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Abstract

We present a method to quantify the convergence rate of the fast estimators of the covariance matrices in the large-
scale structure analysis. Our method is based on the Kullback—Leibler (KL) divergence, which describes the
relative entropy of two probability distributions. As a case study, we analyze the delete-d jackknife estimator for
the covariance matrix of the galaxy correlation function. We introduce the information factor or the normalized KL
divergence with the help of a set of baseline covariance matrices to diagnose the information contained in the
jackknife covariance matrix. Using a set of quick particle mesh mock catalogs designed for the Baryon Oscillation
Spectroscopic Survey DR11 CMASS galaxy survey, we find that the jackknife resampling method succeeds in
recovering the covanance matrix with 10 times fewer simulation mocks than that of the baseline method at small
scales (s <40 A~ ' Mpc). However, the ability to reduce the number of mock catalogs is degraded at larger scales
due to the increasing bias on the jackknife covariance matrix. Note that the analysis in this paper can be applied to
any fast estimator of the covariance matrix for galaxy clustering measurements.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Astrostatistics (1882)

1. Introduction

The covariance matrix plays an important role in the data
analysis of the galaxy large-scale structure and contains
important information on the statistical and systematical errors
on the data. An accurate covariance matrix is crucial to pass the
errors on the data to the errors on the inferred cosmological
parameters correctly (Hartlap et al. 2007; Dodelson &
Schneider 2013; Taylor et al. 2013; Percival et al. 2014,
Taylor & Joachimi 2014). However, we usually do not know
the true covariance matrix from first principles. Instead, the
standard way is to estimate the covariance matrix from the data
themselves or from the artificial or mock catalogs (Reid et al.
2010; Manera et al. 2013, 2015; Anderson et al. 2014; Gil-
Marin et al. 2016). The mock catalogs are created to follow the
statistical properties of the data set as closely as possible and
include the diverse observational effects (Manera et al. 2015).
A large number of mock catalogs are required to reduce the
statistical errors on the covariance matrix (Percival et al. 2014).
The creation of mock catalogs and the analysis of them has
become one of the most computationally consuming steps in
the modern galaxy clustering analysis (Monaco et al.
2002, 2013; Scoccimarro & Sheth 2002; Manera et al.
2013, 2015; Tassev et al. 2013; Kitaura et al. 2014, 2015;
White et al. 2014; Chuang et al. 2015; Feng et al. 2016;
Balaguera-Antolinez et al. 2019), especially for the ongoing
and upcoming next-generation galaxy surveys such as the Dark
Energy Survey (Frieman & Dark Energy Survey Collabora-
tion 2013), the Dark Energy Spectroscopic Instrument survey
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(DESI; Schlegel et al. 2011), the Large Synoptic Survey
Telescope survey (LSST Science Collaboration et al. 2009),
and the Euclid satellite mission surveys (Laureijs et al. 2011).
Numerous efforts have been devoted to finding alternatives
to obtain reliable estimates of the covariance matrix quickly
and accurately. In real observations, the covariance matrix
involves complex effects from the galaxy evolution, the scale-
dependent and non-Poissonian shot noise, the stochastic bias,
and the redshift space distortion (Takahashi et al. 2009; Zhang
et al. 2013; Li et al. 2014; Blot et al. 2015; Shi et al. 2016;
Zheng & Song 2016; Howlett & Percival 2017; Klypin &
Prada 2018). Theoretical modeling of the covariance matrix has
achieved great progress on the dark matter power spectrum
(Neyrinck 2011; Mohammed & Seljak 2014; Carron et al.
2015; Bertolini et al. 2016; Grieb et al. 2016; Mohammed et al.
2017; Hikage et al. 2020; Taruya et al. 2021), the galaxy power
spectrum (e.g., Lacasa & Kunz 2017; Sugiyama et al. 2020),
and the galaxy correlation function (e.g., Philcox et al. 2020;
Rashkovetskyi et al. 2023). Wadekar & Scoccimarro (2020) have
proposed a promising analytical method to compute the
covariance matrix of galaxy power spectrum multipoles includ-
ing various theoretical and observational effects. Their results
show that the analytic approach has the benefit of sampling noise
free and saving computational resources to recompute covar-
iances in the model fitting process (Wadekar et al. 2020).
Meanwhile, many methods have been proposed to reduce the
number of mock catalogs or the size of the simulation boxes
that are required to obtain a reliable and accurate covariance
matrix estimate. Some of them are based on fitting the
estimated covariance from a small number of mocks to an
empirical model with several free parameters (Pope & Szapudi
2008; O’Connell et al. 2016; Pearson & Samushia 2016).
O’Connell & Eisenstein (2019) extended the method, fitting a


