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Introduction

Le Modèle Standard de la Physique des Particules s’est construit tout au long du XXème siècle
pour unifier et décrire sous un même formalisme la mécanique quantique et la relativité restreinte,
la théorie quantique des champs. Les mesures de précision effectuées au LEP et au TeVatron
l’ont confirmée comme étant la théorie décrivant les interactions des particules subatomiques
jusqu’à des échelles d’énergie de la centaine de Gigaélectron-volt (GeV). Le principe de jauge a
permis de représenter les interactions, au nombre de trois, par l’échange de particules médiatrices,
les bosons, aux particules de matière, les fermions. Les bosons sont au nombre de quatre et
les fermions se classent en deux grandes familles : les leptons et les quarks. Cependant, un
certain nombre de problèmes demeurent, en particulier, l’autre théorie révolutionnaire du siècle
dernier, la relativité générale, n’y trouve toujours pas sa place en tant que théorie quantique
de la gravitation. Ensuite, la construction du Modèle Standard nécessite une masse nulle pour
toutes les particules en faisant partie, or, cela est contredit par un bon nombre d’observations. Il
se pose ainsi le problème théorique de la génération des masses aux particules au sein du Modèle
Standard. Au niveau cosmologique, il apparaît que la matière que nous savons décrire à l’aide
de cette théorie forme seulement une petite partie de la composition de la matière de l’Univers,
le reste se trouvant sous une forme invisible et non prédite, appelée Matière Noire. De façon
surprenante il semble que ce problème et celui de la génération des masses sont liés, permettant
de mettre en relation la dynamique de l’histoire de l’Univers avec celle du monde subatomique. De
nombreux modèles, allant au-delà du Modèle Standard, ont alors été élaborés pour répondre à ces
deux interrogations. L’un des modèles les plus étudiés, la Supersymétrie, permet d’apporter une
solution élégante à ces questions en proposant un nouveau type de symétrie, reliant les bosons aux
fermions. À l’heure actuelle cette théorie n’en est encore qu’à l’état spéculatif, aucune observation
expérimentale n’a pu la mettre en évidence malgré son impressionnante phénoménologie. En
particulier elle contient plusieurs particules pouvant prétendre à constituer la Matière Noire,
dont la plus plausible est le neutralino. Le collisionneur hadronique situé au CERN, le Large
Hadron Collider (LHC) produit actuellement des collisions proton-proton à 7 Téraélectron-volts
(TeV) dans le but de donner une réponse expérimentale à ces interrogations théoriques et de
sonder la physique au-delà de l’échelle électrofaible, limite actuelle du Modèle Standard. De plus,
des expériences embarquées, comme le satellite PLANCK, ont été envoyées dans l’espace pour
sonder l’Univers aux grandes échelles et améliorer la précision d’observables cosmologiques. Nous
sommes donc à l’aune d’une ère de mesures de précision expérimentales impliquant que du côté
des prédictions théoriques, au minimum le même niveau de précision soit atteint.

Le travail de cette thèse s’est concentré sur l’évaluation précise des taux d’annihilation d’un
des candidats à la Matière Noire provenant de l’extension Minimale Supersymétrique du Mo-
dèle Standard (MSSM), le neutralino χ̃0

1, avec application au calcul de son abondance actuelle,
puisque dans le scénario cosmologique standard, la densité relique est inversement proportion-
nelle à la section efficace d’annihilation. L’évaluation précise de cette dernière quantité nécessite
d’aller au-delà de l’ordre le plus bas de la théorie des perturbations, pour réduire les incertitudes
théoriques, puisque du côté expérimental cette observable sera prochainement extraite avec une
précision jamais égalée. La prise en compte de ces ordres supérieurs fait apparaître des diver-
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gences, rendant toute prédiction impossible si elles ne sont pas proprement soustraites du résultat
final. Ainsi, avant toute tentative de calcul, une procédure de renormalisation clairement définie
sur le plan théorique doit être appliquée pour régulariser la théorie et obtenir des résultats libres
de divergences. Cette procédure est de plus une très bonne façon de tester la théorie sous-jacente
puisqu’une fois un certain nombre de paramètres définis, il est possible de prédire n’importe quelle
observable mesurable expérimentalement. Par ailleurs le MSSM possède un très grand nombre
de paramètres à renormaliser, et le calcul d’un processus particulier nécessite l’évaluation d’un
très grand nombre de diagrammes de Feynman, rendant tout calcul à la main très difficile à
mener et sujet à de nombreuses erreurs. Par conséquent, pour la prédiction de l’annihilation de
neutralinos un programme complet de renormalisation sur couche de masse (On-Shell) à une
boucle, SloopS, initialement développé par N. Baro, F. Boudjema, A. Semenov, a été utilisé.
L’avantage de SloopS est que la totalité des secteurs du MSSM ont été renormalisés, contraire-
ment à des études précédentes où la renormalisation était partielle. J’ai généralisé la procédure
de renormalisation du secteur des neutralinos/charginos réalisée à l’aide de la mesure de trois
masses physiques et approfondi notre compréhension des corrections radiatives dans ce secteur.
Ce code permet de réaliser des calculs de précision propres aux prédictions de densité relique et
de détection indirecte de Matière Noire, mais aussi applicables aux collisionneurs. SloopS possède
de plus la possibilité d’effectuer une série de tests permettant de valider les résultats, notamment
une procédure de fixation de jauge non-linéaire permettant la vérification secteur par secteur de
l’invariance de jauge des prédictions. J’ai évalué de nombreux processus comportant chacun un
nombre très élevé de diagrammes de Feynman. La totalité des corrections électrofaibles ont été
calculées, ainsi que des corrections QCD lorsque des quarks étaient impliqués dans l’état final.

Pour le calcul d’observables reliées à la Matière Noire Supersymétrique, la renormalisation
et la bonne implémentation du secteur des neutralinos/charginos dans SloopS a été indispen-
sable pour produire des résultats fiables et rigoureux. Nous avons implémenté une méthode de
diagonalisation de la matrice 4 × 4 des neutralinos avec des paramètres complexes du fait de
l’apparition de valeurs propres négatives si une matrice de diagonalisation purement réelle est
utilisée, ce qui rendait impossible le calcul de certains processus, en particulier la désintégration
de la particule dont la masse physique était négative. Une autre difficulté technique est survenue
lors du calcul des processus d’annihilation de neutralinos à très faible vitesse relative, cette ci-
nématique particulière rend la procédure de réduction des intégrales de boucles tensorielles sur
une base d’intégrales scalaires inopérante et conduit à des instabilités numériques. L’ingrédient
clé qui contrôle la réduction est le déterminant de Gram, qui permet de tester l’indépendance li-
néaire des impulsions entrantes dans le diagramme de boucle. Dans le cas où les vitesses relatives
sont faibles les impulsions ne sont plus indépendantes et le déterminant s’annule. C’est pourquoi
une routine spéciale utilisant une méthode de segmentation des intégrales a été implémentée
directement dans le code SloopS. Cette technique nous a aussi permis d’étudier analytiquement
le comportement proche du seuil de certaines intégrales scalaires. Le calcul de la densité relique à
proprement parler a ensuite été effectué en interfaçant les résultats de SloopS avec le programme
automatique de calcul de la densité relique micrOMEGAs, ce qui est une amélioration importante
par rapport à notre méthode précédente, basée sur des approximations. Pour le calcul de la den-
sité relique nous nous sommes penchés sur des scénarios où la contribution au terme de collision
de l’équation de Boltzmann était dominé par des processus comportant des bosons de jauge
dans l’état final, où l’invariance de jauge joue un rôle de premier plan. Concernant les correc-
tions radiatives plusieurs schémas de renormalisation furent comparés ainsi que le comportement
proche du seuil de certains diagrammes de boucle scalaires, comme les fonctions Triangle ou
Boîte. L’étude de ce comportement a été d’une importance cruciale pour la compréhension des
corrections radiatives sur l’annihilation à faible vitesse relative des neutralinos lourds, dues à la
manifestation à l’ordre d’une boucle de l’effet Coulomb/Sommerfeld. Un autre type de compor-
tement infrarouge est apparu lors de l’analyse de l’annihilation de neutralinos lourds en bosons
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de jauge : les corrections de type Sudakov, émergeant lorsque des particules ultra-relativistes
rayonnent un boson de jauge supplémentaire. Nous allons maintenant exposer le plan de cette
thèse.

Dans le premier chapitre nous présenterons le Modèle Standard de la Cosmologie, en insistant
notamment sur la problématique de la Matière Noire. Une attention particulière sera portée sur
la dérivation du calcul de la densité relique de Matière Noire à partir de l’équation de Boltzmann,
dans le scénario cosmologique standard dominé par la radiation. Nous montrerons que l’interface
entre la Physique des Particules et la Cosmologie se situera au niveau du calcul du terme de
collision.
Le deuxième chapitre sera orienté sur la présentation du Modèle Standard de la Physique des
Particules et de l’importance du principe de jauge qui a guidé sa construction. Les limites de ce
modèle et les motivations incitant à chercher une physique allant au-delà de l’échelle électrofaible
sera exposée brièvement.
Le chapitre suivant sera consacré à une introduction à la supersymétrie, en particulier il sera
montré comment cette nouvelle symétrie permet de stabiliser le secteur scalaire du Modèle Stan-
dard vis à vis des corrections d’ordres supérieurs. La construction de l’extension minimale du
Modèle Standard, le MSSM, sera présentée ainsi que son contenu en particules, notamment celles
pouvant prétendre à être candidates à la Matière Noire.
Le chapitre quatre portera sur la régularisation des divergences ultraviolettes apparaissant lorsque
les diagrammes à une boucle sont pris en compte, c’est à dire l’identification et l’isolation des sin-
gularités. La méthode de réduction des intégrales tensorielles vers une base d’intégrales scalaires,
puis le calcul de certaines de ces intégrales sera exposé. La question des divergences infrarouges
apparaissant par exemple dans la fonction à trois points sera discutée et notamment son com-
portement singulier lorsque l’on est proche du seuil de la réaction.
Le cinquième chapitre abordera la renormalisation du MSSM, les définitions et expressions de
chacun des contre-termes nécessaires à la renormalisation de chaque secteur seront exposés , sauf
celui des neutralinos/charginos pour que je présenterai en détail dans le septième chapitre.
Le chapitre six consistera en la présentation du code numérique SloopS, en particulier l’auto-
matisation de la génération des règles de Feynman et des contre-termes. Les différents types de
tests disponibles, sur les divergences ultra-violettes et infrarouge, pour vérifier systématiquement
la rigueur des résultats seront évoqués, ainsi que l’utilisation de la fixation de jauge non-linéaire.
Dans le septième chapitre la renormalisation du secteur des neutralinos/charginos à l’aide d’un
schéma sur couche de masse sera présentée en détail, avec notamment une tentative de géné-
ralisation des expressions des contre-termes une fois le schéma fixé. À l’origine, le programme
SloopS était optimisé pour des scénarios où le neutralino le plus léger est de type bino. Les
masses soft des jauginos de type U(1) et SU(2) ainsi que le paramètre de masse des higgsinos
étaient reconstruits à partir de la masse du neutralino le plus léger et de celles des charginos. Ce
scénario n’est cependant pas idéal dans les études qui ont été menées dans les chapitres suivants.
Grâce à ce travail il a été possible de changer très rapidement l’expression des contre-termes
pour s’adapter à chaque cas. Nous avons brièvement étudié un cas réaliste où les contre-termes
sont obtenus à partir de deux masses de neutralinos et d’un chargino. Nous montrerons que ce
schéma est lui aussi sujet à certains problèmes, inhérents au choix des masses, en particulier si
l’on tente de reconstruire les paramètres fondamentaux du lagrangien.
Le huitième chapitre adressera l’étude de l’annihilation de différents types de neutralinos en bo-
sons de jauge. Ce type d’état final est le plus difficile à évaluer parmi l’ensemble des processus
d’annihilation, car il implique le calcul de nombreux diagrammes de Feynman et l’invariance de
jauge y joue un rôle prépondérant. À partir de l’évaluation de ces sections efficaces la densité
relique de matière noire sera dérivée et l’impact des corrections radiatives illustré. De plus, pour
ce type d’état final, généralement la prise en compte de canaux de coannihilation pour le calcul
de la densité relique est aussi nécessaire, ainsi aux bosons de jauge dans l’état final s’ajouteront
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aussi des quarks. Par conséquent des corrections radiatives seront de l’ordre de la constante de
couplage QCD et devront être prises en compte. L’ajout des diagrammes de boucle fera appa-
raître une cinématique complètement absente à l’ordre le plus bas, en particulier l’apparition
d’une singularité de type Coulomb lorsque les deux particules s’annihilant ont une charge élec-
tromagnétique et non-relativistes. Nous montrerons qu’alors le développement en puissance de
la vitesse relative v de la section efficace d’annihilation par v n’est plus valide mais qu’il est
possible de capturer cette singularité en modifiant le développement. D’une façon plus géné-
rale, dès que l’ajout des ordres supérieurs modifie la dynamique de l’annihilation par rapport à
l’ordre dominant (comme par exemple l’ouverture d’un seuil dans un diagramme de boucle), ce
développement n’est plus adéquat, alors qu’à l’ordre dominant il l’était.
Le neuvième chapitre présentera le même type d’étude que dans le chapitre précédent mais dans
le cas où les neutralinos sont lourds, de l’ordre du TeV. Il apparaîtra que dans le cas où la LSP
(Lightest Supersymmetric Particle) sera un pur neutralino de type wino, de grandes corrections
infrarouges dues à la cinématique des diagrammes de boucle seront présentes à la fois dans les
régimes non-relativistes et relativistes. Le premier type de correction est du non seulement à
l’effet Coulomb/Sommerfeld causé par l’échange d’un photon non massif, mais aussi, du fait de
la quasi-dégenerescence de la LSP avec la NLSP (Next-to-Lightest Supersymmetric Particle, par
l’échange de boson de jauge faibles “mous”. Le deuxième type de correction infrarouge/collinéaire
surgira sous la forme de double logarithmes, bien connus sous le terme générique de logarithmes
de Sudakov et apparaissant lors des calculs des corrections électrofaibles aux processus de type
Modèle Standard. Cet effet peut être contrebalancé si les processus 2 → 2 + Z0 sont inclus
et évalués à travers une intégration Monte-Carlo de l’espace des phases à trois particules très
efficace. Nous montrerons par un calcul analytique, dans le cas simple de la désintégration d’un
boson Z ′ de l’ordre du TeV en paire de neutrinos, que les doubles logarithmes provenant des
corrections virtuelles et de l’ajout de l’émission réelle d’un boson Z0 s’annulent. De plus, pour
gérer la configuration spéciale des impulsions quand la vitesse relative tend vers zéro, où la
méthode habituelle de réduction des intégrales de boucles à la Passarino-Veltman est inopérante,
nous avons utilisé la méthode de segmentation décrite dans le chapitre quatre pour éviter cette
instabilité numérique.
Pour finir nous donnerons en conclusion un résumé du travail accompli et nous évoquerons les
futurs projets envisagés ou en cours de réalisation. Il sera présenté dans les Annexes quelques
points techniques sur le calcul des sections efficaces avec application pour la Matière Noire, ainsi
que quelques formules.
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Introduction (English version)

The Standard Model of Particle Physics has been built during the XXth century to unify
and describe under the same formalism Quantum Mechanics and Special Relativity known as
quantum field theory. This model is very predictive in the sense that it possesses a number of
physical observables that one can measure and relate to each other, enabling this model to be
the theory of interactions of fundamental particles up to energies around a hundred of GeV. The
gauge principle as a guiding principle has allowed to represent fundamental interactions between
matter particles, the fermions, through the exchange of vector-like particles, the gauge bosons.
The fermions are classified into two families : leptons and quarks. However, some unresolved
problems remain, in particular, the other groundbreaking theory of the past century, General
Relativity, still doesn’t have its quantum field version : quantum gravity. Moreover, the buil-
ding of the Standard Model does not allow for its particles to be massive, which is in complete
contradiction with everything that has been observed in colliders until now. Then arises the
question of how is it possible to generate mass to particles without violating the structure (the
gauge symmetry) of the theory ? This problem is known as the electroweak symmetry breaking
riddle. Then if we look at our understanding of physics at scales of the order of galaxies, namely
cosmology, it seems that the matter that we know amounts to a small part of the entire mat-
ter budget of the Universe, what is left is of unknown and invisible kind, called Dark Matter.
But, amazingly, it seems that this issue is related to the mechanism of mass generation, and
in turn connecting the understanding of dynamical evolution of the Universe to the one of the
subatomic world. Lots of models, going beyond the Standard Model, have emerged to answer
these questions. One of the most studied model, Supersymmetry, gives an elegant solution to
both problems by postulating the existence of a new symmetry, relating bosons to fermions. At
the present time this theory is still speculative, no experimental measurement has revealed a
supersymmetric nature of fundamental particles, in spite of its impressive phenomenology and
predictiveness. Especially it possesses several particles which can be the dark matter candidates,
among which the most studied is the so-called neutralino. The hadronic collider based at CERN,
the Large Hadron Collider, (LHC) has been designed in this purpose and produces currently
proton-proton collisions at 7 TeV in the center of mass, in order to give an experimental answer
to these theoretical questioning and to probe physics beyond the Standard Model, believed to be
beyond the electroweak scale. Moreover, cosmological related experiments, such as the PLANCK
satellite, have been set into space to probe our Universe at large scales and to improve the expe-
rimental precision on cosmological parameters. We are therefore at the eve of an era of precision
experimental measurements, implying that, on the theoretical side, it is mandatory that the same
level of precision is reached.

This thesis focuses on the precise evaluation of the annihilation rates of one of the candidates
for Dark Matter emerging from the Minimal Supersymetric extension of the Standard Model
(MSSM), the neutralino χ̃0

1, with applications to the prediction of its current abundance, as in
the standard cosmological scenario, the relic density is inversely proportional to the annihilation
cross section. The precise computation of this quantity needs that one goes beyond the born ap-
proximation. However taking into account higher orders effects one is faced with the emergence
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of infinite quantities making any prediction impossible if they are not properly and safely remo-
ved. Thus, before any attempt to compute any observable, a renormalisation procedure clearly
defined on the theoretical level is to be carried out to regularise the theory and to obtain results
free of divergences. Renormalisation is also a good way to test the inner structure of the theory
as once a set of input parameters is defined, all remaining observables become predictions to be
tested experimentally. The MSSM has a huge amount of parameters to be renormalised, and the
evaluation of a particular process implies the computation of a large number of Feynman dia-
grams, by making any hand calculation unpractical and prone to many errors. Consequently for
the prediction of the annihilation rate of neutralinos, a numerical tool dedicated to the evalua-
tion of one-loop observables has been applied. The great advantage of SloopS is that all sectors
of the MSSM have been renormalised, as opposed to previous studies where partial renorma-
lisation has been carried out. This code enables one to compute physical observables with a
high level of precision related to cosmology, astrophysics and colliders. Built in SloopS is the
ability to pursue several tests to check the validity of the results, in particular a non-linear gauge
fixing procedure allowing to inspect the gauge invariance sector by sector of the predictions.
A substantial number of processes have been evaluated where for each one a very large num-
ber of Feynman diagrams were present, especially the ones involving gauge bosons in the final
state. Electroweak corrections were fully taken into account, as well as some QCD corrections for
channels with quarks and final state radiation. Concerning the electroweak corrections several
renormalisation schemes have been compared. The understanding of radiative corrections on the
annihilation of heavy neutralinos at small relative velocities, where the one-loop expression of
the Coulomb/Sommerfeld effect shows up, has been studied in detail and related to the singular
behaviour of some scalar integrals. An other kind of infrared/collinear behaviour also had to be
tackled, the so-called Sudakov correction, appearing when ultra-relativistic particles radiate a
boson.

For supersymmetric dark matter calculations, the renormalisation and good implementation of
the charginos/neutralinos sector in the code have been mandatory to get reliable and rigorous
results. We implemented a method to diagonalise the 4 × 4 matrix of the neutralinos with
complex parameters. The use of a real diagonalisation matrix and counter-terms leads to some
mass eigenvalues to be negative. Though this is not a problem in itself, when calculating cross
sections this leads to severe conflicts. Therefore for generality it is crucial to revert to masses
with a definite positive value. Another technicality came about during the one-loop evaluation
of annihilating processes at very small velocities. This particular kinematics makes the reduction
procedure of loop tensor integrals to a basis of scalar integrals ineffective and leads to severe
numerical instabilities. The key ingredient which controls this reduction is the so-called Gram
determinant, which tests the linear independence of incoming momenta into the loop diagram. In
the particular case where the relative velocity is low, the four-momenta are no longer independent
and the determinant vanishes. This is why a special routine has already been implemented directly
into the SloopS code. The determination of the relic density has been conducted by interfacing
SloopSwith the automatic program for the calculation of the cosmic abundance micrOMEGAs,
which is an important improvement compared to our previous method based on approximations.
This thesis is organised as follows.

In the first chapter we will present the Standard Model of Cosmology and the Dark Matter pro-
blem will be emphasized. A particular attention will be paid to the derivation of the relic density
of Dark Matter starting from the Boltzmann equation, in the standard radiation-dominated sce-
nario. We will show that the interface between Cosmology and Particle Physics is at the level of
the computation of the collision term.

The second chapter will be devoted to the presentation of the Standard Model of Particle Physics
and to the importance of the gauge principle which guided its construction. Theoretical limita-
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tions of this model will also be partly presented, and motivations for looking for models going
beyond the electroweak scale.

The next chapter will be an introduction to supersymmetry and special care will be given to
the relevance of symmetries when computing radiative corrections, and how, thanks to Super-
symmetry, the scalar sector can be stabilised with respect to higher order effects. The building
blocks of supersymmetry will be presented, as well as its particle content, notably the ones that
can possibly constitute Dark Matter.
The fourth chapter will address the regularisation of the ultraviolet divergences appearing in loop
diagrams. The reduction method of the tensor integrals to scalar integrals will also be outlined,
and then some scalar functions will be evaluated to exhibit their behavior in some limits. A special
attention will be paid to the infrared regime of the three point scalar function and notably near
the threshold. This will be important when studying the annihilation of neutralinos into gauge
bosons.
Chapter five will sum up briefly the on-shell renormalisation of the MSSM, how counter-terms
needed for each sector are defined and expressed, except for the ones in the charginos/neutralinos
sector which will be tackled in chapter seven.
The next chapter will consist in the presentation of the SloopS code, in particular the automation
of the generation of Feynman rules and counter-terms. The systematic tests available to check
the numerical results, like the cancellation of UV and IR divergences, will be presented, along
with the use of the non-linear gauge-fixing.

In chapter seven the renormalisation of the neutralinos/charginos sector through an on-shell
scheme will be introduced and an attempt to generalise the counter-terms definitions once the
input masses chosen. Originally the SloopS code was designed for bino-like scenarios, where the
U(1) and SU(2) soft masses, plus the higgsino parameter were extracted from the measurement
of the lightest neutralinos and two charginos. However this scheme is not well adapted for the
case we studied in the next chapters. Thus this preliminary work has been very useful to change
very quickly the expression of the counter-terms depending on the choice of input parameters. We
have briefly study a realistic case where the counter-terms are obtained from the measurement of
the mass of two neutralinos and one chargino. We will show that this scheme also presents some
drawbacks, inherent of this scheme, especially when one wants to reconstruct the fundamental
parameters.
Chapter eight will address the annihilation of neutralinos with a mass of order 100 GeV to
weak gauge bosons. This kind of final states is, among the set of possible processes, the most
difficult to compute, because it implies the evaluation of numerous Feynman diagrams. Gauge
invariance plays a prominent role. From the computation of these cross-sections the prediction of
the relic density of Dark Matter will be derived and the impact of radiative corrections illustrated.
Moreover, for this type of final state, one also has to take into account coannihilation channels
for the calculation of the cosmic abundance, thus processes with light and heavy quarks in the
final state have been considered also. Consequently we took into account some QCD corrections.
The addition of loop diagrams will show new interesting dynamical effects, absent at the Born
level, especially the appearance of a Coulomb type singularity when the relative velocity of the
annihilating charged particles under electromagnetism approaches zero. We will then show thaht
the usual expansion in terms of v, the relative velocity, of the cross section times v is not valid
anymore, but that it is possible to capture this effect by slightly modifying the expansion. More
generally, as soon as some dynamical features appear (like threshold opening in loops) when
going to the next-to-leading order the expansion in powers of v is not valid anymore, although
at leading order it was.
Chapter nine will address the same kind of study but with heavy neutralinos in the initial state, of
order the TeV scale. We will show that that, in the case where the LSP (Lightest Supersymmetric
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Particle) is a pure wino, large corrections due to the kinematics of the loop diagrams will show
up for small and large relative velocities. The first type of corrections is due not only to the
QED Coulomb/Sommerfeld effect, where a massless gauge boson is exchanged, but also from
soft exchange of massive weak gauge bosons, caused by the quasi-degenerescence in mass of the
LSP with the NSLP (Next-to-lightest Supersymmetric Particle). The second type of corrections,
present for all scales of velocity, will emerge under the form of double-logarithm, the so-called
Sudakov logarithms, already known for their presence in the calculation of electroweak corrections
in Standard Model processes. The addition of 2 → 3 processes where the third particle is a Z boson
will be shown to be very important, and from a technical point of view this requires a precise
Monte-Carlo integration of the three-particles phase space. We will show through an analytic
calculation that, in the simple case of a Z ′ boson decaying into a pair of massless neutrinos, the
double logarithmic corrections coming from the virtual part and the real emission of a Z0 boson
cancel. Moreover to deal with the specific configuration of loop integral with vanishing relative
velocity, where the usual Passarino-Veltman reduction method is inoperative because the Gram
determinant vanishes, we used the segmentation method described in chapter four to avoid this
numerical instability.
Finally we will conclude with a summary of the entire work and we will mention the projects to
be carried out in the near future. In appendices some technical points will be outlined on the
calculation of cross-sections relevant for Dark Matter annihilation, with some useful formulas.
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Chapitre 1

Le modèle cosmologique standard
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English Abstract This chapter will review the standard model of cosmology, the so-called
ΛCDM model. The thermal history of the early Universe will be presented, in particular the
interplay between Cosmology and Particle Physics comes about through the calculation of relic
densities. The Dark Matter problem and the derivation of its cosmic abundance will be intro-
duced. It will be shown that the precision of the measurement of the relic density requires very
accurate predictions on the theory side.

1.1 Introduction

La cosmologie décrit l’évolution thermique de l’Univers, qui, dans l’état actuel de nos connais-
sances, est basée sur le modèle du Big-Bang élaboré au cours du XXème siècle. Ce modèle re-
produit avec succès et de façon simple un très grand nombre d’observations, à tel point qu’il
a acquis le nom de modèle standard de la cosmologie. Plusieurs étapes furent nécessaires à sa
construction, sa vision moderne naît en 1915 avec la théorie de la relativité générale d’Albert
Einstein. Un an plus tard, Karl Schwarzschild trouve une solution à symétrie sphérique des équa-
tions d’Einstein puis les premiers modèles cosmologiques dynamiques apparaîtront en 1922 avec
Alexander Friedmann. La construction de ces modèles s’appuie sur les équations d’Einstein et le
principe cosmologique, qui stipule que l’homme n’occupe pas une place privilégiée dans l’Univers,
impliquant que l’Univers doit être isotrope et spatialement homogène, conduisant à la métrique
de Friedmann-Lemaître-Robertson-Walker. Les équations de la relativité induisent, quant à elles,
une géométrisation de l’espace-temps qui est encodée dans l’expression de la métrique. L’espace-
temps est alors un champ comme un autre, avec une dynamique. Cette description s’est ensuite
enrichie et affinée tout au long du XXème siècle grâce à de nouvelles observations de plus en plus
précises. Le modèle du Big-Bang suppose que dans son état initial l’Univers était très dense et
très chaud, puis, étant en expansion, il s’est refroidi et sa densité a diminué. Ce modèle permet,
en outre, de décrire le fond diffus cosmologique, l’abondance des éléments légers, la formation
des grandes structures (galaxies, amas de galaxies) et le contenu de l’Univers actuel.
Cependant, plusieurs interrogations restent encore en suspens et non-résolues : déterminer la
nature et l’origine de ce qui est appelé communément l’énergie noire et la matière noire. En 1998,
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CHAPITRE 1. LE MODÈLE COSMOLOGIQUE STANDARD

deux équipes américaines, à partir de l’observation de la luminosité des supernovæ, tirèrent la
conclusion que l’Univers était en expansion accélérée [1, 2]. Cela suppose l’existence d’une force
répulsive à grande échelle pouvant être obtenue à partir d’une nouvelle énergie, appelée énergie
noire. Concernant la constitution en matière de l’Univers, les données observationnelles nous
indiquent que la plus grande partie nous est invisible. Par définition, cette matière est appelée
“noire”, c’est à dire qu’il n’y a pas de radiation “détectable” qui lui est associée. Une fois encore de
nombreuses observations expérimentales confirment indirectement la présence de cette matière
noire, comme par exemple l’observation du fond diffus cosmologique par la sonde WMAP [3] ou
de l’effet de lentillage gravitationnel [4, 5].

1.2 Le Modèle du Big Bang

1.2.1 Équations de la théorie

Les équations d’Einstein relient la géométrie de l’Univers à son contenu énergétique et per-
mettent d’étudier son évolution. Ces équations sont dérivées à partir de l’action de la relativité
générale, appelée action d’Hilbert-Einstein, qui repose sur la relativité restreinte et le principe
d’équivalence qui suppose que la masse inertielle est identique à la masse gravitationnelle,

S =
c4

16πG

∫ √−g(R− 2Λ)d4x+ Sm (1.1)

où c est la vitesse de la lumière dans le vide, G la constante de gravitation de Newton, g le
déterminant de la métrique de notre espace-temps, R sa courbure scalaire et Sm l’action des
champs de matière.
Si on applique le principe de moindre action δS = 0, on obtient alors l’équation de la relativité
générale :

Rµν − 1

2
gµνR+ Λgµν = 8πGTµν (1.2)

R et Rµν représentent respectivement la courbure et le tenseur de Ricci, déduits de la métrique
gµν considérée. Cette équation nous indique que le contenu énergétique (représenté par le ten-
seur énergie-impulsion Tµν) est reliée à la géométrie de l’espace (identifiée par la métrique gµν).
Le terme Λ a été introduit par Einstein en 1917 pour contrebalancer l’attraction gravitation-
nelle car il souhaitait rendre compte d’un univers statique. Cependant en 1929, Edwin Hubble,
en observant l’éloignement des galaxies, impliquant que l’Univers est en expansion, met fin à
cette hypothèse. Néanmoins, l’idée d’un terme supplémentaire dans l’équation (1.2) renaît de
ses cendres en 1998 pour expliquer cette fois-ci l’expansion accélérée de l’Univers. Nous allons
maintenant chercher une solution aux équations d’Einstein qui correspondra à notre Univers.
Pour cela nous devons définir la partie géométrique (partie de gauche de (1.2)) et la partie ma-
tière (celle de droite). Pour obtenir la première il suffit de déterminer la métrique gµν puisque
les tenseurs et scalaires de Ricci sont obtenus à partir de cette quantité, puis nous définirons la
deuxième en spécifiant la forme du tenseur énergie-impulsion Tµν .

1.2.2 Métrique de Robertson-Walker

Le principe cosmologique stipule qu’il n’existe pas de référentiel privilégié dans l’Univers, im-
pliquant qu’il doit être spatialement homogène et isotrope. Ces hypothèses restreignent la forme
de la métrique et conduisent à celle dite de Friedmann-Lemaître-Robertson-Walker, exprimée en
coordonnées sphériques comobiles

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(1.3)
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a(t) est appelée le facteur d’échelle, et k la courbure.

k =





+1 univers fermé

0 univers plat

−1 univers ouvert

(1.4)

Les données expérimentales actuelles donnent k ≃ 0, indiquant que l’Univers semble plat.

1.2.3 Contenu de l’Univers

Le tenseur énergie-impulsion permet de représenter la répartition de masse et d’énergie dans
l’espace-temps. Une fois ce tenseur fixé, il est possible de déterminer l’évolution du facteur
d’échelle à partir des équations d’Einstein afin de déterminer la dynamique de l’Univers. Si
on fait l’hypothèse que l’Univers est rempli d’un fluide parfait de densité ρ et de pression P alors
ce tenseur prend la forme :

T µν = (P + ρ)uµuν − Pgµν (1.5)

où u représente la vitesse du fluide.
Les différents types de fluide seront caractérisés par leur équation d’état P/ρ = ω et sont résumés
dans le tableau suivant :

ω Type de fluide
1/3 particules relativistes
0 particules non-relativistes
-1 constante cosmologique

1.2.4 Équations de Friedmann-Lemaître

Si l’on considère la forme de la métrique (1.3), celle du tenseur énergie-impulsion (1.5) et que
l’on insère ces expressions dans les équations de la relativité générale (1.2), on obtient alors les
équations de Friedmann-Lemaître :

H2 =

(
ȧ

a

)2

=
8πG

3

∑

i

ρi −
k

a2
+

Λ

3
(1.6)

ä

a
= − 4πG

3

∑

i

(ρi + 3Pi) +
Λ

3
(1.7)

où la somme se fait sur tous les types de fluides de l’Univers (ρi et Pi sont respectivement
les densités d’énergie et pressions individuelles) et H est la fonction de Hubble. La première
équation va déterminer la “vitesse” d’expansion de l’Univers alors que la seconde indique s’il est
en accélération ou en décélération selon le signe de ä. On définit alors le paramètre de décélération
q = − äa

ȧ2 . Aujourd’hui nous savons que ce paramètre est négatif, c’est à dire que l’Univers accélère.
La conservation du tenseur-énergie impulsion

∇µT
µν = 0 (1.8)

où ∇µ est la dérivée covariante en relativité générale, dont l’expression est donnée par,

∇µ = ∂µ + Γµ
σµ + Γν

σµ (1.9)

où les Γν
σµ sont les symboles de Christoffel définis par

Γν
σµ =

1

2
gνρ(∂µgρσ + ∂σgρµ − ∂ρgµσ) (1.10)
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Cela nous donne alors une troisième équation :

ρ̇+ 3H(P + ρ) = 0 (1.11)

qui est équivalente à la deuxième équation de Friedmann, elle est aussi appelée équation de
Raychaudhury.

1.2.5 Paramètres cosmologiques

Le taux actuel d’expansion H0 joue un rôle multiple en cosmologie. Son inverse, le temps de
Hubble tH , est l’échelle de temps de l’expansion qui donne l’ordre de grandeur du temps écoulé
depuis le début de l’époque actuelle d’expansion classique. Le rayon de Hubble dH = c tH donne
l’échelle de l’horizon classique actuel. Enfin le taux d’expansion entre dans la détermination
des densités des composants de l’Univers. Sa valeur se déduit de l’observation de la vitesse de
récession des galaxies donnée par la loi de Hubble, valable à petit redshift

v = H0R+ vp (1.12)

où v est la vitesse des galaxies, déterminée à partir du décalage vers le rouge (ou redshift), R est
la distance de la galaxie et vp les vitesses “particulières” des galaxies. Les tables actuelles donnent

H0 = 100h km.s−1.Mpc−1 (1.13)

avec h = 0.70 ± 0.01

On définit le redshift z comme la variation de la longueur d’onde d’un photon entre le moment
de son émission λémis et de son observation λobs sur Terre. Il est de plus directement relié au
facteur d’échelle a(t)

1 + z =
λobs

λémis
=

aobs

aémis
(1.14)

H0 détermine la densité critique

ρc =
3H2

0

8πG
(1.15)

qui est la densité qu’aurait un univers homogène et isotrope en expansion pour que sa courbure
spatiale soit nulle. Dans un univers sans constante cosmologique, la densité critique détermine
la frontière entre des univers qui continueront leur expansion éternellement et des univers qui
se contracteront. Ainsi on va pouvoir définir des quantités adimensionnées, qui représentent la
proportion (par rapport à la densité critique) de chaque élément dans l’Univers

Ωi =
8πG

3H2
0

ρi (1.16)

Ωk = − k2

a2H2
(1.17)

ΩΛ =
Λ

3H2
(1.18)

où les Ωi permettent de définir la densité réduite de matière totale Ωm =
∑

i Ωi. Les deux
paramètres suivants sont respectivement la densité réduite pour la constante cosmologique et
pour la courbure. On peut réécrire alors la première équation de Friedmann-Lemaître sous la
forme d’une équation de contrainte

Ωm + ΩΛ + Ωk = Ωtot + Ωk = 1 (1.19)
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1.2.6 Évolution du paramètre d’échelle

A l’aide de l’équation d’état du fluide P = wρ on peut écrire la densité d’énergie en fonction du
paramètre d’échelle pour différentes valeurs de w, donc différentes natures du fluide en résolvant
l’équation de conservation

ρ(a) = ρ0

(
a

a0

)−3(1+w)

(1.20)

L’évolution des différents paramètres est donnée dans le Tableau 1.1. Si une espèce domine

Type de fluide ω densité facteur d’échelle
matière relativiste 1/3 ∝ 1/a4 ∝ t1/2

matière non-relativiste 0 ∝ 1/a3 ∝ t2/3

constante cosmologique -1 cte ∝ eHt

Table 1.1 – Évolution, pour chaque type de fluide, de leur densité en fonction du facteur d’échelle
et du facteur d’échelle en fonction du temps.

par son abondance, l’Univers suit sa dynamique. Ainsi l’Univers a successivement connu une
ère de radiation puis une ère de matière puis actuellement une ère dominée par la constante
cosmologique qui serait responsable de son expansion accélérée.

1.3 Histoire thermique de l’Univers

1.3.1 Notion de découplage

La densité d’énergie de la matière relativiste (photons et neutrinos de masse nulle) décroît
comme ρR ∝ a−4. Si on suppose que l’Univers a un rayonnement de type corps noir, alors
ρR ∝ T 4. Nous observons alors que le produit aT = cte. On en tire alors que

T (t) = T (t0)

[
a(t0)

a(t)

]
= T (t0)(1 + z) (1.21)

L’évolution de la température des photons est alors un “traceur” de l’expansion de l’Univers. Ainsi,
au fur et à mesure que l’on remonte dans le temps, la température de l’Univers augmente puisque
le facteur d’échelle diminue . L’histoire thermique de l’Univers se résume alors à l’évolution de
la température Ti des différents éléments qui le composent par rapport à la température de
référence T , la température des photons. Si le taux d’interaction Γi d’une espèce i, à partir
d’une certaine température Tgel n’est plus suffisant pour la maintenir en équilibre avec le bain
thermique, alors sa distribution thermique Ti va se découpler de celle de l’Univers et suivre son
propre comportement. Typiquement ce phénomène se produit lorsque Γi(Tgel) . H(Tgel), c’est à
dire que le temps caractéristique Γ−1

i pour que deux particules de l’espèce i se “rencontrent” est
supérieur au temps caractéristique d’expansion de l’Univers, par conséquent ces deux particules
ne se rencontreront jamais. On parle de gel (freeze out en anglais) de l’espèce, qui a laissé l’Univers
avec un “reliquat” constitué de l’espèce i. On distingue deux catégories de découplage :

-ultra-relativiste : le découplage a lieu lorsque Tgel >> mi

-non-relativiste : le découplage a lieu lorsque Tgel << mi

où mi est la masse de la particule de l’espèce i.
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1.3.2 Distributions à l’équilibre

Considérons une espèce de particule i, qui peut être des photons, des électrons etc..., de
masse mi et de degrés de libertés internes gi. Pour décrire l’évolution de cette espèce dans
l’Univers naissant, à savoir à partir de son nombre volumique ni, sa densité d’énergie ρi et
sa pression partielle pi, il est nécessaire de connaître la fonction de distribution fi(

−→pi , Ti) des
particules présentes dans l’Univers, où −→pi désigne la quantité de mouvement et Ti la température
de l’espèce et de l’Univers, s’ils sont en équilibre thermique. Hormis les contraintes du principe
de Pauli pour les fermions, les distributions sont a priori arbitraires. Les distributions thermiques
à l’équilibre sont toutefois particulièrement importantes et prennent la forme des distributions
de Fermi-Dirac ou de Bose-Einstein :

fi(
−→pi , Ti) =

gi

exp[(E − µi)/Ti] ± 1
(1.22)

où µi est le potentiel chimique de l’espèce en question, Ti sa température et le signe + (−)
correspond aux fermions (bosons). Au moment du découplage Tgel de l’espèce du bain thermique,
la distribution thermique de l’espèce i va être celle du bain à cette température de gel. Ensuite la
particule va garder sa distribution thermique au moment du découplage alors qu’elle n’est plus
à l’équilibre, son évolution proviendra seulement de l’expansion de l’Univers et la particule se
propagera librement (s’il n’y a pas d’interactions).

1.3.3 Quantités thermodynamiques

Pour une espèce i on définit les densités numérique ni, d’énergie ρi et de pression Pi par

ni(
−→p , T ) =

gi

(2π)3

∫
d3−→p fi(

−→p ) (1.23)

ρi(
−→p , T ) =

gi

(2π)3

∫
d3−→p Efi(

−→p ) (1.24)

Pi(
−→p , T ) =

gi

(2π)3

∫
d3−→p |−→p |2

3E
fi(

−→p ) (1.25)

Il est possible de déterminer ces quantités dans certains cas limites

- T >> mi :

n =

{
ζ(3)
π2 gBT

3 bosons
3
4

ζ(3)
π2 gFT

3 fermions
(1.26)

ρ =

{
π2

30 gBT
4 bosons

7
8

π2

30 gFT
4 fermions

(1.27)

P = ρ/3 bosons et fermions (1.28)

où ζ est la fonction de Riemann (ζ(3) ≃ 1.202)

- T << mi :
Dans ce cas, les distributions de Fermi-Dirac et de Bose-Einstein peuvent être approchées
par celle de Maxwell-Boltzmann soit f(−→p , T ) ∼ exp(−E/kT ) avec E ≃ m + p2/2m et on
obtient

n = g

(
mT

2π

)3/2

exp
(
−m
T

)
(1.29)

ρ = nmi (1.30)

P = nT << ρ (1.31)
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On voit alors que dans l’expression de n apparaît le facteur de Boltzmann exp(−m/T )
qui diminue radicalement le nombre de particules. La densité de ces particules devient
rapidement très faible avec le refroidissement de l’Univers.

1.3.4 Nombre de degrés de libertés relativistes

La densité totale de rayonnement, à savoir l’ensemble des particules relativistes, est donnée
par

ρtot = g∗(T )
π2

30
T 4 (1.32)

et la pression s’écrit

Ptot =
ρtot

3
= g∗(T )

π2

90
T 4 (1.33)

g∗ représente le nombre effectif de degrés de libertés relativistes

g∗(T ) =
∑

bosons

gB,i

(
TB,i

T

)4

+
7

8

∑

fermions

gF,i

(
TF,i

T

)4

(1.34)

g∗ est le nombre de degrés de libertés “actifs” à la température T , les particules qui contribuent
majoritairement sont les particules à l’équilibre thermique (Ti = T ), les particules ayant Ti < T
ne contribuant quasiment plus, elles sont découplées du bain thermique.

1.3.5 Entropie

L’entropie du plasma primordial se calcule en prenant un potentiel chimique nul pour toutes
les espèces. Le premier principe de la thermodynamique donne

Tsi = ρi + Pi (1.35)

où si désigne l’entropie volumique et ρi,Pi sont données par (1.23). Dans le régime ultra-
relativiste, il est possible de relier simplement les densités d’énergie et d’entropie

si =
4

3

ρi

T
=

{
4π2

45
g
2T

3 bosons
7
8

4π2

45
g
2T

3 fermions
(1.36)

.

1.3.6 Le scénario standard

La physique connue et acceptée à l’heure actuelle permet de suivre avec confiance la succes-
sion d’évènements qui se sont produits jusqu’à T ≃ 1 GeV, pour des températures supérieures
l’histoire de l’Univers est basée sur des extrapolations de nos connaissances actuelles jusqu’à
l’époque de Planck t = 10−43s soit T ≃ 1019 GeV. Il est communément admis que les idées
essentielles de la théorie quantique des champs devraient rester valables jusqu’à cette énergie,
au delà de laquelle des effets inconnus de gravitation quantique deviendraient importants. On
s’attend par conséquent à ce qu’en remontant le temps, la température de l’Univers augmente,
en franchissant de temps à autre des seuils particules antiparticules. Les particules présentes à
ces hautes températures n’auront pas d’effet significatif sur le présent sauf si elles sont stables
ou si leurs interactions déterminent des nombres quantiques globaux, comme l’asymétrie ba-
ryon/antibaryon. Commençant à partir du temps de Planck, voici une brève description de son
histoire jusqu’à nos jours :
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– T ≃ 1016 GeV (t ≃ 10−36 sec) : à cette échelle d’énergie, on suppose que le groupe G de
grande unification des interactions est brisé pour donner le groupe de jauge du Modèle
Standard des particules SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

– T ≃ 102 GeV (t ≃ 10−12 sec) : le groupe de jauge du Modèle Standard se brise en SU(3)C⊗
U(1)Q, c’est la transition électrofaible. Elle pourrait être responsable de la baryogénèse.

– T ≃ 101 − 103 GeV (t ≃ 10−8 − 10−12 sec) : le particules de matière noire dont la masse
est de l’ordre du GeV au TeV se découplent, que l’on expliquera dans la section 4.

– T ≃ 0.3 GeV (t ≃ 10−6 sec) : c’est la transition de phase QCD, les quarks et les gluons
s’assemblent en hadrons.

– T ≃ 1 MeV (t ≃ 1 sec) : les neutrons se découplent.
– T ≃ 100 keV (t ≃ 102 sec) : la nucléosynthèse primordiale ou BBN (Big Bang Nucleosyn-

thesis) commence. Les protons et neutrons fusionnent pour former les éléments légers (D,
3He, 4He, Li).

– T ≃ 1 eV (t ≃ 1012 sec) : égalité matière-rayonnement, l’Univers passe d’une époque
dominée par la rayonnement à une autre dominée par la matière. La formation des grandes
structures peut débuter.

– T ≃ 0.4 eV (t ≃ 380 000 ans) : le découplage des photons produit le rayonnement fossile
appelé fond diffus cosmologique ou CMB (Cosmic Microwave Background), voir section
suivante.

– T ≃ 10−4 eV, T = 2.7 K : aujourd’hui.

1.3.7 Observations

Les valeurs des différents paramètres cosmologiques sont obtenus à partir de plusieurs sources.
La cosmologie observationnelle part de l’observation des photons émis par des étoiles ou quasi-
étoiles, puis des galaxies et amas de galaxies pour finir avec ceux du fonds diffus cosmologique.
Les observations combinées de diverses expériences permettent de calculer les différentes densi-
tés actuelles Ωi avec une très grande précision (voir Figure 1.1). Ces observations confirment le
Modèle Standard cosmologique mais elles soulèvent aussi de nouvelles questions. La combinaison
de l’observation des supernovæ de type Ia (SNIa)[2, 1] , de WMAP (Wilkinson Microwave Ani-
sotropy Probe) et de SDSS [6, 7] mettent en évidence la présence d’une énergie qui dominerait
l’Univers, appelée énergie noire, dont la nature reste à ce jour inconnue et serait responsable de
l’expansion accélérée. Il est tentant de penser cette énergie en terme de densité d’énergie du vide,
notion apparaissant en physique quantique, mais la valeur observée ne peut être expliquée par la
physique des particules qui prédit des valeurs de densité de 60 ordres de grandeur supérieures.
Il existe d’autres approches mais l’idée générale est d’ajouter un terme Λ dans les équations
d’Eintein (1.2), soit dans la partie “géométrique” (partie de gauche), donc une modification de
l’action d’Hilbert-Einstein, ou comme un terme de “source” (partie droite) i.e un fluide supplé-
mentaire. La première méthode résulte en une modification de par son action à quatre dimensions
ou bien par l’ajout de dimensions supplémentaires, la deuxième rajoute un élément dans l’Uni-
vers (constante cosmologique, champ scalaire...). D’autre part les observations indiquent que la
somme des différentes densités donnent

∑
Ωi = 1 révélant que l’Univers est plat alors qu’a priori

rien ne le suggère, les modèles inflationnaires permettent d’expliquer [8] cette observation en
supposant qu’à une époque très précoce l’Univers a connu une phase d’expansion gigantesque
(“l’inflation”) qui impose Ω = 1. Enfin on remarque qu’une part importante de la matière qui
compose l’Univers est d’origine non-baryonique, appelée Matière Noire, dont nous discuterons
plus en détails dans la section suivante. Le Modèle Standard de la Physique des Particules ne
possède pas de particule pouvant expliquer l’origine de cette matière, cependant dans les théories
au-delà du Modèle Standard (Supersymétrie, Dimensions Supplémentaires...) cette contribution
peut être expliquée par l’introduction de nouvelles particules. Ces différentes mesures seront de
plus améliorées par les satellites PLANCK et SNAP [9].
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Paramètre Symbole Valeur
Paramètre de Hubble h 0.72 ± 0.03
Densité de matière totale Ωm 0.257± 0.033
Densité baryonique Ωb 0.044± 0.005
Constante cosmologique ΩΛ 0.74 ± 0.03

Figure 1.1 – Composition de l’Univers en pourcentage [10] : 74 % d’énergie noire et 26 % de
matière dont 4% de matière connue. Le paramètre de Hubble est défini par H = 100 h.km.s−1.
Les incertitudes sont données à 68 % de niveau de confiance.

1.4 Le problème de la matière noire

1.4.1 Mise en évidence

Les premières indications de l’existence de la matière noire proviennent de l’observation, par
l’astronome suisse Fritz Zwicky en 1933, de la distribution des vitesses des galaxies dans l’amas du
Coma. Il observe que la masse dynamique de l’amas est cent fois supérieure à la masse lumineuse.
C’est le début du problème de la masse “manquante” de l’Univers, qui peut être résolu soit en
altérant les lois de la gravitation[11], soit en supposant l’existence de matière non-lumineuse
interagissant très faiblement avec la matière ordinaire, on parle alors de matière noire. La mise
en évidence de la matière provient de l’étude des courbes de rotation des galaxies qui montrent
un comportement “plat” à grande distance, c’est à dire même au delà des bords du disque visible
de la galaxie et qui ne peut être expliqué par la seule matière lumineuse (voir Figure (1.2)) . En
Mécanique Newtonienne la vitesse orbitale des étoiles doit être

v(r) =

√
GM(R)

R
(1.37)

où M(R) ≡ 4π
∫
ρ(R)R2dR, et ρ(R) est le profil de densité de masse, qui devrait décroître en

∝ 1/
√
R au delà du disque visible. Or les observations indiquent une vitesse approximativement

constante pouvant être expliquée par l’existence d’un halo de matière noire avec M(R) ∝ R et
ρ(R) ∝ 1/R2. Bien que la forme du profil de densité de matière noire semble bien connue à grande
distance, la forme au centre galactique est encore sujet à débat, et peut avoir de grandes influences
sur les prédiction de détection de matière noire. L’étude des anisotropies de température du CMB
permet de mesurer la densité d’énergie de la matière dans l’Univers [3, 13]. La valeur mesurée
est bien supérieure à la densité d’énergie de la seule matière baryonique, indiquant encore une
fois l’existence de matière noire.
D’autres preuves peuvent être obtenues en étudiant la formation des grandes structures grâce
aux simulations à N-corps. Les galaxies et amas de galaxies se sont formées par effondrement
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Figure 1.2 – Courbe de la distribution de vitesse de rotation des étoiles de la galaxie M33 [12]

gravitationnel de matière non-relativiste, et il est difficile de comprendre comment une telle
quantité de baryon ( Figure 1.1) pourrait avoir créé les structures observées. Le problème vient du
fait que les photons du fonds diffus cosmologique ont un spectre très homogène ( les homogénéités
sont de l’ordre de 10−5), cela implique que la distribution des baryons était très homogène elle
aussi à des époques précoces. Or le fait que nous observons des galaxies et amas de galaxies
indique que nous sommes dans un état inhomogène actuellement et expliquer le passage d’un
état homogène à un état inhomogène est “difficile” s’il n’y a que des baryons en raison de leur
couplage étroit aux photons qui ont une répartition très homogène.
Les observations les plus récentes données par le satellite WMAP[3] et bientôt par le satellite
PLANCK[13] nous indiquent que l’Univers est composé de 74% d’une énergie inconnue, l énergie
noire, et de 26% de matière noire. Parmi ces 26%, la matière que nous connaissons, la matière
baryonique, n’en représente que 4%. Les 22% restants composeraient la matière noire et, à partir
du rapport baryons/photons, donné par la nucléosynthèse primordiale et l’étude du CMB, elle
doit être de nature non-baryonique. De plus elle est supposée “froide”, c’est à dire non-relativiste
actuellement. L’élucidation de la nature de cette matière se situe à l’interface entre la physique
des particules et de la cosmologie. Le fait qu’il n’y ait pas de radiation “détectable” pour la matière
noire laisse à penser qu’elle interagit très faiblement avec le reste de l’Univers, lui donnant le
nom de WIMP pour Weakly Interacting Massive Particle que l’on dénotera de façon générique
χ par la suite.

1.4.2 Densité relique

Dès 1965 [14, 15] des travaux ont montré que si une nouvelle particule χ stable existait aux
premiers âges de l’Univers, elle pourrait avoir une abondance cosmologique significative de nos
jours. L’idée est la même que dans la section 1.3.1, la particule χ est en équilibre thermique et
abondante dans l’Univers primordial, tant que la température de l’Univers est supérieure à la
masse mχ de la particule. L’équilibre est maintenu tant que les réactions d’annihilation entre la
particule et son antiparticule χ̄ en éléments plus légers Y , χχ̄→ Y Ȳ , et de création, Y Ȳ → χχ̄,
se compensent. Au fur et à mesure que la température de l’Univers diminue jusqu’à T < mχ, la
densité de particule χ diminue exponentiellement à cause du facteur de Boltzmann exp(−mχ/T )
jusqu’à ce que le taux des réactions d’annihilation Γχχ devienne inférieur au taux d’expansion H,
voir figure (1.3), on parle alors de découplage ou freeze-out. Une fois découplées, ces particules
n’interagissent plus assez avec le bain thermique et leur nombre reste presque constant, mais leur
densité décroît avec l’expansion et comme le facteur d’échelle n ∼ 1/a3(t). L’observation du fond
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Figure 1.3 – Densité numérique comobile (à gauche) vs densité relique thermique (droite) pour
un neutralino de 100 GeV. La ligne pleine représente une section efficace d’annihilation donnant
une densité relique correcte, les régions colorées représentant des sections efficaces d’annihilation
différant d’un facteur 10, 102, 103 de cette valeur. La ligne en pointillés représente le cas où le
neutralino reste en équilibre thermique [16].

diffus cosmologique a permis de donner un encadrement (ici donné à 2σ) sur la densité actuelle
(relique) de matière noire (MN) dans l’Univers [10] :

0.0975 < Ωχh
2 < 0.1223 (1.38)

et l’on s’attend avec le satellite PLANCK[13] à restreindre encore plus cet intervalle, avec une
précision expérimentale de l’ordre de 1− 2%. Par conséquent du côté des prédictions théoriques
il est nécessaire d’atteindre au minimum le même degré de précision.

Équation de Boltzmann

La nature de la matière noire reste inconnue à ce jour, cependant il existe un véritable bestiaire
de modèles possédant une particule pouvant prétendre à être le candidat pour la matière noire.
Une fois que l’on a choisi dans ce zoo quelle est la particule χ, il est possible, grâce à l’équation
de Boltzmann, de suivre son évolution dans l’Univers primordial et de prédire sa densité relique
actuelle et la comparer avec les résultats expérimentaux (1.38), permettant ainsi d’exclure ou de
conserver ce modèle. La valeur (1.38) agit donc comme une contrainte très forte sur la validité
des modèles cherchant à expliquer la nature de la particule χ. Nous allons détailler dans cette
section la résolution de l’équation de Boltzmann conduisant à la prédiction de la densité relique
Ωχh

2 à partir de la physique des particules [17, 18, 19].
Soit N particules χi de masse mi et de degrés de liberté internes gi (spin, couleur...), l’expression
de la densité numérique ni est donnée par l’équation (1.23), pour déterminer l’évolution de ni il
faut donc déterminer l’évolution de la fonction de distribution fi(

−→p ) qui est régie par l’équation
de Boltzmann,

L[f ] = C[f ] (1.39)

où L est l’opérateur de Liouville (c’est à dire la partie décrivant la dynamique) et C le terme
de collision (soit un terme de “source”). Si les particules n’interagissent pas ce dernier terme est
nul. Il faut maintenant adapter cette équation à l’Univers primordial, en particulier le terme de
Liouville va être déterminé à l’aide de la métrique FRW (1.3) et dans le terme de collision ne
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seront considérées que les réactions d’annihilation de la forme i+ j ↔ k+ l. L’abondance totale
n est décrite par la somme des densités

n =

N∑

i=1

ni (1.40)

Après quelques efforts l’équation de Boltzmann prend la forme suivante (dans le cas général dit
de coannihilation) dans un univers dominé par la radiation

dn

dt
=

N∑

i=1

dni

dt
= −3Hn−

N∑

i,j=1

〈σijvij〉(ninj − neq
i n

eq
j ) (1.41)

La densité numérique à l’équilibre neq
i de la particule i s’exprime en fonction du nombre interne

de degré de liberté gi, et fi la fonction de distribution de l’espèce i,

neq
i =

gi

(2π)3

∫
d3−→pifi (1.42)

On remarque immédiatement qu’en l’absence de collisions, seul le premier terme de droite de
(1.41) reste et l’évolution de la densité numérique est régi par l’expansion de l’Univers et ni ∝ a−3.
Le second terme représente les réactions de (co)annihilation entre deux particules χi (χi et χj

avec i 6= j pour la coannihilation) dont la section efficace totale est donnée par, si l’on suppose
qu’elles sont stables

σij =
∑

X

σ(χiχ̄j ↔ Y Ȳ ) (1.43)

où Y représente l’ensemble des particules du Modèle Standard et vij est la “vitesse relative” de
Møller (voir Annexe B), définie telle que le produit vMølninj soit un invariant de Lorentz,

vMøl =
√

|~vi − ~vj|2 − |~vi ∧ ~vj |2 =

√
(pi · pj)2 −m2

im
2
j

EiEj
(1.44)

où pi et Ei représentant l’impulsion et l’énergie de la particule i. On a supposé de plus qu’il n’y a
pas d’asymétrie entre χ et χ̄. D’autre part on peut considérer que les distributions des particules
χi restent en équilibre thermique, alors leurs rapports sont égaux aux valeurs à l’équilibre :

ni

n
≃ neq

i

neq
(1.45)

donnant finalement
dn

dt
= −3Hn− 〈σeffv〉(n2 − n2

eq) (1.46)

avec

〈σeffv〉 =
∑

i,j

〈σijvij〉
neq

i

neq

neq
j

neq
(1.47)

Dans l’approximation de Maxwell-Boltzmann (T . m) fi est de la forme f(−→p , T ) ∼ exp(−E/kT )
et alors la densité numérique de la particule i (1.23) à l’équilibre s’écrit, en définissant x comme
le rapport x = m/T ,

neq
i =

T

2π2
gim

2
iK2(x) (1.48)

où la fonctionK2(x) est la fonction de Bessel modifiée de deuxième espèce. La moyenne thermique
〈σijvij〉 est définie grâce aux distributions à l’équilibre et est donnée par,

〈σijvij〉 =

∫
d3−→pid

3−→pjfifjσijvij∫
d3−→pid3−→pjfifj

(1.49)
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et dans l’approximation de Maxwell-Boltzmann elle s’écrit,

〈σijvij〉 =
x3/2

2π1/2

∫ ∞

0
(σijvij)v

2e−xv2/4 dv pour x & 1 (1.50)

Coannihilation

Si une particule i à une masse proche de la particule la plus légère de masse m1 alors on peut
écrire mi = m1+δmi, où δmi = mi−m1 est la différence de masse entre ces deux particules, alors
cette particule peut contribuer significativement à la densité numérique n. En plus des réactions
d’annihilation entre particules les plus légères, des réactions de coannihilation devront être prises
en compte dans le calcul de la moyenne thermique. De plus, dans l’expression de la densité
numérique ni, la fonction de Bessel K2(x) contient le facteur de Boltzmann exp(−xδmi/m1), qui
devient non-négligeable lorsque la différence de masse est très petite. En première approximation
on peut alors écrire

neq
i ≃ neq

1

gi

g1

(
1 +

δmi

m1

)3/2

e
−x

δmi
m1

︸ ︷︷ ︸
g̃i,eff

(1.51)

et par conséquent,

neq = neq
1

N∑

i=1

g̃i,eff (1.52)

alors (1.47) devient,

〈σeffv〉 =
∑

i,j

gi,effgj,eff

geff
〈σijvij〉 (1.53)

Reformulation de l’équation de Boltzmann

Généralement il est utile d’absorber l’effet de l’expansion de l’Univers en considérant l’évo-
lution de la densité numérique dans un volume comobile en définissant,

Y ≡ n

s
(1.54)

en dérivant Y par rapport au temps et en absence de production d’entropie, S = a3s on obtient

dY

dt
= Ẏ =

ṅ

s
+ 3H

n

s
(1.55)

par conséquent, (1.46) se réécrit comme

Ẏ = −s〈σeffv〉(Y 2 − Y 2
eq) (1.56)

La partie droite de l’équation ne dépend que de la température et il est utile d’utiliser la tempé-
rature comme variable indépendante. En définissant le rapport x = m1/T on obtient

dY

dx
= −m1

x2

1

3H

ds

dT
〈σeffv〉(Y 2 − Y 2

eq) (1.57)

En utilisant l’équation de Friedmann pour un univers dominé par la radiation

H2 =
8πGρ

3
(1.58)
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On peut exprimer la densité d’énergie ρ et la densité d’énergie s

ρ = geff (T )
π2

30
T 4 (1.59)

s = heff (T )
2π2

45
T 3 (1.60)

où geff (T ) et heff (T ) sont les degrés de liberté effectifs. Finalement en définissant le paramètre√
g∗ comme

√
g∗ =

heff√
geff

(
1 +

T

3heff

dheff

T

)
(1.61)

on obtient
dY

dx
= −

√
π

45G

√
g∗m1

x2
〈σeffv〉(Y 2 − Y 2

eq) (1.62)

La forme de cette équation correspond à une équation de Riccati Y ′ = f0(x)+f1(x)Y +f2(x)Y
2

qui ne possède pas de solution analytique dans le cas général. Elle peut cependant être ré-
solue numériquement, grâce notamment aux programmes micrOMEGAs [19] et DarkSUSY [20] et
permettent de prédire la densité relique de matière noire avec une très grande précision. Une
solution de l’équation (1.62) peut être obtenue moyennant quelques approximations [21].

Détermination de l’époque du freeze-out

Pour déterminer l’époque du freeze-out on va définir ∆ = Y − Yeq alors l’équation (1.62)
devient

d∆

dx
= −

√
π

45G

√
g∗m1

x2
〈σeffv〉∆(∆ + 2Yeq) −

dYeq

dx
(1.63)

L’équation (1.63) doit être intégrée à partir d’aujourd’hui x = ∞) jusqu’à l’époque du freeze-out
(x = xF ). Comme le moment où x = xF est l’époque quand Y cesse de suivre la densité à
l’équilibre Yeq, alors ∆ est proche de Yeq. On définit xF alors selon le critère : ∆(xF ) = cYeq où
c est une constante numérique. On obtient alors pour x = xF

d ln Yeq

dx
= −

√
π

45G

√
g∗m1

x2
〈σeffv〉c(c + 2)Yeq (1.64)

donnant

Yeq =
g1
4π4

x2K2(x)

heff (m/x)

N∑

i=1

g̃i,eff (x) (1.65)

En développant au premier ordre les fonctions de Bessel une solution itérative pour xF est obtenue

x−1
F = ln

[
0.03824geff

MP√
g∗
m1〈σeffv〉c(c + 2)x

1/2
F

]
(1.66)

avec MP = 1/
√
G la masse de Planck.

Détermination de la densité relique actuelle

Pour obtenir la valeur de la densité présente Y0 = Y (x0), l’équation (1.62) doit être intégrée
entre x = ∞ et x = x0 ≡ m1/T0, où T0 est la température actuelle des photons. L’abondance
actuelle est donnée par

Ωχ =
ρ0

χ

ρc
=
m1s0Y0

ρc
(1.67)
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où s0 est l’entropie actuelle de l’Univers soit 2970 cm−3 et ρc par (1.15). Si on prend la tem-
pérature du CMB pour T0 nous obtenons finalement (en utilisant la masse de Planck réduite
MPL =

√
~c/8πG = 2.43 × 1018 GeV/c2)

Ωχh
2 = 2.755 × 108 m1

GeV
Y0 (1.68)

Dans un modèle cosmologique standard de domination de radiation à l’origine on a,

Ωχh
2 ∼ 10−10GeV−2

〈σv〉 (1.69)

Si on prend comme section efficace une valeur typique de l’interaction faible

〈σv〉 ∼ α2

M2
EW

∼ 10−9GeV−2, (1.70)

avec α la constante de couplage et MEW ∼ 100 GeV, l’échelle électrofaible, alors Ωχh
2 ∼ 0.1,

correspondant aux observations. Cette coïncidence semble indiquer que les problèmes de brisure
de symétrie électrofaible et celui de la matière noire semblent liés et ainsi encourage à explorer
les théories allant au-delà du modèle standard, c’est à dire au-delà de l’échelle électrofaible. Enfin
il est à remarquer nous avons dérivé la densité relique dans le scénario standard dominé par la
radiation. Si un autre mécanisme sortant de ce cadre a été à l’œuvre dans l’Univers primordial,
comme un production non-thermique, ou tout autre possibilité pouvant augmenter ou diminuer
la densité relique, la détermination de Ωχh

2 peut être grandement modifiée.

1.4.3 Candidats

Dans cette section nous allons présenter succinctement et de façon non-exhaustive une liste de
candidats pour la matière noire, aussi bien de nature baryonique ou non-baryonique. La matière
noire non-baryonique est différenciée entre des candidats “chauds” et “froids”. Un candidat est
dénoté comme “chaud” s’il se déplaçait à des vitesses relativistes au moment où la formation des
galaxies commençait, et “froid” s’il était non-relativiste.

– Objets compacts massifs
Il existe une catégorie d’objets stellaires de nature baryonique pouvant expliquer en par-
tie la présence d’une matière non-lumineuse. Les principaux candidats, appelés MACHOs
(MAssive Compact Halo Objects), sont, par exemple, les naines brunes/blanches, des pla-
nètes de grande taille comme Jupiter, des restes de trous noirs stellaires ainsi que des étoiles
à neutrons et des nuages d’hydrogène moléculaire.

