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Resumo

Neste trabalho, derivam-se as teorias relativisticas de Navier-Stokes e Israel-Stewart a
partir da segunda lei da termodinamica, considerando diferentes formulacoes para a quadri-
corrente de entropia. Para verificar o regime de aplicabilidade destas formulagoes na
descricao de fluidos relativisticos, faz-se uma analise linear de estabilidade de ambas, na
qual o sistema é perturbado ao redor de um estado global de equilibrio. Ao passo que
a teoria relativistica de Navier-Stokes ¢ linearmente acausal e instavel, a causalidade e
estabilidade lineares da teoria de Israel-Stewart sao garantidas caso os coeficientes de
transporte satisfacam a um conjunto de condi¢oes. Em seguida, verifica-se novamente a
causalidade e estabilidade desta teoria, porém considerando também dissipagao por difusao
de carga liquida, antes desprezada. Neste caso, hé a ocorréncia de termos de segunda ordem
que acoplam as correntes dissipativas, os quais denominam-se termos de acoplamento.
Analisa-se, entdo, como a presenca destes termos afeta a estabilidade e causalidade lineares
da teoria, e que novas condigoes estes implicam. Por ltimo, analisa-se a estabilidade linear
de uma derivacao microscopica de terceira ordem para a viscosidade de cisalhamento, onde
verifica-se ser sempre linearmente instavel e acausal. Neste contexto, uma nova formulacao
é introduzida ao inserir novos coeficientes de transporte que possibilitam que a propriedade
de estabilidade linear seja satisfeita. As condigdes que os novos coeficientes de transporte

devem obedecer sdo entao cuidadosamente derivadas.

Palavras-chave: Hidrodinamica relativistica dissipativa, analise linear de estabilidade,

teoria de Israel-Stewart, hidrodinamica de terceira ordem.






Abstract

In this work, we derive the relativistic Navier-Stokes theory and the Israel-Stewart theory
from the second law of thermodynamics by considering different formulations for the entropy
4-current. In order to verify the applicability of these formulations in the description of
relativistic fluids, we perform a linear stability analysis on both, in which the system
is perturbed around a global equilibrium state. The relativistic Navier-Stokes theory is
found to be linearly acausal and unstable, while the linear causality and stability of the
Israel-Stewart theory are guaranteed if the transport coefficients satisfy a set of constraints.
In the following, the linear causality and stability of Israel-Stewart theory is analyzed once
again, only now considering also dissipation due to net-charge diffusion, neglected in the
first analysis. In this case, there is the occurrence of second-order terms that couple the
dissipative currents, which we called coupling terms. Then, we analyze how the presence
of these terms affect the linear causality and stability of the theory and which conditions
it further implies. Last, the linear stability of a third-order microscopic derivation for the
shear-stress tensor is analyzed, and it is shown to be always linearly unstable and acausal.
In this context, a novel formulation is presented as we introduce new transport coefficients
that enable the fulfilling of linear stability. The conditions these coefficients must satisfy

are then carefully derived.

Keywords: Relativistic dissipative fluid dynamics, linear stability analysis, Israel-Stewart

theory, third-order fluid dynamics.
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Introduction

Quantum chromodynamics (QCD) is the theory that describes the strong interac-
tions, in terms of fundamental particles called quarks and gluons. The quarks have two
distinct degrees of freedom intrinsic to QCD, namely flavor and color charge. So far, six
different flavours have been observed: up, down, charm, strange, top and bottom, each of
them containing specific mass and electric charge. The color charge is the QCD analogue
of the electric charge [1] with the difference that three different types of color charge exist:
red, green and blue. These three colors combined form a color neutral state. A color neutral
particle formed by the combination of quarks is called a hadron, which can be divided in
baryons, which are composed by three quarks, and mesons, which are composed by a quark
and its corresponding anti-quark. Particles with a color charge interact with each other by
the exchange of gluons, the force carriers of QCD. Unlike in quantum electrodynamics
(QED), where the force carriers (photons) have zero electric charge, the gluons have color
degrees of freedom. Therefore, this means that not only the quarks interact with other
quarks, but also gluons can interact with other gluons. The interaction between the force
carriers of the theory is portrayed by the presence of non-linear terms in the lagrangean
of QCD (which are absent in QED), making any calculations from first principles an

extremely complicated task.

Apart from the aforementioned remarks, QCD still displays two particular properties
that have no analogue in QED. At low energies, quarks are strongly interacting, and
this interaction becomes weaker as the energy is increased, a property called asymptotic
freedom [2, 3, 4]. Another important property to be mentioned is color confinement [5],
that prohibits the existence of free color charged particles, which have not been observed
in nature to this day. In particular, if we try to split interacting quarks (whether in a
baryon or in a meson), at some point, the amount of energy used to break this bound
state is sufficient to, e.g., create other pairs of quark and anti-quark from vacuum (with

opposite colors, e.g., red and anti-red), which will combine to form hadrons.

The property of asymptotic freedom further implies that at extremely high tem-
peratures quarks and gluons are weakly interacting and cannot form bound states, thus
leading to a deconfined phase of QCD matter. In this scenario, nuclear matter exists as a
soup of elementary particles, the quark-gluon plasma (QGP) [6], which is believed to have
occurred in nature in the early stages of our universe, right after the Big Bang, and also to
compose the interior of compact stars. Due to confinement, at lower temperatures nuclear
matter must exist as a collection of baryons and mesons and, thus, the existence of the
QGP suggests the occurrence of a phase transition: from a phase in which the quarks are

confined to another where they are deconfined. The properties of such a phase transition
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and the QGP itself are not well understood and correspond to a topic of research in high
energy nuclear physics. These properties cannot be completely studied from first principles

at this point and therefore experimental guidance is of the utmost importance.

In the past decades, ultra-relativistic heavy-ion collision have been widely performed
in the experiments launched at the Relativistic Heavy Ion Collider (RHIC), in Brookhaven
National Lab (Upton, USA), and at the Large Hadron Collider (LHC), at European
Organization for Nuclear Research (CERN), at Geneva. Colliding heavy nuclei, such as
gold and lead, at the highest energy densities achieved in laboratory, provide the most
reliable approach to emulate the physical conditions of the early universe creating the
theoretically predicted QGP in a controlled environment. This enables the possibility of
analyzing new phases of nuclear matter, searching for phase transitions and understanding
the phase diagram of QCD.

However, studying the hot and dense QCD matter produced in ultra-relativistic
heavy-ion collisions is by no means a trivial task. This happens because the QGP is only
formed in these collisions for a very small time and cannot be measured directly. The only
accessible data are the momenta of the hadrons formed at the late stages of the collisions.
In order to extract the properties of the QGP, one must model the whole collision, from
the formation and evolution of the QGP to the final production of hadrons. The current
understanding of heavy-ion collisions breaks it in the following different stages: the initial
stage, in which the interaction between the Lorentz-contracted nuclei are modeled using
either Glauber model [7, 8], IP-Glasma [9] or Color Glass Condensate (CGC) [10]; the
pre-equilibrium stage, in which takes place the formation and thermalization of the QGP;
the hydrodynamic stage, which describes the expansion of the QGP as a relativistic fluid;
last, the freeze-out phase, where the non-equilibrium dynamics of hadrons is described by

kinetic theory, in particular the relativistic Boltzmann equation.

The application of relativistic dissipative fluid dynamics to describe the evolution
of the hot and dense QCD matter produced in heavy-ion collisions has a long history
(11, 12, 13, 14, 15, 16, 17, 18]. In the early days, models using ideal fluid dynamics were
employed to describe the experimental data measured at RHIC with relative success
[19, 20]. However, an optimal agreement is only found when computing hydrodynamic
simulations that use small but finite values of shear viscosity over entropy density ratio, n/s
[21]. As a matter of fact, the values of viscosity extracted from data suggest that the QGP
is the fluid with the lowest kinetic viscosity observed in nature. In particular, calculations
using the AdS/CFT correspondence in quantum field theory lead to a conjecture of a
lower bound to the shear viscosity coefficient over entropy density for a strongly coupled
relativistic fluids, n/s > 1/4m, known as the KSS bound [22, 23, 24]. The proximity
between the estimations of the shear viscosity to entropy density ratio of the QGP and the
KSS bound further corroborates the statement that the QGP is an almost perfect fluid.
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In this work, our goal is not to study heavy-ion collisions themselves. In fact,
we are interested in exploring fluid dynamics as a theoretical framework. Throughout
this dissertation, the essential ideas behind several formulations for relativistic dissipa-
tive fluid dynamics are presented. The most intuitive approach to obtain a relativistic
fluid-dynamical formulation is to extend the non-relativistic Navier-Stokes theory, which
has been successfully used to describe a wide range of fluids. However, relativistic ge-
neralizations of Navier-Stokes theory, derived by Eckart [25] and later by Landau and
Lifshitz, independently, [26], are known to be ill-defined, containing intrinsic instabilities
already in the linear regime when perturbed around an arbitrary global equilibrium state
(27, 28, 29, 30]. In Refs. [31, 29, 30], such linear instabilities were shown to be related
to the acausal nature of these theories, which allows perturbations to propagate with
an infinite speed. These fundamental problems prohibit the application of traditional
Navier-Stokes theory to describe any practical fluid-dynamical problem, may it be in the
description of neutron star mergers or in the description of the QGP produced in heavy

ion collisions. This problem will be addressed in Chapter 2.

The acausal nature of the relativistic Navier-Stokes theory is a severe problem for
a relativistic theory, which further motivated the development of alternative formulations
that fulfill such fundamental property. In this context, linearly stable and causal theories of
relativistic fluid dynamics were later derived by Israel and Stewart, following the procedure
initially developed by Grad [32] for non-relativistic systems. Israel and Stewart performed
this task in two distinct ways: the first being a phenomenological derivation, based on
the second law of thermodynamics [33], and the second being a microscopic derivation
starting from the relativistic Boltzmann equation [34]. Similar theories have been widely
developed in the past decades [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], but all carry
the same fundamental aspects: in contrast to Navier-Stokes theory, such linearly causal
theories of fluid dynamics include in their description the transient dynamics of the non-
conserved dissipative currents. For this reason, they were initially named by Israel and
Stewart as transient fluid dynamics (nowadays, they are often referred to as second-order
theories). Here, we also note that novel causal extensions of first-order theories have been
recently presented. In this case, the fluid-dynamical equations can be rendered causal
by the inclusion of first-order time-like gradients (and not only space-like gradients, as
traditionally done) [46, 47] in the constitutive relations satisfied by the dissipative currents.
The causality of such novel formulations of fluid dynamics is not guaranteed and was

shown to depend on the matching conditions that define the local equilibrium state [46].

At this point, it is important to remark that the theory formulated by Israel and
Stewart is not guaranteed to be linearly causal and stable. As was first shown by Hiscock
and Lindblom and, later, by Olson, such transient theories of fluid dynamics are only
linearly causal and stable if their transport coefficients satisfy certain conditions [31, 48].

Such conclusions were obtained by analyzing the properties of the theory in the linear
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regime and by imposing that the perturbations around a global equilibrium state are
stable and propagate subluminally. More recent analyses were developed in Ref. [29],
including only the effects of bulk viscosity, and, later, in Ref. [30], which included the
effects of both shear and bulk viscosity. In both of these papers constraints for the shear
relaxation time were explicitly derived (these results will be reproduced in Chapter 2
of this dissertation in the absence of bulk viscosity). Nowadays, causality analyses have
been performed also in the non-linear regime [49, 50] (in this case, including the effects of
shear and bulk viscosity), where more general inequalities required to ensure the causal
propagation of the theory were derived. In the latter case, the inequalities constrain not
only the transport coefficients, but also the values of the dissipative currents (in the linear
regime, the inequalities derived in Ref. [50] reduce to those derived in Refs. [29, 30]).
Such constraints are relevant, e.g. for fluid-dynamical applications in heavy ion collisions,
since the transport coefficients of QCD matter are not precisely known (often, they are
completely unknown) and constraints on transport coefficients (and the values of the

dissipative currents) can be extremely useful.

The main goal of this dissertation is to revisit the results described above and go
beyond them by deriving constraints that are essential to the linear stability and causality
of relativistic dissipative fluid dynamics. This will be done in two separate stages: the first
being in the presence of net-charge and the second considering higher-order extensions of

Israel-Stewart theory. We shall briefly elaborate on these topics below.

Recently, several programs to experimentally study QCD matter at finite net-baryon
density have been put in motion at RHIC and at the Nuclotron-based Ion Collider fAcility
(NICA), in the Joint Institute for Nuclear Research (Dubna, Russia), and, will be starting
soon at the Facility for Antiproton and Ion Research (FAIR), in GSI Helmholtzzentrum fiir
Schwerionenforschung (Darmstadt, Germany). Nevertheless, the more recent investigations
on the stability and causality of fluid-dynamical descriptions [29, 30, 49, 50], have not
yet considered the complete set of the Israel-Stewart equations, usually neglecting any
dissipation by net-baryon diffusion and, also, possible diffusion-viscous coupling terms *. In
this dissertation, we actually perform a linear stability analysis around global equilibrium
of Israel-Stewart theory, including the effects of the shear-stress tensor and net-baryon
diffusion 4-current (all effects of bulk viscous pressure are neglected). We find all the
relevant modes of this theory and derive the conditions that these modes must satisfy in
order to be stable and subluminal. With this result, we obtain new conditions that the shear
and diffusion relaxation times must satisfy so that Israel-Stewart theory remains linearly
causal and stable. We further find constraints for the transport coefficients that couple

the shear-stress tensor and the net-baryon diffusion current (diffusion-viscous coupling).

! The work by Olson [48] considered the complete Israel-Stewart equations, including all sources of

fluctuations. Nevertheless, they did not consider the limit of vanishing background net charge and did
not explicitly evaluate the dispersion relations for the hydrodynamic modes.
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In other words, we show that the inclusion of diffusion-viscous coupling in the equations
of motion drives the theory unstable, if these transport coefficients do not satisfy certain
bounds. Such novel constraints may be useful when such transport coefficients are included

in the current fluid-dynamical simulations of the quark-gluon plasma.

In the last decade, the Israel-Stewart theory has been widely used to describe
the dynamics of the QGP generated in heavy-ion collisions [51, 52, 53]. However, one
may expect a better agreement with the experimental results with the inclusion of terms
of higher order in gradients in the expressions for the dissipative currents, e.g., using
third-order equations. In this sense, a derivation of third-order dissipative fluid dynamics
from the second law of thermodynamics was developed in Ref. [54]. Furthermore, in
Ref. [55], it was shown that the inclusion of higher-order terms in the dissipative currents
may improve the agreement with numerical solutions of Boltzmann equation in comparison
to the solutions given by the Israel-Stewart theory. Another relativistic third-order fluid-
dynamical approach following kinetic theory calculations was performed in Ref. [56] in
the relaxation time approximation using the Chapman-Enskog method for the Boltzmann
equation. Once again, in order to verify if this is a suitable framework to describe relativistic
fluids, we resort to a linear stability analysis. However, the third-order theory such as
proposed in Ref. [56] leads to a parabolic equation of motion [57, 58] — see Appendix
A — for the shear-stress tensor, being linearly acausal and unstable. In this scenario, we
introduce a hyperbolic third-order fluid-dynamical formulation and study the conditions
that must be satisfied in order to guarantee its linear stability. This will be carefully

discussed in Chapter 4.

This dissertation is organized as follows: in Chapter 1 we discuss the foundations
of relativistic fluid dynamics. First, we discuss the simplest case of ideal fluid dynamics,
in which there are no dissipative currents. In the following, we derive the relativistic
Navier-Stokes and Israel-Stewart theories from the second law of thermodynamics. Next,
in Chapter 2, we reproduce a linear stability and causality analysis of both formulations
considering only dissipation via shear-stress. We show the relativistic Navier-Stokes theory
is indeed linearly acausal and unstable and obtain the constraints that ensure the linear
causality and stability of Israel-Stewart theory. This is performed by decomposing the
transverse and longitudinal degrees of freedom of both theories, in a procedure first
presented in Ref. [59]. This process is carefully presented and used in every stability
analysis developed in this dissertation. Furthermore, in Chapter 3 we analyze the linear
stability and causality of Israel-Stewart considering dissipation not only via shear-stress, but
also including net-charge diffusion effects. In particular, we explore how the inclusion of the
diffusion-viscous couplings — transport coefficients, which are of second-order contributions,
that couple the dissipative currents in the Israel-Stewart equations of motion — affects
the linear stability and causality conditions the theory must fulfill. Moreover, in Chapter

4, we discuss the linear stability of the third-order fluid-dynamical formulation for the
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shear-stress tensor proposed in Ref. [56]. In this context, the parabolicity of this formulation
leads to linear instabilities. In the following, we presented a novel third-order equation
for the shear-stress tensor by introducing new transport coefficients that are essential to
ensure the hyperbolicity of the new theory. We then finally analyze the linear stability of
this novel formulation, deriving the constraints that must be satisfied in order to obtain a
linearly stable theory. Last, all conclusions are summarized in Chapter 5, where we further

discuss future perspectives regarding the results presented here.

Note that throughout this work we employ natural units, c = h = kg = 1, and adopt

the mostly-minus convention for the Minkowski metric tensor, g"* = diag(+, —, —, —).
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1 Relativistic Fluid Dynamics

Fluid dynamics is an effective theory that describes the small frequency and long
wavelength dynamics of a many-body system. In order to be able to apply a fluid-dynamical
description, there must be a separation between the macroscopic and microscopic scales of
the system. In this limit, macroscopic variables, such as densities of conserved quantities,
are expected to be sufficient to describe the dynamics of the corresponding system. In this
chapter, we explore the fundamental concepts to construct relativistic ideal and dissipative

fluid dynamics.

1.1 Thermodynamics

In this section, we briefly revisit some thermodynamic concepts that will be used
later in further derivations. The first law of thermodynamics states that the energy, F, of

an arbitrary system is always conserved, which is translated by the empirical expression

dE = TdS — PdV + udN, (1.1)

where T is the temperature, S is the entropy, P is the thermodynamic pressure, V' is the
volume, g is the chemical potential and N is the number of particles. This leads to the

following Maxwell identities

oF
= - T
(55),. = "
/)
_— = —P
).,
)
(av),, = )

Furthermore, the energy of a system is an extensive quantity, being directly pro-
portional to the macroscopic variables of the system. Therefore, if we increase (decrease)
its entropy, volume and number of particles by a certain amount, its internal energy will

increase (decrease) proportionally. This statement can be mathematically expressed as
E(AS,A\V,AN) = AE(S,V,N). (1.3)

Then, using the chain rule, one can demonstrate that

oF oF oF
=S <0<AS>>W v (auw)w,w o (aw))w - U4
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If we take A = 1 and use the partial derivatives of the energy, displayed in Eq. (1.2), we
obtain the Euler equation

E =TS — PV + uN, (1.5)

which combined with the first law of thermodynamics leads to the Gibbs-Duhem relation,

SdT — VdP + Ndp = 0. (1.6)

Now, it is convenient to express all the relations derived above in terms of densities
of the thermodynamic variables. First, it is possible to express the Euler equation and

Gibbs-Duhem relation in terms of densities in the following way

e+ P = Ts+ un, (1.7)
sdT' —dP +nduy = 0, (1.8)

where we defined the energy density, the entropy density and the particle density respecti-
vely ase = E/V, s =5/V and n = N/V. Combining these two equations, we are able to

express the first law of thermodynamics in terms of densities
de =Tds + pdn. (1.9)

The relations derived in this section will be further used in the derivation of the fluid-

dynamical equations of motion.