https://orcid.org/0000-0002-1324-0893
https://orcid.org/0000-0002-1324-0893
https://orcid.org/0000-0002-1324-0893
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
mailto:zhigang@nynu.edu.cn
mailto:zhejied@sjtu.edu.cn
mailto:yuyu22@sjtu.edu.cn
http://astrothesaurus.org/uat/902
http://astrothesaurus.org/uat/1882
https://doi.org/10.3847/1538-4357/ad3215
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad3215&domain=pdf&date_stamp=2024-04-15
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad3215&domain=pdf&date_stamp=2024-04-15
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 965:125 (11pp), 2024 April 20

jackknife covariance matrix from a single survey volume to
obtain the fitting parameters without reference to any mocks in
real analysis. Howlett & Percival (2017) proposed a method to
reduce the size of the simulation box and to correct for the
supersample covariance and the window function effect
analytically. Other approaches aim to reduce the number of
mock catalogs by the resampling method (Norberg et al. 2009;
Schneider et al. 2011; Arnalte-Mur & Norberg 2014; Escoffier
et al. 2016; Mohammad & Percival 2022) or tapering method
(Paz & Séanchez 2015).

An important step in assessing the efficiency of the
covariance matrix estimator of the large-scale structure is to
calculate the convergence rate, i.e., the number of mock
catalogs needed to obtain an equivalent covariance matrix
compared to the brute-force sample variance from a given
number of mock catalogs. Two factors are concerned in this
case, the noise and the bias. The noise level is usually
represented by the mean variance of the elements of the
covariance matrix and commonly used to estimate the
convergence rate. However, the different parts in the
covariance matrix do not play equal roles in the parameter
fitting process, typically the diagonal and off-diagonal terms.
Compared to the dominant diagonal terms, the off-diagonal
terms are usually much smaller but contain critical information
on the mode coupling and the window function. The mean
variance of the elements cannot distinguish the difference
between them. The bias on the estimator of the covariance
matrix also plays an important role in the parameter fitting
process and should be recognized. Although the biases on the
diagonal elements are easy to show, those on the off-diagonal
elements are not due to the fact that they have small values and
high noise levels. Furthermore, it is the precision matrix, i.e.,
the inverse of the covariance matrix, that appears in the
likelihood function. The matrix inversion is a nonlinear
process. It mixes the diagonal and off-diagonal elements in
the covariance matrix, then makes the effect of the noise and
bias much more complicated. So we need alternatives to
quantify the performance of the estimator of the covariance
matrix.

In this paper, we present a simple method to estimate the
convergence rate of the covariance matrix estimators effi-
ciently. Since we are not comparing two arbitrary matrices but
instead two Gaussian likelihood functions characterized by the
two covariance matrices, there is a prominent tool to
accomplish our goal, the Kullback-Leibler (KL) divergence
(Kullback & Leibler 1951). The KL divergence measures the
relative entropy between two probability distributions, and it
can describe how different two covariance matrices are in the
sense of the Gaussian likelihood functions. It has been adopted
in multiple literature to study the convergence of covariance
matrices from fast methods (e.g., O’Connell et al. 2016;
Lippich et al. 2019; Philcox et al. 2020). In our study, we apply
the method on a recently proposed covariance matrix estimator
of the galaxy correlation functions, which combines the delete-
d jackknife resampling and the mock catalogs (Escoffier et al.
2016).

This paper is organized as follows. In Section 2, we
introduce the KL divergence and its application to the
convergence of covariance matrix estimators. In Section 3,
we describe the data set and the two methods to estimate the
covariance matrix of the galaxy correlation function, i.e., the
brute-force method and the jackknife resampling. In Section 5,
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we first test the KL divergence using the brute-force covariance
matrices from different numbers of mock catalogs. In addition,
we apply the KL divergence test to the covariance matrices
from the jackknife resampling method to estimate its
convergence rate. We close the paper with a brief discussion
and summary in Section 6.

2. KL Divergence

The KL divergence from the probability distribution Q to the
reference probability distribution P is a measure of Q diverging
from P, which is defined as

KL(P|Q) :fp(x)ln%dx. )

The KL divergence is positive definite, that is, KL(P|Q) > 0.
The equality holds if and only if P= Q. Another important
property of the KL divergence is that it is asymmetric in
general, KL(P|Q) = KL(Q|P). In Bayesian language, the KL
divergence measures the information loss when one uses Q
(usually a model) to approximate P (“true” distribution; Baez &
Fritz 2014).

If P and Q are both multivariate normal distributions with the
same mean, the KL divergence simplifies to

det C
KL(P|Q) = %[Tr(Céle) +In ( dztt CQ) ~NlL, @
P

where Cp and Cy are the covariance matrices of P and O,
respectively. N is the dimension of the concerned random
variables or the data vectors. Tr(A) represents the trace of
matrix A, and detA is the determinant. In the following, the
distributions P and Q are always assumed to be the multivariate
normal distributions.

