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Abstract: Within the framework of the extended Einstein–aether–axion theory, we studied the model

of a two-level aetheric control over the evolution of a spatially isotropic homogeneous Universe filled

with axionic dark matter. Two guiding functions are introduced, which depend on the expansion

scalar of the aether flow being equal to the tripled Hubble function. The guiding function of the

first type enters the aetheric effective metric, which modifies the kinetic term of the axionic system;

the guiding function of the second type predetermines the structure of the potential axion field. We

obtained new exact solutions to the total set of master equations in the model (with and without

cosmological constant), and studied four analytically solvable submodels in detail, for which both

guiding functions are reconstructed and illustrations of their behavior are presented.

Keywords: alternative theories of gravity; Einstein–aether theory; axion

1. Introduction

A century ago Alexander Friedmann formulated the prediction that our Universe
expands, and this event predetermined all further developments in cosmology and space
sciences. While remaining within this general concept, modern cosmology focuses on
describing the details of this expansion; in particular, the rate of expansion at different
epochs. New sensational results obtained from observations made in the last decade have
become the basis for restructuring our ideas about the history of the early Universe. The
discovery of gravitational radiation was the first important event, which made theorists
think about the validity of previous ideas. Indeed, in 2015, the first observation of gravita-
tional waves from the black hole merger [1] presented researchers with a dilemma. In this
event the masses of the colliding black holes were predicted to be of 36 and 29 M(Sun), while
mass values in the range 2.5–10 M(Sun), predicted by the theory of stellar collapse, seemed
to be reasonable. Then, the gravitational wave event indicated, as GW trigger S190521g
(GW 190521) [2] has shown, that the black holes with the masses 85 and 66 M(Sun) collided;
the general consensus is that the mass of at least one of these black holes lies in a mass
range that excludes its birth from being due to the collapse of a star. The discovery of black
hole with so-called intermediate mass of 91.000 M(Sun) [3], the existence of which can not
be explained by the existing theories, completed the formulation of the dilemma: either it is
necessary to abandon this interpretation, or admit that there is a new unknown mechanism
for the formation of black holes. Fortunately, the second trend has triumphed and now
theorists are actively involved in adequately extending the models for the birth of black
holes. Another amazing theory is connected to observations from the newest James Webb
Space Telescope (JWST). New observational data suggest the discovery of an extremely
magnified monster star, estimations of the masses of warm dark matter particles and of
the axion dark matter particles [4] and the abundance of carbon-containing molecules [5].
But the most important event, from our point of view, is the discovery of enormous distant
galaxies that should not exist if one follows the standard model of the early Universe
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evolution. To be brief, the galaxies found in the JWST images [6] appeared to be shockingly
big, and the stars in them too old, and these findings are in conflict with existing models.
In other words, rapid development is predicted in the theory of the evolution of the early
Universe over the next few years, and modifications to the current cosmological models
are highly welcome.

At the moment, the most adequate picture of the Universe contains an early era of
inflation, epochs of the domination of radiation and matter, and a late era of accelerated
expansion. The theorists dream is to unify the entire history of the Universe within the
framework of one cosmological model (see, e.g., [7–13]). The main obstacle to solving this
problem is the difficulty in finding a unified equation of state for cosmic substrates that
determines the rate of evolution of the Universe in the corresponding epoch. One of the
attempts made was the search for the time-dependent parameters of the equation of state,
and the introduction of a cosmological term depending on time. However, such attempts
were considered unsuccessful because cosmological time is not an invariant, and therefore
such equations of state are associated with the loss of covariance in the theory. A similar
problem arises, when one tries to define the equation of state in terms of the redshift
value Z, or equivalently, via the scale factor a(t).