1.2 Ideal Relativistic Fluid Dynamics

The first case to be studied in this dissertation is ideal fluid dynamics, in which
the fluid elements are assumed to be always in thermodynamic equilibrium. In this
limit, we shall demonstrate that the system can be completely described just in terms of
conservation laws and an equation of state. The conserved quantities required to describe
the fluids considered in this work are the net-charge, energy and momentum. Naturally,
the conservation of such quantities can be simply expressed in the form of continuity
equations,

o,N" =0, 0,T" =0, (1.10)

where N* is the net-charge 4-current and 7" is the energy-momentum tensor.

With the assumption of local thermodynamic equilibrium, it is possible to determine
the explicit form of N* and T*. In practice, this is done by performing a Lorentz-boost
to their local rest frame (LRF), in which the fluid elements are at rest. In this case,
there is no energy flux, and thus 77%; = 0. Furthermore, the momentum density is
zero, and therefore the components TP also vanish. Finally, due to the assumption of

thermodynamic equilibrium, the force per surface element between adjacent fluid elements
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is isotropic and equal to the thermodynamic pressure P, therefore TE{{F = 6% P. Hence,

the energy-momentum tensor has the following form in this frame

e 0 0 O
0O P 0 O
Tiae = 1.11
LRF 00 P 0 ( )
00 0 P
The thermodynamic pressure is determined by the net-charge density and energy density

via an equation of state, P = P(n,¢).

Furthermore, in the local rest frame there is no net-charge flux, since the fluid is at
rest, and thus the spatial components N vanish. Therefore, the net-charge 4-current in

the local rest frame can be written simply as

o o o 3

where here n stands for the net-charge density. Finally, the entropy 4-current in the local

rest frame can be written analogously as

Slpp = , (1.13)

S O O »

So far, the energy-momentum tensor, the net-charge 4-current and the entropy 4-
current have been obtained in the fluid local rest frame. In order to obtain the general form
of the conserved currents, a Lorentz-boost is performed with the 4-velocity u* = v(1,V),
with V being the fluid velocity, and v = 1/v/1 — V2 being the Lorentz factor. We remark
that the 4-velocity is a normalized 4-vector, i.e., u,u* = 1. Then, the following expressions

are obtained

T =TI = cufu’ — AMP, (1.14)
Nt = N[ = nut (1.15)
St =S8k, = sut (1.16)

where A" = g — ytu” is the operator that projects onto the 3-space orthogonal to the
4-velocity u*. The expressions obtained above are associated to a fluid in thermodynamic

equilibrium and thus the underscript "eq".

Since the thermodynamic pressure is given by an equation of state and the 4-velocity

is normalized, N* and T"" contain a total of five independent degrees of freedom: n, €, and
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V. Therefore, the conservation of net-charge, energy and momentum, which constitute
five equations, are sufficient to completely describe the dynamics of an ideal fluid. We now

explicitly derive these equations of motion.

First, it is convenient to decompose the conservation of energy and momentum
in two components, one parallel to the 4-velocity u* and another orthogonal to it. Thus,
from Egs. (1.10), the conservation of net-charge number, energy and momentum in an

ideal fluid can be decomposed in the following way

w0, T = 0, (1.17)
A0, T = 0, (1.18)
N =0, (1.19)

which can be straightforwardly proven to respectively lead to the following equations of

motion for the hydrodynamic variables

E+(e+P) = 0, (1.20)
(e + P)u* = VP = 0, (1.21)
n+nfd = 0, (1.22)

where the dot denotes the comoving derivative, A = dA Jdr = u'0,A, while § = J,u* is the

expansion rate and V* = A* 0, is the orthogonal projection of the covariant derivative.

Moreover, an equation of motion for the entropy density can be obtained from
Egs. (1.20) and (1.22) using the thermodynamic relations given by Eq. (1.7) and (1.9).

Then, one obtains

§+s0 = 0, (sut) = 0,5k, = 0. (1.23)

Clearly, the occurrence of a continuity equation suggests the conservation of entropy, since
sut is the exact expression for the entropy 4-current of an ideal fluid. The reader may
be asking how the addition of dissipative terms affects the conservation of entropy. In
order to answer this and further questions, first it is essential to understand how the
energy-momentum tensor and the net-charge 4-currents are affected by the presence of

dissipative effects. This will be the topic of the next sections.

1.3 Dissipative Relativistic Fluid Dynamics

In the last section, the expressions for the energy-momentum tensor, net-charge
and entropy 4-current were derived for an ideal fluid. Their domain of applicability is
extremely narrow, due to the assumption of local thermodynamic equilibrium, and they

must be revised by including non-equilibrium corrections.
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1.3.1 Dissipative currents

In this section, we derive the fluid-dynamical equations taking into account dissipa-
tive effects. In this regime, one considers heat transfer between fluid elements, and the
system can no longer be assumed to be always in local thermodynamic equilibrium. This

implies that the fluid cannot be trivially described in terms of its equilibrium variables.

Nevertheless, we assume that the fluid is in a state that is close to a local equilibrium
state. In this case, the energy-momentum tensor and the net-charge 4-current are written

as

TH = T 47 = eufu’ — AWP 47, (1.24)
Nt = N +nt = nu' +n”, (1.25)

where 7#” and n* are the dissipative corrections associated to the energy-momentum tensor
and the net-charge 4-current, respectively, with the latter being denominated net-charge
diffusion 4-current. In order to fulfill angular momentum conservation, 7# is defined as a
symmetric tensor, 7** = 77*. The next step is to further analyze the explicit form of this

term.

1.3.2 Matching conditions

Before proceeding to the derivation of the explicit form of the dissipative cur-
rents and their respective contributions to the non-equilibrium equations of motion, it
is fundamental to state the physical meaning of the equilibrium variables introduced in
Egs. (1.24) and (1.25). It is essential to redefine the hydrodynamic variables e, n and u*,
whose definitions were previously supported by the hypothesis of a frame in which fluid

elements are in thermodynamic equilibrium.
In order to keep ¢ and n as the energy density and net-charge density of the fluid
in the local rest frame, respectively, it is necessary to impose that
. 00 __ uv
e = Tipp = u,u, T, (1.26)
n = Ngp=u,N" (1.27)
while we further impose that P = P(e,n), the thermodynamic pressure of the fluid,

remains being defined by an equation of state. These definitions have an immediate effect

on the dissipative currents, rendering them orthogonal to u*,
u,nt = uyu, ™ = 0. (1.28)
The definition of the fluid 4-velocity itself is more intricate. For dissipative fluids,

it is no longer possible to define u* by the existence of a rest frame in which the fluid

is in thermodynamic equilibrium. In particular, unlike in the case of ideal fluids, there
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is no frame where the energy and net-charge flow simultaneously vanish. Therefore, the
4-velocity must be defined in another way. There are two main definitions widely used in the
study of relativistic hydrodynamics, known as the Eckart picutre and the Landau-Lifshitz

picture.

In the Eckart picture [25], the 4-velocity is defined by following the net-charge flux,

N# = nut. (1.29)

In the Laudau-Lifshitz picture [26], also known as the energy frame, the 4-velocity is defined

by following the energy flux, being therefore, an eigenvector of the enery-momentum tensor

u, TH = eut. (1.30)

Throughout all the calculations present in this dissertation, we shall only employ the

Landau-Lifshitz picture.

1.4 Equations of motion

The inclusion of the dissipative corrections to the energy-momentum tensor and
net-charge 4-current, respectively defined as 7/ and n*, was not explicitly explored and
these currents still remain arbitrary. First, it is convenient to separate 7#” in terms of a

traceless part, defined as 7#, and its trace, defined as —3II. In this case, one obtains
™ = — AP, (1.31)

with II = —%Aaﬁ 7.5 being the bulk viscous pressure and " = Ag;maﬁ being the shear-

stress tensor. Here, we further defined
N (AlAY+ ABAYL) - Lama (1.32)
af — 92 a=p = 3 af :
as the double traceless symmetric projection operator onto the 3-space orthogonal to the

fluid 4-velocity u*.

Then, it is possible to rewrite the expression for the energy-momentum tensor,
Eq. (1.24) — while the equation for the net-charge 4-current remains unchanged. These

equations then read

T = eutu” — AM(P +1I) + 7, (1.33)
NF = nu* +n*. (1.34)

Here, the bulk viscous pressure Il can immediately be understood as a viscous correction

to the thermodynamic pressure P.
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Naturally, the conservation of energy, momentum and net-charge number remain
valid in the presence of dissipation. The dissipative terms that feature Egs. (1.33) and
(1.34) will just lead to the occurrence of new terms, in addition to the ones that already
appeared in the equations of motion for an ideal fluid, Eqs. (1.20), (1.21) and (1.22). Thus,

the general equations of motion for a dissipative relativistic fluid then read

e+ (e+P+1) —u, 0,7 = 0, (1.35)
(e + P+ 1)u* — VMNP + 1)+ A9, = 0, (1.36)
n+nd +on* = 0. (1.37)

One can straightforwardly recover the equations of motion for the ideal case by simply

taking the dissipative currents II, n*, and 7 to zero.

Although the equations of motion which are product of the conservation of net-
charge number, energy and momentum are now generalized to contemplate the presence
of dissipative currents in a fluid, its dynamics still cannot be completely described. The
conservation laws associated with an equation of state are sufficient to describe an ideal
fluid. However, for dissipative fluids, the conservation of energy and momentum and
net-charge provide five independent equations that feature fourteen independent fields,
n, e, I, u*,n* and 7. Hence, nine additional relations are required to close this set
of equations. Such equations are the expressions for the three dissipative currents. In
the following sections, we revisit two widely explored approaches to this problem: the

relativistic Navier-Stokes theory and the Israel-Stewart theory.

1.5 Navier-Stokes theory

It was shown in Sec. 1.2 that the entropy 4-current of an ideal fluid satisfies a
continuity equation, which implies that for an ideal fluid, the entropy itself is always
conserved, as displayed in Eq. (1.23). This occurs due to the fact that in an ideal fluid,
all fluid elements are always in thermodynamic equilibrium, and the second law of ther-
modynamics further implies that, in such case, the variation of entropy is zero. However,
for a dissipative fluid, this statement is no longer valid. Instead, the occurrence of irrever-
sible thermodynamic processes dictates the non-conservation of entropy. Therefore, for

dissipative fluids, the entropy 4-current no longer satisfies a continuity equation.

The first efforts to derive an expression for the non-equilibrium entropy 4-current
made addressed independently by Eckart [25] and Landau and Lifshitz [26]. They used the
equations of motion from the conservation laws, Eqgs. (1.35), (1.36) and (1.37) to obtain
the following expression

1 1
oy <su“ - éﬁn“) = TT{'“VO'MV - THQ - nuvu%, (1.38)
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with o, = Aﬁf@aug being the shear tensor. They further identified the left-hand side
of the equation as the divergence of the non-equilibrium entropy 4-current, defined as
St = su* — En. Naturally, the right-hand side is identified as the entropy production due
to dissipative effects. If the dissipative currents are set to zero, one can easily recover the
conservation of entropy in an ideal fluid, given by Eq. (1.23). Furthermore, the second law
of thermodynamics states that the variation of entropy must be non-negative, leading to

the following inequality

1 1 "
—m",, — =110 —n'V ,—= >0, 1.39
T7T U# T NT - ( )
Then, the simplest form to assure the entropy production is positive definite is by assuming
each term is positive definite separately. Thus, the following ansatz is made, leading to

the Navier-Stokes equations

m = —, (1.40)
I @) (1.41)
™ = 2not, (1.42)

Here, the bulk viscosity, diffusion coefficient and shear viscosity were introduced as (, k,
and 7, respectively, and are positive quantities. These transport coeflicients dictate the
dissipative properties of the fluid, and must be obtained from a microscopic theory, such
as kinetic theory. In this case, the entropy production reads

L o

T + =117 —

(T KT

d,5" n,nt, (1.43)

C T
since n¥n, < 0 and 77, > 0, and thus ensuring every term is quadratic and, therefore,

positive definite, satisfying the second law of thermodynamics.

With the purpose of being the simplest form to ensure the second law of thermody-
namics from the Landau-Lifshitz non-equilibrium entropy 4-current, this ansatz takes
into account only first-order terms in the dissipative currents. Hence, the Navier-Stokes
theory is commonly referred to as a first-order theory. Although their addition render
the solutions rather complicated, other approaches considering higher-order terms were
also investigated. In the next section, we explore the Israel-Stewar theory, a second-order

theory.

Equations of motion

Naturally, considering the dissipative currents given by the Navier-Stokes equations,
the Eqgs. (1.35), (1.36) and (1.37) can be explicitly written in terms of gradients of the
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fluid 4-velocity and chemical potential. These equations then read,

e+ (e+P—(0)0—2no,,0" = 0, (1.44)
(e + P — (O — V(P —C0) + 2400, (no™) = 0, (1.45)
A+ nb + 0, <mnv“§f> = 0, (1.46)

Although these equations are obtained by the conservation of energy and momentum
and net-charge number, which are always valid, they do not carry the same success of
applicability of its non-relativistic version, a formulation widely employed to the study the
dynamics of non-relativistic fluids, since it is an acausal and unstable framework. This

will be discussed in the next chapter.

Acausality and instability

The Navier-Stokes equations for the dissipative currents arise from the second law
of thermodynamics applied to the non-equilibrium entropy 4-current considering up to
first-order terms in the dissipative currents, see Eq. (1.38). Although this formulation is
suitable to mathematically satisfy the condition of a non-negative entropy production, it

contains several non-physical features that forbid its application to describe relativistic
fluids.

As it can be seen from the Navier-Stokes equations, Eqgs. (1.40), (1.41) and (1.42),
arbitrarily small gradients of the fluid 4-velocity and chemical potential instantaneously
yields dissipative currents. This immediate response from the system manifests as the
propagation of signals with infinite speed, since even the smallest gradients instantaneously
lead to the occurrence of dissipative currents, which was shown to be directly associated
with instabilities of the system [27, 28, 29, 30, 31]. This will be further analysed in detail
in the next chapter. Therefore, an alternative formulation is still required to properly
understand the dynamics of relativistic fluids without the occurrence of acausal and/or

unstable behaviors.

1.5.1 A causal framework

In order to solve the problem of the superluminal velocity of signals propagation in
a fluid, Cattaneo showed in his work for the non-relativistic heat transfer equation [60]
that such parabolic equation must be converted into a hyperbolic equation by including
a relaxation term in order to satisfy causality. In the context of the relativistic Navier-
Stokes equations, this further implies that the dissipative currents must satisfy hyperbolic
equations and not parabolic equations [57, 58] — since they are essentially acausal even
in the non-relativistic regime —, which is performed by introducing relaxation time scales

as new transport coefficients. In this case, the dissipative currents no longer satisfy
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constitutive relations, but instead fulfill equations of motion. Furthermore, applying the
Maxwell-Cattaneo’s approach [60, 61] to the equations for the dissipative currents, we

then obtain

mll+11 = —¢6, (1.47)
T+t = K,V (éﬁ) , (1.48)
Tt 4t = 2not, (1.49)

where 7171, 7,, and 7, are defined respectively as the bulk, diffusion and shear relaxation
times. The inclusion of relaxation time scales is an essential feature to render the theory

causal [62], leading to hyperbolic equations in the linear regime.

Hence, with the inclusion of the relaxation times, gradients of the fluid 4-velocity
and chemical potential do not yield instantly to the occurrence of dissipative currents.
Instead now it takes a finite time interval, given by the corresponding relaxation time scale,
for each dissipative current to be generated from these gradients. Taking the relaxation
time to zero, one straightforwardly recovers Navier-Stokes equations — a regime also known

as the Navier-Stokes limit.

However the acausality problem was primarily addressed by the addition of rela-
xation time scales, their inclusion are essentially ad hoc, and does not carry a physical
meaning a priori, besides fixing the superluminal signal propagation. Wherefore, a deriva-
tion based on more solid grounds is still required. With that in view, Israel and Stewart
[33, 34] formulated a new relativistic fluid-dynamical theory, which will be further explored

in the next section.

1.6 Israel-Stewart theory

The relativistic Navier-Stokes theory is built based on the conservation of net-
charge, energy and momentum, and on the second law of thermodynamics, which are
known to be always valid. Therefore, it is not clear why a theory formulated from such solid
physical principles displays fundamental non-physical properties. Naturally, the physical
problems that arise from such theory cannot be product of these properties, and must

come from other sources.

The first successful efforts to fix the acausality and instability problems were due to
Israel and Stewart’s works based on the procedure introduced by Grad for non-relativistic
systems [32]. In their works, Israel and Stewart derived fluid dynamics from the second law
of thermodynamics [33] and from the relativistic Boltzmann equation [34] using Grad’s
method of moments generalized for relativistic fluids. Unlike the propositions by Eckart
[25] and Landau and Lifshitz [26], in which only up to first-order terms in the dissipative

currents were included in the construction of the entropy 4-current, Israel and Stewart
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further considered the possibility of contributions from second-order terms in the entropy,

and therefore this formulation is called a second-order theory.

The second-order terms in the dissipative currents included in the analyses of Israel
and Stewart play an essential role in enabling causal signal propagation in a theory, and
can be further shown to be an essential feature to its stability and therefore cannot be
neglected [30]. This section is dedicated to the derivation of Israel-Stewart theory from

the second law of thermodynamics, a phenomenological approach.

1.6.1 Out-of-equilibrium entropy

One of the fundamental assumptions of ideal fluid dynamics is that the system must
always be in local thermodynamic equilibrium. Naturally, in the presence of dissipation,
this assumption no longer holds. Nevertheless, in order to keep using the same variables that
are used to describe an ideal fluid (equilibrium variables), we resort to the assumption that
a dissipative fluid is in a state that is close to local equilibrium. This considerably simplifies

the understanding of its dynamics and further simplifies the following calculations.