2.1. Sample Variance of Gaussian-distributed Data

In data analysis of the cosmological large-scale structure, we
usually estimate the covariance matrix of measured data from
the sample variance of a large number of independent
simulation mock catalogs. If data follow a multivariate normal

distribution, the estimated covariance matrix C follows a
Wishart distribution (Wishart 1928),

2-np/2 n-p—1

P(C) = m(np detC) > (det¥)

Pio

X exp {Tr(—gZ‘lé)}, 3)

where N,, is the number of mock samples, n =N,, — 1 is the
degrees of freedom, ¥ is the expectation value of the
covariance matrix E(C), and p is the dimension of C. I',(x)

is the multivariate gamma function. Considering that Cp and C’Q
are the sample variances of two subsets of the same parent
simulation mock catalogs, the expectation value of the KL
divergence from Q (with the covariance matrix C‘Q) to P (with
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the covariance ép) can be calculated as

N,
p(p+1) +1“,,(—Q)
NQ—p—l 2

- rp(%) + pln(%)}, 4)

where Np and Ny, are the number of subset mock catalogs used
to calculate Cp and Cp, respectively. To derive the above

(KL(PIQ)) = %{

equation, we have used the fact that the expectation value of Cr
and Cp is the same.

2.2. Biased Covariance Matrix

Supposing that the expectation value of the estimated
covariance matrix Cg has a linear bias o with respect to the
expectation value of C‘Q, that is, Xg = alp, the expectation
value of the KL divergence from the multivariate normal
distribution Q with the covariance matrix éQ to P will be

(KL(P|Q)) = (KL(P|Q)) + Akr(a), )
where Ak (o) is defined as
Agp(a) = {Ina + (1/a — (A + a)}p/2, (6)

with a=(p + 1)/(Np — p — 1). In most cases, Ag;(c) is positive
except for a tiny range of 1 < a < (1 + a), where it has a minimal
negative value of (In(1 + a) — a)p/2 ~ —pa®/4, which is
close to 0 when the dimension of the covariance matrix is much
smaller than the number of mock realizations, i.e., p < Ny. When
Ng— 00, a— 0. Then the bias on the covariance matrix sets a
lower limit on Ak (),

AgLmin(@) = {lna + (1/a — 1)}p/2, (N

which is positive definite when o = 1.

3. Data Sets

We conduct the KL divergence on the covariance matrix
calculated from the delete-d jackknife resampling. We discuss
the galaxy mock catalogs that we use to calculate the jackknife
covariance matrix in Section 3.1. We show the calculated
correlation functions and their covariance matrices in
Sections 3.2 and 3.3, respectively.

3.1. Quick Particle Mesh Mock Samples

In this paper, we use the publicly released mock catalog by
the Baryon Oscillation Spectroscopic Survey (BOSS) colla-
boration. These mocks are generated using the quick particle
mesh (QPM) method (White et al. 2014) with low mass and
force resolution. The simulations are run in a flat ACDM
cosmology with parameters of €, =0.29, h=0.7, Q,=
0.0458, 03=0.8, and ny=0.97. The cubic simulation box
has a side length of 2560 4~ Mpc and contains 1280 particles.
Halos are assigned to a subset of the simulation particles, which
are chosen based on their smoothed local density. The halo
masses are then sampled with a density-dependent probability
to match the halo mass function and the large-scale bias from
the reference high-resolution N-body simulations. The galaxies
are populated in the resolved halos using the halo occupation
distribution (HOD) approach (e.g., Wechsler & Tinker 2018).
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The HOD parameters are adjusted to fit the small-scale
projected two-point correlation function of the BOSS DR11
CMASS galaxies. The galaxies are further downsampled based
on the radial selection function and the angular mask of the
BOSS DR11 CMASS survey on the north Galactic cap, which
covers 6391 deg® and extends over a wide redshift range of
0.43 <7< 0.70 (Beutler et al. 2014). For more information on
the QPM galaxy mock catalogs, we refer the reader to White
et al. (2014).

3.2. Two-point Correlation Function

We measure the galaxy two-point correlation function of the
QPM mocks based on the Landy & Szalay (1993) method,

_ DD(s, r) — 2DR(s, 1) + RR(s, 1)
§Cs, ) = RRs. 1) , 3

where s is the separation between two galaxies and p is the
cosine of the angle spanned by the galaxy separation vector and
the line-of-sight vector. Here we define the line of sight for
each pair of galaxies as the direction of the vector passing
through the median point of the pair separation and the
observer, h = (s; + 5,)/2, with s, being the position vector of
galaxy 1 and galaxy 2. DD(s, ) is the number of galaxy—
galaxy pairs whose separation is located in the (s, ) bin,
normalized by the total number of pairs. DR(s, () and RR(s, )
are the number of galaxy-random and random-random pairs,
respectively. For each galaxy mock sample, we generate
randomly distributed points with the consideration of the radial
selection function and the angular mask of the BOSS DR11
CMASS survey. We set the number of random points to be 10
times that of the mock galaxies.

