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Abstract

Cavity-modified chemistry uses strong light-matter interactions to modify the electronic
properties of molecules in order to enable new physical phenomena such as novel reaction
pathways. As cavity chemistry often involves critical regions where configurations become nearly
degenerate, the ability to treat multireference problems is crucial to understanding polaritonic
systems. In this Letter, we show through the use of a unitary ansatz derived from the
anti-Hermitian contracted Schrodinger equation that cavity-modified systems with strong
correlation, such as the deformation of rectangular Hy coupled to a cavity mode, can be solved
efficiently and accurately on a quantum device. In contrast, while our quantum algorithm can be
made formally exact, classical-computing methods as well as other quantum-computing
algorithms often yield answers that are both quantitatively and qualitatively incorrect. Additionally,
we demonstrate the current feasibility of the algorithm on near intermediate-scale quantum
hardware by computing the dissociation curve of H, strongly coupled to a bosonic bath.

Polaritonic chemistry is a young discipline that exploits confined electromagnetic field modes to enable
chemical processes that are not possible in bare materials [1-3]. It has been shown, for example, that
polaritons can modify photochemical reaction rates [4, 5], transition rates between different spin multiplets
[6] or charge transfer in chemical reactions [7, 8]. Hybridized light-matter states are also crucial for
exploring quantum states of matter or quantum phase transitions [9, 10] and are central in the emergent
field of cavity quantum materials [11, 12]. From a theoretical viewpoint, polaritonic systems exhibit an
intrinsic strong multi-reference character [13] and require an equal quantum-mechanical treatment of both
bosonic and fermionic statistics. It is thus no surprise that studying molecular polaritonic systems is a very
demanding computational task.

Recently, quantum-computing methods for solving electronic structure problems have emerged as
promising computational tools to combat the curse of dimensionality [14—16]. The most prominent
algorithm proposed for use on noisy intermediate scale quantum (NISQ) devices is the variational quantum
eigensolver (VQE), often using a unitary coupled cluster (UCC) ansatz [17]. These methods, however, tend
to inherit some of the pitfalls of classical coupled cluster methods [18—20], namely, an inability to treat static
correlation [21] and the need for truncation in the number of exponential operators [22]. In addition, the
extension of the ansatz to arbitrary systems (e.g. where bosonic modes are present) is not always
straightforward [23, 24]. In parallel, methods derived from the contracted Schrodinger equation (CSE)
forming the set of algorithms known as the contracted quantum eigensolvers (CQE) have been shown to find
exact ground and excited states for fermionic [25-27] and bosonic [28] systems with an ansatz whose
underlying structure is universal. A subset of these algorithms focusing on the anti-Hermitian portion of the
CSE, known as the ACSE, are particularly promising on NISQ devices [29].

Originally derived for fermionic systems [30-37], the CSE was recently extended to mixed
Boson-Fermion systems [38]. The main result of that extension is an exact ansatz that can be implemented
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directly on quantum devices to find eigenstates of arbitrary mixed-particle Hamiltonians. Remarkably, the
CSE uniquely allows the ansatz to have the same degrees of freedom as the original many-body Hamiltonian
(e.g. a purely two-body ansatz for the traditional electronic structure problem). Here, based on those
previous results, we present a quantum algorithm for molecular polaritonic chemistry. We show that
cavity-modified systems exhibiting strong quantum correlation, such as the deformation of rectangular H,
coupled to a cavity mode, can be accurately solved by using the simple unitary ACSE ansatz. Additionally, to
demonstrate the current feasibility of the algorithm, we compute the dissociation curve of molecular
hydrogen coupled to a bosonic bath on NISQ hardware.

The Letter is structured as follows. First, we discuss how the ACSE naturally adapts to arbitrary quantum
many-body systems. Next, we introduce the non-relativistic Pauli—Fierz Hamiltonian and discuss how our
algorithm works for this problem as well as its favorable computational and measurement scaling on a
quantum device. In the latter half of the paper, we will compare the results of the ACSE to quantum
electrodynamics coupled cluster (QED-CC). We will also demonstrate the effectiveness of our ansatz on a
real quantum device. Finally, we will discuss potential future directions and implications for our results.