We follow another type of logic. We admit that the parameters of the equation of
state depend on the set of scalars, which are formed on the basis of fundamental fields
inherent to the cosmological model under consideration. To be more precise, we take
the unit timelike vector field U j associated with the four-vector velocity of the dynamic
aether [14–17] and consider the invariants obtained in the course of the decomposition
of its covariant derivative ∇kU j. In other words, we use four differential invariants (the
expansion scalar of the aether flow, Θ = ∇kUk, the squares of the four-vector acceleration,
and of the shear and vorticity tensors, a2, σ2, ω2, respectively), as the arguments of the
parameters included in the equations of state. This means that we follow the paradigm
of aetheric control over the evolution of physical systems (see, e.g., [18–22]). We must
emphasize that, depending on the spacetime symmetry of the model, a part of the listed
arguments can disappear. For instance, for the static spherically symmetrical model, we find
that Θ = 0, σ2 = 0, ω2 = 0, and we construct the guiding functions using a2 only. For the
Gödel spacetime, the only ω2 is non-vanishing. For the spacetime with planar gravitational
waves we have to work with two non-vanishing scalars: Θ and σ2. Spatially isotropic
homogeneous cosmological models are unique in this sense, since for them, only the scalar
Θ is non-vanishing, and this scalar coincides with the tripled Hubble function Θ = 3H(t).
In this context, the function H(t) can be chosen as an appropriate argument of the guiding
parameters of such cosmological models, unifying the paradigm of aetheric control over the
evolution of physical systems on the one hand, and the physical interpretation of the theory
predictions on the other hand. Since the function H has the dimensionality of inverse time
(we consider the units with c = 1), this quantity is often used to determine a specific time
scale in a corresponding cosmological epoch.

In this paper we work within the Einstein–aether–axion model on the Friedmann–
Lemaître–Robertson–Walker spacetime platform, and consider the interaction of the grav-
itational field, the pseudoscalar (axion) field φ, and the unit timelike vector field U j.
Two guiding functions depending on the scalar Θ are introduced into the Lagrangian.
The guiding function of the first type, A(Θ), enters the so-called aetheric effective metric
Gmn=gmn+AUmUn (see [23] for history, mathematical details, and motives); it modifies
the kinetic term associated with the axion field, and thus it controls the evolution of the
kinetic energy of the axionic dark matter in the Universe (see, e.g., [24–29], which present
the history of axions, and [30–34], where various aspects of the problem of axions in cosmol-
ogy are discussed). The guiding function of the second type, Φ∗(Θ), enters the potential
of the axion field, V(φ, Φ∗), thus performing control over the evolution of the potential
energy of the axionic dark matter. The set of master equations for the model is solved
in quadratures and partially in the analytic form; the corresponding functions A(Θ) and
Φ∗(Θ) are reconstructed.
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The paper is organized as follows. Section 2 contains a description of the mathematical
formalism. In Section 3 we analyze the key equations of the spatially isotropic homogeneous
cosmological model and discuss the obtained solutions. Section 4 contains a discussion
and conclusions.

2. The Formalism of the Extended Einstein–Aether–Axion Theory

2.1. The Extended Action Functional and Auxiliary Quantities

The extended Einstein–aether–axion theory is formulated on the basis of the following
action functional:

−S(total) =
∫

d4x
√

−g

{

1

2κ

[

R+2Λ+λ(gmnUmUn−1)+Kab
mn∇aUm∇bUn

]

+

+
1

2
Ψ

2
0[V(φ, Φ∗)−Gmn∇mφ∇nφ]

}

. (1)

In this formula, the standard elements of this theory appear, such as the determinant
of the spacetime metric g, the Ricci scalar R, the cosmological constant Λ, the Einstein
constant κ, the Lagrange multiplier λ, the unit timelike vector field Ui, associated with the
velocity four-vector of the aether flow, and the covariant derivative ∇k with the connection
consistent with spacetime metric gmn, i.e., ∇kgmn = 0. Kinetic terms for the vector and
axion fields contain the effective aetheric metric

Kab
mn = C1GabGmn + C2δa

mδb
n + C3δa

nδb
m + C4UaUbGmn , (2)

Gmn = gmn +AUmUn , (3)

where the scalar A(θ) is the guiding function of the first type, and C1, C2, C3, C4 are the
Jacobson coupling constants [14]. The potential of the axion field V(φ, Φ∗) is considered to
have the periodic form

V(φ, Φ∗) =
m2

AΦ2
∗

2π2

[

1 − cos

(

2πφ

Φ∗

)]

, (4)

where Φ∗(Θ) is the guiding function of the second type, and the parameter Ψ0 relates to
the coupling constant of the axion–photon interaction gAγγ, 1

Ψ0
= gAγγ. The potential (4)

inherits the discrete symmetry
2πφ
Φ∗ → 2πφ

Φ∗ +2πn. This periodic potential has its minima

at φ = nΦ∗. Near the minima, when φ → nΦ∗+ψ and | 2πψ
Φ∗ | is small, the potential takes

the standard form V → m2
Aψ2, where mA is the axion rest mass. When φ=nΦ∗ (n is an

integer), we deal with the axionic analog of the equilibrium state [19], since V|φ=nΦ∗= 0,

and
(

∂V
∂φ

)

|φ=nΦ∗
= 0.

