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Abstract

The Brookhaven National Laboratory (BNL) Collider-
Accelerator Complex contains millions of control points.
Monitoring tolerances for these control points is crucial for
the system and is a challenging task. Catching early signs
of failures in those systems will be very beneficial as they
can save extensive downtime. Anomaly detection in particle
accelerators has been highlighted and can significantly im-
pact system performance. Autoencoder is one of the most
commonly used techniques for detecting anomalies. In this
contribution, we apply an autoencoder method to analyze the
historical data for runs 21 and 22 to find precursors for trips
(and actual trips) of Air Conditioning (AC) systems based on
local thermostat readbacks. Results from the existing system
are presented, showing that the new method can catch early
signs of AC trips so that advance notices can be sent for the
operators to take prompt action.

INTRODUCTION

The Brookhaven National Laboratory (BNL) Collider-
Accelerator Complex spans over two square miles and com-
prises thousands of elements. The Air Conditioning (AC)
system is part of the critical infrastructure for the Complex.
There are many different AC units with widely varying per-
formance characteristics. Many of these AC units are not
network connected and hence cannot report their status re-
motely. The only readbacks available remotely are from the
thermostats used to control the units and other thermometers
scattered throughout the Complex. The heat loads in these
buildings can vary dramatically, depending on the power
loads on the various pieces of equipment stored within them,
so wide temperature swings can be expected.

Currently, alarms are generated for high and low-
temperature readings for these locations, but they are set
with large tolerances to prevent false alarms. Consequently,
an AC unit can trip, and the temperature rises steadily for
multiple hours before an alarm is generated. The drawback
of this approach is that it misses the opportunity to catch
anomalies early on and depends too much on the threshold
value. Catching trips of the AC units promptly—or even in
advance—allows for more timely fault resolution. It also re-
duces the risk of equipment damage and extended downtime.

* Work supported by Brookhaven Science Associates, LLC under Contract
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In this work, we apply an autoencoder approach. The
purpose is to develop a more intelligent way to catch pre-
cursors of anomalies ahead of time, so that operators can
take proactive actions. Initial results of anomaly detection
on some AC historical data are presented.

Autoencoder [1] is a common technique to detect anoma-
lies from the input data. It is capable of learning a dense
representation of the data, called latent representations or
codings, in an unsupervised way (i.e. the training set is
unlabeled). The latent space usually has a much lower di-
mensionality than the original data, hence an autoencoder is
also good for dimensionality reduction purposes.

A typical autoencoder structure is shown in Fig. 1. It
is symmetric and contains an encoder and decoder. The
encoder abstracts the input data into a smaller latent space,
which contains the high-level information of the data. The
decoder decodes the latent space into output and tries to
recover the input. For anomaly detection, reconstruction
errors between every pair of input and output are computed,
and an error threshold is set. When new data is available,
new reconstruction errors will be computed. An error higher
than the predefined threshold signals a new data pattern.
Depending on the application, it could be a new data logic or
an anomaly. By controlling the length of the input sequence,
different data patterns can be captured.

Latent
Space

Encoder Decoder

t t

Input Data Encoded Data Reconstructed Data

Figure 1: A typical structure of an autoencoder.

Anomaly detection techniques have been widely applied
in the accelerator fields to improve operations. Work [2—4]
propose schemes to understand and predict faulty behavior
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in superconducting RF cavities and magnets [5]. Work [6]
uses Machine Learning (ML) to identify and remove mal-
functioning beam position monitors in the LHC. Work [7]
applies ML to detect errors in hardware installation.

EXPERIMENTAL RESULTS

In this work, we test the autoencoder on historical building
temperature data. The original datasets are taken from sup-
port buildings circling the Alternate Gradient Synchrotron
(AGS) ring. The buildings are old, as are most of their AC
systems. Hence they are more likely to exhibit anomalous
behavior.

Since we are only interested in capturing the data pattern
(not the individual data values), for computing efficiency
reasons, the raw data is downsampled by a factor of 10.
Then they are standardized and scaled in favor of the neural
network so that the datasets have a 0 mean and unit standard
deviation (std). Moreover, to exclude the influences from
the daily weather fluctuations, every dataset is regulated by
subtracting the average temperatures of 24-hour windows.
The datasets after those preprocessing steps are shown in
Fig. 2.
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Figure 2: Processed building H18 and 118 temperature data.
The data are downsampled, normalized, and shifted to com-
pensate for the influences from the ambient environment.

