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Introduction

Le Modéle Standard de la Physique des Particules s’est construit tout au long du XXéme siécle
pour unifier et décrire sous un méme formalisme la mécanique quantique et la relativité restreinte,
la théorie quantique des champs. Les mesures de précision effectuées au LEP et au TeVatron
I'ont confirmée comme étant la théorie décrivant les interactions des particules subatomiques
jusqu’a des échelles d’énergie de la centaine de Gigaélectron-volt (GeV). Le principe de jauge a
permis de représenter les interactions, au nombre de trois, par I’échange de particules médiatrices,
les bosons, aux particules de matiére, les fermions. Les bosons sont au nombre de quatre et
les fermions se classent en deux grandes familles : les leptons et les quarks. Cependant, un
certain nombre de problémes demeurent, en particulier, ’autre théorie révolutionnaire du siécle
dernier, la relativité générale, n’y trouve toujours pas sa place en tant que théorie quantique
de la gravitation. Ensuite, la construction du Modéle Standard nécessite une masse nulle pour
toutes les particules en faisant partie, or, cela est contredit par un bon nombre d’observations. 11
se pose ainsi le probléme théorique de la génération des masses aux particules au sein du Modéle
Standard. Au niveau cosmologique, il apparait que la matiére que nous savons décrire a 'aide
de cette théorie forme seulement une petite partie de la composition de la matiére de 1’Univers,
le reste se trouvant sous une forme invisible et non prédite, appelée Matiére Noire. De fagon
surprenante il semble que ce probléme et celui de la génération des masses sont liés, permettant
de mettre en relation la dynamique de I’histoire de I'Univers avec celle du monde subatomique. De
nombreux modeles, allant au-dela du Modéle Standard, ont alors été élaborés pour répondre a ces
deux interrogations. L’un des modéles les plus étudiés, la Supersymétrie, permet d’apporter une
solution élégante a ces questions en proposant un nouveau type de symétrie, reliant les bosons aux
fermions. A I'heure actuelle cette théorie n’en est encore qu’a I’état spéculatif, aucune observation
expérimentale n’a pu la mettre en évidence malgré son impressionnante phénoménologie. En
particulier elle contient plusieurs particules pouvant prétendre & constituer la Matiére Noire,
dont la plus plausible est le neutralino. Le collisionneur hadronique situé au CERN, le Large
Hadron Collider (LHC) produit actuellement des collisions proton-proton a 7 Téraélectron-volts
(TeV) dans le but de donner une réponse expérimentale & ces interrogations théoriques et de
sonder la physique au-dela de I’échelle électrofaible, limite actuelle du Modéle Standard. De plus,
des expériences embarquées, comme le satellite PLANCK, ont été envoyées dans ’espace pour
sonder I’Univers aux grandes échelles et améliorer la précision d’observables cosmologiques. Nous
sommes donc & ’aune d’une ére de mesures de précision expérimentales impliquant que du coté
des prédictions théoriques, au minimum le méme niveau de précision soit atteint.

Le travail de cette thése s’est concentré sur ’évaluation précise des taux d’annihilation d’un
des candidats a la Matiére Noire provenant de l’extension Minimale Supersymétrique du Mo-
déle Standard (MSSM), le neutralino %Y, avec application au calcul de son abondance actuelle,
puisque dans le scénario cosmologique standard, la densité relique est inversement proportion-
nelle & la section efficace d’annihilation. L’évaluation précise de cette derniére quantité nécessite
d’aller au-dela de I'ordre le plus bas de la théorie des perturbations, pour réduire les incertitudes
théoriques, puisque du cété expérimental cette observable sera prochainement extraite avec une
précision jamais égalée. La prise en compte de ces ordres supérieurs fait apparaitre des diver-
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gences, rendant toute prédiction impossible si elles ne sont pas proprement soustraites du résultat
final. Ainsi, avant toute tentative de calcul, une procédure de renormalisation clairement définie
sur le plan théorique doit étre appliquée pour régulariser la théorie et obtenir des résultats libres
de divergences. Cette procédure est de plus une trés bonne fagon de tester la théorie sous-jacente
puisqu’une fois un certain nombre de parameétres définis, il est possible de prédire n’importe quelle
observable mesurable expérimentalement. Par ailleurs le MSSM posséde un trés grand nombre
de paramétres a renormaliser, et le calcul d’un processus particulier nécessite 1’évaluation d’un
trés grand nombre de diagrammes de Feynman, rendant tout calcul & la main trés difficile a
mener et sujet & de nombreuses erreurs. Par conséquent, pour la prédiction de I’annihilation de
neutralinos un programme complet de renormalisation sur couche de masse (On-Shell) a une
boucle, SloopS, initialement développé par N. Baro, F. Boudjema, A. Semenov, a été utilisé.
L’avantage de SloopS est que la totalité des secteurs du MSSM ont été renormalisés, contraire-
ment & des études précédentes ol la renormalisation était partielle. J’ai généralisé la procédure
de renormalisation du secteur des neutralinos/charginos réalisée a I'aide de la mesure de trois
masses physiques et approfondi notre compréhension des corrections radiatives dans ce secteur.
Ce code permet de réaliser des calculs de précision propres aux prédictions de densité relique et
de détection indirecte de Matiére Noire, mais aussi applicables aux collisionneurs. SloopS posséde
de plus la possibilité d’effectuer une série de tests permettant de valider les résultats, notamment
une procédure de fixation de jauge non-linéaire permettant la vérification secteur par secteur de
I'invariance de jauge des prédictions. J’ai évalué de nombreux processus comportant chacun un
nombre trés élevé de diagrammes de Feynman. La totalité des corrections électrofaibles ont été
calculées, ainsi que des corrections QCD lorsque des quarks étaient impliqués dans 1’état final.

Pour le calcul d’observables reliées a la Matiére Noire Supersymétrique, la renormalisation
et la bonne implémentation du secteur des neutralinos/charginos dans SloopSa été indispen-
sable pour produire des résultats fiables et rigoureux. Nous avons implémenté une méthode de
diagonalisation de la matrice 4 x 4 des neutralinos avec des paramétres complexes du fait de
I'apparition de valeurs propres négatives si une matrice de diagonalisation purement réelle est
utilisée, ce qui rendait impossible le calcul de certains processus, en particulier la désintégration
de la particule dont la masse physique était négative. Une autre difficulté technique est survenue
lors du calcul des processus d’annihilation de neutralinos & trés faible vitesse relative, cette ci-
nématique particuliére rend la procédure de réduction des intégrales de boucles tensorielles sur
une base d’intégrales scalaires inopérante et conduit a des instabilités numériques. L’ingrédient
clé qui contréle la réduction est le déterminant de Gram, qui permet de tester I'indépendance li-
néaire des impulsions entrantes dans le diagramme de boucle. Dans le cas ot les vitesses relatives
sont faibles les impulsions ne sont plus indépendantes et le déterminant s’annule. C’est pourquoi
une routine spéciale utilisant une méthode de segmentation des intégrales a été implémentée
directement dans le code SloopS. Cette technique nous a aussi permis d’étudier analytiquement
le comportement proche du seuil de certaines intégrales scalaires. Le calcul de la densité relique a
proprement parler a ensuite été effectué en interfacant les résultats de SloopS avec le programme
automatique de calcul de la densité relique micrOMEGAs, ce qui est une amélioration importante
par rapport a notre méthode précédente, basée sur des approximations. Pour le calcul de la den-
sité relique nous nous sommes penchés sur des scénarios ol la contribution au terme de collision
de I’équation de Boltzmann était dominé par des processus comportant des bosons de jauge
dans I’état final, ot l'invariance de jauge joue un role de premier plan. Concernant les correc-
tions radiatives plusieurs schémas de renormalisation furent comparés ainsi que le comportement
proche du seuil de certains diagrammes de boucle scalaires, comme les fonctions Triangle ou
Boite. L’étude de ce comportement a été d’'une importance cruciale pour la compréhension des
corrections radiatives sur 'annihilation a faible vitesse relative des neutralinos lourds, dues a la
manifestation a 'ordre d’une boucle de l'effet Coulomb/Sommerfeld. Un autre type de compor-
tement infrarouge est apparu lors de 'analyse de I’annihilation de neutralinos lourds en bosons
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de jauge : les corrections de type Sudakov, émergeant lorsque des particules ultra-relativistes
rayonnent un boson de jauge supplémentaire. Nous allons maintenant exposer le plan de cette
these.

Dans le premier chapitre nous présenterons le Modéle Standard de la Cosmologie, en insistant
notamment sur la problématique de la Matiére Noire. Une attention particuliére sera portée sur
la dérivation du calcul de la densité relique de Matiére Noire a partir de ’équation de Boltzmann,
dans le scénario cosmologique standard dominé par la radiation. Nous montrerons que l'interface
entre la Physique des Particules et la Cosmologie se situera au niveau du calcul du terme de
collision.

Le deuxiéme chapitre sera orienté sur la présentation du Modéle Standard de la Physique des
Particules et de I'importance du principe de jauge qui a guidé sa construction. Les limites de ce
modéle et les motivations incitant & chercher une physique allant au-dela de 1’échelle électrofaible
sera exposée briévement.

Le chapitre suivant sera consacré a une introduction a la supersymeétrie, en particulier il sera
montré comment cette nouvelle symétrie permet de stabiliser le secteur scalaire du Modéle Stan-
dard vis a vis des corrections d’ordres supérieurs. La construction de ’extension minimale du
Modéle Standard, le MSSM, sera présentée ainsi que son contenu en particules, notamment celles
pouvant prétendre a étre candidates & la Matiére Noire.

Le chapitre quatre portera sur la régularisation des divergences ultraviolettes apparaissant lorsque
les diagrammes a une boucle sont pris en compte, c’est a dire 'identification et I'isolation des sin-
gularités. La méthode de réduction des intégrales tensorielles vers une base d’intégrales scalaires,
puis le calcul de certaines de ces intégrales sera exposé. La question des divergences infrarouges
apparaissant par exemple dans la fonction & trois points sera discutée et notamment son com-
portement singulier lorsque 1’on est proche du seuil de la réaction.

Le cinquiéme chapitre abordera la renormalisation du MSSM, les définitions et expressions de
chacun des contre-termes nécessaires a la renormalisation de chaque secteur seront exposés , sauf
celui des neutralinos/charginos pour que je présenterai en détail dans le septiéme chapitre.

Le chapitre six consistera en la présentation du code numérique SloopS, en particulier ’auto-
matisation de la génération des régles de Feynman et des contre-termes. Les différents types de
tests disponibles, sur les divergences ultra-violettes et infrarouge, pour vérifier systématiquement
la rigueur des résultats seront évoqués, ainsi que l'utilisation de la fixation de jauge non-linéaire.
Dans le septiéme chapitre la renormalisation du secteur des neutralinos/charginos a I'aide d’un
schéma sur couche de masse sera présentée en détail, avec notamment une tentative de géné-
ralisation des expressions des contre-termes une fois le schéma fixé. A I’origine, le programme
SloopS était optimisé pour des scénarios ot le neutralino le plus léger est de type bino. Les
masses soft des jauginos de type U(1) et SU(2) ainsi que le paramétre de masse des higgsinos
étaient reconstruits a partir de la masse du neutralino le plus léger et de celles des charginos. Ce
scénario n’est cependant pas idéal dans les études qui ont été menées dans les chapitres suivants.
Grace a ce travail il a été possible de changer trés rapidement ’expression des contre-termes
pour s’adapter a chaque cas. Nous avons briévement étudié un cas réaliste oul les contre-termes
sont obtenus a partir de deux masses de neutralinos et d’'un chargino. Nous montrerons que ce
schéma est lui aussi sujet a certains problémes, inhérents au choix des masses, en particulier si
I’on tente de reconstruire les paramétres fondamentaux du lagrangien.

Le huitiéme chapitre adressera ’étude de 'annihilation de différents types de neutralinos en bo-
sons de jauge. Ce type d’état final est le plus difficile a évaluer parmi I'ensemble des processus
d’annihilation, car il implique le calcul de nombreux diagrammes de Feynman et l'invariance de
jauge v joue un role prépondérant. A partir de I’évaluation de ces sections efficaces la densité
relique de matiére noire sera dérivée et I'impact des corrections radiatives illustré. De plus, pour
ce type d’état final, généralement la prise en compte de canaux de coannihilation pour le calcul
de la densité relique est aussi nécessaire, ainsi aux bosons de jauge dans I’état final s’ajouteront
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aussi des quarks. Par conséquent des corrections radiatives seront de 'ordre de la constante de
couplage QCD et devront étre prises en compte. L’ajout des diagrammes de boucle fera appa-
raitre une cinématique complétement absente & l'ordre le plus bas, en particulier 'apparition
d’une singularité de type Coulomb lorsque les deux particules s’annihilant ont une charge élec-
tromagnétique et non-relativistes. Nous montrerons qu’alors le développement en puissance de
la vitesse relative v de la section efficace d’annihilation par v n’est plus valide mais qu’il est
possible de capturer cette singularité en modifiant le développement. D’une fagon plus géné-
rale, dés que ’ajout des ordres supérieurs modifie la dynamique de I'annihilation par rapport a
lordre dominant (comme par exemple 'ouverture d’un seuil dans un diagramme de boucle), ce
développement n’est plus adéquat, alors qu’a 'ordre dominant il ’était.

Le neuviéme chapitre présentera le méme type d’étude que dans le chapitre précédent mais dans
le cas ot les neutralinos sont lourds, de I'ordre du TeV. Il apparaitra que dans le cas ou la LSP
(Lightest Supersymmetric Particle) sera un pur neutralino de type wino, de grandes corrections
infrarouges dues a la cinématique des diagrammes de boucle seront présentes a la fois dans les
régimes non-relativistes et relativistes. Le premier type de correction est du non seulement a
leffet Coulomb/Sommerfeld causé par 1’échange d’un photon non massif, mais aussi, du fait de
la quasi-dégenerescence de la LSP avec la NLSP (Next-to-Lightest Supersymmetric Particle, par
I’échange de boson de jauge faibles “mous”. Le deuxiéme type de correction infrarouge/collinéaire
surgira sous la forme de double logarithmes, bien connus sous le terme générique de logarithmes
de Sudakov et apparaissant lors des calculs des corrections électrofaibles aux processus de type
Modéle Standard. Cet effet peut étre contrebalancé si les processus 2 — 2 + Z° sont inclus
et évalués a travers une intégration Monte-Carlo de ’espace des phases & trois particules trés
efficace. Nous montrerons par un calcul analytique, dans le cas simple de la désintégration d’un
boson Z' de l'ordre du TeV en paire de neutrinos, que les doubles logarithmes provenant des
corrections virtuelles et de I'ajout de 1’émission réelle d’un boson Z° s’annulent. De plus, pour
gérer la configuration spéciale des impulsions quand la vitesse relative tend vers zéro, ou la
méthode habituelle de réduction des intégrales de boucles a la Passarino-Veltman est inopérante,
nous avons utilisé la méthode de segmentation décrite dans le chapitre quatre pour éviter cette
instabilité numérique.

Pour finir nous donnerons en conclusion un résumé du travail accompli et nous évoquerons les
futurs projets envisagés ou en cours de réalisation. Il sera présenté dans les Annexes quelques
points techniques sur le calcul des sections efficaces avec application pour la Matiére Noire, ainsi
que quelques formules.



Introduction (English version)

The Standard Model of Particle Physics has been built during the XXth century to unify
and describe under the same formalism Quantum Mechanics and Special Relativity known as
quantum field theory. This model is very predictive in the sense that it possesses a number of
physical observables that one can measure and relate to each other, enabling this model to be
the theory of interactions of fundamental particles up to energies around a hundred of GeV. The
gauge principle as a guiding principle has allowed to represent fundamental interactions between
matter particles, the fermions, through the exchange of vector-like particles, the gauge bosons.
The fermions are classified into two families : leptons and quarks. However, some unresolved
problems remain, in particular, the other groundbreaking theory of the past century, General
Relativity, still doesn’t have its quantum field version : quantum gravity. Moreover, the buil-
ding of the Standard Model does not allow for its particles to be massive, which is in complete
contradiction with everything that has been observed in colliders until now. Then arises the
question of how is it possible to generate mass to particles without violating the structure (the
gauge symmetry) of the theory ? This problem is known as the electroweak symmetry breaking
riddle. Then if we look at our understanding of physics at scales of the order of galaxies, namely
cosmology, it seems that the matter that we know amounts to a small part of the entire mat-
ter budget of the Universe, what is left is of unknown and invisible kind, called Dark Matter.
But, amazingly, it seems that this issue is related to the mechanism of mass generation, and
in turn connecting the understanding of dynamical evolution of the Universe to the one of the
subatomic world. Lots of models, going beyond the Standard Model, have emerged to answer
these questions. One of the most studied model, Supersymmetry, gives an elegant solution to
both problems by postulating the existence of a new symmetry, relating bosons to fermions. At
the present time this theory is still speculative, no experimental measurement has revealed a
supersymmetric nature of fundamental particles, in spite of its impressive phenomenology and
predictiveness. Especially it possesses several particles which can be the dark matter candidates,
among which the most studied is the so-called neutralino. The hadronic collider based at CERN,
the Large Hadron Collider, (LHC) has been designed in this purpose and produces currently
proton-proton collisions at 7 TeV in the center of mass, in order to give an experimental answer
to these theoretical questioning and to probe physics beyond the Standard Model, believed to be
beyond the electroweak scale. Moreover, cosmological related experiments, such as the PLANCK
satellite, have been set into space to probe our Universe at large scales and to improve the expe-
rimental precision on cosmological parameters. We are therefore at the eve of an era of precision
experimental measurements, implying that, on the theoretical side, it is mandatory that the same
level of precision is reached.

This thesis focuses on the precise evaluation of the annihilation rates of one of the candidates
for Dark Matter emerging from the Minimal Supersymetric extension of the Standard Model
(MSSM), the neutralino y?, with applications to the prediction of its current abundance, as in
the standard cosmological scenario, the relic density is inversely proportional to the annihilation
cross section. The precise computation of this quantity needs that one goes beyond the born ap-
proximation. However taking into account higher orders effects one is faced with the emergence
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of infinite quantities making any prediction impossible if they are not properly and safely remo-
ved. Thus, before any attempt to compute any observable, a renormalisation procedure clearly
defined on the theoretical level is to be carried out to regularise the theory and to obtain results
free of divergences. Renormalisation is also a good way to test the inner structure of the theory
as once a set of input parameters is defined, all remaining observables become predictions to be
tested experimentally. The MSSM has a huge amount of parameters to be renormalised, and the
evaluation of a particular process implies the computation of a large number of Feynman dia-
grams, by making any hand calculation unpractical and prone to many errors. Consequently for
the prediction of the annihilation rate of neutralinos, a numerical tool dedicated to the evalua-
tion of one-loop observables has been applied. The great advantage of SloopSis that all sectors
of the MSSM have been renormalised, as opposed to previous studies where partial renorma-
lisation has been carried out. This code enables one to compute physical observables with a
high level of precision related to cosmology, astrophysics and colliders. Built in SloopSis the
ability to pursue several tests to check the validity of the results, in particular a non-linear gauge
fixing procedure allowing to inspect the gauge invariance sector by sector of the predictions.
A substantial number of processes have been evaluated where for each one a very large num-
ber of Feynman diagrams were present, especially the ones involving gauge bosons in the final
state. Electroweak corrections were fully taken into account, as well as some QCD corrections for
channels with quarks and final state radiation. Concerning the electroweak corrections several
renormalisation schemes have been compared. The understanding of radiative corrections on the
annihilation of heavy neutralinos at small relative velocities, where the one-loop expression of
the Coulomb/Sommerfeld effect shows up, has been studied in detail and related to the singular
behaviour of some scalar integrals. An other kind of infrared/collinear behaviour also had to be
tackled, the so-called Sudakov correction, appearing when ultra-relativistic particles radiate a
boson.

For supersymmetric dark matter calculations, the renormalisation and good implementation of
the charginos/neutralinos sector in the code have been mandatory to get reliable and rigorous
results. We implemented a method to diagonalise the 4 x 4 matrix of the neutralinos with
complex parameters. The use of a real diagonalisation matrix and counter-terms leads to some
mass eigenvalues to be negative. Though this is not a problem in itself, when calculating cross
sections this leads to severe conflicts. Therefore for generality it is crucial to revert to masses
with a definite positive value. Another technicality came about during the one-loop evaluation
of annihilating processes at very small velocities. This particular kinematics makes the reduction
procedure of loop tensor integrals to a basis of scalar integrals ineffective and leads to severe
numerical instabilities. The key ingredient which controls this reduction is the so-called Gram
determinant, which tests the linear independence of incoming momenta into the loop diagram. In
the particular case where the relative velocity is low, the four-momenta are no longer independent
and the determinant vanishes. This is why a special routine has already been implemented directly
into the SloopScode. The determination of the relic density has been conducted by interfacing
SloopS with the automatic program for the calculation of the cosmic abundance micrOMEGASs,
which is an important improvement compared to our previous method based on approximations.
This thesis is organised as follows.

In the first chapter we will present the Standard Model of Cosmology and the Dark Matter pro-
blem will be emphasized. A particular attention will be paid to the derivation of the relic density
of Dark Matter starting from the Boltzmann equation, in the standard radiation-dominated sce-
nario. We will show that the interface between Cosmology and Particle Physics is at the level of
the computation of the collision term.

The second chapter will be devoted to the presentation of the Standard Model of Particle Physics
and to the importance of the gauge principle which guided its construction. Theoretical limita-
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tions of this model will also be partly presented, and motivations for looking for models going
beyond the electroweak scale.

The next chapter will be an introduction to supersymmetry and special care will be given to
the relevance of symmetries when computing radiative corrections, and how, thanks to Super-
symmetry, the scalar sector can be stabilised with respect to higher order effects. The building
blocks of supersymmetry will be presented, as well as its particle content, notably the ones that
can possibly constitute Dark Matter.

The fourth chapter will address the regularisation of the ultraviolet divergences appearing in loop
diagrams. The reduction method of the tensor integrals to scalar integrals will also be outlined,
and then some scalar functions will be evaluated to exhibit their behavior in some limits. A special
attention will be paid to the infrared regime of the three point scalar function and notably near
the threshold. This will be important when studying the annihilation of neutralinos into gauge
bosons.

Chapter five will sum up briefly the on-shell renormalisation of the MSSM, how counter-terms
needed for each sector are defined and expressed, except for the ones in the charginos/neutralinos
sector which will be tackled in chapter seven.

The next chapter will consist in the presentation of the S1loopS code, in particular the automation
of the generation of Feynman rules and counter-terms. The systematic tests available to check
the numerical results, like the cancellation of UV and IR divergences, will be presented, along
with the use of the non-linear gauge-fixing.

In chapter seven the renormalisation of the neutralinos/charginos sector through an on-shell
scheme will be introduced and an attempt to generalise the counter-terms definitions once the
input masses chosen. Originally the SloopS code was designed for bino-like scenarios, where the
U(1) and SU(2) soft masses, plus the higgsino parameter were extracted from the measurement
of the lightest neutralinos and two charginos. However this scheme is not well adapted for the
case we studied in the next chapters. Thus this preliminary work has been very useful to change
very quickly the expression of the counter-terms depending on the choice of input parameters. We
have briefly study a realistic case where the counter-terms are obtained from the measurement of
the mass of two neutralinos and one chargino. We will show that this scheme also presents some
drawbacks, inherent of this scheme, especially when one wants to reconstruct the fundamental
parameters.

Chapter eight will address the annihilation of neutralinos with a mass of order 100 GeV to
weak gauge bosons. This kind of final states is, among the set of possible processes, the most
difficult to compute, because it implies the evaluation of numerous Feynman diagrams. Gauge
invariance plays a prominent role. From the computation of these cross-sections the prediction of
the relic density of Dark Matter will be derived and the impact of radiative corrections illustrated.
Moreover, for this type of final state, one also has to take into account coannihilation channels
for the calculation of the cosmic abundance, thus processes with light and heavy quarks in the
final state have been considered also. Consequently we took into account some QCD corrections.
The addition of loop diagrams will show new interesting dynamical effects, absent at the Born
level, especially the appearance of a Coulomb type singularity when the relative velocity of the
annihilating charged particles under electromagnetism approaches zero. We will then show thaht
the usual expansion in terms of v, the relative velocity, of the cross section times v is not valid
anymore, but that it is possible to capture this effect by slightly modifying the expansion. More
generally, as soon as some dynamical features appear (like threshold opening in loops) when
going to the next-to-leading order the expansion in powers of v is not valid anymore, although
at leading order it was.

Chapter nine will address the same kind of study but with heavy neutralinos in the initial state, of
order the TeV scale. We will show that that, in the case where the LSP (Lightest Supersymmetric
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Particle) is a pure wino, large corrections due to the kinematics of the loop diagrams will show
up for small and large relative velocities. The first type of corrections is due not only to the
QED Coulomb/Sommerfeld effect, where a massless gauge boson is exchanged, but also from
soft exchange of massive weak gauge bosons, caused by the quasi-degenerescence in mass of the
LSP with the NSLP (Next-to-lightest Supersymmetric Particle). The second type of corrections,
present for all scales of velocity, will emerge under the form of double-logarithm, the so-called
Sudakov logarithms, already known for their presence in the calculation of electroweak corrections
in Standard Model processes. The addition of 2 — 3 processes where the third particle is a Z boson
will be shown to be very important, and from a technical point of view this requires a precise
Monte-Carlo integration of the three-particles phase space. We will show through an analytic
calculation that, in the simple case of a Z’ boson decaying into a pair of massless neutrinos, the
double logarithmic corrections coming from the virtual part and the real emission of a Z° boson
cancel. Moreover to deal with the specific configuration of loop integral with vanishing relative
velocity, where the usual Passarino-Veltman reduction method is inoperative because the Gram
determinant vanishes, we used the segmentation method described in chapter four to avoid this
numerical instability.

Finally we will conclude with a summary of the entire work and we will mention the projects to
be carried out in the near future. In appendices some technical points will be outlined on the
calculation of cross-sections relevant for Dark Matter annihilation, with some useful formulas.



Chapitre 1

Le modéle cosmologique standard

Sommaire
1.1 Imtroduction . . . . . . . . . e 9
1.2 LeModéledu BigBang . . . . .. .. ... o 10
1.3 Histoire thermique de 'Univers . . . . . . . .. ... .. .. ... .... 13
1.4 Le probléme de la matiére noire . . . . . . .. .. ... ... ... 17

English Abstract This chapter will review the standard model of cosmology, the so-called
ACDM model. The thermal history of the early Universe will be presented, in particular the
interplay between Cosmology and Particle Physics comes about through the calculation of relic
densities. The Dark Matter problem and the derivation of its cosmic abundance will be intro-
duced. It will be shown that the precision of the measurement of the relic density requires very
accurate predictions on the theory side.

1.1 Introduction

La cosmologie décrit I’évolution thermique de I’Univers, qui, dans 1’état actuel de nos connais-
sances, est basée sur le modéle du Big-Bang élaboré au cours du XXéme siécle. Ce modéle re-
produit avec succes et de fagon simple un trés grand nombre d’observations, a tel point qu’il
a acquis le nom de modéle standard de la cosmologie. Plusieurs étapes furent nécessaires a sa
construction, sa vision moderne nait en 1915 avec la théorie de la relativité générale d’Albert
Einstein. Un an plus tard, Karl Schwarzschild trouve une solution & symétrie sphérique des équa-
tions d’Einstein puis les premiers modéles cosmologiques dynamiques apparaitront en 1922 avec
Alexander Friedmann. La construction de ces modeéles s’appuie sur les équations d’Einstein et le
principe cosmologique, qui stipule que 'homme n’occupe pas une place privilégiée dans I’Univers,
impliquant que 1’Univers doit étre isotrope et spatialement homogéne, conduisant a la métrique
de Friedmann-Lemaitre-Robertson-Walker. Les équations de la relativité induisent, quant a elles,
une géomeétrisation de I'espace-temps qui est encodée dans ’expression de la métrique. L’espace-
temps est alors un champ comme un autre, avec une dynamique. Cette description s’est ensuite
enrichie et affinée tout au long du XXéme siécle grace a de nouvelles observations de plus en plus
précises. Le modéle du Big-Bang suppose que dans son état initial I’Univers était trés dense et
trés chaud, puis, étant en expansion, il s’est refroidi et sa densité a diminué. Ce modéle permet,
en outre, de décrire le fond diffus cosmologique, 'abondance des éléments légers, la formation
des grandes structures (galaxies, amas de galaxies) et le contenu de I’Univers actuel.
Cependant, plusieurs interrogations restent encore en suspens et non-résolues : déterminer la
nature et 'origine de ce qui est appelé communément 1’énergie noire et la matiére noire. En 1998,
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deux équipes américaines, a partir de I'observation de la luminosité des supernove, tirérent la
conclusion que I’Univers était en expansion accélérée [1, 2|. Cela suppose I'existence d’une force
répulsive a grande échelle pouvant étre obtenue a partir d’'une nouvelle énergie, appelée énergie
noire. Concernant la constitution en matiére de 1’Univers, les données observationnelles nous
indiquent que la plus grande partie nous est invisible. Par définition, cette matiére est appelée
“noire”, c’est a dire qu’il n’y a pas de radiation “détectable” qui lui est associée. Une fois encore de
nombreuses observations expérimentales confirment indirectement la présence de cette matiére
noire, comme par exemple I'observation du fond diffus cosmologique par la sonde WMAP [3] ou
de leffet de lentillage gravitationnel [4, 5].

1.2 Le Modéle du Big Bang

1.2.1 Equations de la théorie

Les équations d’Einstein relient la géométrie de I’Univers a son contenu énergétique et per-
mettent d’étudier son évolution. Ces équations sont dérivées a partir de l'action de la relativité
générale, appelée action d’Hilbert-Einstein, qui repose sur la relativité restreinte et le principe
d’équivalence qui suppose que la masse inertielle est identique & la masse gravitationnelle,

C4

167G

S = /\/_—g(R— 2M)d*z + Sy, (1.1)
ol ¢ est la vitesse de la lumiére dans le vide, G' la constante de gravitation de Newton, g le
déterminant de la métrique de notre espace-temps, R sa courbure scalaire et S, 'action des
champs de matiére.

Si on applique le principe de moindre action §S = 0, on obtient alors ’équation de la relativité
générale :

1
Ry = 59 R+ Agu, = 87GT,,, (1.2)

R et R, représentent respectivement la courbure et le tenseur de Ricci, déduits de la métrique
guv considérée. Cette équation nous indique que le contenu énergétique (représenté par le ten-
seur énergie-impulsion 7),,,) est reliée a la géométrie de I'espace (identifiée par la métrique g, ).
Le terme A a été introduit par Einstein en 1917 pour contrebalancer l'attraction gravitation-
nelle car il souhaitait rendre compte d’un univers statique. Cependant en 1929, Edwin Hubble,
en observant 1’éloignement des galaxies, impliquant que I’Univers est en expansion, met fin a
cette hypothése. Néanmoins, 1'idée d’un terme supplémentaire dans I’équation (1.2) renait de
ses cendres en 1998 pour expliquer cette fois-ci I'expansion accélérée de I’Univers. Nous allons
maintenant chercher une solution aux équations d’Einstein qui correspondra & notre Univers.
Pour cela nous devons définir la partie géométrique (partie de gauche de (1.2)) et la partie ma-
tiére (celle de droite). Pour obtenir la premiére il suffit de déterminer la métrique g, puisque
les tenseurs et scalaires de Ricci sont obtenus & partir de cette quantité, puis nous définirons la
deuxieme en spécifiant la forme du tenseur énergie-impulsion 7},,.

1.2.2 Meétrique de Robertson-Walker

Le principe cosmologique stipule qu’il n’existe pas de référentiel privilégié dans I’Univers, im-
pliquant qu’il doit étre spatialement homogéne et isotrope. Ces hypothéses restreignent la forme
de la métrique et conduisent a celle dite de Friedmann-Lemaitre-Robertson-Walker, exprimée en
coordonnées sphériques comobiles

2

2 _ 32 2
ds® = dt* — a*(t) T2

+ 72 (d6? + sin® 0d¢?) (1.3)
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1.2. LE MODELE DU BIG BANG

a(t) est appelée le facteur d’échelle, et k la courbure.

+1 univers fermé
k= 0 wunivers plat (1.4)

—1 univers ouvert

Les données expérimentales actuelles donnent k& ~ 0, indiquant que ’Univers semble plat.

1.2.3 Contenu de I’Univers

Le tenseur énergie-impulsion permet de représenter la répartition de masse et d’énergie dans
I’espace-temps. Une fois ce tenseur fixé, il est possible de déterminer 1'évolution du facteur
d’échelle & partir des équations d’Einstein afin de déterminer la dynamique de I’Univers. Si
on fait I’hypothése que I’Univers est rempli d’un fluide parfait de densité p et de pression P alors
ce tenseur prend la forme :

TH = (P + p) ut'u” — Pgh” (1.5)

ou u représente la vitesse du fluide.
Les différents types de fluide seront caractérisés par leur équation d’état P/p = w et sont résumeés
dans le tableau suivant :

w Type de fluide
1/3 particules relativistes

0 | particules non-relativistes
-1 constante cosmologique

1.2.4 Equations de Friedmann-Lemaitre

Si l'on considére la forme de la métrique (1.3), celle du tenseur énergie-impulsion (1.5) et que
I'on insére ces expressions dans les équations de la relativité générale (1.2), on obtient alors les
équations de Friedmann-Lemaitre :

N 2
8rG kA
pro (8) 28y, E A L
<a> 3 iP 213 (16)
a 4rG A
S TN (i +3P) + 5 1.7
L) S R I (1.7

7

ou la somme se fait sur tous les types de fluides de I'Univers (p; et P; sont respectivement
les densités d’énergie et pressions individuelles) et H est la fonction de Hubble. La premiére
équation va déterminer la “vitesse” d’expansion de I’Univers alors que la seconde indique s’il est

en accélération ou en décélération selon le signe de 4. On définit alors le parameétre de décélération
q = —%7. Aujourd’hui nous savons que ce parametre est négatif, c’est a dire que I’'Univers accélére.

La conservation du tenseur-énergie impulsion
VvV, =0 (1.8)
ot V,, est la dérivée covariante en relativité générale, dont I'expression est donnée par,
Vu=0,+1%,+Tg, (1.9)
ou les I'7, sont les symboles de Christoffel définis par

1
Fcl;,u = §gyp(a,ugpo + aogpu - apg;w) (110)
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CHAPITRE 1. LE MODELE COSMOLOGIQUE STANDARD

Cela nous donne alors une troisiéme équation :
p+3H(P+p) =0 (1.11)

qui est équivalente & la deuxiéme équation de Friedmann, elle est aussi appelée équation de
Raychaudhury.

1.2.5 Paramétres cosmologiques

Le taux actuel d’expansion H( joue un role multiple en cosmologie. Son inverse, le temps de
Hubble g, est I’échelle de temps de 'expansion qui donne 'ordre de grandeur du temps écoulé
depuis le début de I’époque actuelle d’expansion classique. Le rayon de Hubble d = ¢ty donne
I’échelle de I'horizon classique actuel. Enfin le taux d’expansion entre dans la détermination
des densités des composants de I'Univers. Sa valeur se déduit de l'observation de la vitesse de
récession des galaxies donnée par la loi de Hubble, valable & petit redshift

v=HoR+ v, (1.12)

ol v est la vitesse des galaxies, déterminée a partir du décalage vers le rouge (ou redshift), R est
la distance de la galaxie et v, les vitesses “particuliéres” des galaxies. Les tables actuelles donnent

Hy =100 hkm.s ™. Mpc™? (1.13)

avec h = 0.70 £ 0.01
On définit le redshift z comme la variation de la longueur d’onde d’un photon entre le moment
de son émission Ag,is et de son observation A, sur Terre. Il est de plus directement relié au
facteur d’échelle a(t)

)\obs Qobs
14 2= = 1.14
)\émis Gémis ( )
Hj détermine la densité critique
3H?
=0 1.15
pe= g (1.15)

qui est la densité qu’aurait un univers homogeéne et isotrope en expansion pour que sa courbure
spatiale soit nulle. Dans un univers sans constante cosmologique, la densité critique détermine
la frontiére entre des univers qui continueront leur expansion éternellement et des univers qui
se contracteront. Ainsi on va pouvoir définir des quantités adimensionnées, qui représentent la
proportion (par rapport a la densité critique) de chaque élément dans 1'Univers

8rG
Q= —=pi (1.16)
(2 3H02 (2
k?2
A
Qp = — 1.18
ou les Q; permettent de définir la densité réduite de matiére totale Q,, = >, €;. Les deux

paramétres suivants sont respectivement la densité réduite pour la constante cosmologique et
pour la courbure. On peut réécrire alors la premiére équation de Friedmann-Lemaitre sous la
forme d’une équation de contrainte

Qi + QA+ Q= Dot + Q=1 (119)
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1.3. HISTOIRE THERMIQUE DE L’UNIVERS

1.2.6 Evolution du paramétre d’échelle

A laide de I’équation d’état du fluide P = wp on peut écrire la densité d’énergie en fonction du
parameétre d’échelle pour différentes valeurs de w, donc différentes natures du fluide en résolvant
I’équation de conservation

—3(14w)
a ) (1.20)

p(a) = po (—

ao

L’évolution des différents parameétres est donnée dans le Tableau 1.1. Si une espéce domine

Type de fluide w | densité | facteur d’échelle
matiére relativiste 1/3 | o< 1/a* oc t1/2
matiére non-relativiste 0 | ocl/a® o t2/3
constante cosmologique | -1 cte o eflt

TABLE 1.1 — Evolution, pour chaque type de fluide, de leur densité en fonction du facteur d’échelle
et du facteur d’échelle en fonction du temps.

par son abondance, I’Univers suit sa dynamique. Ainsi ’'Univers a successivement connu une
ére de radiation puis une ére de matiére puis actuellement une ére dominée par la constante
cosmologique qui serait responsable de son expansion accélérée.

1.3 Histoire thermique de I’Univers

1.3.1 Notion de découplage

La densité d’énergie de la matiére relativiste (photons et neutrinos de masse nulle) décroit
comme pr o a~*. Si on suppose que I’'Univers a un rayonnement de type corps noir, alors
pr o< T*. Nous observons alors que le produit a7 = ¢**. On en tire alors que

a(to)
a(t)

L’évolution de la température des photons est alors un “traceur” de I’expansion de I’'Univers. Ainsi,
au fur et & mesure que 'on remonte dans le temps, la température de I’Univers augmente puisque
le facteur d’échelle diminue . L’histoire thermique de I'Univers se résume alors a I’évolution de
la température 7T; des différents éléments qui le composent par rapport a la température de
référence T', la température des photons. Si le taux d’interaction I'; d’une espéce i, a partir
d'une certaine température T, n’est plus suffisant pour la maintenir en équilibre avec le bain
thermique, alors sa distribution thermique 7; va se découpler de celle de I’Univers et suivre son
propre comportement. Typiquement ce phénomeéne se produit lorsque I'y(Tge;) S H(Tyer), cest a
dire que le temps caractéristique I";” L pour que deux particules de Pespéce i se “rencontrent” est
supérieur au temps caractéristique d’expansion de 1’Univers, par conséquent ces deux particules
ne se rencontreront jamais. On parle de gel (freeze out en anglais) de I'espéce, qui a laissé I’Univers
avec un ‘reliquat” constitué de l'espéce i. On distingue deux catégories de découplage :

T(t) = T(to) [ } = T(to)(1 + 2) (1.21)

-ultra-relativiste : le découplage a lieu lorsque Tye; >> m;
-non-relativiste : le découplage a lieu lorsque Tyop << m;

ol m; est la masse de la particule de 1’espéce 1.
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CHAPITRE 1. LE MODELE COSMOLOGIQUE STANDARD

1.3.2 Distributions a I’équilibre

Considérons une espéce de particule 7, qui peut étre des photons, des électrons etc..., de
masse m; et de degrés de libertés internes g;. Pour décrire I’évolution de cette espéce dans
I’Univers naissant, & savoir & partir de son nombre volumique n;, sa densité d’énergie p; et
sa pression partielle p;, il est nécessaire de connaitre la fonction de distribution f;(p;,T;) des
particules présentes dans I’Univers, ol p; désigne la quantité de mouvement et 7j la température
de V'espéce et de I’'Univers, s’ils sont en équilibre thermique. Hormis les contraintes du principe
de Pauli pour les fermions, les distributions sont a priori arbitraires. Les distributions thermiques
a l’équilibre sont toutefois particuliérement importantes et prennent la forme des distributions
de Fermi-Dirac ou de Bose-Einstein :

— 9i
fi(pi, Ti) = cipl(E — u) /T £1 (1.22)

o p; est le potentiel chimique de 'espéce en question, T; sa température et le signe + (—)
correspond aux fermions (bosons). Au moment du découplage T,¢; de I'espéce du bain thermique,
la distribution thermique de ’espéce 7 va étre celle du bain a cette température de gel. Ensuite la
particule va garder sa distribution thermique au moment du découplage alors qu’elle n’est plus
a 'équilibre, son évolution proviendra seulement de l'expansion de 1'Univers et la particule se
propagera librement (s’il n’y a pas d’interactions).

1.3.3 Quantités thermodynamiques

Pour une espéce i on définit les densités numérique n;, d’énergie p; et de pression P; par

i
m(7.7) = o [T (F) (1.23)
i
p(7.1) = s [ EFELT) (1.2
1 p ’ (277)3 p 3E 2 p .
Il est possible de déterminer ces quantités dans certains cas limites
T >>my:
(—:;)gBT?’ bosons
n = 4 3 (1.26)
% =39 T3 fermions
2 4
=gpT bosons
p= { :7507# . _ (1.27)
s509rT fermions
P= p/3 bosons et fermions (1.28)

ou ( est la fonction de Riemann ({(3) ~ 1.202)

ST << my:
Dans ce cas, les distributions de Fermi-Dirac et de Bose-Einstein peuvent étre approchées
par celle de Maxwell-Boltzmann soit f(7,T) ~ exp(—E/kr) avec E ~ m + p?/2m et on

obtient
3/2
mT m
_ _ 1.29
n=o(5r) ew(-F) (120
p=nm; 1.30
P=nT<<p 1.31



1.3. HISTOIRE THERMIQUE DE L’UNIVERS

On voit alors que dans 'expression de n apparait le facteur de Boltzmann exp(—m/T)
qui diminue radicalement le nombre de particules. La densité de ces particules devient
rapidement trés faible avec le refroidissement de I’Univers.

1.3.4 Nombre de degrés de libertés relativistes

La densité totale de rayonnement, a savoir I’ensemble des particules relativistes, est donnée
par

T
Ptot = 9*(T)%T4 (1.32)

et la pression s’écrit
2
Ptot m
P = — = (g« T e
tot 3 g ( )90

g« représente le nombre effectif de degrés de libertés relativistes

9:(T) = Y 9 <T§,2‘>4 +g Y 9ri (T;’i>4 (1.34)

bosons fermions

T (1.33)

gs« est le nombre de degrés de libertés “actifs” a la température T, les particules qui contribuent
majoritairement sont les particules a I’équilibre thermique (7; = T'), les particules ayant T; < T'
ne contribuant quasiment plus, elles sont découplées du bain thermique.

1.3.5 Entropie

L’entropie du plasma primordial se calcule en prenant un potentiel chimique nul pour toutes
les espéces. Le premier principe de la thermodynamique donne

Tsi=pi+ B (1.35)

ou s; désigne l'entropie volumique et p;,P; sont données par (1.23). Dans le régime ultra-
relativiste, il est possible de relier simplement les densités d’énergie et d’entropie

_4pi

ﬁ%T?’ bosons

% an” %T?’ fermions

1.3.6 Le scénario standard

La physique connue et acceptée a 'heure actuelle permet de suivre avec confiance la succes-
sion d’événements qui se sont produits jusqu’a T ~ 1 GeV, pour des températures supérieures
I’histoire de 1’Univers est basée sur des extrapolations de nos connaissances actuelles jusqu’a
I'époque de Planck t = 107%3s soit T ~ 10" GeV. Il est communément admis que les idées
essentielles de la théorie quantique des champs devraient rester valables jusqu’a cette énergie,
au dela de laquelle des effets inconnus de gravitation quantique deviendraient importants. On
s’attend par conséquent a ce qu’en remontant le temps, la température de I’Univers augmente,
en franchissant de temps & autre des seuils particules antiparticules. Les particules présentes &
ces hautes températures n’auront pas d’effet significatif sur le présent sauf si elles sont stables
ou si leurs interactions déterminent des nombres quantiques globaux, comme ’asymétrie ba-
ryon/antibaryon. Commengant & partir du temps de Planck, voici une bréve description de son
histoire jusqu’a nos jours :
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CHAPITRE 1. LE MODELE COSMOLOGIQUE STANDARD

T ~ 10 GeV (t ~ 10730 sec) : a cette échelle d’énergie, on suppose que le groupe G de
grande unification des interactions est brisé pour donner le groupe de jauge du Modéle
Standard des particules SU(3)c @ SU(2), @ U(1)y.

~ T ~ 102 GeV (t ~ 1072 sec) : le groupe de jauge du Modéle Standard se brise en SU(3)¢ ®
U(1)g, c’est la transition électrofaible. Elle pourrait étre responsable de la baryogéneése.

~ T ~10' — 10° GeV (t ~ 1078 — 10712 sec) : le particules de matiére noire dont la masse
est de I'ordre du GeV au TeV se découplent, que 'on expliquera dans la section 4.

~ T ~ 0.3 GeV (t ~ 1075 sec) : c’est la transition de phase QCD, les quarks et les gluons
s’assemblent en hadrons.

— T ~1 MeV (t ~ 1 sec) : les neutrons se découplent.

~ T ~ 100 keV (t ~ 102 sec) : la nucléosynthése primordiale ou BBN (Big Bang Nucleosyn-
thesis) commence. Les protons et neutrons fusionnent pour former les éléments légers (D,
3He, *He, Li).

~ T ~ 1eV (t ~ 10'? sec) : égalité matiére-rayonnement, I’Univers passe d’une époque
dominée par la rayonnement & une autre dominée par la matiére. La formation des grandes
structures peut débuter.

— T ~ 0.4 eV (t ~ 380 000 ans) : le découplage des photons produit le rayonnement fossile
appelé fond diffus cosmologique ou CMB (Cosmic Microwave Background), voir section
suivante.

~ T ~10"*eV, T = 2.7 K : aujourd’hui.

1.3.7 Observations

Les valeurs des différents paramétres cosmologiques sont obtenus & partir de plusieurs sources.
La cosmologie observationnelle part de 'observation des photons émis par des étoiles ou quasi-
étoiles, puis des galaxies et amas de galaxies pour finir avec ceux du fonds diffus cosmologique.
Les observations combinées de diverses expériences permettent de calculer les différentes densi-
tés actuelles ; avec une trés grande précision (voir Figure 1.1). Ces observations confirment le
Modéle Standard cosmologique mais elles soulévent aussi de nouvelles questions. La combinaison
de Pobservation des supernovae de type la (SNIa)[2, 1] , de WMAP ( Wilkinson Microwave Ani-
sotropy Probe) et de SDSS [6, 7] mettent en évidence la présence d’une énergie qui dominerait
I’Univers, appelée énergie noire, dont la nature reste a ce jour inconnue et serait responsable de
I’expansion accélérée. Il est tentant de penser cette énergie en terme de densité d’énergie du vide,
notion apparaissant en physique quantique, mais la valeur observée ne peut étre expliquée par la
physique des particules qui prédit des valeurs de densité de 60 ordres de grandeur supérieures.
Il existe d’autres approches mais l'idée générale est d’ajouter un terme A dans les équations
d’Eintein (1.2), soit dans la partie “géométrique” (partie de gauche), donc une modification de
laction d’Hilbert-Einstein, ou comme un terme de “source” (partie droite) i.e un fluide supplé-
mentaire. La premiére méthode résulte en une modification de par son action & quatre dimensions
ou bien par 'ajout de dimensions supplémentaires, la deuxiéme rajoute un élément dans 1’Uni-
vers (constante cosmologique, champ scalaire...). D’autre part les observations indiquent que la
somme des différentes densités donnent > €2; = 1 révélant que I'Univers est plat alors qu’a priori
rien ne le suggere, les modéles inflationnaires permettent d’expliquer [8] cette observation en
supposant qu’a une époque trés précoce ’Univers a connu une phase d’expansion gigantesque
(“Iinflation”) qui impose 2 = 1. Enfin on remarque qu’une part importante de la matiére qui
compose 'Univers est d’origine non-baryonique, appelée Matiére Noire, dont nous discuterons
plus en détails dans la section suivante. Le Modéle Standard de la Physique des Particules ne
posséde pas de particule pouvant expliquer 'origine de cette matiére, cependant dans les théories
au-dela du Modele Standard (Supersymétrie, Dimensions Supplémentaires...) cette contribution
peut étre expliquée par I'introduction de nouvelles particules. Ces différentes mesures seront de
plus améliorées par les satellites PLANCK et SNAP [9].
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1.4. LE PROBLEME DE LA MATIERE NOIRE

74% Dark Energy

Paramétre Symbole Valeur

Parameétre de Hubble h 0.72 £ 0.03
Densité de matiére totale Q. 0.257+ 0.033
Densité baryonique Qp 0.0444+ 0.005
Constante cosmologique Qa 0.74 4+ 0.03

FIGURE 1.1 — Composition de I’Univers en pourcentage [10] : 74 % d’énergie noire et 26 % de
matiere dont 4% de matiére connue. Le paramétre de Hubble est défini par H = 100 h.km.s™!.
Les incertitudes sont données a 68 % de niveau de confiance.

1.4 Le probléme de la matiére noire

1.4.1 Mise en évidence

Les premiéres indications de I’existence de la matiére noire proviennent de I’observation, par
I’astronome suisse Fritz Zwicky en 1933, de la distribution des vitesses des galaxies dans ’amas du
Coma. Il observe que la masse dynamique de ’amas est cent fois supérieure & la masse lumineuse.
C’est le début du probléme de la masse “manquante” de I’Univers, qui peut étre résolu soit en
altérant les lois de la gravitation|[11], soit en supposant 'existence de matiére non-lumineuse
interagissant trés faiblement avec la matiére ordinaire, on parle alors de matiére noire. La mise
en évidence de la matiére provient de I’étude des courbes de rotation des galaxies qui montrent
un comportement “plat” & grande distance, c’est & dire méme au deld des bords du disque visible
de la galaxie et qui ne peut étre expliqué par la seule matiére lumineuse (voir Figure (1.2)) . En
Mécanique Newtonienne la vitesse orbitale des étoiles doit étre

v(r) = GMT@ (1.37)

oit M(R) = 47 [ p(R)R*dR, et p(R) est le profil de densité de masse, qui devrait décroitre en
x 1/ VR au dela du disque visible. Or les observations indiquent une vitesse approximativement
constante pouvant étre expliquée par I'existence d’un halo de matiére noire avec M (R) x R et
p(R) o< 1/R?. Bien que la forme du profil de densité de matiére noire semble bien connue & grande
distance, la forme au centre galactique est encore sujet & débat, et peut avoir de grandes influences
sur les prédiction de détection de matiére noire. L’étude des anisotropies de température du CMB
permet de mesurer la densité d’énergie de la matiére dans I'Univers [3, 13]. La valeur mesurée
est bien supérieure a la densité d’énergie de la seule matiére baryonique, indiquant encore une
fois I'existence de matiére noire.

D’autres preuves peuvent étre obtenues en étudiant la formation des grandes structures grace
aux simulations a N-corps. Les galaxies et amas de galaxies se sont formées par effondrement
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vk observed

expected
from
___ luminous disk

M33 rotation curve
] (fig. 1)

FIGURE 1.2 — Courbe de la distribution de vitesse de rotation des étoiles de la galaxie M33 [12]

gravitationnel de matiére non-relativiste, et il est difficile de comprendre comment une telle
quantité de baryon ( Figure 1.1) pourrait avoir créé les structures observées. Le probléme vient du
fait que les photons du fonds diffus cosmologique ont un spectre trés homogéne ( les homogénéités
sont de l'ordre de 107°), cela implique que la distribution des baryons était trés homogéne elle
aussi & des époques précoces. Or le fait que nous observons des galaxies et amas de galaxies
indique que nous sommes dans un état inhomogéne actuellement et expliquer le passage d’un
état homogéne & un état inhomogeéne est “difficile” §’il n’y a que des baryons en raison de leur
couplage étroit aux photons qui ont une répartition trés homogéne.

Les observations les plus récentes données par le satellite WMAP[3] et bientot par le satellite
PLANCK]13] nous indiquent que I’Univers est composé de 74% d’une énergie inconnue, 1 énergie
noire, et de 26% de matiére noire. Parmi ces 26%, la matiére que nous connaissons, la matiére
baryonique, n’en représente que 4%. Les 22% restants composeraient la matiére noire et, a partir
du rapport baryons/photons, donné par la nucléosynthése primordiale et I'étude du CMB, elle
doit étre de nature non-baryonique. De plus elle est supposée “froide”, c’est a dire non-relativiste
actuellement. L’élucidation de la nature de cette matiére se situe a l'interface entre la physique
des particules et de la cosmologie. Le fait qu’il n’y ait pas de radiation “détectable” pour la matiére
noire laisse & penser qu’elle interagit trés faiblement avec le reste de 1'Univers, lui donnant le
nom de WIMP pour Weakly Interacting Massive Particle que 'on dénotera de fagon générique
x par la suite.

1.4.2 Densité relique

Dés 1965 [14, 15] des travaux ont montré que si une nouvelle particule x stable existait aux
premiers ages de 1’Univers, elle pourrait avoir une abondance cosmologique significative de nos
jours. L’idée est la méme que dans la section 1.3.1, la particule x est en équilibre thermique et
abondante dans I’Univers primordial, tant que la température de I’Univers est supérieure a la
masse m, de la particule. L’équilibre est maintenu tant que les réactions d’annihilation entre la
particule et son antiparticule y en éléments plus légers Y, xy¥ — Y'Y, et de création, YY — x¥,
se compensent. Au fur et & mesure que la température de I’'Univers diminue jusqu’a T' < m,, la
densité de particule y diminue exponentiellement a cause du facteur de Boltzmann exp(—m, /T)
jusqu’a ce que le taux des réactions d’annihilation I'y, devienne inférieur au taux d’expansion H,
voir figure (1.3), on parle alors de découplage ou freeze-out. Une fois découplées, ces particules
n’interagissent plus assez avec le bain thermique et leur nombre reste presque constant, mais leur
densité décroit avec 'expansion et comme le facteur d’échelle n ~ 1/a3(¢). L’observation du fond
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FIGURE 1.3 — Densité numérique comobile (& gauche) vs densité relique thermique (droite) pour
un neutralino de 100 GeV. La ligne pleine représente une section efficace d’annihilation donnant
une densité relique correcte, les régions colorées représentant des sections efficaces d’annihilation
différant d’un facteur 10, 102, 10® de cette valeur. La ligne en pointillés représente le cas ot le
neutralino reste en équilibre thermique [16].

diffus cosmologique a permis de donner un encadrement (ici donné & 20) sur la densité actuelle
(relique) de matiére noire (MN) dans 1'Univers [10] :

0.0975 < Q, h? < 0.1223 (1.38)

et l'on s’attend avec le satellite PLANCK]13] & restreindre encore plus cet intervalle, avec une
précision expérimentale de 'ordre de 1 — 2%. Par conséquent du coté des prédictions théoriques
il est nécessaire d’atteindre au minimum le méme degré de précision.

Equation de Boltzmann

La nature de la matiére noire reste inconnue a ce jour, cependant il existe un véritable bestiaire

de modéles possédant une particule pouvant prétendre & étre le candidat pour la matiére noire.
Une fois que I'on a choisi dans ce zoo quelle est la particule Y, il est possible, grace a I’équation
de Boltzmann, de suivre son évolution dans I’Univers primordial et de prédire sa densité relique
actuelle et la comparer avec les résultats expérimentaux (1.38), permettant ainsi d’exclure ou de
conserver ce modéle. La valeur (1.38) agit donc comme une contrainte trés forte sur la validité
des modéles cherchant & expliquer la nature de la particule x. Nous allons détailler dans cette
section la résolution de ’équation de Boltzmann conduisant a la prédiction de la densité relique
Q,h? a partir de la physique des particules [17, 18, 19].
Soit N particules x; de masse m; et de degrés de liberté internes g; (spin, couleur...), I'expression
de la densité numeérique n; est donnée par I'équation (1.23), pour déterminer I’évolution de n; il
faut donc déterminer I’évolution de la fonction de distribution f;(p’) qui est régie par I’équation
de Boltzmann,

L[f] = Clf] (1.39)

ou L est I'opérateur de Liouville (c’est a dire la partie décrivant la dynamique) et C le terme
de collision (soit un terme de “source”). Si les particules n’interagissent pas ce dernier terme est
nul. Il faut maintenant adapter cette équation a I’Univers primordial, en particulier le terme de
Liouville va étre déterminé a I'aide de la métrique FRW (1.3) et dans le terme de collision ne
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seront considérées que les réactions d’annihilation de la forme i + j < k + [. L’abondance totale
n est décrite par la somme des densités

N
n=>y n (1.40)
=1

Aprés quelques efforts ’équation de Boltzmann prend la forme suivante (dans le cas général dit
de coannihilation) dans un univers dominé par la radiation

dn N dn; al

3
i > ;= —3Hn — E 1(0ijvij>(nmj — nfqnjq) (1.41)
d i= ij=

La densité numérique a I'équilibre n;? de la particule ¢ s’exprime en fonction du nombre interne
de degré de liberté g;, et f; la fonction de distribution de 'espéce i,

e gi
;' = @n) /d3175fi (1.42)

On remarque immédiatement qu’en ’absence de collisions, seul le premier terme de droite de
(1.41) reste et 1’évolution de la densité numérique est régi par I’expansion de 1'Univers et n; oc a3,
Le second terme représente les réactions de (co)annihilation entre deux particules x; (x; et x;
avec i # j pour la coannihilation) dont la section efficace totale est donnée par, si 'on suppose

qu’elles sont stables

oij = Y _olxix; < YY) (1.43)
X

ou Y représente I’ensemble des particules du Modéle Standard et v;; est la “vitesse relative” de
Mgller (voir Annexe B), définie telle que le produit v,,m;n; soit un invariant de Lorentz,

\/(pz -pj)? — mim3
EE,

g = \/|17;—v_}|2— |5 A2 = (1.44)
ol p; et E; représentant I'impulsion et ’énergie de la particule i. On a supposé de plus qu’il n’y a
pas d’asymeétrie entre y et x. D’autre part on peut considérer que les distributions des particules
X; restent en équilibre thermique, alors leurs rapports sont égaux aux valeurs a ’équilibre :

n; nd
; ;
S o (1.45)
donnant finalement J
n
i —3Hn — (oo fsv)(n* — ngq) (1.46)
avec -
n*n,
<O'effv> = Z<O‘ij’ul'j>ﬁn—iq (147)

2
Dans I’approximation de Maxwell-Boltzmann (T < m) f; est de la forme f(p’,T) ~ exp(—E/kr)
et alors la densité numérique de la particule i (1.23) a I’équilibre s’écrit, en définissant x comme
le rapport x = m/T,

T
n;? = ﬁglm?Kg(x) (1.48)

ot la fonction Ks(x) est la fonction de Bessel modifiée de deuxiéme espéce. La moyenne thermique
(0ijvi;) est définie grace aux distributions a I’équilibre et est donnée par,
(055057} = | Epid’pj fifjoijuij
vy [ d3pid®p; fif;

(1.49)
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1.4. LE PROBLEME DE LA MATIERE NOIRE

et dans 'approximation de Maxwell-Boltzmann elle s’écrit,

3/2 9 )
(oijvij) = 27r—1/2/ (aijvij)vze*” /% dy pour = = 1 (1.50)
0

Coannihilation

Si une particule ¢ & une masse proche de la particule la plus légére de masse my alors on peut
écrire m; = mq+dm;, ou dm; = m; —m; est la différence de masse entre ces deux particules, alors
cette particule peut contribuer significativement & la densité numérique n. En plus des réactions
d’annihilation entre particules les plus légéres, des réactions de coannihilation devront étre prises
en compte dans le calcul de la moyenne thermique. De plus, dans I’expression de la densité
numérique n;, la fonction de Bessel Ks(x) contient le facteur de Boltzmann exp(—xzdm;/mq), qui
devient non-négligeable lorsque la différence de masse est trés petite. En premiére approximation
on peut alors écrire

Ji 5m 3/2 71.6m
ng? ~ nf? = <1 + ’) e (1.51)
g1 my
Giseff
et par conséquent,
N
n =n"> " Giers (1.52)
i=1
alors (1.47) devient,
Gieff9j,
(oeppv) =Y FIE (00) (1.53)
i Jeds

Reformulation de I’équation de Boltzmann

Généralement il est utile d’absorber 'effet de I'expansion de I’'Univers en considérant 1’évo-
lution de la densité numérique dans un volume comobile en définissant,

Y

w |3

(1.54)

en dérivant Y par rapport au temps et en absence de production d’entropie, S = a3s on obtient

dY . n n
— =Y =—-4+3H—- 1.55
dt s + s ( )

par conséquent, (1.46) se réécrit comme
Y = —s(oespo)(Y? = Y5) (1.56)

La partie droite de I’équation ne dépend que de la température et il est utile d’utiliser la tempé-
rature comme variable indépendante. En définissant le rapport = mq /T on obtient

dY mi 1 ds
En utilisant I’équation de Friedmann pour un univers dominé par la radiation
_ 8nGp
3

H? (1.58)

21



CHAPITRE 1. LE MODELE COSMOLOGIQUE STANDARD

On peut exprimer la densité d’énergie p et la densité d’énergie s

2

7T
272
s =hep(T) T3 (1.60)

ol gepf(T) et hepp(T) sont les degrés de liberté effectifs. Finalement en définissant le parameétre

V/g* comme

h dh

o = ett (q 4 T dheys (1.61)
Vel f Sherr T

dy m
W ST oy (v~ 12) (162)

La forme de cette équation correspond & une équation de Riccati Y/ = fo(z) + f1(2)Y + fa(z)Y?
qui ne posséde pas de solution analytique dans le cas général. Elle peut cependant étre ré-
solue numeériquement, grace notamment aux programmes micrOMEGAs [19] et DarkSUSY [20] et
permettent de prédire la densité relique de matiére noire avec une trés grande précision. Une
solution de I’équation (1.62) peut étre obtenue moyennant quelques approximations [21].

on obtient

Détermination de I’époque du freeze-out
Pour déterminer 'époque du freeze-out on va définir A = Y — Y., alors 'équation (1.62)

devient
dA Vgrmy dY,
dr — 45G 7 (Oes ) A(A +2Yeg) — qu (1.63)

X

L’équation (1.63) doit étre intégrée a partir d’aujourd’hui = = oo) jusqu’a I’époque du freeze-out
(r = xp). Comme le moment ot x = zp est I'époque quand Y cesse de suivre la densité a
I'équilibre Y4, alors A est proche de Y,. On définit 2 alors selon le critére : A(zp) = cYeq ol
¢ est une constante numérique. On obtient alors pour z = xp

dInY, [ © Vg'm
Tq = — m72<0'eff’0>0(0+ 2)}/;3(1 (164)

x

donnant

g1 X K2
v Z 1.65
€1 Yt hess m/x Giers(@ ( )

En développant au premier ordre les fonctions de Bessel une solution itérative pour x r est obtenue
Mp 1/2}
=1In |0.03824g.  t ——=m1(Tcr+v)c(c + 2 1.66
eff J= {ocppv)e(c+2)z (1.66)
avec Mp = 1/v/G la masse de Planck.