The multipoles of the correlation function are calculated by
expanding the 3D correlation function using the Legendre
polynomial P,(u), i.e.,

21+ 1 1
G0 = E2 [ dusts P, ©)

where Po(u) =1 and P(p) = (3,LL2 — 1)/2. We are focusing on
the monopole (I =0) and quadrupole (/ =2) in the following.
To do the above integration, we use 20 p bins with an equal bin
width of 0.05. Our data vector is £=(&, &), where
o= (o(s1)s ---s Eolsa))s &= (&a(s1), -, &a(sw)), and N is the
number of s bins.

We mainly study the correlation function multipoles at the
scale range of 0 ' Mpc < s <40k~ ' Mpc with the bin size
As=2h""Mpc, where the jackknife method (Xu et al. 2023)
can still give a satisfactory covariance matrix compared to the
more sophisticated HOD-based (Yu et al. 2022) or emulator-
based (Chapman et al. 2022; Yuan et al. 2022) methods. For
the large-scale structure analysis, we choose two scale ranges,
the intermediate scale of 20 &' Mpc < s < 80h ' Mpc with
As=4h'Mpc and the large scale of 24 h 'Mpc <
s < 160 h~' Mpc with As =8 h~ ' Mpc. On these large scales,
the survey window effect becomes important. The large-scale
clustering breaks the independence among different jackknife
subregions, which will introduce an increasing bias on the
jackknife covariance matrix along with the increasing scales.



THE ASTROPHYSICAL JOURNAL, 965:125 (11pp), 2024 April 20

3.3. The Covariance Matrix

Based on the QPM mocks, we can calculate the baseline
covariance matrix from the brute-force method and take it as
the true covariance. To show the convergence rate of the fast
covariance matrix estimators based on the KL divergence, we
choose the delete-d jackknife resampling method as a case
study.

3.3.1. Brute-force Covariance Estimation

The baseline covariance matrix is estimated from the
variance of independent mock samples drawn from the fiducial
cosmological model, which we denote as the brute-force
method. In our case, each QPM mock sample has the same
observational effect as the real observation, including the
complex survey geometry and the completeness effect.

The brute-force covariance estimation of the correlation
function multipoles over mock catalogs is calculated using the
following formula:

Ci= _12@“ EEY - ),
k=1

g = NZS“ (10)
mk=1

where i, j=1,2, ..., N, N+ 1, ..., 2N with the first (last) N
elements corresponding to the N radial bins of the monopole
(quadrupole) correlation functions. The superscript k enclosed
in brackets denotes the mock index, and N,,, is the total number
of mocks.

The above-obtained brute-force covariance matrix, as
random variables, will follow a Wishart distribution if the
correlation functions follow a multivariate Gaussian distribu-
tion. The Wishart distribution can be characterized by the
degrees of freedom N, — 1, the dimension of the data vector or
the number of bins p, and the true or expected covariance
matrix .

3.3.2. Jackknife Resampling

Unlike the brute-force covariance matrix, which needs a
large number of mock samples, the jackknife covariance matrix
can be calculated directly from the observational data and so
can save the computational cost greatly. The practical analysis
shows that the jackknife covariance matrix suffers from a large
noise level and cannot meet the requirement of future large-
scale structure analysis. It has been proposed that applying the
jackknife technique on individual mock samples and averaging
over them can greatly enhance the precision of the jackknife
covariance matrix estimation (Escoffier et al. 2016). The
performance of the jackknife covariance matrix can be further
improved by using the delete-d jackknife technique.

The traditional jackknife covariance matrix is calculated by
dividing the observational data into N; subregions. The
jackknife samples are constructed by deleting one subregion
at a time. We calculate the correlation function for each
jackknife sample. The covariance matrix is calculated by

q>

Z(éf"ﬁ &€ = & 1D

M
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where 531‘1) is the correlation function for the kth jackknife

sample, and &, is the mean correlation function averaged over
all the jackknife samples.

The above covariance matrix is shown to be not optimal for
nonsmooth or nonlinear statistics (Wu 1986), which tends to be
true for our case due to the effects from the window function
and the redshift-dependent galaxy selection function. Shao &
Wu (1989) proposed two delete-d subsamples, instead of one,
at a time to construct the jackknife samples and proved that it
can give an asymptotically unbiased covariance matrix for the
case with nonsmooth statistics when N;,—d— oo and
JN / d — oo. This is called the delete-d jackknife resampling.
The delete-d jackknife covariance matrix is calculated by

d Nk

Gk = — NJKZ(&?K— G — G, (12)

where 5?;() is the correlation function of the kth delete-d

jackknife sample, and &y is the mean correlation function over
the total number of delete-d jackknife samples given by

Ny!

