4 explores the perturbative application of the construction algorithm. The idea
is that for weak gravitational fields it suffices to derive a truncated power series of the
gravitational Lagrangian. We will see that with this approach the equivariance equations
assume a particularly simple form, such that basic linear algebra suffices in order to derive

10As a preliminary result, for theories of first derivative order.
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1 Introduction to the constructive gravity programme

a perturbative equivalent of the “full” gravitational theory. This perturbative treatment
of the equivariance equations is backed by strong results from the theory of partial
differential equations. Also the second axiom is approachable by perturbation theory,
such that we can close the chapter presenting a perturbative version of the construction
algorithm.

While perturbative covariant constructive gravity amounts almost entirely to solving
linear equations, its application in practice would still be quite laborious without help
of the computer—the systems we have to deal with are simply too complex and large.
In order to enable us to tackle the problem in a later chapter, we use Chap. 5 for the
introduction of computational methods that have been developed with perturbative
constructive gravity in mind. These are essentially two programmes written in the
functional programming language Haskell: one for the generation of the perturbation
ansatz and another one for the set-up and solution of the perturbative equivariance
equations.

In Chap. 6, we will finally put covariant constructive gravity to the test. Coming back to
the birefringent generalisation of Maxwell’s electrodynamics, we apply the perturbative
construction procedure—using the computational methods introduced before—and obtain
second-order gravitational field equations that close this novel matter theory for sufficiently
weak fields. A thorough analysis of the linearised (viz. first-order) field equations already
reveals interesting properties such as the emergence of massive gravitational waves.
Afterwards, we will include the second-order terms and study the emission of gravitational
waves from a binary star in this modified theory of gravity—focusing on the gravitational
radiation emitted into the far zone, its effect on test matter, and the corresponding
radiation loss of the binary system itself.

Another option to circumvent the complexity of the “full” construction algorithm, next
to perturbation theory, is symmetry reduction. Chap. 7 shortly presents a way in which
symmetry reduction may be performed within the framework of covariant constructive
gravity. We will see that this procedure, when applied to metric theories with cosmological
symmetry, indeed reproduces the Friedmann equations. How this may be extended
to theories like birefringent electrodynamics is discussed, but the implementation is
considered far beyond of our scope.

We finish the thesis with a discussion of the findings and proposals for future research.
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2 The axioms of covariant constructive
gravity

In this chapter, we will cast the two axioms of covariant constructive gravity in precise
mathematical language. The basis for our theory is Lagrangian field theory defined in
terms of jet bundles, whose basic notions we collect first. In particular, we will encounter
the Cartan form, which is central for the global, coordinate-independent treatment of the
Lagrangian variation problem. With this machinery at hand, we define the first axiom
as equivariance condition for the Lagrangian with respect to spacetime diffeomorphisms.
We then derive a few consequences that follow from this axiom: most importantly, a
system of partial differential equations for a local representative of the Lagrangian, but
also the existence of a stress-energy-momentum tensor. The former is fundamental for
an algorithmic approach towards implementing the axiom, the latter is very useful for
proving Noether’s theorems in this setting. At the end of this chapter, we show how the
relevant objects for a mathematical formulation of the second axiom are constructed.
Finally, we present the second axiom using the terminology established so far.

The two axioms of covariant constructive gravity have been motivated in Sect. 1.3. Let
us recall the informal definitions as phrased in Ref. [1].

Axiom I (diffeomorphism invariance). “The dynamical laws that govern gravity are
invariant under spacetime diffeomorphisms.” [1]

Axiom II (causal compatibility). “Provided that spacetime is additionally inhabited by
matter fields, their dynamics is causally compatible with the gravitational dynamics.” [1]

For a more precise formulation of the axioms, which will enable us to derive their
consequences for gravitational theories coupled to novel matter, an introduction of the
basic concepts of Lagrangian field theory is in order.

10



2 The axioms of covariant constructive gravity

2.1 Lagrangian field theory

For the purpose of the present work, a Lagrangian field theory will be a geometric
formulation of certain conditions on sections 𝜎 ∈ Γ(𝜋)—called fields—of some bundle
𝐸

𝜋
⟶ 𝑀. These conditions select the physical realisations of fields admissible by the

theory and constitute the dynamical laws. The bundle 𝜋 shall be constructed from a
tensor bundle, i.e. be a sub-bundle of some tensor bundle 𝑇 𝑟

𝑠 𝑀. It is possible to extend
the framework to include other bundles, with the caveat that a lift of the action of the
diffeomorphism group on 𝑀 to 𝐸 may have to be specified manually. Although not
relevant for much of the development of the theory, the base manifolds to be considered
later for concrete examples will be spacetime manifolds of dimension 4.

Example 2.1.1. Two examples for Lagrangian field theories are

• Einstein gravity on the symmetric sub-bundle of 𝑇 2
0 𝑀 of inverse metric tensors1

with dynamical laws given by the Einstein equations, and

• Maxwell electrodynamics on the bundle 𝑇 ∗𝑀 of potential one-forms with dynamical
laws given by the Maxwell equations.

Both theories are Lagrangian because they derive their dynamical laws in a certain
geometric manner. The mechanism will be explained in the following, but first, let us fix
some of the notation involved.

A bundle is denoted as 𝐸
𝜋

⟶ 𝑀, where 𝐸 is the total space, 𝑀 is the base manifold, 𝜋 is
the submersion. As a shorthand, it is common to write just 𝜋—it is then understood that
total space and base manifold are domain and co-domain of 𝜋, respectively. The dimension
of 𝑀 is written as 𝑛, the dimension of a typical fibre 𝐹 of 𝜋 as 𝑚. Coordinate functions
on 𝐸 are denoted by (𝑥𝑖, 𝑢𝐴). Such coordinates extend to the 𝑘th jet bundle 𝐽𝑘𝐸

𝜋𝑘
⟶ 𝑀

over 𝜋 as (𝑥𝑖, 𝑢𝐴, 𝑢𝐴
𝑖1

, 𝑢𝐴
𝑖1𝑖2

, … , 𝑢𝐴
𝑖1…𝑖𝑘

). The literature on jet bundles mostly employs
multi-indices for higher-order jet bundles (see e.g. Ref. [38]), which is certainly the right
approach for studying the properties of jet bundles, but for practical calculations on the
second-order jet bundle performed below the intertwiner technique (see Def. 2.2.4) will
be used. This technique is equally able to take care of ambiguities regarding symmetric
indices. Prolongations of sections 𝜎 are denoted with 𝑗𝑘(𝜎), projections between jet
bundles of different orders with 𝜋𝑘,𝑘′(𝜎). The latter are submersions in their own right
and thus also define bundle projections. Total derivatives are written as 𝐷𝑖. Throughout,
the Einstein summation convention is used.

1The equivalent formulation as a theory for a metric tensor field takes place on the bundle 𝑇 0
2 𝑀.
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2 The axioms of covariant constructive gravity

Definition 2.1.2 (Lagrangian [38]). Let 𝑀 be a smooth manifold of dimension 𝑛 and
𝐸

𝜋
⟶ 𝑀 a smooth fibre bundle over 𝑀 with typical fibre 𝐹. A Lagrangian L of order 𝑘

is an element
L ∈ ⋀𝑛

0
𝜋𝑘. (2.1)

In other words, L is a horizontal 𝑛-form on the 𝑘-th-order jet bundle 𝜋𝑘 of 𝜋.

Assuming 𝑀 to be orientable with volume form Ω ∈ Λ𝑛𝑀, a Lagrangian L is equivalently
characterised by its Lagrangian density 𝐿 ∈ 𝐶∞(𝐽𝑘𝜋),

L = 𝐿𝜋∗
𝑘Ω. (2.2)

The claim of (2.2) becomes apparent in local coordinates, where a horizontal 𝑛-form on
𝜋𝑘 appears as

⋀𝑛
0

𝜋𝑘 ∋ L = L (𝑥𝑖, 𝑢𝐴, 𝑢𝐴
𝑖 , … )𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑛. (2.3)

From (2.3) and (2.2), it is also clear how the notion of a Lagrangian as a horizontal 𝑛-form
captures in a geometric way the notion used elsewhere as a bundle map 𝐽𝑘𝐸 → Λ𝑛𝑀
(see [38, 39, 1]).

From now on, we will consider smooth, orientable base manifolds 𝑀 and smooth bundles
over the base manifold. Depending on the context, the symbol Ω will denote either the
form on 𝑀 or the pullback to various bundles over 𝑀.

Definition 2.1.3 (local action functional [38]). Given a Lagrangian L ∈ ⋀𝑛
0

𝜋𝑘 and a
compact 𝑛-dimensional submanifold 𝐶 ⊂ 𝑀, the local action functional is defined as the
map

𝜎 ↦ 𝑆[𝜎] = ∫
𝐶

(𝑗𝑘𝜎)∗L (2.4)

for all local sections 𝜎 of 𝜋 with support on 𝐶.

Lagrangian field theory now stipulates that sections 𝜎 ∈ Γ(𝜋) are physical if they are
extremals of the action functional. The well-known Euler-Lagrange equations from the
calculus of variations provide a necessary condition in local coordinates which such
sections must satisfy.

Proposition 2.1.4 ([38]). Let 𝐿 ∈ 𝐶∞(𝐽𝑘𝜋) be a Lagrangian density. Let 𝐶 be a compact
submanifold of 𝑀 and 𝜎 be a local section of 𝜋 such that the local action functional 𝑆[𝜎]
is defined. If 𝜎 is an extremal of 𝑆, it satisfies the Euler-Lagrange equations

(𝑗2𝑘𝜎)∗ (
𝑘

∑
𝑙=0

(−1)𝑙𝐷𝑖1
⋯ 𝐷𝑖𝑙

𝜕𝐿
𝜕𝑢𝐴

𝑖1⋯𝑖𝑙

) = 0. (2.5)
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2 The axioms of covariant constructive gravity

Proof. See [38].

The intrinsic equivalent to the Euler-Lagrange equations in local coordinates introduces
a new object, the Cartan form, which plays a central rôle in the geometrisation of
Lagrangian field theory.

Proposition 2.1.5 ([38]). Given a Lagrangian L = 𝐿Ω ∈ ⋀𝑛
0

𝜋𝑘, there exists an 𝑛-form
Θ𝐿 ∈ ⋀𝑛

0
𝜋2𝑘−1,𝑘−1 ∩ ⋀𝑛

1
𝜋2𝑘−1, such that, globally, the variation of the Lagrangian is

given by
𝛿𝐿 = 𝜋∗

2𝑘,𝑘 (𝑑𝐿 ∧ Ω) + 𝑑ℎΘ𝐿 (2.6)

and extremals of L are extremals of Θ𝐿 in the sense that

𝜋∗
2𝑘−1,𝑘(𝑗𝑘𝜎)∗L = (𝑗2𝑘−1𝜎)∗Θ𝐿. (2.7)

Such a form Θ𝐿 is called a Cartan form.

Proof. See [38].

This definition generalises the local derivation of (2.5): the variation 𝛿𝐿 is obtained by
lifting 𝑑L to 𝜋2𝑘 and cancelling nonhorizontal terms (over 𝐸) by adding a derivative,
which corresponds to repeated integrations by parts.

A possible2 coordinate expression for Θ𝐿 is [38]

Θ𝐿 = 𝐿Ω +
𝑘−1
∑
𝑠=0

𝑘−𝑠−1
∑
𝑙=0

(−1)𝑙𝐷𝑖1
⋯ 𝐷𝑖𝑙

( 𝜕𝐿
𝜕𝑢𝐴

𝑗𝑖1…𝑖𝑙𝑝1…𝑝𝑠

) 𝜓𝐴
𝑝1…𝑝𝑠

∧ (𝑖𝜕𝑗
Ω) , (2.8)

where the forms 𝜓𝐴
𝑝1…𝑝𝑠

= 𝑑𝑢𝐴
𝑝1…𝑝𝑠

− 𝑢𝐴
𝑝1…𝑝𝑠𝑞𝑑𝑥𝑞 span the contact system of 𝜋𝑘 (see

[38]).

Straight-forward application of (2.6) to (2.8) yields the well-known coordinate expres-
sion

𝛿𝐿 = (
𝑘

∑
𝑙=0

(−1)𝑙𝐷𝑖1
⋯ 𝐷𝑖𝑙

𝜕𝐿
𝜕𝑢𝐴

𝑖1⋯𝑖𝑙

) 𝑢𝐴 ∧ Ω (2.9)

for the Euler-Lagrange form, reconciling the intrinsic formulation using the Cartan
form with the explicitly coordinate-dependent3 formulation using the Euler-Lagrange
equations.

In later sections, we will restrict our attention to Lagrangians of second derivative order.
As it turns out, the Cartan form for such a theory is unique.

2Generally, Θ𝐿 is not uniquely defined. [38]
3Which is not to say ill-defined.
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2 The axioms of covariant constructive gravity

Proposition 2.1.6 ([38]). The Cartan form is unique for second-order Lagrangians.

Proof. See [38].

2.2 Axiom I: diffeomorphism invariance

In the language of jet bundles, the first axiom can be formalised as equivariance con-
dition under a certain group action on the Lagrangian. The group in question is the
diffeomorphism group Diff(𝑀), acting on 𝑀 by function application. By virtue of the
pushforward-pullback construction, sub-bundles of tensor bundles carry a canonical action
of Diff(𝑀) as bundle automorphisms, denoted as 𝜑𝐸 ∈ Aut(𝐸) for every 𝜑 ∈ Diff(𝑀).
We call this the lift of the diffeomorphism 𝜑. This action, in turn, lifts naturally to the
jet bundles over 𝐸.

Definition 2.2.1 (prolongation of morphisms [38]). Let 𝐸
𝜋𝐸
⟶ 𝑀 and 𝐻

𝜋𝐻
⟶ 𝑁 be two

bundles. The 𝑘th-order jet bundle lift of a bundle morphism (𝐹 , 𝑓) from 𝜋𝐸 to 𝜋𝐻 is the
unique bundle morphism (𝑗𝑘(𝐹), 𝑓) from 𝐽𝑘𝜋𝐸 to 𝐽𝑘𝜋𝐻 such that for any section 𝜙 of
𝜋𝐸 the identity 𝑗𝑘(𝐹) ∘ 𝑗𝑘𝜙 ∘ 𝑓−1 = 𝑗𝑘(𝐹 ∘ 𝜙 ∘ 𝑓−1) holds.

A proof for the existence and uniqueness of this construction can be found in Ref. [38].
With the notion of the lift of a bundle automorphism at hand, we now give the first
axiom a precise meaning.

Definition 2.2.2 (diffeomorphism invariant theory). A Lagrangian field theory is called
diffeomorphism invariant if its Lagrangian L ∈ ⋀𝑛

0
𝜋𝑘 is invariant with respect to the

lifted action of Diff(𝑀) on 𝐽𝑘𝐸, i.e. if for all 𝜑 ∈ Diff(𝑀)

𝑗𝑘(𝜑𝐸)∗L = L . (2.10)

This definition applies not only to tensor bundles and the diffeomorphism group—all we
need is a well-defined action as bundle automorphism. For tensor bundles, however, there
is always the canonical action built from the pushforward action on tangent vectors

𝜑∗ ∶ 𝑇𝑝𝑀 → 𝑇𝜑(𝑝)𝑀 (2.11)

and the pullback action on cotangent vectors4

(𝜑∗)−1 ∶ 𝑇 ∗
𝑝 𝑀 → 𝑇 ∗

𝜑(𝑝)𝑀. (2.12)
4The action is inverted in order to still define a covariant functor, in the sense that it maps from the

cotangent space at 𝑝 to the cotangent space at 𝜑(𝑝).
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2 The axioms of covariant constructive gravity

Using a coordinate chart (𝑈, 𝑥) containing 𝑝 and (𝑉 , 𝑦) containing 𝜑(𝑝), the bundle
automorphisms act on coordinate-induced component functions of vector fields as

(𝜑∗𝑋)𝑗
(𝑦)(𝑦(𝜑(𝑝))) = 𝜕(𝑦𝑗 ∘ 𝜑)

𝜕𝑥𝑖 ∣
𝑝

⋅ 𝑋𝑖
(𝑥)(𝑥(𝑝)) (2.13)

and on component functions of covector fields as5

((𝜑−1)∗𝜔)(𝑦)𝑗(𝑦(𝜑(𝑝))) = 𝜕(𝑥𝑖 ∘ 𝜑−1)
𝜕𝑦𝑗 ∣

𝜑(𝑝)

⋅ 𝜔(𝑥)𝑖(𝑥(𝑝)). (2.14)

We wish to encode (2.10) as local conditions on the Lagrangian density. To this end,
consider a coordinate representation L = 𝐿(𝑥)𝑑𝑛𝑥.

Proposition 2.2.3. Let L = 𝐿(𝑥)𝑑𝑛𝑥 be a coordinate representation of a diffeomorphism
invariant Lagrangian, induced by a coordinate chart (𝑈, 𝑥) on 𝑀. It follows from the
invariance condition (2.10) that 𝐿(𝑥) is diffeomorphism equivariant, i.e. it holds for all
𝜑 ∈ Diff(𝑀) that, over the intersection of 𝑈 and 𝜑(𝑈),

𝐿(𝑥) ∘ 𝑗𝑘
(𝑥)(𝜑𝐸) = |𝑑𝜑(𝑥)|−1𝐿(𝑥). (2.15)

|𝑑𝜑(𝑥)| denotes the determinant of the Jacobian of 𝜑 in terms of the coordinate chart
(𝑈, 𝑥).

Proof. The result follows from the coordinate expression (2.14) for the pullback of one
forms, which extends to horizontal forms on the jet bundle.

Covariant constructive gravity derives its calculational power from the observation that
the infinitesimal version of (2.15) is equivalent to a system of linear partial differential
equations (PDEs) for the Lagrangian density 𝐿. For the derivation of this theorem
and the remainder of the chapter, we will work on the second jet bundle, as we are
ultimately interested in investigating field theories of second derivative order. We will
also drop the chart label from coordinate-dependent quantities. In order to lighten the
notation, partial derivatives of functions on 𝐽2𝑀 are denoted 𝐿,𝑚 for derivatives with
respect to coordinates on 𝑀 and 𝐿∶𝐴, 𝐿 𝑝

∶𝐴 , 𝐿 𝑝𝑞
∶𝐴 for derivatives with respect to fibre

coordinates.

5As for any group homomorphism, we have (𝜑∗)−1 = (𝜑−1)∗.

15



2 The axioms of covariant constructive gravity

Since the bundles in question are (sub-bundles of) tensor bundles 𝑇 𝑚
𝑛 𝑀, it is possible

to restrict to coordinates which are linear on the fibres. The intertwiner technique6

relates such coordinates to coordinates on 𝑇 𝑚
𝑛 𝑀 itself by virtue of two special bundle

morphisms.

Definition 2.2.4 (intertwiners). Let 𝐸
𝜋

⟶ 𝑀 be a sub-bundle of 𝑇 𝑚
𝑛 𝑀. A pair of vector

bundle morphisms (𝐼, 𝐽),
𝐼 ∶ 𝐸 → 𝑇 𝑚

𝑛 𝑀,
𝐽∶ 𝑇 𝑚

𝑛 𝑀 → 𝐸,
(2.16)

which cover id𝑀 and satisfy 𝐽 ∘ 𝐼 = id𝐸 is called a pair of intertwiners for 𝜋.

It follows from the property 𝐽 ∘ 𝐼 = id𝐸 that 𝐽 is a surjection and 𝐼 is an injection.
Expressed in adapted coordinates, it is clear how the coordinate representations of 𝐼 and
𝐽 relate fibre coordinates to each other,

𝑢𝑎1…𝑎𝑚
𝑏1…𝑏𝑛

= 𝐼𝑎1…𝑎𝑚
𝑏1…𝑏𝑛𝐴 ⋅ 𝑢𝐴,

𝑢𝐴 = 𝐽𝐴𝑏1…𝑏𝑛𝑎1…𝑎𝑚 ⋅ 𝑢𝑎1…𝑎𝑚
𝑏1…𝑏𝑛

,

𝛿𝐵
𝐴 = 𝐼𝑎1…𝑎𝑚

𝑏1…𝑏𝑛𝐴 ⋅ 𝐽𝐵𝑏1…𝑏𝑛𝑎1…𝑎𝑚 .

(2.17)

Concrete implementations of 𝐼 and 𝐽 will be introduced in Chap. 3. Intertwiners for the
symmetric sub-bundle of 𝑇 0

2 𝑀 are used to deduplicate second-order derivative indices by
defining

𝑢𝐴
𝐼 = 𝐽 𝑖𝑗

𝐼 𝑢𝐴
𝑖𝑗,

𝑢𝐴
𝑖𝑗 = 𝐼𝐼

𝑖𝑗𝑢𝐴
𝐼 .

(2.18)

Proceeding to derive the infinitesimal version of axiom I, we first need to specify what
is meant by infinitesimal. As the symmetry group in question is the diffeomorphism
group on the base manifold, the infinitesimal equivalent is the corresponding Lie algebra
Γ(𝑇 𝑀) of sections of the tangent bundle over 𝑀. The Lie bracket is given by the Lie
bracket of vector fields. In a given coordinate chart, an element 𝜉 ∈ Γ(𝑇 𝑀) defines an
infinitesimal diffeomorphism as

𝑥𝑖 ↦ 𝑥𝑖 + 𝜉𝑖. (2.19)

From (2.13) and (2.14), we know how an infinitesimal diffeomorphism (2.19) acts on
vectors and covectors. Dropping chart labels because everything takes place in the chart
(𝑈, 𝑥), the actions are given by

𝑋𝑖 ↦ 𝑋𝑖 + 𝑋𝑗𝜉𝑖
,𝑗 (2.20)

6First described for a similar setting in Ref. [40], later introduced in the context of covariant constructive
gravity [1].
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2 The axioms of covariant constructive gravity

and
𝜔𝑖 ↦ 𝜔𝑖 − 𝜔𝑗𝜉

𝑗
,𝑖. (2.21)

On higher-ranked tensor bundles, the action generalises to

𝑇 𝐴 ↦ 𝑇 𝐴 + 𝐶𝐴 𝑛
𝐵 𝑚𝑇 𝐵𝜉𝑚

,𝑛, (2.22)

with 𝐶𝑖 𝑛
𝑗 𝑚 = 𝛿𝑖

𝑚𝛿𝑛
𝑗 for the special case of vectors and 𝐶 𝑗𝑛

𝑖 𝑚 = −𝛿𝑛
𝑖 𝛿𝑗

𝑚 for covectors.
From this, we can read off the Lie algebra morphism which maps vector fields on 𝑀
to vector fields on 𝐸 and is induced by the group homomorphism from Diff(𝑀) to
Aut(𝐸):

Γ(𝑇 𝑀) → Γ(𝑇 𝐸)
𝜉 ↦ 𝜉𝐸 ∶= 𝜉𝑚𝜕𝑚 + 𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵𝜉𝑚
,𝑛𝜕𝐴.

(2.23)

The constant coefficients 𝐶𝐴 𝑛
𝐵 𝑚 will be called Gotay-Marsden coefficients after the

authors of Ref. [39], where this formalism is developed in a more general setting—but
only for the first jet bundle. In the language of this reference, a tensor field theory is of
differential index 1.

As it turns out, the map 𝜉 ↦ 𝜉𝐸 indeed defines a homomorphism between Lie algebras.

Proposition 2.2.5. The map (2.23) is a Lie algebra homomorphism, i.e. it holds for all
𝜉, 𝜓 ∈ Γ(𝑇 𝑀) that

[𝜉𝐸, 𝜓𝐸] = [𝜉, 𝜓]𝐸. (2.24)

Proof. The map 𝜉 → 𝜉𝐸 is the differential of the lift 𝜙 → 𝜙𝐸 of diffeomorphisms
𝜑 ∈ Diff(𝑀) to vector bundle automorphisms 𝜑𝐸 ∈ Aut(𝐸). This lift is a Lie group
homomorphism, i.e. (𝜙 ∘ 𝜓)𝐸 = 𝜙𝐸 ∘ 𝜓𝐸. Eq. (2.24) follows from the functoriality of the
Lie algebra. Note that Diff(𝑀) is not a finite-dimensional Lie group, so the results from
the theory of finite-dimensional Lie groups are not applicable as they are. See e.g. [41].

A useful corollary of the homomorphism property of the Lie algebra lift 𝜉 ↦ 𝜉𝐸, which
will play a rôle in Sect. 4.2, is the following fact about Gotay-Marsden coefficients.

Corollary 2.2.6. The Gotay-Marsden coefficients 𝐶𝐴 𝑛
𝐵 𝑚 corresponding to a tensor

field theory satisfy the relation

𝐶𝐴 𝑛
𝐵 𝑚𝐶𝐵 𝑞

𝐶 𝑝 − 𝐶𝐴 𝑞
𝐵 𝑝𝐶𝐵 𝑛

𝐶 𝑚 = 𝐶𝐴 𝑞
𝐶 𝑚𝛿𝑛

𝑝 − 𝐶𝐴 𝑛
𝐶 𝑝𝛿𝑞

𝑚. (2.25)
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2 The axioms of covariant constructive gravity

Proof. Expanding (2.24) and making use of the coordinate expression (2.23) yields the
identity

[𝐶𝐴 𝑛
𝐵 𝑚𝐶𝐵 𝑞

𝐶 𝑝 − 𝐶𝐴 𝑞
𝐵 𝑝𝐶𝐵 𝑛

𝐶 𝑚 − (𝐶𝐴 𝑞
𝐶 𝑚𝛿𝑛

𝑝 − 𝐶𝐴 𝑛
𝐶 𝑝𝛿𝑞

𝑚)] 𝜉𝑚
,𝑛𝜓𝑝

,𝑞 = 0, (2.26)

from which the result follows, as 𝜉 and 𝜓 can be chosen arbitrarily.

If required for calculations, Gotay-Marsden coefficients are easily expressed using inter-
twiners.

Proposition 2.2.7. Let 𝐸
𝜋

⟶ 𝑀 be a sub-bundle of the tensor bundle 𝑇 𝑟
𝑠 𝑀 with a

pair (𝐼, 𝐽) of intertwiners. If the tensors in 𝐸 are purely contravariant, i.e. 𝑠 = 0, the
Gotay-Marsden coefficients are

𝐶𝐴 𝑛
𝐵 𝑚 = 𝑟 ⋅ 𝐼𝑎1…𝑎𝑟−1𝑛

𝐵 𝐽𝐴
𝑎1…𝑎𝑟−1𝑚. (2.27)

If the tensors in 𝐸 are purely covariant, i.e. 𝑟 = 0, the Gotay-Marsden coefficients are

𝐶 𝐵𝑛
𝐴 𝑚 = −𝑠 ⋅ 𝐼𝐵

𝑎1…𝑎𝑠−1𝑚𝐽𝑎1…𝑎𝑠−1𝑛
𝐴 . (2.28)

Note that in the latter case of a purely covariant tensor bundle, a fibre coordinate function
is denoted by 𝑢𝐴 with a lower index.

The Gotay-Marsden coefficients are the defining objects for the PDE version of the
invariance of 𝐿 under infinitesimal diffeomorphisms. This constitutes the central result
concerning the first axiom and shall be proved in the following.

Theorem 2.2.8. Let 𝐿 be the local Lagrangian density of a second derivative order
Lagrangian L = 𝐿𝑑4𝑥 ∈ ⋀𝑛

0
𝜋2. If L is diffeomorphism invariant, i.e. satisfies the

invariance condition (2.10) of the first axiom of covariant constructive gravity, its local
representation 𝐿 satisfies a system of first-order linear partial differential equations given
by

0 = 𝐿,𝑚 (2.29a)
0 = 𝐿∶𝐴𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵 + 𝐿 𝑝
∶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝑞
𝑝 − 𝛿𝐴

𝐵𝛿𝑞
𝑚𝛿𝑛

𝑝 ] 𝑢𝐵
𝑞

+ 𝐿 𝐼
∶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝐽
𝐼 − 2𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝐼𝐽

𝑝𝑚] 𝑢𝐵
𝐽 + 𝐿𝛿𝑛

𝑚 (2.29b)

0 = 𝐿 (𝑝∣
∶𝐴 𝐶𝐴 ∣𝑛)

𝐵 𝑚𝑢𝐵 + 𝐿 𝐼
∶𝐴 [𝐶𝐴 (𝑛

𝐵 𝑚2𝐽𝑝)𝑞
𝐼 − 𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝛿𝑞

𝑚] 𝑢𝐵
𝑞 (2.29c)

0 = 𝐿 𝐼
∶𝐴 𝐶𝐴 (𝑛

𝐵 𝑚𝐽𝑝𝑞)
𝐼 𝑢𝐵. (2.29d)
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2 The axioms of covariant constructive gravity

Proof. Given a vector field 𝑋 on 𝐸, the lift to the total space 𝐽2𝐸 of the second jet
bundle is uniquely defined. [38] Applying this lift to the vector field 𝜉𝐸 corresponding to
𝜉 ∈ Γ(𝑇 𝑀) yields the vector field

𝜉𝐽2𝐸 ∶= 𝜉𝑚𝜕𝑚

+ 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵𝜉𝑚

,𝑛𝜕𝐴 + 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵

𝑝 𝜉𝑚
,𝑛𝜕 𝑝

𝐴 − 𝑢𝐴
𝑚𝜉𝑚

,𝑝 𝜕 𝑝
𝐴

+ 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵

𝐼 𝜉𝑚
,𝑛𝜕 𝐼

𝐴 − 2𝐽𝑛𝑟
𝐼 𝐼𝐽

𝑚𝑟𝑢𝐴
𝐽 𝜉𝑚

,𝑛𝜕 𝐼
𝐴

+ 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵𝜉𝑚

,𝑛𝑝𝜕 𝑝
𝐴 + 2𝐶𝐴 𝑛

𝐵 𝑚𝐽𝑝𝑞
𝐼 𝑢𝐵

𝑝 𝜉𝑚
,𝑛𝑞𝜕 𝐼

𝐴 − 𝐽𝑝𝑞
𝐼 𝑢𝐴

𝑚𝜉𝑚
,𝑝𝑞𝜕 𝐼

𝐴

+ 𝐶𝐴 𝑛
𝐵 𝑚𝐽𝑝𝑞

𝐼 𝑢𝐵𝜉𝑚
,𝑛𝑝𝑞𝜕 𝐼

𝐴 .

(2.30)

Like before, the map 𝜉 ↦ 𝜉𝐽2𝐸 constitutes a Lie algebra morphism from Γ(𝑇 𝑀) to
Γ(𝑇 𝐽2𝐸).

Assuming that (2.15) holds, we obtain the infinitesimal version by acting on 𝐿 with
𝜉𝐽2𝐸 for the left-hand side and approximating |𝑑𝜑|−1 as 1 − 𝜉𝑚

,𝑚 for the right-hand side.
Equating both sides yields

0 = 𝐿,𝑚𝜉𝑚

+ {𝐿∶𝐴𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵 + 𝐿 𝑝

∶𝐴 [𝐶𝐴 𝑛
𝐵 𝑚𝛿𝑞

𝑝 − 𝛿𝐴
𝐵𝛿𝑞

𝑚𝛿𝑛
𝑝 ] 𝑢𝐵

𝑞

+ 𝐿 𝐼
∶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝐽
𝐼 − 2𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝐼𝐽

𝑝𝑚] 𝑢𝐵
𝐽 + 𝐿𝛿𝑛

𝑚}𝜉𝑚
,𝑛

+ {𝐿 𝑝
∶𝐴 𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵 + 𝐿 𝐼
∶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚2𝐽𝑝𝑞
𝐼 − 𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝛿𝑞

𝑚] 𝑢𝐵
𝑞}𝜉𝑚

,𝑛𝑝

+ 𝐿 𝐼
∶𝐴 𝐶𝐴 𝑛

𝐵 𝑚𝐽𝑝𝑞
𝐼 𝑢𝐵𝜉𝑚

,𝑛𝑝𝑞.

(2.31)

Since (2.31) holds for any 𝜉 ∈ Γ(𝑇 𝑀), the individual contributions for 𝜉, 𝜕𝜉, 𝜕𝜕𝜉, 𝜕𝜕𝜕𝜉
are satisfied separately.

On a four-dimensional spacetime manifold, Thm. 2.2.8 yields a system of 140 linear PDEs
of first order for the Lagrangian density 𝐿. Any diffeomorphism invariant tensor field
theory of second derivative order must satisfy this system and, conversely, any solution
to the system provides a candidate for a diffeomorphism invariant theory. Thus, the
search for such theories has been reduced to the mathematical task of solving PDEs of a
certain (simple!) form. The only ingredients which depend on the specific theory at hand
are the Gotay-Marsden coefficients, such that it is possible to derive certain properties of
the system without knowledge of the concrete tensor bundle.

The literature on this kind of PDEs is very extensive (see e.g. [42]) with many applications
throughout science. There are strong results on the properties and solutions which provide
a good basis for our work with Eqns. (2.29a)–(2.29d) in the following.

The PDE system will be referred to as equivariance equations from now on. In a similar
form, these equations already appear in Ref. [39] during the derivation of conservation
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2 The axioms of covariant constructive gravity

laws arising from diffeomorphism invariance. As they were not meant to be solved for the
Lagrangian density, the presentation is not as explicit as here. Also note that Ref. [39]
considers theories of arbitrary differential index but only the first jet bundle, whereas the
present derivation takes place on the second jet bundle but is restricted to a differential
index of 1, i.e. tensor field theories of second derivative order. The extension to theories
with arbitrary differential index is possible—there will be a series of Gotay-Marsden
coefficients

𝜉𝐸 = 𝜉𝑚𝜕𝑚 + 𝐶𝐴
𝐵𝑚𝜉𝑚 + 𝐶𝐴 𝑛

𝐵 𝑚𝜉𝑚
,𝑛 + 𝐶𝐴 𝑛𝑝

𝐵 𝑚𝜉𝑚
,𝑛𝑝 + … (2.32)

which follow from the action of the diffeomorphism group on the bundle. [39]

2.3 Noether theorems

Diffeomorphism invariance of the Lagrangian as required by the first axiom results in a
number of interesting properties of the theory. Among these are identities for the Euler-
Lagrange equations and conservation laws for the dynamics given by the Euler-Lagrange
equations, which are examples for the well-known Noether theorems. In analogy to the
derivation for theories of first derivative order in Ref. [39], we shall now prove a version
of the Noether theorems for the second-order formalism developed above.

The first step is to realise that the Cartan form for a diffeomorphism invariant Lagrangian
is itself diffeomorphism invariant.

Proposition 2.3.1 ([43, 44]). Let L be a diffeomorphism invariant Lagrangian, i.e.
𝑗𝑘(𝜑𝐸)∗L = L . Any corresponding Cartan form Θ𝐿 satisfies the diffeomorphism
invariance condition

𝑗2𝑘−1(𝜑𝐸)∗Θ𝐿 = Θ𝐿. (2.33)

Proof. See [43, 44].

Using the infinitesimal version ℒ𝜉𝐽2𝑘−1𝐸
Θ𝐿 = 0 of the diffeomorphism invariance of Θ𝐿,

the first Noether theorem follows as a direct consequence.

Theorem 2.3.2 (first Noether theorem [39]). Let L be a diffeomorphism invariant
Lagrangian and Θ𝐿 a corresponding Cartan form. For any lifted generator 𝜉𝐽2𝑘−1𝐸 of the
diffeomorphism action and any section 𝜎 ∈ Γ(𝜋) satisfying the Euler-Lagrange equations
𝑗2𝑘(𝜎)∗(𝛿𝐿) = 0, it follows that the current defined as

𝑗(𝜎) = (𝑗2𝑘−1𝜎)∗𝜄𝜉𝐽2𝑘−1𝐸
Θ𝐿 (2.34)
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2 The axioms of covariant constructive gravity

is a closed differential form, i.e.
0 = 𝑑𝑗(𝜎). (2.35)

Proof. Applying the Cartan formula to the infinitesimal diffeomorphism invariance
condition for Θ𝐿 (which follows from Prop. 2.3.1) gives

0 = ℒ𝜉𝐽2𝑘−1𝐸
Θ𝐿 = 𝑑 𝜄𝜉𝐽2𝑘−1𝐸

Θ𝐿 + 𝜄𝜉𝐽2𝑘−1𝐸
𝑑Θ𝐿 (2.36)

such that
𝑑 ((𝑗2𝑘−1𝜎)∗𝜄𝜉𝐽2𝑘−1𝐸

Θ𝐿) = (𝑗2𝑘−1𝜎)∗(𝑑 𝜄𝜉𝐽2𝑘−1𝐸
Θ𝐿)

= −(𝑗2𝑘−1𝜎)∗(𝜄𝜉𝐽2𝑘−1𝐸
𝑑Θ𝐿).

(2.37)

One of the defining properties of the Cartan form Θ𝐿 is that extremals of L are extremals
of Θ𝐿. Because 𝜎, satisfying the Euler-Lagrange equations, is an extremal of L , it also
satisfies the condition [45]

0 = (𝑗2𝑘−1𝜎)∗(𝜄Ξ𝑑Θ𝐿) (2.38)

for extremals of Θ𝐿. The condition holds for arbitrary vector fields Ξ on 𝐽2𝑘−1𝐸,
including the vector fields 𝜉𝐽2𝑘−1𝐸.

Eq. (2.35) defines a current which is conserved on shell, i.e. whenever the Euler-Lagrange
equations hold. Thm. 3.1 of Ref. [39] already shows—for theories defined on the first jet
bundle—how the current arises from the so-called stress-energy-momentum tensor. This
result can now be generalised to tensor field theories of second derivative order. For the
following calculations, we introduce the abbreviations 𝜔 = 𝑑𝑛𝑥, 𝜔𝑖 = 𝜄𝜕𝑖

𝜔, 𝜔𝑖𝑗 = 𝜄𝜕𝑖
𝜄𝜕𝑗

𝜔,
and so forth.

Theorem 2.3.3 (Gotay-Marsden stress-energy-momentum tensor). Let Θ𝐿 be the diffeo-
morphism invariant Cartan form corresponding to a diffeomorphism invariant Lagrangian
of second derivative order (𝑘 = 2). For any local section 𝜎 of the underlying bundle, there
exists a unique (1, 1)-tensor density 𝒯(𝜎) on the base manifold 𝑀 such that for all vector
fields 𝜉 with compact support on 𝑀 and embedded hypersurfaces 𝑖Σ ∶ Σ → 𝑀

∫
Σ

𝑖∗
Σ𝑗(𝜎) = ∫

Σ
𝒯𝑛

𝑚(𝜎)𝜉𝑚𝜔𝑛. (2.39)

The tensor density 𝒯(𝜎) is called the Gotay-Marsden stress-energy-momentum (SEM)
tensor density.

Proof. With the Cartan form for a second-derivative-order theory being uniquely defined
(see Prop. 2.1.6), there is always the coordinate expression (2.8). Setting 𝑘 = 2 and

21



2 The axioms of covariant constructive gravity

making use of intertwiners for second-derivative indices, this expression reads

Θ𝐿 = 𝐿Ω

+ 𝜕𝐿
𝜕𝑢𝐴

𝑗
(𝑑𝑢𝐴 − 𝑢𝐴

𝑞 𝑑𝑥𝑞) ∧ 𝜔𝑗 − 𝐷𝑖
𝜕𝐿
𝜕𝑢𝐴

𝐼
𝐽 𝑗𝑖

𝐼 (𝑑𝑢𝐴 − 𝑢𝐴
𝑞 𝑑𝑥𝑞) ∧ 𝜔𝑗

+ 𝜕𝐿
𝜕𝑢𝐴

𝐼
𝐽 𝑗𝑝

𝐼 (𝑑𝑢𝐴
𝑝 − 𝑢𝐴

𝐽 𝐼𝐽
𝑝𝑞𝑑𝑥𝑞) ∧ 𝜔𝑗.

(2.40)

Note that, because the Cartan form is horizontal over the first jet bundle, there is no
appearance of the forms 𝑑𝑢𝐴

𝑖𝑗 and 𝑑𝑢𝐴
𝑖𝑗𝑘 in the coordinate expression for Θ𝐿. Thus, the

pairing with 𝜉𝐽3𝐸 for the calculation of 𝑗(𝜎) makes use only of the coefficients 𝜉𝑚, 𝜉𝐴, and
𝜉𝐴

𝑖 . Performing the pairing and the subsequent pullback with respect to the prolongation
of 𝜎, the current is obtained as

𝑗(𝜎) = 𝐿𝜉𝑗𝜔𝑗

+ 𝐿 𝑗
∶𝐴 (𝜉𝐴 − 𝜎𝐴

,𝑞𝜉𝑞)𝜔𝑗 − 𝐷𝑖𝐿 𝐼
∶𝐴 𝐽 𝑗𝑖

𝐼 (𝜉𝐴 − 𝜎𝐴
,𝑞𝜉𝑞)𝜔𝑗

+ 𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 (𝜉𝐴
𝑝 − 𝜎𝐴

,𝐽𝐼𝐽
𝑝𝑞𝜉𝑞)𝜔𝑗,

(2.41)

where 𝐿 and its derivatives are to be understood as being evaluated at prolongations of
the section 𝜎.

Using 𝜉𝐴 = 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵𝜉𝑚

,𝑛 and 𝜉𝐴
𝑝 = 𝐷𝑝(𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵𝜉𝑚
,𝑛) − 𝑢𝐴

𝑚𝜉𝑚
,𝑝 from Eq. (2.30) yields

the current in its expanded form, which is

𝑗(𝜎) = [𝐿𝛿𝑛
𝑚 − 𝐿 𝑛

∶𝐴 𝜎𝐴
,𝑚 + 𝐷𝑖𝐿 𝐼

∶𝐴 𝐽 𝑖𝑛
𝐼 𝜎𝐴

,𝑚 − 𝐿 𝐼
∶𝐴 𝐽𝑛𝑝

𝐼 𝐼𝐽
𝑚𝑝𝜎𝐴

,𝐽]𝜉𝑚𝜔𝑛

+ [𝐶𝐴 𝑛
𝐵 𝑚(𝐿 𝑗

∶𝐴 𝜎𝐵 − 𝐷𝑖𝐿 𝐼
∶𝐴 𝐽 𝑖𝑗

𝐼 𝜎𝐵 + 𝐿 𝐼

∶𝐴 𝐽 𝑗𝑝
𝐼 𝜎𝐵

,𝑝) − 𝐿 𝐼
∶𝐴 𝐽 𝑗𝑛

𝐼 𝜎𝐴
,𝑚]𝜉𝑚

,𝑛𝜔𝑗

+ [𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛𝑝𝜔𝑗.
(2.42)

The key to proving the identity (2.39) is to express the integrals with contributions from
𝜉𝑚

,𝑛 and 𝜉𝑚
,𝑛𝑝 as volume integrals using Gauss’s theorem and to then repeatedly simplify

the integrand by employing the diffeomorphism equivariance equations (2.29) and a
variant of integration by parts, in analogy to the operations performed in Ref. [39] for
first-order theories. This reference also explains how the region 𝑉 has to be chosen in the
following.

Applying this procedure to the terms containing two derivatives of 𝜉 eliminates these
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2 The axioms of covariant constructive gravity

terms, at the cost of new terms containing lower derivatives:

∫
Σ

𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵𝜉𝑚

,𝑛𝑝𝜔𝑗

= ∫
𝑉

𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵𝜉𝑚

,𝑛𝑝]𝜔

= ∫
𝑉

{𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛𝑝 + 𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵𝜉𝑚

,𝑛𝑝𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0 (2.29d)

}𝜔

= ∫
𝑉

{𝐷𝑝(𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛) − 𝐷𝑝𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛}𝜔

= ∫
𝑉

{𝐷𝑝(𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛) − 𝐷𝑛(𝐷𝑝𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚)

+ 𝐷𝑛𝐷𝑝𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 (2.29d)

𝜉𝑚}𝜔

= ∫
Σ

{𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚

,𝑛𝜔𝑝 − 𝐷𝑝𝐷𝑗[𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵]𝜉𝑚𝜔𝑛}

(2.43)

The original contributions from (2.42) together with the new contributions from (2.43)
containing first derivatives of 𝜉 combine to

∫
Σ

[ 𝐿 𝑗
∶𝐴 𝐶𝐴 𝑛

𝐵 𝑚𝜎𝐵 + 2𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵

,𝑝 − 𝐿 𝐼
∶𝐴 𝐽 𝑗𝑛

𝐼 𝜎𝐴
,𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∶=𝑆𝑗𝑛
𝑚

]𝜉𝑚
,𝑛𝜔𝑗

= ∫
𝑉

𝐷𝑗[𝑆
𝑗𝑛
𝑚 𝜉𝑚

,𝑛]𝜔

= ∫
𝑉

{𝐷𝑗𝑆
𝑗𝑛
𝑚 𝜉𝑚

,𝑛 + 𝑆𝑗𝑛
𝑚 𝜉𝑚

,𝑗𝑛⏟
=0 (2.29c)

}𝜔

= ∫
𝑉

{𝐷𝑛(𝐷𝑗𝑆
𝑗𝑛
𝑚 𝜉𝑚) − 𝐷𝑛𝐷𝑗𝑆

𝑗𝑛
𝑚⏟⏟⏟⏟⏟

=0 (2.29c)

𝜉𝑚}𝜔

= ∫
Σ

𝐷𝑗𝑆
𝑗𝑛
𝑚 𝜉𝑚𝜔𝑛.