Theory.— Before studying a polaritonic system, we review the fully general version of the CSE [32, 39]
which can be used for arbitrary quantum many-body systems. We define a many-body M-term Hamiltonian:

M
H:Zf[’ltl['v (1)
(=1

where {fy} is the set of Hamiltonian’s parameters and il[ is a general many-body operator. The stationary

state problem or the (time-independent) Schrodinger equation reads: H|U,,) = E,,|¥,,). After multiplying
on the left by (¥,,|hy, one obtains the CSE:

<\Ijm|il[' (H_Em) |\I/m> =0. (2)

The equivalence of this equation and the standard Schrodinger equation can be proved by multiplying
equation (2) by the parameter fy and summing the resulting expression over the indices (', which yields the
energy variance equation (¥, |H?|¥,,) = E2, [32, 39]. In the case of electronic systems (£ = ijkl) the
Hamiltonian (1) is

H, =" fiudlal ai, (3)

ijki

where 4; and &;r are fermionic annihilation and creation operators, respectively, and the relevant many-body
operators, h, of equation (1) are two-particle terms only. Thus, the CSE (2) for the electronic problem
becomes:

<\Ilm|gl:r A]Talak (He - Em) |\Ijm> =0. (4)

It is instructive to decompose the CSE (2) into two expectation values, containing an anti-commutator
{*,-} and a commutator [-,]:

(0] {iz,,H—Em} W, + (T, [;}[ﬁ} 0,,) = 0. (5)

As described in several prior works for the electronic problem, this decomposition can be used to optimize a
sequence of exponential (unitary and anti-unitary) ansitze that converge trial wave functions to the exact
stationary states either through classical [40—47] or quantum [25, 26, 28, 29, 38, 48-50] computing methods.
Furthermore, the simultaneous presence of anti-unitary and unitary operators makes the ansatz a very
flexible one that can contain dissipative and non-dissipative terms [26]. Interestingly, while similar operator
combinations are the focus of recent efforts in developing variational ansitze for ground-state preparation
[51], they emerge naturally in the CSE framework.

Although the CSE is fully general, so far it has been barely used beyond the realm of electronic structure
theory [28, 38]. We now apply the CSE framework to tackle the eigenstates of the Pauli-Fierz (PF)
Hamiltonian.

PF CSE.— The nonrelativistic PF Hamiltonian describes the interaction of a molecular system with a
cavity mode through the coupling of the electronic dipole moment to a bosonic field, and attempts to model
the physics of, for example, electronic systems in mirrored cavities [52—55]. Many-body methods such as
quantum electrodynamics Hartree—Fock (QED-HF), density functional theory
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(QEDFT/QED-DFT) [56-61], and coupled cluster (QED-CC) [24, 62, 63] have been benchmarked on this
approximate Hamiltonian. The PF Hamiltonian, in the length gauge with the dipole approximation [57, 64],

is not in general restricted to a single bosonic mode; however, we will only consider the single-mode case as
described by:

HPF=He+wiaTia—\/f(/\-ﬂ)(ET+B)+;(A-ﬂ)2, (6)

where the first term, I:Ie, is the traditional electronic Hamiltonian as seen in equation (3). The second term
describes the energy of the cavity where w is the fundamental frequency of the bosonic cavity mode and b
and b' are the bosonic annihilation and creation operators, respectively. The third term depicts the coupling
between the molecular dipole and the cavity where [ is the molecular dipole moment, and ) is the coupling
vector. Finally, the last term is the dipole self-energy (DSE). An excellent introduction to QED-many-body
methods and the coherent-state form of the PF Hamiltonian, used for construction of the Hartree—Fock
reference state, can be found in reference [54].

The CSE for general mixed Fermi-Boson systems was derived by us in [38] and can be applied to the PF’s
ground state to generate the following set of CSEs:

(W0, (Hpr — E) |W) = 0 (7a)
(WA (Fpp — E) |[¥) =0 (7b)
(U|bTh (Fpr — E) |¥) =0, (7¢)

where f‘Zl = &j&}&l&k and A]’ = (Z;Jr + ZAJ)&;rizj are, respectively, two-body fermionic and mixed (i.e.
Fermi-Bose) density operators. We reiterate that, since the CSE has the same set of solutions as the
Schrédinger equation, equations (7a) are satisfied by the exact ground state of the PF Hamiltonian.
Furthermore, as explained in equation (5), the set of CSEs (7a) can be further decomposed into a Hermitian

and an anti-Hermitian part, the latter comprising the following set of equations:
(w| [0, Five | [9) = 0 (8a)
(w| [ A, e | [9) =0, (8b)