– Neutrinos du modèle standard
La densité relique des neutrinos prédite est de (voir [22] et références internes)

Ωνh
2 =

3∑

i=1

mi

93eV
, (1.71)

Les limites expérimentales actuelles sur la masse des neutrinos donne,

mν < 2.05 eV (95%C.L.), (1.72)

impliquant une borne supérieure sur la densité relique totale,

Ωνh
2 ≃ 0.07 (1.73)

Les neutrinos du modèle standard pourraient constituer la matière noire chaude. Cependant
les simulations à N-corps de formation des grandes structures dans un univers dominé par
de la matière noire chaude reproduisent difficilement les structures observées [22].
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– Neutrinos stériles
Ces particules hypothétiques sont similaires à celle du modèle standard de la physique des
particules, mais sans interaction avec elles. De fortes contraintes d’origine cosmologique et
astrophysique proviennent de l’analyse de leur abondance cosmique et de l’étude de leurs
produits de désintégration [23].

– Axions
Ces particules ont été introduites pour résoudre le problème de la violation de CP de
l’interaction forte. Des expériences d’astrophysique et de laboratoire le force à être très
léger (m . 0.01 eV) [24].

– Candidats Supersymétriques
De nombreuses particules d’origine supersymétrique peuvent prétendre à être la matière
noire. Le candidat le plus populaire est le neutralino, qui apparaît dans les modèle où une
symétrie, la R-parité est conservée. Ensuite viennent les partenaires supersymétriques des
neutrinos, les sneutrinos, du graviton, le gravitino, ou encore de l’axion, l’axino

– Dimensions supplémentaires
Une autre classe de candidats proviennent des modèles étendant le nombre de dimensions
de notre Univers. Les excitations de Kaluza-Klein des particules du modèle standard, en
particulier la particule B(1), première excitation du boson B, peuvent aussi expliquer la
densité relique de matière noire observée aujourd’hui (voir [22] et références internes).
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English Abstract We give a short review of the Standard Model of Particle Physics and
underline the gauge principle as a guiding principle for the construction of gauge theories. The
limits of this model will be recalled as well as the need for going beyond the electroweak Standard
Model.

2.1 Introduction

Le modèle standard de la physique des particules décrit trois des interactions entre les par-
ticules subatomiques : les interactions électromagnétique, faible et forte (l’interaction gravita-
tionnelle est négligeable à l’échelle subatomique), et rend compte d’une grande quantité d’ob-
servations. Au début des années soixante, il a été réalisé que la recherche des symétries au sein
des particules élémentaires pouvait jouer un grand rôle pour déterminer la forme de leurs in-
teractions, basée sur l’échange de quantas, les bosons vecteurs. Le principe de symétrie a aussi
permis de classifier les particules élémentaires sous différentes familles (leptons, quarks, bosons
vecteurs). Les théories basées sur ce rôle accordé aux symétries sont connues sous le nom de
théories de jauge de Yang-Mills [25]. La théorie de jauge décrivant l’interaction des quarks et
des leptons pour des énergies inférieures au TeV est basée sur le groupe de jauge non-abélien
SU(3)C⊗SU(2)L⊗U(1)Y . L’interaction forte ou chromodynamique quantique (QCD pour Quan-
tum ChromoDynamics en anglais) est décrite par le groupe SU(3)C (où le C réfère à la charge
de couleur) et le groupe SU(2)L ⊗ U(1)Y (où le symbole Y signifie l’hypercharge et L le carac-
tère chiral de l’interaction faible) unifie les interactions faible et électromagnétique (Quantum
ElectroDynamics ou QED en anglais) sous une même interaction/description, dite électrofaible
(Electro-Weak Interactions ou EW ), grâce aux travaux de Glashow, Weinberg et Salam [26].
L’utilisation de ce groupe de symétrie locale a non seulement permis de décrire l’interaction élec-
trofaible mais aussi de prédire trois nouvelles particules, les bosons Z0 et W±, qui ont plus tard
été découverts par l’expérience UA1 au CERN, formant ainsi l’un des succès les plus retentissants
du modèle standard. Celui-ci a depuis été testé jusqu’au pour mille aux LEP et TeVatron. Les
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physiciens des particules auraient pu se contenter de cette élégante théorie si elle ne soulevait
pas un problème majeur : la symétrie SU(2)L ⊗U(1)Y prédit des bosons de jauge Z0 et W± de
masse nulle pour être respectée, or il s’avère que ce sont des particules lourdes, posant donc le
problème de l’origine de cette masse. Le mécanisme le plus simple pouvant en rendre compte en
respectant la symétrie de jauge est le mécanisme de Higgs, qui confère une masse aux particules
du modèle standard par l’introduction d’un champ scalaire, le champ de Higgs. Ce mécanisme
permet de briser la symétrie du vide quantique tout en laissant la théorie invariante sous les
transformation de jauge. La symétrie SU(2)L ⊗U(1)Y du vide est ainsi brisée par le mécanisme
de Higgs, ne laissant que la symétrie U(1)em de la QED et donnant une masse aux particules
sensibles à l’interaction électrofaible.

2.2 Quarks et leptons

Les particules de matière, les fermions, opposés aux particules vectrices d’interaction, les
bosons de jauge, peuvent être classées en deux grandes familles : les particules sensibles à l’inter-
action forte, les quarks, et celles qui ne le sont pas, les leptons. Il existe trois familles/générations
de quarks (up, down, charm, strange, top, bottom) et de leptons (électron, muon, tau et leurs
neutrinos associés). Les deux dernières générations n’existent pas à l’état naturel, elles sont créées
dans les accélérateurs de particules, ce sont en quelque sorte des copies de la première génération
mais avec une masse plus importante. Les valeurs de masse et de la charge de chacune sont
résumées dans le tableau suivant, auxquelles il faut aussi ajouter leurs antiparticules, de même

Quarks Leptons
Charge 2/3 Charge -1/3 Charge 1 Charge 0

Masse Masse Masse Masse
u 0.0015-0.0033 d 0.0035-0.006 e 0.000511 νe < 3 eV
c 1.16-1.34 s 0.007-0.0130 µ 0.106 νµ < 190 keV
t 171.3 ± 2.3 b 4.13-4.37 τ 1.777 ντ < 18.2 MeV

Table 2.1 – Masses des quarks et leptons connus en GeV sauf indication, c = 1 (source PDG
2008 [10])

masse mais de charges opposées.
Les quarks et leptons appartiennent à une classe plus générale de particules : les fermions. Ce
sont des particules de spin 1/2 qui obéissent à la statistique de Fermi-Dirac. L’étude du groupe
de Lorentz (le groupe des symétries d’espace-temps) montre qu’il possède deux représentations :
une représentation de type vectorielle (spin entier) ou de type spinorielle (spin demi-entier).
Les fermions appartiennent à la représentation spinorielle et le champ associé aux fermions est
appelé spineur de Dirac ψ à quatre composantes . De plus, du fait de la chiralité des fermions
face à l’interaction faible, on peut représenter ce spineur de Dirac à quatre composantes en deux
spineurs de Weyl à deux composantes,

ψ = PLψL + PRψR (2.1)

où PL et PR sont les projecteurs sur les parties gauche et droite définis par, en représentation de
Weyl,

PL =
1 − γ5

2
PR =

1 + γ5

2
(2.2)

et la matrice γ5 = iγ0γ1γ2γ3γ4 (voir Annexe A pour la définition des matrices de Dirac γi).
Le groupe associé à l’interaction faible est le groupe SU(2) et de plus comme elle n’agit que sur
la partie gauche des spineurs, on le spécifie en l’écrivant SU(2)L. Les leptons et quarks sont alors

26
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rangés en doublets de chiralité gauche et en singulets de chiralité droite insensibles à l’interaction
faible.

Leptons

Les doublets de SU(2)L leptoniques contiennent un lepton chargé et un neutrino. Les leptons
chargés possèdent aussi une composante droite, singulets de l’interaction faible, alors qu’il n’existe
pas de neutrinos de composante droite. On représente donc les leptons de la façon suivante

(
νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

e−R µ−R τ−R (2.3)

Dans sa version minimale, les neutrinos du modèle standard sont sans masse et il n’existe pas
de neutrinos droits. Depuis la découverte de l’oscillation des neutrinos (voir par exemple [27]),
nous savons que les neutrinos doivent être massifs, impliquant l’existence de composantes droites,
n’interagissant ni par interaction faible, ni par interaction forte, expliquant leur non-détection
jusqu’à ce jour.

Quarks

En plus de l’interaction électrofaible les quarks sont sensibles à l’interaction forte, responsable de
la cohésion du noyau atomique. Il est pratiquement impossible d’observer les quarks à l’état libre,
cela est du à la propriété de confinement de l’interaction forte, par conséquent à basse énergie
les quarks s’assemblent pour former des objets liés fortement, les hadrons. Parmi les hadrons
on distingue deux familles, d’une part les baryons et antibaryons, agrégats de trois quarks ou
antiquarks, et d’autre part les mésons, formés d’un quark et d’un antiquark. Par rapport aux
leptons les quarks portent un nombre quantique supplémentaire : la couleur, qui peut prendre
trois valeurs différentes. Les six types de quarks (up, down, charm, strange, top, bottom) sont
appelés de façon générique saveurs. Les baryons quant à eux sont un assemblage de quarks et
d’antiquarks de façon à ce que la charge totale de couleur soit nulle. Comme pour les leptons les
composantes gauches des quarks sont assemblés en doublets d’interaction faible, les composantes
droite étant des singulets,

(
u

d

)

L

(
c

s

)

L

(
t

b

)

L

uR dR cR sR tR bR (2.4)

Les quarks ont une singularité de plus par rapport aux leptons, ils peuvent changer de saveur par
l’intermédiaire de courants chargés, ainsi, les états propres de masse (états propres de propaga-
tion) sont des combinaisons linéaires des états propres de saveur (états propres de l’interaction
faible). Cela est retranscrit mathématiquement par une matrice de saveur, la matrice de Cabibbo,
Kobayashi, Maskawa ou matrice CKM [28],



d′

s′

b′


 = VCKM



d

s

b


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





d

s

b


 (2.5)

La matrice CKM induit de plus une violation de la symétrie CP dans ce secteur.

2.3 Les interactions du modèle standard

Les interactions du modèle standard sont des interactions dites de jauge, c’est à dire que leur
forme est dictée par un groupe de symétrie locale appelé groupe de jauge. Nous allons montrer,
dans le cas d’une symétrie abélienne, comment à partir d’une théorie libre, sans interaction, on
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peut passer, en la jaugeant, à une théorie en interaction. Le lagrangien décrivant un fermion de
masse m sans interaction est

Llibre = ψ(i6∂ −m)ψ (6∂ = γµ∂µ) (2.6)

Ce lagrangien est invariant sous la transformation de phase globale ψ → exp(iα)ψ et ainsi ψ =
ψ(x). Maintenant considérons une transformation de jauge locale, c’est à dire que le paramètre
α va dépendre de la position x, impliquant qu’en chaque point il y aura une transformation de
jauge particulière, alors cette opération s’écrit,

ψ → ψ′ ≡ exp[iα(x)]ψ (2.7)

En conséquence, à cause de la dérivée spatio-temporelle, le lagrangien acquiert un changement
de phase additionnel en chaque point : δLlibre = iψγµ[i∂µα(x)]ψ. Par conséquent le lagrangien
n’est plus invariant sous cette transformation de jauge locale. Cependant, l’invariance de jauge
locale peut être restaurée si nous opérons le remplacement (appelé couplage minimal)

∂µ → Dµ ≡ ∂µ + ieAµ (2.8)

dans le lagrangien libre, qui devient

L = ψ(i 6D −m)ψ = ψ(i6∂ −m)ψ − eψ 6A(x)ψ (2.9)

L’effet d’un changement de phase local pour ψ peut être compensé si on autorise le champ de
jauge Aµ à changer comme une divergence totale, qui ne modifie pas le tenseur électromagnétique

Fµν = ∂µAν − ∂νAµ (2.10)

En effet, sous la transformation ψ → ψ′ et A→ A′, avec A′ à déterminer,

L′ = ψ′(i6∂ −m)ψ′ − eψ′ 6A′(x)ψ′ = ψ(i6∂ −m)ψ − eψ 6A′(x)ψ − ψ[6∂α(x)]ψ (2.11)

sera égal à L si le champ vectoriel A′
µ se transforme comme,

A′
µ(x) = Aµ(x) − 1

e
∂µα(x) (2.12)

La dérivée Dµ est appelée dérivée covariante et on peut vérifier que sous une transformation de
jauge locale, Dµψ → eiα(x)Dµψ, la forme du lagrangien L reste invariante. On voit donc que,
pour restaurer l’invariance de jauge locale, nous avons rajouté un terme dans le lagrangien, qui
va s’apparenter à un terme d’interaction entre le champ de jauge Aµ et les spineurs ψ et ψ,
nous somme passés d’une théorie libre à une théorie en interaction. Dans l’exemple que nous
avons étudié, la transformation de jauge dépend d’une fonction α(x), c’est une symétrie de
type U(1), abélienne, comme pour l’électrodynamique quantique. On peut généraliser ce type de
raisonnement en considérant comme paramètre de transformation non plus une fonction mais des
matrices, qui en général ne commutent pas, on parle alors de symétries non-abéliennes, comme
SU(3) ou SU(2). Ces théories portent le nom de théories de Yang-Mills[25].
Chaque interaction (forte, faible, électromagnétique) est invariante sous son groupe de jauge
respectif et ainsi il existe une quantité conservée (charge ou nombre quantique) pour chaque
force lors d’un processus d’interaction : la couleur pour la force forte, l’isopin faible pour la force
faible, et la charge électrique pour la force électromagnétique. De plus, comme il a été possible
d’unir sous une même description les forces faible et électromagnétique, la force électrofaible,
dont le groupe de jauge est SU(2)L ⊗ U(1)Y , la charge électrique est donnée par la relation de
Gell-Mann Nishijima

Q = T 3 + Y/2 (2.13)
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où T 3 est l’isospin faible et Y l’hypercharge associée au groupe U(1)Y . Les interactions entre
particules sont communiquées par l’échange de bosons vectoriels (ou de jauge) : le photon γ
pour l’électromagnétisme, les bosons W± et Z0 pour l’interaction faible et les gluons g pour
l’interaction forte.
Le lagrangien de la théorie de Yang-Mills pour des champs de jauge interagissant avec des champs
de matière s’écrit de manière compacte,

LY M = −1

2
Tr (FµνFµν) + ψ(i6D −m)ψ (2.14)

et le lagrangien du modèle standard est obtenu en ajoutant le lagrangien de Yukawa LY et du
secteur de Higgs LH que nous détaillerons par la suite,

LSM = LY M + LY + LH + LFJ + LGH (2.15)

où LFJ ,LGH sont les lagrangiens de fixation de jauge et des “ghosts”, nécessaires à la quanification
des théories de jauges (voir par exemple [29]).

2.3.1 Le secteur de jauge

Le lagrangien de jauge s’écrit

LJ = −1

2
Tr (FµνF

µν) (2.16)

où le tenseur de jauge s’écrit Fµν = F i
µνTi. Les quantités Ti sont des matrices et les générateurs

du groupe de jauge obéissant aux relations de commutations suivantes

[Ti,Tj ] = icijkTk (2.17)

Les cijk sont les constantes de structure caractérisant le groupe. Pour le groupe abélien U(1),
cijk = 0, pour SU(2), cijk = ǫijk alors que pour SU(3), cijk = fijk définies par Gell-Mann [30].
Les matrices Ti sont normalisées telles que Tr(TiTj) = δij/2. Finalement l’expression du tenseur
de jauge en fonction des champs de jauge s’écrit :

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] , F i
µν = ∂µA

i
ν − ∂νA

i
µ + gcijkA

j
µA

k
ν (2.18)

Les champs Ai = B,W 1..3, g1..8 représentent les bosons vecteurs associés respectivement aux
groupe U(1)Y d’hypercharge et de couplage g1, SU(2)L d’isospin faible de couplage g2 et SU(3)C
de couleur de couplage g3. Il n’est pas possible d’écrire un terme de masse m2Ai

µA
µi pour les

bosons de jauge car cela violerait l’invariance de jauge de la théorie. Cependant les expériences
au LEP ont montré que les bosons de jauge faibles W±, Z0 sont massifs, par conséquent un autre
moyen doit être trouvé pour générer les masses afin de préserver l’invariance de jauge.

2.3.2 Le secteur fermionique

L’interaction faible traite séparément les composantes gauches et droite des leptons et quarks.
Les champs de chiralité gauche des leptons, notés Li, et des quarks, notés Qi se transforment
comme des doublets de SU(2)L tandis que les parties droites (notées ei, ui et di) se transforment
comme des singulets (2.3,2.4). L’hypercharge des multiplets est choisie de manière à reproduire
la charge électromagnétique donnée par la relation (2.13). De plus on considère les neutrinos sans
masse, par conséquent il n’existe pas de neutrinos droits. Le lagrangien fermionique s’écrit alors

LF = iLi 6DLi + iei 6Dei + iQi 6DQi + iui 6Dui + idi 6Ddi (2.19)
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la dérivée covariante s’écrit,

Dµ = ∂µ − i

3∑

j=1

gjnjA
a
jµT

a
j (2.20)

où les T a
j sont les générateurs des groupes, n1 = Y pour l’hypercharge U(1)Y , n2 = 0, 1 pour

respectivement un singulet ou un doublet de SU(2)L et n3 = 0, 1,−1 pour respectivement un
singulet, un triplet ou un antitriplet de SU(3)C .
Le fait que les mesures expérimentales nous informent que les fermions ont une masse est encore
une fois la signature de la brisure d’une symétrie, en effet un terme de la forme,

ψψ = (ψL + ψR)(ψL + ψR) = ψLψR + ψRψL (2.21)

en ayant utilisé ψL = ψ(1 + γ5)/2, ψR = ψ(1 − γ5)/2, est interdit. Puisque ψL se transforme
comme un doublet de SU(2)L mais ψR comme un singulet, un terme de masse proportionnel
à ψψ se transforme comme un doublet de SU(2)L. De plus les hypercharges pour les fermions
gauches et droits sont différentes, ainsi il est impossible d’avoir des termes de masse explicites
pour les fermions sans briser l’invariance de jauge locale.
Une façon de générer des termes de masse sans briser la symétrie de la théorie est de postuler
l’existence d’un champ scalaire complexe H se transformant comme un doublet de SU(2)L couplé
aux fermions à travers une interaction de type Yukawa :

LY = λe
ijLiH̃ej + λu

ijQiHuj + λd
ijQiH̃dj + h.c, H̃ ≡ iσ2H

∗ (2.22)

Si le champ H, appelé champ de Higgs, acquiert une valeur dans le vide non nulle, 〈H〉 6= 0, cette
quantité générera automatiquement un terme de masse non-nul pour les fermions en préservant
la symétrie de jauge dans le lagrangien. Nous allons résumer dans la section suivante comment
le mécanisme de brisure est réalisé.

2.3.3 Secteur de Higgs

Le champ scalaire H de la section précédente est un doublet de SU(2)L scalaire complexe
avec une hypercharge Y = 1,

H =

(
φ+

φ0

)
(2.23)

Le lagrangien pour le champ de Higgs s’écrit comme

LH = (DµH)†(DµH) − V (H) (2.24)

on remarque alors que le champ de Higgs est couplé aux bosons de jauge à travers la dérivée
covariante (2.20). Le terme V (H) est le potentiel de Higgs, c’est le polynôme le plus général de
degré 4 en H et H† laissé invariant par les transformations de jauge,

V (H) = −µ2H†H + λ(H†H)2 (2.25)

Il est à noter le “mauvais” signe du terme de masse, il a été choisi pour que le potentiel soit borné
inférieurement et ainsi réaliser la brisure de la symétrie voir Figure 2.1.

Le champ H va acquérir une valeur constante dans le vide en recherchant le minimum du
potentiel, alors la valeur dans le vide 〈0|H|0〉 satisfait

|〈0|H|0〉|2 =
µ2

2λ
=
v2

2
6= 0 (2.26)

On peut alors développer le champ de Higgs autour de v,

〈H〉0 =
1√
2

(
G+

1√
2
(v + h0 + iG0)

)
(2.27)
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Figure 2.1 – Potentiel de Higgs avec µ2 < 0 ( courbe rouge) n’induisant pas de brisure de la
symétrie électrofaible et avec µ2 > 0 (courbe bleue) la réalisant.

Le champ h0 représente le boson de Higgs et les champs G+, G− et G0 sont des degrés de liberté
non-physiques et peuvent être éliminés par une transformation de jauge, appelé jauge unitaire.
Dans cette jauge on a alors

Hunit =
1√
2

(
0

h0 + v

)
(2.28)

Après brisure de la symétrie les bosons de jauge W 1..3
µ et Bµ vont se mélanger à travers une

matrice de rotation paramétrée par un angle de mélange, l’angle de Weinberg θw, pour donner le
photon γ et les bosons Z0, W±. On obtient cette matrice en diagonalisant celle obtenue à partir
du terme contenant la dérivée covariante de (2.24) et en prenant l’expression précédente (2.28)
pour le champ de Higgs H. Il vient finalement

(
Zµ

Aµ

)
=

(
cw −sw

sw cw

)(
W 3

µ

Bµ

)
(2.29)

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (2.30)

L’angle de mélange étant défini par

cw =
g2√
g2
1 + g2

2

, sw =
g1√
g2
1 + g2

2

(2.31)

La théorie décrit finalement [31] :
– Un champ de jauge de masse nulle identifié au champ du photon associé à la symétrie non

brisée U(1)Q,
– Un champ complexe et son conjugué, W−

µ et W+
µ , de spin un et de masse

MW =
gv

2
(2.32)

Par rapport à la symétrie de jauge exacte U(1)Q leur charge est Q = ±1
– Un champ Zµ de spin un et de masse

MZ =
1

2

√
g2
1 + g2

2v =
MW

cw
(2.33)

invariant (neutre, sans charge) sous U(1)Q,
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– Un champ scalaire réel h0 invariant (neutre, sans charge) sous U(1)Q et de masse

m2
h = 2µ2 = λv2 =

4λ

g2
M2

W (2.34)

c’est le boson scalaire unique de la théorie car sur les 4 degrés de libertés du champ de
Higgs seuls trois sont absorbés pour donner les masses des Z0, W+ et W−.

L’identification du couplage du photon Aµ à la charge électrique Q dont la constante de couplage
est e permet d’obtenir une relation entre e, g1, g2 :

e =
g1g2√
g2
1 + g2

2

, (2.35)

g1 =
e

cw
, g2 =

e

sw
(2.36)

On peut alors réécrire les masses des bosons de jauge en fonction de la constante de couplage e
et de l’angle de Weinberg θw,

MW =
ev

2sw
,MZ =

ev

2cwsw
(2.37)

Quant aux fermions leurs masses vont être générées par l’intermédiaire des termes de Yukawa
(2.22) donnant

mf,i =
λfv√

2
(2.38)

Finalement on peut résumer le contenu en particules du Modèle Standard ainsi que leurs inter-
actions dans le tableau suivant

Champ SU(3)C , SU(2)L, U(1)Y T3 Y Q = T3 + Y/2

QL =

(
uL

dL

)
(3,2, 1/3)

(
1/2

−1/2

)
1/3

(
2/3

−1/3

)

ūL (3̄,1,−4/3) 0 −4/3 −2/3
d̄L (3̄,1, 2/3) 0 2/3 1/3

LL =

(
νL

eL

)
(1,2,−1)

(
1/2

−1/2

)
−1

(
0

−1

)

ēL (1,1, 2) 0 2 1

H (1,2,−1) 1/2 −1 0

B (1,1, 0) 0 0 0
W± (1,3, 0) ±1 0 ±1
g (8,1, 0) 0 0 0

Table 2.2 – Particules du Modèle Standard et leurs nombres quantiques respectifs.

2.4 Les limites du Modèle Standard

En dépit de ses nombreux succès expérimentaux et théoriques, il est communément admis
que le Modèle Standard n’est pas la théorie ultime des interactions fondamentales. Au contraire
il semble une théorie effective à basse énergie (jusqu’à environ 1 TeV) d’une autre plus fonda-
mentale. Nous avons vu que les termes de masse pour les fermions couplent les parties gauches
et droites des champs. Comme dans le MS il n’existe pas de neutrinos droits, il prédit que leur
masse est nulle. Le seul fait qu’il ait été découvert que les neutrinos oscillent d’une saveur à une
autre implique que les trois neutrinos sont non-dégénérés et donc qu’au moins deux sont massifs,
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révélant que le Modèle Standard est limité puisqu’il les suppose sans masse. Ensuite, bien qu’il
possède un mécanisme le plus minimal possible pouvant générer les masses des particules en
conservant la structure de la théorie, le mécanisme de Higgs, ce mécanisme n’a pas été prouvé
expérimentalement et c’est pourquoi sa signature la plus caractéristique, la découverte du boson
de Higgs, est si activement recherchée, notamment au LHC avec les expériences ATLAS et CMS.
Il existe d’autres théories pouvant générer les masses, citons entre autres les modèles à dimen-
sions supplémentaires, les modèles Little Higgs, de technicouleur voire même des modèles sans
Higgs.
Le fait que le Modèle Standard possède trois constantes de couplages g1, g2, g3 et que les trois
générations de leptons apparaissent comme des entités différentes indique que le modèle n’est
pas réellement unifié, puisque dans le cas contraire il devrait être possible de décrire toutes les
interactions à l’aide d’une seule. De plus il ne décrit que les interactions des particules subato-
miques, la quatrième force connue à ce jour, la gravitation, n’y est toujours pas incluse et il est
actuellement impossible de décrire avec certitude la gravitation au-delà de l’échelle de Planck,
où il est attendu que les effets quantiques de la gravitation commencent à être importants. Le
modèle contient 19 paramètres libres qui ne sont pas déterminés par la théorie et seulement par
l’expérience : les 3 constantes de couplages, 6 masses pour les quarks, 3 masses pour les leptons
chargés, 3 angles de mélange CKM, 1 phase de violation CP dans le secteur électrofaible, 1 angle
source de violation CP dans le secteur fort et les 2 paramètres λ et µ du potentiel de Higgs. Si
de plus on considère les neutrinos massifs il faut au moins rajouter 9 paramètres.
L’existence d’une théorie plus fondamentale unifiant au moins les 3 forces du Modèle Standard,
dite théorie de “Grande Unification” (GUT en anglais pour Grand Unified Theories) est suggérée
par l’étude de l’évolution des constantes de couplages en fonction de l’énergie. Il existe en fait
plusieurs théories de grande unification, chacune basées sur un groupe de jauge G, dit groupe de
grande unification, englobant le groupe de jauge du MS SU(3)C ⊗ SU(2)L ⊗ U(1)Y [8]. Il peut
paraître étrange au premier abord que les constantes de couplages varient avec l’énergie et ainsi
qu’une unification puisse exister. Les mesures des constantes de couplage dans les laboratoires
indiquent que αS >> α2 >> αEM où αS = g2

3/4π, α2 = g2
2/4π, αEM = e2/4π ≃ 1/137,

cependant, du à des corrections quantiques, les constantes de couplage ne sont plus constantes
mais changent en fonction de l’énergie. En effet, si on mesure à une certaine énergie µ une
constante de couplage αi = g2

i /4π, sa valeur à une autre échelle Q est donnée par la relation
(valable à une boucle et au logarithme dominant),

1

αi(Q)
=

1

αi(µ)
+
bi
2π

ln

(
µ

Q

)
(2.39)

Les coefficients bi sont donnés par,

b1 =
4

3
Ng +

1

10
NH

b2 =
4

3
Ng +

1

6
NH − 22

3

b3 =
4

3
Ng − 11 (2.40)

(2.41)

avec Ng = 3 est le nombre de générations de fermions et NH le nombre de doublets de Higgs. La
forme de ces 3 équations suppose implicitement qu’il n’existe pas d’autres particules que celles
déjà connues, or si le contenu en particule du MS est modifié (à travers les paramètres Ng et
NH), alors on peut changer l’évolution des constantes de couplage. Sur la Figure 2.2 on peut
voir que dans le Modèle Standard les constantes de couplage ne se croisent pas au même point
à haute énergie, mais que l’échelle de grande unification se situe autour de 1015 GeV.
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Figure 2.2 – Evolution des constantes de jauge mesurées au LEP [22].

Un autre problème d’ordre théorique du Modèle Standard est celui connu sous le nom du problème
de la hiérarchie, du à l’instabilité de l’échelle électrofaible vis à vis des corrections radiatives [32].
Nous avons vu que les masses des bosons de jauge et des fermions sont toutes proportionnelles à
la valeur dans le vide du champ de Higgs v (vev en anglais pour vacuum expectation value). Sa
valeur est obtenue à partir de la mesure de la désintégration du muon µ−, proportionnelle à la
constante de Fermi GF , que l’on peut relier à la masse du boson W . A l’ordre le plus bas de la
théorie des perturbations ces deux quantités sont reliées par

g2
2

8M2
W

=
1

2v2
=

1√
2
GF (2.42)

On a alors v = (
√

2GF )−1/2 ≃ 246 GeV. Ce paramètre contrôle en principe toutes les masses de
la théorie, par exemple la masse du boson W à l’ordre le plus bas est donné par

MW =
g2v

2
∼ 80GeV (2.43)

Jusqu’à présent nous nous sommes tenus à une discussion au niveau de l’ordre le plus bas de la
théorie des perturbations, il est donc légitime de se demander si l’inclusion des ordres supérieurs
peut modifier les résultats. Le MS a été construit de façon à ce qu’il réponde au critère de
renormalisabilité, c’est à dire que quelque soit l’ordre des corrections perturbatives, les résultats
obtenus seront toujours finis, même si l’impulsion circulante dans les boucles est étendue jusqu’à
l’infini. Nous expliquerons plus en détail le critère de renormalisabilité au Chapitre 4. Étant donné
que la vev du champ de Higgs est proportionnelle à la masse du Higgs, nous allons discuter l’effet
des corrections quantiques ou radiatives sur cette masse, de plus cette discussion est générale à
tous les champs scalaires, pas seulement celui du Higgs [33].
Soit f un champ de matière fermionique couplé à un champ scalaire φ, de la forme (2.28), à
travers un couplage de type Yukawa.

Lf̄fφ = − λf f̄LfRφ+ h.c

= − λf√
2
h0f̄ f − λfv√

2
f̄f (2.44)

où fL,R sont les composantes droite et gauche du fermion f . On remarque qu’à travers la brisure
spontanée de la symétrie il apparaît un terme quadratique en le champ f , donc un terme de
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h

f

h

Figure 2.3 – Contribution fermionique à la fonction à deux points (self-énergie) du scalaire φ

masse avec mf = λfv/
√

2. Si maintenant on calcule la correction à la masse du scalaire (donnée
par la Figure 2.3) pour une impulsion entrante nulle, On obtient,

− iΣf
hh = (−1)

∫
d4k

(2π)4
Tr

[(
−i λf√

2

)
i

6k −mf

(
−i λf√

2

)
i

6k −mf

]

= − 2λ2
f

∫
d4k

(2π)4
k2 +m2

f

(k2 −m2
f )2

= − 2λ2
f

∫
d4k

(2π)4

[
1

k2 −m2
f

+
2m2

f

(k2 −mf )2

]
(2.45)

Cette intégrale est divergente à cause du premier terme, le deuxième le sera logarithmiquement.
Pour la régulariser on introduit une coupure arbitraire Λ comme borne supérieure de l’intégrale
qui correspond à la limite de validité de la théorie. La correction à la masse est alors, après avoir
effectué une rotation de Wick,

δm2
h0 =

λ2
f

8π2

(
−Λ2 + 6m2

f ln

(
Λ

mf

)
+ ...

)
(2.46)

Si on considère que la théorie est valable jusqu’à Λ = MP la masse de Planck, alors la correction à
la masse du Higgs est de l’ordre de l’échelle de Planck soit ≃ 1019 GeV ! Cela laisse donc à penser
que le MS est une théorie effective à basse énergie et que le “vide” entre l’échelle électrofaible et
l’échelle de Planck doit être complété par une nouvelle physique. Ce type de comportement du
boson de Higgs vis à vis des corrections radiatives est typique des bosons scalaires (spin = 0)
élémentaires car il n’existe pas de symétrie protégeant leur masse des corrections quantiques,
alors que pour les fermions (bosons), le fait qu’ils possèdent une symétrie, la symétrie chirale (de
jauge), assure leur protection par rapport aux corrections d’ordre supérieures. Nous expliquerons
plus en détail dans le chapitre suivant comment les fermions et les bosons sont protégés, et
comment, grâce à l’ajout d’une nouvelle symétrie les reliant entre eux, la supersymétrie, il est
possible de protéger en même temps les bosons scalaires, d’unifier d’une meilleure façon les
constantes de couplages, et de proposer un bon candidat pour la matière noire.
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English Abstract This chapter will recall how supersymmetry can stabilise the electroweak
scale by imposing a symmetry linking bosons to fermions, and how radiative corrections are part
of the inner structure of this theory. The Minimal Supersymmetric Extension of the Standard
Model (MSSM) will be introduced as well as its phenomenology, and how it can bring a solution
to the Dark Matter problem.

3.1 Introduction

Nous avons évoqué dans le chapitre précédent que la supersymétrie est une solution au pro-
blème de la hiérarchie du Modèle Standard de la physique des particules, dont la cause est
l’instabilité de la masse du Higgs face aux corrections radiatives. Avant de présenter plus en
détail la supersymétrie nous allons d’abord discuter de l’importance des symétries d’une théo-
rie lorsque l’on calcule les corrections aux masses, en prenant l’exemple de l’électrodynamique
quantique (QED). En particulier nous allons voir que l’existence de la symétrie chirale pour
les fermions et de jauge pour le photon assurent que, contrairement à la masse du Higgs, les
corrections d’ordres supérieures n’affectent pas ou peu leurs masses. Tout d’abord nous allons
évaluer par un calcul direct la self-énergie du photon donnée par le diagramme de boucle de la
Figure 3.1, La polarisation du vide est donnée par, pour une impulsion entrante nulle et dans la
jauge de Feynman,

− iΣµν
γγ(0) = − (−ie)2i2

∫
d4k

(2π)4
Tr

[
γµ(6k +me)γ

ν(6k +me)

(k2 −m2
e)(k

2 −m2
e)

]

= (−ie)2
∫

d4k

(2π)4
8kµkν − 4(k2 −m2

e)gµν

(k2 −m2
e)

2

= − α

π

[
2B00(0;me,me) −A0(me)

]
(3.1)
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e+

e−

γ γ

Figure 3.1 – Self-énergie du photon ou polarisation du vide QED

où les fonctions B00 et A0 sont respectivement les fonctions à deux et un point de Passarino-
Veltman, définies dans le Chapitre 4.3. En remplaçant par leurs expressions on obtient alors

Σµν
γγ(0) = 0 (3.2)

On remarque alors que, à l’inverse du cas du boson de Higgs, la masse du photon ne reçoit pas
de corrections radiatives, elle reste nulle à l’ordre d’une boucle et plus généralement à tous les
ordres de la théorie des perturbations. D’où provient cette différence, quel est le mécanisme qui
permet d’assurer ce résultat ? Nous avons vu dans le Chapitre 2.3 comment faire apparaître le
photon grâce à une symétrie conservée de la QED, la symétrie locale U(1)Q, et cette conservation
se traduit sous la forme d’une identité sur les amplitudes de diffusion, appelée identité de Ward
qui s’écrit, avec kµ l’impulsion du photon,

kµΣµν
γγ(k) = 0 ∀k (3.3)

Qu’en est-il de la masse de l’électron ? La correction à la masse de l’électron à l’ordre d’une
boucle est représentée sur la Figure 3.2 et son expression est donnée par, à impulsion entrante

e−

γ

e−

Figure 3.2 – Self-énergie de l’électron

nulle et dans la jauge de Feynman,

− iΣee(0) =

∫
d4k

(2π)4
−igµν

k2

(
(−ieγµ)

i

6k −me
(−ieγν)

)
(3.4)

Cette fois-ci nous n’allons pas évaluer cette intégrale mais plutôt, à l’aide de la symétrie chirale
et d’analyse dimensionnelle, prédire la forme du résultat. Si l’on exprime l’équation de Dirac
selon les composantes droite et gauche il apparaît un courant, le courant axial, de la forme
Jµ

A = ψ̄γµγ5ψ et son équation de conservation donne

∂µJ
µ
A = 2imeψ̄γ5ψ (3.5)

On voit alors que si me = 0, le courant fermionique est conservé et le modèle est invariant sous les
transformations chirales ψe → exp(iγ5φ)ψe, c’est alors une symétrie exacte et la correction (3.4)
est nulle, comme pour le cas du photon. Cependant, l’électron est massif, bien que très léger, la
symétrie chirale n’est donc qu’approximative, mais comme l’on sait que dans la limite me → 0
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h h

s

Figure 3.3 – Contribution scalaire à la self-énergie du Higgs

la correction est nulle, elle doit être proportionnelle à me. Maintenant comme le comportement
de l’intégrale est en

δme ∼
∫ Λ

d4k
1

k4
∼ me ln Λ (3.6)

nous remarquons alors que la dépendance dans l’échelle de coupure est seulement logarithmique
et si on la repousse à la masse de Planck, la correction obtenue n’est que de l’ordre de 0.2 me,
ce qui reste une correction faible.
L’existence d’une symétrie permet donc de contrôler l’effet des corrections radiatives, ce qui n’est
pas le cas pour le boson de Higgs, qui est une particule scalaire fondamentale, car il n’existe au-
cune symétrie le protégeant. C’est dans cette optique qu’intervient la supersymétrie (SUSY) pour
stabiliser le secteur scalaire. Dans le Chapitre 2.4 nous avons calculé la contribution fermionique
à la self-énergie du Higgs, cependant il existe d’autres contributions, en particulier celle où la
particule interne échangée est une particule scalaire de masse ms, représentée par la Figure 3.3
dont l’expression (avec un couplage de la forme λs|h|2|S|2) est donnée par,

− iΣs
h0 = −λs

∫
d4k

(2π)4
i

k2 −m2
s

(3.7)

ce qui donne pour la masse du Higgs

δm2
h0 =

λs

16π2

(
Λ2 − 2m2

s ln

(
Λ

ms

)
+ ...

)
(3.8)

Ainsi m2
h0 est sensible aux masses les plus lourdes de la théorie auxquelles h0 peut se coupler, si

ms est très grand, ses effets sur le Modèle Standard ne se découplent pas, pour n’importe quelle
valeur de Λ.
On rappelle que l’expression de la correction à la masse pour la contribution fermionique s’écrit,

δm2
h0 =

λ2
f

8π2

(
−Λ2 + 6m2

f ln

(
Λ

mf

)
+ ...

)
(3.9)

Par conséquent si l’on impose que les deux couplages λs et λf sont reliés par

λs = λ2
f (3.10)

et qu’il existe deux degrés de liberté bosoniques pour chaque degré de liberté fermionique, les
divergences quadratiques se compensent exactement. La supersymétrie, en reliant les bosons aux
fermions, permet à l’équation (3.10) d’être valide et de transmettre les propriétés de symétrie des
fermions aux bosons scalaires pour annuler les divergences, résolvant ainsi le puzzle du problème
de la hiérarchie puisque le comportement de la self-énergie du Higgs est alors

δm2
h0 ≃ λ(m2

s −m2
f ) ln Λ (3.11)
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Si, de plus, |m2
s −m2

f | . 1 TeV ∗, la correction est minime et stabilise l’échelle électrofaible, lais-
sant à penser que les nouvelles particules supersymétriques ont une masse inférieure au TeV et
donc accessibles aux collisionneurs actuels. De plus, contrairement au Modèle Standard, où le mé-
canisme de brisure est ajouté “à la main”, en supersymétrie il peut être expliqué dynamiquement
grâce aux corrections radiatives, nous y reviendrons dans la Section 3.6.
Historiquement les premiers travaux concernant la supersymétrie commencés au début des années
1970, n’avaient pas pour but de résoudre l’instabilité de l’échelle électrofaible, mais de trouver
tous les types de symétries qui pouvaient exister, compatible avec l’invariance de Lorentz [32]. En
particulier le but était de trouver d’autres opérateurs vectoriels que l’opérateur des translations
Pµ, qui génère les déplacements dans l’espace-temps, et les opérateurs de moment angulaire
Mµν générant les rotations et les boosts de Lorentz. Il a été montré, à travers le théorème de
Coleman-Mandula [34], que l’ajout d’autres opérateurs Qµν à ceux déjà existants, Pµ et Mµν ,
sur-contraignaient les configurations possibles des processus de diffusion de particules et par
conséquent ces nouvelles charges étaient exclues. Cependant, l’argumentation utilisée n’exclut
que les charges se transformant comme des vecteurs sous l’action du groupe de Lorentz, pas celles
qui se comportent comme des spineurs sous l’action du groupe, c’est à dire celles se transformant
comme un champ fermionique. Si l’on dénote une telle charge Qa, où l’indice a indique la nature
spinorielle, son action sur un état de spin J est

Qa|J〉 = |J ± 1

2
〉 (3.12)

Un tel opérateur ne contribuera pas à un élément de matrice pour une diffusion élastique 2 → 2,
où le spin de la particule reste le même, et ainsi outrepasse l’argument précédent.
La supersymétrie possède d’autres avantages, comme une meilleure unification des constantes de
couplage à haute énergie, puisqu’elle modifie le contenu en particules de la théorie, qui appor-
teront de nouvelles contributions aux équations d’évolution des couplages αi. Les coefficients bi
sont alors donnés par,

b1 = 2Ng +
3

10
NH

b2 = 2Ng +
1

2
NH − 6

b3 = 2Ng − 9 (3.13)

La Figure 3.4 montre la différence entre le Modèle Standard et son extension supersymétrique
minimale, le Modèle Standard Supersymétrique Minimal (MSSM). Elle possède en plus un bon
candidat pour la matière noire, sous l’hypothèse de la conservation d’une autre symétrie, la R-
parité. Le MSSM prédit une masse du Higgs légère (< 140 GeV), ce qui semble favorisé par les
mesures de précision électrofaibles (voir Figure 3.5). Pour finir la supersymétrie apparaît comme
un ingrédient nécessaire dans les théories des supercordes, candidates à une description quantique
de la gravité et à son unification avec les autres forces.

3.2 Algèbre supersymétrique

Nous allons présenter succinctement l’algèbre supersymétrique dans le cas où le nombre de
charges supersymétrique N est égal à 1 †. Les charges sont des spineurs de Weyl à deux compo-
santes Qα et son complexe conjugué Q̄α̇, la transformation supersymétrique s’écrit schématique-
ment

∗. Dans la limite supersymétrique la correction est nulle car m2
s = m2

f , cependant par des considérations
phénoménologiques on sait que la supersymétrie doit être brisée et donc m2

s 6= m2
f .

†. Les modèles avec N > 1, donc avec plusieurs charges supersymétriques, posent des problèmes d’ordre
phénoménologique. Elles entraînent l’existence de multiplets contenant à la fois les chiralités droite et gauche,
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Figure 3.4 – Évolution des constantes de couplages en fonction de l’échelle d’énergie pour le MS
(tirets) et le MSSM (traits pleins).

Figure 3.5 – Figure représentant l’intervalle de masse du Higgs autorisé par les mesures élec-
trofaibles [35]
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Q |fermion〉 = |boson〉 Q |boson〉 = |fermion〉 .

Pour outrepasser le théorème de Coleman-Mandula, la supersymétrie doit aller au-delà des al-
gèbres de Lie, basées sur des relations de commutations entre opérateurs, aux algèbres de Lie
graduées qui impliquent en plus des relations d’anticommutation, puisque les opérateurs sont
maintenant des spineurs.
L’algèbre supersymétrique satisfait les conditions suivantes,

{Qα, Q̄β̇} = 2(σµ)αβ̇P
µ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 (3.14)

[Qα, Pµ] = [Q̄α̇, Pµ] = 0

L’opérateur Pµ = i∂µ est l’opérateur des translations, les σµ = ( l1, σi) avec σi les matrices de
Pauli. Les indices spinoriels α, α̇, β, β̇ prennent les valeurs 1 ou 2. Les représentations irréductibles
de cet algèbre sont appelées les supermultiplets (ou superchamps), il contiennent chacun un boson
et un fermion. Que signifient physiquement les relations de commutation (3.14) ? La première
signifie que l’action de deux transformations supersymétriques provoque une translation d’espace-
temps, la dernière conduit à

[PµP
µ, Qα] = [PµPµ, Q̄α̇] = 0 (3.15)

c’est à dire que P 2 est un opérateur de Casimir, commutant avec les charges supersymétriques,
impliquant que pour chaque supermultiplet toutes ses composantes sont dégénérées en masse.
Nous verrons plus tard que cela n’est pas réalisé dans la nature et ainsi la supersymétrie n’est
pas une symétrie du vide et doit être brisée.
La supersymétrie possède une symétrie interne globale U(1) (nous ne le démontrerons pas),
appelée R-symétrie, qui généralise en quelque sorte la symétrie chirale. Si, par quelque moyen
que ce soit, cette symétrie continue est brisée, alors il peut rester une symétrie discrète, la R-
parité, de type Z2. Au niveau phénoménologique cette symétrie a d’importantes conséquences
sur la durée de vie du proton, l’existence d’une particule de matière noire, et les particules SUSY
n’interviendront que dans les boucles pour des processus impliquant des particules du Modèle
Standard dans les états initiaux et finals.

3.3 Superchamps

La supersymétrie regroupe sous une même représentation, les superchamps, des particules de
spin entier et demi-entier (un boson et un fermion), tous les autres nombres quantiques étant
les mêmes. A l’intérieur d’un même superchamp il doit y avoir le même nombre de degrés de
liberté bosoniques et fermioniques nB = nf . Comme deux transformations supersymétriques
successives engendrent une translation dans l’espace-temps, on peut les voir comme la racine
carrée d’une dérivée, et par conséquent étendre le concept d’espace-temps avec des coordonnées
commutantes vectorielles à des coordonnées anticommutantes spinorielles, donnant un nouveau
type d’espace appelé superespace. Les variables spinorielles anticommutantes dénommées θ et θ̄
sont des variables Grassmaniennes et obéissent aux identités suivantes

θθ̄ + θ̄θ = 0; θ2 = 0 = θ̄2; ¯̄θ = θ (3.16)

Un superchamp peut s’écrire de manière générale comme un développement sur θ et θ̄

Φ(x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x)

+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x) (3.17)

impliquant qu’ils doivent se transformer de la même façon par les symétries de jauge, or nous savons que les
interactions de jauge distinguent la chiralité. De plus ces modèles impliquent l’existence de nouveaux bosons de
jauge, donc de nouvelles forces, ce qui est difficile à justifier vu que nous n’en avons observé que quatre jusqu’à
présent.
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où f,m, n, d représentent des champs scalaires de spin 0 ; ψ,χ, λ et ρ des champs de spin 1
2 et

enfin un champ vectoriel de spin 1, v. Il n’est pas nécessaire de pousser le développement aux
ordres supérieurs en θ et θ̄ du fait de l’équation (3.16). On peut distinguer deux représentations
de ces superchamps : les superchamps chiraux ou de matière et les superchamps de jauge.

3.3.1 Superchamps chiraux

Un superchamp chiral Φ contient deux champs scalaires réels formant ensemble un champ
scalaire complexe φ appelé sfermion et un champ fermionique de Weyl ψ. Étant donné que le
champ scalaire a deux degrés de liberté, et le champ fermionique quatre lorsqu’il est off-shell,
c’est à dire lorsqu’il ne vérifie pas son équation du mouvement, pour équilibrer les degrés de
liberté on ajoute un champ auxiliaire F scalaire et complexe non dynamique. Le superchamp
s’exprime comme

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) (3.18)

Tous les composantes possèdent la même masse m. Les superchamps chiraux du MSSM sont
résumés dans le Tableau 3.1

Champs spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 familles) u ũ∗R u†R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 familles) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos H1 (H0
1 H−

1 ) (H̃0
1 H̃−

1 ) ( 1, 2 , −1
2)

H2 (H+
2 H0

2 ) (H̃+
2 H̃0

2 ) ( 1, 2 , +1
2)

Table 3.1 – Supermultiplets Chiraux du Modèle Standard Supersymétrique Minimal. Les champs
de spin-0 sont des scalaires complexes, et les champs de spin-1/2 sont des fermions de Weyl à
deux composantes.

3.3.2 Superchamps de jauge

Un supermultiplet de jauge contient dans le cas général un grand nombre de champs, cepen-
dant la fixation d’une jauge, la jauge de Wess-Zumino, permet d’éliminer un certain nombre de
degrés de liberté et ainsi il reste un fermion de Weyl (le jaugino) λa

α, un boson de jauge de masse
nulle Aµ

a et un champ scalaire auxiliaire réel Da, ajouté pour compléter le nombre de degrés de
liberté bosoniques off-shell manquants. Dans la jauge de Wess-Zumino il s’écrit,

V (x; θ, θ̄) = −θσµθ̄A
µ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +

1

2
θθθ̄θ̄D(x) (3.19)

Les superchamps de jauge du MSSM sont collectés dans le Tableau 3.2

3.4 Le Modèle Standard Supersymétrique Minimal (MSSM)

3.4.1 Supersymétriser le Modèle Standard

Le MSSM est l’extension minimale du MS, il est basé sur le même groupe de jauge, à savoir
SU(3)C ⊗ SU(2)L ⊗ U(1)Y [32, 33, 36, 37]. Pour supersymétriser le MS il faut introduire pour
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Noms spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 3.2 – Supermultiplets de jauge du Modèle Standard Supersymétrique Minimal.

chaque particule un superpartenaire dont le spin diffère d’une demi-unité et dont la masse sera
différente d’une quantité de l’ordre de l’échelle SUSY MSUSY , puisque nous avons vu qu’elle doit
être brisée. Pour supersymétriser le secteur de jauge on introduit trois superchamps de jauge : un
octet de couleur V a, un triplet d’isospin faible V i et un singulet d’hypercharge V Y . Ces super-
champs contiennent les champs de jauge du Modèle Standard de spin 1 et leurs superpartenaires
de spin 1/2 appelés jauginos (gluinos g̃, wino W̃ , bino B̃). Ensuite viennent les superchamps chi-
raux ou de matière, dont les superpartenaires bosoniques des fermions (q, l) possèdent un spin
0. Ils sont appelés les sfermions et sont composés de quarks scalaires, les squarks q̃, et de leptons
scalaires, les sleptons l̃. Tous les champs de matière obéissent à la statistique de Fermi-Dirac,
ceux de chiralité gauche se transforment comme des doublets de SU(2)L et ceux de chiralité
droite comme des singulets. Comme les champs fermioniques massifs de Dirac, fu, ont quatre
degrés de libertés on-shell (deux états de spin pour la particule et deux pour son antiparticule,
compris dans les champs chiraux complexes fuL et fuR), il y a deux champs scalaires complexes
f̃uL et f̃uR, qui, avec leurs complexes conjugués, représentent les antiparticules, égalant le nombre
de degrés de liberté. Les bosons de Higgs de spin 0 sont décrits avec leurs superpartenaires de
spin 1/2, les higgsinos, par des superchamps chiraux.

3.4.2 Lagrangien du MSSM

Dans cette section nous allons introduire les interactions et les termes de masse qui sont
encodés dans la densité lagrangienne LMSSM qui provient de la supersymétrisation exacte du
Modèle Standard. Elle s’écrit

LMSSM = LSUSY + LSOFT (3.20)

La partie LSUSY est le lagrangien supersymétrique et la partie LSOFT est la partie responsable de
la brisure, donc de la différence de masse entre les partenaires et leurs superpartenaires. Comme
la supersymétrie permet de réduire l’effet des divergences quadratiques du secteur scalaire du
MS, pour ne pas en réintroduire de nouvelles par l’introduction du terme de brisure, il n’est
composé que de termes renormalisables (les opérateurs ont une dimension au maximum égale à
quatre), d’où le terme de brisure “douce”.

Lagrangien Supersymétrique

On peut décomposer le lagrangien supersymétrique,

LSUSY = Lj + LM + LH (3.21)

où Lj,LM ,LH sont respectivement les parties de jauge pure, de matière et de Higgs-Yukawa. La
partie de jauge s’écrit

Lg =
1

4

∫
d2θ

(
W aW a +W iW i +W YW Y

)
+ h.c (3.22)
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Les superchamps des courbures de jauge spinorielles W a,W i et W Y sont construits à partir des
superchamps de jauge V a, V i, V Y et de la dérivée covariante supersymétrique

W i
α = −1

4
D̄D̄e−giV iDαe

giV i

(3.23)

La contribution de matière est donnée par

LM =

∫
d4θΦ† exp

(
g1V

Y Y + g2V
iT i + g3V

aT a
)
Φ (3.24)

avec Φ =
(
Q,U,D,L,E

)T
.

Le terme LH va représenter les interactions des supermultiplets chiraux qui vont être encodées et
dérivées à partir d’une quantité appelée le superpotentiel WMSSM . L’introduction de cette quan-
tité permet de conserver l’invariance par les transformations supersymétriques des interactions
et la renormalisabilité, ce qui alors contraint fortement la forme des couplages. Le lagrangien
d’interaction est de la forme générale suivante,

Lint = −1

2
Wij(φ)ψiψj + V (φ, φ∗) + h.c (3.25)

où Wij est un polynôme dans les champs scalaires φ, qui prend l’expression suivante une fois la
condition d’invariance par transformation supersymétrique imposée,

Wij = M ij + yijkφk (3.26)

où M ijk est une matrice symétrique et yijk sont des matrices 3×3 représentant les généralisations
supersymétriques des couplages de Yukawa. Les termes Wij et le potentiel scalaire V (φ, φ∗)
peuvent en fait être obtenus à partir d’une fonction génératrice, le superpotentiel W. C’est une
fonction des champs φ mais pas de leurs complexes conjugués φ∗ pour conserver l’invariance
supersymétrique. Il s’écrit

W =
1

2
Mijφiφj +

1

6
yijkφiφjφk (3.27)

alors

Wij =
∂2W
∂φi∂φj

V = W∗
i Wi = FiF

∗ i (3.28)

où les termes “F” s’écrivent

Fi = −∂W
∂φi

= −W∗
i F ∗i = −∂W

∂φi
= −Wi (3.29)

La condition d’analyticité du superpotentiel a une conséquence phénoménologique importante
pour le MSSM et fait une importante prédiction, elle postule l’existence de deux doublets de Higgs
et non d’un seul comme dans le Modèle Standard. En effet, dans le MS, les masses aux quarks up
et down sont donnés par le champ de Higgs H d’hypercharge Y = 1 et son complexe conjugué
H∗, or le fait que le superpotentiel n’autorise pas les termes en φ∗ nécessite l’introduction d’un
autre doublet de Higgs d’hypercharge Y = −1 pour générer les masses par couplage de Yukawa
et permet d’éliminer les anomalies chirales. Finalement la contribution de Higgs-Yukawa peut
s’écrire

LH =
2∑

p=1

∫
d4θ

[
H†

p exp
(
g1V

Y Y + g2V
iT i
)
Hp + WMSSMδ

(2)(θ̄) + W†δ(2)(θ)
]
, (3.30)

avec Hp = (H1,H2)
T et

WMSSM = µH1 ·H2 − fE
ijLi ·H1Ej − fD

ij Qi ·H1Dj − fU
ijQi ·H2U j

+
{
µ

′
Li ·H2 + λ

′
ijkLi ·QjDk + λ

′′
ijkLi · LjEk + λ

′′′
ijkU i ·Dj ·Dk

}
(3.31)
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où nous avons utilisé la notation A · B ≡ ǫabA
aBb et A · B · C ≡ ǫabcA

aBbCc. Les champs
H1,H2, Q,L,U,D,E sont les superchamps chiraux, les couplages de Yukawa sans dimension
fE

ij , f
D
ij , f

U
ij sont des matrices 3 × 3 dans l’espace des saveurs et le terme µ est la version super-

symétrique de la masse du boson de Higgs du Modèle Standard.
Cependant cette forme du superpotentiel pose des problèmes d’ordre phénoménologique : les
trois premiers termes de la deuxième ligne violent le nombre leptonique L d’une unité (on peut
s’en convaincre en prenant L = +1 pour Li, L = −1 pour Ei, B = 0 pour les autres) ainsi que
le nombre baryonique B (en prenant B = +1/3 pour Qi, B = −1/3 pour U i,Di). Or, jusqu’à
présent, aucun processus violant ces nombres quantiques n’ont été observés, en particulier la non-
observation de la désintégration du proton qui viole B et L d’une unité. Le calcul de la prédiction
du temps de vie du proton en prenant en compte ces termes peuvent lui donner un temps de vie
allant de quelques minutes à quelques heures, or la borne expérimentale actuelle donne 6.6×1035

ans [38]. Pour se débarrasser de ces termes dangereux, encore une fois l’ajout de la R-parité
(Rp)[39] permet de préserver la théorie. Les superchamps vectoriels et de Higgs sont pairs sous
cette symétrie {V a, V i, V Y } → {V a, V i, V Y }, {H1,H2} → {H1,H2} et les superchamps chiraux
sont impairs {Q,U,D,L,E} → −{Q,U,D,L,E} lorsque l’on change θ → −θ. La conservation
de cette symétrie lors des interactions nécessite que les termes de la deuxième ligne disparaissent
de l’expression de WMSSM et peut s’exprimer à l’aide d’un nombre associé à chaque particule

Rp = (−1)3(B−L)+2S (3.32)

où B,L, S sont respectivement les nombres baryoniques, leptoniques et de spin de la particule
considérée. Pour les particules du Modèle Standard Rp = 1 et Rp = −1 pour les particules
SUSY, ce nombre doit être conservé multiplicativement lors des interactions. Il est ensuite très
facile d’obtenir les interactions supersymétriques à trois pattes puisqu’il suffit de prendre celles
du Modèle Standard et d’y supersymétriser deux particules MS. Cela implique une importante
conséquence phénoménologique puisqu’alors les particules SUSY ne peuvent être produites que
par paires à partir d’une particule du Modèle Standard. Or, elles sont supposées plus lourdes que
les particules connues (du MS), par conséquent aucune particule du MS ne peut se désintégrer en
particule SUSY, ainsi la particule supersymétrique la plus légère (LSP pour Lightest Supersym-
metric Particle) est stable car elle ne possède aucune particule en laquelle elle peut se désintégrer.
Cela a d’importantes conséquences en cosmologie puisque la LSP peut alors être un bon candidat
pour la matière noire, et possède les bonnes propriétés pour être un WIMP. Enfin cela permet
aussi d’expliquer la faiblesse des contributions supersymétriques dans des processus impliquant
seulement des particules du MS puisqu’elles ne peuvent intervenir que dans les diagrammes de
boucles, dont la contribution est généralement faible. Il existe cependant des modèles où la symé-
trie Rp n’est pas conservée puisqu’il semble qu’au niveau de l’évolution de l’Univers, une violation
du nombre baryonique est nécessaire pour expliquer l’asymétrie matière-antimatière[40].

Lagrangien de brisure douce

Pour décrire complètement le lagrangien du MSSM, nous devons maintenant expliciter les
termes de brisure pour introduire les différences de masses entre les partenaires et superparte-
naires. Nous allons écrire le lagrangien de brisure le plus général possible ne réintroduisant pas
de nouvelles divergences quadratiques et respectant l’invariance de jauge,

LSOFT = − 1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c

)

−
(
ũRAuQ̃H2 − d̃RAdQ̃H1 − ˜̄eAeL̃H1 + h.c

)

− Q̃†M2
QQ̃− L̃†M2

LL̃− ũRM
2
ũR
ũ†R − ˜̄dM2

˜̄d

˜̄d† − ˜̄eM2
˜̄e
˜̄e†

−m2
H1
H∗

1H1 −m2
H2
H∗

2H2 − (bH1H2 + h.c) (3.33)
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(Secteur Visible)
Brisure SUSY
(Secteur cache)

     MSSMMediation

de la brisure

Figure 3.6 – Schéma général de la brisure de la supersymétrie [37]
.

où les Au, Ad, Ae,M
2
Q,M

2
L,M

2
˜̄u
,M2

˜̄d
,M2

˜̄e
sont des matrices 3 × 3 dans l’espace des saveurs et

M1,M2,M3 représentent les termes de masse du bino, wino et gluino. Le lagrangien LSOFT brise
spontanément la supersymétrie car il n’est composé que de scalaires et de jauginos, mais pas
de leurs superpartenaires respectifs et schématiquement tous ces paramètres sont de l’ordre de
l’échelle de brisure MSUSY , pour les termes dépendant linéairement des masses, et de l’ordre de
M2

SUSY pour les termes quadratiques. Ce lagrangien est phénoménologique puisqu’il a été écrit
sans spécifier le mécanisme de brisure de la supersymétrie et dépend d’un très grand nombre de
nouveaux paramètres (∼ 105). Si l’on explicite le mécanisme de brisure à une plus haute énergie,
certains termes vont disparaître ou se simplifier grâce aux nouvelles hypothèses apportées, et
la prise en compte de contraintes expérimentales peut aussi guider la forme du lagrangien. Par
exemple, une fois que les champs de Higgs acquièrent une vev après la symétrie de la brisure
électrofaible, les termes Au, Ad, Ae vont mélanger les squarks et sleptons de saveurs différentes
au travers de courants neutres (FCNC pour Flavour Changing Neutral Currents). Or ce type de
courant a été fortement contraint expérimentalement et doit être très faible. Ainsi, une façon de
rendre ces termes petits est de supposer que les masses quadratiques des squarks et sleptons sont
insensibles à la saveur et par conséquent proportionnelles à la matrice identité,

M2
Q = m2

Q l1; M2
L = m2

L l1; M2
˜̄u = m2

˜̄u l1; M2
˜̄d

= m2
˜̄d
l1; M2

˜̄e = m2
˜̄e l1 (3.34)

Le dénominateur commun des mécanismes de brisure est que la supersymétrie est brisée à grande
échelle dans un secteur “caché” (c’est à dire inaccessible expérimentalement actuellement) et
qu’ensuite les effets sont transmis au secteur “visible” (de l’ordre de l’échelle électrofaible) via
des interactions insensibles à la saveur (voir Figure 3.6). Les principales interactions pouvant être
médiatrices du secteur caché vers le secteur visible sont les interactions gravitationnelles (mo-
dèles de SUperGRAvité[41]) ou de jauge (modèle Gauge Mediated Supersymmetry Breaking [36]).
Les modèles avec interaction gravitationnelle sont appelés modèles de supergravité, en effet la
gravitation semble assez facile à incorporer dans la supersymétrie puisque, en jetant un coup
d’œil aux équations (3.14), nous avons remarqué que deux transformations supersymétriques
engendrent une translation dans l’espace-temps, ainsi si la supersymétrie est élevée au rang de
symétrie locale, une certaine représentation de la gravité peut apparaître. Le modèle le plus cou-
rant de ce type, dit mSUGRA (pour minimal SUperGRAvity), permet aussi de réduire le nombre
de paramètres à cinq en supposant une certaine universalité des paramètres à l’échelle de Grande
Unification MGUT :

M3 = M2 = M1 = m1/2

M2
Q = M2

L = M2
˜̄u = M2

˜̄d
= M2

˜̄e = m2
0 l1; m2

H1
= m2

H2
= m2

0

Au = A0f
U ; Ad = A0f

D; Ae = A0f
E

b = B0µ (3.35)

De plus la condition de brisure électrofaible permet de déterminer |µ| à l’échelle électrofaible,
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laissant seulement son signe indeterminé. Les paramètres libres du modèle mSUGRA sont alors
(
m0,m1/2, A0, tβ, sign(µ)

)
(3.36)

m0 est le paramètre de masse commun à tous les sfermions, m1/2 le paramètre de masse commun
à tous les jauginos, les couplages trilinéaires sont unifiés à la valeur A0 et tβ est le rapport
des vevs des champs de Higgs, voir section suivante. Cela permet d’explorer plus facilement la
phénoménologie de la supersymétrie puisque l’espace des paramètres libres est réduit à 5 au lieu
de 105.