Ng=—"—. 13

® = I — ) (13)

In addition, if a jackknife covariance matrix is calculated

from a mock, we can further reduce its sample variance by

averaging over the jackknife covariance matrices from multiple
mocks (Escoffier et al. 2016), i.e.,

= —Z ™ C ik (14)

mml

where (g is the covariance matrix obtained by applying
Equation (12) on the mth mock.

The delete-d jackknife variance estimator is asymptotically
unbiased when N; and d go to infinity. Increasing the number
of subsamples will reduce the minimal transverse size of each
subsample and then the number of independent modes. It will
also increase the number of jackknife resamples. Escoffier et al.
(2016) show that the delete-d jackknife covariance matrix of
the galaxy correlation function converges when Ny > 9 and the
choice of d has a small effect. In this analysis, we choose
N, =12 and d = 6. The total number of jackknife samples for
each mock catalog is calculated from the combination formula,

12 121
6 ) olxel = 924.

i.e., NJK =

3.3.3. Covariance Matrix from QPM Mocks

In this section, we use the QPM mock catalog to calculate
the delete-d jackknife covariance matrices and to compare them
with the brute-force ones. We calculate the baseline brute-force
covariance matrix from 1000 mock samples and take it as the
benchmark. For the jackknife covariance matrix, we calculate
the mean over 100 mocks based on Equation (14). In Figure 1,
we compare the two tyPes of covariance matrices at the scale
0 h~'Mpc < s<40h ' Mpc with a bin width of 2/~ Mpc.
Overall, the jackknife covariance matrix with 100 mock
samples has good consistency with the baseline brute-force
one. In the upper panel of Figure 1, we compare the diagonal
terms of the covariance matrices. The data points are from the
jackknife one, and the solid lines are from the baseline brute-
force one. For comparison, we also show the brute-force
covariance matrix with fewer mock samples, N,, = 100. As
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Figure 1. The brute-force and delete-d jackknife covariance matrices of the
correlation function monopoles and quadrupoles of the QPM mock catalogs on
scales 0 h~' Mpc < s < 40 h~' Mpc. The upper panel shows the diagonal
elements of the covariance matrices: solid lines for the brute-force method with
1000 mock samples (black for the monopole and magenta for the quadrupole),
dashed lines for the brute-force method using 100 mock samples, and plus
signs for the delete-d jackknife method with 100 mock samples. The lower
panel shows the cross-correlation matrices from the brute-force (upper left
corner) and delete-d (lower right corner) methods, respectively.

expected, it has a larger fluctuation compared to the baseline
for both the correlation function monopole (black dashed line)
and quadrupole (magenta dashed line). For the monopole, the
diagonal terms of the jackknife covariance matrix show a
slightly increasing bias compared to the baseline as
s>30h " Mpc.

We also show the cross-correlation matrix for the jackknife
covariance matrix and the baseline brute-force one (in the
lower panel in Figure 1), which is defined as

q.
Ry = —2L .
! V@GiGj

The cross-correlation matrix is symmetric and has unity
diagonal elements. So we show the baseline cross-correlation
matrix in the upper left corner (as indicated by the text
BF1000) and the jackknife one in the lower right corner

5)
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(denoted as JK100). The symmetric feature on small scales
indicates that there is good agreement between the two
correlation matrices. Again, the discrepancy increases as the
scale becomes larger.

There are two important requirements in the delete-d
jackknife resampling method. One is that the number of
subsamples N, and the omitted subsamples d should be large
enough to satisfy the relation of Ny —d>> 1 and \/N; /d > 1.
The success on small scales demonstrates that our choice of
Ny;=12 and d =6 is reasonable for the correlation function
analysis. Another requirement is that the data in each
subsample should be identically and independently distributed.
Violating this could break the robustness of the jackknife
variance estimator and introduce bias. For galaxy two-point
correlation function measurement, subsamples are correlated
with each other on large scales due to the large-scale modes of
galaxy clustering. This may be the cause for the growing bias
with scales on the jackknife covariance matrices.

4. KL Divergence: Measurements

In this section, we show the results of the KL divergence for
the baseline covariance matrices coming from the same or
different sets of mock samples (Section 4.1), as well as the KL
divergence for the jackknife covariance matrices and the
baseline covariance matrices (Section 4.2). Then we introduce
the information factor to estimate the convergence rate of the
jackknife resampling method in Section 4.3.

