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We study Majorana neutrino masses induced by D-brane instanton effects in magnetized
orbifold models. We classify the possible cases where neutrino masses can be induced. Three
and four generations are favored in order to generate neutrino masses by D-brane instan-
tons. Explicit mass matrices have specific features. Their diagonalizing matrices correspond
to the bimaximal mixing matrix in the case with even magnetic fluxes, independently of
the modulus value τ . On the other hand, for odd magnetic fluxes, diagonalizing matrices
correspond nearly to the tri-bimaximal mixing matrix near τ = i, while they become the bi-
maximal mixing matrix for larger Im τ . For even fluxes, neutrino masses are modular forms
of weight 1 on T 2/Z2, and they have symmetries such as S′

4 and �′(96) × Z3.
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1. Introduction
Superstring theory is a promising candidate for the unified theory of all the interactions includ-
ing gravity, matter such as quarks and leptons, and the Higgs particle. It predicts six dimensions
(6D) in addition to our four-dimensional (4D) spacetime. The 6D space must be compact. Ge-
ometrical aspects of the 6D compact space as well as gauge background fields determine phe-
nomenological properties of particle physics such as generation numbers, flavor structure of
quarks and leptons, and gauge and Yukawa coupling strengths.

Compactification with magnetic flux background is quite interesting in higher-dimensional
theory and superstring theory. The magnetic flux background can lead to a 4D chiral theory
even on the torus compactification [1–4], although one cannot realize a 4D chiral theory on
the torus without magnetic fluxes. That is, chiral zero-modes appear and their number depends
on the size of the magnetic flux. Their wavefunctions are non-trivially quasi-localized. Yukawa
couplings as well as higher-order couplings are written by overlap integrals of wavefunctions
[5,6]. They can be of O(1) or exponentially suppressed depending on the distances of quasi-
localizing positions among quarks, leptons, and the Higgs mode.

In addition to the simple torus compactification, the orbifold compactification with magnetic
flux is quite interesting. This can project out adjoint matter, i.e. open string moduli, and lead to
numbers of chiral zero-modes different from the torus compactifictaion [7–9].1 One can con-
struct various models by properly choosing orbifold parities and Scherk–Schwarz (SS) phases

1For the numbers of zero-modes, see also Refs. [10–12].
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as well as discrete Wilson lines.2 The three-generation models in magnetized orbifold models
have been classified [14–16]. Furthermore, realistic quark masses and mixing angles as well as
the CP phase have been studied [17–20], as has realization of charged lepton masses. Recently,
their flavor structure was studied from the viewpoint of modular symmetry [21–28].

Small neutrino masses can be realized by the see-saw mechanism as well as the Weinberg oper-
ators. Here, we concentrate on the see-saw mechanism, where right-handed neutrinos and their
Majorana masses are introduced. Such Majorana masses can be induced by non-perturbative
effects, i.e. D-brane instanton effects [29,30], although there is no mass scale perturbatively be-
low the compactification scale in superstring theory and super Yang–Mills theory, which is the
low-energy effective field theory of superstring theory. (For explicit models, see also Refs. [31–
34].) It is very important to study explicitly which patterns of Majorana masses are induced
by D-brane instanton effects. Thus, our purpose in this paper is to systematically study pat-
terns of Majorana mass matrices induced by D-brane effects in magnetized orbifold models, in
particular T 2/Z2 orbifold models.

When a D-brane instanton appears, new zero-modes, β i and γ j, also appear which correspond
to open strings between the D-brane instanton and the D-branes for the right-handed neutrinos.
We integrate the new zero-modes so as to obtain non-perturbative correction terms. The Majo-
rana mass terms can be induced only when we have a certain number of the new zero-modes, β i

and γ j. In magnetized orbifold models, the number of zero-modes is determined by the size of
magnetic fluxes, Z2-parity, and SS phases. In this paper we systematically study D-brane con-
figurations leading to Majorana neutrino masses and compute the patterns of neutrino mass
matrices. One needs two universal zero-modes, which correspond to the Grassmann coordinates
θ , in order to generate Majorana neutrino masses in 4D N = 1 supersymmetric theory [29,30].
We assume that such universal zero-modes remain through orientifold projection, and the other
neutral zero-modes are projected out. In other words, we assume that the D-brane instanton is
the so-called O(1) instanton. D-brane instatnons can have additional neutral zero-modes cor-
responding to the deformations of the wrapped cycles. These additional zero-modes can spoil
the calculations, and they must be eliminated by orbifold projections or become massive. Fur-
thermore, full stringy consistent models should satisfy the tadpole condition. However, such
conditions on full string models depend on gauge groups of the visible sector, the quark sector,
the charged lepton sector, and the hidden sector. Assuming these stringy consistency conditions,
we focus on the neutrino sector and study possible patterns of Majorana neutrino mass matri-
ces. Such D-brane configurations can actually be found in six-dimensional toroidal orbifolds,
and the Majorana mass term has been calculated in the full stringy type-IIA orientifold model
[33]. On the other hand, our approach is to study low-energy effective field theory in order to
systematically study the possible patterns of neutrino mass matrices. We study supersymmetric
Yang–Mills theory on the orbifold compactification with magnetic fluxes. We classify the possi-
ble configurations of magnetic fluxes and brane-instanton3 configurations leading to Majorana
neutrino mass matrices. We also study their symmetries.

This paper is organized as follows. In Sect. 2, we give a brief review of the number of zero-
modes, their wavefunctions, and three-point couplings. In Sect. 3, we study systematically D-
brane configurations, where Majorana neutrino masses can be induced by D-brane instanton

2For shifted orbifold models, see Ref. [13].
3The brane instanton would be a classical solution in low-energy effective supergravity theory.
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effects. In Sect. 4, we explicitly compute the patterns of Majorana neutrino mass matrices.
Section 5 presents our conclusions. In Appendix A, we briefly review the modular symmetry in
magnetized torus and orbifold models. In Appendix B, we review wavefunctions on the T 2/Z4

orbifold.

2. Orbifold compactification with magnetic fluxes
Here we review torus and orbifold compactfications with magnetic fluxes [5,7–9]. We study
magnetic flux compactification within the framework of higher-dimensional super Yang–Mills
theory, which is the low-energy effective field theory of superstring theory. We concentrate on
the extra two dimensions, T2 and T 2/Z2. Our models can correspond to the D5-brane system
as well as D7- and D9-brane systems, assuming that other extra dimensions are irrelevant to
the mass ratios and mixing angles of the Majorana neutrino mass matrix, but relevant only to
the overall factor of the mass matrix. Also, we assume that these D-brane systems preserve 4D
N = 1 supersymmetry.

2.1 Torus compactification with magnetic fluxes
In this subsection we review zero-mode wavefunctions on a two-dimensional torus T2 with U(N)
magnetic flux. First, T2 is obtained by the identification z ∼ z + 1 ∼ z + τ , where we use the
complex coordinate z ≡ x + τy, and τ (τ ∈ C, Im τ > 0) is the complex structure modulus of
T2. Let us consider the following U(N) magnetic flux on T2:

F = π i
Im τ

(dz ∧ dz̄)

⎛
⎜⎝

M1IN1×N1

. . .

MnINn×Nn

⎞
⎟⎠, (1)

where INa×Na (a = 1, …, n) denotes the (Na × Na) unit matrix with
∑n

a=1 Na = N, and Ma (a =
1, …, n) must be an integer. This magnetic flux is induced by the background gauge field

A(z) = π

Im τ
Im (z̄dz)

⎛
⎜⎝

M1IN1×N1

. . .

MnINn×Nn

⎞
⎟⎠, (2)

where we can always set Wilson lines vanishing by introducing SS phases instead, as shown in
Ref. [8]. From this gauge background, U(N) gauge symmetry is broken to 	n

a=1U (Na).
Here, we consider a two-dimensional spinor on T2 under the breaking U(N) → U(N1) ×

U(N2) by the above background magnetic flux, i.e.

ψ (z) =
(

ψ+(z)
ψ−(z)

)
, ψ±(z) =

(
ψ

(11)
± (z) ψ

(12)
± (z)

ψ
(21)
± (z) ψ

(22)
± (z)

)
, (3)

where ψ
(11)
± and ψ

(22)
± correspond to U(N1) and U(N2) gauginos, respectively, and ψ

(12)
± and

ψ
(21)
± correspond to (N1, N̄2) and (N̄1, N2) representations under U(N1) × U(N2). The above

wavefunctions satisfy the boundary conditions

ψ
(ab)
± (z + 1) = e2π iα(ab)

1 eπ iMab
Im z
Im τ ψ

(ab)
± (z), (4)

ψ
(ab)
± (z + τ ) = e2π iα(ab)

τ eπ iMab
Im τ̄z
Im τ ψ

(ab)
± (z), (5)
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where Mab ≡ Ma − Mb (a, b = 1, 2) and α
(ab)
i ≡ αa

i − αb
i (i = 1, τ , a, b = 1, 2) denote the SS

phases. When we solve the zero-mode Dirac equation,

i 	Dψ (z) = 0, (6)

under the above boundary conditions with M12 > 0, only ψ
(12)
+ (as well as the anti-particle ψ

(21)
− )

has an M12-number of degenerate zero-modes. Then, a chiral theory is realized. The explicit
form of the wavefunction with the magnetic flux M12 and the SS phases (α(12)

1 , α
(12)
τ ) is written

by

ψ

(
j+α

(12)
1 ,α

(12)
τ

)
,|M12|

T 2 (z) =
( |M12|

A2

)1/4

e2π i
( j+α

(12)
1 )α(12)

τ

|M12 | eπ i|M12|z Im z
Im τ ϑ

[
j+α

(12)
1

|M12|
−α

(12)
τ

]
(|M12|z, |M12|τ ), (7)

where j ∈ Z|M12|, A denotes the area of T2, and ϑ denotes the Jacobi theta function defined as