3.5 Les différents secteurs du MSSM

3.5.1 Le secteur des Higgs et la brisure électrofaible dans le MSSM

Par rapport au Modèle Standard le MSSM possède deux doublets de Higgs complexes H1 =
(H0

1 ,H
−
1 ) d’hypercharge Y = −1, et H2 = (H+

2 ,H
0
2 ) d’hypercharge Y = 1, par conséquent la

description du mécanisme de la brisure électrofaible est plus compliquée. Le potentiel scalaire
est donné par,

V = (|µ|2 +m2
H1

)(|H0
1 |2 + |H−

1 |2) + (|µ|2 +m2
H2

))(|H0
1 |2 + |H+

2 |2)
+ b(H+

2 H
−
1 −H0

2H
0
1 ) + h.c

+
1

8
(g2

1 + g2
2)(|H0

2 |2 + |H+
2 |2 − |H0

1 |2 − |H−
1 |2)2

+
1

2
g2
2 |H+

2 H
0∗
1 +H0

2H
−∗
1 |2 (3.37)

Ces termes proviennent des termes F etD des superchamps chiraux et de jauge ainsi que du terme
de brisure. En particulier le terme |µ|2, provient d’un terme F et est invariant sous transformation
supersymétrique, et donc nécessairement positif, alors que les termes m2

H1
et m2

H2
provenant de

LSOFT peuvent être positifs ou négatifs. En particulier l’un des deux doit l’être pour que la
brisure électrofaible soit réalisée. Le potentiel scalaire complet inclut aussi les termes impliquant
les champs des squarks et sleptons que nous ignorons ici, puisqu’ils n’obtiennent pas de vev car
leur masse quadratique est très élevée, positive et n’influe donc pas sur la brisure. Comme dans
le cas du Modèle Standard nous devons maintenant chercher le minimum de ce potentiel qui
brise la symétrie électrofaible SU(2)L ⊗ U(1)Y vers U(1)EM . Par une transformation de jauge
on peut toujours se ramener à ce que les vev des champs de Higgs prennent la forme suivante

〈H1〉 =
1√
2

(
v1
0

)
〈H2〉 =

1√
2

(
0

v2

)
(3.38)

Puisque il est possible d’avoir en même temps H−
1 = H+

2 = 0 au minimum, cela signifie que la
symétrie électromagnétique ne sera pas brisée.
Le potentiel doit être borné inférieurement non trivialement pour que la brisure se produise, cela
se traduit par

2b < 2|µ|2 +m2
H1

+m2
H2

(3.39)

et pour ne pas avoir de minimum stable H0
1 = H0

2 = 0 il faut avoir [37]

b2 > (|µ|2 +m2
H1

)(|µ|2 +m2
H2

) (3.40)

En suivant le même principe que pour le cas du modèle standard mais en remplaçant v2 par
v2
1 + v2

2 donnant v1 = v cos β et v2 = v sin β on obtient

M2
W =

1

4
g2
2(v

2
1 + v2

2), M2
Z =

1

4
(g2

1 + g2
2)(v

2
1 + v2

2) (3.41)
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et l’on définit à l’arbre le paramètre tan β comme le rapport dans le vide des deux doublets de
Higgs

tan β =
v2
v1

(3.42)

Les conditions de minimisation du potentiel ∂V/∂H0
1 = ∂V/∂H0

2 = 0 donnent ‡

|µ|2 +m2
H1

= btβ − m2
Z

2
c2β (3.43)

|µ|2 +m2
H2

= bt−1
β +

m2
Z

2
c2β (3.44)

En utilisant le fait que 0 < β < π/2 les relations précédentes vérifient (3.39), (3.40) et cela
permet de troquer les deux paramètres |µ| et b par tan β en laissant la phase de µ inconnue.
Développons les deux doublets Higgs H1,2 autour de leur valeur dans le vide v1 et v2

H1 =

(
H0

1

H−
1

)
=

(
(v1 + φ0

1 − iϕ0
1)/

√
2

−φ−1

)

H2 =

(
H+

2

H0
2

)
=

(
φ+

2

(v2 + φ0
2 + iϕ0

2)/
√

2

)

Ces doublets font intervenir 4 champs scalaires et 2 champs complexes, donc 8 degrés de liberté.
Une fois la symétrie électrofaible brisée, 3 deviennent les bosons de Nambu-Goldstone G0, G±

qui deviennent les modes longitudinaux des bosons vecteurs massifs Z0 et W±. Les cinq degrés
de libertés restants forment 5 bosons de Higgs, contrairement à un seul dans le Modèle Standard.
Ils consistent en un pseudo-scalaire A0, deux Higgs chargés H±, et deux scalaires neutres h0 et
H0 et sont obtenus à partir de la diagonalisation des états propres de jauge,

(
G0

A0

)
=

(
cβ sβ

−sβ cβ

)(
ϕ0

1

ϕ0
2

)

(
G±

H±

)
=

(
cβ sβ

−sβ cβ

)(
φ±1
φ±2

)

(
H0

h0

)
=

(
cα sα

−sα cα

)(
φ0

1

φ0
2

)
(3.45)

qui définissent un angle de mélange α.
Les masses à l’arbre sont alors données par M2

phys = UM2
jaugeU

T où U est une notation générique
pour les matrices de mélange de (3.45) et s’écrivent

M2
A0 = 2b/s2β

M2
H± = M2

A0 +MW

M2
h0,H0 =

1

2

(
M2

A0 +M2
Z ∓

√
(M2

A0 +M2
Z)2 − 4M2

ZM
2
A0c

2
2β

)
(3.46)

Et l’angle α peut être exprimé en fonction des masses et de β

t2α =
M2

A0 +M2
Z

M2
A0 −M2

Z

t2β (3.47)

On remarque alors que l’on peut prendre comme paramètres indépendants pour décrire ce secteur
la valeur de la masse du pseudo-scalaire M2

A0 et de tan β, puisque MW et MZ sont connues. Les

‡. Quelques relations utiles : sin β = sβ =
tβ

q

1+t2
β

, cos β = cβ = 1
q

1+t2
β

, c2β =
1−t2β

1+t2
β
, t2β =

2tβ

1−t2
β
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équations (3.46) ont d’importantes conséquences phénoménologiques

MH± ≥MW

MH0 ≥MZ

MA0 ≥Mh0

Mh0 ≤MZ |c2β | (3.48)

La dernière relation est une importante prédiction du MSSM, elle donne une borne supérieure sur
la masse du boson de Higgs léger h0, alors que dans le MS c’est un paramètre libre. Cependant
elle induit une masse inférieure à celle du boson Z0 alors que ce dernier a été découvert. Si l’on
s’arrête donc à l’arbre pour le calcul des masses le MSSM devrait donc en toute logique être
exclu, mais si l’on tient compte des corrections d’ordre supérieur, la masse est fortement corrigée
et ce paradoxe est résolu.

3.5.2 Le secteur sfermionique

Comme il faut des partenaires séparés pour chaque chiralité des fermions massifs, il y a
environ 21 nouveaux champs par rapport au MS si les neutrinos sont considérés sans masse :
six pour les leptons chargés (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R), trois sneutrinos (ν̃e, ν̃µ, ν̃τ ), six champs pour
les squarks up (ũL, c̃L, t̃L, ũR, c̃R, t̃R) et six champs pour les squarks down (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R).
D’une façon générale ces états sont états propres de jauge mais pas de masse (ou de propagation),
pour obtenir les états propres de masse il faut diagonaliser les matrices de masse respectives,
induisant un mélange entre les générations.

Secteur des squarks

La matrice de masse des squarks s’écrit

M2
q̃L,R

=

(
M2

Q̃L
+m2

q + c2β(T 3
q −Qqs

2
w)M2

Z mqM
LR
q̃

mqM
LR
q̃ M2

q̃R
+m2

q + c2βQqs
2
w)M2

Z

)
(3.49)

avec

MLR
ũ = Au − µ/tβ (3.50)

MLR
d̃

= Ad − µtβ (3.51)

Les paramètres M2
Q̃L

et M2
q̃R

proviennent du lagrangien de brisure douce, T 3
q et Qq sont l’isospin

et la charge électrique du squark considéré. Les mélanges sont gouvernés par les termes non-
diagonaux MLR

q̃ et la masse des quarks, par conséquent le mélange dans les deux premières
générations va être très faible car mu,d,s,c → 0. L’invariance sous SU(2)L implique MũL

= Md̃L

tandis que MũR
6= Md̃R

où u et d est une notation générique pour les quarks up et down
respectivement.
Les états propres de masse sont obtenus à l’aide d’une matrice de rotation unitaire

(
q̃1
q̃2

)
=

(
cθq̃

sθq̃

−sθq̃
cθq̃

)

︸ ︷︷ ︸
Uq̃

(
q̃L
q̃R

)
(3.52)

de façon à ce que

M2
q̃1,2

=

(
m2

q̃1
0

0 m2
q̃2

)
, m2

q̃1
< m2

q̃2
(3.53)

tel que
M2

q̃L,R
= U †

q̃M
2
q̃1,2

Uq̃ (3.54)
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Le secteur des sleptons

Pour les sleptons chargés on obtient une matrice similaire

M2
ẽL,R

=

(
M2

L̃L
+m2

e + c2β(T 3
e −Qes

2
w)M2

Z meM
LR
ẽ

meM
LR
ẽ M2

ẽR
+m2

e + c2βeqs
2
w)M2

Z

)
(3.55)

avec
MLR

ẽ = Ae − µtβ (3.56)

Concernant les neutrinos, nous les considérons de masse nulle, donc ils n’ont pas de superparte-
naires de chiralité droite, et leur charge Q est nulle, alors leur matrice de masse s’écrit

M2
ν̃L,R

= M2
L̃L

+ c2βT
3
νM

2
Z (3.57)

Les états propres de masse sont obtenus, comme pour les squarks, par l’intermédiaire d’une
matrice de rotation unitaire,

(
ẽ1
ẽ2

)
=

(
cθẽ

sθẽ

−sθẽ
cθẽ

)

︸ ︷︷ ︸
Uẽ

(
ẽL
ẽR

)
(3.58)

de façon à ce que

M2
ẽ1,2

=

(
m2

ẽ1
0

0 m2
ẽ2

)
, m2

ẽ1
< m2

ẽ2
(3.59)

tel que
M2

ẽL,R
= U †

ẽM
2
ẽ1,2

Uẽ (3.60)

3.5.3 Le secteur des neutralinos charginos

Ce secteur possède une phénoménologie très intéressante puisque parmi ces particules se
trouve généralement la particule supersymétrique la plus légère, la LSP, stable si la R-parité
est conservée et donc candidat à la matière noire. Les neutralinos χ̃0

i et charginos χ̃±
i sont des

combinaisons linéaires des jauginos électrofaibles B̃, W̃ 0, W̃± et des Higgsinos H̃0
1,2, H̃

±
1,2 du fait

qu’ils possèdent les mêmes nombres quantiques.
La partie bilinéaire en ces champs décrivant ce secteur est

L = Lcin + Lmass (3.61)

avec
Lcin = i[W̃

a
σ̄µ(∂µW̃ )a + B̃σ̄µ(∂µB̃) + ψ̄H1

σ̄µ(∂µψH1
) + ψ̄H2

σ̄µ(∂µψH2
)] (3.62)

et

Lmass = i
√

2[H†
1(g2W̃

aT a +
1

2
g1B̃)ψH1

+H†
2(g2W̃

aT a +
1

2
g1B̃)ψH2

+ h.c]

+ ǫij[µψ
i
H1
ψj

H2
+ h.c] +

1

2
[M1B̃B̃ +M2W̃

aW̃ a + h.c] (3.63)

avec a=1,2,3, i,j=1,2, ǫij le tenseur complètement anti-symétrique et T a les générateurs de SU(2)
et

ψH1
=

(
H̃0

1

H̃−
1

)
, ψH2

=

(
H̃+

2

H̃0
2

)
(3.64)

Les termes de (3.62) et (3.63) proviennent des interactions jauge-matière et de brisure douce.
Quand les champs de Higgs H0

1 et H0
2 prennent leur valeur dans le vide, ces termes d’interaction
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vont être bilinéaires en les champs des Higgsinos ψ1,2
Hi

et des jauginos W̃ a et B̃, impliquant du
mélange dû à la brisure de la symétrie électrofaible. En définissant

W̃± = W̃1 ∓ iW̃2,

T± = T1 ± iT2, (3.65)

puis en combinant les champs chargés ensembles, puis les champs neutres, menant à deux secteurs,
respectivement celui des charginos et des neutralinos..

Charginos

Soit la notation suivante pour collecter les parties chirales




ψL ≡
(−iW̃+

H̃+
2

)

ψR ≡
(−iW̃−

H̃−
1

)
(3.66)

alors le lagrangien s’écrit

Lc = i[ψRT
σµ∂µψ̄

R + ψ̄LT
σ̄µ∂µψ

L] − [ψRT
XψL + ψ̄LT

X†ψ̄R] (3.67)

La matrice de masse 2 × 2 des charginos est définie par :

X =

(
M2

√
2sβMW√

2cβMW µ

)
(3.68)

où sβ(cβ) signifie sin β(cos β). Les entrées non-diagonales proviennent de la brisure de SU(2)L ⊗
U(1)Y .
Comme X 6= XT si tan β 6= 1, deux matrices unitaires U et V sont nécessaires pour la diagona-
liser, 




χR = UψR

χL = V ψL
(3.69)

donnant alors, en notant X̃ la matrice diagonalisée

X̃ = U∗XV −1 =

(
mχ̃±

1
0

0 mχ̃±
2

)
mχ̃±

1
< mχ̃±

2
(3.70)

Le spineur de Dirac correspondant aux charginos χ̃c
i (i= 1,2) est donné par

χ̃c
i =

(
χc

i L

χc
i R

)
(3.71)

Les masses des charginos sont obtenues à partir des valeurs propres de X̃X̃† et à l’aide de (3.70)

m2
χ̃±

1 ,χ̃±
2

=
1

2

[
M2

2 + µ2 + 2M2
W .

±
(

(M2
2 − µ2)2 + 4M4

W c22β + 4M2
W

√
M2

2 + µ2 + 2µM2s2β

)]
(3.72)
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On donne une expression approchée de la masse des neutralinos dans la limite où MW << M2, µ,
dont le calcul est effectué dans l’Annexe C

mχ̃±
1
≃M2 −

M2
W (M2 + µs2β)

µ2 −M2
2

mχ̃±
2
≃ |µ| + M2

W (|µ| + ǫM2s2β)

µ2 −M2
2

(3.73)

où ǫ = sign(µ) = ±1. Pour ces formules l’ordre des masses est arbitraire, il est respecté si
M2 < |µ|.

Neutralinos

Le secteur des neutralinos est défini en collectant les champs neutres. En utilisant la notation :

ψn ≡




−iB̃0

−iW̃ 0
3

H̃0
1

H̃0
2


 (3.74)

le lagrangien peut alors s’écrire

Ln =
i

2
[ψnT

σµ∂µψ̄
n + ψ̄nT

σ̄µ∂µψ
n]

︸ ︷︷ ︸
Ln

kin

− 1

2
[ψnT

Yψn + ψ̄nT
Y†ψ̄n]

︸ ︷︷ ︸
Ln

mass

(3.75)

La matrice 4 × 4 de masse des neutralinos s’écrit :

Y =




M1 0 −cβsWMZ sβsWMZ

0 M2 cβcWMZ −sβcWMZ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −sβcWMZ −µ 0


 (3.76)

Cette matrice est diagonalisée à l’aide d’une matrice unitaire N

χ̃n
0 = Nijψ

n
0 ⇒ Ỹ = N∗Y N † = diag(mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) (3.77)

où les mχ̃0
i

( i=1..4) sont les masses physiques des neutralinos après diagonalisation. Le bloc 2×2
en haut à gauche est diagonal car les jauginos sont des spineurs de Majorana, le bloc 2 × 2 en
bas à droite est anti-diagonal pour refléter le caractère Dirac des Higgsinos chargés sous SU(2),
et les deux blocs antidiagonaux sont symétriques. Ils proviennent de la brisure de la symétrie
électrofaible et leur déterminant est nul car la combinaison neutre B avec W3 est sans masse.
Obtenir une expression simple des masses des neutralinos est ardu du fait qu’il faut inverser
une matrice 4 × 4. Cependant il existe une méthode analytique présentée dans [42]. Il est aussi
possible de donner une expression approchée des masses dans la limite MZ << |µ+M1|,|µ+M2|,
en diagonalisant la matrice par théorie des perturbations (voir Annexe C),

mχ̃0
1
≃M1 −

M2
Zs

2
w(M1 + µs2β)

µ2 −M2
1

mχ̃0
2
≃M2 −

M2
W (M2 + µs2β)

µ2 −M2
2

mχ̃0
3
≃ |µ| + M2

Z(1 − ǫs2β)(|µ| +M1c
2
w +M2s

2
w)

2(|µ| +M1)(|µ| +M2)

mχ̃0
4
≃ |µ| + M2

Z(1 + ǫs2β)(|µ| −M1c
2
w −M2s

2
w)

2(|µ| −M1)(|µ| −M2)
(3.78)
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Ici aussi l’ordre des masses est arbitraire, il est respecté si M1 < M2 < |µ|. On remarque alors
que dans cette limite le deuxième neutralino et le premier chargino sont dégénérés.

Reconstruction des paramètres fondamentaux

D’un point de vue expérimental, si la supersymétrie est découverte, ce qui sera mesuré ne
sera pas directement les paramètres fondamentaux M1,M2, µ,MW ,MZ , sin θw et tan β, mais les
masses des neutralinos ou des charginos, qui sont des fonctions non-triviales de ces paramètres.
La question qui se pose alors est de quelles observables et de combien en avons nous besoin
pour remonter à ces paramètres ? Les paramètres MW ,MZ , sin θw ont été obtenus à partir du
secteur de jauge et mesurés avec une grande précision au LEP. Ensuite il est possible d’extraire
le paramètre tan β à partir du secteur de Higgs, il nous reste ainsi trois grandeurs à déterminer
(M1,M2, µ), par conséquent un ensemble de trois observables au minimum est nécessaire pour
les reconstruire. Habituellement cette reconstruction est effectuée à partir de la mesure de trois
masses du secteur des neutralinos/charginos parmi les six qui le compose. Ainsi pour déterminer
ce secteur nous avons la liberté d’en choisir trois parmi six. Le choix le plus usuel est de prendre
comme observables les deux masses de charginos mχ̃±

1
et mχ̃±

2
, et la masse du neutralino le plus

léger mχ̃0
1

afin de contraindre les masses restantes. Cependant d’autres choix sont possibles,

(
mχ̃0

1
,mχ̃±

1
,mχ̃±

2

)

(
mχ̃0

1
,mχ̃0

2
,mχ̃±

1

)

· · ·





(M1,M2, µ)

en particulier ce choix dépend de la hiérarchie sous-jacente des paramètres M1,M2, µ par rapport
aux masses mesurées.

3.5.4 Le secteur de fixation de jauge

La quantification des théories de jauge, qui décrivent des champs vectoriels de spin 1, possède
certaines complications notamment dues au fait qu’il existe des degrés de liberté non-physiques.
A travers la procédure de fixation de jauge il est possible de se restreindre seulement aux degrés
de liberté physiques qui seuls seront quantifiés. Pour fixer la jauge dans le Modèle Standard, ’t
Hooft a introduit les jauges Rξ dont le lagrangien s’écrit sous la forme,

LGF = − 1

ξW
F+F− − 1

2ξZ
|FZ |2 − 1

2ξA
|FA|2 (3.79)

avec

F+ = ∂µW
µ+ + iξW

e

2sw
vG+

FZ = ∂µZ
µ + ξZ

e

s2w
vG0

FA = ∂µA
µ (3.80)

Les fonctions F sont quadratiques dans les champs et vont modifier la forme des propagateurs
des champs de jauge. Ces propagateurs dépendent alors de la jauge à travers les paramètres ξi,
cette fixation est appelée linéaire. En effet dans une jauge générale il prennent la forme,

ΠV V =
−i

q2 −M2
V + iǫ

[
gµν + (ξV − 1)

qµqν
q2 − ξZM

2
V

]
; V = A,Z,W (3.81)
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Le choix des valeurs pour les ξV est libre, et une fois choisis cela va représenter un choix de
jauge, par exemple on remarque que pour simplifier la forme des propagateurs on peut prendre
ξV = 1, c’est la jauge de Feynman. Ce choix de jauge est le plus pratique pour effectuer des
calculs mais fixe la valeur de ξV , empêchant de vérifier l’indépendance des résultats par rapport
à la variable ξV . Laisser ces paramètres libres et vérifier l’invariance de jauge en les faisant varier
est un bon test pour la théorie, surtout pour des calculs aux ordres supérieurs. Cependant,
si l’on désire automatiser les calculs à l’aide d’un code informatique, laisser ces paramètres
libres pose un certain nombre de problèmes, comme l’apparition de seuils non-physiques dans
la partie tensorielle ∝ qµqν de (3.81), ainsi que la complication de l’automatisation des calculs
des intégrales de boucles. C’est pourquoi en pratique dans les programmes le choix pour les
paramètres de jauge est celui de Feynman ξA = ξZ = ξW = 1, mais au prix de la perte de la
possibilité de vérifier l’invariance de jauge. Malgré tout, grâce à un lagrangien de fixation de
jauge non-linéaire[43, 44, 45], il est possible de tester l’invariance de jauge en conservant le choix
de jauge de Feynman. Cette fixation fait apparaître 8 nouveaux paramètres {α̃, β̃, δ̃, ω̃, κ̃, ρ̃, ǫ̃, γ̃}

F+ =
(
∂µ − ieα̃Aµ − igcW β̃Zµ

)
W µ + + iξW

g2
2

(
v + δ̃h0 + ω̃H0 + iκ̃G0 + iρ̃A0

)
G+

FZ = ∂µZ
µ + ξZ

g2
2cW

(
v + ǫ̃h0 + γ̃0

H

)
G0

FA = ∂µA
µ (3.82)

La difficulté de traiter des propagateurs à structure tensorielle compliquée est remplacée par
l’ajout de nouvelles interactions dans la théorie pour garder le test d’invariance de jauge, et la
jauge linéaire usuelle est retrouvée en prenant tous les paramètres non-linéaires à zéro.

3.6 Phénoménologie mSUGRA

Les paramètres libres du modèle mSUGRA où la brisure de la supersymétrie est transmise
par les interactions gravitationnelles, sont donnés par l’équation (3.36). Ce modèle ne dépend
que de 5 paramètres libres, il est donc plus facile d’explorer sa phénoménologie que le modèle
MSSM général avec plus de 100 paramètres et permet d’être très prédictif. En plus de supposer
une certaine unification des paramètres supersymétriques à l’échelle GUT , les constantes de
couplage sont aussi unifiées à cette valeur MGUT ,

g1(MGUT ) = g2(MGUT ) = g3(MGUT ) (3.83)

et il s’ensuit, en utilisant les équations du groupe de renormalisation du MSSM (3.13)

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
m1/2

g2
U

(3.84)

Cette relation est valide à n’importe quelle énergie, à des effets de boucles connus et de seuils
proches de MGUT (moins bien connus) près. Ici gU est le couplage de jauge unifié à MGUT . En
faisant évoluer les équations du groupe de renormalisation (RGE pour Running Group Equations)
jusqu’à l’échelle électrofaible et avec la relation précédente (3.84), on obtient des relations entre
les paramètres pour les jauginos à MEW ,

M1 ∼ 5

3
tan2 θwM2 ∼ 0.5M2 (3.85)

M3 =
αs

α
sin2 θwM2 =

3

5

αs

α
cos2 θwM1 (3.86)

valides à n’importe quelle échelle Q.
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Finalement on obtient la prédiction suivante pour la hiérarchie entres ces 3 paramètres à l’échelle
MEW ,

M3 : M2 : M1 ≈ 6 : 2 : 1 (3.87)

Il est donc raisonnable de supposer que le gluino est plus lourd que les neutralinos/charginos, et
cela implique que la masse de la particule la plus légère de ce secteur sera donnée approximati-
vement par la valeur de M1 ou |µ| selon leur hiérarchie.
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Figure 3.7 – Évolution des masses des scalaires et des jauginos dans le MSSM avec des condi-
tions de supergravité imposée à Q0 = 2.5 × 1016 GeV. Le paramètre µ2 +m2

Hu
devient négatif,

provoquant la brisure de la symétrie électrofaible [37].

Les RGE possèdent l’avantage que, une fois les paramètres initiaux fixés à haute énergie, typique-
ment l’échelle de Planck MP , en les faisant évoluer jusqu’à l’échelle électrofaible, il est possible
de prédire le spectre de masse de toutes les particules SUSY à n’importe quelle échelle, en par-
ticulier celle d’intérêt pour les collisionneurs actuels, l’échelle électrofaible (voir Figure 3.7). On
remarque que lors de l’évolution vers les basses énergies, la masse de l’un des Higgs devient
négative, ce dont nous avons besoin pour provoquer la brisure de la symétrie électrofaible. Le
gain par rapport au Modèle Standard est alors important, au lieu d’imposer ”à la main“ la bri-
sure, dans mSUGRA elle se produit ”naturellement“ par les corrections radiatives. Le spectre de
masse calculé à partir des RGE peut être calculé à partir de différents codes SUSPECT, SOFTSUSY,
SPHENO, ISAJET[46, 47, 48, 49, 50]
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Figure 3.8 – Exemple de spectre de masse pour les particules du MSSM non découvertes, avec
brisure de type mSUGRA et m2

0 ≪ m2
1/2 [37]

3.7 Une solution au problème de la Matière Noire

Le neutralino χ̃0
1 est un bon candidat à la matière noire, dans les cas où elle est la particule la

plus légère, ce qui est réalisé dans une bonne partie de l’espace des paramètres, et si une symétrie
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l’empêche de se désintégrer en une particule du Modèle Standard. Étant un des vecteurs propres
de la matrice 4×4 de masse, on peut le décomposer en une combinaison linéaire des Bino, Wino,
Higgsinos,

χ = N11B̃
0 +N12W̃

0
3 +N13H̃

0
1 +N14H̃

0
2 (3.88)

Les coefficients N1i sont des éléments de la matrice N , leur valeur dépend de la valeur numérique
des différents paramètres libres M1,M2, µ, tβ, ce qui va donner la ”nature“ du neutralino. On
peut alors calculer la fraction jaugino fJ définie comme,

fJ = N2
11 +N2

12 (3.89)

et la fraction higgsino fH

fH = N2
13 +N2

14 (3.90)

Selon la hiérarchie de M1,M2, µ (en supposant de plus qu’ils sont très supérieurs à MZ) on peut
distinguer deux grands types de compositions dans le scénario SUGRA, compositions qui vont
déterminer leur couplages aux autres particules :

– M1 << M2, µ : C’est le cas où le neutralino est majoritairement bino, le superpartenaire du
boson B qui donne le photon après la brisure électrofaible, ce qui a pour conséquence que
les couplages du neutralino aux autres particules sont relativement faibles car il interagit
seulement sous U(1)Y . Les particules auxquelles il se couple sont celles de plus grande
hypercharge, comme les sleptons/squarks droits, ainsi que de façon non-négligeable aux
Higgs. Les canaux d’annihilation sont majoritairement χχ̄→ f f̄ . De plus l’annihilation en
paire de fermions chiraux sans masse ne se produit qu’à partir d’un état initial d’onde P ,
car comme le neutralino est une particule de Majorana, la statistique de Fermi ne permet
à deux fermions identiques de résider dans un état S seulement si leurs spins sont anti-
parallèles, i.e J = 0 et CP = −1 ce qui ne correspond pas à la transformation de CP d’une
paire f f̄ sans masse. C’est pourquoi l’annihilation en paire f f̄ massive est proportionnelle
à la masse mf impliquant que le bino s’annihile principalement en paire de fermions massifs
comme bb̄, τ+τ− voir tt̄ s’ils sont accessibles cinématiquement.
En terme de l’espace des paramètres mSUGRA cela correspond à des valeurs de m0 et m1/2

petites, cette région est appelée région du bulk. Il existe une autre région, appelée région
de la coannihilation, avec 350 < m0 < 900 GeV, où la deuxième particule la plus légère est
le stau τ̃ et proche de la masse du neutralino. Dans ce cas le facteur de Boltzmann e−∆m/T

devient non négligeable et des processus de coannihilation du type χτ̃ → τ̃ γ et τ̃ τ̃ → ττ
sont importants. Une troisième région de paramètres existe à grand tβ où le bino s’annihile
très efficacement par l’intermédiaire du pseudo-scalaire A0 car étant de CP = −1 il ne
souffre pas du phénomène de suppression. Cette région porte le nom de Higgs funnel pour
des paramètres 450 < m0 < 1000 GeV et 250 < m1/2 < 1100 GeV.

– µ << M1,M2 : Le neutralino est principalement de type Higgsino et sa nature SU(2) le
couple fortement ici aussi aux bosons de jauge W± et Z à travers les couplages χ̃0

1χ̃
0
2Z

0 et
χ̃0

1χ̃
±
1 W

±, ainsi qu’aux Higgs. Les canaux d’annihilation sont principalement en bosons de
jauge et Higgs, et du fait de la proximité en masse du χ̃0

2 et χ̃±
1 les canaux de coannihi-

lation sont relativement efficaces. Pour de grandes valeurs de tan β le higgsino peut aussi
s’annihiler en paire de quarks b si les squarks correspondants ne sont pas trop lourds. Un
neutralino de type higgsino est obtenu dans mSUGRA pour des grandes valeurs de m0,
alors les paramètres µ et M1 sont petits et quasiment égaux.

Dans d’autres scénarios de brisure de la supersymétrie ou plus simplement si l’on conserve le
lagrangien de brisure douce le plus général possible, d’autres compositions apparaissent :

– M2 << M1, µ : Dans ce cas le neutralino est purement wino et du au fait que ce soit un
triplet de SU(2)L, il se couple majoritairement aux bosons de jauge W± mais quasiment
pas au Z0. Si sa masse est au dessus du seuil de production du mχ > MW alors il s’annihile
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principalement en paire de bosons de jauge (à travers le couplage χ̃0
1χ̃

±
1 W

±). De plus il est
quasiment dégénéré avec le chargino χ̃±

1 car leurs masses sont proportionnelles à M2. Cela
implique que leur coannihilation χ̃0

1χ̃
±
1 → XX est relativement importante pour le calcul

de la densité relique actuelle de Matière Noire. Ce type de neutralino n’apparaît pas dans
les modèles mSUGRA car ils prédisent toujours M1 < M2 < M3, mais plutôt dans des
scénarios de type AMSB [51].

– Dans le cas le plus général l’annihilation des neutralinos par le pseudoscalaire A0 n’est
plus spécifique à de grandes valeurs de tβ et des canaux de coannihilation avec d’autres
particules que le stau τ̃ et le chargino χ̃±

1 sont possibles.
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Figure 3.9 – Diagrammes (m1/2,m0) pour(a) tan β = 10, µ > 0, (b) tan β = 10, µ < 0, (c)
tan β = 35, µ < 0, et (d) tan β = 50, µ > 0. Dans chaque cadre, les régions remplissant la
contrainte de WMAP 0.094 ≤ Ωχh

2 ≤ 0.129 sur la densité relique de matière noire sont en bleu
foncé, la contrainte provenant de b→ sγ est en vert, et la zone exclue où la LSP est chargée est
en marron. Plus de détails sont donnés dans [52]
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Chapitre 4

Divergences, Régularisation
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English Abstract Taking into account radiative corrections results into the emergence of dan-
gerous divergences in the theory making any prediction impossible. The goal of the regularisation
method is to identify and isolate the causes of these divergences which then will be safely removed
by the procedure of renormalisation, presented in the next chapter. To simplify the calculation of
the loop tensor integrals, of relevance if an efficient automatic numerical tool is to be developed,
a reduction method is applied to express these tensor integrals on a basis of scalar integrals. This
reduction relies on a key ingredient, the Gram determinant. However, in some special situations
this determinant vanishes. The reduction procedure fails in this case and a different approach is
to be carried out to tackle this issue. Such a situation appears in the calculation of dark matter
annihilation at low velocity. We will present the segmentation method of loop integrals that we
have used to circumvent this difficulty and how it enabled us to study analytically the limiting
behavior of such integrals close to the threshold. We will also try to fit some of the integrals with
a simple formula.

4.1 Introduction

Le formalisme de la théorie quantique des champs, étant la généralisation de la mécanique
quantique au cas d’un nombre infini de degrés de liberté avec la non-conservation du nombre de
particules, permet de décrire les processus d’annihilation, de création et de désintégration des
particules élémentaires à l’aide de règles bien définies. Les équations régissant ces processus sont
fortement non-linéaires et leur calcul exact est pratiquement impossible [53], tant et si bien que
pour effectuer des prédictions l’outil utilisé est la théorie des perturbations, qui permet d’avoir
une solution approchée. Elle consiste en un développement en série de puissance de l’amplitude de
probabilité selon un paramètre “petit”, la constante de couplage. Les termes dominants de cette
série (appelés termes de Born, d’arbre ou encore tree-level en anglais) peuvent être représentés par
des diagrammes de Feynman sans boucles, dont on donne quelques exemples pour la QED dans
la Figure 4.1 Le calcul de ces diagrammes se fait par l’intermédiaire des règles de Feynman pour
évaluer l’amplitude et sont ensuite intégrés sur l’espace des phases pour obtenir la section efficace,
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e−
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e−

γ

e− e+
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γ

e−
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a) b)

Figure 4.1 – Exemples de processus QED à l’ordre le plus bas : a) Diffusion Compton, b)
Annihilation de paire particule-antiparticule.

a) b) c)

d) e)

Figure 4.2 – Corrections radiatives à la diffusion Compton de type : a) Self-énergie, b) Vertex,
c) Fonction d’onde fermionique, d) Fonction d’onde photonique, e) Boîte.

aucune intégration sur les impulsions n’est faite puisque la conservation de la quadri-impulsion
les définit de façon unique. Tous ces diagrammes sont proportionnels à la constante de couplage
de la QED au carré e2. Lorsque l’on passe à l’ordre suivant de la théorie des perturbations la
situation se complique, avec en premier lieu la prise en compte de nouveau diagrammes, appelés
corrections radiatives, dont on montre les différents types dans la Figure 4.2. Ces diagrammes
sont proportionnels à la constante de couplage à la puissance quatre. Ils contiennent une boucle
fermée qui requiert une intégration sur la quadri-impulsion k circulant dans la boucle,

∼
∫

d4k

(2π)4
km

kn
(4.1)

et des divergences apparaîtront pour des grandes valeurs de k si m + 4 ≥ n et pour des petites
valeurs si m+ 4 < n.
En particulier les diagrammes a), b), c) et d) ont un comportement divergent lorsque k → ∞, c’est
ce que l’on appelle communément une divergence ultra-violette. Le diagramme e) ne possède pas
de comportement divergent à grand k mais plutôt lorsque k → 0, appelé divergence infra-rouge,
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que possède aussi le diagramme b). La procédure de renormalisation va servir à éliminer ces deux
types de divergences pour pouvoir effectuer des prédictions, sinon cela résulte en l’apparition de
termes infinis, rendant l’utilisation de la théorie des perturbations vide de sens. Elle se déroule en
trois grandes étapes : la première, la régularisation, consiste à rendre convergente une intégrale de
boucle en introduisant des paramètres supplémentaires pour identifier les causes des divergences.
Puis, par un passage à la limite, nous éliminons ces paramètres surnuméraires. La deuxième étape,
la réduction, permet de réduire les intégrales de boucle sur une base d’intégrale “maîtres” dont
l’expression analytique est connue. Enfin, la troisième, la renormalisation à proprement parler,
va permettre d’éliminer les divergences identifiées dans la première étape par des méthodes de
soustraction.
Il apparaît que cette procédure, qui peut sembler ad hoc, fonctionne de façon remarquable et
précise puisque, par exemple, il en a résulté l’électrodynamique quantique, une des théories
physiques les plus précises jamais créée : le moment anormal de l’électron est prédit correctement
par la théorie avec au moins douze chiffres significatifs par rapport à la mesure expérimentale.
Cette réussite a donc élevé le critère de renormalisabilité d’une théorie comme l’un des principes
de base pour construire une théorie des particules élémentaires, comme le Modèle Standard. La
raison pour laquelle des divergences apparaissent lorsque l’on passe aux ordres supérieurs, en
est que lors de l’intégration sur toutes les valeurs possibles de k, la physique à basse énergie
devient sensible aux effets des états de très haute énergie qui sont inconnus, c’est un problème
typique de mélange des échelles. Le but de la renormalisation est alors de simuler les effets de
cette physique à haute énergie sous la forme de nouvelles interactions locales, les contres-termes.
Elle sera présentée en détail dans le chapitre suivant.

4.2 Régularisation des intégrales de boucles

4.2.1 Analyse générale des divergences ultraviolettes

Soit un diagramme de boucle arbitraire avec N pattes externes (voir Figure 4.3). L’expression

p2

p1

pN
m0m1

k

k + s2

Figure 4.3 – Structure de l’intégrale scalaire à N points

générale de ce diagramme de boucle à N pattes fait intervenir des intégrales tensorielles s’écrivant
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de manière générale,

TN
µν · · · ρ︸ ︷︷ ︸

M

=

∫
d4k

(2π)4
kµkν · · · kρ

D0D1 · · ·DN−1
, M ≤ N (4.2)

avec

D0 = k2 −m2
0 ± iε, Di = (k + si)

2 −m2
i ± iε, si =

i∑

j=1

pj , i = 1 · · ·N − 1 (4.3)

Les Di sont les propagateurs des particules internes composés de l’impulsion tournante k, des
impulsions externes pi et des masses internes mi. Le terme ±iε est une partie imaginaire infinitési-
male nécessaire pour réguler les singularités de l’intégrand, le choix spécifique du signe “+” permet
d’assurer la causalité. Par la suite nous omettrons d’indiquer ce terme, il sera sous-entendu dans
chaque propagateur. L’intégrale tensorielle est invariante par permutation des propagateurs Di

avec i 6= 0 et totalement symétrique par rapport aux indices de Lorentz {µ, ν · · · ρ}. L’intégrale
TN sera notée par la N -ième de l’alphabet, c’est à dire T 1 ≡ A, T 2 ≡ B... et l’intégrale scalaire
avec un indice 0, par exemple

A0(m0) =

∫
d4k

(2π)4
1

k2 −m2
0

, B0(p1,m0,m1) =

∫
d4k

(2π)4
1

(k2 −m2
0)((k + p1)2 −m2

1)
, · · · (4.4)

Le degré de divergence de l’expression (4.3) dans l’UV se calcule simplement par comptage de
puissance de k,

D = 4 +M − 2N →





D > 0 → diverge

D = 0 → diverge logarithmiquement

D < 0 → converge

(4.5)

Nous allons maintenant montrer comment il est possible d’isoler et d’identifier les sources des
divergences grâce à une procédure de régularisation.

4.2.2 Procédures de régularisation

Il existe différentes procédures de régularisation pour isoler les divergences avant de les sup-
primer par renormalisation :

Régularisation de Pauli-Villars

Nous nous sommes déjà servi de cette procédure de régularisation dans les deux chapitres
précédents pour calculer les corrections quantiques à la masse du Higgs. Elle consiste à introduire
un paramètre arbitraire de coupure Λ, appelé paramètre de cut-off, qui sert à couper l’intégration
sur le moment interne de la boucle [54]. Sa signification physique est claire : par cette coupure on
se débarrasse de tous les états de haute énergie, c’est à dire ceux dont k > Λ. Cette régularisation
peut aussi s’écrire en transformant les propagateurs

1

k2 −m2
→ 1

k2 −m2
− 1

k2 − Λ2
(4.6)

Ensuite comme les résultats ne doivent pas dépendre de cette coupure, à la fin du calcul la
limite Λ → ∞ est prise. Malgré sa signification physique claire ce type de régularisation souffre
de plusieurs défauts d’ordre théorique, l’introduction du cut-off brise l’invariance de jauge et
de Lorentz et en pratique il lui est préféré d’autres types de régularisation respectant ces deux
symétries.
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Régularisation dimensionnelle

Ce type de régularisation a été introduit par ’t Hooft et Veltman [55] pour renormaliser le
Modèle Standard et préserve les symétries de la théorie. Elle consiste à étendre analytiquement
la mesure d’intégration de 4 à n dimensions, ainsi que toutes les impulsions entrant dans la
boucle. En effet le caractère divergent des intégrales de type (4.3) n’apparaît que lorsque leur
dimension vaut exactement quatre. Une fois le calcul de l’intégrale en n-dimensions effectué, la
limite n = 4− ε avec ε→ 0 est prise, ainsi les divergences apparaissent comme des pôles en 1/ε.
Les résultats dépendent ensuite d’un paramètre ayant la dimension d’une masse, introduit de
façon à garder sans dimension les constantes de couplage, appelé échelle de renormalisation µ.
Pour le Modèle Standard, la régularisation dimensionnelle pose des problèmes lors du traitement
de la matrice γ5 qui est intrinsèquement un objet à 4 dimensions et par conséquent ne peut pas
être prolongé analytiquement en n dimensions. Les calculs impliquant la matrice γ5 nécessitent
une procédure ou prescription supplémentaire [56, 57, 58, 59, 60]. De plus ce type de régularisation
brise la supersymétrie car le nombre de degrés de libertés des fermions n’est plus égal à celui des
bosons.

Réduction Dimensionnelle

La réduction dimensionnelle [61] procède de la même façon que la régularisation dimen-
sionnelle à la différence près que les champs bosoniques et fermioniques sont maintenus à 4
dimensions. Lors du passage à n dimensions l’algèbre de Dirac est modifiée, les règles de calcul
en 4 et n dimensions sont résumées dans le tableau suivant :

Dimension = 4 Dimension = n

Tr[ l1] 4 n

gµνg
µν 4 n

kµkν 1
4k

2gµν 1
nk

2gµν

kµkνkρkσ k4

24 (gµνgρσ + gµρgνσ + gµσgνρ) k4

n(n+2) (g
µνgρσ + gµρgνσ + gµσgνρ)

γµγµ 4 n

γµγνγµ −2γν −(n− 2)γν

γµγνγργµ 4gνρ 4gνρ − (4 − n)γνγρ

γµγνγργσγµ −2γσγργν −2γσγργν + (4 − n)γνγργσ

Les identités impliquant des matrices γµ, définies dans l’Annexe A, sont obtenues à partir de
l’anticommutateur de deux matrices de Dirac :

{γµ, γν} = γµγν + γνγµ = 2gµν (4.7)

Concernant la matrice γ5 la prescription est qu’elle anticommute avec les matrices de Dirac

{γµ, γ5} = 0 (4.8)

La mesure d’intégration doit être étendue elle aussi,
∫

d4k

(2π)4
→ µ4−n

∫
dnk

(2π)n
(4.9)

Le rôle du paramètre µ sera d’assurer que les quantités calculées par la procédure dimensionnelle
gardent leur dimension physique lorsque la limite n→ 4 est prise.
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4.2.3 Techniques de réduction

Le calcul des intégrales (4.2.1) semble assez ardu à première vue. Pour les calculer une autre
technique de calcul est nécessaire. Celle-ci permet de représenter les produits des propagateurs
sous la forme des intégrales paramétriques de Feynman, dont on donne quelques propriétés dans
l’Annexe D. En effet on peut toujours écrire

1

AB
=

∫ 1

0
dx

dx

[Ax+B(1 − x)]2
=

∫ 1

0
dx

∫ 1

0
dyδ(x + y − 1)

1

[Ax+By]
(4.10)

où x et y sont appelés les paramètres de Feynman.
Ainsi le produit de N propagateurs de (4.3) peut se réécrire tel que [60]

1

D0D1 · · ·DN−1
= Γ(N)

∫
[dx]

1
(
D1x1 + D2x2 + · · ·D0(1 −

N−1∑

i=1

xi)

)N
(4.11)

avec
∫

[dx] =

∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−
N−2
P

i=1

xi

0
dxN−1. (4.12)

Le nouveau dénominateur D1x1 + D2x2 + · · ·D0

(
1 −

N−1∑

i=1

xi

)
peut se réécrire sous la forme

pour N ≤ 4

k2 − 2k · P (xi) −M2(xi)avec





P (xi) = −
N−1∑

i=1

sixi,

si = p1 + p2 + · · · pi,

M2(xi) = m2
0 +

N−1∑

i=1

Lixi,

Li = −s2i +m2
i −m2

0

(4.13)

Et on peut finalement réécrire (4.3) sous la forme,

T N
µν · · · ρ︸ ︷︷ ︸

M

= Γ(N)

∫
[dx] T̃ N

µν · · · ρ︸ ︷︷ ︸
M

, avec

T̃ N
µν · · · ρ︸ ︷︷ ︸

M

=

∫
dnk

(2π)n
kµkν · · · kρ

(k2 − 2k · P (xi) −M2(xi))
N
, M ≤ N (4.14)

où Γ(N) = (N − 1)!
Si l’on effectue le changement de variable

k − P (xi) → ℓ,

k2 − 2k · P (xi) −M2(xi) → ℓ2 − (M2 + P 2) ≡ ℓ2 − ∆

avec





∆ =
N−1∑

i,j=1

Qijxixj +
N−1∑

i=1

Lixi +m2
0,

Qij = si.sj =

i∑

m=1

j∑

n=1

pm · pn

(4.15)
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On est finalement amené à évaluer des intégrales du type

IN
µν · · · ρ︸ ︷︷ ︸

M

=

∫
dnℓ

(2π)n
ℓµℓν · · · ℓρ
[ℓ2 − ∆]N

(4.16)

Ces intégrales peuvent être calculées à partir d’une rotation de Wick de l’espace de Minkowski
vers l’espace Euclidien en substituant [29]

ℓ0 = iℓ0E, ℓ2 = −ℓ2E (4.17)

et de la fonction Γ d’Euler présentée dans l’Annexe E. De plus il est possible de montrer, par un
changement de variable ℓ = −ℓ dans les intégrales (4.2.3), que celles avec un produit d’un nombre
impair d’impulsions ℓ au numérateur sont nulles. Il est à noter que si elles sont convergentes,
nous pouvons poser n = 4 dès le début.
Pour les calculs pratiques on liste ci-dessous les intégrales à n-dimensions dans l’espace de Min-
kowski les plus utiles,

IN
0 =

∫
dnℓ

(2π)n
1

(ℓ2 − ∆)N
=

(−1)N i

(4π)n/2

Γ
(
N − n

2

)

Γ(N)

(
1

∆

)N−n
2

(4.18)

IN
2 =

∫
dnℓ

(2π)n
ℓ2

(ℓ2 − ∆)N
=

(−1)N−1i

(4π)n/2

n

2

Γ
(
N − n

2 − 1
)

Γ(N)

(
1

∆

)N−n
2
−1

(4.19)

IN
µν =

∫
dnℓ

(2π)n
ℓµℓν

(ℓ2 − ∆)N
=

(−1)N−1i

(4π)n/2

gµν

2

Γ
(
N − n

2 − 1
)

Γ(N)

(
1

∆

)N−n
2
−1

(4.20)

IN
4 =

∫
dnℓ

(2π)n
(ℓ2)2

(ℓ2 − ∆)N
=

(−1)N i

(4π)n/2

n(n+ 2)

4

Γ
(
N − n

2 − 2
)

Γ(N)

(
1

∆

)N−n
2
−2

(4.21)

IN
µνρσ =

∫
dnℓ

(2π)n
ℓµℓνℓρℓσ

(ℓ2 − ∆)N
=

(−1)N i

(4π)n/2

Γ
(
N − n

2 − 2
)

Γ(N)

(
1

∆

)N−n
2
−2

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ) (4.22)

Si l’intégrale diverge, le comportement pour n→ 4 peut être obtenu en développant

(
1

∆

)2−n
2

= exp
[
−
(
2 − n

2

)
ln ∆

]
= 1 −

(
2 − n

2

)
ln ∆ + · · · (4.23)

et en utilisant les formules de l’Annexe E pour le développement de Γ(x) proche de ses pôles.
D’une façon pratique la combinaison suivante apparaît souvent dans les calculs

µ4−n Γ
(
2 − n

2

)

(4π)n/2

(
1

∆

)2−n
2

=
1

4π2

(
CUV − ln

(
∆

µ2

)
+ O(ε)

)
(4.24)

avec ε = 4 − n et

CUV =
2

ε
− γE + ln(4π) (4.25)

où γE est la constante d’Euler-Mascheroni, γ ≈ 0.5772. Il est de plus à noter que ∆ peut être
négatif et ainsi les intégrales peuvent développer des parties imaginaires.
On voit donc qu’avec la méthode de la réduction dimensionnelle les divergences apparaissent
sous la forme de pôles en 1/ε lorsque l’on fait tendre n → 4. Bien évidemment ces termes
ne doivent pas apparaître dans les prédictions physiques et un schéma de soustraction, ou de
renormalisation, doit être défini pour les éliminer. Pour l’instant seule l’intégration sur l’impulsion
interne de la boucle a été effectuée, pour obtenir le résultat final de (4.3) il reste à intégrer sur
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les paramètres de Feynman (4.14). Étant donné que la structure tensorielle du numérateur peut
être assez compliquée, impliquant des impulsions externes et des matrices de Dirac γµ, grâce à
une technique de réduction, par exemple celle de Passarino-Veltman, il est possible de ramener
ces intégrales tensorielles à un rang inférieur à M et à un nombre de propagateurs plus petit que
N .

4.3 Réduction des intégrales

4.3.1 Réduction à la Passarino-Veltman

Avant de présenter la procédure de renormalisation, nous allons présenter une technique
de calcul pour faciliter le calcul des intégrales de boucle. Il existe plusieurs techniques de ce
type [59, 60, 62], nous présenterons seulement la plus connue, celle de Passarino-Veltman [63,
64], utilisée dans le programme LoopTools[65]. Cette technique permet de réduire les intégrales
tensorielles à une somme d’intégrales dont l’expression analytique est connue. Elle utilise le fait
que, du à la covariance de Lorentz, les seuls quadrivecteurs à notre disposition pour construire
des invariants sont le tenseur métrique gµν et les quadri-impulsions pµ. Par conséquent il est
possible de décomposer les intégrales tensorielles sur ces objets avec des coefficients totalement
symétriques TN

i1···iP . On introduit de manière formelle un moment artificiel s0 afin d’écrire les
termes contenant gµν de manière compacte

T N
µν···ρ(s1, · · · , sN−1,m0, · · · ,mN−1) =

N−1∑

i1···ip=0

TN
i1···iP si1µ · · · siP ρ (4.26)

Pour obtenir les bons termes contenant gµν , il faut éliminer tous les facteurs comprenant un
nombre impair de s0 et remplacer le produit d’un nombre pair de s0 par le tenseur complètement
symétrique construit à partir de gµν

s0µs0ν → gµν (4.27)

s0µs0νs0ρs0σ → gµνgρσ + gµρgνσ + gµσgνρ (4.28)

Alors la décomposition de Lorentz des intégrales tensorielles de plus bas ordre s’écrit

Bµ = s1µB1, (4.29)

Bµν = gµνB00 + s1µs1νB11, (4.30)

Cµ = s1µC1 + s2µC2, (4.31)

Cµν = gµνC00 +
2∑

i,j=1

siµsjνCij, (4.32)

Cµνρ =

2∑

i=1

(gµνsiρ + gνρsiµ + gµρsiν)C00i +

2∑

i,j,k=1

siµsjνskρCijk (4.33)

...

Les coefficients apparaissant dans ces équations sont déterminées par itération jusqu’à ce que l’on
obtienne seulement des intégrales scalaires T N

0 . Pour ce faire on contracte l’intégrale tensorielle
(4.3) avec les moment externes sk et le tenseur gµν , à l’aide de la relation du produit scalaire
entre ℓ et sk, exprimé à l’aide des dénominateurs Dk,

ℓ · sk =
1

2
(Dk −D0 + Lk) (4.34)
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les termes Dk et D0 du numérateur vont permettre d’éliminer (ou pinch) les propagateurs cor-
respondants du dénominateur, donnant

T N
µν···ρs

ρ
k =

1

2

∫
dnℓ

(2π)n

{
ℓµ · · · ℓν

D0 · · ·Dk−1Dk+1 · · ·DN−1
− ℓµ · · · ℓν
D1 · · ·DN−1

+ Lk
ℓµ · · · ℓν

D0 · · ·DN−1

}

=
1

2

[
T N−1

µν···ρ(k) + T N−1
µν···ρ(0) + LkT N

µν···ρ

]
(4.35)

Les termes entre parenthèses k et 0 dans les intégrales tensorielles indiquent que les propagateurs
Dk et D0 ont été enlevés. Comme le terme T N−1

µν···ρ(0) contient un moment externe dans son premier
propagateur, un changement de variable ℓ → ℓ + s1 est nécessaire pour se ramener à la forme
(4.3). Tous les membres de droite de l’équation (4.35) sont des intégrales tensorielles avec un
indice de Lorentz de moins que le membre de gauche.
La contraction avec gµν se fait à l’aide de la relation

ℓµℓνg
µν = ℓ2 = D0 +m2

0 (4.36)

entraînant

T N
µ···σνρg

νρ =

∫
dnℓ

(2π)n

{
ℓµ · · · ℓσ

D1 · · ·DN−1
+m2

0

ℓµ · · · ℓσ
D0 · · ·DN−1

}

=

[
T N−1

µ···σ (0) +m2
0T N

µ···σ

]
(4.37)

Pour obtenir les coefficients TN
i1···iP il suffit de remplacer dans (4.35) et (4.37) l’expression de

T N
µν···ρ par (4.26). On obtient alors un système de N − 1 équations linéaires (car par conservation

de la quadri-impulsion on a p1 +p2 + · · · pN−1 = −pN) à inverser pour déterminer les coefficients
TN

i1···iP recherchés, qui seront proportionnels à l’inverse de la matrice de Gram G

G =




s21 s1 · s2 · · · s1 · sN−1

s2 · s1 s22 · · · s2 · sN−1

...
...

. . .
...

sN · s1 sN · s2 · · · s2N


 (4.38)

Si det(G) 6= 0 alors la matrice est inversible et les coefficients peuvent être connus. Cependant
il est possible que ce déterminant s’annule, en particulier lorsque N > 5 ou de façon générale
quand les moments externes ne sont pas indépendants (par exemple colinéaires). Si le détermi-
nant de Gram tend vers zéro, les facteurs de forme TN

i1···iP vont prendre des valeurs élevées avec
de possibles annulations entre eux, résultant en d’importantes instabilités numériques. Dans ce
cas d’autres méthodes doivent être utilisées [62, 66, 67, 68, 69, 70]. L’algorithme de Passarino-
Veltman se base sur l’observation que dans les intégrales à une boucle le produit scalaire entre
l’impulsion interne et un moment externe peut être exprimé comme une combinaison de propa-
gateurs inverses (4.34). Cette propriété n’est cependant plus valables aux ordres supérieurs.
Nous avons vu dans cette section comment il est possible de ramener une intégrale tensorielle à
une somme d’intégrales scalaires T N

0 [63, 71, 72]. Leur forme générale s’écrit

T N
0 = −i(4π)2µ4−n

∫
dnk

(2π)n
1

(k2 −m2
0)((k + s1)2 −m2

1) · · · ((k + sN−1)2 −m2
N−1)

(4.39)

Nous allons maintenant donner la forme de la fonction scalaire à trois points C0, les fonctions
à un et deux points sont présentées dans l’Annexe F, les suivantes peuvent être trouvées dans
[63, 64, 69, 71, 72].
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4.3.2 Intégrale scalaire à trois points

La fonction C0 apparaît lorsque l’on calcule les corrections à une boucle des vertex qui est
donnée diagrammatiquement par,

p1

p2

p3

m1

m2

m3

La fonction C0 s’exprime comme

C0(p1, p2,m1,m2,m3) = −i(4π)2µ4−n

∫
dnk

(2π)n
1

(k2 −m2
1)((k + s1)2 −m2

2)((k + s2)2 −m2
3)

(4.40)
Il est possible de la réexprimer sous la forme C0(p

2
1, p

2
2, Q

2;m1,m2,m3) avec Q2 = (p1 + p2)
2.

Les cas particuliers ayant un intérêt pour la suite sont les fonctions C0(0, 0, Q
2;m,m,m) et

C0(0, 0, Q
2; 0,m, 0). Le calcul complet de ces fonctions est présenté dans l’Annexe F. Nous don-

nons ci-dessous seulement le résultat final dans la limite Q2 >> m2.

1. Cas m1 = m2 = m3 = m :
La fonction C0 prend la forme,

C0(0, 0, Q
2;m,m,m) = −i(4π)2µ4−n

∫
dnk

(2π)n
1

(k2 −m2)((k + s1)2 −m2)((k + s2)2 −m2)
(4.41)

et est égale à, dans la limite Q2 >> m2,

C0(0, 0, Q
2;m,m,m) =

1

Q2

[
1

2
ln2

(
m2

Q2

)
− π2

2
+ iπ ln

(
m2

Q2

)]
(4.42)

2. Cas avec une seule masse interne :
On va étudier le cas où m1 = m3 = 0;m2 = m, alors dans ce cas l’intégrale est donnée par,
dans la limite où Q2 >> m2

C0 =
1

Q2

[
1

2
ln2

(
m2

Q2

)
− π2

6

]
(4.43)

Dans ces deux cas on remarque l’apparition de doubles logarithmes qui peuvent être très impor-
tants lorsque l’impulsion entrant dans la boucle est très grande par rapport aux masses internes.
Ce type de situation peut se rencontrer lors de la désintégration d’une particule très lourde, ou
en tant que correction de vertex dans un processus de diffusion, lorsque l’énergie dans le centre
de masse

√
s est bien plus grande que toutes les échelles de masses mises en jeu.

4.3.3 Exemple de réduction de la fonction vectorielle à trois points

Dans cet exemple on va considérer la fonction à trois points vectorielle Cµ et pour simplifier
nous allons poser toutes les masses internes (mais pas les impulsions externes) à zéro. La fonction
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s’écrit

Cµ = −i(4π)2
∫

dnℓ

(2π)n
ℓµ

ℓ2(ℓ+ s1)2(ℓ+ s2)2
= s1µC1 + s2µC2 (4.44)

avec s1 = p1 et s2 = p1 + p2.
En contractant des deux côtés avec sµ

1 cela donne

− i(4π)2
∫

dnℓ

(2π)n
ℓ · s1

ℓ2(ℓ+ s1)2(ℓ+ s2)2
= s21C1 + s1 · s2C2 (4.45)

En utilisant

ℓ · s1 =
1

2

(
(ℓ+ s1)

2 − ℓ2 − s21
)

(4.46)

on peut écrire

s21C1 + s1 · s2C2 =
1

2

(
B0(s1) −B0(0) − s21C0

)
(4.47)

avec

B0(s1) = − i(4π)2
∫

dnℓ

(2π)n
1

ℓ2(ℓ+ s2)2
= B0(s2; 0, 0) (4.48)

B0(0) = − i(4π)2
∫

dnℓ

(2π)n
1

(ℓ+ s1)2(ℓ+ s2)2
= B0(p2; 0, 0) (4.49)

C0 = − i(4π)2
∫

dnℓ

(2π)n
1

ℓ2(ℓ+ s1)2(ℓ+ s2)2
= C0(s1, s2; 0, 0, 0) (4.50)

où l’on a effectué le changement de variable ℓ+ s1 → ℓ dans B0(0).
En contractant avec sµ

2 on obtient
∫

dnℓ

(2π)n
ℓ · s2

ℓ2(ℓ+ s1)2(ℓ+ s2)2
= s22C2 + s1 · s2C1 (4.51)

avec

ℓ · s2 =
1

2

(
(ℓ+ s2)

2 − ℓ2 − s22
)

(4.52)

cela donne

s22C2 + s1 · s2C1 =
1

2

(
B0(s2) −B0(0) − s22C0

)
(4.53)

avec

B0(s2) =

∫
dnℓ

(2π)n
1

ℓ2(ℓ+ s1)2
= B0(s1; 0, 0) (4.54)

Alors la matrice de Gram s’écrit

G =

(
s21 s1 · s2

s1 · s2 s22

)
(4.55)

et son inverse

G−1 =
1

s21s
2
2 − (s1 · s2)2

(
s22 −s1 · s2

−s1 · s2 s21

)
(4.56)

Le système d’équations linéaires s’écrit sous forme matricielle
(

s21 s1 · s2
s1 · s2 s22

)(
C1

C2

)
=

( 1
2

(
B0(s1) −B0(0) − s21C0

)

1
2

(
B0(s2) −B0(0) − s22C0

)
)

(4.57)

alors on obtient finalement,
(
C1

C2

)
= G−1

( 1
2

(
B0(s1) −B0(0) − s21C0

)

1
2

(
B0(s2) −B0(0) − s22C0

)
)

(4.58)

On remarque donc que l’on a décomposé l’intégrale vectorielle à 3 points Cµ sur les fonctions
scalaires à deux et trois points, dont on connaît déjà la structure analytique, rendant son calcul
plus aisé. Cette procédure est très générale et peut être utilisée pour calculer tout type d’intégrales
vectorielles Bµ, Cµν ,Dµνρ... à condition que le déterminant de Gram ne s’annule pas.
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4.4 Régularisation des divergences infra-rouges

Pour l’instant nous n’avons discuté que de l’origine des divergences UV et comment s’en pré-
munir, mais d’autres divergences peuvent apparaître, les divergences infrarouges. Elle surgissent
lorsque les éléments de la matrice S sont calculés avec des particules externes sur couche de
masse, c’est à dire que le carré de leur quadri-impulsion est égale à leur masse au carré, et que les
bosons virtuels échangés sont sans masse, le photon pour la QED et le gluon pour la QCD. Ces
divergences peuvent être de deux types : celles où le boson échangé est ”mou“ (divergence soft
en anglais), c’est à dire que l’impulsion échangée est très faible, et celle où les quadri-impulsions
sont colinéaires (divergences colinéaires). Contrairement aux divergences UV, les divergences IR
ont un sens physique clair : une particule sans masse avec une impulsion très petite ne peut être
détectée, et si son impulsion est parallèle à une autre particule elles ne peuvent être distinguées.
Les divergences infrarouges peuvent être régulées par l’introduction d’une petite masse artificielle
λ pour le boson sans masse et seront tracées par l’apparition de logarithmes de λ dans le calcul
des sections efficaces ∗. Elles seront ensuite éliminées en traitant l’émission du boson sans masse
comme inclusive : l’émission réelle de bosons mous ne peut être distinguée de leur échange virtuel.
Nous allons maintenant discuter formellement la forme de ces divergences infra-rouges dans le
cas de la QED, où le boson sans masse échangé est le photon. Si au moins une des pattes externes
est chargée électriquement (de couleur dans le cas de la QCD) alors un photon peut être émis (un
gluon pour la QCD). À l’ordre d’une boucle, pour éliminer la dépendance en la masse virtuelle
λ du photon, il faut considérer plusieurs contributions,

σ(kc) = σ0(s) + σ1L(s, λ) + σsoft(s, λ, kc) (4.59)

avec

σ0(s) =

∫
dLIPS |M2→2

0 (s)|2, (4.60)

σ1L(s) =

∫
dLIPS 2Re

(
M2→2∗

0 (s)M2→2
1L (s, λ)

)
(4.61)

σsoft(s, λ, kc) =

∫

‖−→k ‖<kc

dLIPS fsoft|M2→2
0 (s)|2 (4.62)

où σ0 est la section efficace à l’ordre de Born, σ1L celle à l’ordre d’une boucle, σsoft la contribution
due à l’émission d’un photon ”mou“ et dLIPS est l’espace des phases invariant de Lorentz.
s représente l’énergie du processus dans le centre de masse au carré et kc la coupure en énergie
sur le photon d’énergie Eγ , représentant la séparation en deux régions de l’espace des phases
d’émission du photon. Pour Eγ < kc le photon est considéré ”mou“ (soft bremsstrahlung), et pour
Eγ > kc l’émission est ”dure“ (hard bremsstrahlung). Il reste alors une dépendance résiduelle non-
physique en la coupure kc de (4.59). Pour la supprimer il faut rajouter l’émission ”dure“ réelle
d’un photon qui s’écrit :

σhard(s, kc) =

∫

‖−→k ‖>kc

dLIPS |M2→2+γ
0 (s)|2 (4.63)

ainsi la section efficace totale à une boucle est libre de divergences infra-rouges,

σ(s) = σ0(s) + σ1L(s, λ) + σsoft(s, λ, kc) + σhard(s, kc) (4.64)

∗. Il est aussi possible de régulariser les divergences IR en régularisation dimensionnelle en posant n = 4 + ε′

et le passage d’une méthode de régularisation à l’autre sera opérée en identifiant ln (µ/λ)2 ↔ 2/ε′ + γE + ln(4π)
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4.4.1 Forme du facteur universel fsoft

Dans l’approximation soft l’impulsion du photon émis est négligée partout sauf au dénomi-
nateur de l’élément de matrice. Dans cette limite l’émission d’un photon ”mou“ se factorise à
partir de la section efficace de Born :

(
dσ

dΩ

)

s

= fsoft

(
dσ

dΩ

)

0

(4.65)

le facteur fsoft est universel et ne dépend que de la charge Qi et du moment pi des particules
[64],

fsoft = − e2

(2π3)

∫

‖−→k ‖>kc

d3k

2Ek

∑

ij

±pipjQiQj

(pi · k)(pj · k)
=
∑

ij

Rij (4.66)

avec
Ek =

√
k2 + λ2 (4.67)

Le signe ± représente le flot de charge entrant ou sortant du diagramme. L’intégrale de base

Iij =

∫

‖−→k ‖>kc

d3k

2Ek

∑

ij

±pipj

(pi · k)(pj · k)
(4.68)

a été calculée dans [71].
Pour pi = pj = (E,−→p ) de masse m et |Q| = 1 elle s’écrit

Iii = 4π

{
ln

(
2kc

λ

)
+

E

|−→p | ln

(
m

E + |−→p |

)}
(4.69)

Dans le cas d’une paire particule-antiparticule de masse m dans le centre de masse, on a −→pi =
−−→pj = −→p , l’intégrale s’écrit

Iij = 2π
1 + β2

2β

{
2 ln

(
1 + β

1 − β

)
ln

(
2kc

λ

)
− 2Li2

(
2β

1 + β

)
− 1

2
ln2

(
1 + β

1 − β

)}
(4.70)

avec

β =
|−→p |
E

=

√
1 − 4m2

s
(4.71)

Dans la limite où s≫ m2 on obtient, en utilisant les formules de l’Annexe E

Iij = 2π
1

β

{
2

[
ln

(
m2

s

)(
ln

(
λ

2kc

)
− m2

s

)
+
m2

s

]
− 1

2
ln2

(
m2

s

)
− π2

3

}
(4.72)

et dans la limite où β → 0,
Iij → 0 (4.73)

4.4.2 Divergence infra-rouge de la fonction C0

La fonction C0 est finie dans l’ultraviolet, mais elle peut cependant contenir des divergences
infra-rouges si au moins l’une des particules internes est sans masse. Dans le cas de la QED, le
vertex suivant (Figure 4.4) est divergent lorsque p2

1 = m2, p2
2 = m2. Pour la régulariser nous

allons introduire une masse infinitésimale au photon, m2 = λ, où λ est négligeable par rapport
aux autres masses. Après intégration sur l’impulsion de boucle elle prend la forme

C0(m
2,m2, Q2,m, λ,m) =

∫ 1

0
dx

∫ x

0
dy

1

[−Q2y2 +Q2xy −m2x2 + (x− 1)λ2]
(4.74)
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f

f̄

γ

f̄

f

Figure 4.4 – Diagramme de la correction de vertex QED

en posant y = xy′ :

C0(m
2,m2, Q2,m, λ,m) =

∫ 1

0
dy

∫ 1

0
dx

x

[(−Q2y2 +Q2y −m2)x2 + (x− 1)λ2]
(4.75)

en écrivant
∆(x, y) = x2∆(y) + (x− 1)λ2, ∆(y) = −Q2y2 +Q2y −m2 (4.76)

En considérant λ2/m2 ≪ 1 alors :

∫ 1

0
dx

x

∆(y)x2 + (x− 1)λ2
=

1

2∆(y)
ln

(
∆(y)

−λ2

)
+ O(λ/

√
∆(y)) (4.77)

On peut alors écrire C0 de la façon suivante :

C0 =
1

2

[
F1 ln

(
µ2

λ2

)
+ F2

]
,

F1 =

∫ 1

0
dy

1

∆(y)
=

−1

Q2(y+ − y−)

[
ln

(
y+ − 1

y+

)
− ln

(
y− − 1

y−

)]

F2 =

∫ 1

0
dy

1

∆(y)
ln

(
∆(y)

µ2

)
= F1 ln

(
Q2

µ2

)

+
1

Q2(y+ − y−)

[
1

2
ln2(1 − y−) − 1

2
ln2(−y−) − 1

2
ln2(1 − y+) +

1

2
ln2(−y+)

− ln(1 − y+) ln(1 − y−) + ln(−y+) ln(−y−) + 2 ln

(
y− − 1

y−

)
ln(y− − y+)

−Li2

(
y− − 1

y− − y+

)
+ Li2

(
y−

y− − y+

)]
(4.78)

où y± = (1 ± β)/2 sont les racines de ∆(y) et nous avons introduit µ l’échelle de renormalisa-
tion pour obtenir des quantités adimensionnées dans les logarithmes. On obtient finalement, en
réarrangeant les dilogarithmes à l’aide de (E.5),(E.6)

C0 =
1

Q2β

[
ln

(
1 + β

1 − β

)
ln

(
m2

λ2

)
− Li2

(
2β

β − 1

)
+ Li2

(
2β

β + 1

)
− π2

]
(4.79)

Dans la limite s≫ m2 la fonction C0 s’écrit

C0 =
1

Q2β

[
ln

(
m2

Q2

)
ln

(
λ2

m2

)
+

3

2
ln2

(
m2

Q2

)
+
m2

Q2
ln

(
m2

Q2

)
− m2

Q2
− 4π2

3

]
(4.80)
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Comportement singulier lorsque β → 0 : Lorsque β → 0 on peut montrer qu’alors, à partir
du résultat précédent (4.79) on a, à l’aide de (E.6) et (E.16)

C0 ≃ −π2

Q2β
(4.81)

Lorsqu’une des particules internes est sans masse, on voit apparaître une divergence infrarouge
provenant de la fonction C0, qu’aucune méthode de régularisation ne peut enlever. Ce compor-
tement est en fait la manifestation à l’ordre d’une boucle d’un effet d’origine non-perturbative :
l’effet Coulomb-Sommerfeld [73], qui indique l’invalidité de la théorie des perturbation dans la
limite β = 0. Cet effet devrait être resommé à tous les ordres dans cette limite. À titre d’illus-
tration nous avons tracé la fonction C0(m

2
χ̃+

1

,m2
χ̃+

1

, Q2,m2
χ̃+

1

, 0,m2
χ̃+

1

) × Q2 (voir Figure 4.5) où

m = 80.39 GeV et mχ̃+
1

= 1799.0896 GeV en fonction de la vitesse relative v = 2β. Puis nous
avons interpolé le résultat avec une fonction de type

a

v
+ b (4.82)

On s’attend à ce que le paramètre a soit égal à a = −2π2 = −19.74 et c’est effectivement ce que
nous observons.

v
0 0.02 0.04 0.06 0.08 0.1

-12000

-10000

-8000

-6000

-4000

-2000

0

a         1.347e-07± -19.74 

b         7.08e-06± 33.99 

a         1.347e-07± -19.74 

b         7.08e-06± 33.99 

Figure 4.5 – C0(m
2
χ̃+

1

,m2
χ̃+

1

, Q2,m2
χ̃+

1

, 0,m2
χ̃+

1

)×Q2 et le fit correspondant en bleu (gras) avec les

incertitudes associées aux paramètres de fit. Le coefficient a correspond parfaitement au résultat
analytique.