The following decompositions are associated with the unit four-vector U j:

∇k = UkD +
⊥
∇k , D = Us∇s ,

⊥
∇k = ∆

j
k∇j , ∆

j
k = δ

j
k − U jUk . (5)

Here D is the convective derivative, and ∆
j
k is the projector. The covariant derivative

∇kUj can be decomposed as

∇kUj = UkDUj + σkj + ωkj +
1

3
∆kjΘ , (6)

where the four-vector acceleration DUj ≡ aj, the symmetric traceless shear tensor σkj,
the skew–symmetric vorticity tensor ωkj, and the expansion scalar Θ are presented by the
well-known formulas
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DUj=Us∇sUj , σkj=
1

2

(⊥
∇kUj+

⊥
∇jUk

)

−1

3
∆kjΘ , ωkj=

1

2

(⊥
∇kUj−

⊥
∇jUk

)

, Θ=∇kUk . (7)

This decomposition (6) allows us to introduce one linear and three quadratic scalars

Θ = ∇kUk , a2 = DUkDUk , σ2 = σmnσmn , ω2 = ωmnωmn , (8)

and thus the kinetic term of the vector field can be rewritten in the form

Kab
mn(∇aUm)(∇bUn)=[C1(1+A)+C4]a

2+(C1+C3)σ
2+(C1−C3)ω

2+
1

3
(C1+3C2+C3)Θ

2. (9)

Taking into account the constraints obtained after the detection of the event GRB170817 [35],
we have to put C1+C3 = 0 into (9).

2.2. Master Equations of the Model

2.2.1. Master Equations for the Unit Vector Field

Variations of the extended action functional (1) with respect to the Lagrange multiplier
λ gives the normalization condition

gmnUmUn = 1 . (10)

Variation with respect to the four-vector Ui gives the aetheric balance equations

∇aJ aj = λU j−AκΨ
2
0Dφ∇jφ−∇j

(

Ω1
dΦ∗
dΘ

+Ω2
dA
dΘ

)

, (11)

where the following definitions are used:

J aj = Kabjn∇bUn = C1

(

∇aU j −∇jUa
)

+ C2gaj
Θ + (C4 + C1A)UaDU j , (12)

Ω1 =
κΨ2

0m2
A

2π2

{

Φ∗

[

1− cos

(

2πφ

Φ∗

)]

−πφ sin

(

2πφ

Φ∗

)}

, (13)

Ω2 = −1

2
κΨ

2
0(Dφ)2 . (14)

Convolution of (11) with Uj gives us the Lagrange multiplier λ:

λ = Uj∇aJ aj +AκΨ
2
0(Dφ)2+D

(

Ω1
dΦ∗
dΘ

+Ω2
dA
dΘ

)

. (15)

2.2.2. Master Equation for the Axion Field

Variation in the extended action functional (1) with respect to the axion field yields
means that

∇m[(gmn +AUmUn)∇nφ] +
m2

AΦ∗
2π

sin

(

2πφ

Φ∗

)

= 0 , (16)

or equivalently,

(1+A)D2φ+[(1+A)Θ + DA]Dφ−DUm
⊥
∇mφ+

⊥
∇m

⊥
∇mφ+

m2
AΦ∗
2π

sin

(

2πφ

Φ∗

)

=0 . (17)

Below, we use the ansatz that, when the axion field is in the equilibrium state, which
corresponds to the basic minimum φ = Φ∗, we obtain the master equation for the guiding
function of the second type Φ∗(Θ), i.e.,

∇m[(gmn +AUmUn)∇nΦ∗] = 0 . (18)
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2.2.3. Master Equations for the Gravitational Field

Variation in the extended action functional (1) with respect to the metric gives the
gravity field equation

Rik −
1

2
Rgik − Λgik = T

(U)
ik + κT

(A)
ik + T

(INT)
ik . (19)

The extended stress-energy tensor of the aether T
(U)
ik contains the following elements:

T
(U)
ik =

1

2
gik Kab

mn∇aUm∇bUn+∇m
[

U(iJk)m−Jm(iUk)−J(ik)Um

]

+ UiUkUj∇aJ aj+ (20)

+C1[(∇mUi)(∇mUk)−(∇iUm)(∇kUm)]+(C4 + C1A)(DUiDUk − UiUkDUmDUm) .