ϑ

[
a
b

]
(ν, τ ) =

∑
l∈Z

eπ i(a+l )2τ e2π i(a+l )(ν+b). (8)

The wavefunction satisfies the following normalization condition:

∫
T 2

dzdz̄

(
ψ

(
j+α

(12)
1 ,α

(12)
τ

)
,|M12|

T 2 (z)

)∗
ψ

(
k+α

(12)
1 ,α

(12)
τ

)
,|M12|

T 2 (z) = (2Im τ )−1/2δ j,k. (9)

We note that the definition of the wavefunction in Eq. (7) is different from one in Ref. [8] by the
phase factor e2π i( j+α

(12)
1 )α(12)

τ /|M12|, which does not affect the boundary conditions or the equation
of motion. Similarly, we can consider the breaking case such as U (N ) → 	n

a=1U (Na).
The three-point coupling, dijk, of the wavefunctions with the magnetic flux Ma and the SS

phases (α(a)
1 , α

(a)
τ ) (a = i, j, k) can be calculated as

di jk =
∫

T 2
dzdz̄ψ

(
i+α

(i)
1 ,α

(i)
τ

)
,|Mi|

T 2 (z) · ψ

(
j+α

( j)
1 ,α

( j)
τ

)
,|Mj |

T 2 (z) ·
(

ψ

(
k+α

(k)
1 ,α

(k)
τ

)
,|Mk|

T 2 (z)

)∗

= c(Mi−Mj−Mk) exp

⎧⎨
⎩2π i

⎛
⎝
(

i + α
(i)
1

)
α

(i)
τ

Mi
+

(
j + α

( j)
1

)
α

( j)
τ

Mj
−

(
k + α

(k)
1

)
α

(k)
τ

Mk

⎞
⎠
⎫⎬
⎭

×
|Mk|−1∑

m=0

ϑ

⎡
⎣ |Mj |

(
i+α

(i)
1

)
−|Mi|

(
j+α

( j)
1

)
+|MiMj |m

|MiMjMk|
0

⎤
⎦(

Miα
( j)
τ − Mjα

(i)
τ , |MiMjMk|τ

)

× δ(
i+α

(i)
1

)
+
(

j+α
( j)
1

)
−
(

k+α
(k)
1

)
,|Mk|�−|Mi|m, (10)

provided Mi + Mj = Mk, α
(i)
1 + α

( j)
1 = α

(k)
1 , and α

(i)
τ + α

( j)
τ = α

(k)
τ are satisfied, where � ∈ Z.

Here, the coefficient c(Mi−Mj−Mk ) is defined as

c(Mi−Mj−Mk ) = (2Im τ )−1/2A−1/2

∣∣∣∣MiMj

Mk

∣∣∣∣
1/4

. (11)
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Table 1. The numbers of zero-modes with different SS phases.

|M| 1 2 3 4 5 6 7 8 9 10 11 12

SS phase (α1, ατ ) = (0, 0)
Z2-even 1 2 2 3 3 4 4 5 5 6 6 7
Z2-odd 0 0 1 1 2 2 3 3 4 4 5 5

SS phase (α1, ατ ) = (1/2, 0)
Z2-even 1 1 2 2 3 3 4 4 5 5 6 6
Z2-odd 0 1 1 2 2 3 3 4 4 5 5 6

SS phase (α1, ατ ) = (0, 1/2)
Z2-even 1 1 2 2 3 3 4 4 5 5 6 6
Z2-odd 0 1 1 2 2 3 3 4 4 5 5 6

SS phase (α1, ατ ) = (1/2, 1/2)
Z2-even 0 1 1 2 2 3 3 4 4 5 5 6
Z2-odd 1 1 2 2 3 3 4 4 5 5 6 6

To derive Eq. (10), we use the property

ϑ

[
r

N1

0

]
(ν1, N1τ ) × ϑ

[
s

N2

0

]
(ν2, N2τ )

=
∑

m∈ZN1+N2

ϑ

[
r+s+N1m

N1+N2

0

]
(ν1 + ν2, (N1 + N2)τ )

× ϑ

[
N2r−N1s+N1N2m

N1N2(N1+N2 )

0

]
(ν1N2 − ν2N1, N1N2(N1 + N2)τ ). (12)

2.2 Orbifold compactification
In this subsection we review zero-mode wavefunctions on the T 2/Z2 twisted orbifold with the
magnetic flux in Eq. (1). The T 2/Z2 twisted orbifold is obtained further by identifying a Z2

twisted point −z with z, i.e. z ∼ −z. Then, the wavefunctions on the magnetized T 2/Z2 twisted
orbifold with the magnetic flux M and the SS phases (α1, ατ ) satisfy the boundary condition

ψ
( j+α1,ατ ),|M|
T 2/Zm

2
(−z) = (−1)mψ

( j+α1,ατ ),|M|
T 2/Zm

2
(z), m ∈ Z2 (13)

in addition to Eqs. (4) and (5). These boundary conditions are simultaneously satisfied only in
the case of Z2 SS phases,

(α1, ατ ) = (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2). (14)

Hence, the wavefunctions on the magnetized T 2/Z2 twisted orbifold can be expressed by ones
on magnetized T2 as

ψ
( j+α1,ατ ),|M|
T 2/Zm

2
(z) = N

(
ψ

( j+α1,ατ ),|M|
T 2 (z) + (−1)mψ

( j+α1,ατ ),|M|
T 2 (−z)

)
= N

(
ψ

( j+α1,ατ ),|M|
T 2 (z) + (−1)m−2ατ ψ

(|M|−( j+α1 ),ατ ),|M|
T 2 (z)

)
, (15)

where

N =
{

1/2 ( j + α1 = 0, |M|/2),
1/

√
2 (otherwise).

(16)

Note that only when j + α1 = 0 is the factor (−1)2α1 replaced by 1. Table 1 shows the num-
bers of the zero-modes. The normalization of the wavefunction and their three-point coupling
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are similarly obtained by replacing the wavefunctions on T2 with ones on the T 2/Z2 twisted
orbifold. Note that they are overall Z2 invariant.

3. Majorana neutrino masses by D-brane instanton effects
Here, we study Majorana neutrino masses induced by D-brane instanton effects in magnetized
orbifold models.

3.1 D-brane instanton effects
We give a brief review of Majorana neutrino mass terms induced by D-brane instanton effects
[29,30].

We consider two stacks of D-branes, DN1 and DN2, with different magnetic fluxes. Zero-
modes of open strings between these D-branes correspond to the neutrinos, Na. We denote the
difference of their magnetic fluxes MN. The neutrino generation number is determined by MN

and boundary conditions such as SS phases and Z2 parity. We assume the D-brane instanton
Dinst with magnetic flux, which has the zero-modes β i (γ j) between DN1 (DN2) and Dinst. The
numbers of zero-modes β i and γ j are determined by magnetic fluxes in zero-mode equations,
and the SS phases and Z2 parities of boundary conditions.

The Majorana mass terms of Na due to D-brane instanton effects can be written by [29,30]

e−Scl (Dinst,Minst )
∫

d2βd2γ e−∑
i ja d i j

a βiγ jNa, (17)

where β i and γ j are Grassmannian, and di j
a denotes the three-point coupling among β i, γ j, and

Na. Here, Scl(Dinst, Minst) denotes the classical action of the D-brane instanton written by the
Dirac–Born–Infeld action, which depends on the D-brane instanton volume in the compact
space and the magnetic flux. Mass terms can be induced only if each of β i and γ j has two
zero-modes, i.e. β1, β2, γ 1, and γ 2. By the Grassmannian integral, we find∫

d2βd2γ e−∑
i ja d i j

a βiγ jNa = NaNb

(
εi jεk�dik

a d j�
b

)
. (18)

Thus, the mass matrix Mab is obtained by

Mab = e−Scl (Dinst,Minst )mab, mab =
(
εi jεk�dik

a d j�
b

)
. (19)

Furthermore, we assume that there are just two neutral fermionic zero-modes, which are the
zero-modes of the open string whose endpoints are attached to Dinst. They are neutral under the
gauge group on DN1 (DN2), and correspond to the Grassmann coordinate of N = 1 SUSY. The
number of neutral zero-modes also depends on the configuration of the D-brane instanton.
In the tyep-IIA orientifold model, which is the T-dual of the magnetized torus, the D-brane
instanton must wrap on an orientifold invariant cycle to generate non-perturbative superpo-
tential [33]. This implies Minst = 0. Since the number of charged zero-modes (and neutrinos)
depends only on the differences of magnetic fluxes, we can always set Minst = 0 without loss of
generality.

3.2 Classification of models with Majorana mass terms
The number of zero-modes is required to be two for both β i and γ j in order to induce Majorana
neutrino mass terms by D-brane instanton effects, as reviewed in the previous section. We con-
sider the six-dimensional compact space which is a product of T 2/Z2 and four-dimensional
compact space. Here, we focus on the two-dimensional T 2/Z2 orbifold, and we study the
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Table 2. Configurations leading to two
zero-modes for β i and γ j.

β i, γ j (α1, ατ : Mβ,γ ,Z2 parity)

i (0, 0: 2, E)
ii (0, 0: 3, E)
iii (0, 0: 5, O)
iv (0, 0: 6, O)
v (1/2, 0: 3, E)
vi (0, 1/2: 3, E)
vii (1/2, 0: 4, E)
viii (0, 1/2: 4, E)
ix (1/2, 0: 4, O)
x (0, 1/2: 4, O)
xi (1/2, 0: 5, O)
xii (0, 1/2: 5, O)
xiii (1/2, 1/2: 4, E)
xiv (1/2, 1/2: 5, E)
xv (1/2, 1/2: 3, O)
xvi (1/2, 1/2: 4, O)

models with two zero-modes, β i and γ j. When the instanton brane Dinst wraps on the other
four-dimensional compact space, each of β i and γ j must have only one zero-mode on the four-
dimensional compact space such that the total zero-mode number is equal to two. Note that
the total zero-mode number is a product of zero-mode numbers on T 2/Z2 and the other four-
dimensional compact space.4 Thus, the flavor structure, i.e. mass ratios and mixing angles, is
determined by the configuration on T 2/Z2, although the other four-dimensional compact space
contributes only to an overall factor of the mass matrix. Also, we assume that these D-brane
systems preserve 4D N = 1 supersymmetry.