4.5 Segmentation des fonctions C0 et D0

Nous allons montrer dans cette section comment il est possible de segmenter les fonctions
à trois et quatre points en tirant partie de la cinématique particulière lorsque β → 0 [70]. En
effet, dans cette limite, les impulsions entrantes s’écrivent de la forme p ≈ (mχ,∼ 0,∼ 0,∼ 0)
et ne sont plus indépendantes, impliquant que le déterminant de Gram s’annule. Ce type de
situation se produit par exemple pour des prédictions concernant l’annihilation de matière noire
dans le halo galactique où il est supposé que les vitesses relatives sont très faibles, de l’ordre de
v ≃ 10−3c.
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4.5.1 Segmentation de la fonction Triangle

Afin de calculer ces intégrales on va segmenter l’intégrale Triangle en intégrales à deux points.
Nous allons appliquer cette segmentation sur une fonction Triangle typique où deux neutralinos
de haute masse M s’échangent une particule de faible masse m, par exemple un boson de jauge
comme dans la Figure 4.4, qui se réduira au calcul de deux fonctions B0. Cette fonction scalaire
s’écrit, en régularisation dimensionnelle

C0 = −i(4π2)µ4−n

∫
dnk

(2π)n
1

D0D1D2
(4.83)

avec

D =

[
D0D1D2

]−1

=

[[
k2 −m2

][(
k + p2

1

)
−M2

][(
k − p2

)2 −M2
]]−1

(4.84)

Il est toujours possible d’écrire D sous la forme [70],

D =
α

[(k + p2
1) −M2][(k − p2)2 −M2]

+
λ

[k2 −m2][(k − p2)2 −M2]
+

γ

[k2 −m2][(k + p2
1) −M2]

(4.85)
En utilisant le fait que pour β = 0 on a p1 = p2 = p(M, 0, 0, 0) on peut montrer que (4.85) est
vraie si l’on choisit α, λ, γ tels que

γ = λ (4.86)

α = − 2γ (4.87)

Ainsi la fonction C0 s’écrit, dans cette limite et après avoir effectué un changement de variable
k′ = k − p dans l’une des intégrales,

C0 = − 1

m2

(
B0(2p;M

2,M2) −B0(−p;M2,m2)
)

(4.88)

L’évaluation des deux fonctions B0 donne, en utilisant m/M << 1,

B0(2p;M
2,M2) = CUV − ln

(
M2

µ2

)
+ 2 (4.89)

B0(−p;M2,m2) = CUV − ln

(
M2

µ2

)
+ 2 − πm

M
+ O

(
m2

M2

)
(4.90)

et ainsi

C0 = − π

mM
+ O

(
m2

M2

)
(4.91)

On remarque alors que dans le cas d’une fonction Triangle massive, lorsque β → 0, il se produit
une phénomène de saturation des corrections. Cela peut être relié à la manifestation à l’ordre
d’une boucle de l’effet Sommerfeld électrofaible non-perturbatif où, lorsque β . m2/M2, il se
produit le même type de saturation. Cette formule a été testée numériquement sur les fonctions
scalaires dont les résultats sont montrés dans le Tableau 4.1 pour plusieurs valeurs de M et
m = 80GeV.

4.5.2 Segmentation de la fonction Boîte

Nous allons généraliser le calcul précédent au cas de la Boîte. La première chose à remarquer
est que, en toute généralité, on peut toujours écrire pour n’importe quelle paire de constantes
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Masse (Gev) Approx. C0, β → 0 C0, β = 10−4 C0, β = 10−3 C0, β = 10−1

M = 1000 −3.926991 10−5 −3.571320 10−5 −3.570509 10−5 −1.500300 10−5

M = 2000 −1.963495 10−5 −1.857617 10−5 −1.855999 10−5 −4.291331 10−6

M = 10000 −3.926991 10−6 −3.867858 10−6 −3.789799 10−6 −1.801508 10−7

Table 4.1 – Tableau des tests numériques pour la comparaison de l’approximation de l’équa-
tion (4.91) avec le résultat numérique donné par LoopTools[65]. On remarque la lente conver-
gence de l’approximation vers le résultat numérique lorsque la masse M augmente.

α, β [70]

1

D0D1D2D3
=

(
1

D0D1D2
− α

1

D0D2D3
− β

1

D0D1D3
+ (α+ β − 1)

1

D1D2D3

)
×

1

A+ 2ℓ · (s3 − αs1 − βs2)

A = (s23 −M2
3 ) − α(s21 −M2

1 ) − β(s22 −M2
2 ) − (α+ β − 1)M2

0 . (4.92)

Avec Di et si donnés par l’équation (4.3). Dans le cas où s3 = αs1 + βs2, les impulsions sont
linéairement dépendantes et la Boîte se segmente en une somme de fonctions Triangles. Si l’on
considère une Boîte avec trois grandes masses internes et une petite, lors de la segmentation au
moins une des fonctions Triangles aura la même topologie que la fonction C0 de l’équation (4.83)
qui se segmentera à son tour en deux fonctions à deux points. Par conséquent, on s’attend à ce que,
lorsque β → 0 le comportement de la fonction Boîte ressemble à celui de la fonction Triangle.
Ce type de segmentation fait l’objet d’une routine spéciale implémentée dans le programme
LoopTools.

4.5.3 Étude numérique

Connaissant le comportement de la fonction C0 lorsqu’une des masses internes est nulle et
celui avec une petite masse pour β = 0, nous avons cherché à obtenir une formule pour reproduire
son comportement lorsque β 6= 0 tout en restant faible. Tout d’abord j’ai testé une formule
provenant de [74], où la correction à une boucle dans la limite non-relativiste de l’annihilation
de neutralinos en onde s a été calculée. La formule s’écrit

IS(r) ≃





2π√
r+1

(
1 − 1

r+2

)
(grand r)

π2/2

1+
√

r

π
+ r

π2

(petit r)
(4.93)

avec r = m2/|~p|2 et |~p| = Mβ = Mv/2. Le graphe de la fonction C0 et de l’équation (4.93)
avec m = 80.39GeV (soit la masse du boson W±) et M = 1799.0893GeV est présenté dans la
Figure 4.6. Ces choix de masses correspondent à l’étude sur l’annihilation des neutralinos lourds
qui sera présentée dans le Chapitre 9. En s’inspirant de la formule (4.93) nous avons utilisé une
formule de fit pour capturer le comportement de la fonction scalaire à trois points et à quatre
points dans un régime de faibles vitesses. Cette formule s’écrit,

a+
b√

v2 + c2
(4.94)
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v
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 0) → r petit (m 

 0) → β r large (

Figure 4.6 – Graphe de C0(M
2,M2, s,M,m,M) et de la formule (4.93) avec M =

1799.0893GeV, et m = 80.39 GeV. Les courbes rouge et verte sont sécantes en r = 6, lors
du changement de comportement (r large et r petit) selon la valeur de r. Plus de détails dans
[74].

où

v = 2β = 2

√
1 − 4M2

s
(4.95)

Le résultat des fits est affiché dans la Figure 4.7. On remarque que cette formule fonctionne
très bien, même si la signification des paramètres de fit n’est pour l’instant pas reliée à une
combinaison de paramètres entrants dans le calcul de C0 et D0. On remarque cependant que
dans les deux cas les paramètres c sont très proches et que les fonctions scalaires possèdent le
même comportement à un signe moins près. Nous avons aussi effectué les fits en fixant c à la
valeur c = π

2
m
M = 0.07019, provenant du raccordement des deux expressions de l’équation (4.93)

en r = 0, voir Figure 4.8. Nous observons aussi une saturation pour v très proche de zéro, comme
l’a montré l’approximation (4.91). En particulier la formule analytique nous donne

|C0| =
π

m×M
= 2.17 × 10−5 (4.96)

et à partir du fit cette valeur est donnée par,

Cfit
0 = a+

b

c
= 2.04 × 10−5 (4.97)

Cette paramétrisation sera d’une grande utilité lorsque nous chercherons à extraire l’effet Som-
merfeld électrofaible dans le Chapitre 9, pour n’obtenir que les corrections provenant de la
renormalisation. Nous avons ensuite calculé les fonctions Triangles et Boîtes pour une masse
M = 17990.089, puis cherché à interpoler les résultats avec la paramétrisation de l’équation (4.94)
en fixant la valeur du paramètre c à la valeur c = π

2
m
M = 0.007019. Les graphes correspondants

sont affichés dans la Figure 4.8. On remarque que contrairement au cas précédent ce fit semble
mieux fonctionner lorsque l’on élève la valeur de la masse M .
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Figure 4.7 – Fit pour C0 (gauche) et D0 (droite) en noir, pour c laissé libre (graphes en haut)
et c fixé à la valeur c = 0.07019 pour m = 80.39 GeV, M = 1799.0893GeV. La valeur numérique
des fonctions scalaires est tracée en rouge.
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Figure 4.8 – Fits des fonctions scalaires C0 × 106 (droite) et D0 × 1012 pour c = 0.007019 avec
m = 80.39 GeV, M = 17990.0893GeV. Les données sont en rouge, le fit en noir.
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Chapitre 5

La renormalisation du MSSM
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English Abstract Once the divergences have been identified they have to be safely removed
with a proper and well-defined renormalisation. We present in this chapter the general procedure
to renormalise the MSSM in an On-Shell scheme. This scheme has the advantage to clearly
relate counter-terms with physical observables and therefore gauge invariance is maintained.
We give all the relevant counter-terms needed for each sector of the MSSM, and in particular
several definitions of the counter-term for the ubiquitous tβ parameter. A special treatment of
the renormalisation of the neutralino/chargino sector will be presented in Chapter 7.

5.1 Procédure générale

Nous avons vu dans le Chapitre 4 comment identifier les divergences des calculs de boucles.
L’apparition de divergences dans certains termes de l’expanson perturbative n’est pas forcément
le signe d’une incohérence fatale de la théorie. Elle peut plus simplement indiquer que l’utilisa-
tion de la théorie des perturbations n’est plus appropriée. La contribution d’un diagramme de
Feynman n’a pas de signification physique propre : seuls les éléments de la matrice S ont un sens
physique. Le problème posé par l’apparition de divergences est alors celui de l’existence d’une
formulation de la théorie des perturbations qui conduise à des éléments de matrice S finis et des
fonctions de Green bien définies à chaque ordre perturbatif [31].
Pour aborder ce problème, il faut introduire une généralisation de la théorie des perturbations
faisant usage de contres-termes, qui seront utilisés pour renormaliser la théorie de façon à ce que
l’expansion perturbative des grandeurs physiques soit finie et bien définie à chaque ordre par une
procédure de soustraction.
En général le lagrangien décrivant la théorie possède un certain nombre de paramètres libres
qui doivent être déterminés expérimentalement, et sont choisis tels qu’ils aient un sens physique
intuitif à l’ordre le plus bas. Malheureusement lorsque l’on passe aux ordres supérieurs cette
relation directe n’est plus valide et, de plus, les paramètres du lagrangien initial, les paramètres
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“nus” (notés avec un indice 0), diffèrent des paramètres physiques par des contributions diver-
gentes dans l’ultraviolet. Pour les théories dites renormalisables, ces divergences vont s’annuler
à travers des relations entre les quantités physiques, “habillant” les paramètres “nus” pour cor-
respondre aux paramètres mesurés. Il existe plusieurs approches pour renormaliser une théorie
[63, 75], nous utiliserons celle utilisant les contres-termes [64] : les paramètres UV-divergents
sont exprimés en fonction de paramètres renormalisés finis et de constantes de renormalisation
divergentes, les contres-termes, en nombre fini si la théorie est renormalisable. Il est possible de
plus de remplacer les champs “nus” par des champs renormalisés.
Les contres-termes seront déterminés à l’aide de conditions/prescriptions (arbitraires) de re-
normalisation. Un choix complet de conditions pour obtenir des observables physiques finies
constituera ce que l’on appelle un schéma de renormalisation. Il est alors possible de prédire
certaines observables physiques à partir de quantités déjà mesurées, les paramètres d’input ou
observables. Les résultats dépendront donc de l’ordre de la théorie des perturbations à laquelle la
série perturbative sera tronquée, du choix des observables mais aussi des paramètres renormali-
sés. À un ordre donné de la théorie des perturbations, les schémas de renormalisation différeront
par des contributions d’ordres supérieurs. La procédure de renormalisation peut être résumée
comme suit :

– Choisir un ensemble de paramètres indépendants.
– Séparer les paramètres “nus (ainsi que les champs) entre des paramètres renormalisés (et

champs) et des constantes de renormalisation.
– Prescrire/définir des conditions pour fixer les contres-termes.
– Exprimer les quantités physiques en fonction des paramètres renormalisés.
– Choisir les observables pour déterminer la valeur des paramètres renormalisés.
– Calculer les prédictions pour les quantités physiques en fonction des observables.

Schématiquement cette procédure commence à partir d’un lagrangien fonction de champs ”nus“
φi

0 et de paramètres ”nus“gi
0 (des masses ou des constantes de couplages) :

L = L(φ0, g0
i ) (5.1)

Puis l’on remplace (”habille“) chaque champ et paramètre nu par leur quantité respective renor-
malisée, φi et gi :

φ0
i = Zφφi (5.2)

g0
i = Zgi

gi (5.3)

Si on réécrit chaque constante de renormalisation sous la forme (valide à l’ordre d’une boucle)

Zi = 1 + δZi (5.4)

le lagrangien peut s’écrire comme la somme d’une partie renormalisée et d’une partie contre-
termes

L(φ0, g0) = L(φ, g) + δL(φ, g, δZφi
, δgi) (5.5)

La partie δL va apporter des nouveaux couplages (et donc des règles de Feynman supplémen-
taires) à la théorie. Ainsi de nouveaux diagrammes de Feynman seront à prendre en compte,
dont le rôle sera d’annuler les divergences comprises dans la partie L(φ, g). Il est à noter que
les décompositions (5.2) sont arbitraires puisque seule la partie divergente est déterminée par la
structure à boucle de la théorie.
Alors une observable Γ peut se décomposer, à l’ordre d’une boucle :

Γ = Γ0 + Γ1︸︷︷︸
∞

+ δΓ︸︷︷︸
∞︸ ︷︷ ︸

fini

(5.6)
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où Γ0 est l’observable calculée à l’ordre le plus bas, Γ1 sa correction à l’ordre d’une boucle, et δΓ
la partie contre-terme. Les corrections Γ1 et δΓ sont séparément divergentes mais leur somme est
finie. On peut les écrire d’une façon générale comme la somme d’une partie finie et d’une partie
infinie

Γ1 = af
1 + b∞1 (5.7)

δΓ = af
CT + b∞CT (5.8)

et la somme des parties infinies doit s’annuler

b∞1 + b∞CT = 0 (5.9)

La somme des parties finies sera la correction à une boucle, finie, de l’observable Γ, qui dépendra
du choix du schéma de renormalisation.

5.1.1 Schéma de soustraction minimale MS

C’est le schéma de renormalisation le plus simple [76] qui consiste à imposer que les contres-
termes n’absorbent que la partie divergente dans l’ultra-violet, c’est à dire uniquement les termes
proportionnels à 1/ε de (4.25),

af
CT = 0, b∞CT =

2

ε
(5.10)

Ainsi les contres-termes sont des quantités purement infinies, et ce schéma dépend de l’échelle
de renormalisation µMS.

5.1.2 Schéma de soustraction minimale modifiée MS

Il arrive que les termes constants accompagnant le terme proportionnel à 1/ε de (4.25) soient
importants, par conséquent les contres-termes seront définis par [77]

af
CT = 0, b∞CT = CUV (5.11)

définissant une nouvelle échelle de renormalisation µMS telle que

CUV + ln
(
µ2
)
→ ln

(
µ2

MS

)
(5.12)

5.1.3 Schéma de réduction minimale modifiée

Pour la supersymétrie il est préférable d’utiliser la réduction dimensionnelle [61] pour qu’elle
soit respectée. Dans ce cas la prescription de renormalisation DR est similaire à celle du schéma
MS, à la différence près que les champs bosoniques et fermioniques sont conservés à 4 dimensions
pour respecter la supersymétrie.

5.1.4 Schéma sur couche de masse (On-Shell)

Il est possible de choisir les contre-termes tels que les paramètres renormalisés finis soient
égaux aux paramètres physiques à tous les ordres de la théorie des perturbations. Dans ce cas
on a pour Γ :

Γ = Γ0 ⇒ Γ1 = −δΓ (5.13)

à l’ordre d’une boucle. L’avantage de ce schéma par rapport aux autres est que la fixation des
contres-termes possède un véritable sens physique et permet d’éviter d’induire des dépendances
de jauge explicites. Dans ce schéma les contre-termes sont obtenus à partir de la mesure de masses
de particules sur leur couche de masse (On-Shell en anglais). La masse d’une particule OS est
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définie comme le pôle de la partie réelle de son propagateur et est interprétée comme sa masse
physique. La dépendance en l’échelle de renormalisation est alors complètement absorbée. Par
exemple dans le Modèle Standard, la mesure expérimentale très précise des masses des bosons
MZ ,MW sont prises comme observables pour renormaliser le secteur de jauge, et dans ce cas le
paramètre sin θw est défini par la relation

sin2 θw = 1 − M2
W

M2
Z

(5.14)

valide à tous les ordres de la théorie des perturbations. Les constantes de couplage sont renor-
malisées de manière à ce que celles-ci restent inchangées lorsque toutes les particules se couplant
à un vertex sont sur couche de masse. Nous allons principalement utiliser ce schéma par la suite.

5.2 Renormalisation sur couche de masse

Nous allons présenter dans ce chapitre la façon dont le MSSM a été renormalisé. Cela corres-
pond à ce qui a été implémenté dans le code SloopS. Elle s’appuie principalement sur un schéma
sur couche de masse (On-Shell) et a été présentée extensivement dans [78, 79, 80]. Par consé-
quent nous ne présenterons que la forme des contre-termes introduits pour chaque secteur (de
jauge, de fermion, de Higgs et des sfermions). La renormalisation du secteur neutralino/chargino
sera présentée plus en détail dans le Chapitre 7. Les fonctions à deux points 1PI (one-particle
irreducible) renormalisées notées Π̂ij (écrites dans la jauge de t’Hooft-Feynman ξ = 1 et dénotés
avec un ^), s’écrivent :

Π̂W
µν(k) = − igµν(k2 −M2

W ) − i

(
gµν − kµkν

k2

)
Σ̂W

T (k2) − i
kµkν

k2
Σ̂W

L (k2), (5.15)

Π̂ab
µν(k) = − igµν(k2 −M2

a )δab − i

(
gµν − kµkν

k2

)
Σ̂ab

T (k2) − i
kµkν

k2
Σ̂ab

L (k2), (5.16)

où a, b = A,Z, M2
A = 0,

Π̂S(k) = i(k2 −M2
S) + iΣ̂S(k2), (5.17)

Π̂f
ij(p) = iδij(6p −mi) + iΣ̂f

ij(p
2), (5.18)

Σ̂f
ij(p

2) = 6p(PLΣ̂f,LV
ij (p2) + PRΣ̂f,RV

ij (p2)) + PLΣ̂f,LS
ij (p2) + PRΣ̂f,RS

ij (p2)

Les indices V, S, f indiquent la nature vectorielle, scalaire, fermionique de la fonction à deux
points considérée, l’indice T indique quant à lui la partie transverse et L la partie longitudinale
pour les self-énergies des particules vectorielles. Les propagateurs correspondants sont obtenus à
partir de l’inverse de ces fonctions à deux points.
La procédure à suivre pour chaque secteur se résume à compter le nombre de paramètres indépen-
dants et d’ensuite les fixer/contraindre par le nombre approprié de conditions de renormalisation.
Dans un schéma OS, les masses renormalisées des particules physiques sont déterminés à la condi-
tion qu’elles soient égales aux masses physiques, c’est à dire égales aux parties réelles des pôles
des propagateurs correspondants, équivalents aux zéros des fonctions à deux points.

R̃eΠ̂ii(k)f(k)
∣∣∣
k2=M2

= 0 ⇐⇒M2 −M2

(
1 +

δM2

M2

)
+ R̃eΣii(M

2) = 0 ⇒ δM2 = R̃eΣii(M
2)

(5.19)
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où R̃e signifie que l’on prend la partie réelle de la self-énergie, pas la partie réelle des éventuels
paramètres qui la compose ∗ et f(k) est soit un spineur (u(p), v(p)), soit un vecteur de polarisation
(εµ(k)) ou encore l’identité selon le spin du champ externe.
Les champs sont renormalisés comme suit,

φ0
i =

(
1 +

1

2
δZij

)
φj (5.20)

Dans le cas le plus général le champ φ peut posséder plusieurs composantes i, alors δZij est
une matrice et induit un mélange entre les différentes composantes. Cela peut être simplifié si
les conditions OS sur la renormalisation des champs stipulent que les fonctions à deux points
renormalisées sont diagonales si les pattes externes sont on-shell, permettant de déduire les
éléments non-diagonaux des renormalisations des champs δZij à partir de la condition

R̃eΣ̂ij(k
2)
∣∣∣
k2=M2

= 0 (5.21)

Les éléments diagonaux sont fixés tels que les résidus des propagateurs renormalisés sont égaux
à 1,

lim
k2→M2

1

k2 −M2
R̃eΠ̂ii(k

2)f(k) = f(k) (5.22)

en utilisant

Σ(k2) ≃ Σ(M2) + (k2 −M2)
∂Σ

∂k2

∣∣∣∣
k2=M2

+ · · · (5.23)

cette condition se réécrit

R̃e∂Σ̂ii(M
2)

∂k2

∣∣∣∣
k2=M2

= 0 (5.24)

Il est aussi de possible de renormaliser chaque secteur sans introduire de constante pour les
champs (dans lesquels les champs n’apparaissent pas), car au final seuls les éléments de la matrice
S doivent être finis. La contrepartie de cette approche est qu’elle implique la manipulation de
fonctions de Green infinies.
Avec ces définitions le lagrangien “nu” L0 se décompose entre le lagrangien de base L et le
lagrangien des contre-termes δL,

L0 = L + δL (5.25)

L à la même forme que L0 mais dépend des paramètres et champs renormalisés.
Finalement les self-énergies renormalisées sont obtenues à partir de,

Σ̂ij(k
2) = Σij(k

2) +
∂

∂φi

∂

∂φj
δL̃ (5.26)

où le tilde signifie que la transformée de Fourier du lagrangien à été prise.

5.3 Renormalisation du secteur des fermions

Le lagrangien des fermions s’écrit, à l’ordre de l’arbre,

L0
f = iψ0

fγµ∂
µψ0

f −mfψ
0
fψ

0
f (5.27)

∗. Comme par exemple les éléments de la matrice CKM qui apparaissent dans le couplage du boson W aux
quarks.
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Ce secteur ne contient donc qu’un seul paramètre mf pour chaque génération, il faut donc
introduire un contre-terme pour la masse de chaque fermion. Puisque l’on peut décomposer
chaque champ fermionique en une partie gauche L et droite R,

ψfL
=

(1 − γ5)

2
ψf = PLψf (5.28)

ψfR
=

(1 + γ5)

2
ψf = PRψf (5.29)

il faut alors introduire des constantes de renormalisation pour les parties droites et gauches de
chaque champ fermionique. Les paramètres de ce secteur se réécrivent alors,

m0
f = mf + δmf

ψfL
= Z

1/2
fL
ψfL

=

(
1 +

1

2
δZfL

)
ψfL

ψfR
= Z

1/2
fR
ψfR

=

(
1 +

1

2
δZfR

)
ψfR

(5.30)

On peut alors réécrire le champ fermionique ψf comme,

ψ0
f =

(
1 +

1

2
(δZfL

PL + δZfR
PR)

)
ψf (5.31)

Alors en utilisant la relation
∂Σ

∂ 6k = 26k ∂Σ

∂k2
= 26kΣ′ (5.32)

on arrive aux expressions suivantes pour les contre-termes,

δmf = R̃eΣLS
f (m2

f ) +
1

2
mf

(
R̃eΣLV

f (m2
f ) + R̃eΣRV

f (m2
f )
)

δZL
f = − R̃eΣLV

f (m2
f ) −m2

f

(
R̃eΣLV ′

f (m2
f ) + R̃eΣRV ′

f (m2
f )
)
− 2mf R̃eΣLS′

f (m2
f )

δZL
R = − R̃eΣRV

f (m2
f ) −m2

f

(
R̃eΣLV ′

f (m2
f ) + R̃eΣRV ′

f (m2
f )
)
− 2mf R̃eΣRS′

f (m2
f ) (5.33)

où nous avons utilisé le fait que dans le cas où la symétrie CP est conservée dans le secteur
leptonique et des quarks †, leurs self-énergies sont diagonales et il n’est pas nécessaire d’introduire
de constantes de renormalisation des champs non-diagonales. Nous avons de plus la relation :

ΣLS
f (m2

f ) = ΣRS
f (m2

f ). (5.34)

5.4 Renormalisation du secteur de jauge

Le secteur de jauge contient deux paramètres de masse pour les bosons W±, Z0. À une boucle
on introduit pour chacun d’entre eux un contre terme donné par

M2 0
W = M2

W + δM2
W

M2 0
Z = M2

Z + δM2
Z (5.35)

Les champs de jauge se transforment de la façon suivante,

W± 0
µ =

(
1 +

1

2
δZW

)
W±

µ

(
Zµ

Aµ

)0

=

(
1 + 1

2δZZZ
1
2δZZA

1
2δZAZ 1 + 1

2δZAA

)(
Zµ

Aµ

)
(5.36)

†. La matrice CKM est alors égale à la matrice identité, ce qui est imposé en général dans les calculs de
corrections radiatives de processus à haute énergie.
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En utilisant les conditions de renormalisation OS et en supprimant le mélange γ − Z0 sur les
pattes externes on obtient les relations suivantes,

δM2
W = − R̃eΣT

W (M2
W )

δM2
Z = − R̃eΣT

Z(M2
Z)

δZW = R̃eΣT ′
ZZ(M2

Z)

δZZZ = R̃eΣT ′
ZZ(M2

Z)

δZZA = − 2

M2
Z

ΣT
AZ(0)

δZAZ = +
2

M2
Z

ΣT
AZ(M2

Z)

δZAA = ΣT ′
AA(0)

0 = ΣT
AA(0)

Nous pouvons remarquer que la partie longitudinale (non-physique) des self-énergies des bosons
de jauge est éliminée lorsqu’ils sont sur couche de masse (car k · ε = 0). La dernière relation est
due à l’identité de Ward de la QED voir Chapitre 3.1. Si l’on définit l’angle de Weinberg par la
relation

sin2 θw = 1 − M2
W

M2
Z

(5.37)

considérée valide à tous les ordres, alors il en découle les contre-termes suivants,

δsw

sw
= − 1

2

c2w
s2w

(
δM2

W

M2
W

− δM2
Z

M2
Z

)

δcw
cw

= − s2w
c2w

δsw

sw

δv

v
= − 1

2

c2w − s2w
s2w

δM2
W

M2
W

− 1

2

c2w − s2w
s2w

δM2
Z

M2
Z

(5.38)

Enfin à l’aide des relations donnant les bosons de jauge en fonction de v, g1, g2 on a les relations
suivantes,

δM2
W = 2MW δMW = 2M2

W

(
δe

e
+
δv

v
− δsw

sw

)

δM2
Z = 2MZδMZ = 2M2

Z

(
δe

e
+
δv

v
− c2w − s2w

s2w

δsw

sw

)
(5.39)

avec
δv

v
=
δv1
v1
c2β +

δv2
v2
s2β (5.40)

5.5 Renormalisation de la charge

La charge électrique est définie dans la limite de Thomson, c’est à dire lorsque l’impulsion
de transfert k2 = 0, on retrouve la valeur de la charge de l’électron à partir du vertex γee. Ce
vertex à une boucle est donné par le diagramme suivant
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Γ̂γee
µ (p, p′) =

k
Aµ

p

p′

e−

e+

Dans la limite de Thomson on doit donc avoir

Γ̂γee
µ (0, 0) = Γγee

µ (0, 0) + δΓγee
µ (0, 0) = −ieγµ (5.41)

L’introduction des constantes de renormalisation et d’une identité de Ward reliant les constantes
de renormalisation des électrons à Γγee

µ (0, 0) [60] donne,

Γ̂γee
µ (0, 0) = Γγee

µ

(
1 +

δe

e
+

1

2
δZAA − 1

2

sw

cw
δZZA

)

où Γγee
µ = −ieγµ (5.42)

Pour que la partie contre-terme s’annule il faut que le contre-terme δe/e vérifie la relation

δe

e
= −1

2
δZAA +

1

2

sw

cw
δZZA =

1

2
ΣT ′

AA(0) − sw

cw

ΣT
AZ(0)

M2
Z

(5.43)

Grâce aux identités de Ward ce résultat est indépendant des générations de fermions, reflétant
l’universalité de la charge, et indépendant de jauge.

5.6 Renormalisation du secteur de Higgs

La discussion de la renormalisation de ce secteur a été abondamment discutée dans [78, 80,
81, 82, 83] ainsi que son implémentation. Pour renormaliser le secteur de Higgs on peut choisir
les 4 paramètres indépendants suivants ,

(MA0 , Tφ1
, Tφ2

, tan β) (5.44)

Ils représentent respectivement la masse du pseudo-scalaire A0 et les “tadpoles” des deux doublets
de Higgs, c’est à dire les termes linéaires apparaissant dans le potentiel de Higgs. On rappelle
que le dernier paramètre est le rapport des vev des deux doublets de Higgs du MSSM,

tan β =
v2
v1

(5.45)

Ce paramètre joue un rôle central puisqu’il apparaît dans tous les secteurs à renormaliser car relié
à la brisure de la symétrie électrofaible. Nous ne présenterons ici que les différentes prescriptions
de renormalisation pour le paramètre tan β utilisées dans SloopS. La difficulté concernant la
renormalisation de ce paramètre est qu’il est difficile de le relier directement à une observable
physique, contrairement à v, qui peut être relié à la masse d’un boson de jauge. En écrivant

v0
i = vi − δvi i = 1, 2 (5.46)

l’expression du contre-terme δtβ s’écrit,

δtβ
tβ

=
δv1
v1

− δv2
v2

(5.47)

Une discussion de la dépendance des résultats selon les différentes prescriptions définies ci-dessous
peut être trouvée dans [78].

88
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5.6.1 Définition DR

Dans ce schéma le contre-terme δtβ est défini comme une pure divergence (partie contenant
le paramètre CUV = 2/(4−n)− γE + ln(4π) apparaissant dans la régularisation dimensionnelle)
de façon à ce que la partie finie du contre-terme soit nulle,

δtβ
tβ

DR,f

= 0 (5.48)

L’un des inconvénients de cette définition est qu’elle n’est pas invariante de jauge. Dans le
cas d’une fixation de jauge linéaire cette non-invariance est supposée apparaître à l’ordre de
deux boucles, cependant si l’on utilise une fixation de jauge non-linéaire, comme dans SloopS, ce
problème est déjà présent à l’ordre d’une boucle [78]. Il est possible de définir la partie divergente
de ce contre-terme grâce à des quantités non nécessairement reliées à une observable [84, 85].
L’avantage de cette définition est qu’elle donne généralement des corrections à une boucle petites.

5.6.2 Définition sur couche de masse définie à partir de MH (OSMH
)

Dans ce schéma la masse du Higgs scalaire neutre le plus lourd MH est prise comme paramètre
d’input. Par conséquent, la valeur de cette masse n’est plus une prédiction mais est extraite d’une
mesure expérimentale, comme la masse du pseudo-scalaire MA0 . Comme l’on considère que la
masse MH ne reçoit aucune correction à n’importe quelle ordre de boucle, δtβ est obtenu à partir
de la contrainte

ReΣ̂HH(M2
H) = 0 (5.49)

Ce schéma est un des schémas implémenté dans SloopS [78]. Pour des valeurs typiques de para-
mètres d’input dans la limite où MA0 >> MZ , on a MA0/MH ∼ 1 et le contre-terme s’écrit

δtβ
tβ

≃ 1

M2
H/M

2
A0 − 1

(
−δM

2
A0

M2
A0

+
δM2

H

M2
H

)
(5.50)

et on s’attend alors de grandes incertitudes provenant des corrections radiatives.

5.6.3 Définition à partir d’une désintégration

Dans ce schéma le contre-terme δtβ est obtenu à partir de la mesure de la désintégration
A0 → τ+τ− en demandant que la partie contre-terme de cette désintégration soit compensée
par ses corrections de boucle non-QED. Alors le processus A0 → τ+τ− est sujet seulement aux
corrections de type QED qui ne dépendent que de MA0 , e,mτ , faciles à extraire de la largeur
totale. Le contre-terme est alors donné par,

δtβ
tβ

OSAττ

= −1

2

(
Γnon−QED

1

Γ0
− δAττ

CT − δQED
v

)
(5.51)

où Γ0 et Γnon−QED
1 sont respectivement la contribution à la désintégration à l’ordre de l’arbre et

la contribution non-QED de boucle.
Cette définition est invariante de jauge, car reliée à une observable physique, et donne généri-
quement des corrections petites, comme le schéma DR, son seul inconvénient étant que cette
définition est dépendante du processus.
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5.7 Renormalisation du secteur des sfermions

Le secteur des squarks implique cinq paramètres MQ̃L
,MũR

,Md̃R
, Au, Ad où u et d sont une

notation générique pour les squarks de type up ou down. La renormalisation de ce secteur a
été discutée dans [79, 80, 86, 87]. Nous présentons seulement la forme de ces 5 contres-termes
ainsi que les renormalisations des champs dans le schéma où les masses md̃1

,md̃2
,mũ2

sont prises
comme input, les masses restantes recevant une correction à une boucle.

Renormalisation des champs

Nous avons déjà vu dans la Section 3.5.2 que les champs physiques sont obtenus à partir d’une
matrice de rotation agissant sur les champs états propres de jauge, matrice qui est considérée
comme renormalisée, c’est à dire que la matrice à l’ordre d’une boucle est identique à celle à
l’ordre de l’arbre,

(
q̃1
q̃2

)

0

= Uq̃

(
q̃L
q̃R

)

0

, implique

(
q̃1
q̃2

)
= Uq̃

(
q̃L
q̃R

)
, Uq̃ =

(
cθq̃

sθq̃

−sθq̃
cθq̃

)
(5.52)

ainsi nous n’introduisons pas de contre-terme pour l’angle θq̃.
Les champs des squarks sont renormalisés comme suit,

q̃i 0 =

(
δij +

1

2
δZ q̃

ij

)
q̃j (5.53)

La condition (5.24) permet d’obtenir les quatre constantes diagonales de renormalisation des
champs, pour q̃ = (ũ, d̃) :

δZ q̃
11 = ReΣ

′
q̃1q̃1

(m2
q̃1

) ,

δZ q̃
22 = ReΣ

′
q̃2q̃2

(m2
q̃2

) . (5.54)

et en imposant (5.21) on obtient les constantes non-diagonales,

δZ q̃
12 =

2

m2
q̃2
−m2

q̃1

(ReΣq̃1q̃2
(m2

q̃2
) + δm2

q̃12
) ,

δZ q̃
21 =

2

m2
q̃1
−m2

q̃2

(ReΣq̃1q̃2
(m2

q̃1
) + δm2

q̃12
) . (5.55)

Renormalisation des paramètres

L’expression de la matrice de masse “nue” est donnée par (3.49) et sa version renormalisée
par,

M2
q̃0 = M2

q̃ + δM2
q̃ . (5.56)

La perturbation des paramètres implique

δM2
q̃ =



δM2

Q̃L
+ δ

(
m2

q + c2β(T 3
q −Qqs

2
W )M2

Z

)
δ (mqAq) − δ

(
mqµt

−2T 3
q

β

)

δ (mqAq) − δ
(
mqµt

−2T 3
q

β

)
δM2

q̃R
+ δ

(
m2

q + c2βQqs
2
WM2

Z

)


 .(5.57)

Les contre-termes des masses physiques δm2
q̃ij

sont reliés à δM2
q̃ij

par la relation,

δm2
q̃ij

=
(
Rq̃δM2

q̃R
†
q̃

)
ij
. (5.58)
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Une fois les masses physiques md̃1
,md̃2

,mũ2
déterminées on obtient,

δm2
d̃11

= −ReΣd̃1d̃1
(m2

d̃1
) ,

δm2
d̃22

= −ReΣd̃2d̃2
(m2

d̃2
) ,

δm2
ũ22

= −ReΣũ2ũ2
(m2

ũ2
).

(5.59)

La forme du contre-terme δm2
f̃12

a été abondamment discutée dans [79], une des définitions,

parmi d’autres, s’écrit

δm2
f̃12

= − 1

2

(
ReΣf̃1f̃2

(m2
f̃1

) +ReΣf̃1f̃2
(m2

f̃2
)
)
. (5.60)

et les contre-termes aux cinq paramètres s’écrivent finalement,

δMQ̃L
=

1

2MQ̃L

(
c2θd
δm2

d̃11
+ s2θd

δm2
d̃22

− s2θd
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d
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(
−1

2
+

1

3
s2W

)(
c2β

δM2
Z
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Z

− s22β
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1

3
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Zδs
2
W

)
,

δMũR
=

1

2MũR

(
s2θu

δm2
ũ11

+ c2θu
δm2

ũ22
+ s2θu
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Z

(
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Z
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=
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avec

δm2
ũ11

=
1

c2θu

(
c2θd
δm2

d̃11
+ s2θd

δm2
d̃22

− s2θd
δm2

d̃12
− s2θu

δm2
ũ22

+ s2θu
δm2

ũ12

+ δm2
u − δm2

d +M2
W

(
c2β

δM2
W

M2
W

− s22β

δtβ
tβ

))
, (5.62)

Le secteur sleptonique est renormalisé de façon identique à la différence près qu’il n’y a que
trois paramètres à renormaliser pour chaque famille de slepton : ML̃L

,MẽR
, Ae. Plus de détails

peuvent être trouvés dans [79].
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Chapitre 6

Le programme SloopS
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English Abstract The SloopS program is a well designed interface between LanHEP [88] and
the bundle FeynArts , FormCalc , LoopTools[57, 65, 89] (FFL for short). The automatic generation
of Feynman rules and corresponding counter-terms is done through LanHEP and the evaluation of
physical observables like cross sections, decays, corrections to masses with the bundle FFL. The
systematical tests available to check rigorously the final result are presented. The diagonalisation
of the 4 × 4 neutralino mass matrix needed for dark matter calculations, leads to eigenvalues
that can be negative if an orthogonal real matrix is used. We have implemented in the code a
routine to diagonalise the mass matrix with complex parameters in order to circumvent this issue.
Numerical tests have been carried out to check the correct implementation in the code. Finally
the interface of SloopS [78, 79] with micrOMEGAs [90] for evaluating the one-loop corrected relic
density of dark matter is outlined.

6.1 Introduction

Le Modèle Standard Supersymétrique Standard, doté du lagrangien de brisure le plus général,
double le nombre de particules par rapport au Modèle Standard. Par conséquent le nombre de
diagrammes de Feynman à calculer augmente considérablement, tant et si bien qu’il est difficile
de les évaluer tous à la main, sans prendre le risque d’effectuer de nombreuses erreurs. De plus
nous avons vu que la prise en compte des ordres supérieurs nécessite l’introduction d’encore
plus de diagrammes de Feynman (ici à boucles) dont la structure est assez compliquée, si bien
que seule l’élaboration d’un code informatique gérant toutes ces difficultés peut nous permettre
d’effectuer des calculs de précision complets.
Le code SloopS a initialemment été développé au LAPTH [21, 70, 79] et né de l’interface entre plu-
sieurs programmes déjà existants : LanHEP [88], et l’ensemble de trois programmes FeynArts [89],
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FormCalc [57] LoopTools[65]. Son rôle est de calculer à l’ordre d’une boucle des observables du
MSSM de façon automatique une fois quelques instructions données. Il est possible de calculer
des corrections quantiques aux masses des superpartenaires, à des désintégrations ainsi qu’à des
sections efficaces. Il est à noter qu’il existe un autre code automatique, GRACE-SUSY [91], pouvant
réaliser des calculs à une boucle dans le MSSM.
La difficulté majeure pour réaliser ce type d’outil de précision est la génération des fichiers
contenant la physique du modèle considéré, à savoir les milliers de couplages et contre-termes à
implémenter qui définissent les règles de Feynman. D’un point de vue théorique les schémas de
renormalisation doivent être correctement définis et ensuite les techniques déjà développées pour
le Modèle Standard pour les calculs de boucles peuvent être utilisées, comme la manipulation
des calculs symboliques et les techniques de réduction des intégrales à une boucle.
J’ai utilisé ce programme pour le calcul de densité relique de matière noire, et implémenté un
schéma de renormalisation du secteur des neutralinos-charginos différent de celui qui l’avait été
initialement.

6.2 LanHEP

LanHEP est un programme permettant de générer automatiquement, une fois le lagrangien
de la théorie implémenté, les règles de Feynman correspondantes [88]. L’un des avantages de
LanHEP est que la syntaxe pour écrire le lagrangien, à l’aide de la fonction lterm, est très proche
de celle que l’on écrirait à la main et, de plus, il gère automatiquement les contractions des
indices (de couleur, de Lorentz, etc..) selon la convention d’Einstein, comme par exemple les
termes FµνF

µν des champs de jauge.
Il faut ensuite déclarer les différents paramètres libres du modèle à l’aide de la déclaration

parameter et le contenu en particules de la théorie en spécifiant sa structure de Lorentz, c’est à
dire une particule vectorielle (déclaration vector), une particule spinorielle (déclaration spinor)
ou scalaire (déclaration scalar). Par exemple le modèle de la QCD s’écrira

model QCD/2.

parameter gg= 1.13 : ’Strong coupling’.

vector G/G : (gluon, color c8, gauge).

spinor q :(quark, color c3, mass Mq=0.02).

lterm i*gg*f_SU3*ccghost(G)*G*deriv*ghost(G).

lterm Q*gamma*(i*deriv + gg*lambda*G)*q.

lterm -F**2/4 where

F=deriv^mu*G^nu^a-deriv^nu*G^mu^a+i*gg*f_SU3^a^b^c*G^mu^b*G^nu^c.

Ensuite la génération des contre-termes effectuée par le remplacement

φ0 → (1 + δZφi
)φi

g0
i → gi + δgi

m0
i → mi + δmi

est réalisée automatiquement à partir des champs, masses et couplages du modèle à l’arbre
grâce à la fonction transform. Cette procédure introduit alors un très grand nombre de nou-
veaux paramètres libres δx qu’il faut fixer par les conditions de renormalisation, ils sont alors
exprimés essentiellement avec des fonctions à deux points des champs (du fait du choix de la
renormalisation On-Shell) et s’écrivent à l’aide de la déclaration infinitesimal qui spécifie que
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la quantité considérée est une perturbation. Par exemple les contres-termes dans le secteur des
neutralinos/charginos sont définis de la façon suivante,

infinitesimal dMG1 = (dMNE1-Zn21*(Zn21*dMG2+2*Zn31*dneY23+2*Zn41*dneY24)

-2*Zn11*(Zn31*dneY13+Zn41*dneY14)+2*Zn31*Zn41*dmue)/Zn11^2.

transform MG1 -> MG1 + dMG1.

infinitesimal dZc11L = ’Block[sff,dsff,sff=SelfEnergy[prt["∼1+"]->prt["∼1+"],MC1];

dsff=DSelfEnergy[prt["∼1+"]->prt["∼1+"],MC1];
-ReTilde[ MC1^2 (LVectorCoeff[dsff] + RVectorCoeff[dsff])

+ 2 MC1 LScalarCoeff[dsff]+LVectorCoeff[sff] ] ]’

infinitesimal dZc11R = ’Block[sff,dsff,sff=SelfEnergy[prt["∼1+"]->prt["∼1+"],MC1];

dsff=DSelfEnergy[prt["∼1+"]->prt["∼1+"],MC1];
-ReTilde[ MC1^2 (LVectorCoeff[dsff] + RVectorCoeff[dsff])

+ 2 MC1 LScalarCoeff[dsff]+RVectorCoeff[sff] ] ]’

infinitesimal dZc12R = (2/(MC1^2-MC2^2))*(MC1*dpc21LSp+MC2*dpc12LS+MC2^2*dpc12RV

+MC1*MC2*dpc12LV-MC1*dchXt21-MC2*dchXt12),

dZc12L = (2/(MC1^2-MC2^2))*(MC1*dpc12LS+MC2*dpc21LSp+MC2^2*dpc12LV

+MC1*MC2*dpc12RV-MC1*dchXt12-MC2*dchXt21),

transform ’∼1+’->(1+dZc11L/2*(1-g5)/2+dZc11R/2*(1+g5)/2)*’∼1+’
+(dZc12L/2*(1-g5)/2+dZc12R/2*(1+g5)/2)*’∼2+’,

Par cette procédure le contre-terme δM1 au terme de masse du bino M1B̃B̃ est défini, ainsi
que la renormalisation du champ du chargino χ̃+

1 → (1 + δZ1i)χ̃
+
i à l’aide de fonctions à deux

points déclarées avec SelfEnergy. Les définitions dépendent du schéma de renormalisation choisi,
par conséquent si l’on souhaite changer la manière de fixer les contre-termes il suffit juste de
changer les quelques lignes précédentes, rendant le code très flexible. Les fantômes de Fadeev-
Popov, nécessaires pour la consistance des théories de jauge, sont générés par l’intermédiaire des
transformations BRST [92],

brst_transform A -> deriv*’A.c’+i*EE*(’W+’*’W-.c’-’W-’*’W+.c’),

Z -> deriv*’Z.c’+i*EE/SW*CW*(’W+’*’W-.c’-’W-’*’W+.c’),

Une fois tous les fichiers nécessaires écrits, lors de l’exécution de LanHEP il est possible de choisir
le format des fichiers de sortie selon le code informatique avec lequel on souhaite travailler. En
particulier il est possible d’obtenir une sortie pour le programme CompHEP [93], ou alors pour
FormCalcpuisque SloopS l’utilise.

6.3 FeynArts

Le programme FeynArts [89] génère automatiquement tous les diagrammes correspondants
à un processus donné. Il est de plus possible de sélectionner quelles seront les particules qui
circuleront dans les boucles et de spécifier la topologie du diagramme (vertex, self, boîte). Pour
les créer FeynArtsutilise le contenu en particules (avec leur structure de Lorentz associée), et les
règles de Feynman correspondantes (contenant les différentes interactions de la théorie), définies
dans les fichiers de modèle écrits automatiquement par LanHEP. Par exemple la déclaration d’une
particule, ici le gluino g̃, s’écrit,

F[7] == (* gluino *)

SelfConjugate -> True,

Indices -> Index[Gluon],

Mass -> MSG,

PropagatorLabel -> "∼G",

PropagatorType -> Straight,

PropagatorArrow -> None ,
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De plus pour diminuer le temps de calcul, les particules possédant les mêmes nombres quan-
tiques sont rangés dans des classes, généralisant la définition des particules, par exemple pour
les neutralinos,

F[6] == { (* ’[’∼o1’, ’∼o2’, ’∼o3’, ’∼o4’]’ *)

SelfConjugate -> True,

Indices -> {Index[neu]},
Mass -> neuMass,

PropagatorLabel -> "neu",

PropagatorType -> Straight,

PropagatorArrow -> None },

où l’indice neu prend les valeurs de 1 à 4.
Quant aux couplages, ils s’écrivent, en prenant l’exemple du couplage χ̃0

i χ̃
0
jγ

(*––– neu neu A –––*)

C[ F[6,t1], F[6,t2], V[1] ] == 1/4 I EE / SW *

{
{ 0 , dMTR237[t1, t2] },
{ 0 , - dMTR238[t1, t2] }

},

Les deux zéros représentent la valeur du couplage à l’arbre, nul car les neutralinos sont neutres,
la partie dMTRxxx est la partie contre-terme, non nulle, qui provient du mélange γZ0 induit
lors de la renormalisation du champ du boson Z0, qui lui se couple aux neutralinos à travers
l’isospin faible. Il existe deux termes, un pour chaque polarisation du neutralino et les indices t1
et t2 sont les indices de la classe neu. Les paramètres dMTRxxx sont des blocs de constantes de
renormalisation afin de condenser les écritures et d’optimiser la vitesse des calculs,

RenConst[dMTR237[1,1]] = CW Zn31 Zn31c dZw3b -2 SW Zn31 Zn31c dZw3

+ 2 SW Zn31 Zn31c dZg - CW Zn41 Zn41c dZw3b

+ 2 SW Zn41 Zn41c dZw3 -2 SW Zn41 Zn41c dZg

RenConst[dMTR237[1,2]] = CW Zn31 Zn32c dZw3b -2 SW Zn31 Zn32c dZw3

+ 2 SW Zn31 Zn32c dZg - CW Zn41 Zn42c dZw3b

+ 2 SW Zn41 Zn42c dZw3 -2 SW Zn41 Zn42c dZg

RenConst[dMTR237[1,3]] = CW Zn31 Zn33c dZw3b -2 SW Zn31 Zn33c dZw3

+ 2 SW Zn31 Zn33c dZg - CW Zn41 Zn43c dZw3b

+ 2 SW Zn41 Zn43c dZw3 -2 SW Zn41 Zn43c dZg

RenConst[dMTR237[1,4]] = CW Zn31 Zn34c dZw3b -2 SW Zn31 Zn34c dZw3

+ 2 SW Zn31 Zn34c dZg - CW Zn41 Zn44c dZw3b

+ 2 SW Zn41 Zn44c dZw3 -2 SW Zn41 Zn44c dZg

Finalement la création d’un processus et la sélection d’une topologie se fait à partir de la décla-
ration suivante, correspondant au processus χ̃0

1χ̃
0
1 → bb̄ où l’on souhaite obtenir seulement des

diagrammes de Feynman composés de self-énergies,

process = {prt["∼o1"],prt["∼o1"]} -> {prt["b"],prt["B"]}

Print["Self energies"]

tops = CreateTopologies[1, 2 -> 2, SelfEnergiesOnly];

ins = InsertFields[tops, process];

DoPaint[ins, "self"];

self = CalcFeynAmp[CreateFeynAmp[ins],
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6.4 FormCalc

Ce code lit les diagrammes générés par FeynArts et crée un sous-programme Fortran complè-
tement indépendant du reste du code, puis il réduit les expressions symboliques à l’aide de
Mathematica [94] et Form [58] afin de calculer l’amplitude au carré du processus considéré.
FormCalcpermet de calculer les sections efficaces pour des processus jusqu’à trois particules dans
l’état final, des désintégrations et des corrections à une boucle aux masses des particules. Pour
l’intégration sur l’espace des phases à trois particules FormCalcutilise la librairie CUBA [95]. Pour
l’utilisation de FormCalcdans SloopS il a aussi été rajouté la bibliothèque BASES [96] provenant
du code GRACE [59]. Les intégrales de boucles sont calculées à l’aide du code LoopTools.

6.5 LoopTools

Le programme LoopTools permet d’évaluer numériquement les intégrales tensorielles interve-
nant dans les boucles en utilisant la méthode de réduction de Passarino-Veltman présentée dans
le chapitre précédent. Les intégrales scalaires sont contenues dans la bibliothèque FF [97]. Lors du
calcul de processus d’annihilation de matière noire dans le halo galactique, leur vitesse relative
est très faible, de l’ordre de 10−3c, les quadri-impulsions des neutralinos sont approximativement
p = (mχ, 0, 0, 0). Le problème du déterminant de Gram nul intervient alors et pour l’éviter une
méthode de segmentation particulière [70] des intégrales a été implémentée.

6.6 Tests

Pour s’assurer de la justesse des résultats produits par SloopS une batterie de tests doit être
menée systématiquement [80]. En particulier les résultats doivent être finis dans l’ultraviolet,
l’infrarouge et ne pas dépendre de la jauge. La section efficace totale peut être décomposée en
ses différentes contributions comme suit,

σ(s) = σ0(s) + σ1L(s,CUV , λ) + σCT (s,CUV , λ)︸ ︷︷ ︸
σ1V (s,λ)

+σsoft(s, λ, kc) + σhard(s, kc) (6.1)

Les parties 1L, CT , soft, hard représentent respectivement la partie à une boucle, de contre-
termes et d’émission réelle “molle et ”dure“. La partie virtuelle est la somme des contributions de
boucle et de contre-termes qui doit être libre de divergences ultraviolettes. Les deux contributions
d’émission doivent quant à elles éliminer les divergences infrarouges. Tous les tests sont menés
en double précision.

6.6.1 Tests dans l’ultraviolet

L’introduction des contre-termes permet d’éliminer les divergences ultra-violettes dans les
résultats physiques, schématisées par le paramètre CUV . Cependant, par défaut ce paramètre est
mis à zéro dans le code. Pour tester cette suppression on fait varier dans le code la partie CUV

(DELTA) de sept ordres de grandeur,

#define DELTA 1D7

#define MUDIM 1D100

et l’on regarde la variation du résultat entre CUV = 0 et CUV = 107. Le paramètre MUDIM

représente l’échelle de renormalisation µ. Si l’accord entre les deux résultats est à 7/8 chiffres
significatifs alors la somme

σ1V (s, λ) = σ1L(s,CUV , λ) + σCT (s,CUV , λ) (6.2)

est considérée comme indépendante de CUV .
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6.6.2 Tests dans l’infra-rouge

Il faut ensuite vérifier si la section efficace est indépendante de la masse fictive λ puisque
c’est le régulateur utilisé dans FormCalc. Par défaut cette valeur est fixée à 1 pour éliminer les
lnλ. Pour vérifier l’indépendance en ce paramètre on le fait varier à partir de la déclaration

#define LAMBDA 1D10

et l’on regarde si le résultat

σ1 V +soft(s, kc) = σ1V (s, λ) + σsoft(s, λ, kc) (6.3)

varie significativement. Pour supprimer la dépendance de l’énergie du photon sur la coupure
kc, il est nécessaire d’ajouter la partie d’émission réelle ”dure“ calculée à partir d’un processus
2 → 2 + γ évalué à l’ordre de l’arbre. Cette partie est calculée à l’aide de la librairie CUBA [95]
ou BASES [96]. Ensuite on calcule la somme

σ1 soft+hard(s, λ) = σsoft(s, λ, kc) + σhard(s, kc) (6.4)

pour différentes valeurs de kc jusqu’à observer la stabilité des résultats. Il est à noter que cette
procédure n’est pas automatisée et qu’il en existe de plus performantes et automatiques basées
sur le principe d’ajout de contre-termes locaux permettant d’éliminer les divergences infra-rouges
[98, 99] aussi bien en QCD qu’en QED.

6.6.3 Tests d’indépendance de jauge

Nous avons montré dans la section 3.5.4 qu’il est possible d’utiliser une fixation de jauge non-
linéaire pour avoir à disposition un test sur l’indépendance de jauge des résultats physiques. Ce
type de fixation de jauge est utilisé dans SloopS et introduit huit paramètres {α̃, β̃, δ̃, ǫ̃, γ̃, κ̃, ω̃, ρ̃}
que l’on peut faire varier pour vérifier que le résultat ne change pas. Elle introduit une modifica-
tion des vertex du secteur de Higgs et de jauge qui dépendront de ces paramètres. Cette méthode
requiert le calcul d’un plus grand nombre de diagrammes de Feynman dans le cas général, mais
lors du test d’indépendance de jauge, grâce à un choix judicieux de paramètres, il est possible
de tester des couplages bien précis. Par exemple le couplage suivant,

�p2; �
p1; �

p3
p4

p1 (µ) p2 (ν) p3 p4

A W± G0 G∓ −e2 1

2sW
(1 − α̃κ̃)gµν

peut être éliminé en choisissant α̃ = κ̃ = 1.

6.7 Diagonalisation de la matrice de masse des neutralinos

La matrice 4 × 4 de masse Y des neutralinos s’écrit :

Y =




M1 0 −cβsWMZ sβsWMZ

0 M2 cβcWMZ −sβcWMZ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −sβcWMZ −µ 0


 (6.5)

98



6.7. DIAGONALISATION DE LA MATRICE DE MASSE DES NEUTRALINOS

Cette matrice est diagonalisée par une matrice unitaire 4 × 4 Nij telle que

Ỹ = N∗Y N−1 =




mχ̃0
1

0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4


 (6.6)

Pour des raisons pratiques les éléments Nij de la matrice N sont pris réels en général, l’incon-
vénient de ce choix est que l’on obtient au moins une valeur propre négative. Afin d’obtenir
des masses de neutralinos positive, la matrice N doit être choisie imaginaire. On peut alors la
décomposer en deux matrices J et N̂ ,

N = JN̂ (6.7)

telle que N̂ est purement réelle et les éléments de J purement imaginaires ou réels. Cette dernière
peut être définie comme,

J = diag(j1, j2, j3, j4) (6.8)

ainsi la matrice diagonalisée Ỹ s’écrit,

Ỹ = J∗N̂Y N̂TJ

= J∗ diag(m̂χ̃0
1
, m̂χ̃0

2
, m̂χ̃0

3
, m̂χ̃0

4
) J (6.9)

Les valeurs propres m̂χ̃0
i

peuvent être positives ou négatives, alors pour obtenir toutes les masses
positives il suffit de définir les éléments ji de la matrice J ,

ji =





1 si ǫi > 0

i si ǫi < 0
où ǫi =

m̂χ̃0
i

|m̂χ̃0
i
| = ± (6.10)

L’utilisation de masses négatives peut aussi poser des problèmes notamment au niveau du trai-
tement des particules Majorana dans FeynArts. Cependant il apparaît que les problèmes nu-
mériques ne sont présents seulement lorsque la particule de masse négative m̂χ̃0

i
impliquée est

sur une patte externe (ceci paraît évident dans le cas d’une désintégration), pas en tant que
particule échangée (ceci peut au moins se comprendre au niveau des propagateurs puisque dans
leur expression les masses n’apparaissent qu’au carré). La méthode de diagonalisation complexe
donne des masses positives au prix d’introduire des couplages complexes pour les neutralinos.
Puisque le problème se pose surtout au niveau des couplages, il est possible d’utiliser une autre
méthode où la matrice N est considérée purement réelle mais les champs des neutralinos vont
être transformés selon,

χ̃0
i → 1 + ǫi

2
χ̃

0
i + i

1 − ǫi
2

γ5χ̃
0
i

χ̃
0
i → 1 + ǫi

2
χ̃

0
i + i

1 − ǫi
2

χ̃
0
i γ5

(6.11)

et le terme de masse des neutralinos s’écrit

m̂χ̃0
i
χ̃

0
i χ̃

0
i = ǫimχ̃0

i
χ̃

0
i χ̃

0
i → mχ̃0

i
χ̃

0
i χ̃

0
i (6.12)
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et les couplages sont transformés comme,

χ̃
0
i (aij + bijγ5)γµ χ̃

0
j → χ̃

0
i

(
1 + ǫiǫj

2
− iγ5

ǫi − ǫj
2

)
(aij + bijγ5)γµ χ̃

0
j

χ̃
0
i (aij + bijγ5) χ̃

0
j → χ̃

0
i

(
ǫi + ǫj

2
+ iγ5

1 − ǫiǫj
2

)
(aij + bijγ5) χ̃

0
j

F̄ (ai + biγ5)γµ χ̃
0
i → F̄

[(
1 + ǫi

2
ai − i

1 − ǫi
2

bi

)
γµ +

(
1 + ǫi

2
bi − i

1 − ǫi
2

ai

)
γ5γµ

]
χ̃0

i

χ̃
0
i (ai + biγ5)γµ F → χ̃

0
i

[(
1 + ǫi

2
ai + i

1 − ǫi
2

bi

)
γµ +

(
1 + ǫi

2
bi + i

1 − ǫi
2

ai

)
γ5γµ

]
F

F̄ (ai + biγ5) χ̃
0
i → F̄

[(
1 + ǫi

2
ai + i

1 − ǫi
2

bi

)
+

(
1 + ǫi

2
bi + i

1 − ǫi
2

ai

)
γ5

]
χ̃0

i

χ̃
0
i (ai + biγ5) F → χ̃

0
i

[(
1 + ǫi

2
ai + i

1 − ǫi
2

bi

)
+

(
1 + ǫi

2
bi + i

1 − ǫi
2

ai

)
γ5

]
F

(6.13)

6.8 Tests numériques de l’implémentation des paramètres com-
plexes

6.8.1 Paramètres du modèle

On donne dans le tableau suivant les valeurs numériques des paramètres que l’on a utilisé
pour réaliser les tests

Paramètre Valeur

e 0.31345

sw 0.48076

s12 0.2229

s23 0.0412

s13 0.0036

gs 1.238

mZ0 91.1884

me 0.000511

mµ 0.1057

mτ 1.777

mu 0.046

md 0.046

mc 1.42

ms 0.2

Paramètre Valeur

mt 175

mb 4.62

wtop 1.7524

wZ 2.4944

wW 2.08895

tβ 2

µ 150

M1 90

M2 120

M3 300

ML̃,Q̃ 100

Ai 0

mA0 300

nlgs 0

Toutes les largeurs non-mentionnées dans ce tableau sont à zéro et les paramètres de fixation de
jauge non-linéaire de l’équation 3.82 nlgs sont mis à zéro.
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6.8.2 Tests sur les masses corrigées

Ces paramètres donnent les masses suivantes, dans le cas d’une diagonalisation avec para-
mètres réels ou complexes,

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

R 43.8446573 98.2006334 -153.447309 221.402018

C 43.8446573 98.2006334 153.447309 221.402018

On remarque qu’avec ce jeu de paramètres, le neutralino χ̃0
3 est de masse négative dans le cas de

paramètres réels alors qu’avec les paramètres complexes toutes les valeurs propres sont positives.
Nous donnons maintenant la valeur des masses prédites restantes recevant une correction à une
boucle, dans le cas de paramètres complexes, dans le schéma de renormalisation OS où les masses
mχ̃0

1
,mχ̃+

1
,mχ̃+

2
sont prises comme input

Masses corrigées mχ̃0
2

mχ̃0
2

mχ̃0
4

CUV = 0 103.723512 152.591502 222.663143

CUV = 107 103.723512 152.591502 222.663143

.

Les masses corrigées sont donc stables dans l’UV montrant la bonne implémentation d’une part
du schéma de renormalisation et d’autre part de l’utilisation des paramètres complexes.

6.8.3 Tests sur les désintégrations

Nous avons calculé ici deux désintégrations impliquant des neutralinos, dont une avec le χ̃0
3

seulement calculable avec des paramètres complexes puisqu’il est sur une patte externe. Nous
avons utilisé deux choix d’observables différents pour le schéma de renormalisation OS, un avec
deux charginos et le neutralino le plus léger, l’autre avec les deux neutralinos les plus légers et le
chargino le plus léger. Ces deux schémas de renormalisation seront détaillés dans le chapitre 7.

Z0 → χ0
1χ

0
1 Tree-Level One-Loop CUV = 0 One-Loop CUV = 107

R 0.133599930·10−3 -0.25351043767373·10−4 -0.253510444·10−4

C 0.133599930·10−3 -0.25351043767374·10−4 -0.253510445·10−4

χ0
3 → χ0

1Z
0

C (χ0
1, χ

0
2, χ

+
1 as input) 0.741107179·10−1 -0.35401104480·10−2 -0.35401104945·10−2

C (χ0
1, χ

+
1 , χ

+
2 as input) 0.741107179·10−1 0.55064607491·10−2 0.55064607213·10−2

Les résultats dans l’ultraviolet montrent une bonne stabilité puisque l’on observe une variation
au huitième ou neuvième chiffre significatif.

6.8.4 Test sur les sections efficaces

Nous avons testé deux processus, χ0
1χ

0
1 → µ−µ+ et χ0

1χ
0
3 → µ−µ+. Pour le premier processus

nous avons gardé les mêmes paramètres de modèle sauf pour les suivants
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Paramètre Valeur

µ 150

M1 500

M2 1000

M3 1000

ML̃,Q̃ 1000

Al 1000

Am,e 0

At,b,s,c 1000

Au 80000

Ad 69990

Pour χ0
1χ

0
3 → µ−µ+ nous avons utilisé les paramètres définis dans la section 6.8.1. Ces deux tests

ont été réalisés pour une énergie dans le centre de masse de
√
s = 1000 GeV avec le schéma OS

défini par les masses mχ̃0
1
,mχ̃+

1
,mχ̃+

2
. Seule la correction virtuelle a été calculée, les divergences

infrarouges ont été régulées en introduisant une masse λγ = 1 au photon.

