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Abstract. The Cisterna-Delsate-Rinaldi (CDR) model is a variant of
scalar-tensor theory that modify gravity by including a term of non-minimal
derivative coupling. This model gives interesting aspects in the properties of
compact objects, specifically neutron stars. By adjusting one of its parameters,
the maximum possible mass of neutron stars can be increased. The authors of
the model had also did a perturbation analysis using odd-parity perturbation
and following that they also did analysis on the slowly-rotating neutron stars.
In this paper, we report our ongoing research on the linear perturbation for
the Cisterna model to see its dynamical properties. More precisely, we work
on the polar perturbation that affected both the metric and the scalar field,
which is different from the axial perturbation used in the slow rotation case.
We use higher-dimensional spacetimes to see if the obtained equations will be
dimensionally dependent. To simplify calculations for this metric form, we use
tetrad method. Currently, we have not succeeded in obtaining the equations of
motions in the form of Regge-Wheeler-Zerilli wave equation. The reason is the
metric functions cannot be easily decoupled and we find no second derivatives
with respect to both time ¢ and radius r in the equations of motion. Only the
scalar field can give a wave equation. Further investigation is undergoing.

Keywords. Linear perturbation, non-minimal derivative coupling

1 Introduction

The CDR model is a variant of scalar-tensor model which actually came from the Fab Four
model proposed by Charmousis et al. [1] (and independently by Deffayet et al. [2]). The
model, which consists of no scalar potential term and four Lagrangian terms named after the
members in The Beatles band, was originally proposed to study cosmology by establishing
a unique action that allow a consistent self-tuning mechanism on FLRW backgrounds.
The model is an attempt to solve the cosmological constant problem by employing the
Horndeski’s scalar tensor theory [3].
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Charmousis and losifidis had discussed the possibility of a black-hole solution with a
non-trivial scalar hair from considering only the John term from the Fab four model and the
usual minimal derivative coupling term [4]. This model turns out gives interesting solutions,
such as, a stealth Schwarzschild black-hole and a partially self-tuned de-Sitter-Schwarzschild
black-hole in a paper by Babichev and Charmousis [5], illustrating how such models can
violate the no-hair theorem, with ® = Qt + F(r) as the form of the non-trivial scalar field.
(This form may not be a general solution, however, as Rinaldi [6] had found a black-hole
solution with different from for the scalar field.) Here Q may seem like the scalar’s charge,
however, it is not true. This constant Q is used to accompany time variable  to emphasize that
the scalar field @, in the static spacetimes, cannot be separated as a product of two functions
with only one input, e.g., ®(t,r) = T(1)R(r).

In the CDR model, an interesting technique is also used, i.e., the radial component of
the scalar current be set to zero J* = 0. This option is possible because the CDR model
satisfies the symmetry of the Galileon model provided that the model is in a spherically
symmetric space-time, as shown by Hui and Nicolis [7]. From symmetry only, Hui and
Nicolis shown that the invariance under time-translations and rotation implies zero time and
angular components, J' = 0 = J° = J¢. From considering regularity on the boundary and
also regularity on all range of radial variable r, Hui and Nicolis also showed that J" = 0.
Babichev and Charmousis [5] had shown that two different regularity conditions are satisfied
by ansatz ® = Qr + F(r). Those conditions are (1) the scalar field should be shift invariant
® — ® + const. so as to admit a no-hair theorem and (2) the scalar current J%J, does not
explode at the horizon. Moreover, the Lagrangian has no potential term, therefore the scalar
field’s contribution to the Lagrangian is only by its first derivative form. The conditions
J¢ = 0(a = t,r,0,¢) set constraints to the modified Einstein field equation, making some
simplifications to the equations of motions from the modified Einstein field equation possible.

Cisterna et al. had used their model to study static compact object in [8]. Following the
previous paper also in the same year, Cisterna et al. also study the axial perturbation of the
model in [9]. In the following year, Cisterna et al. had studied the model in cosmological
setting and investigate slowly-rotating neutron stars in the model [10]. Interestingly, their
model does not approach general relativity solution by setting A = @« = n = 0. For
more discussions about the CDR model, see a review paper by Olmo, Rubiera-Garcia, and
Wojnar [11].