Détermination de la densité relique actuelle

Pour obtenir la valeur de la densité présente Yy = Y (xg), 'équation (1.62) doit étre intégrée
entre x = oo et x = xg = my/Tp, ou Ty est la température actuelle des photons. L’abondance
actuelle est donnée par

0
m150Y(
Pe Pe



1.4. LE PROBLEME DE LA MATIERE NOIRE

oil 8o est 'entropie actuelle de 1'Univers soit 2970 em ™2 et p. par (1.15). Si on prend la tem-
pérature du CMB pour T nous obtenons finalement (en utilisant la masse de Planck réduite

Mpy, = \/he/87G = 2.43 x 1018 GeV /c?)

QU h2 = 2.755 x 10°5—Ly, 1.68
X X Gov 0 ( )

Dans un modéle cosmologique standard de domination de radiation & ’origine on a,

1071°Gev >
O h2 o — 2 (1.69)
(ov)
Si on prend comme section efficace une valeur typique de l'interaction faible
2
(ov) ~ —5— ~1077GeV 2, (1.70)
EW

avec « la constante de couplage et Mgy ~ 100 GeV, 'échelle électrofaible, alors Q,h% ~ 0.1,
correspondant aux observations. Cette coincidence semble indiquer que les problémes de brisure
de symeétrie électrofaible et celui de la matiére noire semblent liés et ainsi encourage & explorer
les théories allant au-deld du modéle standard, c’est & dire au-dela de 1’échelle électrofaible. Enfin
il est & remarquer nous avons dérivé la densité relique dans le scénario standard dominé par la
radiation. Si un autre mécanisme sortant de ce cadre a été a I'ceuvre dans 1’Univers primordial,
comme un production non-thermique, ou tout autre possibilité pouvant augmenter ou diminuer
la densité relique, la détermination de Qxh2 peut étre grandement modifiée.

1.4.3 Candidats

Dans cette section nous allons présenter succinctement et de fagon non-exhaustive une liste de
candidats pour la matiére noire, aussi bien de nature baryonique ou non-baryonique. La matiére
noire non-baryonique est différenciée entre des candidats “chauds” et “froids”. Un candidat est
dénoté comme “chaud” s’il se déplacait a des vitesses relativistes au moment ot la formation des
galaxies commengait, et “froid” §’il était non-relativiste.
— Objets compacts massifs
Il existe une catégorie d’objets stellaires de nature baryonique pouvant expliquer en par-
tie la présence d’une matiére non-lumineuse. Les principaux candidats, appelés MACHOs
(MAssive Compact Halo Objects), sont, par exemple, les naines brunes/blanches, des pla-
nétes de grande taille comme Jupiter, des restes de trous noirs stellaires ainsi que des étoiles
& neutrons et des nuages d’hydrogéne moléculaire.

— Neutrinos du modéle standard
La densité relique des neutrinos prédite est de (voir [22] et références internes)

3

2 my
Qn=>" 3 (1.71)

i=1
Les limites expérimentales actuelles sur la masse des neutrinos donne,
m, < 2.05eV (95%C.L.), (1.72)
impliquant une borne supérieure sur la densité relique totale,
Q,h% ~0.07 (1.73)

Les neutrinos du modéle standard pourraient constituer la matiére noire chaude. Cependant
les simulations & N-corps de formation des grandes structures dans un univers dominé par
de la matiére noire chaude reproduisent difficilement les structures observées [22].
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CHAPITRE 1. LE MODELE COSMOLOGIQUE STANDARD

— Neutrinos stériles
Ces particules hypothétiques sont similaires a celle du modéle standard de la physique des
particules, mais sans interaction avec elles. De fortes contraintes d’origine cosmologique et
astrophysique proviennent de ’analyse de leur abondance cosmique et de I’étude de leurs
produits de désintégration [23].

— Azions
Ces particules ont été introduites pour résoudre le probléme de la violation de CP de
I'interaction forte. Des expériences d’astrophysique et de laboratoire le force & étre trés
léger (m < 0.01 eV) [24].

— Candidats Supersymétriques
De nombreuses particules d’origine supersymétrique peuvent prétendre & étre la matiére
noire. Le candidat le plus populaire est le neutralino, qui apparait dans les modéle ot une
symétrie, la R-parité est conservée. Ensuite viennent les partenaires supersymétriques des
neutrinos, les sneutrinos, du graviton, le gravitino, ou encore de l’axion, 1’azino

— Dimensions supplémentaires
Une autre classe de candidats proviennent des modéles étendant le nombre de dimensions
de notre Univers. Les excitations de Kaluza-Klein des particules du modéle standard, en
particulier la particule B, premiére excitation du boson B, peuvent aussi expliquer la
densité relique de matiére noire observée aujourd’hui (voir [22| et références internes).
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Chapitre 2

Le modéle standard de la physique des
particules
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English Abstract We give a short review of the Standard Model of Particle Physics and
underline the gauge principle as a guiding principle for the construction of gauge theories. The

limits of this model will be recalled as well as the need for going beyond the electroweak Standard
Model.

2.1 Introduction

Le modéle standard de la physique des particules décrit trois des interactions entre les par-
ticules subatomiques : les interactions électromagnétique, faible et forte (I'interaction gravita-
tionnelle est négligeable a I’échelle subatomique), et rend compte d’une grande quantité d’ob-
servations. Au début des années soixante, il a été réalisé que la recherche des symétries au sein
des particules élémentaires pouvait jouer un grand role pour déterminer la forme de leurs in-
teractions, basée sur ’échange de quantas, les bosons vecteurs. Le principe de symétrie a aussi
permis de classifier les particules élémentaires sous différentes familles (leptons, quarks, bosons
vecteurs). Les théories basées sur ce role accordé aux symétries sont connues sous le nom de
théories de jauge de Yang-Mills [25]. La théorie de jauge décrivant l'interaction des quarks et
des leptons pour des énergies inférieures au TeV est basée sur le groupe de jauge non-abélien
SU(3)c®SU(2),®U(1)y. L'interaction forte ou chromodynamique quantique (QCD pour Quan-
tum ChromoDynamics en anglais) est décrite par le groupe SU(3)¢ (ou le C référe a la charge
de couleur) et le groupe SU(2)r ® U(1)y (o le symbole Y signifie ’hypercharge et L le carac-
tére chiral de l'interaction faible) unifie les interactions faible et électromagnétique (Quantum
FElectroDynamics ou QED en anglais) sous une méme interaction/description, dite électrofaible
(Electro-Weak Interactions ou EW), grace aux travaux de Glashow, Weinberg et Salam [26].
L’utilisation de ce groupe de symétrie locale a non seulement permis de décrire I'interaction élec-
trofaible mais aussi de prédire trois nouvelles particules, les bosons Z° et W+, qui ont plus tard
été découverts par 'expérience UA1 au CERN, formant ainsi I'un des succeés les plus retentissants
du modéle standard. Celui-ci a depuis été testé jusqu’au pour mille aux LEP et TeVatron. Les
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physiciens des particules auraient pu se contenter de cette élégante théorie si elle ne soulevait
pas un probléme majeur : la symétrie SU(2)y, @ U(1)y prédit des bosons de jauge Z° et W de
masse nulle pour étre respectée, or il s’avére que ce sont des particules lourdes, posant donc le
probléme de l'origine de cette masse. Le mécanisme le plus simple pouvant en rendre compte en
respectant la symétrie de jauge est le mécanisme de Higgs, qui confére une masse aux particules
du modéle standard par I'introduction d’'un champ scalaire, le champ de Higgs. Ce mécanisme
permet de briser la symétrie du vide quantique tout en laissant la théorie invariante sous les
transformation de jauge. La symétrie SU(2);, ® U(1)y du vide est ainsi brisée par le mécanisme
de Higgs, ne laissant que la symétrie U(1),,, de la QED et donnant une masse aux particules
sensibles & l'interaction électrofaible.

2.2 Quarks et leptons

Les particules de matiére, les fermions, opposés aux particules vectrices d’interaction, les
bosons de jauge, peuvent étre classées en deux grandes familles : les particules sensibles & 'inter-
action forte, les quarks, et celles qui ne le sont pas, les leptons. Il existe trois familles/générations
de quarks (up, down, charm, strange, top, bottom) et de leptons (électron, muon, tau et leurs
neutrinos associés). Les deux derniéres générations n’existent pas a ’état naturel, elles sont créées
dans les accélérateurs de particules, ce sont en quelque sorte des copies de la premiére génération
mais avec une masse plus importante. Les valeurs de masse et de la charge de chacune sont
résumées dans le tableau suivant, auxquelles il faut aussi ajouter leurs antiparticules, de méme

Quarks Leptons
Charge 2/3 Charge -1/3 Charge 1 Charge 0
Masse Masse Masse Masse
u 0.0015-0.0033 | d 0.0035-0.006 | e 0.000511 | v. < 3eV
c 1.16-1.34 s 0.007-0.0130 | p 0.106 v, < 190 keV
t 171.3+23 | b 4.13-4.37 T 1.777 v, < 182 MeV

TABLE 2.1 — Masses des quarks et leptons connus en GeV sauf indication, ¢ = 1 (source PDG
2008 [10])

masse mais de charges opposées.

Les quarks et leptons appartiennent & une classe plus générale de particules : les fermions. Ce
sont des particules de spin 1/2 qui obéissent a la statistique de Fermi-Dirac. L’étude du groupe
de Lorentz (le groupe des symétries d’espace-temps) montre qu’il posséde deux représentations :
une représentation de type vectorielle (spin entier) ou de type spinorielle (spin demi-entier).
Les fermions appartiennent & la représentation spinorielle et le champ associé aux fermions est
appelé spineur de Dirac 1 & quatre composantes . De plus, du fait de la chiralité des fermions
face a I'interaction faible, on peut représenter ce spineur de Dirac & quatre composantes en deux
spineurs de Weyl a deux composantes,

Y = P, + Pryr

ou Py, et Pr sont les projecteurs sur les parties gauche et droite définis par, en représentation de

Weyl,

(2.1)

(2.2)
et la matrice 4° = i7%y142y34* (voir Annexe A pour la définition des matrices de Dirac ~*).

Le groupe associé a 'interaction faible est le groupe SU(2) et de plus comme elle n’agit que sur
la partie gauche des spineurs, on le spécifie en I'écrivant SU(2),. Les leptons et quarks sont alors
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rangés en doublets de chiralité gauche et en singulets de chiralité droite insensibles & l'interaction
faible.

Leptons

Les doublets de SU(2)r, leptoniques contiennent un lepton chargé et un neutrino. Les leptons
chargés possédent aussi une composante droite, singulets de I'interaction faible, alors qu’il n’existe
pas de neutrinos de composante droite. On représente donc les leptons de la fagon suivante

(gf)LG“)L(:i)LeR Wh Th 23)

Dans sa version minimale, les neutrinos du modéle standard sont sans masse et il n’existe pas
de neutrinos droits. Depuis la découverte de l'oscillation des neutrinos (voir par exemple [27]),
nous savons que les neutrinos doivent étre massifs, impliquant ’existence de composantes droites,
n’interagissant ni par interaction faible, ni par interaction forte, expliquant leur non-détection
jusqu’a ce jour.

Quarks

En plus de l'interaction électrofaible les quarks sont sensibles a 'interaction forte, responsable de
la cohésion du noyau atomique. Il est pratiquement impossible d’observer les quarks a ’état libre,
cela est du a la propriété de confinement de l'interaction forte, par conséquent & basse énergie
les quarks s’assemblent pour former des objets liés fortement, les hadrons. Parmi les hadrons
on distingue deux familles, d’'une part les baryons et antibaryons, agrégats de trois quarks ou
antiquarks, et d’autre part les mésons, formés d’un quark et d’un antiquark. Par rapport aux
leptons les quarks portent un nombre quantique supplémentaire : la couleur, qui peut prendre
trois valeurs différentes. Les six types de quarks (up, down, charm, strange, top, bottom) sont
appelés de fagon générique saveurs. Les baryons quant & eux sont un assemblage de quarks et
d’antiquarks de fagon a ce que la charge totale de couleur soit nulle. Comme pour les leptons les
composantes gauches des quarks sont assemblés en doublets d’interaction faible, les composantes

droite étant des singulets,
" ¢ t d tp b (2.4)
l ; URr AR CrR SR tRrR OR .

Les quarks ont une singularité de plus par rapport aux leptons, ils peuvent changer de saveur par
I'intermédiaire de courants chargés, ainsi, les états propres de masse (états propres de propaga-
tion) sont des combinaisons linéaires des états propres de saveur (états propres de U'interaction
faible). Cela est retranscrit mathématiquement par une matrice de saveur, la matrice de Cabibbo,
Kobayashi, Maskawa ou matrice CKM [28],

d d Vud Vus Vb d
s =Vexkm| s | =1 Vea Ves Vo s (2.5)
b/ b V;td ‘/ts V;Eb b

La matrice CKM induit de plus une violation de la symétrie CP dans ce secteur.

2.3 Les interactions du modéle standard

Les interactions du modéle standard sont des interactions dites de jauge, c’est a dire que leur
forme est dictée par un groupe de symétrie locale appelé groupe de jauge. Nous allons montrer,
dans le cas d’'une symétrie abélienne, comment a partir d’'une théorie libre, sans interaction, on
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peut passer, en la jaugeant, a une théorie en interaction. Le lagrangien décrivant un fermion de
masse m sans interaction est

Elibre = E(Zﬁ - m)w (ﬁ = ’Yﬂau) (26)

Ce lagrangien est invariant sous la transformation de phase globale 1) — exp(ic)y et ainsi ¢ =
¥ (x). Maintenant considérons une transformation de jauge locale, c’est a dire que le paramétre
a va dépendre de la position x, impliquant qu’en chaque point il y aura une transformation de
jauge particuliére, alors cette opération s’écrit,

Y — ' = explia(z)]|y (2.7)

En conséquence, a cause de la dérivée spatio-temporelle, le lagrangien acquiert un changement
de phase additionnel en chaque point : §Lype = ity [i0,a(x)]tp. Par conséquent le lagrangien
n’est plus invariant sous cette transformation de jauge locale. Cependant, I'invariance de jauge
locale peut étre restaurée si nous opérons le remplacement (appelé couplage minimal)

Oy — D, =0, +ieA, (2.8)
dans le lagrangien libre, qui devient

L= P —my =P —m)b — e Alz)y (2.9)

L’effet d’'un changement de phase local pour 1 peut étre compensé si on autorise le champ de
jauge A, a changer comme une divergence totale, qui ne modifie pas le tenseur électromagnétique

F =0,A,—0,A, (2.10)
En effet, sous la transformation ¢ — 1’ et A — A’, avec A’ & déterminer,

L=9/(if —m) — e’ A(a) = (i@ —m)y — e A ()9 — P Po(a)]v (2.11)

sera égal & L si le champ vectoriel AL se transforme comme,

A(z) = Ay(z) - é@ua(az) (2.12)

La dérivée D,, est appelée dérivée covariante et on peut vérifier que sous une transformation de
jauge locale, D, — 6ia($)DHZD, la forme du lagrangien £ reste invariante. On voit donc que,
pour restaurer l'invariance de jauge locale, nous avons rajouté un terme dans le lagrangien, qui
va s’apparenter & un terme d’interaction entre le champ de jauge A, et les spineurs U et 1Y,
nous somme passés d’une théorie libre & une théorie en interaction. Dans ’exemple que nous
avons étudié, la transformation de jauge dépend d’une fonction «a(x), c’est une symétrie de
type U(1), abélienne, comme pour 1’électrodynamique quantique. On peut généraliser ce type de
raisonnement en considérant comme parameétre de transformation non plus une fonction mais des
matrices, qui en général ne commutent pas, on parle alors de symétries non-abéliennes, comme
SU(3) ou SU(2). Ces théories portent le nom de théories de Yang-Mills|25].
Chaque interaction (forte, faible, électromagnétique) est invariante sous son groupe de jauge
respectif et ainsi il existe une quantité conservée (charge ou nombre quantique) pour chaque
force lors d’un processus d’interaction : la couleur pour la force forte, 'isopin faible pour la force
faible, et la charge électrique pour la force électromagnétique. De plus, comme il a été possible
d’unir sous une méme description les forces faible et électromagnétique, la force électrofaible,
dont le groupe de jauge est SU(2)r ® U(1)y, la charge électrique est donnée par la relation de
Gell-Mann Nishijima

Q=T>+Y/2 (2.13)
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ot T? est isospin faible et Y I’hypercharge associée au groupe U(1)y. Les interactions entre
particules sont communiquées par 1’échange de bosons vectoriels (ou de jauge) : le photon ~
pour ’électromagnétisme, les bosons W+ et Z° pour l'interaction faible et les gluons g pour
I'interaction forte.

Le lagrangien de la théorie de Yang-Mills pour des champs de jauge interagissant avec des champs
de matiére s’écrit de maniére compacte,

Ly = —%Tr (F,, ") + DD — m)y (2.14)

et le lagrangien du modéle standard est obtenu en ajoutant le lagrangien de Yukawa Ly et du
secteur de Higgs L que nous détaillerons par la suite,

Lsyi=Lyym+Ly+Lyg+Lryg+ Lam (2.15)

ou Ly, Lo sont les lagrangiens de fixation de jauge et des “ghosts”, nécessaires a la quanification
des théories de jauges (voir par exemple [29]).

2.3.1 Le secteur de jauge

Le lagrangien de jauge s’écrit

Ly = —%Tr (F ., F™) (2.16)

ot le tenseur de jauge s’écrit F,,, = F| ZVTZ-. Les quantités T; sont des matrices et les générateurs
du groupe de jauge obéissant aux relations de commutations suivantes

[T, Tj] = icij Ty (2.17)

Les cj;, sont les constantes de structure caractérisant le groupe. Pour le groupe abélien U(1),
cijk = 0, pour SU(2), ¢ijr = €5 alors que pour SU(3), ¢;jr, = fijr définies par Gell-Mann [30].
Les matrices T; sont normalisées telles que Tr(T;T;) = d;;/2. Finalement I’expression du tenseur
de jauge en fonction des champs de jauge s’écrit :

Fu = 0uA, — A, —ig[AL, A, F, =0,A, — 0,A, + geju Al AL (2.18)

Les champs A* = B, W3 ¢'® représentent les bosons vecteurs associés respectivement aux
groupe U (1)y d’hypercharge et de couplage g1, SU(2), d’isospin faible de couplage g et SU(3)¢
de couleur de couplage g3. Il n’est pas possible d’écrire un terme de masse mQALA‘” pour les
bosons de jauge car cela violerait 'invariance de jauge de la théorie. Cependant les expériences
au LEP ont montré que les bosons de jauge faibles W+, Z0 sont massifs, par conséquent un autre
moyen doit étre trouvé pour générer les masses afin de préserver I'invariance de jauge.

2.3.2 Le secteur fermionique

L’interaction faible traite séparément les composantes gauches et droite des leptons et quarks.
Les champs de chiralité gauche des leptons, notés L;, et des quarks, notés @); se transforment
comme des doublets de SU(2)r, tandis que les parties droites (notées e;, u; et d;) se transforment
comme des singulets (2.3,2.4). L’hypercharge des multiplets est choisie de maniére & reproduire
la charge électromagnétique donnée par la relation (2.13). De plus on considére les neutrinos sans
masse, par conséquent il n’existe pas de neutrinos droits. Le lagrangien fermionique s’écrit alors

Lp = iL; PL; +ie; Pe; +iQ; PQ; + iu; Pu; + id; Pd; (2.19)
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la dérivée covariante s’écrit,
3
D, =0, —iY gn;A}T] (2.20)
j=1

ou les T3 sont les générateurs des groupes, n; = Y pour 'hypercharge U(1)y, ne = 0,1 pour
respectivement un singulet ou un doublet de SU(2)y, et ng = 0,1,—1 pour respectivement un
singulet, un triplet ou un antitriplet de SU(3)¢:.

Le fait que les mesures expérimentales nous informent que les fermions ont une masse est encore
une fois la signature de la brisure d’une symétrie, en effet un terme de la forme,

P = (Y +¢¥r) (WL + Yr) = VYR + YpiL (2.21)

en ayant utilisé ¢, = (1 +735)/2,9r = ¥(1 — 75)/2, est interdit. Puisque 17, se transforme
comme un doublet de SU(2); mais )g comme un singulet, un terme de masse proportionnel
a Y1) se transforme comme un doublet de SU(2)r. De plus les hypercharges pour les fermions
gauches et droits sont différentes, ainsi il est impossible d’avoir des termes de masse explicites
pour les fermions sans briser I'invariance de jauge locale.

Une fagon de générer des termes de masse sans briser la symétrie de la théorie est de postuler
Pexistence d’un champ scalaire complexe H se transformant comme un doublet de SU(2), couplé
aux fermions & travers une interaction de type Yukawa :

Ly = )\%Eﬁ@j + )\Z@Huj + )\%@gd] + h.c, H= oo H* (2.22)

Si le champ H, appelé champ de Higgs, acquiert une valeur dans le vide non nulle, (H) # 0, cette
quantité générera automatiquement un terme de masse non-nul pour les fermions en préservant
la symétrie de jauge dans le lagrangien. Nous allons résumer dans la section suivante comment
le mécanisme de brisure est réalisé.

2.3.3 Secteur de Higgs
Le champ scalaire H de la section précédente est un doublet de SU(2);, scalaire complexe

avec une hypercharge Y =1,
+
H= (‘ZO > (2.23)
Le lagrangien pour le champ de Higgs s’écrit comme

Ly = (D,H)(D'H) -V (H) (2.24)

on remarque alors que le champ de Higgs est couplé aux bosons de jauge a travers la dérivée
covariante (2.20). Le terme V(H) est le potentiel de Higgs, c’est le polynéme le plus général de
degré 4 en H et HT laissé invariant par les transformations de jauge,

V(H) = —p>H'H + \(H'H)? (2.25)

Il est & noter le “mauvais” signe du terme de masse, il a été choisi pour que le potentiel soit borné
inférieurement et ainsi réaliser la brisure de la symétrie voir Figure 2.1.

Le champ H va acquérir une valeur constante dans le vide en recherchant le minimum du
potentiel, alors la valeur dans le vide (0|H|0) satisfait

o W07
[(OIHI|0)" = o5 = 5 #0 (2.26)
On peut alors développer le champ de Higgs autour de v,
H L ¢ 2.27
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S

FIGURE 2.1 — Potentiel de Higgs avec pu? < 0 ( courbe rouge) n’induisant pas de brisure de la
symétrie électrofaible et avec p* > 0 (courbe bleue) la réalisant.

Le champ h° représente le boson de Higgs et les champs G, G~ et G sont des degrés de liberté
non-physiques et peuvent étre éliminés par une transformation de jauge, appelé jauge unitaire.

Dans cette jauge on a alors
1 0
Hoo. = 2.28
unit \/5 <h0 + ’U> ( )

Aprés brisure de la symétrie les bosons de jauge Wl}"g et B, vont se mélanger a travers une
matrice de rotation paramétrée par un angle de mélange, ’angle de Weinberg 6., pour donner le
photon ~ et les bosons ZY, W*. On obtient cette matrice en diagonalisant celle obtenue & partir
du terme contenant la dérivée covariante de (2.24) et en prenant I'expression précédente (2.28)
pour le champ de Higgs H. Il vient finalement

Z, Cw —Suw Wj’
= 2.2
<Au> <5w Cw ><Bu> (2:29)
1
+_ 1 1172
W, = _Q(Wu FiW,) (2.30)
L’angle de mélange étant défini par

= —2 g =T (2.31)

) w
Vi + 3 Vi + 93
La théorie décrit finalement [31] :
— Un champ de jauge de masse nulle identifié au champ du photon associé a la symétrie non
brisée U(1)q,
— Un champ complexe et son conjugué, W, et WJ‘ , de spin un et de masse

MW:% (2.32)
Par rapport a la symétrie de jauge exacte U(1)q leur charge est Q = +1
— Un champ Z,, de spin un et de masse
1 My
My = 5\/gi +g5v = (2.33)
Cw

invariant (neutre, sans charge) sous U(1)g,
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— Un champ scalaire réel h° invariant (neutre, sans charge) sous U(1)g et de masse

4
G

mi = 2u? = \v? M, (2.34)
c’est le boson scalaire unique de la théorie car sur les 4 degrés de libertés du champ de

Higgs seuls trois sont absorbés pour donner les masses des Z°, W+ et W~

L’identification du couplage du photon A, & la charge électrique () dont la constante de couplage
est e permet d’obtenir une relation entre e, g1, g2 :

0 — 92192 _, (2.35)
V91 + 95
e e
g1=——092=—"— (2.36)
Cw Sw

On peut alors réécrire les masses des bosons de jauge en fonction de la constante de couplage e

et de I'angle de Weinberg 6,,,
ev ev

MW = 7MZ =
25, 2CuSw
Quant aux fermions leurs masses vont étre générées par 'intermédiaire des termes de Yukawa
(2.22) donnant

(2.37)

Afv
myi = NG

Finalement on peut résumer le contenu en particules du Modéle Standard ainsi que leurs inter-
actions dans le tableau suivant

(2.38)

| Champ [SUB)c,SUQR),,U)y | T3 | Y [Q=T3+Y/2]|
ur, 1/2 2/3
w=(a)| @2 ()|l (L)
iy (3,1,-4/3) 0 —4/3 —2/3
dy, (3,1,2/3) 0 2/3 1/3
v, 1/2 0
n=()) e () ()
er (1,1,2) 0 2 1
H (1,2,-1) 1/2 —1 0
B (1,1,0) 0 0 0
W+ (1,3,0) +1 0 +1
g (8,1,0) 0 0 0

TABLE 2.2 — Particules du Modéle Standard et leurs nombres quantiques respectifs.

2.4 Les limites du Modéle Standard

En dépit de ses nombreux succés expérimentaux et théoriques, il est communément admis
que le Modeéle Standard n’est pas la théorie ultime des interactions fondamentales. Au contraire
il semble une théorie effective & basse énergie (jusqu’a environ 1 TeV) d’une autre plus fonda-
mentale. Nous avons vu que les termes de masse pour les fermions couplent les parties gauches
et droites des champs. Comme dans le MS il n’existe pas de neutrinos droits, il prédit que leur
masse est nulle. Le seul fait qu’il ait été découvert que les neutrinos oscillent d’une saveur a une
autre implique que les trois neutrinos sont non-dégénérés et donc qu’au moins deux sont massifs,
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révélant que le Modéle Standard est limité puisqu’il les suppose sans masse. Ensuite, bien qu’il
posséde un mécanisme le plus minimal possible pouvant générer les masses des particules en
conservant la structure de la théorie, le mécanisme de Higgs, ce mécanisme n’a pas été prouvé
expérimentalement et c’est pourquoi sa signature la plus caractéristique, la découverte du boson
de Higgs, est si activement recherchée, notamment au LHC avec les expériences ATLAS et CMS.
Il existe d’autres théories pouvant générer les masses, citons entre autres les modeéles & dimen-
sions supplémentaires, les modeéles Little Higgs, de technicouleur voire méme des modéles sans
Higgs.

Le fait que le Modéle Standard posséde trois constantes de couplages g1, go, g3 et que les trois
générations de leptons apparaissent comme des entités différentes indique que le modéle n’est
pas réellement unifié, puisque dans le cas contraire il devrait étre possible de décrire toutes les
interactions & l’aide d’une seule. De plus il ne décrit que les interactions des particules subato-
miques, la quatriéme force connue & ce jour, la gravitation, n’y est toujours pas incluse et il est
actuellement impossible de décrire avec certitude la gravitation au-deld de 1’échelle de Planck,
ou il est attendu que les effets quantiques de la gravitation commencent & étre importants. Le
modéle contient 19 paramétres libres qui ne sont pas déterminés par la théorie et seulement par
I’expérience : les 3 constantes de couplages, 6 masses pour les quarks, 3 masses pour les leptons
chargés, 3 angles de mélange CKM, 1 phase de violation C'P dans le secteur électrofaible, 1 angle
source de violation CP dans le secteur fort et les 2 paramétres A et p du potentiel de Higgs. Si
de plus on considére les neutrinos massifs il faut au moins rajouter 9 parameétres.

L’existence d'une théorie plus fondamentale unifiant au moins les 3 forces du Modéle Standard,
dite théorie de “Grande Unification” (GUT en anglais pour Grand Unified Theories) est suggérée
par I'étude de I’évolution des constantes de couplages en fonction de I’énergie. Il existe en fait
plusieurs théories de grande unification, chacune basées sur un groupe de jauge G, dit groupe de
grande unification, englobant le groupe de jauge du MS SU(3)c ® SU(2)r, ® U(1)y [8]. 1l peut
paraitre étrange au premier abord que les constantes de couplages varient avec I’énergie et ainsi
qu’une unification puisse exister. Les mesures des constantes de couplage dans les laboratoires
indiquent que ag >> ag >> agy ol ag = g3/dm,ay = g3/Am,apy = €?/dn ~ 1/137,
cependant, du & des corrections quantiques, les constantes de couplage ne sont plus constantes
mais changent en fonction de I’énergie. En effet, si on mesure & une certaine énergie p une
constante de couplage a; = gi2 /47, sa valeur & une autre échelle @) est donnée par la relation
(valable & une boucle et au logarithme dominant),

1 1 by (K
@ a2 (Q) (2.39)

Les coefficients b; sont donnés par,

4 1
by = -N, + —N
1 3 g+10 H
4 1 922
by = =N, + =Ny — —
2 =gy T 5N — 3
4
b =N, —11 (2.40)

(2.41)

avec Ny = 3 est le nombre de générations de fermions et Ny le nombre de doublets de Higgs. La
forme de ces 3 équations suppose implicitement qu’il n’existe pas d’autres particules que celles
déja connues, or si le contenu en particule du MS est modifié (a travers les parameétres N, et
Npz), alors on peut changer 1’évolution des constantes de couplage. Sur la Figure 2.2 on peut
voir que dans le Modéle Standard les constantes de couplage ne se croisent pas au méme point
a haute énergie, mais que 1’échelle de grande unification se situe autour de 10'°> GeV.
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FIGURE 2.2 — Evolution des constantes de jauge mesurées au LEP [22].

Un autre probléme d’ordre théorique du Modéle Standard est celui connu sous le nom du probléme
de la hiérarchie, du a l'instabilité de I’échelle électrofaible vis & vis des corrections radiatives [32].
Nous avons vu que les masses des bosons de jauge et des fermions sont toutes proportionnelles &
la valeur dans le vide du champ de Higgs v (vev en anglais pour vacuum expectation value). Sa
valeur est obtenue & partir de la mesure de la désintégration du muon p~, proportionnelle & la
constante de Fermi G, que l'on peut relier & la masse du boson W. A T'ordre le plus bas de la
théorie des perturbations ces deux quantités sont reliées par

9 11
8M2, 202 /2

Gr (2.42)

On a alors v = (\/§G F)*l/ 2 ~ 246 GeV. Ce paramétre controle en principe toutes les masses de
la théorie, par exemple la masse du boson W a lordre le plus bas est donné par

My — 20

~ 80GeV (2.43)
Jusqu’a présent nous nous sommes tenus a une discussion au niveau de I'ordre le plus bas de la
théorie des perturbations, il est donc légitime de se demander si I'inclusion des ordres supérieurs
peut modifier les résultats. Le MS a été construit de fagon a ce qu’il réponde au critére de
renormalisabilité, c’est a dire que quelque soit I'ordre des corrections perturbatives, les résultats
obtenus seront toujours finis, méme si 'impulsion circulante dans les boucles est étendue jusqu’a
I'infini. Nous expliquerons plus en détail le critére de renormalisabilité au Chapitre 4. Etant donné
que la vev du champ de Higgs est proportionnelle a la masse du Higgs, nous allons discuter 1’effet
des corrections quantiques ou radiatives sur cette masse, de plus cette discussion est générale a
tous les champs scalaires, pas seulement celui du Higgs [33].

Soit f un champ de matiére fermionique couplé & un champ scalaire ¢, de la forme (2.28), a
travers un couplage de type Yukawa.

_ _Moaore NVE
= \/ih If \/iff (2.44)

ou fr, g sont les composantes droite et gauche du fermion f. On remarque qu’a travers la brisure
spontanée de la symétrie il apparait un terme quadratique en le champ f, donc un terme de
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FIGURE 2.3 — Contribution fermionique a la fonction a deux points (self-énergie) du scalaire ¢

masse avec mys = Ayv/ /2. Si maintenant on calcule la correction & la masse du scalaire (donnée
par la Figure 2.3) pour une impulsion entrante nulle, On obtient,

—inf = (—1)/(5471;4Tr K‘Z%> k%mf <_Z%> ﬁ]

_ _QAQ/ d*k K+ md
T] @m)t (k2 —m?)?
d*k 1 2m?
— _2)\2 / 2.45
f/ (2m)4 [k2 —-m7 " (k2 — mf)2] (2.45)

Cette intégrale est divergente & cause du premier terme, le deuxiéme le sera logarithmiquement.
Pour la régulariser on introduit une coupure arbitraire A comme borne supérieure de 'intégrale
qui correspond & la limite de validité de la théorie. La correction & la masse est alors, aprés avoir
effectué une rotation de Wick,

2
omiy = ﬁ —A% 4+ 6m2In A + ... (2.46)
R 82 ! my

Si on considére que la théorie est valable jusqu’a A = Mp la masse de Planck, alors la correction &
la masse du Higgs est de I'ordre de I’échelle de Planck soit ~ 10" GeV ! Cela laisse donc & penser
que le MS est une théorie effective a basse énergie et que le “vide” entre I’échelle électrofaible et
I’échelle de Planck doit étre complété par une nouvelle physique. Ce type de comportement du
boson de Higgs vis a vis des corrections radiatives est typique des bosons scalaires (spin = 0)
élémentaires car il n’existe pas de symétrie protégeant leur masse des corrections quantiques,
alors que pour les fermions (bosons), le fait qu’ils possédent une symétrie, la symétrie chirale (de
jauge), assure leur protection par rapport aux corrections d’ordre supérieures. Nous expliquerons
plus en détail dans le chapitre suivant comment les fermions et les bosons sont protégés, et
comment, grace a 'ajout d’une nouvelle symétrie les reliant entre eux, la supersymétrie, il est
possible de protéger en méme temps les bosons scalaires, d’unifier d’une meilleure fagon les
constantes de couplages, et de proposer un bon candidat pour la matiére noire.
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Chapitre 3

La Supersymétrie
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English Abstract This chapter will recall how supersymmetry can stabilise the electroweak
scale by imposing a symmetry linking bosons to fermions, and how radiative corrections are part
of the inner structure of this theory. The Minimal Supersymmetric Extension of the Standard
Model (MSSM) will be introduced as well as its phenomenology, and how it can bring a solution
to the Dark Matter problem.

3.1 Introduction

Nous avons évoqué dans le chapitre précédent que la supersymétrie est une solution au pro-
bléme de la hiérarchie du Modéle Standard de la physique des particules, dont la cause est
I'instabilité de la masse du Higgs face aux corrections radiatives. Avant de présenter plus en
détail la supersymétrie nous allons d’abord discuter de I'importance des symétries d’une théo-
rie lorsque 'on calcule les corrections aux masses, en prenant ’exemple de 1’électrodynamique
quantique (QED). En particulier nous allons voir que l'existence de la symétrie chirale pour
les fermions et de jauge pour le photon assurent que, contrairement & la masse du Higgs, les
corrections d’ordres supérieures n’affectent pas ou peu leurs masses. Tout d’abord nous allons
évaluer par un calcul direct la self-énergie du photon donnée par le diagramme de boucle de la
Figure 3.1, La polarisation du vide est donnée par, pour une impulsion entrante nulle et dans la
jauge de Feynman,

e 9. d*k K me)yY Me
-0 = - i [ [T

B (—ie)z d*k 8kHEY — 4(kz2 — mg)gw,
B (2m)* (k2 —m2)?

= — % |:2B00(0;meame) - Ao(me)} (3.1)
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FIGURE 3.1 — Self-énergie du photon ou polarisation du vide QED

ou les fonctions By et Ag sont respectivement les fonctions & deux et un point de Passarino-
Veltman, définies dans le Chapitre 4.3. En remplagant par leurs expressions on obtient alors

S(0) = 0 (3.2)

On remarque alors que, a I'inverse du cas du boson de Higgs, la masse du photon ne regoit pas
de corrections radiatives, elle reste nulle & 'ordre d’une boucle et plus généralement & tous les
ordres de la théorie des perturbations. D’otl provient cette différence, quel est le mécanisme qui
permet d’assurer ce résultat 7 Nous avons vu dans le Chapitre 2.3 comment faire apparaitre le
photon grace a une symétrie conservée de la QED, la symétrie locale U(1)q, et cette conservation
se traduit sous la forme d’une identité sur les amplitudes de diffusion, appelée identité de Ward
qui s’écrit, avec k, I'impulsion du photon,

kS (k) =0 Yk (3.3)

Qu’en est-il de la masse de I'électron? La correction & la masse de I’électron & I'ordre d’une
boucle est représentée sur la Figure 3.2 et son expression est donnée par, a impulsion entrante

. % ;

FIGURE 3.2 — Self-énergie de l’électron

nulle et dans la jauge de Feynman,

4 _Z v . Z .
i (0) = / (;lw’; 9 <(—267“)k_me(—zery’/)> (3.4)

Cette fois-ci nous n’allons pas évaluer cette intégrale mais plutot, a l'aide de la symétrie chirale
et d’analyse dimensionnelle, prédire la forme du résultat. Si 'on exprime ’équation de Dirac
selon les composantes droite et gauche il apparait un courant, le courant axial, de la forme
JH = yHy51) et son équation de conservation donne

Ol = 2imeibysip (3.5)

On voit alors que si me = 0, le courant fermionique est conservé et le modéle est invariant sous les
transformations chirales 1), — exp(iv5¢)te, c’est alors une symétrie exacte et la correction (3.4)
est nulle, comme pour le cas du photon. Cependant, 1’électron est massif, bien que trés léger, la
symeétrie chirale n’est donc qu’approximative, mais comme 1’on sait que dans la limite m, — 0
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FIGURE 3.3 — Contribution scalaire & la self-énergie du Higgs

la correction est nulle, elle doit étre proportionnelle & m.. Maintenant comme le comportement
de l'intégrale est en

A . 1
5me~/ d kﬁwmelnA (3.6)

nous remarquons alors que la dépendance dans ’échelle de coupure est seulement logarithmique
et si on la repousse & la masse de Planck, la correction obtenue n’est que de 'ordre de 0.2 m,,
ce qui reste une correction faible.

L’existence d’une symétrie permet donc de controler I'effet des corrections radiatives, ce qui n’est
pas le cas pour le boson de Higgs, qui est une particule scalaire fondamentale, car il n’existe au-
cune symétrie le protégeant. C’est dans cette optique qu’intervient la supersymétrie (SUSY) pour
stabiliser le secteur scalaire. Dans le Chapitre 2.4 nous avons calculé la contribution fermionique
a la self-énergie du Higgs, cependant il existe d’autres contributions, en particulier celle ou la
particule interne échangée est une particule scalaire de masse mg, représentée par la Figure 3.3
dont I'expression (avec un couplage de la forme A |h|?|S|?) est donnée par,

s d*k i
—Zzho = —)\S/Wm (37)

ce qui donne pour la masse du Higgs

A A
2 s 2 2
dmyo = 1612 <A 2mg In <m5> + ) (3.8)

Ainsi mio est sensible aux masses les plus lourdes de la théorie auxquelles h° peut se coupler, si
mg est trés grand, ses effets sur le Modéle Standard ne se découplent pas, pour n’importe quelle
valeur de A.

On rappelle que I'expression de la correction a la masse pour la contribution fermionique s’écrit,
Y A
sm2 = —L [ —A2 +6m3In [ — ) + ... 3.9
hO 87T2 < f mf ( )
Par conséquent si I'on impose que les deux couplages As et Ay sont reliés par

As =A% (3.10)

et qu’il existe deux degrés de liberté bosoniques pour chaque degré de liberté fermionique, les
divergences quadratiques se compensent exactement. La supersymétrie, en reliant les bosons aux
fermions, permet a 1’équation (3.10) d’étre valide et de transmettre les propriétés de symétrie des
fermions aux bosons scalaires pour annuler les divergences, résolvant ainsi le puzzle du probléme
de la hiérarchie puisque le comportement de la self-énergie du Higgs est alors

omo ~ A\(m? — mfc) InA (3.11)

39



CHAPITRE 3. LA SUPERSYMETRIE

Si, de plus, |m?2 — mfc\ <1 TeV*, la correction est minime et stabilise 1’échelle électrofaible, lais-
sant a penser que les nouvelles particules supersymétriques ont une masse inférieure au TeV et
donc accessibles aux collisionneurs actuels. De plus, contrairement au Modéle Standard, ot le mé-
canisme de brisure est ajouté “a la main”, en supersymétrie il peut étre expliqué dynamiquement
grace aux corrections radiatives, nous y reviendrons dans la Section 3.6.

Historiquement les premiers travaux concernant la supersymétrie commencés au début des années
1970, n’avaient pas pour but de résoudre l'instabilité de 1’échelle électrofaible, mais de trouver
tous les types de symétries qui pouvaient exister, compatible avec 'invariance de Lorentz [32]. En
particulier le but était de trouver d’autres opérateurs vectoriels que I'opérateur des translations
P,, qui génere les déplacements dans l'espace-temps, et les opérateurs de moment angulaire
M,,, générant les rotations et les boosts de Lorentz. Il a été montré, a travers le théoréme de
Coleman-Mandula [34], que I'ajout d’autres opérateurs @, & ceux déja existants, P, et My,
sur-contraignaient les configurations possibles des processus de diffusion de particules et par
conséquent ces nouvelles charges étaient exclues. Cependant, 'argumentation utilisée n’exclut
que les charges se transformant comme des vecteurs sous ’action du groupe de Lorentz, pas celles
qui se comportent comme des spineurs sous l'action du groupe, c’est & dire celles se transformant
comme un champ fermionique. Si 'on dénote une telle charge @, ot I'indice a indique la nature
spinorielle, son action sur un état de spin J est

Qul) =17 % ) (3.12)

Un tel opérateur ne contribuera pas & un élément de matrice pour une diffusion élastique 2 — 2,
ol le spin de la particule reste le méme, et ainsi outrepasse 'argument précédent.

La supersymétrie posséde d’autres avantages, comme une meilleure unification des constantes de
couplage & haute énergie, puisqu’elle modifie le contenu en particules de la théorie, qui appor-
teront de nouvelles contributions aux équations d’évolution des couplages «;. Les coefficients b;
sont alors donnés par,

3
bl :2Ng+1—0NH

1
b2:2Ng—|—§NH—6
by = 2N, —9 (3.13)

La Figure 3.4 montre la différence entre le Modéle Standard et son extension supersymétrique
minimale, le Modeéle Standard Supersymétrique Minimal (MSSM). Elle posséde en plus un bon
candidat pour la matiére noire, sous 'hypothése de la conservation d’'une autre symétrie, la R-
parité. Le MSSM prédit une masse du Higgs légére (< 140 GeV), ce qui semble favorisé par les
mesures de précision électrofaibles (voir Figure 3.5). Pour finir la supersymétrie apparait comme
un ingrédient nécessaire dans les théories des supercordes, candidates & une description quantique
de la gravité et & son unification avec les autres forces.

3.2 Algébre supersymétrique

Nous allons présenter succinctement 1'algébre supersymétrique dans le cas ol le nombre de
charges supersymétrique N est égal & 1. Les charges sont des spineurs de Weyl & deux compo-
santes @, et son complexe conjugué Q, la transformation supersymétrique s’écrit schématique-
ment

*. Dans la limite supersymétrique la correction est nulle car m? = m? cependant par des considérations
phénoménologiques on sait que la supersymétrie doit étre brisée et donc m?2 # m;.

1. Les modéles avec N' > 1, donc avec plusieurs charges supersymétriques, posent des problémes d’ordre
phénoménologique. Elles entrainent l'existence de multiplets contenant a la fois les chiralités droite et gauche,

40



3.2. ALGEBRE SUPERSYMETRIQUE

60 ; . .

50 b oo, -~ A

40 | N
-1 - - =

30 -
20 | -7

10 §

2 4 6 8 10 12 14 16 18
Log,,(Q/1 GeV)

FIGURE 3.4 — Evolution des constantes de couplages en fonction de l’échelle d’énergie pour le MS
(tirets) et le MSSM (traits pleins).

August 2009
6 —

My = 157 GeV
.

'-' ". . Theory uncertainty
-

s — 0.02758=0.00035

> % === 0.02749+0.00012

[
L) . 2
s % *eeincl low Q2 data

. .

'S :

. [ M
\

% [

& 3 §
2 _
14 _
Preliminary |
0 :
30 100 300
m,, (GeV)

FIGURE 3.5 — Figure représentant l'intervalle de masse du Higgs autorisé par les mesures élec-
trofaibles [35]

41



CHAPITRE 3. LA SUPERSYMETRIE

Q |fermion) = |boson) Q |boson) = |fermion)

Pour outrepasser le théoréme de Coleman-Mandula, la supersymétrie doit aller au-dela des al-
gébres de Lie, basées sur des relations de commutations entre opérateurs, aux algébres de Lie
graduées qui impliquent en plus des relations d’anticommutation, puisque les opérateurs sont
maintenant des spineurs.
L’algébre supersymétrique satisfait les conditions suivantes,

{Qa, Qs} = 2(0u) o5 P*

{Qa: Qs} ={Qa, @3} =0 (3.14)

[Qa, Pu] =[Q%, P*] =0
L’opérateur P* = i0* est 'opérateur des translations, les o = (1,0;) avec o; les matrices de
Pauli. Les indices spinoriels «, ¢, 8, 3 prennent les valeurs 1 ou 2. Les représentations irréductibles
de cet algebre sont appelées les supermultiplets (ou superchamps), il contiennent chacun un boson
et un fermion. Que signifient physiquement les relations de commutation (3.14)? La premiére
signifie que ’action de deux transformations supersymétriques provoque une translation d’espace-
temps, la derniére conduit a

[P,P",Qn) = [PFP,,Qs] =0 (3.15)

c’est a dire que P? est un opérateur de Casimir, commutant avec les charges supersymétriques,
impliquant que pour chaque supermultiplet toutes ses composantes sont dégénérées en masse.
Nous verrons plus tard que cela n’est pas réalisé dans la nature et ainsi la supersymétrie n’est
pas une symétrie du vide et doit étre brisée.
La supersymeétrie posséde une symétrie interne globale U(1) (nous ne le démontrerons pas),
appelée R-symétrie, qui généralise en quelque sorte la symétrie chirale. Si, par quelque moyen
que ce soit, cette symétrie continue est brisée, alors il peut rester une symétrie discréte, la R-
parité, de type Zs. Au niveau phénoménologique cette symétrie a d’importantes conséquences
sur la durée de vie du proton, I'existence d’une particule de matiére noire, et les particules SUSY
n’interviendront que dans les boucles pour des processus impliquant des particules du Modéle
Standard dans les états initiaux et finals.

3.3 Superchamps

La supersymétrie regroupe sous une méme représentation, les superchamps, des particules de
spin entier et demi-entier (un boson et un fermion), tous les autres nombres quantiques étant
les mémes. A lintérieur d’'un méme superchamp il doit y avoir le méme nombre de degrés de
liberté bosoniques et fermioniques np = ny. Comme deux transformations supersymétriques
successives engendrent une translation dans ’espace-temps, on peut les voir comme la racine
carrée d'une dérivée, et par conséquent étendre le concept d’espace-temps avec des coordonnées
commutantes vectorielles & des coordonnées anticommutantes spinorielles, donnant un nouveau
type d’espace appelé superespace. Les variables spinorielles anticommutantes dénommées 6 et 0
sont des variables Grassmaniennes et obéissent aux identités suivantes

00+00=0, 02°=0=0% 0=20 (3.16)
Un superchamp peut s’écrire de maniére générale comme un développement sur 6 et 6
®(2,0,0) = f(x) + 0u() + () + 09m(x) + 60n(a)
+ 0" 0v, () + 000X (z) + 000p(z) + 0000d(x) (3.17)

impliquant qu’ils doivent se transformer de la méme fagon par les symétries de jauge, or nous savons que les
interactions de jauge distinguent la chiralité. De plus ces modéles impliquent 'existence de nouveaux bosons de
jauge, donc de nouvelles forces, ce qui est difficile a justifier vu que nous n’en avons observé que quatre jusqu’a
présent.
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ou f,m,n,d représentent des champs scalaires de spin 0; ¥, x, A et p des champs de spin % et
enfin un champ vectoriel de spin 1, v. Il n’est pas nécessaire de pousser le développement aux
ordres supérieurs en 6 et 6 du fait de ’équation (3.16). On peut distinguer deux représentations

de ces superchamps : les superchamps chiraux ou de matiére et les superchamps de jauge.

3.3.1 Superchamps chiraux

Un superchamp chiral ® contient deux champs scalaires réels formant ensemble un champ
scalaire complexe ¢ appelé sfermion et un champ fermionique de Weyl 1. Etant donné que le
champ scalaire a deux degrés de liberté, et le champ fermionique quatre lorsqu’il est off-shell,
c’est a dire lorsqu’il ne vérifie pas son équation du mouvement, pour équilibrer les degrés de
liberté on ajoute un champ auxiliaire F' scalaire et complexe non dynamique. Le superchamp
s’exprime comme

O(y,0) = ¢(y) + V201 (y) + 00 F (y)

Tous les composantes possédent la méme masse m. Les superchamps chiraux du MSSM sont
résumés dans le Tableau 3.1

(3.18)

Champs spin 0 spin 1/2 | SU(3)¢c, SU(2)y,
squarks, quarks | Q | (uy dp) | (ur dr) (3,2, %)
(x3 familles) u up u}f% (3,1, —%)
d | dy dp (3.1, 3)

sleptons, leptons | L (v er) (v er) (1,2, -1)
(x3 familles) e €5 e}{ (1,1, 1)

Higgs, higgsinos | Hy | (HY H)) (I:T? ﬁl_) (1, 2, %)

| (1 HY) | (A (1.2, +})

TABLE 3.1 — Supermultiplets Chiraux du Modéle Standard Supersymétrique Minimal. Les champs
de spin-0 sont des scalaires complexes, et les champs de spin-1/2 sont des fermions de Weyl
deux composantes.

3.3.2 Superchamps de jauge

Un supermultiplet de jauge contient dans le cas général un grand nombre de champs, cepen-
dant la fixation d’une jauge, la jauge de Wess-Zumino, permet d’éliminer un certain nombre de
degrés de liberté et ainsi il reste un fermion de Weyl (le jaugino) A%, un boson de jauge de masse
nulle A% et un champ scalaire auxiliaire réel D?, ajouté pour compléter le nombre de degrés de
liberté bosoniques off-shell manquants. Dans la jauge de Wess-Zumino il s’écrit,

V(2:0,0) = —00,0A" (z) + i000A(x) — i00OA(x) + %99§§D(:U) (3.19)

Les superchamps de jauge du MSSM sont collectés dans le Tableau 3.2

3.4 Le Modéle Standard Supersymétrique Minimal (MSSM)

3.4.1 Supersymétriser le Modéle Standard

Le MSSM est I'extension minimale du MS, il est basé sur le méme groupe de jauge, & savoir
SU@B)c @ SU(2)r, @ U(1)y [32, 33, 36, 37|. Pour supersymétriser le MS il faut introduire pour
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Noms spin 1/2 spin 1 | SU(3)¢, SU2)r, U(l)y
gluino, gluon g g (81,0)
winos, W bosons | W+ WO | w* wo (1,3,0)
bino, B boson B0 B (1,1,0)

TABLE 3.2 — Supermultiplets de jauge du Modéle Standard Supersymétrique Minimal.

chaque particule un superpartenaire dont le spin différe d’'une demi-unité et dont la masse sera
différente d’une quantité de U'ordre de ’échelle SUSY Mgrrgy, puisque nous avons vu qu’elle doit
étre brisée. Pour supersymeétriser le secteur de jauge on introduit trois superchamps de jauge : un
octet de couleur V¢, un triplet d’isospin faible V? et un singulet d’hypercharge VY. Ces super-
champs contiennent les champs de jauge du Modéle Standard de spin 1 et leurs superpartenaires
de spin 1/2 appelés jauginos (gluinos g, wino W, bino B ). Ensuite viennent les superchamps chi-
raux ou de matiére, dont les superpartenaires bosoniques des fermions (g, [) possédent un spin
0. Ils sont appelés les sfermions et sont composés de quarks scalaires, les squarks ¢, et de leptons
scalaires, les sleptons I. Tous les champs de matiére obéissent & la statistique de Fermi-Dirac,
ceux de chiralité gauche se transforment comme des doublets de SU(2)., et ceux de chiralité
droite comme des singulets. Comme les champs fermioniques massifs de Dirac, f,, ont quatre
degrés de libertés on-shell (deux états de spin pour la particule et deux pour son antiparticule,
compris dans les champs chiraux complexes f,1, et fyur), il y a deux champs scalaires complexes
fu I et fu R, qui, avec leurs complexes conjugués, représentent les antiparticules, égalant le nombre
de degrés de liberté. Les bosons de Higgs de spin 0 sont décrits avec leurs superpartenaires de
spin 1/2, les higgsinos, par des superchamps chiraux.

3.4.2 Lagrangien du MSSM

Dans cette section nous allons introduire les interactions et les termes de masse qui sont
encodés dans la densité lagrangienne Lyrsspr qui provient de la supersymétrisation exacte du
Modéle Standard. Elle s’écrit

Lyssm = Lsusy + Lsorr (3.20)
La partie Lgygy est le lagrangien supersymétrique et la partie Lsopr est la partie responsable de
la brisure, donc de la différence de masse entre les partenaires et leurs superpartenaires. Comme
la supersymétrie permet de réduire l'effet des divergences quadratiques du secteur scalaire du
MS, pour ne pas en réintroduire de nouvelles par l'introduction du terme de brisure, il n’est

composé que de termes renormalisables (les opérateurs ont une dimension au maximum égale a
quatre), d’ou le terme de brisure “douce”.

Lagrangien Supersymétrique

On peut décomposer le lagrangien supersymétrique,
Lsusy =Lj+Lm+Lu (3.21)

ou Lj, Lyr, L sont respectivement les parties de jauge pure, de matiére et de Higgs-Yukawa. La
partie de jauge s’écrit

1 L
L= / 020 (WOW* £ WiW' + WYWY) 4 hee (3.22)
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Les superchamps des courbures de jauge spinorielles W W' et WY sont construits & partir des
superchamps de jauge V¢, Vi VY et de la dérivée covariante supersymétrique
. 1- = i i
Wt = —ZDDe*QZV DoedV (3.23)

«

La contribution de matiére est donnée par

Ly = / d*0®" exp (1 VY'Y + gVIT! + g3VOT*) & (3.24)

avec ® = (Q,U,D, L, E)" .

Le terme L va représenter les interactions des supermultiplets chiraux qui vont étre encodées et
dérivées a partir d’'une quantité appelée le superpotentiel Whyrssar- L'introduction de cette quan-
tité permet de conserver I'invariance par les transformations supersymétriques des interactions
et la renormalisabilité, ce qui alors contraint fortement la forme des couplages. Le lagrangien
d’interaction est de la forme générale suivante,

Lo = W@ty +V(9,6") + hoc (325)

ol W" est un polyndéme dans les champs scalaires ¢, qui prend l’expression suivante une fois la
condition d’invariance par transformation supersymétrique imposée,

WH = MY 4 kg, (3.26)

ott M'* est une matrice symétrique et y * sont des matrices 3 x 3 représentant les généralisations
supersymétriques des couplages de Yukawa. Les termes W% et le potentiel scalaire V (¢, ¢*)
peuvent en fait étre obtenus a partir d’'une fonction génératrice, le superpotentiel WW. C’est une
fonction des champs ¢ mais pas de leurs complexes conjugués ¢* pour conserver 'invariance
supersymétrique. Il s’écrit

1 1
W = §Mz‘j¢i¢j + Eyzjkqﬁi(ﬁj(ﬁk (3.27)
alors o
g W . .
WY = V=WW =FF" 3.28
00;09¢; (3.28)
ol les termes “F” s’écrivent
ow 4 ow 4
E _ — - = — * F*Z = — = — v .2
357 W; 90, w (3.29)

La condition d’analyticité du superpotentiel a une conséquence phénoménologique importante
pour le MSSM et fait une importante prédiction, elle postule I'existence de deux doublets de Higgs
et non d’un seul comme dans le Modéle Standard. En effet, dans le MS, les masses aux quarks up
et down sont donnés par le champ de Higgs H d’hypercharge Y = 1 et son complexe conjugué
H*, or le fait que le superpotentiel n’autorise pas les termes en ¢* nécessite 'introduction d’un
autre doublet de Higgs d’hypercharge Y = —1 pour générer les masses par couplage de Yukawa
et permet d’éliminer les anomalies chirales. Finalement la contribution de Higgs-Yukawa peut
s’écrire

2
Lu =3, / a9 [Hfexp (VY + V') Hy + Warssad® (0) + Wi (0)] . (3.30)
p=1
avec H, = (Hy, Ha)T et

Whaissym = pHy - Hy — fﬁLi -H\E; — filj)Qi -H1D; — ngi - HyU,;
+ {W' Ly Hy+ NjjpLi - Q;Dy + NijpLi - LiEp + Mjy Ui - D - Dy} (3.31)
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ou nous avons utilisé la notation A - B = € A°B et A- B - C = €. A°B°C¢. Les champs
Hi,Hy,Q,L,U,D,E sont les superchamps chiraux, les couplages de Yukawa sans dimension
5 , Z-lj) , fg» sont des matrices 3 x 3 dans ’espace des saveurs et le terme u est la version super-
symétrique de la masse du boson de Higgs du Modéle Standard.
Cependant cette forme du superpotentiel pose des problémes d’ordre phénoménologique : les
trois premiers termes de la deuxiéme ligne violent le nombre leptonique L d’une unité (on peut
s’en convaincre en prenant L = +1 pour L;, L = —1 pour F;, B = 0 pour les autres) ainsi que
le nombre baryonique B (en prenant B = +1/3 pour Q;, B = —1/3 pour U;, D;). Or, jusqu’a
présent, aucun processus violant ces nombres quantiques n’ont été observés, en particulier la non-
observation de la désintégration du proton qui viole B et L d’une unité. Le calcul de la prédiction
du temps de vie du proton en prenant en compte ces termes peuvent lui donner un temps de vie
allant de quelques minutes & quelques heures, or la borne expérimentale actuelle donne 6.6 x 103°
ans [38]. Pour se débarrasser de ces termes dangereux, encore une fois I'ajout de la R-parité
(Rp)[39] permet de préserver la théorie. Les superchamps vectoriels et de Higgs sont pairs sous
cette symétrie {V, VE VYL - (Ve Vi VY'Y {Hy, Hy} — {Hy, Ha} et les superchamps chiraux
sont impairs {Q,U,D,L,E} — —{Q,U, D, L, E} lorsque I'on change § — —f. La conservation
de cette symétrie lors des interactions nécessite que les termes de la deuxiéme ligne disparaissent
de I'expression de Wisggas et peut s’exprimer a I'aide d’un nombre associé & chaque particule

R, = (—1)2(B- 1128 (3.32)

ou B, L, S sont respectivement les nombres baryoniques, leptoniques et de spin de la particule
considérée. Pour les particules du Modéle Standard R, = 1 et R, = —1 pour les particules
SUSY, ce nombre doit étre conservé multiplicativement lors des interactions. Il est ensuite tres
facile d’obtenir les interactions supersymétriques a trois pattes puisqu’il suffit de prendre celles
du Modéle Standard et d’y supersymétriser deux particules MS. Cela implique une importante
conséquence phénoménologique puisqu’alors les particules SUSY ne peuvent étre produites que
par paires & partir d’une particule du Modéle Standard. Or, elles sont supposées plus lourdes que
les particules connues (du MS), par conséquent aucune particule du MS ne peut se désintégrer en
particule SUSY, ainsi la particule supersymétrique la plus légére (LSP pour Lightest Supersym-
metric Particle) est stable car elle ne posséde aucune particule en laquelle elle peut se désintégrer.
Cela a d’importantes conséquences en cosmologie puisque la LSP peut alors étre un bon candidat
pour la matiére noire, et posséde les bonnes propriétés pour étre un WIMP. Enfin cela permet
aussi d’expliquer la faiblesse des contributions supersymétriques dans des processus impliquant
seulement des particules du MS puisqu’elles ne peuvent intervenir que dans les diagrammes de
boucles, dont la contribution est généralement faible. Il existe cependant des modéles ot la symé-
trie 7, n’est pas conservée puisqu’il semble qu’au niveau de I’évolution de I’Univers, une violation
du nombre baryonique est nécessaire pour expliquer I’asymétrie matiére-antimatiére[40].