χ0
1χ

0
1 → µ−µ+(

√
s = 1000) Tree-Level One-Loop CUV = 0 One-Loop CUV = 107

R 0.299416703·10−4 -0.5211824976·10−4 -0.5211825562·10−4

C 0.299416703·10−4 -0.5211825007·10−4 -0.5211825433·10−4

χ0
1χ

0
3 → µ−µ+(

√
s = 1000)

C 0.240437163·10−1 -0.39666343320·10−2 -0.39666343482·10−2

On observe ici aussi une bonne implémentation du schéma de renormalisation et de la diagonali-
sation complexe. Il est à noter ici que le total Tree-Level + One-Loop est négatif, cela est du au
fait que seule la correction virtuelle à été calculée, il reste ainsi une dépendance non-physique en
la masse du photon λγ qui serait éliminée lors de l’ajout de l’émission réelle ”molle“ et ”dure“ d’un
photon supplémentaire. Cependant cette émission réelle n’est pas reliée à l’implémentation des
paramètres complexes dans le secteur des neutralinos/charginos et nous nous sommes seulement
intéressés à l’élimination des divergences ultra-violettes, c’est pourquoi la radiation n’a pas été
prise en compte.

6.9 Application à la matière noire

6.9.1 Interpolation des sections efficaces

Nous avons vu dans le chapitre 1 que la densité relique est inversement proportionnelle au pro-
duit σv où v est la vitesse relative des particules de l’état initial. Nous avons légèrement modifié
dans SloopS le facteur de flux entrant dans le calcul de la section efficace pour obtenir directe-
ment le produit σv (voir Annexe B). Si l’on est loin des pôles et des seuils qui peuvent intervenir
dans les sections efficaces [100], on peut raisonnablement écrire en première approximation

σijvij = aij + bijv
2
ij (6.14)
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où a et b sont les coefficients respectivement de l’annihilation en onde s et p, lorsque la section
efficace est développée en ondes partielles et vij la vitesse relative dont l’expression est donnée
dans l’Annexe B. Pour la présentation des futurs résultats, nous utiliserons souvent cette paramé-
trisation pour illustrer l’importance relative des corrections radiatives sur les sections efficaces
d’annihilation χχ̄ → XX. Nous donnons à titre d’illustration une telle interpolation pour le
processus χ̃0

1χ̃
0
1 → W+W− dans la Figure 6.1 obtenu à l’aide de SloopS, exprimé en fonction

en la vitesse au carré en unité de c, la célérité de la lumière. Les paramètres de fit a et b sont

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3.5

4

4.5

5

5.5

6

6.5

7

7.5

σ
v

[1
0−

2
6
cm

3
/s

]

mχ̃0
1
mχ̃+

1
mχ̃+

2

v2

MH

Aττ

Tree Level

Figure 6.1 – χ̃0
1χ̃

0
1 → W+W−(γ) en fonction de la vitesse relative au carré à l’arbre (courbe

noire solide) et à une boucle dans le schéma Aττ (courbe bleue en pointillés) ainsi que le schéma
MH (courbe rouge en tirets). Leurs fits respectifs sont tracés de la même couleur en gras.

donnés dans le tableau 6.1. Les interpolations ont été réalisées pour des vitesses relatives au

Schéma mχ̃0
1
mχ̃+

1
mχ̃+

2

Tree Aττ DR MH

χ̃0
1χ̃

0
1 →W+W− a +3.37 +6.8% +12.8% +30.6%

b +4.80 +4.2% +8.3% +25%

Table 6.1 – Valeurs des coefficients a et b pour le processus χ̃0
1χ̃

0
1 → W+W− à l’arbre (Tree)

et leurs corrections à une boucle dans trois schéma de renormalisation pour δtβ
tβ

carré appartenant à l’intervalle v2 ∈ [0, 0.3] car au moment du découplage les neutralinos ont
une vitesse approximativement égale à v ∼ 1/2.

6.9.2 Interface avec micrOMEGAs

Le programme micrOMEGAs [90] est un programme très efficace de calcul automatique de la
densité relique de matière noire dans les extensions du Modèle Standard et en particulier dans le
MSSM. Les processus d’annihilation de matière noire nécessaires au calcul de la densité relique
sont évalués à l’aide du programme CalcHEP [101], un programme Monte-Carlo calculant des
observables principalement à l’ordre de Born. C’est pourquoi nous avons interfacé d’une façon
semi-automatique SloopS avec micrOMEGAs pour des études de calcul de densité relique à l’ordre
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d’une boucle. Cependant micrOMEGAs possède quelques corrections radiatives, implémentées sous
la forme de couplages effectifs par l’intermédiaire de programmes utilisant les RGE (Running
Group Equations) du MSSM comme SuSpect . Pour éviter le double comptage des corrections
radiatives nous avons donc recréé un modèle du MSSM n’en possédant aucune, pour pouvoir
ensuite y implémenter celles obtenues avec SloopS . Nous allons maintenant détailler la procédure
d’interface :

– Tout d’abord nous calculons avec SloopS les processus d’annihilation χ̄χ→ XX que nous
souhaitons corriger à l’ordre d’une boucle, et nous obtenons les résultats sous la forme
d’un fichier de sortie donnant la valeur de la section efficace en fonction de l’énergie dans
le centre de masse σ(

√
s).

– La seconde étape consiste à interpoler ce fichier de résultat à l’aide du programme ROOT

[102]. Avant de l’interpoler il faut transformer la dépendance de la section efficace en
√
s

en une dépendance en l’impulsion dans le centre de masse de la paire χiχj à l’aide de la
formule

pcm =

√
[s− (mχi

+mχj
)2][s − (mχi

−mχj
)2]

2
√
s

(6.15)

Alors la section efficace σ(pcm) est interpolée à l’aide d’une fonction f(pcm).
– Enfin à l’aide d’une instruction il est possible d’indiquer au programme micrOMEGAsd’utiliser

le polynôme d’interpolation du processus à corriger au lieu de celui calculé avec CalcHEP.
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Chapitre 7

Renormalisation du secteur des
neutralinos charginos
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English Abstract The renormalisation of the neutralino/chargino sector is obviously of rele-
vance for dark matter predictions at the one-loop level. We present here the On-Shell renorma-
lisation of this sector and the various choices of input parameters available. More precisely, we
need three input observables to constrain the three parameter of this sector : (M1, M2, µ). The
most obvious choice to constrain this set is to take as input three physical masses among the six
(mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃±

1
,mχ̃±

2
) available. There are of course different choices to reconstruct

the set of three physical masses. In any case we need to solve a system of three equations to
get the expression of the three counter-terms needed to renormalise this sector. We have derived
general formulas for the various counter-terms δM1, δM2 and δµ for any choice of input parame-
ters based on the choice of any set of three physical masses. To be as general as possible we kept
the entries of the unitary rotation matrix N of the neutralino sector as complex. Then the field
renormalisation and one-loop finite corrections to the remaining masses and other observables
are obtained accordingly. Therefore we are able to quickly change the renormalisation scheme in
this sector for any desired or available input based on any set of masses. In practically all appli-
cations found in the litterature the two charginos physical masses and the lightest neutralino are
taken as input. This choice is the simplest and easiest to implement from a technicall point of
view. Indeed the two charginos masses reconstruct the subset (M2, µ). Since it is a 2× 2 system
it is easy to handle. Then there remains the reconstruction of M1 for the 4× 4 neutralino sector,
which is easily obtained from the subset just calculated. This scheme is the one implemented by
default in SloopS . However if mixing in the neutralino sector is small with disparate mass scale
for M1,M2, µ such that M1 ≫ M2, the lightest neutralino mass will depend little on M1 and
therefore at counterterm level M1 is not sensitive to mχ̃0

1
. One then expect that a large scheme

dependency will occur for radiative corrections. We will show in this chapter the complete deri-
vation of the counterterms using this choice of input observables. As an example of a different
choice of input observables from masses we took the two lightest neutralinos and the lightest
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chargino. In this case solving independently the equations is not possible, we need to solve all
of them at the same time. Moreover some sum rules which were valid in the former scenario are
no longer in this one. We noticed that this scheme produces large one loop finite corrections to
the three remaining masses, some examples will be shown in the following chapters. This can be
explained by the fact that, in this scheme, one parameter to be fixed is not really constrained,
thus large uncertainties appear. This scheme is now implemented as it is presented in this chapter
in the SloopS code. To conclude we propose a kind of “mixed” scenario where two parameters are
obtained from masses and the remaining one coming from another kind of observable, which is
of relevance for example if only two masses are measured, where the two above schemes become
more or less equivalent. In any case, if a positive signal of supersymmetry is found, we will have
to construct a renormalisation scheme of this sector with any data at our disposal, which may
not be only masses, that is why we need to prepare the work to be done and a very flexible code
to be able to adapt to any configuration.

7.1 Introduction

Nous allons présenter dans ce chapitre la renormalisation sur couche de masse (On-Shell OS)
du secteur des neutralinos et charginos et les différentes façons de le renormaliser selon les ob-
servables que l’on a choisies comme contraintes. Ce chapitre est une généralisation de ce qui a
déjà été fait dans [79, 103, 104, 105, 106, 107, 108]. La renormalisation de ce secteur est d’une
importance cruciale pour pouvoir prédire la densité relique de matière noire avec une grande
précision, dans le cas où la LSP est le neutralino χ̃0

1, mais aussi pour les collisionneurs puisque
dans une grande partie de l’espace des paramètres du MSSM les particules de ces deux secteurs
sont les plus légères. De plus, si le neutralino est la LSP et la R-parité conservée, elle est stable
et se trouve en tant qu’ultime particule provenant d’une cascade de désintégration de particule
supersymétriques plus lourdes et instables. Alors que les charginos, étant chargés, peuvent laisser
une trace dans les détecteurs, le neutralino χ̃0

1, étant stable et neutre, sa signature caractéris-
tique apparaîtra sous la forme d’énergie manquante 6ET . Enfin la renormalisation de ce secteur
et la possibilité de prédire des observables physiques avec un haut degré de précision permettra
de tester en profondeur le modèle et reconstruire efficacement les paramètres fondamentaux du
Lagrangien. Les paramètres libres de ce secteur sont les paramètres de masse de brisure douce
des jauginos M1 et M2 ainsi que le terme de masse des higgsinos µ, provenant du superpotentiel.
Nous devons donc définir trois conditions de renormalisation pour pouvoir déterminer les contres-
termes δM1, δM2 et δµ. Pour un schéma de renormalisation sur couche de masse nous pouvons
prendre ces conditions à partir de la mesure de trois masses physiques parmi six (soit quatre neu-
tralinos et deux charginos). Algébriquement cela revient à résoudre un système de trois équations
à trois inconnues (δM1, δM2, δµ). Nous avons obtenu et généralisé les expressions de chacun de
ces contre-termes pour n’importe quel choix des trois masses parmi six. Les renormalisations des
champs et les corrections finies à une boucle des masses restantes ainsi que d’autres observables
sont exprimées en fonction de ces trois quantités. Dans la plupart des applications trouvées dans
la littérature les masses physiques choisies sont celles des deux charginos et du neutralino le
plus léger. Techniquement il est alors possible de résoudre deux équations indépendamment nous
permettant de reconstruire M2 et µ. Le paramètre M1 restant est alors facilement exprimé en
fonction des deux autres à partir de la matrice 4× 4 du secteur des neutralinos. Cependant si le
mélange est faible dans ce secteur avec des échelles de masses pour M1,M2, µ disparates, telles
que M1 ≫ µ, le neutralino le plus léger dépendra faiblement de M1 et au niveau des contre-
termes M1 sera peu sensible à mχ̃0

1
. On s’attend par conséquent à une grande dépendance en

le schéma de renormalisation et de grandes corrections radiatives. De plus ce schéma peut ne
pas correspondre à une situation expérimentale réaliste. Nous allons dériver dans ce chapitre
l’ensemble des contre-termes dépendant de ce choix de schéma de renormalisation. Pour illuster
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la liberté de choix dans les masses physiques nous allons renormaliser ce secteur en prenant les
deux masses des neutralinos les plus légers et celle du chargino le plus léger comme conditions de
renormalisation. Dans ce cas les trois équations doivent être résolues en même temps. Nous avons
remarqué que ce schéma produit dans la plupart des cas de grandes corrections à une boucle aux
masses restantes. Cela est relié au fait que, dans ce schéma, un des paramètres à déterminer n’est
que peu contraint et son obtention est entachée de grandes incertitudes. Nous avons implémenté
ce deuxième choix d’observables dans le code SloopS . Dans une situation expérimentale réaliste,
il faudra être capable de s’adapter à n’importe quelles observables à notre disposition, et cela
n’impliquera par forcément des mesures de masses. C’est pourquoi en conclusion nous proposons
un schéma “mixte” où deux paramètres sont contraints à partir des masses et celui restant à
partir d’un processus, comme par exemple une désintégration.

7.2 Lagrangien du secteur

Les neutralinos et charginos sont des mélanges de fermions de spin-1/2 : d’une part les deux
multiplets chiraux de Higgs, les higgsinos, et d’autre part les jauginos électrofaibles contenus dans
le supermultiplet de jauge des groupes SU(2) et U(1) du Modèle Standard. La partie bilinéaire
du lagrangien décrivant ce secteur s’écrit,

L = Lkin + Lmass (7.1)

avec
Lkin = i[W̃

a
σ̄µ(∂µW̃ )a + B̃σ̄µ(∂µB̃) + ψ̄H1

σ̄µ(∂µψH1
) + ψ̄H2

σ̄µ(∂µψH2
)] (7.2)

et

Lmass =
1

2
[M1B̃B̃ +M2W̃

aW̃ a + h.c] + ǫij[µψ
i
H1
ψj

H2
+ h.c]

+ i
√

2[H†
1(g2W̃

aT a +
1

2
g1B̃)ψH1

+H†
2(g2W̃

aT a +
1

2
g1B̃)ψH2

+ h.c] (7.3)

avec a=1,2,3, i,j=1,2, ǫij le tenseur complètement anti-symétrique et T a les générateurs de SU(2).
Les deux doublets higgsinos sont définis en termes de spineurs (gauches) de Weyl à deux compo-
santes, ψH1

= (H̃0
−, H̃

0
1 ) et ψH2

= (H̃0
2 , H̃

+
2 ). Le champ B̃ correspond au jaugino (bino) de type

U(1), et les champs W̃ a aux jauginos de type SU(2) (winos). Les termes de la première ligne
de Lmass sont constitués des masses douces des jauginos M1 et M2 et du terme de masse des
higgsinos µ provenant du superpotentiel. La deuxième ligne est constituée des interactions de
jauge-matière supersymétriques qui, une fois que les champs H0

1 et H0
2 auront acquis des vevs,

formeront des termes bilinéaires en les champs des higgsinos ψH1,2
et des jauginos W̃ a et B̃, im-

pliquant un mélange comme conséquence de la brisure de la symétrie électrofaible. En définissant
W̃± = W̃1 ∓ iW̃2 et T± = T1 ± iT2, puis en rassemblant les champs chargés nous allons obtenir
quatre fermions de Dirac, les charginos χ̃±

1 , χ̃
±
2 . La combinaison des champs neutres va donner

quatre fermions de Majorana χ̃0
1,2,3,4, puisqu’ils appartiennent aux mêmes supermultiplets que

les bosons vecteurs neutres qui sont eux-mêmes leur propre antiparticule.

7.2.1 Secteur des charginos à l’arbre

Si l’on définit la notation suivante pour collecter les parties chirales :




ψc
L ≡

(−iW̃+

H̃+
2

)

ψc
R ≡

(−iW̃−

H̃−
1

)
(7.4)
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alors le lagrangien des charginos s’écrit,

Lc = i[ψcT
R σµ∂µψ̄

c
R + ψ̄cT

L σ̄µ∂µψ
c
L] − [ψcT

R Xψc
L + ψ̄cT

L X†ψ̄c
R] (7.5)

La matrice de masse nue 2 × 2 des charginos est définie par :

X =

(
M2

√
2sβMW√

2cβMW µ

)
(7.6)

où sβ(cβ) signifie sin β(cos β).
Comme X 6= XT si tan β 6= 1, deux matrices unitaires U et V sont nécessaires pour la diagona-
liser. 




χc
R = Uψc

R

χc
L = V ψc

L

(7.7)

Dans le cas où la symétrie CP est conservée, on peut prendre U et V réelles, donnant alors, en
notant X̃ la matrice diagonalisée

X̃ = UXV T = X̃T = V XTU =

(
mχ̃±

1
0

0 mχ̃±
2

)
mχ̃±

1
< mχ̃±

2
(7.8)

où T signifie l’opération de transposition et mχ̃±
i

(i,j =1,2) sont les valeurs propres de la matrice

hermitienne XX†. La diagonalisation de cette matrice est discutée dans l’Appendice C. Les
paramètres à renormaliser dans ce secteur sont M2, µ ainsi que les champs, les autres étant
obtenus à partir du secteur de Higgs et de jauge.

7.2.2 Secteur des neutralinos à l’arbre

Le secteur des neutralinos est obtenu en rassemblant les champs neutres. En utilisant la
notation suivante :

ψn ≡




−iB̃0

−iW̃ 0
3

H̃0
1

H̃0
2


 (7.9)

le lagrangien s’écrit,

Ln =
i

2
[ψnTσµ∂µψ̄

n + ψ̄nT σ̄µ∂µψ
n] − 1

2
[ψnTY ψn + ψ̄nTY †ψ̄n] (7.10)

La matrice de masse 4 × 4 non-diagonale des neutralinos est définie par :

Y =




M1 0 −cβsWMZ sβsWMZ

0 M2 cβcWMZ −sβcWMZ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −sβcWMZ −µ 0


 (7.11)

Cette matrice est diagonalisée à l’aide d’une matrice unitaire N avec

Ỹ = N∗Y N † = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) (7.12)

où mχ̃0
i

( i=1..4) sont les masses physiques des neutralinos après diagonalisation. La diago-
nalisation de cette matrice peut se faire à l’aide de paramètres complexes (voir Chapitre 6)
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et la méthode a été présentée dans [42]. Les paramètres à renormaliser dans ce secteur sont
M1, M2 et µ. Il est à noter qu’à l’origine, l’implémentation de LanHEP (telle que réalisée dans
CalcHEP /CompHEP ) prend des valeurs réelles pour les entrées de la matrice N et est prévue pour
une interface avec CalcHEP /CompHEP , cela ne pose donc pas de problèmes pour ces programmes
lorsqu’un des neutralinos possède une masse négative. Cependant, dans FormCalc , le traitement
des particules Majorana est différent et nécessite une masse positive pour ce type de particule.
Cela ne pose pas de problème lorsque la particule avec une masse négative circule dans une
boucle, mais lorsqu’elle se trouve sur une patte externe, FormCalc est dans l’impossibilité de
calculer ne sachant pas comment les traiter. L’implémentation d’une diagonalisation avec des
paramètres complexes a donc été nécessaire pour pallier à cette difficulté technique.

7.3 Renormalisation à l’ordre d’une boucle des champs

Comme les secteurs des neutralinos et des charginos sont très semblables et concernent des
fermions dans les deux cas, nous allons les renormaliser en même temps avec une notation com-
mune. Alors le lagrangien “nu” pour ces deux secteurs à renormaliser se généralise en,

Lχ
0 = i[ψT

R 0σ
µ∂µψ̄R 0 + ψ̄T

L 0σ̄
µ∂µψL 0] − [ψT

R 0M0ψL 0 + ψ̄T
L 0M

†
0 ψ̄R 0] (7.13)

où il est sous-entendu que la matrice M0 représente soit X0 pour les charginos, soit Y0 pour les
neutralinos, et la notation ψL/R 0 généralise les champs des charginos ψc

L/R 0 ou des neutralinos
ψn

0 . Le lagrangien renormalisé s’écrit alors,

Lχ
0 = Lχ

TL + δLχ (7.14)

et nous allons maintenant spécifier la forme de δLχ par la procédure de renormalisation.
À l’ordre de l’arbre la matrice de masse non diagonale M0 est diagonalisée par la rotation des
champs à l’aide de deux matrices unitaires UL et UR, telles qu’à cet ordre les champs s’écrivent,





χR 0 = URψR 0

χL 0 = ULψL 0

(7.15)

et la matrice diagonale correspondante M̃ s’écrit,

M̃ = U∗
RMU†

L = M̃ † = ULM
†UT

R = diag(mχ̃1
,mχ̃2

, · · · ) (7.16)

où les mχ̃i
sont les masses physiques. Alors les spineurs de Dirac/Majorana correspondants aux

charginos/neutralinos sont donnés par,

χ̃i 0 =

(
χL i

χR i

)

0

(7.17)

⇒ χ̃i 0 = (χT
R i χT

L i )0 (7.18)

Après cette diagonalisation les contre-termes pour chacun des paramètres entrants dans la ma-
trice de masse sont introduits, ainsi que les constantes de renormalisation δZL,R

ij pour les champs
physiques chiraux χL,R ,

M0 = M + δM (7.19)

χR,L i|0 =

(
δij +

1

2
δZR,L

ij

)
χR,L j (7.20)
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Ces transformations sont équivalentes à la transformation suivante pour le spineur à quatre
composantes χ̃i 0,

χ̃i 0 = χ̃i +
1

2

[
δZL

ijPL + δZR∗
ij PR

]
χ̃j (7.21)

Il est à noter que dans notre procédure de renormalisation nous n’avons pas introduit de renor-
malisation pour les matrices de rotation UL,R → UL,R + δUL,R car nous les considérons comme
renormalisées, c’est à dire que leur forme est la même à l’ordre de l’arbre et à l’ordre d’une boucle,
dans le même esprit que [79, 104]. Nous possédons cette liberté car les champs ne représentent
pas une quantité physique, c’est à dire directement mesurable, puisqu’il n’apparaissent pas dans
les éléments de la matrice S. Ainsi la matrice de masse diagonalisée s’écrit,

δM̃ = U∗
RδMU†

L = δM̃ † = ULδM
†UT

R (7.22)

et le lagrangien renormalisé est donné par,

Lχ
0 = i[χT

R(1 +
1

2
(δZR,T + δZR∗))σµ∂µχ

R + χT
L(1 +

1

2
(δZL + δZL∗,T ))σ̄µ∂µχL]

− [χT
R(M̃ + δM̃ +

1

2
(δZR,T M̃ + M̃δZL))χL

+ χT
L(M̃ † + δM̃ † +

1

2
(δZL∗,T M̃ † + M̃ †δZR∗))χR] (7.23)

On passe de la notation de Weyl à la notation de Dirac à l’aide des formules suivantes,

χ̃χ̃ = χT
RχL + χT

LχR (7.24)

χ̃PLχ̃ = χT
RχL (7.25)

χ̃PRχ̃ = χT
LχR (7.26)

χ̃γµχ̃ = χT
Rσ

µχL + χT
Lσ̄

µχR (7.27)

χ̃γµPLχ̃ = χT
Lσ̄

µχL (7.28)

χ̃γµPRχ̃ = χT
Rσ

µχR (7.29)

où les projecteurs gauche/droite sont définis par PL,R = 1∓γ5

2 . En insérant ces notations dans le
lagrangien renormalisé on arrive à :

Lχ
0 = Lχ

TL + δLχ (7.30)

avec

Lχ
TL = i[χiδijγ

µ∂µχ̃j] − [χiM̃ijχ̃j] (7.31)

δLχ = iχ̃iγ
µ[

1

2
(δZR∗ + δZR,T )ijPR +

1

2
(δZL + δZL∗,T )ijPL]∂µχ̃j

− χ̃i[{δM̃ij +
1

2
(δZR,T M̃ + M̃δZL)ij}PL

+ {δM̃ †
ij +

1

2
(δZL∗,T M̃ † + M̃ †δZR∗)ij}PR]χj (7.32)

7.3.1 Self-énergies

Les self-énergies renormalisées sont obtenues par l’opération suivante :

Σ̂χ̃iχ̃j
(q) = Σχ̃iχ̃j

(q) +
∂

∂χ̃j

∂

∂χ̃i

δL̃χ (7.33)
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où le ^ dénote la self-énergie renormalisée et le ~ sur le lagrangien des contre-termes indique que
l’on a pris sa transformée de Fourier.
Alors,

Σ̂χ̃iχ̃j
(q) = Σχ̃iχ̃j

(q) − PLδM̃ij − PRδM̃
∗
ji (7.34)

+
1

2
(6q −mχ̃i

)[δZL
ijPL + δZR∗

ij PR] +
1

2
[δZL∗

ji PR + δZR
jiPL](6q −mχ̃j

) (7.35)

En décomposant de la façon suivante Σχ̃iχ̃j
(q) :

Σχ̃iχ̃j
(q) = PLΣLS

χ̃iχ̃j
(q2) + PRΣRS

χ̃iχ̃j
(q2) + 6qPLΣLV

χ̃iχ̃j
(q2) + 6qPRΣRV

χ̃iχ̃j
(q2) (7.36)

Puis en remplaçant M̃ = diag(mχ̃1
,mχ̃2

, · · · ) , nous obtenons :

Σ̂LS
χ̃iχ̃j

(q) = ΣLS
χ̃iχ̃j

(q2) −
{
δM̃ij +

1

2
mχ̃j

δZR
ij +

1

2
mχ̃i

δZL
ij

}
(7.37)

Σ̂RS
χ̃iχ̃j

(q) = ΣRS
χ̃iχ̃j

(q2) −
{
δM̃∗

ji +
1

2
mχ̃j

δZL∗
ji +

1

2
mχ̃i

δZR∗
ij

}
(7.38)

Σ̂LV
χ̃iχ̃j

(q) = ΣLV
χ̃iχ̃j

(q2) +
1

2
(δZL

ij + δZL∗
ji ) (7.39)

Σ̂RV
χ̃iχ̃j

(q) = ΣRV
χ̃iχ̃j

(q2) +
1

2
(δZR∗

ij + δZR
ji) (7.40)

Les self-énergies étant hermitiques, on obtient les relations suivantes entre les éléments de la
décomposition (7.36),

ΣRS
χ̃iχ̃j

(q2) = ΣLS ∗
χ̃jχ̃i

(q2), ΣLV
χ̃iχ̃j

(q2) = ΣLV ∗
χ̃jχ̃i

(q2), ΣRV
χ̃iχ̃j

(q2) = ΣRV ∗
χ̃jχ̃i

(q2), (7.41)

Pour un fermion de Majorana (comme un neutralino), la symétrie de Majorana supplémentaire
impose,

ΣRS
χ̃iχ̃j

(q2) = ΣRS
χ̃jχ̃i

(q2), ΣLS
χ̃iχ̃j

(q2) = ΣLS
χ̃jχ̃i

(q2), ΣLV
χ̃iχ̃j

(q2) = ΣRV ∗
χ̃iχ̃j

(q2) = ΣRV
χ̃jχ̃i

(q2) .(7.42)

L’équation (7.34) montre que les constantes de renormalisation des champs ne sont pas impliquées
dans la renormalisation des paramètres du Lagrangien contenus dans la matrice de masse M , à
savoir M1, M2, µ.

7.3.2 Fixation des δZ
L,R
ij

Pour déterminer les constantes de renormalisation δZL,R
ij nous avons adopté un schéma OS, où

nous avons imposé que, lorsque l’on est sur la couche de masse, le résidu des propagateurs est égal
à 1 et qu’il n’y a pas de mélange entre les champs physiques, cela se traduit mathématiquement
par imposer les relations suivantes,

R̃eΣ̂′
ii(mχ̃i

) = 0 (7.43)

R̃eΣ̂ij(mχ̃i
) = 0 i 6= j (7.44)

où le prime indique que l’on a pris la dérivée de la self-énergie. La première relation (7.43) permet
de fixer les constantes diagonales,

δZL
ii = − R̃eΣLV

χ̃iχ̃i
(m2

χ̃i
) −m2

χ̃i

(
R̃eΣLV

′

χ̃iχ̃i
(m2

χ̃i
) + R̃eΣRV

′

χ̃iχ̃i
(m2

χ̃i
)
)
− 2mχ̃i

R̃eΣLS
′

χ̃iχ̃i
(m2

χ̃i
),

δZR
ii = − R̃eΣRV

χ̃iχ̃i
(m2

χ̃i
) −m2

χ̃i

(
R̃eΣLV

′

χ̃iχ̃i
(m2

χ̃i
) + R̃eΣRV

′

χ̃iχ̃i
(m2

χ̃i
)
)
− 2mχ̃i

R̃eΣRS
′

χ̃iχ̃i
(m2

χ̃i
),

(7.45)
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où nous avons utilisé le fait qu’en cas de conservation de la symétrie CP

ΣLS
χ̃iχ̃i

(m2
χ̃i

) = ΣRS
χ̃iχ̃i

(m2
χ̃i

)

Les constantes de renormalisation des champs non-diagonales sont données par la deuxième
relation (7.44),

δZL
ij =

2

m2
χ̃i

−m2
χ̃j

(
mχ̃i

R̃eΣLS
χ̃iχ̃j

(m2
χ̃j

) +mχ̃j
R̃eΣRS

χ̃iχ̃j
(m2

χ̃j
) +mχ̃i

mχ̃j
R̃eΣRV

χ̃iχ̃j
(m2

χ̃j
)

+ m2
χ̃j
R̃eΣLV

χ̃iχ̃j
(m2

χ̃j
) −mχ̃i

δM̃ij −mχ̃j
δM̃∗

ji

)
,

δZR ∗
ij =

2

m2
χ̃i

−m2
χ̃j

(
mχ̃j

R̃eΣLS
χ̃iχ̃j

(m2
χ̃j

) +mχ̃i
R̃eΣRS

χ̃iχ̃j
(m2

χ̃j
) +m2

χ̃j
R̃eΣRV

χ̃iχ̃j
(m2

χ̃j
)

+ mχ̃i
mχ̃j

R̃eΣLV
χ̃iχ̃j

(m2
χ̃j

) −mχ̃i
δM̃∗

ji −mχ̃j
δM̃ij

)
. (7.46)

Il est à noter que si l’on se spécialise au cas des neutralinos, l’utilisation de l’équation (7.42)
permet d’écrire δZL = δZR = δZ0, UL = UR = N et M = Y et l’on obtient

δZ0
ij =

1

mχ̃0
i
−mχ̃0

j

(
mχ̃0

j

(
R̃eΣLV

χ̃0
i χ̃0

j
(m2

χ̃0
j
) + R̃eΣLV ∗

χ̃0
i χ̃0

j
(m2

χ̃0
j
)
)

+
(
R̃eΣLS

χ̃0
i
χ̃0

j
(m2

χ̃0
j
) + R̃eΣLS ∗

χ̃0
i
χ̃0

j
(m2

χ̃0
j
)
)
−
(
δỸij + δỸ ∗

ij

))

+
1

mχ̃0
i
+mχ̃0

j

(
−mχ̃0

j

(
R̃eΣLV

χ̃0
i χ̃0

j
(m2

χ̃0
j
) − R̃eΣLV ∗

χ̃0
i χ̃0

j
(m2

χ̃0
j
)
)

+
(
R̃eΣLS

χ̃0
i χ̃0

j
(m2

χ̃0
j
) − R̃eΣLS ∗

χ̃0
i χ̃0

j
(m2

χ̃0
j
)
)
−
(
δỸij − δỸ ∗

ij

))
. (7.47)

et en se restreignant à une matrice N ∈ R, cette formule se réduit à

δZ0
ij =

2

mχ̃0
i
−mχ̃0

j

(
R̃eΣLS

χ̃0
i χ̃0

j
(m2

χ̃0
j
) +mχ̃0

j
R̃eΣLV

χ̃0
i χ̃0

j
(m2

χ̃0
j
) − δỸij

)
. (7.48)

Pour complètement déterminer les δZL,R
ij il reste à déterminer les contre-termes des paramètres

δM̃ qui seront exprimés en fonction de δM1, δM2, δµ dont nous allons détailler l’obtention dans
la section suivante.

7.4 Renormalisation des paramètres à l’ordre d’une boucle

7.4.1 Contre-termes des matrices de masse

Les contre-termes δM1, δM2, δµ apparaissent lorsque l’on renormalise les matrices de masse
X0 pour les charginos,

X0 =

(
M2

√
2sβMW√

2cβMW µ

)

︸ ︷︷ ︸
X

+

(
δM2 δX12

δX21 δµ

)

︸ ︷︷ ︸
δX

(7.49)

avec

δX12 =
√

2sβMW

(
1

2

δM2
W

M2
W

+ c2β
δtβ
tβ

)
(7.50)

δX21 =
√

2cβMW

(
1

2

δM2
W

M2
W

− s2β
δtβ
tβ

)
(7.51)
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et Y0 pour les neutralinos,

Y0 =




M1 0 −cβsWMZ sβsWMZ

0 M2 cβcWMZ −sβcWMZ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −sβcWMZ −µ 0




︸ ︷︷ ︸
Y

+




δM1 0 δY13 δY14

0 δM2 δY23 δY24

δY13 δY23 0 −δµ
δY14 δY24 −δµ 0




︸ ︷︷ ︸
δY

(7.52)

où

δY13 = −cβsWMZ

(
1

2

δM2
Z

M2
Z

− s2β
δtβ
tβ

+
1

2

δs2W
s2W

)
(7.53)

δY14 = +sβsWMZ

(
1

2

δM2
W

M2
W

+ c2β
δtβ
tβ

+
1

2

δs2W
s2W

)
(7.54)

δY23 = +cβcWMZ

(
1

2

δM2
W

M2
W

− s2β
δtβ
tβ

+
1

2

δc2W
c2W

)
(7.55)

δY24 = −sβcWMZ

(
1

2

δM2
W

M2
W

+ c2β
δtβ
tβ

+
1

2

δc2W
c2W

)
(7.56)

Les contre-termes des matrices de masse diagonalisées entrants dans (7.45), (7.46), (7.47) sont
définis par,

δX̃ = U∗δXV † (7.57)

δỸ = N∗δY N † (7.58)

et apparaissent comme des combinaisons linéaires des contres-termes δM1, δM2, δµ, δXij et δYij

pour i 6= j ∗. Les deux derniers contre-termes non-diagonaux donnés par les équations (7.50) et
(7.52) sont fonctions de contre-termes déjà déterminés dans les secteurs de jauge et de Higgs, par
conséquent il ne reste qu’à fixer ceux des masses soft des jauginos M1 et M2 et du paramètre de
masse µ des higgsinos pour déterminer complètement ce secteur à l’ordre d’une boucle.

7.4.2 Fixer les contre-termes δM1, δM2, δµ

Pour renormaliser ce secteur il nous faut “fixer/définir” les paramètres M1,M2, µ et leurs
contres-termes associés. Étant donné que nous avons 3 paramètres à définir, il faut 3 “conditions
de renormalisation” pour les fixer complètement. Pour cela nous avons adopté une définition On-
Shell où les paramètres recherchés sont extraits à partir de la mesure de 3 masses physiques. Ces
masses sont les valeurs propres des matrices X et Y qu’il faut diagonaliser pour obtenir les états
propres physiques. Étant donné que nous avons une matrice 4 × 4 et une 2 × 2, il y a 6 valeurs
propres. Par conséquent pour renormaliser ce secteur nous avons la liberté d’en choisir 3 parmi
6. Les 3 masses restantes recevront une correction à l’ordre d’une boucle. Le choix des masses
est particulièrement crucial pour la cohérence du schéma de renormalisation. Le schéma usuel
est de prendre la masse de deux charginos mχ̃+

i
et d’un neutralino mχ̃0

i
. Il a l’avantage d’être

techniquement facile à réaliser mais il souffre de quelques défauts [79]. C’est pourquoi nous avons
testé le choix de prendre deux neutralinos et un chargino.
Nous allons maintenant présenter comment les contre-termes sont fixés dans ce secteur dans un
schéma On-Shell. À l’ordre d’une boucle la correction d’une masse s’écrit

m1L
χ̃i

= mTL
χ̃i

+ R̃eΣ̂χ̃iχ̃i
(m2

χ̃i
) (7.59)

∗. Et aussi i, j 6= 3, 4 car δY34 = δµ
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où apparaît la fonction à deux points diagonale renormalisée : R̃eΣ̂χ̃iχ̃i
(m2

χ̃i
) = R̃eΣχ̃iχ̃i

(m2
χ̃i

)−
δmχ̃i

, avec δmχ̃i
le contre-terme de la masse. Il est à noter que la masse entrant comme argument

dans la self-énergie est la masse à l’ordre de l’arbre R̃eΣχ̃iχ̃i
(m2

χ̃i
) = R̃eΣχ̃iχ̃i

(m2,TL
χ̃i

), cela est
suffisant pour une approche à une boucle car prendre la masse corrigée peut être vu comme une
correction d’ordre supérieur.
Le principe du schéma sur couche de masse est de considérer que la masse corrigée est égale à la
masse à l’arbre, cela signifie en fait qu’expérimentalement cette masse a été mesurée, on a alors
promu cette masse en tant qu’observable physique,

mTL
χ̃i

= mphys
χ̃i

⇐⇒ R̃eΣ̂χ̃iχ̃i
(m2

χ̃i
) = 0 (7.60)

cette condition est équivalente à,

δmχ̃i
= R̃eΣχ̃iχ̃i

(m2
χ̃i

) (7.61)

cette dernière équation sert alors de définition pour le contre-terme δmχ̃i
qui est relié à une

fonction à deux points. L’avantage de ce type de prescription est qu’elle ne dépend pas d’une
échelle de renormalisation non physique µDR et est invariante de jauge puisque reliée à une
mesure physique. Ainsi pour définir complètement les trois contre-termes δM1, δM2, δµ il suffit
de fixer trois prescriptions de la forme (7.61) puisque

δmχ̃i
= δM̃ii = U∗

R,ijδMjkU†
L,ki (7.62)

où δMjk est donné par (7.50) pour les charginos et (7.52) pour les neutralinos et les matrices
UL/R = U, V,N selon les cas.
L’expression de δmχ̃i

en fonction des différentes self-énergies provenant de la décomposition de
Lorentz (7.36) est donnée par, en utilisant (7.34) et (7.61),

δmχ̃i
= R̃eΣLS

χ̃iχ̃i
(m2

χ̃i
) +

1

2
mχ̃i

(R̃eΣLV
χ̃iχ̃i

(m2
χ̃i

) + R̃eΣRV
χ̃iχ̃i

(m2
χ̃i

)) (7.63)

L’équation (7.62) se décompose alors en six équations que l’on peut écrire sous la forme, lorsqu’elle
est appliquée au secteur des neutralinos/charginos et en posant α = 1, 2, 3, 4 pour dénoter les
quatre neutralinos et α = 5, 6 pour dénoter les deux charginos,

Nαδ
−→M = δmα (7.64)

où δ
−→M = (δM1, δM2, δµ)T et,

Nα =





(N∗ 2
i1 , N

∗ 2
i2 ,−2N∗

i3N
∗
i4) α = 1 · · · 4

(0, Uj1Vj1, Uj2Vj2) α = 5, 6
(7.65)

δmα =





δmχ̃0
i
− 2[N∗

i1N
∗
i3δYi3 +N∗

i1N
∗
i4δY14 +N∗

i2N
∗
α3δY23 +N∗

i2N
∗
i4δY24] α = 1 · · · 4

δmχ̃+
j
− [Uj1Vj2δX12 + Uj2Vj1δX21] α = 5, 6

(7.66)

avec α = 1, 2, 3, 4 ⇐⇒ α = i et α = 5, 6 ⇐⇒ j = 1, 2.
Parmi ces six équations nous devons en choisir trois puis les inverser pour renormaliser ce secteur,
nous avonc donc C3

6 = 20 choix de schémas possibles. Une fois ces trois équations choisies nous
pouvons l’écrire sous la forme matricielle 3 × 3 suivante,

Wδ
−→M = δ−→m (7.67)
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où les trois vecteurs ligne de W seront représentés par un choix de trois Nα à l’aide de (7.65) et
les élements du vecteur colonne δ−→m correspondant par (7.66). Nous avons donc au total 20 choix
pour la forme de la matrice W . Les contre-termes δM1, δM2 et δµ seront alors donnés par,

δ
−→M =

(comW )T

detW
δ−→m (7.68)

où comW est la comatrice de W . Nous remarquons immédiatement que la reconstruction des
contre-termes est inversement proportionnelle au déterminant de la matrice W , par conséquent
si ce déterminant s’annule ou devient très petit, de grandes incertitudes sont possibles, à moins
que le numérateur tende en même temps vers zéro. À partir de ces équations nous sommes
donc en mesure d’implémenter n’importe quel schéma de renormalisation basé sur la mesure de
trois masses physiques dans SloopS . Nous allons traiter dans la section suivante deux exemples
d’applications correspondant à deux choix d’un ensemble de trois masses physiques et détailler
la résolution de ces deux systèmes d’équations.

7.5 Exemples

7.5.1 Inversion du schéma mχ̃0
1
mχ̃+

1
mχ̃+

2

Ce schéma est le plus couramment utilisé dans la littérature [79, 104, 106, 107] car il est
techniquement facile à réaliser. En effet pour obtenir les contre-termes δM2 et δµ il suffit d’in-
verser la matrice 2 × 2 des charginos, qui est plus facile à réaliser que l’inversion de la matrice
4× 4 des neutralinos. Le contre-terme δM1 est alors obtenu à partir de la mesure de la masse du
neutralino le plus léger mχ̃0

1
. Les masses des neutralinos restants mχ̃0

2,3,4
reçoivent des corrections

à une boucle. C’est le schéma utilisé par défaut dans SloopS. Ce choix de contraintes impose les
conditions,

R̃eΣ̂χ̃±
1 χ̃±

1
(mχ̃±

1
) = 0, R̃eΣ̂χ̃±

2 χ̃±
2
(mχ̃±

2
) = 0, R̃eΣ̂χ̃0

1χ̃0
1
(mχ̃0

1
) = 0 (7.69)

qui permet de déterminer les contre-termes,

δX̃11 = = δmχ̃±
1

= R̃eΣLS
χ̃±

1 χ̃±
1

(m2
χ̃±

1

) +
1

2
mχ̃±

1

(
R̃eΣLV

χ̃±
1 χ̃±

1

(m2
χ̃±

1

) + R̃eΣRV
χ̃±

1 χ̃±
1

(mχ̃±
1
)

)

δX̃22 = = δmχ̃±
2

= R̃eΣLS
χ̃±

2 χ̃±
2

(m2
χ̃±

2

) +
1

2
mχ̃±

2

(
R̃eΣLV

χ̃±
2 χ̃±

2

(m2
χ̃±

2

) + R̃eΣRV
χ̃±

2 χ̃±
2

(mχ̃±
2
)

)

δỸ11 = = δmχ̃0
1

= R̃eΣLS
χ̃0

1χ̃0
1
(m2

χ̃0
1
) +mχ̃0

1
R̃eΣLV

χ̃0
1χ̃0

1
(m2

χ̃0
1
) (7.70)

et à l’aide des équations (7.65) et (7.66) pour α = i = 1 et α = 5, 6 ⇐⇒ j = 1, 2 le système
(7.67) à inverser s’écrit,



N∗ 2

11 N∗ 2
12 −2N∗

13N
∗
14

0 U11V11 U12V12

0 U21V21 U22V22




︸ ︷︷ ︸
Wc1c2n1



δM1

δM2

δµ


 =



δm1

δm5

δm6


 (7.71)
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La résolution de (7.71), suivant (7.68), donne les expressions suivantes pour les contre-termes,

δM1 =
1

det (Wc1c2n1
)
((U11U22V11V22 − U12U21V12V21)δm1

− (N∗ 2
12 U22V22 + 2N∗

13N
∗
14U21V21)δm5

+ (N∗ 2
12 U12V12 + 2N∗

13N
∗
14U11V11)δm6) ,

δM2 =
N∗ 2

11

det (Wc1c2n1
)

(U22V22δm5 − U12V12δm6) ,

δµ =
N∗ 2

11

det (Wc1c2n1
)

(−U21V21δm5 + U11V11δm6) , (7.72)

avec

det (Wc1c2n1
) = N∗ 2

11 (U11U22V11V22 − U12U21V12V21) . (7.73)

Nous remarquons alors que dans ce cas il est possible de résoudre indépendamment deux équa-
tions sur trois puisque l’angle de mélange N∗ 2

11 se simplifie dans ces dernières. Ces équations cor-
respondent à la résolution du sous-système des charginos, et permettent ainsi de reconstruire les
contre-termes M2, µ. Bien évidemment, n’importe quel choix de schéma de renormalisation conte-
nant les deux masses des charginos comme observables permet de reconstruire le sous-système
(M2, µ). Il est à noter que si M2 ≃ |µ| le mélange est presque maximal et det (Wc1c2n1

) ≃ 0, com-
pliquant ainsi l’inversion du système. Ensuite même pour det (Wc1c2n1

) 6= 0 la formule pour δM1

est inversement proportionnelle à N∗ 2
11 , et ainsi appropriée lorsque le neutralino χ̃0

1 est principale-
ment bino ou si le neutralino de type bino n’est pas trop lourd, dans le cas contraire l’extraction
du paramètre M1 peut être sujette à de larges incertitudes, puisque N∗ 2

11 → 0.
Il est possible de donner une forme plus explicite et plus facile à étudier aux contre-termes
précédents en utilisant le fait que, comme les deux charginos sont pris comme contraintes, les
relations suivantes,

TrXXT = Tr X̃X̃T = m2
χ̃±

1

+m2
χ̃±

2

= M2
2 + µ2 + 2M2

W (7.74)

detXXT = det X̃X̃T = m2
χ̃±

1

m2
χ̃±

2

= (M2µ− s2βM
2
W )2 (7.75)

sont maintenues à l’ordre d’une boucle. Ainsi on obtient,

δM2 =
1

M2
2 − µ2

(
(M2m

2
χ̃+

1

− µdetX)
δmχ̃+

1

mχ̃+
1

+ (M2m
2
χ̃+

2

− µdetX)
δmχ̃+

2

mχ̃+
2

− M2
W (M2 + µs2β)

δM2
W

M2
W

− µM2
W s2βc2β

δtβ
tβ

)
,

δµ =
1

µ2 −M2
2

(
(µm2

χ̃+
1

−M2detX)
δmχ̃+

1

mχ̃+
1

+ (µm2
χ̃+

2

−M2detX)
δmχ̃+

2

mχ̃+
2

− M2
W (µ+M2s2β)

δM2
W

M2
W

−M2M
2
W s2βc2β

δtβ
tβ

)
, (7.76)

δM1 =
1

N∗ 2
11

(δmχ0
1
−N∗ 2

12 δM2 + 2N∗
13N

∗
14δµ

− 2N∗
11N

∗
13δY13 − 2N∗

12N
∗
13δY23 − 2N∗

11N
∗
14δY14 − 2N∗

12N
∗
14δY24) . (7.77)

À l’aide de ces formules on retrouve de façon explicite le comportement singulier des contre-
termes lorsque M2 ≃ ±µ discuté précedemment à partir de la forme de la matrice W .
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Le masses physiques des trois neutralinos restants reçoivent une correction à une boucle et sont
obtenues en cherchant les impulsions p2

i = m2
χ̃0

i

qui obéissent à la relation

R̃e
[
Γ̂

(2)
χ̃iχ̃i

(6qi)
]
u(qi) = 0 i = 2, 3, 4 (7.78)

où

Γ̂
(2)
χ̃iχ̃i

(6q) = (6q −mχ̃i
) + Σ̂χ̃iχ̃i

(q2) (7.79)

Alors dans ce schéma elles sont données par,

mphys

χ̃0
i

= mχ̃0
i
+ δỸii −ReΣLS

χ̃0
i χ̃0

i
(m2

χ̃0
i
) −mχ̃0

i
ReΣLV

χ̃0
i χ̃0

i
(m2

χ̃0
i
) avec

δỸii = N∗ 2
i1 δM1 +N∗ 2

i2 δM2 − 2N∗
i3N

∗
i4δµ

+ 2N∗
i1N

∗
i3δY13 + 2N∗

i1N
∗
i4δY14 + 2N∗

i2N
∗
i3δY23 + 2N∗

i3N
∗
i4δY24. (7.80)

Comme les masses corrigées dépendent des contre-termes δM1, δM2, δµ, vérifier systématique-
ment que leurs prédictions n’est pas entachée de grandes corrections permet de contrôler la jus-
tification de ce schéma. En effet, si le système est mal reconstruit les contre-termes δM1, δM2, δµ
seront très importants, et l’impact de cette mauvaise reconstruction surgira au niveau des masses
corrigées.
Quelques remarques finales peuvent être faites sur l’utilisation de ce schéma. Premièrement
il est techniquement assez facile à réaliser puisqu’il consiste à inverser le sous-système 2 × 2.
Deuxièmement il est particulièrement approprié si le neutralino le plus léger est majoritairement
de type bino car N∗ 2

11 ≃ 1. Cependant, dans le cas d’une hiérarchie de masse de type M1 <
M2 ≪ |µ|, ce schéma n’est pas très réaliste, on s’attend expérimentalement à ce que les masses
des deux premiers neutralinos et le chargino le plus léger soient mesurées en premier et soient les
seuls accesibles par l’expérience, plutôt que celles des deux chargino et du neutralino χ̃0

1. Nous
allons nous placer dans un tel cas dans la section suivante.

7.5.2 Inversion du schéma mχ̃0
1
mχ̃+

1
mχ̃0

2

Dans ce cas les conditions de renormalisation s’écrivent,

R̃eΣ̂χ̃0
1χ̃0

1
(mχ̃0

1
) = 0, R̃eΣ̂χ̃0

2χ̃0
2
(mχ̃0

2
) = 0, R̃eΣ̂χ̃±

1 χ̃±
1
(mχ̃±

1
) = 0 (7.81)

donnant les contre-termes,

δX̃11 = = δmχ̃±
1

= R̃eΣLS
χ̃±

1 χ̃±
1

(m2
χ̃±

1

) +
1

2
mχ̃±

1

(
R̃eΣLV

χ̃±
1 χ̃±

1

(m2
χ̃±

1

) + R̃eΣRV
χ̃±

1 χ̃±
1

(mχ̃±
1
)

)

δỸ11 = = δmχ̃0
1

= R̃eΣLS
χ̃0

1χ̃0
1
(m2

χ̃0
1
) +mχ̃0

1
R̃eΣLV

χ̃0
1χ̃0

1
(m2

χ̃0
1
)

δỸ22 = = δmχ̃0
2

= R̃eΣLS
χ̃0

2χ̃0
2
(m2

χ̃0
2
) +mχ̃0

2
R̃eΣLV

χ̃0
2χ̃0

2
(m2

χ̃0
2
) (7.82)

À partir de (7.65), (7.66) et de (7.67) le système 3 × 3 d’équations à inverser est le suivant,



N∗ 2

11 N∗ 2
12 −2N∗

13N
∗
14

N∗ 2
21 N∗ 2

22 −2N∗
23N

∗
24

0 U11V11 U12V12




︸ ︷︷ ︸
Wc1n1n2



δM1

δM2

δµ


 =



δm1

δm2

δm5


 (7.83)
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En comparaison du cas précédent nous remarquons qu’il n’est plus possible d’inverser séparément
le sous-système (M2, µ) par rapport à M1 car nous ne possédons plus de colonne comportant
deux zéros. Il faut alors résoudre les trois équations en même temps dont les solutions sont,

δM1 =
1

det (Wc1n1n2
)

{
(N∗ 2

22 U12V12 + 2N∗
23N

∗
24U11V11)δm1 − (2N∗

13N
∗
14U11V11 +N∗ 2

12 U12V12)δm2

+ 2(N∗ 2
22 N

∗
13N

∗
14 −N∗ 2

12 N
∗
23N

∗
24)δm5

}
,

δM2 =
1

det (Wc1n1n2
)

{
−N∗ 2

21 U12V12δm1 +N∗ 2
11 U12V12δm2

+ 2(N∗ 2
11 N

∗
23N

∗
24 −N∗ 2

21 N
∗
13N

∗
14)δm5

}
,

δµ =
1

det (Wc1n1n2
)

{
N∗ 2

21 U11V11δm1 −N∗ 2
11 U11V11δm2 + (N∗ 2

11 N
∗ 2
22 −N∗ 2

21 N
∗ 2
12 )δm5

}
, (7.84)

avec

det (Wc1n1n2
) = U12V12(N

∗ 2
11 N

∗ 2
22 −N∗ 2

12 N
∗ 2
21 ) + 2U11V11(N

∗ 2
11 N

∗
23N

∗
24 −N∗ 2

21 N
∗
13N

∗
14)(7.85)

Les masses recevant une correction à une boucle sont mχ̃0
3,4

et mχ̃±
2

et sont données par,

mphys

χ̃+
2

= mTL
χ̃+

2

+ δX̃22 − R̃eΣLS
χ̃±

1 χ̃±
1

(m2
χ̃±

1

) − 1

2
mχ̃±

1

(
R̃eΣLV

χ̃±
1 χ̃±

1

(m2
χ̃±

1

) + R̃eΣRV
χ̃±

1 χ̃±
1

(mχ̃±
1
)

)
(7.86)

mphys
χ̃0

i

= mTL
χ̃0

i
+ δỸii − R̃eΣLS

χ̃0
i χ̃0

i
(m2

χ̃0
i
) −mχ̃0

i
R̃eΣLV

χ̃0
i χ̃0

i
(m2

χ̃0
i
) i = 3, 4 (7.87)

avec

δX̃22 = U21V21δM2 + U22V22δµ+ U21V22δX12 + U22V21δX21 (7.88)

δỸii = N∗ 2
i1 δM1 +N∗ 2

i2 δM2 − 2N∗
i3N

∗
i4δµ

+ 2N∗
i1N

∗
i3δY13 + 2N∗

i1N
∗
i4δY14 + 2N∗

i2N
∗
i3δY23 + 2N∗

i3N
∗
i4δY24 (7.89)

La difficulté provenant de ces équations est qu’elles sont peu parlantes, et, contrairement au
schéma précédent, il est ardu d’obtenir les contre-termes en fonction des invariants matriciels
car les règles de somme (7.74) et (7.75) ne sont plus valables à l’ordre d’une boucle. De plus,
même si à première vue cela semble peu évident, les contre-termes sont proportionnels à l’inverse
du déterminant de la matrice du système d’équations (7.83), det (Wc1n1n2

) qui lui aussi peut
s’annuler ou être très proche de zéro, résultant en de grandes incertitudes sur les contre-termes. Ce
cas de figure peut se produire dans le cas particulier suivant : soit la hiérarchie † M1 << M2 << µ.
Alors grossièrement pour la reconstruction des paramètres à partir des masses nous avons

δmχ̃0
1
→ δM1

δmχ̃0
2
→ δM2

δmχ̃±
1
→ δM2

Ainsi nous remarquons que les masses mχ̃0
2

et mχ̃+
1

reconstruisent le même paramètre δM2 et le
contre-terme δµ n’est quasiment pas contraint. De plus comme deux masses donnent le même
paramètre, deux des équation du système (7.83) sont quasiment redondantes et le déterminant
det (Wc1n1n2

) sera quasiment nul, impliquant de grandes corrections, sauf si le numérateur en
même temps tend vers zéro. Un exemple de hiérarchie où ce choix de contraintes serait plus
efficace que le précédent pour obtenir les contre-termes à partir seulement de la mesure de trois
masses serait celui où deux paramètres sont très proches ou égaux, par exemple M1 < M2 ≃ µ,
car le mélange higgsino-wino sera suffisamment important pour en extraire les contre-termes.

†. C’est par exemple un cas de hiérarchie typique mSUGRA
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7.5.3 Étude numérique

À titre d’illustration nous donnons dans les tableaux ci-dessous les corrections à une boucle
finie dans le schéma mχ̃0

1
mχ̃+

1
mχ̃0

2
aux masses mχ̃+

2
, mχ̃0

3
and mχ̃0

4
dans le schéma Aττ pour δtβ

tβ
.

Les paramètres des couplages trilinéaires sont mis à zéro. Nous avons choisi deux jeux de valeurs
pour M1, M2, µ et fixé la valeur de tan β = 2 celle des sfermions à mf̃ = 1000, 2000 GeV.
M1 = 500 GeV,M2 = 1000 GeV, µ = 150 GeV :

Mass tan β = 2, mf̃ = 1000 GeV tan β = 2, mf̃ = 2000 GeV

mχ̃+
1

147.8392 143.8393

mχ̃0
1

138.5846 138.5846

mχ̃0
2

504.9927 504.9927

mTL
χ̃+

2

1007.2721 1007.2721

mcorr
χ̃+

2

2634.8859 (δ = 161.6%) 2383.8186 (δ = 136.7%)

mTL
χ̃0

3

150.8730 150.873

mcorr
χ̃0

3

136.9507 (δ = -9.2%) 138.7212 (δ = -8%)

mTL
χ̃0

4

1007.2957 1007.2957

mcorr
χ̃0

4

2634.5272 (δ = 161.6%) 2383.5139 (δ = 136.6%)

avec δ = (mcorr
χ −mTL

χ )/mTL
χ .

Pour ce jeu de paramètres nous avons µ≫M1 ≫M2, par conséquent dans le schémamχ̃0
1
mχ̃+

1
mχ̃0

2

le paramètre M2 est peu contraint et les masses réglées par ce paramètre (mχ̃±
2

et mχ̃0
4
) obtiennent

de grandes corrections. Nous avons ensuite choisi un jeu de paramètre où le mélange est plus
important pour que les contre-termes soient plus facilement extraits.
M1 = 200 GeV,M2 = 250 GeV, µ = 300 GeV :

Mass tan β = 2, mf̃ = 1000 GeV tan β = 2, mf̃ = 2000 GeV

mχ̃+
1

196.2910 196.2910

mχ̃0
1

171.1395 171.1395

mχ̃0
2

217.9792 217.9792

mTL
χ̃+

2

356.0290 356.0290

mcorr
χ̃+

2

339.7566 (δ = -4.6%) 333.9740 (δ = -6.2%)

mTL
χ̃0

3

301.5787 301.5787

mcorr
χ̃0

3

285.4731 (δ = -5.3%) 278.2358 (δ = -7.7%)

mTL
χ̃0

4

362.4600 362.4600

mcorr
χ̃0

4

345.431 (δ = -4.7%) 339.1585 (δ = -6.4%)

Dans ce jeu de paramètres le mélange bino-higgsino-bino est assez important et l’extraction des
paramètres M1,M2 et µ et leurs contre-termes associés est plus aisé car chaque masse prise
comme observable possède des fractions bino, higgsino ou wino non-négligeables.
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Enfin nous avons comparé les corrections aux massesmχ̃0
3
etmχ̃0

4
dans les deux schémasmχ̃0

1
mχ̃+

1
mχ̃+

2

et mχ̃0
1
mχ̃+

1
mχ̃0

2
, et les schémas Aττ et MH pour δtβ

tβ
. Les paramètres du MSSM utilisés sont les

suivants : M1 = 110 GeV, M2 = 127 GeV, µ = −245 GeV, mf̃ = 600 GeV, tβ = 10. Nous

schéma mχ̃0
1
,mχ̃+

1
,mχ̃+

2
schéma mχ̃0

1
,mχ̃0

2
,mχ̃+

1

Masses mχ0
3

mχ0
4

mχ0
3

mχ0
4

TL (Gev) 258.291 269.471 258.291 269.471

1-L (Gev) Aττ 258.707 269.453 254.959 270.802

1-L (Gev) MH 258.211 269.686 261.068 276.545

Table 7.1 – Tableau présentant les masses corrigées dans les deux schémas.

remarquons que dans le schéma mχ̃0
1
mχ̃+

1
mχ̃+

2
les corrections aux masses sont très faibles par

rapport au schéma mχ̃0
1
mχ̃+

1
mχ̃0

2
, même si elles restent modestes. De plus pour la masse mχ̃0

2

entre le schéma Aττ et MH le signe des corrections est opposé.

7.6 Utilisation d’un schéma mixte

Si un signal positif concernant la supersymétrie est découvert aux collisionneurs, il est fort
possible que les premières données à disposition ne fournissent pas la mesure de trois masses
de neutralinos ou charginos, rendant ainsi inutilisable le schéma de renormalisation que nous
avons développé dans ce chapitre qui requiert au moins trois masses. Le neutralino χ̃0

1 sera
certainement la particule qui sera produite dans toute mesure de la supersymétrie. Mais il se
pourrait que seul le neutralino χ̃0

2 (et/ou le chargino χ̃±
1 ) soit observé. Si un tel cas se présente, les

observables (désintégrations et sections efficaces) peuvent aussi être utiisées pour remonter aux
paramètres sous-jacents (M1,M2, µ). Alors l’utilisation d’un schéma “mixte” mélangeant tous les
types d’observables disponibles doit être élaboré. Dans tous les cas nous aurons toujours besoin
d’au minimum trois observables pour pouvoir renormaliser ce secteur et l’obtention des contre-
termes se fera toujours par l’inversion d’un système d’équations 3 × 3. Nous avons vu que pour
que cette inversion soit efficace le déterminant du système d’équations ne doit pas être nul ou
trop faible. La difficulté est donc de trouver le bon ensemble d’observables qui donneront un
système d’équations facile à résoudre. Un tel schéma mixte pourrait par exemple est construit à
partir de deux masses et d’une autre observable, comme une désintégration, dans le même esprit
que ce qui a déjà été réalisé dans le secteur de Higgs.
Si l’on reprend le cas de figure M1 < M2 << µ, les deux exemples de schéma que nous avons
présenté sont équivalents et permettent d’obtenir une contrainte sur M1 et M2, celle sur le contre-
terme δµ pourrait être obtenue à partir de la désintégration χ̃0

2 → χ̃0
1Z

0 ou bien du processus
e+e− → Z0 → χ̃0

1χ̃
0
2 (puisque le couplage χ̃0

2χ̃
0
1Z

0 est proportionnel à la fraction higgsino des
neutralinos), à la condition qu’ils soient expérimentalement accessibles. Enfin il est à noter que
le choix de la mesure de la désintégration χ̃0

2 → χ̃0
1Z

0 est particulièrement judicieux puisqu’il
n’est pas nécessaire de soustraire les corrections QED qui pourraient dépendre des coupures
expérimentales.
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Chapitre 8

Annihilation de neutralinos légers en
bosons de jauge
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English Abstract I present here an application of the SloopS code the the calculation of
the relic density in the MSSM. The relic density will be derived in the usual radiation domi-
nated scenario through solving the Boltzmann equation in the early universe with the help of
the micrOMEGAs code. In the standard scenario the relic density is inversely proportional to the
thermal average of the total cross section times the relative velocity. The determination of this
term is related to particle physics and the aim was to compute it at next-to-leading order with
SloopS . The precise calculation of the cosmic abundance is of crucial importance because in
the near future, experiments will reach a high level of precision, thus, on the theory side, we
need to predict its value with at least the same level of accuracy, if we want to extract from its
measurement some informations about the underlying cosmological and particle physics scenario.
I took into account the full electroweak and QCD corrections resulting into evaluating all the
relevant loop Feynman diagrams and also the real emission of a photon/gluon with the CUBA

library when charged/colored particles were involved on external legs. The infrared divergencies
have been regularised by adding a small mass to the photon/gluon propagator, as done in the
SloopS code and the ultraviolet finiteness has been checked carefully for all processes.

I focussed on models where the lightest supersymmetric particle is the so-called neutralino
χ̃0

1 and explored different composition to get annihilation into gauge boson final states χχ →
V V . Among the relevant processes for the relic density, these are the most difficult to compute
because gauge invariance plays a dominant role. In this case the implementation of the non-
linear gauge fixing have been of a great help to check the gauge invariance of the results and
in turn the good implementation of the renormalisation of the MSSM related to the gauge
sector. For the neutralino to couple to gauge boson we need substantial SU(2) component in
its composition, this is realised by having non-negligible wino or higgsino component (meaning
small or not too big values for the M2 and µ parameter, with respect to M1). I obtained the
model parameters by running the micrOMEGAs code, where we had first removed all effective
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one-loop or two-loop corrections (to avoid double counting of loop corrections) by creating a
new tree-level model, to get interesting scenarios to study. I then picked up and corrected at
one-loop channels contributing more than 5% to the relic density. In addition to gauge boson
final states, and because the neutralino couples mostly to it, I had also to take into account some
coannihilation channels between the neutralino χ̃0

1 and the χ̃±
1 into light quarks. Therefore QCD

corrections where a gluon is exchanged have been taken into account and I also added its soft
and hard emission to remove the unphysical dependency in the small mass of the gluon and the
cut-off scale separating the soft from the hard contribution. A special treatment has also been
carried out for the light quarks concerning the hard emission of a photon, because, during the
integration of the photon phase space, a resonance was reached. Once the product σv had been
evaluated with SloopS , I interfaced the result with the micrOMEGAs code. The procedure was the
following, first, as micrOMEGAs computes cross section in terms of the momentum p, I converted
σv in terms of this variable and then interpolated it with a polynomial function of p with ROOT.
This function was then passed to micrOMEGAs and ordered to use the fitting formula, whenever
a process that I had corrected with SloopSwas found to be relevant to the collision term. This
is probably not the most efficient automatic way but it has the advantage of being able to check
each step of the procedure. However I plan to improve this method in the near future.

I studied three scenarios where the neutralino was relatively light, of order hundreds of GeV.
In the first scenario we explored the neutralino was a mixed bino-wino one, in the second one
it was pure higgsino state, and in the last one a pure light wino. A common feature of all these
scenarios is that the most relevant coupling of the neutralino χ̃0

1 to gauge boson is done through
the χ̃0

1χ̃
±
1 W

± coupling, nevertheless, in the pure higgsino scenario the coupling χ̃0
1χ̃

0
2Z

0 was also
important, because it is proportional to the higgsino component of the χ̃0

1. For each scenario
I studied the dependency in the renormalisation of the tan β parameter. I have observed that
the reconstruction of this parameter is rather sensitive to the renormalisation scheme in the
mixed bino-wino scenario, whereas in the two ones remaining the sensitivity is less pronounced,
even negligible in the light wino scenario. For the sake of understanding what was driving the
annihilation of the different channels I fitted the tree-level and one-loop corrected σv with the
well-known expansion σv = a+ bv2. It appeared that the s-wave coefficient is giving the bulk of
the annihilation and for the loop corrections also. However we observed that, in the light-wino
scenario, this expansion was not valid anymore, due to an important enhancement (negative
or positive) of the loop corrections when the relative velocity was vanishing. We related it to
the one-loop expression of a non-perturbative effect : the so-called Coulomb/Sommerfeld effect.
At the non-perturbative level this enhancement is caused by the multiple exchange of massless
gauge boson before the annihilation takes place, resulting into the famous 1/v enhancement. We
probed this effect until v ≃ 10−3 and no special treatment was applied. In the next chapter this
will not be the case. We then showed, by slightly modifying the expansion, that we were able
to capture its one-loop manifestation with the SloopS code. I also resummed this effect thanks
to the analytic formula and I noticed that the difference between the resummed and one-loop
cross section was negligible. Finally we concluded that, for relic density purpose, this effect has
no impact on the final result. This chapter is the original version of a published paper.