(2.44)
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2 The axioms of covariant constructive gravity

Putting together (2.42)–(2.44) finally gives

∫
Σ

𝑖∗
Σ𝑗(𝜎) = ∫

Σ
{𝐿𝛿𝑛

𝑚 − 𝐿 𝑛
∶𝐴 𝜎𝐴

,𝑚 − 2𝐿 𝐼
∶𝐴 𝐽𝑛𝑝

𝐼 𝐼𝐽
𝑚𝑝𝜎𝐴

,𝐽 + (𝐿 𝐼
∶𝐴 𝜎𝐵

,𝐼

+ 𝐿 𝑗
∶𝐴 𝜎𝐵

,𝑗 + 𝐷𝑗𝐿
𝑗

∶𝐴 𝜎𝐵 − 𝐷𝑗𝐷𝑝𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝜎𝐵)𝐶𝐴 𝑛
𝐵 𝑚}𝜉𝑚𝜔𝑛

(2.29b)
= ∫

Σ
{−[𝐿∶𝐴 − 𝐷𝑝𝐿 𝑝

∶𝐴 + 𝐷𝑝𝐷𝑞𝐿 𝐼
∶𝐴 𝐽𝑝𝑞

𝐼 ]𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵}𝜉𝑚𝜔𝑛,

(2.45)

from which the Gotay-Marsden stress-energy-momentum tensor density is easily read off
as

𝒯𝑛
𝑚(𝜎) = − 𝛿𝐿

𝛿𝑢𝐴 𝐶𝐴 𝑛
𝐵 𝑚𝜎𝐵, (2.46)

where 𝛿𝐿
𝛿𝑢𝐴 = 𝐿∶𝐴 − 𝐷𝑝𝐿 𝑝

∶𝐴 + 𝐷𝑝𝐷𝑞𝐿 𝐼
∶𝐴 𝐽𝑝𝑞

𝐼 denotes the variational derivative.

According to (2.46), the Gotay-Marsden stress-energy-momentum tensor density vanishes
identically on shell, i.e. for sections solving the Euler-Lagrange equations—a recurring
theme in the analysis of generally covariant theories. The first-order version of Thm. 2.3.3,
proven in Ref. [39], settled a long-standing debate about SEM tensors densities by
providing a definition which is based on Noether theory and naturally satisfies a generalised
Belinfante-Rosenfeld formula.7

In addition, the Gotay-Marsden SEM tensor density lends itself for a concise formulation
of Noether’s second theorem, based on a previous result [39] for first-order theories.

Theorem 2.3.4 (second Noether theorem). Consider a second-derivative-order Lag-
rangian with local representative 𝐿 on a tensor field bundle. If the Lagrangian is
invariant with respect to diffeomorphisms, the corresponding Gotay-Marsden stress-
energy-momentum tensor density 𝒯𝑛

𝑚 satisfies the differential relation

𝐷𝑛𝒯𝑛
𝑚 = 𝛿𝐿

𝛿𝑢𝐴 𝑢𝐴
𝑚. (2.47)

Proof. Starting from the first expression for 𝒯𝑛
𝑚 obtained in Eq. (2.45), which is

𝒯𝑛
𝑚 = 𝐿𝛿𝑛

𝑚 − 𝐿 𝑛
∶𝐴 𝑢𝐴

𝑚 − 2𝐿 𝐼
∶𝐴 𝐽𝑛𝑝

𝐼 𝐼𝐽
𝑚𝑝𝑢𝐴

𝐽

+ [𝐿 𝐼
∶𝐴 𝑢𝐵

𝐼 + 𝐿 𝑗
∶𝐴 𝑢𝐵

𝑗 + 𝐷𝑗𝐿
𝑗

∶𝐴 𝑢𝐵 − 𝐷𝑗𝐷𝑝𝐿 𝐼
∶𝐴 𝐽 𝑗𝑝

𝐼 𝑢𝐵]𝐶𝐴 𝑛
𝐵 𝑚,

(2.48)

7For general relativity, the Belinfante-Rosenfeld formula [46, 47] relates the SEM tensor density obtained
from Noether theory by considering translations to the Hilbert SEM tensor density, which is defined as
the source density of the Einstein equations. [39] This comes with a seemingly ad hoc symmetrisation
of the Noether SEM tensor density. The generalised Belinfante-Rosenfeld formula [39] relates the
Gotay-Marsden SEM tensor density (2.46) to the Noether SEM tensor density without such choices,
just by considering currents and spacetime diffeomorphisms.

24



2 The axioms of covariant constructive gravity

the identity (2.47) follows via a direct computation of the divergence. Two terms in the
intermediate result are reduced using the equivariance equations (2.29c) and (2.29d).

With the Gotay-Marsden SEM tensor density replaced by its definition, Eq. (2.47) indeed
reveals the differential relation

−𝐷𝑛 ( 𝛿𝐿
𝛿𝑢𝐴 𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵) = 𝛿𝐿
𝛿𝑢𝐴 𝑢𝐴

𝑚 (2.49)

for the Euler-Lagrange equations, which is exactly the statement of Noether’s second
theorem. The identity holds off shell, i.e. for any section of the tensor bundle regardless
of whether it satisfies the Euler-Lagrange equations.

2.4 Axiom II: causal compatibility

This section follows very closely Sect. II.B of Ref. [1].

For the mathematical formulation of the second axiom, we utilise the close relation of the
causal structure of field equations to the short-wavelength limit of the theory. [28, 26]
First, we restrict to Lagrangians which are degenerate in the sense that the Euler-Lagrange
equations—although defined on 𝐽4𝐸—depend only on second derivatives and lower, i.e.

𝛿𝐿 = 𝜋∗
2𝑘,𝑘𝛿𝐿̃ (2.50)

for 𝑘 = 2. This makes the theory immune from Ostrogradsky instabilities [48], which
afflict theories of higher derivative orders. In addition, the formalism is being kept very
close to Einstein gravity, whose Lagrangian is likewise degenerate—so we are still right
on track in sticking closely to the established formalism and just inject different matter
dynamics at the very beginning. Given the Euler-Lagrange equations 𝐸𝐴 = 0 (henceforth
called field equations) of the degenerate second-order theory, we enter the limit of short
wavelengths by considering the Wentzel-Kramers-Brillouin (WKB) ansatz for a local
section 𝜎 of 𝜋

𝜎𝐴(𝑥𝑚) = ℜ𝔢{e
i𝑆(𝑥𝑚)

𝜆 [𝑎𝐴(𝑥𝑚) + 𝒪(𝜆)]}. (2.51)

Evaluating the field equations at this ansatz and taking the limit 𝜆 → 0 gives to leading
order

(𝜕𝐸𝐴
𝜕𝑢𝐵

𝐼
) 𝐽 𝑖𝑗

𝐼 𝑘𝑖𝑘𝑗
⏟⏟⏟⏟⏟⏟⏟

𝑇𝐴𝐵(𝑘)

𝑎𝐵 = 0, (2.52)

which depends on the wavefront 𝑆 only via the wave covector 𝑘 = −𝑑𝑆. Eq. (2.52) is
a linear equation for the amplitudes 𝑎𝐵 with coefficients from the 𝑟 × 𝑟 matrix 𝑇𝐴𝐵(𝑘),
where 𝑟 denotes the fibre dimension of the theory. This matrix, called the principal
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2 The axioms of covariant constructive gravity

symbol of the field equations, plays an important rôle in the short-wavelength limit: if
the theory admits solutions with nontrivial amplitudes 𝑎𝐵, the principal symbol 𝑇𝐴𝐵(𝑘)
must necessarily be noninjective. By virtue of this condition, the principal symbol selects
the physically admissible wave covectors in the WKB ansatz. As a square matrix is
noninjective if and only if its determinant vanishes, admissible wave covectors can
equivalently be characterised by a vanishing condition on the determinant of 𝑇𝐴𝐵(𝑘).

There is, however, a problem with this approach: in the presence of gauge symmetries,
there are nontrivial solutions equivalent to the trivial solution 𝑎𝐵 = 0. These solutions
will also be contained in the kernel of the principal symbol, rendering the naïve conditions
on wave covectors formulated above meaningless. More specifically, assuming a gauge
symmetry with 𝑠-dimensional gauge orbits, there are exactly 𝑠 independent functions
𝜒𝐴

(𝑖)(𝑘) which are equivalent to the trivial solution and span an 𝑠-dimensional subspace
of the kernel of 𝑇𝐴𝐵(𝑘). In order to allow for solutions which are not equivalent to the
trivial solution, the kernel needs to be of dimension greater or equal than 𝑠 + 1.

In the case of a diffeomorphism invariant theory, we have 𝑠 = 4 and it follows from the
equivariance equation (2.29d) that

0 = 𝑇𝐴𝐵(𝑘)𝐶𝐵 𝑛
𝐶 𝑖𝑢𝐶𝑘𝑛 =∶ 𝑇𝐴𝐵(𝑘)𝜒𝐵

(𝑖)(𝑘). (2.53)

The condition that the kernel of the principal symbol be of dimension 𝑠 + 1 or higher is
equivalent to imposing that the order-𝑠 adjugate matrix

𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) ∶= 𝜕𝑠 det(𝑇𝐴𝐵(𝑘))
𝜕𝑇𝐴1𝐵1

(𝑘) … 𝑇𝐴𝑠𝐵𝑠
(𝑘)

(2.54)

vanish.8 In this situation, where we have a square 𝑟 × 𝑟 matrix with 𝑠 vectors (𝜒(𝑖))𝑖=1…𝑠
spanning a subspace of the kernel, we can use the general result [49, 26]

𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) = 𝜖𝜇1…𝜇𝑠𝜖𝜈1…𝜈𝑠 [
𝑠

∏
𝑖=1

𝜒𝐴𝑖
(𝜇𝑖)] [

𝑠
∏
𝑗=1

𝜒𝐵𝑗
(𝜈𝑗)] 𝒫(𝑘) (2.55)

to arrive at the so-called principal polynomial 𝒫(𝑘).

Definition 2.4.1 (principal polynomial [26]). Consider a bundle 𝐸
𝜋

⟶ 𝑀 with fibre
dimension 𝑟 and a Lagrangian field theory on a jet bundle over 𝜋 that results in Euler-
Lagrange equations of second derivative order. Assume the 𝑠 vectors (𝜒𝐴

(𝑖)(𝑘))𝑖=1…𝑠 to be

8The vanishing of the order-𝑠 adjugate matrix is equivalent to the vanishing of all order-𝑠 subdetermin-
ants, which are obtained by removing all possible combinations of 𝑠 rows and and 𝑠 columns from the
matrix and calculating the determinant of each such reduced matrix. This is why the adjugate matrix
is of dimension (𝑟

𝑠) × (𝑟
𝑠) for theories with fibre dimension 𝑟 and 𝑠-dimensional gauge symmetries.
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2 The axioms of covariant constructive gravity

generators of the gauge transformations of the theory. In particular, the 𝜒𝐴
(𝑖) span the

left and right kernel of the principal symbol 𝑇𝐴𝐵(𝑘). Choosing 𝑠 rows and columns of 𝑇
such that the order-𝑠 adjugate matrix entry 𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠 does not vanish, we define the
principal polynomial as the quotient

𝒫(𝑘) = 𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠

𝜖𝜇1…𝜇𝑠𝜖𝜈1…𝜈𝑠 [∏𝑠
𝑖=1 𝜒𝐴𝑖

(𝜇𝑖)] [∏𝑠
𝑗=1 𝜒𝐵𝑗

(𝜈𝑗)]
. (2.56)

The principal polynomial is a homogeneous polynomial of order 2𝑟 − 4𝑠 in the components
𝑘𝑎 of the wave covector and has—as is clear from the derivation above—the important
property that in order for an ansatz (2.51) to describe a nontrivial solution in the short-
wavelength limit the wave covector 𝑘 = −𝑑𝑆 must be a root of 𝒫. Thus, the complete
information about the propagation of waves in the infinite frequency limit is encoded in
the principal symbol. This is an example for the more general result that the eligibility of
a theory as a physically relevant theory hinges on properties of 𝒫. More specifically, it
has been shown that a theory can only be predictive, interpretable, and quantizable if
the principal polynomial satisfies certain algebraic conditions, which further propagate to
conditions on the underlying geometry. [28, 29]

The principal polynomial is also closely related to the Cauchy problem of the field equations,
as a Cauchy problem can only be well-posed within a region of 𝑀 if 𝒫 restricts to a
hyperbolic9 polynomial in this region. Furthermore, given a theory with hyperbolic
principal polynomial, admissible initial data hypersurfaces are characterised by the
condition that the surface normal be hyperbolic with respect to 𝒫. [50, 51] Predictivity
is the raison d’être for physical theories, which is why we will restrict our attention to
tensor field theories with hyperbolic principal polynomials.

Two geometric objects are important for the formulation of the axiom of causal compatib-
ility: the vanishing set 𝑉𝑝 ∈ 𝑇 ∗

𝑝 𝑀 of 𝒫 and the set 𝐶𝑝 ∈ 𝑇 ∗
𝑝 𝑀 of all hyperbolic covectors

with respect to 𝒫. Both sets are defined at each point and thus form distributions 𝑉
and 𝐶 on 𝑀. The vanishing set 𝑉𝑝 consists of all admissible wave covectors in the
infinite frequency limit, restricting the propagation directions of fields in spacetime. The
set 𝐶𝑝 ∈ 𝑇 ∗

𝑝 𝑀, on the other hand, contains the information about possible choices of
initial data hypersurfaces. It constitutes a convex cone [52] and is commonly called the
hyperbolicity cone [28, 29].

Let us now consider the situation where a theory for some matter field coupled to
geometry has been prescribed, say on a bundle 𝐸grav ⊕𝑀 𝐽1𝐸mat, and the principal
polynomial 𝒫mat is hyperbolic. Both distributions 𝑉mat and 𝐶mat exist and they contain

9A homogeneous polynomial 𝒫 of degree 𝑑 is hyperbolic if there exists a covector ℎ such that 𝒫(ℎ) ≠ 0
and any shifted covector ℎ + 𝜆𝑤 intersects the vanishing set of 𝒫 exactly 𝑑 times. Such a covector
ℎ is said to be hyperbolic with respect to 𝒫.
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2 The axioms of covariant constructive gravity

all relevant information about the causality of the matter theory. The objective of covariant
constructive gravity is to close the matter theory by providing a dynamical theory of the
geometry, defined on the bundle 𝐽2𝐸grav. As a result, we obtain distributions 𝑉grav and
𝐶grav of vanishing sets and hyperbolicity cones for the gravitational theory. The principle
of causal compatibility between matter theory and gravitational theory now mandates
following relation between both pairs of distributions.

Definition 2.4.2 (causally compatible gravitational closure). Consider two bundles
𝐸grav

𝜋grav
⟶ 𝑀 and 𝐸mat

𝜋mat
⟶ 𝑀 and a Lagrangian matter field theory on 𝐸grav ⊕𝑀 𝐽1𝐸mat

whose Euler-Lagrange equations are linear in the matter field. The corresponding principal
polynomial 𝒫mat shall be hyperbolic and thus defines the vanishing set distribution 𝑉mat
and the hyperbolicity cone distribution 𝐶mat. We say that a gravitational Lagrangian field
theory on 𝐽2𝐸grav with Euler-Lagrange equations of second derivative order, a principal
polynomial 𝒫grav, and distributions 𝑉grav, 𝐶grav is causally compatible with the matter
field theory if

𝐶grav = 𝐶mat and 𝑉mat ⊆ 𝑉grav. (2.57)

The first condition immediately implies that 𝒫grav is hyperbolic as well. Furthermore, it
ensures that both theories share their initial value surfaces and allow for a unified observer
definition [28, 29]. As recent measurements showed with a high degree of certainty that
gravitational waves propagate at the speed of light [53], we include the second condition
for the distribution of vanishing sets into the definition of causal compatibility. It requires
that wave covectors of the matter theory are admissible wave covectors of the gravitational
theory, but leaves open the possibility for different modes of propagation.

Before closing this section about the second axiom, a remark about its practical implica-
tions is in order. As we will see during the perturbative implementation of the covariant
constructive gravity programme, the requirement of diffeomorphism invariance alone
already restricts the principal polynomial of the gravitational field equations quite a
lot, such that up to the third iteration of the perturbative construction procedure we
will not need to enforce Eq. (2.57) explicitly—at least for our chosen example. For the
nonperturbative construction of general relativity, the condition will not be needed at all.
This hints at the promising possibility that the second axiom may actually be weakened
by the extent to which it may already be implied by the first axiom.
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Having introduced the axioms of covariant constructive gravity and cast them in precise
mathematical language, we consolidate the results and state the algorithm for the con-
struction of modified gravity Lagrangians from novel matter theories. After a discussion
about practical implications in general, we proceed with sketching the application to a
few examples.

3.1 General formulation

The results obtained so far allow us to formulate a comprehensive algorithm for the
construction of gravitational Lagrangians, which has already been presented in Ref. [1].
These Lagrangians are the most general conceivable Lagrangians within our formalism
that satisfy both axioms of covariant constructive gravity. All that has to be provided
is a matter theory that couples to geometry and the algorithm will yield all candidates
for gravitational theories that determine the so far undetermined dynamics of the
gravitational field, finally giving the theory predictive power. In this sense, the task of
searching for modified gravitational theories boils down to the solution of PDE systems
to ensure general covariance and of algebraic equations to match the causalities.

Algorithm 1: Gravitational closure using covariant constructive gravity [1]

Data: Geometry bundle 𝐸grav

𝜋grav
⟶ 𝑀, matter bundle 𝐸mat

𝜋mat
⟶ 𝑀, Lagrangian

matter field theory on 𝐸grav ⊕𝑀 𝐽1𝐸mat with linear field equations
Result: Most general diffeomorphism invariant and causally compatible

gravitational Lagrangian field theory on 𝐽2𝐸grav
1 compute the Gotay-Marsden coefficients (2.27) for 𝐸grav
2 set up the equivariance equations (2.29a)–(2.29d)
3 solve the equivariance equations for the gravitational Lagrangian density 𝐿grav
4 compute the Euler-Lagrange equations (2.5) corresponding to 𝐿grav
5 restrict the gravitational theory to second-derivative-order field equations
6 calculate the principal polynomials (2.56) 𝒫grav and 𝒫mat
7 solve the causal compatibility conditions 𝐶grav = 𝐶mat and 𝑉grav ⊆ 𝑉mat
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Let us comment on the algorithm step by step: the first step, calculating the Gotay-
Marsden coefficients, is trivial. The coefficients follow from the prescribed or inherited
action of diffeomorphisms on the geometry bundle. For purely covariant or contravariant
tensor bundles, Prop. 2.2.7 already gives the final expression. These coefficients have to
be inserted into Eqns. (2.29a)–(2.29d) in order to execute step 2. As a result, we obtain
a system of linear, first-order partial differential equations for the Lagrangian density 𝐿
with coefficients that are linear in the independent variables. More precisely, the PDEs
are of the form

0 = 𝐴𝑗
𝑖𝑥𝑖𝑢,𝑗 + 𝐵𝑢, (3.1)

𝑢 is the dependent variable, 𝑥𝑖 are the independent variables and the coefficients 𝐴𝑗
𝑖

and 𝐵 are constants. Conceptually, much about the solutions of such PDEs is known
[42], although it is in most cases practically infeasible to solve the system, due to its
sheer size and the number of independent variables. However, as we will see in Chap. 6,
the system admits a property called involutivity, from which we can infer strong results
about solutions and derive a perturbative solution strategy.

For a known solution, it is only a matter of applying Eq. (2.5) to the Lagrangian
in order to compute the Euler-Lagrange equations for step 4. Restricting to second-
derivative-order field equations, as required by step 5, could be done now by imposing
that higher-derivative-order terms vanish. In practice, however, such restrictions will
be placed at an earlier stage, in order to rule out higher orders from the beginning. A
similar pattern emerges for steps 6 and 7: placing restrictions on the computed entities is
possible, but may be hard to enforce after the fact. So it is worth keeping this requirement
in mind early on.

3.2 Example: Einstein gravity

As already outlined in the introduction, Einstein gravity can be thought of as the
gravitational closure of Maxwell electrodynamics in four dimensions. This theory provides
dynamics for sections 𝐴 in the bundle 𝑇 ∗𝑀 of one-forms, parameterised with sections 𝑔
in the bundle 𝑆(𝑇 2

0 𝑀) of contravariant1 symmetric tensors of rank two. 𝐴 is commonly
known as the electromagnetic potential, 𝑔 as the metric tensor. The dynamics of the
electromagnetic field is given by the Lagrangian density

𝐿Maxwell = √− det 𝑔𝑔𝑎𝑐𝑔𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑, (3.2)

1Many descriptions regard the covariant inverse metric as fundamental. In this case, the contravariant
metric tensor appearing in the Lagrangian density (3.2) is the inverse of the metric field. Both
descriptions will yield slightly differing intermediate results during the construction procedure, but
are fundamentally equivalent.
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3 The construction algorithm

where the electromagnetic potential enters via the field strength tensor 𝐹 = 𝑑𝐴 and we
write “det 𝑔” for the determinant of the covariant metric tensor, which is the inverse of
the contravariant metric tensor chosen here as fundamental field.

We now collect the ingredients for the construction algorithm. The fibre dimension of
the bundle 𝑆(𝑇 2

0 𝑀) is 10, such that a suitable pair of intertwiners (𝐼, 𝐽) between this
bundle and the unrestricted tensor bundle 𝑇 2𝑀 is given by

𝐼𝑎𝑏
1 =

⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
2 =

⎛⎜⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
3 =

⎛⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

𝐼𝑎𝑏
4 =

⎛⎜⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

,

𝐼𝑎𝑏
5 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
6 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
7 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
8 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

,

𝐼𝑎𝑏
9 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, 𝐼𝑎𝑏
10 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

,

(3.3)

and

𝐽1
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽2
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 1
2 0 0

1
2 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽3
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 1
2 0

0 0 0 0
1
2 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

𝐽4
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 1
2

0 0 0 0
0 0 0 0
1
2 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

,

𝐽5
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽6
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽7
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 1

2
0 0 0 0
0 1

2 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽8
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

,

𝐽9
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1

2
0 0 1

2 0

⎞⎟⎟⎟⎟
⎠𝑎𝑏

, 𝐽10
𝑎𝑏 =

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠𝑎𝑏

.

(3.4)
The intertwiner 𝐼 distributes the ten degrees of freedom for a symmetric tensor of
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dimension 4 across the components of a generic rank-2 tensor

𝐼𝑎𝑏(𝑐𝐴𝑢𝐴) =
⎛⎜⎜⎜⎜
⎝

𝑐1 𝑐2 𝑐3 𝑐4
𝑐2 𝑐5 𝑐6 𝑐7
𝑐3 𝑐6 𝑐8 𝑐9
𝑐4 𝑐7 𝑐9 𝑐10

⎞⎟⎟⎟⎟
⎠

𝑎𝑏

, (3.5)

while 𝐽 projects such symmetrically distributed components back to the ten degrees
of freedom, discarding possible antisymmetric contributions. Note that 𝐼 and 𝐽 could
also be chosen such that the matrix representations coincide, using factors of 1√

2 for
off-diagonal entries in both intertwiners. This has the apparent advantage that 𝐼 and
𝐽 do not need to be distinguished from each other. However, a disadvantage of using
them interchangeably is that this would obscure the different rôles that 𝐼 and 𝐽 play,
especially if they are used not only in setting up the equivariance equations, but also for
manipulating them. The irrational coefficients like 1√

2 would also further complicate the
computer-aided treatment introduced in Chap. 5, which for purely rational intertwiners
yields purely rational results.

Prop. 2.2.7 yields the Gotay-Marsden coefficients from (𝐼, 𝐽) as

𝐶𝐴 𝑛
𝐵 𝑚 = 2𝐼𝑝𝑛

𝐵 𝐽𝐴
𝑝𝑚. (3.6)

Contracting these coefficients with 𝐼 and 𝐽 leads to the spacetime expression

𝐶𝑎𝑏 𝑛
𝑐𝑑 𝑚 = 2𝛿(𝑎

𝑚𝛿𝑏)
(𝑐𝛿𝑛

𝑑), (3.7)

which serves as a good sanity check: contracting again with a metric 𝑔 and the derivatives
of a vector field 𝜉 results in the well-known transformation of 𝑔 w.r.t. infinitesimal
diffeomorphism generated by 𝜉,

𝐶𝑎𝑏 𝑛
𝑐𝑑 𝑚𝑔𝑐𝑑𝜉𝑚

𝑛 = 2𝑔𝑛(𝑎𝜉𝑏)
,𝑛. (3.8)

The second ingredient is the principal polynomial of electrodynamics, which reduces to2

the homogeneous quadratic polynomial [28]

𝒫Maxwell(𝑘) = 𝑔(𝑘, 𝑘). (3.9)

From this result follows the standard notion of causality in relativity: light rays with
codirection 𝑘 are constrained to the vanishing set 𝑉 and, thus, satisfy 𝑔(𝑘, 𝑘) = 0. The
wave covectors related to massive observers lie within the hyperbolicity cone 𝐶, which

2Computing the principal polynomial may lead to a result of higher degree than (3.9). For the second
axiom of covariant constructive gravity, however, only the reduced form without repeating factors is
of relevance—because the causal structure is already determined by the reduced polynomial [28].
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restricts them to 𝑔(𝑘, 𝑘) > 0 (adopting the mostly minus convention (+ − −−) for the
signature of the metric). For more details, we refer the reader to the theory developed in
Refs. [28, 29, 23, 26] and the corresponding examples.

Before proceeding, let us emphasise that there are only two things needed from the
matter theory, which is Maxwell electrodynamics in this case:

1. the Gotay-Marsden coefficients 𝐶𝐴 𝑛
𝐵 𝑚 = 2𝐼𝑝𝑛

𝐵 𝐽𝐴
𝑝𝑚 and

2. the principal polynomial 𝒫Maxwell(𝑘) = 𝑔(𝑘, 𝑘).

The equivariance equations (2.29a)–(2.29d) for the metric gravitational Lagrangian are a
system of 140 PDEs for one variable dependent on 154 independent variables3. Because
the system admits the aforementioned property called involutivity, which will play a
major rôle in Chap. 4 and therefore will be considered in more detail there, we can make
use of a very strong result about the solutions of this system [42]: there are 154−140 = 14
functions 𝜓𝛼 of the independent variables, such that any solution of the homogeneous
system, denoted here as

0 = 𝐴𝐼𝑗𝑢,𝑗, (3.10)

is of the form 𝑓(𝜓1, … , 𝜓14) for any suitably differentiable function 𝑓. Any particular
solution 𝜔 of the inhomogeneous system

0 = 𝐴𝐼𝑗𝑢,𝑗 + 𝐵𝐼 (3.11)

yields, by virtue of the product rule, the general form of a solution,

𝑢 = 𝜔 ⋅ 𝑓(𝜓1, … , 𝜓14). (3.12)

Now, the dynamics of general relativity as derived by Einstein are given by the manifestly
diffeomorphism equivariant Einstein-Hilbert Lagrangian density

𝐿Einstein-Hilbert = 1
2𝜅

√− det 𝑔(𝑅 − 2Λ), (3.13)

from which we readily recognise two solutions,

𝜔 = √− det 𝑔 and 𝜓1 = 𝑅. (3.14)

The constants 𝜅 and Λ are known as gravitational constant and cosmological constant,
respectively, and 𝑅 is the Ricci scalar curvature. Together with the homogeneous solution
𝜓1 = 𝑅, the remaining 13 homogeneous solutions 𝜓2, … , 𝜓14 are known in the literature
as the fourteen curvature invariants [54, 55].

3The dimension of the second jet bundle over the metric bundle is 4+10+4×10+(4+2−1
2 )×10 = 154.
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While the system of equivariance equations alone admits a multitude of solutions (3.12),
it has been shown by Lovelock [14, 35, 36] that only Einstein’s general relativity (3.13)
admits second-derivative-order field equations. Step 5 of the construction algorithm
therefore restricts the gravitational theory closing Maxwell electrodynamics to general
relativity with its two undetermined constants exactly. The causality conditions do not
have to be implemented anymore, since they follow trivially—the causal structures of
Maxwell electrodynamics and Einstein gravity coincide.

There is another interesting result that follows from the equivariance equations. Restrict-
ing to the zeroth jet bundle and switching from abstract indices to indices inherited from
the tangent bundle, we retrieve the equivariance equations for a density 𝜔(𝑥𝑖, 𝑔𝑎𝑏) as

0 = 𝜔,𝑚 and 0 = 2 𝜕𝜔
𝜕𝑔𝑎𝑚 𝑔𝑎𝑛 + 𝛿𝑛

𝑚𝜔. (3.15)

If we solve the first equation by restricting further to 𝜔 = 𝜔(𝑔𝑎𝑏) and manipulate the
second equation by contraction with the covariant metric, we obtain

𝜕𝜔
𝜕𝑔𝑎𝑏 = −1

2
𝑔𝑎𝑏𝜔. (3.16)

This equation is obviously symmetric in the indices and therefore boils down to a system
of 10 PDEs for the function 𝜔 of the 10 independent variables 𝑔𝑎𝑏. As the system is
completely determined, the known solution 𝜔 =

√
− det 𝑔, which can be easily verified

by straightforward differentiation, is the unique solution. Using our framework, we thus
have provided a derivation of the well-known fact that the only scalar densities that can
be constructed from the metric tensor are powers of the metric determinant.

The same result holds for the equivariance equations restricted to the first jet bundle,
which are

0 = 𝐿,𝑚, (3.17a)
0 = 2𝐿∶𝑎𝑚𝑔𝑎𝑛 + 2𝐿 𝑝

∶𝑎𝑚 𝑔𝑎𝑛
,𝑝 − 𝐿 𝑛

∶𝑎𝑏 𝑔𝑎𝑏
,𝑚, (3.17b)

0 = 𝐿 (𝑝
∶𝑎𝑚 𝑔𝑛)𝑎. (3.17c)

Eq. (3.17c) is a system of 40 individual equations for the 40 derivatives of 𝐿 with respect
to the first derivatives of the metric tensor. The rank of this subsystem is full4, which
completely eliminates any possible dependence of 𝐿 on the first derivatives of 𝑔. The
remaining system is equivalent to the zeroth-order system (3.15) with the unique solution
𝐿 =

√
− det 𝑔, demonstrating with a very quick derivation that there is no nontrivial

4If in doubt, such statements concerning our linear PDE systems can be verified without much
computational effort by evaluation at randomly chosen points in the jet bundle. At worst, the rank
at such points will be less than at a generic point.
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diffeomorphism equivariant Lagrangian density of first derivative order for the metric
tensor.

Before proceeding with the next example, it should be emphasised that the insights gained
about metric gravitational theory compatible with Maxwell electrodynamics are not new
as fare as the results are concerned. Rather, we have seen how the developed framework
readily reproduces the known results without much effort and yet again confirms earlier
derivations.

3.3 Example: area metric gravity

As a first example for a modified theory of gravity that follows from covariant constructive
gravity, we consider area metric gravity. The starting point is a generalisation of Maxwell
electrodynamics.

Definition 3.3.1 (generalized linear electrodynamics). Let 𝑀 be a four-dimensional
spacetime manifold. The bundle 𝐸area, constructed as a subbundle of 𝑇 4

0 𝑀 by imposing
the linear conditions

𝐺𝑎𝑏𝑐𝑑 = 𝐺𝑐𝑑𝑎𝑏 = −𝐺𝑏𝑎𝑐𝑑 (3.18)

on the tensor components, is called the area metric bundle. Given a scalar density 𝜔 of
weight 1, sections 𝐺 of this bundle serve as coefficients for the Lagrangian density of
generalised linear electrodynamics (GLED),

𝐿GLED = 𝜔𝐺𝐺𝑎𝑏𝑐𝑑𝐹𝑎𝑏𝐹𝑐𝑑. (3.19)

It is easy to see that GLED is a generalisation of Maxwell electrodynamics by setting5

𝐺𝑎𝑏𝑐𝑑 = 𝑔𝑎𝑐𝑔𝑏𝑑 − 𝑔𝑎𝑑𝑔𝑏𝑐 + 1√
− det 𝑔

𝜖𝑎𝑏𝑐𝑑 and 𝜔𝐺 = ( 1
24

𝜖𝑎𝑏𝑐𝑑𝐺𝑎𝑏𝑐𝑑)
−1

(3.20)

in the GLED Lagrangian density (3.19), which reproduces the Maxwell Lagrangian
density (3.2). Not restricting the area metric field to the specific form (3.20) but leaving
all 21 independent components unconstrained yields, of course, a more general theory.

GLED as generalisation of Maxwell electrodynamics is the result of an axiomatic approach
to classical electrodynamics called premetric electrodynamics [56, 57]. This approach
makes a few assumptions like conversation of charge and magnetic flux, the existence of

5Note that 𝜔𝐺 as defined in Eq. (3.20) is a valid scalar density of weight 1 not only for this special
choice of 𝐺, but also for general area metric fields. Without loss of generality, we will keep making
use of this density—any other density is obtained by multiplication of 𝜔𝐺 with a scalar.
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a Lorentz force law, and a superposition principle. As a consequence, the indeterminates
of such a theory are reduced to the so-called constitutive tensor 𝜒, which is already
known from electrodynamics in media, but now also determines the behaviour of the
electromagnetic field in in vacuo. In our language, 𝜒 is the area metric tensor 𝐺.

The causality of GLED crucially depends on the area metric via the principle polynomial
[58]

𝒫GLED(𝑘) = − 1
24

𝜔2
𝐺𝜖𝑚𝑛𝑝𝑞𝜖𝑟𝑠𝑡𝑢𝐺𝑚𝑛𝑟𝑎𝐺𝑏𝑝𝑠𝑐𝐺𝑑𝑞𝑡𝑢𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑, (3.21)

which is generally irreducible and of rank 4. Consequently, the null surfaces are no longer
metric light cones, but more complex quartic surfaces. For example, 𝒫GLED could factor
into the product of two metrics, in which case the vanishing set at a point would be the
union of two metric light cones with different opening angles. In this example, the phase
velocity of a wave depends on the light cone in which the wave covector lies. The two
options can be seen as new polarisation degree of freedom, such that the speed of light
is determined by the polarisation—an effect commonly known as birefringence. While
in classical electrodynamics this is only possible in nonlinear media, GLED allows for
birefringence in vacuo.

Just like in Maxwell electrodynamics, where only metrics of Lorentzian signature meet the
requirement of a hyperbolic principal polynomial, GLED only satisfies certain conditions
regarding its causality—like hyperbolicity of the principal polynomial—if the area metric
belongs to certain algebraic subclasses. [28, 29] The constructions that follow respect
this requirement. In fact, we will work in a perturbative setting where the area metric to
zeroth order belongs to an appropriate subclass. Perturbations must be such that the
subclass does not change—akin to signature change in general relativity, which is also
mostly excluded.

Much of the remainder of this thesis is dedicated to the application of the construction
algorithm to GLED, which should yield the gravitational theory completing general linear
electrodynamics to a predictive theory of matter and gravity. This new theory shall bear
the name area metric gravity.

We again start with the definition of suitable intertwiners. It is often useful to interpret
the components 𝐺𝑎𝑏𝑐𝑑 of an area metric, which consist of two antisymmetric pairs and is
symmetric in these pairs, as symmetric 6 by 6 matrix

𝐺[𝑎𝑏][𝑐𝑑] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐺0101 𝐺0102 𝐺0103 𝐺0112 𝐺0113 𝐺0123

⋅ 𝐺0202 𝐺0203 𝐺0212 𝐺0213 𝐺0223

⋅ ⋅ 𝐺0303 𝐺0312 𝐺0313 𝐺0323

⋅ ⋅ ⋅ 𝐺1212 𝐺1213 𝐺1223

⋅ ⋅ ⋅ ⋅ 𝐺1313 𝐺1323

⋅ ⋅ ⋅ ⋅ ⋅ 𝐺2323

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑎𝑏][𝑐𝑑]

. (3.22)
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3 The construction algorithm

Intertwiners can then be chosen such that 𝐼 distributes abstract components 𝐺1, … , 𝐺21

over such a matrix, i.e.

𝐼 [𝑎𝑏][𝑐𝑑]
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑎𝑏][𝑐𝑑]

, 𝐼 [𝑎𝑏][𝑐𝑑]
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑎𝑏][𝑐𝑑]

, (3.23)

and so on. The surjections 𝐽 project back to abstract indices, where the multiplicities
are either 4 for components like 𝐺0123 or 8 for components like 𝐺0101:

𝐽1
[𝑎𝑏][𝑐𝑑] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠[𝑎𝑏][𝑐𝑑]

, 𝐽2
[𝑎𝑏][𝑐𝑑] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
8 0 0 0 0

1
8 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠[𝑎𝑏][𝑐𝑑]

, (3.24)

et cetera.

As usual, the Gotay-Marsden coefficients follow from Prop. 2.2.7. Since the fibre dimension
of 𝑇 4

0 𝑀 is 4 and the tensors are purely contravariant, the coefficients are

𝐶𝐴 𝑛
𝐵 𝑚 = 4𝐼𝑝𝑞𝑟𝑛

𝐵 𝐽𝐴
𝑝𝑞𝑟𝑚, (3.25)

or, using the spacetime representation,

𝐶𝑎𝑏𝑐𝑑 𝑛
𝑒𝑓𝑔ℎ 𝑚 = 4𝛿[𝑎∣

𝑚 𝛿𝑛
[𝑒𝛿∣𝑏]

𝑓] 𝛿
[𝑐
[𝑔𝛿𝑑]

ℎ]∣
[𝑎𝑏]↔[𝑐𝑑]
[𝑒𝑓]↔[𝑔ℎ]

, (3.26)

where 𝑒𝑋𝑌∣
𝑋↔𝑌

= 1
2𝑒𝑋𝑌 + 1

2𝑒𝑌 𝑋 denotes idempotent symmetrisation of the expression 𝑒
in 𝑋 and 𝑌.

Having computed the intertwiners and Gotay-Marsden coefficients, the equivariance
equations (2.29a)–(2.29d) are ready to be set up. Since the second area metric jet bundle
is of dimension

dim(𝐽2𝐸area) = 4 + 21 + 4 × 21 + (4 + 2 − 1
2

) × 21 = 319, (3.27)

the system of equivariance equations consists of 140 linear, first-order PDE for one
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3 The construction algorithm

function of 319 independent variables. The claim of covariant constructive gravity is that
solutions to this system are candidates for gravitational Lagrangians. Unfortunately, it
is computationally infeasible to present such a solution6 and, unlike for metric gravity,
there are no known curvature invariants for us to rely on.

Therefore, we will resort to perturbation theory in order to derive results for weak
gravitational fields in Chap. 6 and also shortly explore the possibility of directly solving
the cosmological sector of area metric gravity in Chap. 7.

3.4 Example: bimetric gravity

A lot of work has already been done in order to answer the question: What would gravity
look like if there were two metrics instead of one? From the perspective of covariant
constructive gravity (and gravitational closure in general), this question is meaningless
without reference to a bimetric matter action. The question should rather be: How can
matter theories that couple to two different metrics be completed by a bimetric gravitational
theory?

Let us consider two examples for bimetric matter theories. The first theory prescribes
the dynamics for two scalar fields, each field coupling to its own metric.

Definition 3.4.1 (bimetric Klein-Gordon theory). Let 𝑀 be a four-dimensional spacetime
manifold. The bundle 𝐸bimetric = 𝑆(𝑇 2

0 𝑀) ⊕ 𝑆(𝑇 2
0 𝑀) constructed as the direct sum of

two metric bundles is called the bimetric bundle. Sections (𝑔, ℎ) of this bundle serve as
coefficients for the Lagrangian density of the bimetric Klein-Gordon theory

𝐿2KG = √− det 𝑔𝑔𝑎𝑏𝜙,𝑎𝜙,𝑏 − 𝑚2
𝜙𝜙2 +

√
− det ℎℎ𝑎𝑏𝜓,𝑎𝜓,𝑏 − 𝑚2

𝜓𝜓2, (3.28)

where 𝜙 and 𝜓 are smooth functions 𝜙, 𝜓∶ 𝑀 → ℝ called scalar fields with nonnegative
masses 𝑚𝜙 and 𝑚𝜓.

As second example, we use a generalisation of the Proca theory, a theory for a massive
electromagnetic potential.

Definition 3.4.2 (bimetric Proca theory [32]). Consider again the bundle 𝐸bimetric.
Sections (𝑔, ℎ) of this bundle together with a scalar density 𝜔(𝑔,ℎ) constructed from 𝑔 and

6Strictly speaking, two solutions are known: the scalar density 𝜔𝐺 defined in Eq. (3.20) and a different
choice for 𝜔𝐺 which is computed from the determinant of the 6 × 6 matrix (3.22), which is also a
valid scalar density. However, these solutions do not depend on derivatives of the area metric and as
such would not yield dynamic field equations if used as Lagrangian density.
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3 The construction algorithm

ℎ serve as coefficients for the Lagrangian density of the bimetric Proca theory

𝐿bi-Proca = 𝜔(𝑔,ℎ) (−𝑔𝑎𝑐𝑔𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑 + 𝑚2ℎ𝑎𝑏𝐴𝑎𝐴𝑏) (3.29)

for an electromagnetic potential one-form 𝐴 with field strength 𝐹 = 𝑑𝐴.

Both theories couple matter fields to geometry defined on 𝐸bimetric. Consequently, the first
steps in executing the construction algorithm are identical: define suitable intertwiners,
calculate Gotay-Marsden coefficients, set up and solve the equivariance equations. A
possible choice of intertwiners is to just reuse the intertwiners (3.3) and (3.4) defined for
the metric bundle. Representing elements of the unrestricted bundle 𝑇 2

0 𝑀 ⊕ 𝑇 2
0 𝑀 as

two matrices, 𝐼𝑎𝑏
1 , … , 𝐼𝑎𝑏

10 distribute the 10 degrees of freedom for the first metric over
the first matrix, while 𝐼𝑎𝑏

11 , … , 𝐼𝑎𝑏
20 distribute the 10 degrees of freedom for the second

metric over the second matrix. The intertwiner 𝐽 is defined equivalently.

Considering how one metric transforms with respect to diffeomorphisms,

𝑔𝐴 ↦ 𝑔𝐴 + 𝐶𝐴 𝑛
𝐵 𝑚𝜉𝑚

,𝑛, (3.30)

we can reuse the Gotay-Marsden coefficients (3.6) for a single metric and obtain the
transformation behaviour of two metrics as

(𝑔𝐴

ℎ𝐵) ↦ (𝑔𝐴

ℎ𝐵) + (𝐶𝐴 𝑛
𝐶 𝑚𝜉𝑚

,𝑛 0
0 𝐶𝐵 𝑛

𝐷 𝑚𝜉𝑚
,𝑛

) (𝑔𝐶

ℎ𝐷) . (3.31)

The matrix introduced in this equation constitutes the Gotay-Marsden coefficients for
the bimetric bundle. A lighter notation is to just write 𝐺𝐴 for the bimetric field, where
indices 𝐴 range from 1 to 20 and split into two ranges, denoted by ̄𝐴 (from 1 to 10) and

̄̄𝐴 (from 11 to 21), respectively. The original metrics 𝑔 and ℎ are included in 𝐺 as 𝐺 ̄𝐴

and 𝐺 ̄̄𝐴. Using this notation, the matrix in Eq. (3.31) is a block matrix representation
of the bimetric Gotay-Marsden coefficients 𝐶𝐴 𝑛

𝐵 𝑚: the coefficients are zero if 𝐴 and
𝐵 come from different ranges, while for the same ranges, they amount to the metric
coefficients.