Lagrangien de brisure douce

Pour décrire complétement le lagrangien du MSSM, nous devons maintenant expliciter les
termes de brisure pour introduire les différences de masses entre les partenaires et superparte-
naires. Nous allons écrire le lagrangien de brisure le plus général possible ne réintroduisant pas
de nouvelles divergences quadratiques et respectant 'invariance de jauge,

Lsorr = — % (MBB + MyW W + My + h.c)
— (aRAuQHQ — dpA OH, — EALH, + h.c)
~Q"MEQ — LIMPL — apM2, al, — ngcﬁ — EM2E
—mYy Hi Hy — mi;, H Hy — (bH1 Hy + h.c) (3.33)
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Brisure SUSY Medition MSSM
VAVAVAVAVAV o
(Secteur cache) (Secteur Visible)

delabrisure

FIGURE 3.6 — Schéma général de la brisure de la supersymétrie [37]

ou les Au,Ad,Ae,Mé,Mg,Mg,MC%,Mg sont des matrices 3 x 3 dans I'espace des saveurs et
My, M5, M3 représentent les termes de masse du bino, wino et gluino. Le lagrangien Lgo g7 brise
spontanément la supersymétrie car il n’est composé que de scalaires et de jauginos, mais pas
de leurs superpartenaires respectifs et schématiquement tous ces paramétres sont de 'ordre de
I’échelle de brisure Mgy gy, pour les termes dépendant linéairement des masses, et de 'ordre de
MgU gy pour les termes quadratiques. Ce lagrangien est phénoménologique puisqu’il a été écrit
sans spécifier le mécanisme de brisure de la supersymétrie et dépend d’un trés grand nombre de
nouveaux parameétres (~ 105). Si 'on explicite le mécanisme de brisure & une plus haute énergie,
certains termes vont disparaitre ou se simplifier grace aux nouvelles hypothéses apportées, et
la prise en compte de contraintes expérimentales peut aussi guider la forme du lagrangien. Par
exemple, une fois que les champs de Higgs acquiérent une vev aprés la symétrie de la brisure
électrofaible, les termes A,, Ag, A. vont mélanger les squarks et sleptons de saveurs différentes
au travers de courants neutres (FCNC pour Flavour Changing Neutral Currents). Or ce type de
courant a été fortement contraint expérimentalement et doit étre trés faible. Ainsi, une facon de
rendre ces termes petits est de supposer que les masses quadratiques des squarks et sleptons sont
insensibles a la saveur et par conséquent proportionnelles & la matrice identité,

Mg =mdl; M;=mil; MZ=m

S

I MZ=mil; MZ=mil (3.34)

Le dénominateur commun des mécanismes de brisure est que la supersymétrie est brisée a grande
échelle dans un secteur “caché” (c’est a dire inaccessible expérimentalement actuellement) et
qu’ensuite les effets sont transmis au secteur “visible” (de I'ordre de I’échelle électrofaible) via
des interactions insensibles a la saveur (voir Figure 3.6). Les principales interactions pouvant étre
médiatrices du secteur caché vers le secteur visible sont les interactions gravitationnelles (mo-
deles de SUperGRAwité[41]) ou de jauge (modéle Gauge Mediated Supersymmetry Breaking|36]).
Les modéles avec interaction gravitationnelle sont appelés modéles de supergravité, en effet la
gravitation semble assez facile & incorporer dans la supersymétrie puisque, en jetant un coup
d’ceil aux équations (3.14), nous avons remarqué que deux transformations supersymétriques
engendrent une translation dans I'espace-temps, ainsi si la supersymétrie est élevée au rang de
symeétrie locale, une certaine représentation de la gravité peut apparaitre. Le modéle le plus cou-
rant de ce type, dit mSUGRA (pour minimal SUperGRAvity), permet aussi de réduire le nombre
de paramétres a cing en supposant une certaine universalité des parameétres a I’échelle de Grande
Unification Mgy :

M3z = My = My =my 9
Mg = M} = MZ = M2 = MZ =mgl; m}, =mj;, =mq
Ay =AofY; Ag= AgfP; Ao = AofP
b= Bou (3.35)

De plus la condition de brisure électrofaible permet de déterminer |u| & 'échelle électrofaible,
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laissant seulement son signe indeterminé. Les paramétres libres du modéle mSUGRA sont alors

(mOaml/QaAOatﬁ’Sign(M)) (336)

my est le paramétre de masse commun a tous les sfermions, my /; le parameétre de masse commun
a tous les jauginos, les couplages trilinéaires sont unifiés & la valeur Ag et tg est le rapport
des vevs des champs de Higgs, voir section suivante. Cela permet d’explorer plus facilement la

phénoménologie de la supersymétrie puisque l'espace des parameétres libres est réduit & 5 au lieu
de 105.

3.5 Les différents secteurs du MSSM

3.5.1 Le secteur des Higgs et la brisure électrofaible dans le MSSM

Par rapport au Modéle Standard le MSSM posséde deux doublets de Higgs complexes Hy =
(HY,H;) d’hypercharge Y = —1, et Hy = (H, , H)) d’hypercharge Y = 1, par conséquent la
description du mécanisme de la brisure électrofaible est plus compliquée. Le potentiel scalaire
est donné par,

Vo= (|l +mi J(HY P + [Hy ) + (| +mi) (HY ) + [HS )
+b(HS Hy — HIHY) + h.c

1 _
+ 5ot + 92) (|Hz " + [Hy |* = [HY|” — [H{ [)?

1 * — %
+ SO\ HS HY + HYH (337)

Ces termes proviennent des termes F' et D des superchamps chiraux et de jauge ainsi que du terme
de brisure. En particulier le terme |u|?, provient d’un terme F et est invariant sous transformation
supersymétrique, et donc nécessairement positif, alors que les termes m%,l et m%b provenant de
LsorT peuvent étre positifs ou négatifs. En particulier I'un des deux doit ’étre pour que la
brisure électrofaible soit réalisée. Le potentiel scalaire complet inclut aussi les termes impliquant
les champs des squarks et sleptons que nous ignorons ici, puisqu’ils n’obtiennent pas de vev car
leur masse quadratique est trés élevée, positive et n’influe donc pas sur la brisure. Comme dans
le cas du Modéle Standard nous devons maintenant chercher le minimum de ce potentiel qui
brise la symétrie électrofaible SU(2)r ® U(1)y vers U(1)gas. Par une transformation de jauge
on peut toujours se ramener a ce que les vev des champs de Higgs prennent la forme suivante

- 5(2) - ()

Puisque il est possible d’avoir en méme temps H; = H2Jr = 0 au minimum, cela signifie que la
symeétrie électromagnétique ne sera pas brisée.
Le potentiel doit étre borné inférieurement non trivialement pour que la brisure se produise, cela
se traduit par
2 2 2
20 < 2|p|” + mi, +miy, (3.39)

et pour ne pas avoir de minimum stable HY = HY = 0 il faut avoir [37]
0% > (|l + miy, ) (Iul® + miz,) (3.40)

En suivant le méme principe que pour le cas du modéle standard mais en remplacant v? par
v? + v3 donnant vy = vcos 8 et vy = vsin 3 on obtient

1 1
My = 705(vf +23), M7 = (g7 +g3) (v} +v3) (3.41)
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et 'on définit a 'arbre le paramétre tan 8 comme le rapport dans le vide des deux doublets de
Higgs
tan 0 = e (3.42)
V1
Les conditions de minimisation du potentiel 9V/9OHY = dV/OH = 0 donnent *

2

m

|uf? +my, = bt — TZ% (3.43)
L

|ul™ +mp, =btg" + 5 €28 (3.44)

En utilisant le fait que 0 < § < 7/2 les relations précédentes vérifient (3.39), (3.40) et cela
permet de troquer les deux paramétres |u| et b par tan 3 en laissant la phase de p inconnue.
Développons les deux doublets Higgs H1 o autour de leur valeur dans le vide vy et vy

= () = ()

1= (%) = (e i02)

H3 (v2 + ¢ +1i3)/ V2

Ces doublets font intervenir 4 champs scalaires et 2 champs complexes, donc 8 degrés de liberté.
Une fois la symétrie électrofaible brisée, 3 deviennent les bosons de Nambu-Goldstone GV, G+
qui deviennent les modes longitudinaux des bosons vecteurs massifs Z° et W=, Les cinq degrés
de libertés restants forment 5 bosons de Higgs, contrairement & un seul dans le Modéle Standard.

Ils consistent en un pseudo-scalaire A%, deux Higgs chargés HT, et deux scalaires neutres h® et
HY et sont obtenus & partir de la diagonalisation des états propres de jauge,

()= (2, 2)(2)
A —s3 ¢ ©9
()= (50 2 ()
H* —Sg g ngi
H° Ca  Sa ¢(1]
( h? > - <_5a Ca) <¢(2]> (3.45)
qui définissent un angle de mélange «.

S / 2 _ 2 T : P
Les masses a ’arbre sont alors données par Mphys =UM o geU ou U est une notation générique
pour les matrices de mélange de (3.45) et s’écrivent

Mio = 2b/826
M%e = M3, + My

1
Mo g = 5 (Mio + MR F (M, + ME)? - 4M§M§0cgﬁ) (3.46)
Et 'angle a peut étre exprimé en fonction des masses et de (8

_ Mo+ M

= 71\@210 — M%t% (3.47)

t20¢

On remarque alors que I'on peut prendre comme parameétres indépendants pour décrire ce secteur
la valeur de la masse du pseudo-scalaire Mio et de tan 3, puisque My et My sont connues. Les

1 1-t2 2t

tg 8
Co = 2 t2[3 = 2

b ) —
VIttE I+t =15

/1+t%7

1. Quelques relations utiles : sin § = sg = cosf=cg =
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équations (3.46) ont d’importantes conséquences phénoménologiques

Mpy+ > My
Mpyo > Mgz
M g0 > Myo
My < Mylesg| (3.48)

La derniére relation est une importante prédiction du MSSM, elle donne une borne supérieure sur
la masse du boson de Higgs léger hY, alors que dans le MS c’est un paramétre libre. Cependant
elle induit une masse inférieure a celle du boson Z° alors que ce dernier a été découvert. Si I'on
s’arréte donc a 'arbre pour le calcul des masses le MSSM devrait donc en toute logique étre
exclu, mais si I'on tient compte des corrections d’ordre supérieur, la masse est fortement corrigée
et ce paradoxe est résolu.

3.5.2 Le secteur sfermionique

Comme il faut des partenaires séparés pour chaque chiralité des fermions massifs, il y a
environ 21 nouveaux champs par rapport au MS si les neutrinos sont considérés sans masse :
six pour les leptons chargés (€ér, fir, 7, €r, iR, TR), trois sneutrinos (%, 7y, r), six champs pour
les squarks up (@, ¢, tr, @R, Cr,tR) et six champs pour les squarks down (CZL, 51,br,dR, 3R, BR).
D’une fagon générale ces états sont états propres de jauge mais pas de masse (ou de propagation),
pour obtenir les états propres de masse il faut diagonaliser les matrices de masse respectives,
induisant un mélange entre les générations.

Secteur des squarks

La matrice de masse des squarks s’écrit

M2+ m2 + cop(T2 — Qgs2)M?2 mgMEE
M‘?LvR - < “r ' ; Liz e 2 2 o 2 2 (3.49)
mqM; Mg, +myg + capQqsy) Mz
avec
MER = A, = /s (3.50)
ME = Ag — ptg (3.51)

Les paramétres M2 et M qu proviennent du lagrangien de brisure douce, Tg’ et (), sont I'isospin
L

et la charge électrique du squark considéré. Les mélanges sont gouvernés par les termes non-
diagonaux M qLR et la masse des quarks, par conséquent le mélange dans les deux premiéres
générations va étre trés faible car m,, 4. — 0. L’invariance sous SU(2)r, implique My, = M i
tandis que My, # M n ol u et d est une notation générique pour les quarks up et down
respectivement.

Les états propres de masse sont obtenus & 1’aide d’une matrice de rotation unitaire

<f1;1> _ ( Co, 89(;) <C;7;L> (3.52)
0@ —sg, o, ) \Gr
Ug
de fagon & ce que
2 mg, 0 2 2

qu = ( 0 m%)’ mg < mg, (3.53)

tel que
ME . =UIME | U; (3.54)
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Le secteur des sleptons

Pour les sleptons chargés on obtient une matrice similaire

M2 — M%L +mZ + eap(T7 — Qesyy )M meMER (3.55)
°L.R meMéLR M2 +m?2 + 23645 )MZ
avec
MEE = A, — utg (3.56)

Concernant les neutrinos, nous les considérons de masse nulle, donc ils n’ont pas de superparte-
naires de chiralité droite, et leur charge @) est nulle, alors leur matrice de masse s’écrit
Mg, = M; +eppTiMy (3.57)

VL,R

Les états propres de masse sont obtenus, comme pour les squarks, par l'intermédiaire d’une

matrice de rotation unitaire,
er\ _ [ co: o er (3.58)
ég —S6; Co; e R '
N—————

Ue
de facon a ce que ,
Mg, = (Tr;él W?g > mZ, < mz, (3.59)
é
tel que 2
MZ, |, =UIMZ U: (3.60)

3.5.3 Le secteur des neutralinos charginos

Ce secteur posséde une phénoménologie trés intéressante puisque parmi ces particules se
trouve généralement la particule supersymétrique la plus légere, la LSP stable si la R-parité
est conservée et donc candidat & la matiére noire. Les neutralinos ! et Chargmos X sont des
combinaisons linéaires des jauginos électrofaibles B, W9, W= et des Higgsinos H? 1,20 HT 12 du fait
qu’ils possédent les mémes nombres quantiques.

La partie bilinéaire en ces champs décrivant ce secteur est

L= Ecin + ﬁmass (361)
avec Y ) _ ) ) )
Lein =W "(0,W)* + B6"(0,B) + ¥, 6" (0,¢m,) + Vi, (0,0 m,)] (3.62)
et
. Irama 1 D, Trama 1 -
Lonass = V2AH{(g2WT* + 501 B)dr, + HY(92W°T* + 501 B, + hoc)
. . 1 -~ - .
+ €[, Uy, + hed] + S[MUBB + MyW W + h.c] (3.63)

avec a=1,2,3,1,j=1,2, €;; le tenseur complétement anti-symétrique et 7¢ les générateurs de SU(2)

et -
_ ([ HY HJ)
YH, = <H1 > Y, = (ﬁg (3.64)

Les termes de (3.62) et (3.63) proviennent des interactions jauge-matiére et de brisure douce.
Quand les champs de Higgs HY et HY prennent leur valeur dans le vide, ces termes d’interaction

51



CHAPITRE 3. LA SUPERSYMETRIE

vont étre bilinéaires en les champs des Higgsinos 1/1}{? et des jauginos W et B, impliquant du
mélange di & la brisure de la symétrie électrofaible. En définissant

W:t = Wl + iW2,
T =T, +iTy, (3.65)

puis en combinant les champs chargés ensembles, puis les champs neutres, menant & deux secteurs,
respectivement celui des charginos et des neutralinos..

Charginos

Soit la notation suivante pour collecter les parties chirales

(=i
v (ﬁ; )

(3.66)

()

\ Hl
alors le lagrangien s’écrit

£ =il o' 0,07 + P 00,0t — W X 4 g XTI (3.67)

La matrice de masse 2 x 2 des charginos est définie par :

M. 25 M

x=( Vasp ") (3.68)

V2es My H

ou sg(cg) signifie sin 3(cos ). Les entrées non-diagonales proviennent de la brisure de SU(2)1, ®
U1)y.

Comme X # X7 sitan 8 # 1, deux matrices unitaires U et V sont nécessaires pour la diagona-
liser,

XR — U¢R
(3.69)
XL — V¢L
donnant alors, en notant X la matrice diagonalisée
- 1 me+ 0
X=UXv1i=[ X mo+ < m._x (3.70)
0 m)zél: X1 X2

Le spineur de Dirac correspondant aux charginos x§ (i= 1,2) est donné par

% = (ﬁL) (3.71)
XiR

1
inE 5= §[M22+,u2+2M§V.

+ ((M22 — u?)® +4Mjycig + 4M5V\/M22 + p2 + 2MM2526> ] (3.72)
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On donne une expression approchée de la masse des neutralinos dans la limite ou My << Mas, u,
dont le calcul est effectué dans I’Annexe C

M, (Ma + psag)

o+~ My —
mxli 2 M2 _ M22
M, (1] + eMasys)
S 3.73
M || + 12— 02 (3.73)
ou € = sign(u) = £1. Pour ces formules l'ordre des masses est arbitraire, il est respecté si
My < |pl.
Neutralinos

Le secteur des neutralinos est défini en collectant les champs neutres. En utilisant la notation :

—iB"
—iWy
Y= - (3.74)
Hy
H3
le lagrangien peut alors s’écrire
1 - - 1 - -
Lr = 5[1/1"70“%1/1" + T 51, — §[¢"TY¢" 4T Y] (3.75)
LZ’L?’I E?}”LGSS
La matrice 4 x 4 de masse des neutralinos s’écrit :
M1 0 —CgSWMZ SgSWMZ
0 M. My; — M
Y = 2wl mestwiz (3.76)
—cgswMz  cgew My 0 —u
SBSWMZ —SﬁCWMZ — U 0
Cette matrice est diagonalisée a ’aide d’une matrice unitaire N
X0 =Ny =Y = NYNT = diag(msg, msg,my, myo) (3.77)

ot les mgo (1=1..4) sont les masses physiques des neutralinos aprés diagonalisation. Le bloc 2 x 2
en haut a gauche est diagonal car les jauginos sont des spineurs de Majorana, le bloc 2 x 2 en
bas & droite est anti-diagonal pour refléter le caractére Dirac des Higgsinos chargés sous SU(2),
et les deux blocs antidiagonaux sont symétriques. Ils proviennent de la brisure de la symétrie
électrofaible et leur déterminant est nul car la combinaison neutre B avec W3 est sans masse.
Obtenir une expression simple des masses des neutralinos est ardu du fait qu’il faut inverser
une matrice 4 x 4. Cependant il existe une méthode analytique présentée dans [42]. Il est aussi
possible de donner une expression approchée des masses dans la limite My << |pu+ M;|,|u+ Ma|,
en diagonalisant la matrice par théorie des perturbations (voir Annexe C),

M7 s3,(Mi + psag)

mzo ~ My — ,UQ—M%
M2, (M.
myg >~ My — W(2 & +l;826)
2 M _M2

men ~ |l + MZ (1 — esop)(|pl + Micj, + Mpsy,)
s 2(|p] + My)(|pl + M)

MZ(1 + esop)(|ul — Micy, — Masy)
2| = M) (|l — M2)

o3

(3.78)

myo = |u| +
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Ici aussi 'ordre des masses est arbitraire, il est respecté si My < My < |u|. On remarque alors
que dans cette limite le deuxiéme neutralino et le premier chargino sont dégénérés.

Reconstruction des paramétres fondamentaux

D’un point de vue expérimental, si la supersymétrie est découverte, ce qui sera mesuré ne
sera pas directement les parameétres fondamentaux M7, Ma, u, My, Mz, sin 6, et tan 3, mais les
masses des neutralinos ou des charginos, qui sont des fonctions non-triviales de ces paramétres.
La question qui se pose alors est de quelles observables et de combien en avons nous besoin
pour remonter a ces paramétres? Les paramétres My, Mz, sin 6, ont été obtenus a partir du
secteur de jauge et mesurés avec une grande précision au LEP. Ensuite il est possible d’extraire
le paramétre tan 5 a partir du secteur de Higgs, il nous reste ainsi trois grandeurs & déterminer
(M, M, 1), par conséquent un ensemble de trois observables au minimum est nécessaire pour
les reconstruire. Habituellement cette reconstruction est effectuée a partir de la mesure de trois
masses du secteur des neutralinos/charginos parmi les six qui le compose. Ainsi pour déterminer
ce secteur nous avons la liberté d’en choisir trois parmi six. Le choix le plus usuel est de prendre
comme observables les deux masses de charginos My et My, et la masse du neutralino le plus

léger moo afin de contraindre les masses restantes. Cependant d’autres choix sont possibles,

X1

en particulier ce choix dépend de la hiérarchie sous-jacente des paramétres My, Mo, i1 par rapport
aux masses mesurées.

3.5.4 Le secteur de fixation de jauge

La quantification des théories de jauge, qui décrivent des champs vectoriels de spin 1, possede
certaines complications notamment dues au fait qu’il existe des degrés de liberté non-physiques.
A travers la procédure de fixation de jauge il est possible de se restreindre seulement aux degrés
de liberté physiques qui seuls seront quantifiés. Pour fixer la jauge dans le Modéle Standard, 't
Hooft a introduit les jauges R¢ dont le lagrangien s’écrit sous la forme,

1 1 1
Lop = ——FTF — —|F%]2 - —|F4]2 3.79
GF &y 25ZI | 25AI | (3.79)

avec
) e
Ft = OHW’” + 15W2—1)G+
F? =09,7"+ €75 0G0
S2w

= 9, A" (3.80)

Les fonctions F' sont quadratiques dans les champs et vont modifier la forme des propagateurs
des champs de jauge. Ces propagateurs dépendent alors de la jauge a travers les paramétres &;,
cette fixation est appelée linéaire. En effet dans une jauge générale il prennent la forme,

4% —t quqy ,
I R g,w+(§v—1)q2“7 V=A2ZW (3.81)
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Le choix des valeurs pour les &y est libre, et une fois choisis cela va représenter un choix de
jauge, par exemple on remarque que pour simplifier la forme des propagateurs on peut prendre
&y = 1, cest la jauge de Feynman. Ce choix de jauge est le plus pratique pour effectuer des
calculs mais fixe la valeur de &y, empéchant de vérifier 'indépendance des résultats par rapport
a la variable &y Laisser ces paramétres libres et vérifier I'invariance de jauge en les faisant varier
est un bon test pour la théorie, surtout pour des calculs aux ordres supérieurs. Cependant,
si 'on désire automatiser les calculs a l'aide d’un code informatique, laisser ces paramétres
libres pose un certain nombre de problémes, comme 'apparition de seuils non-physiques dans
la partie tensorielle < g,q, de (3.81), ainsi que la complication de I'automatisation des calculs
des intégrales de boucles. C’est pourquoi en pratique dans les programmes le choix pour les
paramétres de jauge est celui de Feynman £4 = £z = &y = 1, mais au prix de la perte de la
possibilité de vérifier I'invariance de jauge. Malgré tout, grace & un lagrangien de fixation de
jauge non-linéaire[43, 44, 45], il est possible de tester I'invariance de jauge en conservant le choix
de jauge de Feynman. Cette fixation fait apparaitre 8 nouveaux paramétres {@, B, B @, Ry P, €7}

F* = (0 — iedAy — igew B2, ) W' + z'gw%z (v+ 80"+ GH +iRG° +ipA°) GF
F? = 0,2" + &4 (v+en® +7%) G°
2cw
F4 = 9,A" (3.82)

La difficulté de traiter des propagateurs a structure tensorielle compliquée est remplacée par
I’ajout de nouvelles interactions dans la théorie pour garder le test d’invariance de jauge, et la
jauge linéaire usuelle est retrouvée en prenant tous les paramétres non-linéaires a zéro.

3.6 Phénoménologie mSUGRA

Les paramétres libres du modéle mSUGRA ou la brisure de la supersymétrie est transmise
par les interactions gravitationnelles, sont donnés par I’équation (3.36). Ce modéle ne dépend
que de 5 paramétres libres, il est donc plus facile d’explorer sa phénoménologie que le modéle
MSSM général avec plus de 100 paramétres et permet d’étre trés prédictif. En plus de supposer
une certaine unification des paramétres supersymétriques a l'échelle GUT, les constantes de
couplage sont aussi unifiées a cette valeur Mgy,

g1(Mgur) = 92(Mcur) = 93(Mcur) (3.83)
et il s’ensuit, en utilisant les équations du groupe de renormalisation du MSSM (3.13)

My My Mz  myp
—5 =5 T 5 = (3.84)
91 93 g3 9y

Cette relation est valide a n’importe quelle énergie, a des effets de boucles connus et de seuils
proches de Mgyr (moins bien connus) prés. Ici g est le couplage de jauge unifié & Mgyr. En
faisant évoluer les équations du groupe de renormalisation (RGE pour Running Group Equations)
jusqu’a l'échelle électrofaible et avec la relation précédente (3.84), on obtient des relations entre
les paramétres pour les jauginos & Mgw,

5

My~ o tan? 0, My ~ 0.5M; (3.85)
3

M = % sin2 Oy, My = 3% cos? 0, M7 (3.86)

valides a n’importe quelle échelle Q.
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Finalement on obtient la prédiction suivante pour la hiérarchie entres ces 3 paramétres & 1’échelle

MEW7
Ms:My: M ~6:2:1 (3.87)

I1 est donc raisonnable de supposer que le gluino est plus lourd que les neutralinos/charginos, et
cela implique que la masse de la particule la plus légére de ce secteur sera donnée approximati-
vement par la valeur de My ou |u| selon leur hiérarchie.

600 B
S500P NN\ N N
' T iz
% 400 -
9
§ 300 -
= My
200 - -
’ squarks
100 , B
" sleptons my

L L L 1 L 1 L 1 L 1 L 1 L 1
2 4 6 8 10 12 14 16 18
Log,,(Q/1 GeV)

FIGURE 3.7 — FEwvolution des masses des scalaires et des jauginos dans le MSSM avec des condi-
tions de supergravité imposée o Qo = 2.5 x 106 GeV. Le paramétre p? + mfgu devient négatif,

provoquant la brisure de la symétrie électrofaible [37].

Les RGE possédent 'avantage que, une fois les parameétres initiaux fixés & haute énergie, typique-
ment I’échelle de Planck Mp, en les faisant évoluer jusqu’a I’échelle électrofaible, il est possible
de prédire le spectre de masse de toutes les particules SUSY a n’importe quelle échelle, en par-
ticulier celle d’intérét pour les collisionneurs actuels, I’échelle électrofaible (voir Figure 3.7). On
remarque que lors de I’évolution vers les basses énergies, la masse de 'un des Higgs devient
négative, ce dont nous avons besoin pour provoquer la brisure de la symétrie électrofaible. Le
gain par rapport au Modéle Standard est alors important, au lieu d’'imposer ”a la main“ la bri-
sure, dans mSUGRA elle se produit "naturellement” par les corrections radiatives. Le spectre de
masse calculé & partir des RGE peut étre calculé a partir de différents codes SUSPECT, SOFTSUSY,
SPHENQ, ISAJET[46, 47, 48, 49, 50]

g dp g _%22_
= __by
HE <0 4rdpr _
0 40 X s b1
H —0 S
X3 X2
t
Masse
éL T2
hO )2(2) )21 l;e 177—
5 A

FIGURE 3.8 — Ezemple de spectre de masse pour les particules du MSSM non découvertes, avec
brisure de type mSUGRA et m3 < m%/z [37]

3.7 Une solution au probléme de la Matiére Noire

Le neutralino x! est un bon candidat & la matiére noire, dans les cas ot elle est la particule la
plus légére, ce qui est réalisé dans une bonne partie de ’espace des paramétres, et si une symétrie
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I'empéche de se désintégrer en une particule du Modéle Standard. Etant un des vecteurs propres
de la matrice 4 x 4 de masse, on peut le décomposer en une combinaison linéaire des Bino, Wino,
Higgsinos,

X:NHBO—{—NHWS—FngFI?—{—NlAl}NIS (388)

Les coefficients Ny; sont des éléments de la matrice IV, leur valeur dépend de la valeur numérique
des différents parametres libres My, M, p,t3, ce qui va donner la "nature” du neutralino. On
peut alors calculer la fraction jaugino f; définie comme,

fr=Nj+ Ny (3.89)

et la fraction higgsino fi
fo = Ni5+ Ny (3.90)

Selon la hiérarchie de My, Ms, i (en supposant de plus qu'ils sont trés supérieurs a Myz) on peut
distinguer deux grands types de compositions dans le scénario SUGRA, compositions qui vont
déterminer leur couplages aux autres particules :

— M << Ms, i : C’est le cas ol le neutralino est majoritairement bino, le superpartenaire du

boson B qui donne le photon aprés la brisure électrofaible, ce qui a pour conséquence que
les couplages du neutralino aux autres particules sont relativement faibles car il interagit
seulement sous U(1)y. Les particules auxquelles il se couple sont celles de plus grande
hypercharge, comme les sleptons/squarks droits, ainsi que de fagon non-négligeable aux
Higgs. Les canaux d’annihilation sont majoritairement yxy — ff. De plus I'annihilation en
paire de fermions chiraux sans masse ne se produit qu’a partir d’un état initial d’onde P,
car comme le neutralino est une particule de Majorana, la statistique de Fermi ne permet
a deux fermions identiques de résider dans un état S seulement si leurs spins sont anti-
paralléles, i.e J = 0 et C'P = —1 ce qui ne correspond pas & la transformation de C P d’une
paire ff sans masse. C’est pourquoi 'annihilation en paire ff massive est proportionnelle
a la masse my impliquant que le bino s’annihile principalement en paire de fermions massifs
comme bb, 7H7~ voir tf 'ils sont accessibles cinématiquement.
En terme de I'espace des parameétres mSUGRA cela correspond a des valeurs de mg et my o
petites, cette région est appelée région du bulk. Il existe une autre région, appelée région
de la coannihilation, avec 350 < mg < 900 GeV, ou la deuxiéme particule la plus légére est
le stau 7 et proche de la masse du neutralino. Dans ce cas le facteur de Boltzmann e~ 2™/T
devient non négligeable et des processus de coannihilation du type x7 — 7y et 77 — 77
sont importants. Une troisieme région de parameétres existe a grand ¢z ot le bino s’annihile
trés efficacement par lintermédiaire du pseudo-scalaire AY car étant de CP = —1 il ne
souffre pas du phénomeéne de suppression. Cette région porte le nom de Higgs funnel pour
des parametres 450 < mg < 1000 GeV et 250 < my /5 < 1100 GeV.

— 1 << My, M, : Le neutralino est principalement de type Higgsino et sa nature SU(2) le
couple fortement ici aussi aux bosons de jauge W= et Z a travers les couplages Y} x52" et
X?)ZfWi, ainsi qu’aux Higgs. Les canaux d’annihilation sont principalement en bosons de
jauge et Higgs, et du fait de la proximité en masse du Y9 et fd[ les canaux de coannihi-
lation sont relativement efficaces. Pour de grandes valeurs de tan § le higgsino peut aussi
s’annihiler en paire de quarks b si les squarks correspondants ne sont pas trop lourds. Un
neutralino de type higgsino est obtenu dans mSUGRA pour des grandes valeurs de my,
alors les paramétres p et M sont petits et quasiment égaux.

Dans d’autres scénarios de brisure de la supersymétrie ou plus simplement si I'on conserve le
lagrangien de brisure douce le plus général possible, d’autres compositions apparaissent :

— My << My, i : Dans ce cas le neutralino est purement wino et du au fait que ce soit un
triplet de SU(2)z, il se couple majoritairement aux bosons de jauge W= mais quasiment
pas au Z9. Si sa masse est au dessus du seuil de production du my > My alors il s’annihile
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CHAPITRE 3. LA SUPERSYMETRIE

principalement en paire de bosons de jauge (a travers le couplage X?)ZfWi). De plus il est
quasiment dégénéré avec le chargino )Zli car leurs masses sont proportionnelles & Ms. Cela
implique que leur coannihilation )Z?)Zf — X X est relativement importante pour le calcul
de la densité relique actuelle de Matiére Noire. Ce type de neutralino n’apparait pas dans
les modéles mSUGRA car ils prédisent toujours My < Ms < Mgz, mais plutot dans des
scénarios de type AMSB [51].

— Dans le cas le plus général I'annihilation des neutralinos par le pseudoscalaire A° n’est
plus spécifique a de grandes valeurs de tg et des canaux de coannihilation avec d’autres
particules que le stau 7 et le chargino )N(li sont possibles.
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tanpf=10, u>0

8O0~ ——
. 1
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i My =104 Gev

mg (GeV)
g

mg (GeV)

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
my; (GeV) my; (GeV)

1000 tanBl=35,u<O

tanB=50, p>0

mgp (GeV)

1000 100 1000

2000
my, (GeV) my, (GeV)

FIGURE 3.9 — Diagrammes (my3,mq) pour(a) tan3 = 10, > 0, (b) tan 3 = 10, < 0, (c)
tan 8 = 35,u < 0, et (d) tan3 = 50, > 0. Dans chaque cadre, les régions remplissant la
contrainte de WMAP 0.094 < Qxh2 < 0.129 sur la densité relique de matiére noire sont en bleu

foncé, la contrainte provenant de b — svy est en vert, et la zone exclue ow la LSP est chargée est
en marron. Plus de détails sont donnés dans [52]
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Chapitre 4

Divergences, Régularisation
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English Abstract Taking into account radiative corrections results into the emergence of dan-
gerous divergences in the theory making any prediction impossible. The goal of the regularisation
method is to identify and isolate the causes of these divergences which then will be safely removed
by the procedure of renormalisation, presented in the next chapter. To simplify the calculation of
the loop tensor integrals, of relevance if an efficient automatic numerical tool is to be developed,
a reduction method is applied to express these tensor integrals on a basis of scalar integrals. This
reduction relies on a key ingredient, the Gram determinant. However, in some special situations
this determinant vanishes. The reduction procedure fails in this case and a different approach is
to be carried out to tackle this issue. Such a situation appears in the calculation of dark matter
annihilation at low velocity. We will present the segmentation method of loop integrals that we
have used to circumvent this difficulty and how it enabled us to study analytically the limiting
behavior of such integrals close to the threshold. We will also try to fit some of the integrals with
a simple formula.

4.1 Introduction

Le formalisme de la théorie quantique des champs, étant la généralisation de la mécanique
quantique au cas d’un nombre infini de degrés de liberté avec la non-conservation du nombre de
particules, permet de décrire les processus d’annihilation, de création et de désintégration des
particules élémentaires a l’aide de régles bien définies. Les équations régissant ces processus sont
fortement non-linéaires et leur calcul exact est pratiquement impossible [53], tant et si bien que
pour effectuer des prédictions 'outil utilisé est la théorie des perturbations, qui permet d’avoir
une solution approchée. Elle consiste en un développement en série de puissance de 'amplitude de
probabilité selon un paramétre “petit”, la constante de couplage. Les termes dominants de cette
série (appelés termes de Born, d’arbre ou encore tree-level en anglais) peuvent étre représentés par
des diagrammes de Feynman sans boucles, dont on donne quelques exemples pour la QED dans
la Figure 4.1 Le calcul de ces diagrammes se fait par 'intermédiaire des régles de Feynman pour
évaluer 'amplitude et sont ensuite intégrés sur ’espace des phases pour obtenir la section efficace,
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a) b)

FIGURE 4.1 — Ezemples de processus QED a lordre le plus bas : a) Diffusion Compton, b)
Annihilation de paire particule-antiparticule.

oVt
P

e)

FIGURE 4.2 — Corrections radiatives a la diffusion Compton de type : a) Self-énergie, b) Verter,
¢) Fonction d’onde fermionique, d) Fonction d’onde photonique, e) Boite.

aucune intégration sur les impulsions n’est faite puisque la conservation de la quadri-impulsion
les définit de fagon unique. Tous ces diagrammes sont proportionnels & la constante de couplage
de la QED au carré e?. Lorsque I'on passe a l'ordre suivant de la théorie des perturbations la
situation se complique, avec en premier lieu la prise en compte de nouveau diagrammes, appelés
corrections radiatives, dont on montre les différents types dans la Figure 4.2. Ces diagrammes
sont proportionnels & la constante de couplage a la puissance quatre. Ils contiennent une boucle
fermée qui requiert une intégration sur la quadri-impulsion k& circulant dans la boucle,

d*k k™
~ / YZ i (4.1)
(2m)d km
et des divergences apparaitront pour des grandes valeurs de k si m 4+ 4 > n et pour des petites
valeurs si m +4 < n.
En particulier les diagrammes a), b), ¢) et d) ont un comportement divergent lorsque k — oo, c’est

ce que 'on appelle communément une divergence ultra-violette. Le diagramme e) ne posséde pas
de comportement divergent & grand k mais plutdt lorsque k — 0, appelé divergence infra-rouge,

62



4.2. REGULARISATION DES INTEGRALES DE BOUCLES

que posséde aussi le diagramme b). La procédure de renormalisation va servir a éliminer ces deux
types de divergences pour pouvoir effectuer des prédictions, sinon cela résulte en 'apparition de
termes infinis, rendant I'utilisation de la théorie des perturbations vide de sens. Elle se déroule en
trois grandes étapes : la premiére, la régularisation, consiste a rendre convergente une intégrale de
boucle en introduisant des paramétres supplémentaires pour identifier les causes des divergences.
Puis, par un passage a la limite, nous éliminons ces paramétres surnuméraires. La deuxiéme étape,
la réduction, permet de réduire les intégrales de boucle sur une base d’intégrale “maitres” dont
I’expression analytique est connue. Enfin, la troisiéme, la renormalisation & proprement parler,
va permettre d’éliminer les divergences identifiées dans la premiére étape par des méthodes de
soustraction.

Il apparait que cette procédure, qui peut sembler ad hoc, fonctionne de fagon remarquable et
précise puisque, par exemple, il en a résulté 1’électrodynamique quantique, une des théories
physiques les plus précises jamais créée : le moment anormal de 1’électron est prédit correctement
par la théorie avec au moins douze chiffres significatifs par rapport a la mesure expérimentale.
Cette réussite a donc élevé le critére de renormalisabilité d’une théorie comme 'un des principes
de base pour construire une théorie des particules élémentaires, comme le Modéle Standard. La
raison pour laquelle des divergences apparaissent lorsque 'on passe aux ordres supérieurs, en
est que lors de l'intégration sur toutes les valeurs possibles de k, la physique a basse énergie
devient sensible aux effets des états de trés haute énergie qui sont inconnus, c¢’est un probléme
typique de mélange des échelles. Le but de la renormalisation est alors de simuler les effets de
cette physique & haute énergie sous la forme de nouvelles interactions locales, les contres-termes.
Elle sera présentée en détail dans le chapitre suivant.

4.2 Reégularisation des intégrales de boucles

4.2.1 Analyse générale des divergences ultraviolettes

Soit un diagramme de boucle arbitraire avec N pattes externes (voir Figure 4.3). L’expression

FIGURE 4.3 — Structure de I'intégrale scalaire & N points
générale de ce diagramme de boucle & IV pattes fait intervenir des intégrales tensorielles s’écrivant
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de maniére générale,

d*k kyk, -k
T[jy...p:/ b P M<N (4.2)
~— (27’1’) DODl"‘DN—l
M
avec
i
Dozkz—m%iig, Di:(k—i—si)Q—m?iia, si:ij, i=1---N-1 (4.3)
j=1

Les D; sont les propagateurs des particules internes composés de I'impulsion tournante k, des
impulsions externes p; et des masses internes m;. Le terme +ic est une partie imaginaire infinitési-
male nécessaire pour réguler les singularités de I'intégrand, le choix spécifique du signe “4” permet
d’assurer la causalité. Par la suite nous omettrons d’indiquer ce terme, il sera sous-entendu dans
chaque propagateur. L’intégrale tensorielle est invariante par permutation des propagateurs D;
avec i # 0 et totalement symétrique par rapport aux indices de Lorentz {u,v - - p}. L’intégrale
TN sera notée par la N-iéme de I'alphabet, c’est a dire 7' = A, T? = B... et 'intégrale scalaire
avec un indice 0, par exemple

&kl 'k 1
AO(mO):/Wﬁmg’ BO(pl’mo’ml):/(%ﬂ P —md) (ke —mzy 4

Le degré de divergence de 'expression (4.3) dans 'UV se calcule simplement par comptage de
puissance de k,

D > 0 — diverge
D=4+ M —2N — { D=0 — diverge logarithmiquement (4.5)
D < 0 — converge

Nous allons maintenant montrer comment il est possible d’isoler et d’identifier les sources des
divergences grace a une procédure de régularisation.

4.2.2 Procédures de régularisation

Il existe différentes procédures de régularisation pour isoler les divergences avant de les sup-
primer par renormalisation :

Régularisation de Pauli-Villars

Nous nous sommes déja servi de cette procédure de régularisation dans les deux chapitres
précédents pour calculer les corrections quantiques a la masse du Higgs. Elle consiste a introduire
un paramétre arbitraire de coupure A, appelé parameétre de cut-off, qui sert & couper 'intégration
sur le moment interne de la boucle [54]. Sa signification physique est claire : par cette coupure on
se débarrasse de tous les états de haute énergie, c’est & dire ceux dont k£ > A. Cette régularisation
peut aussi s’écrire en transformant les propagateurs

1 1 1
2 —m2 k2 —m2 k2 _ A2 (4.6)
Ensuite comme les résultats ne doivent pas dépendre de cette coupure, a la fin du calcul la
limite A — oo est prise. Malgré sa signification physique claire ce type de régularisation souffre
de plusieurs défauts d’ordre théorique, 'introduction du cut-off brise l'invariance de jauge et

de Lorentz et en pratique il lui est préféré d’autres types de régularisation respectant ces deux

symétries.
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Régularisation dimensionnelle

Ce type de régularisation a été introduit par 't Hooft et Veltman [55] pour renormaliser le
Modéle Standard et préserve les symétries de la théorie. Elle consiste a étendre analytiquement
la mesure d’intégration de 4 & n dimensions, ainsi que toutes les impulsions entrant dans la
boucle. En effet le caractére divergent des intégrales de type (4.3) n’apparait que lorsque leur
dimension vaut exactement quatre. Une fois le calcul de I'intégrale en n-dimensions effectué, la
limite n = 4 — € avec € — 0 est prise, ainsi les divergences apparaissent comme des poles en 1/¢.
Les résultats dépendent ensuite d’un paramétre ayant la dimension d’une masse, introduit de
fagon & garder sans dimension les constantes de couplage, appelé échelle de renormalisation .
Pour le Modéle Standard, la régularisation dimensionnelle pose des problémes lors du traitement
de la matrice 75 qui est intrinséquement un objet a 4 dimensions et par conséquent ne peut pas
étre prolongé analytiquement en n dimensions. Les calculs impliquant la matrice 5 nécessitent
une procédure ou prescription supplémentaire [56, 57, 58, 59, 60]. De plus ce type de régularisation
brise la supersymétrie car le nombre de degrés de libertés des fermions n’est plus égal & celui des
bosons.

Réduction Dimensionnelle

La réduction dimensionnelle [61] procéde de la méme fagon que la régularisation dimen-
sionnelle a la différence prés que les champs bosoniques et fermioniques sont maintenus a 4
dimensions. Lors du passage a n dimensions l'algébre de Dirac est modifiée, les régles de calcul
en 4 et n dimensions sont résumées dans le tableau suivant :

Dimension = 4 Dimension = n
Tr[1] 4 n
G g"” 4 n
ey %kQ'guu %ngW
FURRRT | K097 + 979" + ¢"79") | ik (997 + 99" + 9" g"")
Yy 4 n
Y Yy 27" —(n—2)y"
Slae el 49" 4977 — (4 = n)y"y?
VYAV Y —297yPy¥ =2979P9" + (4 = n)y" P

Les identités impliquant des matrices v, définies dans ’Annexe A, sont obtenues & partir de
I’anticommutateur de deux matrices de Dirac :

"7 =" A =20 (4.7)
Concernant la matrice v5 la prescription est qu’elle anticommute avec les matrices de Dirac
V151 =0 (4.8)

La mesure d’intégration doit étre étendue elle aussi,

&k . [ dk
[ = | )

Le role du parameétre p sera d’assurer que les quantités calculées par la procédure dimensionnelle
gardent leur dimension physique lorsque la limite n — 4 est prise.
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4.2.3 Techniques de réduction

Le calcul des intégrales (4.2.1) semble assez ardu & premiére vue. Pour les calculer une autre
technique de calcul est nécessaire. Celle-ci permet de représenter les produits des propagateurs
sous la forme des intégrales paramétriques de Feynman, dont on donne quelques propriétés dans
I’Annexe D. En effet on peut toujours écrire

1 ! 1
E_/Od [A:U+B1—:n /dx/ o +y = VR (4.10)

ou x et y sont appelés les parameétres de Feynman.
Ainsi le produit de N propagateurs de (4.3) peut se réécrire tel que [60]

1 1

DoD; - Dy =T) /[dm]<

(4.11)

N
Dyzy + Daxg+--- Do(1 — Z%))

avec
N—2
1 1—21 1= @
/[dw] :/ dwl/ dacg---/ =t dry_g. (4.12)
0 0 0
N-1
Le nouveau dénominateur Dixy + Dsoxo + --- Dy <1 — Z CEZ> peut se réécrire sous la forme
i=1
pour N <4

N-—1
- E Sy,
=1

9 9 Si=p1+tp2+- D
k* — 2k - P(x;) — M*(x;)avec N1 (4.13)

Mz(.%'l) = mg + ZLixi,

Et on peut finalement réécrire (4.3) sous la forme,

T/i\,f,...p:F(N)/[dm] ’jv'li\fy...p, avec
——

N —
M M
iﬁvy...p:/ d"k kuky -k, L MeN (4.14)
&b (2m)™ (k2 — 2k - P(x;) — M2(x;))

M
oun I'(N) = (N -1)!
Si 'on effectue le changement de variable
k — P(mz) — @,
k? — 2k - P(x;) — M?(x;) — 02 — (M?> + PH =0 - A

N-1 N-1
A= Z QijTixj + ZLM@' +mg,

avec wi=1 =1 (4.15)

Qij = si.85 = Z me Pn

m=1n=1
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On est finalement amené a évaluer des intégrales du type

avw 6,6, -4
Ijj,,...p:/ — b (4.16)
—— (2m)™ [2 — A
Ces intégrales peuvent étre calculées a partir d’une rotation de Wick de I'espace de Minkowski

vers l'espace Euclidien en substituant [29]

O =i, =13 (4.17)

et de la fonction I' d’Euler présentée dans I’Annexe E. De plus il est possible de montrer, par un
changement de variable £ = —/ dans les intégrales (4.2.3), que celles avec un produit d’un nombre
impair d’impulsions ¢ au numérateur sont nulles. Il est & noter que si elles sont convergentes,
nous pouvons poser n = 4 dés le début.

Pour les calculs pratiques on liste ci-dessous les intégrales a n-dimensions dans l’espace de Min-
kowski les plus utiles,

1 - [ g - G D) (1) o

2m)n (12 — AN T (4r)n/2 T(N)  \A
- [ o sz)N - (?4173;/21 5 (Nr@v%)_ ! <%>N (4.19)
T = / (ifn (effggw N ((_42;/21 i%r (NFZJ\%_ . %)N_%_ (4.20)
- [ G ()
o= [ i =2 (2)
X % (¢"g" + 9" 9" + ¢"7g"") (4.22)

Si 'intégrale diverge, le comportement pour n — 4 peut étre obtenu en développant

(%)2%:@@ [— (2—%)1114 :1—(2—g>lnA+--- (4.23)

et en utilisant les formules de I’Annexe E pour le développement de I'(x) proche de ses poles.
D’une facon pratique la combinaison suivante apparait souvent dans les calculs

R (o (@)o)

avec e =4 —n et 5
Cyy = g —YE + 1I1(47T) (425)

ou g est la constante d’Euler-Mascheroni, v &~ 0.5772. Il est de plus & noter que A peut étre
négatif et ainsi les intégrales peuvent développer des parties imaginaires.

On voit donc qu’avec la méthode de la réduction dimensionnelle les divergences apparaissent
sous la forme de podles en 1/e lorsque 'on fait tendre n — 4. Bien évidemment ces termes
ne doivent pas apparaitre dans les prédictions physiques et un schéma de soustraction, ou de
renormalisation, doit étre défini pour les éliminer. Pour 'instant seule I'intégration sur I'impulsion
interne de la boucle a été effectuée, pour obtenir le résultat final de (4.3) il reste a intégrer sur
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les paramétres de Feynman (4.14). Etant donné que la structure tensorielle du numérateur peut
étre assez compliquée, impliquant des impulsions externes et des matrices de Dirac v,, grace a
une technique de réduction, par exemple celle de Passarino-Veltman, il est possible de ramener
ces intégrales tensorielles & un rang inférieur & M et & un nombre de propagateurs plus petit que

N.

4.3 Reéduction des intégrales

4.3.1 Réduction a la Passarino-Veltman

Avant de présenter la procédure de renormalisation, nous allons présenter une technique
de calcul pour faciliter le calcul des intégrales de boucle. Il existe plusieurs techniques de ce
type [59, 60, 62], nous présenterons seulement la plus connue, celle de Passarino-Veltman [63,
64|, utilisée dans le programme LoopTools|65]. Cette technique permet de réduire les intégrales
tensorielles & une somme d’intégrales dont I’expression analytique est connue. Elle utilise le fait
que, du a la covariance de Lorentz, les seuls quadrivecteurs a notre disposition pour construire
des invariants sont le tenseur métrique g,, et les quadri-impulsions p,. Par conséquent il est
possible de décomposer les intégrales tensorielles sur ces objets avec des coefficients totalement

symétriques T On introduit de maniére formelle un moment artificiel sy afin d’écrire les

i1ip
termes contenant g,,, de maniére compacte

N-—1
N E N
%y...p(slf" sy SN—1,10, 7mN—1) = ﬂl---ipsilll“'siPP (426)

i1--ip=0

Pour obtenir les bons termes contenant g, , il faut éliminer tous les facteurs comprenant un
nombre impair de sy et remplacer le produit d’un nombre pair de sy par le tenseur complétement
symétrique construit a partir de g,,,,

SopSov — Guv (427)

S0uS0vS0pS00 — Juv9po + JupGve + Guo9vp (4-28)

Alors la décomposition de Lorentz des intégrales tensorielles de plus bas ordre s’écrit

BM = SluBla (429)
BMV = guuBOO + SlusluBlla (430)
Cp = $1,C1 + 52, Ca, (4.31)
2
Cuv = guwCoo + Z 5iusjuCij, (4.32)
ij=1
2 2
C,uz/p = Z(Quusip + GupSip + g,upSiV)COOi + Z Si,usjuskpcijk (4'33)
i=1 i,J,k=1

Les coefficients apparaissant dans ces équations sont déterminées par itération jusqu’a ce que I'on
obtienne seulement des intégrales scalaires ’]BN . Pour ce faire on contracte l'intégrale tensorielle
(4.3) avec les moment externes s et le tenseur g,,, a l'aide de la relation du produit scalaire
entre £ et sy, exprimé & ’aide des dénominateurs Dy,

(Dy, — Do + L) (4.34)

N |

l- s, =
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les termes Dy et Dy du numérateur vont permettre d’éliminer (ou pinch) les propagateurs cor-
respondants du dénominateur, donnant

N 1 dne -1, ly-- 1, ly- 1,
TN o= . _ Y I
2) @m)" Do+ Dy_1Dgy1---Dn_1 Di---Dn_1 Dy---Dn_q

[TN YVE) + 7NN 0) + Ly TD, (4.35)

pyeep pyeep pyeep

Les termes entre parenthéses k et 0 dans les intégrales tensorielles indiquent que les propagateurs
Dy, et Dy ont été enlevés. Comme le terme ’]L]X ;( ) contient un moment externe dans son premier
propagateur, un changement de variable ¢/ — £ + s; est nécessaire pour se ramener & la forme
(4.3). Tous les membres de droite de 'équation (4.35) sont des intégrales tensorielles avec un
indice de Lorentz de moins que le membre de gauche.

La contraction avec g, se fait a ’aide de la relation
f,ugugwj = €2 = DO + mg (436)
entrainant

dne 0 . f 0, ¢
,]-N vp _ 12 a 2 M g
p-ovpd / (QW)n{Dl ---Dn_1 T mOD0 . DN—l}

= [T,jY 1 (0) +mgT,)Y ,0] (4.37)

Pour obtenir les coefficients T/ . il suffit de remplacer dans (4.35) et (4.37) I'expression de

i1-ip
N siw-p DAr (4.26). On obtient alors un systéme de N — 1 équations linéaires (car par conservation
de la quadri-impulsion on a p; +p2+---py—1 = —pn) & inverser pour déterminer les coefficients

TZJIV .ip Techerchés, qui seront proportionnels a I'inverse de la matrice de Gram G

2
81 8182 -+ 81 SN_1
2
S9 81 82 cer S9-SN_1
G = . . . (4.38)
2
SN*S1 SN :S2 --- SN

Si det(G) # 0 alors la matrice est inversible et les coefficients peuvent étre connus. Cependant
il est possible que ce déterminant s’annule, en particulier lorsque N > 5 ou de fagon générale
quand les moments externes ne sont pas indépendants (par exemple colinéaires). Si le détermi-
nant de Gram tend vers zéro, les facteurs de forme TZJIV ip vont prendre des valeurs élevées avec
de possibles annulations entre eux, résultant en d’importantes instabilités numériques. Dans ce
cas d’autres méthodes doivent étre utilisées |62, 66, 67, 68, 69, 70]. L’algorithme de Passarino-
Veltman se base sur I'observation que dans les intégrales & une boucle le produit scalaire entre
I'impulsion interne et un moment externe peut étre exprimé comme une combinaison de propa-
gateurs inverses (4.34). Cette propriété n’est cependant plus valables aux ordres supérieurs.
Nous avons vu dans cette section comment il est possible de ramener une intégrale tensorielle &
une somme d’intégrales scalaires 73" [63, 71, 72|. Leur forme générale s’écrit

N _ (42 A d"k 1
O R e ey e poy e o B

Nous allons maintenant donner la forme de la fonction scalaire & trois points Cy, les fonctions

a un et deux points sont présentées dans I’Annexe F, les suivantes peuvent étre trouvées dans
[63, 64, 69, 71, 72].
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4.3.2 Intégrale scalaire a trois points

La fonction Cj apparait lorsque I'on calcule les corrections & une boucle des vertex qui est
donnée diagrammatiquement par,

La fonction Cf s’exprime comme
0

d"k 1
_ 2 4—n
CO(Plap2,m1,m2,m3) — 1(477-) M / (271')” (k,z _ m%)((k‘ + 51)2 o m%)((k + 82)2 _ m%)

(4.40)
Il est possible de la réexprimer sous la forme Co(p?, p3, Q% m1, ma, m3) avec Q* = (p1 + p2)>.
Les cas particuliers ayant un intérét pour la suite sont les fonctions Cy(0,0,Q%;m,m,m) et
Co(0,0,Q%;0,m,0). Le calcul complet de ces fonctions est présenté dans I’Annexe F. Nous don-
nons ci-dessous seulement le résultat final dans la limite Q2 >> m?2.
1. Cas mi=mog=m3z=m:
La fonction Cj prend la forme,

d"k 1
Co(0,0, Q% :—'424—”/
0( ) 7Q am7m7m) Z( 7T) 2 (271')” (]{?Q—mQ)((k—i-Sl)Q—m2)((1€+82)2—m2)
(4.41)
et est égale &, dans la limite Q? >> m?,
1 |1 m2 2 ) m?2
Co(0,0,Q%* m,m,m) = @ [5 In? <@> 5 +imln <@>] (4.42)

2. Cas avec une seule masse interne :

On va étudier le cas ot m; = mg = 0; mo = m, alors dans ce cas l'intégrale est donnée par,

dans la limite ott Q% >> m?
1 [1 m? 2
Co=— |-In’ | = | — — 4.43
o= 2 (%) - 5] (443

Dans ces deux cas on remarque 'apparition de doubles logarithmes qui peuvent étre trés impor-
tants lorsque I'impulsion entrant dans la boucle est trés grande par rapport aux masses internes.
Ce type de situation peut se rencontrer lors de la désintégration d’une particule trés lourde, ou
en tant que correction de vertex dans un processus de diffusion, lorsque I’énergie dans le centre
de masse /s est bien plus grande que toutes les échelles de masses mises en jeu.

4.3.3 Exemple de réduction de la fonction vectorielle & trois points

Dans cet exemple on va considérer la fonction a trois points vectorielle C), et pour simplifier
nous allons poser toutes les masses internes (mais pas les impulsions externes) a zéro. La fonction
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s’écrit oy o
_ s 2 _
CM = —2(471') / (27‘()" 62(6 n 81)2(€ n 82)2 = Slucl + S2u02 (444)
avec s1 = p; et s3 = p1 + pa.
En contractant des deux cotés avec s‘f cela donne
d™e l-s
. 2 1 .2
~iam) / (2m)" (0 + 51)2(0 + 52)% SICLF 519202 @)
En utilisant )
ls1=15 ((€+s1)? — 02 —s}) (4.46)
on peut écrire
1
S%Cl + 81 - SQCQ = 5 (Bo(sl) — Bo(O) — S%Co) (4.47)
avec
d™¢ 1
B = —i(4m)? = By(s2;0,0 4.48
0(81) Z( 7T) /(271')” £2(£+52)2 0(327 ) ) ( )
Bo(0) = —i(47r)2/ drt ! — Bo(ps:0,0) (4.49)
0% = @) (C+50)2(0+s9)2 OB '
d™¢ 1
. 2 .
Co = — i(4r) /<2W>WQ<HSI)2(H82)2 — Co(s1,59:0,0,0) (4.50)

ou l'on a effectué le changement de variable ¢ + s; — ¢ dans By(0).