Résumé en français Je vais présenter dans ce chapitre une application du code SloopS au
calcul de la densité relique de Matière Noire à l’ordre d’une boucle dans le MSSM. La densité
relique sera obtenue en résolvant l’équation de Boltzmann dans le scénario cosmologique stan-
dard dominé par la radiation à l’aide du programme micrOMEGAs . Dans ce scénario l’abondance
relique est inversement proportionnelle à la moyenne thermique de la section efficace totale mul-
tipliée par la vitesse relative. La détermination de ce terme est reliée au modèle de physique des
particules sous-jacent et le but était de pousser le calcul à l’ordre sous-dominant avec SloopS .
Le calcul précis de l’abondance relique est d’une importance cruciale car dans un futur proche les
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expériences dédiées atteindront un niveau de précision jamais égalé, par conséquent, du côté des
prédictions théoriques le même niveau de précision doit être atteint au minimum, pour pouvoir
extraire de cette mesure de l’information à propos des modèles cosmologiques et de physique
des particules sous-jacents. La prise en compte de la totalité des corrections, électrofaibles et
fortes a résulté en l’évaluation de tous les diagrammes de Feynman à boucle ainsi que ceux
comportant l’émission réelle d’un photon/gluon à l’aide de la bibliothèque CUBA, lorsque des
particules colorées ou chargées électriquement étaient impliquées sur des pattes externes. Les
divergences infrarouges ont été régulées en ajoutant une masse infinitésimale au propagateur du
photon/gluon, comme cela est fait dans SloopS et la stabilité des processus dans l’ultraviolet a
été contrôlée avec attention pour tous les processus.

Je me suis concentré sur des modèles où la particule supersymétrique la plus légère est le neutra-
lino χ̃0

1 et j’ai exploré les différentes compositions donnant une annihilation en bosons de jauge
dans l’état final χχ → V V . Parmi les processus pertinents pour la densité relique, ces canaux
d’annihilation sont les plus difficiles car l’invariance de jauge y joue un rôle prépondérant. Ainsi
l’implémentation de la fixation de jauge non-linéaire a été d’une grande aide pour contrôler l’in-
variance de jauge des résultats et ainsi la bonne implantation de la renormalisation du MSSM
reliée au secteur de jauge. Pour que le neutralino se couple aux bosons de jauge, il doit possé-
der une composante SU(2) substantielle, cela est réalisé en donnant une composante wino ou
higgsino non-négligeable (cela signifie des valeurs pour M2 ou µ pas trop grandes par rapport à
M1). J’ai obtenu les paramètres pour chaque scénario en utilisant le programme micrOMEGAs , où
j’avais d’abord pris soin d’enlever toutes les corrections effectives à une ou deux boucles (pour
éviter un double comptage des corrections radiatives) en créant un fichier de modèle à l’arbre.
J’ai ensuite corrigé les processus contribuant à plus de 5% à la densité relique. En plus des
canaux impliquant des bosons de jauge dans l’état final, des canaux concomitants de coannihi-
lation entre le neutralino χ̃0

1 et le chargino χ̃±
1 impliquant des quarks dans l’état final ont aussi

été corrigés. Ainsi j’ai du aussi évaluer des corrections QCD où un gluon était échangé dans les
diagrammes de boucle, ainsi que l’émission “molle” et “dure” gluonique pour éliminer les dépen-
dances non-physiques en la faible masse donnée au gluon, et de l’énergie de coupure séparant le
régime “mou” du régime “dur”. Un traitement spécial a aussi été accordé aux canaux avec des
quarks légers dans l’état final concernant l’émission réelle “dure” d’un photon, car durant l’inté-
gration sur l’espace des phases du photon certains diagrammes étaient résonnants. Une fois que
le produit σv était évalué avec SloopS , j’ai interfacé les résultats avec le code micrOMEGAs . La
procédure était la suivante : d’abord comme micrOMEGAs calcule automatiquement les sections
efficaces à l’aide de CalcHEP en fonction de pcm, l’impulsion dans le centre de masse, j’ai converti
la dépendance en la vitesse v en une dépendance en pcm, puis j’ai interpolé les résultats à l’aide
de ROOT. La fonction d’interpolation était ensuite passée à micrOMEGAs et une instruction lui était
donnée pour qu’à chaque fois qu’un processus que nous avions corrigé était nécessaire pour le
calcul du terme de collision, micrOMEGAs utilisait notre fonction d’interpolation. Cette procédure
n’est probablement pas la plus automatique possible mais elle a l’avantage de pouvoir contrôler
chaque étape de l’interface. J’ai cependant l’intention d’améliorer cette interface dans un futur
proche.

J’ai étudié trois scénarios où le neutralino était relativement léger, de l’ordre de quelques centaines
de GeV. Dans le premier scénario le neutralino était un mélange bino-wino, dans le second un
pur higgsino et dans le dernier un pur wino. Un point commun à tous ces scénarios est que le
couplage le plus important du neutralino χ̃0

1 aux bosons de jauge se faisait par l’intermédiaire du
couplage χ̃0

1χ̃
±
1 W

±, néanmoins, dans le scénario du higgsino pur le couplage χ̃0
1χ̃

0
2Z

0 était aussi
important, car proportionnel à la fraction higgsino du χ̃0

1. Pour chaque scénario la dépendance
en le schéma de renormalisation du paramètre tan β a été étudiée. Nous avons observé que la
reconstruction de ce paramètre est plutôt sensible au schéma de renormalisation dans le scénario
du bino-wino, beaucoup plus faible dans le cas du higgsino pur voire quasiment inexistante pour
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le wino pur. Pour comprendre ce qui pilotait l’annihilation des différents canaux nous avons
interpolé le produit σv à l’ordre de Born et à l’ordre d’un boucle à l’aide du développement en
puissance de v suivant σv = a + bv2. Il est apparu que le coefficient d’onde s a donnait la plus
grande partie de l’annihilation et des corrections de boucle. Nous avons cependant remarqué
dans le scénario du wino pur que ce développement n’était plus valide, à cause d’une importante
correction (positive ou négative) radiative due à la manifestation à l’ordre d’une boucle d’un
effet non-perturbatif : l’effet Coulomb/Sommerfeld. Au niveau non-perturbatif cet effet est du,
en terme de diagrammes de Feynman, à l’échange multiple de bosons de jauge non-massifs
avant l’annihilation à proprement parler, résultant en le comportement en 1/v bien connu. J’ai
ensuite montré, en modifiant légèrement le développement, qu’il était possible de capturer sa
manifestation à l’ordre d’une boucle avec le code SloopS . J’ai aussi resommé cet effet à tous
les ordres grâce à la formule analytique trouvée dans la littérature et la différence observée avec
l’approche à une boucle était négligeable. Pour conclure nous avons observé que cet effet n’avait
pas d’impact sur le résultat final. Ce chapitre est constitué d’un article en anglais présenté sous
sa forme originale.
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Abstract

We have computed the full one-loop corrections (electroweak as well as QCD) to processes contri-
buting to the relic density of dark matter in the MSSM where the LSP is the lightest neutralino.
We cover scenarios where the most important channels are those with gauge boson pair produc-
tion. This includes the case of a bino with some wino admixture, a higgsino and a wino. In this
paper we specialise to the case of light dark matter much below the TeV scale. The corrections
can have a non-negligible impact on the predictions and should be taken into account in view
of the present and forthcoming increasing precision on the relic density measurements. Our cal-
culations are made with the help of SloopS , an automatic tool for the calculation of one-loop
processes in the MSSM. The renormalisation scheme dependence of the results as concerns tan β
is studied.

Phys. Rev. D81 015005 (2010), arXiv : 0910.3293 [hep-ph]
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8.1 Introduction

Existence of nonbaryonic dark matter is established through precise determination of the
mean densities of matter in the Universe. However one does not know what constitutes dark
matter even if the measurement of the relic density of cold dark matter is now very precise[3].
On the other hand the latest observations dedicated to the detection of dark matter have recently
received a lot of attention : the PAMELA collaboration has reported a 100 GeV excess on the
ratio of fluxes of cosmic ray positrons to electrons[109] and the ATIC balloon experiment claims
a cut-off in the positron flux near 500 GeV[110]. The FERMI[111] and HESS[112] observations
do not confirm this data but still point to a deviation from the power-law spectrum. Many expla-
nations were advocated to account for these results and the most optimistic and exciting one is
that it could be a signal of annihilating dark matter. Supersymmetry can provide, among many
other advantages, a dark mater candidate through the lightest supersymmetric particle (LSP)
which is a neutralino, χ̃0

1, if R-parity is conserved. Meanwhile, the search for dark matter will
soon also take place within colliders, in particular the LHC. If dark matter is discovered among
the other new particles that form a New Physics model, one will be able to probe its properties.
One could then predict the relic abundance of the Universe and would constrain cosmology with
the help of precision data[21, 113, 114] provided by WMAP[3] and PLANCK[13]. The present
WMAP accuracy on the relic density is about 10% and with the PLANCK satellite that has
been launched recently it will reach about 2% precision. Sophisticated codes exist [20, 90, 115]
for the calculation of the relic density in supersymmetry with the inclusion of some higher order
effects, essentially through some running couplings/masses or some effective couplings (particu-
larly corrections to the Higgs couplings that can drastically change the results in the so called
Higgs funnel[90, 116] for example). However these codes are essentially based on tree-level cross
sections. To match the experimental accuracy, on the theoretical side we have to provide more
precise calculations. Therefore we need to evaluate annihilation and co-annihilation cross sec-
tions at least at next-to-leading order. Considering the very large number of processes required
for the evaluation of the relic density and the number of diagrams that each process involves,
especially at one loop, automation of the relic density calculations especially in the MSSM in
unavoidable. The purpose of this paper is to present some results on the one-loop calculation of
the relic density of the LSP in the MSSM, where the dominant annihilation and co-annihilation
channels are dominated by annihilations into gauge bosons. Beside the physics motivation for
such scenarios, calculations of these processes involving gauge bosons are challenging. Attempts
to include some effects through effective couplings are tricky because one has to be careful about
maintaining gauge invariance and unitarity. A preliminary study of such scenarios has been made
by some of us[21, 117]. In this paper we consider the case of a relatively light neutralino. Very
heavy neutralinos with TeV masses and above will be studied in a subsequent paper especially
since they show new interesting effects.

The relic abundance will be derived from the assumption that it is thermally produced in the early
stages of the universe[118], so in a first approximation the relic density is inversely proportional
to the thermal average cross sections, 〈σv〉. The computations that we present here are performed
with the help of SloopS[21, 70, 78, 79], which is a fully automated code for the NLO calculation
of any cross section or decay in the MSSM. Although our main interest concerns the channels
with gauge bosons in the final state, we will find that there are non negligible co-annihilations
channels with quarks in the final state. We calculate both the electroweak and QCD corrections
to these contributions. There can be a host of processes contributing to the relic density for a
particular scenario. In this paper we calculate however the radiative corrections only to those
processes which, at tree-level, contribute more than 5% to the relic density. We study here three
different scenarios corresponding to three different compositions of our lightest neutralino : i)
a bino like neutralino with some wino admixture , ii) a higgsino like neutralino, iii) a light

126



8.2. OVERVIEW OF THE CALCULATION

wino like neutralino. We will also study the impact of different choices of the renormalisation
scheme for tan β on the corrections. To derive the corrected relic density we feed our velocity
dependent cross sections into micrOMEGAs[90] for performing the thermal average and solving
the Boltzmann equations. We will always show the cross sections (at tree-level and at one-loop)
in terms of the relative velocity and as a guide we extract the s-wave and p-wave coefficients
and the corrections they receive. This helps also extract the, one-loop, Sommerfeld[73] factor for
some of the cross sections. In the processes we study here these are of QED origin. Once these
one-loop Sommerfeld QED corrections are extracted we first subtract them before performing
the all order resummation and deriving the relic density.
The paper is organised as follows. In the next section we give an overview of SloopS and on how
we perform the one-loop calculations, in particular summarising our renormalisation procedure.
Checks on the calculations as concerns ultra-violet finiteness, infra-red finiteness and gauge pa-
rameter independence are spelled out. The interface between SloopS and micrOMEGAs will also
be presented. Most of the scenarios that we will be studying involve co-annihilation, we will
define the effective cross section that includes the statistical weight. At the end of this section
we present how our models have been defined. Section 3 considers the case of a light (about 100
GeV) mixed bino-wino LSP. The case of a dominantly higgsino LSP with mass of about 200 GeV
is studied in Section 4. Section 5 covers the case of a light wino of about the same mass. The
last section contains our conclusions and prospects.

8.2 Overview of the calculation

8.2.1 Set up of the automatic calculation : SloopS

One-loop processes calculated via the diagrammatic Feynman approach involve a huge num-
ber of diagrams even for 2 → 2 reactions, especially in a theory like supersymmetry. Doing full
calculations by hand without automation is practically untractable. There exists already efficient
automatic codes for one-loop calculations[57, 60, 119]. SloopS is an automated code for one-
loop calculations in supersymmetry. It is a combination of LanHEP[88], the bundle FeynArts[89],
FormCalc[57] and an adapted version of LoopTools[65, 70] (that we will call the FFL bundle from
now on). LanHEP deals with one of the main difficulties that has to be tackled for the automa-
tion of the implementation of the model file, since this requires that one enters the thousands
of vertices that define the Feynman rules. On the theory side a proper renormalisation scheme
needs to be set up, which then means extending many of these rules to include counter-terms.
This part is done through LanHEP which allows to shift fields and parameters and thus generates
counterterms most efficiently. The ghost Lagrangian is derived directly from the BRST transfor-
mations. The loop libraries used in SloopS are based on LoopTools with the addition of quite
a few routines in particular those for dealing with small Gram determinants that appear in our
case at small relative velocities of the annihilating dark matter, and even more so of relevance
for indirect detection[70].

8.2.2 Non-linear gauge fixing

We use a generalised non-linear gauge[45, 70] adapted to the minimal supersymmetric model.
The gauge fixing writes

LGF = − 1

ξW
|(∂µ − ieα̃Aµ − igcW β̃Zµ)W µ + + iξW

g

2
(v + δ̃h0 + ω̃H0 + iκ̃G0 + iρ̃A0)G+ |2

− 1

2ξZ
(∂µZ

µ + ξZ
g

2cW
(v + ǫ̃h0 + γ̃0

H)G0)2 − 1

2ξA
(∂µA

µ)2 . (8.1)
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Unlike the other parts of the model LGF is written in terms of renormalised fields and parameters.
G0,G± are the Goldstone fields. We always work with ξA,Z,W = 1 so as to deal with the minimal
set of loop tensor integrals. This implementation of the gauge fixing is very useful to check gauge
independence for processes with gauge boson production. More details are given in[78].

8.2.3 Renormalisation

In our code we have renormalised and implemented each sector of the MSSM. This is explai-
ned in details in[21, 78, 79]. Here we only briefly sketch the renormalisation procedure. We have
worked, as far as possible, within an on-shell scheme generalising what is done for the electroweak
standard model[60].

i) The Standard Model parameters : the fermion masses as well as the mass of the W and Z are
taken as input physical parameters. The electric charge is defined in the Thomson limit, see for
example[60]. The light quarks (effective) masses are chosen such as to reproduce the SM value
of α−1(M2

Z) = 127.77. This should be kept in mind since one would be tempted to use a DR
scheme for α, defined as MZ , to take into account the fact that dark matter is annihilating at
roughly the electroweak scale, so that α(M2

Z) is a more appropriate choice. We should keep in
mind that doing so would amount to correcting the tree-level cross section by about 13% for
2 → 2 processes. As we will see this running does not, most of the time, take into account the
bulk of the radiative corrections that we report here.

ii) The Higgs sector : We take the pseudoscalar Higgs mass MA as an input parameter and
require vanishing tadpoles. tan β is defined through several schemes whose impact on the radiative
corrections we will study :

- a DR definition where the tan β counter-term is defined as a pure divergence leaving out all
finite parts.

- a process-dependent definition of this counter-term by extracting it from the decay A0 →
τ+τ− that we will refer to as Aττ for short. This definition is a good choice for the gauge
independence of the processes.

- an on-shell definition with the help of the mass of the heavy CP Higgs H0 taken as input
parameter called the MH scheme from now on. We have reported elsewhere that this scheme
usually introduces large radiative corrections.

These schemes are thoroughly discussed in [78], in particular the question of gauge invariance of
these schemes is addressed.

iii) The sfermion sector : For the slepton sector we use as input parameters masses of the two
charged sleptons which in the case of no-mixing define the R-slepton soft breaking mass, MẽR

and the SU(2) mass, MẽL
, giving a correction to the sneutrino mass at one-loop. In the squark

sector each generation needs three physical masses to constrain the breaking parameter MQ̃L
for

the SU(2) part, MũR
, Md̃R

for the R-part. See[79] for details.

iv) The chargino/neutralino sector : For this sector we implement an on-shell scheme by taking as
input three masses in order to reconstruct the underlying parameters M1,M2, µ. In SloopS [79]
the default scheme is to choose two charginos masses mχ̃±

1
and mχ̃±

2
as input to define M2 and µ

and one neutralino mass, mχ̃0
1
, to fix M1. The masses of the remaining three neutralinos receive
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one-loop quantum corrections. In this scheme, these counterterms are [79]

δM2 =
1

M2
2 − µ2

(
(M2m

2
χ̃+

1

− µdetX)
δmχ̃+

1

mχ̃+
1

+ (M2m
2
χ̃+

2

− µdetX)
δmχ̃+

2

mχ̃+
2

− M2
W (M2 + µs2β)

δM2
W

M2
W

− µM2
W s2βc2β

δtβ
tβ

)
,

δµ =
1

µ2 −M2
2

(
(µm2

χ̃+
1

−M2detX)
δmχ̃+

1

mχ̃+
1

+ (µm2
χ̃+

2

−M2detX)
δmχ̃+

2

mχ̃+
2

− M2
W (µ+M2s2β)

δM2
W

M2
W

−M2M
2
W s2βc2β

δtβ
tβ

)
, (8.2)

δM1 =
1

N∗ 2
11

(δmχ0
1
−N∗ 2

12 δM2 + 2N∗
13N

∗
14δµ

− 2N∗
11N

∗
13δY13 − 2N∗

12N
∗
13δY23 − 2N∗

11N
∗
14δY14 − 2N∗

12N
∗
14δY24) , (8.3)

with detX = M2µ−M2
W s2β, Y is the neutralino mixing matrix and N its diagonalising unitary

matrix, see [79]. Looking at these equations some remarks can be made. First, in the special
configuration M2 ∼ ±µ an apparent singularity might arise. Ref. [21] pinpointed this configu-
ration which can induce a large tβ-scheme dependence in the counterterms δM1,2 and δµ and
therefore to the annihilation of the LSP into W ’s for a mixed LSP, see also [79]. Second, the
choice of mχ̃0

1
as an input parameter is appropriate only if the lightest neutralino is mostly bino

or if the bino like neutralino is not too heavy compared to other neutralinos. It is however very
easy to switch to another scheme or choice of input parameters in the chargino/neutralino sector.
For instance if the bino like neutralino is the NLSP with mass mχ̃0

2
, like what occurs in the wino

scenario that we study in this paper, we simply take mχ̃0
2

as input in which case δM1 is obtained
from Eq. (8.3) by δmχ0

1
→ δmχ0

2
and N1j → N2j .

v) Finally diagonal field renormalisation is fixed by demanding the residue at the pole of the pro-
pagator of all physical particles to be unity, and the non-diagonal part by demanding no-mixing
between the different particles when on shell. This is implemented in all the sectors.

vi) Dimensional reduction is used as implemented in the FFL bundle at one-loop through the
equivalent constrained dimensional renormalisation[120].

8.2.4 Infrared divergences

For the processes χχ→ XY ,X,Y = W±, Z0, f, .., we can decompose the one-loop amplitudes
in a virtual part MEW

1loop (for co-annihilation processes with external quarks we also need to add

MQCD
1loop ) and a counter-term contribution MCT . The sum of these two amplitudes must be

ultraviolet finite and gauge independent. Due to the virtual exchange of the massless photon
and gluon, this sum can contain infrared divergencies. This is cured by adding a small mass
to the photon and/or gluon, λγ and λg. This is a valid regularisation, even for QCD, for all
the processes we study here where the non-Abelian nature of QCD does not show up. This
mass regulator should exactly cancel against the one present in the final state radiation of
a photon(gluon). The QED(QCD) contribution is therefore split into two parts : a soft one
where the photon(gluon) energy Eγ,g is integrated to less than some small cut-off kc and a
hard part with Eγ,g > kc. The former requires a photon(gluon) mass regulator. Finally the sum
MEW+QCD

1loop + MCT + Msoft
γ,g (Eγ,g < kc) + Mhard

γ,g (Eγ,g > kc) should be ultraviolet finite, gauge
invariant, not depend on the mass regulator and on the cut kc. We take the strong coupling
constant at the electroweak scale αs=αs(M

2
Z)=0.118.
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8.2.5 Checking the result

i) For each process and set of parameters, we first check the ultraviolet finiteness of the results.
This test applies to the whole set of virtual one-loop diagrams. The ultraviolet finiteness test is
performed by varying the ultraviolet parameter CUV = 1/ε, ε is the usual regulator in dimen-
sional reduction. We vary CUV by seven orders of magnitude with no change in the result. We
content ourselves with double precision.

ii) The test on the infrared finiteness is performed by including both the loop and the soft brem-
sstrahlung contributions and checking that there is no dependence on the fictitious photon mass
λγ or gluon mass λg.

iii) Gauge parameter independence of the results is essential. It is performed through the set
of the eight gauge fixing parameters defined in Eq. (8.1). The use of the eight parameters is
not redundant as often these parameters check complementary sets of diagrams. It is important
to note that in order to successfully achieve this test one should not include any width in the
propagators. However we encountered a W boson resonance for the calculation of χχ→ qq′ and
we had to include a width to the W propagator to avoid numerical instabilities ; nevertheless this
has been done only for the evaluation of the hard emission part and not for the virtual and soft
part. This will be discussed at more length in due course.

iv) For the bremsstrahlung part, the soft component is added to the virtual corrections and, for
the hard one, we use VEGAS[121] adaptive Monte Carlo integration package provided in the FFL

bundle and verify the result of the cross section against CompHep[93]. The hard part is also the
trickiest, especially when threshold or resonances are encountered as stated above, so for some
calculations we use BASES[96] provided in the GRACE package[59] which have a better treatment
of singularities[60]. We choose kc small enough and check the stability and independence of the
result with respect to kc.

8.2.6 Effective weighted cross sections

All cross sections σij where i, j label the annihilating and co-annihilating DM particles i, j
can, in general, be expanded in terms of the relative velocity vij , which for neutralino annihilation

is v = 2β = 2
√

1 − 4m2
χ̃0

1

/s. Away from poles and thresholds, it is a good approximation to write

σijvij = aij + bijv
2, keeping only the s-wave, aij, and p-wave, bij coefficients. With T being the

temperature, x = mχ̃0
1
/T , the thermal average gives

〈σij vij〉 = aij + 6(bij − aij/4)/x. (8.4)

With g0 = 2 the neutralino LSP spin degree of freedom (sdof), the co-annihilating particle of
sdof gi and mass mi contributes an effective relative weight of

gi,eff =
gi

g0
(1 + ∆mi)

3/2 exp(−x ∆mi), ∆mi = (mi −mχ̃0
1
)/mχ̃0

1
. (8.5)

The total number of sdof is geff =
∑

i gi,eff . An approximation to the relic density is obtained
through a simple one dimensional integration

Ωh2 =

(
10√
g∗(xF )

xF

24

)
0.237 × 10−26cm3.s−1

xF J
, J =

∫ ∞

xF

〈σv〉effdx/x
2

〈σv〉eff =
∑

ij

gi,effgj,eff

g2
eff

〈σij vij〉. (8.6)
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aij, bij that are needed to compute σij in Eq. (8.6) are given in cm3s−1. xF represents the
freeze-out temperature. g∗(xF ) is the effective degrees of freedom at freeze-out. g∗ is tabulated in
micrOMEGAs and we read it, as well as xF , from there. The weight of a channel (see the percentages
we will refer to later) corresponds to its relative contribution to J . We find it instructive to
consider the weighted cross section

gi,effgj,eff

g2
eff

σij vij (8.7)

By doing this we somehow normalise the contributions of, in particular, the co-annihilation cross
sections which can be very large compared to the annihilation cross sections, but which at the
end do not contribute as much because of the Boltzmann factor, exp(−x ∆mi). In our plots the
weight and statistics factors are chosen at freeze-out with x = xF , see Eq. (8.5), and for ease of
notation we drop the label eff . Since x = xF is the lowest value of x, see Eq. (8.6), that enters
the calculation of the relic density, the weight factor tends to enhance the real contribution of
the co-annihilation channels. The correct overall weight is in our case given by micrOMEGAs . This
fact should be taken into account when we compare the figures where the weighted cross sections
are shown and the tables where the overall weight (extracted from micrOMEGAs ) is given.
Let us stress once more that in order to derive the relic density we do not rely on the approxi-
mations given in Eqs (8.4, 8.5, 8.6) but pass all the cross sections to micrOMEGAs .

8.2.7 Interfacing SloopSwith micrOMEGAs

In order to evaluate the relic density, we interfaced SloopS with micrOMEGAs to take full
advantage of its powerful features concerning the cosmology related part (solving the Boltz-
mann equations with co-annihilation, calculation of the effective degrees of freedom, thermal
averaging,..). The connection between the two codes is summarized in the following :

1. The MSSM default directory of micrOMEGAs uses SuSpect [46]. In so doing it inherits
some of the radiative corrections in particular in the spectrum (mass) calculation used
in SuSpect . From the corrected spectrum micrOMEGAs works out new effective tree-level
underlying parameters so that gauge invariance is maintained. For the interface we have
removed this default option of reading from SuSpect and created a model file based on
the same tree-level lagrangian as the one used in SloopS . In so doing both SloopS and
micrOMEGAs calculate the same tree-level cross sections. This is also a check on our tree-
level cross sections.

2. The one-loop cross sections of SloopS , appearing into the form of tables showing the cross
section as a function of the relative momentum p, σ(p), are then interpolated and passed
to micrOMEGAs which substitutes these new corrected cross sections to the corresponding
tree-level cross sections. Processes that are not corrected (and hence are not substituted)
are of course kept in the list of processes for the evaluation of the relic density.

8.2.8 Finding scenarios in the MSSM parameter space

The latest limits on the relic density coming from WMAP five years data give the 2σ range[3],

0.0975 < Ωχh
2 < 0.1223 (8.8)

When mχ > mW , channels with gauge bosons in the final state open and LSP’s are annihilating
very efficiently, making it difficult to obtain an absolute value of the relic density within the
WMAP bounds. In the MSSM this is realized with a neutralino which is mostly wino like or
higgsino like and its corresponding mass must be around 1 TeV for the latter and 2 TeV in the
wino case to be in the cosmologically interesting region. Keeping this in mind we did not worry
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too much about the value of the relic cosmic abundance and, instead, we restricted ourselves
to get gauge bosons in the final state to study the origin of large corrections, if any. Moreover,
since the impact of radiative corrections can be large, there is not so much sense in picking up
a model based on its agreement with the current data on the basis of a tree-level calculation
and finally we could argue that this agreement can be obtained with non-thermal dark matter
production, or any other mechanism which could avoid too much depletion. This said we also
wanted to have a rather light spectrum as a supersymmetric solution to the hierarchy problem
requires a relatively light LSP and in order to have scenarios testable at colliders. Regardless
of these remarks we used micrOMEGAs as a guide, being careful about translations of effective
couplings and input parameters.
Last but not least, it is important to stress that we did not apply radiative corrections to all sub-
processes but only to the ones contributing more than 5% to the relic density, the remaining ones
were included only at tree-level. Most often the processes that we do not correct add up to more
than 25% of all the processes contributing to the relic density, even if individually their weight is
small. Therefore when calculating the correction to the relic density, the one-loop corrections we
compute can get diluted especially if some cancelations occur at one-loop between the processes
we consider. This point should be kept in mind when we quote the one-loop corrected relic den-
sity. Ideally we should have corrected all cross sections. This could of course be done with our
code SloopS and interface to micrOMEGAs , however in these exploratory investigations our aim
is to uncover the salient features of the radiative corrections to annihilation and co-annihilation
of dark matter in supersymmetry.

For all the scenarios we will give below, the low energy tree-level input parameters are defined
at the electroweak scale and are : M1 the U(1) gaugino mass, M2 the SU(2) counterpart, µ the
Higgsino “mass”, M3 the gluino mass, MA the mass of the pseudoscalar Higgs boson and tan β.
When not specified we will take a common sfermion mass. The sfermion trilinear parameter Af

is set to zero for all generations. We do not impose any gaugino mass unification at the GUT
scale. Now let us describe the scenarios we study :

i) Mixed-bino scenario : Usually, assuming gaugino mass universality at the GUT scale leads
to a bino like LSP. This gives a relic density which overcloses the universe. Relaxing this
assumption by adding a substantial wino component one can match the WMAP range
thanks to the opening of gauge boson channels and co-annihilation with χ̃±

1 . This is easily
achieved with M1 ∼ M2. In our fist scenario M1 ∼ 100 GeV so that the mass of the LSP
is around 100 GeV.

ii) Higgsino scenario : A mainly higgsino neutralino of mass mχ > mW (here mχ̃0
1
∼ 230 GeV)

will automatically annihilate dominantly into gauge bosons and, because of the degeneracy
with the lightest higgsino like chargino, co-annihilation takes place also.

iii) Light-wino scenario : A simple way to obtain gauge bosons in the final states of annihilating
neutralinos is to increase its SU(2) type coupling by decreasing the value of M2 in order
to have a wino like neutralino whose mass mχ̃0

1
is taken around 200 GeV in this case. Once

again we have co-annihilation of the χ̃0
1 with the χ̃±

1 because of the small mass gap between
them.

8.3 A mixed bino scenario

The first example we examine corresponds to a neutralino LSP which has a substantial bino
component. It is known that an almost pure bino does not annihilate enough to give the right
relic density in the radiation dominated standard scenario. As it couples mostly to particles with
largest hypercharge, the R-sleptons, one can increase the LSP annihilation rate by lowering the
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R-sleptons mass. This is typical of the so-called bulk region of mSUGRA. One can also rely
on co-annihilation with the next-to-lightest supersymmetric particle (NLSP) to reduce the relic
abundance. An example is co-annihilation with the τ̃ . We have studied these scenarios in [21]
including one-loop effects. Another solution is to add some wino component by fixing M2 close to
M1, hence the LSP/NLSP will have strong couplings with the W boson which will dominate the
annihilation rate. This is the case we study here. We take chargino masses within the LEP limits
while all other particles (sfermions, other neutralinos) are heavy. The underlying parameters of
the models are given in Table 8.1.

Parameter M1 M2 µ tβ M3 ML̃,Q̃ Ai MA0

Value 110 134.5 -245 10 600 600 0 600

Table 8.1 – Mixed-bino scenario : Values of the first SUSY set of input parameters. Masses are
in GeV.

M1,2, µ are reconstructed from mχ̃0
1
and mχ̃±

1
,mχ̃±

2
. The relevant physical masses are mχ̃0

1
= 106.9

GeV, mχ̃±
1

= 124.6 GeV and mχ̃+
2

= 274.8 GeV. At tree-level mχ̃0
2

= 125.3 GeV. The neutralino

composition is : χ̃0
1 = 0.94B̃ − 0.20W̃ − 0.27H̃0

1 − 0.10H̃0
2 , where B̃, W̃ , H̃0

1,2 denote the U(1)
gaugino or bino, the SU(2) gaugino of wino and the higgsino respectively. The wino component
is not negligible. As a consequence annihilation into gauge bosons is dominant. The main process
χ̃0

1χ̃
0
1 → W+W− contributes 44% to the relic density. The important co-annihilation channels

are χ̃0
1χ̃

+
1 → Z0W+, χ̃0

1χ̃
0
2 → W+W− both contributing 5% and χ̃0

1χ̃
+
1 → ud̄ contributing 8%.

χ̃0
1χ̃

+
1 → cs̄ contributes as much as the ud̄ final state. In the following we will refer to only one

of these quark final states, of course both are counted for the calculation of the relic density. For
the the χ̃0

1χ̃
+
1 co-annihilation, the s-channel exchange of a W+ boson is dominant, see also [122].

Before showing our results let us comment on a technicality related to the contribution of the
hard bremsstrahlung contribution. This concerns the radiative process χ̃0

1χ̃
+
1 → ud̄γ, see Fig. 8.1.

χ̃0
1

χ̃+
1

γ

W+

u

d̄

W+

χ̃0
1

χ̃+
1

γ

u

d̄
W+

Figure 8.1 – Real photon emission leading to W return.

As explained above, when charged/colored particles are involved in the initial/final state, ini-
tial/final state radiation should be incorporated to have an infrared safe cross section. This
emission is split into two pieces, soft and hard, and the cross section must be independent of the
cut where these two parts are defined. Calculating the real emission is a tricky task, especially
here. Indeed hard photon emission leads to W -return, bringing the intermediate W on-shell, and
therefore would lead to numerical instability if no width, ΓW , is provided for the internal W . We
have dealt with this problem by providing a width to the W only when the radiation is hard,
as needed. For the soft part no width is introduced in order to achieve the cancelation of the
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infrared divergence between the soft bremsstrahlung and the virtual correction where all masses
are real. In summary since the W resonance turns up at an energy much larger than the cutoff
energy kc, where the matching between the soft and hard emission is done, we decided to split
the integration on the hard photon phase-space in the 2 → 3 process as follows :

i) from kc < Eγ,g <
1

2
√

s
(s − (M2

W + 2ΓWMW )), no width is implemented

ii) from 1
2
√

s
(s− (M2

W + 2ΓWMW )) < Eγ,g <
1

2
√

s
(s−M2

ud̄
) with a width to the W propagator.

One must note that for ii) the hard emission is in fact already included in the tree-level process
χ̃0

1χ̃
+
1 →W+γ with theW decaying into a ud̄(, cs̄) pair. The process χ̃0

1χ̃
+
1 →W+γ contributes to

the relic density but we did not added to our list of cross sections to correct as it contributes less
than 5%. To avoid double counting when calculating the relic density at one-loop, we therefore
subtract from the list of uncorrected tree-level contributions χ̃0

1χ̃
+
1 → W+γ with the proper

branching fraction into ud̄, cs̄. We will encounter this feature for all other scenarios that lead to
such a final state and we will treat it in the same way.
Another point is related to processes which are initiated through χ̃0

2 co-annihilation, χ̃0
1χ̃

0
2 →

W+W−. We are working with a scheme where the input parameters are mχ̃0
1
,mχ̃±

1
,mχ̃±

2
. There-

fore mχ̃0
2

receives a correction at one-loop. In principle the full one-loop amplitude would write

M1−loop(mone-loop

χ̃0
2

) = M1−loop(mχ̃0
2
) + ∆mχ̃0

2

∂Mtree

∂mχ̃0
2

(mχ̃0
2
) , (8.9)

where Mtree(mχ̃0
2
) is the tree-level amplitude, mχ̃0

2
and mone-loop

χ̃0
2

= mχ̃0
2
+ δmχ̃0

2
is the corrected

mass. We have neglected the second contribution. This is because the correction to mχ̃0
2

is less
than 0.3% for all tβ schemes as shown in Table 8.2. When calculating the relic density we should

Masses [GeV] mχ̃0
2

mχ0
3

mχ0
4

Tree Level 125.3 258.1 270.4

One Loop - Aττ scheme 125.13 258.58 270.42

- MH scheme 125.31 258.05 270.65

- DR scheme 125.17 258.46 270.47

Table 8.2 – Mixed-bino scenario : One-loop corrections to the chargino/neutralino masses in
GeV in the scheme mχ̃0

1
mχ̃+

1
mχ̃+

2
for different tβ-schemes : Aττ , DR and MH.

also in principle use the corrected physical mass, like for example in the Boltzmann factor,
however again this is negligible. Results for the weighted cross sections at tree-level and at one-
loop are displayed in Fig. 8.2. First of all the QCD and EW corrections to the co-annihilation into
light quarks add up to about 10% and are practically velocity independent, especially the QCD
corrections. The full O(α) correction to gauge boson production shows the same feature. The
dominant annihilation channel into W+W− gets about +7% correction, while χ̃0

1χ̃
0
2 → W+W−

is slightly larger with 9%. χ̃0
1χ̃

+
1 → Z0W+ is small with about 2%. Had we used a running α at

MZ some of the largest positive corrections would have been absorbed, however our results show
that the full corrections are necessary in view of the upcoming precision on the extraction of the
relic density. For this scenario the corrections, in the α(0) schemes are positive for all processes
we have considered. Nonetheless, since the wino component is important in the evaluation of the
cross sections because of the SU(2) quantum numbers of the final states, we expect these results
to be sensitive to the tan β scheme, since tan β enters the mixing of the bino and the wino.
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Figure 8.2 – Mixed-bino scenario. The left/right panel shows the main gauge boson/quark pro-
duction cross sections respectively. All the cross sections are normalised with the corresponding
effective degrees of freedom given by Eq. (8.7) with xF = 25.0. Results are shown for the Aττ

scheme of tan β.
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Tree Aττ DR MH

χ̃0
1χ̃

0
1 →W+W− [44%] a +0.81 +7.6% +12.16% +29.6%

b +1.219 +0.78% +7.1% +24.2%

χ̃0
1χ̃

+
1 → ud̄ [8%] a +15.61 +7.2% +9.8% +18.8%

b −5.81 +5.7% +8.3% +17.4%

χ̃0
1χ̃

+
1 → Z0W+ [5%] a +8.26 +2.9% +4.4% +9.7%

b +1.42 −7.3% −3.3% +10.7%

χ̃0
1χ̃

0
2 →W+W− [5%] a +17.81 +9.0% +11.1% +18.2%

b +11.86 +4.8% +7.3% +16.1%

Ωχh
2 0.108 0.105 0.102 0.097

δΩχh2

Ωχh2 −2.8% −5.6% −10.2%

Table 8.3 – Mixed-bino scenario : Tree-level values of the s-wave (a) and p-wave (b) coefficients
in units 10−26cm3s−1, as well as the relative one-loop corrections in the Aττ , DR, and MH
scheme. The percentages in the first column refer to the percentage weight, at tree-level, of that
particular channel to the relic density.

Table 8.3 gives in particular the tan β scheme dependence. As expected the dependence is not
negligible in particular for the annihilation channel with both LSP in the initial state. The
dependence weakens for the co-annihilation channels where only one LSP takes part. The MH

scheme is once again a bad choice showing once again[21, 79, 78] very large corrections. The
difference between the Aττ and DR is about 2% for the co-annihilation channels and 4% for
the annihilation channels. At the end taking into account the one-loop corrections only to those
processes we studied, which represent 70% off all processes, the correction on the relic density is
about −3% in the Aττ scheme and with α defined in the Thomson limit.

8.4 A light Higssino scenario

A pure Higgsino state could give an interesting relic density and, as the χ̃0
1χ̃

0
2Z

0 and χ̃0
1χ̃

±
1 W

±

are large, annihilates mainly into WW and ZZ final states. Besides, as there are three Higgsino
like states (two neutralinos and one chargino) whose mass splitting is small especially if gaugino
masses are large , mχ̃0

1
≃ mχ̃0

1
≃ mχ̃±

1
≃ |µ|, co-annihilation between the LSP and the other

higgsino states is important. With such efficient annihilations the relic density would be small
if the Higgsino like LSP is too light. Nonetheless it gives favourable prospects for dark matter
direct detection. The scenario we have chosen is described in terms of the underlying parameters
given in Table 8.4.
The LSP neutralino with mass mχ̃0

1
= 234 GeV has a composition χ̃0

1 = 0.11B̃−0.31W̃−0.70H̃0
1−

0.63H̃0
2 , indicating it is dominantly a higgsino state. Co-annihilation between the χ̃0

1 and χ̃±
1

occurs since mχ̃±
1

= 242.9 GeV. All other particles, including χ̃0
2 (whose mass is mχ̃0

2
= 260 GeV

and of composition χ̃0
2 = −0.31B̃−0.11W̃+0.92H̃0

1 −0.23H̃0
2 ), are heavy enough and therefore do

not take part in the co-annihilation. As the higgsino component of the neutralino is important, it
will couple mostly to the W and, compared to the mixed-bino case, to the Z0 boson also through
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Parameter M1 M2 µ tβ M3 ML̃,Q̃ Ai MA0

Value 400 350 -250 4 1000 650 0 800

Table 8.4 – Higgsino scenario : Parameters defining our higgsino model with little mixing.
Masses are in GeV.

the χ̃0
1χ̃

0
2Z

0 coupling.
Dominant tree-level processes relevant for the computation of the relic density are the same as
in the previous mixed-bino case except for the co-annihilation between the first two neutralinos
which is Boltzmann suppressed due to their larger mass splitting and smaller couplings. The
dominant processes are χ̃0

1χ̃
0
1 → W+W− contributing (at tree-level) 26% to the relic density,

χ̃0
1χ̃

+
1 → ud̄(cs̄) with 12%(12%), χ̃0

1χ̃
0
1 → Z0Z0 with 9% and χ̃0

1χ̃
+
1 → Z0W+ with 6%.

Our results for the cross sections both at tree-level and at one-loop are displayed in Fig. 8.3.
They are shown for Aττ scheme of tan β and where the input for α is in the Thomson limit.
Compared to the mixed bino case, the QCD and EW corrections to co-annihilation into light
quarks are smaller and no cancelation between the two occurs. The overall correction is almost
velocity independent and ranges between 10% to 8%. The corrections to gauge boson production
are smaller for χ̃0

1χ̃
0
1 →W+W− and χ̃0

1χ̃
+
1 → Z0W+ and about 10% for χ̃0

1χ̃
0
1 → Z0Z0. Fig. 8.3

shows a very interesting dynamical effect in the one-loop correction to χ̃0
1χ̃

0
1 → W+W−, Z0Z0

for v2 ∼ 0.3. The bumps are in fact due to the opening of the χ̃+
1 threshold in the loop, as can

be checked explicitly for this value of the velocity and the mass of the LSP compared to that
of the χ̃+

1 . This dynamical structure can not be described by a simple a + bv2 parametrisation
of the cross section. Compared to the bino case we have studied in the previous section the
tan β scheme dependence is small. The dependence is shown in Table 8.5 where we also give the
results in terms of the s-wave and p-wave coefficients for a fit in the range v2 < 0.3 so that we
avoid the dynamical structure we have just pointed at. The difference between the Aττ scheme
and the DR scheme is below 1% for all processes we studied, while the MH scheme gives larger
corrections but within 2% compared to the DR. For quark production the scheme dependence
is even negligible. The overall O(α) corrections in this scenario, though not negligible, are not
that large with α defined in the on-shell scheme in the Thomson limit. Moreover corrections
coming from boxes and final state radiation are often dominant. This suggests that to grab most
of the radiative corrections a full calculation is needed. Within our approach of not correcting
the processes that contribute less than 5% to the relic density, the processes we have considered
contribute in total only 65%. In this approach we find a correction to the relic density of −2.5%
in the Aττ scheme and −2.4% in DR. In the MH scheme the correction is little changed to
−3.3%.

8.5 A light wino scenario

Models with a light wino as the dark matter candidate occur in theories like AMSB[51],
string compactifications[123] and also split-supersymmetry[124, 125]. The advantage of a light
wino is that it has a large annihilation cross section, relevant for indirect detection, but the
main drawback is that it predicts a small thermal relic abundance in the standard cosmological
scenario and non-thermal production has to be invoked to recover the correct relic density. The
underlying parameters of the model are given in Table 8.6.
The LSP is now essentially wino with a composition χ̃0

1 = 0.005B̃ − 0.99W̃ − 0.15H̃0
1 − 0.05H̃0

2

and mass mχ̃0
1

= 206.6 GeV. The LSP is highly degenerate with the χ̃±
1 , their mass difference

is ∆m ≃ 0.05 GeV and consequently sizeable co-annihilations occur in the determination of
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Figure 8.3 – Higgsino scenario : The left/right panel shows the main gauge boson/quark pro-
duction cross sections respectively. All the cross sections are normalised with the corresponding
effective degrees of freedom given by Eq. (8.7) with xF = 27.6.
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Tree Aττ DR MH

χ̃0
1χ̃

0
1 →W+W− [26%] a +11.84 +4.3% +5.1% +6.8%

b +4.17 +12.7% +13.4% +14.9%

χ̃0
1χ̃

+
1 → ud̄ [12%] a +15.28 +6.8% +7.0% +7.3%

b −5.31 +30.4% +30.7% +31.3%

χ̃0
1χ̃

0
1 → Z0Z0 [9%] a +4.28 +10.4% +9.6% +7.8%

b +1.83 +12.7% +12.0% +10.5%

χ̃0
1χ̃

+
1 → Z0W+ [6%] a +6.99 +1.7% +2.1% +2.9%

b −0.51 +85.6% +86.5% +88.4%

Ωχh
2 0.00931 0.00909 0.00908 0.00904

δΩχh2

Ωχh2 −2.4% −2.5% −3.3%

Table 8.5 – Higgsino scenario : Tree-level values of the s-wave (a) and p-wave (b) coefficients
in units 10−26cm3s−1 in the higgsino scenario, as well as the relative one-loop corrections in
the Aττ , DR, MH scheme. The percentages in the first column next to the process refer to the
percentage weight, at tree-level, of that particular channel to the relic density. The fit into a and
b is done in the range 0 < v2 < 0.3.

Parameter M1 M2 µ tβ M3 MũL
MẽL

MũR,ẽR
Ai MA0

Value 550 210 -600 30 1200 387 360 800 0 700

Table 8.6 – Light-wino scenario : Values of the fourth SUSY set of input parameters. Masses
are in GeV.

the relic density. With so small mass difference, co-annihilation processes are important. Pro-
ducts of annihilation/co-annihilation processes are into gauge bosons (and some light quarks).
The dominant processes are the following : χ̃0

1χ̃
0
1 → W+W− [13%], χ̃+

1 χ̃
+
1 → W+W+ [12%],

χ̃0
1χ̃

+
1 → Z0W+ [12%], χ̃+

1 χ̃
−
1 → Z0Z0 [7%], χ̃+

1 χ̃
−
1 → W+W− [7%], χ̃0

1χ̃
+
1 → ud̄ [7%]. Note in

passing that we have taken a large value of tan β.

Before we present our results, a word about the renormalisation scheme and the choice of input
parameters especially as concerns the neutralino/chargino sector is in order. The results we will
show are based on taking the mass of the LSP as input (beside the masses of the charginos). One
might argue that this is not optimal in order to reconstruct the system M1,M2, µ, especially for
extracting M1 which is sensitive to the bino-component. One might even expect that at one-loop
this scheme would not be suitable since theN11 element of the orthogonal matrix in the neutralino
sector is very small leading to a large contribution from the counterterm δM1, see Eq. (8.3). For
this reason we have been careful in also taking the scheme where the input parameters are
(mχ̃0

2
,mχ̃+

1
,mχ̃+

2
). Fortunately, as we can see in Fig. 8.4 for the process χ̃0

1χ̃
0
1 → W+W−, the

difference between the two schemes is within less than 0.4%. We have checked that for other
processes in this scenario the difference is also negligible.
The tree-level cross sections and the full one-loop corrections are shown in Fig. 8.5 as a function
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Figure 8.4 – Relative difference for χ̃0
1χ̃

0
1 → W+W− between the scheme with (mχ̃0

1
,mχ̃+

1
,mχ̃+

2
)

and (mχ̃0
2
,mχ̃+

1
,mχ̃+

2
) as function of relative velocity. tβ is within the Aττ scheme.

of the relative velocity. We note that, at tree-level, these cross sections are s-wave dominated.
For bosonic final states the velocity dependence is modest, compared to the co-annihilation
into quarks. For the latter, the electroweak and QCD corrections to χ̃0

1χ̃
+
1 → ud̄ are relatively

large, of order 30%, but they almost cancel each other. The overall correction is about +5% and
practically independent of the velocity. The annihilation process and the χ̃0

1χ̃
+
1 co-annihilation

processes show an almost constant correction of order 10%. The co-annihilation processes show
an interesting behaviour in the case where both co-annihilating particles are charged, the cross
sections reveal a very large correction at very small relative velocity. This correction is the one-
loop manifestation of the non-relativistic Coulomb-Sommerfeld effect[73]. With the tree-level
cross section denoted as σ0 and σ0v = a0 + b0v

2, at vanishing relative velocity the one loop cross
section for chargino annihilation, σ1−loop

Coul is such that

σ1−loop
Coul,v→0

σ0
=





+πα
v for χ̃±

1 χ̃
∓
1

−πα
v for χ̃±

1 χ̃
±
1

We thus expect the one-loop cross section σ1 to be

σ1v = a1 + b1v
2 + παc1/v with c1 = ±a0. (8.10)

To exactly quantify the Sommerfeld effect in our calculation, we have also fitted the one-loop
cross section in the form of Eq. (8.10). An example of such an exercise is given in Fig. 8.6 for
χ̃+

1 χ̃
+
1 →W+W+. We see therefore that our calculation captures this effect extremely well, indeed

we obtain here that c1/a0 = 1.015 which indeed very close to the analytical result, c1/a0 = 1.
This is important because this effect needs to be summed up to all orders. In our approach
we will therefore subtract it from the one-loop correction and replace it by the resummed all
order result in the final result. The result of this subtraction on the processes χ̃+

1 χ̃
−
1 → Z0Z0,

χ̃+
1 χ̃

+
1 →W+W+ and χ̃+

1 χ̃
−
1 →W+W− is shown in Fig. 8.7

As one can see once the Coulomb-Sommerfeld contribution is removed, one is left with a smooth
cross section which is almost velocity independent.
Looking carefully at the results for χ̃+

1 χ̃
−
1 →W+W− we note that there is still a slight increase

at small v. This is a residual effect of the weak Sommerfeld contribution, see Fig. 8.8, mediated
by a charged W that it is noticeable even for a not too heavy chargino. In fact a similar effect
is also present in χ̃0

1χ̃
0
1 → W+W−. Zooming in on the region of small relative velocity we see a

kink, see Fig. 8.9, around
√
s ≃ 413.3 GeV corresponding to v ≃ 0.04 which corresponds to the
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Figure 8.5 – Light-wino scenario : The left/right panel shows the main gauge boson/quark
production cross sections respectively. All the cross sections are normalised with the corresponding
effective degrees of freedom given by Eq. (8.7) with xF = 29.9.
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Figure 8.7 – Light-wino scenario : Results for one-loop corrections in the Aττ scheme where the
QED Sommerfeld effect has been subtracted.

opening of the threshold of chargino production. In χ̃+
1 χ̃

−
1 →W+W− we only see the tail of the

opening of the threshold.

Apart from these interesting but numerically small features, let us mention that the tβ scheme
dependence is negligible, it is below 0.1%. Our results show that corrections to the individual cross
sections can get large at all relative velocities, even after subtracting the QED Sommerfeld effect.
For example, χ̃+

1 χ̃
−
1 → W+W− gets about +30% correction, while both χ̃+

1 χ̃
+
1 → W+W+ and

χ̃0
1χ̃

+
1 → Z0W+ get a −10% correction. The dominant cross section χ̃0

1χ̃
0
1 → W+W− receives

a correction of about +15%. The corrections for the other processes are more modest. These
corrections are within the on-shell scheme by using α(0). We see that had we used α(M2

Z) the
correction to χ̃0

1χ̃
0
1 → W+W− would be small, but this is not true for most of the other cross

sections where genuine corrections, including hard radiation effects are important and must be
taken into account. This said, when we combine all the cross sections, taking into account their
statistical weight, substantial cancelations occur between the different contributions. Add to
this that the cross sections we have considered account for about only 65% of all cross sections
contributing to the relic density, since we have not considered those contributing individually less
than 5%, we find a quite modest (within the α(0) scheme) correction to the relic density of about
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Figure 8.8 – Example of a box diagram giving rise to the electroweak equivalent of a Sommerfeld
effect.
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1
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−2%, see Table 8.7. This full one-loop correction is practically unchanged if we instead resum
the 1/v Sommerfeld effect. A similar result was found when we studied τ̃ co-annihilation[21]. This
is due to the fact that temperature effects provide a cut-off and the 1/v enhancement is tamed
after thermal averaging, ∝

∫∞
0 (dv v2 e−xv2/4) (σv). Our results are summarised in Table 8.7. The

results are presented in terms of the s-wave and p-wave coefficients as well as the Sommerfeld 1/v
coefficient. The correction to the relic density is given for the full one-loop, including the one-
loop 1/v threshold correction, as well as after resumming the 1/v contributions. Another word of
warning about the interpretation of the corrections in terms of the s-wave and p-wave coefficients
(a and b). The corrections to the p-wave coefficients may seem very large here, especially if the
corresponding correction to a is large. This is not an indication that the radiative correction on
the total cross is very large. Indeed all the cross sections here are s-wave dominated, so that the
correction on the s-wave is a good measure of the total correction and when modulated with the
statistical weight gives a good approximation to the correction on the relic density.

8.6 Conclusions

Extraction of the relic density will soon provide a measurement of this quantity at the 1%
level. On the theoretical side one must therefore provide a prediction which is at least as precise.
In particular, if the particle physics component in terms of computation of the annihilations
and co-annihilations cross sections are under control, one can indirectly test the cosmology of
the Universe. With this precise measurement we can even gain insight into the particle physics
model that could be combined with measurements at the colliders. The work in this paper
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continues the investigations we have made[21] concerning the impact of the radiative corrections
on the annihilation and co-annihilation cross sections of a neutralino dark matter in the MSSM.
Here the emphasis is on processes with dominant gauge boson production channels. We have
considered three models with relatively light LSP in the 100-200 GeV range, i) a dominantly
bino with some admixture of wino, ii) a higgsino like and a iii) wino like LSP. Our study shows
that it is not easy to find a general common feature of the radiative corrections. For example,
within the same tan β scheme and for relative velocities relevant for the evaluation of the relic
density, the dominant process χ̃0

1χ̃
0
1 → W+W− gets about 15% correction in the wino case but

only 4% in the higgsino case, while the bino is in between. Also the corrections we have just
quoted are within a scheme where the electromagnetic constant is defined at low energy in the
Thomson limit. A naive use of α(M2

Z) would suggest that most of the corrections in the dominant
process in the wino case is absorbed, but this would not be true for the other processes nor for the
the other scenarios. This still does not take into account the effects of final state radiation. For
example in the same wino scenario, the O(α) correction to χ̃+

1 χ̃
−
1 →W+W− is large and reaches

about 30%. In general the corrections to the different contributing processes for the same scenario
can be quite different, in the case of the wino the overall effect on the relic is a cancelation of
the corrections between the different processes. With this in mind and the fact that we did not
correct processes that, individually, contribute less than 5% to the relic, we find that the overall
effect on the relic is small, −2% in the on-shell scheme with α in the Thomson limit. In this
paper we have also pursued our investigation of the effect of the tan β scheme dependence on
many observables, not necessarily dark matter annihilation. We confirm once more that the MH
scheme is not appropriate while DR and Aττ give generally similar results. In the scenarios we
have studied, in fact the scheme dependence is an issue only for the bino case. This could have
been expected as the bino couples to W ’s only through mixing where tan β is important. We have
also uncovered in the case of co-annihilation electromagnetic Sommerfeld effects for vanishingly
small relative velocity. However the result of the full one-loop and that of resumming this effect
is not noticeable at the level of the relic density evaluation, thermal averaging smoothes out the
effect. Although the effect is numerically quite small, in the case of the wino we noticed the effect
of the electroweak Sommerfeld enhancement. This will become more important for higher wino
masses that we will study in another paper. To sum up, it is important to stress that we now
have the tools to perform automated calculations relevant for a precise evaluation of the dark
matter annihilation cross sections.
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Tree Full O(α)

χ̃0
1χ̃

0
1 →W+W− [13%] a +161.8 +14.8%

b +53.52 −48.7%

χ̃+
1 χ̃

+
1 →W+W+ [12%] a +80.75 −9.4%

b +26.83 +20.1%

c −81.97

χ̃0
1χ̃

+
1 → Z0W+ [12%] a +37.50 −9.5%

b +10.15 +31.6%

χ̃0
1χ̃

+
1 → ud̄ [7%] a +24.44 +3.17%

b −12.62 +16.3%

χ̃+
1 χ̃

−
1 → Z0Z0 [7%] a +47.08 +7.1%

b +17.71 −29.0%

c +47.1

χ̃+
1 χ̃

−
1 →W+W− [7%] a +46.49 +34.0%

b +14.01 −104.4%

c +53.34

Ωχh
2 0.00215 0.00211

δΩχh2

Ωχh2 1-loop −1.9%

δΩχh2

Ωχh2 with resum. Sommerfeld −1.9%

Table 8.7 – Light-wino scenario. The table summarises the effect of the full order corrections on
the dominant processes that contribute more than 5% to the relic density. The relative contribution
is given in [ ] next to the process. The tree-level cross sections are given through the fit σv = a+bv2

in the range 0 < v2 < 0.3. At the one-loop level, The fitting function is then σv = a+bv2+cπα/v.
The coefficients a, b and c are given units of 10−26cm3s−1. The relic density is calculated by
taking into account all other processes, which however are not corrected at one-loop. The Table
also gives the correction after summing the 1/v QED contribution at all orders. As the tβ-scheme
dependence is less than 0.1%, only one tβ scheme Aττ is presented.
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Chapitre 9

Annihilation de neutralinos lourds en
bosons de jauge

Sommaire

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2 Discussion qualitative des logarithmes de Sudakov . . . . . . . . . . . . . . . . 152

9.3 Désintégration d’un boson de jauge lourd . . . . . . . . . . . . . . . . . . . . . 152

9.4 Présentation de l’étude numérique . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.5 Scénario avec un higgsino-bino . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.6 Scénario avec un wino lourd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

English Abstract This chapter treats the case of heavy neutralinos with mass up to 2 TeV
whose annihilation is into gauge bosons. Though it may, at first sight, look as a continuation of
the previous chapter, the heavy neutralino will show some very important new effects as we will
discover. We have studied two cases : in the first one the LSP is a mixture of higgsino-bino and
in the second one it is an almost pure wino. In the former case we observed the same features as
in the pure higgsino case in the previous chapter. The latter deserves special attention because,
in addition to the Coulomb effect appearing for small velocities, like in the previous chapter, an
enhancement is also due to the exchange of massive but very soft electroweak gauge bosons in
the initial state, which can be identified as the Sommerfeld electroweak effect. This enhancement
has already been studied in Chapter 4 and comes from three and four point scalar integrals when
computed close to the threshold. In this particular configuration, the incoming momenta are not
linearly independent and the Gram determinant vanishes. In turn, the reduction method of tensor
loop integrals becomes ineffective and leads to numerical instabilities. Therefore to compute the
loop integrals in this region we relied on another method, that we called segmentation. This
method exploits the special kinematics when the relative velocity vanishes and results in splitting
the three point function into two point functions and the four point one into three point ones,
which can be further split also into two point functions in special cases. On the numerical level it
enabled us to study numerically the behaviour of the corrections close to the threshold, thanks
to a good numerical accuracy, but also on the analytic level to get limiting behaviour of these
integrals. We were then able to observe that, for the case of the Sommerfeld electroweak effect,
a saturation of the corrections was occurring, compared to the abelian massless case, and this
feature was the same in the three point and four points functions. This saturation or cut-off is
related to the fact that, in the electroweak case, the exchanged gauge bosons are massive and
then provides a natural cut-off to this kind of loop corrections. At the non-perturbative level
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this is understood through the fact that the range of the Yukawa interaction is finite. We also
observed, thanks to the good numerical stability of the code, for the case of neutralino-neutralino
annihilation, the opening of the chargino threshold in loop corrections. This opening occurs for
very small relative velocity, because in the wino case the χ̃0

1χ̃
±
1 system is almost degenerate.

I then tried to fit this effect coming from the loop corrections (mostly triangle and box
diagrams) to subtract it from the total result in order to study the intrinsic effect of the renor-
malisation. Indeed, with in the idea of extracting with a high level of accuracy the fundamental
parameters from the relic density observable, this effect has to be subtracted because it is not re-
lated to renormalisation and hence to the theoretical errors on the reconstruction of parameters.
Moreover, even though this kind of enhancement is generally thought to have a minor impact
on the calculation of the cosmic abundance of dark matter in the early universe in the standard
scenario, it can be of great interest for predicting annihilation rate of neutralinos in our galaxy
and consequently on indirect detection prospects. I checked this statement for the abelian Som-
merfeld effect and the non-abelian one. It appeared, like in the light wino case, that the QED
Sommerfeld enhancement was not relevant for the range of relative velocity of interest, but the
EW one was giving quite important corrections even for higher velocities.

Another interesting correction showed up due to the so-called Sudakov double logarithms.
These can be traced to the exchange of a vector boson between the now highly relativistic final
particles with energies E ≫MW . This virtual effect takes the generic form of (α/π) ln2(s/M2

W ))
with a negative weight which can be very large in the limit E ≫MW . This effect is already known
in QED or QCD but non-physical and is treated by considering as inclusive the emission of the
massless boson. Consequently the double-logarithms corrections coming from the virtual and the
real corrections cancel each other. However, in the electroweak case, the mass of the gauge boson
is well-defined and we retain in the final result the dependency on the mass of the gauge boson.
The treatment of these infrared/collinear behaviour of the electroweak corrections has received
some attention during the past few years, in application to collider phenomenology. It has been
shown to some extent that the addition of the real radiation of a gauge boson counterbalances the
Sudakov loop corrections, as dictated by the Bloch-Nordsieck theorem. So, to check this assertion,
I studied a simple case where an abelian very heavy Z ′ boson decays into two neutrinos, and I
computed the virtual and real emission corrections where a Z0 boson is exchanged or radiated.
In this case, the leading logarithm (ln2(s/M2

W )) and the next-to-leading log (ln(s/M2
W )) cancel

between the real and virtual corrections. Therefore for the calculation of the relic density we need
to take into account not only the 2 → 2 processes, but also some 2 → 3 which can be sometimes
almost of the same order as tree-level results. Hence, we added processes with Z0 radiation
(together of course with the real emission of a photon/gluon when charged/coloured particles
were involved in the final state) to counterbalance the effect of the Sudakov loop corrections.
The one-loop corrected relic density has then been derived by combining the one-loop corrections
with the 2 → 3 processes, and the picture between taking or not this contribution was completely
different. Nevertheless, at the level of individual channels, we noticed that even when the real
emission was added not all of the large negative corrections were compensated. This may be a
sign of Bloch-Nordsieck violation, which has already been pointed out in some papers. These BN
violations come out when the sum over all the non-abelian charges is not complete. Consequently
we decided that we should also add processes with real emission of a W±. To conclude we want to
stress that, for the case of a heavy neutralino, calculating the relic density with only one kind of
contribution, either loop corrections or real ones, is not enough and the full set must be included
in the result.

Résumé en français J’ai traité dans ce chapitre le cas de neutralinos de masse jusqu’à 2
TeV, dont l’annihilation est principalement en bosons de jauge. Bien que, au premier abord, cela
peut ressembler à une suite du travail précédent, le neutralino lourd de type wino présentera de
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nouveaux effets très importants comme nous allons le découvrir. Nous avons étudié deux cas :
dans le premier la LSP est un mélange higgsino-bino et dans le deuxième un wino pur très lourd.
Dans le premier cas nous avons observé le même comportement que dans le chapitre précédent. Le
second a mérité une attention toute particulière car, en plus de l’effet Coulomb du à l’échange de
boson sans masse pour des vitesses relatives faibles, comme dans le chapitre précédent, l’échange
de bosons de jauge électrofaibles massifs très mous dans l’état initial produit le même type
de corrections, que l’on peut identifier à l’effet Sommerfeld électrofaible. Cette particularité
a déjà été étudiée dans le chapitre 4 et provient à l’ordre d’une boucle des fonctions à trois et
quatre points lorsqu’elles sont évaluées proches du seuil. Dans cette configuration particulière, les
impulsions entrantes ne sont plus indépendantes et le déterminant de Gram s’annule. En retour,
la méthode de réduction des intégrales tensorielles à la Passarino-Veltman n’est plus valide et
résulte en des instabilités numériques. Par conséquent, pour calculer les intégrales de boucle
dans cette région nous avons appliqué la méthode de segmentation. Cette méthode exploite la
cinématique particulière de l’état initial lorsque la vitesse relative tend vers zéro, et consiste à
réduire la fonction scalaire à trois points en une somme de fonctions scalaire à deux points, et celle
à quatre points en une somme de fonctions à trois points qui peuvent à nouveau être réduites en
fonctions à deux points. Au niveau numérique j’ai pu d’étudier le comportement des corrections
proche du seuil, grâce à une bonne précision numérique, mais aussi du point de vue analytique où
nous avons pu tirer des formules donnant le comportement limite de ces intégrales. Nous avons
ensuite été capable d’observer la saturation de l’effet Sommerfeld électrofaible, par rapport au
cas abélien non-massif, et cette caractéristique se retrouvait à la fois dans les fonctions à trois
et quatre points. Cette saturation ou coupure est liée au fait que, dans le cas électrofaible, les
bosons échangés sont massifs et ainsi fournissent une coupure naturelle sur ce type de correction.
Au niveau non-perturbatif cela se comprend par le fait que la portée du potentiel de Yukawa
est finie. Nous avons aussi remarqué, grâce à la bonne stabilité numérique du code, pour le cas
de l’annihilation neutralino-neutralino, l’ouverture du seuil du chargino dans les diagrammes de
boucle. Cela se produit pour des vitesses très faibles, car le système χ̃0

1χ̃
±
1 est quasiment dégénéré.

J’ai ensuite essayé d’interpoler cet effet pour le soustraire du résultat final afin d’étudier les
corrections propres à la renormalisation. En effet, toujours dans l’idée d’extraire avec un haut
degré de précision les paramètres fondamentaux à partir de la densité relique, cette correction
doit être soustraite car non reliée à la renormalisation, et n’a pas d’impact sur la reconstruc-
tion des paramètres fondamentaux. De plus, bien que ce type de correction est estimé de façon
générique avoir un impact mineur sur le calcul de l’abondance relique de matière noire dans le
scénario standard, cela peut être d’un grand intérêt pour la prédiction des taux d’annihilation
de neutralinos dans notre galaxie et par conséquent pour des perspectives de détection indirecte.
J’ai vérifié cette assertion pour l’effet Sommerfeld abélien et non-abélien. Il est apparu, comme
dans le cas du wino léger que l’effet Sommerfeld QED avait peu d’impact dans l’intervalle de
vitesses d’intérêt, bien qu’il semble que la contrepartie électrofaible soit encore importante pour
des vitesses plus grandes.