With the Gotay-Marsden coefficients at hand, the equivariance equations (2.29a)–(2.29d)
follow as usual. This time, the bimetric bundle is of dimension

dim(𝐽2𝐸bimetric) = 4 + 20 + 4 × 20 + (4 + 2 − 1
2

) × 20 = 304, (3.32)

making the system a PDE system with 140 equations for one function dependent on 304
independent variables. The same remarks as for the construction of area metric gravity
apply: it is notoriously hard to solve such a system exactly, but the method offers a lot
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3 The construction algorithm

of potential for perturbative or symmetry-reduced solutions. In the context of canonical
gravitational closure, the former has already been pursued successfully, at least to second
order in the perturbation expansion. [32, 33]

Some solutions are, of course, already known: the metric determinants are diffeomorphism
invariant densities and the fourteen curvature invariants for each metric are diffeomorph-
ism invariant scalars, i.e. solutions to the homogeneous system. This gives generic
solutions of the form

√− det 𝑔 ⋅ 𝑓(𝜓(𝑔)
1 , … , 𝜓(𝑔)

14 , 𝜓(ℎ)
1 , … , 𝜓(ℎ)

14 )

or
√

− det ℎ ⋅ 𝑓(𝜓(𝑔)
1 , … , 𝜓(𝑔)

14 , 𝜓(ℎ)
1 , … , 𝜓(ℎ)

14 ).
(3.33)

More scalars come easily to mind, like the contraction 𝑔𝑎𝑏ℎ𝑎𝑏 (using the inverse ℎ𝑎𝑏 of
ℎ𝑎𝑏) and the ratio

√
− det 𝑔√
− det ℎ . Adding these to the 28 curvature invariants, a more generic

solution would be
√

− det ℎ ⋅ 𝑓(𝜓(𝑔)
1 , … , 𝜓(𝑔)

14 , 𝜓(ℎ)
1 , … , 𝜓(ℎ)

14 , 𝑔𝑎𝑏ℎ𝑎𝑏,
√

− det 𝑔√
− det ℎ

). (3.34)

From the strong results about such system, which will be proven in the next chapter, we
know that this premature analysis is by no means exhaustive—the number of functionally
independent scalars that can be constructed from a bimetric tensor and its derivative up
to second order must be 304 − 140 = 164.

By the second axiom of covariant constructive gravity, the space of admissible Lagrangians
will be smaller than the solution space of the PDE system we just discussed. The input
we need from the matter theory is the principal polynomial. Quite surprisingly, the
polynomials of the bimetric Klein-Gordon theory and the bimetric Proca theory coincide,
given by the expression

𝒫bimetric(𝑘) = 𝑔(𝑘, 𝑘)ℎ(𝑘, 𝑘). (3.35)

This is an intuitive result for the bimetric Klein-Gordon field, where the field equations
for both scalar fields do not couple. For the bimetric Proca theory, however, a naïve
inspection of the field equations seems to suggest that the principal polynomial is just
given by the first metric which provides the coefficients for the kinetic term. Only after
the field equations have been brought into involutive form, new equations emerge which
ultimately yield the principal polynomial (3.35). [32]

As a consequence of this coincidence, the gravitational theories that are eligible as
completions for both discussed bimetric matter theories are the same. This also restricts
the causally relevant sectors of both theories to the sector where 𝑔 and ℎ are Lorentzian
metrics with overlapping hyperbolicity cones—only then the product of both metrics is a
hyperbolic polynomial.
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4 Perturbative construction of
gravitational theories

Following the presentation of the axioms of covariant constructive gravity and the
construction algorithm, we now develop a perturbative approach for the implementation
of both axioms. The equivariance equations turn out to lend themselves to an iterative
solution strategy where the expansion coefficients of a power series ansatz are determined
iteratively, power by power. A first approximation of the gravitational theory valid
for weak fields is obtained already after the second iteration, which yields a quadratic
Lagrangian with linear field equations. In a sense, this is the free theory without self-
coupling. In order to investigate the lowest-order effects of gravitational self-coupling,
which we will dare in the subsequent chapter, the next order is indispensable. Therefore,
after establishing the general principle, we focus on the perturbation theory up to third
order in the Lagrangian.

The development in this chapter follows closely the presentation in Ref. [1], but is at
times more detailed.

4.1 Perturbative implementation of axiom I

Let us state again, for reference, the equivariance equations (2.29b)–(2.29d) we are going
to solve perturbatively:

0 = 𝐿∶𝐴𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵 + 𝐿 𝑝

∶𝐴 [𝐶𝐴 𝑛
𝐵 𝑚𝛿𝑞

𝑝 − 𝛿𝐴
𝐵𝛿𝑞

𝑚𝛿𝑛
𝑝 ] 𝑢𝐵

𝑞

+ 𝐿 𝐼
∶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝐽
𝐼 − 2𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝐼𝐽

𝑝𝑚] 𝑢𝐵
𝐽 + 𝐿𝛿𝑛

𝑚,

0 = 𝐿 (𝑝∣
∶𝐴 𝐶𝐴 ∣𝑛)

𝐵 𝑚𝑢𝐵 + 𝐿 𝐼
∶𝐴 [𝐶𝐴 (𝑛

𝐵 𝑚2𝐽𝑝)𝑞
𝐼 − 𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝛿𝑞

𝑚] 𝑢𝐵
𝑞,

0 = 𝐿 𝐼
∶𝐴 𝐶𝐴 (𝑛

𝐵 𝑚𝐽𝑝𝑞)
𝐼 𝑢𝐵.

The first equivariance equation 0 = 𝐿,𝑚 has been omitted, because from now on we will
consider it solved by restricting the problem to Lagrangian densities 𝐿 that depend only
on the fibre coordinates.
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4 Perturbative construction of gravitational theories

Perturbation theory starts with choosing an expansion point 𝑝 ∈ 𝐽2𝐸. Let 𝑝 have fibre
coordinates (𝑁𝐴, 𝑁𝐴

𝑝, 𝑁𝐴
𝐼). The deviation of any point 𝑞 ∈ 𝐽2𝐸 with fibre coordinates

(𝐺𝐴, 𝐺𝐴
𝑝, 𝐺𝐴

𝐼) is then defined as the difference

(𝐻𝐴, 𝐻𝐴
𝑝, 𝐻𝐴

𝐼) ∶= (𝐺𝐴 − 𝑁𝐴, 𝐺𝐴
𝑝 − 𝑁𝐴

𝑝, 𝐺𝐴
𝐼 − 𝐻𝐴

𝐼). (4.1)

Around 𝑝, this results in the formal power series ansatz

𝐿 = 𝑎 + 𝑎𝐴𝐻𝐴 + 𝑎 𝑝
𝐴 𝐻𝐴

𝑝 + 𝑎 𝐼
𝐴 𝐻𝐴

𝐼

+ 𝑎𝐴𝐵𝐻𝐴𝐻𝐵 + 𝑎 𝑝
𝐴𝐵 𝐻𝐴𝐻𝐵

𝑝 + 𝑎 𝐼
𝐴𝐵 𝐻𝐴𝐻𝐵

𝐼

+ 𝑎 𝑝 𝑞
𝐴 𝐵 𝐻𝐴

𝑝𝐻𝐵
𝑞 + 𝑎 𝑝 𝐼

𝐴 𝐵 𝐻𝐴
𝑝𝐻𝐵

𝐼 + 𝑎 𝐼 𝐽
𝐴 𝐵 𝐻𝐴

𝐼𝐻𝐵
𝐽

+ 𝑎𝐴𝐵𝐶𝐻𝐴𝐻𝐵𝐻𝐶 + … ,

(4.2)

which is called formal because at this point there is no assumption about the convergence
of the power series. We do, however, make two assumptions about admissible expansion
points, in order to justify the interpretation of perturbatively constructed theories as valid
theories for weak gravitational fields.

1. The expansion point represents a flat instance of the gravitational field, i.e. both
𝑁𝐴

𝑝 and 𝑁𝐴
𝐼 vanish.

2. At the expansion point, the matter theory that is used to bootstrap the construction
procedure reduces to a theory that is equivalent to a matter theory on Minkowski
spacetime.

Both restrictions for 𝑝 ensure that the limit of weak gravitational fields can match our
observations for situations with weak gravity: matter fields couple to flat geometry in the
sense that there are coordinate charts where the geometric coefficients are constant and
this geometry is determined by the Minkowski metric. Curvature effects and effects from
non-Lorentzian geometry are expected to arise as deviations from this ground state. After
all, this is just another incarnation of the correspondence principle for modified gravity.

The first assumption is easily implemented: in the chosen coordinate chart, 𝑝 takes the
form (𝑁𝐴, 0, 0). The best way to make sense of the second assumption is by considering
a few examples:

Example 4.1.1 (flat Lorentzian expansion points). Let us choose appropriate expansion
points (𝑁𝐴, 0, 0) for GLED and bimetric theories introduced in Sections 3.3 and 3.4,
respectively. In order to satisfy the second assumption made for expansion points, we
construct 𝑁𝐴 from the Minkowski metric 𝜂𝑎𝑏 = diag(1, −1, −1, −1)𝑎𝑏 in the following
ways.
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4 Perturbative construction of gravitational theories

1. For bimetric theories, a suitable expansion point is given by 𝑁 ̄𝐴 = 𝐽 ̄𝐴
𝑎𝑏𝜂𝑎𝑏 and

𝑁 ̄̄𝐴 = 𝐽 ̄̄𝐴
𝑎𝑏𝜂𝑎𝑏, i.e. setting both metrics 𝑔 and ℎ equal to 𝜂. Where a scalar density is

needed, we choose 𝜔 =
√

− det 𝜂 = 1. This choice reduces the bimetric Klein-Gordon
theory to the standard Klein-Gordon theory for two scalar fields on Minkowski
spacetime

𝐿2KG∣
𝑁

= 𝜂𝑎𝑏𝜙,𝑎𝜙,𝑏 − 𝑚2
𝜙𝜙2 + 𝜂𝑎𝑏𝜓,𝑎𝜓,𝑏 − 𝑚2

𝜓𝜓2. (4.3)

Similarly, the refined Proca theory reduces to the standard Proca theory

𝐿bi-Proca∣
𝑁

= −𝜂𝑎𝑐𝜂𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑 + 𝑚2𝜂𝑎𝑏𝐴𝑎𝐴𝑏. (4.4)

2. For GLED, we choose the expansion point 𝑁𝐴 = 𝐽𝐴
𝑎𝑏𝑐𝑑(𝜂𝑎𝑐𝜂𝑏𝑑 − 𝜂𝑎𝑑𝜂𝑏𝑐 + 𝜖𝑎𝑏𝑐𝑑).

Using the density 𝜔𝐺 = ( 1
24𝜖𝑎𝑏𝑐𝑑𝐺𝑎𝑏𝑐𝑑)−1, which at 𝐺𝐴 = 𝑁𝐴 results in 𝜔𝑁 = 1,

the Lagrangian density for GLED reduces to

𝐿GLED = 2𝜂𝑎𝑐𝜂𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑, (4.5)

i.e. Maxwell electrodynamics on Minkowski spacetime.1

Both choices of expansion points ensure that the perturbatively constructed gravitational
theories provide to zeroth order in the deviation a background on which known physics is
reproduced. Novel physics—the coupling of matter fields to nonmetric geometries and the
self-coupling of such geometries—should emerge as effect of first and higher orders in the
deviation from the Minkowski background.

Having defined an expansion point, the equivariance equations can—in principle—be
solved perturbatively by repeating the following process: all equations in the system
contain derivatives of first order, so the expansion coefficient 𝑎 of zeroth order remain
undetermined. In order to determine the expansion coefficients 𝑎𝐴, 𝑎 𝑝

𝐴 , and 𝑎 𝐼
𝐴 ,

substitute the formal power series ansatz (4.2) for the Lagrangian density 𝐿 in the
equivariance equations, evaluate the result at 𝑁 (i.e. set the deviation 𝐻 to zero) and
solve the resulting linear equations for the first-order coefficients. Next, differentiate each
PDE once with respect to every independent variable, substitute again the power series
ansatz, evaluate at 𝑁 and solve the linear system for the expansion coefficients of second
order. Now repeat this process of differentiation, substitution, evaluation, and solving of
linear equations ad infinitum—or up to the desired perturbation order.

1The term 𝜖𝑎𝑏𝑐𝑑𝐹𝑎𝑏𝐹𝑐𝑑 is a surface term and thus does not contribute to the field equations. As such,
it has been omitted in Eq. (4.5).
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4.2 Involution analysis

For the previously described perturbative solution process to play out as desired, the PDE
system must observe an important property: we need to be sure that each step really
determines all expansion coefficients for the corresponding order to the extent that this is
possible2. This is not always guaranteed, as a simple example demonstrates.

Example 4.2.1 (integrability conditions [59]). Consider the linear, first-order PDE
system

𝑢,𝑧 + 𝑦𝑢,𝑥 = 0,
𝑢,𝑦 = 0

(4.6)

for one function 𝑢 which depends on three independent variables 𝑥, 𝑦, 𝑧. Making a formal
power series ansatz, inserting this ansatz into the system (4.6), and evaluating at the
expansion point yields a linear system of rank two for the three expansion coefficients of
first order.

There are, however, hidden equations governing the first order, which emerge after
differentiating the first equation with respect to 𝑦 and the second equation with respect to
𝑧 and 𝑥. This gives new PDEs

𝑢,𝑦𝑧 + 𝑦𝑢,𝑥𝑦 + 𝑢,𝑥 = 0,
𝑢,𝑥𝑦 = 0,
𝑢,𝑦𝑧 = 0.

(4.7)

The second derivatives in the first equation can be cancelled using the second and third
equation, yielding the first-order PDE 𝑢,𝑥 = 0. Such a new equation that is algebraically
independent of the original PDEs (4.6) is called an integrability condition. Including it
in the first-order system and simplifying a bit, we get

𝑢,𝑥 = 0,
𝑢,𝑦 = 0,
𝑢,𝑧 = 0.

(4.8)

Only after performing this procedure of making explicit the hidden first-order PDEs, we
know for sure that the expansion coefficients of first order are determined already after the
first iteration. In this case, the resulting linear system has full rank, leaving no coefficient
undetermined.

2Of course, the equivariance equations, in general, will not determine all expansion coefficients. Rather,
the solutions will be parameterised exactly by the coefficients that cannot be determined.
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Luckily, the system of equivariance equations suffers none of these maladies, as we
will prove in the following. The mathematical framework that allows to make such a
statement is involution theory [42]. Within this framework, a PDE of order 𝑞 is defined
geometrically as fibred submanifold 𝑅𝑞 ⊆ 𝐽𝑞𝐸 of some jet bundle manifold 𝐽𝑞𝐸.3 A local
coordinate representation of 𝑅𝑞 yields a system of equations, more closely resembling
what a PDE looks like in the nongeometric picture. Note that we deliberately call 𝑅𝑞
a partial differential equation, rather than using the plural, as this approach makes no
difference between systems or scalar equations. A solution to a PDE is just a local section
𝜎 of 𝐸 such that the image of 𝑗𝑞𝜎 is contained within 𝑅𝑞.

Two geometric operations will be performed repeatedly on PDEs for their involution
analysis: prolongation and projection. The former maps a PDE 𝑅𝑞 to some PDE
𝑅𝑞+𝑟 by, in local coordinates, adding to 𝑅𝑞 all possible derivatives of order 𝑟 of the
individual equations—the equivalent geometric construction is a bit more involved. On the
contrary, it is simpler to define projections geometrically, which is as bundle projections
𝑅(𝑟)

𝑞−𝑟 = 𝜋𝑞,𝑞−𝑟(𝑅𝑞). Using a local representation of 𝑅𝑞, the projection is performed by
eliminating derivatives of higher orders using only algebraic manipulations such that
equations of order 𝑞 − 𝑟 remain. The maximal set of such equations is a representation
of 𝑅𝑞−𝑟. For linear systems, the task of projecting a PDE to lower order is solved by
linear algebra with tools like Gaussian elimination and has already been demonstrated
earlier in Example 4.2.1.

With this, the main result can be established.

Theorem 4.2.2 (formal integrability of equivariance equations). The equivariance
equations are a formally integrable partial differential equation 𝑅𝑞 with 𝑞 = 1, i.e. it holds
for all 𝑟 > 0 that 𝑅(1)

𝑞+𝑟 = 𝑅𝑞+𝑟.

Formal integrability as defined in Thm. 4.2.2 captures in geometric terms the requirement
a PDE must satisfy in order for the iterative solution strategy to succeed. Otherwise, a
truncated power series solution—which will later serve as approximate solution for weak
gravitational fields—could never be trusted, as prolongations of the PDE to higher orders
could always yield additional constraints on the coefficients of the truncated series.

The equivariance equations fall into such a simple category that their formal integrability
can be proven in a very straightforward way. According to Example 2.3.12 of Ref. [42],
the possible integrability conditions for a PDE of order 𝑞 = 1 for a single dependent
variable are given by a certain commutator of the local PDE representatives. See [42] for
the details. Adapting this technique to the system of equivariance equations, we can prove
that the integrability conditions are already contained in the system to begin with.

3Note that this jet bundle is not the jet bundle on which the Lagrangian density is defined. For the
equivariance equations, the order 𝑞 is 1 and the underlying bundle 𝐸 is 𝐽2𝐸geometry.
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Proof of Thm. 4.2.2. The system (2.29a)–(2.29d) of equivariance equations is equivalent
(by its derivation) to the equation

0 = 𝜉𝐽2𝐸𝐿 + 𝐿 ⋅ 𝜉𝑚
,𝑚 (4.9)

for all vector fields 𝜉 over 𝑀. With 𝜉𝐽2𝐸 we denoted the lift to the second jet bundle
over the field bundle. Applying the same technique as in Example 2.3.12 of Ref. [42], we
generate all possible integrability conditions by acting with a second vector field 𝜓𝐽2𝐸
on Eq. (4.9) and subtracting the same equation with the rôles of 𝜉 and 𝜓 interchanged.
These conditions turn out to be

0 = [𝜉𝐽2𝐸, 𝜓𝐽2𝐸]𝐿 + 𝐿 ⋅ [𝜉, 𝜓]𝑚,𝑚
− (𝜓𝐽2𝐸𝐿 + 𝐿 ⋅ 𝜓𝑚

,𝑚) 𝜉𝑛
,𝑛

+ (𝜉𝐽2𝐸𝐿 + 𝐿 ⋅ 𝜉𝑚
,𝑚) 𝜓𝑛

,𝑛

= [𝜉, 𝜓]𝐽2𝐸𝐿 + 𝐿 ⋅ [𝜉, 𝜓]𝑚,𝑚
− (𝜓𝐽2𝐸𝐿 + 𝐿 ⋅ 𝜓𝑚

,𝑚) 𝜉𝑛
,𝑛

+ (𝜉𝐽2𝐸𝐿 + 𝐿 ⋅ 𝜉𝑚
,𝑚) 𝜓𝑛

,𝑛,

(4.10)

which is a linear combination of equations that are already contained in the system. Note
how the Lie algebra homomorphism property of the vector field lift is crucial for this
result.

Since it is impossible to generate integrability conditions that are not already present in
the system, the equivariance equations are formally integrable.

For more involved PDEs, formal integrability is in practice proven by showing that the
system is involutive, from which formal integrability follows. This comes with an algebraic
condition on the PDE, which boils down to calculating a matrix rank for our particular
PDE. However, it has still to be checked that a single prolongation does not generate new
integrability condition—which amounts to the calculation above. So in this case, nothing
would be gained by pursuing this approach. See [42, 37] for a proof of involutivity.

4.3 Lorentz invariant ansätze

In order to implement the second assumption for suitable expansion points in the power
series ansatz, we choose coordinate representations where the flat geometry is Lorentz
invariant, i.e. satisfies the Lorentz invariance conditions

0 = 𝑁𝐴𝐶𝐵 𝑛
𝐴 𝑚(𝐾(𝑖))𝑚

𝑛 , (4.11)

46



4 Perturbative construction of gravitational theories

where 𝐾(𝑖) are the 6 generators {𝜂𝑚[𝑟𝛿𝑠]
𝑛 ∣ 𝑟 < 𝑠} of the Lorentz group. This special

symmetry of the expansion point carries over to the equivariance equations and causes
rank defects, for example in the second equivariance equation (2.29b). At a generic
(non-Lorentz invariant) point 𝑝 = (𝑥𝑖, 𝑀𝐴, 0, 0), it reads

0 = 𝐿∶𝐴|𝑝𝐶𝐴 𝑛
𝐵 𝑚𝑀𝐵 + 𝐿|𝑝𝛿𝑛

𝑚 (4.12)

and is, in general, of rank 16. Evaluating the same equation at 𝑝0 = (𝑥𝑖, 𝑁𝐴, 0, 0) and
contracting with Lorentz generators 𝐾(𝑖), we obtain the 6 vanishing linear combinations

0 = 𝐿∶𝐴|𝑝0
𝐶𝐴 𝑛

𝐵 𝑚𝑁𝐵(𝐾(𝑖))𝑚
𝑛 + 𝐿|𝑝0

𝛿𝑛
𝑚(𝐾(𝑖))𝑚

𝑛

= 0.
(4.13)

In the end, only 10 equations remain linearly independent. While at the first glance this
seems to reduce the number of determinable expansion coefficients, the converse is actually
true: consider again the second equivariance equation and calculate the prolongation with
respect to the variables 𝑢𝐴. Evaluated at 𝑝0, this gives

0 = 𝐿∶𝐴∶𝐵|𝑝0
𝐶𝐵 𝑛

𝐶 𝑚𝑁𝐶 + 𝐿∶𝐵|𝑝0
𝐶𝐵 𝑛

𝐴 𝑚 + 𝐿∶𝐴|𝑝0
𝛿𝑛

𝑚, (4.14)

which contracted with the Lorentz generators reduces again to first-order equations

0 = 𝐿∶𝐵|𝑝0
𝐶𝐵 𝑛

𝐴 𝑚(𝐾(𝑖))𝑚
𝑛 . (4.15)

Comparing this equation with Eq. (4.11) emphasises its significance: it mandates Lorentz
invariance of the expansion coefficients 𝐿∶𝐵|𝑝0

= 𝑎𝐵.

Similar results hold for all other expansion coefficients and are obtained exactly the same
way: calculate prolongations of the second equivariance equation, evaluate at the Lorentz
invariant expansion point, and contract with the Lorentz generators. While this yields new
independent equations of order 𝑞 by prolongation to order 𝑞 + 1 and subsequent projection,
it is important not to conflate the Lorentz invariance conditions on expansion coefficients
with integrability conditions from involution theory. The former are an artefact of the
expansion point with additional symmetries and are as such only valid exactly there, while
an integrability condition would not be restricted to singular points.

When solving the equivariance equations iteratively, we could just include the Lorentz
invariance conditions and solve them together with the original equations. A better way
is to exploit the nature of the additional conditions and implement Lorentz invariance of
the expansion coefficients before substituting the ansatz in the equivariance equations.
For example, working on the metric bundle, rather than including the 60 equations

𝑎𝐵𝐶𝐵 𝑛
𝐴 𝑚(𝐾(𝑖))𝑚

𝑛 (4.16)

47



4 Perturbative construction of gravitational theories

for the 10-dimensional ansatz 𝑎𝐵, we implement Lorentz invariance by reducing 𝑎𝐵 to
the ansatz

𝑎𝐵 = 𝑐 ⋅ 𝐽𝑎𝑏
𝐵 𝜂𝑎𝑏 (4.17)

with just one undetermined coefficient. Not only did we get by without adding equations
to the system, but we reduced the number of unknowns significantly.

A particular reduction we can perform right now is to set expansion coefficients with an
odd number of indices to zero.4 Assuming that the number of indices on the geometry is
even5, this removes all coefficients with odd total number of derivatives from the ansatz,
e.g. 𝑎 𝑝 𝐼

𝐴 𝐵 = 0.

4.4 Perturbative implementation of axiom II

Before deriving consequences from the second axiom for the perturbatively constructed
solutions, we can already infer restrictions on the perturbation ansatz. As the matter
Lagrangians considered here depend on the geometry only locally, and so do the corres-
ponding principal polynomials, a matching gravitational polynomial must also depend on
the geometry locally, i.e. not via derivatives. In order to enforce this, we remove ansätze
with a total number of derivatives greater than two and obtain the general ansatz

𝐿 = 𝑎 + 𝑎𝐴𝐻𝐴 + 𝑎 𝐼
𝐴 𝐻𝐴

𝐼 + 𝑎𝐴𝐵𝐻𝐴𝐻𝐵 + 𝑎 𝐼
𝐴𝐵 𝐻𝐴𝐻𝐵

𝐼 + 𝑎 𝑝 𝑞
𝐴 𝐵 𝐻𝐴

𝑝𝐻𝐵
𝑞

+ 𝑎𝐴𝐵𝐶𝐻𝐴𝐻𝐵𝐻𝐶 + 𝑎 𝐼
𝐴𝐵𝐶 𝐻𝐴𝐻𝐵𝐻𝐶

𝐼 + 𝑎 𝑝 𝑞
𝐴𝐵 𝐶 𝐻𝐴𝐻𝐵

𝑝𝐻𝐶
𝑞 + … .

(4.18)

As discussed before, all expansion coefficients are Lorentz invariant.

Now, consider a solution of the equivariance equations for the ansatz (4.18), truncated
at order 𝑞. The corresponding field equations will be of order 𝑞 − 1 and the principal
symbol, consequently, of order 𝑞 − 2. The second axiom of covariant constructive gravity
is implemented perturbatively by matching the expansion

𝒫mat = (𝑃 (0)
mat) + (𝑃 (1)

mat)𝐴𝐻𝐴 + ⋯ + (𝑃 (𝑞−2)
mat )𝐴1…𝐴𝑞−2

𝐻𝐴1 … 𝐻𝐴𝑞−2 + 𝒪(𝑞 − 1) (4.19)

of the matter polynomial with the expansion

𝒫grav = (𝑃 (0)
grav) + (𝑃 (1)

grav)𝐴𝐻𝐴 + ⋯ + (𝑃 (𝑞−2)
grav )𝐴1…𝐴𝑞−2

𝐻𝐴1 … 𝐻𝐴𝑞−2 + 𝒪(𝑞 − 1) (4.20)

4For field bundles that are defined as proper subbundle of some “unrestricted” tensor bundle, the
number of indices refers to the rank of the latter.

5Otherwise, we would not be able to define a Lorentz invariant expansion point to begin with.
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of the gravitational polynomial. Note that a “match” does not necessarily mean that
both polynomials coincide, but rather that the causalities are compatible in the sense of
Def. 2.4.2.

While the expansion (4.19) generally follows from a closed form for the matter principal
polynomial, we only have the currently constructed orders of the gravitational Lagrangian
at our disposal when calculating terms from Eq. (4.20). The process to arrive at the
gravitational polynomial from there by expanding the definition (2.56), however, is
straightforward. We restrict our attention to the order 𝑞 − 1 = 2 in the field equations,
which is the maximum order we will consider for a concrete example later, but the
calculations can be generalised to higher orders if necessary.

The principal polynomial was defined in Def. 2.4.1 as the quotient of a nonvanishing
entry from the order-𝑠 adjugate 𝑄(𝑘) corresponding to the symbol 𝑇 (𝑘) and an expression
built from the generators 𝜒(𝑖)(𝑘) of the gauge symmetry,

𝒫(𝑘) = 𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠

𝜖𝜇1…𝜇𝑠𝜖𝜈1…𝜈𝑠 [∏𝑠
𝑖=1 𝜒𝐴𝑖

(𝜇𝑖)] [∏𝑠
𝑗=1 𝜒𝐵𝑗

(𝜈𝑗)]
. (4.21)

We start the expansion of Eq. (4.21) with separating the perturbation orders in the vectors
𝜒(𝑛)(𝑘) as

𝜒𝐴
(𝑛)(𝑘) = 𝐶𝐴 𝑚

𝐵 𝑛𝑁𝐵𝑘𝑚 + 𝐶𝐴 𝑚
𝐵 𝑛𝐻𝐵𝑘𝑚 =∶ (𝜒(0))𝐴

𝑛 (𝑘) + (𝜒(1))𝐴
𝐵𝑛(𝑘)𝐻𝐵. (4.22)

From there, the denominator in Eq. (4.21), which will be abbreviated as 𝑓𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)
in the following, can be expanded into

𝑓𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) = (𝑓(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) + (𝑓(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘)𝐻𝐶 + 𝒪(2). (4.23)

For the numerator, we choose a submatrix 𝑇 𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) of the principal symbol 𝑇 (𝑘)
which is of full rank, i.e. has a nonvanishing determinant.6 The determinant of this
submatrix will be (up to, possibly, an irrelevant sign) the entry of the adjugate matrix
entering the principal polynomial definition (4.21). Recalling the expansion of the matrix

6This sounds like a hard problem in practice, but turns out to be quite feasible. While the matrices
contain symbolic entries given by undetermined expansion coefficients of the Lagrangian density and
covector components 𝑘𝑎, ranks can actually be calculated using randomly drawn numeric values for
the symbolic entries. In the worst case, we introduce additional linear dependencies and obtain a
lower rank. If the rank obtained by such a calculation is maximal, on the other hand, we have nothing
to worry about and can trust the result. For the examples encountered later on, it is possible to
perform all calculations with arbitrary precision arithmetic on integers and use fraction-free Gaussian
elimination, yielding results without any numerical instabilities.

49



4 Perturbative construction of gravitational theories

determinant

det(𝐴 + 𝜖𝐵) = det(𝐴) det(𝐼 + 𝜖𝐴−1𝐵) = det(𝐴)(1 + 𝜖 Tr(𝐴−1𝐵)) + 𝒪(𝜖2), (4.24)

and expanding the submatrix of the principal symbol as

𝑇 𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) = (𝑇(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) + (𝑇(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘)𝐻𝐶 + 𝒪(2), (4.25)

we arrive at the expansion of 𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘),

±𝑄𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) = det(𝑇 𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘))
= det((𝑇(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘))

× [1 + (𝑇(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)−1(𝑇(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘)𝐻𝐶]

+ 𝒪(2)

=(𝐷(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘) + (𝐷(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘)𝐻𝐶.

(4.26)

The last equality introduces abbreviations 𝐷(0) and 𝐷(1) for the expansion coefficients of
𝑄. In order to take the quotient of 𝑄 and 𝑓, it remains to calculate the multiplicative
inverse

𝑓𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)−1 =(𝑓(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)−1

× [1 − (𝑓(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)−1(𝑓(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘)𝐻𝐶]

+ 𝒪(2).
(4.27)

Finally, the product of 𝑄 and 𝑓−1 yields the expansion

±𝒫(𝑘) = 𝑃 (0)(𝑘) + (𝑃 (1))𝐶(𝑘)𝐻𝐶 + 𝒪(2), (4.28)

of the principal polynomial with coefficients

𝑃 (0)(𝑘) =
(𝐷(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)
(𝑓(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)

,

𝑃 (1)
𝐶 (𝑘) =

(𝐷(1))
𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘) − (𝑓(1))

𝐴1…𝐴𝑠𝐵1…𝐵𝑠
𝐶 (𝑘) ⋅ 𝑃 (0)(𝑘)

(𝑓(0))𝐴1…𝐴𝑠𝐵1…𝐵𝑠(𝑘)
.

(4.29)

The thus obtained relevant order of the gravitational principal polynomial may be compared
with an expansion of the principal polynomial originating from the matter theory. Focusing
not on an exact correspondence, but rather on the perturbative version of axiom II to
second order,

𝐶mat = 𝐶grav + 𝒪(2) and 𝑉mat ⊆ 𝑉grav + 𝒪(2), (4.30)
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restricts the perturbative solution of the equivariance equations to the causally compatible
sector.

4.5 The perturbative construction algorithm

Having elaborated in detail all the steps necessary in order to construct approximate
solutions to the equivariance equations and causal compatibility conditions, it is worthwhile
to take a step back and collect the results in the form of a concise algorithm.

Algorithm 2: Perturbative gravitational closure using covariant constructive gravity

Data: Geometry bundle 𝐸grav

𝜋grav
⟶ 𝑀, matter bundle 𝐸mat

𝜋mat
⟶ 𝑀, Lagrangian

matter field theory on 𝐸grav ⊕𝑀 𝐽1𝐸mat with linear field equations, expansion
order 𝑞 ≥ 2, Lorentz invariant expansion point (𝑁𝐴, 0, 0)

Result: Truncated power series of the most general diffeomorphism invariant and
causally compatible gravitational Lagrangian field theory on 𝐽2𝐸grav

1 compute the Gotay-Marsden coefficients (2.27) for 𝐸grav
2 construct a basis for the Lorentz invariant expansion coefficients in the ansatz (4.18)
3 calculate prolongations up to order 𝑞 of the equivariance equations (2.29b)–(2.29d)
4 evaluate the prolongations at the expansion point 𝑁
5 solve the resulting linear system for the expansion coefficients
6 compute the expansion of the gravitational principal symbol 𝑇grav(𝑘)
7 choose a submatrix 𝑇 𝐴1…𝐴4𝐵1…𝐵4(𝑘) of 𝑇grav(𝑘) which is of full rank
8 compute the expansion (4.26) of the submatrix determinant (the numerator)
9 compute the expansion (4.23) of 𝑓𝐴1…𝐴4𝐵1…𝐵4(𝑘) (the denominator)

10 from the numerator and denominator, compute the expansion (4.29) of 𝒫grav(𝑘)
11 expand 𝒫mat up to order 𝑞 − 2
12 impose 𝐶mat = 𝐶grav and 𝑉mat ⊆ 𝑉grav up to order 𝑞 − 2

The perturbative approach has reduced most of the task of closing a matter field theory
with a diffeomorphism invariant and causally compatible gravitational theory to linear
algebra—at the cost, of course, that the resulting theory is only an approximation for
weak gravitational fields. This approximation, however, is final in the following sense:
because the equivariance equations have been proven to be formally integrable, we can be
sure that the truncated power series obtained from the algorithm is as definite as it gets.
[42] No prolongation of the equivariance equations to orders higher than 𝑞 will yield new
restrictions on the expansion coefficients up to order 𝑞. It is still not possible to make a
statement about the convergence of the formal power series, so it remains unclear whether
this procedure would yield an exact solution if—somehow—performed up to 𝑞 = ∞.
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4 Perturbative construction of gravitational theories

Also note that the expansions of the objects relevant for the calculation of 𝒫grav(𝑘) in
steps 6–10 have only been stated explicitly for the case 𝑞 = 3. This does not take away
from the generality of the algorithm for higher orders, as the necessary expansions follow
the same pattern: essentially, one has to consider an expression of the form

det(𝐴 + 𝜖𝐵)
𝑎 + 𝜖𝑏

(4.31)

and expand to whichever order in 𝜖 is desired.

Let us close with a list of the equivariance equations and their first prolongations evaluated
at an expansion point 𝑁 = (𝑁𝐴, 0, 0). We will perform the construction algorithm for
the order 𝑞 = 3 in Chap. 6, so it shall suffice to limit ourselves to this order here as
well. We use the reduced power series ansatz Eq. (4.18). The unprolonged equivariance
equations evaluated at 𝑁 are

0 = 𝑎𝐴𝐶𝐴 𝑛
𝐵 𝑚𝑁𝐵 + 𝑎𝛿𝑛

𝑚,

0 = 𝑎 𝐼
𝐴 𝐶𝐴 (𝑛

𝐵 𝑚𝐽𝑝𝑞)
𝐼 𝑁𝐵.

(4.32)

The first prolongations evaluate to

0 = 𝑎𝐴𝐶𝐴 𝑛
𝐵 𝑚 + 2𝑎𝐴𝐵𝐶𝐴 𝑛

𝐶 𝑚𝑁𝐶 + 𝑎𝐵𝛿𝑛
𝑚,

0 = 𝑎 𝐼
𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝐽
𝐼 − 2𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝐼𝐽

𝑝𝑚] + 𝑎 𝐽
𝐴𝐵 𝐶𝐴 𝑛

𝐶 𝑚𝑁𝐶 + 𝑎 𝐽
𝐵 𝛿𝑛

𝑚,

0 = 2𝑎 (𝑝 𝑞∣
𝐴 𝐵 𝐶𝐴 ∣𝑛)

𝐶 𝑚𝑁𝐶 + 𝑎 𝐼
𝐴 [𝐶𝐴 (𝑛

𝐵 𝑚2𝐽𝑝)𝑞
𝐼 − 𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝛿𝑞

𝑚],

0 = 𝑎 𝐼
𝐵𝐴 𝐶𝐴 (𝑛

𝐶 𝑚𝐽𝑝𝑞)
𝐼 𝑁𝐶 + 𝑎 𝐼

𝐴 𝐶𝐴 (𝑛
𝐵 𝑚𝐽𝑝𝑞)

𝐼 ,

(4.33)

and the second prolongations finally yield

0 = 2𝑎𝐴𝐶𝐶𝐴 𝑛
𝐵 𝑚 + 2𝑎𝐴𝐵𝐶𝐴 𝑛

𝐶 𝑚 + 6𝑎𝐴𝐵𝐶𝐶𝐴 𝑛
𝐷 𝑚𝑁𝐷 + 2𝑎𝐵𝐶𝛿𝑛

𝑚,
0 = 2𝑎 𝑝 𝑟

𝐴 𝐶 [𝐶𝐴 𝑛
𝐵 𝑚𝛿𝑞

𝑝 − 𝛿𝐴
𝐵𝛿𝑛

𝑝 𝛿𝑞
𝑚] + 2𝑎 𝑞 𝑟

𝐴𝐵 𝐶 𝐶𝐴 𝑛
𝐷 𝑚𝑁𝐷 + 2𝑎 𝑞 𝑟

𝐵 𝐶 𝛿𝑛
𝑚,

0 = 𝑎 𝐼
𝐶𝐴 [𝐶𝐴 𝑛

𝐵 𝑚𝛿𝐽
𝐼 − 2𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝐼𝐽

𝑝𝑚] + 2𝑎 𝐽
𝐴𝐶𝐵 𝐶𝐴 𝑛

𝐷 𝑚𝑁𝐷 + 𝑎 𝐽
𝐶𝐵 𝛿𝑛

𝑚,

0 = 2𝑎 (𝑝 𝑞∣
𝐶𝐴 𝐵 𝐶𝐴 ∣𝑛)

𝐷 𝑚𝑁𝐷 + 𝑎 𝐼
𝐶𝐴 [𝐶𝐴 (𝑛

𝐵 𝑚2𝐽𝑝)𝑞
𝐼 − 𝛿𝐴

𝐵𝐽𝑝𝑛
𝐼 𝛿𝑞

𝑚],

0 = 2𝑎 𝐼
𝐵𝐶𝐴 𝐶𝐴 (𝑛

𝐷 𝑚𝐽𝑝𝑞)
𝐼 𝑁𝐷 + 𝑎 𝐼

𝐶𝐴 𝐶𝐴 (𝑛
𝐵 𝑚𝐽𝑝𝑞)

𝐼 .

(4.34)
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perturbative constructive gravity

The results from the previous chapter provide us with a comprehensive algorithm for
the perturbative construction of gravitational theories. While consisting almost entirely
of linear algebra, the execution of the algorithm is not feasible without the help of
the computer. Therefore, we dedicate this section to the presentation of two Haskell
libraries: the first one, sparse-tensor, implements the generation of Lorentz invariant
perturbation ansätze. The second library, safe-tensor, is designed for safe and efficient
evaluation and solution of the equivariance equations.

5.1 Ansatz generation

A central finding of Chap. 4 is that the perturbation ansätze inherit the Lorentz invariance
of the expansion point. This has important practical ramifications: for example, instead
of the 10 coefficients 𝑎𝐴 in the expansion of a metric Lagrangian, we can just work with
the one-dimensional Lorentz invariant coefficient 𝑐 ⋅ 𝐽𝑎𝑏

𝐴 𝜂𝑎𝑏. That means, before even
considering the equivariance equations, the dimensionality of the ansatz can already be
reduced a lot.

It can be shown that a constant Lorentz invariant tensor, say 𝑇 𝑎𝑏𝑐𝑑, is comprised of
the Minkowski metric 𝜂 and the totally antisymmetric symbol 𝜖1, such that for this
example

𝑇 𝑎𝑏𝑐𝑑 = 𝐴 ⋅ 𝜖𝑎𝑏𝑐𝑑 + 𝐵 ⋅ 𝜂𝑎𝑏𝜂𝑐𝑑 + 𝐶 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑 + 𝐷 ⋅ 𝜂𝑎𝑑𝜂𝑏𝑐. (5.1)

The coefficients 𝐴, 𝐵, 𝐶, 𝐷 can be chosen freely, leaving us with 4 degrees of freedom
instead of 64. If the tensor shall have certain symmetries, e.g. the symmetries of an area
metric tensor, we find an ansatz by applying the symmetry projections to the generic
rank-4 ansatz (5.1), which yields in this case

𝑆𝑎𝑏𝑐𝑑 = 𝐴 ⋅ 𝜖𝑎𝑏𝑐𝑑 + 𝐶 − 𝐷
2

(𝜂𝑎𝑐𝜂𝑏𝑑 − 𝜂𝑎𝑑𝜂𝑏𝑐) . (5.2)

1See e.g. [60, 61].
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5 Computational methods for perturbative constructive gravity

Two coefficients 𝐴 and 𝐶−𝐷
2 would parameterise such an ansatz.

In order to execute the perturbative construction algorithm, we need to find a basis for
the ansätze (4.18) up to the desired perturbation order. This is, in principle, achieved by
listing all possible products of 𝜖 and 𝜂 and assigning to each term a unique coefficient.
Each product will contain at most one 𝜖, because the product of two 𝜖 symbols amounts
to a linear combination of products of Minkowski metrics.

The ansätze we want to construct exhibit certain symmetries. Some stem from the field
bundle itself (e.g. the symmetry of a metric or the symmetries of an area metric), but
there are also symmetries inherited from second derivatives or products of perturbations.
Consider, for example, the area metric ansatz

𝑎 𝐼
𝐴𝐵𝐶 𝐻𝐴𝐻𝐵𝐻𝐶

𝐼. (5.3)

Expressed using spacetime indices, this ansatz reads

𝑎 𝑖𝑗
𝑎𝑏𝑐𝑑 𝑒𝑓𝑔ℎ 𝑝𝑞𝑟𝑠 𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ𝐻𝑝𝑞𝑟𝑠

𝑖𝑗. (5.4)

Of course, the individual index sets 𝑎𝑏𝑐𝑑, 𝑒𝑓𝑔ℎ, and 𝑝𝑞𝑟𝑠 inherit the area metric symmet-
ries from the perturbation 𝐻. The indices 𝑖, 𝑗 are symmetric due to the commutativity
of partial derivatives. The product of 𝐻𝑎𝑏𝑐𝑑 and 𝐻𝑒𝑓𝑔ℎ enforces a block symmetry of
the ansatz under the exchange of the index sets 𝑎𝑏𝑐𝑑 and 𝑒𝑓𝑔ℎ. We construct such an
ansatz like before, by applying the respective projections to the ansatz, which collapses
many individual terms with different coefficients to symmetric terms sharing a common
prefactor. Note that we deal with the mixed index positions by constructing a purely
covariant ansatz and raising the derivative indices using an 𝜂 afterwards, e.g.