In this work, we attempt to continue the study of their metric perturbation, but in another
form called the polar perturbation, which as far as we know from the literatures, had not
yet been studied. According to Chandrasekhar [12], metric perturbation consists of two
types of perturbation that are decoupled from each other up to linear terms: axial and polar
perturbations. The axial perturbation is usually used to calculate the impact of a slowly
rotating star [13]. This perturbation only perturbs the spacetime while the matter is left
untouched. The latter affects both the spacetime and the matter and is related to another
method to obtain the tidal deformation for compact stars (for instance, see [14]).

In the following section, we briefly discuss the model. We then follow the discussion
with a subsection where we set our metric perturbation ansatz, another subsection about how
we do our calculation, and some subsubsections showing our results. Then, we continue the
implication of our results in a discussion section and finish it with a conclusions section.
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2 CDR scalar-tensor gravity model

Action include both minimal and non-minimal derivative coupling to a real scalar field is
given by,

1
= f v=gd*x [K(R —2A) - E(ag“h -GV, OV, D| + S,

with « = 1/(167G). Here we use the appropriate units such that ¢ = 1. Variational principle
used here to obtain the following equations of motion:

vV, T% =0,
V,J* =0,

Gab + Agap — Hap =%<Tah-
The scalar current is given as,
J* = (ag” = nG")V,®,
and scalar contributions in the modified Einstein field equation (EFE) is,

Hu = Z ~—H +Z S Hi-

n=1
This consists of two contributions. Terms with coupling constant @ and 7 denotes terms from
minimal and non-minimal derivative coupling. The former terms are,
1
H') = v,0V,0, HY = ~59aV OVD,
and the latter terms are
1 .
HY = SRVOV,0, H') = V'OV, OR;,c + V,OR,.), HY) = ~VOV/OR a5,

1 1
HY = -V, vV, V.0, H) = ~9ab yVVIOV V0, HY = ~59ab (V.VD)?,

1
H) =v.v'ov,v,0, H)” = 59 WV OV DG, H)" = g R gV OVIO.

2.1 Ansatz for linear perturbation

In our work, we follow Cisterna’s assumptions that there is no minimal coupling contribution,
no cosmological constant A = @ = 0 and we consider only the exterior solution 7, = O.
Cisterna and colleageus had also obtained the full solution for black-hole case with nonzero
a. However, in this work, we shall use a higher-dimensional space-time setting with the extra
dimensions contained in (D — 2)-sphere.

s = —f(t,r)dr* + g(t, r)dr* + h(t, r)rrdQ, .

The spacetime is set to have arbitrary dimension D, with higher dimensional axes contained
in (D — 2)-sphere, in the hope that we can see if the result may be dimensionally dependent.
Rather than the Christoffel symbol definitions for the Riemann tensor, we use the tetrad
method (explained below) to obtain the non-zero Riemann tensor components. This method
is less tedious to use for higher dimensional spacetimes.
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In the static case, since the exterior solution should coincide with general relativity theory,
we can use Tangherlini solution [15]:

e
=g = ms

We then expand this metric only up to a linear term with 9 is a bookkeeping parturbation
parameter:

J@.r) =fo(r) + 6%, 1),
g(t7 r) =g()(”) + 6lllg(t$ r)?
h(t,r) =1,

where in the last line we assume no change in the radius of the (D — 2)-sphere Vir and the
scalar field also expanded similarly,

O(t,r) = 0t + F(r) + 0¥o(2, 7).

For now, we only want to see the pattern whether these ansatz may or may not
produce linear differential equations whose form resembles that of Regge-Wheeler-Zerilli
equation [12]:

A(BY') -C¥ + DY =0.