As usual, the parentheses symbolize the symmetrization of indices. The extended
stress-energy tensor of the axion field is of the form:

T
(A)
ik = Ψ

2
0

[

(1+A)φ̇2

(

UiUk −
1

2
gik

)

+
1

2
gikV

]

. (21)

The part of the total stress-energy tensor associated with the interaction terms contains
the derivatives of the guiding functions A and Φ∗ with respect to their argument Θ:

T
(INT)
ik = −gikΘ

(

Ω1
dΦ∗
dΘ

+Ω2
dA
dΘ

)

−∆ik

[

D

(

Ω1
dΦ∗
dΘ

+Ω2
dA
dΘ

)]

. (22)

The Bianchi identity

∇k
[

T
(U)
ik + κT

(A)
ik + T

(INT)
ik

]

= 0 (23)

automatically holds for the solutions to the master equations for the vector and pseu-
doscalar fields.

3. Application to the Spatially Isotropic Homogeneous Cosmological Model

3.1. The Spacetime Platform, Reduced Master Equations, and Their Solutions

3.1.1. Geometric Aspects

Below, we work with the Friedmann–Lemaître–Robinson–Walker type spacetime,
using the metric

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (24)

The four-vector velocity of the aether flow is known to be in the form U j = δ
j
0, and the

corresponding covariant derivative of the vector field has the following decomposition

∇kUi =
1

2
ġik =

ȧ

a
∆ik = H∆ik =

1

3
Θ∆ik . (25)

Clearly, in this case, DUj = 0, σmn = 0, ωmn = 0, Θ = 3H = 3 ȧ
a , and, standardly, the

dot denote the derivative with respect to the cosmological time t.

3.1.2. Solution to the Equations for the Vector Field

Keeping in mind that DUj=0, σmn=0, ωmn=0, we find that the extended Jacobson’s
tensor (12) converts into

Jaj = C2Θgaj , (26)

and the equations for the unit vector field (11) take the form

C2∇jΘ = λUj − κΨ
2
0AUjφ̇

2 −∇j

(

Ω1
dΦ∗
dΘ

+ Ω2
dA
dΘ

)

. (27)
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Equation (27) contains only one non-trivial equation, which gives the solution for the
Lagrange multiplier λ:

λ = C2Θ̇ + κΨ
2
0Aφ̇2 +

d

dt

(

Ω1
dΦ∗
dΘ

+ Ω2
dA
dΘ

)

. (28)

Thus, the aetheric subset of the total system of master equations is solved.

3.1.3. First Integral of the Reduced Equation for the Axion Field

We suppose that the axion field φ is frozen at the first minimum of the axion potential,
i.e., φ = Φ∗(t). Then we put φ = Φ∗ into (17) and obtain the key equation for Φ∗(t)

(1+A)Φ̈∗+
[

3(1+A)
ȧ

a
+ Ȧ

]

Φ̇∗ = 0 , (29)

which admits the first integral with

Φ̇∗(t) =
const

a3(t)[1 +A(t)]
= Φ̇∗(t0)

[

a(t0)

a(t)

]3 [1 +A(t0)]

[1 +A(t)]
. (30)

The parameter t0 describes the initial time moment; A(t0) is the initial value of the
guiding function of the first type; and Φ̇∗(t0) indicates the initial value of the first derivative
of the guiding function of the second type.