En contractant avec sg on obtient

dn€ @ - S59 2
= . 4.51
/ @n) B+ s )2 (( 1 sp)? 22 T8 24 (4.51)
avec )
Csy=5((C+ s9)? — 2 — 53) (4.52)
cela donne )
S%CQ + 51 - 5201 = 5 (BO(S2) — Bo(O) — S%Cg) (4.53)
avec e .
B = = B :0,0 4.54
0(32) / (27’(’)” 62(6 + 81)2 0(817 ) ) ( )
Alors la matrice de Gram s’écrit
2 .
G = ( T 232> (4.55)
S1 89 S5
et son inverse ) )
Gl = %2 ToL 2 4.56
5252 — (s1 - 82)2 <—31 sy 8% (4.56)

Le systéme d’équations linéaires s’écrit sous forme matricielle

st s1es\[(C1\ _ (5 (Bo(s1) — Bo(0) — 5iCo)
(Sl - 89 5% > <CQ> N <% (BO(SQ) — By(0) — S%CO)> (4.57)
alors on obtient finalement,
Cl o1 % (Bo(sl) — Bo(O) — S%Co)
<C2> =¢ (% (Bo(s2) — Bo(0) — s3C)) ) (4.58)

On remarque donc que 'on a décomposé l'intégrale vectorielle a 3 points C), sur les fonctions
scalaires & deux et trois points, dont on connait déja la structure analytique, rendant son calcul
plus aisé. Cette procédure est trés générale et peut étre utilisée pour calculer tout type d’intégrales
vectorielles B, C,,,, D;yp... & condition que le déterminant de Gram ne s’annule pas.
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4.4 Reégularisation des divergences infra-rouges

Pour I'instant nous n’avons discuté que de 'origine des divergences UV et comment s’en pré-
munir, mais d’autres divergences peuvent apparaitre, les divergences infrarouges. Elle surgissent
lorsque les éléments de la matrice S sont calculés avec des particules externes sur couche de
masse, c’est a dire que le carré de leur quadri-impulsion est égale a leur masse au carré, et que les
bosons virtuels échangés sont sans masse, le photon pour la QED et le gluon pour la QCD. Ces
divergences peuvent étre de deux types : celles ot le boson échangé est "mou” (divergence soft
en anglais), c’est a dire que 'impulsion échangée est trés faible, et celle ot les quadri-impulsions
sont colinéaires (divergences colinéaires). Contrairement aux divergences UV, les divergences IR
ont un sens physique clair : une particule sans masse avec une impulsion trés petite ne peut étre
détectée, et si son impulsion est paralléle a une autre particule elles ne peuvent étre distinguées.
Les divergences infrarouges peuvent étre régulées par I'introduction d’une petite masse artificielle
A pour le boson sans masse et seront tracées par 'apparition de logarithmes de A dans le calcul
des sections efficaces *. Elles seront ensuite éliminées en traitant I’émission du boson sans masse
comme inclusive : ’émission réelle de bosons mous ne peut étre distinguée de leur échange virtuel.
Nous allons maintenant discuter formellement la forme de ces divergences infra-rouges dans le
cas de la QED, ot le boson sans masse échangé est le photon. Si au moins une des pattes externes
est chargée électriquement (de couleur dans le cas de la QCD) alors un photon peut étre émis (un
gluon pour la QCD). A I'ordre d’une boucle, pour éliminer la dépendance en la masse virtuelle
A du photon, il faut considérer plusieurs contributions,

o(ke) = 00(8) + 010(8,A) + Tsot(5, A, ke) (4.59)
avec
oo(s) = / dLIPS | M3 7% (s)|?, (4.60)
oin(s) = / dLIPS 2Re (M3 (s) M3 %(s,\)) (4.61)
Tsoft(8, A ke) = /” e, ALIPS feop M52 (s)? (4.62)

ol 0y est la section efficace a I'ordre de Born, o1, celle a I'ordre d'une boucle, o4, la contribution
due & I’émission d’un photon "mou® et dLIPS est I’espace des phases invariant de Lorentz.

s représente 'énergie du processus dans le centre de masse au carré et k. la coupure en énergie
sur le photon d’énergie E., représentant la séparation en deux régions de I'espace des phases
d’émission du photon. Pour E., < k. le photon est considéré "mou‘ (soft bremsstrahlung), et pour
E, > k. Iémission est "dure” (hard bremsstrahlung). Il reste alors une dépendance résiduelle non-
physique en la coupure k. de (4.59). Pour la supprimer il faut rajouter ’émission "dure’ réelle
d’un photon qui s’écrit :

Trara(s k) = [ dLIPS [MEH (o) (4.63)
|| k& ||>ke

ainsi la section efficace totale & une boucle est libre de divergences infra-rouges,

0(5) - 00(5) + O-IL(S, >‘) + Jsoft(sa )\, kc) + Uhard(sa kc) (464)

*. Il est aussi possible de régulariser les divergences IR en régularisation dimensionnelle en posant n = 4 + &’
et le passage d’une méthode de régularisation a I'autre sera opérée en identifiant In (/) < 2/’ + vg + In(47)
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4.4.1 Forme du facteur universel f,,s

Dans I'approximation soft 'impulsion du photon émis est négligée partout sauf au dénomi-
nateur de 1’élément de matrice. Dans cette limite 1’émission d’un photon "mou” se factorise a
partir de la section efficace de Born :

do do
(), = 7o (), )

le facteur f,of; est universel et ne dépend que de la charge @; et du moment p; des particules

[64],
e? &’k +pip; QiQ;
= = SRy, 1.66
fsoft (27%) /H?||>kc 2E, Z (i k)(p; - k) ; j (4.66)

ij

avec
B, = Vk2 + \2 (4.67)

Le signe + représente le flot de charge entrant ou sortant du diagramme. L’intégrale de base

d3/€ ip-p‘
Ii; :/ iL (4.68)
T Rk 2Bk %: (pi - k)(pj - k)

a été calculée dans [71].
Pour p; = p; = (E, p) de masse m et |Q| = 1 elle s’écrit

2k E m
Ii; =47 In )+ =In <7>} 4.69
{ ( X > 71 " \E+ 7] (4.69)

Dans le cas d’une paire particule-antiparticule de masse m dans le centre de masse, on a p; =
— — e 2 4 :
—p;j = p, l'intégrale s’écrit

o, 1+ 148 2k, (28 1 (148
Iijj =2m 23 {21n <m> ln< )\>_2L12 <m>—gln <m>} (4.70)

—
D 4m?

Dans la limite ot s > m? on obtient, en utilisant les formules de I’Annexe E

Iij = 2%{2 [m (m;> <ln (22> - m;) - m;} - %1112 (m;> - %2} (4.72)

et dans la limite ou 6 — 0,

avec

I —0 (4.73)

4.4.2 Divergence infra-rouge de la fonction ()

La fonction Cj est finie dans I'ultraviolet, mais elle peut cependant contenir des divergences
infra-rouges si au moins 'une des particules internes est sans masse. Dans le cas de la QED, le
vertex suivant (Figure 4.4) est divergent lorsque p? = m?, p2 = m?. Pour la régulariser nous
allons introduire une masse infinitésimale au photon, mo = X, ot A est négligeable par rapport
aux autres masses. Aprés intégration sur 'impulsion de boucle elle prend la forme

1 T 1
Ciolm2.m2. 02 A :/ d / d 4.74
o(m?,m?, Q% m, A,m) 0 * 0 y[—QQyQ—i-QQxy—mQxQ—i—(x— 1)A\?] (4.74)
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FIGURE 4.4 — Diagramme de la correction de vertex QED

en posant y = xy’ :

1 1 T
oot @) = [y [ ooy 4
en écrivant
Az, y) = 2*Aly) + (z — DA, Aly) = —Q%° + Q% — m? (4.76)
En considérant A\?/m? < 1 alors :
/01 3 Eoe = e () OV @

On peut alors écrire Cy de la fagon suivante :

= /o1 dyA](Ly) - QQ(y:l— y) [m <y+y: 1> o <yyj 1>}
o [ty () ()

1 1 _ 1 _ 1 1
+ O =) [5 In*(1—y~)— 3 In*(—y~) — 3 In*(1—y*) + 3 In*(—y*)
—In(1 -y In(l —y ) +In(—y ") In(—y ") +2In (yT—1> In(y~ —y™)
. -1 . -
e <yy —y+> e <yy—y+>] 17)

ott y* = (1 4+ 3)/2 sont les racines de A(y) et nous avons introduit u I'échelle de renormalisa-
tion pour obtenir des quantités adimensionnées dans les logarithmes. On obtient finalement, en
réarrangeant les dilogarithmes a l’aide de (E.5),(E.6)

1 1+ 2 , 2 , 2
ol (E)n () 2 (25) ()] o

Dans la limite s > m? la fonction Cj s’écrit

2 2 2 2 2 2 2
Co = ﬁ {m <%> In (%) + gan <%> + %m <%> - % - 4%} (4.80)
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Comportement singulier lorsque 5 — 0 : Lorsque § — 0 on peut montrer qu’alors, & partir
du résultat précédent (4.79) on a, a 'aide de (E.6) et (E.16)

(4.81)

Lorsqu’une des particules internes est sans masse, on voit apparaitre une divergence infrarouge
provenant de la fonction Cj, qu’aucune méthode de régularisation ne peut enlever. Ce compor-
tement est en fait la manifestation a I'ordre d’une boucle d’un effet d’origine non-perturbative :
leffet Coulomb-Sommerfeld [73], qui indique l'invalidité de la théorie des perturbation dans la
limite 8 = 0. Cet effet devrait étre resommé a tous les ordres dans cette limite. A titre d’illus-
tration nous avons tracé la fonction Cy(m )ﬁ,m)ﬁ,QQ mx+,0 mx L) x Q% (voir Figure 4.5) ot

m = 80.39 GeV et m_ it = = 1799.0896 GeV en fonction de la vitesse relative v = 23. Puis nous
avons interpolé le resultat avec une fonction de type

a
—+b 4.82
o (452)

On s’attend a ce que le paramétre a soit égal & a = —27% = —19.74 et c’est effectivement ce que
nous observons.

-2000

-4000 a -19.74 £ 1.347e-07

-6000 b 33.99 + 7.08e-06

-8000

-10000

-12000

Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il I Il
0.02 0.04 0.06 0.08 0.1
v

o

FIGURE 4.5 — Co(m;r, m;r, Q?, m;+,0, m;+) x Q? et le fit correspondant en bleu (gras) avec les
1 1 1 1

incertitudes associées aux parametres de fit. Le coefficient a correspond parfaitement au résultat

analytique.

4.5 Segmentation des fonctions Cj et D,

Nous allons montrer dans cette section comment il est possible de segmenter les fonctions
a trois et quatre points en tirant partie de la cinématique particuliére lorsque 5 — 0 [70]. En
effet, dans cette limite, les impulsions entrantes s’écrivent de la forme p ~ (m,,~ 0,~ 0,~ 0)
et ne sont plus indépendantes, impliquant que le déterminant de Gram s’annule. Ce type de
situation se produit par exemple pour des prédictions concernant I’annihilation de matiére noire
dans le halo galactique ot il est supposé que les vitesses relatives sont tres faibles, de 'ordre de
v~ 107 3¢
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4.5.1 Segmentation de la fonction Triangle

Afin de calculer ces intégrales on va segmenter 'intégrale Triangle en intégrales a deux points.
Nous allons appliquer cette segmentation sur une fonction Triangle typique ou deux neutralinos
de haute masse M s’échangent une particule de faible masse m, par exemple un boson de jauge
comme dans la Figure 4.4, qui se réduira au calcul de deux fonctions By. Cette fonction scalaire
s’écrit, en régularisation dimensionnelle

d"k 1
= —i(4r?)pt S 4,
Co = —il4m")u / (27)" DoD1 D5 (483)
avec
—~1 5 -1
D- [DODlDQ} - {[kz — 2] [(k +p2) — M2][(k = pa)? — M (4.84)
Il est toujours possible d’écrire D sous la forme [70],
~ - + A + !
[(k +p3) — M2)[(k —p2)® = M?] [k —m?)[(k — p2)* — M| [k* = m?|[(k + p}) — M?]

(4.85)
En utilisant le fait que pour § = 0 on a p; = pa = p(M,0,0,0) on peut montrer que (4.85) est
vraie si l'on choisit a, A, v tels que

v=A (4.86)

Ainsi la fonction Cy s’écrit, dans cette limite et aprés avoir effectué un changement de variable
k' = k — p dans 'une des intégrales,

1
Co = ——3 (Bo(2p; M*, M?) — Bo(—p; M*,m?)) (4.88)

L’évaluation des deux fonctions By donne, en utilisant m/M << 1,

M2
By(2p; M?, M?) = Cyy —In (W) +2 (4.89)
M? ™m m?
CAs2 2\ _
et ainsi )
T m
=—— — 491
Co —i +0 <M2> (4.91)

On remarque alors que dans le cas d’une fonction Triangle massive, lorsque 8 — 0, il se produit
une phénoméne de saturation des corrections. Cela peut étre relié a la manifestation a 1’ordre
d’une boucle de l'effet Sommerfeld électrofaible non-perturbatif oti, lorsque 8 < m?/M?2, il se
produit le méme type de saturation. Cette formule a été testée numériquement sur les fonctions
scalaires dont les résultats sont montrés dans le Tableau 4.1 pour plusieurs valeurs de M et
m = 80 GeV.

4.5.2 Segmentation de la fonction Boite

Nous allons généraliser le calcul précédent au cas de la Boite. La premiére chose & remarquer
est que, en toute généralité, on peut toujours écrire pour n’importe quelle paire de constantes
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Masse (Gev) | Approx. Cp,8 — 0| Cp,3=10"* Co,3=10"3 Co,3=10""1

M = 1000 —3.926991 10~° —3.571320107° —3.57050910~° —1.50030010°
M = 2000 —1.96349510~° —1.85761710~° —1.85599910~° —4.291331106
M = 10000 —3.926991 10~ —3.8678581076 —3.78979910~6 —1.801508 107

TABLE 4.1 — Tableau des tests numériques pour la comparaison de [’approximation de [’équa-
tion (4.91) avec le résultat numérique donné par LoopTools[65]. On remarque la lente conver-
gence de lapprozimation vers le résultat numérique lorsque la masse M augmente.

a, B [70]
1 1 1 1 1
= -« —p +(a+p—-1)——— | X
DyD1D2 D3 DoD1 Do DoD>Ds3 DyD1D3 D1D2 D3
1
A+20-(s3—as; — [s2)
A= (s5—M3)—a(s] — M{)— B(s5 — M3) — (a+ 3 — 1) M. (4.92)

Avec D; et s; donnés par I’équation (4.3). Dans le cas oul s3 = asy + (Os2, les impulsions sont
linéairement dépendantes et la Boite se segmente en une somme de fonctions Triangles. Si I'on
considére une Boite avec trois grandes masses internes et une petite, lors de la segmentation au
moins une des fonctions Triangles aura la méme topologie que la fonction Cj de 'équation (4.83)
qui se segmentera & son tour en deux fonctions & deux points. Par conséquent, on s’attend a ce que,
lorsque 8 — 0 le comportement de la fonction Boite ressemble & celui de la fonction Triangle.
Ce type de segmentation fait I'objet d’une routine spéciale implémentée dans le programme
LoopTools.

4.5.3 FEtude numérique

Connaissant le comportement de la fonction Cy lorsqu’une des masses internes est nulle et
celui avec une petite masse pour § = 0, nous avons cherché a obtenir une formule pour reproduire
son comportement lorsque B # 0 tout en restant faible. Tout d’abord j’ai testé une formule
provenant de [74], ot la correction a une boucle dans la limite non-relativiste de ’annihilation
de neutralinos en onde s a été calculée. La formule s’écrit

\/% (1 — r_41r2) (grand r)
Is(r) ~ 22 (petit 7) (4.93)

— etit r

1434 P
avec r = m2/|p|* et |p] = M3 = Muv/2. Le graphe de la fonction Cy et de 'équation (4.93)
avec m = 80.39 GeV (soit la masse du boson W*) et M = 1799.0893 GeV est présenté dans la
Figure 4.6. Ces choix de masses correspondent & ’étude sur I’annihilation des neutralinos lourds
qui sera présentée dans le Chapitre 9. En s’inspirant de la formule (4.93) nous avons utilisé une
formule de fit pour capturer le comportement de la fonction scalaire & trois points et & quatre
points dans un régime de faibles vitesses. Cette formule s’écrit,

b
Vi e

7

a+ (4.94)
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= m=80.39

— rpetit(m - 0)

---rlarge (B - 0)

0.1 0.15 0.2

FIGURE 4.6 — Graphe de Co(M?,M? s,M,m,M) et de la formule (4.93) avec M =
1799.0893 GeV, et m = 80.39 GeV. Les courbes rouge et verte sont sécantes en r = 6, lors
du changement de comportement (rlarge et rpetit) selon la valeur de r. Plus de détails dans

[74]-

ou
4M?2
s

v=28=2/1- (4.95)

Le résultat des fits est affiché dans la Figure 4.7. On remarque que cette formule fonctionne
trés bien, méme si la signification des parameétres de fit n’est pour l'instant pas reliée & une
combinaison de paramétres entrants dans le calcul de Cy et Dy. On remarque cependant que
dans les deux cas les paramétres ¢ sont trés proches et que les fonctions scalaires possédent le
méme comportement & un signe moins prés. Nous avons aussi effectué les fits en fixant ¢ a la
valeur ¢ = 547 = 0.07019, provenant du raccordement des deux expressions de I’équation (4.93)
en r = 0, voir Figure 4.8. Nous observons aussi une saturation pour v trés proche de zéro, comme
I’a montré approximation (4.91). En particulier la formule analytique nous donne

™

(Col = ———7 =217 x 1075 (4.96)
et a partir du fit cette valeur est donnée par,
b
ofit — g2 =204x107? (4.97)
c

Cette paramétrisation sera d’une grande utilité lorsque nous chercherons a extraire I'effet Som-
merfeld électrofaible dans le Chapitre 9, pour n’obtenir que les corrections provenant de la
renormalisation. Nous avons ensuite calculé les fonctions Triangles et Boites pour une masse
M = 17990.089, puis cherché a interpoler les résultats avec la paramétrisation de I’équation (4.94)
en fixant la valeur du parametre ¢ a la valeur ¢ = §4; = 0.007019. Les graphes correspondants
sont affichés dans la Figure 4.8. On remarque que contrairement au cas précédent ce fit semble
mieux fonctionner lorsque 1'on éléve la valeur de la masse M.
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FIGURE 4.7 — Fit pour Cy (gauche) et Dy (droite) en noir, pour ¢ laissé libre (graphes en haut)
et ¢ fixé a la valeur ¢ = 0.07019 pour m = 80.39 GeV, M = 1799.0893 GeV. La valeur numérique
des fonctions scalaires est tracée en rouge.
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FIGURE 4.8 — Fits des fonctions scalaires Cy x 100 (droite) et Dy x 102 pour ¢ = 0.007019 avec
m = 80.39 GeV, M = 17990.0893 GeV. Les données sont en rouge, le fit en noir.
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Chapitre 5

La renormalisation du MSSM
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English Abstract Once the divergences have been identified they have to be safely removed
with a proper and well-defined renormalisation. We present in this chapter the general procedure
to renormalise the MSSM in an On-Shell scheme. This scheme has the advantage to clearly
relate counter-terms with physical observables and therefore gauge invariance is maintained.
We give all the relevant counter-terms needed for each sector of the MSSM, and in particular
several definitions of the counter-term for the ubiquitous t3 parameter. A special treatment of
the renormalisation of the neutralino/chargino sector will be presented in Chapter 7.

5.1 Procédure générale

Nous avons vu dans le Chapitre 4 comment identifier les divergences des calculs de boucles.
L’apparition de divergences dans certains termes de I’expanson perturbative n’est pas forcément
le signe d’une incohérence fatale de la théorie. Elle peut plus simplement indiquer que 1'utilisa-
tion de la théorie des perturbations n’est plus appropriée. La contribution d’'un diagramme de
Feynman n’a pas de signification physique propre : seuls les éléments de la matrice S ont un sens
physique. Le probléme posé par 'apparition de divergences est alors celui de l'existence d’une
formulation de la théorie des perturbations qui conduise & des éléments de matrice S finis et des
fonctions de Green bien définies & chaque ordre perturbatif [31].

Pour aborder ce probléme, il faut introduire une généralisation de la théorie des perturbations
faisant usage de contres-termes, qui seront utilisés pour renormaliser la théorie de facon a ce que
I’expansion perturbative des grandeurs physiques soit finie et bien définie & chaque ordre par une
procédure de soustraction.

En général le lagrangien décrivant la théorie posséde un certain nombre de paramétres libres
qui doivent étre déterminés expérimentalement, et sont choisis tels qu’ils aient un sens physique
intuitif & l'ordre le plus bas. Malheureusement lorsque 1’on passe aux ordres supérieurs cette
relation directe n’est plus valide et, de plus, les paramétres du lagrangien initial, les paramétres
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CHAPITRE 5. LA RENORMALISATION DU MSSM

“nus” (notés avec un indice 0), différent des parameétres physiques par des contributions diver-
gentes dans l'ultraviolet. Pour les théories dites renormalisables, ces divergences vont s’annuler
a travers des relations entre les quantités physiques, “habillant” les paramétres “nus” pour cor-
respondre aux parameétres mesurés. Il existe plusieurs approches pour renormaliser une théorie
[63, 75], nous utiliserons celle utilisant les contres-termes [64] : les paramétres UV-divergents
sont exprimés en fonction de paramétres renormalisés finis et de constantes de renormalisation
divergentes, les contres-termes, en nombre fini si la théorie est renormalisable. Il est possible de
plus de remplacer les champs “nus” par des champs renormalisés.
Les contres-termes seront déterminés a 'aide de conditions/prescriptions (arbitraires) de re-
normalisation. Un choix complet de conditions pour obtenir des observables physiques finies
constituera ce que 'on appelle un schéma de renormalisation. 11 est alors possible de prédire
certaines observables physiques a partir de quantités déja mesurées, les paramétres d’input ou
observables. Les résultats dépendront donc de I'ordre de la théorie des perturbations & laquelle la
série perturbative sera tronquée, du choix des observables mais aussi des paramétres renormali-
sés. A un ordre donné de la théorie des perturbations, les schémas de renormalisation différeront
par des contributions d’ordres supérieurs. La procédure de renormalisation peut étre résumée
comme suit :

— Choisir un ensemble de parameétres indépendants.

— Séparer les paramétres “nus (ainsi que les champs) entre des paramétres renormalisés (et

champs) et des constantes de renormalisation.

— Prescrire/définir des conditions pour fixer les contres-termes.

— Exprimer les quantités physiques en fonction des paramétres renormalisés.

— Choisir les observables pour déterminer la valeur des paramétres renormalisés.

— Calculer les prédictions pour les quantités physiques en fonction des observables.
Schématiquement cette procédure commence & partir d’'un lagrangien fonction de champs "nus”“
qﬁg et de paramétres "nus” g(i] (des masses ou des constantes de couplages) :

£ = £(6°,g?) (5.1)

Puis l'on remplace ("habille”) chaque champ et parameétre nu par leur quantité respective renor-
malisée, ¢; et g; :

&) = Zyi (5.2)
9% = Zg,9: 5

Si on réécrit chaque constante de renormalisation sous la forme (valide a I'ordre d’une boucle)

le lagrangien peut s’écrire comme la somme d’une partie renormalisée et d’une partie contre-
termes

La partie d£ va apporter des nouveaux couplages (et donc des régles de Feynman supplémen-
taires) a la théorie. Ainsi de nouveaux diagrammes de Feynman seront a prendre en compte,
dont le rdle sera d’annuler les divergences comprises dans la partie £(¢,g). Il est & noter que
les décompositions (5.2) sont arbitraires puisque seule la partie divergente est déterminée par la
structure & boucle de la théorie.

Alors une observable I" peut se décomposer, a ’ordre d’une boucle :

F=Tg+ I'y +T (5.6)
o0 [e.e]

—_————
fini
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ou I’y est I'observable calculée a I'ordre le plus bas, I'y sa correction a I'ordre d’une boucle, et 6I"
la partie contre-terme. Les corrections I'1 et 0" sont séparément divergentes mais leur somme est
finie. On peut les écrire d’une fagon générale comme la somme d’une partie finie et d’une partie
infinie
Ty =a] +b5° (5.7)
0T = al. + by (5.8)

et la somme des parties infinies doit s’annuler
b+ b =0 (5.9)

La somme des parties finies sera la correction & une boucle, finie, de ’observable I', qui dépendra
du choix du schéma de renormalisation.

5.1.1 Schéma de soustraction minimale M S

C’est le schéma de renormalisation le plus simple [76] qui consiste & imposer que les contres-
termes n’absorbent que la partie divergente dans l'ultra-violet, c’est & dire uniquement les termes

proportionnels a 1/e de (4.25),

2
aéT =0, bor = z (5.10)

Ainsi les contres-termes sont des quantités purement infinies, et ce schéma dépend de I’échelle
de renormalisation ppsg.

5.1.2 Schéma de soustraction minimale modifiée M S

Il arrive que les termes constants accompagnant le terme proportionnel a 1/e de (4.25) soient
importants, par conséquent les contres-termes seront définis par |77

aéT =0, ber = Cyv (5.11)
définissant une nouvelle échelle de renormalisation pg7g telle que

Cyv +In (%) — In (3 <) (5.12)

5.1.3 Schéma de réduction minimale modifiée

Pour la supersymeétrie il est préférable d’utiliser la réduction dimensionnelle [61] pour qu’elle
soit respectée. Dans ce cas la prescription de renormalisation DR est similaire & celle du schéma
M S, ala différence prés que les champs bosoniques et fermioniques sont conservés a 4 dimensions
pour respecter la supersymétrie.

5.1.4 Schéma sur couche de masse (On-Shell)

Il est possible de choisir les contre-termes tels que les paramétres renormalisés finis soient
égaux aux parameétres physiques a tous les ordres de la théorie des perturbations. Dans ce cas
on a pour I :

I'=Iry=1,=-4r (513)

a lordre d’une boucle. L’avantage de ce schéma par rapport aux autres est que la fixation des
contres-termes posséde un véritable sens physique et permet d’éviter d’induire des dépendances
de jauge explicites. Dans ce schéma les contre-termes sont obtenus & partir de la mesure de masses
de particules sur leur couche de masse (On-Shell en anglais). La masse d’une particule OS est

83



CHAPITRE 5. LA RENORMALISATION DU MSSM

définie comme le pole de la partie réelle de son propagateur et est interprétée comme sa masse
physique. La dépendance en I’échelle de renormalisation est alors complétement absorbée. Par
exemple dans le Modéle Standard, la mesure expérimentale trés précise des masses des bosons
My, My, sont prises comme observables pour renormaliser le secteur de jauge, et dans ce cas le
paramétre sin 0, est défini par la relation

My,

=W 5.14

sin?0, =1 —

valide a tous les ordres de la théorie des perturbations. Les constantes de couplage sont renor-
malisées de maniére & ce que celles-ci restent inchangées lorsque toutes les particules se couplant
& un vertex sont sur couche de masse. Nous allons principalement utiliser ce schéma par la suite.

5.2 Renormalisation sur couche de masse

Nous allons présenter dans ce chapitre la fagon dont le MSSM a été renormalisé. Cela corres-
pond & ce qui a été implémenté dans le code SloopS. Elle s’appuie principalement sur un schéma
sur couche de masse (On-Shell) et a été présentée extensivement dans |78, 79, 80|. Par consé-
quent nous ne présenterons que la forme des contre-termes introduits pour chaque secteur (de
jauge, de fermion, de Higgs et des sfermions). La renormalisation du secteur neutralino/chargino
sera présentée plus en détail dans le Chapitre 7. Les fonctions & deux points 1PI (one-particle
irreducible) renormalisées notées f[ij (écrites dans la jauge de t’Hooft-Feynman £ = 1 et dénotés
avec un "), s’écrivent :

. . . kuky\ & kuky
IV (k) = —igu (k* — M) —i <gw, — %) SW(E?) —i 22 >W(k?), (5.15)

- . . k ky Sa . a
T35 (k) = = g (K* — MZ)dap — i (gw - > NP (k%) — i3 S (), (5.16)

ol a,b=AZ M3=0,

19 (k) = i(k? — M2) +i25(k?), (5.17)
01 (p) = i3 (¢ — mi) + S (0?), (5.18)
SL0%) = pPLSEY %) + PrEL™ (0%) + PSE 07) + PrEL (p?)

Les indices V, S, f indiquent la nature vectorielle, scalaire, fermionique de la fonction a deux
points considérée, l'indice T indique quant & lui la partie transverse et L la partie longitudinale
pour les self-énergies des particules vectorielles. Les propagateurs correspondants sont obtenus a
partir de I'inverse de ces fonctions & deux points.

La procédure a suivre pour chaque secteur se résume a compter le nombre de paramétres indépen-
dants et d’ensuite les fixer /contraindre par le nombre approprié de conditions de renormalisation.
Dans un schéma O.S, les masses renormalisées des particules physiques sont déterminés a la condi-
tion qu’elles soient égales aux masses physiques, c’est a dire égales aux parties réelles des poles
des propagateurs correspondants, équivalents aux zéros des fonctions & deux points.

2

— SM — —
Relly; (k) f (k) o = 0= M? — M? <1 + W) + ReXi(M?) = 0 = 6M? = ReXy(M?)
(5.19)
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ol Re signifie que 'on prend la partie réelle de la self-énergie, pas la partie réelle des éventuels
parameétres qui la compose * et f(k) est soit un spineur (u(p), v(p)), soit un vecteur de polarisation
(eu(k)) ou encore I'identité selon le spin du champ externe.

Les champs sont renormalisés comme suit,

¢ = (1 + %5Z,~j> b; (5.20)

Dans le cas le plus général le champ ¢ peut posséder plusieurs composantes ¢, alors dZ;; est
une matrice et induit un mélange entre les différentes composantes. Cela peut étre simplifié si
les conditions OS sur la renormalisation des champs stipulent que les fonctions & deux points
renormalisées sont diagonales si les pattes externes sont on-shell, permettant de déduire les
¢éléments non-diagonaux des renormalisations des champs 0Z;; a partir de la condition

5% 2

ReEij(k ) K2 12 =0 (521)
Les éléments diagonaux sont fixés tels que les résidus des propagateurs renormalisés sont égaux
al,

Jim R () (k) = f(R) (5.22)

en utilisant

15)>
S(k?) ~ B(M?) + (k% — M%w (5.23)
k2=M2
cette condition se réécrit .
— 0%;(M?)
k2=M2

Il est aussi de possible de renormaliser chaque secteur sans introduire de constante pour les
champs (dans lesquels les champs n’apparaissent pas), car au final seuls les éléments de la matrice
S doivent étre finis. La contrepartie de cette approche est qu’elle implique la manipulation de
fonctions de Green infinies.
Avec ces définitions le lagrangien “nu” Ly se décompose entre le lagrangien de base L et le
lagrangien des contre-termes 6L,

Lo=L+L (5.25)

L & la méme forme que £y mais dépend des paramétres et champs renormalisés.
Finalement les self-énergies renormalisées sont obtenues a partir de,
o 0

%6, 67%55 (5.26)

S5 (k) = S5 (k?) +

ou le tilde signifie que la transformée de Fourier du lagrangien & été prise.

5.3 Renormalisation du secteur des fermions

Le lagrangien des fermions s’écrit, a 'ordre de I’arbre,

£ = iy, 0"} — m QG (5.27)

x. Comme par exemple les éléments de la matrice CK M qui apparaissent dans le couplage du boson W aux
quarks.
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Ce secteur ne contient donc qu’un seul paramétre m; pour chaque génération, il faut donc
introduire un contre-terme pour la masse de chaque fermion. Puisque l'on peut décomposer
chaque champ fermionique en une partie gauche L et droite R,

(1- 75)

(1 +75)

Vf, = Yy = Priy (5.28)

Vig = ——5 ¥ = Priy (5.29)

il faut alors introduire des constantes de renormahsatlon pour les parties droites et gauches de
chaque champ fermionique. Les paramétres de ce secteur se réécrivent alors,

m?c =my +dmy
1
¢ 1/27,Z)fL — (1 —|— §6ZfL> ’IIZ)fL

i = 242050 = (14 50250) ¥ (5.30)
On peut alors réécrire le champ fermionique vy comme,
P} = (1 + %(5ZfLPL + 5ZfRPR)> Yy (5.31)
Alors en utilisant la relation .
Ey = 2%8/@ =2 (5.32)

on arrive aux expressions suivantes pour les contre-termes,
my = RextkS (m2) + mf (Rez Vim3) + @E?V(mﬁ))
5Zf = — ReEf (m ?) - mf <R62%V'(m?) + RBE?V'(m?)) - 2mfReE%S/(m3c)
57k = — ReSHV (m%) —m? <7€/62J%V/(m?c) + 7’@225?“(@)) — 2m;Re=F (m?) (5.33)

ol nous avons utilisé le fait que dans le cas o la symétrie CP est conservée dans le secteur
leptonique et des quarks T, leurs self-énergies sont diagonales et il n’est pas nécessaire d’introduire
de constantes de renormalisation des champs non-diagonales. Nous avons de plus la relation :

DE(m3) = Sf5 (m3). (5.34)

5.4 Renormalisation du secteur de jauge

Le secteur de jauge contient deux paramétres de masse pour les bosons W+, Z9. A une boucle
on introduit pour chacun d’entre eux un contre terme donné par

M3L = M3, + oM,
M2 = M2+ 6M3% (5.35)

Les champs de jauge se transforment de la fagon suivante,

1
+£0 _ +
Wi~ = <1 + §5ZW> W,

0 1 1
(ZM> _ <1+§6ZZZ §5Z2A ><ZM> (5.36)
A, 16247 1+ 36Zaa) \ Ay

1. La matrice CKM est alors égale a la matrice identité, ce qui est imposé en général dans les calculs de
corrections radiatives de processus a haute énergie.

86
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En utilisant les conditions de renormalisation OS et en supprimant le mélange v — Z° sur les
pattes externes on obtient les relations suivantes,

My = — ReZiy (Myy)
OM% = — RexG(M3)
02w = ReSyy(M3)
0277 = ReSyy,(M3)

2
0Zza= — —Eaz(o)
M
2
§Zaz = + 554, (M3)
M
5744 = SH4(0)
0="3%,(0)

Nous pouvons remarquer que la partie longitudinale (non-physique) des self-énergies des bosons
de jauge est éliminée lorsqu’ils sont sur couche de masse (car k- ¢ = 0). La derniére relation est
due a l'identité de Ward de la QED voir Chapitre 3.1. Si 'on définit 'angle de Weinberg par la
relation

sin?6, =1 - -2 (5.37)

considérée valide a tous les ordres, alors il en découle les contre-termes suivants,

6sw 1% (6ME,  6ME

R _5%<M5v R M%)

dcw siésw

w s

6_1): _lci—si5M5V_lca—si5M% (5.38)
v 2 s2  ME 2 st M3 '

Enfin & I'aide des relations donnant les bosons de jauge en fonction de v, g1, g2 on a les relations
suivantes,

se v &
SMZ, = 2My 6 My, = 2M3, <—e - ﬂ)
e v Sw
Je  dv 2 —s20
SMZ = 2M6My = 2M2 <—e + &G Swﬂ) (5.39)
€ v s2 Sy
avec
v dvp 5 Odv2 o
v _ou g, 2 5.40
v (%] Cﬁ + V2 SB ( )

5.5 Renormalisation de la charge
La charge électrique est définie dans la limite de Thomson, c’est & dire lorsque 'impulsion
de transfert k2 = 0, on retrouve la valeur de la charge de I’électron a partir du vertex yee. Ce

vertex & une boucle est donné par le diagramme suivant
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Dans la limite de Thomson on doit donc avoir
17¢¢(0,0) = I'7°°(0,0) + 6T7(0,0) = —iey, (5.41)

L’introduction des constantes de renormalisation et d’une identité de Ward reliant les constantes
de renormalisation des électrons a I'}°“(0, 0) [60] donne,

. de 1 1s
17°°(0,0) =T (1 + — 4+ =6Zaa — =—0Z
o ( ) ) n < + e + 2 AA 9 Co ZA>
o I = —iey, (5.42)
Pour que la partie contre-terme s’annule il faut que le contre-terme de/e vérifie la relation

de 1 1s 1 s 2% ,(0)
— =-207 — U874 = =50, (0) - 2 Z4Z 5.43
e = T30ant gy 0Zza =580 = O M2 (5.43)

Grace aux identités de Ward ce résultat est indépendant des générations de fermions, reflétant
I'universalité de la charge, et indépendant de jauge.

5.6 Renormalisation du secteur de Higgs

La discussion de la renormalisation de ce secteur a été abondamment discutée dans [78, 80,
81, 82, 83] ainsi que son implémentation. Pour renormaliser le secteur de Higgs on peut choisir
les 4 paramétres indépendants suivants ,

(MAO,T¢1,T¢2,taD B) (5.44)

Ils représentent respectivement la masse du pseudo-scalaire Ay et les “tadpoles” des deux doublets
de Higgs, c’est a dire les termes linéaires apparaissant dans le potentiel de Higgs. On rappelle
que le dernier paramétre est le rapport des vev des deux doublets de Higgs du MSSM,

tan 3 = n2 (5.45)

U1
Ce parameétre joue un role central puisqu’il apparait dans tous les secteurs a renormaliser car relié
a la brisure de la symétrie électrofaible. Nous ne présenterons ici que les différentes prescriptions
de renormalisation pour le paramétre tan  utilisées dans SloopS. La difficulté concernant la
renormalisation de ce paramétre est qu’il est difficile de le relier directement a une observable

physique, contrairement & v, qui peut étre relié & la masse d’un boson de jauge. En écrivant

v =v; — v i=1,2 (5.46)

I'expression du contre-terme 6tg s’écrit,

Otg _ dur vy (5.47)
tﬁ U1 V2 .

Une discussion de la dépendance des résultats selon les différentes prescriptions définies ci-dessous
peut étre trouvée dans [78].
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5.6.1 Définition DR

Dans ce schéma le contre-terme 6tg est défini comme une pure divergence (partie contenant
le paramétre Cyy = 2/(4 —n) — vg + In(47) apparaissant dans la régularisation dimensionnelle)
de fagon & ce que la partie finie du contre-terme soit nulle,

DR,
&—6 g =0 (5.48)
tg
L’un des inconvénients de cette définition est qu’elle n’est pas invariante de jauge. Dans le
cas d’'une fixation de jauge linéaire cette non-invariance est supposée apparaitre a 'ordre de
deux boucles, cependant si I'on utilise une fixation de jauge non-linéaire, comme dans SloopS, ce
probléme est déja présent a 'ordre d’une boucle [78]. Il est possible de définir la partie divergente
de ce contre-terme grace a des quantités non nécessairement reliées a une observable [84, 85].
L’avantage de cette définition est qu’elle donne généralement des corrections a une boucle petites.

5.6.2 Définition sur couche de masse définie a partir de My (OSy,,)

Dans ce schéma la masse du Higgs scalaire neutre le plus lourd My est prise comme paramétre
d’input. Par conséquent, la valeur de cette masse n’est plus une prédiction mais est extraite d’'une
mesure expérimentale, comme la masse du pseudo-scalaire M 0. Comme 'on considére que la
masse M ne recoit aucune correction a n’'importe quelle ordre de boucle, dt3 est obtenu a partir
de la contrainte

ReXpp(M%) =0 (5.49)

Ce schéma est un des schémas implémenté dans SloopS [78]. Pour des valeurs typiques de para-
metres d’input dans la limite ot M40 >> Mz, on a M 0/Mp ~ 1 et le contre-terme s’écrit

ot 1 SM> SM?
B S — 2140 + 2 (5.50)
ty  MA/M2, —1\ M2, | M

et on s’attend alors de grandes incertitudes provenant des corrections radiatives.

5.6.3 Définition & partir d’une désintégration

Dans ce schéma le contre-terme dtg est obtenu a partir de la mesure de la désintégration
A% — 777 en demandant que la partie contre-terme de cette désintégration soit compensée
par ses corrections de boucle non-QED. Alors le processus A — 7777 est sujet seulement aux
corrections de type QED qui ne dépendent que de M 40, e, m,, faciles & extraire de la largeur
totale. Le contre-terme est alors donné par,

5t:6 OSATT _ 1 FTOH*QED 5ATT 6QED (5 51)
ts ) Ty cr v '
ou 'y et I’IfoanED sont respectivement la contribution & la désintégration a l'ordre de ’arbre et

la contribution non-QED de boucle.

Cette définition est invariante de jauge, car reliée a une observable physique, et donne généri-
quement des corrections petites, comme le schéma ﬁ, son seul inconvénient étant que cette
définition est dépendante du processus.
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5.7 Renormalisation du secteur des sfermions

Le secteur des squarks implique cinq paramétres MQL’ an, M R Ay, Ag ou u et d sont une
notation générique pour les squarks de type up ou down. La renormalisation de ce secteur a
été discutée dans [79, 80, 86, 87|. Nous présentons seulement la forme de ces 5 contres-termes
ainsi que les renormalisations des champs dans le schéma ol les masses m dy» M, » M, sont prises
comme input, les masses restantes recevant une correction a une boucle.

Renormalisation des champs

Nous avons déja vu dans la Section 3.5.2 que les champs physiques sont obtenus a partir d’une
matrice de rotation agissant sur les champs états propres de jauge, matrice qui est considérée
comme renormalisée, c’est a dire que la matrice a I'ordre d’une boucle est identique a celle a
l'ordre de ’arbre,

<(z1> :Uq<(zL> , implique <({1> :Uq<(‘zL>7 U = < “a S%) (5.52)
a /g dr /o a2 qr —S05 Co4

ainsi nous n’introduisons pas de contre-terme pour I'angle 6.
Les champs des squarks sont renormalisés comme suit,

- 1o g\ -~
qio = <5ij + 552%) dj (5.53)

La condition (5.24) permet d’obtenir les quatre constantes diagonales de renormalisation des
champs, pour ¢ = (u,d) :

8Z%, = Rexy 5 (m2),
023, = ReXy s (m2). (5.54)
et en imposant (5.21) on obtient les constantes non-diagonales,
G 2 2 2
VA m(ReZ}q@ (mcb) + 5m612) ,
673 = ﬁ(}zezm (m2,) +06m2,,). (5.55)

Renormalisation des paramétres

L’expression de la matrice de masse “nue” est donnée par (3.49) et sa version renormalisée

par,

MZy = M + 6M; . (5.56)

La perturbation des paramétres implique

_973
5MQ2~2L +4 (mg + C2,3(T5’ — QqS%V)M%) 1) (quq) -4 <mqut5 q>

SME = o (5.57)
d(mgAy) — 9 <mq,ut6 q) 5ngR +94 (mg + c3Qqsty M)
Les contre-termes des masses physiques 5m§ij sont reliés a 5./\/(3”_ par la relation,
2 _ (p_saq2pt
om?, = <Rq5M(1Rq)ij (5.58)
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Une fois les masses physiques m dyr My Moiia déterminées on obtient,

_ 9
5mdu = — ReEdldl(mdl),

_ 9
5ch22 = — ReEdeQ(mJQ) ,
5ma22 = — RGE{LQ{Q (m?b)

(5.59)

La forme du contre-terme 5m3;12 a été abondamment discutée dans [79], une des définitions,

parmi d’autres, s’écrit

2 _
m? = <R62f1f2( )+ ReXS; 7, (m f)>. (5.60)

et les contre-termes aux cinq paramétres s’écrivent finalement,

Mg, = % <c§d5mfzu + sgdémfzm — 329d5m§12 — om3
L
- M} <—% + éﬁax) <025 5]\]\4422 26?5) - C2BéM%5S%V> ;
OMg, = 2]\/2”2 (591 5mul1 + 091 5mu22 + 829u6mf~”2 — om?
S (5 5)-5%)
5MdR 2]\; (sgd&n?in + cgdémém + 529d6md-12 — 2mgdmy

2 M 2z W
et (o (3 )~

d ot
5(muAu) _ 520, ((Sf,’n/~ 6m~ ) + CQGu(SmulQ + —6 <5lu +,U My M_'G) ,

2 uil u22 mu tﬁ
d0(mgAq) = 5204 (sm2  — m2 ) + coo,0m2  + matg  Sp + oma + Stp (5.61)
dd) = 79 di1 da2 2647, dto \OHTH mq a 176} . -
avec
2 2 ¢ 2 2 ¢ 2 2 2
omz = g <09d5mc211 + 89d5mJ22 — 329d5mdl - 39 5mu22 + 829, 0m7g,,
oMy, 5 dt
2 2 2 2 98

Le secteur sleptonique est renormalisé de fagon identique & la différence prés qu’il n'y a que
trois paramétres & renormaliser pour chaque famille de slepton : Mj Me r» Ac. Plus de détails
peuvent étre trouvés dans |79].
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Chapitre 6

Le programme SloopS
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English Abstract The SloopS program is a well designed interface between LanHEP [88] and
the bundle FeynArts , FormCalc, LoopTools|57, 65, 89| (FFL for short). The automatic generation
of Feynman rules and corresponding counter-terms is done through LanHEP and the evaluation of
physical observables like cross sections, decays, corrections to masses with the bundle FFL. The
systematical tests available to check rigorously the final result are presented. The diagonalisation
of the 4 x 4 neutralino mass matrix needed for dark matter calculations, leads to eigenvalues
that can be negative if an orthogonal real matrix is used. We have implemented in the code a
routine to diagonalise the mass matrix with complex parameters in order to circumvent this issue.
Numerical tests have been carried out to check the correct implementation in the code. Finally
the interface of SloopS |78, 79| with micrOMEGAs [90] for evaluating the one-loop corrected relic
density of dark matter is outlined.

6.1 Introduction

Le Modéle Standard Supersymétrique Standard, doté du lagrangien de brisure le plus général,
double le nombre de particules par rapport au Modéle Standard. Par conséquent le nombre de
diagrammes de Feynman & calculer augmente considérablement, tant et si bien qu’il est difficile
de les évaluer tous a la main, sans prendre le risque d’effectuer de nombreuses erreurs. De plus
nous avons vu que la prise en compte des ordres supérieurs nécessite I'introduction d’encore
plus de diagrammes de Feynman (ici & boucles) dont la structure est assez compliquée, si bien
que seule ’élaboration d’un code informatique gérant toutes ces difficultés peut nous permettre
d’effectuer des calculs de précision complets.

Le code SloopS a initialemment été développé au LAPTH |21, 70, 79| et né de l'interface entre plu-
sieurs programmes déja existants : LanHEP [88], et I’ensemble de trois programmes FeynArts [89],
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FormCalc [57] LoopTools|65]. Son role est de calculer a l'ordre d’une boucle des observables du
MSSM de fagon automatique une fois quelques instructions données. Il est possible de calculer
des corrections quantiques aux masses des superpartenaires, a des désintégrations ainsi qu’a des
sections efficaces. Il est & noter qu'il existe un autre code automatique, GRACE-SUSY [91], pouvant
réaliser des calculs a une boucle dans le MSSM.

La difficulté majeure pour réaliser ce type d’outil de précision est la génération des fichiers
contenant la physique du modéle considéré, a savoir les milliers de couplages et contre-termes &
implémenter qui définissent les régles de Feynman. D’un point de vue théorique les schémas de
renormalisation doivent étre correctement définis et ensuite les techniques déja développées pour
le Modéle Standard pour les calculs de boucles peuvent étre utilisées, comme la manipulation
des calculs symboliques et les techniques de réduction des intégrales & une boucle.

J’ai utilisé ce programme pour le calcul de densité relique de matiére noire, et implémenté un
schéma de renormalisation du secteur des neutralinos-charginos différent de celui qui I'avait été
initialement.

6.2 LanHEP

LanHEP est un programme permettant de générer automatiquement, une fois le lagrangien
de la théorie implémenté, les régles de Feynman correspondantes [88]. L'un des avantages de
LanHEP est que la syntaxe pour écrire le lagrangien, & ’aide de la fonction 1term, est trés proche
de celle que l'on écrirait a la main et, de plus, il gére automatiquement les contractions des
indices (de couleur, de Lorentz, etc..) selon la convention d’Einstein, comme par exemple les
termes Fy,, F'* des champs de jauge.

Il faut ensuite déclarer les différents paramétres libres du modeéle a l'aide de la déclaration
parameter et le contenu en particules de la théorie en spécifiant sa structure de Lorentz, c’est a
dire une particule vectorielle (déclaration vector), une particule spinorielle (déclaration spinor)
ou scalaire (déclaration scalar). Par exemple le modéle de la QCD s’écrira

model QCD/2.
parameter gg= 1.13 : ’Strong coupling’.

vector G/G : (gluon, color c8, gauge).
spinor q :(quark, color c3, mass Mg=0.02).

lterm ixgg*f_SU3*ccghost (G)*Gxderiv*ghost (G) .
lterm Q*gamma*(ixderiv + ggxlambda*G)*q.

lterm -F**2/4 where
F=deriv mu*G nu~a-deriv nu*G mu~a+i*gg*f_ SU3~a"b~c*G "mu~b*G nu~c.

Ensuite la génération des contre-termes effectuée par le remplacement

¢0 — (1 + 52@) i
9 — gi + 6g;

m? — my; +0m;

est réalisée automatiquement a partir des champs, masses et couplages du modéle a l'arbre
grace a la fonction transform. Cette procédure introduit alors un trés grand nombre de nou-
veaux paramétres libres dx qu’il faut fixer par les conditions de renormalisation, ils sont alors
exprimés essentiellement avec des fonctions a deux points des champs (du fait du choix de la
renormalisation On-Shell) et s’écrivent a 1’aide de la déclaration infinitesimal qui spécifie que
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la quantité considérée est une perturbation. Par exemple les contres-termes dans le secteur des
neutralinos/charginos sont définis de la fagon suivante,

infinitesimal dMG1 = (dMNE1-Zn21%*(Zn21*dMG2+2%Zn31*dneY23+2*xZn41*dneY24)
-2%7Zn11*(Zn31*dneY13+Znd41*dneY14)+2*Zn31*Znd1*dmue) /Zn11~2.

transform MG1 -> MG1 + dMG1.

infinitesimal dZc1l1L = ’Block[sff,dsff,sff=SelfEnergy[prt["~1+"]->prt["~1+"],MC1]
dsff=DSelfEnergy[prt["~1+"]->prt["~1+"] ,MC1] ;
-ReTilde[ MC1~2 (LVectorCoeff[dsff] + RVectorCoeff [dsff])
+ 2 MC1 LScalarCoeff [dsff]+LVectorCoeff [sff] ] ]°
infinitesimal dZc11R = ’Block[sff,dsff,sff=SelfEnergy[prt["~1+"]->prt["~1+"],MC1]
dsff=DSelfEnergy[prt["~1+"]->prt["~1+"] ,MC1] ;
-ReTilde[ MC1~2 (LVectorCoeff[dsff] + RVectorCoeff [dsff])
+ 2 MC1 LScalarCoeff [dsff]+RVectorCoeff [sff] ] ]°
infinitesimal dZc12R = (2/(MC1°2-MC2"2))* (MC1*dpc21LSp+MC2*dpc12LS+MC2~2*dpc12RV
+MC1#MC2*dpc12LV-MC1*dchXt21-MC2*dchXt12),
dZc12L = (2/(MC172-MC2~2))* (MC1*dpc12LS+MC2*dpc21LSp+MC2~2*dpcl12LV
+MC1#MC2*dpc12RV-MC1*dchXt12-MC2*dchXt21),
transform ’>~1+’->(1+dZc11L/2%(1-g5)/2+dZc11R/2* (1+g5) /2) *’~1+’
+(dZc12L/2*(1-gb) /2+dZc12R/2% (1+gh) /2) * > ~2+7 ,

Par cette procédure le contre-terme dM; au terme de masse du bino M;BB est défini, ainsi
que la renormalisation du champ du chargino )Zf — (1+ <5Z1Z-))2;-F a laide de fonctions a deux
points déclarées avec SelfEnergy. Les définitions dépendent du schéma de renormalisation choisi,
par conséquent si 'on souhaite changer la maniére de fixer les contre-termes il suffit juste de
changer les quelques lignes précédentes, rendant le code trés flexible. Les fantémes de Fadeev-
Popov, nécessaires pour la consistance des théories de jauge, sont générés par l'intermédiaire des
transformations BRST [92],

brst_transform A -> deriv¥’A.c’+i*EEx(CW+ *’W-.c’- W-"*’W+.c?),
Z -> deriv*’Z.c’+i*EE/SWCWx W+’ *’W-.c’-?W-"*’W+.c?),

Une fois tous les fichiers nécessaires écrits, lors de ’exécution de LanHEP il est possible de choisir
le format des fichiers de sortie selon le code informatique avec lequel on souhaite travailler. En
particulier il est possible d’obtenir une sortie pour le programme CompHEP [93], ou alors pour
FormCalc puisque SloopS 'utilise.

6.3 FeynArts

Le programme FeynArts [89] génére automatiquement tous les diagrammes correspondants
a un processus donné. Il est de plus possible de sélectionner quelles seront les particules qui
circuleront dans les boucles et de spécifier la topologie du diagramme (vertex, self, boite). Pour
les créer FeynArts utilise le contenu en particules (avec leur structure de Lorentz associée), et les
régles de Feynman correspondantes (contenant les différentes interactions de la théorie), définies
dans les fichiers de modéle écrits automatiquement par LanHEP. Par exemple la déclaration d’une
particule, ici le gluino g, s’écrit,

F[7] == (x gluino *)
SelfConjugate -> True,
Indices -> Index[Gluon],
Mass -> MSG,
PropagatorLabel -> "~G",
PropagatorType -> Straight,
PropagatorArrow -> None ,

95



CHAPITRE 6. LE PROGRAMME SLOOPS

De plus pour diminuer le temps de calcul, les particules possédant les mémes nombres quan-
tiques sont rangés dans des classes, généralisant la définition des particules, par exemple pour
les neutralinos,

F[6] == { (* ’[hvol’, ”v02’, “VOS’, LV047], *)
SelfConjugate -> True,
Indices -> {Index[neul},
Mass -> neuMass,
PropagatorLabel -> '"neu",
PropagatorType -> Straight,

PropagatorArrow -> None },

ol I'indice neu prend les valeurs de 1 & 4.

Quant aux couplages, ils s’écrivent, en prenant 1’exemple du couplage )2?)2?7
(*--- neu neu A ---%)
C[L Fl6,t1], F[6,t2], V[1] 1 == 1/4 I EE / SW *
{
{ 0, dMTR237[t1, t2] },
{0, - dMTR238[t1, t2] }
IS

Les deux zéros représentent la valeur du couplage & 'arbre, nul car les neutralinos sont neutres,
la partie dMTRxxx est la partie contre-terme, non nulle, qui provient du mélange vZ° induit
lors de la renormalisation du champ du boson Z°, qui lui se couple aux neutralinos a travers
I'isospin faible. Il existe deux termes, un pour chaque polarisation du neutralino et les indices t1
et t2 sont les indices de la classe neu. Les paramétres dMTRxxx sont des blocs de constantes de
renormalisation afin de condenser les écritures et d’optimiser la vitesse des calculs,

RenConst [dMTR237[1,1]] = CW Zn31 Zn31c dZw3b -2 SW Zn31 Zn31lc dZw3
+ 2 SW Zn31 Zn31lc dZg - CW Zn4l Zn4dlc dZw3b
+ 2 SW Zn41 Zndlc dZw3 -2 SW Zn4l Zn4lc dZg
RenConst [dMTR237[1,2]] = CW Zn31 Zn32c dZw3b -2 SW Zn31 Zn32c dZw3
+ 2 SW Zn31 Zn32c dZg - CW Zn4l Zn42c dZw3b
+ 2 SW Zn41 Zn42c dZw3 -2 SW Zn4l Zn4d2c dZg
RenConst [dMTR237[1,3]] = CW Zn31 Zn33c dZw3b -2 SW Zn31 Zn33c dZw3
+ 2 SW Zn31 Zn33c dZg - CW Zn4l Zn43c dZw3b
+ 2 SW Zn41 Zn43c dZw3 -2 SW Zn4l Zn43c dZg
RenConst [dMTR237[1,4]] = CW Zn31 Zn34c dZw3b -2 SW Zn31 Zn34c dZw3
+ 2 SW Zn31 Zn34c dZg - CW Zn41l Zn44c dZw3b
+ 2 SW Zn41 Znd4c dZw3 -2 SW Zn4l Znd4dc dZg

Finalement la création d’un processus et la sélection d’une topologie se fait & partir de la décla-
ration suivante, correspondant au processus )X\ — bb ot I'on souhaite obtenir seulement des
diagrammes de Feynman composés de self-énergies,

process = {prt["~o1"],prt["~o01"]} -> {prt["b"],prt["B"]}

Print["Self energies"]

tops = CreateTopologies[l, 2 -> 2, SelfEnergiesOnly] ;
ins = InsertFields[tops, process];

DoPaint[ins, "self"];

self = CalcFeynAmp[CreateFeynAmp[ins],
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6.4 FormCalc

Ce code lit les diagrammes générés par FeynArts et crée un sous-programme Fortran complé-
tement indépendant du reste du code, puis il réduit les expressions symboliques & 'aide de
Mathematica [94] et Form [58| afin de calculer 'amplitude au carré du processus considéré.
FormCalc permet de calculer les sections efficaces pour des processus jusqu’a trois particules dans
I’état final, des désintégrations et des corrections & une boucle aux masses des particules. Pour
I'intégration sur I’espace des phases a trois particules FormCalc utilise la librairie CUBA [95]. Pour
'utilisation de FormCalc dans SloopSil a aussi été rajouté la bibliothéque BASES [96]| provenant
du code GRACE [59]. Les intégrales de boucles sont calculées a 'aide du code LoopTools.

6.5 LoopTools

Le programme LoopTools permet d’évaluer numériquement les intégrales tensorielles interve-
nant dans les boucles en utilisant la méthode de réduction de Passarino-Veltman présentée dans
le chapitre précédent. Les intégrales scalaires sont contenues dans la bibliothéque FF [97]. Lors du
calcul de processus d’annihilation de matiére noire dans le halo galactique, leur vitesse relative
est trés faible, de ordre de 10~ 3¢, les quadri-impulsions des neutralinos sont approximativement
p = (my,0,0,0). Le probléme du déterminant de Gram nul intervient alors et pour I’éviter une
méthode de segmentation particuliére [70] des intégrales a été implémentée.

6.6 Tests

Pour s’assurer de la justesse des résultats produits par SloopS une batterie de tests doit étre
menée systématiquement [80]. En particulier les résultats doivent étre finis dans I'ultraviolet,
I'infrarouge et ne pas dépendre de la jauge. La section efficace totale peut étre décomposée en
ses différentes contributions comme suit,

o(s) = oo(s) + o1.(5,Cuv, A) + ocr(s, Cuv, A) +0s0f1(8, A, ke) + Ohard(s, ke) (6.1)

a1v (57)‘)

Les parties 1L, CT, soft, hard représentent respectivement la partie & une boucle, de contre-
termes et d’émission réelle “molle et "dure. La partie virtuelle est la somme des contributions de
boucle et de contre-termes qui doit étre libre de divergences ultraviolettes. Les deux contributions
d’émission doivent quant & elles éliminer les divergences infrarouges. Tous les tests sont menés
en double précision.

6.6.1 Tests dans 'ultraviolet

L’introduction des contre-termes permet d’éliminer les divergences ultra-violettes dans les
résultats physiques, schématisées par le paramétre Cpry. Cependant, par défaut ce paramétre est
mis & zéro dans le code. Pour tester cette suppression on fait varier dans le code la partie Cyy
(DELTA) de sept ordres de grandeur,

#define DELTA 1D7
#define MUDIM 1D100

et I'on regarde la variation du résultat entre Cyy = 0 et Cpyy = 107. Le paramétre MUDIM
représente I'échelle de renormalisation p. Si Paccord entre les deux résultats est a 7/8 chiffres
significatifs alors la somme

o1v (s, A) = o1(s,Cuv, A) + acr(s, Cuv, A) (6.2)

est considérée comme indépendante de Cpy .
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6.6.2 Tests dans l’infra-rouge

Il faut ensuite vérifier si la section efficace est indépendante de la masse fictive A puisque
c’est le régulateur utilisé dans FormCalc. Par défaut cette valeur est fixée a 1 pour éliminer les
In \. Pour vérifier 'indépendance en ce paramétre on le fait varier a partir de la déclaration

| #define LAMBDA 1D10 |

et I’on regarde si le résultat

o1 V+soft(37 kc) = 0'1\/(8, )‘) + Usoft(37 A kc) (63)

varie significativement. Pour supprimer la dépendance de I’énergie du photon sur la coupure
ke, il est nécessaire d’ajouter la partie d’émission réelle "dure” calculée & partir d’'un processus
2 — 2+ v évalué a l'ordre de l'arbre. Cette partie est calculée a I’aide de la librairie CUBA [95]
ou BASES [96]. Ensuite on calcule la somme

o1 soft—l—hard(sa )\) = Usoft(sa )\, kc) + Uhard(sa kc) (64)

pour différentes valeurs de k. jusqu’a observer la stabilité des résultats. Il est & noter que cette
procédure n’est pas automatisée et qu’il en existe de plus performantes et automatiques basées
sur le principe d’ajout de contre-termes locaux permettant d’éliminer les divergences infra-rouges
[98, 99] aussi bien en QCD qu’en QED.