𝑎 𝑖𝑗
𝑎𝑏 𝐻𝑎𝑏

𝑖𝑗 = 𝜂𝑖𝑖′𝜂𝑗𝑗′ ̃𝑎𝑎𝑏𝑖′𝑗′𝐻𝑎𝑏
𝑖𝑗. (5.5)

One thing has not been considered so far: it is not clear, a priori, whether the constructed
ansätze really form a basis. We need to be sure that a representation like Eq. (5.1)
uniquely determines the ansatz. In general, this will not be the case, as the ansatz

𝑇 𝑎𝑏𝑐𝑑𝑒𝑓 = 𝐴1 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑓 + 𝐴2 ⋅ 𝜖𝑎𝑏𝑐𝑒𝜂𝑑𝑓 + 𝐴3 ⋅ 𝜖𝑎𝑏𝑐𝑓𝜂𝑑𝑒 + 𝐴4 ⋅ 𝜖𝑎𝑏𝑑𝑒𝜂𝑐𝑓 + …
⋯ + 𝐴16 ⋅ 𝜂𝑎𝑏𝜂𝑐𝑑𝜂𝑒𝑓 + 𝐴17 ⋅ 𝜂𝑎𝑏𝜂𝑐𝑒𝜂𝑑𝑓 + …

(5.6)

for a rank-6 tensor demonstrates. The 15 terms of the type 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑓 are linearly dependent
via the identity

0 = 5𝜖[𝑎𝑏𝑐𝑑𝜂𝑒]𝑓 = 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑓 − 𝜖𝑎𝑏𝑐𝑒𝜂𝑑𝑓 − 𝜖𝑎𝑏𝑒𝑑𝜂𝑐𝑓 − 𝜖𝑎𝑒𝑐𝑑𝜂𝑏𝑓 − 𝜖𝑒𝑏𝑐𝑑𝜂𝑎𝑓. (5.7)

Because of this circumstance, we cannot consider two ansatz terms distinct just because
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5 Computational methods for perturbative constructive gravity

their representations as linear combinations of 𝜖 and 𝜂 products differ. Rather, we
need to inspect the actual components of the tensors in order to make a decision. For
the ansatz in Eq. (5.6), this would mean that we evaluate the 46 components 𝑇 𝑎𝑏𝑐𝑑𝑒𝑓,
which gives 4096 linear combinations of the 30 coefficients 𝐴1 … 𝐴30. An ansatz without
linearly dependent terms would exhibit 30 linearly independent combinations, which
could be checked by calculating the rank of the 4096 × 30 matrix representing the linear
combinations—it should be equal to 30. In this case, it will be less than 30 because we
already know of at least one linear dependence. Gaussian elimination of the matrix tells
us which coefficients can be used as basis: exactly those whose corresponding column
contains, for some row, the first nonzero entry in this row. The other coefficients are
linearly dependent on the basis coefficients and can thus safely be set to zero.

Let us demonstrate this reduction of linearly dependent ansatz coefficients with the help
of an example. Pretend that, after evaluation of a tensor with four indices, the matrix

𝐴 𝐵 𝐶 𝐷

( )
0000 1 1 −2 0
0101 0 2 −6 −4
0123 3 0 3 1

(5.8)

is obtained. In practice, matrices will often reduce to such simple forms, because they
contain many zero or duplicate rows that can be removed. Gaussian elimination may
yield (depending on the pivoting)

𝐴 𝐵 𝐶 𝐷

( )
3 0 3 1
0 2 −6 −4
0 0 0 5

3 ,
(5.9)

from which we read off the linearly independent columns 𝐴, 𝐵, and 𝐷. The superfluous
ansatz coefficient 𝐶 can be set to zero.

The Haskell package sparse-tensor2 exports the module Math.Tensor.LorentzGener
ator, which implements the procedure outlined above. Haskell is a purely functional
language with lazy semantics by default. [62] In practice, this means that the programmer
does not modify state but composes expressions, which are evaluated only when asked
for. Consider, for example, a routine that sums up the elements of an array. First, let us
look at an implementation in C.

2See [5]. The source code is publicly available at https://github.com/TobiReinhart/sparse-tensor.
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1 int sum(int array[], int length) {
2 int result = 0;
3

4 for (int i = 0; i < length; ++i) {
5 result += array[i];
6 // perform_side_effect(); <-- possible side effect!
7 }
8

9 return result;
10 }

Listing 5.1: C implementation of the sum function.

Note how state—in the form of the result variable—is created, modified, and eventually
returned. At any point of the programme, it is possible to perform arbitrary side effects,
which could modify the input data, alter the local state (consisting of counter variable i
and result variable result), print something to the user’s screen, and so on.

In Haskell, on the other hand, a naïve3 implementation of the sum function reads quite
differently.

1 sum :: [Int] -> Int
2 sum xs = go 0 xs
3 where
4 go acc [] = acc
5 go acc (y:ys) = go (acc+y) ys

Listing 5.2: Haskell implementation of the sum function.

The sum function in Listing 5.2 demonstrates how functional programming approaches
certain tasks. The input is a List of integers, a functional data structure that matches
either the empty list [] or an integer appended to some list, e.g. 5 : xs. Data is
consumed by matching on patterns and results are produced by building up expressions,
in this case repeated applications of the (+) function in line 5. It is, by design, impossible
to slip in side effects, which is why functions in Haskell are pure. This leads to the
important property called referential transparency, meaning that expressions can be
replaced by their values without changing the behaviour of the programme.

Because of its purity and, importantly, the powerful type system based on System F
[63], Haskell allows to write programmes that are both efficient and safe. As we will

3Performance considerations put aside.
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see, the objects with which we are concerned have natural representations as functional
data types and the manipulations that need to be performed translate into efficient, pure
functions operating on these types.

We will only sketch the implementation of the ansatz generation procedure outlined
above. Performance optimisations like strictness annotations and unpacking are not
given explicitly. For all details, see Ref. [37] and the documentation [5] of the package.
There are more differences between the presentation here and the production code, which
have been introduced deliberately for lighter reading.

As already mentioned, an ansatz has a representation as a functional data structure. Let
us begin with the individual 𝜂 and 𝜖 tensors in Listing 5.3.

-- data type representing an \eta^{a b} tensor
data Eta = Eta Char Char deriving (Eq, Ord)
-- data type representing an \epsilon^{a b c d} tensor
data Epsilon = Epsilon Char Char Char Char deriving (Eq, Ord)

Listing 5.3: Haskell representation of 𝜂 and 𝜖 tensors.

These types are, essentially, named wrappers for the index labels. We also need a type
that represents a coefficient. For our purposes, an integer prefactor (because we will
never perform division) and a variable label, also an integer, will suffice. See Listing 5.4.

-- data type representing a coefficient c * A_i
data Coeff = Coeff Int Int

Listing 5.4: Haskell representation of a scaled ansatz coefficient.

Now, the central type for the generation of ansätze is a list of trees, called forest. From
now on, we leave 𝜖 tensors out of the picture. As they appear at most once, we will
always sort the trees such that an 𝜖—if present—is the root. In everything that follows,
a distinction has to be made when operating on the roots of ansatz trees, but everything
else concerns only trees of 𝜂 tensors. With this caveat, the data type is as shown in
Listing 5.5.

data Forest a b = Forest [(a, Forest a b)] | Leaf b
type Ansatz = Forest Eta Coeff

Listing 5.5: Haskell representation of an ansatz consisting only of 𝜂 tensors.

We will always keep the forests sorted in two ways: the list of trees
[(Eta, Forest Eta Coeff)] is sorted, meaning that e.g. 𝜂𝑎𝑏 comes before 𝜂𝑐𝑑, but
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also all 𝜂 tensors appearing in the inner forest must come after the outer 𝜂 tensor—so it
is forbidden to insert an 𝜂𝑎𝑏 below a node 𝜂𝑐𝑑.

Eta 'a' 'b'
|
+---- Eta 'c' 'd'
| |
| +---- Eta 'e' 'f' - Coeff 1 1
|
+---- Eta 'c' 'e'
| |
| +---- Eta 'd' 'f' - Coeff 1 2
|
+---- Eta 'c' 'f'

|
+---- Eta 'd' 'e' - Coeff 1 3

Eta 'a' 'c'
|
+---- Eta 'b' 'd'
| |
| +---- Eta 'e' 'f' - Coeff 1 4
|
+---- Eta 'b' 'e'
| |
| +---- Eta 'd' 'f' - Coeff 1 5
|
+---- Eta 'b' 'f'

|
+---- Eta 'd' 'e' - Coeff 1 6

...

Listing 5.6: First 6 𝜂-only terms of an ansatz tensor with 6 indices.

An example representation of the first 6 𝜂-only terms for the ansatz

𝐴1 ⋅ 𝜂𝑎𝑏𝜂𝑐𝑑𝜂𝑒𝑓 + ⋯ + 𝐴6 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑓𝜂𝑑𝑒 (5.10)

is given in Listing 5.6. Such a sorted tree is easily traversed for updates, insertions,
deletions, et cetera. Also, the evaluation of specific components is greatly simplified:
Eta 'a' 'b' only has to be evaluated once, and very importantly, for components where
𝜂𝑎𝑏 = 0, the whole tree can be discarded. Let us give one example for an operation on
ansatz forests, namely the sum of two ansätze in Listing 5.7.
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1 addAnsatz :: Ansatz -> Ansatz -> Ansatz
2 addAnsatz (Leaf coeff1) (Leaf coeff2) = Leaf (addCoeffs coeff1 coeff2)
3 where
4 addCoeffs :: Coeff -> Coeff -> Coeff
5 addCoeffs (Coeff c1 var1) (Coeff c2 var2)
6 | var1 == var2 = Coeff (c1+c2) var1
7 | otherwise = error "adding distinct variables"
8 addAnsatz (Forest fs1) (Forest fs2) = Forest (addForests fs1 fs2)
9 where

10 addForests :: [(Eta, Forest Eta Coeff)]
11 -> [(Eta, Forest Eta Coeff)]
12 -> [(Eta, Forest Eta Coeff)]
13 addForests [] ys = ys
14 addForests xs [] = xs
15 addForests (x:xs) (y:ys) =
16 case fst x `compare` fst y of
17 LT -> x : addForests xs (y:ys)
18 EQ -> let innerAnsatz = addAnsatz (snd x) (snd y)
19 in (fst x, innerAnsatz) : addForests xs ys
20 GT -> y : addForests (x:xs) ys
21 addAnsatz _ _ = error "cannot add incompatible ansätze"

Listing 5.7: Sum of two ansatz forests.

The occurrence of error functions means that the function addAnsatz is partial, i.e. does
not compute an output for every input. This could be cured by refining the return type
of the function, but doing so is not really necessary for this use case, as the input is under
our control: we will neither add incompatible ansätze, nor will two leaves with distinct
variables be added. The curious reader may be referred to the next section, where we
actually introduce methods for catching such runtime errors already at the type level.

Ansatz generation proceeds as follows: starting with the empty forest, we consider each
possible ansatz term separately, one at a time, for example 𝜂𝑎𝑏𝜂𝑐𝑑𝜂𝑒𝑓. For each such term,
it is first checked whether the ansatz already contains the term, utilising fast lookup in
the sorted forest. If it is contained, we can discard the term and proceed with the next
one. If, on the other hand, the term is new, it is assigned a new variable, symmetrised,
and added to the ansatz.

When all possible ansatz terms have been added (or discarded, for that matter), the
linear dependencies are identified and removed, like explained before. For the linear
algebra part, the package hmatrix [64] is used together with a custom implementation
of Gaussian elimination that is tested for sufficient stability.
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For the handling of larger ansätze—up to 18 indices at the time of writing, which is
enough for fourth-order area metric Lagrangians—a second mode has been implemented.
In order for the matrix not to become too large, its is checked before insertion whether a
given symmetrised term would be linearly dependent on the already existing terms. This
entails keeping track of the evaluation matrix, as re-evaluating the ansatz tensors for each
term that is added would be too expensive. However, we do not have to perform Gaussian
elimination, because it is not necessary to identify which column would introduce a rank
defect—it is always the new one, because we ensure that the matrix rank is maximal
with our construction. So, fast and numerically stable singular value decomposition can
be used for computing ranks.

Overall, the second method is a bit slower for ansätze with 14 indices (needed for third-
order area metric Lagrangians) than the first method, taking a couple of seconds to
compute on modern workstation hardware. For the fourth-order ansätze, however, it is
the only option. With all the optimisation work that has been done, like exploiting the
symmetries in order to reduce the number of terms that are even considered for insertion
or, likewise, reducing the number of index combinations to be probed (see [37] or the
source code and documentation [5]), the computation times have been reduced drastically.
The largest fourth-order ansätze with 18 indices are computed within about three hours,
using three gigabytes of memory. To the knowledge of the author, the methods developed
for the canonical approach [65] (to which the method presented here is applicable as well)
do not achieve this efficiency.

We will encounter the generated ansätze in Chap. 6 when constructing perturbative area
metric gravity. But first, let us walk through the second Haskell package developed in
the course of this thesis.

5.2 Equivariance equations

In principle, sparse-tensor provides the machinery for setting up and solving the
equivariance equations. It even contains some safeguards against composing tensors of
incompatible ranks, but not nearly enough in order to safely mirror Eqns. (4.32)–(4.34) in
a Haskell programme. For this purpose, the package safe-tensor4 has been developed,
which implements index-based tensor calculus as known from mathematical physics.
safe-tensor makes it comparably easy and, above all, safe to perform all kinds of
operations on tensors, including transpositions of indices, contractions, symmetrisations,
tensor products, and tensor sums.

4See [6]. The source code is publicly available at https://github.com/nilsalex/safe-tensor, the
package is also available via hackage at https://hackage.haskell.org/package/safe-tensor.
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Central for the design of the tensor type provided by the package is the generalised
rank of a tensor. The tensors we deal with, a good example being the Gotay-Marsden
coefficients 𝐶𝐴 𝑛

𝐵 𝑚, can be considered as multilinear maps over different vector spaces.
Applying this interpretation to 𝐶, we get a map

𝐶∶ 𝑉 ∗
area × 𝑉area × 𝑉 ∗ × 𝑉 → ℝ (5.11)

with 𝑉area being a fibre of the area metric bundle and 𝑉 a tangent space to the base
manifold.

Concrete calculations employ a basis (𝑒𝑖)𝑖=1…𝑛 of 𝑉 and a corresponding dual basis
(𝜖𝑖)𝑖=1…𝑛 of 𝑉 ∗, where 𝑛 denotes the dimension of the base manifold. Such bases carry
over to fibres like 𝑉area or 𝑉metric. Representations such as 𝐶𝐴 𝑛

𝐵 𝑚 for 𝐶 are understood
in terms of these bases. For the definition of the generic rank of these representations, we
assign each type of vector space a label, e.g. ST5 for 𝑉 and STArea for 𝑉area. The indices
corresponding to each space and the dual complete the list of labels to the generic rank.
For the example of the Gotay-Marsden coefficients, we have

rank(𝐶𝐴 𝑛
𝐵 𝑚) = {( ST⏟

label

, 4⏟
dimension

, {𝑛}⏟
contravariant

, {𝑚}⏟
covariant

), (STArea, 21, {𝐴}, {𝐵})}. (5.12)

Note that the contravariant and covariant indices are each provided as set, i.e. they
cannot contain duplicates and have no specific order.6 It is permitted, however, for
the set of covariant indices and the set of contravariant indices to have a nonempty
intersection—these are candidates for contractions.

Let us consider more examples:

rank(𝜂𝑎𝑏) = {(ST, 4, {𝑎, 𝑏}, {})} (5.13)
rank(𝜂𝑏𝑎) = {(ST, 4, {𝑎, 𝑏}, {})} (5.14)
rank(𝜂♡) = {(STSym2, 10, {}, {♡})}7 (5.15)

rank(𝐶𝐵 𝑝
𝐴 𝑝𝑁𝐴) = {(ST, 4, {𝑝}, {𝑝}), (STArea, 21, {𝐴, 𝐵}, {𝐴})} (5.16)

The contraction of a rank is obtained by removing duplicate indices. If as a result there
are no indices associated to a vector space, it is also removed from the generalised rank.
Revisiting the previous example (5.16), application of the contraction yields

contract(rank(𝐶𝐵 𝑝
𝐴 𝑝𝑁𝐴)) = {(STArea, 21, {𝐵}, {})}. (5.17)

5Meaning: tangent space to spacetime.
6For this reason, we are allowed to sort the index lists in our implementation, which results in more

efficient operations.
7Index labels can be arbitrary!
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5 Computational methods for perturbative constructive gravity

The rules of the tensor calculus we are going to implement can now be stated using the
generalised rank of a tensor. Note that some rules already follow from the definition of a
generalised rank, but are stated again for completeness.

1. Each tensor carries a generalised rank as defined above.

2. Transpositions of indices corresponding to the same set do not change the generalised
rank, i.e. rank(𝑇 𝐴𝑎𝑏) = rank(𝑇 𝐴𝑏𝑎). Transpositions of indices corresponding to
different sets (that is, transpositions across different vector spaces or covariant and
contravariant indices) are not defined.

3. Contractions are always allowed. If for some vector space the intersection of
covariant and contravariant indices is nonempty, the rank is reduced as described.
Otherwise, a contraction has no effect.

4. Taking the product of two tensors merges both ranks and is thus only allowed if
the two tensors do not share indices corresponding to the same vector space in the
same (upper or lower) position. For example

rank(𝑇 𝐴𝑎𝑏𝑆𝐵𝑝
𝑎 ) = {(ST, 4, {𝑎𝑏𝑝}, {𝑎}), (STArea, 21, {𝐴, 𝐵}, {})}. (5.18)

5. Adding and subtracting two tensors is only allowed if both ranks coincide. The
result has, of course, the same rank.

Listing 5.8 contains the definition of the Rank type as used by the safe-tensor package.
The function sane can be specialised to the type sane :: Rank -> Bool. It provides a
check for whether a given generalised rank satisfies all constraints and can be used to
decide whether a certain tensor can be defined or, more importantly, whether a certain
operation would yield a tensor of invalid rank and is thus forbidden.

Listing 5.8: Generalised rank type implementation in Haskell and the corresponding
validity check. The type Rank and the function sane are the foundation for
the tensor type to be defined later. Rank contains all the information of
a generalised rank: vector space labels, dimensions, and index lists. sane
ensures that the constraints are satisfied: the list of sub-ranks for the
individual vector spaces must be strictly ascending, but also the index lists
itself. The listing is printed on the next page. Note that the safe-tensor
package [6] does not export a module called Rank, but the definitions are
part of a larger module.
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1 module Rank where
2

3 -- type for nonempty lists: data NonEmpty a = a :| [a]
4 import Data.List.NonEmpty (NonEmpty ((:|)))
5 -- type-level natural numbers and symbols
6 import Data.Singletons.TypeLits (Nat, Symbol)
7

8 -- vector space, contains a label vId and the dimension vDim
9 data VSpace a b = VSpace {vId :: a, vDim :: b} deriving (Ord, Eq)

10

11 -- index list, is either of mixed type or purely co/contravariant
12 data IList a
13 = ConCov (NonEmpty a) (NonEmpty a)
14 | Cov (NonEmpty a)
15 | Con (NonEmpty a)
16 deriving (Ord, Eq)
17

18 -- generalised rank, a list of vector spaces with assoc. index lists
19 type GRank s n = [(VSpace s n, IList s)]
20

21 -- generalised rank used for type-level computations
22 type Rank = GRank Symbol Nat
23

24 -- check whether a generalised rank is valid
25 sane :: (Ord a, Ord b) => [(VSpace a b, IList a)] -> Bool
26 sane [] = True
27 sane [(_, is)] = isAscendingIList is
28 sane ((v, is) : (v', is') : xs) =
29 v < v' && isAscendingIList is && sane ((v', is') : xs)
30

31 -- index lists are strictly ascending if the nonempty lists are
32 isAscendingIList :: Ord a => IList a -> Bool
33 isAscendingIList (ConCov x y) =
34 isAscending x && isAscending y
35 isAscendingIList (Con x) = isAscending x
36 isAscendingIList (Cov x) = isAscending x
37

38 isAscending :: Ord a => NonEmpty a -> Bool
39 isAscending (x :| []) = True
40 isAscending (x :| (y : ys)) =
41 x < y && isAscending (y :| ys)
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5 Computational methods for perturbative constructive gravity

In order to make such decisions at the type level, we leverage the machinery provided
by the singletons package [66]. With the help of the metaprogramming technique
Template Haskell [67], singletons serves us twofold: first it lifts the function sane
to type Sane :: forall a b. [(VSpace a b, IList a)] -> Bool, which may be
interpreted as a function at the type level.

We use the type Sane together with a second type TailR derived from the function
tailR8 for the definition of the Tensor type in Listing 5.9.

1 -- (...) skipping some language extensions
2 module Math.Tensor.Safe where
3 -- (...) skipping some imports
4

5 data Tensor :: Rank -> Type -> Type where
6 ZeroTensor :: forall (r :: Rank) v. Sane r ~ 'True =>
7 Tensor r v
8 Scalar :: forall v.
9 !v -> Tensor '[] v

10 Tensor :: forall (r :: Rank) (r' :: Rank) v.
11 (Sane r ~ 'True, TailR r ~ r') =>
12 [(Int, Tensor r' v)] -> Tensor r v
13

14 deriving instance Eq v => Eq (Tensor r v)
15 deriving instance Show v => Show (Tensor r v)
16

17 instance NFData v => NFData (Tensor r v) where
18 rnf ZeroTensor = ()
19 rnf (Scalar v) = rnf v
20 rnf (Tensor ts) = rnf ts
21

22 instance Functor (Tensor r) where
23 fmap _ ZeroTensor = ZeroTensor
24 fmap f (Scalar s) = Scalar (f s)
25 fmap f (Tensor ts) = Tensor (fmap (fmap (fmap f)) ms)

Listing 5.9: The Tensor GADT and its instances.

The Tensor type is a so-called generalised algebraic datatype, short GADT, which means
that the type of each constructor can be specified explicitly. There are three of such
constructors:

8This function yields, for a nonempty rank, the “tail” of the rank after removing the first index.
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5 Computational methods for perturbative constructive gravity

• ZeroTensor yields the zero tensor for any valid Rank type. It is useful to introduce
this special value, because it allows to short-circuit a lot of calculations: for example,
when this constructor is encountered while calculating a sum, it can be ignored. For
a product, on the other hand, we can automatically return the result ZeroTensor
and need not inspect the second factor.

• Scalar as the base case for the recursive definition of a tensor wraps for the empty
Rank type '[] a value of type v. It should be interpreted as the result of a “fully
applied” tensor.

• Tensor is the recursive case. It is constrained to valid Rank types and is existentially
quantified by the existence of a second Rank type, which is constrained to be
the “tail” of the first rank. For this constructor, the value amounts to a list
[(Int, Tensor r' v)] of index values and associated tensors with lesser rank r'.
It should be understood as partial application of a tensor, by inserting all possible
basis vectors/covectors in the “first available slot” of the tensor (which is, after all,
a multilinear map) and collecting the resulting subtensors.

A few instances have been defined for the Tensor type. Eq and Show have generic
implementations, while the NFData implementation just amounts to recursive evaluation.
The Functor instance is the first manipulation we define for the Tensor type: it allows
to apply functions directly to the values of the tensor, for example scalar multiplication
as defined in Listing 5.10.

1 scalarMult :: forall r v. Num v => v -> Tensor r v -> Tensor r v
2 scalarMult s = fmap (s*)

Listing 5.10: Scalar multiplication leveraging the Functor instance.

Tensors of the same rank are added by merging the tensors, performing a recursive addition
whenever an index is present in both summands. The requirement that both ranks
coincide is encoded as constraint on the types. See Listing 5.11 for the implementation.
In Listing 5.12, the addition of two tensors is demonstrated using the interactive repl9
ghci. The tensor delta_ab represents the Kronecker delta 𝛿𝑎

𝑏 , while delta_ac represents
𝛿𝑎

𝑐 . Consequently, the expression delta_ab &+ delta_ac is ill-typed. On the other
hand, delta_ab &+ delta_ab is well-typed and yields the expected result 2 ⋅ 𝛿𝑎

𝑏 .

9read-eval-print loop
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1 (&+) :: forall (r :: Rank) (r' :: Rank) v.
2 ((r ~ r'), Num v) =>
3 Tensor r v -> Tensor r' v -> Tensor r v
4 (&+) ZeroTensor t = t
5 (&+) t ZeroTensor = t
6 (&+) (Scalar s) (Scalar s') = Scalar (s + s')
7 (&+) (Tensor xs) (Tensor xs') = Tensor xs''
8 where
9 xs'' = unionWith (&+) xs xs'

10

11 unionWith :: (a -> a -> a) -> [(Int, a)] -> [(Int, a)] ->
12 [(Int, a)]
13 unionWith f [] ys = ys
14 unionWith f ys [] = ys
15 unionWith f ys@((iy,vy):ys') zs@((iz,vz):zs') =
16 case iy `compare` iz of
17 LT -> (iy,vy) : unionWith f ys' zs
18 EQ -> (iy,f vy vz) : unionWith f ys' zs'
19 GT -> (iz,vz) : unionWith f ys zs'

Listing 5.11: Recursive addition of tensors.

�> let delta_ab = delta :: Tensor '[ '( 'VSpace "ST" 4, 'ConCov ("a"
':| '[]) ("b" ':| '[]))] Int↪

�> let delta_ac = delta :: Tensor '[ '( 'VSpace "ST" 4, 'ConCov ("a"
':| '[]) ("c" ':| '[]))] Int↪

�> delta_ab + delta_ab == fmap (2*) delta_ab
True
�> delta_ab + delta_ac
<interactive>:6:1: error:

• Couldn't match type ‘"b"’ with ‘"c"’ arising from a use of ‘&+’
• In the expression: delta_ab &+ delta_ac
In an equation for ‘it’: it = delta_ab &+ delta_ac

Listing 5.12: Addition of tensors in the interactive repl ghci. The addition of two tensors
with the same rank produces a result, while addition of tensors with different
ranks yields a type error.
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More intricate operations make use of the second feature from the singletons package,
which are the singleton types that are generated for our lifted rank types. Singleton
types are inhabited by only one value. As such, they are able to bridge the gap between
compile time and run time, which are usually separate phases in Haskell. See [66] for
more details. With singletons, we can implement e.g. typesafe tensor multiplication as
sketched in Listing 5.13.

1 (&*) :: forall (r :: Rank) (r' :: Rank) (r'' :: Rank) v.
2 (Num v, 'Just r'' ~ MergeR r r', SingI r, SingI r') =>
3 Tensor r v -> Tensor r' v -> Tensor r'' v
4 (&*) = mult (sing :: Sing r) (sing :: Sing r')
5

6 mult :: forall (r :: Rank) (r' :: Rank) (r'' :: Rank) v.
7 (Num v, 'Just r'' ~ MergeR r r') =>
8 Sing r -> Sing r' -> Tensor r v -> Tensor r' v -> Tensor r'' v
9 mult _ _ (Scalar s) (Scalar t) = Scalar (s*t)

10 mult _ _ (Scalar s) t@(Tensor _) = fmap (s*) t
11 mult _ _ t@(Tensor _) (Scalar s) = fmap (*s) t
12 mult sr sr' (Tensor ms) (Tensor ms') = _ -- omitted
13 mult sr sr' ZeroTensor ZeroTensor =
14 case saneMergeRProof sr sr' of
15 Sub Dict -> ZeroTensor
16 -- more ZeroTensor cases omitted

Listing 5.13: Typesafe tensor multiplication implemented using singletons. The ranks
must satisfy a SingI constraint. With this constraint, the singleton values
can be retrieved and passed to the implementation of the multiplication
function.

The tensor multiplication makes us of a new function, mergeR, which takes two ranks
and returns the rank of the tensor product—if the ranks allow to take this product.
Lifted to the type level, this encodes the requirement that the ranks be compatible in
the constraint 'Just r'' ~ MergeR r r'. The SingI instances are used in order to
retrieve the singleton values corresponding to the rank type. These are passed to the
implementation function mult.

The simplest cases of the mult function are the cases matching on ZeroTensor—they
just yield a ZeroTensor. However, it first has to be proven that the rank r'' satisfies
the constraint Sane r'' ~ 'True. This is the job of the pattern match on the result
of saneMergeRProof sr sr'. For the time being, this proof (and all other proofs) are
implemented by coercion, trusting in this case the function mergeR. In principle, it is
possible to have Haskell check such proofs, although its capabilities in this regard are
limited, as Haskell is not total.
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The product of two Scalar values is equally as simple, as it yields the product of the
wrapped numerical values. Multiplication of a Scalar with a Tensor and vice versa
amounts to scalar multiplication introduced above. For the remaining product of two
Tensor values, which is omitted above because it is quite lengthy10, we inspect the
foremost indices of both tensors. If the left tensor has a “lesser” index, we descend into
the subtensors of the left tensor and multiply each subtensor with the right tensor. If
the foremost index of the right tensor is “lesser”, we proceed the other way around.
Eventually, one of the base cases matching on a Scalar is reached.

Transpositions of indices and contractions are implemented similarly by descending into
the relevant subtensors and manipulating the functional data structure appropriately.
With the module Math.Tensor.Basic, the safe-tensor package exports all necessary
basic tensors for setting up the perturbative equivariance equations 4.32–4.34 for metric
and area metric theories—including Kronecker deltas, bundle intertwiners, Gotay-Marsden
coefficients, Minkowski metrics, and Levi-Civita symbols.

Because handling the refined tensor type defined in the Math.Tensor.Safe module is at
times quite unwieldy, the package also provides an opaque variant. Values of this opaque
type are constructed from a tensor that has a generalised rank, but the rank cannot be
extracted—it is hidden. The opaque type is exported by the Math.Tensor module, see
Listing 5.14 for the definition.

1 -- (...) skipping some language extensions
2 module Math.Tensor where
3 -- (...) skipping some imports
4

5 data T :: Type -> Type where
6 T :: forall (r :: Rank) v. SingI r => Tensor r v -> Tensor r v

Listing 5.14: Opaque tensor type with existentially quantified rank.

With the opaque type T, tensor operations are always well-typed, but may not always
yield a result because of rank mismatches. This is implemented utilising the MonadError
type class, for example in the definition of tensor addition presented in Listing 5.15.

10See [6] for the complete implementation.

68



5 Computational methods for perturbative constructive gravity

1 (.+) :: (Eq v, Num v, MonadError String m) => T v -> T v -> m (T v)
2 (.+) o1 o2 =
3 case o1 of
4 T (t1 :: Tensor r1 v) ->
5 case o2 of
6 T (t2 :: Tensor r2 v) ->
7 let sr1 = sing :: Sing r1
8 sr2 = sing :: Sing r2
9 in case sr1 %~ sr2 of

10 Proved Refl ->
11 case sSane sr1 %~ STrue of
12 Proved Refl ->
13 return $ T (t1 &+ t2)
14 Disproved _ ->
15 throwError "Rank of summands is not sane."
16 Disproved _ ->
17 throwError "Generalised tensor ranks do not match."

Listing 5.15: Addition of opaque tensors.

Finally, let us discuss how equivariance equations can be set up and solved with this
package. There is a compatibility layer safe-tensor-sparse-tensor-compat [6], which
uses the ansatz generation capabilities from sparse-tensor to provide ansätze for the
construction of area metric gravity Lagrangians. The scalar type of these ansätze is not
a plain numeric type but amounts to linear combinations of the ansatz coefficients. Data
types and functions dealing with such linear combinations are provided by the module
Math.Tensor.LinearAlgebra. Using the ansätze, the predefined basic tensors (such as
Kronecker deltas, intertwiners, etc.), and the various tensor operations, all equivariance
equations can be composed as given by Eqns. (4.32)–(4.34).

Having composed the equations, it is just a matter of evaluating all components in order
to retrieve the linear system that determines the ansatz coefficients. With all basic
tensors, intertwiners, and Gotay-Marsden coefficients being purely rational, the linear
system itself contains only rational numbers. safe-tensor can also perform the last step,
which is solving the linear system. This is done using fraction-free Gaussian elimination
using 64-bit integers. Each solution is verified afterwards using rank computations
by numerically stable singular value decomposition—eliminating worries that integer
overflows may have invalidated the result.
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6 Application: gravitational radiation
from birefringent matter dynamics

So far, we have developed the general framework of covariant constructive gravity and
derived a perturbative equivalent. A few examples illustrated the constructions, but the
presentation focused on broad applicability to various geometries, without any specific
bundle or matter theory in mind. In this chapter, we shift our focus and consider
in depth the application of the framework to generalised linear electrodynamics, a
birefringent generalisation of Maxwell electrodynamics introduced in Chap. 3. Applying
the perturbative construction procedure to third order yields gravitational field equations
to second order. We will carefully analyse a 3+1 split for the linear part of this theory and
restrict to a certain sector with, in a very specific sense, physically sane phenomenology.
Afterwards, we solve the two-body problem to first order and obtain the orbits of a
binary system in area metric gravity. Building up on this solution, the second order
of the field equations is used to derive the emission of gravitational radiation from the
binary system and the radiative loss, which causes spin-up of the system. The binary
star subject to area metric gravity turns out to exhibit qualitatively new behaviour as
compared to Einstein gravity, e.g. additional massive modes of gravitational radiation
and a modification of Kepler’s third law.

To a large extent, the work presented in this chapter has been published as Ref. [4]. The
results on radiation loss are not part of this publication.

6.1 Construction of third-order area metric Lagrangians

The matter theory in question is generalised linear electrodynamics (GLED) as defined in
Def. 3.3.1 with the Lagrangian density

𝐿GLED = 𝜔𝐺𝐺𝑎𝑏𝑐𝑑𝐹𝑎𝑏𝐹𝑐𝑑,

where we choose without loss of generality the scalar density

𝜔𝐺 = ( 1
24

𝜖𝑎𝑏𝑐𝑑𝐺𝑎𝑏𝑐𝑑)
−1

. (6.1)
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The principal polynomial of GLED is quartic and takes the form

𝒫GLED(𝑘) = − 1
24

𝜔2
𝐺𝜖𝑚𝑛𝑝𝑞𝜖𝑟𝑠𝑡𝑢𝐺𝑚𝑛𝑟𝑎𝐺𝑏𝑝𝑠𝑐𝐺𝑑𝑞𝑡𝑢𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑.

As appropriate Lorentz invariant expansion point constructed from the Minkowski metric
𝜂, we already determined in Example 4.1.1

𝑁𝐴 = 𝐽𝐴
𝑎𝑏𝑐𝑑(𝜂𝑎𝑐𝜂𝑏𝑑 − 𝜂𝑎𝑑𝜂𝑏𝑐 + 𝜖𝑎𝑏𝑐𝑑). (6.2)

Before solving the system of equivariance equations perturbatively around 𝑁, let us
reconsider the reduced power series ansatz (4.18). In addition to dropping terms with
a total number of derivatives that is odd or greater than 2, and dropping non-Lorentz
invariant expansion coefficients, we can also discard the linear term 𝑎𝐴𝐻𝐴. This term
would yield a constant in the Euler-Lagrange equations, causing the flat expansion point 𝑁
to no longer constitute a solution to the vacuum field equations. However, the perturbation
ansatz stipulates that we perturb around a solution of the field equations. Since it is
obvious that Eq. (4.32) implies from vanishing coefficients 𝑎𝐴 that also the coefficient 𝑎
vanishes, we readily drop both and make the further reduced ansatz

𝐿 = 𝑎 𝐼
𝐴 𝐻𝐴

𝐼

+ 𝑎𝐴𝐵𝐻𝐴𝐻𝐵 + 𝑎 𝑝 𝑞
𝐴 𝐵 𝐻𝐴

𝑝𝐻𝐵
𝑞 + 𝑎 𝐼

𝐴𝐵 𝐻𝐴𝐻𝐵
𝐼

+ 𝑎𝐴𝐵𝐶𝐻𝐴𝐻𝐵𝐻𝐶 + 𝑎 𝑝 𝑞
𝐴𝐵 𝐶 𝐻𝐴𝐻𝐵

𝑝𝐻𝐶
𝑞 + 𝑎 𝐼

𝐴𝐵𝐶 𝐻𝐴𝐻𝐵𝐻𝐶
𝐼

+ 𝒪(𝐻4).

(6.3)

6.1.1 Solving axiom I

Step one of the perturbative construction algorithm consists in computing the Gotay-
Marsden coefficients for the gravitational bundle. For area metric gravity, we found in
Sect. 3.3

𝐶𝐴 𝑛
𝐵 𝑚 = 4𝐼𝑝𝑞𝑟𝑛

𝐵 𝐽𝐴
𝑝𝑞𝑟𝑚,

which followed from the general result (2.27) for purely contravariant tensor bundles.

Proceeding with step two, we need to construct a basis for the Lorentz invariant expansion
coefficients

(𝑎 𝐼
𝐴 , 𝑎𝐴𝐵, 𝑎 𝑝 𝑞

𝐴 𝐵 , 𝑎 𝐼
𝐴𝐵 , 𝑎𝐴𝐵𝐶, 𝑎 𝑝 𝑞

𝐴𝐵 𝐶 , 𝑎 𝐼
𝐴𝐵𝐶 ) (6.4)

in the ansatz (6.3). This task is solved using the Haskell library sparse-tensor [5]
discussed in Chap. 5. The result is a basis of dimension 237, enumerated in full in
Appendix A and summarised in Table 6.1. It should be emphasised that the requirement
of Lorentz invariance, which is not a direct stipulation but follows via the equivariance
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coefficient dimension gravitational constants

𝑎 𝐼
𝐴 3 (𝑒38, … , 𝑒40)

𝑎𝐴𝐵 6 (𝑒1, … , 𝑒6)
𝑎 𝑝 𝑞

𝐴 𝐵 15 (𝑒7, … , 𝑒21)
𝑎 𝐼

𝐴𝐵 16 (𝑒22, … , 𝑒37)
𝑎𝐴𝐵𝐶 15 (𝑒41, … , 𝑒55)
𝑎 𝑝 𝑞

𝐴𝐵 𝐶 110 (𝑒56, … , 𝑒165)
𝑎 𝐼

𝐴𝐵𝐶 72 (𝑒166, … , 𝑒237)

Table 6.1: Summary of the Lorentz invariant expansion coefficients for the area metric
gravity ansatz (6.3) obtained from the Haskell library sparse-tensor [5]. The
dimension is the number of linearly independent basis tensors returned from
the computer program. Assigning labels from 1 to 237 to all basis tensors,
an ansatz is represented by real numbers 𝑒1 … 𝑒237 using its unique basis
decomposition. These numbers parameterise the gravitational theory and
are thus referred to as gravitational constants. For a complete picture of the
decomposition of ansätze using basis tensors, refer to Appendix A or the
computer code in Ref. [7].

equations from a physically motivated assumption about the expansion point, drastically
reduces the dimensionality of the ansatz from

210 + 21 ⋅ 22
2

+ 21 ⋅ 210 + 84 ⋅ 85
2

+ 21 ⋅ 22 ⋅ 23
6

+ 21 ⋅ 22
2

⋅ 210 + 21 ⋅ 84 ⋅ 85
2

= 133672

to only 237. In principle, the correctness of the ansatz can be verified by showing that it
is the most generic solution to the ansatz equations.1 All we have to show is that the
dimensionality of the ansatz equals the corank of the linear system of ansatz equations.
For the ansatz including third-order coefficients, the system is quite large—considering
that the coefficient space is already of dimension 133672—such that, on standard hardware,
the rank cannot be computed naïvely by storing the matrix in memory and using methods
like singular value decomposition or fraction-free Gaussian elimination. It is rather easy,
however, to use the aforementioned methods and work out the corank of the linear system
determining the Lorentz invariant ansatz coefficients to second order, as the dimension
of this ansatz space is only 210 + 21⋅22

2 + 21 ⋅ 210 + 84⋅85
2 = 8421. Confirming the number

of obtained basis ansätze up to second order, the corank of the corresponding system is
indeed 40.

With the 237 ansatz coefficients at hand, solving the equivariance equations as required

1Eq. (4.15) and similar.
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6 Application: gravitational radiation from birefringent matter dynamics

for step five is only a matter of inserting the ansatz in the system and its first two
prolongations as displayed in Eqns. (4.32)–(4.34), extracting a system of linear equations
for the gravitational constants, and solving this system. This task is again performed
using efficient computer algebra, implemented in the Haskell library safe-tensor, which
is introduced in Chap. 5. The procedure is roughly as follows: a compatibility layer with
sparse-tensor is used in order to construct the ansatz tensors and make them available
as Tensor types with generalised rank (see Sect. 5.2). Together with predefined tensors
like Kronecker deltas, intertwiners, Gotay-Marsden coefficients, or the Minkowski metric,
the ansatz tensors are used in order to construct the (prolonged) equivariance equations
evaluated at 𝑁. Each tensorial equation is a value of type Tensor and, as such, can be
evaluated into a list of its components. Every component is a linear equation for the
237 gravitational constants. Collecting all components for all tensorial equations, we
obtain a matrix representing the linear system for the constants 𝑒1 … 𝑒237. The system is
small enough to be brought into reduced row echelon form applying fraction-free Gaussian
elimination and backward substitution using 64-bit integers2, which yields a solution that
parameterises the constants with a few remaining indeterminate gravitational constants.
As an example for the process, let us walk through the solution for the linear expansion
coefficient 𝑎 𝐼

𝐴 .

Example 6.1.1 (solution of the equivariance equations to first order). Having set 𝑎𝐴 = 0,
the remaining expansion coefficient for the linear order is 𝑎 𝐼

𝐴 , which is determined in
part by the second unprolonged equation (4.32). A suitable basis for this coefficient is

𝑎 𝐼
𝐴 = 𝐽𝑎𝑏𝑐𝑑

𝐴 𝐽𝐼
𝑝𝑞[𝑒1 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑞 + 𝑒2 ⋅ 𝜂𝑎𝑐𝛿𝑝

𝑏 𝛿𝑞
𝑑 + 𝑒3 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑝𝑞] (6.5)

with three gravitational constants 𝑒1, 𝑒2, 𝑒3. Inserting this ansatz into the unprolonged
equation

0 = 𝑎 𝐼
𝐴 𝐶𝐴 (𝑛

𝐵 𝑚𝐽𝑝𝑞)
𝐼 𝑁𝐵 =∶ 𝑇 𝑛𝑝𝑞

𝑚 (6.6)

yields a tensorial equation 0 = 𝑇 𝑛𝑝𝑞
𝑚 with 256 components. Each component is of the

form
0 = 𝑐1 ⋅ 𝑒1 + 𝑐2 ⋅ 𝑒2 + 𝑐3 ⋅ 𝑒3. (6.7)

The collection of all components is a system of 256 linear equations for three variables.
A lot of these equations are redundant, because they are trivial or linearly dependent. A
naïve reduction by eliminating trivial equations and choosing only one representative for
equations that are multiples of each other already reduces the system to the single equation

0 = 2𝑒1 + 𝑒2 + 4𝑒3. (6.8)

Setting e.g. 𝑒2 = −2𝑒1 − 4𝑒3 solves the equivariance equation for the coefficient 𝑎 𝐼
𝐴 ,

2Exploiting the observation we made earlier that, using intertwiners with purely rational components,
all coefficients in the system remain rational.
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6 Application: gravitational radiation from birefringent matter dynamics

leaving it parameterised by two gravitational constants 𝑒1 and 𝑒3.

Applied to the whole system of equivariance equations, we obtain a parameterisation
of the solution (displayed for the first two orders in Appendix B) by 50 independent
gravitational constants. A subset of 16 constants governs linearised area metric gravity
via the quadratic Lagrangian density, from which—as we will encounter later—only
10 independent linear combinations play a rôle for the Euler-Lagrange equations. The
procedure outlined here is implemented in Haskell using the aforementioned libraries.
Source code and results are published as Ref. [7].

6.1.2 Solving axiom II

The pedestrian approach towards implementing causal compatibility of the just constructed
gravitational theory with GLED is to carefully execute steps 6–12 of the perturbative
construction algorithm. This way, we obtain an approximation of the area metric gravity
principal polynomial and have to match the causal structure with a first-order expansion
of the GLED principal polynomial. While entirely feasible, this approach is less illustrative
than the constructive approach we employ instead. The underlying realisation behind this
technique is that the diffeomorphism invariance of the gravitational theory dramatically
restricts the possible principal polynomials. In fact, we will see that for third-order area
metric Lagrangians, the admissible principal polynomials are already causally compatible
with the corresponding expansion of the GLED polynomial. There is no causality mismatch
left to be fixed.