Two zero-modes can be realized by D-brane instantons with proper magnetic fluxes and SS
phases, as reviewed in Sect. 2.2. These are shown in Table 2. In addition, the neutrinos must
have non-vanishing three-point couplings di j

a with the zero-modes, β i and γ j. That leads to the
following conditions:

Mβ ± Mγ = ±MN, (α1, ατ )β + (α1, ατ )γ = (α1, ατ )N, (20)

where Mβ , Mγ , and MN are the magnetic fluxes in the zero-mode equations of β i, γ i, and
neutrinos Na, and (α1, ατ )β , (α1, ατ )γ , and (α1, ατ )N are SS phases in the boundary conditions
of β i, γ j, and neutrinos Na, respectively. Note that the SS phases (α1, ατ ) are defined modulo an
integer. Furthermore, three-point couplings di j

a are allowed only if the product of Z2 parities
of β i, γ j, and neutrinos Na is Z2-even. Thus, when we fix magnetic fluxes, SS phases, and Z2

parities for β j and γ j, those are determined for the neutrinos. Then, we can find the generation
number of the neutrinos, which can gain mass terms through the D-brane instanton effects.
Such generation numbers are shown in Table 3 for MN = Mβ + Mγ . When MN = |Mβ − Mγ |,
the neutrino generation number is 0 or 1.

4The number of zero-modes on six-dimensional toroidal orbifolds such as T 6/(Z2 × Z2) can be more
subtle [57]. We concentrate here on D-brane configurations where the number of zero-modes arises on
one two-dimensional torus for simplicity.
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Table 3. The neutrino generation numbers for combinations of zero-modes β i and γ j.

β i\γ j i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi

i 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
ii 3 4 3 4 3 3 4 4 3 3 4 4 3 4 3 4
iii 3 3 6 6 4 4 4 4 5 5 5 5 5 5 4 4
iv 3 4 6 7 4 4 5 5 5 5 6 6 5 6 4 5
v 3 3 4 4 4 3 4 3 3 4 3 4 4 4 3 3
vi 3 3 4 4 3 4 3 4 4 3 4 3 4 4 3 3
vii 3 4 4 5 4 3 5 4 3 4 4 5 4 5 3 4
viii 3 4 4 5 3 4 4 5 4 3 5 4 4 5 3 4
ix 3 3 5 5 3 4 3 4 5 4 5 4 4 4 4 4
x 3 3 5 5 4 3 4 3 4 5 4 5 4 4 4 4
xi 3 4 5 6 3 4 4 5 5 4 6 5 4 5 4 5
xii 3 4 5 6 4 3 5 4 4 5 5 6 4 5 4 5
xiii 3 3 5 5 4 4 4 4 4 4 4 4 5 5 3 3
xiv 3 4 5 6 4 4 5 5 4 4 5 5 5 6 3 4
xv 3 3 4 4 3 3 3 3 4 4 4 4 3 3 4 4
xvi 3 4 4 5 3 3 4 4 4 4 5 5 3 4 4 5

Table 4. The combination numbers of zero-modes β i and γ j for the neutrino generation numbers. The
number of all possible combinations β i and γ j is 256.

Neutrino generation number 3 4 5 6 7
Combination number of β and γ 81 108 54 12 1

Table 5. The combination numbers of zero-modes β i and γ j for the neutrino generation numbers such
that the neutrino sector has vanishing SS phases. The number of all possible combinations β i and γ j is
64.

Neutrino generation number 3 4 5 6 7
Combination number of β and γ 27 18 12 6 1

Table 4 shows the combination numbers of zero-modes β i and γ j for the neutrino genera-
tion numbers. This implies that the three and four generations are statistically favored. Their
probabilities are 32% and 42%.

Similarly, Table 5 shows the combination numbers of zero-modes β i and γ j for the neutrino
generation numbers such that the neutrino sector has vanishing SS phases. This means the
combinations of β i and γ j corresponding to the SS phases (0,0) and (0,0), (1/2, 1/2) and (1/2,
1/2), (1/2, 0) and (1/2, 0), and (0, 1/2) and (0, 1/2). Again, the three and four generations are
statistically favored. Their probabilities are about 42% and 28%.

4. Majorana neutrino mass matrices
Here we show explicitly Majorana neutrino mass matrices induced by D-brane instanton ef-
fects. We restrict ourselves to the three-generation models, where neutrinos correspond to zero-
modes with vanishing SS phases.
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4.1 Neutrino mass terms
In the previous sections we have shown possible D-brane configurations, where Majorana neu-
trino mass terms can be induced by D-brane instanton effects. All of the possible effects can
contribute to neutrino mass terms for a fixed configuration of D-branes DN1 and DN2.

When the neutrinos appear as three Z2 even zero-modes corresponding to the magnetic flux
MN = 4 and 5, D-brane instanton effects to generate Majorana neutrino masses are unique,
as shown in Sects. 4.2 and 4.4. On the other hand, when neutrinos appear as three Z2 odd
zero-modes corresponding to the magnetic flux MN = 7 and 8, the total mass terms are written
by linear combinations with the factor e−Scl (Dinst,Minst ). When the neutrinos correspond to the
magnetic flux MN = 8, their mass matrix is written by

Mab = e−Scl

(
Dinst,M

(2-6-8)
inst

)
m(2-6-8)

ab +
∑

(α1,ατ )

e−Scl

(
Dinst,M

(3-5-8)
inst

)
m(3-5-8)(α1,ατ )

ab

+
∑

(α1,ατ )

e−Scl

(
Dinst,M

(4-4-8)
inst

)
m(4-4-8)(α1,ατ )

ab . (21)

Here, M(2-6-8)
inst denotes the magnetic flux on the D-brane instanton to realize the case with (Mβ ,

Mγ , MN) = (2, 6, 8), which is denoted in short by 2-6-8. Other notations such as M(3-5-8)
inst and

M(4-4-8)
inst have similar meaning. Note that we can shift the magnetic fluxes on DN1-, DN2-, and

Dinst-branes by a constant to make their differences invariant and realize the 2-6-8 case. For
example, when we choose magnetic fluxes on DN1- and DN2-branes such that M(2-6-8)

inst = 0 and
M(3-5-8)

inst , M(4-4-8)
inst 	= 0, the first term is dominant, and other terms are exponentially suppressed:

Mab ≈ e−Scl (Dinst,0)m(2-6-8)
ab . (22)

Similarly, when MN = 7, the mass matrix is written by

Mab = e−Scl

(
Dinst,M

(2-5-7)
inst

)
m(2-5-7)

ab +
∑

(α1,ατ )

e−Scl

(
Dinst,M

(3-4-7)
inst

)
. (23)

Under the choice M(2-5-7)
inst = 0 and M(3-4-7)

inst 	= 0, we have the approximation

Mab ≈ e−Scl (Dinst,0)m(2-5-7)
ab . (24)

4.2 Neutrino sector with MN = 4
Here, we study the mass matrix of the neutrino sector with MN = 4. The only possibility is
the 2-2-4 case which is constructed as follows. Two independent zero-modes for both β i and
γ j are obtained by taking even wavefunctions under the magnetic flux, Mβ = Mγ = 2. For
the neutrino sector, three independent zero-modes are obtained by taking even wavefunctions
under the magnetic flux, MN = 4. Wavefunctions for β i and γ j are given by

ψ
(0,0),2
T 2/Z+

2
(z) = ψ

(0,0),2
T 2 (z), ψ

(1,0),2
T 2/Z+

2
(z) = ψ

(1,0),2
T 2 (z). (25)

Wavefunctions for the neutrino sector are given by

ψ
(0,0),4
T 2/Z+

2
(z) = ψ

(0,0),4
T 2 (z), ψ

(1,0),4
T 2/Z+

2
(z) = 1√

2

(
ψ

(1,0),4
T 2 (z) + ψ

(3,0),4
T 2 (z)

)
,

ψ
(2,0),4
T 2/Z+

2
(z) = ψ

(2,0),4
T 2 (z). (26)
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From the above wavefunctions, the d matrices can be computed as

d1 = c(2-2-4)

(
η

(16)
0 + η

(16)
8 0

0 η
(16)
4 + η

(16)
12

)
,

d2 = c(2-2-4)

√
2

(
0 η

(16)
2 + η

(16)
10

η
(16)
2 + η

(16)
10 0

)
,

d3 = c(2-2-4)

(
η

(16)
4 + η

(16)
12 0

0 η
(16)
0 + η

(16)
8

)
, (27)

where we have defined

η
(n)
N = ϑ

[ N
n

0

]
(0, nτ ). (28)

The explicit form of the overall constant factor c(2-2 − 4) is shown by Eq. (11). The mass matrix
is then given by

m(2-2-4) = c2
(2-2-4)

⎛
⎜⎝X3 0 X1

0 −√
2X2 0

X1 0 X3

⎞
⎟⎠, (29)

where the Xi (i=1, 2, 3) are defined as

X1 =
(
η

(16)
0 + η

(16)
8

)2
+
(
η

(16)
4 + η

(16)
12

)2
,

X2 = 1√
2

((
η

(16)
2 + η

(16)
10

)
+
(
η

(16)
6 + η

(16)
14

))2
,

X3 = 2
(
η

(16)
0 + η

(16)
8

) (
η

(16)
4 + η

(16)
12

)
. (30)

Next, we investigate the modular transformation behavior of m(2-2-4). Under the S-
transformation, τ → − 1