We then assume the entropy 4-current S* depends only on the conserved currents N*
and T*, an assumption previously made when deriving the relativistic Navier-Stokes theory.
This is analogous to assume that S* is completely described by the hydrodynamic variables
n, €, II, u*, n* and 7", and thus it is a function of the type S* = S¥(n, e, II, u*, n*, ).
The entropy 4-current is then expanded around an equilibrium state in powers of the
dissipative currents. Then, Israel and Stewart’s approach was based on truncating this
series in second order in the dissipative currents. In this case, the entropy 4-current can

be written in the following general form

SH = suf — %n“ L+ O3), (1.50)

with Q* being the 4-vector that accounts all possible linear combinations of second order
in the dissipative currents. Note that this expansion is constructed so the truncation in
first order in the dissipative currents leads to the Landau-Lifshitz entropy, see Eq. (1.38),
which is the starting point for the relativistic Navier-Stokes theory. Third-order (or higher)

terms in the dissipative currents shall be neglected. The explicit form of Q* is written as
H— 1 TN | G @S Ap H Ko v
Q' = —5u ( olI® — 01nen® 4 damy,m ) — YolIn* — yywhn”, (1.51)

where 61, 02, d3, Yo € 71 are scalar functions of the chemical potential and temperature.
These functions are transport coefficients and determine the dissipative properties of the

fluid, and must be calculated within a microscopic framework, such as kinetic theory.

Naturally, the entropy 4-current introduced by Israel and Stewart leads to a different

entropy production than the one derived in the context of the relativistic Navier-Stokes
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theory, with several additional terms, including second-order contributions. In this case, the
second law of thermodynamics applied to the entropy 4-current considering contributions

of second order in the dissipative currents, Eq. (1.50), leads to

1
O = 75, — H9 AV + 8,Q" > 0. (1.52)

Hence, the entropy production can be explicitly calculated as

1 1
GMS“ = Tﬂ'wj (O'/W - T(S2H7T,u1/9 P)/lTA Vanﬁ - §TnO‘A/Oj5vB’yl

1. I 1
—§T527r,w T@Aa%ﬁ) - (—9 — ST6T10 — T0n"
1 . : 1 .
—5 TV, — §T50H - T50H> + n# <Vuoz + 5010, + 5177y
1 1 1.
-V, I — §va - 71A;\L@V7TK — §7TZVV’}/1 + 25171“) ) (1.53)

Once again, the simplest form to ensure the entropy production is always positive is by
taking each term to be positive by itself. Once again, a convenient ansatz to be taken in
order to achieve such purpose is imposing that each term is quadratic in the dissipative
currents, leading to Eq. (1.43). Then, from Eq. (1.53), the Israel-Stewart equations are

obtained as

T 1 d [ T N
T A 57Ta/3 + 7T = 200, — ?97{'“” - §7TW77T% <77T> — 277T71A£V5na
+ nTANVang, (1.54)
- 1 d 11
mll+1I = —(0— —mllf — —CTH— — | = ¢Tyo0un*
2 (T
1
_ §CTW“VMYO? (1.55)
. 1 1 d [T,
TnAf‘Ln,\ +n, = K, Vo iTnnﬁ + 571#%”% (fin>
1 1
_ §/£n7rZVV71 + kN AN, TS — annnv,ﬂo — k0 V, I (1.56)

with the relaxation times being defined as
Te = 2T09n, ™ = T60C, Tn = Knl1. (1.57)

Note the natural occurrence of relaxation time scales in the equations for the dissipative
currents in the Israel-Stewart theory by considering second-order terms in the entropy
4-current, as it was first observed in the ad-hoc formulation following Maxwell-Cattaneo’s
equation for the dissipative currents in Sec. 1.5.1. Nevertheless, although this was achieved
in the previous case by forcing the presence of time scales to enable the causality of
the equations, here it was achieved using basic physical principles. Moreover, it is also
important to note that the addition of second-order terms in the dissipative currents to

the entropy 4-current leads to equations of motion, as it can be seen in the Israel-Stewart
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equations, and no longer constitutive relations, as it was the case in the relativistic Navier-
Stokes theory. While in the relativistic Navier-Stokes theory the dissipative currents are
dynamically dependent variables which are defined in terms of the equilibrium variables,
in Israel-Stewart theory they are treated as independent variables and thus their dynamics

must be accounted separately.

From these equations, it is possible to understand the physical meaning carried by
the different transport coefficients. First, 1, (, k,, are related to the fluid viscosity. Then,
Try Tn, T are the relaxation times, which are essential to preserve the theory’s causality.
Therefore, taking the relaxation times to zero, one must recover Navier-Stokes theory.

Last, 0, 71,72 are coupling parameters, which couple two different dissipative currents.
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2 Linear Stability Analysis

In the previous chapter, a first and second-order fluid-dynamical formulations
were explicitly derived. In this context, it was stated several times that the relativistic
Navier-Stokes theory is a problematic formulation, with instabilities arising from its acausal
behavior. In this sense, the relaxation times were introduced as an essential feature to
guarantee subluminal signal propagation in a system, and will be proved fundamental
to ensure stability as well. However, we still did not comment on how can one explicitly

conclude if a given framework is suitable to describe relativistic fluids.

First, we shall note that relativistic fluids are known to exist in nature, and
thus they must be stable systems. In particular, since we are dealing with relativistic
formulations of fluid dynamics, causality is a property that must always be satisfied. In
this sense, information in a fluid cannot travel with a speed that exceeds the speed of light.
Furthermore, causality and stability are extremely related properties, and the violation of
causality usually leads to instabilities in the theory and vice-verse, see Refs. [29, 30, 59],
as we will also demonstrate in this dissertation. For a stable theory, it is expected for
the system to return to its initial (equilibrium) state after perturbations are performed
on it. In this case, we expect the occurrence of modes with amplitudes that are damped
with time and thus decay towards the initial equilibrium state. On the other hand, in an

unstable theory, even the smallest perturbations oscillate with time-increasing amplitudes.

It is then possible to analyze the properties of causality and stability of a fluid-
dynamical theory by performing a linear stability analysis. In this case, the system is
assumed to be initially in an equilibrium state, and then small perturbation in the
hydrodynamic variables are performed. We shall assume a relativistic fluid initially in
equilibrium, with energy density g, net-baryon number ngy and fluid 4-velocity ufy, which
will be often referred to as background fluid 4-velocity. Then, this system is slightly

perturbed around an arbitrary equilibrium state, such as

€ =c¢cog+0g, n=mng+on, u' = uf + du",

IT =611, n* =dnt, 7 = omh". (2.1)

Since the perturbations are taken around the equilibrium state of the system, the dissipative
currents are the perturbations themselves. Furthermore, the perturbations can be taken to
be as small as we desire. Therefore, we shall assume sufficiently small perturbations, and
then quadratic (or higher order) terms in the perturbations can be neglected. This process
is referred to as linearization and leads to considerably simpler equations. Throughout
this chapter, we analyze the two fluid-dynamical formulations presented so far in their

respective linear regimes: the relativistic Navier-Stokes and Israel-Stewart theories.
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2.1 Navier-Stokes theory

Although its non-relativistic analogue is successfully employed to this day, the
relativistic Navier-Stokes theory was shown to lead to intrinsic instabilities when perturbed
around an equilibrium state, considering both the Landau-Lifshitz and Eckart pictures
[27, 28, 31]. In particular, in Refs. [29, 30], the linearly unstable behavior of the relativistic
Navier-Stokes theory was shown to be related to the acausal nature of the formulations by
Eckart [25] and Landau and Lifshitz [26]. Hence, these non-physical features lead to the

conclusion that this formulation is not a suitable framework to describe relativistic fluids.

In this section, we shall carefully investigate the instabilities that are a product of
the acausal nature of the relativistic Navier-Stokes theory in the linear regime. The first
step to achieve this goal is to write the linearized equations of motion retaining only up to

first order terms in the perturbations. In this case, they read

u{)‘@ués + (50 + Pg)@uéu“ = 0, (2.2)
uh0,0n + nod,out + 9,0nt =0, (2.3)
(0 + Po)ubd,6u — A0, (0P + 611) + 9,67 = 0, (2.4)

with the projection operator onto the 3-space orthogonal to the fluid background 4-velocity
defined as

ALY = g™ — ubug. (2.5)

Furthermore, since the 4-velocity of the fluid is normalized, one can straightforwardly
demonstrate that, up to first order terms in the perturbations, the background 4-velocity
and the fluctuations on the fluid 4-velocity are orthogonal. Moreover, since the dissipative
currents are orthogonal to the fluid 4-velocity by construction, see Eq. (1.28), fluctuations
of the dissipative currents are also orthogonal to the background 4-velocity up to first

order in the perturbations. Thus,

upou, = O(2) = 0, 2.6)
uyon, = O(2) = 0, (2.7)
updm,, = O(2) = 0. (2.8)

It is practical to express the hydrodynamic currents in Fourier space. In this dissertation

we shall adopt the following convention for the Fourier transform of an arbitrary field

Mk = / d'z exp(—iz, k") M(z"), (2.9)
M(@zh) = / (%4 exp(iz, k") N (k") (2.10)

where we defined k* = (w, k), with w being the frequency and k being the wave-vector.

Furthermore, it is convenient to define the following additional covariant variables {2 and
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kM, with the first being the frequency and the latter being the wave 4-vector in the local
rest frame of the unperturbed system,

Q = ufk,, (2.11)
ARk, (2.12)

KH

We further define the covariant wavenumber in the local rest frame of the unperturbed
system, K, as
KMk, = —K2. (2.13)

We remark that in this convention, a positive (negative) imaginary part of the modes
leads to the decreasing (increasing) of the perturbations with time, thus leading to linear
stability (instability). Therefore, we are particular interested in obtaining the constraints
the transport coefficients must satisfy in order to render only modes with positive imaginary

parts.

The linearized equations of motion in Fourier space read

Qe + (60 + P(])Fd‘u(gﬂu = 0, (214)
Q0 4 nok, 00" + k00" =0, (2.15)
(€0 + Pp)Q0u* — kH(OP + O11) + K, 67" = 0. (2.16)

It is also convenient to express the perturbations into longitudinal degrees of freedom
(parallel to x*) and transverse degrees of freedom (orthogonal to x#*). This procedure was
first developed in Ref. [59].

In order to perform this task, it is possible to extend the tensor decomposition
introduced in Appendix B to Fourier space. In this case, we define a projection operator
that when applied on other tensors leads to components orthogonal do the wave 4-vector
in the local rest of the unperturbed system. For this purpose, we define the following
projection operator, s

A = g 4 2 (2.17)
Therefore, a 4-vector can be decomposed in its transverse and longitudinal components

with respect to the wave 4-vector in the local rest frame of the background system as
At = A”/i‘u +A‘j_, (2.18)

with the longitudinal component being defined as Ay = —x,A"/k while the transverse
component is A = A" A,. A similar approach can be performed to decompose a traceless
rank two tensor. In this case, it is first essential to introduce the double, symmetric, and

traceless projection operator in Fourier space as

1 1
Al =3 (Al AL+ A5 ALY — SO Ao (2.19)
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Wherefore, the decomposition of an arbitrary traceless rank two tensor A" can be

performed as follows

kFRY 1 KY KM »
A = A ot §A||A,€f” + A‘i? + Ai? + A, (2.20)
with its respective projections being defined as Ay = k,k, A" /K2, Al = —kAA Ay, /K,

and A1 = A8 A 5. Thereby, the linearized equations for the conservation laws in Fourier
space, Eqgs. (2.14), (2.15) and (2.16), are split in two different components that decouple
and can be solved independently, as it will be shown in the next sections. It is then possible

to obtain the dispersion relations associated to the transverse and longitudinal modes.

Transverse modes

We first analyze the transverse projections of the equations of motion. These are
obtained by projecting Eq. (2.16) onto the 3-space orthogonal to the background wave
4-vector k#, see Eq. (2.18), thus leading to the following relation

(60 + P())Q(Sfblj_ - /{(Sﬁ'ﬁ =0. (221)

Now one must provide a constitutive or dynamical equation satisfied by the partially
transverse component of the shear-stress tensor. For the linearized Navier-Stokes theory,
one obtains

o7l = inkdul| . (2.22)

Then, inserting Eq. (2.22) into Eq. (2.21), we obtain

. n 2 -
Q— oul| = 2.2
( ZEQ—FPOI{) 1 O’ ( 3)

leading to the following dispersion relation for the transverse modes of Navier-Stokes
theory
Q = itk (2.24)

with the intrinsic fluid-dynamical microscopic time-scale being defined as

Ty = il
K 80—|—P0'

(2.25)

The next step is to evaluate the behavior of the modes of Navier-Stokes theory
considering both a zero and a non-zero value for the background fluid velocity. For the
sake of convenience, we shall begin with the case of a static background fluid. In this case,

the 4-velocity of the unperturbed system is simply uf = (1,0,0,0), hence leading to,

Q= w (2.26)
K> = k% (2.27)
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Then, the dispersion relation associated to the transverse modes of the Navier-Stokes

theory, given by Eq. (2.24), can be simply written as
w = i, k?, (2.28)

which corresponds to a single hydrodynamic mode, i.e., w becomes zero in the vanishing
wavenumber limit. We note that the frequency is purely imaginary and shows a strong
resemblance with the modes obtained from the diffusion equation. This is the first hint of
a non-physical behavior of the relativistic Navier-Stokes theory, since it is well known that
the diffusion equation is acausal [57]. Furthermore, this dispersion relation leads to an
exponential attenuation of the wave amplitude with a time-scale of the order of 7,,. It is
then possible to conclude that when the unperturbed system is at rest, the theory is linearly
stable — which is not an unexpected result, since this regime corresponds essentially to the
non-relativistic limit of the theory (small velocities regime), in which the Navier-Stokes

theory does not display any non-physical behavior.

Naturally, a more interesting case to be explored in this analysis resides on conside-
ring perturbations on top of a non-static background fluid. Perturbations around a moving
fluid unveil intrinsically relativistic phenomena, since the perturbation themselves may be
small, while the fluid velocity is not, and therefore might unfold more information on the
linear stability of the theory. For the sake of convenience, throughout this dissertation,
when analyzing perturbations on top of a moving fluid, we always take the background
fluid velocity and the wave-vector to be in the same direction, e.g., the z axis, and thus
we assume ufy = (1, V,0,0) and k* = (w, k,0,0), unless stated otherwise. In this case, the
frequency and wave-vector in the local rest frame of the unperturbed system for this case

are written as

Q = y(w-Vk), (2.29)
K = YHwV — k)%, (2.30)

Thus, in this case the dispersion relation for the transverse modes, Eq. (2.24), reads
WAV 4 (l - 2Vk> w— —Vk+k =0 (2.31)
TTn YTn

In this work, for the sake of convenience, we shall adopt dimensionless variables. In order
to obtain these variables, we re-scale all variables in terms of the hydrodynamic time scale,

A= A[r,]. In this case, the re-scaled dispersion relation reads
DV 4 (2 — 2v1%> O—~Vk+k=0. (2.32)
v Y

Note that for perturbations on top of a moving background there is the occurrence of a new

mode in the dispersion relation. This is a surprising result, since a change in the reference
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frame — the case of a moving background can be understood as a Lorentz transformation
from a static background — should not interfere in the number of modes of the theory.

Thus, for a moving background, the modes are written as

1420V £ 1+ Ak
(k) = . (2.33)

21y V2

Naturally, in the small velocities regime one recovers the dispersion relation for a static
background, a case in which the theory was shown to be linearly stable, while the other goes
to infinity in such regime. This suggests a discontinuity in the modes as a function of the
background velocity, which is a non-physical behavior that must be corrected. Furthermore,
the new mode increases exponentially with time and therefore corresponds to the first
mathematical evidence of the linear instability of the relativistic Navier-Stokes theory.
The linearly unstable behavior can be easily visualized in the vanishing wavenumber limit.

In this case, the dominant terms can be written as

U
w(k:—)O)N{ Vl%jrzg (2.34)
One can immediately notice that perturbations on a moving background fluid lead to the
occurrence of a new non-hydrodynamic mode, i.e., w does not vanish for k£ = 0. Considering
the convention adopted for the Fourier transform in this work, this mode has a negative
imaginary part and thus is linearly unstable, even for k = 0, which corresponds to the
homogeneous limit. Therefore, perturbations on a fluid initially in equilibrium leads to
exponentially increasing oscillations, a sign of linear instability, a non-physical behavior.
On the other hand, the bottom solution has both a propagating and an oscillating part
and it is linearly stable. As it was previously mentioned, one can straightforwardly recover
the dispersion relation for perturbations on a static background fluid, see Eq. (2.28), by
simply taking V' — 0.

We display the solutions of Eq. (2.32), i.e., the transverse modes of the relativistic
Navier-Stokes theory for perturbations on top of a moving background in Fig. 1. Here, we
explicitly see the additional unstable non-hydrodynamic mode. Furthermore, note that
the instability of such mode occurs not only in the vanishing wavenumber limit, but also

for arbitrary values of k.

Longitudinal modes

The occurrence of an additional mode when considering perturbations on top of a
moving fluid, the discontinuity of such modes as a function of the background velocity,
and the linear instability even for £ = 0 are enough evidence to discard the Navier-Stokes
theory as a suitable formulation for the description of relativistic fluids. Still, for the

sake of completeness, we shall carry on the present stability analysis for the longitudinal
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Figure 1 — Imaginary and real parts of the transverse modes of the relativistic Navier-Stokes
theory for perturbations on moving background fluid considering V' = 0.1.

modes of the theory. Here, the analysis is simplified by neglecting any fluctuations on the

net-charge and net-charge diffusion, 6n = 0 and én* = 0.