To this end, recall the GLED polynomial (3.21), which using the scalar density (6.1)
assumes the form

𝒫GLED(𝑘) = − 1
1

24(𝜖𝑎𝑏𝑐𝑑𝐺𝑎𝑏𝑐𝑑)2 𝜖𝑚𝑛𝑝𝑞𝜖𝑟𝑠𝑡𝑢𝐺𝑚𝑛𝑟𝑎𝐺𝑏𝑝𝑠𝑐𝐺𝑑𝑞𝑡𝑢𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑. (6.9)

Expanding this expression to linear order in the perturbation yields

𝒫GLED(𝑘) = {[1 − 1
24

𝜖(𝐻)] 𝜂(𝑘, 𝑘) + 1
2

𝐻(𝑘, 𝑘)}
2

+ 𝒪(𝐻2)

= [𝑃 (≤1)
GLED]2 + 𝒪(𝐻2),

(6.10)

where the abbreviations

𝜖(𝐻) = 𝜖𝑎𝑏𝑐𝑑𝐻𝑎𝑏𝑐𝑑 and 𝐻(𝑘, 𝑘) = 𝜂𝑎𝑐𝐻𝑎𝑏𝑐𝑑𝑘𝑏𝑘𝑑 (6.11)
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6 Application: gravitational radiation from birefringent matter dynamics

have been introduced. In the following, we will also make use of the contraction

𝜂(𝐻) = 𝜂𝑎𝑐𝜂𝑏𝑑𝐻𝑎𝑏𝑐𝑑. (6.12)

Up to first order, we find that the GLED polynomial factors into the square of a metric
polynomial 𝑃 (≤1)

GLED. This has a remarkable consequence: for weak gravitational fields,
where the approximation to first order is sufficiently good, the physics of point particles
adhering to GLED dynamics is indistinguishable from the Maxwellian setting with a
metric perturbation ℎ by virtue of the identification

ℎ𝑎𝑏 = [1 − 1
24

𝜖(𝐻)] 𝜂𝑎𝑏 + 1
2

𝜂𝑐𝑑𝐻𝑎𝑐𝑏𝑑 = (𝑃 (≤1)
GLED)𝑎𝑏. (6.13)

This effect only holds in the limit of geometric optics—the GLED field equations do not
reduce to Maxwell equations with a metric perturbation. Consequently, even to first order
in the area metric perturbation, nonmetric effects can be observed. An in-depth study
of classical and quantum electrodynamics on weakly birefringent backgrounds based on
exactly this realisation has been conducted in Ref. [30].

We will now proceed to show that the possible principal polynomials arising from third-order
area metric gravity Lagrangians as constructed in the previous section are only mildly
more general than the effectively quadratic first-order GLED polynomial (6.10). This
issue is approached by first considering the corresponding Euler-Lagrange equations.

Proposition 6.1.2. Let 𝐸
𝜋

⟶ 𝑀 be a sub-bundle of some tensor bundle over 𝑀. Consider
a Lagrangian field theory on 𝐽2𝜋 that is degenerate in the sense that the Euler-Lagrange
equations are of second derivative order, i.e. are also defined on 𝐽2𝜋. If the Lagrangian
field theory is diffeomorphism invariant with respect to the diffeomorphism action on
the second jet bundle, it follows that the Euler-Lagrange equations are diffeomorphism
equivariant. In particular, a local representation of the Euler-Lagrange equations

𝐸𝐴 = 𝐿∶𝐴 − 𝐷𝑝𝐿 𝑝
∶𝐴 + 𝐼𝑝𝑞

𝐼 𝐷𝑝𝐷𝑞𝐿 𝐼
∶𝐴 (6.14)

exhibits the transformation behaviour

𝛿𝜉𝐸𝐴 = −𝐸𝐴𝜉𝑚
,𝑚 − 𝐸𝐵𝐶𝐵 𝑛

𝐴 𝑚𝜉𝑚
,𝑛, (6.15)

where 𝐶𝐵 𝑛
𝐴 𝑚 are the Gotay-Marsden coefficients corresponding to the field bundle. In

other words, the Euler-Lagrange equations transform as tensor density of weight 1.

Proof. The claim follows from expanding the left-hand side of Eq. (6.15) as

𝛿𝜉𝐸𝐴 = 𝐸𝐴∶𝐵𝛿𝜉𝑢𝐵 + 𝐸 𝑝
𝐴∶𝐵 𝛿𝜉𝑢𝐵

𝑝 + 𝐸 𝐼
𝐴∶𝐵 𝛿𝜉𝑢𝐵

𝐼, (6.16)
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then replacing 𝐸𝐴 with its definition (6.14) and simplifying the result using the equivariance
of the Lagrangian density 𝐿. Rather than performing this tedious calculation, we can
alternatively consider the geometric definition (2.6) of the Euler-Lagrange form and
deduce that it must transform covariantly (for a contravariant tensor bundle) with density
weight of one, i.e. according to the local expression (6.15).

This transformation behaviour carries over to the principal symbol of the Euler-Lagrange
equations, which is also a tensor density of weight 1.

Proposition 6.1.3. Consider the same Lagrangian field theory as in Prop. 6.1.2. The
principal symbol

𝑇𝐴𝐵(𝑘) = 𝐸 𝐼
𝐴∶𝐵 𝐽𝑝𝑞

𝐼 𝑘𝑝𝑘𝑞 (6.17)

of the corresponding Euler-Lagrange equations 𝐸𝐴, where 𝑘 ∈ 𝑇 ∗𝑀 denotes a covector,
transforms as a tensor density of weight one, i.e. an infinitesimal diffeomorphism acts as

𝛿𝜉𝑇𝐴𝐵(𝑘) = −𝑇𝐴𝐵(𝑘)𝜉𝑚
,𝑚 − 𝑇𝐶𝐵(𝑘)𝐶𝐶 𝑛

𝐴 𝑚𝜉𝑚
,𝑛 − 𝑇𝐴𝐶(𝑘)𝐶𝐶 𝑛

𝐵 𝑚𝜉𝑚
,𝑛. (6.18)

Proof. The idea of the proof is as before: we insert the just proven transformation
behaviour of the Euler-Lagrange equations 𝐸𝐴 and of covectors 𝑘, which is

𝛿𝜉𝑘𝑎 = −𝑘𝑚𝜉𝑚
,𝑎 , (6.19)

into the transformation

𝛿𝜉𝑇𝐴𝐵(𝑘) = (𝑇𝐴𝐵(𝑘))∶𝐶𝛿𝜉𝑢𝐶 + (𝑇𝐴𝐵(𝑘)) 𝑝
∶𝐶 𝛿𝜉𝑢𝐶

𝑝 + (𝑇𝐴𝐵(𝑘)) 𝐼
∶𝐶 𝛿𝜉𝑢𝐶

𝐼

+ 𝜕𝑇𝐴𝐵
𝜕𝑘𝑎

(𝑘)𝛿𝜉𝑘𝑎.
(6.20)

This time, the calculation is rather trivial and the claim (6.17) follows almost immediately.

We are now in a position to prove the first part of the central result, which is that the
principal polynomial of area metric gravity is a scalar density. Note that we restrict our
considerations to the case of a principal symbol that is independent of the derivatives of
the derivatives of the gravitational field, as otherwise the causality could not be matched
anyway (see Sect. 4.4).

Theorem 6.1.4. Let 𝜋 be the area metric bundle. Consider a degenerate Lagrangian
field theory with a principal symbol that is independent of the derivatives of the area
metric field. The principal polynomial 𝒫(𝑘) corresponding to the symbol, as defined in
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Def. 2.4.1 is a scalar density of weight 57, i.e. transforms locally under infinitesimal
spacetime diffeomorphisms as

𝛿𝜉𝒫(𝑘) = −57 ⋅ 𝒫(𝑘)𝜉𝑚
,𝑚. (6.21)

Proof. From the transformation behaviour of area metric tensors and covectors, it follows
that an infinitesimal diffeomorphism acts on generators 𝜒𝐴

(𝑖)(𝑘) = 𝐶𝐴 𝑛
𝐵 𝑖𝑢𝐵𝑘𝑛 of gauge

transforms as
𝛿𝜉𝜒𝐴

(𝑖)(𝑘) = 𝐶𝐴 𝑛
𝐵 𝑚𝜒𝐵

(𝑖)(𝑘)𝜉𝑚
,𝑛 − 𝜒𝐴

(𝑚)(𝑘)𝜉𝑚
,𝑖 . (6.22)

Now calculating the transformation behaviour of the principal polynomial numerator
𝑄𝐴1…𝐴4𝐵1…𝐵4 (dropping the covector 𝑘 from the notation) we obtain

𝛿𝜉𝑄𝐴1…𝐴4𝐵1…𝐵4 = 𝛿𝜉
𝜕4 det 𝑇

𝜕𝑇𝐴1𝐵1
… 𝜕𝑇𝐴4𝐵4

= 𝛿𝜉 [ 4
21!

𝜖𝐴1…𝐴21𝜖𝐵1…𝐵21𝑇𝐴5𝐵5
… 𝑇𝐴21𝐵21

]

= 1
17!

𝜖𝐴1…𝐴21𝜖𝐵1…𝐵21 [𝛿𝜉𝑇𝐴5𝐵5
]𝑇𝐴6𝐵6

… 𝑇𝐴21𝐵21

= −17 ⋅ 𝛿𝜉𝑄𝐴1…𝐴4𝐵1…𝐵4𝜉𝑚
,𝑚

− 17
17!

𝜖𝐴1…𝐴21𝐶𝐴 𝑛
𝐴5 𝑚𝜖𝐵1…𝐵21𝑇𝐴𝐵5

… 𝑇𝐴21𝐵21
𝜉𝑚

,𝑛

− 17
17!

𝜖𝐴1…𝐴21𝜖𝐵1…𝐵21𝐶𝐵 𝑛
𝐵5 𝑚𝑇𝐴5𝐵 … 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛.

(6.23)

This is further simplified using the identity 0 = 𝜖[𝐴1…𝐴21𝑋𝐴]…, from which we derive after
a few index relabellings

0 = 22 ⋅ 𝜖[𝐴1…𝐴21𝐶𝐴] 𝑛
𝐴5 𝑚𝜖𝐵1…𝐵21𝑇𝐴𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛

= 17 ⋅ 𝜖𝐴1…𝐴21𝐶𝐴 𝑛
𝐴5 𝑚𝜖𝐵1…𝐵21𝑇𝐴𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛

− 𝐶𝐴 𝑛
𝐴 𝑚𝜖𝐴1…𝐴21𝜖𝐵1…𝐵21𝑇𝐴5𝐵5

… 𝑇𝐴21𝐵21
𝜉𝑚

,𝑛

+ 𝜖𝐴𝐴2𝐴3𝐴4…𝐴21𝐶𝐴1 𝑛
𝐴 𝑚𝜖𝐵1…𝐵21𝑇𝐴5𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛

+ 𝜖𝐴1𝐴𝐴3𝐴4…𝐴21𝐶𝐴2 𝑛
𝐴 𝑚𝜖𝐵1…𝐵21𝑇𝐴5𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛

+ 𝜖𝐴1𝐴2𝐴𝐴4…𝐴21𝐶𝐴3 𝑛
𝐴 𝑚𝜖𝐵1…𝐵21𝑇𝐴5𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛

+ 𝜖𝐴1𝐴2𝐴3𝐴…𝐴21𝐶𝐴4 𝑛
𝐴 𝑚𝜖𝐵1…𝐵21𝑇𝐴5𝐵5

𝑇𝐴6𝐵6
… 𝑇𝐴21𝐵21

𝜉𝑚
,𝑛.

(6.24)

Applying the same technique to the index set [𝐵1 … 𝐵21𝐵] and carrying out the contraction
𝐶𝐴 𝑛

𝐴 𝑚 = 21 ⋅ 𝛿𝑛
𝑚, the identity can be applied to the second and third terms in Eq. (6.23),
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such that we finally obtain

𝛿𝜉𝑄𝐴1…𝐴4𝐵1…𝐵4 = −59 ⋅ 𝑄𝐴1…𝐴4𝐵1…𝐵4𝜉𝑚
,𝑚

+ 𝐶𝐴1 𝑛
𝐴 𝑚𝑄𝐴𝐴2𝐴3𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛 + 𝐶𝐴2 𝑛
𝐴 𝑚𝑄𝐴1𝐴𝐴3𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐴3 𝑛
𝐴 𝑚𝑄𝐴1𝐴2𝐴𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛 + 𝐶𝐴4 𝑛
𝐴 𝑚𝑄𝐴1𝐴2𝐴3𝐴𝐵1…𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐵1 𝑛
𝐵 𝑚𝑄𝐴1…𝐴4𝐵𝐵2𝐵3𝐵4𝜉𝑚

,𝑛 + 𝐶𝐵2 𝑛
𝐵 𝑚𝑄𝐴1…𝐴4𝐵1𝐵𝐵3𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐵3 𝑛
𝐵 𝑚𝑄𝐴1…𝐴4𝐵1𝐵2𝐵𝐵4𝜉𝑚

,𝑛 + 𝐶𝐵4 𝑛
𝐵 𝑚𝑄𝐴1…𝐴4𝐵1𝐵2𝐵3𝐵𝜉𝑚

,𝑛.

(6.25)

A similar calculation, this time using the identity 0 = 𝜖[𝑎1𝑎2𝑎3𝑎4𝑋𝑎]…, yields the trans-
formation of the denominator 𝑓𝐴1…𝐴4𝐵1…𝐵4 ,

𝛿𝜉𝑓𝐴1…𝐴4𝐵1…𝐵4 = 𝛿𝜉 [𝜖𝑎1…𝑎4𝜖𝑏1…𝑏4

4
∏
𝑖=1

𝜒𝐴𝑖
(𝑎𝑖)𝜒

𝐵𝑖
(𝑏𝑖)]

= −2 ⋅ 𝑓𝐴1…𝐴4𝐵1…𝐵4𝜉𝑚
,𝑚

+ 𝐶𝐴1 𝑛
𝐴 𝑚𝑓𝐴𝐴2𝐴3𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛 + 𝐶𝐴2 𝑛
𝐴 𝑚𝑓𝐴1𝐴𝐴3𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐴3 𝑛
𝐴 𝑚𝑓𝐴1𝐴2𝐴𝐴4𝐵1…𝐵4𝜉𝑚

,𝑛 + 𝐶𝐴4 𝑛
𝐴 𝑚𝑓𝐴1𝐴2𝐴3𝐴𝐵1…𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐵1 𝑛
𝐵 𝑚𝑓𝐴1…𝐴4𝐵𝐵2𝐵3𝐵4𝜉𝑚

,𝑛 + 𝐶𝐵2 𝑛
𝐵 𝑚𝑓𝐴1…𝐴4𝐵1𝐵𝐵3𝐵4𝜉𝑚

,𝑛

+ 𝐶𝐵3 𝑛
𝐵 𝑚𝑓𝐴1…𝐴4𝐵1𝐵2𝐵𝐵4𝜉𝑚

,𝑛 + 𝐶𝐵4 𝑛
𝐵 𝑚𝑓𝐴1…𝐴4𝐵1𝐵2𝐵3𝐵𝜉𝑚

,𝑛.

(6.26)

Putting both numerator and denominator together proves the claim

𝛿𝜉𝒫(𝑘) = −57 ⋅ 𝒫(𝑘)𝜉𝑚
,𝑚. (6.27)

An equivalent formulation of the fact that 𝒫(𝑘) is a density of weight 57 is that the
symmetric coefficients3 𝑃 𝑎1…𝑎26 constitute a tensor density of the same weight, i.e. live
on the bundle of symmetric tensor densities of contravariant rank 26 with weight 57. For
this geometry, the equivariance equations on the “zeroth jet bundle” (since the polynomial
must not depend on derivatives of the geometry) are

𝑃 𝑎1…𝑎26
,𝑚 = 0,

𝑃 𝑎1…𝑎26
∶𝐴𝐶𝐴 𝑛

𝐵 𝑚𝑢𝐵 = −57 ⋅ 𝑃 𝑎1…𝑎26𝛿𝑛
𝑚 + 26 ⋅ 𝑃 𝑛(𝑎1…𝑎25𝛿𝑎26)

𝑚 .
(6.28)

The second part of the central result follows from these equations. All we have to do is
construct the perturbative solution to first order and see that it is impossible not to have

3Recall that the principal polynomial for area metric gravity is homogeneous and of degree 26.
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the causality match GLED causality to the same order.

Theorem 6.1.5. Let 𝒫area be the principal polynomial of area metric gravity as considered
in Thm. 6.1.4. To first order in the expansion 𝐺 = 𝑁 + 𝐻 of the area metric field,
where 𝑁 is the Lorentz invariant expansion point (6.2), 𝒫area is equivalent to the GLED
principal polynomial 𝒫GLED in the sense that

𝒫area = [𝜔𝑃 (≤1)
GLED]13 + 𝒪(𝐻2), (6.29)

where 𝜔 denotes a density of weight 57
13 on the area metric bundle and 𝑃 (≤1)

GLED is the
expansion of the GLED polynomial to first order. In particular, to first order in the
perturbation, both principal polynomials describe the same null surfaces and hyperbolicity
cones.

Proof. Knowing that the principal polynomial of area metric gravity transforms as a
density of weight 57, we can construct possible candidates by solving the equivariance
equations (6.28). To this end, we make the ansatz

𝒫area(𝑘) = 𝜂(𝑘, 𝑘)13

+ 𝐴 ⋅ 𝜖(𝐻)𝜂(𝑘, 𝑘)13 + 𝐵 ⋅ 𝜂(𝐻)𝜂(𝑘, 𝑘)13 + 𝐶 ⋅ 𝐻(𝑘, 𝑘)𝜂(𝑘, 𝑘)12

+ 𝒪(𝐻2).
(6.30)

An overall factor would be irrelevant, so it has already been dropped when setting the
coefficient of the constant term to 1. The generality of the ansatz can, as always, be
verified by calculating the corank of the ansatz equations, which will yield 4—the number
of ansatz tensors in Eq. (6.30). Evaluating the equivariance equation at the ansatz and
contracting the 26 symmetric indices with covector components, for the sake of a cleaner
presentation, yields an equation where we can cancel a common factor of 𝜂(𝑘, 𝑘)12. The
remaining equation has a covariant and a contravariant spacetime index, such that a
decomposition into the trace

0 = [24𝐴 + 12𝐵 + 3𝐶 + 57 − 13
2

]𝛿𝑛
𝑚 (6.31)

and the tracefree part

0 = [4𝐶 − 26][𝜂𝑛𝑎𝛿𝑏
𝑚𝑘𝑎𝑘𝑏 − 1

4
𝛿𝑛

𝑚𝜂(𝑘, 𝑘)] (6.32)

lends itself for a first attempt to retrieve scalar equations from the system. As it turns
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out, these two equations are already maximal. Parameterising the solution with 𝐵 yields

𝒫area(𝑘) = 𝜂(𝑘, 𝑘)13

− 35
12

𝜖(𝐻)𝜂(𝑘, 𝑘)13 + 𝐵(𝜂(𝐻) − 1
2

𝜖(𝐻))𝜂(𝑘)13 + 13
2

𝐻(𝑘, 𝑘)𝜂(𝑘, 𝑘)12

+ 𝒪(𝐻2)

= {[1 − 35
12 ⋅ 13

𝜖(𝐻) + 𝐵
13

(𝜂(𝐻) − 1
2

𝜖(𝐻))] 𝜂(𝑘, 𝑘) + 1
2

𝐻(𝑘, 𝑘)}
13

+ 𝒪(𝐻2),

(6.33)

where for the last equality we completed the thirteenth power as

1 + 𝜖 = (1 + 1
13

𝜖)
13

+ 𝒪(𝜖2). (6.34)

In order to relate the quadratic polynomial that determines the first order of 𝒫area(𝑘)
to 𝒫(≤1)

GLED via a scalar density, as claimed in Eq. (6.29), we consider the equivariance
equations

𝜔,𝑚 = 0,

𝜔∶𝐴𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵 = −57

13
𝜔𝛿𝑛

𝑚
(6.35)

for such a density 𝜔 of weight 57
13 . This time, the Lorentz invariant ansatz is just

𝜔 = 1 + 𝐴 ⋅ 𝜖(𝐻) + 𝐵 ⋅ 𝜂(𝐻) + 𝒪(𝐻2) (6.36)

and reduces the equivariance equations to the single condition

24𝐴 + 12𝐵 = −57
13

, (6.37)

such that the most general scalar density of weight 57
13 is to first order given by

𝜔 = 1 − 57
13 ⋅ 24

𝜖(𝐻) + 𝐵[𝜂(𝐻) − 1
2

𝜖(𝐻)] + 𝒪(𝐻2). (6.38)

The result now follows from multiplication of 𝑃 (≤1)
area with 𝜔, which yields exactly the

area metric gravity polynomial (6.33). To first order, the principal polynomial of area
metric gravity is determined by a quadratic polynomial which reduces to the quadratic
first-order GLED polynomial up to a factor. Because such an overall factor is irrelevant
for vanishing sets and hyperbolicity cones, the polynomials must be considered identical
for the purpose of comparing their causal structure.
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Having fixed the causality of third-order perturbative area metric gravity—by proof, rather
than by explicit calculation—the construction procedure up to this order is completed.
Third-order area metric gravity4 is determined by the ansatz (6.3) which is constructed from
the Lorentz-invariant basis tensors (A.1)–(A.7). From the 237 gravitational constants—
the coefficients in the basis expansion—50 constants turn out to be independent, 10 of
which govern the linearised field equations. The relations between gravitational constants
are collected in Appendix B. In the following, we will examine the linear theory, which
forms the basis for predicting first-order and, later on, second-order effects of area metric
gravity.

6.1.3 3+1 decomposition

As remarked in Sect. 3.3, the expansion point should be an area metric of a certain
subclass in order to guarantee hyperbolicity of the GLED principal polynomial—which
encompasses, by the previously proven result, hyperbolicity of the second-order area metric
gravity field equations. Indeed, 𝑁 is of subclass I according to the classification in Ref.
[68]. Thus, we can turn to a 3 + 1 formulation, starting with the definition of a slicing.

Definition 6.1.6 (slicing). Consider a spacetime manifold 𝑀 of dimension four. Any
diffeomorphism

𝜙∶ Σ × ℝ → 𝑀 (6.39)

from a three-dimensional spatial manifold Σ and the reals to 𝑀 is called a slicing of 𝑀.

Such a slicing always exists, as we only consider matter theories that have a well-defined
initial value problem. It is, however, not unique: any diffeomorphism 𝜓∶ 𝑀 → 𝑀 yields
a new slicing ̃𝜙 = 𝜓 ∘ 𝜙. Since the spatial manifold is of dimension three and not four,
working with slicings comes with new indices running from one to three. These will be
denoted with lowercase Greek letters, while lowercase Latin letters represent spacetime
indices running from zero to three.

Every tangent space 𝑇𝜙(𝑠,𝜆)𝑀 has a holonomic basis

𝜕
𝜕𝑥𝑎 = ( 𝜕

𝜕𝑡
, 𝜕
𝜕𝑥𝛼 ) , (6.40)

where the vectors on the right are understood as pushforwards of holonomic basis vectors
on 𝑇𝑠Σ and 𝑇𝜆ℝ. The same construction yields a holonomic basis

𝑑𝑥𝑎 = (𝑑𝑡, 𝑑𝑥𝛼) (6.41)

4With second-order field equations and, therefore, a principal polynomial of first order.
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for the cotangent spaces 𝑇 ∗
𝜙(𝑠,𝜆)𝑀. The bundle 𝜋area, constructed as subbundle of 𝑇 4

0 𝑀,
inherits a 3 + 1 split from the decomposition of tangent and cotangent spaces, and so does
the second jet bundle of 𝜋area.

Based on a slicing, we now introduce an observer definition5 for arbitrary tensor theories.
Only the principal polynomial is needed for this notion.

Definition 6.1.7 (observer frame, lapse and shift). Let 𝑃 be the principal polynomial of
a field theory on a tensor bundle. An observer frame consists of a nonholonomic frame

(𝑇 , 𝑒𝛼 = 𝜕
𝜕𝑥𝛼 ) (6.42)

and a dual coframe
(𝑛 = 𝜆 ⋅ 𝑑𝑡, 𝜖𝛼), (6.43)

where the temporal direction and codirection must satisfy6

𝑃(𝑛) = 1 and 𝑇 = 1
deg 𝑃

𝐷𝑃(𝑛)
𝑃(𝑛)

. (6.44)

In the following, we assume 𝑃(𝑛) = 1 to be solved by choosing an appropriate basis on
𝑇 ℝ and setting 𝜆 = 1.

The holonomic time direction 𝜕
𝜕𝑡 decomposes in the observer frame as

𝜕
𝜕𝑡

= 𝑁𝑇 + 𝑁𝛼 𝜕
𝜕𝑥𝛼 (6.45)

with the lapse 𝑁 and shift 𝑁𝛼.

Essential for the 3 + 1 split is the parameterisation of the geometry with quantities an
observer can measure in her frame, as well as lapse and shift. For example, using the
completeness relation

id = 𝑇 ⊗ 𝑛 + 𝑒𝛼 ⊗ 𝜖𝛼 = 1
𝑁

𝜕
𝜕𝑡

⊗ 𝑛 − 1
𝑁

𝑁𝛼𝑒𝛼 ⊗ 𝑛 + 𝑒𝛼 ⊗ 𝜖𝛼, (6.46)

a vector field 𝑣 decomposes as

𝑣 = 𝑣 ∘ id = 𝑣(𝑛) 𝑇 + 𝑣(𝜖𝛼) 𝑒𝛼. (6.47)

5see also Ref. [23]
6𝐷𝑃 denotes the formal derivative of 𝑃 as a polynomial.
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The holonomic components are thus determined by lapse 𝑁, shift 𝑁𝛼, and the observer
quantities 𝑣(𝑛) and 𝑣(𝜖𝛼) as

𝑣(𝑑𝑡) = 𝑣(𝑛) and 𝑣(𝑑𝑥𝛼) = − 1
𝑁

𝑁𝛼𝑣(𝑛) + 𝑣(𝜖𝛼). (6.48)

Obviously, the information contained in 𝑁, 𝑁𝛼, 𝑣(𝑛), and 𝑣(𝜖𝛼) is redundant—four
holonomic components are represented using 8 observer quantities. This is where the
frame conditions (6.44) come into play: consider the decomposition of the area metric
field into [23]

𝐺(𝑑𝑡, 𝑑𝑥𝛼, 𝑑𝑡, 𝑑𝑥𝛽) = 1
𝑁2 𝐺(𝑛, 𝜖𝛼, 𝑛, 𝜖𝛽), (6.49)

𝐺(𝑑𝑡, 𝑑𝑥𝛼, 𝑑𝑥𝛽, 𝑑𝑥𝛾) = − 2
𝑁2 𝐺(𝑛, 𝜖𝛼, 𝑛, 𝜖[𝛾)𝑁𝛽] + 1

𝑁
𝐺(𝑛, 𝜖𝛼, 𝜖𝛽, 𝜖𝛾), (6.50)

𝐺(𝑑𝑥𝛼, 𝑑𝑥𝛽, 𝑑𝑥𝛾, 𝑑𝑥𝛿) = 4
𝑁2 𝑁 [𝛼𝐺(𝑛, 𝜖𝛽], 𝑛, 𝜖[𝛿)𝑁𝛾] + 2

𝑁
𝑁 [𝛼𝐺(𝑛, 𝜖𝛽], 𝜖𝛾, 𝜖𝛿)

+ 2
𝑁

𝑁 [𝛾𝐺(𝑛, 𝜖𝛿], 𝜖𝛼, 𝜖𝛽) + 𝐺(𝜖𝛼, 𝜖𝛽, 𝜖𝛾, 𝜖𝛿).
(6.51)

So far, the situation seems to be similar—21 area metric components are determined
by 21 observer quantities plus lapse and shift. The difference to the decomposition of
a vector is that the frame conditions (6.44) depend—via the principal polynomial—on
the area metric, which introduces dependencies among area metric, lapse, and shift. To
formulate these conditions, it is more convenient to redefine the observer quantities as
[23]

̂𝐺𝛼𝛽 = −𝐺(𝑛, 𝜖𝛼, 𝑛, 𝜖𝛽),

̂𝐺𝛼
𝛽 = 1

2
(𝜔 ̂𝐺)−1𝜖𝛽𝜇𝜈𝐺(𝑛, 𝜖𝛼, 𝜖𝜇, 𝜖𝜈) − 𝛿𝛼

𝛽,

̂𝐺𝛼𝛽 = 1
4

(𝜔 ̂𝐺)−2𝜖𝛼𝜇𝜈𝜖𝛽𝜌𝜎𝐺(𝜖𝜇, 𝜖𝜈, 𝜖𝜌, 𝜖𝜎),

(6.52)

with the spatial density
𝜔 ̂𝐺 = √det ̂𝐺⋅⋅. (6.53)

By definition, ̂𝐺𝛼𝛽 and ̂𝐺𝛼𝛽 are symmetric. The frame conditions (6.44) translate into
the two additional properties [23]

0 = ̂𝐺𝛼
𝛼 and 0 = ̂𝐺𝜇[𝛼 ̂𝐺𝛽]

𝜇, (6.54)

i.e. ̂𝐺𝛼
𝛽 is tracefree and symmetric with respect to ̂𝐺𝛼𝛽. In total, lapse and shift and

the observer quantities ̂𝐺𝛼𝛽, ̂𝐺𝛼
𝛽, ̂𝐺𝛼𝛽 have 1 + 3 + 6 + 5 + 6 = 21 degrees of freedom,

such that they are in one-to-one correspondence with the area metric field 𝐺𝑎𝑏𝑐𝑑. Note
the similarity to the 3 + 1 decomposition of the metric tensor 𝑔𝑎𝑏 into shift 𝑁𝛼, lapse 𝑁,
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and spatial metric ̂𝑔𝛼𝛽—the purely temporal and spatiotemporal components of the metric
are parameterised only by shift and lapse, due to the frame conditions (6.44).

Around the perturbation point 𝑁, the area metric observer quantities expand as

𝑁 = 1 + 𝐴,
𝑁𝛼 = 𝑏𝛼,
̂𝐺𝛼𝛽 = 𝛾𝛼𝛽 + ℎ𝛼𝛽,
̂𝐺𝛼

𝛽 = 𝑘𝛼
𝛽,

̂𝐺𝛼𝛽 = 𝛾𝛼𝛽 + 𝑙𝛼𝛽.

(6.55)

With 𝛾 we denote the positive-definite spatial part of the Minkowski metric, i.e. 𝜂𝛼𝛽 =
−𝛾𝛼𝛽. From now on, spatial indices are raised and lowered at will using 𝛾 and its inverse.
The perturbations 𝐴, 𝑏, ℎ, 𝑘, and 𝑙 are again in one-to-one correspondence with the 21
perturbations 𝐻, by virtue of

𝐻0𝛼0𝛽 = 2𝐴𝛾𝛼𝛽 − ℎ𝛼𝛽,

𝐻0𝛼𝛽𝛾 = −𝐴𝜖𝛼𝛽𝛾 + 2𝑏[𝛽𝛾𝛾]𝛼 + 1
2

𝜖𝛼𝛽𝛾𝛾𝜇𝜈ℎ𝜇𝜈 + 𝜖𝜇𝛽𝛾𝑘𝛼
𝜇,

𝐻𝛼𝛽𝛾𝛿 = 2𝛾𝛼[𝛾𝛾𝛿]𝛽𝛾𝜇𝜈ℎ𝜇𝜈 + 𝜖𝜇𝛼𝛽𝜖𝜈𝛾𝛿𝑙𝜇𝜈.

(6.56)

A set of perturbations that is more convenient to work with is given by the linear
combinations

𝑢𝛼𝛽 = ℎ𝛼𝛽 − 𝑙𝛼𝛽, 𝑣𝛼𝛽 = ℎ𝛼𝛽 + 𝑙𝛼𝛽, 𝑤𝛼𝛽 = 2𝑘𝛼𝛽. (6.57)

Using these fields rather than the original ones, the field equations assume a particularly
simple form. In fact, we find in Sect. 6.1.4 that this choice yields decoupled equations
for the individual fields.

Area metric gravity as constructed in the framework of covariant constructive gravity
is—by the first axiom—diffeomorphism invariant. For the linear theory, this invariance
manifests itself in the presence of a gauge symmetry

𝐻′𝐴 = 𝐻𝐴 + 𝐶𝐴 𝑛
𝐵 𝑚𝑁𝐵𝜉𝑚

,𝑛 (6.58)

generated by vector fields 𝜉 ∈ Γ(𝑇 𝑀). As a result, the Euler-Lagrange equations are
underdetermined, as solutions can only be obtained up to a gauge transform.

In order to have a determined system for our following analysis, we fix the gauge by
reducing the number of perturbation fields in a way that can always be reproduced using
appropriate gauge transforms. The tool that makes the gauge fixing quite straightforward
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perturbation kind dof per field fields total dof

scalar 1 𝐴, ̃𝑈, ̃𝑉 , 𝑉 , 𝑊 5
transverse vector 2 𝐵𝛼, 𝑈𝛼, 𝑊 𝛼 6
transverse traceless tensor 2 𝑈𝛼𝛽, 𝑉 𝛼𝛽, 𝑊 𝛼𝛽 6

Table 6.2: The 17 gauge-fixed degrees of freedom (dof) in linearised area metric gravity.
Transverse vectors are divergence free, i.e. satisfy 0 = 𝜕𝛼𝑈𝛼. Transverse
traceless vectors are symmetric, tracefree, and divergence free, i.e. 0 = 𝑈 [𝛼𝛽],
0 = 𝛾𝛼𝛽𝑈𝛼𝛽, and 0 = 𝜕𝛼𝑈𝛼𝛽. Together with the four gauge-fixed fields 𝐵 = 0,
𝑉 𝛼 = 𝑈𝛼, and 𝑈 = −𝑉, the area metric perturbation in this particular gauge
is reproduced using Eq. (6.56).

is Helmholtz’ theorem7, which allows us to decompose the spatial vector field 𝑏 into a
so-called longitudinal scalar 𝐵 and a divergence-free transverse vector 𝐵𝛼 satisfying
𝜕𝛼𝐵𝛼 = 0 as

𝑏𝛼 = 𝜕𝛼𝐵 + 𝐵𝛼. (6.59)

Applied to a tensor of rank 2, the Helmholtz theorem yields a decomposition

𝑢𝛼𝛽 = 𝑈𝛼𝛽 + 2𝜕(𝛼𝑈𝛽) + 𝛾𝛼𝛽 ̃𝑈 + Δ𝛼𝛽𝑈. (6.60)

In this decomposition, 𝑈𝛼𝛽 is the transverse traceless (TT) tensor satisfying 𝜕𝛼𝑈𝛼𝛽 = 0
and 𝛾𝛼𝛽𝑈𝛼𝛽 = 0. The vector 𝑈𝛼 is again a transverse vector, 𝑈 and ̃𝑈 are scalars, and
Δ𝛼𝛽 = 𝜕𝛼𝜕𝛽 − 1

3𝛾𝛼𝛽Δ, with the Laplacian Δ, denotes the traceless Hessian. The same
decomposition

𝑣𝛼𝛽 = 𝑉 𝛼𝛽 + 2𝜕(𝛼𝑉 𝛽) + 𝛾𝛼𝛽 ̃𝑉 + Δ𝛼𝛽𝑉 (6.61)

applies to 𝑣𝛼𝛽. Being traceless, the field 𝑤𝛼𝛽 is missing the trace scalar 𝑊̃, but otherwise
admits a similar deconstruction into transverse traceless tensor 𝑊 𝛼𝛽, transverse vector
𝑊 𝛼, and longitudinal scalar 𝑊. At last, we have the lapse perturbation 𝐴, which is
already a scalar.

Explicitly carrying out the gauge transform (6.58) and carefully inspecting the components
of 𝐻′𝐴, we find that the vector field 𝜉 can always be chosen such that the four gauge
conditions

0 = 𝐵, 0 = 𝑈𝛼 − 𝑉 𝛼, 0 = 𝑈 + 𝑉 (6.62)

are satisfied [65]. This choice reduces the degrees of freedom to 17, which are summarised
in Table 6.2.

Let us briefly collect the results of a similar decomposition and gauge fixing for metric

7The Helmholtz theorem is only valid for certain classes of functions. Applicability to linearised area
metric gravity, i.e. sufficiently well-behaved perturbations, is assumed.
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gravity perturbed around the Minkowski metric. This will be of use later when we compare
area metric gravity with metric gravity and highlight the differences. The metric tensor
has 10 degrees of freedom and, as already remarked, decomposes into shift 𝑁𝛼, lapse 𝑁,
and spatial metric ̂𝑔𝛼𝛽 by virtue of the relations

𝑔(𝑑𝑡, 𝑑𝑡) = 1
𝑁2 ,

𝑔(𝑑𝑡, 𝑑𝑥𝛼) = −𝑁𝛼

𝑁2 ,

𝑔(𝑑𝑥𝛼, 𝑑𝑥𝛽) = 𝑁𝛼𝑁𝛽

𝑁2 − ̂𝑔𝛼𝛽.

(6.63)

Around 𝜂, the observer quantities expand as

𝑁 = 1 + 𝐴,
𝑁𝛼 = 𝑏𝛼,
̂𝑔𝛼𝛽 = 𝛾𝛼𝛽 + 𝜑𝛼𝛽.

(6.64)

Like before, we use the Helmholtz theorem to write

𝑏𝛼 = 𝜕𝛼𝐵 + 𝐵𝛼 (6.65)

and
𝜑𝛼𝛽 = 𝐸𝛼𝛽 + 2𝜕(𝛼𝑉 𝛽) + 𝐶𝛾𝛼𝛽 + Δ𝛼𝛽𝐷. (6.66)

A possible choice of gauge conditions is to set 𝐵, 𝐷, and 𝑉 𝛼 to zero, leaving us with 6
degrees of freedom in the fields 𝐴, 𝐵𝛼, 𝐶, and 𝐸𝛼𝛽.

6.1.4 Linearised field equations

Applying the 3 + 1 decomposition of the area metric field to the Lagrangian density
constructed in Sect. 6.1.1 yields an expression that is determined only by lapse, shift, and
observer quantities. The corresponding field equations are obtained by the variations

𝛿𝐿
𝛿𝑁

, 𝛿𝐿
𝛿𝑁𝛼 , 𝛿𝐿

𝛿𝐺𝛼𝛽 , 𝛿𝐿
𝛿𝐺𝛼

𝛽
, 𝛿𝐿

𝛿𝐺𝛼𝛽
(6.67)

with respect to all of these fields—as opposed to the “single” variation

𝛿𝐿
𝛿𝐺𝑎𝑏𝑐𝑑 (6.68)

with respect to the area metric in the spacetime picture.
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6 Application: gravitational radiation from birefringent matter dynamics

For the linearised field equations, we automatically obtain a Helmholtz decomposition of
the Euler-Lagrange equations: the variation with respect to the lapse 𝑁 is a scalar and
contains only contributions from scalars, the variation with respect to the shift 𝑁𝛼 is
a vector and contains only contributions from vectors. The same holds for the scalar
and vector constituents of the observer quantities ̂𝐺. Also the variations with respect to
transverse traceless tensors are again tensors and only comprised of tensors. As a result,
the field equations already decouple to a large extent. For this reason, the terminology
of the individual scalar, vector, and tensor fields as modes of the gravitational field is
justified.

Performing the 3 + 1 split is a computationally heavy task. Essentially, the perturbation
(6.56) has to be inserted into the ansätze (A.1)–(A.7), the resulting expression must be
simplified, then varied with respect to the different modes, and simplified again. In order
to gain confidence in the result, speed up the computation, and—very importantly—have
a calculation that can be reproduced and amended, the task has been offloaded to the
computer algebra system cadabra [69, 70]. The code is available at Ref. [7].

The result of this computation finally yields the field equations of perturbative area
metric gravity in a gauge-fixed 3 + 1 setting. Of the 16 undetermined gravitational
constants 𝑘𝑖 that determine the expansion coefficients 𝑒𝑖 (see Appendix B), ten independent
linear combinations 𝑠𝑖 (listed in Appendix C) make up the linearised field equations
(C.2)–(C.4).

An important sanity check is provided by the second Noether theorem (2.47)

0 = 𝐷𝑛𝒯𝑛
𝑚 − 𝛿𝐿

𝛿𝑢𝐴 𝑢𝐴
𝑚 = −𝐷𝑛[ 𝛿𝐿

𝛿𝑢𝐴 𝐶𝐴 𝑛
𝐵 𝑚𝑢𝐵] − 𝛿𝐿

𝛿𝑢𝐴 𝑢𝐴
𝑚, (6.69)

whose expansion around 𝑁 amounts to

0 = −[𝐷𝑛
𝛿𝐿
𝛿𝑢𝐴 ]

𝑁+𝐻
𝐶𝐴 𝑛

𝐵 𝑚𝑁𝐵 + 𝒪(𝐻2). (6.70)

Inverting the relation (6.56) between spacetime area metric and observer fields, we can
make use of the chain rule in order to express the variations with respect to the area
metric in terms of variations with respect to the observer quantities. This renders the
perturbative expansion of the Noether theorem in the particularly simple form

0 = 𝜕𝑡
𝛿𝐿
𝛿𝐴

− 𝜕𝛼
𝛿𝐿
𝛿𝑏𝛼

and 0 = 𝜕𝑡
𝛿𝐿
𝛿𝑏𝛼 − 4𝜕𝛽

𝛿𝐿
𝛿𝑢𝛼𝛽

, (6.71)

which is indeed satisfied by the system (C.2)–(C.4). As a consequence of the diffeomorphism
invariance of the theory, the field equations have four dependencies among themselves.
This is, of course, expected—not only from the Noether theorem, but also from the fact that
gauge-fixing the observer quantities by constraining four fields reduces the 21 unknowns
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by four. In order for the system of 21 field equations not to be overdetermined, it must
express additional dependencies. These considerations are reminiscent of the rich field
of constraint analysis8, which is predominantly studied in the Hamiltonian picture and
also plays a rôle in canonical constructive gravity. For some results in the context of
covariant constructive gravity, limited to first-derivative-order theories, see Ref. [37].

While the Noether identities are expected and, in fact, indispensable, a thorough analysis of
the linearised field equations reveals further properties that are impossible to reconcile with
our premises. After all, the axioms of covariant constructive gravity are only necessary
conditions for a theory to be viable. Any such constructed theory needs to be further
specified by finding appropriate values for the gravitational constants. This also applies
to Einstein gravity—the Newtonian and cosmological constants only match observations
for specific ranges, where some possibilities like a negative Newtonian constant can be
dismissed outright.

The first restriction of the area metric gravity parameter range we will make is to match
the weak gravitational field sourced by a point mass with a modest generalisation of the
Einstein equivalent. More specifically, we consider the gravitational field sourced by a
point mass 𝑀 which is at rest at the coordinate origin and thus describes the worldline

𝛾𝑎(𝜆) = 𝜆𝛿𝑎
0 . (6.72)

If the point particle 𝑀 is an idealisation of a matter field that obeys GLED dynamics, its
action is given by [28, 29]

𝑆matter[𝛾] = −𝑀 ∫ 𝑑𝜆𝒫GLED(ℒ−1( ̇𝛾(𝜆)))− 1
4 , (6.73)

where ℒ−1 is the inverse of the Legendre map associated with the principal polynomial.
In the Einstein equivalent, this action coincides with the common notion of the length of
the particle worldline as measured using the covariant metric tensor. The full expansion
for arbitrary curves 𝛾 is employed in the following section, it suffices here to consider the
special case (6.72) and find the only nonvanishing contribution

𝛿𝑆matter
𝛿𝐴(𝑥)

= −𝑀𝛿(3)(𝑥). (6.74)

With the matter distribution being stationary, we consider a stationary ansatz for the
solution to the field equations by assuming that the time derivatives of the gravitational
field vanish. Using the source (6.74) as the left-hand side of the linearised field equations
(C.2)–(C.4) yields vector and tensor equations that are trivially sourced by zero and as

8See e.g. [71, 72].
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such only admit the trivial solution 𝐵𝛼 = 𝑈𝛼 = 𝑊 𝛼 = 0 and 𝑈𝛼𝛽 = 𝑉 𝛼𝛽 = 𝑊 𝛼𝛽 = 0.9
The scalar equations take the form

𝐸(scalar)
𝑖 = 𝑀𝛿(3)(𝑥)𝛿0

𝑖 + ∑
𝑗

[𝑎𝑖𝑗𝑆𝑗 + 𝑏𝑖𝑗Δ𝑆𝑗 + 𝑐𝑖𝑗ΔΔ𝑆𝑗] (6.75)

for constant coefficients 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 and scalar fields 𝑆(𝑖).

As solution to the scalar equations we obtain10 certain combinations of long-ranging Cou-
lomb solutions ∝ 1

𝑟 and short-ranging Yukawa solutions ∝ 1
𝑟e−𝜇𝑟. While the coefficients

of these combinations depend in an intricate way on the gravitational constants and are
impossible to present in general, it is feasible to make a generic argument concerning
the phenomenology of the linearised result: the solution to the scalar field equations
corresponds to the linearised Schwarzschild solution of general relativity for a central
mass 𝑀 corrected by short-ranging Yukawa potentials if and only if two linear conditions
on the gravitational constants 𝑠𝑖 hold.