The anti-Hermitian counterpart to equation (7¢) vanishes and thus we do not consider it here. We call
this anti-Hermitian subset of equations, the ACSE. Formally, the ACSE is not exact because it can be satisfied
by a wave function that does not satisfy the CSE (or the Schrodinger equation) [41, 47]. Model spin systems
in which the ACSE possesses spurious solutions are discussed in references [26, 47]. Practically, however, we
find that the solution of the ACSE converges to the FCI wave function for molecules treated on noiseless
quantum simulators [25, 26, 29, 48, 49]. Because of this agreement with FCI, we apply only the ACSE part of
the CSE in the Results section.

PF CQE.— On modern quantum devices, the CQE algorithm measures the total residuals of
equations (7a) for quantum states. Such a residual can then be used to guide a sequence of trial wave
functions toward an exact eigenstate by iteratively applying a sequence of exponential transformations. Since
our scheme is agnostic to the statistics of the system [26, 28, 29, 48-50], we apply it here to the PF
Hamiltonian. To resolve its ground and excited states, we focus on a subset of the CQE algorithms, the ACSE,
because it provides a simple and practical implementation on quantum hardware.

Our scheme is as follows: at iteration (n + 1) the wave function results from an exponential
transformation of the wave function at iteration (n) [38]:

W00) = exp (B exp (mad @) [), ©)
where
Al — ZAE;;IfZZ and B" = ZBEJ”)A]' (10)
ik,jl i,j

Here A" and B are the anti-Hermitian fermionic and mixed operators, respectively. The parameters 7,
and 7p can be interpreted as learning rates of the algorithm and can be set equal to simplify the optimization
procedure. Faster convergence, however, is achieved when both learning rates are optimized independently.
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Notice that if the unitary emA™ i applied to a (normalized) wave function |¥ ("), the total energy of the
transformed state is (in leading order of 74): &,41 = &, + 1 (¥ |[Hpp, AW () + O(n3 ) where
&, = (U |Hpp| T (™). As a result, the anti-Hermitian portion of the CSE, seen in equations (8a), can be used
as a residual to find the optimal operator at each step, and the anti-Hermitian parameters can be updated as
follows:

AW = (g [FHPF} [p () (11a)

B™ = (g [A,HPF} ™). (11b)

Measurement of the fermionic residual can be done through an approximate method that only requires
the measurement of two-body operators, instead of the three-body operators needed for the exact residual,
by measuring,

A= o ((HlEL+0) — (=l =) + O () (12)
where |£,) = e8| ¥} [25]. Tomography of the exact mixed particle residuals Bi(j”), on the other hand,
only requires measurement of two-body fermionic operators. Thus the number of measurements for both
the fermionic and mixed residuals scale as O(r*), where r is the number of orbitals. However, utilizing
symmetries of the reduced density matrix as well as techniques like clique covering of Pauli words
considerably lowers the scaling as many of the mixed residual terms qubit-wise commute with the fermionic
terms [65].

It is worth emphasizing the key differences between our algorithm and VQE-based approaches, adapted
to the many-body problem. ADAPT-VQE, for instance, iteratively builds a variational ansatz for the wave
function by selecting from a predefined pool of operators [66]. The ansatz is often described as being a form
of coupled cluster, but the stationarity condition of the ansatz does not produce the coupled cluster
equations [35]. In fact, the ansatz is a subset of the ACSE ansatz with its stationarity generating a subset of
the ACSE [40, 41]. The ADAPT-VQE algorithm’s key feature is its operator selection process: (i) in each step
the operator with the largest gradient is added to the left end of the ansatz, accompanied by a new variational
parameter and (ii) all parameters are then re-optimized and the process is repeated until the gradient vector
falls below a specified threshold e [66]. TETRIS-ADAPT-VQE, a recent improvement of the method, also
includes at each step the operator with the largest gradient, that is not supported by the qubits already
present in the ansatz [67].