4.1. KL Divergence for Brute-force Covariance Matrices

We partition the full 1000 QPM mock samples exclusively
into multiple groups. For the setting of n-partition, there are
N{ = 1000/n groups, each of which contains n mock
samples. The groups are arranged in this way: we pack the
first n samples of the full catalog into the first group S!, the
second n samples into Snz, and so on. We denote the ith group
as S!. We introduce the set S, to represent the n-partition, i.e.,
S, = {S,ﬁli = 1,...,N§")}. We can calculate the brute-force

covariance matrix CA‘,i for each member S! in §,,. )
Given two multivariate normal distributions, Q) with the

covariance matrix CA',,] and P!, with the covariance matrix é,;
the KL divergence from @), to P,,, KL(P,|Q/), can be
calculated based on Equation (2). To avoid any possible

correlation between 6’,,1 and CA’,;, we require that S/ and S/ do
not contain any common mock samples. We can calculate the
mean and variance of KL(P,,|Q,/) from all the available pairs of
0y and P,

KL(P,|Q,) = NiZ KL(P|0). (16)

P ij
T B 00) =~ (KL(PIQ) ~ KLEIQY. (17)

where N, is the total number of available pairs of Q) and P/,

We show the mean and variance of KL(P,|Q,) calculated
using the above formula for the various combinations of n-
partition and m-partition in Figure 2. First, the KL divergence is
asymmetric under the exchange of P, and Q,, that is
KL(P,,|Q,) = KL(Q,|P..)- Second, given a fixed m (the number
of mock samples to calculate the brute-force covariance matrix
of P,), KL(P,|Q,) decreases along with increasing n (the
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n

Figure 2. The mean and variance of KL(P.|Q;) as given in Equations (16) and (17), respectively. The upper panel shows the mean KL divergence KL(P,,|Q,)
(colored symbols) and their model prediction (solid lines). Different colors denote different values of m. The error bars are from the standard deviations ogy (P, Q,)-
The lower panel shows the fractional difference between the measurements and the model prediction at different n. For clarity, we slightly shift the results from

different m at a given n.

number of mock samples to calculate the brute-force
covariance matrix of Q,) and saturates at some large value of
n. Finally, the value of KL(P,|Q,) is dominated by the
covariance matrix, which is calculated from fewer mock
samples and so has a higher noise level.

In addition, we show the model prediction of KL(P,,|Q,) by
assuming that the covariance matrices of P,, and Q,, follow the
same Wishart distribution as the solid lines in Figure 2. There is
quite good agreement between the measurement and the model
prediction, which indicates that the correlation functions
measured from the mock samples follow a multivariate normal
distribution closely.

4.2. KL Divergence for Jackknife Covariance Matrices

Following Section 4.1, for each member in set S,, we
calculate the mean delete-d jackknife covariance matrix using
Equation (14) and denote it as CA’;,{JK. Supposing CA’,Z jk 1s the
covariance matrix of the multivariate normal distribution Q,{ K>
the KL divergence from Q,{ Kk to P, KL(P,{;lQ,‘,',JK), can be
calculated using Equation (2). Then we calculate the mean and
variance of KL(P}|Q,, jx) using the nonoverlapped pairs of S/
and S,’;,, similar to Equations (16) and (17), i.e.,

1 o
KL(B|Qnix) = FZ KL(P;0,.5x)s

P ij
1 i
okL By Onix) = ———> (KL(PJIO) 1)
Np -1 ij

— KL(B| Q. 5x))- (18)

As discussed in the previous sections, if ép and CQ contain the
same signal or expectation value, the KL divergence from the
multivariate normal distribution Q with the covariance matrix Cp
to the multivariate normal distribution P with the covarigmce matt;ix
Cp, KL(P|Q), is determined by the noise level of Cyp and Cp.

KL(P|Q) can be larger when C‘Q contains less information (or a
higher noise level) than ép, and vice versa; hence, we expect that
KL(P|Q) can measure the relative amount of information contained
in ép and éQ. As shown in Figure 1, due to a limited number of
mock samples, the sample variance can cause large fluctuation
(noise) on the baseline covariance matrix from the brute-force
method. To reduce such a noise effect, we introduce the
information factor defined as

KL(P len,JK)
KL(B|Qm)
whose denominator is calculated from Equation (16) with

m = n. The information factor compares the statistical informa-
tion contained in the jackknife covariance matrix C, jx and the

1(QulOnix) = 19)

baseline covariance matrix C’m. If CA’,LJK contains the same
information CA’m, then n = 1. Otherwise, n < 1 or n> 1, if é,L]K
contains more or less information, respectively. Therefore, the
intersections between the solid curves (linked to the data
points) and the horizontal dashed line (showing n=1) in
Figure 3 give the estimated number of mock samples required
for the jackknife covariance matrices to be equivalent to the
baseline covariance matrices in the sense of KL divergence.
The variance of the information factor can be roughly
estimated using the variance of the numerator in Equation (19),