In order to obtain the longitudinal modes of the relativistic Navier-Stokes theory,
we shall project Eq. (2.16) with &, following the same procedure presented earlier in
this chapter. Equation (2.14) is already written in terms of the longitudinal variables and
requires no manipulation. Since net-charge and net-charge diffusion are being neglected,
Eq. (2.15) is simply disregarded. Thus, the equations for the longitudinal degrees of freedom

can be expressed as
Qde — R(EO + Pg)(;ﬂu = 0, (235)
(€0 + Po)Qty — k(0P + 611+ 67)) = 0. (2.36)

These equations are valid for an arbitrary fluid-dynamical theory, since the linearized
dissipative currents have not been specified yet. In Navier-Stokes theory, the longitudinal

components of the linearized dissipative currents in Fourier space are given by,
ol = iCroTy, (2.37)
o = ;lz’n/-i(mn. (2.38)
Therefore, the equations can be written as
Q€ — k(eg + Po)ouy = 0, (2.39)
(eo + Po)Qdtty — k6P — ik? (g + ;ln> oy = 0. (2.40)

Furthermore, it is possible to express them in the following matrix form

sé
¢ " ot | =, (2.41)
—c2k Q — iTegk? ot
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with the speed of sound in the fluid being identified as,
, 0B

2 — —~ 2.42
d=52 (242)
50,10
and a new time scale, associated to the longitudinal modes, being defined as
(+3m
= ) 2.43

Naturally, non-trivial solutions are obtained by requiring the determinant of the
matrix on the left-hand side of Eq. (2.41) to vanish, leading to the dispersion relation for

the longitudinal modes of Navier-Stokes theory
O — g Q? — k% = 0. (2.44)

Analogous to the procedure adopted for the transverse modes, we re-scale the dispersion
relation in order to work exclusively with dimensionless variables. However, in the following,
we re-scale the variables using 7., A= AlTeg]. Then, the dispersion relation associated to

the longitudinal modes of the relativistic Navier-Stokes theory reads
QF —iQR* — PR? = 0. (2.45)
As before, we begin the linear stability analysis of the longitudinal modes considering
the case where the unperturbed system is at rest. In this scenario, the dispersion relation

becomes
0* —iwk? — 2k* =0, (2.46)

I =

It can be seen that by taking 7.¢ = 0, the dispersion relation for ideal fluids — the equation

and its solutions are given by

of a plane wave — w(k) = tcsk, is immediately recovered.

It is further possible to extract information about the stability of the theory
by analyzing the behavior of the modes in the limits of small and large wavenumber,

respectively. In these regimes, the modes become

ok —=0) = +cik+ zl:”; + O(K?) (2.48)
ok = o00) = 1‘1522(1 +1). (2.49)

Therefore, for small wavenumbers, the real part of the dispersion relation is a sound wave.
Moreover, the imaginary part leads to the exponential damping of the perturbations and

is linearly stable. The time scale 7.4 then dictates how fast these modes are damped. For
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large wavenumbers, the mode either vanishes or has a positive imaginary part, once again
leading to a stable solution. Once again we shall point out that this result is expected,
since perturbations on a static background corresponds to a non-relativistic regime, where

Navier-Stokes theory is linearly stable.

As it was observed for the transverse modes, a more interesting case arises when
perturbations on a non-static background fluid are considered. Once again, we assume
the background velocity is in the same direction of the wave-vector. Then, the dispersion
relation associated to the longitudinal modes of the relativistic Navier-Stokes theory for

perturbations on top of a moving fluid reads
(@ —VE)? —iy(@0—VE)(@V —k)? - 2@V — k)? =0. (2.50)

Analogous to what was also observed for the transverse modes, the dispersion relation for
the longitudinal modes for a non-static background is a polynomial of one degree higher in
comparison to the case of perturbations on a static background fluid. As it will be shown,

the new mode is non-hydrodynamic and linearly unstable.

For the sake of simplicity, we shall analyze the linear stability of these modes for a

vanishing wavenumber. In this limit, the modes are written as

.1—c2V2
— _'I/ S
ok =0) = e 2.51
(k= 0) { Iy 2:51)
Clearly, the new mode is non-hydrodynamic since it does not vanish for k£ = 0. Since it is
always negative and purely imaginary, it corresponds to a linearly unstable mode, leading
to perturbations that increase exponentially. We display the longitudinal modes of the
relativistic Navier-Stokes theory for perturbations on top of a moving background fluid in
Fig. 2.

As it was first observed for the transverse modes, there is the occurrence of an
additional non-hydrodynamic mode, which is linearly unstable. Furthermore, we observe
a discontinuity of the modes with the background fluid velocity, analogous to what was
seen for the transverse modes: the modes are linearly stable for a vanishing background
velocity but become unstable for non-zero values of V. Note that the linear instability of
the non-hydrodynamic longitudinal mode is not restricted to the vanishing wavenumber

case, but is also observed when considering arbitrary values of k.

Therefore, after analyzing how small perturbations behave in the framework of
relativistic Navier-Stokes theory and explicitly calculating the transverse and longitudinal
modes of this theory, it is then possible to conclude this formulation is indeed linearly

unstable and shall be discarded as a suitable description of relativistic fluids.
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Figure 2 — Imaginary and real parts of the longitudinal modes of the relativistic Navier-
Stokes theory for perturbations on moving background fluid considering ¢ = 1/3
and V =0.1.

2.1.1 Causality and instability of Navier-Stokes theory

For the sake of convenience, so far in this work we only considered fluids with a
background velocity that is in the same as the wave-vector, which leads to Eqgs. (2.29) and
(2.30). These relations can be understood as a Lorentz boost of a 4-vector with components
w and k. Thus, it is possible to obtain the dispersion relation satisfied by perturbations on
a non-static background fluid by performing a Lorentz-boost on the dispersion relation
satisfied by perturbations performed on a static background fluid. The Lorentz boost of

a 4-vector with time component w and spatial component (in the same direction of the

boost) k reads
-V ! "—AVE
o P S I ) . (2.52)
k -V K -V + vk

It is then possible to understand the linear instability of Navier-Stokes theory in
the following way. Both transverse and longitudinal modes show a similar behavior in
the large wavenumber limit, considering perturbations on a static background fluid, see
Egs. (2.28) and (2.49). These expressions can be summarized by the following diffusion-like
dispersion relation

w = iDk?, (2.53)
with D being the diffusion coefficient. Hence, when considering a non-static background,

this equation is transformed as
W = VK =iyD(K — VW), (2.54)

where the occurrence of an additional mode, in comparison to the static case, is observed,

analogous to what has been derived previously in this section for both transverse and
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longitudinal modes. Naturally, the hydrodynamic mode is once again stable, while the
non-hydrodynamic mode for k£ = 0 reads
0
/

Therefore, a diffusive dispersion relation, when expressed in a moving frame,
necessarily leads to the occurrence of a new linearly unstable non-hydrodynamic mode,
that was absent in the rest frame. Then, it is possible to conclude that the diffusion-like
behavior of the modes of the relativistic Navier-Stokes theory at large wavenumbers is the

physical origin of the linear instabilities displayed by the theory.

Finally, since the relativistic Navier-Stokes theory is linearly unstable, the next
step is to investigate if the inclusion of relaxation times in the equations for the dissipative
currents is sufficient to guarantee the linear stability of the theory. In particular, in the
next section, we shall analyze if the Israel-Stewart theory is a suitable description for

relativistic fluids.

2.2 lsrael-Stewart theory

The re-formulation of the entropy 4-current including up to second-order terms
in the dissipative currents leads to hyperbolic equations for the dissipative currents in
the linear regime, a necessary condition to ensure causality. However, the causality and
stability of the Israel-Stewart theory have not yet been proved. In order to address this
problem, a linear stability analysis of the Israel-Stewart theory is presented in this section,
with the goal of verifying whether the inclusion of relaxation times is sufficient to render a

linearly causal and stable fluid-dynamical formulation.

In this case, analogous to what has been performed in the linear stability analysis
of Navier-Stokes theory, the system is assumed to be initially in a global equilibrium state,
and then perturbations around such state are performed, such as in Eq. (2.1). In this
chapter, we neglect coupling between dissipative currents and restrict ourselves to the
analysis of the simplest version of Israel-Stewart theory. An analysis taking into account

diffusion-viscous will be developed in detail in Chapter 3.

In this case, the linearized Israel-Stewart equations read

Sl
Dyl + — + £a,ﬁuﬂ = 0, (2.56)
T I
)
Dodn,, + - — %vgéa ~ 0, (2.57)
0T N o
Do, + T: - z?ﬂAufvoaaéuﬁ = 0, (2.58)

with Dy = u0, being the comoving derivative with respect to the background fluid

velocity, Vi = Ay”9, being defined as the projected derivative in the direction orthogonal
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to uf and A" = IAL*AY + LAF Ay — LAEYAGP. The stability of Israel-Stewart theory
has been investigated in the linear regime considering dissipation via bulk [29], shear-stress
[30], net-charge diffusion [63], and also when coupling between shear-stress and net-charge
diffusion is taken into account in Refs. [31, 48, 59]. The present section is dedicated to the
investigation of the linear stability of Israel-Stewart theory in a simple case, neglecting
any dissipation by bulk viscosity and net-charge diffusion, i.e., 67 = df* = 611 = 0, thus
only considering dissipation by shear-stress — the only non-trivial equation of motion from
the Israel-Stewart theory is therefore Eq. (2.58).

In order to analyze the linear stability of Israel-Stewart theory we shall compute

the linearized equation for the shear-stress tensor in Fourier space
2
(i, + 1) 67 — in (mav RS — BAgvmam) , (2.59)

and plug it into the conservation laws. Similarly to what was done for Navier-Stokes theory,
this analysis will be divided between transverse and longitudinal degrees of freedom, since

once again they decouple and can be solved independently.

Transverse modes

Naturally, since Eq. (2.16) is the only tensorial equation among the equations
of motion that arise from the conservation laws, it is the only one that has transverse
components, which were already calculated in Eq. (2.21). The partially transverse projection
of Eq. (2.59) is given by,

it Q0T + 07! = inkdul) . (2.60)

Substituting Eq. (2.60) into Eq. (2.21) we obtain the following equation for the transverse
component of the velocity field,
ﬂ Q _
<TQQ —i— = /€2> dul = 0. (2.61)
Tn Tn
For the sake of convenience, we work with dimensionless variables and re-scale all variables
by the time scale 7, A= A[r,]. Hence, the re-scaled dispersion relation for the transverse

modes of Israel-Stewart theory is written in the following form

707 —iQ — A2 =0. (2.62)

As before, the first case to be considered is the one in which the velocity of the
background fluid is zero, V' = 0. In this case, {2 = w and k = k, and the dispersion relation
becomes simply

O (if,0 + 1) — ik? = 0. (2.63)
The solutions of this equation are

£ VAR 1
Ghear = LEVIT . (2.64)

A

2T
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Note that even in the case in which the background fluid is at rest, we have the occurrence
of two modes, with one of them being non-hydrodynamic. This is different to what was
observed in Navier-Stokes theory, where there was only one hydrodynamic mode in such
case. We note that the non-hydrodynamic mode found above is stable as long as the
relaxation time is positive. This is in agreement with microscopic calculations of this
transport coefficient evaluated in kinetic theory [64, 65]. Moreover, there is a critical
value of the wavenumber, k. = 1/21/7, below which the modes are purely imaginary and,
therefore, non-propagating. The transverse modes of Israel-Stewart theory for perturbations
on a static background fluid are displayed in Fig. 3 considering a shear relaxation time
calculated from the Boltzmann equation, via the 14-moment approximation, in the ultra-

relativistic limit, 7, = 5 [64]. We note that these modes do not change qualitatively when

different values of 7, are employed.
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Figure 3 — Imaginary and real parts of the transverse modes of the Israel-Stewart theory
for perturbations on a static fluid considering 7, = 5.

Nevertheless, when analyzing such modes in the Navier-Stokes limit, i.e., when the
shear relaxation time is set to zero, it is possible to observe that the non-hydrodynamic
mode diverges, while the hydrodynamic mode goes to the usual diffusion-like solution, a
remarkable feature of Navier-Stokes theory, @?plfe_ar = k2. One can also write the solution

above in the small wavenumber limit,

~shear i 72 1.4
apsr = -kt 0 (k") (2.65)
oo = ik itk + O (R9)), (2.66)

where we can see that the hydrodynamic mode resembles a solution from the diffusion

equation in this regime. On the other hand, in the large wavenumber limit, these modes

behave as

~ shear v ]% 1 ( 1 >
= —x|—=—- —+= O=—). 2.67
OpEt = or ( s /Qk) 05 (2.67)
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Moreover, in this limit the modes have also a propagating part, and they are not purely
imaginary anymore, hence leading to the occurrence of an asymptotic group velocity. In
this case, the modes are linearly causal if this velocity is subluminal [30, 66], which is
guaranteed by the following condition

ORe(®) n

80—|—P0

<l=rHn2>2l=rn>

(2.68)

k—o00

lim ’

A more interesting case to be analyzed is, once again, the case of perturbations on
top of a moving background fluid. As it was done in the stability analysis of Navier-Stokes
theory, we shall assume that the velocity of the unperturbed system and the wave-vector
are parallel. Therefore, 2 and « satisfy Eqgs. (2.29) and (2.30), respectively, and thus the

dispersion relation, Eq. (2.62), is written as
Fy(@ = VE)? —i(@ — VE) —y(@QV — k)* = 0. (2.69)

The first point to be noted here is the fact that the number of modes does not increase (nor
decrease) for perturbations on top of a moving fluid in comparison to the static case, which
was a non-physical behavior we observed in the relativistic Navier-Stokes theory. However,
for perturbations on a moving background, the imaginary part of the non-hydrodynamic
mode is not always positive definite. Instead, there are conditions the transport coefficients
— in particular, the relaxation times — must fulfill in order to render linearly stable modes.
This can be easily seen when analyzing the vanishing wavenumber limit of Eq. (2.69), in
which the non-hydrodynamic mode becomes

;

@;},ﬁarU% - 0) = 7(7A_ _ Vz)'

(2.70)
Naturally, the theory must be stable for any value of k. As a matter of fact, it is particularly
important that the modes remain stable when k£ = 0, since this corresponds to the case of
homogeneous perturbations. Furthermore, the theory should be stable for any value of the
background fluid velocity V. The aforementioned conditions are guaranteed to hold as

long as the relaxation time satisfies
Tr > 1= 7 > 1, (2.71)

which is the linear stability condition originally derived in Ref. [30]. In particular, this
condition is identical to the causality condition obtained for perturbations on a static

background fluid, see Eq. (2.68).

The non-hydrodynamic transverse mode @5

is displayed in Fig. 4 for three
different values of background velocity V' as a function of the shear relaxation time 7, in

the vanishing wavenumber limit.



2.2. Israel-Stewart theory 49

3

2

1
—
(=]
11

3
<3 0 nnn
£ F......
- '~.~ <
. 3 V=038
\‘ ..... V=0.9
- Y
" N T wu V=0.99
. ]
.
.
H
-3 1
0.0 0.5 1.0 1.5 2.0
A
Tn

Figure 4 — Imaginary part of the non-hydrodynamic transverse mode &JST}ijr for k = 0,
considering three different values of the background velocity, V = 0.8, V' =0.9
and V =0.99 and 7, = 5.

Longitudinal modes

Naturally, after deriving the stability conditions associated to the transverse degrees
of freedom, the next step is to analyze the constraints that must be imposed in order to
obtain linearly causal and stable longitudinal modes. To obtain the projected equations
for the longitudinal degrees of freedom we reproduce the same steps of the analysis of
the relativistic Navier-Stokes theory, following the procedure presented previously in this
chapter. In the absence of bulk viscous pressure and, also, setting the net-charge to be

zero, the longitudinal components of the conservation laws become

Qde — K(Eo + PO)(FQH 0, (2.72)
(60 + Po)Q52~L|| — Ii(5p + (577'“) = 0. (273)

Then, to analyze the linear stability of Israel-Stewart theory, the longitudinal projection
of the shear-stress tensor must be inserted in the last equation. This projection can be

calculated as
4 4

These equations can be written in the following matrix form

0 —K 0€
2 . . -4 2 EO—EPO = O? (275)
—cik(1Q7 +1) Q7 + 1) —igmyk 1|

Non-trivial solutions of this equation are obtained when the determinant is zero. Therefore,

the dispersion relation related to the longitudinal modes is obtained as

4
i Q0+ QF — 25777/4;29 — i 2R Q) — 2% = 0. (2.76)
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Once again, it is further convenient to introduce dimensionless variables by employing
the same re-scaling process used in the analysis of the transverse modes, expressing the
dimensionful variables in terms of the hydrodynamic time-scale, such as A = A[r,]. In this

notation, Eq. (2.76) can be written as
A~ A3 A2 4.A2A A 242A 242
i7:80 + Q° — iR Q — 1T, iR — R = 0. (2.77)

As it was done so far, we begin the linear stability analysis of the longitudinal modes
considering perturbations around a static background fluid. In this case, the dispersion
relation simply becomes

4 . . .
7 ® + O — gzk% — ik — AR = 0. (2.78)

The solutions of Eq. (2.78) are displayed in Fig. 5, once again considering the shear
relaxation time calculated from kinetic theory using the 14-moment approximation, in
the ultra-relativistic limit, 7, = 5 [64]. We also used that ¢? = 1/3. These modes were
first obtained in Ref. [30] and further reproduced in Ref. [59]. Note that the dashed lines
represent the hydrodynamic modes, which are propagating and have a degenerate imaginary
part, while the solid line corresponds to the non-hydrodynamic (and non-propagating)
mode. In contrast to what has been observed in the stability analysis of Navier-Stokes
theory, performed in the previous section, a non-hydrodynamic mode appears in both

transverse and longitudinal degrees of freedom of Israel-Stewart theory.
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Figure 5 — Imaginary and real parts of the longitudinal modes of the Israel-Stewart theory
for perturbations on a static fluid, V' = 0, considering 7, = 5 and ¢? = 1/3

The general solutions of Eq. (2.78) are rather complicated and will not be written

in their explicit form. Nevertheless, it is still useful to write the asymptotic limit of these
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solutions in the small and large wavenumber limits. In the first case, they read,

1. 2. .
sound __ - “.7.2 3

wiemd = i\/gk:—i—gzk +0 (k) (2.79)
, 4 .

wihear Ti — ik o G (2.80)

In this limit, the hydrodynamic modes reduce to the solutions found in Navier-Stokes.
The non-hydrodynamic mode has no analogue in Navier-Stokes theory. Moreover, in the

large wavenumber limit the longitudinal modes can be written as

1t - 9 1
sound = 4 "k O() 2.81
Wi 3% TR ara)  O\R) (2.81)

hear 0 1
shea; — O <A> . 282
YL 4+ 7, * k (2.82)

In this limit, the hydrodynamic mode remains with a propagating part. In order to

ensure the causality of such modes, we must impose that the asymptotic group velocity is

subluminal [66], leading to the following constrain for the relaxation time [30]

2n
€0—|—P0.

<l=7H2>22=71>

ORe(w)
. (2.83)

lim ‘

k—o00

However, instabilities in the Israel-Stewart theory may arise in the non-hydrodynamic
modes when performing perturbations on top of a moving fluid. Once again, we assume
that the background fluid velocity is in the same direction of the wave-vector. In this case,

the dispersion relation is written as

~ ~ 4 ~ ~ ~ ~ ~
1Ty (O—kV )P H(O—kV )2 =~ (QV —k)* (0—kV ) =it 2y (QV —k)* (0—kV) =2 (OV —k)? = 0.