3.1.4. Key Equations for the Gravity Field

When φ=Φ∗, the function Ω1 takes zero value, and the reduced extended equations
of the gravitational field can be converted into one key equation

1

3
Θ

2

(

1 +
3

2
C2

)

− Λ =
1

2
κΨ

2
0Φ̇

2
∗

[

1 +A+ Θ
dA
dΘ

]

. (31)

Since Φ̇∗ has already been found and is of the form (30), we obtain the equation, which

connects the scalar Θ with the reduced scale factor x = a(t)
a(t0)

as follows:

1

3
Θ

2

(

1 +
3

2
C2

)

− Λ =
1

2x6
κΨ

2
0Φ̇

2
∗(t0)[1 +A(t0)]

2
[

1

1 +A − Θ
d

dΘ

(

1

1 +A

)]

. (32)

Then, we assume that C2 > − 2
3 , Λ > 0, and introduce the auxiliary parameters

H∞ =

√

Λ

3(
(

1 + 3
2 C2

)

)
, h2 =

κΨ2
0Φ̇2(t0)[1 +A(t0)]

2

6
(

1 + 3
2 C2

) . (33)

Now we are ready to analyze the main equation of the model for the function H(x)

x6
[

H2 − H2
∞

]

= h2

[

1

1 +A − H
d

dH

(

1

1 +A

)]

. (34)

3.2. Modeling of the Guiding Function of the First Type

When we discuss the structure of the guiding function of the first type we use two as-
sumptions. First, we assume that A = 0, if Θ = 0. Second, we assume that the right-hand
side of the Equation (34) is a regular function of its argument H, and thus we can use the
decomposition

[

1

1 +A − H
d

dH

(

1

1 +A

)]

= 1 − γ1H − γ2H2 − 2γ3H3 − 3γ4H4 − ... (35)
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This decomposition allows us to reconstruct the function 1
1+A , which has the form

1

1 +A = 1 + γ1H

[

1 + log
H

H∗

]

+ γ2H2 + γ3H3 + γ4H4 + ... (36)

Here, H∗ is some constant of integration. The key to our consideration is the analysis
of the asymptotic regime (x → ∞ ) of the equation

x6
[

H2 − H2
∞

]

= h2
[

1 − γ1H − γ2H2 − 2γ3H3 − 3γ4H4 − ...
]

. (37)

If we restrict ourselves with the term Hm in the right-hand side of (37), we see that,

first, Hm−2 ∝ x6, second, H ∝ x
6

m−2 , and third, a(t) ∝ t−
m−2

6 . In other words, if m > 2,
the Universe collapses asymptotically, and this detail is in contradiction with the main idea
of perpetual expansion. Of course, this point is disputable, but we follow this idea. Now
we deal with the quadratic equation with respect to H

x6
[

H2 − H2
∞

]

= h2
[

1 − γ1H − γ2H2
]

, (38)

and its positive solution is

H(x) =

√

γ2
1h4

4(x6 + γ2h2)2
+

H2
∞x6 + h2

x6 + γ2h2
− γ1h2

2(x6 + γ2h2)
. (39)

With the function H(x), one can reconstruct the scale factor as the function of time
if we use the formal quadrature

t − t0 =
∫

a(t)
a(t0)

1

dx

xH(x)
. (40)

Clearly, there are two asymptotic regimes.
(1) When Λ ̸= 0, H → H∞ and thus a(t) ∝ eH∞t.

(2) When Λ = 0, H ∝
1
x3 and thus a(t) ∝ t

1
3 .

In order to have further progress in calculations, we consider four analytically solv-
able submodels.

3.2.1. First Analytically Solvable Submodel

Let us consider the model with γ1 = − 1
H∞

and γ2 = 0. In this case the function A(H)
satisfies the relationship

1

1 +A = 1 − H

H∞

[

1 + log
H

H∗

]

. (41)

In order to simplify the analysis, we assume that H∗ = H∞ and obtain the following
expression for the guiding function of the first type

A =

H
H∞

(

1 + log H
H∞

)

1 − H
H∞

(

1 + log H
H∞

) . (42)

Formally speaking, this function takes the infinite value, when the denominator is
equal to zero. But this situation only appears at infinity a = ∞, when H = H∞. Now we
deal with the key equation

H2 − H2
∞ =

h2

H∞x6
(H∞ + H) , (43)
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we omit the negative root H = −H∞, and see that the positive solution is

H(x) = H∞ +
h2

H∞x6
. (44)

We should mention that this model is self-consistent when first, H(t0) > H∞, and
second, h2 = H∞[H(t0)−H∞]. According to the definition in (33) the last requirement links
the values A(t0), Φ̇(t0), and H(t0).