τ
, Xi (i = 1, 2, 3) are transformed as⎛

⎜⎝X1

X2

X3

⎞
⎟⎠ S−→ (−τ )

i
2

⎛
⎜⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎟⎠
⎛
⎜⎝X1

X2

X3

⎞
⎟⎠. (31)

Under the T-transformation, τ → τ + 1,⎛
⎜⎝X1

X2

X3

⎞
⎟⎠ T−→

⎛
⎜⎝1 0 0

0 i 0
0 0 −1

⎞
⎟⎠
⎛
⎜⎝X1

X2

X3

⎞
⎟⎠. (32)

From the above results, it can be seen that X1, X2, and X3 are modular forms of weight 1 and
behave as a triplet of the group S′

4.5

Eigenvalues of m(2-2-4) are given by

λ1 = c2
(2-2-4)(X1 + X3) = c2

(2-2-4)

((
η

(16)
0 + η

(16)
8

)
+
(
η

(16)
4 + η

(16)
12

))2
,

λ2 = −c2
(2-2-4)

√
2X2 = −c2

(2-2-4)

((
η

(16)
2 + η

(16)
10

)
+
(
η

(16)
6 + η

(16)
14

))2
,

λ3 = c2
(2-2-4)(X3 − X1) = −c2

(2-2-4)

((
η

(16)
0 + η

(16)
8

)
−
(
η

(16)
4 + η

(16)
12

))2
. (33)

5�′
4 
 S′

4 
 �′(24) is the double covering group of �4 
 S4 
 �(24).
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Fig. 1. Im τ dependence (1 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the 2-2-4 case
at Re τ = 0.

Fig. 2. Im τ dependence (
√

3/2 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the 2-2-4
case at Re τ = 1/2.

They can be approximated at large Im τ as

λ1 ≈ c2
(2-2-4)

(
η

(16)
0

)2
≈ c2

(2-2-4)(1 + · · · ),

λ2 ≈ −c2
(2-2-4)4

(
η

(16)
2

)2
≈ −4c2

(2-2-4)(e
π iτ

2 + · · · ),

λ3 ≈ −c2
(2-2-4)

(
η

(16)
0

)2
≈ −c2

(2-2-4)(1 + · · · ). (34)

The diagonalizing matrix P for all τ satisfying PTm(2-2-4)P = diag(λ1, λ2, λ3) is

P =

⎛
⎜⎝

1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2

⎞
⎟⎠, (35)

showing that the mixing angle is 45◦. Note that the mass eigenstates become Z2-twisted and Z2-
shifted eigenstates.6 Figures 1 and 2 show the Im τ dependence

(√
1 − (Re τ )2 ≤ Im τ ≤ 2

)
of

the absolute values of the mass eigenvalues λi (i = 1, 2, 3) in Eq. (33) at Re τ = 0 and Re τ = 1/2,
respectively. Here, we set c(2-2-4) = 1 for simplicity.

There are four interesting features in Figs. 1 and 2. First, we can find |λ2| = |λ3| at τ = i.
This can be explained by considering that the point τ = i is invariant under S-transformation.

6They can be defined in M ∈ 4Z. For details, see Refs. [25,26].
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In other words, each mass eigenvalue λk (k = 1, 2, 3) at τ = i must be invariant under S-
transformation. However, from Eqs. (31) and (35), the λk (k = 1, 2, 3) at τ = i are transformed
under S-transformation as ⎛

⎜⎝λ1

λ2

λ3

⎞
⎟⎠ S−→

⎛
⎜⎝1 0 0

0 0 1
0 1 0

⎞
⎟⎠
⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠. (36)

Thus, in order for λk (k = 1, 2, 3) at τ = i to be invariant under S-transformation, it should be
required that λ2 = λ3 at τ = i. Actually, by using the relation

η
(n)
N (−1/τ ) =

√−iτ
n

n−1∑
N ′=0

e2π i NN′
n η

(n)
N ′ (τ ), (37)

we can check that(
η

(16)
0 + η

(16)
8

)
−
(
η

(16)
4 + η

(16)
12

)
=
(
η

(16)
2 + η

(16)
10

)
+
(
η

(16)
6 + η

(16)
14

)
(τ = i), (38)

and then λ2 = λ3 is satisfied at τ = i.
Second, we can find |λ1| 
 |λ3| and |λ2| → 0 at τ → i∞. This can be explained by considering

that the limit τ = i∞ is invariant under T-transformation. In other words, each mass eigenvalue
λk (k = 1, 2, 3) at τ = i∞ must be invariant under T-transformation. However, from Eqs. (32)
and (35), the λk (k = 1, 2, 3) are transformed under T-transformation as⎛

⎜⎝λ1

λ2

λ3

⎞
⎟⎠ T−→

⎛
⎜⎝ 0 0 −1

0 i 0
−1 0 0

⎞
⎟⎠
⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠. (39)

Thus, in order for λk (k = 1, 2, 3) at τ = i∞ to be invariant under T-transformation, it should
be required that λ1 = −λ3 and λ2 = iλ2⇔λ2 = 0 at τ = i∞. Actually, the λk (k = 1, 2, 3) in
Eq. (34) at τ → i∞ are estimated as λ1 
 −λ3 → 1 and λ2 → 0.

Third, we can find |λ1| = |λ3| at τ = 1
2 + iIm τ . This can be explained by considering that τ =

1
2 + iIm τ is invariant under T-transformation and CP-transformation, where CP : τ → −τ̄ . In
other words, each mass eigenvalue λk (k = 1, 2, 3) at τ = 1

2 + iIm τ must be invariant under the
T · CP-transformation. Here, we can easily check that

CP : λk(τ ) → λk(−τ̄ ) = λ∗
k(τ ) (k = 1, 2, 3). (40)

Then, the λk (k = 1, 2, 3) are transformed under the T · CP-transformation as⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠ T ·CP−−−→

⎛
⎜⎝ 0 0 −1

0 i 0
−1 0 0

⎞
⎟⎠
⎛
⎜⎝λ∗

1

λ∗
2

λ∗
3

⎞
⎟⎠. (41)

Thus, in order for the λk (k = 1, 2, 3) at τ = 1
2 + iIm τ to be invariant under the T · CP-

transformation, it should be required that λ1 = −λ∗
3 and λ2 = iλ∗

2 at τ = 1
2 + iIm τ . Actually,

the λk (k = 1, 2, 3) in Eq. (33) at τ = 1
2 + iIm τ are expressed as

λ1 =
((∣∣η(16)

0

∣∣ + ∣∣η(16)
8

∣∣) + i
(∣∣η(16)

4

∣∣ + ∣∣η(16)
12

∣∣))2
,

λ2 = −4e
π i
4

(∣∣η(16)
2

∣∣ − ∣∣η(16)
10

∣∣)2
,

λ3 = −
((∣∣η(16)

0

∣∣ + ∣∣η(16)
8

∣∣) − i
(∣∣η(16)

4

∣∣ + ∣∣η(16)
12

∣∣))2
, (42)

and then they satisfy λ1 = −λ∗
3 and λ2 = iλ∗

2.
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Fourth, we can find |λ1| = |λ2| = |λ3| at τ = 1
2 +

√
3

2 i. This can be explained by consider-

ing that the point τ = 1
2 +

√
3

2 i is invariant under ST−1-transformation. In other words, each

mass eigenvalue λk (k = 1, 2, 3) at τ = 1
2 +

√
3

2 i must be invariant under ST−1-transformation.

However, the λk (k = 1, 2, 3) at τ = 1
2 +

√
3

2 i are transformed under ST−1-transformation as⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠ ST −1−−−→

⎛
⎜⎝ 0 0 e− 5π i

6

e− 5π i
6 0 0

0 e− π i
3 0

⎞
⎟⎠
⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠. (43)

Thus, in order for λk (k = 1, 2, 3) at τ = 1
2 +

√
3

2 i to be invariant under ST−1-transformation,

it should be required that λ1 = e
5π i
6 λ2 = e− 5π i

6 λ3 at τ = 1
2 +

√
3

2 i. Actually, this can also be

checked explicitly by considering that τ = 1
2 +

√
3

2 i is invariant under ST−1-transformation.
Note that λ1 = −λ∗

3 and λ2 = iλ∗
2 should also be satisfied, and actually they are consistent with

λ1 = e
5π i
6 λ2 = e− 5π i

6 λ3.

4.3 Neutrino sector with MN = 8
Here we study the mass matrix of the neutrino sector with MN = 8. For this neutrino sector,
the mass terms can be induced by several cases: 2-6-8, 3-5-8, and 4-4-8.