3

(2.84)
As it was first observed for the transverse modes, the number of longitudinal modes of the
Israel-Stewart theory does not increase for perturbations on top of a moving fluid, unlike
in the relativistic Navier-Stokes theory. Clearly, a stability analysis for arbitrary values
of wavenumber can be extremely complicated. Therefore, we look at the linear stability
of the modes in the homogeneous limit, £ = 0, hence deriving necessary conditions the
theory must satisfy in order to yield stable modes. In this case, considering ¢ = 1/3, the
hydrodynamic modes are found to be stable, while the non-hydrodynamic mode reads
i(3-V?

S BA -tV (285)

@Shear

This mode must be stable for any value of the background fluid velocity. This can be
guaranteed as long as the transport coefficients — in particular, the shear relaxation time
— satisfy certain constraints. In this case, the linear stability condition associated to the

longitudinal modes is

2
Tn > 2= T > 7

. 2.86
- o + Pg ( )
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The linear stability condition for the longitudinal modes, given by Eq. (2.86), is stronger
than the condition obtained for the transverse modes, Eq. (2.71). Furthermore, this
condition is identical to the linear causality condition, Eq. (2.83). The non-hydrodynamic
mode obtained for perturbations on top of a moving fluid in the vanishing wavenumber
limit, Eq. (2.85), is displayed for several values of background velocity as a function of the

shear relaxation time in Fig. 6.
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Figure 6 — Imaginary part of the non-hydrodynamic longitudinal mode considering three
different values of the background velocity, V = 0.8, V= 0.9 and V = 0.99, for
2 =1/3.

In this chapter we analyzed the stability of Navier-Stokes and Israel-Stewart theories
in the linear regime. The first was shown to be linearly unstable, a direct consequence of
the theory’s parabolicity [57, 58]. We showed that perturbations on a static fluid yields
exclusively stable hydrodynamic modes. On the other hand, when considering perturbations
on a moving fluid new unstable non-hydrodynamic modes appear. This discontinuity in the
number of modes with respect with the background fluid velocity is, by itself, non-physical

and must be corrected.

The linear stability of Israel-Stewart was studied considering dissipation only via
shear-stress. However, unlike in the case of Navier-Stokes theory, the theory’s hyperbolicity
guarantees the number of modes does not change with the background fluid velocity. In
particular, non-hydrodynamic modes now occur even for perturbations on a static fluid. We
showed that such a version of Israel-Stewart theory can be made linearly causal and stable
as long as certain conditions are satisfied by the shear relaxation time. In particular, we
note that the linear causality and stability conditions obtained analyzing the longitudinal
modes are stronger than the ones obtained for the transverse modes. Finally, we concluded

that Israel-Stewart theory, considering only the dynamics of the shear-stress tensor, is

linearly causal and stable as long as 7, > &‘Oi‘np()'
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3 Linear stability of Israel-Stewart theory

with net-charge

The last chapter was entirely dedicated to reproduce the results obtained from
linear stability analyses of a first-order fluid-dynamical formulation — Navier-Stokes theory
— and a second-order formulation — Israel-Stewart theory considering only dissipation by
shear-stress. The first does not carry the same success as its non-relativistic analogue, as
the parabolicity [57, 58] of the equations for the dissipative currents leads to superluminal
sign propagation and linear instabilities — an issue attributed to the first-order character

of the out-of-equilibrium entropy 4-current.

On the other hand, although the reformulation of the entropy 4-current, different
than the one introduced as the baseline of the relativistic Navier-Stokes theory, considering
not only first-order terms in the dissipative currents, but also second-order terms, yields the
occurrence of relaxation times that are essential to the theory’s causality, the linear stability
of the Israel-Stewart theory is not automatically guaranteed. As it was demonstrated in the
last chapter, the transport coefficients — in particular, the relaxation times of the theory
— must satisfy certain constraints in order to the theory to be linearly causal and stable.
The linear stability analysis presented in Chapter 2 takes into account only dissipation
via shear-stress, but a derivation including also bulk yet neglecting any coupling between

dissipative currents can be straightforwardly extended [30].

Heavy-ion collisions at extremely high energies produce a huge number of baryons
and their corresponding anti-baryons, which corresponds to a near-vanishing baryon
chemical potential,  ~ 0. Furthermore, since on average the net-baryon number is zero,
the fluid-dynamical evolution of the QGP in such conditions is performed neglecting the
dynamics of net-baryon diffusion. With the purpose of achieving a better understanding
of QCD in this regime, heavy-ion collisions at lower energies are being performed in RHIC
and LHC. Naturally, this type of collision produces a smaller number of baryons and
anti-baryons from vacuum. In this case, the difference between those quantities becomes
more appreciable and one can properly analyze the regime of a non-vanishing baryon
chemical potential. In particular, when modelling heavy-ion collisions at lower energies,
the net-baryon diffusion current can no longer be neglected and it necessarily has to be

taken into account in the fluid-dynamical evolution of the system.

Furthermore, one may ask whether the linear stability conditions of the Israel-
Stewart theory remain unchanged once coupling between dissipative currents is taken into
account. The first developments on such task have been performed by Olson in Ref. [4§]

for the complete set of equations of motion of the theory considering the Landau-Lifshitz
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picture. However, the linear stability conditions derived in this work are rather convoluted
and not explicitly written in terms of the transport coefficients, e.g., coupling terms (also
referred to as diffusion-viscous coupling) and diffusion relaxation time. Furthermore, this
analysis cannot be directly extended to the case in which one considers perturbations
around a vanishing net-charge, the case studied in this chapter. A preliminary stability
analysis including net-charge diffusion was developed in Ref. [63], neglecting dissipation
via shear-stress. In Ref. [59], we developed a more general linear stability of Israel-Stewart,
with only dissipation by bulk viscous pressure being neglected. In our work, that shall
be presented in this chapter and corresponds to the main results of this dissertation, we
calculated the dispersion relations of the theory and obtained linear causality and stability
conditions in terms of the transport coefficients of the theory. This chapter is dedicated to

the understanding and detailed reproduction of these results.

3.1 Equations of motion

First, since the net-baryon diffusion current is being taken into account in this
analysis, the conservation of charge is no longer trivial, and its evolution must be coupled
to the conservation of energy and momentum, to determine the fluid-dynamical evolution
of the system. Furthermore, the conservation laws constitute five equations, while they are
composed by thirteen independent fields (since bulk is being neglected in this analysis,
IT = 0). Therefore, as it was discussed previously, these conservation laws must be
supplemented by equations for the dissipative currents, which are given by the Israel-
Stewart equations. In the present analysis, we will consider the Israel-Stewart equations
obtained by kinetic theory calculations [41, 64, 65],

.Mt = K, Viag — nyw — 8,,n"0 + AN VAV

— TV, P — Nppny,ot’ — N\ Voap, (3.1)
T o = 2not + QTwwﬁuw”»‘ — 8, — TN 0;\/>
— Ten VI P 4+ £, V40" 4 X" VY ap, (3.2)

where ap = pup/T, with pp being the baryon chemical potential and 7" the temperature.
The vorticity tensor is defined as w"” = (VFu” — V¥ut) /2, and the diffusion-viscous
couplings are introduced as £, and £,. We further employ the notation, A" = ArAY,
and AW = ARY AP,

Naturally, in the equations of motion for the dissipative currents presented above,
there is the occurrence of several transport coefficients. As it can be concluded from
the analysis performed in the previous chapter, in order to obtain a linearly causal and
stable formulation, they cannot assume arbitrary values. Moreover, the effects of the

transport coefficients can be studied in the linear regime, which has been performed in
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Refs. [29, 30, 31, 48], where the relaxation times were found to be necessary in order to
contemplate causality and lead to linearly stable modes. In particular, this analysis is
focused on the understanding of the role the diffusion-viscous couplings ¢,,, and ¢, play
on the linear stability and causality of Israel-Stewart theory. We then obtain constraints
for linear causality and stability in terms of the fundamental hydrodynamic variables and

display the modes of the theory, a task that had not been done so far.

Here, analogously to the linear stability of Navier-Stokes and Israel-Stewart theories
presented in Chapter 2, we consider perturbations around a global equilibrium state with
energy density ¢y, vanishing net-baryon number density npo = 0 and fluid 4-velocity
ufy. Naturally, since the system is assumed to be initially in an equilibrium state, the
equilibrium values of the dissipative currents are zero, n{y = 0, and 75" = 0. Wherefore,
since bulk viscosity is being neglected in this analysis, the perturbations can be expressed

in the form of

e =c¢cg+ 0, ng = dng, u' =uy + ou’, n' = dnt, 7 = oM. (3.3)

The next step is to linearize the fluid-dynamical equations and further compute the
modes of the theory. Then we will be able to determine the linear stability and causality
conditions of the Israel-Stewart with diffusion-viscous coupling. In this chapter, we employ
a slightly different notation when compared to Chapter 2. First, we re-express the linearized

conservation laws, Egs. (2.2), (2.3) and (2.4), in the following form,

Dy (f) +Vhu, = O(2)~0, (3.4)
0
5P
0
5
Dy (:B> +VESE, = O(2)~0, (3.6)
0

where we remind the reader that Dy = ufd,, is the comoving derivative with respect to the
background fluid velocity and V5 = Af”9, is the linearized projected derivative. Moreover,
wo = €9 + P is the enthalpy and ng = (g9 + Fy)/4T is the particle number density at
vanishing chemical potential. The hydrodynamic currents ox** = "/ (eg + Pp) and
d&H = on* /ng were further introduced as the re-scaled dissipative currents of shear-stress
tensor and net-baryon diffusion, respectively, in order to work only with dimensionless
variables. Furthermore, the equations of motion of Israel-Stewart theory obtained from
kinetic theory for the net-charge diffusion, Eq. (3.1), and for the shear-stress tensor,

Eq. (3.2), must also be linearized. Then, they are written as

T DodE + g1 = ’:L—BmvgaaB + Lo VEXE, (3.7)
0

e DX + 63" = 21, AEP0y0ug + Lo AL P 0,565, (3.8)
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where the following transport coefficients were introduced

T = Z;’ Lon = f;;, Lo =4TV,, (3.9)
with ng being the baryon number density, not to be confused with the net-baryon number
density. The last two coefficients, L,,, and L,,,, are second-order terms, and therefore are
a feature of Israel-Stewart theory, and they correspond to coupling parameters between
the dissipative currents. Since the stability of Israel-Stewart theory has been widely
investigated in the linear regime in the absence of coupling terms [28, 29, 30, 31, 48], as
already explained in the previous chapter, it is interesting to see whether such formulation

remains linearly stable when diffusion-viscous coupling is included.

Analogous to what has been performed to study the linear stability of Navier-
Stokes theory and Israel-Stewart theory in the absence of diffusion-viscous coupling, it is
convenient to express the linearized fluid-dynamical equations in Fourier space, following
the procedure developed in Chapter 2. Naturally, the Fourier transform of the equations
of motion were already derived in the last chapter, and thus remain such as defined in
Egs. (2.14), (2.15) and (2.16) — however, note that here we take the background net-baryon

number density to zero, which further simplifies Eq. (2.15). We shall rewrite these equations

as
5
0% 4 wisa, = 0, (3.10)
Wo
6P
6t — kO 4 RVSTE = 0, (3.11)
Wo
Qe K€, = 0. (3.12)
No

Furthermore, the equations of motion for the dissipative currents in Fourier space are

(iTaQ + 1)86" = ﬂxmm“a@Bﬂ'ﬁmmaxW, (3.13)

1 | 5
(iT:Q + )6 = 2ir, |[s¥6a") — 3Ag”m5a*] + il {Na@ — gAWmdg* (3.14)

Once again, as it was done so far, this analysis will also be divided into transverse and
longitudinal degrees of freedom by decomposing the perturbations into components in the
orthogonal and parallel direction with respect to x*, respectively, following the procedure
introduced in Ref. [59]. Here, even in the presence of diffusion-viscous coupling these
components can once more be solved independently, which considerably simplifies the
solutions. The equations related to the longitudinal modes can be obtained by simply
contracting Eqs. (3.11) and (3.13) with the tensor x*/k, and Eq. (3.14) with x*k” /K% The
equations (3.10) and (3.12), on the other hand, are already expressed in terms of their

respective longitudinal components. Thus, the equations related o the longitudinal modes
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can be summarized as

5
0 ko = 0, (3.15)
Wo
5z
Q(SﬂH - K?)Ui) - Hé}Z” = 0, (316)
Sh .
08 ks = 0, (3.17)
o
A Y s . . 0np
(m’nQ + 1) 0| +iLlpROX| = k==, (3.18)
0
A 2.4 s 4
(ZTWQ + 1) x| — §2,C7ml-€5§|| = gméun. (3.19)

In deriving the above equations, we have already made assumptions regarding the equation
of state. We assume an equation of state of a gas composed solely of a massless particle
and its corresponding antiparticle. In this case, the perturbation of pressure and chemical

potential can be expressed as

P = ;55, (3.20)
sap — (3.21)
np

Overall, the equations related to the longitudinal modes can be written in the following

matrix form

0 0 0 —K 0 (5753/710

0 0 —k 0 0 55/11)0

R T oy =0 (32
—itek 0 0 i7Q+1 L.k og]

0 0 —%ir —2il,k i0+1 x|

Then, the dispersion relation associated to the longitudinal modes is further obtained
when the determinant of the matrix on the left-hand side of this equation vanishes, leading
to the following equation

4

1 A 5 (&7 @
(0= 37) 020+ 1) = g0 (0604 1) — 5] -

i F <Q _ 1@2) OR2 — 0.

(3.23)

2
3

w

Therefore, the next step is to calculate the equations related to the transverse
modes of the theory, which are obtained projecting Eqs. (3.11) and (3.13) with A%, and
Eq. (3.14) with A%\ k,. As it was previously mentioned, Eqs. (3.10) and (3.12) are already
expressed in terms of the longitudinal components and hence their transverse components

are zero. In this case, we obtain the following equations

Qo) — roYY = 0, (3.24)
(i) + 1)0EY + il 6 = 0, (3.25)

A

£ ROEY = 0. (3.26)

(i + 1)0%) — irdw) — i :
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As it was done for the equations related to the longitudinal modes, these equations can

also be expressed in the following matrix form

Q —R 0 Sl
0  ilneh Q7 +1 syt | =0, (3.27)
—ik it QU+ 1 —ifmp SN

hence leading to the dispersion relation for the transverse modes of the theory

A

AN A ~ 1 4 A
[(1+7:0) Q@ —ia?] (1 +i7.0) — 5 LonLarR® = 0. (3.28)
Here, the reader may ask why only the partially transverse component of the shear-stress
tensor was considered in this derivation. This is due to the fact that the fully transverse
component, given by dx'”, decouples from the perturbations related to energy density
and velocity fluctuations and its dynamics can be solved independently. Without loss of

generality, this contribution is further neglected in this analysis.

Furthermore, the effect of the diffusion-viscous coupling terms can be clearly
seen when analyzing the dispersion relation for the longitudinal and transverse modes,
Egs. (3.23) and (3.28), respectively. In both cases, the dispersion relations related to
fluctuations of net-charge diffusion current and shear-stress tensor are coupled, and thus
cannot be solved independently, which naturally is the case when the coupling terms are
set to zero. Therefore, the addition of diffusion-viscous couplings in the equation for the
dissipative currents naturally leads to more complicated solutions, which will be analyzed
in detail throughout this chapter. Throughout this work, we shall assume, unless stated

otherwise, that

Lyr Loy <0, (3.29)

which is supported by kinetic theory calculations [34, 64, 65]. Furthermore, this constraint
is obtained in the phenomenological derivation of Israel-Stewart theory from the second

law of thermodynamics [34, 67].

This chapter will be divided in two parts: the first is dedicated to analyze the linear
stability and causality of Israel-Stewart theory in the presence of net-charge diffusion
current while neglecting diffusion-viscous coupling. We further recover linear stability
conditions for the transport coefficients related to shear-stress derived previously, and
further obtain a new set of constraints related to transport coefficients associated to net-
charge diffusion. In the second part, the linear stability of the Israel-Stewart is analyzed
taking into account diffusion-viscous coupling. Then, we find new constraints for the
transport coefficients, in particular for the product of the coupling terms, which is the

main result of this dissertation and has been published in Ref. [59].
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3.2 Linear stability analysis in the absence of coupling terms

As it was done in the previous sections, we shall begin studying the perturbations
on the transverse degrees of freedom of the Israel-Stewart theory, and then proceeding to

the analysis of the perturbations on its longitudinal degrees of freedom.

Transverse modes

The dispersion relation associated to the transverse modes of Israel-Stewart in the
absence of diffusion-viscous coupling can be straightforwardly obtained by simply taking
Lor =L =0 in Eq. (3.28). In this case, we have

(1 4i%:9) @ —ii?] (1+i7.Q) = 0. (3.30)
Here, unlike what is observed in the dispersion relation including the coupling terms,
Eq. (3.28), the equations related to fluctuations on energy and momentum and net-charge

diffusion are clearly decoupled, and can be solved separately, as it was previously mentioned.

Thus, we have to solve the following independent equations

(1+i70Q)Q—ix* = o, (3.31)
1+i7,Q = 0. (3.32)

This analysis shall begin with the case where perturbations are performed over
a static fluid. In this scenario, the background fluid velocity is given by its local rest
frame, uff = (1,0,0,0), leading simply to 2 = w and k = k. Thus, the solutions of these

expression are written, respectively, as

pshear il +/1— 47,k

_ 3.33

T,+ 27A—7r ) ( )

ot = 2 (3.34)
Tn

Here one can immediately note the occurrence of two non-hydrodynamic modes, given

by @5 and OFf, and one hydrodynamic mode, defined as @5, In fact, the modes

c&%}fiar were previously obtained in the linear stability analysis of Israel-Stewart theory
considering only dissipation via shear-stress, see Eq. (2.64) in Sec. 2.2. Wherefore, the
linear causality condition for such modes, previously introduced in Eq. (2.68) as 7, > 1,
as first derived in Ref. [30], remains valid also in the presence of net-charge diffusion but
without taking into account diffusion-viscous coupling. Furthermore, since in the present
analysis net-charge diffusion current is also accounted, there is the occurrence of another
transient mode, given by O3 related to net-charge diffusion fluctuations, which is linearly

stable as long as the diffusion relaxation time is positive,

7 > 0. (3.35)
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Naturally, since this mode carries no dependence on the wavenumber k, and the relaxation
times are positive definite transport coefficients, this mode is linearly stable for pertur-
bations on a static background fluid. On top of that, it is a purely imaginary mode, and
hence has no propagating part, carrying no contribution for linear causality. Although the
modes @Sleiar have already been displayed in Fig. 3, it is rather interesting to display them
one more time, now simultaneously with the mode which is the product of fluctuations in
the net-baryon current, defined as @3f, for the sake of comparison, in Fig. 7. Once again
the values of the shear and diffusion relaxation times employed here were obtained from
kinetic theory calculations using the 14-moment approximation in the ultra-relativistic

limit, 7, = 5 and 7, = 27/4 [64].
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Figure 7 — Imaginary and real parts of the transverse modes of the Israel-Stewart the-
ory in the absence of diffusion-viscous coupling for perturbations on a static
background fluid considering 7, = 5 and 7,, = 27/4.