Une autre correction importante de type Sudakov a surgi. Ce type de correction prend la forme de
double logarithmes (α/π) ln2(s/M2

W )) et peut être reliée à l’échange de bosons électrofaibles entre
les particules de l’état final fortement relativistes dont l’énergie E ≫MW . Cet effet est déjà bien
connu en QED et QCD mais non-physique et est traité en considérant inclusivement l’émission
de bosons non-massifs. Dans ce cas les double-logarithmes provenant des corrections virtuelles
et réelles s’annulent. Cependant, dans le cas électrofaible, la masse des bosons de jauge est bien
définie et conservée dans le résultat final. Le traitement de ces divergences infrarouges/colinéaires
des corrections électrofaibles a reçu une attention particulière ces dernières années, avec appli-
cation à la phénoménologie aux collisionneurs. Il a été montré que l’ajout de la radiation d’un
boson de jauge supplémentaire contrebalance les corrections Sudakov virtuelles dans une certaine
mesure, comme l’énonce le théorème de Bloch-Nordsieck. Pour vérifier cette assertion nous avons
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étudié un exemple simple où un boson abélien très lourd Z ′ se désintègre en deux neutrinos,
et nous avons calculé les corrections virtuelles et réelles où un boson Z0 est échangé ou émis.
Dans ce cas, les logarithmes dominants (ln2(s/M2

W )) et sous-dominants (ln2(s/M2
W )) s’annulent

entre les deux contributions. Par conséquent, pour le calcul de la densité relique nous avons non
seulement pris en compte des processus 2 → 2 mais aussi certains processus 2 → 3 qui peuvent
parfois être du même ordre que certaines sections efficaces à l’arbre. Ainsi nous avons ajouté les
processus comportant la radiation d’un boson Z0 supplémentaire (de pair avec l’émission réelle
photonique et gluonique) pour compenser l’effet des corrections radiatives de type Sudakov. La
densité relique corrigée à l’ordre d’une boucle a ensuite été dérivée en combinant les corrections
virtuelles avec ces processus 2 → 3, et l’allure des corrections était complètement différente selon
que l’on prenait en compte la totalité des corrections ou juste les corrections virtuelles. Néan-
moins, au niveau des canaux individuels, nous avons remarqué que même l’émission réelle ne
compensait pas toutes les corrections Sudakov. Cela est peut être un signe de violations du théo-
rème de Bloch-Nordsieck, qui ont déjà été étudiées dans certains papiers. Ce type de violation
se produit lorsque la somme sur toutes les charges électrofaibles non-abéliennes n’est que par-
tielle. Par conséquent nous avons décidé qu’il faudrait aussi ajouter l’émission réelle d’un boson
W±. En conclusion nous souhaitons insister sur le fait que, pour un neutralino lourd, calculer la
densité relique en ne tenant compte que d’un seul type de contribution n’est pas suffisant et les
corrections doivent être incluses en totalité, notamment les processus de type 2 → 3.
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9.1 Introduction

Le neutralino le plus léger χ̃0
1 est un bon candidat à la matière noire lorsqu’il est la LSP.

Selon la valeur des paramètres M1, M2 µ ses interactions avec les autres particules peuvent être
différentes. Dans le cas où M2 << M1, µ le neutralino est majoritairement wino, et dans celui où
µ << M1,M2 il est majoritairement de type higgisno. Ces deux types de neutralinos partagent
en commun des couplages de type SU(2), c’est à dire qu’ils auront tendance à se coupler aux
bosons de jauge faible Z0 et W±. Pour le calcul de processus de type χ̃0

1χ̃
0
1 → V V ∗ où V est un

boson de jauge, le couplage le plus important sera χ̃0
1χ̃

±
1 W

±, auquel s’ajoute χ̃0
1χ̃

0
2Z

0 dans le cas
d’un higgsino et χ̃±

1 χ̃
±
1 Z

0 pour un wino. Le lagrangien d’interaction s’écrit dans la limite wino
[126],

Lint = − e

sw

(
χ̃0

1W/
†χ̃−

1 + c.c.
)

+ e
cw
sw
χ̃−

1 Z/χ̃
−
1 + eχ̃+

1 A/χ̃
+
1 , (9.1)

et dans la limite higgsino,

Lint = − e

2sw

(
χ̃0

1W/
†χ̃−

1 − χ̃0
2W/

†χ̃−
1 + h.c.

)
− e

swcw

(
1

2
− c2w

)
χ̃−

1 Z/χ̃
−
1

+ eχ̃−
1 A/χ̃

−
1 +

e

2swcw
χ̃0

1Z/χ̃
0
2 . (9.2)

Dans un cas comme dans l’autre, le neutralino doit être assez massif pour donner une valeur de
densité relique en accord avec les bornes de WMAP [127] : pour le higgsino pur sa masse doit
être supérieure au TeV et pour le wino supérieur à ∼ 1.5 TeV. Il existe deux raisons à cela, d’une
part la masse doit être assez élevée pour contrebalancer l’annihilation très efficace due aux fort
couplages SU(2)L et d’autre part, comme la différence de masse δm = mχ̃±

1
−mχ̃0

1
est faible, les

canaux de coannihilation sont importants, réduisant grandement la densité relique.

Dans le chapitre précédent nous avons étudié la densité relique de matière noire dans des scéna-
rios où le neutralino est léger (inférieur au TeV) et s’annihile en bosons de jauge et quarks légers.
Nous avons mis en évidence la manifestation à l’ordre d’une boucle d’un effet non-perturbatif :
l’effet Coulomb/Sommerfeld. C’est effet est dû à l’apparition d’une singularité lorsque les neu-
tralinos s’échangent un boson de jauge non-massif pour des vitesses relatives faibles, et cet effet
peut être resommé à tous les ordres. Nous avons montré dans le cas du wino léger que cela n’est
pas nécessaire pour l’évaluation de la densité relique. Pour des neutralinos très lourds, la mani-
festation d’un effet Sommerfeld dû à l’échange de bosons électrofaible apparaît à l’ordre d’une
boucle. La cause en est que le rapport mV /mχ est très faible, par conséquent lorsque l’on est au
seuil, ou proche du seuil de la réaction (i.e lorsque la vitesse relative est nulle), le boson de jauge
échangé apparaît comme étant quasiment sans masse, et de grandes corrections surviennent, de la
même façon que dans le cas non-massif. Cet effet a déjà été étudié d’une façon non-perturbative
dans [126, 128, 129] et appliqué à la densité relique [130] et à la détection indirecte de matière
noire. En général l’effet Sommerfeld est considéré comme ayant un impact mineur sur le calcul
de l’abondance relique car en moyenne le neutralino se découple du bain thermique à des vitesses
suffisamment élevées pour qu’il n’entre pas en jeu.

Nous allons montrer dans ce chapitre, qu’en plus de cet effet à petite vitesse intervenant dans
l’état initial, un autre type de correction, dû à l’émission réelle de bosons électrofaibles, est
important dans l’état final, et cela quelque soit la valeur de la vitesse relative lorsque mχ ≫ mV

où les bosons V sont ultra-relativistes, ces corrections sont de type Sudakov.

∗. Dans le cas où ces réactions sont possibles, c’est à dire mχ̃0
1

> mV où V = Z0, W±
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9.2 Discussion qualitative des logarithmes de Sudakov

Dans les processus d’interaction électrofaible du Modèle Standard, calculés au-delà de l’ordre
dominant, lorsque l’énergie mise en jeu lors de la réaction est importante par rapport aux échelles
du processus, typiquement la masse mV du boson circulant dans la boucle, de grandes corrections
peuvent apparaître. Ce type de correction a une structure de divergence infrarouge/colinéaire et
prend la forme de double logarithmes ln2(s/m2

V ). Elle est appelée correction de type Sudakov
[131] bien connue en QED et QCD. En QED ces divergences infrarouges sont non-physiques et
sont régulées en ajoutant une masse fictive λ au photon qui agit comme un cut-off infrarouge.
Quand l’émission réelle photonique est ajoutée aux corrections virtuelles, la dépendance en λ dis-
paraît et le résultat final est libre de divergences et fini [132]. Dans le cas de corrections provenant
de boucles contenant des bosons W±, Z0, il n’existe pas de “bremsstrahlung” équivalent permet-
tant de supprimer cette dépendance sur la masse puisque ces bosons ont une masse non-nulle
bien définie, par conséquent la dépendance complète sur la masse du W±(Z0) est conservée dans
les corrections radiatives voir l’éq 4.43, car cet effet a une signification physique bien définie.
Cependant ces doubles logarithmes apparaissent aussi bien dans les corrections virtuelles que
dans les émissions réelles de W±(Z0) et la somme des deux peut atténuer leur effet. Au niveau
des corrections virtuelles les types de diagrammes pouvant avoir ce comportement sont les dia-
grammes de boucle de type vertex ou boîte, car leur évaluation requiert une double intégration
sur les paramètres de Feynman introduits pour les calculer †.
En supersymétrie, ces doubles logarithmes de Sudakov peuvent aussi apparaître, et en particulier
dans le cas de l’annihilation d’un neutralino très lourd, de l’ordre du TeV. Ce type de correction
a déjà été étudié pour les calculs de détection indirecte de matière noire [134, 135, 136] au niveau
de l’émission réelle. Nous allons montrer dans ce chapitre que le bremsstrahlung électrofaible
peut être très important et que dans le cas de la prédiction de la densité relique de matière
noire, il peut substantiellement changer le résultat final. Pour illustrer ce type de correction,
nous considérerons un exemple simple, la désintégration d’un boson lourd Z ′.

9.3 Désintégration d’un boson de jauge lourd

On ajoute au lagrangien du Modèle Standard LSM un boson vecteur Z ′ de masse M supé-
rieure au TeV, appartenant à une symétrie globale de jauge supplémentaire U ′(1), se comportant
comme un singulet sous le groupe de jauge du MS SU(3)C ⊗SU(2)L ⊗U(1)Y . Ce boson de jauge
ne se couple qu’à des neutrinos gauches par le terme

Lint = Z ′
µJ µ, avec J µ = g∗ν̄γ

µPLν = g∗ν̄γ
µ (1 − γ5)

2
ν (9.3)

Le courant J µ est conservé si les neutrinos sont considérés sans masse, en effet son équation de
conservation donne,

∂µJ µ = ∂µψγ
µPLψ + ψγµPL∂µψ = ∂µψγ

µPLψ + ψPRγ
µ∂µψ (9.4)

en utilisant l’équation de Dirac, on obtient,

∂µJ µ = imνψPLψ − imνψPRψ = −imνψγ5ψ (9.5)

et si l’on prend mν = 0 ⇒ ∂µJ µ = 0. Cette équation de conservation se traduira au niveau de
l’amplitude sous la forme d’une identité de Ward.

†. Les diagrammes de type self-énergies, nécessitant l’introduction d’un seul paramètre de Feynman, ne pro-
duisent que des logarithmes simples. Il est à noter cependant dans un choix particulier de jauge, la jauge temporelle
de Coulomb, les contributions Sudakov sont contenues exclusivement dans les self-énergies des particules externes
sur couche de masse/résonantes [133].
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9.3.1 Désintégration en deux neutrinos

Nous désirons calculer la désintégration du boson Z ′ (de masse M) en deux neutrinos (de
masse nulle) à l’ordre d’une boucle, où seul l’échange du boson Z0 (de masse m) est inclus dans la
boucle, ainsi que la radiation d’un boson Z0 dans l’état final. Les diagrammes correspondants sont
illustrés dans la figure 9.1 Le calcul complet de cette désintégration est détaillé dans l’Annexe G.

Z ′

ν

ν̄

Z0

Z ′

ν

ν̄

Z0

Figure 9.1 – Contributions virtuelle (gauche) et réelle (droite) à la désintégration d’un boson Z ′

lourd.

Le calcul de la contribution du à l’échange et l’émission d’un W± se calcule de la même façon.
Dans la limite de Sudakov, M2 >> m2, la désintégration à l’ordre d’une boucle est donnée par,
si les champs des neutrinos sont renormalisés sur couche de masse,

Γ1
νν̄ = Γ0

νν̄

{
1 +

αZ

4π

[
− 2

(
ln2

(
m2

M2

)
+ 3 ln

(
m2

M2

))
+

2π2

3
− 7

]}
(9.6)

avec Γ0
νν̄ la désintégration à l’ordre de Born.

Ce résultat exhibe une structure particulière en ln2
(
m2/M2

)
qui donne une divergence infrarouge

(de type soft/colinéaire) dans la limite des hautes énergies, ces doubles logarithmes sont appelés
logarithmes de Sudakov. Ils donnent une contribution négative à la largeur totale et peuvent
invalider l’utilisation de la théorie des perturbations. La contribution d’émission réelle est donnée
quant à elle par,

ΓR ≃ αZΓ0
νν

4π

[
2

(
ln2

(
m2

M2

)
+ 3 ln

(
m2

M2

))
− 2π2

3
+ 10

]
(9.7)

et l’on remarque ici aussi l’apparition de doubles logarithmes, dont la structure est la même que
pour la contribution virtuelle. Ces doubles logarithmes sont d’origine infrarouge/colinéaire.

9.3.2 Contribution totale à la désintégration du Z ′

La contribution totale à la désintégration du Z ′ est

Γtot = Γνν̄ + Γνν̄+Z (9.8)

Dans la limite des hautes-énergies M >> m, Γtot est donné par,

Γtot = Γ0
νν

[
1 +

3αZ

4π

]
(9.9)

On remarque donc que les divergences infrarouges/colinéaires sous la forme de doubles loga-
rithmes de Sudakov ont disparu dans la limite m2 << M2 lorsque nous ajoutons les contributions
virtuelles et d’émission réelle, pour cet exemple simple. Enfin il est à noter que si des restrictions
sont imposées sur l’espace des phases de l’émission réelle, comme des coupures sur les angles ou
les énergies, alors la compensation avec les corrections virtuelles n’est plus totale [137].
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9.4 Présentation de l’étude numérique

9.4.1 Choix des paramètres du MSSM

Pour cette étude concernant l’annihilation de neutralinos en bosons de jauge, ils doivent
posséder une composante SU(2) non négligeable. Les deux types de neutralinos remplissant
cette condition seront soit des doublets de SU(2)L, les higgsinos H̃0

i superpartenaires des bosons
de Higgs, soit des triplets de SU(2)L, les winos W̃i, superpartenaires des bosons de jauge faible.
On rappelle qu’après diagonalisation de la matrice de masse des neutralinos par une matrice
unitaire N , les 4 états physiques seront des combinaisons linéaires du bino B̃, du wino neutre
W̃3 et des deux higgsinos, H̃0

1 et H̃0
2 . En particulier la décomposition du neutralino le plus léger

sur ces états, χ̃0
1, s’écrit,

χ̃0
1 = N11B̃ +N12W̃3 +N13H̃

0
1 +N14H̃

0
2 , avec

4∑

j=1

N2
1j = 1 (9.10)

La valeur numérique de chacun des éléments Nij de la matrice de diagonalisation sera différente
selon le choix des paramètres d’entrée M1,M2, µ, tβ . Si l’on veut que le neutralino χ̃0

1 soit prin-
cipalement de type higgsino il faut que N2

13 +N2
14 ≃ 1, et cela est réalisé si µ << M1,M2. Dans

l’autre cas pour obtenir un χ̃0
1 de type wino le paramètre N2

12 doit être proche de 1.
Pour trouver ces points dans l’espace des paramètres nous avons cherché à l’aide du programme
micrOMEGAs ceux qui donnent une valeur de la densité relique proche de celle de WMAP [127]
(donnée à 2σ).

0.0997 < Ωχh
2 < 0.1221 (9.11)

sans pour autant en faire une condition stricte. Nous n’avons pas non plus cherché à remplir
les autres contraintes typiques pour la matière noire supersymétrique, comme la limite sur le
rapport d’embranchement Γ(b→ sγ), du paramètre électrofaible ∆ρ et du moment magnétique
anormal du muon (g − 2)µ. Comme dans le chapitre précédent nous n’avons étudié et corrigé à
l’ordre d’une boucle seulement les processus contribuant plus de 5% à la densité relique Ωχh

2,
les processus restants ne seront inclus qu’à l’ordre le plus bas. Deux remarques peuvent être
faites concernant cette approche, premièrement nous ne corrigeons qu’une partie des processus
entrants dans la densité relique, par conséquent il est possible que les corrections à une boucle que
nous donnerons peuvent être diminués ou augmentées si un calcul complet où tous les processus
pertinents sont corrigés. Deuxièmement, nous avons calculé Ωχh

2 à l’aide de micrOMEGAs selon le
scénario standard, si un mécanisme sortant de ce cadre a été à l’œuvre dans l’histoire thermique de
l’Univers, comme une production non-thermique de neutralino, ou tout autre possibilité pouvant
augmenter ou diminuer l’abondance relique, notre estimation de Ωχh

2 peut être grandement
modifiée.

9.4.2 Renormalisation

Les schémas de renormalisation pour chacun des secteurs ont déjà été présentés séparément
dans les chapitres précédents, nous ne les rappelons que brièvement :
i) Les paramètres du Modèle Standard : les masses des fermions et des bosons de jauge W,Z
sont pris comme contraintes à partir des mesures expérimentales et la relation MW = MZcw est
maintenue pour conserver l’invariance de jauge. Les masses des quarks légers sont obtenus tels
qu’ils reproduisent la valeur de α−1(MZ) = 127.7, la charge électrique est définie dans la limite
de Thomson α−1(0) = 137.036. Il est à noter que si nous avions pris comme définition de la
charge αDR(Q) cela absorberait environ 13% des corrections par rapport à la définition dans la
limite de Thomson, comme l’échelle typique d’annihilation est de l’ordre de MZ .
ii) Le secteur de Higgs : les conditions de renormalisation sont l’annulation des tadpoles à l’ordre
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d’une boucle et la masse du pseudo-scalaire A0 est prise comme contrainte. Les résultats seront
donnés pour trois schémas de δtβ : MH,DR et Aττ .
iii) Le secteur des sfermions : le secteur des squarks est renormalisé à l’aide de trois masses et
celui des sleptons à partir de deux.
iv) Le secteur des neutralinos-charginos : ce secteur est renormalisé en prenant comme containtes
les deux masses des charginos et une masse de neutralino.

9.4.3 Tests et vérifications

La stabilité de chaque processus a été vérifiée dans l’ultraviolet, l’infrarouge et l’indépendance
de jauge a été vérifiée à l’aide de l’implémentation de la fixation de jauge non-linéaire [45]. Le
test dans l’ultraviolet a été effectué en faisant varier le paramètre CUV [4.25] de sept ordres de
grandeurs en double précision. Les divergences infrarouges sont régulées par l’introduction d’une
masse infinitésimale λγ,g selon qu’elles proviennent de l’échange d’un photon ou d’un gluon puis
éliminées en ajoutant le bremsstrahlung “mou”. Le contrôle de la disparition des divergences
infrarouges est réalisé en faisant varier le paramètre λγ,g pour s’assurer de l’indépendance du
résultat vis à vis de cette quantité. La dépendance restante en la coupure sur l’énergie du photon
kc est éliminée par l’introduction de l’émission “dure” de photon/gluon en cherchant le domaine
de coupure où le résultat est stable. Dans le cas de quarks légers dans l’état final, une attention
particulière a été portée quant à l’émission dure de photons qui peut être résonante lorsque la
masse invariante de la paire de quarks M2

ud̄
est égale à M2

W . La façon dont nous avons traité
cette particularité est la même que dans la section 8.3, cette singularité est absente dans le cas
de quarks lourd car M2

tb̄
> M2

W .

9.4.4 Sections efficaces pondérées

Comme dans le chapitre précédent nous allons montrer les graphes des sections efficaces
pondérées par les degrés de liberté effectifs de chaque particule initiale

gi,effgj,eff

g2
eff

σij vij (9.12)

avec gi,eff donné par l’équation 8.7. Cela permet en quelque sorte de normaliser les sections
efficaces de coannihilation de façon à voir leurs poids respectifs dans le calcul de la densité
relique.

9.5 Scénario avec un higgsino-bino

Dans ce scénario la LSP est un mélange bino-higgsino. Comme énoncé dans l’introduction,
un état pur higgsino de masse mχ > MW s’annihile trop efficacement et l’augmentation de sa
masse est nécessaire pour affaiblir suffisamment sa section efficace d’annihilation afin de rester
dans l’intervalle autorisé par WMAP. L’annihilation en paire de bosons de jauge est dirigée par
la fraction higgsino (voir ref. [113]). Il est aussi possible de diminuer son taux d’annihilation en
augmentant la fraction bino du neutralino le plus léger de type higgsino. Ainsi l’augmentation
du mélange higgsino/bino est aussi nécessaire pour rester dans la région cosmologique d’intérêt,
car le couplage aux bosons W±, Z0 en est diminué et de même pour les taux d’annihilation. Les
paramètres décrivant ce modèle sont présentés dans le Tableau.9.1.

Le composition du neutralino est alors χ̃0
1 = 0.58B̃−0.11W̃+0.58H̃0

1−0.56H̃0
2 avec mχ̃0

1
= 514

GeV, mχ̃±
1

= 540.8 GeV et mχ̃0
2

= 551.5 GeV. (Cette dernière reçoit une faible correction à une

boucle avec mχ̃0
2

=550.75GeV dans le schéma Aττ ). On remarque que la fraction higgsino est
relativement importante, par conséquent on s’attend, en jetant un coup d’œil à 9.2, à ce que
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Parameter M1 M2 µ tβ M3 ML̃,Q̃ Ai MA0

Value 565 1000 550 4 1200 1700 0 1350

Table 9.1 – Paramètres définissant le scénario higgsino-bino. Les masses sont en GeV.

les couplages χ̃0
1χ̃

±
1 W

± et χ̃0
1χ̃

0
2Z

0 soient dominants. L’élévation de la fraction bino diminue non
seulement le couplage mais augmente aussi la différence de masse entre les trois états higgsinos
(χ̃0

1, χ̃
0
2, χ̃

±
1 ), réduisant sensiblement les canaux de coannihilation. Ceux-là même qui réduisent

l’abondance cosmique dans le cas d’un higgsino pur. Maintenant seulement trois processus contri-
buent à plus de 5% à la densité relique : χ̃0

1χ̃
0
1 →W+W− contribue à 19%, χ̃0

1χ̃
0
1 → Z0Z0 à 13%

et χ̃0
1χ̃

+
1 → ud̄ ‡ à 9%. Les explications pour les corrections radiatives sont les mêmes que pour le

higgsino pur dans le chapitre précédent, à savoir : l’augmentation des corrections à grande vitesse
est due à l’ouverture du seuil du chargino χ̃±

1 et l’on remarque aussi celui du neutralino χ̃0
2. Les

résultats sont affichés dans la Fig. 9.2. Elles montrent des corrections modestes, cependant, il
faut rappeler qu’elles ont été calculées en utilisant α(0) dans la limite de Thomson. Pour des
valeurs de vitesse de v2 autour 0.3 nous voyons l’ouverture du seuil pour le chargino χ̃±

1 , puisque
cela correspond à une énergie

√
s ≃ 2mχ̃±

1
. La dépendance en le schéma pour tan β est faible,

Aττ et DR donnent pratiquement les mêmes résultats, voir Tableau 9.2. Étant donné que les
corrections radiatives aux trois sections efficaces sont modestes, et le fait que ces trois processus
représentent moins de la moitié des contributions à l’évaluation de la densité relique, nous arri-
vons à une correction de l’ordre de 1% dans le schéma Aττ , voir Tab. 9.2. Les corrections à une
boucle sont présentées sous la forme de corrections aux paramètres a et b provenant de l’expan-
sion en puissance de v de la section efficace d’annihilation multipliée par la vitesse relative. Ces
coefficients correspondent à une interpolation jusqu’à v2 ∼ 0.3 car pour des vitesses plus grandes,
le seuil du chargino χ̃±

1 apparaît et la formule a+ bv2 (présentée dans la Section 6.9.1) n’est plus
appropriée pour les sections efficaces corrigées. De plus d’une façon générique le neutralino se
découple du bain thermique autour de cette valeur et ainsi les corrections pour des vitesses su-
périeures n’ont pas d’effet sur la densité relique totale. Nous n’avons pas pris en compte pour ce
scénario les processus comportant l’émission d’un boson Z0 supplémentaire car sur la Figure 9.2
nous n’observons pas de larges corrections négatives pour de grandes valeurs de v. De plus nous
avons calculé le rapport χ̃0

1χ̃
0
1 → V V + Z0 et il apparaît que pour V = W± ce rapport est

d’environ 15%, pour V = Z0 il est de l’ordre de 0.04 %. Cette dernière valeur s’explique par le
fait qu’il n’est pas possible d’attacher un autre boson Z0 sur un boson Z0 externe du fait de
l’absence de couplage à triple bosons Z0. Concernant les quarks légers dans l’état final le rapport
est d’environ 7%. Enfin si l’on utilise la valeur de la constante électromagnétique à l’échelle MZ ,
environ 13% des corrections sont absorbées.

‡. Il est à noter que notre notation ud̄ est une notation implicite pour les deux premières générations de quarks,
cette notation sera conservée dans toute la suite.
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Figure 9.2 – Higgsino-Bino scénario : Les panneaux gauche/droite présentent les sections effi-
caces de production de bosons de jauge/quarks respectivement à l’arbre et corrigées en fonction
de la vitesse au carré exprimée en unité de c. L’ouverture des seuils des chargino χ̃±

1 et neutra-
lino χ̃0

2 sont bien visibles. Toutes les sections efficaces sont normalisées avec les degrés de liberté
effectifs donnés par Eq. (8.7) avec xF = 27.1. Seul le schéma Aττ pour tan β est présenté ici.
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Tree Aττ DR MH

χ̃0
1χ̃

0
1 →W+W− [19%] a +0.81 +4.28% +3.8% +2.5%

b +0.28 +2.54% +1.8% −0.2%

χ̃0
1χ̃

0
1 → Z0Z0 [13%] a +0.56 +5.0% +4.7% +3.8%

b +0.15 −9.0% −9.4% −10.3%

χ̃0
1χ̃

+
1 → ud̄ [9%] a +1.84 +10.2% +10.0% +9.4%

b −0.61 +59.0% +56.0% +58.0%

Ωχh
2 0.0814 0.0804 0.0806 0.0810

δΩχh2

Ωχh2 −1.2% −1.0% −0.5%

Table 9.2 – Higgsino-Bino scénario : les valeurs à l’arbre des coefficients s-wave (a) et p-
wave (b) en unité de 10−26cm3s−1 ainsi que les corrections dans les schémas Aττ , DR et MH
sont présentées. Les pourcentages de la première colonne réfèrent au poids du processus dans
l’abondance relique à l’arbre. Le fit a été réalisé en utilisant σv = a + bv2 dans l’intervalle
[0.05 ;0.3] pour v2.

9.6 Scénario avec un wino lourd

9.6.1 Paramètres du scénario et résultats

Lorsque le paramètre M2 << M1, µ le neutralino est de type wino. Dans le cas d’un wino pur
le neutralino est quasiment dégénéré avec le premier chargino χ̃±

1 et, pour le calcul de la densité
relique, beaucoup de canaux de coannihilation doivent être pris en compte. De plus, du fait de
sa nature SU(2), les sections efficaces d’annihilation des différents canaux sont très élevées et
la densité relique de matière noire est très faible si la LSP est légère, voir Section 8.5. Comme
la section efficace est approximativement inversement proportionnelle à mχ et la densité relique
Ωχh

2 ∝ 1/〈σv〉, pour que ce type de neutralino explique à lui seul la densité actuelle de matière
noire, sa masse doit être très élevée, typiquement de l’ordre de 2 TeV. Nous avons donc choisi
les paramètres du MSSM tels que le neutralino soit de type wino et reproduise une valeur pour
Ωχh

2 correcte. Les paramètres principaux de ce modèle sont donnés dans le Tableau 9.3. On

Parameter M1 M2 µ tβ M3 ML̃,Q̃ Ai MA0

Value 3500 1800 4500 15 5000 5000 0 5000

Table 9.3 – Scénario wino lourd : Valeurs des paramètres SUSY. Les masses sont en GeV.

remarque immédiatement que le spectre associé à cet ensemble de paramètres sera un spectre
MSSM lourd. La valeur de la masse de la LSP est mχ̃0

1
= 1799.09 GeV et δm ≃ 10−3, sa fraction

wino est de 99.9%. Par conséquent le couplage du neutralino au boson Z0 est inexistant, puisque
proportionnel à la fraction higgsino, et les couplages dominants seront χ̃0

1χ̃
±
1 W

± et χ̃±
1 χ̃

±
1 Z

0.
Contrairement au scénario précédent beaucoup de canaux de coannihilation contribuent à la
densité relique à l’ordre le plus bas, même si leur poids individuel ne dépasse pas 10%. Les canaux
χ̃0

1χ̃
0
1 →W+W− et χ̃+

1 χ̃
+
1 →W+W+ ont un poids de 10%, χ̃0

1χ̃
+
1 → Z0W+, ud̄, tb̄ d’environ 9%

et χ̃+
1 χ̃

−
1 → Z0Z0,W+W− autour de 6%. Environ une dizaine d’autres canaux contribuent entre
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4% et 2%, principalement composés de leptons ou quarks légers dans l’état final. Les graphes
des corrections radiatives sont présentés dans la Figure 9.3. Nous avons présenté les résultats
seulement pour le schéma Aττ pour tβ car la différence avec les autres schémas est négligeable
(au plus de 0.06%). Contrairement au scénario précédent nous ne présenterons pas les corrections
radiatives sous forme de corrections aux paramètres a et b car il est clair que cette approximation
semble peu appropriée au vu des résultats. Nous allons maintenant commenter les graphiques de
la Figure 9.3.

9.6.2 Comportement à l’ordre le plus bas

Tout d’abord nous remarquons que la pondération à x = xF permet de voir qu’à l’ordre de
Born les deux processus de coannihilation impliquant les quarks dans l’état final sont dégénérés
ainsi que les processus χ̃0

1χ̃
0
1 → W+W− et χ̃+

1 χ̃
+
1 → W+W+. Pour ces deux derniers processus

cela se comprend par le fait que dans les deux cas l’annihilation se fait par l’intermédiaire de
l’échange du chargino χ̃±

1 ou du neutralino χ̃0
1 en voie t § (voir Figure 9.4) et est proportionnelle

au couplage χ̃0
1χ̃

±
1 W

± c’est à dire (e/sw)4. Ensuite la section efficace d’annihilation du processus
χ̃0

1χ̃
0
1 →W+W− est environ deux fois plus importante que celle de χ̃+

1 χ̃
+
1 →W+W+, ce facteur

deux est finalement compensé lorsque l’on compte aussi le processus χ̃−
1 χ̃

−
1 → W−W− pour le

calcul de la densité relique. À partir de ces deux processus il est possible de prédire l’annihilation
des charginos en deux bosons Z0 en utilisant la forme des couplages à partir de l’équation (9.1).
Par exemple le rapport entre les deux processus χ̃+

1 χ̃
+
1 → W+W+ et χ̃+

1 χ̃
−
1 → Z0Z0 (dont le

canal principal est l’échange en voie t d’un chargino χ̃±
1 ) est simplement donné par 1/c4w ≃ 1.69 ¶.

La prédiction des processus restants est plus compliquée car en plus du canal d’annihilation en
voie t, le canal en voie s à travers un bosonW± où Z0 est aussi présent et les termes d’interférences
jouent un rôle important dans la valeur du résultat final.

9.6.3 Comportement des corrections radiatives

Lorsque les corrections radiatives sont ajoutées la dégénérescence entre χ̃0
1χ̃

0
1 → W+W−

et χ̃+
1 χ̃

+
1 → W+W− est levée et il apparaît un comportement singulier lorsque v → 0, et ce

pour tous les processus. Nous avons vu dans le chapitre précédent que lorsque des particules
chargées sous l’électromagnétisme sont présentes dans l’état initial, cette singularité est causée
par la manifestation à l’ordre d’une boucle de l’effet Sommerfeld QED (effet Coulomb) dont le
comportement est ∝ 1/v. Ici s’ajoute aussi l’effet Sommerfeld électrofaible du à l’échange de
bosons W±, Z0, cela explique pourquoi nous observons aussi cette singularité pour les processus
avec neutralinos, puisque chargés sous SU(2). Cependant, contrairement au cas précédent, le
boson échangé est massif, on s’attend donc à ce que cette masse non-nulle introduise une coupure
sur cet effet.
Lorsque v augmente ce comportement singulier disparaît mais il reste de grandes corrections
relatives négatives pour certains processus, dues aux corrections virtuelles de type Sudakov. Les
corrections positives importantes pour le processus χ̃+

1 χ̃
−
1 → W+W− et celui avec les quarks

légers sont données par une radiation “dure” du photon très importante. Par exemple le rapport
χ̃+

1 χ̃
−
1 →W+W−γ/χ̃+

1 χ̃
−
1 →W+W− pour Eγ > 10GeV est d’environ 30%.

Enfin, pour la même raison que dans le scénario avec un wino léger du chapitre précédent, une
objection quant au choix de notre schéma de renormalisation avec deux charginos et un neutra-
lino peut être faite. En effet dans ce schéma le contre-terme δM1 est inversement proportionnel

§. Les autres diagrammes pouvant contribuer à l’annihilation se font par l’échange de bosons de Higgs
(h0, H, A0) en voie s et du chargino χ̃±

2 en voie t, mais ici leur contribution est quasi-inexistante d’une part
à cause de la faiblesse des couplages et d’autre part à cause des masses assez élevées de ces particules (≃ 5TeV)

¶. Si l’on compare par rapport à χ̃0
1χ̃

0
1 → W +W− il faut rajouter un facteur 1/2 de symétrie du aux deux

bosons Z0 identiques.
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Figure 9.3 – Scénario wino lourd : Les panneaux gauche/droite représentent les sections efficaces
de production à l’arbre et à l’ordre d’une boucle en fonction de la vitesse au carré en unité de c.
Toutes les sections efficaces sont normalisées avec les degrés de liberté effectifs donnés par (8.7)
avec xF = 27.5. Seul le schéma Aττ pour tan β est présenté ici.
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à l’élément de matrice de diagonalisation N2 ∗
11 . Ce choix n’est judicieux que lorsque le neutralino

le plus léger est majoritairement de type bino ou possède une composante bino relativement
importante, ce qui n’est pas le cas ici. Cela ne pose pas forcément de problème pour les prédic-
tions de sections efficaces, mais si nous jetons un œil aux prédictions des masses corrigées (voir
Tableau 9.4) la correction à la masse mχ̃0

2
est gigantesque, qui est grossièrement donnée par le

Masses [GeV] mχ̃0
2

mχ0
3

mχ0
4

Tree Level 3499.1 4500.5 4502.4

One Loop - Aττ scheme 1900.79 ×103 4476.6 6481.98

- MH scheme 1900.64×103 4476.65 6481.79

- DR scheme 1900.76×103 4476.62 6481.95

Table 9.4 – Corrections à une boucle des masses des neutralinos exprimées en GeV pour les
trois schémas de tβ.

paramètre M1. Par conséquent nous avons implémenté un autre schéma, où les masses d’input
sont mχ̃0

2
,mχ̃±

1
,mχ̃±

2
, nous dénoterons ce schéma (mχ̃0

2
,mχ̃±

1
,mχ̃±

2
) par la suite. Dans ce schéma,

seul le contre-terme δM1 change et est donné par l’équation

δM1 =
1

N∗ 2
21

(δmχ0
2
−N∗ 2

22 δM2 + 2N∗
23N

∗
24δµ

− 2N∗
21N

∗
23δY13 − 2N∗

22N
∗
23δY23 − 2N∗

21N
∗
24δY14 − 2N∗

22N
∗
24δY24) . (9.13)

Ainsi δM1 ∝ 1/N2 ∗
21 dont la valeur numérique est suffisamment grande pour ne pas poser de

problèmes, et les corrections aux masses sont beaucoup plus petites, voir le Tableau 9.5. En

Masses [GeV] mχ̃0
1

mχ0
3

mχ0
4

LO 1799.1 4500.5 4502.4

NLO schéma mχ̃0
2
mχ̃+

1
mχ̃+

2
1798.9 4500.4 4502.3

Table 9.5 – Corrections à une boucle (NLO pour Next-to-Leading-Order) des masses (données
en GeV) des neutralinos/charginos dans le schéma (mχ̃0

2
,mχ̃+

1
,mχ̃+

2
) et Aττ pour le secteur de

Higgs.

définitive nous avons comparé le processus χ̃0
1χ̃

0
1 → W+W− dans les deux schémas, les résultats

sont présentés dans la Figure 9.5 et heureusement la différence est négligeable, nous avons donc
décidé de conserver le schéma mχ̃0

1
mχ̃+

1
mχ̃+

2
par la suite. Cela se justifie de plus par le fait que

les neutralinos fortement corrigés ne sont pas impliqués sur les pattes externes des processus que
nous avons considéré.

9.6.4 Corrections électrofaibles de type Sudakov

Les importantes corrections de type Sudakov, provenant de l’échange de bosons électrofaibles
W± et Z0 laissent à penser que les processus à trois particules dans l’état final, correspondants
à l’émission d’un boson de jauge supplémentaire à partir d’une patte externe, peuvent être
importants. D’une façon générale, pour le calcul de la densité relique de matière noire, ces types
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1
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) et (mχ̃0

2
,mχ̃+

1
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de processus sont négligés, car ils peuvent d’une certaine façon être vus comme une correction
d’ordre supérieure. Cela peut se comprendre par exemple dans le cas de la QED en considérant
que lorsque l’on calcule un canal d’annihilation à l’ordre d’une boucle où sont impliquées des
particules chargées sous U(1)em sur les pattes externes, la radiation supplémentaire d’un photon
χχ̄→ X + γ est traitée inclusivement pour éliminer les divergences infrarouges dues à l’échange
de photons virtuels sans masse. Cependant il a été montré [21, 138] que l’ajout de l’émission
“dure” d’un photon peut alors autoriser et rendre non-négligeable la contribution en onde s
de l’annihilation χ̃0

1χ̃
0
1 → f f̄ , qui auparavant était supprimée du fait de la nature Majorana

du neutralino. Dans le cas de processus χχ̄ → V V , où V est un boson de jauge, ce type de
suppression n’a pas lieu. Du fait que les bosons échangés dans les boucles sont massifs, il n’y a
pas de divergences infrarouges associées et la radiation χχ̄ → X + V ne semble pas nécessaire.
Cependant nous avons vu dans l’exemple de la désintégration d’un boson de jauge lourd Z ′ que
des divergences infrarouges formelles peuvent apparaître sous la forme de double logarithmes
ln2(s/m2

V ) lorsque s >> m2
V . Nous avons vu aussi que les contributions virtuelles et réelles

se compensent dans une certaine mesure. Pour savoir si l’inclusion des processus de radiation
d’un Z0 supplémentaire était justifiée, nous avons calculé le rapport χχ̄ → X + Z0/χχ̄ → X,
présenté dans la Figure 9.6. Nous observons que ce rapport possède une valeur maximale de 75%
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Figure 9.6 – Rapport d’embranchement du bremsstrahlung électrofaible vis à vis du processus à
l’arbre en pourcentage.
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pour le processus χ̃+
1 χ̃

−
1 → W+W−, imposant la prise en compte de la radiation électrofaible

dans le calcul de la densité relique. Il est à noter que pour le processus χ̃+
1 χ̃

−
1 → Z0Z0 la

radiation est très faible, cela s’explique tout simplement par le fait que dans ce processus il est
impossible d’y attacher un Z0 supplémentaire puisqu’il n’existe pas de couplage à triple Z0, et
l’on s’attend à ce que la radiation interne et provenant de l’état initial soit faible. La radiation
pour le processus avec la paire de quark tb̄ dans l’état final est atténuée par rapport à la paire ud̄
du fait de l’espace des phases plus réduit dans le premier cas. L’importance de la radiation pour le
processus χ̃+

1 χ̃
−
1 →W+W− peut se comprendre de la façon suivante : les diagrammes d’émission

sont obtenus à partir d’un diagramme de type (9.4) en attachant sur chaque ligne un boson Z0,
ce type de contribution est la même pour tous les autres canaux d’annihilation. Cependant, pour
ce processus il faut aussi considérer les diagrammes χ̃+

1 χ̃
−
1 → Z0Z0(γ) où l’un des bosons Z0(γ)

se scinde en deux bosons W±, et ceux comportant un couplage quartique W+W−Z0Z0(γ).

Pour trouver diagrammatiquement l’origine des corrections Sudakov virtuelles nous avons ins-
pecté le processus χ̃0

1χ̃
0
1 →W+W− et tracé le rapport de la correction à une boucle sur la section

efficace à l’arbre en fonction de la vitesse pour le jeu de diagrammes de la Figure 9.7. Les résul-
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Figure 9.7 – Diagrammes pouvant donner des corrections de type Sudakov

tats sont affichés dans la Figure 9.8. Bien évidemment il est difficile de comparer ces résultats
avec la section efficace totale du fait que le sous-ensemble de diagrammes de la Figure 9.7 n’est
pas invariant de jauge, la Figure 9.8 est juste donnée à titre d’illustration. On remarque comme
prévu que ces diagrammes donnent une correction négative et la différence relative entre les deux
courbes est au plus de 1%. Le diagramme boîte avec échange de Z0 en voie t entre les particules
de l’état final semble donner la plus grande contribution, qui varie peu en fonction de la vitesse
v.

Nous avons ensuite réévalué tous les canaux pertinents en y ajoutant une émission d’un boson Z0.
Il est à noter que, comme pour le cas de la radiation d’un photon γ, l’ajout naïf de ces processus
produit un double comptage de processus. Considérons les diagrammes correspondants à deux
diagrammes de bremsstrahlung électrofaible de la Figure 9.9. Lors de l’intégration sur l’espace
des phases, lorsque la masse invariante de la paire de quarks M2

ud̄
= M2

W , le boson W± sera sur
couche de masse et provoquera des instabilités numériques, sauf si nous introduisons une largeur
ΓW dans son propagateur. Cependant, lorsque la résonance est atteinte, ces diagrammes sont
équivalents au processus χ̃0

1χ̃
+
1 → Z0W+, multipliés par le rapport d’embranchement du W± en

paire ud̄. Par conséquent, au lieu de résoudre ce problème en insérant une largeur nous avons
coupé la région d’espace des phases posant problème. Cette coupure a été réalisée sur l’énergie
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du Z0, où nous avons enlevé le domaine d’intégration suivant,

1

2
√
s

(
s− (M2

W + 2ΓWMW −M2
Z)
)
< EZ <

1

2
√
s

(
s2 − (M2

W − 2ΓWMW −M2
Z)
)

(9.14)

Les sections efficaces corrigées χχ̄→ X contenant le bremsstrahlung électrofaible sont présentées
dans la Figure 9.10. Nous pouvons remarquer qu’une partie des corrections pour les processus
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Figure 9.10 – Processus majoritaires dans le calcul de la densité relique corrigés à une boucle
où la radiation d’un boson Z0 supplémentaire a été traitée inclusivement.

χ̃0
1χ̃

0
1 → W+W−, χ̃+

1 χ̃
+
1 → W+W+, χ̃+

1 χ̃
−
1 → Z0Z0, χ̃0

1χ̃
+
1 → Z0W+ ont été absorbées. Les

corrections sont par contre plus importantes pour χ̃0
1χ̃

+
1 → ud̄, tb̄ et χ̃+

1 χ̃
−
1 → W+W−. Cela est

du au fait que, par rapport aux processus précédent, leur correction totale à une boucle était
déjà positive.

9.6.5 Effet Sommerfeld ou de seuil

L’effet Sommerfeld électrofaible est un effet de nature non-perturbative se produisant lorsque
les particules entrant en collision sont non-relativistes. Les simulations à N -corps donnent une
vitesse typique des particules de matière noire dans le halo galactique de l’ordre de v ∼ 10−3.
Ce mécanisme peut alors drastiquement augmenter les sections efficaces d’annihilation des par-
ticules de matière noire du halo galactique lorsque la vitesse et la masse du WIMP vérifient une
certaine relation, menant à la formation d’états liés. Cela se produit typiquement lorsque l’éner-
gie cinétique des WIMP est inférieure à leur énergie potentielle d’interaction [128, 129, 139]. Ce
type de mécanisme a fait l’objet de nombreux travaux, notamment pour les signaux de détection
indirecte χ̃0

1χ̃
0
1 → γγ,W+W− dans [126] où l’effet Sommerfeld est calculé en résolvant numéri-
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quement l’équation de Schrödinger dans un potentiel de diffusion de type Yukawa e−mφr/r, où
mφ est la masse du boson vecteur d’interaction.
Nous allons maintenant nous concentrer sur les corrections à très petite vitesse. Pour cela nous
nous sommes focalisés sur la compréhension des corrections radiatives au processus χ̃0

1χ̃
0
1 →

W+W−, car l’effet Sommerfeld QED a déjà été étudié dans le chapitre précédent. Les types
de diagrammes pouvant potentiellement être singuliers lorsque v → 0 sont présentés dans la
Figure 9.11. Ces diagrammes peuvent développer une singularité pour deux raisons : d’une part
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Figure 9.11 – Diagrammes potentiellement singuliers lorsque v → 0

le rapport MW/mχ̃0
1
<< 1, alors le boson échangé semble quasiment non-massif vis à vis des

neutralinos entrants, et d’autre part puisque la différence de masse δm = mχ̃±
1
− mχ̃0

1
est elle

aussi très faible, le boson échangé est très “mou” lorsque v → 0. Cependant, contrairement au
cas de l’effet Sommerfeld QED, le boson vecteur possède une masse, par conséquent on s’attend
à ce que l’effet Sommerfeld électrofaible soit “coupé’ ou sature à partir d’une certaine vitesse, de
l’ordre v . MW /mχ̃0

1
. Pour tenter de capturer cet effet nous avons alors calculé le rapport σ1/σ0

du processus χ̃0
1χ̃

0
1 →W+W− jusqu’à v = 0 dans deux cas différents : dans le premier la totalité

des diagrammes contribuant à l’ordre d’une boucle ont été pris en compte, et dans le deuxième
seulement les diagrammes à une boucle de la Figure 9.11 ont été inclus dans le terme de boucle
2Re(M∗

0M1). Il est à noter que pour le cas qui nous intéresse, à savoir l’étude de l’annihilation
d’un wino lourd, les graphes de Feynman de la Figure 9.11 comportant un échange de boson
Z0 dans la boucle sont fortement supprimés du fait du très faible couplage χ̃0

1χ̃
0
iZ

0. Ensuite, en
s’inspirant de la formule pour le fit Sommerfeld QED, nous avons interpolé les résultats à l’aide
de la formule (voir Figure 9.12)

σ1/σ0 = a+
b√

v2 + c2
(9.15)

Avant de commenter les résultats de la Figure 9.12 nous pouvons remarquer qu’aucune instabilité
numérique n’est présente, alors que dans la région v → 0 les impulsions entrantes ne sont plus
indépendantes et le déterminant de Gram est très proche de zéro, invalidant la procédure de
réduction des intégrales de boucles à la Passarino-Veltman. Pour pallier à ce problème une version
modifiée de LoopTools a été utilisée, basée sur une segmentation particulière des intégrales
lorsque le déterminant de Gram est nul [70]. En observant maintenant la Figure 9.12 nous pouvons
noter qu’effectivement la section efficace à une boucle est ”coupée“ pour une vitesse proche de
zéro, en fait approximativement égale à v ∼ 10−3 correspondant à

√
s ∼ 3598.179371 GeV ≃

2 × mχ̃±
1
. Les grandes corrections et la coupure proviennent donc de l’ouverture du seuil du
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Figure 9.12 – Fits a + b/
√
v2 + c2 (en vert) du rapport σ1/σ0 (en rouge) sur l’intervalle

v ∈ [0.002, 0.1], où c est laissé libre (panneaux de droite) ou fixé à la valeur c = πMW /2mχ̃0
1

=

7.019 10−2. Les fits ont été réalisés sur le résultat complet (Full) à une boucle (tous les dia-
grammes sont pris en compte) et sur la contribution donnée par les diagrammes de la Figure 9.11
(Approx)
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chargino χ̃±
1 , dont le diagramme responsable est donné dans la Figure 9.13. Le comportement

χ̃0
1

χ̃0
1

W±

W+

W−

χ̃±
1

χ̃±
1

Figure 9.13 – Diagramme responsable de l’effet de seuil

singulier de la Figure 9.13 peut être relié au comportement de la fonction à quatre points scalaire
correspondante, que nous avons tracé dans la Figure 9.14 pour des vitesses proches du seuil.
Concernant les autres processus, étant donné qu’ils impliquent au moins un chargino sur une
patte externe cet effet de seuil ne sera pas à l’œuvre, nous observerons seulement la saturation
de l’effet vers les très petites vitesses pour un état initial de type χ̃0

1χ̃
±
1 . Dans le cas d’un état

initial où deux charginos sont impliqués cette saturation ne sera pas visible du fait de l’effet
Coulomb abélien dont le comportement est ∝ 1/v. Ensuite concernant les fits de la Figure 9.12,
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-1210×
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Figure 9.14 – Graphe de la fonction à quatre points scalaire
D0(m

2
χ̃0

1

,m2
χ̃0

1

, s, t,m2
χ̃±

1

,M2
W ,m2

χ̃±
1

,m2
χ̃±

1

) en fonction de v.

on remarque que le coefficient b change peu entre la correction à une boucle complète et celle
contenant seulement les diagrammes de la Fig 9.11 lorsque c est fixé ou dans le cas où c est
laissé libre lors du fit. Cela laisse à penser que nous avons bien capturé la cause des grandes
corrections des Figures 9.3 et (9.10) lorsque v → 0, et notre paramétrisation de l’équation (9.15)
capture leur effet raisonnablement. Le fait que l’on ait pu isoler ce comportement avec un nombre
restreint de diagrammes est dû justement au fait que la singularité que nous observons possède
une structure de pôle, invariante de jauge, cependant cela est vrai seulement sur un intervalle
restreint de v. Nous avons ensuite appliqué cette démarche à tous les autres processus que nous
désirions corriger à l’ordre d’une boucle. Nous avons donc interpolé dans le même intervalle de
v les sections efficaces avec la formule de fit (9.15), en faisant attention de soustraire d’abord
l’effet Coulomb pour les canaux impliquant deux charginos dans l’état initial (voir Figure 9.15).
Une fois toutes les singularités soustraites, tout en conservant le bremsstrahlung électrofaible,
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Figure 9.15 – Graphe de σ1/σ0 du processus χ̃+
1 χ̃

−
1 → Z0Z0 en fonction de v. Le panneau

de gauche contient l’ensemble des corrections, dans celui de droite l’effet Coulomb πα/v a été
soustrait du total. On remarque la saturation à v = 0.

les corrections sont pratiquement constantes (voir Figure 9.16). On remarque malgré tout que
de grandes corrections sont encore présentes. Par exemple les processus χ̃+

1 χ̃
−
1 → V V avec

V = W±, Z0 ont des corrections importantes, cependant pour WW cela s’explique par la fait
que la radiation du Z0 est très importante (voir Figure 9.6), ce qui laisse finalement environ 20%
de corrections. Le canal avec les deux bosons Z0 dans l’état final ne possède pas de radiation
très importante et les corrections sont autour de -45%. Ainsi il est possible que les corrections
Sudakov ne soient pas compensées par l’ajout de l’émission réelle, laissant les corrections virtuelles
négatives dominer à grand v. Pour les quarks lourds la correction est d’environ -10% et pour les
légers de +10%, de même que pour χ̃0

1χ̃
0
1 →W+W−. Il est possible que cette non-compensation

soit due à une violation du théorème de Bloch-Nordsieck dans les processus électrofaibles, comme
il l’a été souligné dans [140]. Il a été observé un manque de compensation entre les contributions
d’origine infrarouge/colinéaires virtuelles et réelles lorsque s/M2

W → 0, dû à la somme partielle
sur les charges non-abéliennes d’isospin faible. Cette violation est causée par l’émission du boson
W±, qui change la valeur de l’isospin au cours de l’interaction, impliquant une non-compensation
entre les termes virtuels et réels. Si l’on somme sur toutes les charges d’isospin, l’effet global
devrait être nul. Les contribution des bosons Z0 et γ respectent le théorème de Bloch-Nordsieck
car l’isospin est conservé au cours de la réaction. Pour la densité relique, la somme sur toutes
les charges doit être automatiquement réalisée puisque dans le bain thermique tous les processus
pertinents contribuent au terme de collision. Cependant, dans notre cas, nous n’avons pas pris en
compte l’émission réelle d’un boson W± supplémentaire, notre somme sur les charges doit donc
être incomplète. C’est pourquoi nous envisageons d’ajouter cette émission pour les processus de
coannihilation χ̃0

1χ̃
±
1 pour tester si une complète compensation a lieu lorsque tous les processus

pertinents sont pris en compte. À cela s’ajoute le fait que même si l’on redéfinit la constante
de couplage électromagnétique α non plus dans la limite de Thomson α(0), mais à l’échelle
électrofaible α(M2

Z), cela apporte une correction d’environ −13%, n’expliquant donc pas les
valeurs observées.

9.6.6 Densité relique

Il est généralement admis que l’effet Sommerfeld n’influe pas sur la densité relique du fait que
le découplage se produit lorsque les particules de matière noire sont encore relativistes. Pour tester
cette hypothèse nous avons calculé la densité relique en coupant les section efficaces corrigées à
v = 0.1 pour les deux processus χ̃0

1χ̃
0
1 →W+W− et χ̃+

1 χ̃
−
1 → W+W− et la valeur finale donnée

par micrOMEGAs ne changeait pas, montrant que ces singularités donnant de très importantes
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Figure 9.16 – Diagrammes des corrections radiatives où l’effet Sommerfeld électrofaible et l’effet
Coulomb ont été soustraits, la radiation supplémentaire du boson Z0 est ajoutée inclusivement.
On remarque que les singularités ont disparu mais de grandes corrections sont toujours présentes.
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corrections surtout pour des très petites vitesses n’ont que peu d’effet sur la densité relique. À
titre d’illustration pour montrer que la resommation de l’effet Coulomb n’est pas nécessaire pour
le calcul de Ωχh

2, nous avons soustrait pour chaque processus sa manifestation à l’ordre d’une
boucle en 1/v puis resommé à tous les ordres. Avec Xnr = ∓2πα/v, pour une annihilation de
charginos de même signes ou de signes opposés, cette formule s’écrit,

σCoul = σ0 × Snr avec Snr =
Xnr

1 − e−Xnr
= 1 − πα

v
+

1

3

(πα
v

)2
+ · · · (9.16)

Nous avons pu en conclure que la manifestation à l’ordre d’une boucle de l’effet Sommerfeld
QED a peu d’impact sur les sections efficaces pour les intervalles de vitesse d’interêt. Cela se
comprend de la façon suivante : lors du calcul de la moyenne thermique, que l’on peut écrire
dans l’approximation de Maxwell-Boltzmann (T . mχ̃0

1
) de la façon suivante,

〈σv〉 ∝
∫ ∞

0
(σv)v2e−xv2/4 dv avec x = mχ̃0

1
/T (9.17)

le comportement en 1/v est ”lissé”, et ainsi le calcul de Ωχh
2 y est peu sensible. La moyenne

thermique agit donc comme un régulateur pour ce type de correction, mais celles à plus grande
vitesse restent. Le résultat final pour l’abondance relique de matière noire du scénario pour un
neutralino de type wino de masse mχ̃0

1
≃ 1800 GeV est donné dans le Tableau 9.6. Il apparaît que

l’inclusion de la radiation supplémentaire modifie grandement le calcul final de Ωχh
2 et que la

resommation de l’effet Coulomb n’a pas d’impact sur le résultat final. Lorsque la radiation 2 → 2+
Z0 n’est pas prise en compte, l’effet global des corrections radiatives est de diminuer les sections
efficaces d’annihilation, du fait des grandes corrections négatives virtuelles de type Sudakov
(voir équation (9.6)), ainsi la densité relique augmente, car inversement proportionnelle à 〈σv〉.
Lorsque le bremsstrahlung électrofaible est ajouté, leur effet global est positif (équation (9.7)) et
les sections efficaces augmentent, réduisant la densité relique. On remarque, par contre, qu’une

Tree Aττ + Z0 brem + Coul resum EW Som removed

Ωχh
2 0.0993 0.104 0.0934 0.0934 0.103

δΩχh2

Ωχh2 +4.7% −5.9% −5.9% +3.7%

Table 9.6 – Densité relique corrigée à une boucle pour le scénario du wino lourd avec la radiation
supplémentaire d’un boson Z0 prise en compte pour tous les cas. Dans la troisième colonne l’effet
Coulomb a été resommé et dans la quatrième l’effet Sommerfeld électrofaible à une boucle a été
soustrait.

fois l’effet Sommerfeld électrofaible soustrait, une bonne partie des corrections ont disparu pour
le processus χ̃+

1 χ̃
−
1 → W+W−. Il semble donc que cet effet est toujours présent à plus grande

vitesse. L’effet global des corrections est négatif car, une fois la pondération avec les degrés de
liberté effectifs appliquée, les processus contribuant majoritairement ont tendance à augmenter
Ωχh

2.

9.7 Conclusion

La densité relique de matière noire va bientôt être connue avec une incertitude de l’ordre du
pourcent. Ainsi du point de vue théorique si nous souhaitons extraire de l’information à partir de
cette observable, les prédictions théoriques concernant la partie reliée à la physique des particules
doivent atteindre un degré de précision au moins aussi élevé pour pouvoir contraindre le modèle
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cosmologique sous-jacent. Cela implique de les effectuer au-delà de l’approximation de Born et
d’ensuite comprendre et contrôler les corrections radiatives entrant dans le calcul de l’abondance
relique, afin de pouvoir tester le modèle cosmologique sous-jacent. Dans cette étude où le candidat
matière noire est un neutralino lourd s’annihilant majoritairement en bosons de jauge, la plus
grande attention doit être de mise lors de la procédure de renormalisation pour ne pas briser
l’invariance de jauge, qui joue un rôle majeur dans les annihilations. Nous avons analysé ces
sections efficaces à l’ordre d’une boucle pour un seul schéma pour le contre-terme de tan β car
la différence entre les trois schémas dont nous disposons (MH, DR, Aττ ) est infime. Nous avons
opté pour la définition Aττ pour présenter les résultats car cette définition est invariante de jauge
et donne de faibles corrections. Nous avons étudié deux cas, le premier étant un neutralino de
type bino-higgsino avec une masse d’environ 500 GeV. Les corrections radiatives dans ce scénario
sont relativement modestes et ne présentent pas de difficulté particulière. Du deuxième, où le
neutralino est presque exclusivement de type wino, a émergé des corrections importantes, du
genre Sommerfeld (de type U(1) et SU(2)) et Sudakov. L’origine des premières a été relié au
comportement singulier des fonctions à trois et quatre points lorsque la vitesse relative tend
vers zéro, et le deuxième nous a obligé à considérer aussi des processus 2 → 3 où la troisième
particule était un boson Z0. Puis l’impact de la modification de la dynamique de l’annihilation
des neutralinos a été appliqué au calcul de la densité relique de matière noire. Il est apparu que
l’effet Sommerfeld de type U(1) n’a pas d’impact sur la densité relique alors que celui de type
SU(2) et les corrections Sudakov modifient de façon importante le résultat final.
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Conclusion

Cette thèse a été consacrée à l’évaluation précise d’une grande quantité de sections efficaces
entrant dans le calcul de la densité relique où la particule candidate à la Matière Noire est le
neutralino du modèle supersymétrique minimal. En considérant que cette observable sera bien-
tôt obtenue à une précision de l’ordre du pourcent, il est nécessaire d’effectuer de tels calculs au
minimum à l’ordre d’une boucle. Nous nous sommes concentrés sur des scénarios parmi les plus
compliqués : ceux où l’annihilation en bosons de jauge sont dominants et où l’annihilation en
quarks est sous-dominante. Nous avons donc calculé la totalité des corrections électrofaibles et
QCD mises en jeu dans ces processus. Ceux possédant des bosons de jauge dans l’état final sont
complexes non seulement parce qu’un grand nombre de diagrammes sont impliqués pour chaque
canal mais aussi parce que l’invariance de jauge y joue un rôle évident.
Pour pouvoir mener ce travail à bien un code automatique de calculs à une boucle est indispen-
sable. Nous nous sommes basés sur le code SloopS en améliorant considérablement l’implémenta-
tion du secteur des neutralinos/charginos dans cet outil automatisé. À l’origine ce code était, à
l’ordre d’une boucle, optimisé pour des scénarios où le neutralino était de type bino en prenant
comme contraintes de renormalisation la masse du neutralino le plus léger et les deux masses des
charginos, rendant ainsi plus facile la reconstruction des paramètres U(1) et SU(2) des masses
des jauginos ainsi que le paramètre des higgsinos. Cependant, à priori, ce schéma n’est pas idéal
dans les scénarios comme ceux que nous avons rencontré où le neutralino est de type wino. Par
conséquent, comme travail préparatoire pour l’évaluation de la densité relique à l’ordre d’une
boucle, nous avons revisité la renormalisation de ce secteur et dérivé l’ensemble des contre-
termes nécessaires, en prenant comme contraintes différentes séries de masses pour les définir.
Cela pourra aussi aider pour l’étude des différences entre chaque schéma de renormalisation de
ce secteur ainsi que la dépendance due à la définition du paramètre tan β. De plus, grâce à cette
généralisation, nous sommes maintenant capables d’implémenter n’importe quel schéma pour
s’adapter très rapidement à l’ensemble des premières nouvelles particules qui seront découvertes
aux collisionneurs. Nous avons étudié brièvement l’implémentation d’un schéma, plus réaliste
d’un point de vue expérimental, où les contre-terms sont obtenus à partir de la masse de deux
neutralinos et d’un chargino. Malheureusement ce schéma produit de grandes incertitudes sur la
reconstruction des paramètres fondamentaux, et cela d’une façon générale. C’est pourquoi nous
avons proposé un schéma mixte à partir de la mesure de deux masses plus une désintégration
pour contraindre plus efficacement les paramètres du lagrangien. D’un point de vue technique
nous avons été obligés d’utiliser une matrice de diagonalisation complexe pour le secteur des
neutralinos, ce qui ajoute des aspects non-triviaux à leur implémentation dans SloopS .

Pendant mon travail de thèse je me suis penché à la fois sur le cas d’un neutralino relativement
léger dans un intervalle de masse de quelques centaines de GeV, mais aussi où sa masse était de
l’ordre de quelques TeV. Dans le premier cas nous avons couvert tous les types de neutralinos
pouvant s’annihiler en bosons de jauge, cela nécessite en particulier une composante wino ou
higgsino non-négligeable. Il a été montré que l’inclusion des corrections radiatives dans le calcul
de la densité relique peut fortement modifier la dynamique de l’annihilation des particules de
matière noire par rapport à un calcul à l’ordre dominant. Nous avons montré notamment qu’il
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est possible de capturer la manifestation à l’ordre d’une boucle d’un effet non-perturbatif : l’effet
Coulomb-Sommerfeld. Dans ce cas le développement en puissance de v de la section efficace
multipliée par v n’est plus valide et doit être modifié. Ce constat reste valable lorsqu’un seuil de
création de particule sur couche de masse dans les diagrammes de boucles est atteint, comme
par exemple dans le cas du neutralino de type higgsino. La densité relique a ensuite pu être
obtenue en interfaçant le code SloopS avec le programme automatique micrOMEGAs , ce qui est
une amélioration importante par rapport à notre méthode précédente, qui se basait sur un calcul
approché. Le deuxième cas a révélé deux effets importants qui peuvent mener à de grandes
corrections. En premier lieu viennent les corrections Sommerfeld, d’importance autour du seuil de
l’annihilation (i.e des vitesses proches de zéro), qui sont plus pertinentes pour des analyses dédiées
à la détection indirecte de l’annihilation de neutralinos dans notre galaxie. Pour le neutralino
de l’ordre du TeV, les corrections Sommerfeld incluent non seulement celles dues à l’interaction
électromagnétique par l’échange d’un photon au seuil, que nous avions déjà observé dans les
canaux de coannihilation pour le scénario du wino léger, mais aussi celles provoquées par l’échange
de bosons de jauge W± ou Z, dont la masse devient négligeable par rapport à celle du candidat
matière noire, de l’ordre du TeV. Ces grandes corrections sont néanmoins atténuées lors de
l’évaluation de la densité relique, puisque dans ce cas le gel se produit à des vitesses de l’ordre de
0.3c, comme cela peut être vu lors de la moyenne thermique des sections efficaces d’annihilation.
La resommation de cet effet pour la densité relique n’affecte pas le résultat final.
La nouveauté, en ce qui concerne la calcul de la densité relique, provient du deuxième type de
corrections. Elles sont de type Sudakov, bien connues dans les calculs de corrections radiatives
électrofaibles, quand l’échelle typique de la réaction est bien plus grande (de l’ordre du TeV)
que la masse du W , cette correction varie comme ln2(m2

χ/M
2
W ) où mχ est la masse du candidat

matière noire. Cette correction est présente pour n’importe quelle valeur de la vitesse relative et
ainsi importante pour le calcul de la densité relique. Cette correction affecte les particules de l’état
final lorsqu’elles deviennent fortement relativistes. La forme en double logarithme est d’origine
infrarouge/colinéaire. En effet il a été montré dans ce travail que la considération des processus
2 → 3 par l’ajout d’un boson Z supplémentaire est nécessaire dans de tels scénarios. L’inclusion
de tels processus contrebalance une bonne partie des corrections à une boucle. Nous l’avons
illustré en considérant la désintégration d’un boson Z ′ de l’ordre du TeV en νν̄, en incluant la
correction virtuelle due au boson Z et en l’ajoutant en tant que radiation. Un résultat analytique
simple confirme que, dans cet exemple, les doubles logarithmes s’annulent.
Au-delà de l’application à la densité relique, ce travail a mis en évidence des configurations
particulières des intégrales de boucle qui ont nécessité un traitement spécial. Par exemple, lorsque
la vitesse relative tend vers zéro, la technique de réduction habituelle à la Passarino-Veltman n’est
plus valide et devient hautement instable car le déterminant de Gram tend lui aussi vers zéro.
Dans ce cas nous avons fait appel à une technique de segmentation de intégrales pour éviter
ce problème numérique et aussi obtenir analytiquement le comportement de la fonction à trois
points dans la limite où la vitesse relative tend vers zéro. Pour les corrections Sudakov l’intégrale
de boucle doit gérer cette contribution avec attention. Enfin la radiation d’un boson Z dans
la limite des hautes-énergies doit faire appel à une intégration de l’espace des phases à trois
particules par une méthode Monte-Carlo très précise. L’amélioration du calcul des intégrales de
boucles dans ces configurations peut aussi être d’une grande utilité pour les calculs multi-pattes
aux ordres supérieurs pour les collisionneurs.