4.3.1 2-6-8 case. In the 2-6-8 case we take even wavefunctions under Mβ = 2 and odd wave-
functions under Mγ = 6 for β i and γ j respectively. For the neutrino sector, we take odd wave-
functions under MN = 8. The d matrices are given by

d1 = c(2-6-8)

(
A1 0
0 A3

)
, d2 = c(2-6-8)

(
0 A2

A2 0

)
, d3 = c(2-6-8)

(
A3 0
0 A1

)
. (44)

Here, Ai (i = 1, 2, 3) are defined as

A1 =
(
η

(96)
2 − η

(96)
14

)
−
(
η

(96)
34 − η

(96)
46

)
,

A2 =
(
η

(96)
4 − η

(96)
28

)
−
(
η

(96)
20 − η

(96)
44

)
,

A3 =
(
η

(96)
10 − η

(96)
22

)
−
(
η

(96)
26 − η

(96)
38

)
. (45)

The mass matrix is then given by

m(2-6-8) = c2
(2-6-8)

⎛
⎜⎝X3 0 X1

0 −√
2X2 0

X1 0 X3

⎞
⎟⎠, (46)

where Xi (i = 1, 2, 3) are defined as

X1 = (A1)2 + (A3)2, X2 =
√

2(A2)2, X3 = 2A1A3. (47)

Next, let us investigate the modular transformation behavior of the mass matrix, m(2-6-8).
Under the S-transformation, τ → − 1

τ
, Xi (i = 1, 2, 3) are transformed as⎛

⎜⎝X1

X2

X3

⎞
⎟⎠ S−→ (−τ )

i
2

⎛
⎜⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎟⎠
⎛
⎜⎝X1

X2

X3

⎞
⎟⎠. (48)
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Under the T-transformation, τ → τ + 1,⎛
⎜⎝X1

X2

X3

⎞
⎟⎠ T−→ e

iπ
12

⎛
⎜⎝1 0 0

0 e
iπ
4 0

0 0 −1

⎞
⎟⎠
⎛
⎜⎝X1

X2

X3

⎞
⎟⎠. (49)

From the above results, it can be seen that X1, X2, and X3 are modular forms of weight 1 and
behave as a triplet of the group �′(96) × Z3.7

4.3.2 3-5-8 case. In the 3-5-8 case there are four possible variations with different SS phases:
(0,0), (1/2, 0), (0, 1/2), and (1/2, 1/2). The sum of four mass matrices8 in equal ratio is given by

m(3-5-8) = m(3-5-8)(0,0) + m(3-5-8)(1/2,0) + m(3-5-8)(0,1/2) + m(3-5-8)(1/2,1/2)

= c2
(3-5-8)

⎛
⎜⎝Y3 0 Y1

0 −√
2Y2 0

Y1 0 Y3

⎞
⎟⎠. (50)

Here, Y1, Y2, and Y3 are defined as

Y1 = 2
√

2(D9D̃37 + D33D̃−11 + D−3D̃1 + D21D̃−47),

Y2 = 4(E−6Ẽ−2 − E42Ẽ34),

Y3 = 2
√

2(D9D̃−47 + D33D̃1 + D21D̃37 + D−3D̃−11), (51)

where DN, EN, D̃N , and ẼN are given by

DN = η
(120)
N − η

(120)
N+30, EN = η

(120)
N − η

(120)
N+60,

D̃N = DN + DN+40, ẼN = EN + EN+40.
(52)

Under the modular transformation, Y1, Y2, and Y3 are modular forms of weight 1 and behave
as a triplet of the group �′(96) × Z3.

4.3.3 4-4-8 case. In the 4-4-8 case, there are three possible variations with different SS phases:
(1/2, 0), (0, 1/2), and (1/2, 1/2). The sum of the three mass matrices in equal ratio is given by

m(4-4-8) = m(4-4-8)(1/2,0) + m(4-4-8)(0,1/2) + m(4-4-8)(1/2,1/2)

= c2
(4-4-8)

⎛
⎜⎝

√
2Z6 − Z3 0 Z1 + √

2(Z2 + Z4)
0 −2(Z1 + Z5) 0

Z1 + √
2(Z2 + Z4) 0

√
2Z6 − Z3

⎞
⎟⎠. (53)

Here, the Zi (i = 1, 2, 3, 4, 5, 6) are defined as

Z1 = (B1)2 + (B3)2, Z2 = 1
2
√

2
(B0 − B4)2, Z3 = −2B1B3,

Z4 = 1
2
√

2
(B0 + B4)2, Z5 = B2(B0 + B4), Z6 = √

2(B2)2,
(54)

where BN is given by

BN = η
(128)
4N + η

(128)
4N+32 + η

(128)
4N+64 + η

(128)
4N+96. (55)

7�′(96) 
 (Z4 × Z′
4) � Z3 � Z4, which is the double covering group of �(96) ⊂ �8 and is a subgroup

of �′
8 [27].

8In particular, m(3-5-8)
12 and m(3-5-8)

23 (as well as m(3-5-8)
21 and m(3-5-8)

32 ) cancel each other by those components
of m(3-5-8)(α1,0) and m(3-5-8)(α1,1/2) with α1 = 0, 1/2.
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Under the modular transformation, the Zi (i = 1, 2, 3, 4, 5, 6) are modular forms of weight 1.
It can be verified that Zi (i = 1, 2, 3) behave as a triplet of the group �

′
(96). On the other hand,

Zi (i = 4, 5, 6) behave as a triplet of the group S′
4 ⊂ �′(96).

4.3.4 Total mass matrix and its eigenvalues. Recall that the total mass matrix M (MN=8) is
given by the sum of m(2-6-8), m(4-4-8), and m(3-5-8), which are weighted by the factor e−Scl (Dinst,Minst )

as shown in Eq. (21). In fact, M (MN=8) is diagonalized by the bimaximal mixing matrix,

P =

⎛
⎜⎝

1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2

⎞
⎟⎠, (56)

meaning that we have PTM (MN=8)P = diag(λ(MN=8)
1 , λ

(MN=8)
2 , λ

(MN=8)
3 ) independent of the fac-

tor e−Scl (Dinst,Minst ) as well as the modulus τ . This follows from the fact that Eqs. (46), (50),
and (53) are all separately diagonalized by Eq. (56) for all τ . Note that the mass eigenstates
become Z2-twisted and Z2-shifted eigenstates. Let us denote the eigenvalues of m(2-6-8) by λ

(2-6-8)
i

(i = 1, 2, 3). We understand λ
(3-5-8)
i and λ

(4-4-8)
i in the same way. Then, the eigenvalues λ

(MN=8)
i

are given by

λ
(MN=8)
i = e−Scl (Dinst,M

(2-6-8)
inst )λ

(2-6-8)
i + e−Scl (Dinst,M

(3-5-8)
inst )λ

(3-5-8)
i

+ e−Scl (Dinst,M
(4-4-8)
inst )λ

(4-4-8)
i , (57)

where

λ
(2-6-8)
1 = c2

(2-6-8)(X1 + X3) = c2
(2-6-8)(A1 + A3)2,

λ
(2-6-8)
2 = −c2

(2-6-8)

√
2X2 = −c2

(2-6-8)2(A2)2,

λ
(2-6-8)
3 = c2

(2-6-8)(X3 − X1) = −c2
(2-6-8)(A1 − A3)2, (58)

λ
(3-5-8)
1 = c2

(3-5-8)(Y1 + Y3)

= c2
(3-5-8)2

√
2
(
(D9 + D21)(D̃37 + D̃−47) + (D33 + D−3)(D̃−11 + D̃1)

)
,

λ
(3-5-8)
2 = −c2

(3-5-8)

√
2Y2

= −c2
(3-5-8)4

√
2(E−6Ẽ−2 − E42Ẽ34),

λ
(3-5-8)
3 = c2

(3-5-8)(Y3 − Y1)

= −c2
(3-5-8)2

√
2
(
(D9 − D21)(D̃37 − D̃−47) + (D33 − D−3)(D̃−11 − D̃1)

)
, (59)

λ
(4-4-8)
1 = c2

(4-4-8)

(√
2(Z2 + Z4 + Z6) + (Z1 − Z3)

)
= c2

(4-4-8)

((
B2

0 + B2
4 + 2B2

2

) + (B1 + B3)2) ,

λ
(4-4-8)
2 = −c2

(4-4-8)2(Z1 + Z5)

= −c2
(4-4-8)2

(
(B1)2 + (B3)2 + B2(B0 + B4)

)
,

λ
(4-4-8)
3 = c2

(4-4-8)

(√
2(Z6 − Z2 − Z4) − (Z1 + Z3)

)
= −c2

(4-4-8)

(
(B2

0 + B2
4 − 2B2

2) + (B1 − B3)2) . (60)
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Fig. 3. The Im τ dependence (1 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the 2-6-8
case at Re τ = 0.

They can be approximated by

λ
(2-6-8)
1 ≈ c2

(2-6-8)

(
η

(96)
2

)2
≈ c2

(2-6-8)(e
π iτ
12 + · · · ),

λ
(2-6-8)
2 ≈ −c2

(2-6-8)2
(
η

(96)
4

)2
≈ −2c2

(2-6-8)(e
π iτ

3 + · · · ),

λ
(2-6-8)
3 ≈ −c2

(2-6-8)

(
η

(96)
2

)2
≈ −c2

(2-6-8)(e
π iτ
12 + · · · ), (61)

λ
(3-5-8)
1 ≈ c2

(3-5-8)2
√

2η
(120)
1 η

(120)
3 ≈ 2

√
2c2

(3-5-8)(e
π iτ
12 + · · · ),

λ
(3-5-8)
2 ≈ −c2

(3-5-8)4
√

2η
(120)
6 η

(120)
2 ≈ −4

√
2c2

(3-5-8)(e
π iτ

3 + · · · ),

λ
(3-5-8)
3 ≈ −c2

(3-5-8)2
√

2η
(120)
1 η

(120)
3 ≈ −2

√
2c2

(3-5-8)(e
π iτ
12 + · · · ), (62)

λ
(4-4-8)
1 ≈ c2

(4-4-8)

((
η

(128)
0

)2
+
(
η

(128)
4

)2
)

≈ c2
(4-4-8)(1 + e

π iτ
4 + · · · ),

λ
(4-4-8)
2 ≈ −c2

(4-4-8)2
((

η
(128)
4

)2
+ η

(128)
8 η

(128)
0

)
≈ −2c2

(4-4-8)(e
π iτ

4 + e
π iτ

2 + · · · ),

λ
(4-4-8)
3 ≈ −c2

(4-4-8)

((
η

(128)
0

)2
+
(
η

(128)
4

)2
)

≈ −c2
(4-4-8)(1 + e

π iτ
4 + · · · ). (63)

In order to numerically study the behavior of the mass eigenvalues λ
(MN=8)
i under the change

in the modulus τ , let us use the relationship shown by Eq. (22). This allows us to write

λ
(MN=8)
i ≈ e−Scl (Dinst,M

(2-6-8)
inst )λ

(2-6-8)
i . (64)

Thus, we are led to concentrate on the analysis of λ
(2-6-8)
i . Hereafter, we omit the overall factor

e−Scl (Dinst,M
(2-6-8)
inst ). Figures 3 and 4 show the Im τ dependence (

√
1 − (Re τ )2 ≤ Im τ ≤ 2) of the

absolute values of the mass eigenvalues λ
(2-6-8)
i in Eq. (58) at Re τ = 0 and Re τ = 1/2, respec-

tively. Here, we set c(2-6-8) = 1 for simplicity.
There are also four interesting features in Figs. 3 and 4: |λ2| = |λ3| at τ = i, |λ1| 
 |λ3| and

|λ2| → 0 at τ → i∞, |λ1| = |λ3| at τ = 1
2 + iIm τ , and |λ1| = |λ2| = |λ3| at τ = 1

2 +
√

3
2 i. As with

the 2-2-4 case, these can be explained by considering that the points τ = i, i∞, τ = 1
2 + iIm τ ,

and 1
2 +

√
3

2 i are invariant under S-, T-, T · CP-, and ST−1-transformations, respectively. These
features also appear in λ

(3-5-8)
i and λ

(4-4-8)
i as well as λ

(MN=8)
i .
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Fig. 4. The Im τ dependence (
√

3/2 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the
2-6-8 case at Re τ = 1/2.