The main differences of the ADAPT-VQE algorithm from the CQE are (1) its reliance upon a predefined
pool of operators and (2) its reoptimization of all variational parameters at each iteration [25, 26, 28, 29,
48-50]. First, the CQE works with a potentially infinite pool of operators at each iteration with the pool being
defined by the residual matrix of the CSE (or ACSE) [26, 29]. The CQE can either use the entire pool at each
iteration or a more limited pool like the ADAPT-VQE, as in the recently proposed shadow CSE ansatz [68]
inspired by shadow tomography. Second, unlike the ADAPT-VQE in which all parameters must be optimized
to satisfy the global variational principle, the optimal operator in the CQE is selected at each iteration in the
context of a local optimization method such that reoptimization of the parameters from previous iterations is
unnecessary; e.g. in gradient descent, the optimal operator is the gradient of the CSE (or ACSE) ansatz [69].
The CQE is able to optimize only the parameters at a given iteration because such a local optimization in the
CSE ansatz is sufficient to imply the CSE and hence, the Schrodinger equation at the minimum. [47, 70].

Results.— We first discuss the predicted results from the ACSE, QED-CC, and QED-ECI for the
rectangular conformation of Hy, as it is distorted into and out of the square geometry. The coupled cluster
methods are named such that QED-CCSD-# refers to coupled-cluster with single and double fermionic
cluster terms combined with bosonic and mixed cluster terms containing up to n bosonic creation operators
[24]. In line with this convention, we write ACSE-n and QED-FCI-# to refer to ACSE and QED-FCI methods
that allow for up to n excitations in the bosonic degrees of freedom. Additionally, as the ACSE presented
above is meant for quantum devices, we choose to use a variational classical-computing version of UCC with
single and double excitations (UCCSD), the popular VQE ansatz [71], without truncating the
Baker—Campbell-Hausdorff expansion of the exponential. After comparing these methods, we demonstrate
the effectiveness of the ACSE algorithm on an IBM Quantum device for H, coupled to a bosonic bath. All
results use the Slater-type orbital (STO-3G) basis set.

Figure 1 shows the ground and first excited-state energies for rectangular Hy as the molecule is distorted
into and out of its square conformation (or from the D, symmetry group into the Dy, group) at several
different coupling strengths. The CC results in the figure 1(a) with A = 0.0 show a cusp in the energy due to
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Figure 1. Comparison of energies from QED-CC and the ACSE in the deformation of rectangular Hy coupled to a cavity mode. Ry
= 1.23 A refers to the length of the constant x-axis of Hy, while R is the variable z-axis length. X refers to the coupling strength in
the Pauli-Fierz Hamiltonian oriented along the z-axis. The embedded figures show the gradients of the potential energy surfaces

produced by the ACSE and CC near the cusp. The level of theory for each method is ACSE-1, QED-CCSD-1, and QED-FCI-1.

the transition between the restricted Hartree—Fock (RHF) reference A;B3, and A,B,, conformations
[72-75]; this cusp results in a discontinuity in the derivative of the potential energy surface for CC as seen in
the embedded figure. The ACSE, however, starting from the same single-reference Hartree—Fock
determinant, is able to resolve the energy to well below chemical accuracy and appropriately mix the different
symmetry states. In particular, at the square conformation (the most difficult point to converge) the ACSE
reaches chemical accuracy in 20 iterations. Additionally, the ACSE is able to recover the first excited state
without any modification to the algorithm when given a singly excited configuration from the RHF reference
state as an initial guess. We also find that simultaneously resolving the excited and ground states [27, 76]
works well but requires an increased number of iterations to resolve both states to the same level of accuracy
as a single-state method.

As the dipole coupling along the z-axis is increased, the energy of the A B3, determinant increases faster
than the A,B,, determinant’s energy causing QED-HF to predict incorrectly a peak further into the
compressed region. This effect arises because, while both determinants see an increase in energy due to a
DSE term of equation (6), only the determinant aligned with the dipole moment (AgBy,) is able to reap the
benefits of the energetically favorable exchange-like integral term that appears in the Hartree—Fock treatment
of the DSE [54]. This shift in character makes QED-HF a poor initial guess for CC; therefore, the CC
calculations are seeded with several reference states of different symmetries, with the lowest resulting energy
kept for the figure. The CC results are still fairly inaccurate, and now the peak of the CC energy is shifted
away from the FCI peak energy. Additionally, the cusp occurs after the peak energy for coupled cluster and is
shifted further into the elongated region (R > Ry), as can be seen in the embedded figure. The ACSE, on the
other hand, captures better-than-chemically-accurate results regardless of the coupling strength for both the
ground and excited states, resolving the square conformation to chemical accuracy in = 80 iterations. This
demonstrates the ACSE’s ability to treat static correlation and handle strong cavity effects correctly.