6.6.3 Tests d’indépendance de jauge

Nous avons montré dans la section 3.5.4 qu’il est possible d’utiliser une fixation de jauge non-
linéaire pour avoir a disposition un test sur I'indépendance de jauge des résultats physiques. Ce
type de fixation de jauge est utilisé dans SloopS et introduit huit paramétres {a, ﬁN , B €7, R, 0, p}
que l'on peut faire varier pour vérifier que le résultat ne change pas. Elle introduit une modifica-
tion des vertex du secteur de Higgs et de jauge qui dépendront de ces parameétres. Cette méthode
requiert le calcul d’un plus grand nombre de diagrammes de Feynman dans le cas général, mais
lors du test d’indépendance de jauge, grace & un choix judicieux de paramétres, il est possible

de tester des couplages bien précis. Par exemple le couplage suivant,
D1 D4

,’ P1 (M) P2 (V) pP3 P4

. 1
AN A Wt G0 GF (1 —ar)g"”
A Y 25w

DoV D3
peut étre éliminé en choisissant @ = k = 1.

6.7 Diagonalisation de la matrice de masse des neutralinos

La matrice 4 x 4 de masse Y des neutralinos s’écrit :

My 0 —cgswMy  sgswMy
0 M My — M
Yy — 2 cgCw iz SpCw Mz (6.5)
—CﬁSWMZ CﬁCWMZ 0 — K
S,BSWMZ —SgCWMZ — Ml 0
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Cette matrice est diagonalisée par une matrice unitaire 4 x 4 N;; telle que

me 0 0 0
1
yonynio| 2o 00 (6.6)
0 0 my 0
0 0 0 my
4

Pour des raisons pratiques les éléments N;; de la matrice N sont pris réels en général, I'incon-
vénient de ce choix est que l'on obtient au moins une valeur propre négative. Afin d’obtenir
des masses de neutralinos positive, la matrice N doit étre choisie imaginaire. On peut alors la
décomposer en deux matrices J et N,

N=JN (6.7)

telle que N est purement réelle et les éléments de J purement imaginaires ou réels. Cette derniére
peut étre définie comme,

J = diag(j1, j2, j3, ja) (6.8)
ainsi la matrice diagonalisée Y ’écrit,
Y = J*NYNTJ
=J* diag(mi?,mm Mo mig) J (6.9)

X327 X3

Les valeurs propres mgo peuvent étre positives ou négatives, alors pour obtenir toutes les masses
oA
positives il suffit de définir les éléments j; de la matrice J,

1sieg >0 mio
jz‘ = ou € = T =4 (6.10)
isieg <0 [7ivgo]

L’utilisation de masses négatives peut aussi poser des problémes notamment au niveau du trai-
tement des particules Majorana dans FeynArts. Cependant il apparait que les problémes nu-
mériques ne sont présents seulement lorsque la particule de masse négative fn;(? impliquée est
sur une patte externe (ceci parait évident dans le cas d’'une désintégration), pas en tant que
particule échangée (ceci peut au moins se comprendre au niveau des propagateurs puisque dans
leur expression les masses n’apparaissent qu’au carré). La méthode de diagonalisation complexe
donne des masses positives au prix d’introduire des couplages complexes pour les neutralinos.
Puisque le probléme se pose surtout au niveau des couplages, il est possible d’utiliser une autre
méthode ot la matrice N est considérée purement réelle mais les champs des neutralinos vont
étre transformés selon,

(6.11)
et le terme de masse des neutralinos s’écrit
~ =0 - =0 - =0 ~
MgoX; XzQ = GMgoX; X? — TMROX; X? (6.12)
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et les couplages sont transformés comme,

—0 . —0 [(1+ee; | € —¢€; -
Xi (@ij + bijys) v X? — Xi ( 2Z L — iy 5 ]> (aij + bijvs) vy X?

-0 5 —0 (€ +e . 1—¢€e€; -

Xi (aij +bij1s) Xj = X | = T j) (aij + bijys) X;

_ o [/1+e ,1 146, 1—¢ i
Fai + bivs)v. Xy — F K fa; — i > ( “b 5 Zdi) 7574 X5

2
=0 =0 ]~+€ 1
Xi (@i +biy5) 7, F'— X; [( La; +i—— bl>

1—¢

bz +1 ai) 75:| X?

1+¢ — €
( “b Zai> 75'7u:| F
+
2

_ /146 1— e
F(ai+bz"}’5)>€?—>FK PR 2EZbi> + 5

2
— — 1+€ _1_6' 1+ _1—6'
X?(%eri%)F—’X?[( “a; +i 5 sz‘) + 5 i+ i ZQi) 75}17

2
(6.13)

6.8 Tests numériques de I'implémentation des paramétres com-
plexes

6.8.1 Parameétres du modéle

On donne dans le tableau suivant les valeurs numériques des paramétres que 'on a utilisé
pour réaliser les tests

Parameétre | Valeur Paramétre | Valeur
e 0.31345 my 175
Sw 0.48076 mp 4.62
s12 0.2229 wtop 1.7524
523 0.0412 wZ 2.4944
s13 0.0036 wW 2.08895
Js 1.238 ig 2
mzo 91.1884 7 150
Me 0.000511 M,y 90
my, 0.1057 Mo 120
mr 1.777 Ms 300
My 0.046 M; 5 100
mq 0.046 A; 0
Me 1.42 m 40 300
Mg 0.2 nlgs 0

Toutes les largeurs non-mentionnées dans ce tableau sont & zéro et les paramétres de fixation de
jauge non-linéaire de I'équation 3.82 nlgs sont mis & zéro.
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6.8.2 Tests sur les masses corrigées

Ces paramétres donnent les masses suivantes, dans le cas d’une diagonalisation avec para-
métres réels ou complexes,

oS "% M "%

R 43.8446573 98.2006334 -153.447309 221.402018

C 43.8446573 98.2006334  153.447309  221.402018

On remarque qu’avec ce jeu de paramétres, le neutralino X3 est de masse négative dans le cas de
parameétres réels alors qu’avec les parameétres complexes toutes les valeurs propres sont positives.
Nous donnons maintenant la valeur des masses prédites restantes recevant une correction & une
boucle, dans le cas de parameétres complexes, dans le schéma de renormalisation OS ot les masses

Mo, M-+, M-+ sont prises comme input
X9 X-lh X; p p

Masses corrigees m>~<(2) mig mig

Cyy =0 103.723512  152.591502 222.663143

Cyy =107 103.723512  152.591502 222.663143

Les masses corrigées sont donc stables dans 'UV montrant la bonne implémentation d’une part
du schéma de renormalisation et d’autre part de l'utilisation des paramétres complexes.

6.8.3 Tests sur les désintégrations

Nous avons calculé ici deux désintégrations impliquant des neutralinos, dont une avec le ¥3
seulement calculable avec des paramétres complexes puisqu’il est sur une patte externe. Nous
avons utilisé deux choix d’observables différents pour le schéma de renormalisation OS, un avec
deux charginos et le neutralino le plus léger, I'autre avec les deux neutralinos les plus légers et le
chargino le plus léger. Ces deux schémas de renormalisation seront détaillés dans le chapitre 7.

70 — X?X? Tree-Level One-Loop Cyy =0 One-Loop Cyy = 107
R 0.133599930-10~2  -0.25351043767373-10~4 -0.253510444-104
C 0.133599930-1073  -0.25351043767374-10~* -0.253510445-10~4
N
C (x%,x3, x{ as input)  0.741107179-10~1  -0.35401104480-10~2  -0.35401104945.10~2
C (%, xT,x7 asinput) 0.741107179-10~1  0.55064607491-10~2 0.55064607213-10~2

Les résultats dans l'ultraviolet montrent une bonne stabilité puisque 1’on observe une variation
au huitiéme ou neuviéme chiffre significatif.

6.8.4 Test sur les sections efficaces

Nous avons testé deux processus, x{x) — p~pt et x{x§ — p~p*. Pour le premier processus
nous avons gardé les mémes paramétres de modéle sauf pour les suivants
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Paramétre | Valeur

I 150
M, 500
My 1000
Ms 1000

M; 5 1000
Ay 1000
Ape 0

Atpsec 1000
Ay 80000
Ay 69990

Pour x{x9 — 1~ p™ nous avons utilisé les parameétres définis dans la section 6.8.1. Ces deux tests
ont été réalisés pour une énergie dans le centre de masse de /s = 1000 GeV avec le schéma OS
défini par les masses Tg0s Mgt Mgt Seule la correction virtuelle a été calculée, les divergences
infrarouges ont été régulées en introduisant une masse A, = 1 au photon.

Y — p T (/s = 1000) Tree-Level One-Loop Cyy =0  One-Loop Cpy = 107

R 0.299416703-10~*  -0.5211824976-10~* -0.5211825562-10~*

C 0.20941670310~*  -0.5211825007-10*  -0.5211825433-10~*
XIx§ — wpt(v/s = 1000)

C 0.240437163-10""  -0.39666343320-10~>  -0.3966634348210~2

On observe ici aussi une bonne implémentation du schéma de renormalisation et de la diagonali-
sation complexe. Il est a noter ici que le total Tree-Level + One-Loop est négatif, cela est du au
fait que seule la correction virtuelle a été calculée, il reste ainsi une dépendance non-physique en
la masse du photon A, qui serait éliminée lors de I’ajout de I’émission réelle "molle” et "dure” d’'un
photon supplémentaire. Cependant cette émission réelle n’est pas reliée & 'implémentation des
paramétres complexes dans le secteur des neutralinos/charginos et nous nous sommes seulement
intéressés a I’élimination des divergences ultra-violettes, c’est pourquoi la radiation n’a pas été
prise en compte.

6.9 Application & la matiére noire

6.9.1 Interpolation des sections efficaces

Nous avons vu dans le chapitre 1 que la densité relique est inversement proportionnelle au pro-
duit ov o1 v est la vitesse relative des particules de 1’état initial. Nous avons légérement modifié
dans SloopSle facteur de flux entrant dans le calcul de la section efficace pour obtenir directe-
ment le produit ov (voir Annexe B). Si l'on est loin des poles et des seuils qui peuvent intervenir
dans les sections efficaces [100], on peut raisonnablement écrire en premiére approximation

O;5Vij = Qjj + bijUin (6.14)
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ol a et b sont les coefficients respectivement de ’annihilation en onde s et p, lorsque la section
efficace est développée en ondes partielles et v;; la vitesse relative dont 'expression est donnée
dans I’Annexe B. Pour la présentation des futurs résultats, nous utiliserons souvent cette paramé-
trisation pour illustrer I'importance relative des corrections radiatives sur les sections efficaces
d’annihilation xy — XX. Nous donnons a titre d’illustration une telle interpolation pour le
processus XiX] — WTW~ dans la Figure 6.1 obtenu a 'aide de SloopS, exprimé en fonction
en la vitesse au carré en unité de ¢, la célérité de la lumiére. Les paramétres de fit a et b sont
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FIGURE 6.1 — X0 — WHTW~(v) en fonction de la vitesse relative au carré a l’arbre (courbe
noire solide) et a une boucle dans le schéma A, (courbe bleue en pointillés) ainsi que le schéma

MH (courbe rouge en tirets). Leurs fits respectifs sont tracés de la méme couleur en gras.

donnés dans le tableau 6.1. Les interpolations ont été réalisées pour des vitesses relatives au

Schéma moom_+m_
XS

Tree A DR MH

W) - WHw-  a 4337 +6.8% +12.8% +30.6%
b +4.80 +4.2% +83%  +25%

TABLE 6.1 — Valeurs des coefficients a et b pour le processus X\X — WTW ™ a Uarbre (Tree)

. N . . . . ot
et leurs corrections & une boucle dans trois schéma de renormalisation pour t—;

carré appartenant a l'intervalle v? € [0,0.3] car au moment du découplage les neutralinos ont
une vitesse approximativement égale a v ~ 1/2.

6.9.2 Interface avec micrOMEGAs

Le programme micrOMEGAs [90] est un programme trés efficace de calcul automatique de la
densité relique de matiére noire dans les extensions du Modéle Standard et en particulier dans le
MSSM. Les processus d’annihilation de matiére noire nécessaires au calcul de la densité relique
sont évalués a 'aide du programme CalcHEP [101], un programme Monte-Carlo calculant des
observables principalement & 'ordre de Born. C’est pourquoi nous avons interfacé d’une fagon
semi-automatique SloopS avec micrOMEGAs pour des études de calcul de densité relique & ’ordre
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d’une boucle. Cependant micr0OMEGAs posséde quelques corrections radiatives, implémentées sous
la forme de couplages effectifs par l'intermédiaire de programmes utilisant les RGE (Running
Group Equations) du MSSM comme SuSpect . Pour éviter le double comptage des corrections
radiatives nous avons donc recréé un modéle du MSSM n’en possédant aucune, pour pouvoir
ensuite y implémenter celles obtenues avec SloopS. Nous allons maintenant détailler la procédure
d’interface :

— Tout d’abord nous calculons avec SloopS les processus d’annihilation yx — XX que nous
souhaitons corriger & 'ordre d’une boucle, et nous obtenons les résultats sous la forme
d’un fichier de sortie donnant la valeur de la section efficace en fonction de ’énergie dans
le centre de masse o(1/s).

— La seconde étape consiste & interpoler ce fichier de résultat a 'aide du programme ROOT
[102]. Avant de l'interpoler il faut transformer la dépendance de la section efficace en /s
en une dépendance en l'impulsion dans le centre de masse de la paire x;x; a l'aide de la
formule

Vs = (my )l = (my, —my, )2
Pem = 2 \/5
Alors la section efficace o(pey,) est interpolée a I'aide d’une fonction f(pen)-

— Enfin 4 I’aide d’une instruction il est possible d’indiquer au programme micrOMEGAs d’utiliser
le polynéme d’interpolation du processus a corriger au lieu de celui calculé avec CalcHEP.

(6.15)
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Chapitre 7

Renormalisation du secteur des
neutralinos charginos
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English Abstract The renormalisation of the neutralino/chargino sector is obviously of rele-
vance for dark matter predictions at the one-loop level. We present here the On-Shell renorma-
lisation of this sector and the various choices of input parameters available. More precisely, we
need three input observables to constrain the three parameter of this sector : (M, Ms, p). The
most obvious choice to constrain this set is to take as input three physical masses among the six
(m)z(l),mig,mxg,mig,m;ﬁi,m%i) available. There are of course different choices to reconstruct
the set of three physical masses. In any case we need to solve a system of three equations to
get the expression of the three counter-terms needed to renormalise this sector. We have derived
general formulas for the various counter-terms d My, My and du for any choice of input parame-
ters based on the choice of any set of three physical masses. To be as general as possible we kept
the entries of the unitary rotation matrix IV of the neutralino sector as complex. Then the field
renormalisation and one-loop finite corrections to the remaining masses and other observables
are obtained accordingly. Therefore we are able to quickly change the renormalisation scheme in
this sector for any desired or available input based on any set of masses. In practically all appli-
cations found in the litterature the two charginos physical masses and the lightest neutralino are
taken as input. This choice is the simplest and easiest to implement from a technicall point of
view. Indeed the two charginos masses reconstruct the subset (Ma, pt). Since it is a 2 x 2 system
it is easy to handle. Then there remains the reconstruction of Mj for the 4 x 4 neutralino sector,
which is easily obtained from the subset just calculated. This scheme is the one implemented by
default in SloopS. However if mixing in the neutralino sector is small with disparate mass scale
for My, Msy, i such that M; > Ms, the lightest neutralino mass will depend little on M; and
therefore at counterterm level M is not sensitive to mgo. One then expect that a large scheme
dependency will occur for radiative corrections. We will show in this chapter the complete deri-
vation of the counterterms using this choice of input observables. As an example of a different
choice of input observables from masses we took the two lightest neutralinos and the lightest
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chargino. In this case solving independently the equations is not possible, we need to solve all
of them at the same time. Moreover some sum rules which were valid in the former scenario are
no longer in this one. We noticed that this scheme produces large one loop finite corrections to
the three remaining masses, some examples will be shown in the following chapters. This can be
explained by the fact that, in this scheme, one parameter to be fixed is not really constrained,
thus large uncertainties appear. This scheme is now implemented as it is presented in this chapter
in the SloopS code. To conclude we propose a kind of “mixed” scenario where two parameters are
obtained from masses and the remaining one coming from another kind of observable, which is
of relevance for example if only two masses are measured, where the two above schemes become
more or less equivalent. In any case, if a positive signal of supersymmetry is found, we will have
to construct a renormalisation scheme of this sector with any data at our disposal, which may
not be only masses, that is why we need to prepare the work to be done and a very flexible code
to be able to adapt to any configuration.

7.1 Introduction

Nous allons présenter dans ce chapitre la renormalisation sur couche de masse (On-Shell OS)
du secteur des neutralinos et charginos et les différentes fagons de le renormaliser selon les ob-
servables que 'on a choisies comme contraintes. Ce chapitre est une généralisation de ce qui a
déja été fait dans [79, 103, 104, 105, 106, 107, 108]. La renormalisation de ce secteur est d’une
importance cruciale pour pouvoir prédire la densité relique de matiére noire avec une grande
précision, dans le cas ot la LSP est le neutralino x!, mais aussi pour les collisionneurs puisque
dans une grande partie de I'espace des parameétres du MSSM les particules de ces deux secteurs
sont les plus légéres. De plus, si le neutralino est la LSP et la R-parité conservée, elle est stable
et se trouve en tant qu’ultime particule provenant d’une cascade de désintégration de particule
supersymétriques plus lourdes et instables. Alors que les charginos, étant chargés, peuvent laisser
une trace dans les détecteurs, le neutralino Y, étant stable et neutre, sa signature caractéris-
tique apparaitra sous la forme d’énergie manquante Fp. Enfin la renormalisation de ce secteur
et la possibilité de prédire des observables physiques avec un haut degré de précision permettra
de tester en profondeur le modeéle et reconstruire efficacement les paramétres fondamentaux du
Lagrangien. Les parameétres libres de ce secteur sont les parameétres de masse de brisure douce
des jauginos M; et My ainsi que le terme de masse des higgsinos p, provenant du superpotentiel.
Nous devons donc définir trois conditions de renormalisation pour pouvoir déterminer les contres-
termes d My, dMs et dp. Pour un schéma de renormalisation sur couche de masse nous pouvons
prendre ces conditions & partir de la mesure de trois masses physiques parmi six (soit quatre neu-
tralinos et deux charginos). Algébriquement cela revient a résoudre un systéme de trois équations
a trois inconnues (dM;,0Mas, ). Nous avons obtenu et généralisé les expressions de chacun de
ces contre-termes pour n’importe quel choix des trois masses parmi six. Les renormalisations des
champs et les corrections finies & une boucle des masses restantes ainsi que d’autres observables
sont exprimées en fonction de ces trois quantités. Dans la plupart des applications trouvées dans
la littérature les masses physiques choisies sont celles des deux charginos et du neutralino le
plus léger. Techniquement il est alors possible de résoudre deux équations indépendamment nous
permettant de reconstruire Mo et p. Le paramétre M restant est alors facilement exprimé en
fonction des deux autres & partir de la matrice 4 x 4 du secteur des neutralinos. Cependant si le
mélange est faible dans ce secteur avec des échelles de masses pour My, My, p disparates, telles
que M > pu, le neutralino le plus léger dépendra faiblement de M; et au niveau des contre-
termes M sera peu sensible & mgo. On s’attend par conséquent a une grande dépendance en
le schéma de renormalisation et de grandes corrections radiatives. De plus ce schéma peut ne
pas correspondre & une situation expérimentale réaliste. Nous allons dériver dans ce chapitre
I’ensemble des contre-termes dépendant de ce choix de schéma de renormalisation. Pour illuster
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la liberté de choix dans les masses physiques nous allons renormaliser ce secteur en prenant les
deux masses des neutralinos les plus légers et celle du chargino le plus léger comme conditions de
renormalisation. Dans ce cas les trois équations doivent étre résolues en méme temps. Nous avons
remarqué que ce schéma produit dans la plupart des cas de grandes corrections & une boucle aux
masses restantes. Cela est relié au fait que, dans ce schéma, un des paramétres & déterminer n’est
que peu contraint et son obtention est entachée de grandes incertitudes. Nous avons implémenté
ce deuxiéme choix d’observables dans le code SloopS . Dans une situation expérimentale réaliste,
il faudra étre capable de s’adapter & n’importe quelles observables a notre disposition, et cela
n’impliquera par forcément des mesures de masses. C’est pourquoi en conclusion nous proposons
un schéma “mixte” ol deux paramétres sont contraints a partir des masses et celui restant &
partir d’'un processus, comme par exemple une désintégration.

7.2 Lagrangien du secteur

Les neutralinos et charginos sont des mélanges de fermions de spin-1/2 : d’une part les deux
multiplets chiraux de Higgs, les higgsinos, et d’autre part les jauginos électrofaibles contenus dans
le supermultiplet de jauge des groupes SU(2) et U(1) du Modéle Standard. La partie bilinéaire
du lagrangien décrivant ce secteur s’écrit,

L= Ekm + ﬁmass (71)

avec

Lyin = iW 5*(0,W)* + Bo*(8,B) + b11,5" (Op0m,) + P11, (0u0011,)] (7.2)
et

1, - - o
Lonass = §[M1BB + MoWW® + h.c] + ei[paby, gy, + hc]
- Yrama 1 D, Trama 1 >
+iV2[H] (gaWOT* + 591 B) v, + Hl(gaWoT* + S0 B)m, +he - (73)

avec a=1,2,3,1,j=1,2, ¢;; le tenseur complétement anti-symétrique et 7' les générateurs de SU(2).
Les deux doublets higgsinos sont définis en termes de spineurs (gauches) de Weyl a deux compo-
santes, ¥p, = (H?, HO) et vy, = (H ,H+) Le champ B correspond au jaugino (bino) de type
U(1), et les champs W% aux jauginos de type SU(2) (winos). Les termes de la premiére ligne
de Lnqss sont constitués des masses douces des jauginos M et My et du terme de masse des
higgsinos p provenant du superpotentiel. La deuxiéme ligne est constituée des interactions de
jauge-matiére supersymétriques qui, une fois que les champs HY et HY auront acquis des vevs,
formeront des termes bilinéaires en les champs des higgsinos g, , et des jauginos W et B, im-
pliquant un mélange comme conséquence de la brisure de la symétrie électrofaible. En définissant
W = W1 F ’LWQ et T =T, + 1T, puis en rassemblant les champs chargés nous allons obtenir
quatre fermions de Dirac, les charginos )Zli, )Zét La combinaison des champs neutres va donner
quatre fermions de Majorana )2(1]727374, puisqu’ils appartiennent aux mémes supermultiplets que
les bosons vecteurs neutres qui sont eux-mémes leur propre antiparticule.

7.2.1 Secteur des charginos a ’arbre

Si 'on définit la notation suivante pour collecter les parties chirales :

—iWt
vi= s )

Vi = ( i >
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alors le lagrangien des charginos s’écrit,
L6 = i[YF 0" 0, + Vi ' i) — WE Xuf, + oi X1 (7.5)
La matrice de masse nue 2 x 2 des charginos est définie par :

X:< My \/ESBMW>

esMiw ., (7.6)

ou sg(cg) signifie sin B(cos [3).
Comme X # X7 si tan 3 # 1, deux matrices unitaires U et V sont nécessaires pour la diagona-
liser.

Xk =Uvg
X =Viyy

Dans le cas ou la symétrie C'P est conservée, on peut prendre U et V réelles, donnant alors, en

(7.7)

notant X la matrice diagonalisée

- - me+ 0
X=UXxvl =XT=vXxTUu = ( X1 ) mox < m_+ (7.8)
0 m.+ X1 X2
X2
ou T signifie 'opération de transposition et M (i,j =1,2) sont les valeurs propres de la matrice

hermitienne X XT. La diagonalisation de cette matrice est discutée dans ’Appendice C. Les
paramétres & renormaliser dans ce secteur sont My, p ainsi que les champs, les autres étant
obtenus a partir du secteur de Higgs et de jauge.

7.2.2 Secteur des neutralinos a ’arbre

Le secteur des neutralinos est obtenu en rassemblant les champs neutres. En utilisant la
notation suivante :

—iB°
. —iWy 4
Hj
le lagrangien s’écrit,
i . — 1 - -
£ = S e 0" + 9T ] = SWMTY Y + TV T (7.10)
La matrice de masse 4 x 4 non-diagonale des neutralinos est définie par :
M1 0 —CgSWMZ SgSWMZ
0 M. My; - M
Y = 2 oWz mepaw s (7.11)
_CBSWMZ CgCWMZ 0 — Ml
SBSWMZ —SﬁCWMZ — K 0
Cette matrice est diagonalisée & I’aide d’une matrice unitaire N avec
Y = N*YN' = diag(mgo, mge, mgo, mgo) (7.12)

ol myo ( i=1..4) sont les masses physiques des neutralinos aprés diagonalisation. La diago-

nalisation de cette matrice peut se faire a 'aide de paramétres complexes (voir Chapitre 6)
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et la méthode a été présentée dans [42]|. Les paramétres a renormaliser dans ce secteur sont
My, My et p. Il est a noter qu’a l'origine, 'implémentation de LanHEP (telle que réalisée dans
CalcHEP /CompHEP ) prend des valeurs réelles pour les entrées de la matrice N et est prévue pour
une interface avec CalcHEP /CompHEP , cela ne pose donc pas de problémes pour ces programmes
lorsqu’un des neutralinos posséde une masse négative. Cependant, dans FormCalc, le traitement
des particules Majorana est différent et nécessite une masse positive pour ce type de particule.
Cela ne pose pas de probléme lorsque la particule avec une masse négative circule dans une
boucle, mais lorsqu’elle se trouve sur une patte externe, FormCalcest dans l'impossibilité de
calculer ne sachant pas comment les traiter. L’implémentation d’une diagonalisation avec des
parameétres complexes a donc été nécessaire pour pallier a cette difficulté technique.

7.3 Renormalisation & ’ordre d’une boucle des champs

Comme les secteurs des neutralinos et des charginos sont trés semblables et concernent des
fermions dans les deux cas, nous allons les renormaliser en méme temps avec une notation com-
mune. Alors le lagrangien “nu” pour ces deux secteurs a renormaliser se généralise en,

LY = i[h 0”8 0r 0 + VT 05" 0ur o] — [Wh oMotr o + ¥F o MR o] (7.13)

ou il est sous-entendu que la matrice My représente soit X pour les charginos, soit Yy pour les
neutralinos, et .la notation w L/RO généralise les champs des charginos 9§ /R0 OU des neutralinos
1. Le lagrangien renormalisé s’écrit alors,

LX =LY, +6LX (7.14)

et nous allons maintenant spécifier la forme de §L£X par la procédure de renormalisation.
A Tordre de l'arbre la matrice de masse non diagonale My est diagonalisée par la rotation des
champs a l'aide de deux matrices unitaires Uy, et Ug, telles qu’a cet ordre les champs s’écrivent,

Xro=URrYR0o (7.15)
XLo =UrYro
et la matrice diagonale correspondante M s’écrit,
M =UsMUl = MT = v, MIUE = diag(mg,, mg,, ) (7.16)

ot les my, sont les masses physiques. Alors les spineurs de Dirac/Majorana correspondants aux
charginos/neutralinos sont donnés par,

Xio = (@)0 (7.17)

T T T
= Xio = (Xri Xii)o (7.18)
Apreés cette diagonalisation les contre-termes pour chacun des paramétres entrants dans la ma-

trice de masse sont introduits, ainsi que les constantes de renormalisation 5ZZ§’R pour les champs
physiques chiraux xr r ,

My = M + 6M (7.19)

1
XR,Lilo = (5@' + §5Zg’L> XR,L j (7.20)
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Ces transformations sont équivalentes & la transformation suivante pour le spineur a quatre
composantes X; o,

§ _1 e |-
Xio=Xi+ 5 §ZPp + 0Z1* Pr| X, (7.21)

Il est & noter que dans notre procédure de renormalisation nous n’avons pas introduit de renor-
malisation pour les matrices de rotation Ur, r — U g + 0Ur g car nous les considérons comme
renormalisées, ¢’est & dire que leur forme est la méme & 'ordre de 'arbre et a I’ordre d’une boucle,
dans le méme esprit que [79, 104|. Nous possédons cette liberté car les champs ne représentent
pas une quantité physique, c’est a dire directement mesurable, puisqu’il n’apparaissent pas dans
les éléments de la matrice S. Ainsi la matrice de masse diagonalisée s’écrit,

SM = UdMU} = 6MT = UpsMiub (7.22)
et le lagrangien renormalisé est donné par,
Ly =ilxk(1+ 5 (5ZRT +62%)) o ox" + X1 (1 + 5 (5ZL +625T))5" 8, x1]
— XE(M +6M + = (5ZR M+ MsZ5)xr
X 4 sMt 4 2 (6ZL*’TMT + M5 Z%))xR] (7.23)

On passe de la notation de Weyl & la notation de Dirac a 'aide des formules suivantes,

XX = XRXL + XL Xr (7.24)
XPLX = XRXL (7.25)
XPrX = X1 Xr (7.26)
MY = XRO'XL + XL XR (7.27)

XVMPLX = X10"XL (7.28)
X" PrX = XRo"Xr (7.29)

ot les projecteurs gauche/droite sont définis par P r = 1;% En insérant ces notations dans le
lagrangien renormalisé on arrive a :
LY =LY, + 6L (7.30)
avec
Ly =ilX; z‘ﬂuauf(j] — [XaMijx;) (7.31)

SLX = ix;y [ (5ZR* + 07T PR+ - (5ZL + 6251, PL)o, %
— [{0My; + 5(<SZRvTM + M&Z")}Pr,

- 1 - -
+{oM]f + 5(5ZL*7TMT + M2} Prlx; (7.32)

7.3.1 Self-énergies
Les self-énergies renormalisées sont obtenues par I'opération suivante :

. o 0
I =3 — —— §LX 7.33
XiXj (q) XiX ( ) + aXJ axl ( )
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ol le ~ dénote la self-énergie renormalisée et le ~ sur le lagrangien des contre-termes indique que
I’on a pris sa transformée de Fourier.
Alors,

2)21')21' (q) - E)ZDZJ( ) PL&MZ] PRéMtki (7.34)
1 1.,
+ 5@1 —mg, )02 PL + 6 ZF* Pr] + 5[52]% Pr+6ZEPL)(f — my,) (7.35)

En décomposant de la fagon suivante ¢,z (q) :

S (@) = PLYE% (6%) +PRE§%(Q2) + (PLYEY (6) + dPREEY, (6 (7.36)
Puis en remplacant M = diag(mg,, Mg, - ) , nous obtenons :
nLS (q) = {5Mw + 5, 0Zf + %miiéZé} (7.37)
SRS (q) = {5 4 gz, 62k 4 >~<Z(SZB*} (7.38)
i (9) = E% (%) + %(5ZL +82}7) (7.39)
B (@) = 3%, (@) + l(5ZR" +62]}) (7.40)

Les self-énergies étant hermitiques, on obtient les relations suivantes entre les éléments de la
décomposition (7.36),

LS LV 2 LV RV 2 RV
S35, = 25N, BH5, (@) = 2056, 255, (@) = 255 @), (7.41)
Pour un fermion de Majorana (comme un neutralino), la symétrie de Majorana supplémentaire
impose,

S *
S8 () =S8 (@), SR =250, SEL(E) =S80 = 2L () (7.42)

L’équation (7.34) montre que les constantes de renormalisation des champs ne sont pas impliquées
dans la renormalisation des paramétres du Lagrangien contenus dans la matrice de masse M, &
savoir My, Ms, u

7.3.2 Fixation des 5Z$’R

Pour déterminer les constantes de renormalisation 5Z5’R nous avons adopté un schéma OS, ou
nous avons imposé que, lorsque ’on est sur la couche de masse, le résidu des propagateurs est égal
a 1let qu’il n’y a pas de mélange entre les champs physiques, cela se traduit mathématiquement
par imposer les relations suivantes,

ReS(ms,) =
ReLij(mg,) =

(7.43)
i#j (7.44)

ot le prime indique que I'on a pris la dérivée de la self-énergie. La premiére relation (7.43) permet
de fixer les constantes diagonales,

§ZE = — Rex <ReZ 2 ) + ReS 2 )) — 9my, ReSES (m2),

XzXz( Xz) XzXz( XzXz( Xi XiXi
675 = — ReSEY (m2)) = m?, (ReSLY (m2) + Resf (m2)) — 2mg, RefS (m2),

XiXi
(7.45)
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ol nous avons utilisé le fait qu’en cas de conservation de la symétrie C'P

LS 2 RS 2
)Zz)%z( Xz) XzXz( 5(2)

Les constantes de renormalisation des champs non-diagonales sont données par la deuxiéme
relation (7.44),

2
5226 T2 —m2 <msz62LS ( )t mngezRS ( u) Tt mXZmXJRezRV (m i )

mg, —mg, Y o o
+ mi ReEXzX (m i ) — g, 0M;; — me‘SM*) )
R LS RS 2 2 15 RV 2
02" = 2 —mt <mx1R€2x % (m3,) + my ReS{S (m3) + mi, ReS{y (mF,)

Xi Xj

— miiéM;i — m)ZJ(SMU) . (7.46)

2
+ m)"ciminezxzx (m my; )

Il est & noter que si l'on se spécialise au cas des neutralinos, I'utilisation de 1'équation (7.42)
permet d’écrire 6ZF =627 =62°, U, =Ur = N et M =Y et 'on obtient

1
0 __ LV LV 2
02 = Mo — Mo <mX§) <ReZX1 XJ( xj) . Rezx?xf (mxg’))
J
1 P LV*

(Rezigxg (m2) — ReSih (mxg)) - <5Y/ij - 5?@;)). (7.47)

et en se restreignant & une matrice N € R, cette formule se réduit a

2
o __ = LS _
82 = — (ReE oo (me) +my oRex) oz (m30) 6Yw> (7.48)
T J

. . . L,R . < 1s . R
Pour complétement déterminer les 67, 7 il reste a déterminer les contre-termes des paramétres

dM qui seront exprimés en fonction de 6M;, 6 Mo, 6y dont nous allons détailler 'obtention dans
la section suivante.

7.4 Renormalisation des paramétres a ’ordre d’une boucle

7.4.1 Contre-termes des matrices de masse

Les contre-termes 6 M7, §Ms, du apparaissent lorsque I'on renormalise les matrices de masse
X pour les charginos,

M. 253 M, oMy 60X
X0:< 2 V2sg W>+< 2 12) (7.49)
\/iclgMW M 5X21 5M
X 5X
avec
1 5M , 0t g
1 5M , 0t
6Xo1 = V2eg My (2 M2 - 35§> (7.51)
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et Yy pour les neutralinos,

M1 0 —ClgSWMZ SBSWMZ 5M1 0 5Y13 5Y14
Vi — 0 M2 ClgCWMZ _S,BCWMZ 0 5M2 5Y23 5Y24 (7 52)
0= —ClgSWMZ ClgCWMZ 0 — 5Y13 5Y23 0 —5M -
SgSWMZ —SlgCWMZ — Ml 0 5Y14 5Y24 —5M 0
Y oY
ou

16M?2 Stg  10s?
§Y13 = —cgsw M. Z _ 26 _TW 7.53
13 = —cgswMyz (2 w0, T (7.53)

LoMZ, — ,0tg  16sd,

16ME, Stg  16c3
Y3 = M — Ly ST 7.55
23 = +epew Mz (2 M2 s T2, (7.55)

1 5M2 Stg  16c¢3
§Ya4 = —sgew M. 278 W 7.56
24 = —Sgcw Mz <2 M2 3 s + 5 CIQ/V ( )

Les contre-termes des matrices de masse diagonalisées entrants dans (7.45), (7.46), (7.47) sont
définis par,

X =USXVT (7.57)
§Y = N*§Y NT (7.58)

et apparaissent comme des combinaisons linéaires des contres-termes 0M7, Mo, dp, 6.X;; et 0Y5;
pour i # j*. Les deux derniers contre-termes non-diagonaux donnés par les équations (7.50) et
(7.52) sont fonctions de contre-termes déja déterminés dans les secteurs de jauge et de Higgs, par
conséquent il ne reste qu’a fixer ceux des masses soft des jauginos My et My et du parameétre de
masse p des higgsinos pour déterminer complétement ce secteur & I'ordre d’une boucle.

7.4.2 Fixer les contre-termes M, My, du

Pour renormaliser ce secteur il nous faut “fixer/définir” les paramétres My, Mo, pu et leurs
contres-termes associés. Etant donné que nous avons 3 paramétres a définir, il faut 3 “conditions
de renormalisation” pour les fixer complétement. Pour cela nous avons adopté une définition On-
Shell ot les paramétres recherchés sont extraits & partir de la mesure de 3 masses physiques. Ces
masses sont les valeurs propres des matrices X et Y qu’il faut diagonaliser pour obtenir les états
propres physiques. Etant donné que nous avons une matrice 4 x 4 et une 2 x 2, il y a 6 valeurs
propres. Par conséquent pour renormaliser ce secteur nous avons la liberté d’en choisir 3 parmi
6. Les 3 masses restantes recevront une correction a I'ordre d’une boucle. Le choix des masses
est particuliérement crucial pour la cohérence du schéma de renormalisation. Le schéma usuel

est de prendre la masse de deux charginos Mg+ et d'un neutralino mo. Il a 'avantage d’étre

Xi
techniquement facile a réaliser mais il souffre de quelques défauts [79]. C’est pourquoi nous avons

testé le choix de prendre deux neutralinos et un chargino.
Nous allons maintenant présenter comment les contre-termes sont fixés dans ce secteur dans un
schéma On-Shell. A l'ordre d’une boucle la correction d’'une masse s’écrit

mi = mIl 4 ReSy  (m2) (7.59)

*. Et aussi 4,5 # 3,4 car §Y34 = dp
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ot apparait la fonction & deux points diagonale renormalisée : 7262szz (m )= ReE;(z;(z( m3,) —
dmg,, avec dmyg, le contre-terme de la masse. Il est & noter que la masse entrant comme argument

dans la self-énergie est la masse a 'ordre de 'arbre ReEX w(m il) ReZXle (m?(,TL), cela est
suffisant pour une approche a une boucle car prendre la masse corrigée peut étre vu comme une
correction d’ordre supérieur.

Le principe du schéma sur couche de masse est de considérer que la masse corrigée est égale a la
masse a l'arbre, cela signifie en fait qu’expérimentalement cette masse a été mesurée, on a alors
promu cette masse en tant qu’observable physique,

mil = mY = Relly g, (m2) =0 (7.60)

cette condition est équivalente a,
— )
dmyg, = ReXg,z,(m3,) (7.61)

cette derniére équation sert alors de définition pour le contre-terme émy, qui est relié a une
fonction & deux points. L’avantage de ce type de prescription est qu’elle ne dépend pas d’une
échelle de renormalisation non physique uPR et est invariante de jauge puisque reliée & une
mesure physique. Ainsi pour définir complétement les trois contre-termes My, d Mo, oy il suffit
de fixer trois prescriptions de la forme (7.61) puisque

dms, = OMy; = Uy, MU} 1. (7.62)

ot §Mjj, est donné par (7.50) pour les charginos et (7.52) pour les neutralinos et les matrices
Ur/r = U, V, N selon les cas.

L’expression de dmy, en fonction des différentes self-énergies provenant de la décomposition de
Lorentz (7.36) est donnée par, en utilisant (7.34) et (7.61),

1 N _
—my, (ReZéXZZ(m?@) + Rez%i (m%l)) (7.63)

omyg, = RexLS. (m ?@) + 5

XiXi
L’équation (7.62) se décompose alors en six équations que I’on peut écrire sous la forme, lorsqu’elle
est appliquée au secteur des neutralinos/charginos et en posant o = 1,2,3,4 pour dénoter les
quatre neutralinos et o = 5,6 pour dénoter les deux charginos,

N M = 6mq, (7.64)
N
ott SM = (6My,5Ma,6p)T et
(NA2 NG —2NENG)  a=1---4
N, = v R (7.65)
(0,Uj1Vj1,Uj2Via) a=25,6
5 5m)~<? — Q[NZ’ENZE(SY;:J, + Nz‘*lNiz(SYM + NizN;:S(SYQg + N:QN;Z(SYM] a=1---4
Me =
5m>~<]+ - [Ujlng(SXm + UjQVﬂ(SXQl] o = 5,6
(7.66)

avec o = 1,234 <= a=i1eta=5,6<j=1,2.

Parmi ces six équations nous devons en choisir trois puis les inverser pour renormaliser ce secteur,
nous avonc donc Cg = 20 choix de schémas possibles. Une fois ces trois équations choisies nous
pouvons ’écrire sous la forme matricielle 3 x 3 suivante,

WoM = om (7.67)
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ou les trois vecteurs ligne de W seront représentés par un choix de trois N, a l'aide de (7.65) et
les élements du vecteur colonne 671 correspondant par (7.66). Nous avons donc au total 20 choix
pour la forme de la matrice W. Les contre-termes d My, 0 Ms et du seront alors donnés par,

—  (comW)T _,

M= W (7.68)

ot com W est la comatrice de W. Nous remarquons immédiatement que la reconstruction des
contre-termes est inversement proportionnelle au déterminant de la matrice W, par conséquent
si ce déterminant s’annule ou devient trés petit, de grandes incertitudes sont possibles, & moins
que le numérateur tende en méme temps vers zéro. A partir de ces équations nous sommes
donc en mesure d’implémenter n’importe quel schéma de renormalisation basé sur la mesure de
trois masses physiques dans SloopS. Nous allons traiter dans la section suivante deux exemples
d’applications correspondant a deux choix d’un ensemble de trois masses physiques et détailler
la résolution de ces deux systémes d’équations.

7.5 Exemples

7.5.1 Inversion du schéma mgom +m+
1 X1 X2
Ce schéma est le plus couramment utilisé dans la littérature [79, 104, 106, 107] car il est
techniquement facile a réaliser. En effet pour obtenir les contre-termes §Ms et dp il suffit d’in-
verser la matrice 2 x 2 des charginos, qui est plus facile a réaliser que l'inversion de la matrice
4 x 4 des neutralinos. Le contre-terme § M7 est alors obtenu a partir de la mesure de la masse du

neutralino le plus léger mgo. Les masses des neutralinos restants mg . recoivent des corrections

a une boucle. C’est le schéma utilisé par défaut dans SloopS. Ce choix de contraintes impose les
conditions,

Rexﬁﬁ (m)zit) =0, Rezﬁﬁ (m)zéc) =0, Rezigig(mﬁ) =0 (7.69)

qui permet de déterminer les contre-termes,

N —~ 1
o _ LS 2 i LV 2 RV
OXi = = 0myz = ReXggoa(mys) + omes <R€E*% mys) + Rezi«%”%(m”f)>
- — 1 — _
o _ LS 2 i LV 2 RV
0Xo9 = = 5m>~(2¢ = Rez;@[y& (m;@i) + 2m>~<2¢ <R€E>~<2¢>~<2¢ (m;(gc) + Rez;&;&t (mfg))

et a l'aide des équations (7.65) et (7.66) pour « =i =1et @ = 5,6 <= j = 1,2 le systéme
(7.67) a inverser s’écrit,

Ni%2 Nj? —2N{3Ni, My dma
0 UnVii  UnVis SMy | = | dms (7.71)
0 UxnVar  UxVa O omg

Weyeon,
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La résolution de (7.71), suivant (7.68), donne les expressions suivantes pour les contre-termes,

1
M = —————((U11U99 V11 Voo — U19Uo1 V12 Va1)d
1= 9o (qum)(( 11U22V11 Va2 12U21 V12 Va1 )omy
— (N{2 Uy Vg + 2N73 Ni Uz Vay )6mis
+ (N2 U12Via + 2N{5Nj Ui Vin ) omg)
S M. iy (Una Va2 U12Vi20me)
9 = —————— (UxaVa2dms — U12V120ms) ,
det (Weeom, )
) Ni? (—Usa1Va18ms + U11 Vi1 dme) (7.72)
= — = (— m m .
1 det (Wor o 21Vo10ms 11V110mg) ,
avec
det (Weyeony) = Nip2 (U1 Uaa Vi1 Vag — UiaUsi ViaVay ) . (7.73)

Nous remarquons alors que dans ce cas il est possible de résoudre indépendamment deux équa-
tions sur trois puisque I'angle de mélange N7 se simplifie dans ces derniéres. Ces équations cor-
respondent a la résolution du sous-systéme des charginos, et permettent ainsi de reconstruire les
contre-termes Mo, pu. Bien évidemment, n’importe quel choix de schéma de renormalisation conte-
nant les deux masses des charginos comme observables permet de reconstruire le sous-systéme
(Ma, ). 11 est & noter que si Ms ~ |u| le mélange est presque maximal et det (We,cyn, ) =~ 0, com-
pliquant ainsi I'inversion du systéme. Ensuite méme pour det (W, ¢,n,) # 0 la formule pour 6M;
est inversement proportionnelle & Nj}?, et ainsi appropriée lorsque le neutralino ¥{ est principale-
ment bino ou si le neutralino de type bino n’est pas trop lourd, dans le cas contraire ’extraction
du parameétre M; peut étre sujette a de larges incertitudes, puisque fo — 0.

Il est possible de donner une forme plus explicite et plus facile a étudier aux contre-termes
précédents en utilisant le fait que, comme les deux charginos sont pris comme contraintes, les
relations suivantes,

Tr XX =Tr XXT = mfﬁ + mfé = M3 + p® + 2M7, (7.74)
det XXT = det XXT = méimii = (Map — s95 M3, )? (7.75)
1 2

sont maintenues a ’ordre d’une boucle. Ainsi on obtient,

1 9 5m>~(+ 9 5m>~<+
My = ——— | (Mam_+ — pdet X) L+ (Mam?% . — pdet X) 2
My = Xl Mt 2 My
SM3G ot
— M (M + pisap) =" — uMfysageas—2 ) |
M2, i
1 2 5m>21+ 2 5m>22+
op = ———— | (pm_+ — Madet X) + (pmZ4 — Maodet X)
pwe — Ms X1 Mt Xo M+
SM, ot
— M‘%V(,u + MQSQB)M—QVI/ — MQMI%VSQBCQgt—;> , (7.76)
W
oM, = W(&mxg — Nj20My + 2N73 N7y op
11

A T’aide de ces formules on retrouve de facon explicite le comportement singulier des contre-
termes lorsque My ~ +u discuté précedemment a partir de la forme de la matrice W.
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Le masses physiques des trois neutralinos restants recoivent une correction & une boucle et sont
obtenues en cherchant les impulsions p? = méo qui obéissent & la relation
i

Re [P (4)| ulas) =0 i =234 (7.78)
fgzzz)xl(q) = (d—mg,) + if{ifa(q2) (7.79)

Alors dans ce schéma elles sont données par,

phys LS 2 LV 2
o =My 5Y;; ex m meoReX m avec
e w + oY — R x?x?( 50) —mgo ReXigaso(myo)

8Yii = Nji?6My + Nj5*6My — 2NNy 6p

Comme les masses corrigées dépendent des contre-termes d My, Ms, o, vérifier systématique-
ment que leurs prédictions n’est pas entachée de grandes corrections permet de controéler la jus-
tification de ce schéma. En effet, si le systéme est mal reconstruit les contre-termes 6 M7, dMa, dp
seront trés importants, et 'impact de cette mauvaise reconstruction surgira au niveau des masses
corrigées.

Quelques remarques finales peuvent étre faites sur l'utilisation de ce schéma. Premiérement
il est techniquement assez facile & réaliser puisqu’il consiste & inverser le sous-systéme 2 x 2.
Deuxiémement il est particuliérement approprié si le neutralino le plus léger est majoritairement
de type bino car Nj? ~ 1. Cependant, dans le cas d'une hiérarchie de masse de type M; <
My < |ul, ce schéma n’est pas trés réaliste, on s’attend expérimentalement a ce que les masses
des deux premiers neutralinos et le chargino le plus léger soient mesurées en premier et soient les
seuls accesibles par I'expérience, plutot que celles des deux chargino et du neutralino ¥{. Nous
allons nous placer dans un tel cas dans la section suivante.

7.5.2 Inversion du schéma MMM

Dans ce cas les conditions de renormalisation s’écrivent,

donnant les contre-termes,

. 1 — —
. LS LV 2 RV
0X11 = =dm Mo = ReZ 2 (m)z )+ 2mxi (Rezﬁ Hi(mfﬁ) + Reziﬁfﬁ (mfcli)>
51711:_5m0_RezL o(m X)+mo7€6200( %)
0¥y = = dmgy = ReELS o(m3e) +my Rext W (mio) (7.82)

A partir de (7.65), (7.66) et de (7.67) le systéme 3 x 3 d’équations a inverser est le suivant,

NiZ2 Nj? —2N{3Ni, SM; dma
Ni2 N3?  —2N3 N3, SMy | = | dma (7.83)
0 UnVin UpVio op oms
Wclnl n2
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En comparaison du cas précédent nous remarquons qu’il n’est plus possible d’inverser séparément
le sous-systéme (My, 1) par rapport a M; car nous ne possédons plus de colonne comportant
deux zéros. Il faut alors résoudre les trois équations en méme temps dont les solutions sont,

1 * * * * * *
(5M1 = W{(NQQQUHV&Q + 2N23N24U11V11)5m1 — (2N13N14U11V11 + N122U12V12)5m2
c1ning
+ NG NG NY, ~ NN Ngoms |
My = —— L NE2ULVissmy + N 2U1Visdms
det (Weynyns)
+ 2NN NG, ~ N3 NiNioms |
1 * 2 * 2 * 2 ATk 2 * 2 ATk 2
5/,[/ = W N21 UllVll(Sml — Nll U11V115m2 + (Nll N22 — N21 N12 )5m5 s (784)
c1ning
avec

det (Weyning) = Ur2Via (NI N3y — NigN3?) + 2011 Vi (N1 N3g N3y — N3P NisNiy) (7.85)

Les masses recevant une correction & une boucle sont m-

o et m-+ et sont données par
X34 X2 par,

~ —~ 1 o~ —~
h S
2

X2 X1 2
avec
6 X2 = Uz Va10Ms + UnaVaodp + Ua1 Vaad X1z + UnaVar16 Xo1 (7.88)

La difficulté provenant de ces équations est qu’elles sont peu parlantes, et, contrairement au
schéma, précédent, il est ardu d’obtenir les contre-termes en fonction des invariants matriciels
car les régles de somme (7.74) et (7.75) ne sont plus valables & 'ordre d’une boucle. De plus,
méme si & premiére vue cela semble peu évident, les contre-termes sont proportionnels & 'inverse
du déterminant de la matrice du systéme d’équations (7.83), det (W¢ n,n,) qui lui aussi peut
s’annuler ou étre trés proche de zéro, résultant en de grandes incertitudes sur les contre-termes. Ce
cas de figure peut se produire dans le cas particulier suivant : soit la hiérarchie T M, << My << p.
Alors grossiérement pour la reconstruction des parameétres & partir des masses nous avons

X

om.+ — 0My
X1

5m~(1) — (5M1

Ainsi nous remarquons que les masses mgg et My reconstruisent le méme parameétre 0 My et le
contre-terme du n’est quasiment pas contraint. De plus comme deux masses donnent le méme
paramétre, deux des équation du systéme (7.83) sont quasiment redondantes et le déterminant
det (We,nyn,) sera quasiment nul, impliquant de grandes corrections, sauf si le numérateur en
méme temps tend vers zéro. Un exemple de hiérarchie ou ce choix de contraintes serait plus
efficace que le précédent pour obtenir les contre-termes & partir seulement de la mesure de trois
masses serait celui oli deux parameétres sont trés proches ou égaux, par exemple My < Mo >~ u,

car le mélange higgsino-wino sera suffisamment important pour en extraire les contre-termes.

T. C’est par exemple un cas de hiérarchie typique mSUGRA
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7.5.3 Etude numérique

A titre d’illustration nous donnons dans les tableaux ci-dessous les corrections a une boucle
. L , étﬁ
finie dans le schéma TGO+ M g0 AUX MASSES Mg+, Mo and mgo dans le schéma A, pour T

Les paramétres des couplages trilinéaires sont mis & zéro. Nous avons choisi deux jeux de valeurs
pour My, Mo, p et fixé la valeur de tan § = 2 celle des sfermions a my = 1000, 2000 GeV.
My =500 GeV,Ms = 1000 GeV, u = 150 GeV :

Mass | tan g = 2, m ;= 1000 GeV | tan 8 = 2, m = 2000 GeV

mys 147.8392 143.8393

mgo 138.5846 138.5846

mgg 504.9927 504.9927

m;f 1007.2721 1007.2721

mxfg 2634.8859 (6 = 161.6%) 2383.8186 (6 = 136.7%)

mi(f 150.8730 150.873

mgy” 136.9507 (6 = -9.2%) 138.7212 (6 = -8%)

m@f 1007.2957 1007.2957

mgyT | 2634.5272 (6 = 161.6%) 2383.5139 (6 = 136.6%)
avec § = (m§"" —mIl)/mlt.

Pour ce jeu de paramétres nous avons p > M > Mo, par conséquent dans le schéma m

le paramétre Ms est peu contraint et les masses réglées par ce paramétre (mii et m>22) obtiennent
2

de grandes corrections. Nous avons ensuite choisi un jeu de paramétre ot le mélange est plus

important pour que les contre-termes soient plus facilement extraits.

My =200 GeV,Ms = 250 GeV, p = 300 GeV :

Mass | tan g = 2, m = 1000 GeV | tan 3 = 2, m = 2000 GeV
Myt 196.2910 196.2910

mgo 171.1395 171.1395

mgg 217.9792 217.9792

ngf 356.0290 356.0290

me” 339.7566 (6 = -4.6%) 333.9740 (6 = -6.2%)
mz;gL 301.5787 301.5787

m” 285.4731 (0 = -5.3%) 278.2358 (6 = -7.7%)
migL 362.4600 362.4600

mgy” 345.431 (6 = -4.7%) 339.1585 (6 = -6.4%)

Dans ce jeu de parameétres le mélange bino-higgsino-bino est assez important et ’extraction des
paramétres My, My et p et leurs contre-termes associés est plus aisé car chaque masse prise
comme observable posséde des fractions bino, higgsino ou wino non-négligeables.
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Enfin nous avons comparé les corrections aux masses mgo et mgo dans les deux schémas m.om_+m_+

X1 X1 X2

et MMt Mg, et les schémas A, et M H pour ?—5. Les paramétres du MSSM utilisés sont les

suivants : My = 110 GeV, My = 127 GeV, u = —245 GeV, mj = 600 GeV, tg = 10. Nous

schéma M0, Mot Mt schéma M3, Mgg, Mt
Masses o myo M0 ™m0
TL (Gev) 258.291 269.471 258.291 269.471
1-L (Gev) A, | 258.707 269.453 254.959 270.802
1-L (Gev) MH | 258.211 269.686 261.068 276.545

TABLE 7.1 — Tableau présentant les masses corrigées dans les deux schémas.

remarquons que dans le schéma my %

, méme si elles restent modestes. De plus pour la masse mgg

QMg Mt les corrections aux masses sont trés faibles par

1 2

rapport au schéma mcom_+mco
pp X7 X2 )

entre le schéma A, et M H le signe des corrections est opposé.

7.6 Utilisation d’un schéma mixte

Si un signal positif concernant la supersymétrie est découvert aux collisionneurs, il est fort

possible que les premiéres données a disposition ne fournissent pas la mesure de trois masses
de neutralinos ou charginos, rendant ainsi inutilisable le schéma de renormalisation que nous
avons développé dans ce chapitre qui requiert au moins trois masses. Le neutralino ¥ sera
certainement la particule qui sera produite dans toute mesure de la supersymétrie. Mais il se
pourrait que seul le neutralino Y9 (et/ou le chargino )Zf) soit observé. Si un tel cas se présente, les
observables (désintégrations et sections efficaces) peuvent aussi étre utiisées pour remonter aux
paramétres sous-jacents (M, Ma, p). Alors I'utilisation d’un schéma “mixte” mélangeant tous les
types d’observables disponibles doit étre élaboré. Dans tous les cas nous aurons toujours besoin
d’au minimum trois observables pour pouvoir renormaliser ce secteur et 'obtention des contre-
termes se fera toujours par 'inversion d’un systéme d’équations 3 x 3. Nous avons vu que pour
que cette inversion soit efficace le déterminant du systéme d’équations ne doit pas étre nul ou
trop faible. La difficulté est donc de trouver le bon ensemble d’observables qui donneront un
systéme d’équations facile & résoudre. Un tel schéma mixte pourrait par exemple est construit a
partir de deux masses et d’une autre observable, comme une désintégration, dans le méme esprit
que ce qui a déja été réalisé dans le secteur de Higgs.
Si P'on reprend le cas de figure My < My << p, les deux exemples de schéma que nous avons
présenté sont équivalents et permettent d’obtenir une contrainte sur My et Ms, celle sur le contre-
terme Su pourrait étre obtenue & partir de la désintégration {9 — Y9Z° ou bien du processus
ete”
neutralinos), a la condition qu’ils soient expérimentalement accessibles. Enfin il est a noter que
le choix de la mesure de la désintégration Y9 — {29 est particuliérement judicieux puisqu'il
n’est pas nécessaire de soustraire les corrections QED qui pourraient dépendre des coupures
expérimentales.

— 7% — 9%Y (puisque le couplage ¥9%}Z° est proportionnel & la fraction higgsino des
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Chapitre 8

Annihilation de neutralinos légers en
bosons de jauge
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English Abstract I present here an application of the SloopScode the the calculation of
the relic density in the MSSM. The relic density will be derived in the usual radiation domi-
nated scenario through solving the Boltzmann equation in the early universe with the help of
the micrOMEGAs code. In the standard scenario the relic density is inversely proportional to the
thermal average of the total cross section times the relative velocity. The determination of this
term is related to particle physics and the aim was to compute it at next-to-leading order with
SloopS. The precise calculation of the cosmic abundance is of crucial importance because in
the near future, experiments will reach a high level of precision, thus, on the theory side, we
need to predict its value with at least the same level of accuracy, if we want to extract from its
measurement some informations about the underlying cosmological and particle physics scenario.
I took into account the full electroweak and QCD corrections resulting into evaluating all the
relevant loop Feynman diagrams and also the real emission of a photon/gluon with the CUBA
library when charged/colored particles were involved on external legs. The infrared divergencies
have been regularised by adding a small mass to the photon/gluon propagator, as done in the
SloopS code and the ultraviolet finiteness has been checked carefully for all processes.

I focussed on models where the lightest supersymmetric particle is the so-called neutralino
%) and explored different composition to get annihilation into gauge boson final states yx —
VV. Among the relevant processes for the relic density, these are the most difficult to compute
because gauge invariance plays a dominant role. In this case the implementation of the non-
linear gauge fixing have been of a great help to check the gauge invariance of the results and
in turn the good implementation of the renormalisation of the MSSM related to the gauge
sector. For the neutralino to couple to gauge boson we need substantial SU(2) component in
its composition, this is realised by having non-negligible wino or higgsino component (meaning
small or not too big values for the My and p parameter, with respect to Mj). I obtained the
model parameters by running the micrOMEGAs code, where we had first removed all effective
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one-loop or two-loop corrections (to avoid double counting of loop corrections) by creating a
new tree-level model, to get interesting scenarios to study. I then picked up and corrected at
one-loop channels contributing more than 5% to the relic density. In addition to gauge boson
final states, and because the neutralino couples mostly to it, I had also to take into account some
coannihilation channels between the neutralino Y and the )Zf into light quarks. Therefore QCD
corrections where a gluon is exchanged have been taken into account and I also added its soft
and hard emission to remove the unphysical dependency in the small mass of the gluon and the
cut-off scale separating the soft from the hard contribution. A special treatment has also been
carried out for the light quarks concerning the hard emission of a photon, because, during the
integration of the photon phase space, a resonance was reached. Once the product ov had been
evaluated with SloopS, I interfaced the result with the micrOMEGAs code. The procedure was the
following, first, as micrOMEGAs computes cross section in terms of the momentum p, I converted
ov in terms of this variable and then interpolated it with a polynomial function of p with ROOT.
This function was then passed to micrOMEGAs and ordered to use the fitting formula, whenever
a process that I had corrected with SloopS was found to be relevant to the collision term. This
is probably not the most efficient automatic way but it has the advantage of being able to check
each step of the procedure. However I plan to improve this method in the near future.

I studied three scenarios where the neutralino was relatively light, of order hundreds of GeV.
In the first scenario we explored the neutralino was a mixed bino-wino one, in the second one
it was pure higgsino state, and in the last one a pure light wino. A common feature of all these
scenarios is that the most relevant coupling of the neutralino 9 to gauge boson is done through
the )Z?)ZfWi coupling, nevertheless, in the pure higgsino scenario the coupling YJx92° was also
important, because it is proportional to the higgsino component of the ¥{. For each scenario
I studied the dependency in the renormalisation of the tan # parameter. I have observed that
the reconstruction of this parameter is rather sensitive to the renormalisation scheme in the
mixed bino-wino scenario, whereas in the two ones remaining the sensitivity is less pronounced,
even negligible in the light wino scenario. For the sake of understanding what was driving the
annihilation of the different channels I fitted the tree-level and one-loop corrected ov with the
well-known expansion ov = a + bv?. It appeared that the s-wave coefficient is giving the bulk of
the annihilation and for the loop corrections also. However we observed that, in the light-wino
scenario, this expansion was not valid anymore, due to an important enhancement (negative
or positive) of the loop corrections when the relative velocity was vanishing. We related it to
the one-loop expression of a non-perturbative effect : the so-called Coulomb/Sommerfeld effect.
At the non-perturbative level this enhancement is caused by the multiple exchange of massless
gauge boson before the annihilation takes place, resulting into the famous 1/v enhancement. We
probed this effect until v ~ 10™3 and no special treatment was applied. In the next chapter this
will not be the case. We then showed, by slightly modifying the expansion, that we were able
to capture its one-loop manifestation with the SloopScode. I also resummed this effect thanks
to the analytic formula and I noticed that the difference between the resummed and one-loop
cross section was negligible. Finally we concluded that, for relic density purpose, this effect has
no impact on the final result. This chapter is the original version of a published paper.