This statement concerns the metric limit of area metric gravity, which is reached using
the metrically induced area metric (3.20). Inserting the metric 3 + 1 decomposition (6.63)
and its perturbative expansion (6.64) in the expression for the induced area metric yields

̂𝐺𝛼𝛽 = ̂𝑔𝛼𝛽 = 𝛾𝛼𝛽 + 𝜑𝛼𝛽,
̂𝐺𝛼

𝛽 = 0,
̂𝐺𝛼𝛽 = ( ̂𝑔−1)𝛼𝛽 ≈ 𝛾𝛼𝛽 − 𝜑𝛼𝛽,

(6.76)

from which we read off the induced perturbations

𝑢𝛼𝛽 = 2𝜑𝛼𝛽, 𝑣𝛼𝛽 = 0, 𝑤𝛼𝛽 = 0. (6.77)

If the metric perturbation is now given by the expansion of the Schwarzschild solution
[73] to first order,

𝐴 ∝ 1
𝑟

and 𝜑𝛼𝛽 = 2𝐴𝛾𝛼𝛽, (6.78)

the metrically induced area metric scalar fields amount to first order to

𝑉 = 𝑊 = ̃𝑉 = 0,
̃𝑈 = 4𝐴,

𝐴 ∝ 1
𝑟

.

(6.79)

9See [3], where it is shown how the Fourier transform yields a linear system of full rank. Maple code
for this calculation is available at Ref. [7].

10See [3] and the Maple code at Ref. [7].
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The condition stated above requires that the area metric deviations from these fields
amount to short-ranging Yukawa corrections, i.e. informally

4𝐴 − ̃𝑈 = (Yukawa corrections),
𝑉 = (Yukawa corrections),

𝑊 = (Yukawa corrections),
̃𝑉 = (Yukawa corrections).

(6.80)

These conditions are equivalent to the vanishing of the linear combinations

𝑠1 + 4𝑠4 = 0 and 𝑠6 = 0, (6.81)

which we from now on implement, reducing the number of first-order gravitational
constants by two to eight. Thus, we have ruled out the possibility of deviating too much11

from Einstein gravity already in the regime of weak birefringence and restricted perturbative
area metric gravity to a phenomenologically plausible sector. In this subtheory, the scalar
fields around a point mass reduce to

𝑉 (𝑥) = 0,
𝑊(𝑥) = 0,

̃𝑈(𝑥) = 𝑀
4𝜋𝑟

[𝛼 − (𝛽 + 3
4

𝛾)e−𝜇𝑟],

̃𝑉 (𝑥) = 𝑀
4𝜋𝑟

[1
4

𝛾e−𝜇𝑟],

𝐴(𝑥) = 𝑀
4𝜋𝑟

[1
4

𝛼 + 1
4

𝛽e−𝜇𝑟],

(6.82)

where we redefined the relevant gravitational constants using the more convenient set

𝜇2 = 8𝑠1𝑠39
9𝑠2

1 − 24𝑠1𝑠3 + 8𝑠1𝑠37 + 16𝑠2
3
,

𝛼 = 1
2𝑠1

,

𝛽 = (3𝑠1 + 4𝑠3)2

6𝑠1(9𝑠2
1 − 24𝑠1𝑠3 + 8𝑠1𝑠37 + 16𝑠2

3)
,

𝛾 = −8(3𝑠1 + 4𝑠3)
6(9𝑠2

1 − 24𝑠1𝑠3 + 8𝑠1𝑠37 + 16𝑠2
3)

.

(6.83)

With the reduction from ten to eight gravitational constants, the linearised field equations

11In the specific sense explained above.
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assume a simpler form. There are reduced scalar field equations

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠1𝐴 − 𝑠1
4

̃𝑈 + 𝑠3
̃𝑉 − 𝑠1

4
̈𝑉 + 𝑠1

12
Δ𝑉],

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠11�𝑉 + 𝑠13𝑉 + 𝑠14�𝑊 + 𝑠16𝑊],

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠14�𝑉 + 𝑠16𝑉 − 𝑠11�𝑊 − 𝑠13𝑊],

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

S-TR

= 𝛾𝛼𝛽[ − 2𝑠1
3

Δ𝐴 − 𝑠1
2

̈̃𝑈 + 𝑠1
6

Δ ̃𝑈 + (−3𝑠1
4

+ 𝑠3) ̈̃𝑉 − 2𝑠3
3

Δ ̃𝑉

+ 𝑠1
3

Δ ̈𝑉 − 𝑠1
18

ΔΔ𝑉], (6.84)

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

S-TR

= 𝛾𝛼𝛽[(−𝑠1 + 4𝑠3
3

)Δ𝐴 + (−3𝑠1
4

+ 𝑠3) ̈̃𝑈 − 2𝑠3
3

Δ ̃𝑈

+ 𝑠37
̈ ̃𝑉 − (3𝑠1

2
− 2𝑠3 + 𝑠37)Δ ̃𝑉 + 𝑠39

̃𝑉

+ (𝑠1
2

− 2𝑠3
3

)Δ ̈𝑉 + 2𝑠3
9

ΔΔ𝑉],

[ 𝛿𝐿
𝛿𝑏𝛼 ]

S

= 𝜕𝛼𝜕𝑡[ − 2𝑠1
̃𝑈 + (−3𝑠1 + 4𝑠3) ̃𝑉 + 2𝑠1

3
Δ𝑉],

𝛿𝐿
𝛿𝐴

= − 2𝑠1Δ ̃𝑈 + (−3𝑠1 + 4𝑠3)Δ ̃𝑉 + 2𝑠1
3

ΔΔ𝑉 ,

vector field equations

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

V

= 𝑠1
2

𝜕𝑡𝜕(𝛼[2𝐵𝛽) + ̇𝑈𝛽)],

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

V

= 2𝜕(𝛼[𝑠11�𝑈𝛽) + 𝑠13𝑈𝛽) + 𝑠14�𝑊𝛽) + 𝑠16𝑊𝛽)],

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

V

= 2𝜕(𝛼[𝑠14�𝑈𝛽) + 𝑠16𝑈𝛽) − 𝑠11�𝑊𝛽) − 𝑠13𝑊𝛽)], (6.85)

[ 𝛿𝐿
𝛿𝑏𝛼 ]

V

= 𝑠1Δ[2𝐵𝛼 + ̇𝑈𝛼],
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and traceless tensor field equations

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

TT

= 𝑠1
4
�𝑈𝛼𝛽,

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

TT

= 𝑠11�𝑉𝛼𝛽 + 𝑠13𝑉𝛼𝛽 + 𝑠14�𝑊𝛼𝛽 + 𝑠16𝑊𝛼𝛽, (6.86)

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

TT

= 𝑠14�𝑉𝛼𝛽 + 𝑠16𝑉𝛼𝛽 − 𝑠11�𝑊𝛼𝛽 − 𝑠13𝑊𝛼𝛽.

The second observation we want to make concerns the subset

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠11�𝑉 + 𝑠13𝑉 + 𝑠14�𝑊 + 𝑠16𝑊],

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠14�𝑉 + 𝑠16𝑉 − 𝑠11�𝑊 − 𝑠13𝑊]
(6.87)

of the reduced scalar equations (6.84), whose pattern is repeated in the vector equations
(6.85) for the modes 𝑈𝛼 and 𝑊 𝛼 as well as in the tensor equations (6.86) for the modes
𝑉 𝛼𝛽 and 𝑊 𝛼𝛽. Linear combinations of these equations in vacuo yield the equivalent
system

0 = �𝑉 + 𝜈2𝑉 + 𝜎𝑊,
0 = �𝑊 + 𝜈2𝑊 − 𝜎𝑉 ,

(6.88)

with constants

𝜈2 = 𝑠11𝑠13 + 𝑠14𝑠16
𝑠2

11 + 𝑠2
14

and 𝜎 = 𝑠11𝑠16 − 𝑠13𝑠14
𝑠2

11 + 𝑠2
14

. (6.89)

Performing a spatial Fourier transform of the vacuum scalar equations (6.88), we can
translate them into a system of linear, first-order ordinary differential equations for the
modes ̃𝑣(𝑡, 𝑘) and 𝑤̃(𝑡, 𝑘)

𝑑
𝑑𝑡

⎛⎜⎜⎜⎜
⎝

̃𝑣
𝑤̃

̇̃𝑣
̇𝑤̃

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1

−(𝑘2 + 𝜈2) −𝜎 0 0
𝜎 −(𝑘2 + 𝜈2) 0 0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

̃𝑣
𝑤̃

̇̃𝑣
̇𝑤̃

⎞⎟⎟⎟⎟
⎠

. (6.90)

What is now interesting about this system are the eigenvalues of the time evolution, which
are the four complex roots

𝜆𝑘 = ±i√(𝑘2 + 𝜈2) ± i𝜎. (6.91)

Most importantly, there are always 𝜆𝑘 such that Re(𝜆𝑘) > 0 unless 𝜎 vanishes. As a
consequence, there will always be diverging modes under time evolution if 𝜎 is not zero.
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6 Application: gravitational radiation from birefringent matter dynamics

This finding is not restricted to the scalar modes we analysed, but also holds for the vector
and transverse traceless tensor modes that are coupled in the same way. Such a theory
would not only be physically implausible, it would be fundamentally broken. We set 𝜎 to
zero by imposing the additional condition

𝑠11𝑠16 − 𝑠13𝑠14 = 0 (6.92)

and have thus reduced linearised area metric gravity to a theory parameterised by seven
remaining gravitational constants, of which there are five combinations that determine
the results obtained above: the two constants 𝜇 and 𝜈 appear as masses in wave equations
and screened Poisson equations, respectively, and three constants 𝛼, 𝛽, and 𝛾 further
parameterise the linearised Schwarzschild solution.

Note that with 𝜎 = 0 the wave equations for 𝑊, 𝑉, 𝑈𝛼, 𝑉 𝛼, 𝑈𝛼𝛽, 𝑉 𝛼𝛽, and 𝑊 𝛼𝛽

decouple, e.g. the system of transverse traceless tensor equations can be transformed by
taking linear combinations into

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

TT

= 𝑠1
4
�𝑈𝛼𝛽,

𝑠11
𝑠2

11 + 𝑠2
14

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

TT

+ 𝑠14
𝑠2

11 + 𝑠2
14

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

TT

= �𝑉𝛼𝛽 + 𝜈2𝑉𝛼𝛽, (6.93)

𝑠14
𝑠2

11 + 𝑠2
14

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

TT

− 𝑠11
𝑠2

11 + 𝑠2
14

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

TT

= �𝑊𝛼𝛽 + 𝜈2𝑊𝛼𝛽.

Similar decoupled wave equations are obtained for the mentioned vector and scalar modes.
It is also possible to find a linear combination of scalar field equations (6.84) such that
the mode ̃𝑉 obeys a massive wave equation12

(source terms) = � ̃𝑉 + 𝜇2 ̃𝑉 . (6.94)

Counting the wave equations we already found, there are at least 13 propagating degrees
of freedom. This is already the maximum number, because our system for 17 degrees of
freedom must exhibit four constraint equations arising from the gauge symmetry. In fact,
the four remaining degrees 𝐵𝛼, ̃𝑈, and 𝐴 are determined by field equations with less than
two time derivatives, as can be read off from Eqns. (6.84)–(6.86). Such equations as part
of an initial value problem are usually associated with constraints, as they are not capable
to evolve initial data, but only to constrain it.

Summing up, the phenomenologically relevant subsector of linearised area metric gravity
admits two massless propagating degrees of freedom in the form of the tensor mode

12Not denoting linear combinations of Lagrangian variations explicitly but just referring to them as
source terms.
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𝑈𝛼𝛽. Furthermore, there are 11 massive propagating degrees of freedom with mass 𝜇,
represented by the fields 𝑊, 𝑉, ̃𝑉, 𝑈𝛼, 𝑊 𝛼, 𝑉 𝛼𝛽, and 𝑊 𝛼𝛽. The remaining four degrees
of freedom 𝐴, ̃𝑈, and 𝐵𝛼 do not propagate but follow from constraints.

This again constitutes an important sanity check: the count of propagating degrees of
freedom is as expected and yields 21 − 2 × 4 = 13, just like in general relativity where we
have 10 − 2 × 4 = 2 degrees of freedom. In the latter theory, only the transverse traceless
part of the spatial metric tensor propagates and does so according to a massless wave
equation. For area metric gravity, the only massless propagating modes turn out to be
the transverse traceless tensor 𝑈𝛼𝛽, which is exactly the perturbation induced by the
propagating metric modes (see (6.77)).

All other modes, which are not inducible by the propagating metric modes, follow massive
wave equations with mass 𝜇. In the next section, it will become clear that the generation
of such modes from matter distributions is suppressed, e.g. a binary star only radiates on
nonmetric tensor modes or on vector or scalar modes when its angular frequency exceeds
a certain threshold. This is another realisation of the correspondence principle, which
demands that Einstein gravity approximate area metric gravity in certain limits.

6.2 The binary star

As example for a matter distribution that gravitates according to area metric gravity, we
consider a binary star. The system shall be approachable without too much computational
effort, while at the same time exhibiting exciting new physics beyond Einstein gravity—a
configuration of two point masses that circle each other turns out to meet both requirements.
First, let us introduce a method to construct a solution up to the second perturbation
order.

6.2.1 Iterative solution strategy for gravitational field equations

Covariant constructive gravity closes matter theories by providing previously unknown
dynamics for geometry to which the matter field couples. Let 𝜙 be the matter field in
question, coupling locally to a geometric field 𝐺. Starting from the matter action13

𝑆matter[𝜙, 𝐺), the closure procedure yields the joint action

𝑆[𝐺, 𝜙] = 𝑆gravity[𝐺] + 𝜅𝑆matter[𝜙, 𝐺), (6.95)

13Round parentheses indicate local dependencies.
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where 𝑆gravity is the action of the constructed theory compatible with the matter theory.
The constant 𝜅 controls the scale of coupling between both fields. Abbreviated as

𝑒[𝐺] =
𝛿𝑆grav

𝛿𝐺
, 𝑇 [𝜙, 𝐺) = 𝛿𝑆mat

𝛿𝐺
, 𝑓[𝜙, 𝐺) = 𝛿𝑆mat

𝛿𝜙
, (6.96)

the variations with respect to the matter field and the gravitational field yield the Euler-
Lagrange equations

𝑒[𝐺] = −𝜅𝑇 [𝜙, 𝐺) and 𝑓[𝜙, 𝐺) = 0. (6.97)

Such a tightly coupled system is hard to solve in general. Fortunately, it is not our
objective to obtain exact solutions—we have expanded the field equations up to second
order and only seek to derive effects up to this finite order. Proceeding similarly as in
Ref. [74], a solution is constructed iteratively by expanding the geometry formally as

𝐺 = 𝑁 +
∞

∑
𝑘=1

𝜅𝑘𝐻(𝑘). (6.98)

Truncations of Eq. (6.98) at order 𝑘 yield approximations 𝐺(𝑘) of the geometry. The
constituents 𝑒 and 𝑇 of the Euler-Lagrange equations expand as

𝑒[𝑁 + 𝐻] = 𝑒(0) + 𝑒(1)[𝐻] + 𝑒(2)[𝐻] + 𝒪(𝐻3),
𝑇 [𝜙, 𝑁 + 𝐻) = 𝑇(0)[𝜙] + 𝑇(1)[𝜙, 𝐻) + 𝒪(𝐻2),

(6.99)

where 𝐻 contributes linearly to the first-order terms and quadratically to the second-order
terms. We now solve the equations for the gravitational field up to second order by
considering the orders zero to two in 𝜅.

For the zeroth iteration, the Euler-Lagrange equations (6.97) are evaluated at 𝐺(0) = 𝑁,
resulting in the equation

𝑒[𝑁] = 𝑒(0) = 0. (6.100)

This just enforces that the expansion point 𝑁 must solve the gravitational field equations
in vacuo. Since we explicitly consider this condition when perturbatively constructing
theories, Eq. (6.100) is solved trivially.

Proceeding with the first iteration, we evaluate at 𝐺(1) = 𝑁 + 𝜅𝐻(1). Since 𝑒(0) = 0
already holds from the previous iteration, the first of the two equations simplifies to

𝑒(1)[𝐻(1)] = −𝑇(0)[𝜙]. (6.101)

Figuratively speaking, the first correction of the gravitational field is sourced by the matter
content on a flat background. Having solved this equation for 𝐻(1), the perturbation may
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be used in order to solve the second equation

𝑓[𝜙, 𝐺(1)) = 0 + 𝒪(𝜅2). (6.102)

The interpretation is similar: a deviation from the flat gravitational field, caused by the
presence of matter, makes also the matter field deviate from its unperturbed configura-
tion.

The second iteration yields an equation for the second-order perturbation 𝐻(2) by inserting
𝐺(2) = 𝑁 +𝜅𝐻(1) +𝜅2𝐻(2) in the first field equation and simplifying using the lower-order
equations. We obtain the result

𝑒(1)[𝐻(2)] = −𝜅−1𝑇(0)[𝜙] − 𝑇(1)[𝜙, 𝐻(1)) − 𝑒(2)[𝐻(1)] + 𝒪(𝑘), (6.103)

where it has to be noted that 𝜙, having been fixed in Eq. (6.102), has a dependence on
𝜅𝐻(1). Therefore, contributions from 𝑇(0)[𝜙] must only be considered up to order 𝜅1 and
contributions from 𝑇(1)[𝜙, 𝐻(1)) only up to order 𝜅0.

The second-order perturbation 𝐻(2) is thus sourced by both the first-order deviations of
the gravitational field and the induced motion of the matter field, as will become clear
when explicitly solving the binary star in the following section. Aborting the iterative
solution procedure at this point, we have found the approximation

𝐺(2) = 𝑁 + 𝜅𝐻(1) + 𝜅2𝐻(2) (6.104)

of the geometry G coupled to 𝜙 and, as a bonus, the trajectory of the matter field 𝜙 on
the linearised background 𝐺(1).

6.2.2 Solution in Einstein gravity

Before proceeding to make use of the iterative solution strategy and solving the binary
star in area metric gravity, let us consider the same problem in Einstein gravity. We
will, of course, only reproduce well-established results, but also gain confidence in the
approach and become acquainted with the calculations. It is also advantageous to have the
metric theory at hand in order to distinguish the uniquely area metric features later on.
State-of-the-art methods derived from Einstein gravity (see e.g. Ref. [74]) extend to higher
perturbation orders and much more complex matter configurations than the relatively
simple case considered here, but they are not applicable to area metric gravity. Rather,
we make use of our hand-crafted approach that accommodates nonmetric geometries just
as well.

A binary star consists of two slowly moving point masses 𝑚𝑖 describing two worldlines
𝛾𝑖 ∶ ℝ → 𝑀. The metric field is a section 𝑔 of the metric bundle and defines the matter
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action 𝑆matter via the length functional14

𝑆matter[𝛾(1), 𝛾(2), 𝑔) = ∑
𝑖=1,2

𝑚𝑖𝑐 ∫ 𝑑𝜆√𝑔−1( ̇𝛾(𝑖)(𝜆), ̇𝛾(𝑖)(𝜆)). (6.105)

Einstein gravity completes Eq. (6.105) to a predictive theory by providing dynamics for
the metric 𝑔 in terms of the Einstein-Hilbert action

𝑆gravity[𝑔] = 𝑐3

16𝜋𝐺
∫ 𝑑4𝑥√− det 𝑔𝑅. (6.106)

We use the parameterisation 𝛾0
(𝑖)(𝜆) = 𝑐𝜆 and obtain by variation the Euler-Lagrange

equations

√− det 𝑔 [𝑅𝑎𝑏 − 1
2

𝑔𝑎𝑏𝑅] = 8𝜋𝐺
𝑐3 ∑

𝑖=1,2
𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡))

̇𝛾𝑎
(𝑖) ̇𝛾𝑏

(𝑖)

√𝑔−1( ̇𝛾(𝑖), ̇𝛾(𝑖))
(6.107)

and
0 = ̈𝛾𝑎

(𝑖) + Γ𝑎
𝑏𝑐 ̇𝛾𝑏

(𝑖) ̇𝛾𝑐
(𝑖). (6.108)

The first equation (6.107) consists of the densitised Einstein tensor on the left-hand
side and the stress-energy-momentum tensor of the point particle on the right-hand side.
Eq. (6.108) is the geodesic equation on a pseudo-Riemannian manifold with the Christoffel
symbols Γ𝑎

𝑏𝑐. Using the slow-motion condition

1
𝑐

̇𝛾𝛼
(𝑖) ≪ 1, (6.109)

the geodesic equation simplifies to

̇𝛾0
(𝑖) = 𝑐 and 1

𝑐2 ̈𝛾𝛼
(𝑖) = −Γ𝛼

00. (6.110)

In order to construct the second-order solution for the metric tensor in this setting, we
expand 𝑔 as

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + ℎ𝑎𝑏 = 𝜂𝑎𝑏 + 𝐺ℎ𝑎𝑏
(1) + 𝐺2ℎ𝑎𝑏

(2) + 𝒪(𝐺3), (6.111)

using the Newtonian constant 𝐺 as coupling constant. Adopting the 3 + 1 decomposition
(6.63)–(6.66) for the metric tensor as well as the gauge 𝐵 = 𝐷 = 0 and 𝑉 𝛼 = 0, the
perturbation is given by

ℎ00 = −2𝐴, ℎ0𝛼 = 𝐵𝛼, ℎ𝛼𝛽 = −𝐸𝛼𝛽 − 𝛾𝛼𝛽𝐶, (6.112)
14From now on, we do not use geometrised units but state every occurrence of the speed of light 𝑐 and

Newton’s constant 𝐺 explicitly.
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with scalar modes 𝐴 and 𝐶, vector modes 𝐵𝛼, and transverse traceless tensor modes
𝐸𝛼𝛽.

Since the variation 𝑒[𝑔] of the Einstein-Hilbert Lagrangian with respect to the metric
tensor is given by the Einstein tensor, which is derived from the Riemann curvature
tensor, the zeroth-order equation 𝑒[𝜂] = 0 is already solved—the flat Minkowski metric 𝜂
has zero curvature.

The first-order equation
𝑒(1)[ℎ(1)] = −𝑇(0)[𝛾(1), 𝛾(2)] (6.113)

is obtained from the full Euler-Lagrange equations (6.107) using the well-known expansion
of the Einstein tensor to linear order15 for the left-hand side and—since the right-hand
side already contains a factor 𝐺—the zeroth order of the matter distribution. Split into
spatial and temporal components, we get

𝑒00
(1)[ℎ] = Δ𝐶,

𝑒0𝛼
(1)[ℎ] = − 1

2
Δ𝐵𝛼 − 𝜕𝛼 ̇𝐶,

𝑒𝛼𝛽
(1) [ℎ] = − 1

2
�𝐸𝛼𝛽 + 𝜕(𝛼𝐵̇𝛽) + 𝛾𝛼𝛽 [ ̈𝐶 − 2

3
Δ(−𝐴 + 1

2
𝐶)] + Δ𝛼𝛽 [−𝐴 + 1

2
𝐶] ,
(6.114)

and the only nonzero contribution16

𝑇 00[𝛾(1), 𝛾(2)] = − 8𝜋
𝑐2 ∑

𝑖=1,2
𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡))

=∶ − 8𝜋
𝑐2 𝜌( ⃗𝑥, 𝑡),

(6.115)

such that the first iteration boils down to the Poisson equation

Δ𝐶(1) = 8𝜋
𝑐2 ∑

𝑖=1,2
𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)). (6.116)

The remaining equations are not sourced by matter and, thus, yield the trivial results
𝐴(1) = 1

2𝐶(1) and 𝐵𝛼
(1) = 0. For 𝐸𝛼𝛽

(1) , we obtain the massless wave equation in vacuo,

0 = �𝐸𝛼𝛽
(1) , (6.117)

which we solve by setting 𝐸𝛼𝛽
(1) to zero.17

15The prefactor given by the metric determinant is irrelevant: it expands as 1+ 1
2 𝜂𝛼𝛽ℎ𝛼𝛽 and contributes

only to zeroth order, because the expansion of the Einstein tensor has no zeroth order.
16Implementing the slow-motion condition.
17Allowing for nonvanishing solutions would place the binary star not on a flat background but on a
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Solving Eq. (6.116) yields the linearised solution

𝐸𝛼𝛽
(1) = 0, 𝐵𝛼

(1) = 0, 𝐴(1) = 1
𝑐2 𝜙, 𝐶(1) = 2

𝑐2 𝜙, (6.118)

effectively composed of one scalar field, the Newtonian potential

𝜙( ⃗𝑥, 𝑡) = − ∫ 𝑑3 ⃗𝑦 𝜌( ⃗𝑦, 𝑡)
| ⃗𝑥 − ⃗𝑦|

= − 𝑚1
| ⃗𝑥 − ⃗𝛾(1)(𝑡)|

− 𝑚2
| ⃗𝑥 − ⃗𝛾(2)(𝑡)|

.
(6.119)

According to the iterative solution procedure, the worldlines 𝛾(𝑖) can now be fixed by
solving their equations of motion (6.108) on the linearised background (6.118). These
equations are governed by the Christoffel symbols, which expand as

Γ𝛼
00 = −1

2
𝜕𝛼ℎ00 − 1

𝑐
ℎ̇𝛼0 + 𝒪(ℎ2), (6.120)

such that on the linearised background provided by the first iteration

̈𝛾𝛼
(𝑖) = − 𝑐2Γ𝛼

00

= − 𝐺𝜕𝛼𝜙 + 𝒪(𝐺2).
(6.121)

After all, slowly moving matter obeys—to first order—the Newtonian laws of gravity!

The equations of motion come with the same inconsistencies that plague Newtonian
gravity: as is obvious from the formula (6.119), the potential sourced by a point mass
diverges at the very location of the mass itself. Consequently, whenever a particle “feels”
its own field, which is certainly the case in Eq. (6.121), infinities are involved. The culprit
is the idealisation of the matter distribution as point masses. One of the remedies pointed
out in Ref. [74] is to forgo this idealisation and model the stars as extended fluids—taking
the limit of negligible extension where necessary. Alternatively, the diverging integrals
may be regularised, which has the same impact on the results. Effectively, both approaches
are implemented the same way: we keep the point mass idealisation but discard diverging
integrals, i.e. when solving for the trajectory of the first particle, the diverging term

𝑚1 ∫ 𝑑3 ⃗𝑦
𝛿(3)( ⃗𝑦 − ⃗𝛾(1)(𝑡))

| ⃗𝑦 − ⃗𝛾(1)(𝑡)|
(6.122)

background filled with gravitational radiation. As long as this radiation is weak enough in order
not to interfere with the second-order field equations, it can be included without affecting the
phenomenology. For simplicity, however, it is customary to choose the zero solution.
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does not contribute. This also holds, mutatis mutandis, for the second particle.

With this regularisation, the stars are subject to the equations of motion

̈𝛾𝛼
(𝑖) = −𝐺 ∑

𝑗≠𝑖
𝑚𝑗

𝛾𝛼
(𝑖) − 𝛾𝛼

(𝑗)

| ⃗𝛾(𝑖) − ⃗𝛾(𝑗)|3
, (6.123)

which is the centuries-old Kepler problem. The solutions are given by the various conic
sections, depending on the initial conditions. We will consider the bound states and
within this sector the configurations with exactly circular orbits. As it will turn out, the
additional complexity introduced by eccentricities is immaterial for at least some of the
new effects that come with the area metric generalisation. In this configuration, the bodies
have constant separation 𝑟 and move on trajectories

⃗𝛾(1)(𝑡) = 𝑚2
𝑚

𝑟𝑛⃗, ⃗𝛾(2)(𝑡) = −𝑚1
𝑚

𝑟𝑛⃗, (6.124)

where 𝑚 = 𝑚1 + 𝑚2 denotes the total mass. The vector 𝑛⃗ is one of the three basis
vectors

𝑛⃗ = ⎛⎜
⎝

cos 𝜔𝑡
sin 𝜔𝑡

0
⎞⎟
⎠

, 𝜆⃗ = ⎛⎜
⎝

− sin 𝜔𝑡
cos 𝜔𝑡

0
⎞⎟
⎠

, ⃗𝑒𝑧 = ⎛⎜
⎝

0
0
1
⎞⎟
⎠

(6.125)

that span the orbit-adapted frame [74]. Both masses reside in the orbital plane spanned
by 𝑛⃗ and 𝜆⃗, to which ⃗𝑒𝑧 is perpendicular. The frame rotates around the axis ⃗𝑒𝑧 with
angular frequency 𝜔 according to Kepler’s third law

𝜔2 = 𝐺𝑚
𝑟3 . (6.126)

Based on this configuration of matter content and gravitational field, the second iteration
yields the corrections sourced by both the first-order gravitational field itself and by
the influence of the gravitational field on the masses. We are only concerned with the
propagating degrees of freedom, as our interest lies in radiation emitted into the far zone,
so it suffices to consider the purely spatial part from Eq. (6.103)18

𝑒𝛼𝛽
(1) [ℎ(2)] = −𝐺−1𝑇 𝛼𝛽

(0) [𝛾(1), 𝛾(2)] − 𝑇 𝛼𝛽
(1) [𝛾(1), 𝛾(2), ℎ(1)) − 𝑒𝛼𝛽

(2) [ℎ(1)] + 𝒪(𝐺). (6.127)

Again the functionals 𝑒𝛼𝛽
(.) can be read off from the left-hand side of the full Euler-Lagrange

equations (6.107) and the functionals 𝑇 𝛼𝛽
(.) follow from the right-hand side.

The contribution from 𝑒𝛼𝛽
(1) [ℎ(2)] is already known from Eq. (6.114). Its projection to the

18Note that the labels on the worldlines 𝛾(𝑖) do not denote perturbation orders but the individual stars.
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transverse traceless tensor part is given by

𝑒𝛼𝛽
(1) [ℎ(2)]TT = −1

2
�𝐸𝛼𝛽

(2) . (6.128)

We find that the first-order matter functional 𝑇 𝛼𝛽
(1) [𝛾(1), 𝛾(2), ℎ(1)) does not contribute,

because each derivative of a spatial trajectory comes with a factor 𝜔, such that the whole
functional is proportional to 𝜔2 ∝ 𝐺. This is already of higher order than considered in
the second iteration equation (6.127). Reading off the term 𝑇 𝛼𝛽

(0) [𝛾(1), 𝛾(2)] and projecting
onto the transverse traceless tensor mode, we arrive at the intermediate expression

�𝐸𝛼𝛽 = − 16𝜋
𝐺𝑐4 [ ∑

𝑖=1,2
𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)) ̇𝛾𝛼

(𝑖) ̇𝛾𝛽
(𝑖)]

TT

+ 2𝑒𝛼𝛽
(2) [ℎ(1)]TT. (6.129)

It remains to derive the contribution from 𝑒𝛼𝛽
(2) [ℎ(1)]. This is the first and only time where

the second order of the Einstein field equations is needed. Thankfully, the field equations
have to be evaluated at the result of the first iteration, ℎ(1), which assumes a particularly
simple form where all fields are derived from only the Newtonian potential 𝜙. Evaluation
of the Einstein field equations at this solution yields the transverse traceless tensor part

𝑒𝛼𝛽
(2) [ℎ(1)]TT = − 2

𝑐4 [𝜕𝛼𝜙𝜕𝛽𝜙 − 2𝜕𝛼(𝜙𝜕𝛽𝜙)]TT . (6.130)

We are thus left with the wave equation (6.129), which is of the kind

�𝜓( ⃗𝑥, 𝑡) = 4𝜋𝜑( ⃗𝑥, 𝑡). (6.131)

Such an equation is solved by convolution of the source with the retarded Green’s function

𝜓( ⃗𝑥, 𝑡) = ∫ 𝑑3 ⃗𝑦𝜑(𝜏, ⃗𝑦)
| ⃗𝑥 − ⃗𝑦|

, (6.132)

where the source is evaluated at the retarded time

𝜏 = 𝑡 − 1
𝑐

| ⃗𝑥 − ⃗𝑦|. (6.133)

For radiation into the far zone, we are only interested in the result at points in spacetime
with 𝑅 = | ⃗𝑥| ≫ 𝑟. A first approximation in this regime is given by the zeroth order

⃗𝑥 − ⃗𝑦 ≈ 𝑅, which yields the simplified integral

𝜓( ⃗𝑥, 𝑡) = 1
𝑅

∫ 𝑑3 ⃗𝑦𝜑(𝜏, ⃗𝑦), (6.134)
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where from now on 𝜏 = 𝑡 − 𝑅/𝑐. This approximation is valid to lowest order, because for
the first part of the source (the first summand in Eq. (6.129)), the integration variable ⃗𝑦
is confined to the matter distribution, a region of radius 𝑟, such that

| ⃗𝑥 − ⃗𝑦| ≤ | ⃗𝑥| + | ⃗𝑦| ≤ | ⃗𝑥| + 𝑟 = 𝑅(1 + 𝑟
𝑅

)
𝑟
𝑅 →0

−−−→ 𝑅. (6.135)

For the second part, the source occupies an unbounded region but decreases in magnitude
with | ⃗𝑦|−4, allowing for a similar argument.

The integrals that remain to be evaluated are

𝐾𝛼𝛽 = ∫ 𝑑3 ⃗𝑦 ∑
𝑖=1,2

𝑚𝑖𝛿(3)( ⃗𝑦 − ⃗𝛾(𝑖)(𝜏)) ̇𝛾𝛼
(𝑖) ̇𝛾𝛽

(𝑖) (6.136)

and, after dropping a boundary term,

𝑈𝛼𝛽 = ∫ 𝑑3 ⃗𝑦𝜕𝛼𝜙𝜕𝛽𝜙. (6.137)

Evaluating 𝐾𝛼𝛽, whose integrand is a simple delta distribution, gives

𝐾𝛼𝛽 = 𝐺𝜂𝑚2

𝑟
𝜆𝛼𝜆𝛽. (6.138)

Here, the reduced mass
𝜂 = 𝑚1𝑚2

𝑚2 (6.139)

makes its first appearance. In order to evaluate the second integral, we first substitute the
Newtonian potential with the unevaluated integral expression (6.119), such that

𝑈𝛼𝛽 = ∫ 𝑑3 ⃗𝑦 ∫ 𝑑3 ⃗𝑦′ ∫ 𝑑3 ⃗𝑦′′ 𝜌( ⃗𝑦′)𝜌( ⃗𝑦′′)
| ⃗𝑦 − ⃗𝑦′|3| ⃗𝑦 − ⃗𝑦′′|3

(𝑦𝛼 − 𝑦′𝛼)(𝑦𝛽 − 𝑦′′𝛽). (6.140)

The integration over ⃗𝑦 now yields

𝑈𝛼𝛽 = 2𝜋 ∫ 𝑑3 ⃗𝑦′𝜌( ⃗𝑦′) ∫ 𝑑3 ⃗𝑦′′ 𝜌( ⃗𝑦′′)
| ⃗𝑦′ − ⃗𝑦′′|

[𝛾𝛼𝛽 − (𝑦′𝛼 − 𝑦′′𝛼)(𝑦′𝛽 − 𝑦′′𝛽)
| ⃗𝑦′ − ⃗𝑦′′|2

] , (6.141)

which corresponds to the repeated application of delta distributions. Making sure not to
include diverging terms, as explained earlier, the evaluation yields

𝑈𝛼𝛽 = 4𝜋𝜂𝑚2

𝑟
[𝛾𝛼𝛽 − 𝑛𝛼𝑛𝛽]. (6.142)

102



6 Application: gravitational radiation from birefringent matter dynamics

We finally put together both parts with the proper constants and the prefactor of 1/𝑅.
The result is the lowest nontrivial order of the gravitational field that is radiated away
into the far zone from a binary star in circular motion,

𝐺2ℎ𝛼𝛽
(2) = 4𝜂

𝑐4𝑅
(𝐺𝑚)2

𝑟
[𝜆𝛼𝜆𝛽 − 𝑛𝛼𝑛𝛽]TT, (6.143)

parameterised by properties of the matter distribution (total mass 𝑚, reduced mass 𝜂,
separation 𝑟), the speed of light 𝑐, and Newton’s gravitational constant 𝐺. This is in exact
accordance with the literature [74] and, of course, no surprise. Contemporary methods
employ what is called post-Minkowskian and post-Newtonian theory [74], which provide a
framework for more complex calculations. However, the pedestrian approach presented
here is derived from the same full theory and is thus equally valid.

The strength of this solution procedure is that it does not presuppose knowledge of the
exact (i.e. unperturbed) dynamics and is not restricted to metric theories. Both properties
are important for the analysis of the binary star in area metric gravity, a nonmetric
theory of gravity for which there are no known exact dynamics. Even though we followed
a top-down approach and derived the perturbative expansion of the Einstein field equations
from its full form, it would have been possible to construct this expansion from the bottom
up, order by order. In the following section, this will be the only option.

Finally, it should be noted (see also the discussion in Ref. [74]) that the radiation emitted
by the binary star is indeed an effect of second order. The presence of the masses alone
sources a gravitational field, which to first order is given by the Newtonian potential.
Under the influence of this field, the masses are confined to circular orbits—a first-order
effect. This refined motion, together with the first order of the gravitational field19, is the
source of the gravitational radiation produced in the second iteration. Knowledge of the
first-order field equations is not sufficient in order to derive the result (6.143), contrary
to the impression that the reading of derivations in the older literature might leave [75].
Whoever arrives at the conclusion (6.143), or its generalisation for more general matter
configurations called quadrupole formula, using only the linearised gravitational field
equations either did so out of pure luck, by silently slipping in knowledge about the second
order, or by having inadvertently constructed this order during the process. If, for example,
the derivation involves some basic assumptions about the theory, such as restrictions
concerning derivative orders, and also diffeomorphism invariance, it is no surprise that a
correct formula may be obtained—after all, as discussed in Chap. 3, Einstein gravity is
unique if certain assumptions are met.

19Via the contribution 𝑒(2)[ℎ(1)], where the second order of the field equations enters.
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6.2.3 Solution in area metric gravity

In the area metric gravity scenario, the point masses are subject to the action

𝑆matter[𝛾(1), 𝛾(2), 𝐺) = ∑
𝑖=1,2

𝑚𝑖𝑐 ∫ 𝑑𝜆𝒫GLED(𝐿−1( ̇𝛾(𝑖)(𝜆)))− 1
4 , (6.144)

which we already encountered when discussing the linearised Schwarzschild solution. This
time, the masses are not at rest, such that the “full” linearised expression for generic
worldlines is needed. It comes in very handy that the GLED polynomial is to first order
equivalent to the quadratic polynomial (see Eq. (6.10))

𝑃 (≤1)
GLED(𝑘) = [1 − 1

24
𝜖(𝐻)]𝜂(𝑘, 𝑘) + 1

2
𝐻(𝑘, 𝑘), (6.145)

which using the 3 + 1 split introduced in Sect. 6.1.3 decomposes into

𝑃 (≤1)
GLED(𝑘) = 𝜂(𝑘, 𝑘) + [−2𝐴](𝑘0)2 + [−2𝑏𝛼]𝑘0𝑘𝛼 + [−1

2
𝑢𝛼𝛽 − 1

2
𝛾𝜇𝜈𝑣𝜇𝜈𝛾𝛼𝛽]𝑘𝛼𝑘𝛽. (6.146)

Since the causality is effectively metric, the integrand in the point particle action (6.144)
is given by the inverse of this metric. [28, 29] To linear order, the inverse is calculated
as

[𝜂 + ℎ]−1
𝑎𝑏 = 𝜂𝑎𝑏 − 𝜂𝑎𝑝𝜂𝑝𝑞ℎ𝑝𝑞 + 𝒪(ℎ2), (6.147)

such that we obtain the linearised action

𝑆matter[𝛾(1), 𝛾(2), 𝑁 + 𝐻) = ∑
𝑖=1,2

𝑚𝑖𝑐 ∫ 𝑑𝜆{𝜂𝑎𝑏 ̇𝛾𝑎
(𝑖) ̇𝛾𝑏

(𝑖) + 2𝐴 ̇𝛾0
(𝑖) ̇𝛾0

(𝑖) − 2𝑏𝛼 ̇𝛾0
(𝑖) ̇𝛾𝛼

(𝑖)

+ [1
2

𝑢𝛼𝛽 + 1
2

𝛾𝜇𝜈𝑣𝜇𝜈𝛾𝛼𝛽] ̇𝛾𝛼
(𝑖) ̇𝛾𝛽

(𝑖)} + 𝒪(𝐻2).
(6.148)

In addition to the linearised matter action (6.148), we also need the gravitational action
expanded to third order in the area metric perturbation. Sect. 6.1 was dedicated to the
construction of third-order area metric Lagrangian densities ℒ = 𝐿𝑑4𝑥. The result of
this construction procedure will be used here in the action

𝑆gravity[𝑁 + 𝐻] = 𝑐3

16𝜋𝐺
∫ 𝑑4𝑥ℒ + 𝒪(𝐻4). (6.149)

Like before, the zeroth iteration is already solved by construction—the flat instance 𝑁 of
the area metric field solves the vacuum field equations.
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Due to the slow-motion condition, the first-order field equations

𝑒(1)[𝐻(1)] = −𝑇(0)[𝛾(1), 𝛾(2)], (6.150)

which were derived in Sect. 6.2.1, are only sourced by the variation of the matter action
(6.148) with respect to the lapse, via the equation

(𝛿𝑆matter
𝛿𝐴

)
(1)

[𝐻(1)] = 𝑐𝜌( ⃗𝑥, 𝑡). (6.151)

This is similar to the stationary case considered in Sect. 6.1.4, with the difference that
the delta distribution is not centred at the origin but given as

𝜌( ⃗𝑥, 𝑡) = ∑
𝑖=1,2

𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)). (6.152)

Since the vector and transverse traceless tensor equations are not sourced at all, we solve
these by setting the respective modes to zero. Again, it is possible to add background
radiation to the solution, as long as it remains negligible. The scalar modes are solved by
superposition of the linearised Schwarzschild solutions (6.82), in the integral representation
as

𝐴(1) = − 1
𝑐2 ∫ 𝑑3 ⃗𝑦𝜌( ⃗𝑦) [ 𝛼

| ⃗𝑥 − ⃗𝑦|
+ 𝛽e−𝜇|𝑥⃗− ⃗𝑦|

| ⃗𝑥 − ⃗𝑦|
] ,

̃𝑉(1) = − 1
𝑐2 ∫ 𝑑3 ⃗𝑦𝜌( ⃗𝑦) [𝛾e−𝜇|𝑥⃗− ⃗𝑦|

| ⃗𝑥 − ⃗𝑦|
] ,

̃𝑈(1) = 4𝐴(1) − (3 + 8𝛽
𝛾

) ̃𝑉(1),

(6.153)

or in the evaluated form

𝐴(1) = − 1
𝑐2 ∑

𝑖=1,2
𝑚𝑖 [ 𝛼

| ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)|
+ 𝛽e−𝜇|𝑥⃗−𝛾⃗(𝑖)(𝑡)|

| ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)|
] ,

̃𝑉(1) = − 1
𝑐2 ∑

𝑖=1,2
𝑚𝑖 [𝛾e−𝜇|𝑥⃗−𝛾⃗(𝑖)(𝑡)|

| ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)|
] ,

̃𝑈(1) = 4𝐴(1) − (3 + 8𝛽
𝛾

) ̃𝑉(1).

(6.154)

The constants 𝛼, 𝛽, 𝛾, and 𝜇 are the four relevant first-order gravitational constants
(6.83) for stationary or slowly moving matter configurations.

For the second part of the first iteration, the matter trajectories have to be fixed. We
again exploit the fact that the matter action is effectively metric, because as a consequence
of this circumstance, the stars are to this order subject to the same geodesic equation
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(6.121) as in Einstein gravity. The Christoffel symbols are derived from the effective
metric (6.147) with ℎ00 = −2𝐴, such that

̈𝛾𝛼
(𝑖) = −𝑐2𝐺𝜕𝛼𝐴(1), (6.155)

where the integrals (6.153) have to be regularised by, effectively, dropping the divergent
terms (see Sect. 6.2.2).

The equations of motion (6.155) constitute a refined Kepler problem. Instead of the
Newtonian potential ∝ 1

𝑟 , the stars move in modified potentials with additional Yukawa
terms ∝ 1

𝑟e−𝜇𝑟. Still, this potential has a spherical symmetry and circular orbits remain
solutions to the geodesic equations. This is seen by making the ansatz (6.124) and solving
for the angular frequency 𝜔, which yields the refined relation

𝜔2 = (𝐺𝛼)𝑚
𝑟3 [1 + 𝛽

𝛼
e−𝜇𝑟(1 + 𝜇𝑟)] , (6.156)

i.e. a modification of Kepler’s third law.