4.4 Neutrino sector with MN = 5
Here, we study the mass matrix of the neutrino sector with MN = 5. The 2-3-5 case is the only
possible D-brane configuration. We take even wavefunctions under Mβ = 2 and Mγ = 3 for β i

and γ j respectively. For the neutrino sector, we take even wavefunctions under MN = 5. The d
matrices are given by

d1 = c(2-3-5)

(√
2η

(30)
12 η

(30)
2 + η

(30)
8√

2η
(30)
3 η

(30)
7 + η

(30)
13

)
,

d2 = c(2-3-5)

(
η

(30)
0

√
2η

(30)
10

η
(30)
15

√
2η

(30)
5

)
,

d3 = c(2-3-5)

(√
2η

(30)
6 η

(30)
4 + η

(30)
14√

2η
(30)
9 η

(30)
1 + η

(30)
11

)
. (65)

The mass matrix is then given by

m(2-3-5) = c2
(2-3-5)

⎛
⎜⎝X U V

U Y W
V W Z

⎞
⎟⎠, (66)

where X, Y, Z, U, V, and W are defined as

X = 2
√

2η
(30)
12 D7 − 2

√
2η

(30)
3 D−2 ≈ −2

√
2η

(30)
3 η

(30)
2 ≈ −2

√
2(e

13π iτ
30 + · · · ),

Y = 2
√

2η
(30)
0 η

(30)
5 − 2

√
2η

(30)
10 η

(30)
15 ≈ 2

√
2η

(30)
0 η

(30)
5 ≈ 2

√
2(e

25π iτ
30 + · · · ),

Z = 2
√

2η
(30)
6 D1 − 2

√
2η

(30)
9 D4 ≈ 2

√
2η

(30)
6 η

(30)
1 ≈ 2

√
2(e

37π iτ
30 + · · · ),

U = −η
(30)
15 D−2 + 2η

(30)
5 η

(30)
12 + η

(30)
0 D7 − 2η

(30)
3 η

(30)
10 ≈ η

(30)
0 η

(30)
7 ≈ e

49π iτ
30 + · · · ,

V = −
√

2η
(30)
3 D4 +

√
2η

(30)
6 D7 +

√
2η

(30)
12 D1 −

√
2η

(30)
9 D−2

≈ −
√

2η
(30)
3 η

(30)
4 ≈ −

√
2(e

25π iτ
30 + · · · ),

W = −η
(30)
15 D4 + 2η

(30)
5 η

(30)
6 + η

(30)
0 D1 − 2η

(30)
9 η

(30)
10 ≈ η

(30)
0 η

(30)
1 ≈ e

π iτ
30 + · · · . (67)

Here, we have defined

DN = η
(30)
N + η

(30)
N+10. (68)

17/28

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/1/013B04/6446817 by D

ESY-Zentralbibliothek user on 24 February 2022



PTEP 2022, 013B04 K. Hoshiya et al.

Fig. 5. The Im τ dependence (1 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the 2-3-5
case at Re τ = 0.

Fig. 6. The Im τ dependence (
√

3/2 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the
2-3-5 case at Re τ = 1/2.

Let us now look at eigenvalues of m(2-3-5). Unlike the MN = 4 and 8 cases, m(2-3-5) is not
generally diagonalized by the bimaximal mixing matrix, but the diagonalization depends on
the value of the modulus τ . This may come from the fact that Z2-shifts are not symmetric for
the neutrino sector with MN = 5 and the SS phase (0,0). That is, the SS phase (0,0) transforms
to (0, 1/2) and (1/2, 0) under z → z + 1/2 and z → z + τ /2, respectively.9 Thus, we diagonalize
it numerically. Figures 5 and 6 show the Im τ dependence (

√
1 − (Re τ )2 ≤ Im τ ≤ 2) of the

absolute values of the mass eigenvalues at Re τ = 0 and Re τ = 1/2, respectively. Here, we set
c(2-3-5) = 1 for simplicity.

There are also several interesting features. First, since the point τ = i is invariant under
S-transformation, the mass eigenvalues at τ = i must be invariant under S-transformation.
Then, the mass eigenstates must also be invariant under S-transformation. We note that S-
transformation at τ = i induces a Z4-twist for the coordinate of T2, i.e. z → iz. Hence, the
mass eigenstates must be Z4-twisted eigenstates. The diagonalizing matrix P at τ = i satisfying
PTm(2-3-5)P = diag(λ1, λ2, λ3) corresponds to the unitary transformation from the Z2-twisted

9From Eqs. (7) and (15), we can easily check that

ψ
( j+0,0),5
T 2/Z+

2

(
z + 1

2

)
= (−1) je

5
2 π i Im z

Im τ ψ
( j+0, 1

2 ),5
T 2/Z+

2
(z), ψ

( j+0,0),5
T 2/Z+

2

(
z + τ

2

)
= e

5
2 π i Im τ̄z

Im τ ψ
(2− j+ 1

2 ,0),5
T 2/Z+

2
(z).
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basis to the Z4-twisted basis, i.e. ψT 2/Z4
= PTψT 2/Z2

, given as

P =

⎛
⎜⎜⎜⎜⎝

√
23−3

√
5

30−2
√

5
− 1√

5−√
5

0

2√
30−2

√
5

√
3−√

5
5−√

5

√
3+√

5
7+√

5

−
√

3+√
5

30−2
√

5
− 1√

5−√
5

2√
7+√

5

⎞
⎟⎟⎟⎟⎠. (69)

This is nearly the tri-bimaximal mixing matrix, i.e.

|Pi j |2 ≈

⎛
⎜⎝0.64 0.36 0

0.16 0.28 0.57
0.21 0.36 0.43

⎞
⎟⎠. (70)

Its derivation is shown in Appendix B. Actually, this is consistent with the numerical analysis.
Second, we can find that |λ2| 
 |λ3| and |λ1| → 0 at τ → i∞, 1

2 + i∞. Moreover, the mass
matrices m(2-3-5) are diagonalized by almost the bimaximal mixing matrix. These can be ex-
plained by considering T-invariance. Note that since neutrinos with MN = 5 and SS phase (0,0)
transform into ones with SS phase (0, 1/2) under T-transformation,10 we cannot consider T-
transformation for those neutrinos in general. However, in the limit Im τ → ∞, the SS phases
can be negligible.11 In the limit Im τ → ∞, an approximate T-transformation appears as well
as Z2-shifts for the neutrinos. Then, the mass eigenvalues at τ → i∞, 1

2 + i∞ must be almost
invariant under T-transformation as well as Z2-shifts. Thus, as with the MN = 4 and 8 cases,
the mass eigenstates at τ → i∞, 1

2 + i∞ become Z2-twisted and almost Z2-shifted eigenstates,
which means the mass matrix is diagonalized by almost the bimaximal mixing matrix. More-
over, since the eigenstates of T-transformation are not the Z2-twisted and (almost) Z2-shifted
basis but the Z2-twisted basis, two eigenvalues for two mass eigenstates transformed by almost
the bimaximal mixing matrix become the same, i.e. |λ2| 
 |λ3|. Actually, from Eq. (67), the mass
matrix m(2-3-5) at τ → i∞, 1

2 + i∞ is estimated as

m(2-3-5) ≈ e
π iτ
30

⎛
⎜⎝−2

√
2e

2π iτ
5 0 0

0 0 1
0 1 0

⎞
⎟⎠. (71)

Then, it is diagonalized by the bimaximal mixing matrix and the eigenvalues satisfy λ2 
 −λ3

and λ1 → 0 at τ → i∞, 1
2 + i∞.

Third, we can find |λ1| = |λ2| at τ = 1
2 +

√
3

2 i. This can be explained by considering that the

point τ = 1
2 +

√
3

2 i is invariant under ST−1- and T · CP-transformations. However, unlike the
MN = 4 and 8 cases, |λ3| is not the same as |λ2|. In addition, the diagonalizing matrix departs
from the bimaximal mixing matrix slightly, though it can still be approximated by the bimaximal
mixing matrix. This may be because the difference of the SS phases by T-transformation as
well as Z2-shifts cannot be ignored, though we can consider the simultaneous transformation
of T-transformation and Z2-shifts. Then, the point τ = 1

2 +
√

3
2 i is also invariant under S · CP-

transformation. Actually, on the mass eigenstates, |λ1| and |λ2| are exchanged under S · CP-
transformation, while |λ3| is invariant. This means that |λ1| = |λ2| at τ = 1

2 +
√

3
2 i is required.

10For details, see Ref. [27].
11In this limit, the shifts z → z + 1 and z → z + 2 cannot be distinguished, which means the difference of

the SS phase α1 can be negligible. Similarly, the shifts z → z + 1
2 and z → z + 1 cannot be distinguished,

which means the difference of the SS phase ατ can be negligible.
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4.5 Neutrino sector with MN = 7
Here, we study the mass matrix for the neutrino sector with MN = 7. For this neutrino sector
the mass terms can be induced by the 2-5-7 and 3-4-7 cases.