Résumé en francgais Je vais présenter dans ce chapitre une application du code SloopS au
calcul de la densité relique de Matiére Noire a I'ordre d’une boucle dans le MSSM. La densité
relique sera obtenue en résolvant I’équation de Boltzmann dans le scénario cosmologique stan-
dard dominé par la radiation a 'aide du programme micrOMEGAs . Dans ce scénario 'abondance
relique est inversement proportionnelle a la moyenne thermique de la section efficace totale mul-
tipliée par la vitesse relative. La détermination de ce terme est reliée au modéle de physique des
particules sous-jacent et le but était de pousser le calcul & 1'ordre sous-dominant avec SloopS.
Le calcul précis de 'abondance relique est d’une importance cruciale car dans un futur proche les
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expériences dédiées atteindront un niveau de précision jamais égalé, par conséquent, du coté des
prédictions théoriques le méme niveau de précision doit étre atteint au minimum, pour pouvoir
extraire de cette mesure de l'information & propos des modéles cosmologiques et de physique
des particules sous-jacents. La prise en compte de la totalité des corrections, électrofaibles et
fortes a résulté en I’évaluation de tous les diagrammes de Feynman a boucle ainsi que ceux
comportant I’émission réelle d'un photon/gluon a laide de la bibliothéque CUBA, lorsque des
particules colorées ou chargées électriquement étaient impliquées sur des pattes externes. Les
divergences infrarouges ont été régulées en ajoutant une masse infinitésimale au propagateur du
photon/gluon, comme cela est fait dans SloopSet la stabilité des processus dans I'ultraviolet a
été controlée avec attention pour tous les processus.

Je me suis concentré sur des modéles ot la particule supersymétrique la plus légére est le neutra-
lino YY et j’ai exploré les différentes compositions donnant une annihilation en bosons de jauge
dans 'état final xyxy — V' V. Parmi les processus pertinents pour la densité relique, ces canaux
d’annihilation sont les plus difficiles car I'invariance de jauge y joue un role prépondérant. Ainsi
I'implémentation de la fixation de jauge non-linéaire a été d’une grande aide pour controler I'in-
variance de jauge des résultats et ainsi la bonne implantation de la renormalisation du MSSM
reliée au secteur de jauge. Pour que le neutralino se couple aux bosons de jauge, il doit possé-
der une composante SU(2) substantielle, cela est réalisé en donnant une composante wino ou
higgsino non-négligeable (cela signifie des valeurs pour My ou p pas trop grandes par rapport a
My). J’ai obtenu les paramétres pour chaque scénario en utilisant le programme micrOMEGAs , ou
j’avais d’abord pris soin d’enlever toutes les corrections effectives & une ou deux boucles (pour
éviter un double comptage des corrections radiatives) en créant un fichier de modéle a I'arbre.
J’al ensuite corrigé les processus contribuant a plus de 5% a la densité relique. En plus des
canaux impliquant des bosons de jauge dans I’état final, des canaux concomitants de coannihi-
lation entre le neutralino )Z? et le chargino )Zic impliquant des quarks dans I’état final ont aussi
été corrigés. Ainsi j’ai du aussi évaluer des corrections QCD ou un gluon était échangé dans les
diagrammes de boucle, ainsi que 1’émission “molle” et “dure” gluonique pour éliminer les dépen-
dances non-physiques en la faible masse donnée au gluon, et de ’énergie de coupure séparant le
régime “mou” du régime “dur”. Un traitement spécial a aussi été accordé aux canaux avec des
quarks légers dans I’état final concernant ’émission réelle “dure” d’un photon, car durant 'inté-
gration sur l'espace des phases du photon certains diagrammes étaient résonnants. Une fois que
le produit ov était évalué avec SloopS, j’ai interfacé les résultats avec le code micrOMEGAs. La
procédure était la suivante : d’abord comme micrOMEGAs calcule automatiquement les sections
efficaces & ’aide de CalcHEP en fonction de p.,, I'impulsion dans le centre de masse, j'ai converti
la dépendance en la vitesse v en une dépendance en pe,,, puis j’ai interpolé les résultats a ’aide
de ROOT. La fonction d’interpolation était ensuite passée & micrOMEGAs et une instruction lui était
donnée pour qu’a chaque fois qu'un processus que nous avions corrigé était nécessaire pour le
calcul du terme de collision, micrOMEGAs utilisait notre fonction d’interpolation. Cette procédure
n’est probablement pas la plus automatique possible mais elle a I’avantage de pouvoir controler
chaque étape de l'interface. J’ai cependant 'intention d’améliorer cette interface dans un futur
proche.

J’ai étudié trois scénarios ot le neutralino était relativement léger, de l'ordre de quelques centaines
de GeV. Dans le premier scénario le neutralino était un mélange bino-wino, dans le second un
pur higgsino et dans le dernier un pur wino. Un point commun & tous ces scénarios est que le
couplage le plus important du neutralino ¥ aux bosons de jauge se faisait par I'intermédiaire du
couplage )Z?)ZfWi, néanmoins, dans le scénario du higgsino pur le couplage ¥{¥92° était aussi
important, car proportionnel & la fraction higgsino du ¥. Pour chaque scénario la dépendance
en le schéma de renormalisation du paramétre tan § a été étudiée. Nous avons observé que la
reconstruction de ce paramétre est plutét sensible au schéma de renormalisation dans le scénario
du bino-wino, beaucoup plus faible dans le cas du higgsino pur voire quasiment inexistante pour
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le wino pur. Pour comprendre ce qui pilotait I’annihilation des différents canaux nous avons
interpolé le produit ov & 'ordre de Born et & 'ordre d’un boucle & 'aide du développement en
puissance de v suivant ov = a + bv?. Il est apparu que le coefficient d’onde s a donnait la plus
grande partie de I'annihilation et des corrections de boucle. Nous avons cependant remarqué
dans le scénario du wino pur que ce développement n’était plus valide, & cause d’une importante
correction (positive ou négative) radiative due a la manifestation a I'ordre d’une boucle d’un
effet non-perturbatif : l'effet Coulomb/Sommerfeld. Au niveau non-perturbatif cet effet est du,
en terme de diagrammes de Feynman, & I’échange multiple de bosons de jauge non-massifs
avant P’annihilation & proprement parler, résultant en le comportement en 1/v bien connu. J’ai
ensuite montré, en modifiant légérement le développement, qu’il était possible de capturer sa
manifestation & 'ordre d’une boucle avec le code SloopS. J’ai aussi resommé cet effet & tous
les ordres grace a la formule analytique trouvée dans la littérature et la différence observée avec
I’approche a une boucle était négligeable. Pour conclure nous avons observé que cet effet n’avait
pas d’impact sur le résultat final. Ce chapitre est constitué d’un article en anglais présenté sous
sa forme originale.

124



PITHA 09/27
LAPTH-1357/09

Relic density at one-loop with gauge boson pair production

N. Baro!), F. Boudjema?, G. Chalons?, Sun Hao?

1) Institut fiir Theoretische Physik E, RWTH Aachen University,
D-52056 Aachen, Germany
2) LAPTH, Université de Savoie, CNRS,
BP 110, F-74941 Annecy-le-Vieuxr Ceder, France

Abstract

We have computed the full one-loop corrections (electroweak as well as QCD) to processes contri-
buting to the relic density of dark matter in the MSSM where the LSP is the lightest neutralino.
We cover scenarios where the most important channels are those with gauge boson pair produc-
tion. This includes the case of a bino with some wino admixture, a higgsino and a wino. In this
paper we specialise to the case of light dark matter much below the TeV scale. The corrections
can have a non-negligible impact on the predictions and should be taken into account in view
of the present and forthcoming increasing precision on the relic density measurements. Our cal-
culations are made with the help of SloopS, an automatic tool for the calculation of one-loop
processes in the MSSM. The renormalisation scheme dependence of the results as concerns tan 3
is studied.

Phys. Rev. D81 015005 (2010), arXiv : 0910.3293 |[hep-ph|
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8.1 Introduction

Existence of nonbaryonic dark matter is established through precise determination of the
mean densities of matter in the Universe. However one does not know what constitutes dark
matter even if the measurement of the relic density of cold dark matter is now very precise[3].
On the other hand the latest observations dedicated to the detection of dark matter have recently
received a lot of attention : the PAMELA collaboration has reported a 100 GeV excess on the
ratio of fluxes of cosmic ray positrons to electrons[109] and the ATIC balloon experiment claims
a cut-off in the positron flux near 500 GeV[110]. The FERMI[111] and HESS|[112] observations
do not confirm this data but still point to a deviation from the power-law spectrum. Many expla-
nations were advocated to account for these results and the most optimistic and exciting one is
that it could be a signal of annihilating dark matter. Supersymmetry can provide, among many
other advantages, a dark mater candidate through the lightest supersymmetric particle (LSP)
which is a neutralino, YY, if R-parity is conserved. Meanwhile, the search for dark matter will
soon also take place within colliders, in particular the LHC. If dark matter is discovered among
the other new particles that form a New Physics model, one will be able to probe its properties.
One could then predict the relic abundance of the Universe and would constrain cosmology with
the help of precision data|21, 113, 114] provided by WMAP|3| and PLANCK]13]. The present
WMAP accuracy on the relic density is about 10% and with the PLANCK satellite that has
been launched recently it will reach about 2% precision. Sophisticated codes exist [20, 90, 115]
for the calculation of the relic density in supersymmetry with the inclusion of some higher order
effects, essentially through some running couplings/masses or some effective couplings (particu-
larly corrections to the Higgs couplings that can drastically change the results in the so called
Higgs funnel[90, 116] for example). However these codes are essentially based on tree-level cross
sections. To match the experimental accuracy, on the theoretical side we have to provide more
precise calculations. Therefore we need to evaluate annihilation and co-annihilation cross sec-
tions at least at next-to-leading order. Considering the very large number of processes required
for the evaluation of the relic density and the number of diagrams that each process involves,
especially at one loop, automation of the relic density calculations especially in the MSSM in
unavoidable. The purpose of this paper is to present some results on the one-loop calculation of
the relic density of the LSP in the MSSM, where the dominant annihilation and co-annihilation
channels are dominated by annihilations into gauge bosons. Beside the physics motivation for
such scenarios, calculations of these processes involving gauge bosons are challenging. Attempts
to include some effects through effective couplings are tricky because one has to be careful about
maintaining gauge invariance and unitarity. A preliminary study of such scenarios has been made
by some of us|21, 117]. In this paper we consider the case of a relatively light neutralino. Very
heavy neutralinos with TeV masses and above will be studied in a subsequent paper especially
since they show new interesting effects.

The relic abundance will be derived from the assumption that it is thermally produced in the early
stages of the universe[118], so in a first approximation the relic density is inversely proportional
to the thermal average cross sections, (ov). The computations that we present here are performed
with the help of SloopS|21, 70, 78, 79|, which is a fully automated code for the NLO calculation
of any cross section or decay in the MSSM. Although our main interest concerns the channels
with gauge bosons in the final state, we will find that there are non negligible co-annihilations
channels with quarks in the final state. We calculate both the electroweak and QCD corrections
to these contributions. There can be a host of processes contributing to the relic density for a
particular scenario. In this paper we calculate however the radiative corrections only to those
processes which, at tree-level, contribute more than 5% to the relic density. We study here three
different scenarios corresponding to three different compositions of our lightest neutralino : i)
a bino like neutralino with some wino admixture , ii) a higgsino like neutralino, iii) a light
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wino like neutralino. We will also study the impact of different choices of the renormalisation
scheme for tan 3 on the corrections. To derive the corrected relic density we feed our velocity
dependent cross sections into micrOMEGAs|90]| for performing the thermal average and solving
the Boltzmann equations. We will always show the cross sections (at tree-level and at one-loop)
in terms of the relative velocity and as a guide we extract the s-wave and p-wave coefficients
and the corrections they receive. This helps also extract the, one-loop, Sommerfeld|73] factor for
some of the cross sections. In the processes we study here these are of QED origin. Once these
one-loop Sommerfeld QED corrections are extracted we first subtract them before performing
the all order resummation and deriving the relic density.

The paper is organised as follows. In the next section we give an overview of SloopS and on how
we perform the one-loop calculations, in particular summarising our renormalisation procedure.
Checks on the calculations as concerns ultra-violet finiteness, infra-red finiteness and gauge pa-
rameter independence are spelled out. The interface between SloopS and micrOMEGAs will also
be presented. Most of the scenarios that we will be studying involve co-annihilation, we will
define the effective cross section that includes the statistical weight. At the end of this section
we present how our models have been defined. Section 3 considers the case of a light (about 100
GeV) mixed bino-wino LSP. The case of a dominantly higgsino LSP with mass of about 200 GeV
is studied in Section 4. Section 5 covers the case of a light wino of about the same mass. The
last section contains our conclusions and prospects.

8.2 Overview of the calculation

8.2.1 Set up of the automatic calculation : SloopS

One-loop processes calculated via the diagrammatic Feynman approach involve a huge num-
ber of diagrams even for 2 — 2 reactions, especially in a theory like supersymmetry. Doing full
calculations by hand without automation is practically untractable. There exists already efficient
automatic codes for one-loop calculations[57, 60, 119]. SloopS is an automated code for one-
loop calculations in supersymmetry. It is a combination of LanHEP[88|, the bundle FeynArts|89],
FormCalc|57] and an adapted version of LoopTools|65, 70| (that we will call the FFL bundle from
now on). LanHEP deals with one of the main difficulties that has to be tackled for the automa-
tion of the implementation of the model file, since this requires that one enters the thousands
of vertices that define the Feynman rules. On the theory side a proper renormalisation scheme
needs to be set up, which then means extending many of these rules to include counter-terms.
This part is done through LanHEP which allows to shift fields and parameters and thus generates
counterterms most efficiently. The ghost Lagrangian is derived directly from the BRST transfor-
mations. The loop libraries used in SloopS are based on LoopTools with the addition of quite
a few routines in particular those for dealing with small Gram determinants that appear in our
case at small relative velocities of the annihilating dark matter, and even more so of relevance
for indirect detection|70].

8.2.2 Non-linear gauge fixing

We use a generalised non-linear gauge[45, 70| adapted to the minimal supersymmetric model.
The gauge fixing writes

1 ~ ~
Lop = — f_w‘(a" —ied A, — igew BZ,)WHT + z'gwg(v +0h° + OH® + kGO +ipAY)GT |2
1 g =10 | 2002 1 2
o H _J [ K
2%, (0u2" + &z e (v+eh” +95)G") 2%, (G, A")7. (8.1)

127



CHAPITRE 8. ANNIHILATION DE NEUTRALINOS LEGERS EN BOSONS DE JAUGE

Unlike the other parts of the model Lap is written in terms of renormalised fields and parameters.
G°,G* are the Goldstone fields. We always work with & A,zw = 1 so as to deal with the minimal
set of loop tensor integrals. This implementation of the gauge fixing is very useful to check gauge
independence for processes with gauge boson production. More details are given in|78].

8.2.3 Renormalisation

In our code we have renormalised and implemented each sector of the MSSM. This is explai-
ned in details in[21, 78, 79]. Here we only briefly sketch the renormalisation procedure. We have
worked, as far as possible, within an on-shell scheme generalising what is done for the electroweak
standard model[60)].

i) The Standard Model parameters : the fermion masses as well as the mass of the W and Z are
taken as input physical parameters. The electric charge is defined in the Thomson limit, see for
example|60]. The light quarks (effective) masses are chosen such as to reproduce the SM value
of a™1(M%) = 127.77. This should be kept in mind since one would be tempted to use a DR
scheme for «, defined as My, to take into account the fact that dark matter is annihilating at
roughly the electroweak scale, so that oz(M%) is a more appropriate choice. We should keep in
mind that doing so would amount to correcting the tree-level cross section by about 13% for
2 — 2 processes. As we will see this running does not, most of the time, take into account the
bulk of the radiative corrections that we report here.

ii) The Higgs sector : We take the pseudoscalar Higgs mass M, as an input parameter and
require vanishing tadpoles. tan (3 is defined through several schemes whose impact on the radiative
corrections we will study :

- a DR definition where the tan 8 counter-term is defined as a pure divergence leaving out all
finite parts.

- a process-dependent definition of this counter-term by extracting it from the decay A° —
77~ that we will refer to as A,, for short. This definition is a good choice for the gauge
independence of the processes.

- an on-shell definition with the help of the mass of the heavy CP Higgs H taken as input
parameter called the MH scheme from now on. We have reported elsewhere that this scheme
usually introduces large radiative corrections.

These schemes are thoroughly discussed in [78], in particular the question of gauge invariance of
these schemes is addressed.

iii) The sfermion sector : For the slepton sector we use as input parameters masses of the two
charged sleptons which in the case of no-mixing define the R-slepton soft breaking mass, Mz,
and the SU(2) mass, Mg, , giving a correction to the sneutrino mass at one-loop. In the squark
sector each generation needs three physical masses to constrain the breaking parameter MQL for
the SU(2) part, Mg, My, for the R-part. See[79] for details.

iv) The chargino/neutralino sector : For this sector we implement an on-shell scheme by taking as
input three masses in order to reconstruct the underlying parameters M, Mo, 1. In SloopS [79]
the default scheme is to choose two charginos masses Mgt and Myt as input to define My and p
and one neutralino mass, mgo, to fix M;. The masses of the remaining three neutralinos receive
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one-loop quantum corrections. In this scheme, these counterterms are 79|

SM. ! Mym?, — pdetX e Mym?2, — pdetX e
2_m ( medr_'uet )mﬁr +( 2m>~<;_'uet )mX;
oM} ot
— My (Ma + pisap) MQVV - NMI%/32BC2ﬁt_B> ;
w B
1 2 5m"+ 2 5m)2+
op = ———= | (pm_+ — MadetX) L+ (wmZy — MadetX) .
e — Ms X1 m}d X2 m)~<2+
SM?Z Y
— M+ M) S MzMgvszﬁ%t_ﬁ> , (8.2)
w B
1
11

with detX = Mop — M‘%Vs%, Y is the neutralino mixing matrix and N its diagonalising unitary
matrix, see [79]. Looking at these equations some remarks can be made. First, in the special
configuration My ~ +p an apparent singularity might arise. Ref. [21] pinpointed this configu-
ration which can induce a large tg-scheme dependence in the counterterms 0M; o and dp and
therefore to the annihilation of the LSP into W’s for a mixed LSP, see also |79]. Second, the
choice of Mg as an input parameter is appropriate only if the lightest neutralino is mostly bino
or if the bino like neutralino is not too heavy compared to other neutralinos. It is however very
easy to switch to another scheme or choice of input parameters in the chargino/neutralino sector.
For instance if the bino like neutralino is the NLSP with mass mgg, like what occurs in the wino
scenario that we study in this paper, we simply take Mgy as input in which case § M7 is obtained

X
from Eq. (8.3) by dm o — dm,g and Nyj — Ny;.

v) Finally diagonal field renormalisation is fixed by demanding the residue at the pole of the pro-
pagator of all physical particles to be unity, and the non-diagonal part by demanding no-mixing
between the different particles when on shell. This is implemented in all the sectors.

vi) Dimensional reduction is used as implemented in the FFL bundle at one-loop through the
equivalent constrained dimensional renormalisation|120].

8.2.4 Infrared divergences

For the processes Yy — XY, X, Y = W+, 29 f, ... we can decompose the one-loop amplitudes

in a virtual part MEW (for co-annihilation processes with external quarks we also need to add

c 1loop
QCD

Mlloop
ultraviolet finite and gauge independent. Due to the virtual exchange of the massless photon

and gluon, this sum can contain infrared divergencies. This is cured by adding a small mass
to the photon and/or gluon, A, and A,. This is a valid regularisation, even for QCD, for all
the processes we study here where the non-Abelian nature of QCD does not show up. This
mass regulator should exactly cancel against the one present in the final state radiation of
a photon(gluon). The QED(QCD) contribution is therefore split into two parts : a soft one
where the photon(gluon) energy E. , is integrated to less than some small cut-off k. and a
hard part with E, ; > k.. The former requires a photon(gluon) mass regulator. Finally the sum

MﬁZ:QCD + Mer + M@?gt(E%g < ke) + MIUA(E, o > k) should be ultraviolet finite, gauge

invariant, not depend on the mass regulator and on the cut k.. We take the strong coupling
constant at the electroweak scale as=as(M2)=0.118.

) and a counter-term contribution Mcp. The sum of these two amplitudes must be
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8.2.5 Checking the result

i) For each process and set of parameters, we first check the ultraviolet finiteness of the results.
This test applies to the whole set of virtual one-loop diagrams. The ultraviolet finiteness test is
performed by varying the ultraviolet parameter Cyy = 1/e, € is the usual regulator in dimen-
sional reduction. We vary Cpyy by seven orders of magnitude with no change in the result. We
content ourselves with double precision.

ii) The test on the infrared finiteness is performed by including both the loop and the soft brem-
sstrahlung contributions and checking that there is no dependence on the fictitious photon mass
A, or gluon mass A,.

iii) Gauge parameter independence of the results is essential. It is performed through the set
of the eight gauge fixing parameters defined in Eq. (8.1). The use of the eight parameters is
not redundant as often these parameters check complementary sets of diagrams. It is important
to note that in order to successfully achieve this test one should not include any width in the
propagators. However we encountered a W boson resonance for the calculation of xx — ¢¢’ and
we had to include a width to the W propagator to avoid numerical instabilities ; nevertheless this
has been done only for the evaluation of the hard emission part and not for the virtual and soft
part. This will be discussed at more length in due course.

iv) For the bremsstrahlung part, the soft component is added to the virtual corrections and, for
the hard one, we use VEGAS[121] adaptive Monte Carlo integration package provided in the FFL
bundle and verify the result of the cross section against CompHep|93]|. The hard part is also the
trickiest, especially when threshold or resonances are encountered as stated above, so for some
calculations we use BASES|96| provided in the GRACE package[59] which have a better treatment
of singularities[60]. We choose k. small enough and check the stability and independence of the
result with respect to k..

8.2.6 Effective weighted cross sections

All cross sections o;; where 4, j label the annihilating and co-annihilating DM particles i, j
can, in general, be expanded in terms of the relative velocity v;;, which for neutralino annihilation

isv=26=2,/1- 4m§0 /s. Away from poles and thresholds, it is a good approximation to write
1

0ijVij = Qi + bijv2, keeping only the s-wave, a;;, and p-wave, b;; coefficients. With T" being the
temperature, x = mgo /T, the thermal average gives

(045 vig) = agj + 6(bij — aij/4)/z. (8.4)

With go = 2 the neutralino LSP spin degree of freedom (sdof), the co-annihilating particle of
sdof g; and mass m; contributes an effective relative weight of

Gieff = %(1 + Am)¥ 2 exp(—x Am;),  Am; = (m; — m)z(l))/m;((l). (8.5)

The total number of sdof is gerf = >, gieff- An approximation to the relic density is obtained
through a simple one dimensional integration

10 0.237 x 10726cm3.s71 o0
On? = | —— Z—Z . Jcm - J=/ (oV)epda/a?
g*(xF) T TR

9ief 195,
(ov)err = D AL (05 0y5). (8.6)
ij Yer s

130



8.2. OVERVIEW OF THE CALCULATION

3.1

a;j,b;; that are needed to compute o;; in Eq. (8.6) are given in cm®s™ . zp represents the
freeze-out temperature. g,(zp) is the effective degrees of freedom at freeze-out. g, is tabulated in
micrOMEGAs and we read it, as well as 2, from there. The weight of a channel (see the percentages
we will refer to later) corresponds to its relative contribution to J. We find it instructive to
consider the weighted cross section

Gieff9;,
2veljdrel) efj; Jief Uz’j ’UZ']' (87)
ers

By doing this we somehow normalise the contributions of, in particular, the co-annihilation cross
sections which can be very large compared to the annihilation cross sections, but which at the
end do not contribute as much because of the Boltzmann factor, exp(—z Am;). In our plots the
weight and statistics factors are chosen at freeze-out with = = xp, see Eq. (8.5), and for ease of
notation we drop the label .¢f. Since x = xp is the lowest value of z, see Eq. (8.6), that enters
the calculation of the relic density, the weight factor tends to enhance the real contribution of
the co-annihilation channels. The correct overall weight is in our case given by micrOMEGAs . This
fact should be taken into account when we compare the figures where the weighted cross sections
are shown and the tables where the overall weight (extracted from micrOMEGAs ) is given.

Let us stress once more that in order to derive the relic density we do not rely on the approxi-
mations given in Eqgs (8.4, 8.5, 8.6) but pass all the cross sections to micrOMEGAs .

8.2.7 Interfacing SloopS with micrOMEGAs

In order to evaluate the relic density, we interfaced SloopS with micrOMEGAs to take full
advantage of its powerful features concerning the cosmology related part (solving the Boltz-
mann equations with co-annihilation, calculation of the effective degrees of freedom, thermal
averaging,..). The connection between the two codes is summarized in the following :

1. The MSSM default directory of micrOMEGAs uses SuSpect [46]. In so doing it inherits
some of the radiative corrections in particular in the spectrum (mass) calculation used
in SuSpect . From the corrected spectrum micrOMEGAs works out new effective tree-level
underlying parameters so that gauge invariance is maintained. For the interface we have
removed this default option of reading from SuSpect and created a model file based on
the same tree-level lagrangian as the one used in SloopS. In so doing both SloopS and
micrOMEGAs calculate the same tree-level cross sections. This is also a check on our tree-
level cross sections.

2. The one-loop cross sections of SloopS, appearing into the form of tables showing the cross
section as a function of the relative momentum p, o(p), are then interpolated and passed
to micrOMEGAs which substitutes these new corrected cross sections to the corresponding
tree-level cross sections. Processes that are not corrected (and hence are not substituted)
are of course kept in the list of processes for the evaluation of the relic density.

8.2.8 Finding scenarios in the MSSM parameter space

The latest limits on the relic density coming from WMAP five years data give the 20 range[3],
0.0975 < Q,h% < 0.1223 (8.8)

When m, > myy, channels with gauge bosons in the final state open and LSP’s are annihilating
very efficiently, making it difficult to obtain an absolute value of the relic density within the
WMAP bounds. In the MSSM this is realized with a neutralino which is mostly wino like or
higgsino like and its corresponding mass must be around 1 TeV for the latter and 2 TeV in the
wino case to be in the cosmologically interesting region. Keeping this in mind we did not worry
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too much about the value of the relic cosmic abundance and, instead, we restricted ourselves
to get gauge bosons in the final state to study the origin of large corrections, if any. Moreover,
since the impact of radiative corrections can be large, there is not so much sense in picking up
a model based on its agreement with the current data on the basis of a tree-level calculation
and finally we could argue that this agreement can be obtained with non-thermal dark matter
production, or any other mechanism which could avoid too much depletion. This said we also
wanted to have a rather light spectrum as a supersymmetric solution to the hierarchy problem
requires a relatively light LSP and in order to have scenarios testable at colliders. Regardless
of these remarks we used micrOMEGAs as a guide, being careful about translations of effective
couplings and input parameters.

Last but not least, it is important to stress that we did not apply radiative corrections to all sub-
processes but only to the ones contributing more than 5% to the relic density, the remaining ones
were included only at tree-level. Most often the processes that we do not correct add up to more
than 25% of all the processes contributing to the relic density, even if individually their weight is
small. Therefore when calculating the correction to the relic density, the one-loop corrections we
compute can get diluted especially if some cancelations occur at one-loop between the processes
we consider. This point should be kept in mind when we quote the one-loop corrected relic den-
sity. Ideally we should have corrected all cross sections. This could of course be done with our
code SloopS and interface to micrOMEGAs , however in these exploratory investigations our aim
is to uncover the salient features of the radiative corrections to annihilation and co-annihilation
of dark matter in supersymmetry.

For all the scenarios we will give below, the low energy tree-level input parameters are defined
at the electroweak scale and are : M; the U(1) gaugino mass, My the SU(2) counterpart, p the
Higgsino “mass”, M3 the gluino mass, M4 the mass of the pseudoscalar Higgs boson and tan 3.
When not specified we will take a common sfermion mass. The sfermion trilinear parameter Ay
is set to zero for all generations. We do not impose any gaugino mass unification at the GUT
scale. Now let us describe the scenarios we study :

i) Mixed-bino scenario : Usually, assuming gaugino mass universality at the GUT scale leads
to a bino like LSP. This gives a relic density which overcloses the universe. Relaxing this
assumption by adding a substantial wino component one can match the WMAP range
thanks to the opening of gauge boson channels and co-annihilation with )ﬁc. This is easily
achieved with M7 ~ Ms. In our fist scenario M; ~ 100 GeV so that the mass of the LSP
is around 100 GeV.

X
will automatically annihilate dominantly into gauge bosons and, because of the degeneracy

with the lightest higgsino like chargino, co-annihilation takes place also.

ii) Higgsino scenario : A mainly higgsino neutralino of mass m, > my (here mgo ~ 230 GeV)

iii) Light-wino scenario : A simple way to obtain gauge bosons in the final states of annihilating
neutralinos is to increase its SU(2) type coupling by decreasing the value of Mj in order

to have a wino like neutralino whose mass mgo is taken around 200 GeV in this case. Once

again we have co-annihilation of the ¥{ with the )Zli because of the small mass gap between
them.

8.3 A mixed bino scenario

The first example we examine corresponds to a neutralino LSP which has a substantial bino
component. It is known that an almost pure bino does not annihilate enough to give the right
relic density in the radiation dominated standard scenario. As it couples mostly to particles with
largest hypercharge, the R-sleptons, one can increase the LSP annihilation rate by lowering the
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R-sleptons mass. This is typical of the so-called bulk region of mSUGRA. One can also rely
on co-annihilation with the next-to-lightest supersymmetric particle (NLSP) to reduce the relic
abundance. An example is co-annihilation with the 7. We have studied these scenarios in [21]
including one-loop effects. Another solution is to add some wino component by fixing M5 close to
M, hence the LSP/NLSP will have strong couplings with the W boson which will dominate the
annihilation rate. This is the case we study here. We take chargino masses within the LEP limits
while all other particles (sfermions, other neutralinos) are heavy. The underlying parameters of
the models are given in Table 8.1.

Parameter M; My 7 tg  Ms MEQ A; Myo

Value 110 134.5 -245 10 600 600 0 600

TABLE 8.1 — Mized-bino scenario : Values of the first SUSY set of input parameters. Masses are
mn GeV.

M 2, i are reconstructed from mgo and Mgt M The relevant physical masses are mgo = 106.9

GeV, Myx = = 124.6 GeV and m. 9= = 274.8 GeV. At tree-level m 9= = 125.3 GeV. The neutralino

compos1t1on is : — 0.94B — O.20W — O.27H0 — 0.1OHS, where B, VV,HL2 denote the U(1)
gaugino or bino, the SU(2) gaugino of wino and the higgsino respectively. The wino component
is not negligible. As a consequence annihilation into gauge bosons is dominant. The main process
XY — WHW~ contributes 44% to the relic density. The important co-annihilation channels
are X971 — Z°W*, 9% — WFW~ both contributing 5% and x9%; — ud contributing 8%.
f(?)zf — ¢5 contributes as much as the ud final state. In the following we will refer to only one
of these quark final states, of course both are counted for the calculation of the relic density. For
the the X1X1 co-annihilation, the s-channel exchange of a W™ boson is dominant, see also [122].
Before showing our results let us comment on a technicality related to the contribution of the
hard bremsstrahlung contribution. This concerns the radiative process XX, — udv, see Fig. 8.1.

u % K

X wr

S

we G

ISH

FI1GURE 8.1 — Real photon emission leading to W return.

As explained above, when charged/colored particles are involved in the initial/final state, ini-
tial/final state radiation should be incorporated to have an infrared safe cross section. This
emission is split into two pieces, soft and hard, and the cross section must be independent of the
cut where these two parts are defined. Calculating the real emission is a tricky task, especially
here. Indeed hard photon emission leads to W-return, bringing the intermediate W on-shell, and
therefore would lead to numerical instability if no width, 'y, is provided for the internal W. We
have dealt with this problem by providing a width to the W only when the radiation is hard,
as needed. For the soft part no width is introduced in order to achieve the cancelation of the
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infrared divergence between the soft bremsstrahlung and the virtual correction where all masses
are real. In summary since the W resonance turns up at an energy much larger than the cutoff
energy k., where the matching between the soft and hard emission is done, we decided to split
the integration on the hard photon phase-space in the 2 — 3 process as follows :

i) from k. < E, 4 < (s — (ME, + 2I'w My )), no width is implemented

\/_
ii) from 2—\/5(3 — (M3 +2TwMw)) < Ey 4 < 2%/5(3 — M?.) with a width to the W propagator.

One must note that for ii) the hard emission is in fact already included in the tree-level process
)Z?Xf — Wy with the W decaying into a ud(, ¢3) pair. The process )Z?)Zf — W~ contributes to
the relic density but we did not added to our list of cross sections to correct as it contributes less
than 5%. To avoid double counting when calculating the relic density at one-loop, we therefore
subtract from the list of uncorrected tree-level contributions X1X1 — W'y with the proper
branching fraction into ud, c5. We will encounter this feature for all other scenarios that lead to
such a final state and we will treat it in the same way.

Another point is related to processes which are initiated through Y9 co-annihilation, YJ%9 —
WHW~. We are working with a scheme where the input parameters are m o, m_+, m.=. There-

X1 X1 X2
fore mco receives a correction at one-loop. In principle the full one-loop amplitude would write

X2
1 oM,
Ml—loop (m;%e OOp) My —loop (m 0) + Asz am;ee (mig) , (8.9)
2
one loop

where Miyee(mc0) is the tree-level amplitude, m o and m = mgo + om 9 is the corrected

X5 X5
mass. We have neglected the second contribution. This is because the correctlon to myo is less

than 0.3% for all t3 schemes as shown in Table 8.2. When calculating the relic density we should

Masses |GeV] mgg myo My
Tree Level 125.3  238.1  270.4

One Loop - A, scheme 125.13 25858 270.42
- M H scheme 125.31 258.05 270.65
- DR scheme  125.17 258.46 270.47

TABLE 8.2 — Mixzed-bino scenario : One-loop corrections to the chargino/neutralino masses in

GeV in the scheme MRQM Tt for different tz-schemes : A;r, DR and M H.

also in principle use the corrected physical mass, like for example in the Boltzmann factor,
however again this is negligible. Results for the weighted cross sections at tree-level and at one-
loop are displayed in Fig. 8.2. First of all the QCD and EW corrections to the co-annihilation into
light quarks add up to about 10% and are practically velocity independent, especially the QCD
corrections. The full O(«) correction to gauge boson production shows the same feature. The
dominant annihilation channel 1nto WHW ™ gets about +7% correction, while Yx9 — W+W~
is slightly larger with 9%. Y)¥{ — Z°W is small with about 2%. Had we used a running « at
Mz some of the largest positive corrections would have been absorbed, however our results show
that the full corrections are necessary in view of the upcoming precision on the extraction of the
relic density. For this scenario the corrections, in the a(0) schemes are positive for all processes
we have considered. Nonetheless, since the wino component is important in the evaluation of the
cross sections because of the SU(2) quantum numbers of the final states, we expect these results
to be sensitive to the tan 8 scheme, since tan 8 enters the mixing of the bino and the wino.
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FIGURE 8.2 — Mized-bino scenario. The left/right panel shows the main gauge boson/quark pro-
duction cross sections respectively. All the cross sections are normalised with the corresponding

effective degrees of freedom given by Eq. (8.7) with xp = 25.0. Results are shown for the A,;
scheme of tan 3.
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Tree A DR MH
WX — WHW— [44%] a  +0.81 +7.6% +12.16% +29.6%
b +1.219 +0.78%  +71%  +24.2%
WxT — ud [8%] a +15.61 +7.2%  +9.8%  +18.8%
b —5.81 +5.7%  +83%  +17.4%
WX — Z2°W+ [5%] a  +8.26 +2.9%  +4.4%  +9.7%
b +1.42 -73%  -33%  +10.7%

XY — WHW = [5%] a +17.81 +9.0%  +11.1% +18.2%
b +11.86 +4.8%  +7.3%  +16.1%

Q. h? 0.108 0.105 0.102 0.097
o —2.8%  —5.6% —10.2%
X

TABLE 8.3 — Mized-bino scenario : Tree-level values of the s-wave (a) and p-wave (b) coefficients
in units 10726cm3s™!, as well as the relative one-loop corrections in the A.,, DR, and MH
scheme. The percentages in the first column refer to the percentage weight, at tree-level, of that

particular channel to the relic density.

Table 8.3 gives in particular the tan 5 scheme dependence. As expected the dependence is not
negligible in particular for the annihilation channel with both LSP in the initial state. The
dependence weakens for the co-annihilation channels where only one LSP takes part. The Mgy
scheme is once again a bad choice showing once again|21, 79, 78] very large corrections. The
difference between the A,, and DR is about 2% for the co-annihilation channels and 4% for
the annihilation channels. At the end taking into account the one-loop corrections only to those
processes we studied, which represent 70% off all processes, the correction on the relic density is
about —3% in the A, scheme and with a defined in the Thomson limit.

8.4 A light Higssino scenario

A pure Higgsino state could give an interesting relic density and, as the {32 and )Z?XliWi
are large, annihilates mainly into WW and ZZ final states. Besides, as there are three Higgsino
like states (two neutralinos and one chargino) whose mass splitting is small especially if gaugino
masses are large , Mgy & Mge o Mgx o= |pt|, co-annihilation between the LSP and the other
higgsino states is important. With such efficient annihilations the relic density would be small
if the Higgsino like LSP is too light. Nonetheless it gives favourable prospects for dark matter
direct detection. The scenario we have chosen is described in terms of the underlying parameters
given in Table 8.4.

The LSP neutralino with mass mgy = 234 GeV has a composition X{ = 0.118—-0.31W —0.70H} —

0.63[—?8 , indicating it is dominantly a higgsino state. Co-annihilation between the ! and )Zli
occurs since Mot = 242.9 GeV. All other particles, including Y9 (whose mass is mgo = 260 GeV
and of composition X9 = —0.318B—0.11W +0.92HY —0.23HY), are heavy enough and therefore do
not take part in the co-annihilation. As the higgsino component of the neutralino is important, it
will couple mostly to the W and, compared to the mixed-bino case, to the Z° boson also through
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Parameter M; Ms o tg Mz Mj A; Myo

7@
Value 400 350 -250 4 1000 630 0 800

TABLE 8.4 — Higgsino scenario : Parameters defining our higgsino model with little mixing.
Masses are in GeV.

the Y9x92° coupling.

Dominant tree-level processes relevant for the computation of the relic density are the same as
in the previous mixed-bino case except for the co-annihilation between the first two neutralinos
which is Boltzmann suppressed due to their larger mass splitting and smaller couplings. The
dominant processes are XX} — WHTW ™ contributing (at tree-level) 26% to the relic density,
X7 — ud(cs) with 12%(12%), 9% — Z°Z° with 9% and X% — Z°W ™ with 6%.

Our results for the cross sections both at tree-level and at one-loop are displayed in Fig. 8.3.
They are shown for A, scheme of tan # and where the input for « is in the Thomson limit.
Compared to the mixed bino case, the QCD and EW corrections to co-annihilation into light
quarks are smaller and no cancelation between the two occurs. The overall correction is almost
velocity independent and ranges between 10% to 8%. The corrections to gauge boson production
are smaller for Y% — WFW~ and X% — Z°W™ and about 10% for %) — Z°2°. Fig. 8.3
shows a very interesting dynamical effect in the one-loop correction to YVx{ — W+Ww—, 2020
for v2 ~ 0.3. The bumps are in fact due to the opening of the )Zf threshold in the loop, as can
be checked explicitly for this value of the velocity and the mass of the LSP compared to that
of the )Zf This dynamical structure can not be described by a simple a + bv? parametrisation
of the cross section. Compared to the bino case we have studied in the previous section the
tan § scheme dependence is small. The dependence is shown in Table 8.5 where we also give the
results in terms of the s-wave and p-wave coefficients for a fit in the range v? < 0.3 so that we
avoid the dynamical structure we have just pointed at. The difference between the A,, scheme
and the DR scheme is below 1% for all processes we studied, while the M H scheme gives larger
corrections but within 2% compared to the DR. For quark production the scheme dependence
is even negligible. The overall O(«) corrections in this scenario, though not negligible, are not
that large with « defined in the on-shell scheme in the Thomson limit. Moreover corrections
coming from boxes and final state radiation are often dominant. This suggests that to grab most
of the radiative corrections a full calculation is needed. Within our approach of not correcting
the processes that contribute less than 5% to the relic density, the processes we have considered
contribute in total only 65%. In this approach we find a correction to the relic density of —2.5%
in the A,, scheme and —2.4% in DR. In the M H scheme the correction is little changed to
-3.3%.

8.5 A light wino scenario

Models with a light wino as the dark matter candidate occur in theories like AMSBI[51],
string compactifications[123] and also split-supersymmetry[124, 125]. The advantage of a light
wino is that it has a large annihilation cross section, relevant for indirect detection, but the
main drawback is that it predicts a small thermal relic abundance in the standard cosmological
scenario and non-thermal production has to be invoked to recover the correct relic density. The
underlying parameters of the model are given in Table 8.6.

The LSP is now essentially wino with a composition 0 = 0.0058 — 0.99W — 0.15HY — 0.05HY
and mass mgo = 206.6 GeV. The LSP is highly degenerate with the )Zli, their mass difference
is Am ~ 0.05 GeV and consequently sizeable co-annihilations occur in the determination of
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FIGURE 8.3 — Higgsino scenario : The left/right panel shows the main gauge boson/quark pro-
duction cross sections respectively. All the cross sections are normalised with the corresponding
effective degrees of freedom given by Eq. (8.7) with xp = 27.6.
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Tree A DR MH

W) — WHW— [26%] a +11.84 +4.3%  +51%  +6.8%
b +4.17 +12.7%  4+13.4% +14.9%

AT — ud [12%)] a +15.28 +6.8%  +7.0% +7.3%
b —5.31 +30.4% +30.7% +31.3%

WY — 2929 9% a  +4.28 +10.4%  +9.6%  +7.8%
b +1.83 +12.7%  +12.0% +10.5%

OxT — Z2°Wt [6%]  a  +6.99 +1.7%  +21%  +2.9%
b —0.51 +85.6% +86.5% +88.4%

0, h? 0.00931  0.00909 0.00908 0.00904

52 h2

2 —24% —25% —3.3%
X

TABLE 8.5 — Higgsino scenario : Tree-level values of the s-wave (a) and p-wave (b) coefficients
in units 10726cm3s™! in the higgsino scenario, as well as the relative one-loop corrections in
the A, DR, MH scheme. The percentages in the first column next to the process refer to the
percentage weight, at tree-level, of that particular channel to the relic density. The fit into a and

b is done in the range 0 < v < 0.3.

Parameter M1 M2 1% t/@ M3 Mﬂ MgL MﬂR7éR Az MAO

Value 550 210 -600 30 1200 387 360 800 0 700

TABLE 8.6 — Light-wino scenario : Values of the fourth SUSY set of input parameters. Masses
are in GeV.

the relic density. With so small mass difference, co-annihilation processes are important. Pro-
ducts of annihilation/co-annihilation processes are into gauge bosons (and some light quarks).
The dominant processes are the following : X9x0 — W*+W~= [13%], X7 x{ — WTW+ [12%],
AT — Z2°WH [12%)], Xxfxy — Z2°2° 7%, x{xy — WHEW— [1%], XI%{ — ud [7%]. Note in
passing that we have taken a large value of tan (.

Before we present our results, a word about the renormalisation scheme and the choice of input
parameters especially as concerns the neutralino/chargino sector is in order. The results we will
show are based on taking the mass of the LSP as input (beside the masses of the charginos). One
might argue that this is not optimal in order to reconstruct the system My, My, u, especially for
extracting M; which is sensitive to the bino-component. One might even expect that at one-loop
this scheme would not be suitable since the N11 element of the orthogonal matrix in the neutralino
sector is very small leading to a large contribution from the counterterm §M;, see Eq. (8.3). For
this reason we have been careful in also taking the scheme where the input parameters are
(mig,mﬁ,mg). Fortunately, as we can see in Fig. 8.4 for the process )2(1))2(1) — WHW~—, the
difference between the two schemes is within less than 0.4%. We have checked that for other
processes in this scenario the difference is also negligible.

The tree-level cross sections and the full one-loop corrections are shown in Fig. 8.5 as a function

139



CHAPITRE 8. ANNIHILATION DE NEUTRALINOS LEGERS EN BOSONS DE JAUGE

0.40

0.39

Aol o1L (g

0.32|-

0.31~

0 30 L L L L L L L
) 0.05 0.10 0.15 0.20 0.25 030 035 0.40

FIGURE 8.4 — Relative difference for XIx) — WHW = between the scheme with (mfc?’ mﬁr,mi;)

and (mig’mif’miﬁ) as function of relative velocity. tg is within the A, scheme.

of the relative velocity. We note that, at tree-level, these cross sections are s-wave dominated.
For bosonic final states the velocity dependence is modest, compared to the co-annihilation
into quarks. For the latter, the electroweak and QCD corrections to )Z(l)fdr — ud are relatively
large, of order 30%, but they almost cancel each other. The overall correction is about +5% and
practically independent of the velocity. The annihilation process and the )Z(l)fdr co-annihilation
processes show an almost constant correction of order 10%. The co-annihilation processes show
an interesting behaviour in the case where both co-annihilating particles are charged, the cross
sections reveal a very large correction at very small relative velocity. This correction is the one-
loop manifestation of the non-relativistic Coulomb-Sommerfeld effect|73]. With the tree-level
cross section denoted as oo and ogv = ag + bov?, at vanishing relative velocity the one loop cross

. . - . 1-1 .
section for chargino annihilation, O-Cou(fop is such that

Ol ) A for XUXT
g0 —7% for )Zf)ﬁ
We thus expect the one-loop cross section o1 to be
ov = ag + byv? + macy /v with ¢ = tap. (8.10)

To exactly quantify the Sommerfeld effect in our calculation, we have also fitted the one-loop
cross section in the form of Eq. (8.10). An example of such an exercise is given in Fig. 8.6 for
)Zi" )Zi" — WTWT. We see therefore that our calculation captures this effect extremely well, indeed
we obtain here that ¢;/ap = 1.015 which indeed very close to the analytical result, ¢;/ap = 1.
This is important because this effect needs to be summed up to all orders. In our approach
we will therefore subtract it from the one-loop correction and replace it by the resummed all
order result in the final result. The result of this subtraction on the processes Y%, — Z°2°,
XTX{T = WHW+ and x{x; — WTW~ is shown in Fig. 8.7

As one can see once the Coulomb-Sommerfeld contribution is removed, one is left with a smooth
cross section which is almost velocity independent.

Looking carefully at the results for )fo(l_ — WHW ™ we note that there is still a slight increase
at small v. This is a residual effect of the weak Sommerfeld contribution, see Fig. 8.8, mediated
by a charged W that it is noticeable even for a not too heavy chargino. In fact a similar effect
is also present in Yx) — WTW~. Zooming in on the region of small relative velocity we see a
kink, see Fig. 8.9, around /s ~ 413.3 GeV corresponding to v ~ 0.04 which corresponds to the
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The left/right panel shows the main gauge boson/quark

production cross sections respectively. All the cross sections are normalised with the corresponding
effective degrees of freedom given by Eq. (8.7) with xp = 29.9.
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FIGURE 8.6 — Lightwino scenario. Fits to the s-wave, p-wave and Sommerfeld factors for )Zf)ar —
WHTW. In particular note that the fit in the parametrisation of Eq. (8.10) gives ¢1/ag = 1.015.
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FIGURE 8.7 — Light-wino scenario : Results for one-loop corrections in the A, scheme where the
QED Sommerfeld effect has been subtracted.

opening of the threshold of chargino production. In Y7 %] — WTW = we only see the tail of the
opening of the threshold.

Apart from these interesting but numerically small features, let us mention that the t3 scheme
dependence is negligible, it is below 0.1%. Our results show that corrections to the individual cross
sections can get large at all relative velocities, even after subtracting the QED Sommerfeld effect.
For example, Y] X; — WHW ™ gets about +30% correction, while both Y v — WFW* and
)Z?)Zf — ZO9W get a —10% correction. The dominant cross section )2(1))2? — WTW™ receives
a correction of about +15%. The corrections for the other processes are more modest. These
corrections are within the on-shell scheme by using a(0). We see that had we used a(M32) the
correction to YJx? — WTW~ would be small, but this is not true for most of the other cross
sections where genuine corrections, including hard radiation effects are important and must be
taken into account. This said, when we combine all the cross sections, taking into account their
statistical weight, substantial cancelations occur between the different contributions. Add to
this that the cross sections we have considered account for about only 65% of all cross sections
contributing to the relic density, since we have not considered those contributing individually less
than 5%, we find a quite modest (within the a/(0) scheme) correction to the relic density of about
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FIGURE 8.9 — Light-wino scenario : the kink in X{X{ — WTW~ at small relative velocity
corresponding to the opening of the threshold for )Zic at /s = 2 X Myt = 2 x 206.646 = 413.3
GeV

—2%, see Table 8.7. This full one-loop correction is practically unchanged if we instead resum
the 1/v Sommerfeld effect. A similar result was found when we studied 7 co-annihilation[21]. This
is due to the fact that temperature effects provide a cut-off and the 1/v enhancement is tamed
after thermal averaging, oc [;°(dv v? e=*v*/4) (ov). Our results are summarised in Table 8.7. The
results are presented in terms of the s-wave and p-wave coefficients as well as the Sommerfeld 1/v
coefficient. The correction to the relic density is given for the full one-loop, including the one-
loop 1/v threshold correction, as well as after resumming the 1/v contributions. Another word of
warning about the interpretation of the corrections in terms of the s-wave and p-wave coefficients
(a and b). The corrections to the p-wave coefficients may seem very large here, especially if the
corresponding correction to a is large. This is not an indication that the radiative correction on
the total cross is very large. Indeed all the cross sections here are s-wave dominated, so that the
correction on the s-wave is a good measure of the total correction and when modulated with the
statistical weight gives a good approximation to the correction on the relic density.

8.6 Conclusions

Extraction of the relic density will soon provide a measurement of this quantity at the 1%
level. On the theoretical side one must therefore provide a prediction which is at least as precise.
In particular, if the particle physics component in terms of computation of the annihilations
and co-annihilations cross sections are under control, one can indirectly test the cosmology of
the Universe. With this precise measurement we can even gain insight into the particle physics
model that could be combined with measurements at the colliders. The work in this paper
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continues the investigations we have made[21] concerning the impact of the radiative corrections
on the annihilation and co-annihilation cross sections of a neutralino dark matter in the MSSM.
Here the emphasis is on processes with dominant gauge boson production channels. We have
considered three models with relatively light LSP in the 100-200 GeV range, i) a dominantly
bino with some admixture of wino, i7) a higgsino like and a i) wino like LSP. Our study shows
that it is not easy to find a general common feature of the radiative corrections. For example,
within the same tan 3 scheme and for relative velocities relevant for the evaluation of the relic
density, the dominant process Y{x? — W+W ™ gets about 15% correction in the wino case but
only 4% in the higgsino case, while the bino is in between. Also the corrections we have just
quoted are within a scheme where the electromagnetic constant is defined at low energy in the
Thomson limit. A naive use of a(M2) would suggest that most of the corrections in the dominant
process in the wino case is absorbed, but this would not be true for the other processes nor for the
the other scenarios. This still does not take into account the effects of final state radiation. For
example in the same wino scenario, the O(«) correction to )fo(l_ — WHW ™ is large and reaches
about 30%. In general the corrections to the different contributing processes for the same scenario
can be quite different, in the case of the wino the overall effect on the relic is a cancelation of
the corrections between the different processes. With this in mind and the fact that we did not
correct processes that, individually, contribute less than 5% to the relic, we find that the overall
effect on the relic is small, —2% in the on-shell scheme with « in the Thomson limit. In this
paper we have also pursued our investigation of the effect of the tan 3 scheme dependence on
many observables, not necessarily dark matter annihilation. We confirm once more that the M H
scheme is not appropriate while DR and A, give generally similar results. In the scenarios we
have studied, in fact the scheme dependence is an issue only for the bino case. This could have
been expected as the bino couples to W’s only through mixing where tan 3 is important. We have
also uncovered in the case of co-annihilation electromagnetic Sommerfeld effects for vanishingly
small relative velocity. However the result of the full one-loop and that of resumming this effect
is not noticeable at the level of the relic density evaluation, thermal averaging smoothes out the
effect. Although the effect is numerically quite small, in the case of the wino we noticed the effect
of the electroweak Sommerfeld enhancement. This will become more important for higher wino
masses that we will study in another paper. To sum up, it is important to stress that we now
have the tools to perform automated calculations relevant for a precise evaluation of the dark
matter annihilation cross sections.
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Tree Full O(«)

WY — WHw— [13%] a +161.8 114.8%
b +53.52 —48.7%

RS — WHEWE [12%) a +80.75 ~9.4%
b +26.83 +20.1%

c —81.97

VxT — 2w [12%)] a +37.50 —9.5%
b +10.15 +31.6%

I — ud [7%] a +24.44 1+3.17%
b —12.62 116.3%

XXy — 2°2° [1%) a  +47.08 17.1%
b +17.71 —29.0%

c +47.1

XXy — WHW- [1%] a +46.49 +34.0%
b +14.01 ~104.4%

c +53.34

Q,h? 0.00215 0.00211
L 1-loop 1.9%
% with resum. Sommerfeld —1.9%

TABLE 8.7 — Light-wino scenario. The table summarises the effect of the full order corrections on
the dominant processes that contribute more than 5% to the relic density. The relative contribution
is given in | | next to the process. The tree-level cross sections are given through the fit cv = a+bv?
in the range 0 < v? < 0.3. At the one-loop level, The fitting function is then ov = a+bv?+ecma/v.
The coefficients a, b and ¢ are given units of 1072%cm3s™1. The relic density is calculated by
taking into account all other processes, which however are not corrected at one-loop. The Table
also gives the correction after summing the 1/v QED contribution at all orders. As the tg-scheme
dependence is less than 0.1%, only one tg scheme A, is presented.
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English Abstract This chapter treats the case of heavy neutralinos with mass up to 2 TeV
whose annihilation is into gauge bosons. Though it may, at first sight, look as a continuation of
the previous chapter, the heavy neutralino will show some very important new effects as we will
discover. We have studied two cases : in the first one the LSP is a mixture of higgsino-bino and
in the second one it is an almost pure wino. In the former case we observed the same features as
in the pure higgsino case in the previous chapter. The latter deserves special attention because,
in addition to the Coulomb effect appearing for small velocities, like in the previous chapter, an
enhancement is also due to the exchange of massive but very soft electroweak gauge bosons in
the initial state, which can be identified as the Sommerfeld electroweak effect. This enhancement
has already been studied in Chapter 4 and comes from three and four point scalar integrals when
computed close to the threshold. In this particular configuration, the incoming momenta are not
linearly independent and the Gram determinant vanishes. In turn, the reduction method of tensor
loop integrals becomes ineffective and leads to numerical instabilities. Therefore to compute the
loop integrals in this region we relied on another method, that we called segmentation. This
method exploits the special kinematics when the relative velocity vanishes and results in splitting
the three point function into two point functions and the four point one into three point ones,
which can be further split also into two point functions in special cases. On the numerical level it
enabled us to study numerically the behaviour of the corrections close to the threshold, thanks
to a good numerical accuracy, but also on the analytic level to get limiting behaviour of these
integrals. We were then able to observe that, for the case of the Sommerfeld electroweak effect,
a saturation of the corrections was occurring, compared to the abelian massless case, and this
feature was the same in the three point and four points functions. This saturation or cut-off is
related to the fact that, in the electroweak case, the exchanged gauge bosons are massive and
then provides a natural cut-off to this kind of loop corrections. At the non-perturbative level
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this is understood through the fact that the range of the Yukawa interaction is finite. We also
observed, thanks to the good numerical stability of the code, for the case of neutralino-neutralino
annihilation, the opening of the chargino threshold in loop corrections. This opening occurs for
very small relative velocity, because in the wino case the )Z?)Zli system is almost degenerate.

I then tried to fit this effect coming from the loop corrections (mostly triangle and box
diagrams) to subtract it from the total result in order to study the intrinsic effect of the renor-
malisation. Indeed, with in the idea of extracting with a high level of accuracy the fundamental
parameters from the relic density observable, this effect has to be subtracted because it is not re-
lated to renormalisation and hence to the theoretical errors on the reconstruction of parameters.
Moreover, even though this kind of enhancement is generally thought to have a minor impact
on the calculation of the cosmic abundance of dark matter in the early universe in the standard
scenario, it can be of great interest for predicting annihilation rate of neutralinos in our galaxy
and consequently on indirect detection prospects. I checked this statement for the abelian Som-
merfeld effect and the non-abelian one. It appeared, like in the light wino case, that the QED
Sommerfeld enhancement was not relevant for the range of relative velocity of interest, but the
EW one was giving quite important corrections even for higher velocities.

Another interesting correction showed up due to the so-called Sudakov double logarithms.
These can be traced to the exchange of a vector boson between the now highly relativistic final
particles with energies £ > Myy. This virtual effect takes the generic form of (a/7)In?(s/M32,))
with a negative weight which can be very large in the limit £ > My . This effect is already known
in QED or QCD but non-physical and is treated by considering as inclusive the emission of the
massless boson. Consequently the double-logarithms corrections coming from the virtual and the
real corrections cancel each other. However, in the electroweak case, the mass of the gauge boson
is well-defined and we retain in the final result the dependency on the mass of the gauge boson.
The treatment of these infrared/collinear behaviour of the electroweak corrections has received
some attention during the past few years, in application to collider phenomenology. It has been
shown to some extent that the addition of the real radiation of a gauge boson counterbalances the
Sudakov loop corrections, as dictated by the Bloch-Nordsieck theorem. So, to check this assertion,
I studied a simple case where an abelian very heavy Z’ boson decays into two neutrinos, and I
computed the virtual and real emission corrections where a Z% boson is exchanged or radiated.
In this case, the leading logarithm (In*(s/M32,)) and the next-to-leading log (In(s/M32,)) cancel
between the real and virtual corrections. Therefore for the calculation of the relic density we need
to take into account not only the 2 — 2 processes, but also some 2 — 3 which can be sometimes
almost of the same order as tree-level results. Hence, we added processes with Z9 radiation
(together of course with the real emission of a photon/gluon when charged/coloured particles
were involved in the final state) to counterbalance the effect of the Sudakov loop corrections.
The one-loop corrected relic density has then been derived by combining the one-loop corrections
with the 2 — 3 processes, and the picture between taking or not this contribution was completely
different. Nevertheless, at the level of individual channels, we noticed that even when the real
emission was added not all of the large negative corrections were compensated. This may be a
sign of Bloch-Nordsieck violation, which has already been pointed out in some papers. These BN
violations come out when the sum over all the non-abelian charges is not complete. Consequently
we decided that we should also add processes with real emission of a 7W*. To conclude we want to
stress that, for the case of a heavy neutralino, calculating the relic density with only one kind of
contribution, either loop corrections or real ones, is not enough and the full set must be included
in the result.