UZKL (Pm’ Qn,JK)
[KL(P4| Q)P

We do not account for the contribution from the variance of KL
divergence between the baseline covariance matrices (the
denominator), so it will underestimate the true variance. As can
be seen in Figure 2, the proportional variance of the denominator is
about 10% at most. In Figure 3, we show the error bars of 7 based
on the approximated variance. The dashed curves show the

o2 (Qm» Onik) ~ (20)
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Figure 3. Information factor of QPM mocks, 17(Q,,|Q0, 1x), defined in Equation (19). n is the number of mock samples used to calculate the jackknife covariance
matrices as in Equation (14), and m is the number of mock samples to calculate the baseline covariance matrices. Different colors denote different m. We also show the
results with the denominator in Equation (19) replaced by the model prediction as the dashed curves.
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Figure 4. Scaling law of the number of mock samples needed by the jackknife resampling method and the baseline method to give statistically equivalent covariance

matrices.

information factors that replace the denominator in Equation (19)
by the model prediction for Gaussian-distributed data. They have a
good agreement with the solid curves.

4.3. Convergence Rate of Jackknife Covariance Matrix

As shown in Section 4.2, the information factor defined in
Equation (19) can quantify the relative information contained in
the jackknife covariance matrices én’_]]( and the baseline
covariance matrices C,,. Given m, increasing the number of mock
samples for CA‘,,, 1x decreases the information factor 7(Q,,|Q,.jk)- At
the point 77 = 1, we consider that the jackknife covariance matrices
converge to the baseline covariance matrices, since they contain

the same information statistically. In Figure 4, we show the
convergence rate of the covariance matrix calculated from
he jackknife resampling and the brute-force methods based
on the QPM mock samples. For the distance scales of
0 h~"Mpc < s <40k~ " Mpc (black solid line), there is a linear
scaling law for the number of mocks required to obtain the
statistically equivalent covariance matrices from the two methods.

5. Convergence Rate: Tests
5.1. The Reference Covariance Matrices

When we compare the statistical information of the jackknife
and baseline covariance matrices using the information factor
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Figure 5. Extended information factor, n(Q,,|Q,.;x)- The different colors of the lines represent different numbers of mock samples used in C,,, and different line types
denote different numbers of mocks used in the reference covariance matrices C.

defined in Equation (19), we use P, as the reference
distribution function. Since the covariance matrices of P,, and

Q,, are calculated using the same number of mock samples, BF1000 Quadrupole E
they contain roughly the same statistical information. In the oo 5288 gfjggffgile
following, we break this limitation and replace P,, with Py, I +  JK100 Monopole £ |
where k is not necessarily equal to m, to test the robustness of .+ JKI00 Quadrupole = 7]
the information factor in quantifying the information contained L
in two covariance matrices. We introduce the extended )

information factor,

BF1000 Monopole

KL(PQy,5x)

. @1) .
KL (P Q) 00!

N (Ol Onix) =

T
|

If 0,k and Q,, are the same distribution function, i.e., their L
covariancematricesén,m and C,, contain the same information, R

20 30 40 50 60 70 80
then 7(Q,n|Q,nyx) = 1 for any k. s (Mpc/h)

In Figure 5, we show the extended information factor
M(Om|OQ,.3x) as a function of n for difference combinations of k
and m. As shown by the different types of lines with the same
color, the shape of the extended information factor as a
function of n (the number of mock samples used to calculate
the jackknife covariance matrices) varies as k changes; i.e., it is
steeper for larger k. However, they converge to the value of 1 at
almost the same position (at the same n) when the two
covariance matrices contain almost the same amount of
information. This clearly shows the robustness of the
information factor defined by Equation (19) to quantify the
relative information between the two covariance matrices with
respect to the reference covariance matrices.

quadrupole

5.2. When Bias Is Present: Intermediate and Large Scales

monopole

As discussed in Section 2.2, a linear bias on C‘Q with respect

to Cp will introduce an additional term, Ay, (Equation (6)), on
the KL divergence from the multivariate normal distribution Q

. . LA . . C . 0 A I B!
with covariance matrix Cyp to tPe multivariate normal distribu- 0 5 10 15 20 5
tion P with covariance matrix Cp, KL(P|Q). And Ay is almost monopole quadrupole
positive definite. So any bias on the estimate of the covariance Figure 6. Same as Figure 1 but for the scales 20 A~ Mpc < s < 80 A~ ' Mpc.
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Figure 7. Same as Figure 3 but for the scales 20 2~ Mpc < s < 80 ' Mpc.

matrix will affect the power of the information factor to
quantify the relative information between the estimated
covariance matrix and the true one.

The jackknife resampling method tends to produce biased
estimates for the covariance matrix of the galaxy correlation
function. This is partially due to the nonlinear feature of the
two-point correlation function. Furthermore, the possible
correlation between different subregions in the galaxy sample
will break the independence of the jackknife observations and
introduce bias on the jackknife covariance matrix.