As it was pointed out several times throughout this work, unstable modes usually
occur for perturbations on top of a moving fluid. Once again, for the sake of convenience,
we shall assume that the background fluid velocity is parallel to the wave-vector. In this
scenario, the linear causality and stability of the modes @?ﬁfﬁr, the solutions of Eq. (3.31),
was already investigated in Sec. 2.2, leading to the linear stability condition given by
Eq. (2.71) as 7, > 1, which is identical to the linear stability causality for perturbations on
a static background fluid. On the other hand, Eq. (3.32) was not present in the previous

analysis and shall be further investigated in detail. In this case, it then reads
1+ iy, (& — VE) =0, (3.36)
which has the following solution

oM = VE +

(3.37)

~ -

VTn
This mode has a transient part, that relaxes to equilibrium with the Lorentz-dilated

diffusion relaxation time 7, while it propagates with a group velocity that is equal to
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the background fluid velocity V. Naturally, it is linearly causal for subluminal values of
the background fluid velocity and linearly stable. Overall, the transverse mode related to
net-charge fluctuations does not have any contribution to the theory’s linear causality and
stability. On the other hand, the linear causality and stability conditions for the modes
related to fluctuations of the energy-momentum tensor remain unchanged when including
net-charge diffusion in the absence of diffusion-viscous coupling, due to the fact that both
of these dispersion relations decouple in such case. These modes are compared in Fig. 8,
where the solutions of Eq. (3.30) are displayed for three different values of background
velocity, V = 0.1, V = 04, and V = 0.9, and using the same values for the relaxation

times as before, 7, = 5 and 7,, = 27/4.
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Figure 8 — Imaginary and real parts of the transverse modes of Israel-Stewart theory in
the absence of diffusion-viscous coupling for perturbations around a moving
fluid, considering V' = 0.1, V = 0.4, and V = 0.9, in the absence of coupling
terms, considering 7, = 5 and 7,, = 27/4.

Furthermore, one example of an unstable fluid configuration is shown in Fig. 9,
where the mode d}ihear is displayed considering 7, = 0.5, a value that does not satisfy the

linear causality and stability conditions derived in Section 2.2 for the transverse modes.

Longitudinal modes

In the absence of coupling between the dissipative currents, the dispersion relation

associated to the longitudinal modes of Israel-Stewart theory, Eq. (3.23), takes the form

1 . 4 ool A
KQZ - 3/%2> (i#:2+ 1) = iR [0 + 1) — 7] 0. (3.38)

As it was first observed for the transverse modes, the dispersion relations associated

to energy-momentum and net-baryon current fluctuations decouple, since there is no
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Figure 9 — The imaginary part of the unstable shear mode for 7, = 0.5 for a background
velocity fluid V' = 0.9, in the absence of coupling terms, considering 7, = 5.

diffusion-viscous coupling. In this case, these equation are solved separately as

QU+ 1) —ifh® = 0, (3.39)
1 R 4 o
(92 _ 3,%2) (170 +1) - SiA%0 = 0. (3.40)

The dispersion relation associated to energy-momentum tensor fluctuations, Eq. (3.40),
was previously obtained in Eq. (2.76), when the Israel-Stewart theory considering only
dissipation via shear-stress tensor was analyzed, in Sec. 2.2. In that case, the linear
causality and stability of the modes was carefully investigated, which further lead to the
condition given by 7, > 2, see Eqgs. (2.83) and (2.86), respectively. Therefore, since the
inclusion of net-charge diffusion current in the dissipative currents without the presence of
diffusion-viscous couplings does not change the modes associated to energy and momentum
fluctuations, this derivation will not be revisited here, and we shall focus on the modes
that are product of net-baryon current fluctuations and the linear stability and causality

condition related to them.

The analysis once again starts with the case where we consider perturbations on a
static background fluid. For the sake of illustration, the imaginary and real parts of the
longitudinal modes are displayed in Fig. 10, taking 7, = 5, 7, = 27/4 and 7,, = 9/16 [64].
In this scenario, the solutions of Eq. (3.39) are written simply as

141 — 47,7 k2
B —y TnTwl?” (3.41)

Wy . =1 ~
L+ 27,

Clearly, there is the occurrence of a hydrodynamic mode and a non-hydrodynamic mode,

wLB’_ and wLB7 +, respectively. In the small wavenumber limit, these modes can be written

such as
wp_ = itk it 2k + O (@6) , (3.42)
WB, o= ik O (k). (3.43)

Tn
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Figure 10 — Imaginary and real parts of the longitudinal modes of the Israel-Stewart
theory in the absence of diffusion-viscous coupling for perturbations on a
static background fluid considering 7, = 5, 7,, = 27/4 and 7, = 9/16.

It is straightforwardly possible to conclude that both modes are linearly stable for pertur-
bations on a static background fluid, since the leading terms are positive definite. Note
that the leading term of the hydrodynamic mode wg_ is the dispersion related usually
obtained in Navier-Stoke theory, while the non-hydrodynamic mode wLB, + does not exist
in this formulation. Furthermore, no information regarding the linear causality of these
modes can be inferred from this expansion. In order to be able to extract any information
on their linear causality, we must analyze the asymptotic group velocity by looking at

their behavior at the large wavenumber limit. In this case,

N 1 Te [+ 1 1
W= (o +O(A). 3.44
bR 2R, TV A, ( 8%71%51{) k3 (34)
The modes w,‘—iift become propagating when the wavenumber k is greater than a particular

value, given by k>1 / (2\/ ﬁﬁ'ﬁ), which leads to the occurrence of a real part on both of

these modes. Furthermore, causality dictates that the asymptotic group velocity must be

subluminal [66], leading to the following constraint

ORe(w)

<1= %, >4 (3.45)

k—o0

lim ‘

We then look at these modes when considering perturbations on top of a moving
fluid, in order to obtain the linear stability conditions that such modes must satisfy. In
this case, Eq. (3.39) reads

& = AVE) 5, (70 = AVE) + 1] — i (09V —4%)" = 0. (3.46)
( ) i ( ) +1] =i ( )

An analysis of these modes for arbitrary values of wavenumber k£ can be extremely
complicated, and therefore shall not be explored in this work. Instead, for the sake of

simplicity, as it was performed for the previous cases, we look at the modes in the vanishing
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wavenumber limit, which further supplies necessary, even though not always sufficient,
linear stability conditions. Thus, since wLB’_ is a hydrodynamic mode, it vanishes in such

limit, while the non-hydrodynamic mode wg + does not. In this scenario, these modes read
i
v (F — 7 V2)

Naturally, these modes must be linearly stable for any value of the background velocity V/,

(3.47)

B _ B _
wr,- =0, wp, =

and the stronger constraint arises when it assumes the maximal value allowed by causality.
The mode wg_ is trivial and hence always stable, while the mode wLB7 , must satisfy the

following linear stability condition in order to satisfy linear stability
Tn 2 T (3.48)

This stability condition is equivalent to the linear causality condition, Eq. (3.45), which is
in agreement with the connection between the causality and stability of fluid dynamics,
first developed by Pu et al. in Ref. [30].

Therefore, whereas the linear causality and stability conditions obtained for the
modes from energy and momentum fluctuations are unchanged for vanishing diffusion-
viscous coupling, the constraints obtained for the diffusion relaxation time, the linear
causality and stability conditions related to the modes associated to net-charge fluctuations,
given by Eqs. (3.45) and (3.48), respectively, are novel constraints. We published these
results for the first time in Ref. [59].

The modes that are obtained as the solutions of Eq. (3.38) for a moving background
fluid are displayed in Fig. 11, considering 7, = 5, 7,, = 27/4, and 7, = 9/16, for three
values of the background velocity, V =10.1, V =04, and V = 0.9.

Further, in Fig. 12, two examples of unstable fluid configurations, i.e., fluids that do
not satisfy the linear stability conditions derived in Eqs. (2.86) and (3.48) are displayed. On
the left panel we analyze an unstable case in which 7,, < 7,.. Here, we considered 7,, = 3/16
and 7,, = 9/16 for an unperturbed system with velocity V' = 0.9. In this scenario, the
longitudinal non-hydrodynamic mode related to net-baryon current fluctuations is linearly
unstable. On the right panel, we analyze the case where 7, = 0.9 for an unperturbed
system with velocity V' = 0.9. Again, there is the occurrence of a linearly unstable

non-hydrodynamic mode, related to fluctuations of the shear-stress tensor.

Throughout this chapter, the linear stability and causality conditions for the shear
relaxation time were recovered and found to be unchanged, while novel constraints for the
diffusion relaxation time were first derived. In particular, we showed that the causality
conditions obtained for perturbations on a static background fluid are identical to the
stability conditions obtained for perturbations on top of a moving background fluid.
Nevertheless, these conditions are valid in the regime where there is no coupling between

these two dissipative currents. The next step is to investigate the values such transport
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Figure 11 — Imaginary and real parts of the longitudinal modes for perturbations around
a moving fluid, considering V = 0.1, V = 0.4, and V = 0.9, in the absence of
coupling terms, considering 7, = 5, 7, = 27/4, and 7,, = 9/16.
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Figure 12 — Imaginary part of the unstable longitudinal mode related to baryon-number
fluctuations for 7, = 9/16 and 7,, = 3/16 (left panel) and imaginary part of
the unstable shear mode for 7, = 0.9 (right panel). In both cases we consider
V =0.9.

coefficients can assume in order to have linearly stable modes when taking into account

diffusion-viscous coupling.

3.3 Linear stability analysis in the presence of coupling terms

The linear stability and causality of the modes that are the solutions of the
dispersion relation related to energy-momentum tensor fluctuations were suppressed in
the last section, since they were carefully analyzed back in Sec. 2.2 and remain unchanged
in the absence of diffusion-viscous coupling. However, when diffusion-viscous coupling is

turned on, the dispersion relation associated to energy-momentum tensor and net-baryon



66 Chapter 3. Linear stability of Israel-Stewart theory with net-charge

number fluctuations can no longer be factorized. Instead, they are actually connected by
the so called coupling terms. This further leads to novel constraints for these transport
coefficients, which will be analyzed in detail in this section. We then analyze the possible
values the product of the coupling terms can assume in order to render linearly causal and

stable modes.

Transverse modes

The dispersion relation for the transverse modes of the Israel-Stewart theory in the
presence of coupling, shown in Eq. (3.28), can be conveniently expressed in the following
form

—ADP +iBO? + (14 C#%) Q —is* = 0, (3.49)

where we defined the quantities

A = #4, (3.50)

B = 7,4+ 7, (3.51)
1. .

C = fu— 5Ll (3.52)

One can immediately note that once the coupling terms are included, the dispersion relation
associated to energy-momentum tensor fluctuations and net-baryon current fluctuations
no longer factorize, leading to new — and coupled — solutions. Even though such addition
renders essentially more complicated solutions, it does not increase the number of modes
of the theory. However, the modes now also carry a dependence on the product of the
coupling terms, included within the definition of the variable C. Moreover, an interesting
case to be observed is the Navier-Stokes limit, where the shear and diffusion relaxation
times are set to zero. In this case, one no longer recovers a simple Navier-Stokes dispersion

relation. Instead, one obtains the solution

k>

O = A
ETK”I'LE’I’LTI'K;2

— (3.53)

DN |

Naturally, the modes are always linearly stable if the product of the coupling terms is
negative. In fact, this was an assumption we took initially. The modes in the Navier-Stokes
limit are displayed in Fig. 13 considering a positive, a negative and a vanishing product
of the coupling terms for perturbations on a static background fluid. It is possible to
conclude that if the product of the coupling terms is zero, one recovers the dispersion
relation associated to the transverse modes of the relativistic Navier-Stokes theory, which
is linearly stable for perturbations on a static background fluid. Furthermore, one can
straightforwardly note that for a positive value of the product of the coupling terms, there
is the occurrence of a mode that is stable in the small wavenumber limit but at one point

becomes unstable as the value of k is increased.
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Figure 13 — Imaginary part of the transverse mode in the Navier-Stokes limit, i.e., consi-
dering 7, = 7,, = 0 for three different values for the product of the coupling
terms, ETI'TLE’H,TI' = _17 ‘Cﬂ'n‘cnﬂ =0 and ‘Eﬂ'nﬁnﬂ' =1

In the absence of relaxation times, the linear stability of the theory’s only mode
is guaranteed by a negative value for the product of the coupling terms. However, the
relaxation times are essential transport coefficients to render a causal fluid-dynamical
formulation [15, 18]. In this sense, although the consistency of the assumptions afore-
mentioned were checked to be valid in the Navier-Stokes limit, the linear causality and
stability must be analyzed for non-zero values of the relaxation times. Following the same
construction employed so far in this work, we begin looking at the modes for perturbations
on a static background fluid. The dispersion relation associated to the transverse modes

in this case reads

—AD* +iBo? + (1+Ck*) & — ik* = 0. (3.54)

We first study these solutions in two different limits: for small and large wavenumber. In

the small wavenumber limit, the modes can be written as

A A

i i2(F — ) — Lanl

~shear __ Y M TN/~NT 72 7.4
e — B +0 (k) (3.55)
o = ik?+ 0 (k) (3.56)
i 'EAT(TL‘CATLW 7 7
pur = 40 4o (i), (3.57)

Taking the product of the coupling terms to zero, one straightforwardly recovers Eqs. (2.65),
(2.66) and (3.34), respectively. Therefore, the addition of the coupling terms, LonLons, can

be understood to lead to contributions of higher order in the wavenumber k. Furthermore,
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in the large wavenumber limit, these modes can be expressed as

C. BC—-A 1
~shear el : —_
oyt = & Ak +1 S AC +0 <l%) : (3.58)
di l 1
QR — st 0 (k> . (3.59)

So far, analyzing the modes for perturbations on a static fluid at the large wavenumber
limit have provided linear causality conditions, while the stability conditions arise from
the analysis of perturbations on top of a moving fluid. However, in this case we are able
to extract information not only on the linear causality of the modes, but also on their
linear stability by looking at their behavior at large values of k. In this scenario, in order
to have stable modes for perturbations on a static fluid, these conditions must be satisfied:

C is real and positive and BC — A > 0. Hence, we obtain the following linear stability

conditions
C > 0= LppLlp, <27, (3.60)
A2
BC—A > 0= Loplpy <22 (3.61)
TTL + 7—71'

These constraints are identical to the linear stability conditions obtained using the Routh-
Hurwitz criterion [68, 69, 70], hence being valid for any value of wavenumber &, not only in
the large wavenumber limit, as they were derived here. The condition given by Eq. (3.61)
is the strongest between the two of them and imposes restrictions on the values that
the coupling terms can assume. Furthermore, unlike the case without diffusion-viscous
coupling, where the linear stability of Israel-Stewart theory for perturbations around a
background at rest is always guaranteed, now there is an inequality the product of the
coupling terms must satisfy in order to ensure the linear stability of the modes in such
scenario. Moreover, a linear causality condition can be extracted from the expansion of

the modes in the large wavenumber limit, leading to

ORe(w)
ok

= i <1= LopnLpr > =27, (7x — 1). (3.62)

k—o0

lim ‘

For the sake of illustration, the modes o@%}ffr and O3 are displayed in Fig. 14 for

negative values of the product of the coupling terms, LonLlonn = —0.25,—1,—4, and in
Fig. 15 for positive values of it, LonLns = 0.25,2,6, both cases for a static background,
V =0.

We note that it is possible to obtain stable modes even for positive values of
ﬁmﬁm, see Eq. (3.61). As the value of /f,mﬁmr becomes negative, the coupling terms affect
the imaginary parts of the non-hydrodynamic modes to degenerate at larger values of
wavenumber. On the other hand, if EAmﬁm is positive, the non-hydrodynamic mode related

to the diffusion 4-current, @3 becomes degenerate with the hydrodynamic mode @%e_ar
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Figure 14 — Imaginary and real parts of the transverse modes considering 7, = 5 and
7, = 27/4 for three negative values of the product of the coupling terms,
LonLyr = —0.25,—1,—4, for a static background, V = 0.

020w,

Figure 15 — Imaginary and real parts of the transverse modes considering 7, = 5 and
7, = 27/4 for three positive values of the product of the coupling terms,
LnLnr =0.25,2,6, for a static background, V' = 0.

instead, when the wavenumber increases. In Fig. 16, we show a case in which the modes are
driven linearly unstable by a positive product of the coupling terms, Lonlonm = 10, even
though the relaxation times employed are the ones used so far, calculated by Boltzmann

equation [64] that fulfill the linear causality and stability conditions derived in this section.

Then, the next step is to look at the modes for perturbations on top of a moving
background fluid. Once again, we take the background fluid velocity to be in the same

direction of the wave-vector. The transverse modes are displayed in Fig. 17 for a negative
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Figure 16 — Imaginary and real parts of the transverse modes considering 7, = 5 and
T, = 27/4 for an unstable value for the product of the coupling terms,
L Lnr = 10, for a static background, V' = 0.

value of the product of the coupling terms, Lonlone = —1, and in Fig. 18 for a positive
value of it, LrnLnr = 2, in both cases for three different values of the background velocity,
V=01,V =04and V =0.9.
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Figure 17 — Imaginary and real parts of the transverse modes considering a negative value
for the product of the coupling terms, £,,L,, = —1, for three different values
of the background velocity V =0.1, V = 0.4, and V = 0.9.

The linear stability condition for the modes considering arbitrary values of wave-
number is extremely complicated, and not always can be expressed analytically and thus it
will not be investigated here. Instead, once again we resort to the analysis of the modes in

the vanishing wavenumber limit. This simplifies considerably the calculations and allows
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Figure 18 — Imaginary and real parts of the transverse modes considering a positive value
for the product of the coupling terms, L,,L,, = 2, for three different values
of the background velocity V =0.1, V = 0.4, and V = 0.9.

us to provide basic necessary conditions for linear stability. In this case, the dispersion

relation associated to the transverse modes reads
—A(@) +iB (v@)* + [14C (1aV)?] (v@) — i (7oV)? = 0, (3.63)

where the solutions are simply

. (3.64)

Clearly, there is one hydrodynamic mode and two non-hydrodynamic modes, as it was
expect, since it was the case for perturbations on a static fluid, see Eqgs. (3.55), (3.56) and
(3.57). Furthermore, if the background velocity is taken to zero, V' = 0, one straightforwardly

recovers the modes Q5% ~ i/, and @I ~ /7, while the hydrodynamic mode obtained

above corresponds simply to @§heer.