Résumé en francgais J'ai traité dans ce chapitre le cas de neutralinos de masse jusqu’a 2
TeV, dont 'annihilation est principalement en bosons de jauge. Bien que, au premier abord, cela
peut ressembler a une suite du travail précédent, le neutralino lourd de type wino présentera de
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nouveaux effets trés importants comme nous allons le découvrir. Nous avons étudié deux cas :
dans le premier la LSP est un mélange higgsino-bino et dans le deuxiéme un wino pur trés lourd.
Dans le premier cas nous avons observé le méme comportement que dans le chapitre précédent. Le
second a mérité une attention toute particuliére car, en plus de 'effet Coulomb du a I’échange de
boson sans masse pour des vitesses relatives faibles, comme dans le chapitre précédent, I’échange
de bosons de jauge électrofaibles massifs trés mous dans I’état initial produit le méme type
de corrections, que 'on peut identifier & l'effet Sommerfeld électrofaible. Cette particularité
a déja été étudiée dans le chapitre 4 et provient a 'ordre d’une boucle des fonctions & trois et
quatre points lorsqu’elles sont évaluées proches du seuil. Dans cette configuration particuliére, les
impulsions entrantes ne sont plus indépendantes et le déterminant de Gram s’annule. En retour,
la méthode de réduction des intégrales tensorielles & la Passarino-Veltman n’est plus valide et
résulte en des instabilités numériques. Par conséquent, pour calculer les intégrales de boucle
dans cette région nous avons appliqué la méthode de segmentation. Cette méthode exploite la
cinématique particuliére de 1’état initial lorsque la vitesse relative tend vers zéro, et consiste a
réduire la fonction scalaire & trois points en une somme de fonctions scalaire & deux points, et celle
A quatre points en une somme de fonctions & trois points qui peuvent & nouveau étre réduites en
fonctions & deux points. Au niveau numérique j’ai pu d’étudier le comportement des corrections
proche du seuil, grace & une bonne précision numérique, mais aussi du point de vue analytique ol
nous avons pu tirer des formules donnant le comportement limite de ces intégrales. Nous avons
ensuite été capable d’observer la saturation de I'effet Sommerfeld électrofaible, par rapport au
cas abélien non-massif, et cette caractéristique se retrouvait a la fois dans les fonctions a trois
et quatre points. Cette saturation ou coupure est liée au fait que, dans le cas électrofaible, les
bosons échangés sont massifs et ainsi fournissent une coupure naturelle sur ce type de correction.
Au niveau non-perturbatif cela se comprend par le fait que la portée du potentiel de Yukawa
est finie. Nous avons aussi remarqué, grace a la bonne stabilité numérique du code, pour le cas
de lannihilation neutralino-neutralino, I’ouverture du seuil du chargino dans les diagrammes de
boucle. Cela se produit pour des vitesses trés faibles, car le systéme X?)}f est quasiment dégénéré.

J’ai ensuite essayé d’interpoler cet effet pour le soustraire du résultat final afin d’étudier les
corrections propres a la renormalisation. En effet, toujours dans I'idée d’extraire avec un haut
degré de précision les paramétres fondamentaux a partir de la densité relique, cette correction
doit étre soustraite car non reliée a la renormalisation, et n’a pas d’impact sur la reconstruc-
tion des paramétres fondamentaux. De plus, bien que ce type de correction est estimé de facon
générique avoir un impact mineur sur le calcul de I’'abondance relique de matiére noire dans le
scénario standard, cela peut étre d'un grand intérét pour la prédiction des taux d’annihilation
de neutralinos dans notre galaxie et par conséquent pour des perspectives de détection indirecte.
J’ai vérifié cette assertion pour 'effet Sommerfeld abélien et non-abélien. Il est apparu, comme
dans le cas du wino léger que leffet Sommerfeld QED avait peu d’impact dans l'intervalle de
vitesses d’intérét, bien qu’il semble que la contrepartie électrofaible soit encore importante pour
des vitesses plus grandes.

Une autre correction importante de type Sudakov a surgi. Ce type de correction prend la forme de
double logarithmes (o /7) In?(s/M32,)) et peut étre reliée a I’échange de bosons électrofaibles entre
les particules de I’état final fortement relativistes dont ’énergie E > Myy. Cet effet est déja bien
connu en QED et QCD mais non-physique et est traité en considérant inclusivement 1’émission
de bosons non-massifs. Dans ce cas les double-logarithmes provenant des corrections virtuelles
et réelles s’annulent. Cependant, dans le cas électrofaible, la masse des bosons de jauge est bien
définie et conservée dans le résultat final. Le traitement de ces divergences infrarouges/colinéaires
des corrections électrofaibles a recu une attention particuliére ces derniéres années, avec appli-
cation a la phénoménologie aux collisionneurs. Il a été montré que 'ajout de la radiation d’un
boson de jauge supplémentaire contrebalance les corrections Sudakov virtuelles dans une certaine
mesure, comme ’énonce le théoréme de Bloch-Nordsieck. Pour vérifier cette assertion nous avons
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CHAPITRE 9. ANNIHILATION DE NEUTRALINOS LOURDS EN BOSONS DE JAUGE

étudié un exemple simple ol un boson abélien trés lourd Z’ se désintégre en deux neutrinos,
et nous avons calculé les corrections virtuelles et réelles ott un boson Z° est échangé ou émis.
Dans ce cas, les logarithmes dominants (In?(s/M32,)) et sous-dominants (In*(s/M2,)) s’annulent
entre les deux contributions. Par conséquent, pour le calcul de la densité relique nous avons non
seulement pris en compte des processus 2 — 2 mais aussi certains processus 2 — 3 qui peuvent
parfois étre du méme ordre que certaines sections efficaces & ’arbre. Ainsi nous avons ajouté les
processus comportant la radiation d’un boson Z° supplémentaire (de pair avec 1’émission réelle
photonique et gluonique) pour compenser 'effet des corrections radiatives de type Sudakov. La
densité relique corrigée a l'ordre d’'une boucle a ensuite été dérivée en combinant les corrections
virtuelles avec ces processus 2 — 3, et 'allure des corrections était complétement différente selon
que l'on prenait en compte la totalité des corrections ou juste les corrections virtuelles. Néan-
moins, au niveau des canaux individuels, nous avons remarqué que méme l’émission réelle ne
compensait pas toutes les corrections Sudakov. Cela est peut étre un signe de violations du théo-
réme de Bloch-Nordsieck, qui ont déja été étudiées dans certains papiers. Ce type de violation
se produit lorsque la somme sur toutes les charges électrofaibles non-abéliennes n’est que par-
tielle. Par conséquent nous avons décidé qu’il faudrait aussi ajouter I’émission réelle d’un boson
W¥. En conclusion nous souhaitons insister sur le fait que, pour un neutralino lourd, calculer la
densité relique en ne tenant compte que d’un seul type de contribution n’est pas suffisant et les
corrections doivent étre incluses en totalité, notamment les processus de type 2 — 3.
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9.1. INTRODUCTION

9.1 Introduction

Le neutralino le plus léger Y! est un bon candidat & la matiére noire lorsqu’il est la LSP.
Selon la valeur des paramétres My, Ms u ses interactions avec les autres particules peuvent étre
différentes. Dans le cas ot My << M7, pu le neutralino est majoritairement wino, et dans celui ot
1 << My, Ms il est majoritairement de type higgisno. Ces deux types de neutralinos partagent
en commun des couplages de type SU(2), c’est a dire qu’ils auront tendance a se coupler aux
bosons de jauge faible Z9 et W*. Pour le calcul de processus de type X{x} — VV * ou V est un
boson de jauge, le Couplage le plus important sera X! X1 FW, auquel s’ajoute %920 dans le cas
d’un higgsino et X1 X1 +£2° pour un wino. Le lagrangien d’interaction s’écrit dans la limite wino

€ (Oryrt~— Cw ="y | T o4~
Lin = = — (VWIRT +ce.) +eZ5X0 287 + exXf AT (9-1)
w w
et dans la limite higgsino,
e (=5 - e 1
L :__<~0 To— _ S0wie h..)— Z o
int 25 X1W X1 XQW X1 +he SwCw \ 2 C X1 ZX1
g € 0~
+eXT AXT + 5 X ZXs - (92)
wSw

Dans un cas comme dans 'autre, le neutralino doit étre assez massif pour donner une valeur de
densité relique en accord avec les bornes de WMAP [127] : pour le higgsino pur sa masse doit
étre supérieure au TeV et pour le wino supérieur a ~ 1.5 TeV. Il existe deux raisons a cela, d’'une
part la masse doit étre assez élevée pour contrebalancer I'annihilation trés efficace due aux fort
couplages SU(2)y, et d’autre part, comme la différence de masse dm = Myt — Mg est faible, les

X1
canaux de coannihilation sont importants, réduisant grandement la densité relique.

Dans le chapitre précédent nous avons étudié la densité relique de matiére noire dans des scéna-
rios ou le neutralino est léger (inférieur au TeV) et s’annihile en bosons de jauge et quarks légers.
Nous avons mis en évidence la manifestation a I'ordre d’une boucle d’'un effet non-perturbatif :
leffet Coulomb/Sommerfeld. C’est effet est di & apparition d’une singularité lorsque les neu-
tralinos s’échangent un boson de jauge non-massif pour des vitesses relatives faibles, et cet effet
peut étre resommé & tous les ordres. Nous avons montré dans le cas du wino léger que cela n’est
pas nécessaire pour l'évaluation de la densité relique. Pour des neutralinos trés lourds, la mani-
festation d'un effet Sommerfeld da a I’échange de bosons électrofaible apparait & 'ordre d’une
boucle. La cause en est que le rapport my /m,, est trés faible, par conséquent lorsque 'on est au
seuil, ou proche du seuil de la réaction (i.e lorsque la vitesse relative est nulle), le boson de jauge
échangé apparait comme étant quasiment sans masse, et de grandes corrections surviennent, de la
méme fagon que dans le cas non-massif. Cet effet a déja été étudié d’une fagon non-perturbative
dans [126, 128, 129] et appliqué a la densité relique [130] et a la détection indirecte de matiére
noire. En général l'effet Sommerfeld est considéré comme ayant un impact mineur sur le calcul
de I’abondance relique car en moyenne le neutralino se découple du bain thermique a des vitesses
suffisamment élevées pour qu’il n’entre pas en jeu.

Nous allons montrer dans ce chapitre, qu’en plus de cet effet a petite vitesse intervenant dans
I’état initial, un autre type de correction, dii & I’émission réelle de bosons électrofaibles, est
important dans I’état final, et cela quelque soit la valeur de la vitesse relative lorsque m, > my
ol les bosons V sont ultra-relativistes, ces corrections sont de type Sudakov.

x. Dans le cas ou ces réactions sont possibles, c’est & dire mgo > my ouV=2"w*
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CHAPITRE 9. ANNIHILATION DE NEUTRALINOS LOURDS EN BOSONS DE JAUGE

9.2 Discussion qualitative des logarithmes de Sudakov

Dans les processus d’interaction électrofaible du Modéle Standard, calculés au-dela de 'ordre

dominant, lorsque ’énergie mise en jeu lors de la réaction est importante par rapport aux échelles
du processus, typiquement la masse my du boson circulant dans la boucle, de grandes corrections
peuvent apparaitre. Ce type de correction a une structure de divergence infrarouge/colinéaire et
prend la forme de double logarithmes ln2(s/m%/). Elle est appelée correction de type Sudakov
[131] bien connue en QED et QCD. En QED ces divergences infrarouges sont non-physiques et
sont régulées en ajoutant une masse fictive A au photon qui agit comme un cut-off infrarouge.
Quand I’émission réelle photonique est ajoutée aux corrections virtuelles, la dépendance en A dis-
parait et le résultat final est libre de divergences et fini [132]. Dans le cas de corrections provenant
de boucles contenant des bosons W+, Z0 il n’existe pas de “bremsstrahlung” équivalent permet-
tant de supprimer cette dépendance sur la masse puisque ces bosons ont une masse non-nulle
bien définie, par conséquent la dépendance compléte sur la masse du W*(Z9) est conservée dans
les corrections radiatives voir I'éq 4.43, car cet effet a une signification physique bien définie.
Cependant ces doubles logarithmes apparaissent aussi bien dans les corrections virtuelles que
dans les émissions réelles de W*(Z°) et la somme des deux peut atténuer leur effet. Au niveau
des corrections virtuelles les types de diagrammes pouvant avoir ce comportement sont les dia-
grammes de boucle de type vertex ou boite, car leur évaluation requiert une double intégration
sur les paramétres de Feynman introduits pour les calculer .
En supersymétrie, ces doubles logarithmes de Sudakov peuvent aussi apparaitre, et en particulier
dans le cas de 'annihilation d’un neutralino trés lourd, de l'ordre du TeV. Ce type de correction
a déja été étudié pour les calculs de détection indirecte de matiére noire [134, 135, 136] au niveau
de I’émission réelle. Nous allons montrer dans ce chapitre que le bremsstrahlung électrofaible
peut étre trés important et que dans le cas de la prédiction de la densité relique de matiére
noire, il peut substantiellement changer le résultat final. Pour illustrer ce type de correction,
nous considérerons un exemple simple, la désintégration d’un boson lourd Z’.

9.3 Désintégration d’un boson de jauge lourd

On ajoute au lagrangien du Modele Standard Lgps un boson vecteur Z’ de masse M supé-
rieure au TeV, appartenant & une symétrie globale de jauge supplémentaire U’(1), se comportant
comme un singulet sous le groupe de jauge du MS SU(3)c ®@ SU(2), @ U(1)y. Ce boson de jauge
ne se couple qu’a des neutrinos gauches par le terme

1 —
Lint = Z,J", avec J" = g PLv = g*l/’y“(izfﬁ)y (9.3)

Le courant J* est conservé si les neutrinos sont considérés sans masse, en effet son équation de
conservation donne,

auj'u = Qﬂv“PLTZJ + EV”PLQMZJ = 3;@V“PL7/) + EPR’}/”QMTIZ) (9'4)
en utilisant ’équation de Dirac, on obtient,
aujﬂ = ZmVEPLw - ZmVEPR'L/} = _imuaf)%w (95)

et si 'on prend m, = 0 = 9,J" = 0. Cette équation de conservation se traduira au niveau de
I’amplitude sous la forme d’une identité de Ward.

1. Les diagrammes de type self-énergies, nécessitant 'introduction d’un seul paramétre de Feynman, ne pro-
duisent que des logarithmes simples. Il est & noter cependant dans un choix particulier de jauge, la jauge temporelle
de Coulomb, les contributions Sudakov sont contenues exclusivement dans les self-énergies des particules externes
sur couche de masse/résonantes [133].
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9.3. DESINTEGRATION D’UN BOSON DE JAUGE LOURD

9.3.1 Désintégration en deux neutrinos

Nous désirons calculer la désintégration du boson Z’ (de masse M) en deux neutrinos (de
masse nulle) & 'ordre d’une boucle, ot seul I’échange du boson Z° (de masse m) est inclus dans la
boucle, ainsi que la radiation d’un boson Z° dans I’état final. Les diagrammes correspondants sont
illustrés dans la figure 9.1 Le calcul complet de cette désintégration est détaillé dans I’Annexe G.

v v

ZO

FIGURE 9.1 — Contributions virtuelle (gauche) et réelle (droite) a la désintégration d’un boson Z'
lourd.

Le calcul de la contribution du a I’échange et 1’émission d’un W se calcule de la méme facon.
Dans la limite de Sudakov, M? >> m?, la désintégration & l’ordre d’une boucle est donnée par,
si les champs des neutrinos sont renormalisés sur couche de masse,

2 2 9 2
Fiyzfgy{l%—%[—Q(an (%)H@(%))Jr%—?]} (9.6)

avec I'_ la désintégration a l'ordre de Born.

Ce résultat exhibe une structure particuliére en In? (m2 /M 2) qui donne une divergence infrarouge
(de type soft/colinéaire) dans la limite des hautes énergies, ces doubles logarithmes sont appelés
logarithmes de Sudakov. Ils donnent une contribution négative & la largeur totale et peuvent
invalider I'utilisation de la théorie des perturbations. La contribution d’émission réelle est donnée

quant a elle par,
azIY o [ m? m? 272
N~ —212(1 — In(-— ——+1 .
R g [ (n <M2 +3In e 3 +10 (9.7)

et 'on remarque ici aussi I'apparition de doubles logarithmes, dont la structure est la méme que
pour la contribution virtuelle. Ces doubles logarithmes sont d’origine infrarouge/colinéaire.

9.3.2 Contribution totale a la désintégration du 2’

La contribution totale a la désintégration du Z’ est
I\tot - PVD + PVD—{—Z (98)

Dans la limite des hautes-énergies M >> m, I';,; est donné par,

(9.9)

3av
Tior =T, [1 + —Z]

47

On remarque donc que les divergences infrarouges/colinéaires sous la forme de doubles loga-
rithmes de Sudakov ont disparu dans la limite m? << M? lorsque nous ajoutons les contributions
virtuelles et d’émission réelle, pour cet exemple simple. Enfin il est a noter que si des restrictions
sont imposées sur ’espace des phases de I’émission réelle, comme des coupures sur les angles ou
les énergies, alors la compensation avec les corrections virtuelles n’est plus totale [137].
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9.4 Présentation de I’étude numérique

9.4.1 Choix des paramétres du MSSM

Pour cette étude concernant l'annihilation de neutralinos en bosons de jauge, ils doivent
posséder une composante SU(2) non négligeable. Les deux types de neutralinos remplissant
cette condition seront soit des doublets de SU(2),, les higgsinos fIZO superpartenaires des bosons
de Higgs, soit des triplets de SU(2), les winos W;, superpartenaires des bosons de jauge faible.
On rappelle qu’aprés diagonalisation de la matrice de masse des neutralinos par une matrice
unitaire N, les 4 états physiques seront des combinaisons linéaires du bino B, du wino neutre
W3 et des deux higgsinos, H. et fIS En particulier la décomposition du neutralino le plus léger
sur ces états, X\, s’écrit,

4
)N((l) = Nllé + N12W3 + ngg? + N14ﬁ20, avec ZN%] =1 (910)
7j=1

La valeur numérique de chacun des éléments N;; de la matrice de diagonalisation sera différente
selon le choix des parameétres d’entrée My, My, i, tg. Si 'on veut que le neutralino 1Y soit prin-
cipalement de type higgsino il faut que N123 + N2, ~ 1, et cela est réalisé si u << M7, M. Dans
'autre cas pour obtenir un X9 de type wino le paramétre N2, doit étre proche de 1.
Pour trouver ces points dans 'espace des paramétres nous avons cherché a ’'aide du programme
micrOMEGAs ceux qui donnent une valeur de la densité relique proche de celle de WMAP [127]
(donnée a 20).

0.0997 < Q,h? < 0.1221 (9.11)

sans pour autant en faire une condition stricte. Nous n’avons pas non plus cherché a remplir
les autres contraintes typiques pour la matiére noire supersymétrique, comme la limite sur le
rapport d’embranchement I'(b — sv), du paramétre électrofaible Ap et du moment magnétique
anormal du muon (g — 2),. Comme dans le chapitre précédent nous n’avons étudié et corrigé a
l'ordre d’une boucle seulement les processus contribuant plus de 5% a la densité relique QXhQ,
les processus restants ne seront inclus qu’a l'ordre le plus bas. Deux remarques peuvent étre
faites concernant cette approche, premiérement nous ne corrigeons qu’une partie des processus
entrants dans la densité relique, par conséquent il est possible que les corrections & une boucle que
nous donnerons peuvent étre diminués ou augmentées si un calcul complet ot tous les processus
pertinents sont corrigés. Deuxiémement, nous avons calculé QXh2 a l'aide de micrOMEGASs selon le
scénario standard, si un mécanisme sortant de ce cadre a été a I’ceuvre dans I’histoire thermique de
I’Univers, comme une production non-thermique de neutralino, ou tout autre possibilité pouvant
augmenter ou diminuer l'abondance relique, notre estimation de Qxh2 peut étre grandement
modifiée.

9.4.2 Renormalisation

Les schémas de renormalisation pour chacun des secteurs ont déja été présentés séparément
dans les chapitres précédents, nous ne les rappelons que briévement :
i) Les paramétres du Modeéle Standard : les masses des fermions et des bosons de jauge W, Z
sont pris comme contraintes & partir des mesures expérimentales et la relation My, = Mzc,, est
maintenue pour conserver 'invariance de jauge. Les masses des quarks légers sont obtenus tels
qu’ils reproduisent la valeur de a~!(Mz) = 127.7, la charge électrique est définie dans la limite
de Thomson a~!(0) = 137.036. 11 est & noter que si nous avions pris comme définition de la
charge aDR(Q) cela absorberait environ 13% des corrections par rapport a la définition dans la
limite de Thomson, comme 1’échelle typique d’annihilation est de 'ordre de M.
ii) Le secteur de Higgs : les conditions de renormalisation sont I’annulation des tadpoles a I'ordre
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9.5. SCENARIO AVEC UN HIGGSINO-BINO

d’une boucle et la masse du pseudo-scalaire A? est prise comme contrainte. Les résultats seront
donnés pour trois schémas de dtg : M H ,DR et A ..

iii) Le secteur des sfermions : le secteur des squarks est renormalisé a 'aide de trois masses et
celui des sleptons a partir de deux.

iv) Le secteur des neutralinos-charginos : ce secteur est renormalisé en prenant comme containtes
les deux masses des charginos et une masse de neutralino.

9.4.3 Tests et vérifications

La stabilité de chaque processus a été vérifiée dans 'ultraviolet, I'infrarouge et 'indépendance
de jauge a été vérifice a I'aide de I'implémentation de la fixation de jauge non-linéaire [45]. Le
test dans l'ultraviolet a été effectué en faisant varier le paramétre Cpy [4.25] de sept ordres de
grandeurs en double précision. Les divergences infrarouges sont régulées par I'introduction d’une
masse infinitésimale A, 4 selon qu’elles proviennent de I’échange d’un photon ou d’un gluon puis
éliminées en ajoutant le bremsstrahlung “mou”. Le controle de la disparition des divergences
infrarouges est réalisé en faisant varier le parameétre A\, , pour s’assurer de l'indépendance du
résultat vis a vis de cette quantité. La dépendance restante en la coupure sur 1’énergie du photon
k. est éliminée par I'introduction de I’émission “dure” de photon/gluon en cherchant le domaine
de coupure ou le résultat est stable. Dans le cas de quarks légers dans 1’état final, une attention
particuliére a été portée quant a ’émission dure de photons qui peut étre résonante lorsque la
masse invariante de la paire de quarks Mzg est égale a M‘%V La fagon dont nous avons traité
cette particularité est la méme que dans la section 8.3, cette singularité est absente dans le cas
de quarks lourd car M t213 > MX%V

9.4.4 Sections efficaces pondérées

Comme dans le chapitre précédent nous allons montrer les graphes des sections efficaces
pondérées par les degrés de liberté effectifs de chaque particule initiale

Giref £95,
ZefJ; jeff ois iz (9.12)
Gery

avec g;ofr donné par I'équation 8.7. Cela permet en quelque sorte de normaliser les sections
efficaces de coannihilation de fagon & voir leurs poids respectifs dans le calcul de la densité
relique.

9.5 Scénario avec un higgsino-bino

Dans ce scénario la LSP est un mélange bino-higgsino. Comme énoncé dans 'introduction,
un état pur higgsino de masse m, > My s’annihile trop efficacement et 'augmentation de sa
masse est nécessaire pour affaiblir suffisamment sa section efficace d’annihilation afin de rester
dans l'intervalle autorisé par WMAP. L’annihilation en paire de bosons de jauge est dirigée par
la fraction higgsino (voir ref. [113]). Il est aussi possible de diminuer son taux d’annihilation en
augmentant la fraction bino du neutralino le plus léger de type higgsino. Ainsi 'augmentation
du mélange higgsino/bino est aussi nécessaire pour rester dans la région cosmologique d’intérét,
car le couplage aux bosons W+, Z9 en est diminué et de méme pour les taux d’annihilation. Les
paramétres décrivant ce modéle sont présentés dans le Tableau.9.1.

Le composition du neutralino est alors ¥§ = 0.58 B—0.11W +0.58 H) —0.56 HY avec mgo = 514
GeV, Myt = 540.8 GeV et mgy = 551.5 GeV. (Cette derniére regoit une faible correction a une

boucle avec mgo =550.75GeV dans le schéma A.;). On remarque que la fraction higgsino est
relativement importante, par conséquent on s’attend, en jetant un coup d’ceil & 9.2, & ce que
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Parameter M; Ms o tg Mz Mj A; Myo

7Q~
Value 565 1000 550 4 1200 1700 O 1350

TABLE 9.1 — Paramétres définissant le scénario higgsino-bino. Les masses sont en GeV.

les couplages )Z?)ZliWi et YIx92° soient dominants. L’¢lévation de la fraction bino diminue non
seulement le couplage mais augmente aussi la différence de masse entre les trois états higgsinos
(X, %9, )Zli), réduisant sensiblement les canaux de coannihilation. Ceux-la méme qui réduisent
I’abondance cosmique dans le cas d’un higgsino pur. Maintenant seulement trois processus contri-
buent & plus de 5% a la densité relique : X)X} — WHW ™ contribue a 19%, ¥{x} — 2°2° a 13%
et X?)Zf — ud*t 4 9%. Les explications pour les corrections radiatives sont les mémes que pour le
higgsino pur dans le chapitre précédent, a savoir : 'augmentation des corrections & grande vitesse
est due a 'ouverture du seuil du chargino )Zf et 'on remarque aussi celui du neutralino x3. Les
résultats sont affichés dans la Fig. 9.2. Elles montrent des corrections modestes, cependant, il
faut rappeler qu’elles ont été calculées en utilisant a(0) dans la limite de Thomson. Pour des
valeurs de vitesse de v? autour 0.3 nous voyons I'ouverture du seuil pour le chargino )Zli, puisque
cela correspond & une énergie /s ~ 2m>21i. La dépendance en le schéma pour tan § est faible,

A, et DR donnent pratiquement les mémes résultats, voir Tableau 9.2. Etant donné que les
corrections radiatives aux trois sections efficaces sont modestes, et le fait que ces trois processus
représentent moins de la moitié des contributions a 1’évaluation de la densité relique, nous arri-
vons a une correction de l'ordre de 1% dans le schéma A, ., voir Tab. 9.2. Les corrections a une
boucle sont présentées sous la forme de corrections aux paramétres a et b provenant de ’expan-
sion en puissance de v de la section efficace d’annihilation multipliée par la vitesse relative. Ces
coefficients correspondent & une interpolation jusqu’a v? ~ 0.3 car pour des vitesses plus grandes,
le seuil du chargino )Zf apparait et la formule a+ bv? (présentée dans la Section 6.9.1) n’est plus
appropriée pour les sections efficaces corrigées. De plus d’une fagon générique le neutralino se
découple du bain thermique autour de cette valeur et ainsi les corrections pour des vitesses su-
périeures n’ont pas d’effet sur la densité relique totale. Nous n’avons pas pris en compte pour ce
scénario les processus comportant I’émission d’un boson Z° supplémentaire car sur la Figure 9.2
nous n’observons pas de larges corrections négatives pour de grandes valeurs de v. De plus nous
avons calculé le rapport Y)x) — VV + Z0 et il apparait que pour V = W= ce rapport est
d’environ 15%, pour V = Z° il est de I'ordre de 0.04 %. Cette derniére valeur s’explique par le
fait qu'il n’est pas possible d’attacher un autre boson Z° sur un boson Z° externe du fait de
I'absence de couplage a triple bosons Z°. Concernant les quarks légers dans I’état final le rapport
est d’environ 7%. Enfin si 'on utilise la valeur de la constante électromagnétique a 1’échelle My,
environ 13% des corrections sont absorbées.

1. Il est & noter que notre notation ud est une notation implicite pour les deux premiéres générations de quarks,
cette notation sera conservée dans toute la suite.
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FIGURE 9.2 — Higgsino-Bino scénario : Les panneauz gauche/droite présentent les sections effi-
caces de production de bosons de jauge/quarks respectivement a l’arbre et corrigées en fonction
de la vitesse au carré exprimée en unité de c. L’ouverture des sewils des chargino )N({E et neutra-
lino X3 sont bien visibles. Toutes les sections efficaces sont normalisées avec les degrés de liberté
effectifs donnés par Eq. (8.7) avec xp = 27.1. Seul le schéma A, pour tan 3 est présenté ici.
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Tree A DR MH

+0.81 +4.28% +3.8%  +2.5%
b +0.28 +2.54% +1.8% —0.2%

WX — W [19%]

Q

XY — 2°2° [13%)] a +0.56 +5.0% +4.7%  +3.8%
b +0.15 —-9.0% —94% —10.3%
WX — ud [9%] a +1.84 +10.2%  +10.0%  +9.4%

b —0.61 +59.0% +56.0% +58.0%

Q, h? 0.0814 0.0804  0.0806  0.0810
YA —1.2%  —1.0% —0.5%
X
TABLE 9.2 — Higgsino-Bino scénario : les valeurs a arbre des coefficients s—wmﬂa} et p-

wave (b) en unité de 10~25cm3s~!

sont présentées. Les pourcentages de la premiére colonne référent au poids du processus dans
Uabondance relique & Uarbre. Le fit a été réalisé en utilisant ov = a + bv? dans lintervalle
[0.05 ;0.3] pour v2.

ainsi que les corrections dans les schémas A, DR et M H

9.6 Scénario avec un wino lourd

9.6.1 Paramétres du scénario et résultats

Lorsque le paramétre My << M, i le neutralino est de type wino. Dans le cas d’un wino pur
le neutralino est quasiment dégénéré avec le premier chargino )Zli et, pour le calcul de la densité
relique, beaucoup de canaux de coannihilation doivent étre pris en compte. De plus, du fait de
sa nature SU(2), les sections efficaces d’annihilation des différents canaux sont trés élevées et
la densité relique de matiére noire est trés faible si la LSP est 1égére, voir Section 8.5. Comme
la section efficace est approximativement inversement proportionnelle a m, et la densité relique
O, h? o 1/{ov), pour que ce type de neutralino explique a lui seul la densité actuelle de matiére
noire, sa masse doit étre trés élevée, typiquement de 'ordre de 2 TeV. Nous avons donc choisi
les paramétres du MSSM tels que le neutralino soit de type wino et reproduise une valeur pour
Qxh2 correcte. Les parameétres principaux de ce modéle sont donnés dans le Tableau 9.3. On

Parameter M; M, n tg M3 MEQ A; Myo

Value 3500 1800 4500 15 5000 5000 0 5000

TABLE 9.3 — Scénario wino lourd : Valeurs des parameétres SUSY. Les masses sont en GeV.

remarque immédiatement que le spectre associé & cet ensemble de paramétres sera un spectre
MSSM lourd. La valeur de la masse de la LSP est mgy = 1799.09 GeV et dm ~ 1073, sa fraction
wino est de 99.9%. Par conséquent le couplage du neutralino au boson Z° est inexistant, puisque
proportionnel & la fraction higgsino, et les couplages dominants seront )Z?)ZliWi et )Zli)zliZO.
Contrairement au scénario précédent beaucoup de canaux de coannihilation contribuent a la
densité relique a I'ordre le plus bas, méme si leur poids individuel ne dépasse pas 10%. Les canaux
W) — WHW— et )Zf)%f — WTWT ont un poids de 10%, )Z?)Zf — ZOW ™, ud, tb d’environ 9%
et XXy — Z2°Z°, WHW~ autour de 6%. Environ une dizaine d’autres canaux contribuent entre
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4% et 2%, principalement composés de leptons ou quarks légers dans 1’état final. Les graphes
des corrections radiatives sont présentés dans la Figure 9.3. Nous avons présenté les résultats
seulement pour le schéma A, pour tg car la différence avec les autres schémas est négligeable
(au plus de 0.06%). Contrairement au scénario précédent nous ne présenterons pas les corrections
radiatives sous forme de corrections aux parameétres a et b car il est clair que cette approximation
semble peu appropriée au vu des résultats. Nous allons maintenant commenter les graphiques de
la Figure 9.3.

9.6.2 Comportement i ’ordre le plus bas

Tout d’abord nous remarquons que la pondération & x = xp permet de voir qu’a 'ordre de
Born les deux processus de coannihilation impliquant les quarks dans I’état final sont dégénérés
ainsi que les processus XX} — WHTW~ et )Zf){f — WTWT. Pour ces deux derniers processus
cela se comprend par le fait que dans les deux cas 'annihilation se fait par l'intermédiaire de
I’échange du chargino )N({E ou du neutralino ) en voie % (voir Figure 9.4) et est proportionnelle
au couplage )Z?)ZfWi c’est a dire (e/s,,)*. Ensuite la section efficace d’annihilation du processus
XY — WFW ™ est environ deux fois plus importante que celle de X{ X7 — WTWT, ce facteur
deux est finalement compensé lorsque 1'on compte aussi le processus x; x; — W~W™ pour le
calcul de la densité relique. A partir de ces deux processus il est possible de prédire I’annihilation
des charginos en deux bosons Z° en utilisant la forme des couplages & partir de I'équation (9.1).
Par exemple le rapport entre les deux processus fdr)ar — WTWT et fdrf(f — 7979 (dont le
canal principal est I’échange en voie ¢ d’un chargino X{E) est simplement donné par 1/c4 ~1.69 Y.
La prédiction des processus restants est plus compliquée car en plus du canal d’annihilation en
voie t, le canal en voie s & travers un boson W ot Z¥ est aussi présent et les termes d’interférences
jouent un réle important dans la valeur du résultat final.

9.6.3 Comportement des corrections radiatives

Lorsque les corrections radiatives sont ajoutées la dégénérescence entre Y{x) — WHW—
et )Zf){f — WTW ™ est levée et il apparait un comportement singulier lorsque v — 0, et ce
pour tous les processus. Nous avons vu dans le chapitre précédent que lorsque des particules
chargées sous I'électromagnétisme sont présentes dans ’état initial, cette singularité est causée
par la manifestation a 'ordre d’une boucle de l'effet Sommerfeld QED (effet Coulomb) dont le
comportement est o< 1/v. Ici s’ajoute aussi l'effet Sommerfeld électrofaible du a I’échange de
bosons W, Z, cela explique pourquoi nous observons aussi cette singularité pour les processus
avec neutralinos, puisque chargés sous SU(2). Cependant, contrairement au cas précédent, le
boson échangé est massif, on s’attend donc a ce que cette masse non-nulle introduise une coupure
sur cet effet.

Lorsque v augmente ce comportement singulier disparait mais il reste de grandes corrections
relatives négatives pour certains processus, dues aux corrections virtuelles de type Sudakov. Les
corrections positives importantes pour le processus fd‘f(l_ — WHW ™ et celui avec les quarks
légers sont données par une radiation “dure” du photon trés importante. Par exemple le rapport
XD = WIW /55X — WHW ™ pour E, > 10GeV est d’environ 30%.

Enfin, pour la méme raison que dans le scénario avec un wino léger du chapitre précédent, une
objection quant au choix de notre schéma de renormalisation avec deux charginos et un neutra-
lino peut étre faite. En effet dans ce schéma le contre-terme dM; est inversement proportionnel

§. Les autres diagrammes pouvant contribuer a l’annihilation se font par ’échange de bosons de Higgs
(h°, H, A°) en voie s et du chargino Y& en voie t, mais ici leur contribution est quasi-inexistante d’une part
a cause de la faiblesse des couplages et d’autre part a cause des masses assez élevées de ces particules (~ 5TeV)

. Si l'on compare par rapport & X1%7 — WTW™ il faut rajouter un facteur 1/2 de symétrie du aux deux
bosons Z° identiques.
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FIGURE 9.3 — Scénario wino lourd : Les panneaux gauche/droite représentent les sections efficaces
de production a l’arbre et a l'ordre d’une boucle en fonction de la vitesse au carré en unité de c.
Toutes les sections efficaces sont normalisées avec les degrés de liberté effectifs donnés par (8.7)
avec xp = 27.5. Seul le schéma A, pour tan 3 est présenté ici.
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FIGURE 9.4 — Canal principal d’annihilation pour XI%) — WHW ™ et )Zf)d‘ — WTWwT.
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a l'élément de matrice de diagonalisation N7 *. Ce choix n’est judicieux que lorsque le neutralino
le plus léger est majoritairement de type bino ou posséde une composante bino relativement
importante, ce qui n’est pas le cas ici. Cela ne pose pas forcément de probléme pour les prédic-
tions de sections efficaces, mais si nous jetons un ceil aux prédictions des masses corrigées (voir

Tableau 9.4) la correction a la masse mgg est gigantesque, qui est grossiérement donnée par le

Masses [GeV] myg myo My

Tree Level 3499.1 4500.5 4502.4

One Loop - A, scheme 1900.79 x10% 4476.6 6481.98
- MH scheme 1900.64x10% 4476.65 6481.79
- DR scheme  1900.76x10% 4476.62 6481.95

TABLE 9.4 — Corrections a une boucle des masses des neutralinos exprimées en GeV pour les
trois schémas de tg.

paramétre M. Par conséquent nous avons implémenté un autre schéma, ot les masses d’input

SONt Mg, Mgk, Mo, NOUS dénoterons ce schéma (ng’ mii,mii) par la suite. Dans ce schéma,
1 2 1 2

seul le contre-terme dM; change et est donné par 1’équation

1
oM, = W(émxg — N320My + 2N33 N30
21

Ainsi 6M; o< 1/N2* dont la valeur numérique est suffissamment grande pour ne pas poser de
problémes, et les corrections aux masses sont beaucoup plus petites, voir le Tableau 9.5. En

Masses [GeV] Mo myo My
LO 1799.1 4500.5 4502.4

NLO schéma MO+ MM+ 1798.9 4500.4 4502.3
2 X1 X2

TABLE 9.5 — Corrections & une boucle (NLO pour Next-to-Leading-Order) des masses (données
en GeV) des neutralinos/charginos dans le schéma (mig’mif’mfé) et A.; pour le secteur de
Higgs.

définitive nous avons comparé le processus XX} — WTW = dans les deux schémas, les résultats
sont présentés dans la Figure 9.5 et heureusement la différence est négligeable, nous avons donc
décidé de conserver le schéma MY+ Mt Par la suite. Cela se justifie de plus par le fait que
les neutralinos fortement corrigés ne sont pas impliqués sur les pattes externes des processus que

nous avons considéré.

9.6.4 Corrections électrofaibles de type Sudakov

Les importantes corrections de type Sudakov, provenant de I’échange de bosons électrofaibles
W= et Z0 laissent & penser que les processus & trois particules dans I’état final, correspondants
a I’émission d’'un boson de jauge supplémentaire & partir d’'une patte externe, peuvent étre
importants. D’une facon générale, pour le calcul de la densité relique de matiére noire, ces types
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FIGURE 9.5 — Comparaisons a l’ordre d’une boucle du processus XIX) — WHW ™ entre les deux

schémas (mi(l),mi;r,mi;) et (mig,mﬁ,mi;) en pourcentage.

de processus sont négligés, car ils peuvent d’une certaine facon étre vus comme une correction
d’ordre supérieure. Cela peut se comprendre par exemple dans le cas de la QED en considérant
que lorsque 'on calcule un canal d’annihilation & 1’ordre d’une boucle ot sont impliquées des
particules chargées sous U(1),,, sur les pattes externes, la radiation supplémentaire d’un photon
XX — X + 7 est traitée inclusivement pour éliminer les divergences infrarouges dues a 1’échange
de photons virtuels sans masse. Cependant il a été montré [21, 138| que I'ajout de I’émission
“dure” d'un photon peut alors autoriser et rendre non-négligeable la contribution en onde s
de l'annihilation X%} — ff, qui auparavant était supprimée du fait de la nature Majorana
du neutralino. Dans le cas de processus yx — V'V, ot V est un boson de jauge, ce type de
suppression n’a pas lieu. Du fait que les bosons échangés dans les boucles sont massifs, il n'y a
pas de divergences infrarouges associées et la radiation xyx — X + V ne semble pas nécessaire.
Cependant nous avons vu dans 'exemple de la désintégration d’un boson de jauge lourd Z' que
des divergences infrarouges formelles peuvent apparaitre sous la forme de double logarithmes
In?(s/m?,) lorsque s >> m?2, . Nous avons vu aussi que les contributions virtuelles et réelles
se compensent dans une certaine mesure. Pour savoir si I'inclusion des processus de radiation
d'un Z° supplémentaire était justifiée, nous avons calculé le rapport yy — X + Z%/xy — X,
présenté dans la Figure 9.6. Nous observons que ce rapport posséde une valeur maximale de 75%

i X — W s
X L =X - -0
= = XIXT — ud
= 6ol M4
ot (.
g 50 g 12
= .
Q 40? Q 10
+ + +
30 0~
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FIGURE 9.6 — Rapport d’embranchement du bremsstrahlung électrofaible vis a vis du processus a
larbre en pourcentage.
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pour le processus )Zf)zl_ — WTW~, imposant la prise en compte de la radiation électrofaible
dans le calcul de la densité relique. Il est a noter que pour le processus fdrf(f — 7970 1a
radiation est trés faible, cela s’explique tout simplement par le fait que dans ce processus il est
impossible d’y attacher un Z° supplémentaire puisqu’il n’existe pas de couplage a triple Z°, et
I'on s’attend a ce que la radiation interne et provenant de ’état initial soit faible. La radiation
pour le processus avec la paire de quark tb dans I’état final est atténuée par rapport a la paire ud
du fait de I’espace des phases plus réduit dans le premier cas. L'importance de la radiation pour le
processus )Zf)zl_ — WTW ™ peut se comprendre de la facon suivante : les diagrammes d’émission
sont obtenus & partir d’'un diagramme de type (9.4) en attachant sur chaque ligne un boson Z°,
ce type de contribution est la méme pour tous les autres canaux d’annihilation. Cependant, pour
ce processus il faut aussi considérer les diagrammes Y7 ¥; — Z°Z°(v) ott I'un des bosons Z°(y)
se scinde en deux bosons W*, et ceux comportant un couplage quartique W+W=2°29(~).

Pour trouver diagrammatiquement 1'origine des corrections Sudakov virtuelles nous avons ins-
pecté le processus )2(1] )2(1) — WTW ™ et tracé le rapport de la correction a une boucle sur la section
efficace a I'arbre en fonction de la vitesse pour le jeu de diagrammes de la Figure 9.7. Les résul-

FIGURE 9.7 — Diagrammes pouvant donner des corrections de type Sudakov

tats sont affichés dans la Figure 9.8. Bien évidemment il est difficile de comparer ces résultats
avec la section efficace totale du fait que le sous-ensemble de diagrammes de la Figure 9.7 n’est
pas invariant de jauge, la Figure 9.8 est juste donnée a titre d’illustration. On remarque comme
prévu que ces diagrammes donnent une correction négative et la différence relative entre les deux
courbes est au plus de 1%. Le diagramme boite avec échange de Z° en voie t entre les particules
de I’état final semble donner la plus grande contribution, qui varie peu en fonction de la vitesse
.

Nous avons ensuite réévalué tous les canaux pertinents en y ajoutant une émission d’un boson Z°.
Il est & noter que, comme pour le cas de la radiation d’un photon =, ’ajout naif de ces processus
produit un double comptage de processus. Considérons les diagrammes correspondants & deux
diagrammes de bremsstrahlung électrofaible de la Figure 9.9. Lors de I'intégration sur Iespace
des phases, lorsque la masse invariante de la paire de quarks Mi 7= MI%V? le boson W* sera sur
couche de masse et provoquera des instabilités numériques, sauf si nous introduisons une largeur
'y dans son propagateur. Cependant, lorsque la résonance est atteinte, ces diagrammes sont
équivalents au processus X?)Zf — ZOW*, multipliés par le rapport d’embranchement du W= en
paire ud. Par conséquent, au lieu de résoudre ce probléme en insérant une largeur nous avons
coupé la région d’espace des phases posant probléme. Cette coupure a été réalisée sur 1’énergie
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FIGURE 9.8 — Diagramme o1 /oy en fonction de v , la courbe rouge représente le jeu de diagramme
de la Figure 9.7 et la courbe bleue seulement les boites B4 a B7
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FIGURE 9.9 — Radiation d’un Z° dans Uétat final menant & une résonance du W
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du Z9, oil nous avons enlevé le domaine d’intégration suivant,

1 1
NE (s — (M3, + 2T'w My — M%) < Ez < NG (s — (M, — 2w Mw — M2))  (9.14)

Les sections efficaces corrigées xx — X contenant le bremsstrahlung électrofaible sont présentées
dans la Figure 9.10. Nous pouvons remarquer qu’'une partie des corrections pour les processus
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FIGURE 9.10 — Processus majoritaires dans le calcul de la densité relique corrigés a une boucle
ot la radiation d’un boson Z° supplémentaire a été traitée inclusivement.

O — WHW—, i — WHwt, xfx; — 2°2° X0%{ — ZO°W™ ont été absorbées. Les
corrections sont par contre plus importantes pour )Z?fdr — ud, th et )fo(f — WTW~=. Cela est
du au fait que, par rapport aux processus précédent, leur correction totale a une boucle était
déja positive.

9.6.5 Effet Sommerfeld ou de seuil

L’effet Sommerfeld électrofaible est un effet de nature non-perturbative se produisant lorsque
les particules entrant en collision sont non-relativistes. Les simulations & N-corps donnent une
vitesse typique des particules de matiére noire dans le halo galactique de 'ordre de v ~ 1073.
Ce mécanisme peut alors drastiquement augmenter les sections efficaces d’annihilation des par-
ticules de matiére noire du halo galactique lorsque la vitesse et la masse du WIMP vérifient une
certaine relation, menant a la formation d’états liés. Cela se produit typiquement lorsque 1’éner-
gie cinétique des WIMP est inférieure a leur énergie potentielle d’interaction [128, 129, 139]. Ce
type de mécanisme a fait ’objet de nombreux travaux, notamment pour les signaux de détection
indirecte Y)x) — vy, W W~ dans [126] ot I'effet Sommerfeld est calculé en résolvant numéri-

165



CHAPITRE 9. ANNIHILATION DE NEUTRALINOS LOURDS EN BOSONS DE JAUGE

quement 'équation de Schrédinger dans un potentiel de diffusion de type Yukawa e~"¢" /r, ou
mg est la masse du boson vecteur d’interaction.

Nous allons maintenant nous concentrer sur les corrections & trés petite vitesse. Pour cela nous
nous sommes focalisés sur la compréhension des corrections radiatives au processus Y0¥} —
WHW =, car l'effet Sommerfeld QED a déja été étudié dans le chapitre précédent. Les types
de diagrammes pouvant potentiellement étre singuliers lorsque v — 0 sont présentés dans la
Figure 9.11. Ces diagrammes peuvent développer une singularité pour deux raisons : d’une part

X

FIGURE 9.11 — Diagrammes potentiellement singuliers lorsque v — 0

le rapport My / mgo << 1, alors le boson échangé semble quasiment non-massif vis a vis des
neutralinos entrants, et d’autre part puisque la différence de masse dm = Myt — Mg est elle
aussi trés faible, le boson échangé est trés “mou” lorsque v — 0. Cependant, contrairement au
cas de leffet Sommerfeld QED, le boson vecteur posséde une masse, par conséquent on s’attend
a ce que leffet Sommerfeld électrofaible soit “coupé’ ou sature & partir d’une certaine vitesse, de

Pordre v < My / mg. Pour tenter de capturer cet effet nous avons alors calculé le rapport o1 /0

du processus X{X) — WTW ™ jusqu'a v = 0 dans deux cas différents : dans le premier la totalité
des diagrammes contribuant & I'ordre d’une boucle ont été pris en compte, et dans le deuxiéme
seulement les diagrammes & une boucle de la Figure 9.11 ont été inclus dans le terme de boucle
2Re(MGMy). 1l est a noter que pour le cas qui nous intéresse, & savoir 1'étude de I"annihilation
d’un wino lourd, les graphes de Feynman de la Figure 9.11 comportant un échange de boson
ZY dans la boucle sont fortement supprimés du fait du trés faible couplage X?)Z?ZO. Ensuite, en
s’inspirant de la formule pour le fit Sommerfeld QED, nous avons interpolé les résultats a I’aide
de la formule (voir Figure 9.12)

01/00:a+ (9.15)

b
N

Avant de commenter les résultats de la Figure 9.12 nous pouvons remarquer qu’aucune instabilité
numérique n’est présente, alors que dans la région v — 0 les impulsions entrantes ne sont plus
indépendantes et le déterminant de Gram est trés proche de zéro, invalidant la procédure de
réduction des intégrales de boucles a la Passarino-Veltman. Pour pallier a ce probléme une version
modifiée de LoopTools a été utilisée, basée sur une segmentation particuliére des intégrales
lorsque le déterminant de Gram est nul [70]. En observant maintenant la Figure 9.12 nous pouvons
noter qu’effectivement la section efficace a une boucle est "coupée’ pour une vitesse proche de
zéro, en fait approximativement égale & v ~ 1073 correspondant & /s ~ 3598.179371 GeV ~
2 X M. Les grandes corrections et la coupure proviennent donc de l'ouverture du seuil du
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FIGURE 9.12 — Fits a + b/v/v?+ 2 (en wvert) du rapport o1/og (en rouge) sur lintervalle
v € [0.002,0.1], o c est laissé libre (panneauz de droite) ou fizé a la valeur ¢ = wMy [2mgo =

7.019 1072, Les fits ont été réalisés sur le résultat complet (Full) a une boucle (tous les dia-
grammes sont pris en compte) et sur la contribution donnée par les diagrammes de la Figure 9.11

(Approzx)
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chargino )ﬁc, dont le diagramme responsable est donné dans la Figure 9.13. Le comportement

|
-+
B — wr
Wi |
|
- | _
X? < r— w
X1 |

FIGURE 9.13 — Diagramme responsable de Ueffet de seuil

singulier de la Figure 9.13 peut étre relié au comportement de la fonction a quatre points scalaire
correspondante, que nous avons tracé dans la Figure 9.14 pour des vitesses proches du seuil.
Concernant les autres processus, étant donné qu’ils impliquent au moins un chargino sur une
patte externe cet effet de seuil ne sera pas a I’ceuvre, nous observerons seulement la saturation
de Deffet vers les trés petites vitesses pour un état initial de type )Z?)Zli Dans le cas d’un état
initial ot deux charginos sont impliqués cette saturation ne sera pas visible du fait de 'effet
Coulomb abélien dont le comportement est o< 1/v. Ensuite concernant les fits de la Figure 9.12,

xlo-lZ

2.34

2.33

2.32

2.3

=

\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘

2.3

2.29

2.28

FI1GURE 9.14 — Graphe de la fonction a quatre points scalaire

Do(m2,,m2,, s,t,m?., Ma,,m2.,m?. ) en fonction de v.
Xi Xi X1 X1 X1

on remarque que le coefficient b change peu entre la correction a une boucle compléte et celle
contenant seulement les diagrammes de la Fig 9.11 lorsque ¢ est fixé ou dans le cas ou ¢ est
laissé libre lors du fit. Cela laisse a penser que nous avons bien capturé la cause des grandes
corrections des Figures 9.3 et (9.10) lorsque v — 0, et notre paramétrisation de 1’équation (9.15)
capture leur effet raisonnablement. Le fait que I’on ait pu isoler ce comportement avec un nombre
restreint de diagrammes est di justement au fait que la singularité que nous observons posséde
une structure de pdle, invariante de jauge, cependant cela est vrai seulement sur un intervalle
restreint de v. Nous avons ensuite appliqué cette démarche a tous les autres processus que nous
désirions corriger & l'ordre d’une boucle. Nous avons donc interpolé dans le méme intervalle de
v les sections efficaces avec la formule de fit (9.15), en faisant attention de soustraire d’abord
leffet Coulomb pour les canaux impliquant deux charginos dans I’état initial (voir Figure 9.15).
Une fois toutes les singularités soustraites, tout en conservant le bremsstrahlung électrofaible,
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FIGURE 9.15 — Graphe de o1/0¢ du processus )HL)*(; — 7929 en fonction de v. Le panneau
de gauche contient l’ensemble des corrections, dans celui de droite l’effet Coulomb wa/v a été
soustrait du total. On remarque la saturation ¢ v = 0.

les corrections sont pratiquement constantes (voir Figure 9.16). On remarque malgré tout que
de grandes corrections sont encore présentes. Par exemple les processus )fo(l_ — V'V avec
V = W*,Z° ont des corrections importantes, cependant pour WW cela s’explique par la fait
que la radiation du Z° est trés importante (voir Figure 9.6), ce qui laisse finalement environ 20%
de corrections. Le canal avec les deux bosons Z° dans I’état final ne posséde pas de radiation
trés importante et les corrections sont autour de -45%. Ainsi il est possible que les corrections
Sudakov ne soient pas compensées par 1’ajout de I’émission réelle, laissant les corrections virtuelles
négatives dominer a grand v. Pour les quarks lourds la correction est d’environ -10% et pour les
légers de +10%, de méme que pour XX} — WHW . Il est possible que cette non-compensation
soit due & une violation du théoréme de Bloch-Nordsieck dans les processus électrofaibles, comme
il I’a été souligné dans [140]. Il a été observé un manque de compensation entre les contributions
d’origine infrarouge/colinéaires virtuelles et réelles lorsque s /Mi%l/ — 0, di & la somme partielle
sur les charges non-abéliennes d’isospin faible. Cette violation est causée par I’émission du boson
W#, qui change la valeur de 'isospin au cours de I'interaction, impliquant une non-compensation
entre les termes virtuels et réels. Si 'on somme sur toutes les charges d’isospin, 'effet global
devrait étre nul. Les contribution des bosons Z° et ~ respectent le théoréme de Bloch-Nordsieck
car lisospin est conservé au cours de la réaction. Pour la densité relique, la somme sur toutes
les charges doit étre automatiquement réalisée puisque dans le bain thermique tous les processus
pertinents contribuent au terme de collision. Cependant, dans notre cas, nous n’avons pas pris en
compte I'émission réelle d’'un boson W* supplémentaire, notre somme sur les charges doit donc
étre incompléte. C’est pourquoi nous envisageons d’ajouter cette émission pour les processus de
coannihilation X?)}f pour tester si une compléte compensation a lieu lorsque tous les processus
pertinents sont pris en compte. A cela s’ajoute le fait que méme si 'on redéfinit la constante
de couplage électromagnétique « non plus dans la limite de Thomson «(0), mais a 1’échelle
électrofaible a(M %), cela apporte une correction d’environ —13%, n’expliquant donc pas les
valeurs observées.

9.6.6 Densité relique

Il est généralement admis que 'effet Sommerfeld n’influe pas sur la densité relique du fait que
le découplage se produit lorsque les particules de matiére noire sont encore relativistes. Pour tester
cette hypothése nous avons calculé la densité relique en coupant les section efficaces corrigées a
v = 0.1 pour les deux processus X{x] — WFTW~ et )Zi")zl_ — WTW™ et la valeur finale donnée
par micrOMEGAs ne changeait pas, montrant que ces singularités donnant de trés importantes
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FIGURE 9.16 — Diagrammes des corrections radiatives ou [’effet Sommerfeld électrofaible et l'effet
Coulomb ont été soustraits, la radiation supplémentaire du boson Z9 est ajoutée inclusivement.
On remarque que les singularités ont disparu mais de grandes corrections sont toujours présentes.
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corrections surtout pour des trés petites vitesses n’ont que peu d’effet sur la densité relique. A
titre d’illustration pour montrer que la resommation de I'effet Coulomb n’est pas nécessaire pour
le calcul de Qxhz, nous avons soustrait pour chaque processus sa manifestation a I'ordre d’une
boucle en 1/v puis resommé a tous les ordres. Avec X, = F27wa /v, pour une annihilation de
charginos de méme signes ou de signes opposés, cette formule s’écrit,

X 1 2
ol = 54 x Sy avec Spyy = ————— =1— ™ + - <E> + - (9.16)

Nous avons pu en conclure que la manifestation a 'ordre d’une boucle de 'effet Sommerfeld
QED a peu d’impact sur les sections efficaces pour les intervalles de vitesse d’interét. Cela se
comprend de la fagon suivante : lors du calcul de la moyenne thermique, que 'on peut écrire
dans 'approximation de Maxwell-Boltzmann (T < mﬁ) de la fagon suivante,

(ov) /0 (01))1)2@—9“’2/‘l dv avec v = mg /T (9.17)

le comportement en 1/v est "lissé”, et ainsi le calcul de QXh2 y est peu sensible. La moyenne
thermique agit donc comme un régulateur pour ce type de correction, mais celles a plus grande
vitesse restent. Le résultat final pour 'abondance relique de matiére noire du scénario pour un

neutralino de type wino de masse mgo =~ 1800 GeV est donné dans le Tableau 9.6. Il apparait que

Iinclusion de la radiation supplémentaire modifie grandement le calcul final de Qxh2 et que la
resommation de I'effet Coulomb n’a pas d’impact sur le résultat final. Lorsque la radiation 2 — 24
Z9 n’est pas prise en compte, I'effet global des corrections radiatives est de diminuer les sections
efficaces d’annihilation, du fait des grandes corrections négatives virtuelles de type Sudakov
(voir équation (9.6)), ainsi la densité relique augmente, car inversement proportionnelle a (ov).
Lorsque le bremsstrahlung électrofaible est ajouté, leur effet global est positif (équation (9.7)) et
les sections efficaces augmentent, réduisant la densité relique. On remarque, par contre, qu'une

Tree A + Z% brem + Coul resum  EW Som removed

Qeh? 0.0993 0104 0.0934 0.0934 0.103
Sk +4.7%  —5.9% —5.9% +3.7%

TABLE 9.6 — Densité relique corrigée a une boucle pour le scénario du wino lourd avec la radiation
supplémentaire d’un boson Z° prise en compte pour tous les cas. Dans la troisiéme colonne Ueffet
Coulomb a été resommé et dans la quatrieme [’effet Sommerfeld électrofaible a une boucle a été
soustrait.

fois I'effet Sommerfeld électrofaible soustrait, une bonne partie des corrections ont disparu pour
le processus )Zf)zl_ — WTW ™. 1l semble donc que cet effet est toujours présent a plus grande
vitesse. L’effet global des corrections est négatif car, une fois la pondération avec les degrés de
liberté effectifs appliquée, les processus contribuant majoritairement ont tendance a augmenter
NS

9.7 Conclusion

La densité relique de matiére noire va bientot étre connue avec une incertitude de 'ordre du
pourcent. Ainsi du point de vue théorique si nous souhaitons extraire de I'information a partir de
cette observable, les prédictions théoriques concernant la partie reliée a la physique des particules
doivent atteindre un degré de précision au moins aussi élevé pour pouvoir contraindre le modéle
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cosmologique sous-jacent. Cela implique de les effectuer au-dela de 'approximation de Born et
d’ensuite comprendre et controler les corrections radiatives entrant dans le calcul de 'abondance
relique, afin de pouvoir tester le modéle cosmologique sous-jacent. Dans cette étude ou le candidat
matiére noire est un neutralino lourd s’annihilant majoritairement en bosons de jauge, la plus
grande attention doit étre de mise lors de la procédure de renormalisation pour ne pas briser
I'invariance de jauge, qui joue un réle majeur dans les annihilations. Nous avons analysé ces
sections efficaces a 'ordre d’une boucle pour un seul schéma pour le contre-terme de tan 3 car
la différence entre les trois schémas dont nous disposons (M H, DR, A,,) est infime. Nous avons
opté pour la définition A, pour présenter les résultats car cette définition est invariante de jauge
et donne de faibles corrections. Nous avons étudié deux cas, le premier étant un neutralino de
type bino-higgsino avec une masse d’environ 500 GeV. Les corrections radiatives dans ce scénario
sont relativement modestes et ne présentent pas de difficulté particuliére. Du deuxiéme, ou le
neutralino est presque exclusivement de type wino, a émergé des corrections importantes, du
genre Sommerfeld (de type U(1) et SU(2)) et Sudakov. L'origine des premiéres a été reli¢ au
comportement singulier des fonctions & trois et quatre points lorsque la vitesse relative tend
vers zéro, et le deuxiéme nous a obligé & considérer aussi des processus 2 — 3 ou la troisiéme
particule était un boson Z°. Puis I'impact de la modification de la dynamique de ’annihilation
des neutralinos a été appliqué au calcul de la densité relique de matiére noire. Il est apparu que
leffet Sommerfeld de type U(1) n’a pas d’impact sur la densité relique alors que celui de type
SU(2) et les corrections Sudakov modifient de fagon importante le résultat final.
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Conclusion

Cette thése a été consacrée a I’évaluation précise d'une grande quantité de sections efficaces

entrant dans le calcul de la densité relique ou la particule candidate a la Matiére Noire est le
neutralino du modéle supersymétrique minimal. En considérant que cette observable sera bien-
tot obtenue & une précision de 'ordre du pourcent, il est nécessaire d’effectuer de tels calculs au
minimum & ’ordre d’une boucle. Nous nous sommes concentrés sur des scénarios parmi les plus
compliqués : ceux ol I'annihilation en bosons de jauge sont dominants et ou I'annihilation en
quarks est sous-dominante. Nous avons donc calculé la totalité des corrections électrofaibles et
QCD mises en jeu dans ces processus. Ceux possédant des bosons de jauge dans I'état final sont
complexes non seulement parce qu'un grand nombre de diagrammes sont impliqués pour chaque
canal mais aussi parce que 'invariance de jauge y joue un role évident.
Pour pouvoir mener ce travail & bien un code automatique de calculs & une boucle est indispen-
sable. Nous nous sommes basés sur le code SloopS en améliorant considérablement I'implémenta-
tion du secteur des neutralinos/charginos dans cet outil automatisé. A I'origine ce code était, a
I'ordre d’une boucle, optimisé pour des scénarios ol le neutralino était de type bino en prenant
comme contraintes de renormalisation la masse du neutralino le plus léger et les deux masses des
charginos, rendant ainsi plus facile la reconstruction des paramétres U(1) et SU(2) des masses
des jauginos ainsi que le paramétre des higgsinos. Cependant, a priori, ce schéma n’est pas idéal
dans les scénarios comme ceux que nous avons rencontré ot le neutralino est de type wino. Par
conséquent, comme travail préparatoire pour I’évaluation de la densité relique & l'ordre d’une
boucle, nous avons revisité la renormalisation de ce secteur et dérivé ’ensemble des contre-
termes nécessaires, en prenant comme contraintes différentes séries de masses pour les définir.
Cela pourra aussi aider pour I'étude des différences entre chaque schéma de renormalisation de
ce secteur ainsi que la dépendance due a la définition du paramétre tan 3. De plus, grace a cette
généralisation, nous sommes maintenant capables d’implémenter n’importe quel schéma pour
s’adapter trés rapidement a I’ensemble des premiéres nouvelles particules qui seront découvertes
aux collisionneurs. Nous avons étudié briévement I'implémentation d’un schéma, plus réaliste
d’un point de vue expérimental, ol les contre-terms sont obtenus & partir de la masse de deux
neutralinos et d’un chargino. Malheureusement ce schéma produit de grandes incertitudes sur la
reconstruction des parameétres fondamentaux, et cela d’'une fagon générale. C’est pourquoi nous
avons proposé un schéma mixte a partir de la mesure de deux masses plus une désintégration
pour contraindre plus efficacement les paramétres du lagrangien. D’un point de vue technique
nous avons été obligés d’utiliser une matrice de diagonalisation complexe pour le secteur des
neutralinos, ce qui ajoute des aspects non-triviaux a leur implémentation dans SloopS.