4.5.1 2-5-7 case. In the 2-5-7 case, we take even wavefunctions under Mβ = 2 and odd wave-
functions under Mγ = 5 for β i and γ j respectively. For the neutrino sector, we take odd wave-
functions under MN = 7. The d matrices are given by

d1 = c(2-5-7)

(
−E18 E4

E−3 −E11

)
,

d2 = c(2-5-7)

(
D2 −D16

−D23 D9

)
,

d3 = c(2-5-7)

(
F−8 −F6

−F13 F−1

)
. (72)

Here, DN, EN, and FN are defined as

DN = η
(70)
N − η

(70)
N+10, EN = η

(70)
N − η

(70)
N+20, FN = η

(70)
N − η

(70)
N+30. (73)

The mass matrix is then given by

m(2-5-7) = c2
(2-5-7)

⎛
⎜⎝X U V

U Y W
V W Z

⎞
⎟⎠, (74)

where X, Y, Z, U, V, and W are defined as

X = 2E18E11 − 2E−3E4 ≈ −2η
(70)
3 η

(70)
4 ≈ −2(e

5π iτ
14 + · · · ),

Y = −2D23D16 + 2D2D9 ≈ 2η
(70)
2 η

(70)
9 ≈ 2(e

17π iτ
14 + · · · ),

Z = 2F−8F−1 − 2F13F6 ≈ 2η
(70)
8 η

(70)
1 ≈ 2(e

13π iτ
14 + · · · ),

U = D23E4 − D9E18 − D2E11 + D16E−3 ≈ −η
(70)
2 η

(70)
11 ≈ −(e

25π iτ
14 + · · · ),

V = E−3F6 − E11F−8 − E18F−1 + E4F13 ≈ η
(70)
3 η

(70)
6 ≈ e

9π iτ
14 + · · · ,

W = −D23F6 + D9F−8 + D2F−1 − D16F13 ≈ η
(70)
2 η

(70)
1 ≈ e

π iτ
14 + · · · . (75)

4.5.2 3-4-7 case. In 3-4-7 case, there are three possible variations with the different SS phases
(1/2, 0), (0, 1/2), and (1/2, 1/2). The sum of the three mass matrices in equal ratio is given by

m(3-4-7) = m(3-4-7)(1/2,0) + m(3-4-7)(0,1/2) + m(3-4-7)(1/2,1/2)

= c2
(3-4-7)

⎛
⎜⎝X (3-4-7) U (3-4-7) V (3-4-7)

U (3-4-7) Y (3-4-7) W (3-4-7)

V (3-4-7) W (3-4-7) Z(3-4-7)

⎞
⎟⎠, (76)
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Fig. 7. The Im τ dependence (1 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the 2-5-7
case at Re τ = 0.

where

X (3-4-7) = 2(S(−9,−61) + R(30,44)) ≈ −2
√

2η
(336)
5 η

(336)
9 ≈ −2

√
2e

53π iτ
168 ,

Y (3-4-7) = 2(S(−57,−13) + R(6,20)) ≈ 2
√

2η
(336)
13 η

(336)
15 ≈ 2

√
2e

197π iτ
168 ,

Z(3-4-7) = 2(S(−81,11) + R(−18,−4)) ≈ 2
√

2η
(336)
3 η

(336)
17 ≈ 2

√
2e

149π iτ
168 ,

U (3-4-7) = S(−9,−13) + S(15,−37) + R(6,44) + R(30,20) ≈ −
√

2η
(336)
15 η

(336)
19 ≈ −

√
2e

293π iτ
168 ,

V (3-4-7) = S(−33,11) + S(39,−61) + R(30,−4) + R(−18,44) ≈
√

2η
(336)
9 η

(336)
11 ≈

√
2e

101π iτ
168 ,

W (3-4-7) = S(39,−13) + S(15,11) + R(6,−4) + R(−18,20) ≈
√

2η
(336)
3 η

(336)
1 ≈

√
2e

5π iτ
168 . (77)

Here, we defined

S(M,N ) = 1√
2

(Q(M,N ) − P(M,N ) ),

P(M,N ) = BM (BN + BN+56) − B14−N (B14−M + B(14−M )+56),

Q(M,N ) = EM (DN − DN+56) + D14−N (E14−M − E(14−M )+56),

R(M,N ) = GMFN − AM−42(FN−42 + F(N−42)+84),

AN = η
(336)
N − η

(336)
N+168,

BN =
(
η

(336)
N + η

(336)
N+168

)
−
(
η

(336)
N+42 + η

(336)
(N+42)+168

)
,

DN = AN − AN+42,

EN = AN + AN+42,

FN = AN − AN+56,

GN = AN − AN+84. (78)

4.5.3 Full mass matrix and mass eigenvalues. Finally, let us look at the mass eigenvalues of
the full mass matrix M (MN=7). Unlike the MN = 8 case, diagonalization of M (MN=7) depends
on the factors e−Scl (Dinst,Minst ) as well as the modulus τ in general. Here, we evaluate M (MN=7)

with m(2-5-7) as in Eq. (24). Then, we diagonalize m(2-5-7) numerically, where we omit the overall
factor e−Scl (Dinst,Minst ). Figures 7 and 8 show the Im τ dependence (

√
1 − (Re τ )2 ≤ Im τ ≤ 2) of
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Fig. 8. The Im τ dependence (
√

3/2 ≤ Im τ ≤ 2) of the absolute values of the mass eigenvalues in the
2-5-7 case at Re τ = 1/2.

the absolute values of the mass eigenvalues at Re τ = 0 and Re τ = 1/2, respectively. Here, we
set c(2-5-7) = 1 for simplicity.

Again, there are several features that can be explained as with the MN = 5 case. These features
also appear in m(3-4-7) as well as M (MN=7). In particular, it is interesting that in the large Im τ

limit, both matrices m(2-5-7) and m(3-4-7) can be approximated by

m(2-5-7) ≈ a(2-5-7)m(7), m(3-4-7) ≈ a(3-4-7)m(7), (79)

where

m(7) =

⎛
⎜⎝−2q7 −q6

7 q2
7

−q6
7 2q4

7 1
q2

7 1 2q3
7

⎞
⎟⎠, q7 = e2π iτ/7. (80)

It seems that the Z14 symmetry appears, originating from the T-transformation in the matrix
m(7). In addition, the overall factors a(2-5-7) and a(3-4-7) are written as

a(2-5-7) = eπ iτ/14, a(3-4-7) =
√

2e5π iτ/168. (81)

This leads to different phases under the T-transformation.12

5. Conclusion
We have studied Majorana neutrino masses induced by D-brane instanton effects in magnetized
orbifold models. We have systematically studied the D-brane configurations, where neutrino
masses can be induced. Three and four generations are favorable in order to generate Majorana
neutrino masses by D-brane instanton effects. Also, we have computed explicit patterns of
neutrino mass matrices. These matrices have specific features. Our basis is the T 2/Z2 orbifold
basis. The diagonalizing matrices of neutrino mass matrices are the bimaximal mixing matrix in
the case with even magnetic fluxes, independent of the modulus value τ . On the other hand, for
odd magnetic fluxes, the diagonalizing matrices correspond nearly to the tri-bimaximal mixing
matrix near τ = i, while they become the bimaximal one for larger Im τ .13

For even magnetic fluxes, the neutrino masses are modular forms of weight 1 on T 2/Z2,
and they have symmetries such as S′

4 and �′(96) × Z3. These modular form structures of

12The anomaly would be relevant to these structures. Study of the modular symmetry anomaly is be-
yond our scope, and will be studied elsewhere.

13The point τ = i may be favorable from the viewpoint of modulus stabilization [35].
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Majorana neutrino masses can provide us with the ultraviolet completion for the recent bottom-
up approach to constructing modular flavor symmetric models [36–46]. We can extend our
analysis on the T 4/Z2 orbifold with two moduli, τ 1 and τ 2. When we identify τ = τ 1 = τ 2 as in
Ref. [26], the Majorana neutrino masses would correspond to modular forms of weight 2 with
symmetries �N.

The patterns of Majorana neutrino mass matrices are quite interesting. For example, we can
realize almost the tri-bimaximal mixing matrix as the diagonalizing matrix in our T 2/Z2 orb-
ifold basis. However, this diagonalizing matrix is not physically observable. We have to examine
the charged lepton mass matrix and Dirac neutrino mass matrix. Then, we can discuss the mix-
ing angles in the lepton sector, i.e. the Pontecorvo–Maki–Nakagawa–Sakata matrix. Three-
generation models have been studied in Refs. [14–16]. It is very interesting to combine those
analyses with our results here to analyze light neutrino masses and the mixing angles in the
lepton sector. We will study this elsewhere.

In the present paper we have assumed that stringy consistency conditions are satisfied without
a precise discussion, and it is not clear whether or not our results can always be realized by
full-fledged stringy models. For instance, if there are additional zero-modes between D-brane
instantons and hidden D-branes, the Majorana mass term is not generated by the D-brane
instanton and it vanishes. However, we should emphasize that such an effect does not change the
form of the Majorana mass matrix, but removes the non-perturbative Majorana mass. Thus, a
non-zero Majorana mass matrix generated by a D-brane instatnon on a toroidal orbifold must
be included in our results. Hence, our results are general.

The Majorana mass terms may have corrections due to other non-perturbative effects, e.g.
effects due to instanton branes localized at singular points of T 2/Z2, although U(1) charge
conservation would give a severe constraint. Note that in our case, U(1) charges are conserved
by the combination of neutrinos and zero-modes β i and γ j. To obtain two generations of zero-
modes with such a localized instanton brane, we would need a proper zero-mode structure
on the other four-dimensional compact space. At any rate, such corrections are beyond our
scope.