Avec le démarrage du LHC, et si des signaux en faveur de la supersymétrie sont mis en évidence,
ainsi que certaines de ses propriétés, le code SloopSpourrait aider à reconstruire les paramètres
fondamentaux à l’ordre d’une boucle. Je souhaite poursuivre l’étude des différents choix de
schéma de renormalisation dans le secteur des neutralinos/charginos sur des observables tournées
vers les futurs collisionneurs linéaires. Ceci fait l’objet d’un travail en cours. Le code SloopS peut
bien sûr encore être amélioré en approfondissant l’automatisation de l’interface avec le programme
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micrOMEGAs , dans le but d’avoir un code complet de calcul à une boucle de la densité relique dans
le MSSM. Cela permettrait de réévaluer les différentes contraintes sur l’espace des paramètres
obtenus à partir d’un calcul à l’ordre dominant. Il ne va pas sans dire que le travail effectué ici
pourrait être exploité avec d’autres modèles de Nouvelle Physique, adressant le problème de la
brisure électrofaible, comme les modèles Little Higgs ou à dimensions supplémentaires.
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Conclusion (English)

The work in this thesis aimed at the precise computation of a host of annihilation cross
sections that enter the prediction of the relic density where the dark matter candidate is the
neutralino of the minimal supersymmetric model. Considering that this observable will soon be
extracted at the per-cent level it is mandatory to perform such calculations at the next to lea-
ding order level, at least. We focussed on some of the most challenging scenarios, those where
annihilations into weak vector bosons are dominant while some annihilations into quarks are not
negligible. We thus had to perform full electroweak and QCD corrections to many processes.
Processes with annihilations into electroweak vector bosons are challenging not only because a
very large set of diagrams is involved for each channel but also because issues of gauge invariance
are most striking.
To be able to conduct such a program, an automatic code for one-loop corrections is almost
a must. We have built-up on SloopS by greatly improving the implementation of the neutra-
lino/chargino sector in this automated code. Originally this code was, at loop-level, optimised
for bino-like scenarios taking as input parameters the mass of the lightest neutralino together
with the masses of the two charginos thus making it easier to reconstruct the underlying U(1)
and SU(2) gaugino masses and the higgsino parameter. This scheme would not, à priori, have
been ideal in scenarios such as the ones we concentrated on where the dark matter neutralino
is a wino. Therefore as a preparatory investigation for the computation of the relic density at
one-loop, we have reviewed the renormalisation of this sector and derived the set of all needed
counter-terms taking as input different set of masses to fix these counter-terms. This can also
help to study the differences between the various schemes in this sector along side the scheme
dependence due to the definition of tan β. Moreover with this generalisation we are now ready to
implement any scheme adapting very quickly to the set of particles, in this sector, that will be
discovered first at the colliders. We have briefly studied a scheme, realistic from an experimental
point of view, where two neutralinos and one chargino are taken as inputs. We have shown that
this scheme suffers from big uncertainties due to the difficult reconstruction of fundamental pa-
rameters of this sector. As a solution we have proposed a scheme based on the measurement of
two masses and one decay to try to constrain more efficiently the Lagrangian parameters. From
the technical point of view this has forced to use a complex diagonalising matrix in the case of
the neutralino sector which adds some non-trivial features in the implementation within SloopS .

The work studied both the case of a relatively light neutralino in the range of a few hundred
GeV as well as much heavier neutralinos in the range of few TeV. In the first case we covered all
types of neutralinos leading to gauge boson in the final state. It has been shown that including
radiative corrections in the relic density calculation can substantially modify the dynamics of the
annihilation of Dark Matter particles with respect to leading order calculations. In particular it
has been shown that a next-to-leading order calculation can capture the one-loop manifestation
of a non-perturbative effect : the Coulomb/Sommerfeld enhancement. In this case the usual
expansion in terms of v, the relative velocity, of the cross section times v is not valid anymore.
This statement remains true as soon as the threshold of an internal particle is reached in loop
diagrams, like for example the higgsino case. The prediction of the relic density has then been
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obtained through the interface of SloopSwith the automatic program micrOMEGAs . This is an
important improvement compared to our former method of calculating the cosmic abundance,
which was based on an approximation. The TeV case has revealed two important effects that lead
to large corrections. First there is once again the Sommerfeld type corrections, relevant around
the threshold of annihilation (vanishingly small velocities) that are of more crucial importance
for analyses dedicated to indirect detection of annihilating neutralinos in our galaxy. For the TeV
neutralinos these Sommerfeld corrections include not only the known electromagnetic correction
due to the exchange of the massless photon at threshold, the same we have also observed in the
co-annihilation channels for the light wino scenario, but include also the exchange of W± and
Z gauge bosons, whose mass become negligible for TeV Dark Matter. These large corrections
are nonetheless screened when evaluating the relic density since in the latter the dark matter
freezes out at velocities of order 0.3c as can be seen when thermal averaging the annihilation
cross sections. Resummation of this effect for the relic density does not affect the overall result.
The second type of corrections is a novel one as far as calculation of the relic density is concerned.
It is of the Sudakov type which has been known in electroweak radiative corrections calculations
when the typical scale of the process becomes much larger (about the TeV ) than the W mass,
this correction scales as ln2(m2

χ/M
2
W ) where mχ is the Dark Matter mass. This correction occurs

for all values of the relative velocities and hence is important for the relic density calculation. This
correction can be considered as affecting the final state particles that become highly relativistic.
This double logarithms signal infrared/collinear effects. Indeed it was shown in this work that
considering 2 → 3 processes by addition of a radiating Z that these 2 → 3 processes are not
negligible at all and should be taken into account in such scenarios. Including such processes
offset and counterbalance much of the large one-loop corrections. We have shown this interplay
in a most transparent way by considering the decay of a TeV Z ′ into νν̄ including the one-loop
correction due to Z boson and adding the Z as radiation. Simple analytic results confirm that,
in this simple case, the double log does cancel.
Beyond the application to the calculation of the relic density, the present work dealt with specific
configurations of the loop integrals that need special treatment. For example at vanishingly small
velocity, the usual reduction of the tensor integrals à la Passarino-Veltman is inoperative as the
procedure becomes highly unstable because of the appearance of a vanishing Gram determinant.
We have used a method of segmentation of the loop integrals to avoid this numerical problem
and it has also enabled us to obtain the limiting behaviour of the three point function when the
relative velocity vanishes. In the case of the one-loop Sudakov the loop integral must also handle
this contribution with care. Moreover radiation of a Z in the high energy limit must appeal to
precise Monte-Carlo integration routines on the 3-body final state. Improving the loop integrals
for this configurations might therefore also prove useful for multi-leg one-loop processes at the
colliders.
With the launch of the LHC, and if positive signals of Supersymmetry are found, the much
improved SloopS code could help to reconstruct fundamental parameters at the one-loop level.
That is why some preliminary work is underway. Concerning the SloopS code, further automation
of the interface to micrOMEGAs could be done in order to have a full relic density code at next-
to-leading order in the MSSM. This will make it possible to reconsider different constraints on
the parameter space which have been obtained from a calculation at the leading order. Needless
to say that the work performed here could also be exploited with other models of New Physics
that address the problem of electroweak symmetry breaking, like little Higgs models or extra-
dimensions.
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Annexe A

Matrices Gamma

A.1 Définitions

Les matrices de Dirac obéissent à la relation d’anticommutation suivante,

{γµ, γν} = 2gµν (A.1)

Dans la base de Weyl elles s’écrivent

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(−1 0

0 1

)
, (A.2)

où
σµ = ( l1, ~σ), σ̄µ = ( l1,−~σ) (A.3)

Les matrices σ sont les matrices de Pauli,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A.4)

A.2 Propriétés

Les traces de matrices γ intervenant dans les produits de spineurs peuvent être calculés à
l’aide des identités suivantes,

Tr[ l1] = 4

Tr[# impair de matrices γ] = 0

Tr[γµγν ] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr[γ5] = 0

Tr[γµγνγ5] = 0

Tr[γµγνγργσγ5] = − 4iεµνρσ

La propriété de cyclicité de la trace permet d’inverser l’ordre des matrices γ,

Tr[γµγνγργσ · · · ] = Tr[· · · γσγργνγµ] (A.5)

En utilisant la notation 6p = γµpµ on a

6p6k = γµγνpµkν = 2p · k − 6k 6p (A.6)
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Il possible de donner l’expression des traces de plus de quatre matrices de Dirac ∗ en utilisant
le fait que,

Tr [γµγν ] =
1

2
Tr [{γµ, γν}] = gµνTr [I4] = 4gµν

Alors

Tr [γµγνγργσ] = − Tr [γνγργµγσ] + 2gρσTr [γνγρ]

= Tr [γργµγνγσ] + 2gµσTr [γνγρ] − 2gνσTr [γργµ]

= − Tr [γµγνγργσ] + 2gµσTr [γνγρ] − 2gνσTr [γργµ] + 2gρσTr [γµγν ]]

Tr [γµγνγργσ] = 4 (gµσgνρ − gνσgρµ + gρσgµν)

En reproduisant le même type de procédure on obtient aussi

Tr
[
γµγνγργσγαγβ

]
= gµνTr

[
γργσγαγβ

]
− gµρTr

[
γνγσγαγβ

]

+ gµσTr
[
γνγργαγβ

]
− gµαTr

[
γνγργσγβ

]

+ gµβTr [γνγργσγα]

Et pour la trace de huit matrices de Dirac,

Tr
[
γµγνγργσγαγβγτγλ

]
= gµλTr

[
γνγργσγαγβγτ

]
− gνλTr

[
γργσγαγβγτγµ

]

+ gρλTr
[
γσγαγβγτγµγν

]
− gσλTr

[
γαγβγτγµγνγρ

]

+ gαλTr
[
γβγτγµγνγργσ

]
− gβλTr [γτγµγνγργσγα]

+ gτλTr
[
γµγνγργσγαγβ

]

∗. La trace d’un nombre impair de matrices γ est nulle
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Calculs entrants dans la densité relique

B.1 Vitesse de Møller

On cherche à démontrer l’expression de la vitesse de Møller :

vMøl =
√

|~vi − ~vj|2 − |~vi ∧ ~vj|2 =

√
(pi · pj)2 −m2

im
2
j

EiEj
(B.1)

D’abord écrivons l’expression de la vitesse relative

|~vi − ~vj |2 =

∣∣∣∣
~pi

Ei
− ~pj

Ej

∣∣∣∣
2

=
E2

j |~pi|2
E2

i E
2
j

+
E2

i |~pj|2
E2

i E
2
j

− 2
~pi · ~pjEiEj

E2
i E

2
j

=
1

E2
i E

2
j

[
E2

j |~pi|2 + E2
i |~pj|2 − 2~pi · ~pjEiEj

]
(B.2)

Cependant

m2
im

2
j = (E2

i − |~pi|2)(E2
j − |~pj |2) = E2

i E
2
j − |~pi|2E2

j − |~pj|2E2
i + |~pi|2|~pj|2 (B.3)

Alors

|~vi − ~vj |2 =
1

E2
i E

2
j

[
E2

i E
2
j + |~pi|2|~pj |2 −m2

im
2
j − 2~pi · ~pjEiEj

]
(B.4)

En sachant que,

(pi · pj)
2 = (EiEj − ~pi~pj)

2 = E2
i E

2
j + (~pi · ~pj)

2 − 2~pi · ~pjEiEj (B.5)

cela implique,

|~vi − ~vj|2 =
1

E2
i E

2
j

[
(pi · pj)

2 −m2
im

2
j + |~pi|2|~pj |2 − (~pi · ~pj)

2
]

=
1

E2
i E

2
j

[
(pi · pj)

2 −m2
im

2
j + |~pi|2|~pj |2(1 − cos2 θ)

]

=
1

E2
i E

2
j

[
(pi · pj)

2 −m2
im

2
j + |~pi|2|~pj |2 sin2 θ

]

=
1

E2
i E

2
j

[
(pi · pj)

2 −m2
im

2
j + (~pi ∧ ~pj)

2
]

(B.6)

Et finalement,

|~vi − ~vj |2 − |~vi ∧ ~vj |2 =
(pi · pj)

2 −m2
im

2
j

E2
iE

2
j

(B.7)

181



ANNEXE B. CALCULS ENTRANTS DANS LA DENSITÉ RELIQUE

B.2 Impulsion dans le centre de masse

On va chercher à exprimer la vitesse de Møller en fonction de l’impulsion dans le centre de
masse |~pij | pour une collision de deux particules de masse mi et mj et de quadri-impulsions
pi = (Ei, ~pij) et pj = (Ej ,−~pij). Tout d’abord démontrons que (pi · pj)

2 −m2
im

2
j = s|~pij|2,

(pi · pj)
2 −m2

im
2
j = (EiEj + |~pij |2)2 − E2

iE
2
j + |~pij |2(E2

j + E2
i ) − |~pij|4

= |~pij |2(E2
j + E2

i + 2EiEj)

= |~pij |2(Ei + Ej)
2 = s|~pij|2 (B.8)

On a alors

|~pij | =
EiEj√
s

× vMøl (B.9)

en utilisant,

Ei =
s+ (m2

i −m2
j)

2
√
s

, Ej =
s− (m2

i −m2
j)

2
√
s

(B.10)

on arrive à

|~pij | =
s2 − (m2

i −m2
j)

2

4s3/2
× vMøl (B.11)

B.3 Section efficace modifiée dans SloopS

La formule générale de la section efficace différentielle est,

dσ =
|M|2dΓ2

Φ
(B.12)

avec Φ le facteur de flux
Φ = 4|~pij |

√
s (B.13)

Pour le cas de calculs concernant la matière noire on est souvent amenés à calculer le produit
σvMøl, alors en définissant

dσ =
dσ̃

|~pij |
avec dσ̃ =

|M|2dΓ2

4
√

s
(B.14)

où dΓ2 est l’espace des phases invariant de Lorentz à deux particules.
On obtient finalement

dσvMøl =
4s3/2

s2 − (m2
i −m2

j)
2
× dσ̃ =

s

s2 − (m2
i −m2

j)
2
× |M|2dΓ2 (B.15)

L’implémentation directe de cette formule dans SloopS permet ainsi d’éviter des instabilités
numériques lors du calcul de σv lorsque v → 0.

B.4 Expression de la vitesse relative

De la section précédente on a, en notant vij la vitesse relative,

|~pij| = vij ×
s2 − (m2

i −m2
j )

2

4s3/2
(B.16)

alors en sachant que,

|~pij| =

√
(s− (mi +mj)2)(s − (mi −mj)2)

2
√
s

(B.17)

on obtient

vij =
2

1 − (M2
−/s)2

√
1 − 2M2

+/s +M4
−/s2, avec M2

± = m2
i ±m2

j (B.18)
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Annexe C

Diagonalisation

Nous allons démontrer les formules approchées des masses des charginos et des neutralinos
dans la limite MZ ,MW << |µ+M1|,|µ+M2| démontrées dans [141, 142].

C.1 Diagonalisation des charginos

On rappelle l’expression de la matrice de masse des charginos sous la forme de blocs 2 × 2 :

Mc =

(
0 XT

X 0

)
(C.1)

avec

X =

(
M2

√
2sβMW√

2cβMW µ

)
(C.2)

Cette matrice est diagonalisée par deux matrices unitaires U et V telles que

|DetU | = |DetV | = 1, UU † = V V † = 1 (C.3)

On peut choisir U et V à coefficients réels alors la matrice diagonalisée X̃ est définie par

X̃ = UXV T (C.4)

tel que U et V soient choisies de façon à ce que les masses physiques X̃ii > 0, i = 1, 2. Alors à
partir de,

Det X̃ = Det UDet V T Det X = ±Det X (C.5)

où
DetX = M2µ−M2

W s2β, (C.6)

on peut toujours choisir Det U > 0 et ainsi poser

U =

(
cu −su

su cu

)
(C.7)

impliquant alors que sign(Det V ) = sign(Det X) = εc. Le signe de Det V est alors donné par
le signe de M2µ puisque génériquement on a MZ ,MW << |µ +M1|,|µ +M2|. De plus on peut
toujours absorber le signe de M2 dans une redéfinition du champ W̃ , alors le signe de V sera
donné par le signe de µ. Alors

V = εcV̂ =

(
1 0

0 sign(µ)

)(
cv −sv

sv cv

)
(C.8)
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Avant de calculer les masses approchées il faut extraire l’expression des coefficients des matrices
U et V à partir de la matrice de masse au carré

X̃X̃T = UXXTUT =

(
m2

χ̃±
1

0

0 m2
χ̃±

2

)
et X̃T X̃ = V XTXV T =

(
m2

χ̃±
1

0

0 m2
χ̃±

2

)
(C.9)

avec mχ̃±
1
< mχ̃±

2
.

En identifiant les termes antidiagonaux de la partie de gauche de l’équation C.9 avec les zéros
de la matrice diagonalisée on obtient

t2u =
2
√

2MW (M2cβ + µsβ)

(M2
2 − µ2 − 2M2

W c2β)
(C.10)

t2v =
2
√

2MW (M2sβ + µcβ)

(M2
2 − µ2 + 2M2

W c2β)
(C.11)

Dans la limite MW << M2, µ on a tan−1(x) ≃ x alors

u =

√
2MW (M2cβ + µsβ)

(M2
2 − µ2)

(
1 − 2M2

W
c2β

M2
2−µ2

) ≃
√

2MW (M2cβ + µsβ)

M2
2 − µ2

(C.12)

v ≃
√

2MW (M2sβ + µcβ)

M2
2 − µ2

(C.13)

et ainsi
cu,v ≃ 1 su,v ≃ u, v (C.14)

Alors les formes limites de U et V sont

U =




1
√

2MW (M2cβ+µsβ)

M2
2−µ2

−
√

2MW (M2cβ+µsβ)

M2
2−µ2 1


 (C.15)

V =




1
√

2MW (M2sβ+µcβ)

M2
2
−µ2

−
√

2MW (M2sβ+µcβ)sign(µ)

M2
2−µ2 sign(µ)


 (C.16)

ce qui donne

mχ̃±
1
≃M2 −

M2
W (M2 + µs2β)

µ2 −M2
2

(C.17)

mχ̃±
2
≃ |µ| + M2

W (M2s2β + µ)sign(µ)

µ2 −M2
2

(C.18)

C.2 Diagonalisation des neutralinos

Pour diagonaliser la matrice des neutralinos, dans la limite MZ << |µ+M1|,|µ+M2|, nous
allons exprimer les termes non-diagonaux sous forme de perturbation, soit

Y = Y0 +W (C.19)

avec Y0 la matrice “non-perturbée”,

Y0 =




M1 0 0 0

0 M2 0 0

0 0 0 −µ
0 0 −µ 0


 (C.20)

184



C.2. DIAGONALISATION DES NEUTRALINOS

et W la perturbation, avec MZ comme paramètre de développement

W = MZ




0 0 −cβsw sβsw

0 0 cβcw −sβcw
−cβsw cβcw 0 0

sβsw −sβcw 0 0


 (C.21)

La matrice Y0 est diagonalisée par une matrice unitaire N0 telle que N0Y0N
0T = m0. Les valeurs

propres de Y0 sont
m0 = diag(M1,M2,−µ, µ) (C.22)

et la matrice de passage dans la base des vecteurs propres (ϕ0
1, ϕ

0
2, ϕ

0
3, ϕ

0
4) s’écrit

N0 =




1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2


 (C.23)

En utilisant la théorie des perturbations jusqu’au deuxième ordre, la masse est donnée par

mn = m(0)
n + 〈ϕ(0)

n |W |ϕ(0)
n 〉 +

∑

k 6=n

|〈ϕ(0)
k |W |ϕ(0)

n 〉|2

m
(0)
n −m

(0)
k

+ · · · (C.24)

La première correction d’ordre 1 se ramène au calcul de

W 1 = N0WN0T (C.25)

et les perturbations aux masses seront les termes diagonaux. On obtient,

W 1 = MZ




0 0 sws−√
2

sws+√
2

0 0 − cws−√
2

− cws+√
2

sws−√
2

− cws−√
2

0 0
sws+√

2
− cws+√

2
0 0




(C.26)

avec

s− = sβ − cβ

s+ = sβ + cβ

On voit alors qu’au premier ordre de la théorie des perturbations les corrections aux masses
sont nulles. Nous allons donc calculer les termes aux deuxième ordre, W 2

W 2
n =

∑

k 6=n

|〈ϕ(0)
k |W |ϕ(0)

n 〉|2

m
(0)
n −m

(0)
k

(C.27)

Nous donnons comme exemple les corrections de deuxième ordre à m1 et m2,

W 2
1 =

(sws−)2

2(M1 + µ)
+

(sws−)2

2(M1 − µ)
= −M

2
Zs

2
w(M1 + µs2β)

µ2 −M2
1

(C.28)

W 2
2 =

(cws−)2√
2(M2 + µ)

+
(cws+)2√
2(M2 − µ)

= −M
2
Zc

2
w(M2 + µs2β)

µ2 −M2
2

= −M
2
W (M2 + µs2β)

µ2 −M2
2

(C.29)
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ANNEXE C. DIAGONALISATION

Finalement on obtient pour les masses approchées,

mχ̃0
1
≃M1 −

M2
Zs

2
w(M1 + µs2β)

µ2 −M2
1

mχ̃0
2
≃M2 −

M2
W (M2 + µs2β)

µ2 −M2
2

mχ̃0
3
≃ |µ| + M2

Z(1 − ǫs2β)(|µ| +M1c
2
w +M2s

2
w)

2(|µ| +M1)(|µ| +M2)

mχ̃0
4
≃ |µ| + M2

Z(1 + ǫs2β)(|µ| −M1c
2
w −M2s

2
w)

2(|µ| −M1)(|µ| −M2)
(C.30)

où nous avons pris M1, M2 réels et positifs par convention, ainsi que µ de signe ǫ = ±1.
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Annexe D

Paramètres de Feynman

D.1 Intégration sur les paramètres de Feynman

Démontrons que

∫ 1

0
dxdydz · f(z)δ(x + y + z − 1) =

∫ 1

0
dz(1 − z)f(z)

Premièrement, réalisons l’intégration sur x avec la fonction δ. Nous savons que
∫ +∞
−∞ f(x)δ(x −

x0) = f(x0). cela signifie que la fonction delta est piquée en x0 ∈ [−∞,+∞]. Dans le cas qui
nous interesse, nous voulons qu’elle le soit dans l’intervalle x0 ∈ [0, 1] et égale à x0 = 1 − y − z.
Cela implique que

0 < 1 − y − z < 1

1 − z > y > −z

Comme z ∈ [0, 1], la partie droite est automatiquement vérifiée. Par conséquent nous obtenons :

∫ 1

0
dzf(z)

∫ 1−z

0
dy =

∫ 1

0
dz(1 − z)f(z)

D.2 Formules d’intégrales

Pour n’importe quelles fonctions f(x, y) et g(x+ y, xy) :

∫ 1

0
dx

∫ 1−x

0
dyf(x, y) =

∫ 1

0
dy

∫ 1−y

0
dxf(x, y) =

∫ 1

0
dx

∫ 1−x

0
dyf(y, x),

∫ 1

0
dx

∫ 1−x

0
dy(x− y)g(x+ y, xy) =

∫ 1

0
dx

∫ 1−x

0
dy(y − x)g(x + y, xy) = 0

Pour n’importe quelle fonction g(x + y) :

∫ 1

0
dx

∫ 1−x

0
dyg(x+ y) =

∫ 1

0
dzg(z)

∫ z

0
dx =

∫ 1

0
dzzg(z)
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D.3 Autre version de la paramètrisation de Feynman

Nous savons que

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzf(x, y, z)δ(x + y + z − 1) =

∫ 1

0
dx

∫ 1−x

0
dyf(x, y, 1 − x− y)

ensuite en prenant z = 1 − x il vient

∫ 1

0
dx

∫ 1−x

0
dyf(x, y, 1−x−y) =

∫ 0

1
−dz

∫ z

0
dyf(1−z, y, z−y) =

∫ 1

0
dz

∫ z

0
dyf(1−z, y, z−y)

En l’appliquant à la paramétrisation de Feynman :

1

ABC
= 2!

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(x+ y + z − 1)

[xA+ yB + zC]3

= 2!

∫ 1

0
dx

∫ 1−x

0
dy

1

[xA+ yB + (1 − x− y)C]3

= 2!

∫ 1

0
dz

∫ z

0
dy

1

[(1 − z)A+ yB + (z − y)C]3
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Annexe E

Fonctions Spéciales

E.1 Opérations sur les logarithmes

log(−x) = iπ + log(x) (E.1)

log2(a) − log2(b) = log(
a

b
) log(ab) (E.2)

log2(−a) − log2(−b) = (log(−a) − log(−b))(log(−a) + log(−b))
= log(

a

b
)(2iπ + log(ab)) (E.3)

E.2 Fonction de Spence ou dilogarithme

L’équation servant de définition est

Li2(x) = −
∫ 1

0
dt

ln(1 − xt)

t
= −

∫ x

0
dt

ln(1 − t)

t
tel que − π < arg(1 − x) ≤ π (E.4)

Nous détaillons comment faire apparaître des fonctions de Spence à partir d’une intégrale du
type :

R =

∫ 1

0
dy

1

y − y0
[ln(y − y1) − ln(y0 − y1)]

=

∫ 1−y1

−y1

dy
1

y − y0 + y1
[ln y − ln(y0 − y1)]

=

∫ 1−y1

0
dy

1

y − y0 + y1
[ln y − ln(y0 − y1)]

−
∫ −y1

0
dy

1

y − y0 + y1
[ln y − ln(y0 − y1)]

=

∫ 1

0
dy

[
d

dy
ln

(
1 + y

1 − y1

y1 − y0

)][
ln y

(
1 − y1

y0 − y1

)]
y = (1 − y1)y

′

−
∫ 1

0
dy

[
d

dy
ln

(
1 − y

y1

y1 − y0

)][
ln

−yy1

y0 − y1

]
y = y1y

′
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R = Li2

(
y1 − 1

y1 − y0

)
− Li2

(
y1

y1 − y0

)

+ ln

(
1 − y0

y1 − y0

)
[ln(1 − y1) − ln(y0 − y1)] − ln

( −y0

y1 − y0

)
[ln(−y1) − ln(y0 − y1)]

= Li2

(
y0

y0 − y1

)
− Li2

(
y0 − 1

y0 − y1

)

où nous avons utilisé la formule E.5 :

ln

(
1 − y0

y1 − y0

)
ln

(
1 − y1

y0 − y1

)
= ln

(
1 − y0

y1 − y0

)
ln

(
y1 − 1

y1 − y0

)
= ln

(
1 − y0

y1 − y0

)
ln

(
1 − 1 − y0

y1 − y0

)

Quelques formules reliant les fonctions de Spence [143] :

Li2 (x) + Li2 (1 − x) =
π2

6
− ln(x) ln(1 − x) (E.5)

Li2(x) + Li2

(
1

x

)
= − π2

6
− 1

2
ln2(−x) (x 6∈ ]0; 1[) (E.6)

On donne quelques valeurs particulières

Li2(0) = 0 (E.7)

Li2(1) =
π2

6
(E.8)

Li2(−1) = −π
2

12
(E.9)

Li2

(
1

2

)
=
π2

12
− ln2(2) (E.10)

E.2.1 Variante de la définition

La définition du dilogarithme dans MAPLE[144] est différente de celle que nous utilisons ici.
Dans MAPLE le dilogarithme s’écrit,

dilog(x) =

∫ x

1
dt

ln(t)

1 − t
(E.11)

alors que celle que nous utilisons est définie telle que

Li2(x) = −
∫ x

0
dt

ln(1 − t)

t
(E.12)

pour passer de l’une à l’autre il suffit d’opérer le changement de variable t → 1 − t′ et ensuite

dilog(x) = Li2(1 − x) (E.13)

E.2.2 Développement Limité

Dans le cas où l’argument x << 1 on obtient les développements suivants, en posant x = ǫ
et ǫ > 0 :

Li2(ǫ) = −
∫ 1

0
dt

ln(1 − ǫt)

t
≃ −

∫ 1

0
dt

ln e−ǫt

t
=

∫ 1

0
ǫdt = ǫ (E.14)

Li2(1 − ǫ) =
π2

6
− Li2(ǫ) − ln(ǫ) ln(1 − ǫ) ≃ π2

6
− ǫ+ ǫ ln ǫ (E.15)

Li2(1 + ǫ) ≃ π2

6
+ ǫ− ǫ ln ǫ− iπǫ (E.16)
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E.3 Fonction Gamma d’Euler

La fonction Gamma Γ(z) apparaît dans les calculs de boucle utilisant la régularisation di-
mensionnelle. Tout d’abord, l’égalité

zΓ(z) = Γ(z + 1) z ∈ C (E.17)

sert en fait de définition de Γ(z). Ensuite, Γ(z) est une fonction méromorphe ∗ de la variable
complexe z qui possède des pôles simples lorsque

z = −n, n ∈ N (E.18)

La représentation intégrale (dite d’Euler) s’écrit,

Γ(z) =

∫ ∞

0
dt e−t tz−1, Re z > 0 (E.19)

La propriété E.17 peut être utilisée pour prolonger la représentation E.19 dans la région Re z <
0, Im z 6= 0, il en suit les propriétés suivantes,

Γ(1) = Γ(2) = 1, Γ(n) = (n− 1)! n = 2, 3, 4, ... (E.20)

De plus, Γ(1/2) =
√
π. Nous utiliserons également les deux limites suivantes :

lim
z→0

Γ(z) =
1

z
− γE + O(z) (E.21)

lim
z→0

Γ(z)Az =
1

z
− γE + lnA+ O(z) (E.22)

où γE est la constante d’Euler
γE = 0.577215 (E.23)

∗. Ses seules singularités sont des pôles
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Annexe F

Intégrales scalaires

F.1 Intégrale scalaire à un point, fonction A :

m

Ce type d’intégrale est rencontré lors du calcul des diagrammes type tadpole, ainsi que lors
de la réduction des intégrales de plus haut rang.
La fonction A0 est définie par l’intégrale

A0(m) = −i(4π)2µ4−n

∫
dnk

(2π)n
1

k2 −m2
(F.1)

Et elle se calcule simplement à l’aide de 4.18 en développant autour de n = 4

A0(m) = m2

(
CUV − ln

(
m2

µ2

)
+ 1

)
+ O(ε) (F.2)

F.2 Intégrale scalaire à deux points, fonction B :

Ce type d’intégrale apparaît lors du calcul des self-énergies ou des transitions.

m1

m2

p →

La fonction B0 prend la forme :

B0(p
2;m1,m2) = − i(4π)2µ4−n

∫
dnk

(2π)n
1

D0D1
,

D0 = k2 −m2
1 , D1 = (k + p)2 −m2

2
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En introduisant les paramètres de Feynman au dénominateur :

1

D0D1
=

∫ 1

0
dx

1

[(1 − x)(k2 −m2
1) + x((k + p)2 −m2

2)]
2

=

∫ 1

0
dx

1

[ k2 + 2kpx︸ ︷︷ ︸
(k+px)2−p2x2

+x(p2 +m2
1 −m2

2) −m2
1]

2

=

∫ 1

0
dx

1

[l2 − (p2x2 − x(p2 +m2
1 −m2

2) +m2
1︸ ︷︷ ︸

∆

)]2

Puis en prenant n = 4 − ǫ,

B0(p
2;m1,m2) = − i(4π)2µ4−n

∫ 1

0
dx

∫
dnk

(2π)n
1

[l2 − ∆]2

= − i(4π)2[1 + ε lnµ+ O(ε)]

∫ 1

0
dx

(−1)2i

(4π)n/2

Γ(2 − n
2 )

Γ(2)

(
1

∆

)2−n
2

= − i(4π)2i[1 + ε lnµ+ O(ε)]

∫ 1

0
dx

1

(4π)2

(
2

ε
− ln ∆ − γ + ln(4π) + O(ε)

)

=

∫ 1

0
dx




2

ε
− γ + ln(4π)

︸ ︷︷ ︸
CUV

− ln
∆

µ2
+ O(ε)




= CUV −
∫ 1

0
dx ln

∆

µ2
+ O(ε)

Soit x1, x2 les racines de ∆ = p2x2 − x(p2 +m2
1 −m2

2) +m2
1 alors

ln
∆

µ2
= ln

p2

µ2
+

2∑

i=1

ln(x− xi) (F.3)

menant à
∫ 1

0
dx ln

∆

µ2
= ln

p2

µ2
+

2∑

i=1

{
ln(1 − xi) − xi ln

(
xi − 1

xi

)}
− 1 + O(ε) (F.4)

Finalement

B0(p
2;m1,m2) = CUV −

[
ln
p2

µ2
+

2∑

i=1

{
ln(1 − xi) − xi ln

(
xi − 1

xi

)}
− 1

]
+ O(ε) (F.5)

En pratique on rencontre les cas particuliers suivants :

1. Si m1 = m2 = m, x1,2 = 1
2(1 ± β) avec β2 = 1 − 4m2/p2

B0(p
2;m,m) = CUV − ln

m2

µ2
+ β ln

(
β − 1

β + 1

)
+ 1 + O(ε) (F.6)

Nous donnons aussi les deux intégrales scalaires B1(p
2,m2,m2) et B00(p

2,m2,m2) obtenues
par la méthode de Passarino-Veltman (voir Chapitre 4.3)

B1(p
2,m2,m2) = − 1

2
B0(p

2,m2,m2) (F.7)

B00(p
2,m2,m2) =

1

6

[
A0(m) + 2m2B0 + p2B1 + 2m2 − p2

3

]
pour ε→ 0 (F.8)
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2. Si une des masses internes est nulle, la racine est unique x1 = 1 −m2/p2

B0(p
2; 0,m) = CUV − ln

m2

µ2
−
(

1 − m2

p2

)
ln

(
1 − p2

m2

)
+ 1 + O(ε) (F.9)

3. Si p2 = 0,m2
1 = m,m2

2 = 0 :

B0(0;m, 0) = CUV − ln
m2

µ2
+ 1 + O(ε) (F.10)

4. Si les deux lignes internes sont sans masse :

B0(p
2; 0, 0) = CUV − ln

−p2

µ2
+ 2 + O(ε) (F.11)

5. Si l’impulsion externe est nulle p = 0 :

Dans ce cas on peut trouver l’expression de B0(0;m
2,m2) à partir de A0(m),

A0(m) = − µ4−n

(4π)
n
2
−2

Γ
(
1 − n

2

)( 1

m2

)1−n
2

= −
[

µ4−n

(4π)
n
2
−2

Γ
(
2 − n

2

)

Γ(2)

(
1

m2

)2−n
2

](
m2

1 − n
2

)
(F.12)

En prenant n = 4 − ε

A0(m) =




µ4−n

(4π)
n
2
−2

Γ
(
2 − n

2

)

Γ(2)

(
1

m2

)2−n
2

︸ ︷︷ ︸
B0(0;m2,m2)



m2(1 +

ε

2
) (F.13)

Ce qui donne finalement

A0(m) = m2B0(0;m
2,m2) +m2 (F.14)

et

B0(0;m
2,m2) = CUV − ln

(
m2

µ2

)
+ O(ε) (F.15)

F.3 Intégrale scalaire à trois points, fonction C :

La fonction C0 apparaît lorsque l’on calcule les corrections à une boucle des vertex :
La fonction C0 s’exprime comme

C0(p1, p2,m1,m2,m3) = −i(4π)2µ4−n

∫
dnk

(2π)n
1

(k2 −m2
1)((k + s1)2 −m2

2)((k + s2)2 −m2
3)

(F.16)
Avec s1, s2 donnés par 4.3. L’introduction de deux paramètres de Feynman x et y est suffisant
ici, et en terme d’un choix particulier la fonction C0 devient [71, 72] après intégration sur k :

C0 =

∫ 1

0
dx

∫ x

0
dy
(
ax2 + by2 + cxy + dx+ ey + f

)−1
(F.17)

avec
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p1

p2

p3

m1

m2

m3

a = −p2
2, b = −p2

1, c = −2p1p2 = p2
1 + p2

2 − (p1 + p2)
2,

d = p2
2 −m2

2 +m2
3, e = (p1 + p2)

2 +m2
2 −m2

1 − p2
2, f = −m2

3.

La fonction scalaire C0 est invariante sous une permutation cyclique des deux ensembles d’argu-
ments : {p2

1p
2
2, (p1 + p2)

2} et {m1,m2,m3}. Si l’on néglige les masses externes on obtient

p2
1,2 = 0, (p1 + p2)

2 = Q2, m1 = M1, m2 = M2, m3 = M3. (F.18)

Alors les coefficients deviennent

a = 0, b = 0, c = −Q2,

d = M2
3 −M2

2 , e = Q2 +M2
2 −M2

1 , f = −M2
3 .

et C0 = C0(0, 0, Q
2;M1,M2,M3) se réécrit

C0 =

∫ 1

0
dx

∫ x

0
dy

(
y (Q2(1 − x) −M2

1 +M2
2 )︸ ︷︷ ︸

A

+x(M2
3 −M2

2 ) −M2
3︸ ︷︷ ︸

B

)−1

En sachant que ∫ x

0
dy

1

Ay +B
=

ln(Ax+B)

A
− lnB

A
(F.19)

L’intégration donne

C0 =

∫ 1

0
dx

ln




C(x)︷ ︸︸ ︷
x(Q2(1 − x) −M2

1 +M2
2 ) + x(M2

3 −M2
2 ) −M2

3

/ D(x)︷ ︸︸ ︷
x(M2

3 −M2
2 ) −M2

3




Q2(1 − x) −M2
1 +M2

2︸ ︷︷ ︸
E(x)

En factorisant chaque argument des logarithmes

C(x) = −Q2x2 +Q2x− xM2
1 + xM2

3 −M2
3 = −Q2(x− x1)(x− x2)

D(x) = (M2
3 −M2

2 )(x− x3)

E(x) = −Q2(x− x0)

(F.20)
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avec

x0 = 1 +
M2

2 −M2
1

Q2
, x3 =

M2
3

M2
3 −M2

2

x1,2 =
Q2 +M2

3 −M2
1 ∓

√
λ(Q2,M2

1 ,M
2
3 )

2Q2

où λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz est la fonction de Källen.
On peut alors développer les logarithmes

C0 =

∫ 1

0
dx

1

−Q2(x− x0)
×
{

ln

( −Q2

M2
3 −M2

2

)
+ ln(x− x1) + ln(x− x2) − ln(x− x3)

}
(F.21)

On est alors amener à évaluer trois fois une intégrale de la forme

Ii =

∫ 1

0
dx

ln(x− xi)

x− x0
(F.22)

Pour éliminer les singularités du dénominateur nous allons ajouter et soustraire ln(x0 − x1) ce
qui donne,

Ii =

∫ 1

0
dx

ln(x− xi) − ln(x0 − xi)

x− x0
+

∫ 1

0
dx

ln(x0 − xi)

x− x0
(F.23)

La première intégrale va donner des fonctions de Spence ou dilogarithmes et Ii prend la forme

Ii = Li2

(
x0

x0 − xi

)
− Li2

(
x0 − 1

x0 − xi

)
+

∫ 1

0
dx

ln(x0 − xi)

x− x0
(F.24)

Maintenant en insérant dans C0

C0 =
1

Q2

{ 3∑

i=1

(−1)δi3

[
Li2

(
x0 − 1

x0 − xi

)
− Li2

(
x0

x0 − xi

)]

−
∫ 1

0
dx

1

x− x0

[
ln

(
(x0 − x1)(x0 − x2)

(x0 − x3)

)
+ ln

( −Q2

M2
3 −M2

2

)]}
(F.25)

Le dernier terme disparaît en notant que

C(x) = x(−Q2(x− x0)) +D(x) ⇒ D(x0) = −Q2(x0 − x1)(x0 − x2) (F.26)

menant à
(x0 − x1)(x0 − x2)

(x0 − x3)
=
M2

3 −M2
2

−Q2
(F.27)

Et la formule finale de C0 est

C0(0, 0, Q
2;M1,M2,M3) =

1

Q2

3∑

i=1

(−1)δi3

[
Li2

(
x0 − 1

x0 − xi

)
− Li2

(
x0

x0 − xi

)]
(F.28)

Cas M1 = M2 = M3 = M :
Dans ce cas nous obtenons

x0 = 1

x1,2 =
1 ∓ β

2
avec β =

√
1 − 4M2

Q2
(F.29)
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donnant pour C0

C0(0, 0, Q
2;M,M,M) = − 1

Q2

[
Li2

(
2

1 + β

)
+ Li2

(
2

1 − β

)]
(F.30)

Dans la limite où Q2 >> m2, on a

2

1 + β
≃ 1 +

M2

Q2

2

1 − β
≃ Q2

M2

Alors en se servant des formules situées dans l’Annexe E

C0 = − 1

Q2

[
Li2

(
1 +

M2

Q2

)
+ Li2

(
Q2

M2

)]

= − 1

Q2

[
π2

6
− π2

6
− 1

2
ln2

(
− Q2

M2

)]

et on obtient finalement

C0(0, 0, Q
2;M,M,M) =

1

Q2

[
1

2
ln2

(
M2

Q2

)
− π2

2
+ iπ ln

(
M2

Q2

)]
(F.31)

Cas avec une seule masse interne :
On va étudier le cas où M1 = M3 = 0;M2 = m, alors nous devons calculer :

C0 =

∫ 1

0
dx

∫ x

0
dy

(
y (Q2(1 − x) +m2)︸ ︷︷ ︸

A

+−xm2
︸ ︷︷ ︸

B

)−1

=

∫ 1

0
dx

1

Q2(1 − x) +m2
ln

(
−Q

2

m2
(1 − x)

)

x′
֌1−x
=

∫ 1

0
dx

1

Q2x+m2
ln

(
−Q

2

m2
x

)
=

1

m2

∫ 1

0
dx

1
Q2

m2x+ 1
ln

(
−Q

2

m2
x

)

=
1

m2

∫ − Q2

m2

0
(−m

2

Q2
dx)

− lnx

x− 1
=

1

Q2

∫ − Q2

m2

0
dx

lnx

x− 1

=
1

Q2

(
π2

6
− Li2

(
1 +

Q2

m2

))
(F.32)

Comme Q2 > m2 → Q2/m2 > 1 on peut utiliser la formule [143]

Li2(x) = −Li2

(
1

x

)
− π2

6
− 1

2
ln2(−x) (F.33)

Alors

Li2

(
1 +

Q2

m2

)
= − Li2

(
m2

Q2 +m2

)
− π2

6
− 1

2
ln2

(
−m

2 +Q2

m2

)

= − Li2

(
m2

m2 +Q2

)
− π2

6
− 1

2

(
iπ + ln

(
m2 +Q2

m2

))2

= − Li2

(
m2

m2 +Q2

)
− π2

6

− 1

2

(
−π2 − 2iπ ln

(
m2

m2 +Q2

)
+ ln2

(
m2

m2 +Q2

))
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Donnant finalement

C0(0, 0, Q
2; 0,M, 0) =

1

Q2

(
Li2

(
m2

m2 +Q2

)
+

1

2
ln2

(
m2

m2 +Q2

)
− π2

6

+ iπ ln

(
m2

m2 +Q2

))
(F.34)

Limite où Q2 >> m2

C0(0, 0, Q
2; 0,M, 0) =

1

Q2

(
1

2
ln2

(
m2

Q2

)
− m2

Q2
ln

(
m2

Q2

)
− π2

6
+
m2

Q2
+ i

πm2

Q2

)
(F.35)

On peut trouver l’expression générale de la fonction C0 en terme de 12 dilogarithmes ainsi que
l’expression de la fonction scalaire à quatre points, D0, et leur dérivation dans [60, 64, 71, 72].
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Annexe G

Désintégration d’un boson de jauge
lourd

Nous détaillons ici le calcul de la désintégration du boson de jauge Z ′ évoqué dans le cha-
pitre 9.

G.1 Désintégration en deux neutrinos

Nous désirons calculer la désintégration du boson Z ′ en deux neutrinos à l’ordre d’une boucle,
les diagrammes à calculer sont

ν(p2)

ν̄(p1)

Z ′

ν(p2)

ν̄(p1)

Z0

Z ′

k

p2

p1

q1

q2

ρ

µ

ν

G.1.1 Désintégration à l’ordre de l’arbre

L’amplitude à l’arbre s’écrit :

M0 = ig∗ū(p2)γ
ρPLv(p1)ερ(k) (G.1)

L’élément de matrice au carré s’écrit (avec Pρσ = −gρσ + kµkν/M
2)

1

3

∑

spin

|M0|2 = g2
∗
Pρσ

3
(ū(p2)γ

ρPLv(p1)) (v̄(p2)γ
σPLu(p1))

= g2
∗
Pρσ

3
Tr [ 6p2γ

ρPL 6p1γ
σPL]

= g2
∗
Pρσ

3
[−2gµν(p1 · p2) + 2pν

2p
µ
1 + 2pµ

2p
ν
1 ]

= g2
∗
1

3

[
4(p1 · p2) +

1

M2
(−2M2(p1 · p2) + 4(k · p1)(k · p2)

]

= g2
∗
1

3

[
2(p1 · p2) +

4(k · p1)(k · p2)

M2

]
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où

p1 · p2 =
1

2

[
k2 − p2

1 − p2
2

]
=
M2

2

k · pi =
M2

2
(G.2)

il s’ensuit
1

3

∑

spin

|M0|2 =
2g2

∗M
2

3
(G.3)

La largeur de désintégration à l’ordre le plus bas est donné par

Γ0
νν̄ =

1

16πM3

√
∆(M2)|M0|2 =

2

3
× g2

∗M
16π

(G.4)

où ∆(M2, 0, 0) est la fonction de Källen ∆(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

G.1.2 Amplitude à l’ordre d’une boucle

Nous cherchons à calculer la fonction à trois points Z ′(P ) → ν̄(p1)ν(p2). Nous avons

q1 = p2 + k

q2 = k − p1

(G.5)

Alors l’amplitude est (dans la jauge de Feynman),

M1 = i3g∗g
2
Z ū(p2)

[∫
d4k

(2π)4
γµPL

( −igµν

k2 −m2

)
i(6p2 + 6k)
(p2 + k)2

γρPL
i(6k − 6p1)

(k − p1)2
γνPL

]
v(p1)ερ(P )

= i3g∗g
2
Z ū(p2)

[∫
d4k

(2π)4
γµ

( −igµν

k2 −m2

)
i(6p2 + 6k)
(p2 + k)2

γρ i(6k − 6p1)

(k − p1)2
γνPL

]
v(p1)ερ(P )

= g∗g
2
Z ū(p2)

[∫
d4k

(2π)4
γν(6p2 + 6k)γρ(6k − 6p1)γ

νPL

(k2 −m2)(k − p1)2(k + p2)2

]
v(p1)ερ(P ) (G.6)

G.1.3 Reduction du numérateur

Nous avons quatre produits de matrice γ à calculer :

I1 = γν 6p2γ
ρ 6kγνPL = γνγ

αγργβγνPLp2αkβ

I2 = − γν 6p2γ
ρ 6p1γ

νPL = −γνγ
αγργβγνPLp2αp1β

I3 = γν 6kγρ 6kγνPL = γνγ
αγργβγνPLkαkβ

I4 = − γν 6kγρ 6kγνPL = −γνγ
αγργβγνPLkαp1β

À l’aide de γνγ
αγργβγν = −2γβγργα+(4−n)γαγργβ et en anticipant que ū(p2)6p2 = 0, 6p1v(p1) =

0 nous trouvons

I1 = 4γρPL(p2 · k) − 46kPLp
ρ
2

I2 = − 4γρPL(p1 · p2)

I3 = (2 − n)γµPL(2kµkρ − gµρk2)

I4 = 46kPLp
ρ
1 − 4γρPL(p1 · k)
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Puis,

N = ū(p2)

[
I1 + I2 + I3 + I4

]
v(p1)ερ(P )

= ū(p2)

[
4γρPL[(p2 · k) − (p1 · k) − (p1 · p2)] + 4(p1 − p2)

ρ 6kPL

+ (2 − n)γµPL(2kµkρ − gµρk2)

]
v(p1)ερ(P )

Il est possible de simplifier encore plus en remarquant que

p2 · k =
1

2

[
(k + p2)

2 − k2
]

−p1 · k =
1

2

[
(k − p1)

2 − k2
]

ensuite,

N = ū(p2)

[
2γρPL[(k + p2)

2 + (k − p1)
2 − 2k2 − 2(p1 · p2)] + 4(p1 − p2)

ρ 6kPL

+ (2 − n)γµPL(2kµkρ − gµρk2

]
v(p1)ερ(P )

ce qui mène à l’amplitude suivante

− i(4π)2M1 = g∗g
2
Z ū(p2)

[
2[B0(p

2
1;m, 0) +B0(p

2
2;m, 0)︸ ︷︷ ︸

J1=2B0(0;m,0)

]γρ − 4[(p1 · p2) + k2
︸︷︷︸

J2

]C0γ
ρ

+ 4(p1 − p2)
ρ 6kC0︸ ︷︷ ︸

J3

+ (2 − n)γµPL(2kµkρ − gµρk2C0︸ ︷︷ ︸
J4

]
PLv(p1)ερ(P )

avec B0 défini dans le chapitre F.2.
Le terme J2 peut être simplifié :

− i(4π)2J2 = − i(4π)2
[∫

d4k

(2π)4
k2 −m2 +m2

(k2 −m2)(k − p1)2(k + p2)2

]

= B0((p1 + p2)
2; 0, 0) +m2C0

(G.7)

Réduisons le terme J3 :

J3 = 4ū(p2)

[∫
d4k

(2π)4
(p1 − p2)

ρ 6k
(k2 −m2)(k − p1)2(k + p2)2

]
v(p1)

= 4ū(p2)




∫ 1

0
dx

∫ 1−x

0
dy

d4k

(2π)4
(p1 − p2)

ρ 6k
[ k2 − 2k(p1x− p2y)︸ ︷︷ ︸
[k−(p1x−p2y)]2−(p1x−p2y)2

−m2(1 − x− y)]3



v(p1)

= 4ū(p2)

[∫ 1

0
dx

∫ 1−x

0
dy

d4k

(2π)4
(p1 − p2)

ρ(6 l + (6p1x− 6p2y))

[l2 − (p1x− p2y)2 −m2(1 − x− y)]3

]
v(p1)

(G.8)
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ce terme s’annule car ū(p2)6p2 = 0, 6p1v(p1) = 0 et les termes linéaires en l disparaissent lors de
l’intégration sur l’impulsion tournant dans la boucle. Occupons nous maintenant du terme J4,

− i(4π)2J4 = − i(4π)2(2 − n)γµPL

∫
d4k

(2π)4
(2kµkρ − k2gµρ)

(k2 −m2)(k − p1)2(k + p2)2

= − i(4π)2(2 − n)

(
2

n
− 1

)
γρPL

∫
dnk

(2π)n
k2 −m2 +m2

(k2 −m2)(k − p1)2(k + p2)2

=
(2 − n)2

n

[
B0((p1 + p2)

2; 0, 0) +m2C0

]

=
(
1 − ǫ

4

)[
B0((p1 + p2)

2; 0, 0) +m2C0

]

= B0((p1 + p2)
2; 0, 0) +m2C0 −

1

2
(G.9)

Finalement l’amplitude s’écrit (avec 4(p1 · p2) = 2(p1 + p2)
2 = 2s)

M1 =
ig∗αZ ū(p2)γ

ρPLv(p1)ερ(P )

4π

[
4B0(0;m, 0)−3B0(s; 0, 0)−(2s+3m2)C0−

1

2
+δCT

]
(G.10)

Les fonctions B0 sont données par les formules F.10, F.11 et la fonction C0 est donnée par
F.34. Le terme δCT provient du diagramme du contre-terme au couplage Z ′ν̄ν de la figure G.1
Ce contre-terme contient entre autres la renormalisation des champs des neutrinos. Si ils sont

ν(p2)

ν̄(p1)

Z ′

Figure G.1 – Diagramme du contre-terme introduit pour la renormalisation du couplage g∗.

renormalisés sur couche de masse [137], c’est à dire à p2 = 0 on a,

δCT = −αZ

4π
B0(0;m, 0) =

αZ

4π

(
ln
m2

µ2
− 1 − CUV

)
+ O(ε) (G.11)

Puis en prenant µ2 = m2 et l’amplitude à une boucle renormalisée s’écrit,

M1 =
ig∗αZ ū(p2)γ

ρPLv(p1)ερ(P )

4π

[
− 3 ln

m2

−s − (2s + 3m2)C0 −
7

2

]
(G.12)

G.1.4 Largeur de désintégration

L’élément de matrice au carré s’écrit,

|M|2 = |M0 + M1|2 = |M0|2 + 2Re(M∗
0M1) (G.13)

Alors, en prenant s = M2 et en omettant les parties imaginaires

|M|2 =
2g2

∗M
2

3

{
1 +

αZ

4π

[
− 2

(
(2M2 + 3m2)C0 + 3 ln

m2

M2

)
− 7

]}
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La partie imaginaire provient de la fonction ImB0(s; 0, 0) = iπθ(s). La largeur est ensuite donnée
par

Γνν̄ =
1

16πM3

√
∆(M2, 0, 0)|M|2 =

M2

16πM3
|M|2 (G.14)

Limite M >> m

En utilisant l’équation F.35 il vient :

Γνν̄ = Γ0
νν̄

{
1 +

αZ

4π

[
− 2

(
ln2

(
m2

M2

)
+ 3 ln

m2

M2

)
+

2π2

3
− 7

]}
(G.15)

Nous remarquons l’apparition des doubles logarithmes ln2(m2/M2) qui donnent une contribution
négative à la désintégration.

G.2 Désintégration à 3 corps

Nous allons calculer la désintégration Z ′(P ) → ν̄(p1)Z(k)ν(p2) :

ν(p2)Z(k)ν̄(p1)

p1 ν

µ

Z ′(P )

k

ν(p2)Z(k)ν̄(p1)

µ

Z ′(P )

ν
p1 k

Alors l’amplitude de ce processus s’écrit, avec mν = 0,

M = ig∗g


ū(p2)γ

νPL
6p2 + 6k

(p2 + k)2
γµPLv(p1)

︸ ︷︷ ︸
M2

− ū(p2)γ
µPL

6p1 + 6k
(p1 + k)2

γνPLv(p1)

︸ ︷︷ ︸
M1


 ε

∗
ν(k)εµ(P )

(G.16)
où M2 (M1) correspond au diagramme de gauche (droite).

G.2.1 Identité de Ward

Nous allons maintenant vérifier si cette amplitude vérifie l’identité de Ward suivante,

kν

m
Mν = 0 (G.17)

avec

Mν = ig∗g

[
ū(p2)γ

νPL
6p2 + 6k

(p2 + k)2
γµPLv(p1) − ū(p2)γ

µPL
6p1 + 6k

(p1 + k)2
γνPLv(p1)

]
εµ(P ) (G.18)

puis

kν

m
Mν =

ig∗g
m

[
ū(p2)

6k(6p2 + 6k)
(p2 + k)2

γµPLv(p1) − ū(p2)γ
µPL

(6p1 + 6k)6k
(p1 + k)2

v(p1)

]
εµ(P ) (G.19)
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en utilisant les équations de Dirac 6p1v(p1) = 0, ū(p2)6p2 = 0 nous avons

(pi + k)2 = m2 + 2pi · k
(6p1 6k +m2)v(p1) = (2p1 · k − 6k 6p1 +m2)v(p1) = (2p1 · k +m2)v(p1)

ū(p2)(6k 6p2 +m2) = ū(p2)(2p2 · k +m2)

ce qui donne

kν

m
Mν =

ig∗g
m

[
ū(p2)

2p2 · k +m2

m2 + 2p2 · k
γµPLv(p1) − ū(p2)γ

µPL
2p1 · k +m2

m2 + 2p1 · k
v(p1)

]
εµ(P )

=
ig∗g
m

[ū(p2)γ
µPLv(p1) − ū(p2)γ

µPLv(p1)] εµ(P )

= 0 (G.20)

Par conséquent pour le calcul de l’élément de matrice au carré il n’est pas nécessaire d’évaluer la
partie longitudinale de l’amplitude. Ce résultat est simplement l’expression de la conservation du
courant de l’équation 9.3 au niveau de l’amplitude, si les neutrinos sont considérés non-massifs.
Dans le cas contraire des termes violant très faiblement la symétrie chirale sont introduits.

G.2.2 Amplitude au carré

L’élément de matrice est |M|2 = (M2−M1)(M∗
2−M∗

1) = |M1|2+|M2|2−M1M∗
2−M2M∗

1.
Alors chaque amplitude au carré est obtenue en moyennant sur la polarisation de l’état final et
en sommant sur celles de l’état final.
|M1|2 :

|M1|2 =
(−i)ig2

∗g
2

3

∑

spin,hel

(
ū(p2)γ

µ 6p1 + 6k
(p1 + k)2

γνPLv(p1)

)(
v̄(p1)γ

ρPL
6p1 + 6k

(p1 + k)2
γσu(p2)

)

× εµ(P )ε∗σ(P )ε∗ν(k)ερ(k)

=
g2
∗g

2DνρDµσ

3(p1 + k)4
Tr [ 6p2γ

µ(6p1 + 6k)γνPL 6p1γ
ρPL(6p1 + 6k)γσ]

=
g2
∗g

2DνρDµσ

3(p1 + k)4
Tr [ 6p2γ

µ(6p1 + 6k)γν 6p1γ
ρ(6p1 + 6k)γσPL]

avec

Dνρ = −gνρ +
kνkρ

m2
,Dµσ = −gµσ +

PµPσ

M2
(G.21)

donnant

|M1|2gg =
g2
∗g

2

3(p1 + k)4

[
− 8m2(p1 · p2) + 16(k · p2)(k · p1)

]
(G.22)

|M2|2 :
Nous avons aussi

|M2|2 =
(−i)ig2

∗g
2

3

∑

spin,hel

(
ū(p2)γ

µ 6p2 + 6k
(p2 + k)2

γνPLv(p1)

)(
v̄(p1)γ

ρPL
6p2 + 6k

(p2 + k)2
γσu(p2)

)

× ε∗µ(k)εσ(k)εν(P )ε∗ρ(P )

=
g2
∗g

2DµσDνρ

3(p2 + k)4
Tr [ 6p2γ

µ(6p2 + 6k)γν 6p1γ
ρ(6p2 + 6k)γσPL] (G.23)
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avec

Dνρ = −gνρ +
PνPρ

M2
,Dµσ = −gµσ +

kµkσ

m2
(G.24)

donnant

|M2|2gg =
g2
∗g

2

3(p2 + k)4

[
− 8m2(p1 · p2) + 16(k · p2)(k · p1)

]
(G.25)

M1M∗
2,M2M∗

1

Le terme d’interférence donne

M1M∗
2 =

(−i)ig2
∗g

2

3

∑

spin,hel

(
ū(p2)γ

µ 6p1 + 6k
(p1 + k)2

γνPLv(p1)

)(
v̄(p1)γ

ρPL
6p2 + 6k

(p2 + k)2
γσu(p2)

)

× ε∗ν(k)εσ(k)εµ(P )ε∗ρ(P )

=
g2
∗g

2DµρDνσ

3(p2 + k)2(p1 + k)2
Tr [ 6p2γ

µ(6p1 + 6k)γν 6p1γ
ρ(6p2 + 6k)γσPL]

(G.26)

avec

Dµρ = −gµρ +
PµPρ

M2
,Dνσ = −gνσ +

kνkσ

m2
(G.27)

donnant

M1M∗
2|gg =

−16g2
∗g

2(p1 · p2)

3(p2 + k)2(p1 + k)2

[
m2 + (k · p1) + (k · p2) + (p1 · p2)

]
(G.28)

et

M2M∗
1 =

(−i)ig2
∗g

2

3

∑

spin,hel

(
ū(p2)γ

µ 6p2 + 6k
(p1 + k)2

γνPLv(p1)

)(
v̄(p1)γ

ρPL
6p1 + 6k

(p1 + k)2
γσu(p2)

)

× ερ(k)ε
∗
µ(k)εν(P )ε∗σ(P )

=
g2
∗g

2DµρDνσ

3(p2 + k)2(p1 + k)2
Tr [ 6p2γ

µ(6p2 + 6k)γν 6p1γ
ρ(6p1 + 6k)γσPL]

avec

Dµρ = −gµρ +
kµkρ

m2
,Dνσ = −gνσ +

PνPσ

M2
(G.29)

donnant

M2M∗
1|gg =

−16g2
∗g

2(p1 · p2)

3(p2 + k)2(p1 + k)2

[
m2 + (k · p1) + (k · p2) + (p1 · p2)

]
(G.30)

G.2.3 Choix du référentiel

Nous nous plaçons dans le référentiel où la particule se désintégrant est au repos, qui est aussi
celui du centre de masse. Dans ce référentiel nous avons P = (M,~0),

P = p1 + p2 + k →





M =
√
s = E1 + E2 + k0

~0 = ~p1 + ~p2 + ~k
(G.31)

Par conséquent il vient, avec θ l’angle entre p1 et p2

|~k|2 = k2
0 −m2 = |~p1|2 + |~p2|2 + 2|~p1||~p2| cos θ (G.32)
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ce qui donne

cos θ =
1

2|~p1||~p2|
[
(M − E1 − E2)

2 −m2 − |~p1|2 − |~p2|2
]

=
1

2|~p1||~p2|
[
M2 − 2M(E1 + E2) + 2E1E2 −m2

]
(G.33)

Nous avons à calculer les produits (p1 · p2) et (k · pi), en notant que E1,2 = |~p1,2| car mν = 0,

p1 · p2 = E1E2 − |~p1||~p2| cos θ = E1E2(1 − cos θ) (G.34)

k · pi = (P − pi − pj) · pi = MEi − EiEj(1 − cos θ) i, j = 1, 2(i 6= j) (G.35)

où cos θ donné par son expression respective G.33.
Nous devons aussi simplifier les dénominateurs suivants

(pi + k)2 = (P − pj)
2 = M2 − 2MEj i, j = 1, 2(i 6= j) (G.36)

G.2.4 Largeur de désintégration

L’expression de la largeur de désintégration est donnée par

Γνν̄+Z =
1

8(2π)3MS

∫
|M|2dE1dE2 (G.37)

Limites cinématiques

Comme E1 = |~p1| alors E1 ≥ 0. Pour trouver la borne supérieure calculons s1 = (P − p1)
2

dans le référentiel au repos du sous-système (p2, k), alors dans ce référentiel nous avons,

s1 = (p2 + k)2 = (E2 + E3)
2 ≥ m2

= (P − p1)
2 = M2 − 2ME1 ≥ m2 (G.38)

donnant

0 ≤ E1 ≤ M2 −m2

2M
(G.39)

Nous obtenons les bornes pour E2 avec −1 ≤ cos θ ≤ 1 menant à

M2 − 2M(E1 +E2) + 2E1E2 −m2 ≤ 2E1E2

M2 − 2M(E1 +E2) + 2E1E2 −m2 ≥ − 2E1E2

alors

M2 −m2

2M
− E1 ≤ E2 ≤ M2 − 2ME1 −m2

2M − 4E1
(G.40)

Résultat final

L’expression à intégrer est

Γνν̄+Z =
1

8(2π)3MS

∫ Emax
1

Emin
1

dE1

∫ Emax
2

Emin
2

dE2

[
|M1|2 + |M2|2 − 2M1M∗

2

]
(G.41)
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où S est le facteur de symétrie pour le nombre de particules identiques dans l’état final, ici S = 1.
L’expression finale s’écrit

Γνν̄+Z =
2g2

∗g
2
Z

3(16(4π)2πM3)

[
10(M4 −m4) + (m2 +M2)2LL+ 4(m2 +M2)2LI

+ (6(m4 +M4) + 8m2M2) log

(
m2

M2

)]
(G.42)

où

LL = − 2 log2

(
m2

M2

)
+ 4 log

(
m2

M2

)
log

(
m2

m2 +M2

)

LI = 2Li2

(
m2

m2 +M2

)
+ log

(
m2

m2 +M2

)
log

(
M2

m2 +M2

)
− π2

6

Limite M >> m

Dans cette limite

LL ≃ 2 log2

(
m2

M2

)

LI ≃ − π2

6

Alors,

Γνν̄+Z =
αZΓ0

νν

4π

[
2

(
ln2

(
m2

M2

)
+ 3 ln

(
m2

M2

))
− 2π2

3
+ 10

]
(G.43)

Nous remarquons que la prise en compte du bremsstrahlung se factorise par rapport à la section
efficace à l’arbre dans cette limite et la contribution des doubles logarithmes de Sudakov est
positive. Ce résultat a été vérifié avec CompHEP [93] et les valeurs sont identiques.
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Corrections radiatives en supersymétrie et applications au calcul de la densité
relique au-delà de l’ordre dominant

Résumé : Cette thèse porte sur le calcul des corrections radiatives supersymétriques pour des
processus entrants dans le calcul de la densité relique de matière noire, dans le MSSM et le
scénario cosmologique standard, ainsi que sur l’influence du choix du schéma de renormalisation
du secteur des neutralinos/charginos à partir de la mesure de trois masses physiques. Cette étude
a été faite à l’aide d’un programme automatique de calcul à une boucle d’observables physiques
dans le MSSM, appelé SloopS. Pour le calcul de la densité relique nous nous sommes penchés
sur des scénarios où le candidat supersymétrique le plus étudié, le neutralino, se désintégrait
en majoritairement en bosons de jauge. Nous avons couvert les cas où sa masse était de l’ordre
de quelques centaines de GeV jusqu’à 2 TeV. Cela a nécessité la prise en compte complète des
corrections électrofaibles et fortes, impliquées dans des processus sous-dominants impliquant des
quarks. Dans le cas des neutralinos très lourds deux effets importants ont été mis à jour : les
amplifications de type Sommerfeld dues aux bosons de jauge massifs et peut-être plus important
encore des corrections de type Sudakov.

Mots-clés : Supersymétrie, Matière Noire, Corrections radiatives, Calcul de boucles, Renorma-
lisation, Cosmologie.

Radiative corrections in supersymmetry and applications to the calculation of
the relic density beyond leading order

Abstract : This thesis focussed on the evaluation of supersymmetric radiative corrections for
processes entering in the calculation of the relic density of dark matter, in the MSSM and
the standard cosmological scenario, as well as the impact of the choice renormalisation scheme
in the neutralino/chargino sector based on the measure of three physical masses. This study
has been carried out with the help of an automatic program dedicated the the computation of
physical observables at one-loop in the MSSM, called SloopS. For the relic density calculation we
investigated scenarios where the most studied dark matter candidate, the neutralino, annihilates
into gauge boson pair. We covered cases where its mass was of the order of hundreds of GeV to
2 TeV. The full set of electroweak and strong corrections has been taken into account, involved
in sub-leading channels with quarks. In the case of very heavy neutralinos, two important effects
were outlined : the Sommerfeld enhancement due to massive gauge bosons and maybe even more
important corrections of Sudakov type.

Keywords : Supersymmetry, Dark Matter, Radiative corrections, Loop Calculations, Renorma-
lisation, Cosmology.
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