Pendant mon travail de thése je me suis penché a la fois sur le cas d’un neutralino relativement
léger dans un intervalle de masse de quelques centaines de GeV, mais aussi oil sa masse était de
I'ordre de quelques TeV. Dans le premier cas nous avons couvert tous les types de neutralinos
pouvant s’annihiler en bosons de jauge, cela nécessite en particulier une composante wino ou
higgsino non-négligeable. Il a été montré que l'inclusion des corrections radiatives dans le calcul
de la densité relique peut fortement modifier la dynamique de I’annihilation des particules de
matiére noire par rapport & un calcul & 'ordre dominant. Nous avons montré notamment qu’il
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est possible de capturer la manifestation a ’ordre d’une boucle d’un effet non-perturbatif : I'effet
Coulomb-Sommerfeld. Dans ce cas le développement en puissance de v de la section efficace
multipliée par v n’est plus valide et doit étre modifié. Ce constat reste valable lorsqu’un seuil de
création de particule sur couche de masse dans les diagrammes de boucles est atteint, comme
par exemple dans le cas du neutralino de type higgsino. La densité relique a ensuite pu étre
obtenue en interfagant le code SloopS avec le programme automatique micrOMEGAs, ce qui est
une amélioration importante par rapport a notre méthode précédente, qui se basait sur un calcul
approché. Le deuxiéme cas a révélé deux effets importants qui peuvent mener & de grandes
corrections. En premier lieu viennent les corrections Sommerfeld, d’importance autour du seuil de
Pannihilation (i.e des vitesses proches de zéro), qui sont plus pertinentes pour des analyses dédiées
a la détection indirecte de I'annihilation de neutralinos dans notre galaxie. Pour le neutralino
de 'ordre du TeV, les corrections Sommerfeld incluent non seulement celles dues & l'interaction
électromagnétique par 1’échange d’un photon au seuil, que nous avions déja observé dans les
canaux de coannihilation pour le scénario du wino léger, mais aussi celles provoquées par I’échange
de bosons de jauge W ou Z, dont la masse devient négligeable par rapport a celle du candidat
matiére noire, de I'ordre du TeV. Ces grandes corrections sont néanmoins atténuées lors de
I’évaluation de la densité relique, puisque dans ce cas le gel se produit a des vitesses de ['ordre de
0.3¢, comme cela peut étre vu lors de la moyenne thermique des sections efficaces d’annihilation.
La resommation de cet effet pour la densité relique n’affecte pas le résultat final.

La nouveauté, en ce qui concerne la calcul de la densité relique, provient du deuxiéme type de
corrections. Elles sont de type Sudakov, bien connues dans les calculs de corrections radiatives
électrofaibles, quand D’échelle typique de la réaction est bien plus grande (de 'ordre du TeV)
que la masse du W, cette correction varie comme In? (mi /M3,) ot m,, est la masse du candidat
matiére noire. Cette correction est présente pour n’importe quelle valeur de la vitesse relative et
ainsi importante pour le calcul de la densité relique. Cette correction affecte les particules de ’état
final lorsqu’elles deviennent fortement relativistes. La forme en double logarithme est d’origine
infrarouge/colinéaire. En effet il a été montré dans ce travail que la considération des processus
2 — 3 par 'ajout d’un boson Z supplémentaire est nécessaire dans de tels scénarios. L’inclusion
de tels processus contrebalance une bonne partie des corrections & une boucle. Nous ’avons
illustré en considérant la désintégration d’un boson Z’ de 'ordre du TeV en v, en incluant la
correction virtuelle due au boson Z et en ’ajoutant en tant que radiation. Un résultat analytique
simple confirme que, dans cet exemple, les doubles logarithmes s’annulent.

Au-dela de D'application a la densité relique, ce travail a mis en évidence des configurations
particuliéres des intégrales de boucle qui ont nécessité un traitement spécial. Par exemple, lorsque
la vitesse relative tend vers zéro, la technique de réduction habituelle & la Passarino-Veltman n’est
plus valide et devient hautement instable car le déterminant de Gram tend lui aussi vers zéro.
Dans ce cas nous avons fait appel & une technique de segmentation de intégrales pour éviter
ce probléme numérique et aussi obtenir analytiquement le comportement de la fonction & trois
points dans la limite ou la vitesse relative tend vers zéro. Pour les corrections Sudakov 'intégrale
de boucle doit gérer cette contribution avec attention. Enfin la radiation d’'un boson Z dans
la limite des hautes-énergies doit faire appel & une intégration de 'espace des phases a trois
particules par une méthode Monte-Carlo trés précise. L’amélioration du calcul des intégrales de
boucles dans ces configurations peut aussi étre d’une grande utilité pour les calculs multi-pattes
aux ordres supérieurs pour les collisionneurs.

Avec le démarrage du LHC, et si des signaux en faveur de la supersymétrie sont mis en évidence,
ainsi que certaines de ses propriétés, le code SloopS pourrait aider & reconstruire les parameétres
fondamentaux a l'ordre d’une boucle. Je souhaite poursuivre 1’étude des différents choix de
schéma de renormalisation dans le secteur des neutralinos/charginos sur des observables tournées
vers les futurs collisionneurs linéaires. Ceci fait I'objet d’un travail en cours. Le code SloopS peut
bien stir encore étre amélioré en approfondissant 'automatisation de I'interface avec le programme
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micr0OMEGAs , dans le but d’avoir un code complet de calcul & une boucle de la densité relique dans
le MSSM. Cela permettrait de réévaluer les différentes contraintes sur l'espace des paramétres
obtenus & partir d’un calcul & 'ordre dominant. Il ne va pas sans dire que le travail effectué ici
pourrait étre exploité avec d’autres modéles de Nouvelle Physique, adressant le probléme de la
brisure électrofaible, comme les modéles Little Higgs ou & dimensions supplémentaires.
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Conclusion (English)

The work in this thesis aimed at the precise computation of a host of annihilation cross
sections that enter the prediction of the relic density where the dark matter candidate is the
neutralino of the minimal supersymmetric model. Considering that this observable will soon be
extracted at the per-cent level it is mandatory to perform such calculations at the next to lea-
ding order level, at least. We focussed on some of the most challenging scenarios, those where
annihilations into weak vector bosons are dominant while some annihilations into quarks are not
negligible. We thus had to perform full electroweak and QCD corrections to many processes.
Processes with annihilations into electroweak vector bosons are challenging not only because a
very large set of diagrams is involved for each channel but also because issues of gauge invariance
are most striking.

To be able to conduct such a program, an automatic code for one-loop corrections is almost
a must. We have built-up on SloopSby greatly improving the implementation of the neutra-
lino/chargino sector in this automated code. Originally this code was, at loop-level, optimised
for bino-like scenarios taking as input parameters the mass of the lightest neutralino together
with the masses of the two charginos thus making it easier to reconstruct the underlying U(1)
and SU(2) gaugino masses and the higgsino parameter. This scheme would not, a priori, have
been ideal in scenarios such as the ones we concentrated on where the dark matter neutralino
is a wino. Therefore as a preparatory investigation for the computation of the relic density at
one-loop, we have reviewed the renormalisation of this sector and derived the set of all needed
counter-terms taking as input different set of masses to fix these counter-terms. This can also
help to study the differences between the various schemes in this sector along side the scheme
dependence due to the definition of tan 8. Moreover with this generalisation we are now ready to
implement any scheme adapting very quickly to the set of particles, in this sector, that will be
discovered first at the colliders. We have briefly studied a scheme, realistic from an experimental
point of view, where two neutralinos and one chargino are taken as inputs. We have shown that
this scheme suffers from big uncertainties due to the difficult reconstruction of fundamental pa-
rameters of this sector. As a solution we have proposed a scheme based on the measurement of
two masses and one decay to try to constrain more efficiently the Lagrangian parameters. From
the technical point of view this has forced to use a complex diagonalising matrix in the case of
the neutralino sector which adds some non-trivial features in the implementation within SloopS.

The work studied both the case of a relatively light neutralino in the range of a few hundred
GeV as well as much heavier neutralinos in the range of few TeV. In the first case we covered all
types of neutralinos leading to gauge boson in the final state. It has been shown that including
radiative corrections in the relic density calculation can substantially modify the dynamics of the
annihilation of Dark Matter particles with respect to leading order calculations. In particular it
has been shown that a next-to-leading order calculation can capture the one-loop manifestation
of a non-perturbative effect : the Coulomb/Sommerfeld enhancement. In this case the usual
expansion in terms of v, the relative velocity, of the cross section times v is not valid anymore.
This statement remains true as soon as the threshold of an internal particle is reached in loop
diagrams, like for example the higgsino case. The prediction of the relic density has then been

177



CONCLUSION

obtained through the interface of SloopSwith the automatic program micrOMEGAs . This is an
important improvement compared to our former method of calculating the cosmic abundance,
which was based on an approximation. The TeV case has revealed two important effects that lead
to large corrections. First there is once again the Sommerfeld type corrections, relevant around
the threshold of annihilation (vanishingly small velocities) that are of more crucial importance
for analyses dedicated to indirect detection of annihilating neutralinos in our galaxy. For the TeV
neutralinos these Sommerfeld corrections include not only the known electromagnetic correction
due to the exchange of the massless photon at threshold, the same we have also observed in the
co-annihilation channels for the light wino scenario, but include also the exchange of W and
Z gauge bosons, whose mass become negligible for TeV Dark Matter. These large corrections
are nonetheless screened when evaluating the relic density since in the latter the dark matter
freezes out at velocities of order 0.3c as can be seen when thermal averaging the annihilation
cross sections. Resummation of this effect for the relic density does not affect the overall result.
The second type of corrections is a novel one as far as calculation of the relic density is concerned.
It is of the Sudakov type which has been known in electroweak radiative corrections calculations
when the typical scale of the process becomes much larger (about the TeV') than the W mass,
this correction scales as ln2(m§< /M32,) where m,, is the Dark Matter mass. This correction occurs
for all values of the relative velocities and hence is important for the relic density calculation. This
correction can be considered as affecting the final state particles that become highly relativistic.
This double logarithms signal infrared/collinear effects. Indeed it was shown in this work that
considering 2 — 3 processes by addition of a radiating Z that these 2 — 3 processes are not
negligible at all and should be taken into account in such scenarios. Including such processes
offset and counterbalance much of the large one-loop corrections. We have shown this interplay
in a most transparent way by considering the decay of a TeV Z’ into v including the one-loop
correction due to Z boson and adding the Z as radiation. Simple analytic results confirm that,
in this simple case, the double log does cancel.

Beyond the application to the calculation of the relic density, the present work dealt with specific
configurations of the loop integrals that need special treatment. For example at vanishingly small
velocity, the usual reduction of the tensor integrals a la Passarino-Veltman is inoperative as the
procedure becomes highly unstable because of the appearance of a vanishing Gram determinant.
We have used a method of segmentation of the loop integrals to avoid this numerical problem
and it has also enabled us to obtain the limiting behaviour of the three point function when the
relative velocity vanishes. In the case of the one-loop Sudakov the loop integral must also handle
this contribution with care. Moreover radiation of a Z in the high energy limit must appeal to
precise Monte-Carlo integration routines on the 3-body final state. Improving the loop integrals
for this configurations might therefore also prove useful for multi-leg one-loop processes at the
colliders.

With the launch of the LHC, and if positive signals of Supersymmetry are found, the much
improved SloopS code could help to reconstruct fundamental parameters at the one-loop level.
That is why some preliminary work is underway. Concerning the SloopS code, further automation
of the interface to micrOMEGAs could be done in order to have a full relic density code at next-
to-leading order in the MSSM. This will make it possible to reconsider different constraints on
the parameter space which have been obtained from a calculation at the leading order. Needless
to say that the work performed here could also be exploited with other models of New Physics
that address the problem of electroweak symmetry breaking, like little Higgs models or extra-
dimensions.
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Annexe A

Matrices Gamma

A.1 Définitions

Les matrices de Dirac obéissent a la relation d’anticommutation suivante,

9"} = 29"

Dans la base de Weyl elles s’écrivent

L (0 o (-1 0
fy_a_‘uo 7'75_ 017

ot =(1,8), o =(1,-7)

ou

Les matrices o sont les matrices de Pauli,

oo (O1) 2o (01 (L0
10 i 0 —1

A.2 Propriétés

Les traces de matrices v intervenant dans les produits de spineurs peuvent étre calculés a

I’aide des identités suivantes,

Tr[1]

Tr[# impair de matrices ~y
Tr[y"y

Tr[y!y" Py

]
/]
]
Tr[ys]
]
] =

I
SOk s oo

o

Tr[y*y"vs
Tr{yH " vPy s

g"”g”" —g"g"" + g'ag"’)

— dighveo

La propriété de cyclicité de la trace permet d’inverser 'ordre des matrices -,

Tr[y# vy -]

En utilisant la notation p = v#p, on a

= Te[- - 79y "]

Pl ="Y'puk, =2p-k— [p
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ANNEXE A. MATRICES GAMMA

Il possible de donner I'expression des traces de plus de quatre matrices de Dirac* en utilisant
le fait que,

Tr[y#e"] = ST [{3#,7"}] = ¢ T [14] = 4g™
Alors
Tr 4" = = Tr [y"7"7"97] + 297 Tr [7"7”]
= Tr [y"7"y"7] + 29" Tr [y"77] = 29" Tx [y74"]
= — Tr[y"9"7"77] + 29" Tr [v/9*] = 29" Tr [y/4"] + 297 Tr ['+"]]
Tr (Y97 vPy7) = 4(g"79"" — 9”7 g™ + 9”7 g"")
En reproduisant le méme type de procédure on obtient aussi
Tr [y49"7y779% | = T 197799 | = " T [77979%97
¢ (199997 = g T [1797777
+ 9" Tr [Py
Et pour la trace de huit matrices de Dirac,
Tr [1997977°9%9 7| = Tk (179277959557 | = 7Tk [199772y 79744
+ 0T |77 | = gV [y

VT |79y 77| = g [y 7

+ g™\ Tr [w“v”w” Yo y2yP

%. La trace d’un nombre impair de matrices v est nulle
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Annexe B

Calculs entrants dans la densité relique

B.1 Vitesse de Magller

On cherche a démontrer 'expression de la vitesse de Mogller :

ST a g < Y i
Unio = A/ |Ui — U5|* — |0 A 0j]* =
Mol i j i ' EzE]

D’abord écrivons I'expression de la vitesse relative

L L2 2|12 . Lo
[ AL L/ . Emil® | BB b B
7 J - —
E; Ej E}E}  EE} ElE?
1
E2E2 [E2’p2‘2 + EQ‘p]P —2p; - p; EiE) ]

Cependant

mim3 = (B} — |pi|*)(E — |5;*) = BYE} — |5i|*E; — |95 EF + 5|55
Alors
[E7E + [5il*|75)* — mim§ — 25 - pj B3 ]

T EE?

En sachant que,
(pi - ps)* = (B:Ej — pipy)* = EYE} + (5 - 93)° — 2 - B BB

cela implique,

L 1 L2 -
Vi — ”j|2 T E2R2 [(pz' 'Pj)2 - m?ﬂﬁ + |1l?z'|2|}!?]'|2 — (7 'PJ)Q]
i g
1 — —
~ 22 [(pz 'Pj)2 - m?m? + !pi\lejlz(l — cos? 9)]
i
L 2 2.2 | (21212 (2 w2
= e [(pi - pj)* — mim7i + |pi|*|p;]* sin® 0]
i)
1 — —
o [Pip))* = mimi + (5 A 5))?]
i)
Et finalement,
52 = (pi - pj)* — mim3

- =2 -
U; — Uj| — |Ui /\’Uj 212
i
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ANNEXE B. CALCULS ENTRANTS DANS LA DENSITE RELIQUE

B.2 Impulsion dans le centre de masse

On va chercher & exprimer la vitesse de Mgller en fonction de I'impulsion dans le centre de
masse |p;;| pour une collision de deux particules de masse m; et m; et de quadri-impulsions
2,2

pi = (L, pij) et pj = (Ej;, —pij). Tout d’abord démontrons que (p; -pj)2 —mim; = s|;5}j|2,

(pi - pj)* —mim} = (E;E; + |py;1*)° — EYEZ + |pi|*(E7 + EF) — |pi;|*
= |pi;|*(E} + Ef + 2E,E;)

= 031> (Ei + E;)? = s|pi;|” (B.8)
On a alors BE
|ﬁzj| = \Z/gj X Vgl (B.9)
en utilisant,
S + m2 — m?2 s — (m2 —m?2
E; = M7 E; = M (B.10)
2/s 2y/s
on arrive a
(o mp
|Pij| = 12 X Upgon (B.11)

B.3 Section efficace modifiée dans SloopS

La formule générale de la section efficace différentielle est,

_[M[AdD,

d
7 o

(B.12)
avec ® le facteur de flux

& = 4[5, |5 (B.13)
Pour le cas de calculs concernant la matiére noire on est souvent amenés a calculer le produit
OV, alors en définissant

do 2dr
do = _,U avec do = IM[dTs (B.14)
[Pl 4y/s
out dI'y est 'espace des phases invariant de Lorentz a deux particules.
On obtient finalement
453/2 S
d = x dg = x |M|*dr B.15

L’implémentation directe de cette formule dans SloopS permet ainsi d’éviter des instabilités
numériques lors du calcul de ov lorsque v — 0.

B.4 Expression de la vitesse relative

De la section précédente on a, en notant v;; la vitesse relative,
2 2 22
o s — (mj — mj)
’pij‘ = Vj; X 483/2 (B.16)

alors en sachant que,

V(s = (mi +m;)?)(s — (m; —m;)?)

gl = L (B.17)
btient
oo 2 2 4 /a2 2 2 2
Uijzm\/l—2M+/s+M_/s , avec MY =mj; +mj (B.18)
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Annexe C

Diagonalisation
Nous allons démontrer les formules approchées des masses des charginos et des neutralinos
dans la limite My, My << |u+ Mi|,|u + Ms| démontrées dans [141, 142].

C.1 Diagonalisation des charginos

On rappelle I'expression de la matrice de masse des charginos sous la forme de blocs 2 x 2 :

ch=<0 XT) (C.1)

X 0
avec Y
M. 255 M
X:< : 3ﬁW> (C.2)
V2es My H
Cette matrice est diagonalisée par deux matrices unitaires U et V telles que
|DetU| = [DetV| =1, UU'=VVIi=1 (C.3)
On peut choisir U et V a coefficients réels alors la matrice diagonalisée X est définie par
X=vuxv" (C.4)

tel que U et V soient choisies de facon & ce que les masses physiques X;; > 0,i = 1,2. Alors a
partir de,
Det X = Det UDet VI Det X = +Det X (C.5)

ol
DetX = Mop — M3, 595, (C.6)

on peut toujours choisir Det U > 0 et ainsi poser

U= (C“ _S“> (C.7)

Su  Cu
impliquant alors que sign(Det V') = sign(Det X) = e.. Le signe de Det V est alors donné par
le signe de My puisque génériquement on a Mz, My << |u+ Ml,|u + Ma|. De plus on peut

toujours absorber le signe de Ms dans une redéfinition du champ W, alors le signe de V sera
donné par le signe de p. Alors

Ve = (o i) () ©3
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ANNEXE C. DIAGONALISATION

Avant de calculer les masses approchées il faut extraire I’expression des coefficients des matrices
U et V a partir de la matrice de masse au carré

o mii 0 o méi 0
XXT—uxxTyT = 1 et XTX =VvXTxvT = 1 C.9
2 2
0 mii 0 mii
2 2

avec My < My
En 1dent1ﬁant les termes antidiagonaux de la partie de gauche de I’équation C.9 avec les zéros

de la matrice diagonalisée on obtient

2\/—MW(M2% + psp)

C.10
2 (M2 12 — 2M2,¢o5) (C.10)
e (Mz—u + 20, ep) '
Dans la limite My, << My, i on a tan™!(x) ~ z alors
~ V2My (Maeg + psg) N V2My (Macg + psg) (C.12)
- 9 2M2,c08\ M2 — 2 ’
(M3 — ©?) (1 - Mg“i,ﬁ ) 2 H
2 My (M.
My —
et ainsi
Cuw =1 Syp > U,v (C.14)
Alors les formes limites de U et V sont
\/iMW(Mch—I—usm
U 1 My=w C.15
S 1 (©15)
M22—u2
1 \/§MW(M255+MCB)
V=1 e 4 e (C.16)
_ w ( jjgir:;;a)szgn(u) sign(u)
ce qui donne
M3, (Ms + pisag)
mgs ~ My — Ry (C.17)
M2 (M282 + )SZ n( )
- W 5 T p)signip
Mgk ~ || + 2 a2 (C.18)

C.2 Diagonalisation des neutralinos

Pour diagonaliser la matrice des neutralinos, dans la limite M, << |u + M;|,|u + M|, nous
allons exprimer les termes non-diagonaux sous forme de perturbation, soit

Y =Yo+ W (C.19)

avec Yy la matrice “non-perturbée”,

0O My, 0 O
Y, = C.20
0 0 0 0 —u (C.20)
0 0 —p 0



C.2. DIAGONALISATION DES NEUTRALINOS

et W la perturbation, avec Mz comme paramétre de développement

0 0 —cgsw  $psSw
0 0 —
W= My w60 (C.21)
—CgSw  C3Cyw 0 0
838w  —SpCw 0 0

La matrice Y est diagonalisée par une matrice unitaire N telle que NOYyNT = m?. Les valeurs
propres de Y sont
m® = diag(My, My, —p, 1) (C.22)

et la matrice de passage dans la base des vecteurs propres (¢, ¢9, cpg, ©Y) s’écrit

10 0 O
01 0 0
Ny = 1 1 C.23
0 00 L L (C.23)
1 1
00 -7 7

En utilisant la théorie des perturbations jusqu’au deuxiéme ordre, la masse est donnée par

%74 2
mn = mQ + (O W ) + 3 2 e | o )>| +oe (C.24)
k#n n k
La premiére correction d’ordre 1 se raméne au calcul de
Wt = NOWw N (C.25)

et les perturbations aux masses seront les termes diagonaux. On obtient,

SwS— SwS
00
0 0 _ CwS— _ CwS+
W= My | s s 0“5 0“5 (C.26)
V2 V2
SwS4 _cws+
V2 V2 0 0
avec
S_=s3—cg
S+ =53 + c3

On voit alors qu’au premier ordre de la théorie des perturbations les corrections aux masses
sont nulles. Nous allons donc calculer les termes aux deuxiéme ordre, W2

Won
5 e o
k#n n Tnk

Nous donnons comme exemple les corrections de deuxiéme ordre & my et mo,

2 _ (sws_)? (sws_)? _ _M%S%U(Ml + [1523) (C.28)
Po(My 4 ) 2(My - ) 2 — M;
2 (cws-)? (cws+)? Mo, (Ma + psag) M (Ma + pisap)
W3 = + - - 2 =Wl (C.29)
V2(My+ ) V2(Ma — p) p? — M p? — M;
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Finalement on obtient pour les masses approchées,

 MZsy, (M + psap)

(l)ﬁMl

% e
M (Mo + psag)
mgy =~ My — 2
myg = |ul + M7 (1 — esyp) (|l + Micy + Mys)
X3 2(|ul + My)(|ul + M)
M21—|—es — M2 — Mos2
g = i + 2Lt sl = Mncy, — Mosy) 0

2(|p| = My) (|| — My)

ol nous avons pris My, Mo réels et positifs par convention, ainsi que p de signe € = +£1.
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Annexe D

Parameétres de Feynman

D.1 Intégration sur les paramétres de Feynman

Démontrons que
1 1
/ drdydz - f(z)0(x +y+2—1) = / dz(1—2)f(2)
0 0

Premiérement, réalisons l'intégration sur x avec la fonction §. Nous savons que fj;o f(z)d(x —
xo) = f(xp). cela signifie que la fonction delta est piquée en xg € [—o0,+oc]. Dans le cas qui
nous interesse, nous voulons qu’elle le soit dans l'intervalle o € [0,1] et égale & g =1 —y — z.
Cela implique que

0<l—y—2z<1
l—2z>y>—-=z

Comme z € [0,1], la partie droite est automatiquement vérifiée. Par conséquent nous obtenons :

/ £ (2) / Ty - / a1 - )f(2)

D.2 Formules d’intégrales

Pour n’importe quelles fonctions f(z,y) et g(x + y, zy) :

/Oldm/ol_wdyf(w,y)Z/()ldy/ol_ydxf(x,y):/Oldx/ol_xdyf(%x%

1 11—z 1 1—2
/O dz /O dy(x — y)g(x + y,zy) = /0 dz /O dy(y — )9z +y,ay) = 0

Pour n’importe quelle fonction g(z + y) :

/01 dx/ol_w dyg(z +y) :/01 dzg(2) /Ozdx:/ol dzzg(2)
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D.3 Autre version de la paramétrisation de Feynman

Nous savons que

1 1 1 1 1—x
| an [y [Caspey sy s o= [do [ aypega-o-y
0 0 0 0 0

ensuite en prenant z = 1 — z il vient

1 11—z 0 z 1 z
/dm/ dyf(w,y,l—w—y)z/ —dz/ dyf(l—z,y,z—y)z/ dz/ dyf(1=2y,2—y)
0 0 1 0 0 0

En l'appliquant a la paramétrisation de Feynman :
Sz +y+z—1)
—— =2l d d
ABC / x/ y/ xA+yB+zC]
1—x
~afanf e
xA+yB+(1—x— y)C)3

2/ dz/ 4y 1—z)A+yB+(z— )PP
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Annexe E

Fonctions Spéciales

E.1 Opérations sur les logarithmes

log(—x) = im + log(z) (E.1)

log?(a) — log?(b) = log(%) log (ab) (E.2)
log?(—a) — log?(—b) = (log(—a) — log(~b))(log(—a) + log(~b))

- log(%)(%ﬂ + log(ab)) (E.3)

E.2 Fonction de Spence ou dilogarithme

L’équation servant de définition est

b In(1—at T oIn(l—t
LiQ(x):—/ dtyz—/ dt¥ tel que —7m <arg(l —z) <w (E.4)
0 0

Nous détaillons comment faire apparaitre des fonctions de Spence & partir d’'une intégrale du
type :

In(y —y1) — In(yo — v1)]

Y
1=y 1
= dy———[In vy — In(yg —
| dy—e—lin y = Infao — )

—Y1 1
— dy———IIn y — In(yg —
| v =t — )

1
d 1— 1—
Z/dy[—ln<1+y yl)] {ln y< yl)] y=0-m)y
0 dy Y1 — Yo Yo — U1
1 d _
- / dy [—1n<1—y = )] {ln yyl} y=uy
0 dy Y1 — Yo Yo — U1
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-1
R:Lig<y1 >—L12< d1 )
Y1 — Yo Y1 — Yo

10 (20 ) a1 )~ tnG = )] = (=) )~ o — )]

Y1 — Yo Y1 — Yo

-1
:L12< Yo >—L12<y0 )
Yo — U1 Yo — Y1

ol nous avons utilisé la formule E.5 :

1—yo 1—y1) 1—yo y1— 1\ 1—yo 1 -1y
In n|l——|=h|——|In{>—— ] =In In{1-—
Y1 — Yo Yo — U1 Y1 — Yo Y1 — Yo Y1 — Yo Y1 — Yo

Quelques formules reliant les fonctions de Spence [143] :

2

Lis (z) + Lis (1 — z) = % — In(z)In(1 — z) (E.5)
1 21
Lig(z) + Liy <—> - T In?(—x) (z & 10;1]) (E.6)
x 6 2
On donne quelques valeurs particuliéres
Liz(0) =0 (E.7)
2
Lis(1) = % (E.8)
2
T
Lig(—1) = 13 (E.9)
. 1 2 9

E.2.1 Variante de la définition

La définition du dilogarithme dans MAPLE[144] est différente de celle que nous utilisons ici.
Dans MAPLE le dilogarithme s’écrit,

o
dilog(x) = / a1nt) (E.11)
11—t
alors que celle que nous utilisons est définie telle que
ToIn(l—t
Lis(2) = —/ dt¥ (E.12)
0

pour passer de I'une a I'autre il suffit d’opérer le changement de variable t — 1 — ¢’ et ensuite

|dilog(x) = Lis(1 - 2)] (B.13)

E.2.2 Deéveloppement Limité

Dans le cas ol 'argument & << 1 on obtient les développements suivants, en posant x = €

et e >0:
1 1 —et 1
In(1 —et 1
Lig(e) = —/ dtM ~ —/ dt—< :/ edt =€ (E.14)
0 t 0 t 0
w2 2
Lis(1 —€) = i Lig(€) — In(e) In(1 —€) ~ € +elne (E.15)
2
Lig(l—{—e)zg—ke—elne—iﬂ'e (E.16)
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E.3 Fonction Gamma d’Euler

La fonction Gamma I'(z) apparait dans les calculs de boucle utilisant la régularisation di-
mensionnelle. Tout d’abord, ’égalité

2I'(z) =T(2+1) zeC (E.17)

sert en fait de définition de I'(z). Ensuite, I'(z) est une fonction méromorphe* de la variable
complexe z qui posséde des poles simples lorsque

z=-n, neN (E.18)

La représentation intégrale (dite d’Euler) s’écrit,
[ee]
I'(z) = / dte ' t*71, Rez>0 (E.19)
0

La propriété E.17 peut étre utilisée pour prolonger la représentation E.19 dans la région Re z <
0,Im z % 0, il en suit les propriétés suivantes,

r1)=T@2)=1, T'(n)=n-1) n=234,.. (B.20)

De plus, I'(1/2) = /m. Nous utiliserons également les deux limites suivantes :

1
lir%F(z) =B + O(z) (E.21)
1
lin})F(z)Az =—-—v+InA+0(2) (E.22)
z— z
ou g est la constante d’Euler
vg = 0.577215 (E.23)

x. Ses seules singularités sont des poles
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Annexe F

Intégrales scalaires

F.1 Intégrale scalaire & un point, fonction A :

m

Ce type d’intégrale est rencontré lors du calcul des diagrammes type tadpole, ainsi que lors
de la réduction des intégrales de plus haut rang.
La fonction Ag est définie par l'intégrale

Am) = =it [ s (F.1)

2m)" k2 — m?

Et elle se calcule simplement a I'aide de 4.18 en développant autour de n =4
m2
I

F.2 Intégrale scalaire & deux points, fonction B :

Ce type d’intégrale apparait lors du calcul des self-énergies ou des transitions.

my

S
_/

)

La fonction By prend la forme :

. a1
Bo(p*;mi,mg) = —i(4m)?pt /(%)nﬁ,

Dy =k —m}, Dy = (k+p)*—m}
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En introduisant les paramétres de Feynman au dénominateur :

1 /1 " 1
DoDy Jo (1= z)(k2 —m]) +2((k + p)* — m3)]?
/1 dx 1
o [k 4 2kpr +a(p? +m3 —mi) — m3?
——

(k+pz)?—p2a?

1
1
:/ dx B G 2 2 p) GED)
0 (12 — (p7z* — z(p” + m] —m3) +m7)]
A

Puis en prenant n =4 — ¢,

! d"k 1
Bo(p*; :—‘424"/d/—7
o(p"3 M1, mo) i(4m)"p 0 z (2m)n [I2 — A2

(—1)% T(2-13) < 1 >23

= —z'(47r)2[1+51n,u+(9(5)]/1 dx

0 (47’1’)"/2 F(2) A
1
= —i(dm)%[l +elnp+ O(F)] /O dm@ (g “InA — 4 In(4n) + (9(5))

! 2 A
:/ dx ——’y+ln(4w)—lnﬁ+(’)(a)
0

€
|
Cuv
! A
= Cyy —/ dxln—z + 0(8)
0 K
Soit 1, w9 les racines de A = p?z? — x(p? + m? — m3) +m? alors
A 2 <
In— = p_2 + Z In(x — z;) (F.3)
H 1
menant a
1 2
A ;i — 1
/ drln — = lmp—2 +Z{ln(1 — ;) —x;ln <x, : ) } —1+0(¢) (F.4)
0 H H i1 Z;
Finalement
P2 2 T —1
Bo(p*;m1,ma) = Cyy — |In e +) { In(1 —2;) — 2;1In < zx' ) } —1|4+0() (F.5)
i=1 ¢
En pratique on rencontre les cas particuliers suivants :
1. Simy =mog=m, z12 = %(1 + 3) avec 3% = 1 — 4m?/p?
m? 6—1
Bo(p*;m,m) =Cpy —In— 4+ fln [ =—= ) + 14+ O(¢ F.6
o m) = Cov a1 (51 ) 1+ 0 (7.6)

Nous donnons aussi les deux intégrales scalaires By (p?, m?, m?) et Boo(p?, m?, m?) obtenues
par la méthode de Passarino-Veltman (voir Chapitre 4.3)

1
Bl(pz,mQ,mQ) = — §B0(p2,m2,m2) (F.7)
2

Boo(p?, m?,m?) = = | Ag(m) + 2m>By + p* By + 2m? — %] poure — 0 (F.8)

=
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F.3. INTEGRALE SCALAIRE A TROIS POINTS, FONCTION C :

2. Si une des masses internes est nulle, la racine est unique xq = 1 — m?/p?

2 2 2
9. B m m P
By(p*;0,m) = Cyy — In Tz (1 .z ) In (1 - _m2> + 14+ 0(e) (F.9)

3. Sip?=0,m?=m,m3=0:
m2
BO(O;m, 0) =Cpyy —In ﬁ + 1+ O(e’;‘) (FlO)

4. Siles deux lignes internes sont sans masse :

2
By (p*;0,0) = Cyy —In M—Z +240(e) (F.11)

5. Si 'impulsion externe est nulle p =0 :
Dans ce cas on peut trouver 'expression de By(0;m?, m?) a partir de Ag(m),

T [(4?%”—2”1%@)%) (%)] (12) (12

En prenant n =4 — ¢

4—n T ( _ E) 1 2-3
H 2 2 €
A = = — 14+ = F.13
Bo(0;m2,m?2)

Ce qui donne finalement

Ao(m) = m?*By(0;m?,m?) + m? (F.14)
et
m2

By(0;m?,m?) = Cyy — In (F) + O(e) (F.15)

F.3 Intégrale scalaire a trois points, fonction C :

La fonction Cj apparait lorsque I'on calcule les corrections & une boucle des vertex :
La fonction Cj s’exprime comme

d"k 1

2m)" (k% —m3)((k + s1)? — m3)((k + 52)* — m3)
(F.16)

Avec s1, 85 donnés par 4.3. L’introduction de deux parameétres de Feynman x et y est suffisant

ici, et en terme d’un choix particulier la fonction Cy devient |71, 72| aprés intégration sur k :

Co(plap2amlam2,m3) = _2(477)2,“4”/(

1 T
C(]:/ dm/ dy (aazz—i—byz—kcxy—kdx—i—ey—kf)il (F.17)
0 0
avec
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a = —p3, b= —p?, c=—2pip2 = P2 +p3 — (p1 + p2)?,

d=p3—m3+mj, e=(p1+p2)?+mj—mi—p3 [=-mi

La fonction scalaire C est invariante sous une permutation cyclique des deux ensembles d’argu-
ments : {p3p3, (p1 + p2)?} et {m1,ma, m3}. Si 'on néglige les masses externes on obtient

p%Q =0, (pl —|—p2)2 = QQ, my = My, mgo= DMy, m3= Ms. (F18)
Alors les coefficients deviennent

a=0, b=0, c=-Q%
d=M3;—M;, e=Q*+M;—M: [f=-M;3.

et Co = Cp(0,0, Q% My, Mo, M3) se réécrit

1 x —1
o= [ o [ay(u (@0 =)~ ME + 083) a0 — 0aF) 13 )
0 0 d

A B
En sachant que
* 1 In(Az+B) InB
d = — F.19
/0 Yay+B A A (F.19)
L’intégration donne
C(x) D(x)
In | 2(Q*(1 —x) — M{ + M3) + (M35 — M3) — M3 /m(M§ - M3) - M3
1
CO = / dx
0 Q*(1 — @) — M + M
E(z)

En factorisant chaque argument des logarithmes
Cx) = — Q%%+ Q% —aM? +xMi — M3 = —Q*(x — x1)(z — x9)
D(z) = (M5 — M3)(z — z3)
B(z) = — Q*(z — o)
(F.20)
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F.3. INTEGRALE SCALAIRE A TROIS POINTS, FONCTION C :

avec
$0:1—|—7M22_M12 $3:7M§
F g
@M NI
1,2 50°

ott A(w,y,2) = 22 + 9% + 2% — 22y — 222 — 2yz est la fonction de Killen.
On peut alors développer les logarithmes

Co = /01 dxm < {m (ﬁ) +in(x — 21) + In( — 22) — In(x — x?,)} (F.21)

On est alors amener a évaluer trois fois une intégrale de la forme

1

1 .
I = / P )] (F.22)

0 T —Zo
Pour éliminer les singularités du dénominateur nous allons ajouter et soustraire In(zg — x1) ce

qui donne,
I = /1 gp @ = @) ~In@o—2) | /1 PG ) (F.23)
0 Tr — X 0 T — X0

La premiére intégrale va donner des fonctions de Spence ou dilogarithmes et I; prend la forme
I; = Liy <x0x_°$> — Li (;5:2) n /01 dmln(fo_i_xfi) (F.24)
Maintenant en insérant dans Cy
o 1 3 Sis | 1 s o —1 ) o
" @ { ;(_1) [L12 <950 —l“z‘> L <~’Uo —$z> }

o) ()} o

Le dernier terme disparait en notant que

O(a) = 2(~Q(x — 20)) + D(x) = D(wo) = —Q(wo — 1) w0 — 2) (F.26)
menant a ) )
(w0 —@1)(wo —m2) _ M3 — 5‘/-’2 (F.27)
(zo — x3) -Q
Et la formule finale de Cj est
1 3 i) 1 o
2 S: . - .
My, Mo, M3) = — —1)%3 |L - L F.28
CO(O’OaQ 3 1 25 3) Q2 ZZ;( ) |: 12 <$0—£CZ> 12 (ﬂco—iﬂz)] ( )
Cas M1:M2:M3:MZ
Dans ce cas nous obtenons
o — 1
1 4M?2
T2 = :'226 avec J =4/1— Ko (F.29)
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donnant pour Cj

1 2 2
Co(0,0,Q% M, M, M) = —— |Liy [ —— ) + Li <—>} F.30
0(0.0.0 )= |1 (155) +1ie (125 (F.20)
Dans la limite ott Q% >> m?, on a
2 1+M2
1+5 Q?
2 @
1—-38  M?

Alors en se servant des formules situées dans I’Annexe E

2 2
=gt (e ) v (3

1 [x2 x? 11 9 Q?
= - — | — — — — —In _
Q%6 6 2 M?
et on obtient finalement

2 2 2
Co(0,0,Q% M, M, M) = é B In? <%> - % tirln (%)} (F.31)

Cas avec une seule masse interne :
On va étudier le cas ou My = M3 = 0; My = m, alors nous devons calculer :

1 x —1
C = /dx/d( 2(1 — 2) +m? +—xm2>
! Car [ ay(v(@20 )+ m?)
A B
1

1 Q?
= ; deQ(l—x)—i—m? In (—W(l—x)>

2] 1 1 QZ 1 1 1 Q2
0 Q T+m m m 0 mﬁﬂ + 1 m

2 2

1 7% m? —Inxz 1 7% Inx
= — (——Qdac)— = — dx
m? J, Q x—1 @2 ) x—1

1 7.(.2 2
= o (F — Liy (1 + %)) (F.32)

Comme Q% > m? — Q?/m? > 1 on peut utiliser la formule [143]

Lig(x) = —Lis (%) T 11112(—35) (F.33)

' Q2 . m2 7.(.2
WC*aiz—hﬁaﬂﬁi—E—

Alors



F.3. INTEGRALE SCALAIRE A TROIS POINTS, FONCTION C :

Donnant finalement

2
Co(0,0,Q%0,M,0) = 55 <L12< 2+Q2>+11 < 2+Q2>_%

i (22 o

Limite ot Q? >> m?
2 2 2 2 2 2
Co(0,0,Q?;0,M,0) = $2< 12<@>—%1 <gz>—w—+%+ %) (F.35)

On peut trouver 'expression générale de la fonction Cj en terme de 12 dilogarithmes ainsi que
I'expression de la fonction scalaire a quatre points, Dy, et leur dérivation dans [60, 64, 71, 72].
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Annexe G

Désintégration d’un boson de jauge
lourd

Nous détaillons ici le calcul de la désintégration du boson de jauge Z’ évoqué dans le cha-
pitre 9.

G.1 Désintégration en deux neutrinos

Nous désirons calculer la désintégration du boson Z’ en deux neutrinos a 'ordre d’une boucle,
les diagrammes & calculer sont

v(p2)

Z/

7(p1)

G.1.1 Désintégration a ’ordre de ’arbre

L’amplitude & l'arbre s’écrit :

Mo = ig.u(p2)y’ Pro(p1)e,(k) (G.1)
L’élément de matrice au carré s’écrit (avec P,y = —gpo + kyuky /M?)
1 P
3 D WMol = g2 (alp2)” Puop)) ((pa)y” Prou(pr))

spin

P
= gf%Tr [#27" Pry17° PL]

P,
= g5~ [=20" (1 - p2) + 2p5p + 2p5pY]
1 1
= 935 [4(1)1 “p2) + W(—QMQ(IH “p2) +4(k - p1)(k - p2)

Ak p1)(k - p2)

1

2
— _ 2 .
—9*3[(1)1 p2) + M2
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ANNEXE G. DESINTEGRATION D’UN BOSON DE JAUGE LOURD

ou
1 M?
p1-p2 = 5{# —pi —P%} =5
M2
il s’ensuit
1 292 M?
) IMoP == (G.3)
3 = 3
spin
La largeur de désintégration a l'ordre le plus bas est donné par
1 —— 2 ¢’M
ott A(M?,0,0) est la fonction de Killen A(x,y,2) = 22 + 9% + 22 — 22y — 202 — 2y2.
G.1.2 Amplitude a ’ordre d’une boucle
Nous cherchons a calculer la fonction a trois points Z'(P) — ©(p1)v(p2). Nous avons
q=p2+k
@ =k—p
(G.5)

Alors Pamplitude est (dans la jauge de Feynman),

4 —igu \ i (K —
My = i®g.g7u(ps) [ / %v“ Py <k2 _gfnz> (;? :k};) VPP ((kk_ p]f)lz) WVPL] v(p1)ep(P)

4 —igu \ i i(f —
= i’ g.g7u(p2) [ / (;ZWI;H“ ( 5 _g‘;n2> (E,? ++/<:§2 v’ ((kk_ p]f)lz) ’YVPL} v(p1)ep(P)

d*k v, P — VP,
— gl | [ i g R S e, () (G5)

G.1.3 Reduction du numérateur

Nous avons quatre produits de matrice v & calculer :

I = Wy ¥y P = 1"y y°y Prpaaks

Iy = — Y% BV’ By’ Pr, = =175y Prpaapis
Is = 7 k7° kr” P = %777 7" Pukakg

Is = — Wk kv Pr = =7y 7Py Prkapis

A laide de v, v*yPyP4" = —29P4 Py 4 (4—n)y*y 4P et en anticipant que @(p2) Py = 0, prv(p1) =
0 nous trouvons

Iy = 4P Pr(ps - k) — 4§ Prph

Iy = — 44" Pr(p1 - p2)

Iy = (2 — n)y, PrL(2k" kP — g"'k?)
I4 = 4%PLp§) — 4’prL(p1 . k?)
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Puis,
N = u(p2) {[1 + 1o+ I3+ 14]1)(191)%(13)
= u(p2) {M”PL[(pz k) = (p1- k) = (p1 - p2)] + 4(p1 — p2) KPL
2= W) PLEE — g0k o(pr)e, (P
Il est possible de simplifier encore plus en remarquant que

[(k + p2)* — k7]

[(k —p1)? — k7]

p2- k=

N — N =

—p1-k=
ensuite,
N = a(pe) | 2P Pul(k+ po + (= pr)? = 2~ 2 )] + Ao — p2) R
+ (2 = 1)y, PL(2K* K — gk | v(p1)e, (P)
ce qui meéne a I'amplitude suivante

—i(4m)* My = gug%u(p2) { 2[Bo(pism, 0) + Bo(p3: m, 0)) = 4[(p1 - p2) + k2 JCoy”

J1=2B0(0;m,0) J2

+ 4(p1 — p2)’ KCo+ (2 — n) v, Pr(2k" kP — g k2O, } Pru(p1)e,(P)
J3 Jy

avec By défini dans le chapitre F.2.
Le terme Jy peut étre simplifié :

(A2 T = — i(47)2 d'k k2 —m? + m?
—i(4m)"Jy = —i(4m) [/ (2m)% (k2 — m2)(k — p1)2(k +p2)2}
= Bo((pl +p2)2; Oa 0) + mQCO

(G.7)
Réduisons le terme J3 :
N (p1 —p2)’k
J3 - 4u(p2) _/ (271')4 (kQ — mz)(k —p1)2(/€ +p2)2:| U(pl)
= 4a(ps) /1 da /11« dy &k (P —p2)"k v(p1)
“ 1o 0 @2m)* [ k* —2k(p1z — p2y) —m*(l—z—y)? '
i [/’c—(10196—1)221)‘}5—(pwc—pzy)2

o[ e d'k (p1 = p2)P(V+ (P — Poy))

=0 | [ | G 7T O
(G.8)
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ce terme s’annule car @(p2) Py = 0, prv(p1) = 0 et les termes linéaires en [ disparaissent lors de
Iintégration sur 'impulsion tournant dans la boucle. Occupons nous maintenant du terme Jy,

| | d'k kR — K2ghe
it = =it @ =P | s B
, 2 d'k k? —m? +m?
= —i(4m)?(2 —n) (ﬁ — 1> ’YPPL/ @r)" (k2 — m2)(k — p1)2(k + pa)?
= @ {Bo((m +p2)*;0,0) + WQCO}
= (1 - i) {Bo((Pl + p2)*;0,0) +m2C0]
= Bo((p1 + p2)*;0,0) + m*Cy — % (G.9)

Finalement I'amplitude s’écrit (avec 4(py - p2) = 2(p1 + p2)? = 2s)

M, — ig«azu(p2)y” PLo(p1)ep(P)
L= 4

1
|:4B0(0; m,0)—3By(s;0, 0) — (28+3m2)00 5 +écr| (G.10)

Les fonctions By sont données par les formules F.10, F.11 et la fonction Cy est donnée par
F.34. Le terme dcr provient du diagramme du contre-terme au couplage Z'vv de la figure G.1
Ce contre-terme contient entre autres la renormalisation des champs des neutrinos. Si ils sont

v(p2)

Z/

v(m)

F1GURE G.1 — Diagramme du contre-terme introduit pour la renormalisation du couplage g*.

renormalisés sur couche de masse [137], c’est & dire a4 p?> = 0 on a,

az

az
cT An O(Oa m,O) A

m2
(ln ﬁ —1- CUV) + O(e) (G.11)

Puis en prenant ;2 = m? et 'amplitude a une boucle renormalisée s’écrit,

gz PP P 2
M, = 9rezuP2 )" Pro(pr)en(P) {— 3In 75 — (25 + 3m?)Cy — Z} (G.12)
4 -5 2
G.1.4 Largeur de désintégration
L’élément de matrice au carré s’écrit,
IM|? = | Mg+ Mi]? = |[Mo|? + 2Re(MGM;) (G.13)

Alors, en prenant s = M? et en omettant les parties imaginaires

292 M? oz m?
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La partie imaginaire provient de la fonction ImBy(s;0,0) = imf(s). La largeur est ensuite donnée
par

VA(M?2,0,0)|M|? =

2 (G.14)

PVD
16w M3 16m M3‘

Limite M >>m

En utilisant I’équation F.35 il vient :

2 2 o2
FVV:FBV{1+Z—§[—2<IHQ <;32>+31n;22>+%—7}} (G.15)

Nous remarquons I’apparition des doubles logarithmes In? (m?/M?) qui donnent une contribution
négative a la désintégration.

G.2 Désintégration & 3 corps

Nous allons calculer la désintégration Z'(P) — v(p1)Z(k)v(ps2) :

Z'(P) Z'(P)

I
D1 k
\
v(p) Z(k) v(po) (1) Z(k) v(p2)
Alors amplitude de ce processus s’écrit, avec m,, = 0,
. _ P+ K _ Ptk
= 1gs YPp——=~"P, — Hp,———=~"P, > (k)e, (P
M =ig.g |u(p2)y o+ K2 Lv(p1) — u(p2)y oy 7 12 ro(p1) | €, (k)en(P)
Ma My
(G.16)
ot My (Mj) correspond au diagramme de gauche (droite).
G.2.1 Identité de Ward
Nous allons maintenant vérifier si cette amplitude vérifie I'identité de Ward suivante,
ky
—M" =0 (G.17)
m
avec
_ Yo+ K _ Pt K
Y =g, VP,————-~"P — hP,————-~"P P G.18
M = igug 0o P2 proton) = oo P L )| uP) (G

(h+ )k
(p1 + k)?

kv 0 iiig [a(m) K(#s + k)

2 Y Pro(pr) — a(p2)y" P v(pl)] en(P)  (G19)
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en utilisant les équations de Dirac g v(p1) = 0, u(p2) Py = 0 nous avons

(pi+k)>=m>+2p; - k
(B K +mP)o(pr) = 2p1 -k — k¥ + m*)o(pr) = 2p1 - k +m?)v(py)
w(p2)(Kpy +m®) = u(p2)(2p2 - k +m?)

ce qui donne

k, 19+9 | _ 2po - k + m?2 ’ B 2p1 -k + m?
oy = P2 RTMup . pp PR T P
—M = |ulp2) 5 o & Lv(p1) — a(p2)y" P - o(p1)| u(P)
19+9 | _ _
= 9 [a(p2)y" PLo(pr) - a(p2)y* Pro(pr)] e, (P)
0 (G.20)

Par conséquent pour le calcul de I’élément de matrice au carré il n’est pas nécessaire d’évaluer la
partie longitudinale de 'amplitude. Ce résultat est simplement I’expression de la conservation du
courant de I’équation 9.3 au niveau de I'amplitude, si les neutrinos sont considérés non-massifs.
Dans le cas contraire des termes violant trés faiblement la symétrie chirale sont introduits.

G.2.2 Amplitude au carré
L’élément de matrice est |[M|? = (Ma—M1)(Mi—M3) = M1 |2+ | Ma|? = MM — Mo M.

Alors chaque amplitude au carré est obtenue en moyennant sur la polarisation de I’état final et
en sommant sur celles de ’état final.

My |* :

o
i = ERET S (atpar Kbt ) (st P e
spin,hel

x eu(P)eg(P)e, (K)ey (k)

2 2
959" DvpDyo 5 U
= D VP ho g Py fi~PP
3(p1 + k)* [P (B + )V PLpyn” Pr(#y + K)7°]
2 2
959" Dyp Do , .
= DxJ Tvp i p z p p
3(p1 + k)2 [ (B + )V By (B + ) PL
avec k k P P
— vtp _ ut o
Dyp — _gyp + W’DMU — _guo' + M2 (G21)
donnant
> 9:9° )
[Milgy = 73(p1*+ 1) {— 8m”(p1 - p2) + 16(k - p2)(k 'pl)} (G.22)
|Ma|? :

Nous avons aussi

My = E0i88 5 (30 2 praton)) (st 2 2 aten)

3 spin,hel (p2 + k) (P2 + k)
x €, (k)eq (k) (P)e, (P)
2 2
- %TT (o (¥ + )7 P17" (P + )7 PL] (G.23)
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avec

PP k. ks
DVP = —9upt+ Tgpv DMU = —Guo + ;:LQ (G.24)
donnant
> 929> 5
(Malgy = 3(ps + F)? [_ 8m=(p1 - p2) + 16(k - p2)(k '191)} (G.25)

MiM5, Ma M7

Le terme d’interférence donne

—i)ig2g? _ v - o
MiME = (=0igig” )39 J Z <Mm)’¥“%’¥ PL”(Pl)) (U(Pl)’Y’)PL%’Y U(P2)>

x &, (k)eg(k)eu(P)e,(P)

27D, D0 V J
— 3@551{)2}1([;91 n k:)?TT [$27"(B1 + )" 1y (B + F)V7 PL

spin,hel

(G.26)
avec p.p, -
DMP = —Gup + W7Dyg = —0Gvo + W (G27)
donnant
—16929%(p1 - p2) [
x = * k- k- . G .28
MiMslg 3@T+m%m+ky7n+% P+ (k-p2) + (p1-p2) (G-28)
et
(—1)igig® _ p Ptk - P+ K
I AL L e " vp  p o
Mo Mi 3 sp;ml u(p2)y (01 + k)Q’Y ro(p1) ) | v(p1)y" Pr o+ k)Q’Y u(p2)
x gp(k)e;, (k)ey (P)eg (P)
2 2
9x9 DupDuo v o
- Tr [Py (4 + o(#, + )y P,
3(p2+k)2(p1 _’_k)z T[ﬁer (¢2 k)ry ]jlr}/ (ﬁl k)V L]
avec - AP,
D#P = —YGup + W, D, = —O9vo + W (G29)
donnant
~1692g%(p1-p2) [ o
g = g k- k- - G.30
MQMI’HQ 3(])2 + k)g(pl + ki)Q m” + ( Pl) + ( p2) + (Pl P2) ( )

G.2.3 Choix du référentiel

Nous nous plagons dans le référentiel ot la particule se désintégrant est au repos, qui est aussi
celui du centre de masse. Dans ce référentiel nous avons P = (M, 0),

M = /s = Ey + Ey + ko
P=pi+pp+k—4 . (G.31)
O=pi+p2+k
Par conséquent il vient, avec 6 I'angle entre p; et po

k[ = k3 —m? = |pi[* + [p3]* + 2|1 |[p3] cos 0 (G.32)
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ce qui donne

1

cos = ———— [(M — Ey — E2)? —m? — |pi]* — |p3)?
AT ( ) p1l° — |pal°]
1
= === [M2—2M(E1+E2)+2E1E2_m2] (G-33)
2|pillpa2|

Nous avons & calculer les produits (p1 - p2) et (k- p;), en notant que Ej o = [P 2| car m, =0,

p1 - p2 = E1Ey — |pi||pa| cos @ = E1Es(1 — cos ) (G.34)
]{7 P = (P — Pi _pj) P = MEZ — EZEJ(l — COSH) Z,] = 1,2(2 7& ]) (G35)

ou cos  donné par son expression respective G.33.
Nous devons aussi simplifier les dénominateurs suivants

(pi + k) = (P —pj)? = M®> —2ME; 1,5 =1,2(i # j) (G-36)

G.2.4 Largeur de désintégration

L’expression de la largeur de désintégration est donnée par
Toorz = ! /|M|2dE dE (G.37)
vi+Z — 8(27T)3MS 1 2 .

Limites cinématiques

Comme E; = |py] alors E; > 0. Pour trouver la borne supérieure calculons s; = (P — p)?
dans le référentiel au repos du sous-systéme (po, k), alors dans ce référentiel nous avons,

s1=(p2 +k)* = (Ey + E3)* > m?

=(P—p)*=M?*-2ME; >m? (G.38)
donnant
M2 o m2

Nous obtenons les bornes pour Ey avec —1 < cosf < 1 menant &

M? —2M(E; + E3) + 2EEy — m? < 2E 1 Fs
M? —2M(E; + E3) 4+ 2E1Ey —m? > — 2B, F,

alors

M? —m? M? —2ME; — m?
R <E< G.40
oM L="2= oM — 4E, (G.40)

Résultat final

L’expression & intégrer est

1 By I
PVD P dE dE 2 2 9 ¥ G41
27T 8@2n)PMS Jgpn T /EE”" 2 [\Ml\ + [Ma|? — 2My M5 (G.41)
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ou S est le facteur de symétrie pour le nombre de particules identiques dans I’état final, ici S = 1.
L’expression finale s’écrit

29297
Tz = *2Z 10(M* —m? 2+ M*?LL + 4(m? + M*)?LI
vo+2Z 3(16(47T)27TM3) ( m )+ (m + ) + (m + )
2
+ (6(m* + M*) + 8m>M?) log <%> ] (G.42)

ou

2 2 2
B 5 [ m m m
m? m? M? 72
LI =2Lis [ —— ) +log [ —Jlog [ —— | =
2 <m2+M2> +log <m2+M2> o8 <m2+M2> 6
Limite M >>m

Dans cette limite

Alors,

FO 2 2 ) 2
Tyoiz = O‘Ziﬂw [2 <1n2 <%> +3In <%>> - % + 10] (G.43)

Nous remarquons que la prise en compte du bremsstrahlung se factorise par rapport a la section
efficace a 'arbre dans cette limite et la contribution des doubles logarithmes de Sudakov est
positive. Ce résultat a été vérifié avec CompHEP [93] et les valeurs sont identiques.
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Corrections radiatives en supersymétrie et applications au calcul de la densité
relique au-dela de ordre dominant

Résumé : Cette thése porte sur le calcul des corrections radiatives supersymétriques pour des
processus entrants dans le calcul de la densité relique de matiére noire, dans le MSSM et le
scénario cosmologique standard, ainsi que sur I'influence du choix du schéma de renormalisation
du secteur des neutralinos/charginos a partir de la mesure de trois masses physiques. Cette étude
a été faite a 'aide d’un programme automatique de calcul & une boucle d’observables physiques
dans le MSSM, appelé SloopS. Pour le calcul de la densité relique nous nous sommes penchés
sur des scénarios ou le candidat supersymétrique le plus étudié, le neutralino, se désintégrait
en majoritairement en bosons de jauge. Nous avons couvert les cas oll sa masse était de 1'ordre
de quelques centaines de GeV jusqu’a 2 TeV. Cela a nécessité la prise en compte compléte des
corrections électrofaibles et fortes, impliquées dans des processus sous-dominants impliquant des
quarks. Dans le cas des neutralinos trés lourds deux effets importants ont été mis & jour : les
amplifications de type Sommerfeld dues aux bosons de jauge massifs et peut-étre plus important
encore des corrections de type Sudakov.

Mots-clés : Supersymétrie, Matiére Noire, Corrections radiatives, Calcul de boucles, Renorma-
lisation, Cosmologie.

Radiative corrections in supersymmetry and applications to the calculation of
the relic density beyond leading order

Abstract : This thesis focussed on the evaluation of supersymmetric radiative corrections for
processes entering in the calculation of the relic density of dark matter, in the MSSM and
the standard cosmological scenario, as well as the impact of the choice renormalisation scheme
in the neutralino/chargino sector based on the measure of three physical masses. This study
has been carried out with the help of an automatic program dedicated the the computation of
physical observables at one-loop in the MSSM, called SloopS. For the relic density calculation we
investigated scenarios where the most studied dark matter candidate, the neutralino, annihilates
into gauge boson pair. We covered cases where its mass was of the order of hundreds of GeV to
2 TeV. The full set of electroweak and strong corrections has been taken into account, involved
in sub-leading channels with quarks. In the case of very heavy neutralinos, two important effects
were outlined : the Sommerfeld enhancement due to massive gauge bosons and maybe even more
important corrections of Sudakov type.

Keywords : Supersymmetry, Dark Matter, Radiative corrections, Loop Calculations, Renorma-
lisation, Cosmology.
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