In this section, we study the correlation function at
intermediate scales (20 &~ Mpc < s < 80 2~ Mpc) to test the
effect of the covariance matrix bias on the information factor.
Following Section 3.3, we calculate the baseline covariance
matrix by the brute-force method and the jackknife covariance
matrix using the delete-d method. Similar to Figure 1, we show
the resulting baseline covariance matrix from 1000 QPM
mocks and one of the jackknife covariance matrices from 100
QPM mocks in Figure 6. As shown in the upper panel, there are
significant biases on the diagonal terms of the jackknife
covariance matrix that are larger at larger scales. The off-
diagonal terms also show clear biases in the lower panel.

Similarly, the information factors for the distance scales
20 h~'Mpc < s <80h~ ' Mpc are shown in Figure 7. Com-
pared with the small-scale one, the information factor as
a function of n (the number of mocks for the jackknife
covariance matrix) becomes flatter and converges to a larger
value for a given m (the number of mocks for the brute-force
covariance matrix) on intermediate scales. As a result, more
mock samples are needed for the jackknife covariance matrix to
contain the same information as the brute-force covariance
matrix. The solid magenta line in Figure 4 shows the scaling
law of n as a function of m on intermediate scales, which is
clearly flatter than the small-scale one (solid black line).

It can be expected that the information factor will converge
to larger and larger values when m increases and eventually
will stay above 1 forever, where the bias on the jackknife
covariance matrix dominates the statistical noise. Limited by
the number of mock samples available, this phenomenon is not

explored further in our study. Instead, we observe a
similar phenomenon using data on larger scales where the
bias on the jackknife covariance matrices becomes even larger.
The information factors for the distance scales of
24 h'Mpc <s<160h ' Mpc are shown in Figure 8. As
expected, the information factors with m =300 converge to a
value close to 1. When m goes up to 500, the information
factors stay above 1 all the time. The scaling law of the number
of mock samples needed by the jackknife resampling method
and the baseline method for the distance scales of
24 h™'Mpc < s < 160 h~' Mpc is shown in Figure 4 as the
red solid line, which is much flatter than those from the smaller
distance scales.

6. Discussion and Summary

In this paper, we have proposed a simple method to diagnose
the equality or similarity of two covariance matrices and then to
calculate the convergence rate of the fast covariance matrix
estimators for galaxy clustering measurements. The essence of
the method is based on the fact that we are only interested in
the Gaussian likelihood function characterized by the covar-
iance matrix, rather than the covariance matrix itself. The KL
divergence is a perfect tool to do this job.

As a case study, we explore the delete-d jackknife
covariance matrix estimator, which is one of the fast covariance
matrix estimators in galaxy clustering analysis. In general, the
jackknife covariance matrix contains both bias and noise with
respect to the true covariance matrix, which contributes to the
KL divergence. So we introduce the information factor
(Equation (19)) to study the statistical information in the
jackknife covariance matrix.

In this work, we focus on the anisotropic two-point galaxy
correlation function and study its covariance matrix based on
the QPM mock samples. We first test the KL divergence for
the brute-force covariance matrices coming from different
numbers of mock samples on the scale range 0 A~ ' Mpc <
s <40h "' Mpc. We find that they are consistent with the
Gaussian predictions. Then we calculate the information factor
using the jackknife and the brute-force covariance matrices and
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Figure 8. Same as Figure 3 but for the scales 24 A" Mpc < s < 160 1~ Mpc.

estimate the convergence rate for the jackknife resampling
method. We find that the jackknife resampling can recover the
brute-force covariance matrices statistically by using about 10
times fewer mock samples. This can be supportive for the study
of galaxy clustering at small scales with a small number of
mocks.

By introducing the extended information factor
(Equation (21)), we test the robustness of the information
factor in Section 5.1. Although a general choice of k in the
extended information factor can give us more information, the
simplification by taking k= m can still catch the point where
Q.ix and Q,, contain the same information. In addition, we
study the influence of the bias of the covariance matrix on the
KL divergence based on the correlation functions on larger
scales. We find that the bias on the jackknife covariance matrix
reduces the power of the jackknife resampling method in
recovering the brute-force covariance matrix.

The analysis presented in this paper can be applied to other
fast estimators of the galaxy clustering covariance matrix. The
findings on the limitation of the jackknife resampling method,
especially the significant bias of the covariance matrix on large
scales, are generic. Favole et al. (2021) recently studied the
constraint on the baryon acoustic oscillation scale from the
jackknife covariance based on the CMASS data or mocks and
found no significant bias compared to that from the brute-force
covariance matrix. However, the jackknife covariance bias is
still worthy of being carefully investigated for the next-
generation redshift surveys, such as DESI and Euclid, as their
statistical error will be subdominant compared to the
systematics. A larger set of simulation mock catalogs is
required to investigate such cases with small bias.
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