Figure 2 shows the frontier (highest and lowest) natural orbital occupations (HONO and LUNO,
respectively) for Hy as the molecule is deformed. The results in the no-coupling limit demonstrate the
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Figure 2. HONO and LUNO orbital occupations from QED-CC and the ACSE in the deformation of H4 coupled to a cavity
mode. Ry = 1.23 A refers to the length of the constant x-axis of Hy, while R is the variable z-axis length. X refers to the coupling

strength in the Pauli-Fierz Hamiltonian oriented along the z-axis. The level of theory for each method is ACSE-1, QED-CCSD-1,
and QED-FCI-1.

single-reference limitations of coupled cluster which is unable to predict the orbital degeneracy. The ACSE,
as expected from the highly accurate energy curves, is able to properly mix the two determinants. In the
strongly coupled region, we begin to see the cause of the shifted peak in figure 1. In fact, the coupling makes
it energetically possible for CC to retain the ABj3, configuration until after the orbital degeneracy where the
energy peaks. This degeneracy is predicted after the actual FCI orbital degeneracy as first reported by
Paldus [73]. The CC result then spontaneously jumps to the A,B,, configuration causing the discontinuity
seen in the energy. Thus the coupling is able to separate the orbital degeneracy from the configurational
degeneracy that frustrates single-reference CC methods.

Finally, figure 3 shows the dissociation curve of H, when it is strongly coupled to a bosonic bath (i.e.

A =.2). The ACSE results are obtained on the 127-qubit ibm_cleveland device which uses the Eagle r3
processor. The system is mapped to three qubits; two of these qubits model the fermionic degrees of freedom
in the CI STO-3G basis using the 2? = 4 configurations for a binary mapping, while the final qubit is devoted
to modeling a truncated bosonic bath using a binary mapping for the zero and one population states.
Utilizing the Qiskit estimator function for obtaining density matrix elements, we are able to take advantage
of the built-in zero noise extrapolation, gate/measurement twirling, and clique covering algorithms [77]. The
result is a significant increase in accuracy from QED-HE, with a mean absolute error of ~11 millihartrees
from QED-FCI-1. Additionally, the ACSE is able to obtain these energies in fewer than five iterations from
the QED-HEF reference state, demonstrating that the unitary ACSE ansatz is a practical algorithm for
resolving polaritonic ground states on NISQ hardware.

Conclusions.— In conclusion, we have presented a novel polaritonic contracted quantum eigensolver
capable of resolving eigenstates of cavity-modified systems, even in the presence of strong correlations. Our
approach employs an iterative unitary ansatz derived from the contracted Schrodinger equation that can be
implemented on modern quantum devices. Its high accuracy is demonstrated by its numerical performance
when modeling the PF Hamiltonian on the deformed rectangular Hy coupled to a cavity mode, and its
current feasibility on NISQ hardware is showcased by computing the dissociation curve of H, strongly
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Figure 3. Dissociation curve of H, coupled to a bosonic bath on an IBM quantum device. The coupling strength was set to A =.2.

Measurement was performed on ibm_cleveland using 4096 shot per circuit. The level of theory for each method is ACSE-1 and
QED-FCI-1.

coupled to a bosonic bath. The results of this research reveal the broad applicability of CQEs and their
striking agnostic statistical nature, which ensures their applicability to arbitrary quantum systems.

These developments suggest many interesting research directions. Leveraging the ACSE’s accurate
treatment of multi-reference character, more physically realistic multimode PF Hamiltonians could be
investigated as these extra degrees of freedom can drastically change the behavior of the system [13, 78].
Additionally, the ACSE has been shown to resolve conical intersections [79], so it could easily be extended to
discover cavity-induced conical intersections, a promising avenue for novel synthetic chemistry [23, 24, 80,
81]. As the ACSE accurately predicts energies in both the weak and strong coupling regimes, it could also be
utilized to study the ultra-high coupling regimes found in nanoplasmonic systems like picocavities that are
used for manipulating intramolecular bonds [82, 83]. Finally, the ACSE’s adept handling of bosonic statistics
could be employed on the study of dipolar or mixtures of Bose gases, where fascinating states of matter can
emerge, such as supersolidity [84].
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