The scale factor a(t) and the Hubble function H(t) can now be presented in the form

a(t) = a(t0)

[(

1 +
h2

H2
∞

)

e6H∞(t−t0) − h2

H2
∞

]

1
6

, (45)

H(t) =
H∞

{

1 −
[

1 − H∞

H(t0)

]

e−6H∞(t−t0)
} . (46)

The acceleration parameter −q(t) can be given by the formula

−q(t) =
ä

aH2
= 1 −

(

6h2

h2 + H2
∞

)

e−6H∞(t−t0) (47)

is the monotonic function of time, and it asymptotically tends towards one at t → ∞.
Finally, we intend to reconstruct the guiding function of the second type Φ∗(H).

The simplest way is the following. First, using the replacements t → x = a(t)
a(t0)

and
d
dt → xH(x) d

dx , we rewrite the relationship (30) as follows

Φ
′
∗(x) = − Φ̇∗(t0)[1 +A(t0)]

H∞x4

[

−H∞

H
+ 1 + log

(

H

H∞

)]

. (48)

Second, using (44), we integrate (48) and obtain

Φ∗(x) = Φ∗(t0)+
Φ̇∗(t0)[1+A(t0)]

3H∞

ℜ1(x) , (49)

ℜ1(x) ≡
(

1− 1

x3

)

+
1

x3
log

(

1+
h2

H2
∞x6

)

− log

(

1 +
h2

H2
∞

)

+ (50)

+
H∞

|h|

(

arctan
|h|

H∞x3
− arctan

|h|
H∞

)

.

Third, using the replacement 1
x6 = H∞

h2 (H − H∞), we recover the function Φ∗(H)
based on the solution (49). The asymptotic value of the reconstructed guiding function is

Φ∗(∞) = Φ∗(t0) +
Φ̇∗(t0)[1 +A(t0)]

3H∞

ℜ1(∞) , (51)

ℜ1(∞) = 1− log

(

1 +
h2

H2
∞

)

−H∞

|h| arctan
|h|
H∞

.

Figure 1 illustrates the details of the function ℜ1(x).
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Figure 1. Illustration of the behavior of the function ℜ1(x) (50), which enters the guiding function

of the second type Φ∗, for three values of the parameter ρ= |h|
H∞

. All the curves start with the value

ℜ(1) = 0 and tend monotonically towards their asymptotic values ℜ1(∞) (51).

3.2.2. Second Analytically Solvable Submodel

The second submodel relates to the case when Λ ̸= 0, γ1 = 0, and γ2 = α2

H2
∞

> 0. With

these assumptions, the guiding function of the first type

A(H) = − γ2H2

1 + γ2H2
= − α2H2

H2
∞ + α2H2

(52)

is the regular function of the Hubble function H. From the key equation for the gravity
field (38) we obtain

H(x) = H∞

√

√

√

√

√

x6 + h2

H2
∞

x6 + α2h2

H2
∞

. (53)

The parameter α2 is connected to the initial value of the Hubble function as follows:

H(t0) ≡ H(x = 1) = H∞

√

√

√

√

√

1 + h2

H2
∞

1 + α2h2

H2
∞

. (54)

Clearly, we have to distinguish the cases α2 = 1 and α2 ̸= 1.
(1) When α2 = 1, we obtain that the Hubble function converts into the constant

H(x) = H(1) = H∞, and we deal with the de Sitter type behavior of the Universe,
for which a(t) = a(t0)e

H∞(t−t0). The guiding function of the first type also is constant, as
A = − 1

2 , and the guiding function of the second type behaves as

Φ∗(t) = Φ∗(t0)−
Φ̇2

∗(t0)a3(t0)

3H∞

e−3H∞(t−t0) . (55)

(2) When α2 ̸= 1, the direct integration of (40) yields

e6H∞(t−t∗) =

∣

∣

∣

∣

(z − α)α(z + 1)

(z + α)α(z − 1)

∣

∣

∣

∣

, (56)
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where we used the positive root α = +
√

α2. The auxiliary function z(t) and two new
parameters, z∗ and t∗, are:

z =

√

√

√

√

√

√

H2
∞

[

a(t)
a(t0)

]6
+ α2h2

H2
∞

[

a(t)
a(t0)

]6
+ h2

, z∗ =

√

H2
∞ + α2h2

H2
∞ + h2

, (57)

t∗ = t0 −
1

6H∞

log

[

(z∗ + 1)(z∗ − α)α

(z∗ − 1)(z∗ + α)α

]