It should be mentioned that Chandrasekhar had used a sufficiently stationary space-time
metric more general than this but his is strictly 4 dimensional. The motive why we want to
obtain this form of equation is because we want to know the behavior of the gravitational
wave. If the wave is decaying like a damped oscillator, then the model produces stable
spacetimes. If the system is unstable, the wave may have an increase in amplitude without

stopping.
2.2 Tetrad method
In this work, we follow Chadrasekhar’s tetrad method as our calculation method. Tetrad

method starts from non-orthonormal basis e? which is a 1-form with a different indices with
hat to denote a tetrad indices:

These came from diagonalizing the metric:

ds® = gudx®dx’ = nﬂl;eﬁ ® eE,
dQ(D 2 = Gijd0'de’ = 6Me ®e/
Here ® denotes symmetric tensor product, 17,;, = diag(-1,1,1,1,...) denotes Minkowski

metric, and 6;; is the Kronecker delta. The spacetime indices a,b and tetrad indices &,B
are set as follows:

a,b=tri,j, i,j=0,0s..0p1;
a,b=0,1,7,7; 1,7=23,..D—1.
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These hats are just to differentiate between tetrad and space-time indices, but the entries are
basically the same. The indices i, j and i, j are for the (D — 2)-space. The (D — 2)-space has
the properties of maximally symmetric spaces:

Rabcd = k(gucgbd - gudgbc)'

For sphere, flat, and hyperbolic spaces, k = 1, k = 0, and k = —1 respectively. In this work,
we choose (D — 2)-spheres as the (D — 2)-spaces.

We then employ zero torsion T to get the spin-connection 1-form Q’ig:
b

0=T"=de" + " e

b

The basis of any n-form (n > 1) behave antisymmetrically:

1
dx* Adx? = —dxb A dx® = 3 (dx“ Qdx’ —dx* ® dx”).

The antisymmetric behavior is also applied to the indices of w,;:

Wi = Wy
To lower or rise these indices, one use the Minkowski metric 7,, = n”b =

diag(—1,1,1,1,...). All the n-forms (except exterior derivative d) are denoted by an
underline. After obtaining the spin-connection, we use

a _ g 4 a ¢
R = dw'y + ' AW

to get the curvature 2-form Bai;’ whose entries is just the Riemann tensor Ra};cd

. 1. .
a _ _ pa c d
R = 2Rm]a’x Adx”.

Indices of R;; is also antisymmetric as w,;. Lastly, we convert all the tetrad indices back
into space- time indices using both e& (components of the non-orthonormal basis ¢?) and ey
(related to €2 » by e = ¢;) so that we can get RY,

a _ pa a b
Rbcd—RBcdeaeb.

We shall show only the results in the following subsubsections.

2.2.1 Einstein tensor components

Below are the only non-zero components from the Einstein tensor. For a function f(¢, r), we
denote its partial derivative with respect to time and radius as df/dt = f and df/dr = f’,
respectively.

G, - L= {ga (D - 3)( 1)}
r 290 2r Jo

{(D 2 (Yo% 09T, Y [0h 031 }
r 2g0 gg 2r fO 2g0 2r 90 ’
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2.2.2 Scalar current J¢
The nonzero scalar current components are shown below
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90
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Jorgo 2r?
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2.2.3 Scalar current conservation V,J* =0

From O(1) in V,J* = 0 we obtain

ez )
go I Jogo 2r - \go
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This is compatible with the choice J” = 0 for the static case, which implies G, =0
From O(5) in V,J* = 0 we obtain

nQ(D—Z)[ 1 (L)[‘Pg 29, “Pf+%]
Jor | Vg0 \ Voo
+(D—3)(1—go)( ¥, ¥, %)]Jrn(D—z)F"P

2rgo f 2rfogz ¢

wg-1 o 0

nF'(D-3)D-2) [( 1)(‘1’_' ¥ 3) . ﬂ}
27‘290 9o f() 90 fU g(%

D=0, +(D—2)[ NI +(D—3)(gi_l)](_n‘P&)+F‘l‘ )}
0

2f090 g r ng() 2r
(Lo, %, D—2) nF'(D - 3)(D - 2) [(i_l)(ﬂ_ﬂ_ﬂ) lyg}
2f0 290 r 2r2go 90 o g0 fo
nD-2)Q,  (D-2) [ VA (D-3) ( 1 )M Y, F'Y,
+ Y, + + ——1||-——
2fog5 r Jogo 2r \go

AR TS TEN RN R TIN
+(2fo+290 for \vao\vae) T2 o 0

This equation should constraint the modified Einstein field equation.