The stability of these modes requires that the numerator and denominator must
have the same sign. Moreover, in order to avoid problematic discontinuities on the modes,
which would lead to instabilities, we once again impose the numerator and denominator
do not charge their signs for any causal value of the background velocity. For the sake of
simplicity, we then look at them when the background velocity is zero with the purpose
of analyzing their signs. Thus, since A is a positive definite quantity, the positive sign of
the denominator is obtained with A — CV? for any causal value of the background fluid
velocity V', which further implies

A>C. (3.65)
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Furthermore, the numerator must also be positive in order to the transverse modes to be
linearly stable in the presence of diffusion-viscous coupling. Wherefore, it is essential that
the term outside the square root to be bigger than the term inside it, ensuring the linear
stability of both non-hydrodynamic modes. Since we have already shown that A > C is
a condition that must be necessarily satisfied, the term inside the square root is either
positive and therefore smaller than the term outside or it is negative, leading to a real
part of the modes, either way ensuring their linear stability. Nevertheless, one can show
that for negative values of the product of the coupling terms, LoynLlnn < 0, which is the
case considered here, the term inside the square root is positive and smaller than B — V2,
and thus does not affect the sign of the imaginary part of the modes. Finally, the positive

sign of the numerator is guaranteed if the following condition is satisfied.
B> 1. (3.66)

It is convenient to express both of these linear stability conditions in terms of the transport

coefficients. Hence,

B > 1=17,+7>1, (3.67)
A > C= Lonlo: > =27, (7 —1). (3.68)

On top of that, the linear stability conditions can be simplified if we take only negative
values for the product of the coupling terms, an assumption made in the beginning of this

chapter. In this case, we have the following constraints

\Lonlns| < 27, (7 — 1), (3.69)
Tw 2> 1 (3.70)
7o > 0. (3.71)

Therefore, in this case, the linear stability conditions for the shear and diffusion relation
times are identical to the constraints they must satisfy in the absence of coupling terms,
as it was derived in Egs. (2.71) and (3.35). Although the product of the coupling terms
was assumed to be negative, we note that is possible to obtain linearly stable theories
considering positive values, as long as they satisfy the condition given by Eq. (3.69).
Actually, such cases further allows the violation of the condition 7, > 1, in which only
positive values of the product of the coupling terms provide linear stability. However, this

scenario shall not be further explored here.

Finally, it is convenient to express Eq. (3.69) in terms of the original transport
coefficients that feature the Israel-Stewart equations, without the re-scaling factors. It
then reads

Wz | < 27, (T — 7). (3.72)

A similar condition can be recovered from Olson’s original work [48] by imposing that the

transverse characteristic velocities are subluminal [Eq. (91) of the aforementioned paper].
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This condition is satisfied in calculations from the Boltzmann equation [64, 65]. So far, we

are not aware of any microscopic calculations that does not satisfy this condition.

Longitudinal modes

The dispersion relation for the longitudinal modes was derived in the beginning

of this chapter, in Eq. (3.23). We then re-write this equation in a more convenient form,

such as
Ar -2 A4 ~2\ A3 -BDAQ’\Q 1 A2\ A~2 ‘%HA4
—AD +iBO + (14 2484%) O —i RO (1+€8?) Qi +ig k' =0, (373)
where we used the definition of the following variables
A+ 377 +4C
S = 3.74
6A Y ( )
B+37.+4
p = - oeEE (3.75)
B
4
E = AT+ TnTe + 3 (C—17n). (3.76)
We further define other useful variables that will be employed later
£
= — 3.77
R = V&2 - M. (3.78)

The stability analysis once again begins with the simplest case, in which perturbations are
performed on a static background fluid. In this case, the dispersion relation associated to

the longitudinal modes becomes simply
~ ~ 1 ~ ~ T A
—AG" 4B + (1+ 2A8K) & — iBDRG? - 2 (1+ ER7) ok? + z%/# 0. (3.79)

The solutions of Eq. (3.79) are displayed in Fig. 19 for a negative value of the coupling
term Lo Lopr = —1 (upper panels), and also for a positive value Lonlone = 2 (bottom
panels). The inclusion of the coupling produces a similar behavior when compared to the
transverse modes, see Figs. 14 and 15, where the sign of the product of the coupling terms
dictates which modes merge at large values of wavenumber. Similar to what was observed
for the transverse modes, the imaginary part of the longitudinal modes becomes constant
at large wavenumber. The real parts of the longitudinal modes do not show any qualitative

variation at large wavenumber as we change the sign of the coupling term.

Furthermore, since this is a fifth-degree polynomial, its solutions are extremely
complicated and are not explicitly derived here considering arbitrary values of wavenumber.
Instead, in order to be able to extract any information regarding the linear stability of

these modes, we resort once again to look at the modes in the small and large wavenumber
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Figure 19 — Imaginary and real parts of the longitudinal modes COHSldermg a negative

and a positive values for the product of the coupling terms, Lonlnr = —1and
Emﬁm = 2, considering a static background fluid, V = 0.
limits. In the first regime, they read
wp, = —+0(F), (3.80)
7+ Tn
shear i 7.2
= —+4+0(k 3.81
wL 7A_7T + ( ) ) ( )
wp_ = ink2+ 0 (), (3.82)
1~ 2. .
sound 27,2 3
= +—k+ -ik"+ O (k°). 3.83
W 7 + ik + ( ) (3.83)

There are two non-hydrodynamic mode and three hydrodynamic modes. One can imme-
diately see that the latter behave like the modes from Navier-Stokes theory in the small
wavenumber limit. In particular, in this regime, the longitudinal modes of Israel-Stewart

theory are linearly stable. Moreover, at the large wavenumber limit, the modes can be

written as
- i 3B(S+R)’—BD(S+R)+7, 1
Y = HVSIR 4 +0(A), 3.84
< AT5(S+ R 185 (S +R) + 3M P (3.84)
5 = z% +O (2) . (3.85)



3.3.  Linear stability analysis in the presence of coupling terms 75

Similar to what has been first observed for the transverse modes, the inclusion of diffusion-
viscous coupling leads to occurrence of not only novel linear causality conditions, but
also linear stability conditions for perturbations on a static background fluid. Therefore,
these modes are linearly stable if their imaginary parts are positive and thus we have the

following necessary conditions

(i) 7./€ > 0;
(ii)) VS £ R is real;

(iii) [3B(S£R)*— BD(S£R)+ 7] /[15(S£R)* — 185 (S £ R) + 3M] is positive.

while linear causality is ensured by a subluminal asymptotic group velocity, which is simply

guaranteed by

=VSER< 1. (3.86)

lim
k—o00

ORe(w)
ok

In particular, there are several requirements for linear stability. The next step is to express

the conditions derived above in terms of the transport coefficients. First, condition (i) is
satisfied if £ > 0, leading to a new constraint for the product of the coupling terms, given
by

LonLm < 2% (Fr +4). (3.87)
Note that this condition is automatically satisfied if the product of the coupling terms
is not positive, L..L. <O0. Furthermore, condition (ii) is fulfilled if S > R, which is

automatically satisfied for negative values of the product of the coupling terms. Moreover,

it further implies the following inequality
S* > M. (3.88)

We shall return to this condition later, and analyze it more carefully when considering

perturbations on top of a moving background fluid. Last, condition (iii) further implies

3B(S+R)’—BD(S+R)+7. >0, (3.89)
3B(S—R)>—BD(S—R)+7%. <0. (3.90)

All the constraints listed above are automatically fulfilled if the product of the
coupling terms is negative, and hence do not provide any new information on the relations
that dictate the linear stability of the theory. However, if one does not assume such
statement and further consider the possibility of positive values for the product of the
coupling terms, an essentially new set of constraints will appear, although we shall not
explore this case thoroughly in this work, as we pointed out earlier in this chapter.

Furthermore, these inequalities can be shown to be equivalent to the linear stability
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conditions obtained by using the Routh-Hurwitz criterion [68, 69, 70], and thus are valid

not only in the regime of large values of k, but also for any wavenumber.

The final step of this analysis is to investigate the longitudinal modes of the Israel-
Stewart theory in the presence of net-charge diffusion for perturbations on top of a moving
background fluid. Since the solution of the dispersion relation, a fifth degree polynomial,
would be even more complicated in this case, we analyze the modes in the vanishing
wavenumber limit, as it was done in the previous cases. Analogously, we shall consider a
background fluid velocity that is parallel to the wave-vector. Hence, the dispersion relation,
Eq. (3.23), is written as

(v@)* [-3A (1= 28V? + MV*) 20 +i (V' + 3B = BV?) @ + 3 - V?| = 0. (3.91)

There are three hydrodynamic and two non-hydrodynamic modes, as observed for pertur-

bations on a static background fluid. The latter then read

A VA4 BB -DV2) £ [V +B(3— DV — 124 (3 — V2) (1 — 25V2 + MV4)
! 3A(1—28V? + MV4) '

YW+ =
(3.92)

Naturally, as it was previously discussed several times, in order to have only linearly
stable modes, the imaginary part of the modes must be positive for all possible values of
V', which is guaranteed if both the numerator and denominator have the same sign for
all possible values the background velocity can assume. Furthermore, with the purpose
of avoiding non-physical discontinuities on the modes, both are assumed to maintain
their signs for any causal value of the background velocity V. Thus, these signs can be
straightforwardly verified in the limit where the background fluid is at rest, V = 0. In this

case, the denominator can be immediately shown to be positive, thus leading to
1-2SV2+ MV*>0,V 0<V <1, (3.93)

Note that Eq. (3.93) is a polynomial function which is quadratic in V2 and positive at
V' = 0. The condition above is satisfied if the smallest root of this polynomial is larger
than 1. This guarantees that the function is positive in the interval of 0 < V2 < 1, where
the greatest value the background fluid velocity can assume is the speed of light, and
further instabilities would only occur in the non-physical region in which the background

velocity assumes acausal values. This is ensured by the following inequality
S—R>M. (3.94)

This relation is identical to the linear causality condition derived for perturbations on
a static background fluid, see Eq. (3.86). This can be straightforwardly seen using the
definition of the variable M = §? — R2, which further leads to

S—R 2 (S_R)(S“‘R) — S‘I’R S 1= _gf_ﬂ' (7A_n - %n)_%n (7A—7r - 2) S ﬁwnﬁnm (395)
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where we used the previously derived stability conditions S — R > 0 and R > 0. This is
another evidence that shows the strong connection between the linear stability conditions
obtained for perturbations on top of a moving background and the causality conditions
satisfied by perturbations on top of a static background. Furthermore, the inequalities

given in Eq. (3.95) can be used to derive further constraints for the linear stability of the

theory,
3 0o . .
M = (S+R)S—R) 1= Siu (b +4) = SA< Lol (3.96)
1 2 A A
S < +2M >~ Ll < (F2 = 2) (= 7). (3.97)

So far, after imposing that neither the numerator nor the denominator in Eq. (3.92)
change their signs for any causal value for the background fluid velocity, the latter was
shown to be positive and to lead to further inequalities that must be necessarily fulfilled.
Therefore, the next step is to investigate the numerator, which thus must be positive as
well, in order to render only linearly stable modes. In this case, there are two possible
scenarios: in the first, the term inside the square root is negative, resulting in a real part
of the modes that does not contribute to the linear stability of the modes; in the second,
the term inside the square root is positive, yet smaller than the term outside it. One can
show that the term inside the square root in Eq. (3.92) is positive definite as long as we
assume that the product of the coupling terms is negative, and the linear stability of the

non-hydrodynamic longitudinal modes is guaranteed if the following relation is satisfied

2 D
Pyt Y2 L1>0.V 0<V <1, 3.98
3B 3 tiz9 = = (3.98)

The following analysis is analogous to what has been performed to the denominator of
Eq. (3.92). The inequality above also corresponds to a quadratic polynomial function of V2,
and it is satisfied if its smallest root of is greater than 1, rendering the function positive in
the physical interval in which the background velocity does not exceed the speed of light,

further leading to a novel constraint for the relaxation times of the Israel-Stewart theory
Tre+Tn 2> Tu + 2. (3.99)

This condition is satisfied if the values for the transport coefficients such as calculated by
Boltzmann equation [33, 64, 65] are employed, such as used so far throughout this work.
Finally, if the product of the coupling terms is negative, the linear stability conditions

derived for the longitudinal modes can be summarized as

5 o4 3
Tw 2 2, (3.101)
Tn 2 Tx (3.102)
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It is interesting to note that, as it was observed for the Israel-Stewart theory in
the absence of diffusion-viscous coupling, see Chapter 2, the linear stability conditions in
the presence of coupling obtained looking at the longitudinal modes are stronger than the
constraints obtained for the transverse modes. Furthermore, the linear stability condition
for the shear relaxation time such as derived in the absence of diffusion-viscous coupling,
Eq. (2.86), is still valid also when coupling is taken into account, Eq. (3.101). There is
also the occurrence of a linear stability condition for the diffusion relaxation time, given
by Eq. (3.102), which is also valid even in the absence of diffusion-viscous coupling, see
Eq. (3.48). The linear stability conditions for the shear and diffusion relaxation times such
as obtained in the absence of diffusion-viscous coupling can be recovered from Eq. (3.100)

if the product of the coupling terms is set to zero.

For the sake of completeness, the solution of Eq. (3.23) for perturbations of top of a
moving background are displayed in Figs. 20 and 21 considering a negative and a positive
value for the product of the coupling terms, ﬁmﬁm = —1 and EAM,CAM = 2, respectively.
We also show several examples of configurations that are driven unstable by the coupling
terms in Fig. 22, taking the following values for the product of the coupling terms that
violate Eq. (3.100), LnLnx = —40, —45, —50, —60.

V=0.1 ’\\ V=0.4 012 V=0.9

Re (@)
Re (@)

Figure 20 — Imaginary and real parts of the longitudinal modes considering a negative
value for the product of the coupling terms, £,,L,, = —1, for three different
values of background velocity, V =0.1, V =0.4, and V = 0.9.

As it was first unveiled in Ref. [30] considering dissipation via shear-stress and
bulk viscous pressure, yet neglecting net-charge diffusion, in the Israel-Stewart theory, the
linear causality conditions obtained for perturbations around a background fluid at rest
are equivalent to linear stability conditions for perturbations on top of a moving fluid,

which is also observed in the presence of diffusion-viscous coupling. Furthermore, we note
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Re (@)
Re (@)

Figure 21 — Imaginary and real parts of the longitudinal modes considering a positive
value for the product of the coupling term, L,,L,, = 2, for three different
values of background velocity V =0.1, V = 0.4, and V = 0.9.

that the stability conditions obtained by Olson in Ref. [48] also include the effects of
diffusion-viscous coupling considering all three dissipative currents simultaneously, while
bulk viscosity has been neglected in the original analysis of Ref. [59] and thus it was not
further investigated here. However, in this case the constraints for the transport coefficients
were written in a more convoluted form and constraints for the diffusion-viscous coupling
terms were not explicitly derived. Furthermore, and more importantly, the linear stability
conditions obtained by Olson cannot be trivially extended to the case of a vanishing
background net-baryon number density and, thus, it is not possible to directly compared
them to the results presented in this chapter. This happens because the perturbations
defined by Olson diverge in the limit of vanishing net-charge, which is inconsistent with
the assumptions made by Olson when deriving the linear stability conditions (in theorem
A of Ref. [48], Olson assumes that the perturbations do not diverge when deriving linear

stability conditions).

Nevertheless, some of the linear causality conditions derived by Olson are equivalent
to those derived in this chapter and published in Ref. [59]. The linear causality condition
for the transverse characteristic velocities calculated by Olson [Eq. (91) of Ref. [48]] is
equivalent to the corresponding linear causality condition derived in this dissertation, see
Eq. (3.62), in the limit of vanishing net-charge. The same does not occur when comparing
the linear causality conditions derived for the longitudinal modes. In this case, the difficulty
in the comparison lies in taking the limit of vanishing bulk viscosity and relaxation time,
for which case the result diverges. In order to compare with Olson’s result, we would need

to include the effects of bulk viscosity from start as well.
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Figure 22 — Imaginary parts of the unstable shear modes for different negative values of
the coupling term, £,,L,,. = —40, —45, —50, —60, for V" = 0.99.
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4 Third-order fluid dynamics

In the first section of Chapter 2, we explored the linear causality and stability of
the relativistic Navier-Stokes theory considering the presence of bulk viscous pressure and
shear-stress, with net-charge diffusion being neglected in this analysis. As it was shown
in this chapter, the modes of the relativistic Navier-Stokes theory are always linearly
unstable for perturbations on top of a moving background fluid, a severe problem that is
directly connected to the acausal character of the constitutive relations for the dissipative
currents [29, 30] defined in this formulation. These equations come from the second law of
thermodynamics applied to the first-order non-equilibrium entropy 4-current derived in
Chapter 1.

In this scenario, a new formulation for the entropy 4-current was proposed by Israel
and Stewart, in which they also took into account the presence of second-order terms in the
entropy 4-current. These terms were shown to lead to the occurrence of relaxation times
that are essential to ensure the causality of the theory, among other first and second-order
terms. In the second section of Chapter 2, the linear stability of Israel-Stewart theory
considering only dissipation via shear-stress was revisited. In particular, we showed that
the relaxation times must satisfy certain inequalities in order to the theory to have only

linearly causal and stable modes.

One may wonder what are the implications of considering higher-order terms in
the equations of motion for the dissipative currents, see Ref. [55]: what is the regime of
linear causality and stability of a higher-order fluid-dynamical formulation? Naturally,
higher-order terms must affect the linear stability of relativistic fluid dynamics in the same
way the inclusion of net-charge diffusion and diffusion-viscous couplings also lead to a new

set of constraints in the Israel-Stewart theory.