Next, we identify the input sequences to train the autoen-
coder. In other words, this is the pattern the autoencoder will
learn and based on which to predict anomalies. The predic-
tion process works as follows. On the left of Fig. 3, it shows
the pattern the autoencoder trained to capture. It works like
a shifting window. New data comes in, and old data moves
out. When the first different point comes to join the input
sequence, the whole data pattern changes, and an anomaly
is detected. The first different point could be a precursor of
an anomaly (or not). That’s better than the traditional hard-
threshold method, where the data could already go wrong
before it reaches the predefined value. For either building
dataset, we use a 30-minute long sequence that can cover an
entire period of a temperature waveform as the input.

The autoencoder has a symmetric network topology with
32, 16 nodes in middle layers, 10 nodes for latent space, and
variable encoded dimension depending on the input data.

THPL: Thursday Poster Session: THPL
MC6.A27: Machine Learning and Digital Twin Modelling

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-THPL013

m H18 train loss
2%,
02 1 2500 i
KK I
o e K 2000
= o8
T8 _04 | Ml . 51500
a8y |
22-06 e . 21000
OR N .
-0.8 :
500
_1.0 «  example H18 input
« example input prediction
04:00 04:05 04:10 04:15 04:20 04:25 04:30 076,050 0.075 0.100 0.125 0.150 0.175 0.200
Train MAE Loss
33 = |18 train loss
15 B 7000 L
Lol o 6000
© IR . 4
FE K 25000
NB 05 -t £
Tg K] 34000
Eg s ¥ 5
S5 oo s L 23000
s v = L
X 2000
osit. 1
te, « example 118 input 1000
. * example input prediction
~1-04:00 04:05 04:10 04:15 04:20 04:25 04:30 8027 004 006 008 010
Time Train MAE Loss

Figure 3: Autoencoder input sequences are shown on the
left for each dataset (blue points). A 30-minute long time
sequence is selected, which can cover an entire period of
a temperature waveform for either building. It serves as
an input instance for the autoencoder. After training, the
autoencoder can accurately capture the data pattern (orange
points). The Gaussian-shape distribution of training errors
on the right also validates the performance.

ELU [8] is adopted as the activation function with He-normal
kernel initialization [9]. After training, the autoencoder can
recover the input patterns pretty well, as shown in Fig. 3 (left).
The orange points are the neural network predictions, which
match the training data (blue) with good accuracy.

‘We use the Mean Absolute Error (MAE) as the reconstruc-
tion error [10]. The distribution of the train MAE loss is
shown in Fig. 3 (right). The Gaussian-shape distributions of
training errors indicate that the autoencoder performs well
on the training set.

The test data for each building are picked from a different
time period, as shown in Fig. 4. We can see some anoma-
lous patterns, such as the large high-temperature waves in
Building H18 and high spikes in Building I18.
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Figure 4: The test data for each building are picked from a
different time period.
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Figure 5: Autoencoder results on the test data. It successfully detects data anomalies. However, more tuning is needed to
improve the accuracy around the borders between different groups, and to avoid overfitting.

The test data are processed using the same steps as the
training data and are fed to the autoencoder to detect anoma-
lies. The results are shown in Fig. 5. The blue plots are the
processed test data, and the predicted anomalies are marked
inred. The threshold is set to be the maximum training recon-
struction error, and the test reconstruction errors are shown
in orange. Whenever the test errors pass the threshold, the
corresponding data sequence will be marked as anomalies.

We can see that the autoencoder has successfully detected
the anomalies on those large spikes, which matches our
expectations. However, there are several improvements to be
made. First, the shifting introduces discontinuities in the data
waveform, which leads to false-positive predictions around
the border areas between different data groups. Second, due
to overfitting [11], the model ignores anomalies with simpler
patterns (e.g., the straight lines on July 20 and 21) where it
can reconstruct well.

FUTURE WORK

First, we would like to tune the algorithm to improve its
accuracy and eliminate the wrong predictions.

Second, we would like to try the dataset with a varia-
tional autoencoder [12]. The difference between an autoen-
coder and a variational autoencoder is that the traditional
autoencoder generates a latent vector while a variational
autoencoder learns to generate two vectors that represent the
parameters (mean and variance) of a distribution from which
the latent vector is sampled, and which the decoder can trans-
form back to the original input. Therefore, its training is
more regularised to avoid overfitting.
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Third, after we assess the performance of different algo-
rithms, we would like to implement the final algorithm in
the actual system and try with live data from operations.

CONCLUSION

In this work, we apply an autoencoder to help detect and
predict anomalies from building temperature data. The re-
sults show that the autoencoder has successfully detected
anomalies in the test data.
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