2.2.4 H, components

Since the modified Einstein field equation in our case becomes G, — H,, = 0, we need to
show the nonzero components of H,;, as follows. The expressions contain both O(1) and

0(9).
H(S)
o [ (AR) —(D_z)(f—é_9—5)+(1_i)—(D‘3><D—2> o
! V90 fogo  2r90 \Jfo 9o go 252
(e sy
2 fogo fo fo go) Afigo\ fy fo g0
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4f090 fo 9y JSfoo 90

“2fog0 2rfogo _f_é fo 9o
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V9o ) [fogo  2r90 \fo 9o 90 2r? 0 '

¥, +(D—Z)f(;( ‘I’}+ﬂ+‘l’g) (D - 2)90( ¥, 2 ) (D-3)(D-2)¥,
g() 90

2rg0 2r2 go
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3 Discussion

Here our goal is to see the pattern for O(9) of V,J* = 0 and G, = H,;. For the scalar current,
we obtain this pattern

Val® = VoI (¥, ¥}, Vo, ¥g) = 0
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For the modified Einstein field equation, see Table 1 below for each tensor components.
Observe that, from G, = H,,, we can have wave equation for scalar field perturbation:

A(BY,) — C¥q + D¥q = 0.

However, there perturbation for the metric functions fails to follow similar pattern, because
we may have the following pattern only:

A(BY)) = C¥, + D¥o + E¥; + ¥, = 0.
This seems that the metric functions ¥y and ¥, cannot be decoupled because there exists

neither ¥; nor ¥//. Further investigations are needed to encounter this problem. Below, we
state a possible solution from the literature.

Table 1. Pattern for the highest derivative in the expression for each tensor components.

Components: ¢ rr ij tr
o i v ¥ 2
4 4 7"
HY by, by, ¥ - ¥,
HY F N E N & - . ¥y, w7
HY Wy, w7 Wy, w7 WL, W, W, Wy, P, W
H(é) \’1',1@ p _ \'I)d) N4
O] >0
Hg? . ¥, . ¥ . ¥ :
Hy Vo, Wy O W, Wy -

o Vo, Wy Vo, Wy Vo, Wy Vo, ¥y
H Vo, Vo, ¥y W, W Ve, Wy Y,
AU ¥, v Wy, WY Py, W) -

Gab - H(lb \P}{’LP_(], ‘{ICD’ \PEI; l{”f,’\{‘g9‘{’d), ‘{I&; \}’/f/?‘{lgalyd),‘{’&; ‘P}/9‘{’g’ \PCD"{JZI;

A possible solution from the literature is stated as follows. It seems that we need another
form of expansion, such as the ones used by Chandrasekhar to derive the Zerilli equation. He
used

ds* = —e¥dr* + ¥ (dp — qodr — q3d6 — wdt)* + e*#2dr* + e deP,
with all functions are dependent on ¢, r, and 6. Then the metric functions are expanded as,

v —> v+ 7'N()P,,
p2 = pp + €7 L(r)Py,
p3 = p3 + €7 [T()P+ V(r)Prgg),
W — Y+ 7 [T(r)P; + V(r)P g cot ],

with P; = Pi(cosf) and fy = df/00. Then, using algebraic combinations of N, L, T, and
V, the Zerilli equation can be obtained. We observe that this means we need to expand our
metric function h(r) as h(r) = 1 + d¥,(¢,r). Observe that we may follow Chandrasekhar’s
derivation since Py = 1, which is aligned to our case where all functions are independent
from 6.
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4 Conclusion

In this work, we attempt to perturb the black-hole solution in a certain higher-dimensional
space-time. Our goal here is to obtain the equations of motion for the perturbation terms
similar to the Regge-Wheeler-Zerilli equation. We have not yet succeeded in finding them.
It seems that we need to choose a different expansion or some kind of algebraic relations to
simplify these equations that came from the modified Einstein field equation. One possibility
is the derivation of the Zerilli equation from Chandrasekhar’s book. We shall report this in a
future paper.
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