. (58)

According to (57), z → 1 when a → ∞; the corresponding asymptotic behavior is
characterized by the de Sitter-type law

a(t, α) → a(t0)

(

h

2H∞

)
1
3
∣

∣

∣

∣

1 + α

1 − α

∣

∣

∣

∣

α−1
6

eH∞(t−t∗) . (59)

The formulas (56)–(58) give us the implicit representation. The function a(t) has no
extrema; we have illustrated the behavior of the scale factor in the early epoch in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

Figure 2. Illustration of the behavior of the reduced scale factor
a(t)
a(t0)

in the early epoch; this function

is presented in the implicit form by (56). Here τ = t−t0.

The guiding function of the second type can be represented in terms of elliptic func-
tions. For instance, if 0 < α < 1, the term

Φ∗(x) = Φ∗(t0)−
Φ̇∗(t0)[1 +A(t0)]

3H∞

ℜ2(x) (60)

contains the special function ℜ2(x), which is equal to

ℜ2(x) =
∫ 1

x3

1
dz







√

√

√

√

√

1 + α2 h2

H2
∞

z2

1 + h2

H2
∞

z2
+ α2

√

√

√

√

√

1 + h2

H2
∞

z2

1 + α2 h2

H2
∞

z2






= (61)

=
H∞

h

{

(1 + α2)[F(ϕ, k)−F(ϕ∗, k)]−2[E(ϕ, k)−E(ϕ∗, k)]
}

+

+
2

x3

√

H2
∞x6+α2h2

H2
∞x6+h2

−2

√

H2
∞+α2h2

H2
∞+h2

,
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where the elliptic functions of the first and second types, respectively,

F(ϕ, k) ≡
∫ ϕ

0

dψ
√

1 − k2 sin2 ψ
, E(ϕ, k) ≡

∫ ϕ

0
dψ

√

1 − k2 sin2 ψ (62)

are characterized by the arguments

ϕ = arctan

(

h

H∞x3

)

, ϕ∗ = arctan

(

h

H∞

)

, k =
√

1 − α2 . (63)

The asymptotic value of the guiding function of the second type is

Φ∗(x)=Φ∗(t0)+
Φ̇∗(t0)[1+A(t0)]

3H∞

{

H∞

h

[

(1+α2)F(ϕ∗, k)−2E(ϕ∗, k)
]

+2

√

H2
∞+α2h2

H2
∞+h2

}

. (64)

3.2.3. Third Analytically Solvable Submodel

Now we assume that the cosmological constant is equal to zero, Λ = 0, i.e., H∞ = 0.

Also, we assume that γ1 = 0 and γ2 = ν6

h2 > 0. Again, we find that A(H) is regular

A(H) = − ν6H2

h2 + ν6H2
, (65)

and the Hubble function is in the form

H(x) =
|h|√

x6 + ν6
. (66)

Then, we obtain the reduced scale factor x(t) in the implicit form

3|h|
ν3

(t − t∗∗) =

√

1 +
x6

ν6
− log

[
√

1 +
ν6

x6
+

ν3

x3

]

, (67)

where we introduce, for simplicity, the formal parameter t∗∗

t∗∗ = t0 −
1

3|h|
√

1 + ν6 − ν3

3|h| log
(
√

1 + ν6 − ν3
)

. (68)

Finally, we obtain the guiding function of the second type as the function of the
reduced scale factor

Φ∗(x) = Φ∗(t0) +
1

3|h| Φ̇∗(t0)[1 +A(t0)] ℜ3(x) . (69)

ℜ3(x) ≡ log





(

x3+
√

ν6+x6
)

(

1+
√

1+ν6
)



− 2

√

1 +
ν6

x6
+ 2

√

1 + ν6 .

In the asymptotic limit x → ∞, the function Φ∗(H) has the form

Φ∗(H) = Φ∗(t0)−
1

3|h| Φ̇∗(t0)[1 +A(t0)] log

(

ν3H

2|h|

)

. (70)

Figure 3 illustrates the behavior of the function ℜ3(x).
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Figure 3. Illustration of the behavior of the function ℜ3(x) for three values of the parameter ν.