Let us start solving the second iteration by considering the massless transverse traceless
tensor mode 𝑈𝛼𝛽

(2) . The contribution 𝑒(1)[𝐻(2)] follows from the first of the linearised
transverse traceless tensor field equations (6.86), which reads

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

TT

= 1
8𝛼

�𝑈𝛼𝛽. (6.157)

As before, when solving the metric problem, the vectors tangent to the worldlines contribute
a factor of

√
𝐺 each, such that there is no contribution from 𝑇(1)[𝛾(1), 𝛾(2), 𝐻(1)), but

only from the lower order 𝑇(0)[𝛾(1), 𝛾(2)]. Evaluating this term by variation of the matter
action (6.148) with respect to the field 𝑢𝛼𝛽, we obtain the equation

−𝑐3𝐺
16𝜋

1
8𝛼

�𝑈𝛼𝛽
(2) =

⎧{
⎨{⎩

1
4𝑐

∑
𝑖=1,2

𝑚𝑖𝛿(3)( ⃗𝑥 − ⃗𝛾(𝑖)(𝑡)) ̇𝛾𝛼
(𝑖) ̇𝛾𝛽

(𝑖) + (
𝛿𝑆gravity

𝛿𝑢𝛼𝛽
)

(2)

[𝐺𝐻(1)]
⎫}
⎬}⎭

TT

.

(6.158)

The contribution from the second-order field equations is again calculated using cadabra
[69, 70]. The process is roughly as follows: first, the the third-order ansätze (A.5)–(A.7)
and the corresponding coefficient relations are loaded into the programme. Then, the
Lagrangian is decomposed into observer quantities, shift, and lapse, according to the 3 + 1
decomposition introduced in Sect. 6.1.3. All fields, except for the field 𝑢𝛼𝛽 which will be
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varied, are replaced with the solution from the first iteration, using abbreviations

𝑋 = ∫ 𝑑3 ⃗𝑦𝜌( ⃗𝑦) 1
| ⃗𝑥 − ⃗𝑦|

,

𝑌 = ∫ 𝑑3 ⃗𝑦𝜌( ⃗𝑦)e−𝜇|𝑥⃗− ⃗𝑦|

| ⃗𝑥 − ⃗𝑦|
.

(6.159)

This simplifies the Lagrangian significantly, because it only depends on the scalar fields 𝑋
and 𝑌, as well as the field 𝑢𝛼𝛽. Performing the variation with respect to the remaining
tensorial field, projecting the result onto the transverse traceless tensor mode, and further
simplifying finally yields

(
𝛿𝑆gravity

𝛿𝑢𝛼𝛽
)

TT

(2)

[𝐺𝐻(1)] = 𝐺
16𝜋𝑐

[𝛼𝜕𝛼𝑋𝜕𝛽𝑋 + 𝛽𝜕𝛼𝑌 𝜕𝛽𝑌 ]TT. (6.160)

The cadabra code can be found in Ref. [7].

Being also a massless wave equation, the differential equation (6.158) is solved like before
in Sect. 6.2.2, by convolution of the right-hand side with the retarded Green’s function of
the d’Alembert operator. Taking the same limit for the far zone, the solution is

𝑈𝛼𝛽
(2) = − 𝛼

𝑐4𝑅
[ 8

𝐺
𝐾𝛼𝛽 + 2𝛼

𝜋
Φ𝛼𝛽

(0) + 2𝛽
𝜋

Φ𝛼𝛽
(𝜇)]

TT
, (6.161)

with a kinetic term

𝐾𝛼𝛽 = ∫ 𝑑3 ⃗𝑦 ∑
𝑖=1,2

𝑚𝑖𝛿(3)( ⃗𝑦 − ⃗𝛾(𝑖)(𝜏)) ̇𝛾𝛼
(𝑖) ̇𝛾𝛽

(𝑖) (6.162)

and the potential terms

Φ(𝜇)𝛼𝛽 = ∫ 𝑑3 ⃗𝑦 ∫ 𝑑3 ⃗𝑦′ ∫ 𝑑3 ⃗𝑦′′𝜌( ⃗𝑦′)𝜌( ⃗𝑦′′) (𝜕𝛼
e−𝜇| ⃗𝑧|

| ⃗𝑧|
)

⃗𝑧= ⃗𝑦− ⃗𝑦′

(𝜕𝛽
e−𝜇| ⃗𝑧|

| ⃗𝑧|
)

⃗𝑧= ⃗𝑦− ⃗𝑦′′

.

(6.163)

Working out the integrals results in a first prediction for the gravitational radiation
produced by a binary star subject to area metric gravity. On the massless transverse
traceless tensor mode, radiation is emitted into the far zone 𝑅 ≫ 𝑟 according to the
formula

𝐺2𝑈𝛼𝛽
(2) = − 8𝜂

𝑐4𝑅
(𝐺𝛼𝑚)2

𝑟
[1 + 𝑓(𝑟)][𝜆𝛼𝜆𝛽 − 𝑛𝛼𝑛𝛽]TT, (6.164)
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where the correction term 𝑓(𝑟) is given by

𝑓(𝑟) = 𝛽
𝛼

(1 + 𝜇𝑟)e−𝜇𝑟. (6.165)

In order to point out the significance of Eq. (6.164), let us come back to the metric
radiation formula (6.143) for the modes 𝐸𝛼𝛽. The area metric result amounts to the
metric result up to a correction proportional to 𝑓(𝑟), which—being of Yukawa type—falls
off exponentially with the separation 𝑟. In formulæ,

𝐺2𝑈𝛼𝛽
(2) = 2(𝛼𝐺)2𝐸𝛼𝛽

(2) [1 + 𝑓(𝑟)]. (6.166)

Considering that the area metric perturbation induced by the metric perturbation (6.143)
has the only nonvanishing modes 𝑈𝛼𝛽

(2) = 2𝐸𝛼𝛽
(2) , we arrive at the remarkable conclusion

that—on the metrically inducible modes and in the far zone—the radiation emitted by a
binary star in circular motion is qualitatively the same, but quantitatively refined. Both
Kepler’s third law and the amplitude of the emitted waves pick up Yukawa corrections,
which originate from the presence of mass terms in the scalar field equations for stationary
and slowly moving sources. These corrections can become arbitrarily small—by restricting
the parameter range or considering large enough radii 𝑟. In this sense, gravitational
radiation as predicted in Einstein gravity is contained within the area metric result.

The remaining propagating modes of the area metric perturbation have all shown to be
governed by massive wave equations (see Sect. 6.1.4). Let us first consider the traceless
modes, i.e. the massive transverse traceless tensors, the vectors, and the traceless scalars.
Since the coefficients in the relevant wave equations (6.84)–(6.86) are the same for all of
these modes, regardless of whether the equations are of scalar, vector, or tensor type, all
propagating traceless modes can be considered on the same footing.

We define the tracefree auxiliary field ̃𝑣𝛼𝛽 = 𝑣𝛼𝛽 − 1
3𝛾𝛼𝛽𝛾𝜇𝜈𝑣𝜇𝜈. Taking appropriate linear

combinations of the linearised field equations (see e.g. (6.93)), the modes ̃𝑣𝛼𝛽 decouple from
the modes 𝑤𝛼𝛽, such that the left-hand side 𝑒(1)[𝐻(2)] of the second iteration equations is
given by � ̃𝑣𝛼𝛽

(2) + 𝜈2 ̃𝑣𝛼𝛽
(2) and �𝑤𝛼𝛽

(2) + 𝜈2𝑤𝛼𝛽
(2), respectively. Because the linearised matter

action (6.148) does only depend on the trace of 𝑣𝛼𝛽 and is entirely independent of 𝑤𝛼𝛽,
there is no matter contribution to the second iteration. A calculation of the contribution
𝑒(2)[𝐻(1)], employing the previously outlined cadabra-based technique, yields the wave
equations

� ̃𝑣𝛼𝛽
(2) + 𝜈2 ̃𝑣𝛼𝛽

(2) = 𝛿[𝜕𝛼𝑋𝜕𝛽𝑌 ]TF,

�𝑤𝛼𝛽
(2) + 𝜈2𝑤𝛼𝛽

(2) = 𝜖[𝜕𝛼𝑋𝜕𝛽𝑌 ]TF.
(6.167)
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The label [⋅]TF denotes the idempotent projection

[𝑡𝛼𝛽]TF = 𝑡(𝛼𝛽) − 1
3

𝛾𝜇𝜈𝑡𝜇𝜈𝛾𝛼𝛽 (6.168)

onto the tracefree symmetric part. Both 𝛿 and 𝜖 are combinations of gravitational
constants that include genuine third-order constants, i.e. coefficients for the third order
in the area metric Lagrangian expansion that are not solely determined by second-order
coefficients.20

Solving the wave equations (6.167) is again a matter of convoluting the source terms with
a retarded Green’s function. This time, the differential equation is of the kind

(� + 𝑚2)𝜓(𝑥) = 4𝜋𝜑(𝑥) (6.169)

and thus solved by the massive propagator

𝐺ret(𝑥, 𝑦) = 𝜃(𝑥0 − 𝑦0) ∫ 𝑑3𝑘⃗
(2𝜋)3

sin[𝜔𝑘(𝑥0 − 𝑦0)]
𝜔𝑘

ei𝑘⃗⋅(𝑥⃗− ⃗𝑦), (6.170)

where 𝜃 is the Heaviside step function and the massive dispersion relation

𝜔𝑘 = √|𝑘⃗|2 + 𝑚2 (6.171)

holds. The convolution integrals work out differently this time, depending on the value of
𝜔0 ∶= 2𝜔.

1. nonradiating solution: 𝜔0 < 𝑐𝜈

The gravitational fields decay exponentially with distance 𝑅 from the binary system,
e.g. in the orbit-adapted frame they are given as

𝐺2 ̃𝑣𝛼𝛽
(2) = 𝛿𝜂

𝑐4𝑅
(𝐺𝑚)2

𝑟
𝑔(𝑟) ⎡⎢

⎣
3e− ̃𝜈𝑅 ⎛⎜

⎝

cos 𝜔0𝑡 sin 𝜔0𝑡 0
sin 𝜔0𝑡 − cos 𝜔0𝑡

0 0 0
⎞⎟
⎠

+ e−𝜈𝑅 ⎛⎜
⎝

1
2

1
2
−1

⎞⎟
⎠

⎤⎥
⎦

𝛼𝛽

(6.172)

20Earlier, the contrary was true: for the massless mode, the second iteration equation—although derived
from the third-order expansion—was completely determined by second-order coefficients of the
Lagrangian expansion. The perturbative equivariance equations can, and in general will, in each
iteration determine some higher-order coefficients by lower-order coefficients.
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with the abbreviations

𝑔(𝑟) =
1 − [1 + 𝜇𝑟 + 1

3(𝜇𝑟)2]e−𝜇𝑟

(𝜇𝑟)2 ,

̃𝜈 = √𝜈2 − (𝜔0
𝑐

)
2
.

(6.173)

For the traceless modes 𝑤𝛼𝛽, we obtain the same solution, but with prefactor
𝜖 instead of 𝛿. Note that the oscillating part has a “direct” dependence on the
coordinate time 𝑡. Characteristic behaviour of a radiating solution would be a
dependence through the retarded time 𝜏.

2. radiating solution: 𝜔0 > 𝑐𝜈

The nonoscillating part of the previous solution (6.172) is not affected. Since it
decreases exponentially with 𝑅 and we are interested in the far zone 𝑅 ≫ 𝑟, it will be
dropped from now on—being shadowed by another contribution that is proportional
to 1

𝑅 . This term radiates according to

𝐺2 ̃𝑣𝛼𝛽
(2) = 3𝛿𝜂

𝑐4𝑅
(𝐺𝑚)2

𝑟
𝑔(𝑟)[𝑛𝛼𝑛𝛽 − 𝜆𝛼𝜆𝛽], (6.174)

where the phase of the orbit-adapted frame is now 𝜑
2 with

𝜑 = 𝜔0𝑡 − √𝜔2
0 − (𝑐𝜈)2 𝑅

𝑐
=∶ 𝜔0𝑡 − 𝜔̃𝑅

𝑐
. (6.175)

Earlier, for the massless modes, we had 𝜑 = 𝜔0𝜏 or, equivalently, 𝜑
2 = 𝜔𝜏. Again,

the solution for 𝑤𝛼𝛽 is the same up to the prefactor of 𝛿, which has to be replaced
with 𝜖. The dependence on coordinate time is only via a retardation term (6.175).

The fact that radiation is “switched on” only above a certain angular frequency threshold
is an expected and welcome property. It is expected because of the mass 𝜈 in the wave
equations. An analogy would be a massive particle in relativistic quantum field theory,
which requires a minimum energy—its mass—in order to be created. Earlier results
[76] in area metric gravity discovered a similar behaviour for electromagnetically bound
binaries, which has now been shown to extend to gravitationally bound systems, where
radiation is an effect of gravitational self-coupling. The result is certainly encouraging for
the viability of area metric gravity, as it once again keeps the theory very close to Einstein
gravity and introduces only modest modifications, assuming that parameters are chosen
appropriately. Without this property, it would be impossible to reconcile area metric
gravity with the metric theory, ruling it out as a candidate for a modified theory of gravity.
On the other hand, we observe a new quality: propagation of massive gravitational waves
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on nonmetric21 modes.

One propagating degree of freedom has not been considered so far. The scalar degree of
freedom ̃𝑉 obeys a massive wave equation (6.94), which is of mass 𝜇, but comes with an
additional complexity: it is a linear combination of scalar field equations, such that the
second iteration equation takes the form

� ̃𝑉(2) + 𝜇2 ̃𝑉(2) = −𝛾 [1
4

𝜌𝐴 − (1 + 3
4

𝛾
𝛽

) 𝜌𝑢 + 𝛾
4𝛽

𝜌𝑣] . (6.176)

The three source terms 𝜌𝑢, 𝜌𝑣, and 𝜌𝐴 denote the right-hand sides of the second iteration
equations (6.103) that originate from variations of the actions with respect to 𝑢𝛼𝛽, 𝑣𝛼𝛽,
and 𝐴, respectively. Except for the 𝐴 variation, the trace has to be taken afterwards. For
our previous results, we only picked up zeroth-order contributions from the variations of
the matter action, such as

(𝛿𝑆matter
𝛿𝑢𝛼𝛽 ) , (6.177)

because the fields would couple to the spatial components of the particle worldline tangents.
These come with factors of

√
𝐺, rendering the first-order contributions a higher order

than considered for the second iteration. For the variation with respect to the lapse, this is
not the case, as an expansion of the GLED polynomial to second order shows. The lapse
perturbation comes with terms proportional to [ ̇𝛾0

(𝑖)]
4 = 𝑐4 = 𝒪(𝐺0), which illustrates

that we have to expect contributions 𝑇(1)[𝛾(1), 𝛾(2), 𝐻(1)) in the second iteration equation
(6.176).

Unfortunately, the second-order expansion of the GLED principal polynomial is not
effectively metric anymore. The straightforward way of applying the Legendre transform—
lowering indices with the help of the covariant metric—is not available in this case. In
fact, there is no closed expression for the Legendre transform corresponding to a quartic
polynomial. [29] While it is certainly possible to treat the problem perturbatively, it is
considered out of scope for the purpose of this thesis. After all, we do not seek to derive a
comprehensive solution, but rather wish to demonstrate the ramifications of novel matter
dynamics on the gravitational phenomenology. The results for the massless transverse
traceless tensor modes, as well as the massive tracefree modes, already allow to make
nontrivial predictions concerning the binary star, such that more extensive knowledge of
the remaining scalar modes is deemed dispensable.

21In the sense of not inducible by a metric tensor.
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6.3 Phenomenology of area metric gravitational radiation

The quintessence of Sect. 6.2 is the prediction of gravitational waves emitted by a binary
star subject to area metric gravity. While compatible with the behaviour of Einstein gravity
in certain limits, the area metric result offers new features such as a modification of
Kepler’s third law, which determines the angular frequency, or radiation on massive modes.
All of these effects, however, concern the gravitational field and are thus inaccessible to
direct observations. This is because the geometric fields only play an auxiliary rôle in the
ensemble of physical fields. Observable effects of gravity involve the matter fields whose
dynamics are governed by the geometry in question.

In order to derive observable predictions from the previous results, we will first consider
a distribution of test matter and study the effect of a passing gravitational wave. This
yields the usual deformations known as geodesic deviation, possibly amended by novel
deformation patterns. A more direct effect of the radiation that is emitted by a binary
star is its energy loss, which makes the binaries reduce their distance and spin faster as
the system loses energy through radiation. This will serve as second prediction.

6.3.1 Effect on test matter

Let us probe the gravitational field using an arrangement of matter called a geodesic
sphere. It is composed of freely falling point masses that are, at least initially, distributed
spherically on a spatial hypersurface. The masses are test masses, which is to say that
their gravitational field is negligible compared to the field we like to probe, the incident
gravitational wave. To first order, the dynamics of point masses in area metric gravity
are effectively metric (see Eq. (6.10)). The standard procedures from metric gravity for
studying the motion of point masses are thus applicable, including the geodesic deviation
equation [75]

1
𝑐2 𝑋̈𝛼 = −𝑅𝛼

0𝛽0𝑋𝛽 (6.178)

for the spatial deviation vector 𝑋⃗. Applying the 3 + 1 split of a metric tensor (see
Eqns. (6.63) and (6.64)) to the effective metric, the Riemann tensor 𝑅𝛼

0𝛽0 can be
expanded to linear order, such that the deviation equation assumes the form

𝑋̈𝛼 = −1
2

[𝜑̈𝛼
𝛽 + 𝑐(𝜕𝛽

̇𝑏𝛼 + 𝜕𝛼 ̇𝑏𝛽) + 2𝑐2𝜕𝛼𝜕𝛽𝐴]𝑋𝛽. (6.179)

For small perturbations, the deviation due to purely spatial fields 𝜑𝛼𝛽 is integrated as

𝑋𝛼(𝑡) = 𝑋𝛼(0) − 1
2

𝜑𝛼
𝛽(𝑡)𝑋𝛽(0). (6.180)
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This constitutes the starting point for the following predictions.

In Sect. 6.2, all modes of gravitational radiation—except the trace modes—have been
found to be proportional to the various projections of

𝑀𝛼𝛽 = ⎛⎜
⎝

cos(𝜑) sin(𝜑) 0
sin(𝜑) − cos(𝜑) 0

0 0 1
⎞⎟
⎠

𝛼𝛽

(6.181)

onto the transverse traceless tensor, vector, and scalar traceless subspaces. The phase 𝜑
is either given by 𝜑 = 2𝜔𝜏 for massless modes or Eq. (6.175) for massive modes.

The tensor 𝑀𝛼𝛽 is still expressed in the orbit-adapted frame ( ⃗𝑒𝑥, ⃗𝑒𝑦, ⃗𝑒𝑧), whose orientation
is determined by the orbital plane. When considering the effect on test matter, it is more
instructive to switch to the detector-adapted frame ( ⃗𝑒𝑋, ⃗𝑒𝑌, ⃗𝑒𝑍) [74], which is oriented
such that the 𝑍-axis points from the barycentre of the binary star to the test matter
distribution. A simple rotation around the 𝑥-axis transforms between both frames22, such
that the detector-adapted frame is expressed in terms of the orbit-adapted frame as

⃗𝑒𝑋 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠

, ⃗𝑒𝑌 = ⎛⎜
⎝

0
cos 𝜄

− sin 𝜄
⎞⎟
⎠

, ⃗𝑒𝑍 = ⎛⎜
⎝

0
sin 𝜄
cos 𝜄

⎞⎟
⎠

. (6.182)

The angle 𝜄 measures the inclination of the orbital plane as seen from the 𝑋𝑌-plane.23

Transforming 𝑀𝛼𝛽 accordingly and projecting onto the several modes, we obtain the
transverse traceless tensor mode

𝑀TT = ⎛⎜
⎝

1
2(1 + cos2 𝜄) cos 𝜑 cos 𝜄 sin 𝜑 0

cos 𝜄 sin 𝜑 −1
2(1 + cos2 𝜄) cos 𝜑 0

0 0 0
⎞⎟
⎠

, (6.183)

the vector mode

𝑀V = ⎛⎜
⎝

0 0 sin 𝜄 sin 𝜑
0 0 − cos 𝜄 sin 𝜄 cos 𝜑

sin 𝜄 sin 𝜑 − cos 𝜄 sin 𝜄 cos 𝜑 0
⎞⎟
⎠

, (6.184)

22As the circular orbit is completely isotropic with respect to rotations around the 𝑧-axis, we can always
make this choice. Otherwise, we would need to parameterise the frame using two angles, i.e. first
perform a rotation around the 𝑧-axis and only afterwards around the 𝑥-axis. [74]

23Put differently, 𝜄 is the angle between the 𝑍-axis (pointing towards the test matter distribution) and
the 𝑧-axis (the rotation axis of the binary star).

113



6 Application: gravitational radiation from birefringent matter dynamics

and the traceless scalar mode

𝑀S−TF = sin2 𝜄 cos 𝜑 ⎛⎜
⎝

1
2 0 0
0 1

2 0
0 0 −1

⎞⎟
⎠

. (6.185)

Out of these, the TT part (6.183) is already known from general relativity, where we found
as only radiating mode into the far zone the transverse traceless tensor perturbation

𝜑𝛼𝛽 = 4𝜂
𝑐4𝑅

(𝐺𝑚)2

𝑟⏟⏟⏟⏟⏟
∶=2𝑑

(𝑀TT)𝛼𝛽.

Consequently, the right-hand side of the geodesic deviation equation (6.179) is purely
spatial and we obtain the deviation

𝑋𝛼(𝑡) − 𝑋𝛼(0) = −𝑑 × (𝑀TT)𝛼
𝛽(𝑡)𝑋𝛽(0), (6.186)

oscillating with the phase 𝜑(𝑡) = 2𝜔𝜏 = 2𝜔(𝑡 − 𝑅
𝑐 ). Geodesic spheres are thus deformed

in both lateral directions, but not in the direction of the incident wave. The deformation is
volume-preserving, because there is a phase shift of 𝜋

2 between the lateral axes—elongation
into one direction comes with contraction into the other direction. As a result, the sphere
assumes the form of an ellipsoid with rotating axes, while its dimension in the 𝑍-direction
stays constant.

Predictions of this effect exist since the inception of general relativity. [77, 78] The
confirmation of metric geodesic deviation due to incident gravitational radiation in 2015
by the LIGO and Virgo collaborations [8] marks the culmination of 100 years of general
relativity research.

As far as massless modes of radiation are concerned, geodesic deviation in area metric
gravity looks roughly the same: from Eq. (6.146), we know that the spatial part 𝜑𝛼𝛽 of
the effective metric that constitutes the linearised principal polynomial and enters the
deviation equation (6.179) amounts to

𝜑𝛼𝛽 = 1
2

𝑢𝛼𝛽 + 1
2

𝛾𝜇𝜈𝑣𝜇𝜈𝛾𝛼𝛽. (6.187)

If only the massless TT mode is “switched on”, i.e. the angular frequency of the binary
star is below the threshold determined by the masses of the nonmetric modes, Eq. (6.164)
gives

𝜑𝛼𝛽 = 2𝑑[1 + 𝑓(𝑟)](𝑀TT)𝛼𝛽. (6.188)

In such a case, the area metric deviation coincides with the metric deviation up to a
correction factor 1+𝑓(𝑟). For large radii, but also for appropriate choices of gravitational
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constants, the factor becomes arbitrarily close to 1. In this limit, the metric result is
recovered. Otherwise, area metric gravity introduces a correction factor into the otherwise
unchanged effect—this could be called a quantitative refinement.

More intrusive modifications would come from vector or scalar contributions to Eq. (6.179).
Taking a closer look at the corresponding deformation matrices (6.184)–(6.185), it is
apparent what these could entail: more interesting patterns of deformations that include
contractions and expansions in the direction of the incident wave—an effect that is
unknown from Einstein gravity. However, if nonmetric deformations can be observed
at all, they are well-hidden in the scalar modes, as a substitution of the area metric
perturbations in Eq. (6.179) shows. The vector contribution from 𝜑𝛼𝛽 is cancelled by
the shift perturbation 𝑏𝛼 using the vector field equations (6.85). What remains are the
massless TT perturbations 𝑈𝛼𝛽, whose effect has already been discussed, and a scalar
contribution. Without more knowledge of the radiation on all scalar modes, it is not
possible to give a definite prediction about the effect of scalar waves on test matter.

6.3.2 Binary star spin-up

While the gravitational radiation that causes geodesic deviation is produced as second-
order effect, the deviation per se has only been studied to first order in the previous
section. Similar results would hold for incident waves that have their origin in linearised
gravity, like the radiation that is emitted from nongravitationally bound systems [76].

An effect that cannot be observed in a solely linearised setting is radiation reaction:
during the iterative solution procedure, the matter trajectories have been fixed to first
order, which provides the background for the second-order gravitational field we were
interested in. This is by no means necessary—it is possible to solve for higher orders
𝑛 before fixing the matter fields, which then enables the prediction of the gravitational
field to order 𝑛 + 1. The modern treatment of post-Newtonian and post-Minkowskian
general relativity proceeds in exactly this way. [74] Doing so, the matter trajectories
accumulate corrections, which are backreactions from the gravitational field sourced by
the matter content itself. In the context of a gravitationally bound matter distribution
which emits gravitational radiation to second order, these backreactions are often referred
to as radiation reaction.

In general relativity, the aforementioned modern perturbative treatment yields detailed
predictions for the deviation of a binary system from Kepler orbits. These calculations
are quite intricate, taking into account not only higher perturbation orders but also
the internal structure of the binaries. For a tentative qualitative result, however, we
do not need to go there. Noether’s second theorem (see Thm. 2.3.4) provides us with
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a tool that resembles energy conservation equations.24 Loosely speaking, gravitational
waves radiate away energy from the system, decimating the radius of the Kepler orbits,
which results—via Kepler’s third law—in the binary star spinning up. The qualitative
analysis from “energy conservation” yields a rate of change for the angular frequency
but cannot predict how exactly the trajectories are affected, e.g. how the phase shifts.
Still, the prediction25 for the orbital period decrease 𝑑𝑃/𝑑𝑡 of the Hulse-Taylor pulsar
PSR B1913+6 is in very strong agreement with the measurement, as the ratio amounts
to [79]

(𝑑𝑃/𝑑𝑡)observed
(𝑑𝑃/𝑑𝑡)predicted

= 0.9983 ± 0.0016. (6.189)

Again, let us first illustrate the calculation for metric gravity before diving into area
metric gravity. The total Lagrangian density of Maxwell electrodynamics and Einstein
gravity is

𝐿 = 𝐿matter + 𝐿gravity. (6.190)

Following a normal coordinate argument26 from Ref. [39], the second Noether identity
(2.47) reduces to the vanishing of the divergence of the Gotay-Marsden stress-energy-
momentum tensor density, i.e.

0 = 𝜕𝑛 [𝒯𝑛
𝑚(𝑔)] . (6.191)

If the section 𝑔 of the metric bundle satisfies the Euler-Lagrange equations, the integral
equation

0 = ∫
Σ

𝜕0 [𝐶𝐴 0
𝐵 0𝑔𝐵 𝛿𝐿

𝛿𝑔𝐴 ] 𝑑3𝑥

= ∫
Σ

𝜕0 [𝐶𝐴 0
𝐵 0𝑔𝐵 𝛿𝐿matter

𝛿𝑔𝐴 ] 𝑑3𝑥 + ∫
Σ

𝜕0 [𝐶𝐴 0
𝐵 0𝑔𝐵 𝛿𝐿gravity

𝛿𝑔𝐴 ] 𝑑3𝑥
(6.192)

over a spatial slice Σ holds. Renaming the first term and making use of the Noether

24The notion of energy in general relativity and, more specifically, energy conservation is subject to
many debates. General relativity does not exhibit the kind of time-translation symmetry that is
usually the justification for the definition of energy. In the setting considered here, where the matter
content is localised to a specific region of spacetime and the geometry is asymptotically flat, such a
notion can be recovered from symmetries that hold asymptotically. [27] For our purposes, we do
not rely on the interpretation of certain quantities as energies or momenta. They are just derived
quantities from the fundamental fields. Changes in these quantities are interesting insofar as they
pertain to changes in the underlying fields.

25Considering, of course, the eccentric case with the appropriate parameters.
26For the metric tensor bundle, there are always local coordinates such that 𝑔𝑎𝑏

,𝑝 = 0. In this coordinate
chart, the divergence of the SEM tensor density vanishes. Being a tensor density, it follows that the
components of the divergence vanish in any coordinate chart.
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identity (6.191) for the second term, this yields

0 = 𝜕0 ∫
Σ

𝐶𝐴 0
𝐵 0𝑔𝐵 𝛿𝐿matter

𝛿𝑔𝐴 𝑑3𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶ℋmatter

+ ∫
Σ

𝜕0 [𝐶𝐴 0
𝐵 0𝑔𝐵 𝛿𝐿gravity

𝛿𝑔𝐴 ] 𝑑3𝑥

= 1
𝑐

ℋ̇matter − ∫
Σ

𝜕𝛼 [𝐶𝐴 𝛼
𝐵 0𝑔𝐵 𝛿𝐿gravity

𝛿𝑔𝐴 ] 𝑑3𝑥.

(6.193)

Finally, we apply the Gauß theorem to the second integral, such that

ℋ̇matter = 𝑐 ∫
𝑆∞

𝐶𝐴 𝛼
𝐵 0𝑔𝐵 𝛿𝐿gravity

𝛿𝑔𝐴 𝑑𝑆𝛼, (6.194)

which should be understood as the limit of surface integrals over a family of appropriate
closed surfaces that approach infinity.

The variations of both Lagrangians have already been worked out for Eq. (6.107). For
the matter part, we obtain to lowest nontrivial order

ℋmatter = 2 ∫
Σ

𝑔0𝑎 𝛿𝐿matter
𝛿𝑔0𝑎 𝑑3𝑥 ≈ −1

𝑐
[𝑚𝑐2 + 1

2
𝑚𝜂𝑟2𝜔2] = 1

𝑐
[𝐸0 + 𝐸] (6.195)

with the constant energy 𝐸0 = −𝑚𝑐2 for the system at rest and the kinetic energy

𝐸 = −1
2

𝑚𝜂𝑟2𝜔2 = −1
2

𝜂𝐺𝑚2

𝑟
. (6.196)

Thus, the left-hand side of the balance equation (6.194) is given as

ℋ̇matter = 1
𝑐

̇𝐸 = 1
2𝑐

𝜂𝐺𝑚2 ̇𝑟
𝑟2 . (6.197)

For the right-hand side, we have the full densitised Einstein tensor 𝒢𝑎𝑏 = 16𝜋𝐺
𝑐3

𝛿𝐿gravity
𝛿𝑔𝑎𝑏

at
our disposal. To lowest order, the integral amounts to

𝑐 ∫
𝑆∞

𝐶𝐴 𝛼
𝐵 0

𝛿𝐿gravity

𝛿𝑔𝐴 𝑔𝐵𝑑𝑆𝛼 = 𝑐4

8𝜋𝐺
∫

𝑆∞

𝑔0𝑎𝒢𝑎𝛼𝑑𝑆𝛼

≈ 𝑐4

8𝜋𝐺
∫

𝑆∞

𝒢0𝛼𝑑𝑆𝛼.
(6.198)

Since the integral is evaluated at infinity, only the radiation part is relevant. But this
part is given by transverse traceless tensor perturbations, such that divergences and
traces of the spatial perturbation ℎ𝜇𝜈 can readily be dropped when extracting the lowest
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nonvanishing order of the integral (6.198). Doing so, we arrive at

∫
𝑆∞

𝒢0𝛼𝑑𝑆𝛼 = − 1
4

∫
𝑆∞

[𝜕𝛼ℎ𝜇𝜈𝜕0ℎ𝜇𝜈 + 2𝜕0𝜕𝛼ℎ𝜇𝜈ℎ𝜇𝜈]𝑑𝑆𝛼

= 1
4𝑐2 ∫

𝑆∞

[ℎ̇𝜇𝜈ℎ̇𝜇𝜈 + 2ℎ̈𝜇𝜈ℎ𝜇𝜈]𝑑𝑆

= − 1
4𝑐2 ∫

𝑆∞

ℎ̇𝜇𝜈ℎ̇𝜇𝜈𝑑𝑆 + 1
4𝑐2 ∫

𝑆∞

[ℎ𝜇𝜈ℎ𝜇𝜈]⋅⋅𝑑𝑆,

(6.199)

which we further simplified using the identity (letting 𝑁𝛼 = 𝑥𝛼/𝑅)

𝜕𝛼ℎ𝜇𝜈 = −1
𝑐

𝑁𝛼ℎ̇𝜇𝜈 + 𝒪 ( 1
𝑅2 ) (6.200)

for radiation terms ∝ 1
𝑅𝑓(𝜔(𝑐𝑡 − 𝑅)).

It is now time to take the concrete form of the metric perturbation into account. Earlier,
we arrived at the result (6.143)

ℎ𝜇𝜈 = 4𝜂
𝑐4𝑅

(𝐺𝑚)2

𝑟
[𝑛𝛼𝑛𝛽 − 𝜆𝛼𝜆𝛽]⋅(TT)𝜇𝜈

𝛼𝛽, (6.201)

where this time the projection onto the transverse traceless tensor mode is made explicit
using the projector [74]

(TT)𝜇𝜈
𝛼𝛽 = 𝑃 (𝜇

𝛼𝑃 𝜈)
𝛽 − 1

2
𝑃 𝜇𝜈𝑃𝛼𝛽,

𝑃 𝛼
𝛽 = 𝛿𝛼

𝛽 − 𝑁𝛼𝑁𝛽.
(6.202)

Under these circumstances, the contraction ℎ𝜇𝜈ℎ𝜇𝜈 is constant with respect to coordinate
time and thus does not contribute to the integral. The vectors 𝑛 and 𝜆 only depend
on the radius 𝑅 and coordinate time 𝑡, such that the angular dependence is completely
contained within the TT projector. This reduces the integral to

∫
𝑆∞

𝒢0𝛼𝑑𝑆𝛼 = −256𝜋𝜂2(𝐺𝑚)5

𝑐10𝑟5 𝑛𝛼𝑛𝜇𝜆𝛽𝜆𝜇⟨(TT)𝜇𝜈
𝛼𝛽⟩, (6.203)

where only the angular average

⟨𝑋⟩ ∶= 1
4𝜋

∫
𝑆

𝑋𝑑Ω (6.204)

of the projector remains to be calculated. Referring to Ref. [74] for the details, we just

118



6 Application: gravitational radiation from birefringent matter dynamics

make use of the result
⟨(TT)𝜇𝜈

𝛼𝛽⟩ = 2
5

𝛿(𝜇
𝛼 𝛿𝜈)

𝛽 (6.205)

and arrive at
∫

𝑆∞

𝒢0𝛼𝑑𝑆𝛼 = −256𝜋
5

𝜂2 (𝐺𝑚
𝑐2𝑟

)
5

. (6.206)

Together with the left-hand side (6.197) of the balance equation (6.194), this yields a
first approximation for the spin-up of a binary star due to radiation loss. The separation
𝑟 of the stars decreases with the rate

̇𝑟 = −64
5

𝜂𝑐 (𝐺𝑚
𝑐2𝑟

)
3

, (6.207)

which translates into an increase of the angular frequency 𝜔, according to Kepler’s third
law.

This result for the lowest-order radiation loss approximation is in agreement with the
literature [74]. While we had prior knowledge of the full Lagrangian and the corresponding
Einstein equations, the approach is not restricted to such theories. A perturbatively
constructed third-order Lagrangian can be used just as well and will yield a comparable
prediction of binary star spin-up in area metric gravity.

The area metric calculation starts out similarly. Even though the right-hand side of the
Noether identity (2.47) does not vanish this time, it can be neglected because it is always
of one order higher than the lowest order of the left-hand side, due to the appearance of
𝐺𝐴

,𝑚 = 𝐻𝐴
,𝑚. Let us also consider only radiation on the massless TT mode 𝑈𝛼𝛽. This is

sufficient in order to derive a nontrivial effect and it can be interpreted as the phase of
binary spin-up during which the angular frequency is not yet high enough in order for
the system to produce massive waves on the nonmetric modes.

As we did before when deriving Eq. (6.71), we start by inverting the relation (6.56)
between the spacetime area metric perturbation and the perturbed observer quantities.
For the matter contribution on the left-hand side of the balance equation, this allows us
to calculate the variation by only varying with respect to 𝐴, as

𝐶𝐴 0
𝐵 0𝐺𝐵 𝛿𝐿matter

𝛿𝐺𝐴 = −4𝛿𝐿matter
𝛿𝐴

+ 𝒪(𝐻2). (6.208)

The second variation in question behaves similarly, reducing the relevant variation of the
gravity Lagrangian to

𝐶𝐴 𝛼
𝐵 0𝐺𝐵 𝛿𝐿gravity

𝛿𝐺𝐴 = 4
𝛿𝐿gravity

𝛿𝑏𝛼
+ 𝒪(𝐻2). (6.209)
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6 Application: gravitational radiation from birefringent matter dynamics

Roughly the same result as for metric gravity is obtained for the matter part

ℋmatter = 4
𝑐

[𝐸0 + 𝐸], (6.210)

where 𝐸0 = −𝑚𝑐2 and

𝐸 = −1
2

𝑚𝜂𝑟2𝜔2 = −1
2

𝑚𝜂𝛼𝐺𝑚
𝑟

[1 + 𝑓(𝑟)]. (6.211)

For the gravity part, we again use cadabra [69, 70] in order to derive the contributions
from the transverse traceless 𝑈𝛼𝛽 modes (6.164) to 𝛿𝐿gravity

𝛿𝑏𝛼 . This yields via a similar
calculation as before the right-hand side

4𝑐 ∫
𝑆∞

𝛿𝐿gravity

𝛿𝑏𝛼
𝑑𝑆𝛼 = 𝑐2

4𝜋𝐺
∫

𝑆∞

[(− 1
8𝛼

) ̇𝑈𝛼𝛽
̇𝑈𝛼𝛽 + ( 1

4𝛼
− 4𝑘12) (𝑈𝛼𝛽

̇𝑈𝛼𝛽)⋅] 𝑑𝑆

= − 𝑐2

32𝜋𝛼𝐺
∫

𝑆∞

̇𝑈𝛼𝛽
̇𝑈𝛼𝛽𝑑𝑆

= − 128
5

𝑚𝜂2 (1 + 𝑓(𝑟))3

𝑟5
(𝛼𝐺𝑚)4

𝑐6
(6.212)

of the balance equations. Putting together both sides results in the rate of change

(1 + 𝑓(𝑟)
𝑟

)
⋅

= − ̇𝑟
𝑟2 [1 + 𝑓(𝑟) − 𝑟𝑓 ′(𝑟)] = 64

5
𝜂𝑐 1

𝑟2 (𝛼𝐺𝑚
𝑐2𝑟

[1 + 𝑓(𝑟)])
3

. (6.213)

As always, it is first very instructive to consider the limit 𝑓(𝑟) → 0 of Eq. (6.213), which
reproduces the metric result

̇𝑟 = −64
5

𝜂𝑐 (𝛼𝐺𝑚
𝑐2𝑟

)
3

. (6.214)

This again shows the correspondence of both theories for a suitable parameter range.
However, when the correction 𝑓(𝑟) is not negligible, area metric gravity introduces an
interesting deviation from the binary star spin-up behaviour in metric gravity.

Fig. 6.1 shows the evolution of the orbital period, obtained by integrating Eq. (6.213)
and applying the refined Kepler law (6.156). For our convenience, we set all constants
and parameters of the system that are common to both area metric and metric gravity to
1, which makes the time scale somewhat arbitrary, but that should not concern us—most
interesting is the deviation of the area metric prediction from the metric result. This
deviation is controlled by the gravitational constants 𝛽 and 𝜇. With a coarse tuning of
the constants, it is possible to achieve two things: bringing the prediction arbitrarily close

120



6 Application: gravitational radiation from birefringent matter dynamics
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Figure 6.1: Binary star spin-up due to radiation loss. The orbital period decreases ac-
cording to Eqns. (6.156) and (6.213), which have been numerically integrated
using the scipy python package [80]. For reference, the metric result fol-
lowing (6.207) is shown as well. Note that in general a binary star will not
spin up exactly like this, as the calculation neglects a lot of complications
like eccentricities and is based only on the first approximation provided by
the Noether theorem. Massive radiation modes are not considered as well.
However, this analysis highlights the potential deviations of area metric
gravity from Einstein gravity. For simplicity, 𝛼 = 𝐺 = 𝜂 = 𝑚 = 𝑐 = 1.
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6 Application: gravitational radiation from birefringent matter dynamics

to the metric prediction—again an incarnation of the correspondence principle—but also
generating hypotheticals that disagree with all observations. The latter are, of course,
easily falsified.

It is very tempting to perform a finer tuning, i.e. try and fit the predictions to observational
data and infer viable parameter ranges for 𝛽 and 𝜇. This is certainly an interesting
approach, albeit with quite limited power at the current state: the analysis is very crude,
with the ambition to derive first qualitative and quantitative implications of area metric
gravity. Only binary stars without eccentricity have been considered. Also, the result
(6.213) does not include massive modes of radiation, which further contribute to radiation
loss once their generation threshold is reached.

Still, with our approach that tried to limit the computational complexity, we eventually
derived novel, nontrivial behaviour of matter subject to area metric gravity.
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7 Outlook: symmetry-reduced
constructive gravity

In the previous chapters, we reduced the complexity of the covariant construction
procedure by considering a perturbative equivalent. Consequently, the result was an
approximation of the exact gravitational theory, valid for sufficiently weak gravitational
fields. A second approach towards reducing the complexity of the equivariance equations
is symmetry reduction, which assumes that the gravitational field exhibits certain
symmetries. Ideally, these symmetries bring the construction equations into a much
simpler form. The solutions of the reduced equations should be theories of gravity valid
in this symmetry-reduced sector, comparable to the Friedmann equations for spatially
homogeneous and isotropic Einstein gravity. In this chapter, we explore a possible
approach towards symmetry-reduced covariant constructive gravity by reducing the
bundle on which the procedure operates. Our main result will be that the Friedmann-
Lemaître-Robertson-Walker (FLRW) model can be recovered without the need to know
the full Einstein-Hilbert Lagrangian beforehand. The area metric equivalent will not
be solved, only the construction equations are derived. For a more in-depth study of
symmetry reduction in the context of canonical constructive gravity, see Ref. [34].

7.1 The cosmological bundle

The introduction of the metric cosmological bundle follows the presentation in Ref. [1].

For the purpose of developing a symmetry reduction strategy, let us consider the cosmo-
logical symmetry, which assumes spacetime to be spatially homogeneous and isotropic
(see e.g. [81, 82]). It is well known what this entails for the metric field: implicitly,
this symmetry comes with the assumption of a sliced spacetime, i.e. 𝑀 ≅ ℝ × Σ. In
appropriate coordinates on the product manifold, the covariant metric tensor then reads
[81, 83]

𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − 𝑎(𝑡)2𝛾, (7.1)

where the spatial part is given by the positive scale factor 𝑎(𝑡) > 0 and a constant
curvature metric 𝛾 on Σ.1

1Restricting the topology of the spatial manifold Σ to either ℝ3 or 𝑆3.
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7 Outlook: symmetry-reduced constructive gravity

More formally, we have a slicing 𝜙∶ ℝ × Σ → 𝑀, which induces embeddings

𝜙𝜆 ∶ Σ → 𝑀
𝑝 ↦ 𝜙𝜆(𝑝) ∶= 𝜙(𝜆, 𝑝)

(7.2)

of the spatial hypersurface Σ into the spacetime manifold 𝑀. Each slicing introduces a
time coordinate 𝑡 ∶= 𝜋ℝ ∘ 𝜙−1. The corresponding vector field 𝜕𝑡 defines the spatial and
spatiotemporal components of the metric tensor by virtue of the conditions

𝑔(𝜕𝑡, 𝜕𝑡) = 1 and 𝑑𝑡(𝑋) = 0 ⇒ 𝑔(𝜕𝑡, 𝑋) = 0. (7.3)

For the spatial components, we consider the pullback of the metric tensor onto the spatial
slice Σ. This yields Riemannian 3-manifolds

(Σ, 𝛾𝜆 ∶= −𝜙∗
𝜆𝑔) (7.4)

that are of constant curvature. For simplicity, let us restrict to zero curvature manifolds,
such that the spatial volume is determined only by the scale factor

𝑎(𝜆) ∶= √det 𝛾𝜆

1
3 . (7.5)

From these insights, we define the cosmological bundle for metric gravity.