It is important how to stabilize the modulus τ , because the mass matrix form depends on the
value τ . One stabilization mechanism is due to three-form fluxes. For example, in Ref. [35]
it was shown that certain values of τ are statistically favorable. One of the favorable val-
ues is τ = 1

2 +
√

3
2 i, where three mass eigenvalues are degenerate for MN = 4, 8 while two

mass eigenvalues are degenerate for MN = 5, 7. Another favorable one is τ = i, where two
mass eigenvalues are degenerate for MN = 4, 8, while the diagonalizing matrix is given by
Eq. (69).

It is also important to extend our analysis to other T 2/ZN orbifolds [8,9] as well as resolved
orbifolds [47,48]. We will study this elsewhere.
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Table A1. The modulus τ and the operators γ satisfying γ (τ ) = τ .

τ γ

i S
1
2 +

√
3

2 i
(− 1

2 +
√

3
2 i
)

ST−1, T · CP, S · CP (ST, T −1 · CP, S · CP)
1
2 + iIm τ

(− 1
2 + iIm τ

)
T · CP (T −1 · CP)

(Re τ ) + i∞ T

Appendix A. Modular symmetry
Here, we review the modular symmetry on T2 and modular forms [49–52]. The modular trans-
formation for the modulus τ as well as the coordinate z of T2 are defined as

γ : τ → γ (τ ) = aτ + b
cτ + d

, γ : z → γ (z) = z
cτ + d

, γ =
(

a b
c d

)
∈ SL(2, Z) ≡ �. (A1)

They are generated by the following S and T transformations:

S : τ → S(τ ) = − 1
τ
, S : z → S(z) = − z

τ
, S =

(
0 1

−1 0

)
∈ �,

T : τ → T (τ ) = τ + 1, T : z → T (z) = z, T =
(

1 1
0 1

)
∈ �,

(A2)

which satisfy S4 = (ST )3 = I. In particular, the S2 = −I transformation for the modulus τ is
identified with the identity I. In this sense, �̄ ≡ �/{±I} is called the (inhomogeneous) modular
group. Note that the CP transformation for the modulus τ [53,54] as well as the coordinate z
are also defined as

CP : τ → CP(τ ) = −τ̄ , CP : z → CP(z) = −z̄. (A3)

Then, the fundamental region, F, of the modulus τ becomes

F =
{
τ ∈ C

∣∣∣−1
2

≤ Re τ ≤ 1
2
,
√

1 − (Re τ )2 ≤ Im τ

}
. (A4)

Table A1 shows the specific points of modulus τ and the operators γ ∈ �̄ satisfying γ (τ ) = τ .
Now, let us review the modular forms. First, we introduce the principal congruence subgroup

of level N defined as

�(N ) ≡
{

h =
(

a′ b′

c′ d ′

)
∈ �

∣∣∣
(

a′ b′

c′ d ′

)
≡
(

1 0
0 1

)
(mod N )

}
. (A5)

The modular forms, f(τ ), of the integral weight k for �(N) are the holomorphic functions of τ

transforming under the modular transformation as

f (γ (τ )) = Jk(γ , τ )ρ(γ ) f (τ ), Jk(γ , τ ) = (cτ + d )k, γ =
(

a b
c d

)
∈ �,

f (h(τ )) = Jk(h, τ ) f (τ ), Jk(h, τ ) = (c′τ + d ′)k, h =
(

a′ b′

c′ d ′

)
∈ �(N ),

ρ(h) = I,

(A6)

where Jk(γ , τ ) is the automorphy factor and ρ is the unitary representation of the quotient
group �′

N ≡ �/�(N ), satisfying the relations

ρ(Z) = ρ(S)2 = (−1)kI, ρ(Z)2 = ρ(S)4 = [ρ(S)ρ(T )]3 = I,
ρ(T )N = I, ρ(Z)ρ(T ) = ρ(T )ρ(Z).

(A7)
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Table B1. The number of zero-modes of Z4-twisted eigenmodes with
SS phase (0,0).

|M| 4n 4n + 1 4n + 2 4n + 3
p = 1 n + 1 n + 1 n + 1 n + 1
p = −1 n n n + 1 n + 1
p = i n n n n + 1
p = −i n − 1 n n n

In particular, in the case of an even weight k, ρ is also the unitary representation of the finite
modular subgroup �N ≡ �̄/�̄(N ), where �̄(N ) ≡ �(N )/{±I} for N = 1, 2 and �̄(N ) ≡ �(N )
for N > 2. Moreover, it is well known that �2 
 S3, �3 
 A4, �4 
 S4, and �5 
 A5 [55], and
also that �′

N becomes the double covering group of �N [56].

Appendix B. Z4-twisted basis
Here, we derive the basis transformation in Eq. (69) from the Z2-twisted basis into the Z4-
twisted basis. First, when we consider the T 2/Z4-twisted orbifold, the modulus must be τ =
i. The Z4-twisted eigenstates with eigenvalues p = ±1, ±i and SS phase (0,0) [8–10] can be
constructed by

ψT 2/Zp
4
(z)

= N
(
ψ

( j,0),|M|
T 2 (z) + p−1ψ

( j,0),|M|
T 2 (iz) + p−2ψ

( j,0),|M|
T 2 (−z) + p−3ψ

( j,0),|M|
T 2 (−iz)

)

=
|M|−1∑

k=0

N
((

δ j,k + p−2δ|M|− j,k
) + p−1

√|M|
(

e
2π i jk
|M| + p−2e− 2π i jk

|M|
))

ψ
(k,0),|M|
T 2 (z), (B1)

whereN denotes the normalization factor. Here, we use the S-transformation for wavefunctions
on T2,

ψ
( j,0),|M|
T 2

(
− z

τ
, −1

τ

)
= (−τ )1/2

|M|−1∑
k=0

e
π i
4√
M

e
2π i jk
|M| ψ

(k,0),|M|
T 2 (z, τ ), (B2)

at τ = i since the Z4-twist, z → iz, can be induced by S-transformation at τ = i. Then, the
number of zero-modes is given in Table B1.

Now, we derive the Z4-twisted basis explicitly from three Z2-even modes of M = 5. In this
case, one of the eigenvalues is p = −1 and the other two eigenvalues are p = 1. The Z4-twisted
eigenstates are obtained by

ψT 2/Zp
4
= N

⎛
⎜⎝
⎛
⎜⎝1

1
1

⎞
⎟⎠ + p−1

√
5

⎛
⎜⎝

1
√

2
√

2√
2

√
5−1
2 −

√
5+1
2√

2 −
√

5+1
2

√
5−1
2

⎞
⎟⎠
⎞
⎟⎠
⎛
⎜⎜⎝

ψ
(0,0),5
T 2/Z+

2

ψ
(1,0),5
T 2/Z+

2

ψ
(2,0),5
T 2/Z+

2

⎞
⎟⎟⎠, (B3)

where

ψ
(0,0),5
T 2/Z+

2
= ψ

(0,0),5
T 2 , ψ

(1,0),5
T 2/Z+

2
= 1√

2

(
ψ

(1,0),5
T 2 + ψ

(4,0),5
T 2

)
, ψ

(2,0),5
T 2/Z+

2
= 1√

2

(
ψ

(2,0),5
T 2 + ψ

(3,0),5
T 2

)
.

(B4)
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Then, the mode with p = −1 is obtained as

ψ1
T 2/Z−1

4
= N ′

(√
5 − 1√

2
ψ

(0,0),5
T 2/Z+

2
− ψ

(1,0),5
T 2/Z+

2
− ψ

(2,0),5
T 2/Z+

2

)

=
√

3 − √
5

5 − √
5
ψ

(0,0),5
T 2/Z+

2
− 1√

5 − √
5
ψ

(1,0),5
T 2/Z+

2
− 1√

5 − √
5
ψ

(2,0),5
T 2/Z+

2

(
N ′ = 1√

5 − √
5

)
,

(B5)

while one mode with p = 1 is obtained as

ψ1
T 2/Z+1

4
= N ′

(√
2ψ

(0,0),5
T 2/Z+

2
+ 3

√
5 − 1
2

ψ
(1,0),5
T 2/Z+

2
−

√
5 + 1
2

ψ
(2,0),5
T 2/Z+

2

)

= 2√
30 − 2

√
5
ψ

(0,0),5
T 2/Z+

2
+
√

23 − 3
√

5

30 − 2
√

5
ψ

(1,0),5
T 2/Z+

2

−
√

3 + √
5

30 − 2
√

5
ψ

(2,0),5
T 2/Z+

2

(
N ′ = 1√

15 − √
5

)
. (B6)

The other mode with p = 1 is obtained by orthogonalizing

ψT 2/Z+1
4

= N ′
(√

5 + 1√
2

ψ
(0,0),5
T 2/Z+

2
+ ψ

(1,0),5
T 2/Z+

2
+ ψ

(2,0),5
T 2/Z+

2

)

to the mode in Eq. (B6) through the Gram–Schmidt process as

ψ2
T 2/Z+1

4
=
√

3 + √
5

7 + √
5
ψ

(0,0),5
T 2/Z+

2
+ 2√

7 + √
5
ψ

(2,0),5
T 2/Z+

2
. (B7)

Therefore, the Z4-twisted basis obtained from the Z2-twisted even modes of M = 5, ψT 2/Z4
=

PTψT 2/Z2
, is

⎛
⎜⎜⎝

ψ1
T 2/Z+1

4

ψ1
T 2/Z−1

4

ψ2
T 2/Z+1

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

√
23−3

√
5

30−2
√

5
2√

30−2
√

5
−
√

3+√
5

30−2
√

5

− 1√
5−√

5

√
3−√

5
5−√

5
− 1√

5−√
5

0
√

3+√
5

7+√
5

2√
7+√

5

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

ψ
(1,0),5
T 2/Z+

2

ψ
(0,0),5
T 2/Z+

2

ψ
(2,0),5
T 2/Z+

2

⎞
⎟⎟⎠. (B8)

This gives P as in Eq. (69).
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