3.2.4. Special Case

The final interesting submodel relates to the case A = −1, for which the aetheric
effective metric converts into the projector Gmn → ∆mn = gmn−UmUn. For a guiding
function like the first type, the axion field Equation (17) admits the solution depending on
time if, and only if, φ = nΦ∗, and thus V = 0. The equation for the gravity field (31) gives
the de Sitter-type solution H = H∞, and the Equation (29) turns into the identity 0 = 0.
In other words, the second type of guiding function happens to be arbitrarily constant
Φ∗(t) = Φ∗(H∞).

4. Discussion and Conclusions

In the presented work we studied new exact solutions to the master equations for
the extended version of the Einstein–aether–axion theory. The main idea of the theory’s
extension is based on the introduction of two guiding functions A(Θ) and Φ∗(Θ), which
depend on the expansion scalar of the aether flow, Θ = ∇kUk. This choice is dictated
by the fact that, within the Friedmann–Lemaître–Robinson–Walker model, there is only
one non-vanishing invariant reconstructed using the covariant derivative ∇kU j of the
aether four-vector velocity U j. The bonus of this approach is that, in the FLRW model,
Θ = 3H, and thus the aetheric control over the axion system evolution happens to be
described in terms of the Hubble function H(t), which is intrinsic for this model and has a
clear physical meaning. As for why we used namely two guiding functions, we kept in
mind that, generally, the axion system is characterized by two state functions: kinetic and
potential energy. The modification of the kinetic term in the Lagrangian of the extended
theory is performed using the effective aetheric metric Gmn = gmn+AUmUn (see (1)), where
the scalar A(Θ) has been indicated as the first type of guiding function. The modification
of the axion field potential is carried out by the introduction of the guiding function of the
second type Φ∗(Θ), which predetermines the location and depth of the potential minima
(see (4)).

The next question is how one can find A(Θ) and Φ∗(Θ). We have proposed the
following idea. If the axion field is frozen in the first minimum of the potential, i.e., is in
the first equilibrium state φ = Φ∗, we see that the corresponding equation for the axion
field (see (18) and (29)) can be indicated as the master equation for the guiding function of
the second type. Fortunately, the Equation (29)) admits the first integral (30), which can
be put into the equations for the gravity field, thus providing the key Equation (31) to be
self-closed equation for the scalar function Θ(x), or equivalently, for the Hubble function
H(x). When H is found, the guiding function of the second type Φ∗ can be reconstructed
by the direct integration (see the results (49), (60), (61) and (69)).
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Regarding the search for the guiding function of the first type A(Θ), we follow the
idea that, first, the right-hand side of the key equation of the gravity field (34) has to be
a regular function, second, the model has to describe the perpetual Universe expansion
without Big Rip and Big Crunch. From these two requirements, we restore the function
A(H) up to three arbitrary parameters γ1, γ2 and H∗ using the formula

1

1 +A = 1 + γ1H

[

1 + log
H

H∗

]

+ γ2H2 .

The Hubble function H(x) is the solution to the quadratic equation and its positive root
has the form (39) for arbitrary parameters γ1, γ2 and H∗; only the scale factor, as the function
of cosmological time a(t), can be presented in quadratures. In order to obtain the results
presented in the analytical and special functions, we considered four particular submodels,
selecting the listed parameters in a specific way. And our research objectives were achieved.

The last point of discussion is connected with an application of the extended model
for the interpretation of observational data, in particular, for the estimation of the axion
mass. In this context, we would like to draw attention to the equation of the axion field
evolution (17). When the value of the axion field is close to one of the potential minima,

i.e., φ → nΦ∗+ψ with
∣

∣

∣

2πψ
Φ∗

∣

∣

∣
<< 1, we deal with the linear differential equation, in which

the quantity M(Θ)= mA√
1+A plays the role of an effective axion mass depending on the scalar

of expansion of the aether flow Θ. Preliminary analysis shows that, for some choices of
the guiding function A(Θ), this equation admits unstable solutions, which are associated
with the axionization of the early Universe in analogy with the results obtained in [20].
The growth of the number of axions in the early Universe leads to the formation of the
axionic dark matter detected in our epoch; thus, the parameters of the presented extended
model could be linked with the mass density of the relic axions. Clearly, this part of work
should be more detailed;however, it is beyond the scope of this article and is planned to
form the content of the next publication.
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