Definition 7.1.1 (metric cosmological bundle). The cosmological bundle over a manifold
𝑀 which captures the information of a spatially homogeneous and isotropic metric
spacetime (𝑀, 𝑔) is defined as

𝐸(cosmological)
metric = 𝑇 𝑀 ⊕𝑀 Vol

1
3 (𝑀), (7.6)

i.e. the sum of the tangent bundle and the bundle of densities with weight 1
3 .

A similar definition can be given for the area metric bundle. It has been shown [34] that
a spatially homogeneous and isotropic area metric manifold is determined by two spatial
degrees of freedom, which are a density-valued scale factor and a second scalar-valued
factor.2 Consequently, the area metric cosmological bundle can be defined as follows.

2This already follows quite intuitively from the 3 + 1 decomposition in Sect. 6.1.3. As opposed to
metric gravity, where a single three-metric determines all spatial components, we now have two
spatial metrics and one tracefree endomorphism which parameterise the 17 spatial degrees of freedom.
If the fields are to be isotropic, they must be given by two scale factors for the metrics; the tracefree
endomorphism must be zero. Instead of working with two density-valued functions, it is more
convenient to use a redefinition where one of the functions becomes scalar-valued.
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7 Outlook: symmetry-reduced constructive gravity

Definition 7.1.2 (area metric cosmological bundle). The cosmological bundle over a
manifold 𝑀 which captures the information of a spatially homogeneous and isotropic area
metric spacetime (𝑀, 𝐺) is defined as

𝐸(cosmological)
area = 𝑇 𝑀 ⊕𝑀 Vol

1
3 (𝑀) ⊕𝑀 Scalar(𝑀), (7.7)

i.e. the sum of the tangent bundle, the bundle of 1
3-densities, and the line bundle.

7.2 Recovering the FLRW model

The recovering of the FLRW model follows the presentation in Ref. [1], but provides
additional detail concerning the ansätze and the evaluation of the equivariance equations
for the ansätze.

Having defined the metric cosmological bundle 𝑇 𝑀 ⊕𝑀 Vol
1
3 (𝑀), setting up the equivari-

ance equations (2.29a)–(2.29d) is just a matter of deriving the Gotay-Marsden coefficients.
For vector fields, Prop. 2.2.7 yields

𝐶𝑎 𝑛
𝑏 𝑚 = 𝛿𝑎

𝑚𝛿𝑛
𝑏 , (7.8)

while 1
3-densities transform according to the Gotay-Marsden coefficients

𝐶𝑛
𝑚 = −1

3
𝛿𝑛

𝑚. (7.9)

In order for the field equations to be of second derivative order with a principal polynomial
that does not depend on derivatives of the geometry, we make the ansatz

𝐿(𝑎, 𝜕𝑎, 𝜕𝜕𝑎, 𝑈, 𝜕𝑈, 𝜕𝜕𝑈) = 𝑓1(𝑎)𝑈𝑚𝑈𝑛𝑎,𝑚𝑛 +𝑓2(𝑎)𝑈𝑚𝑈𝑛
,𝑚𝑛

+ 𝑓3(𝑎)𝑈𝑚𝑈𝑛𝑎,𝑚𝑎,𝑛 +𝑓4(𝑎)𝑈𝑚𝑈𝑛
,𝑛𝑎,𝑚

+ 𝑓5(𝑎)𝑈𝑚𝑈𝑛
,𝑚𝑎,𝑛 +𝑓6(𝑎)𝑈𝑚

,𝑚𝑈𝑛
,𝑛

+ 𝑓7(𝑎)𝑈𝑚
,𝑛 𝑈𝑛

,𝑚 +𝑓8(𝑎)𝑈𝑚𝑎,𝑚

+ 𝑓9(𝑎)𝑈𝑚
,𝑚 +𝑓10(𝑎).

(7.10)

The functions 𝑓1, … , 𝑓10 are arbitrary functions of the scale factor. Any occurrence of
of a vector field 𝑈 would have to be contracted with a derivative of either 𝑎 or 𝑈, such
that with our causality restrictions it is only appropriate to include linear and quadratic
terms in the ansatz.
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7 Outlook: symmetry-reduced constructive gravity

Taking the trace of the equivariance equation (2.29b) restricts the functions 𝑓1, … , 𝑓10
to polynomials, as we obtain simple ordinary differential equations:

0 = 2𝑓1 − 𝑓 ′
1𝑎 ⇒ 𝑓1(𝑎) = 𝜅1𝑎2

0 = 3𝑓2 − 𝑓 ′
2𝑎 ⇒ 𝑓2(𝑎) = 𝜅2𝑎3

0 = 𝑓3 − 𝑓 ′
3𝑎 ⇒ 𝑓3(𝑎) = 𝜅3𝑎

0 = 2𝑓4 − 𝑓 ′
4𝑎 ⇒ 𝑓4(𝑎) = 𝜅4𝑎2

0 = 2𝑓5 − 𝑓 ′
5𝑎 ⇒ 𝑓5(𝑎) = 𝜅5𝑎2

0 = 3𝑓6 − 𝑓 ′
6𝑎 ⇒ 𝑓6(𝑎) = 𝜅6𝑎3

0 = 3𝑓7 − 𝑓 ′
7𝑎 ⇒ 𝑓7(𝑎) = 𝜅7𝑎3

0 = 2𝑓8 − 𝑓 ′
8𝑎 ⇒ 𝑓8(𝑎) = 𝜅8𝑎2

0 = 3𝑓9 − 𝑓 ′
9𝑎 ⇒ 𝑓9(𝑎) = 𝜅9𝑎3

0 = 3𝑓10 − 𝑓 ′
10𝑎 ⇒ 𝑓10(𝑎) = 𝜅10𝑎3

(7.11)

Evaluation of the remaining equivariance equations (2.29b)–(2.29d) further narrows down
the gravitational constants 𝜅1, … , 𝜅10, leaving us with four independent constants in the
Lagrangian density

𝐿 = 𝜅1 × [𝑎2𝑈𝑚𝑈𝑛𝑎,𝑚𝑛 + 1
3

𝑎3𝑈𝑚𝑈𝑛
,𝑚𝑛

+ 2
3

𝑎2𝑈𝑚𝑈𝑛
,𝑛𝑎,𝑚 + 𝑎2𝑈𝑚𝑈𝑛

,𝑚𝑎,𝑛 + 1
9

𝑎3𝑈𝑚
,𝑚𝑈𝑛

,𝑛]

+ 𝜅3 × [𝑎𝑈𝑚𝑈𝑛𝑎,𝑚𝑎,𝑛 + 2
3

𝑎2𝑈𝑚𝑈𝑛
,𝑛𝑎,𝑚 + 1

9
𝑎3𝑈𝑚

,𝑚𝑈𝑛
,𝑛]

+ 𝜅8 × [𝑎2𝑈𝑚𝑎,𝑚 + 1
3

𝑎3𝑈𝑚
,𝑚]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
boundary term

+ 𝜅10 × [𝑎3],

(7.12)

where one constant, 𝜅8, only contributes to a boundary term, which will be dropped
from now on.

Let us couple the metric to a matter field by adding to the Lagrangian density (7.12) a
matter Lagrangian3 𝐿matter. Expressed in coordinates where 𝑈𝑎 = const, variations with

3Not a density for the purposes of this section. We will always make the “densitisation” using √−𝑔 = 𝑎3

explicit.
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7 Outlook: symmetry-reduced constructive gravity

respect to the fields 𝑎 and 𝑈 reproduce the well-known Friedmann equations [84]

( ̇𝑎
𝑎

)
2

− Λ
3

= 𝜅
3

𝜌, (7.13)

̈𝑎
𝑎

− Λ
3

= − 𝜅
6

(𝜌 + 3𝑝), (7.14)

with combinations 𝜅 and Λ of the gravitational constants 𝜅1, 𝜅3, 𝜅10 and the derivative
̇𝑎 ∶= 𝑈(𝑎).

For the field equations (7.13) and (7.14) we introduced the energy density

𝜌 = 1
𝑎3 [−𝑎

3
𝛿(𝑎3𝐿matter)

𝛿𝑎
+ 𝑈𝑝 𝛿(𝑎3𝐿matter)

𝛿𝑈𝑝 ] (7.15)

and the pressure

𝑝 = 1
𝑎3 [𝑎

3
𝛿(𝑎3𝐿matter)

𝛿𝑎
] . (7.16)

An example for a matter field that couples to the FLRW metric is a spatially homogeneous
and isotropic scalar field 𝜙 in a potential 𝑉, with dynamics according to the action

𝑆matter[𝜙] = ∫ √−𝑔[𝑔(𝑑𝜙, 𝑑𝜙) − 𝑉 (𝜙)]𝑑4𝑥 = ∫ 𝑎3[(𝑈(𝜙))2 − 𝑉 (𝜙)]𝑑4𝑥. (7.17)

The corresponding energy density and pressure as defined in Eqns. (7.15) and (7.16) are
given by

𝜌 = ( ̇𝜙)2 + 𝑉 (𝜙) (7.18)
𝑝 = ( ̇𝜙)2 − 𝑉 (𝜙). (7.19)

Together, energy density and pressure constitute the metric stress-energy tensor

𝑇 𝑎𝑏 = 2
√−𝑔

𝛿(√−𝑔𝐿matter)
𝛿𝑔𝑎𝑏

= (𝜌 + 𝑝)𝑈𝑎𝑈𝑏 + 𝑝𝑔𝑎𝑏, (7.20)

as can be verified by inserting the expressions (7.18) and (7.19) for 𝜌 and 𝑝 in above
equation.

Summing up, we have found the Friedmann equations (7.13) and (7.14) as the dynamical
equations for the remaining degrees of freedom in spatially isotropic and homogeneous
metric cosmology—without recurrence to the Einstein equation, just by performing the
symmetry reduction beforehand and applying the covariant construction procedure to
the reduced problem. The equations are parameterised by the gravitational constant 𝜅
and the cosmological constant Λ. All inferences that can be drawn from the Friedmann
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7 Outlook: symmetry-reduced constructive gravity

equations already follow from this simplified approach—demonstrating the potential of
symmetry-reduced covariant constructive gravity for investigations into the cosmological
sector of modified theories of gravity.

7.3 Towards area metric cosmology

In principle, the same procedure can be applied to the cosmological bundle of area metric
gravity, resulting in a parameterisation of all possible symmetry-reduced gravitational
theories for the area metric tensor. The only new ingredient as compared to metric
cosmology are the Gotay-Marsden coefficients for scalar fields, which are

𝐶𝑛
𝑚 = 0. (7.21)

This is not surprising at all—the Gotay-Marsden coefficients define the transformation
behaviour with respect to spacetime diffeomorphisms. A scalar is, by definition, diffeo-
morphism invariant and the corresponding coefficients are thus zero. As a consequence,
the functional form of the dependence on the scalar is much less restricted, i.e. a result
equivalent to Eq. (7.11) cannot be derived. Any solution will contain undetermined
functions, not only constants.

An in-depth study of the equivalent problem in canonical constructive gravity has been
performed in Ref. [34].
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8 Conclusions

In this thesis, the concept of covariant constructive gravity has been put on a solid
mathematical footing. Lagrangian field theory on jet bundles turned out to be ideally
suited for the definition of the general covariance axiom. The equivariance equations that
follow from this axiom transform the implementation into a computational task, opening
up the constructive pathway towards modified theories of gravity. Using the Cartan form
that corresponds to a diffeomorphism invariant Lagrangian density, we have seen how
general covariance implies a version of the first and second Noether theorem—important
results that have proven very useful further down the line. Within this framework,
the axiom of causal compatibility has been formulated in terms of additional algebraic
conditions on the gravitational field equations.

From the equivariance equations and causality conditions, we derived a concise algorithm
which guides the construction of novel gravitational theories that implement general
covariance and are causally compatible to a given matter theory. Because it can be seen
as generalisation of Lovelock’s uniqueness theorem for Einstein gravity [14, 35, 36], we
could show that this construction procedure applied to Maxwell’s electrodynamics indeed
reproduces metric gravity as derived by Einstein.

Of course, covariant constructive gravity would not be that interesting if it were just
another tool that reproduces Einstein gravity. Its raison d’être is the derivation of
modified theories of gravity that complete novel matter theories to predictive models
of the universe. The remainder of the thesis was dedicated towards achieving this
goal. First, we have discussed three examples of novel matter theories: birefringent
electrodynamics and two bimetric theories. While it is straightforward to set up the
construction procedure and derive general results concerning the solution space, finding
these solutions in practice is notoriously hard and turned out not to be feasible for the
examples in question.

Therefore, we investigated possibilities to arrive at results that are valid in certain
specific settings, without the need to know the “full” solutions. Our main strategy was
perturbation theory, which seeks to find solutions that are valid for small deviations
of the gravitational field from a Lorentz invariant background. With a corresponding
perturbation ansatz, the equivariance equations transform into a system of linear equa-
tions for the expansion coefficients. As a consequence of the Lorentz invariance of the
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background geometry, the expansion coefficients themselves are Lorentz invariant, which
reduces their dimensionality a lot—before solving any equivariance equation.

Many of the computations that are necessary in order to construct Lorentz invariant
ansätze and solve the perturbative equivariance equations have been delegated to the
computer. For this purpose, two Haskell packages have been developed and presented in
this thesis—with a focus on the package sparse-tensor which composes and solves the
equivariance equations. Methods from functional programming lend themselves for an
efficient and safe implementation of tensor algebra, enabling us to repeat and modify
calculations whenever required, without having to redo them by hand.

Chap. 6 was the culmination of this thesis, where we put all pieces together and derived
perturbative area metric gravity up to third perturbation order in the Lagrangian density.
From this Lagrangian, the linearised gravitational field equations and their second
perturbation order follows. Quite remarkably, the linearised field equations coincide with
the equations derived in the canonical framework [65, 3]—with an important caveat:
the field equations in the canonical picture as obtained by solving the canonical closure
equations [26, 65] are not causally compatible with the matter theory, i.e. their principal
polynomial does not reduce to the Minkowski metric.

In order to cure the causality, one of the eleven gravitational constants had to be fixed
[3], reducing their number to ten, which then equals the number of constants obtained
in the covariant framework. The reason for this mismatch is believed to lie in the
so-called ansatz equations, which enforce Lorentz invariance of the perturbation ansatz.
In perturbative covariant constructive gravity, these are already solved by considering
only Lorentz invariant ansätze to begin with. Canonical constructive gravity, on the other
hand, makes ansätze after performing the 3+1 split—effectively implementing a spatial
SO(3) symmetry. But this is a weaker requirement than the spatiotemporal SO(1, 3)
symmetry that follows from the equivariance equations. In the case of the linearised field
equations with causality mismatch, not all of the ansatz equations seem to be solved—one
condition on the gravitational constants is not yet implemented. To remedy this, one
has to find the equivalent of the ansatz equations in the canonical picture by prolonging
and projecting the PDE or otherwise ensure Lorentz invariance of the ansätze.

The comparison demonstrates that the presence of matter causality in the canonical
constraint algebra is not responsible for the causality of the gravitational theory. For
the linearised field equations1, diffeomorphism invariance actually constrains the gravity
causality. Whether diffeomorphism invariance is enforced by imposing it directly on the
Lagrangian density or by requiring the canonical constraint algebra to implement the
hypersurface deformation algebra—in whichever frame—is secondary.

The ability to reason about the canonical closure programme using insights from covariant
constructive gravity shows how both approaches complement each other. Comparing

1But also for the second-order equations, as shown in Sect. 6.1.
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the results of covariant and canonical constructive gravity on the one hand increases
the confidence, as they are so similar, but also provides impulses for improvements: the
canonical approach should embrace Lorentz invariance and also reconsider its claims
concerning causality, while the covariant approach could benefit from a canonical formu-
lation. The multisymplectic framework based on the Cartan form [45] seems ideal for
this task.

Building up on the third-order area metric Lagrangian, we inspected the binary star
with circular orbits, one of the simplest conceivable systems. Thanks to this simplicity,
however, it was possible to derive second-order effects that proved to be quite rich. A
binary star in area metric gravity emits massive gravitational waves—in addition to the
radiation already known from Einstein gravity. These new modes of radiation have the
potential to induce novel deformation patterns in test matter distributions and to alter
the spin-up behaviour of the binary star. For the massless modes of radiation that are
also observed in metric gravity, we made use of the second Noether theorem and obtained
a quantitative description of how a binary star is expected to decrease its orbital period
as it emits gravitational waves. Fig. 6.1 shows a few exemplary cases, which demonstrate
the deviations from Einstein gravity that are expected in area metric gravity.

These results should be understood as conceptual, because much more work would be
needed for the prediction of the outcome of high-precision experiments. The ambition of
this thesis was to demonstrate in principle the predictive power of covariant constructive
gravity. Starting from a modification of Maxwell’s electrodynamics—by allowing for
birefringence in vacuo—it is possible to derive a compatible theory of gravity that
prescribes the dynamics of the new geometry used by the such refined matter theory.
The resulting gravitational theory has a limit where it corresponds to Einstein gravity,
but it also allows for interesting deviations: massive gravitational waves that are emitted
from a binary star which exceeds a certain angular velocity threshold, a modification of
Kepler’s third law, or a refined inspiral curve.

We finally explored the possibility of making similar predictions for symmetry-reduced
theories—proposing an approach that meets the minimal requirement of reproducing
metric cosmology. It will be exciting to see the application to novel matter theories.

The famous words by John Archibald Wheeler quoted at the beginning of Chap. 1 seem
to apply not only at the level of field equations—where matter fields source gravitational
fields, while gravitational fields determine the motion of matter fields—but also at
the level of theories. The gravitational field equations themselves are, to a certain
degree, determined by the dynamics of matter fields. Considering novel matter theories
that couple to nonmetric geometries has gravitational implications, which covariant
constructive gravity is able to quantify. Improving the predictions in order to make the
constructed theories testable in practice should be at the centre of upcoming research.
The standard model of particle physics and general relativity are not the definite models
of the universe—covariant constructive gravity can further the search for alternatives.
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A Ansätze for third-order area metric
gravity Lagrangians

The following ansätze have been computed using the Haskell package sparse-tensor
(see [5] and Chap. 5). Haskell code for generation and pretty printing as well as the
ansätze in machine-readable form are available at Ref. [7].

• first order (constants 𝑒38, 𝑒39, 𝑒40):

𝑎 𝐼
𝐴 𝐻𝐴

𝐼 = [𝑒38 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑞 +𝑒39 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑝𝜂𝑑𝑞 +𝑒40 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑝𝑞]×𝜂𝑝𝑟𝜂𝑞𝑠𝐻𝑎𝑏𝑐𝑑
,𝑟𝑠 (A.1)

• second order (constants 𝑒1, … , 𝑒37):
𝑎𝐴𝐵𝐻𝐴𝐻𝐵 = [

𝑒1 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ + 𝑒2 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ + 𝑒3 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ

+ 𝑒4 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ + 𝑒5 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ + 𝑒6 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ

] × 𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ

(A.2)

𝑎 𝑝 𝑞
𝐴 𝐵 𝐻𝐴

𝑝𝐻𝐵
𝑞 = [

𝑒7 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑒𝜂𝑓𝑔𝜂ℎ𝑞 + 𝑒8 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑞𝜂𝑒𝑔𝜂𝑓ℎ + 𝑒9 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑝𝜂𝑑𝑒𝜂𝑓𝑔𝜂ℎ𝑞

+ 𝑒10 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑝𝑓𝜂ℎ𝑞 + 𝑒11 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑝𝑞𝜂𝑓ℎ + 𝑒12 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑞𝜂𝑝𝑔𝜂𝑓ℎ

+ 𝑒13 ⋅ 𝜂𝑎𝑝𝜂𝑏𝑒𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑞 + 𝑒14 ⋅ 𝜂𝑎𝑝𝜂𝑏𝑒𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑓𝑞 + 𝑒15 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞

+ 𝑒16 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑝𝑒𝜂𝑓𝑔𝜂ℎ𝑞 + 𝑒17 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑝𝑞𝜂𝑒𝑔𝜂𝑓ℎ + 𝑒18 ⋅ 𝜖𝑎𝑏𝑝𝑒𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑞

+ 𝑒19 ⋅ 𝜖𝑎𝑏𝑝𝑒𝜂𝑐𝑔𝜂𝑑𝑞𝜂𝑓ℎ + 𝑒20 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑝𝜂𝑑𝑔𝜂ℎ𝑞 + 𝑒21 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞

] × 𝜂𝑝𝑟𝜂𝑞𝑠𝐻𝑎𝑏𝑐𝑑
,𝑟𝐻𝑒𝑓𝑔ℎ

,𝑠

(A.3)

𝑎 𝐼
𝐴𝐵 𝐻𝐴𝐻𝐵

𝐼 = [

𝑒22 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑞 + 𝑒23 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑞 + 𝑒24 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ𝜂𝑝𝑞

+ 𝑒25 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑝𝜂ℎ𝑞 + 𝑒26 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑔𝜂ℎ𝑞 + 𝑒27 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑝𝜂𝑑𝑞𝜂𝑒𝑔𝜂𝑓ℎ

+ 𝑒28 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞 + 𝑒29 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑞 + 𝑒30 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ𝜂𝑝𝑞

+ 𝑒31 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑞 + 𝑒32 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑞 + 𝑒33 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞

+ 𝑒34 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑞 + 𝑒35 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑞 + 𝑒36 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑓𝑞

+ 𝑒37 ⋅ 𝜖𝑒𝑓𝑔ℎ𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑞] × 𝜂𝑝𝑟𝜂𝑞𝑠𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ
,𝑟𝑠

(A.4)

• third order (constants 𝑒41, … , 𝑒237):
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𝑎𝐴𝐵𝐶𝐻𝐴𝐻𝐵𝐻𝐶 = [ 𝑒41 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒42 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙

+ 𝑒43 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙 + 𝑒44 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑙

+ 𝑒45 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙 + 𝑒46 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑗𝑙

+ 𝑒47 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙 + 𝑒48 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑙

+ 𝑒49 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒50 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙

+ 𝑒51 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙 + 𝑒52 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑙

+ 𝑒53 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒54 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑗𝑙

+ 𝑒55 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙] × 𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ𝐻𝑖𝑗𝑘𝑙

(A.5)

133



A Ansätze for third-order area metric gravity Lagrangians

𝑎 𝑝 𝑞
𝐴𝐵 𝐶 𝐻𝐴𝐻𝐵

𝑝𝐻𝐶
𝑞 = [

𝑒56 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒57 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒58 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞

+ 𝑒59 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒60 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙 + 𝑒61 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙

+ 𝑒62 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑝𝜂𝑓𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒63 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑝𝜂𝑓𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒64 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒65 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒66 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒67 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑝𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞

+ 𝑒68 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒69 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒70 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙

+ 𝑒71 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒72 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑔𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒73 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑔𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒74 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒75 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒76 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑖𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙

+ 𝑒77 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒78 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑗𝜂𝑝𝑘𝜂𝑙𝑞 + 𝑒79 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞

+ 𝑒80 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑝𝑙𝜂𝑗𝑞 + 𝑒81 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙 + 𝑒82 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙

+ 𝑒83 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑝𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒84 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑝𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒85 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑗𝜂𝑔𝑝𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒86 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑞𝜂𝑝𝑙 + 𝑒87 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑞𝜂𝑓𝑔𝜂ℎ𝑝𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒88 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑞𝜂𝑓𝑔𝜂ℎ𝑖𝜂𝑝𝑘𝜂𝑗𝑙

+ 𝑒89 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑝𝜂𝑑𝑞𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒90 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒91 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒92 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒93 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒94 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞

+ 𝑒95 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑗𝜂𝑝𝑘𝜂𝑙𝑞 + 𝑒96 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒97 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑙𝜂𝑗𝑞

+ 𝑒98 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙 + 𝑒99 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒100 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑞𝜂ℎ𝑝𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒101 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑𝑞𝜂ℎ𝑖𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒102 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒103 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞

+ 𝑒104 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒105 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑝𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒106 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒107 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑘𝜂𝑔𝑝𝜂ℎ𝑗𝜂𝑙𝑞 + 𝑒108 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒109 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒110 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒111 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒112 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑝𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒113 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒114 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒115 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒116 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒117 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒118 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙

+ 𝑒119 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒120 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑝𝜂𝑓𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒121 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑝𝜂𝑓𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞

+ 𝑒122 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒123 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒124 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑝𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒125 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒126 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒127 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞

+ 𝑒128 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑗𝜂𝑝𝑘𝜂𝑙𝑞 + 𝑒129 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒130 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑙𝜂𝑗𝑞

+ 𝑒131 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙 + 𝑒132 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒133 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑞𝜂ℎ𝑝𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒134 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑞𝜂ℎ𝑖𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒135 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒136 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞

+ 𝑒137 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑝𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒138 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑝𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒139 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒140 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑘𝜂𝑔𝑝𝜂ℎ𝑗𝜂𝑙𝑞 + 𝑒141 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒142 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒143 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒144 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒145 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙

+ 𝑒146 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑓𝑖𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒147 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑓𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒148 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑔𝜂𝑑𝑖𝜂𝑓𝑗𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒149 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑔𝜂𝑑𝑖𝜂𝑓𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒150 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒151 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑗𝜂𝑝𝑘𝜂𝑙𝑞

+ 𝑒152 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑘𝜂𝑝𝑗𝜂𝑙𝑞 + 𝑒153 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑘𝜂𝑝𝑙𝜂𝑗𝑞 + 𝑒154 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑘𝜂𝑝𝑞𝜂𝑗𝑙

+ 𝑒155 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑞𝜂𝑝𝑘𝜂𝑗𝑙 + 𝑒156 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒157 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞

+ 𝑒158 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒159 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑝𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒160 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒161 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑝𝜂ℎ𝑗𝜂𝑙𝑞 + 𝑒162 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑝𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒163 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑞𝜂𝑝𝑙

+ 𝑒164 ⋅ 𝜖𝑎𝑏𝑒𝑞𝜂𝑐𝑓𝜂𝑑𝑔𝜂ℎ𝑝𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒165 ⋅ 𝜖𝑒𝑓𝑔ℎ𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑝𝑖𝜂𝑗𝑘𝜂𝑙𝑞

] × 𝜂𝑝𝑟𝜂𝑞𝑠𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ
,𝑟𝐻𝑖𝑗𝑘𝑙

,𝑠 (A.6)
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A Ansätze for third-order area metric gravity Lagrangians

𝑎 𝐼
𝐴𝐵𝐶 𝐻𝐴𝐻𝐵𝐻𝐶

𝐼 = [

𝑒166 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒167 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒168 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙𝜂𝑝𝑞

+ 𝑒169 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒170 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒171 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒172 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒173 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒174 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒175 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒176 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒177 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙𝜂𝑝𝑞

+ 𝑒178 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒179 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒180 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑔𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒181 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒182 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒183 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑔𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞

+ 𝑒184 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒185 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒186 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑝𝜂𝑙𝑞

+ 𝑒187 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑘𝜂𝑔𝑙𝜂ℎ𝑝𝜂𝑗𝑞 + 𝑒188 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑝𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒189 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑝𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞

+ 𝑒190 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑖𝜂𝑓𝑝𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒191 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑔𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙 + 𝑒192 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑒𝜂𝑑𝑝𝜂𝑓𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒193 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑖𝜂𝑑𝑘𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒194 ⋅ 𝜂𝑎𝑐𝜂𝑏𝑖𝜂𝑑𝑘𝜂𝑒𝑗𝜂𝑓𝑝𝜂𝑔𝑙𝜂ℎ𝑞 + 𝑒195 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞

+ 𝑒196 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒197 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒198 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞

+ 𝑒199 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑓𝜂𝑐𝑖𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒200 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒201 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑓𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞

+ 𝑒202 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑓𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒203 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑔𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑓𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒204 ⋅ 𝜂𝑎𝑒𝜂𝑏𝑖𝜂𝑐𝑔𝜂𝑑𝑘𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑗𝑙

+ 𝑒205 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒206 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒207 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑙𝜂𝑝𝑞

+ 𝑒208 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒209 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒210 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑔𝜂𝑓𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒211 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒212 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒213 ⋅ 𝜖𝑎𝑏𝑐𝑑𝜂𝑒𝑖𝜂𝑓𝑘𝜂𝑔𝑗𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒214 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑙𝜂𝑝𝑞 + 𝑒215 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑ℎ𝜂𝑖𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒216 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑗𝑙𝜂𝑝𝑞

+ 𝑒217 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑘𝜂𝑗𝑝𝜂𝑙𝑞 + 𝑒218 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑖𝜂ℎ𝑝𝜂𝑗𝑘𝜂𝑙𝑞 + 𝑒219 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑔𝜂𝑑𝑝𝜂ℎ𝑞𝜂𝑖𝑘𝜂𝑗𝑙

+ 𝑒220 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒221 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒222 ⋅ 𝜖𝑎𝑏𝑒𝑓𝜂𝑐𝑖𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒223 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒224 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑗𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒225 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑙𝜂𝑝𝑞

+ 𝑒226 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑗𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒227 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑘𝜂𝑔𝑙𝜂ℎ𝑝𝜂𝑗𝑞 + 𝑒228 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒229 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒230 ⋅ 𝜖𝑎𝑏𝑒𝑖𝜂𝑐𝑓𝜂𝑑𝑝𝜂𝑔𝑘𝜂ℎ𝑞𝜂𝑗𝑙 + 𝑒231 ⋅ 𝜖𝑎𝑏𝑒𝑝𝜂𝑐𝑓𝜂𝑑𝑖𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞

+ 𝑒232 ⋅ 𝜖𝑎𝑏𝑖𝑗𝜂𝑐𝑒𝜂𝑑𝑓𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑝𝑞 + 𝑒233 ⋅ 𝜖𝑎𝑏𝑖𝑗𝜂𝑐𝑒𝜂𝑑𝑓𝜂𝑔𝑘𝜂ℎ𝑝𝜂𝑙𝑞 + 𝑒234 ⋅ 𝜖𝑎𝑏𝑖𝑗𝜂𝑐𝑒𝜂𝑑𝑘𝜂𝑓𝑝𝜂𝑔𝑙𝜂ℎ𝑞

+ 𝑒235 ⋅ 𝜖𝑎𝑏𝑖𝑝𝜂𝑐𝑒𝜂𝑑𝑓𝜂𝑔𝑗𝜂ℎ𝑘𝜂𝑙𝑞 + 𝑒236 ⋅ 𝜖𝑎𝑏𝑖𝑝𝜂𝑐𝑒𝜂𝑑𝑓𝜂𝑔𝑘𝜂ℎ𝑙𝜂𝑗𝑞 + 𝑒237 ⋅ 𝜖𝑖𝑗𝑘𝑙𝜂𝑎𝑐𝜂𝑏𝑑𝜂𝑒𝑔𝜂𝑓ℎ𝜂𝑝𝑞

] × 𝜂𝑝𝑟𝜂𝑞𝑠𝐻𝑎𝑏𝑐𝑑𝐻𝑒𝑓𝑔ℎ𝐻𝑖𝑗𝑘𝑙
,𝑟𝑠 (A.7)
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B Solution of the equivariance
equations

The following relations for the ansatz coefficients 𝑒1, … , 𝑒237 solve the perturbative
equivariance equations (4.32)–(4.34) in terms of 50 indeterminate constants 𝑘1, … , 𝑘50.
See [7] for Haskell code that yields this result.

• first and second order (constants 𝑒1, … , 𝑒40):

𝑒1 = 𝑘1

𝑒2 = 𝑘2

𝑒3 = − 2𝑘1 − 2
3

𝑘2

𝑒4 = 4𝑘1 + 1
3

𝑘2

𝑒5 = 𝑘3

𝑒6 = − 3𝑘1 − 1
2

𝑘2 − 3𝑘3

𝑒7 = 𝑘4

𝑒8 = 𝑘5

𝑒9 = 𝑘6

𝑒10 = 𝑘7

𝑒11 = 𝑘8

𝑒12 = 1
2

𝑘6 + 5
8

𝑘7

𝑒13 = − 16
3

𝑘4 + 16𝑘5 − 7
3

𝑘6 − 5
12

𝑘7 + 4
3

𝑘8

𝑒14 = − 8
3

𝑘4 + 8𝑘5 − 13
6

𝑘6 − 11
24

𝑘7 + 2
3

𝑘8

𝑒15 = 𝑘4 − 1
8

𝑘6 − 23
32

𝑘7 − 1
2

𝑘8

𝑒16 = 𝑘9

𝑒17 = 𝑘10

136



B Solution of the equivariance equations

𝑒18 = 3
2

𝑘4 + 3
4

𝑘6 − 3
16

𝑘7 + 3𝑘9

𝑒19 = 1
2

𝑘4 + 1
4

𝑘6 − 1
16

𝑘7 + 𝑘9

𝑒20 = − 1
4

𝑘4 − 1
8

𝑘6 + 1
32

𝑘7 − 1
2

𝑘9

𝑒21 = 𝑘4 − 3𝑘5 + 1
4

𝑘6 − 3
16

𝑘7 − 1
2

𝑘8 + 𝑘9 − 3𝑘10

𝑒22 = 𝑘11

𝑒23 = 𝑘12

𝑒24 = 𝑘13

𝑒25 = 𝑘14

𝑒26 = 𝑘6 + 3
4

𝑘7 − 𝑘14

𝑒27 = − 𝑘4 + 1
2

𝑘7

𝑒28 = 5
3

𝑘4 + 5
12

𝑘6 − 25
48

𝑘7 − 2𝑘11 − 𝑘12 − 2
3

𝑘13 − 1
4

𝑘14

𝑒29 = 𝑘6 + 3
4

𝑘7 − 𝑘14

𝑒30 = − 4
3

𝑘4 − 5
6

𝑘6 + 1
24

𝑘7 + 4𝑘11 + 2𝑘12 + 1
3

𝑘13 + 1
2

𝑘14

𝑒31 = 𝑘15

𝑒32 = 𝑘16

𝑒33 = 𝑘4 − 1
2

𝑘7 − 3𝑘11 − 1
2

𝑘13 − 6𝑘15

𝑒34 = 1
2

𝑘6 + 3
8

𝑘7 − 3
2

𝑘12 − 1
2

𝑘14 − 3𝑘16

𝑒35 = − 2𝑘4 − 𝑘6 + 1
4

𝑘7

𝑒36 = − 𝑘4 + 1
2

𝑘7 − 3
2

𝑘12 − 1
2

𝑘14 − 3𝑘16

𝑒37 = 1
12

𝑘4 + 1
12

𝑘6 + 1
48

𝑘7 − 1
8

𝑘12 − 1
24

𝑘14 + 𝑘15 + 1
4

𝑘16

𝑒38 = − 2𝑘4 + 𝑘7

𝑒39 = − 2𝑘6 − 3
2

𝑘7

𝑒40 = 𝑘4 + 1
2

𝑘6 − 1
8

𝑘7 (B.1)
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B Solution of the equivariance equations

• third order (constants 𝑒41, … , 𝑒237): see [7].
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C Linearised field equations

From the 16 constants 𝑘1, … , 𝑘16 that govern the second-order expansion of the area
metric Lagrangian, only 10 linearly independent combinations contribute to the linearised
Euler-Lagrange equations. A possible basis is given by the 10 gravitational constants 𝑠𝑖
below.1 These are obtained from a 3+1 and subsequent scalar-vector-tensor decomposition
of the linearised field equations (see [7]).

𝑠1 = 2𝑘6 + 3
2

𝑘7

𝑠3 = 3
2

𝑘6 + 9
8

𝑘7 − 6𝑘12 − 2𝑘14

𝑠4 = − 1
2

𝑘6 − 3
8

𝑘7 − 1
2

𝑘14

𝑠6 = 𝑘6 + 3
4

𝑘7 − 3𝑘12 − 𝑘14 − 6𝑘16

𝑠11 = 1
2

𝑘6 + 11
8

𝑘7 + 2𝑘8 − 2𝑘13 − 1
2

𝑘14

𝑠13 = − 2𝑘2

𝑠14 = − 2𝑘4 + 24𝑘5 − 𝑘6 − 3
4

𝑘7 + 4𝑘8 − 12𝑘9 + 24𝑘10 − 24𝑘11 − 6𝑘12 − 4𝑘13

− 2𝑘14 − 48𝑘15 − 12𝑘16

𝑠16 = − 24𝑘1 − 4𝑘2 − 24𝑘3

𝑠37 = − 24𝑘5 + 2𝑘6 + 5
2

𝑘7 − 4𝑘8 + 24𝑘11 − 12𝑘12 + 4𝑘13 − 4𝑘14

𝑠39 = 24𝑘1 + 4𝑘2 (C.1)

1The constants are not labelled with consecutive numbers, because the labels reflect how they have
been calculated: each constant from 𝑠1 to 𝑠46 is the prefactor of a certain term in the scalar field
equations, but also a linear combination of the 16 constants 𝑘𝑖. The subset (C.1) is a basis; every
coefficient of the linearised field equations is a linear combination of the 𝑠𝑖.
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C Linearised field equations

With the linearly independent subset (C.1) of gravitational constants, the scalar field
equations read

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[𝑠1𝐴 − 𝑠1
4

̃𝑈 + 𝑠3
̃𝑉 + 𝑠4

̈𝑉 − 𝑠4
3

Δ𝑉 + 𝑠6𝑊̈ − 𝑠6
3

Δ𝑊],

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[(𝑠1 + 4𝑠4)𝐴 + (𝑠1
4

+ 𝑠4) ̃𝑈 + (3𝑠1
4

+ 3𝑠4) ̃𝑉

+ 𝑠11
̈𝑉 − (𝑠1

3
+ 4𝑠4

3
+ 𝑠11)Δ𝑉 + 𝑠13𝑉 + 𝑠14�𝑊 + 𝑠16𝑊],

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

S-TF

= Δ𝛼𝛽[4𝑠6𝐴 + 𝑠6
̃𝑈 + 3𝑠6

̃𝑉

+ (−𝑠6 + 𝑠14) ̈𝑉 − (𝑠6
3

+ 𝑠14)Δ𝑉 + 𝑠16𝑉 − (𝑠1
4

+ 𝑠4 + 𝑠11)�𝑊 − 𝑠13𝑊],

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

S-TR

= 𝛾𝛼𝛽[ − 2𝑠1
3

Δ𝐴 − 𝑠1
2

̈̃𝑈 + 𝑠1
6

Δ ̃𝑈 + (−3𝑠1
4

+ 𝑠3) ̈̃𝑉 − 2𝑠3
3

Δ ̃𝑉

+ 𝑠1
3

Δ ̈𝑉 + 2𝑠4
9

ΔΔ𝑉 + 2𝑠6
9

ΔΔ𝑊],

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

S-TR

= 𝛾𝛼𝛽[(−𝑠1 + 4𝑠3
3

)Δ𝐴 + (−3𝑠1
4

+ 𝑠3) ̈̃𝑈 − 2𝑠3
3

Δ ̃𝑈

+ 𝑠37
̈ ̃𝑉 − (3𝑠1

2
− 2𝑠3 + 𝑠37)Δ ̃𝑉 + 𝑠39

̃𝑉

+ (𝑠1
2

− 2𝑠3
3

)Δ ̈𝑉 + (𝑠1
6

+ 2𝑠3
9

+ 2𝑠4
3

)ΔΔ𝑉 + 2𝑠6
3

ΔΔ𝑊],

[ 𝛿𝐿
𝛿𝑏𝛼 ]

S

= 𝜕𝛼𝜕𝑡[ − 2𝑠1
̃𝑈 + (−3𝑠1 + 4𝑠3) ̃𝑉 + (4𝑠1

3
+ 8𝑠4

3
)Δ𝑉 + 8𝑠6

3
Δ𝑊],

𝛿𝐿
𝛿𝐴

= − 2𝑠1Δ ̃𝑈 + (−3𝑠1 + 4𝑠3)Δ ̃𝑉 + (4𝑠1
3

+ 8𝑠4
3

)ΔΔ𝑉 + 8𝑠6
3

ΔΔ𝑊, (C.2)

where the label (S-TF) denotes the projection of a tensor onto the tracefree scalar and
(S-TR) means the projection onto the trace.
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C Linearised field equations

A subset of seven constants out of the ten constants 𝑠𝑖 parameterizes the vector field
equations

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

V

= 𝜕𝑡𝜕(𝛼[𝑠1𝐵𝛽) − 2𝑠4
̇𝑈𝛽) − 2𝑠6𝜖 𝜇𝜈

𝛽) 𝑈𝜇,𝜈 + 2𝑠6𝑊̇𝛽) + (−𝑠1
2

− 2𝑠4)𝜖 𝜇𝜈
𝛽) 𝑊𝜇,𝜈],

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

V

= 𝜕(𝛼[(−𝑠1 − 4𝑠4)𝐵̇𝛽) + 4𝑠6𝜖 𝜇𝜈
𝛽) 𝐵𝜇,𝜈

+ (𝑠1 + 4𝑠4 + 2𝑠11)𝑈̈𝛽) + (−3𝑠1
2

− 6𝑠4 − 2𝑠11)Δ𝑈𝛽) + 2𝑠6𝜖 𝜇𝜈
𝛽)

̇𝑈𝜇,𝜈 + 2𝑠13𝑈𝛽)

+ 2𝑠14�𝑊𝛽) + 2𝑠16𝑊𝛽)],

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

V

= 𝜕(𝛼[4𝑠6𝐵̇𝛽) + (𝑠1 + 4𝑠4)𝜖 𝜇𝜈
𝛽) 𝐵𝜇,𝜈

+ (2𝑠6 + 2𝑠14)𝑈̈𝛽) − 2𝑠14Δ𝑈𝛽) + (𝑠1
2

+ 2𝑠4)𝜖 𝜇𝜈
𝛽)

̇𝑈𝜇,𝜈 + 2𝑠16𝑈𝛽)

+ (−3𝑠1
2

− 6𝑠4 − 2𝑠11)�𝑊𝛽) − 2𝑠13𝑊𝛽)],

[ 𝛿𝐿
𝛿𝑏𝛼 ]

V

= Δ[2𝑠1𝐵𝛼 − 4𝑠4
̇𝑈𝛼 − 4𝑠6𝜖 𝜇𝜈

𝛼 𝑈𝜇,𝜈 + 4𝑠6𝑊̇𝛼 + (−𝑠1 − 4𝑠4)𝜖 𝜇𝜈
𝛼 𝑊𝜇,𝜈],

(C.3)

as well as the transverse traceless tensor field equations

[ 𝛿𝐿
𝛿𝑢𝛼𝛽 ]

TT

= 𝑠1
4
�𝑈𝛼𝛽

+ (𝑠1
4

+ 𝑠4) ̈𝑉𝛼𝛽 + (𝑠1
4

+ 𝑠4)Δ𝑉𝛼𝛽 − 2𝑠6𝜖 𝜇𝜈
(𝛼

̇𝑉𝛽)𝜇,𝜈

+ 𝑠6𝑊̈𝛼𝛽 + 𝑠6Δ𝑊𝛼𝛽 + (𝑠1
2

+ 2𝑠4)𝜖 𝜇𝜈
(𝛼 𝑊̇𝛽)𝜇,𝜈,

[ 𝛿𝐿
𝛿𝑣𝛼𝛽 ]

TT

= (𝑠1
4

+ 𝑠4)𝑈̈𝛼𝛽 + (𝑠1
4

+ 𝑠4)Δ𝑈𝛼𝛽 + 2𝑠6𝜖 𝜇𝜈
(𝛼

̇𝑈𝛽)𝜇,𝜈

+ (𝑠1
4

+ 𝑠4 + 𝑠11)�𝑉𝛼𝛽 + 𝑠13𝑉𝛼𝛽 + 𝑠14�𝑊𝛼𝛽 + 𝑠16𝑊𝛼𝛽,

[ 𝛿𝐿
𝛿𝑤𝛼𝛽 ]

TT

= 𝑠6𝑈̈𝛼𝛽 + 𝑠6Δ𝑈𝛼𝛽 − (𝑠1
2

+ 2𝑠4)𝜖 𝜇𝜈
(𝛼

̇𝑈𝛽)𝜇,𝜈

+ 𝑠14�𝑉𝛼𝛽 + 𝑠16𝑉𝛼𝛽 − (𝑠1
4

+ 𝑠4 + 𝑠11)�𝑊𝛼𝛽 − 𝑠13𝑊𝛼𝛽. (C.4)
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