In this chapter, we perform an analysis which is independent from the cases studied
so far in this work. Here, we investigate the linear stability of a third-order fluid-dynamical
formulation such as proposed in Ref. [56], showing it is an ill-defined theory with non-
physical behaviors that resemble the ones observed in the relativistic Navier-Stokes theory.
Furthermore, we connect the linear instability of this theory to its parabolic nature [57, 58]
and introduce a novel formulation, which can be constructed to be linearly stable. We

then derive the linear stability conditions of this formulation.
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4.1 Parabolic third-order fluid dynamics

This section is dedicated to the linear stability analysis of the parabolic third-order
formulation first derived in Ref. [56]. In this work, a third-order equation of motion
for the shear-stress tensor is obtained from the relativistic Boltzmann equation using
the Chapman-Enskog method (effects due to bulk viscous pressure and net-charge were
neglected). This leads to the following dynamical equation for the shear-stress tensor
i) = 2;10’“’— 7_17r7r“”+;5v<“ (Tﬁvaﬂ'ym) — iva (Tﬁvww”m) - ;Va (TNVQW“M) +--e

(4.1)
which corresponds to Eq. (16) of the aforementioned paper. Note that the dots represent
terms that are non-linear and thus do not contribute to the linear stability analysis that
follows and, hence, were omitted in the equality above. Naturally, a third-order equation of
motion for the shear-stress tensor has several additional terms that are not present in the
Israel-Stewart theory, see Eq. (3.2). In particular, the last three terms in the right-hand
side of the equation above are novel linear contributions of third-order. The goal of this
chapter is to analyze the effects of the inclusion of these terms in the linear stability of

the theory. Throughout this chapter, only dissipation via shear-stress will be considered.

Once again, the linear stability analysis is performed considering perturbations on

top of a fluid initially in a global equilibrium state,
e =¢o+0e, ut =uf+out, T =omt. (4.2)

The linearized equations of motion that come from the conservation of energy and mo-
mentum have been derived previously in Egs. (2.2) and (2.4). In this chapter, we do not
consider any kind of conserved charges, thus the remaining equation of motion, Eq. (2.3),
is not required. Furthermore, the linearized third-order equation for the shear-stress tensor
becomes

1 2 |
Do + —émiv = L [wg“w) _ 3A6‘”8,\5u’\} - S V3o
T7T T7T
6

35TFV3 {QV[()“&T”))‘ — ;Ag”V%éﬂﬁ’\] , (4.3)
where we remind the reader that Dy = ugd, is the comoving derivative with respect to the
background fluid velocity and Vi = Af”0, is the linearized projected derivative. The last
two terms on the right-hand side of the equation above are corrections due to third-order
contributions in the equation of motion for the shear-stress tensor. If these terms are set
to zero, one recovers the linearized Israel-Stewart equation for the shear-stress tensor in
the absence of diffusion-viscous coupling, which was investigated in Chapter 2. In this
case, the transport coefficients — in particular, the relaxation times — must satisfy certain

inequalities in order to guarantee that Israel-Stewart theory is linearly causal and stable.

Therefore, one may ask whether the inclusion of third-order terms in the equation for



4.1. Parabolic third-order fluid dynamics 83

the shear-stress tensor either maintains the properties of linear causality and stability
observed in the Israel-Stewart or yields novel constraints for the transport coefficients in

order to fulfill linear causality and stability.

Once again, we express the linearized fluid-dynamical equations in Fourier space.
The Fourier transform of the continuity equation associated to energy and momentum
were already derived, and are given in Eqs. (2.14) and (2.16). The linearized parabolic

third-order equation of motion for the shear-stress tensor in Fourier space reads

1 2 1
iQoF 4 —rm — L {2/-@(”5@” — SAg‘”m(SaA} — ?Tﬁﬁ%ﬁ‘“’ +
TT(' TT('

6 1
+ 35 AT {/1(“57?”»‘ - 3Ag”/<557~r5’\} . (4.4)

The next step is to decompose the linearized fluid-dynamical equations in Fourier space
into transverse and longitudinal degrees of freedom, since they decouple and can be solved

independently, as already shown in Chapter 2.

Transverse modes

The transverse component of the linearized third-order equation for the shear stress
tensor, given by Eq. (4.4), is obtained by simply projecting this equation with @Aﬁﬁ, see
the tensor decomposition in Fourier space developed in Chapter 2. Moreover, the transverse
component of the equation of motion for the conservation of energy and momentum was
already derived, see Eq. (2.21). Then, the equations that describe the transverse degrees

of freedom of this theory can be summarized as follows

~ ju
ol

Qsat — & = 0, 4.5
s (4.5

AL S o L o
(ZTWQ + gTﬁlﬁQ + 1) - +lPo —iRou, = 0. (4.6)

For the sake of consistency, the variables here are re-scaled in terms of the hydrodynamic
time scale 7, in order to work only with dimensionless variables and further being able to
properly compare the results derived in this chapter with the previous ones. Furthermore,

these equations can be written in the following matrix form

A A 8 ~242 N ot
( T 4 35 TR + 1 —Am ) ( 2ot Fo ) =0, (4.7)

Sl
ou'|

which leads to the following dispersion relation

.8
A (mQ PR 1) _ iR =0, (4.8)
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Note that if the quadratic term inside the parentheses — which corresponds to a third-order
contribution — is set to zero, one recovers the dispersion relation satisfied by the transverse
modes of Israel-Stewart theory considering only dissipation via shear-stress, see Eq. (2.62).
The linear stability of Israel-Stewart theory in this regime is already known and has been

carefully analysed in Chapter 2.

The next step is to analyze whether the modes from the third-order formulation
proposed in Ref. [56] are linearly causal and stable, and if the occurrence of additional
terms in the equation of motion for the shear-stress tensor brings new constraints for this
theory. Naturally, the first case that will be studied is when perturbations on a background
fluid at rest are performed. In this case, the dispersion relation associated to the transverse

mode becomes simply
8 .. .
& (m@ otk 4 1) _i?—o. (4.9)
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Figure 23 — Imaginary and real parts of the transverse modes of Israel-Stewart theory
(solid black lines) and parabolic third-order fluid dynamics (red dashed lines)
for perturbations on a static background fluid, considering 7, = 5 [64].

The solutions of this equation are

, (4.10)

222 8 4 7.2.2
+ 2822+ ¢ 1+ 2 3k2 —4k27ﬂ
27

and they are displayed in Fig. 23 (red dashed lines), where we also display the shear modes
of the Israel-Stewart theory (solid black lines). As can be seen from this plot, there is
the occurrence of one hydrodynamic and one non-hydrodynamic mode. However, unlike
the shear modes of Israel-Stewart theory, the non-hydrodynamic mode of the parabolic
third-order theory proposed in Ref. [56] does not saturate at large wavenumber, i.e., it
keeps increasing as the wavenumber increases. Note that the non-hydrodynamic mode

has the same behavior observed on the hydrodynamic mode of relativistic Navier-stokes
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theory, since it behaves as w ~ ik?, as k — oo. For perturbations on a static fluid, we note

that all modes of the parabolic third order theory are linearly stable.

In order to analyze a more interesting (intrinsic relativistic) case, we then consider
perturbations on a moving fluid. For the sake of convenience we once again assume that
the background fluid velocity is parallel to the wave-vector. In this case, the dispersion
relation is obtained by inserting Eqs. (2.29) and (2.30) into Eq. (4.8). As before, we discuss
the stability of the modes in the vanishing wavenumber limit, where necessary stability
conditions can be derived. Then, the dispersion relation associated to the transverse modes
reads
(YQ) |iT(y@) + 55%7%(7@\/)2 + 1| —i(y@V)? = 0. (4.11)
One can immediately note that perturbations on top of a moving fluid lead to the
occurrence of an additional mode — in particular, another non-hydrodynamic mode. This
is a remarkably problematic feature carried by parabolic formulations, first observed in the
relativistic Navier-Stokes theory in Chapter 2. This is already a hint that the parabolic
third-order formulation, such as the one proposed in Ref. [56], may be linearly unstable.

The non-hydrodynamic modes in the vanishing wavenumber limit are

351 32
= _ 2 Jay A A
Wshear — W (V - Tﬂ—) + \/(VQ — ’7'71,)2 + %‘/27—3

(4.12)

Since the term inside the square root in the above equation is positive definite and greater

than the term outside it, the mode w is always linearly unstable. This is exactly the

shear

additional mode that is not present when perturbing a static fluid. On the other hand,

+

Wshear

corresponds to a linearly stable non-hydrodynamic mode, already present in the
static background case. For the sake of illustration, the solutions of the dispersion relation,
Eq. (4.8), for perturbations on top of a moving are displayed in Fig. 24 as a function of

the wavenumber k.

Before proceeding, we shall point out that even though this analysis was performed
for £ = 0, it is enough to discredit the theory, as its linear stability must be valid for
any value of wavenumber. However, for the sake of completeness, we shall carry on the
linear stability analysis and dedicate the next section to study the linear stability of the

longitudinal modes as well.

The remaining, yet unnecessary, transverse equation can be obtained by projecting
Eq. (4.4) with A,,4p3,, leading to the dispersion relation associated to the fully transverse

component of the shear-stress tensor. In this case, we obtain

T

A 1
(mQ + 5%2;%2 + 1) 57" = 0. (4.13)
This equation is independent of the remaining hydrodynamic perturbations and can be

solved directly. It leads to the following dispersion relation,

A 1 1
Q=i (ﬁﬁ + ) : (4.14)

7 Tr



86 Chapter 4. Third-order fluid dynamics

I T = 01 ~
ol
n.u'_/-————’/
-20 .
-01
3 3 2 P~
3 -0 3- 5"
E £ E 03
-60 |
-4
-04
-80 V=01 -5—————————___V=0.4 amm—m— e _ _ V=09
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 P s =
k : .
20|
-,
-,
-
15| -
.
3 -,
<3 P
= 10 L
$ -,
o //
5 //
-
.
7

Figure 24 — Imaginary and real parts of the transverse modes for 7, = 5, considering three
different values for the background velocity V' =0.1, V = 0.4, and V = 0.9.

Clearly, if the term due to third-order contributions is neglected, we simply obtain a
linearly causal [the linear causality condition remains identical to the shear modes derived
in Ref. [30]] and stable transient mode that behaves such as  ~ i/7,. However, if such
term is taken into account, the dispersion relation becomes a diffusion-like equation, similar
to what is observed for the linear stability analysis of the relativistic Navier-Stokes theory
in Chapter 2, with an additional correction due to the third order contributions. This
is another strong evidence on the linear instability of the fluid-dynamical proposition of
Ref. [56].

Longitudinal modes

The longitudinal components of the Fourier projections of the equations of motion
from the conservation of energy and momentum were already calculated, see Egs. (2.35) and
(2.36). The longitudinal component of Eq. (4.4) is obtained by projecting this equation with
Kuky, see Chapter 2. Hence, since bulk is being neglected in this analysis, the longitudinal

equations are summarized as

A 0E

9) — ROt = 0 4.15
= ) K U” 5 ( )

. dé oT
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It is possible to write the equation for the longitudinal modes in the following matrix form

A A gAQAQ _-é/\ 57~TH
1T+ TR+ 1 —igk 0 p o
—k Q —03/% 5?7,” = 0, (418)
I~ A de
0 -k Q go+Fo

where non-trivial solutions are obtained when the determinant vanishes, leading to the

dispersion relation,
(€2 - 2i?) (m@ N FE 1> _Tar . (4.19)
3 35" 3
Note that if the term that contains third-order contributions is set to zero, one immediately

recovers the dispersion relation of Israel-Stewart theory, see Eq. (2.77).

As it was done so far in this work, it is convenient to begin the linear stability
analysis by looking at the modes for perturbations on a static background fluid. In this

case, the dispersion relation associated to the longitudinal modes, Eq. (4.19), then reads
“ A 9 9 4 A

<w2 - c§k2> (ZTW(,U + 3E 252 4 1> - gwk:Q = 0. (4.20)
The solutions of this equation are displayed in Fig. 25 (red dashed lines), where we also
display the longitudinal modes of Israel-Stewart theory (black solid lines), for the sake of
a quantitative comparison. There are two hydrodynamic modes, which have degenerated
imaginary parts, and a single non-hydrodynamic mode, as it can be seen in the left panel.
The non-hydrodynamic mode behaves as w ~ ik? in the large wavenumber limit, which
is a feature usually observed in the relativistic Navier-Stokes theory. Furthermore, all
three modes are linearly stable, since their imaginary parts are positive for any value
of wavenumber. As it was explicitly shown in Fig. 23 and Fig. 25 both transverse and

longitudinal modes of the parabolic third-order formulation presented here, respectively,

are well behaved for perturbations on a static background fluid.

We now consider the behavior of the longitudinal modes for perturbations on a
non-static background fluid. As it was done so far in this work, we consider a background
fluid velocity that is parallel to the wave-vector, which further leads to Eqs. (2.29) and
(2.30). Once again, we analyze analytically the modes at zero wavenumber, in order to
obtain fundamental constraints that may be satisfied for this theory. In this regime, the
dispersion relation associated to the longitudinal modes reads

9 43

[(00)? = 2aV Y] [ita(00) + Lr20aV7 +1) - 5

As it was also observed for the transverse modes, perturbations on top of a moving fluid

(Y@) (y@V)? = 0. (4.21)

display an additional non-hydrodynamic mode. Thus, there are two hydrodynamic modes

and two non-hydrodynamic ones, with the latter being given by

o 350 [(3% —4V? 3717 £ V(B — 4V2 — 37 V2e2)2 4 32 (] — 2V2)272)2
54~y 72V2(c2V2 - 1)

(4.22)
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Figure 25 — Imaginary and real parts of the longitudinal modes of Israel-Stewart theory
(solid black lines) and parabolic third-order fluid-dynamics (red dashed lines)
for perturbations on a static background considering 7, = 5 [64] and using
the speed of sound in the ultra-relativistic regime, ¢? = 1/3.

In order to obtain exclusively linearly stable modes, their imaginary part must be
positive for all possible values of the background velocity, which is guaranteed if both
numerator and denominator have the same sign. As it was assumed in the previous analyses,
it is required that neither the numerator nor the denominator change their signs for any
value of the background velocity in the causal interval, 0 < V' < 1, otherwise leading to a
problematic discontinuity in the modes. In this scenario, it is then straightforward to see
the denominator is always negative. Therefore, a stable mode is achieved if the numerator
is negative as well. However, since the term inside the square root is greater than the
term outside it, it necessarily renders the mode &7 linearly unstable. This mode can be
identified as the linearly unstable non-hydrodynamic mode that arises when perturbations
on top of a moving fluid are performed. The solutions of the dispersion relation for the
longitudinal modes, Eq. (4.19) are displayed in Fig. 26 for three different values of the

background velocity in the ultra-relativistic limit as a function of wavenumber k.

As it is expected from the analysis performed for the transverse modes, the new
non-hydrodynamic modes that appear when perturbations on a moving fluid are performed
are linearly unstable not only in the vanishing wavenumber limit, but also for any value of
k. On the other hand, the modes that are already present for perturbations on a static
background fluid remain linearly stable for any value of wavenumber and background

velocity.

As it was shown throughout this section, the theory proposed in Ref. [56] is not a
suitable framework to describe the dynamics of relativistic fluids. It is a parabolic theory
and was shown to be linearly unstable even in the vanishing wavenumber limit, a severe

problem that must be corrected in order to obtain a theory that can be applied in the
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Figure 26 — Imaginary and real parts of the longitudinal modes for 7, = 5, considering
three different values for the background velocity V = 0.1, V = 0.4, and
V = 0.9 in the ultra-relativistic regime ¢ = 1/3.

study of heavy-ion collisions. In particular, the theory was shown to be linearly unstable
for any values of the background velocity and wavenumber. This issue cannot be corrected

by changing the transport coefficients.

The aforementioned problem is similar to what is observed in relativistic Navier-
Stokes theory and, thus, one may employ an approach analogous to the one proposed by
Maxwell-Cattaneo [60, 61] in order to restore the hyperbolicity of the equation. In this
scenario, one would obtain an alternative third-order hyperbolic formulation in which these
problems should be no longer present. In the next section we analyze how is it possible to

correct this theory and the implications for the linear stability of doing so.

4.2 Hyperbolic third-order fluid dynamics

In the last section, the third-order fluid-dynamical formulation proposed in Ref. [56]
was shown to be linearly unstable. Furthermore, the occurrence of an additional linearly
unstable non-hydrodynamic mode for perturbations on a moving fluid can be understood
as an aftermath of the parabolicity of the equations. In this scenario, the following
question naturally arises: how can one derive a linearly stable third-order fluid-dynamical

formulation?

In this section we present a novel hyperbolic third-order formulation for the equation

of motion for the shear-stress tensor and further perform a linear stability analysis of the
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proposed equations in order to verify its stability. First, note that the third-order equation

of motion for shear-stress tensor was originally written as

N R R SRR vl v _ 2 (o) _ L A

T = QTFJ Twﬁ +35V (Tﬁvaﬂ' ) 7Va (TWV T ) 7Va (TWV s )—l— ,
(4.23)

with the dots denoting contribution of non-linear terms in the stability analysis that

follows. One way to render this equation hyperbolic is by converting all gradients of the

shear-stress tensor into an independent dynamical variable
Vier) s o (4.24)

with the brackets denoting the contraction with a triple symmetric traceless projection
operator onto the space orthogonal to the 4-velocity, V#r?V = Agg§v<aw5w. This

projection operator is a sixth-rank tensor, defined as follows

AR = é (A (AGAY + AUAY) + A (ALAY + AVAY) + Al (ALAS + AGA)))]

- 115 (A" (AMAgy + A Aw, + A0 Aag) + A (ALAg, + AfAL, + AUA L)
+ A (ARAg, + A5AL, + ALAL)] (4.25)
In this case, Eq. (4.23) is re-expressed in the following form
Taft W) ) = 2otV — 7 N ™ 4 (4.26)

where the dots once again denote all possible non-linear terms that do not contribute to a

linear stability analysis.

The next step is to impose that p*** is not simply proportional to gradients of the

shear-stress tensor, but instead relaxes to such quantities exponentially,
3
Top™ + pH = §npv<a7r’“’> + non-linear terms, (4.27)

with 7, being introduced as a novel relaxation time and 7, as an effective viscosity coefficient
associated to the new hydrodynamic variable p**. Then, Eqs. (4.26) and (4.27) are no
longer explicitly parabolic. Note that if we take 7, — 0 and 1, — 7, we recover the
original parabolic theory. Finally, we remark that an analogous equation of motion for the

new hydrodynamic current p*** can be derived from the Boltzmann equation, see ref. [64].
Next, we extend the previous linear stability analysis to also consider perturbations

in p,uu)\7
£ =c¢g+ 0, u =ul +out, T =, pr = gpA (4.28)

In this case, the linearized Eqs. (4.26) and (4.27) become

2
Te Do + o7t = n <V6”5u” + Viout — 3A6‘”8)\5u)‘> — 7.V (4.29)
1
7
(AL V06T + APV ST+ Agkvgawua)} . (4.30)
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The next step is to calculate the Fourier transform of Eqs. (4.29) and (4.30), obtaining

2
(iQ7, + 1) 67" = in (M&z“ + kYO — 3Aﬂ”m5£&) iTaka0p™,  (4.31)

(iQ7, + 1) 6p" = in,

2
o (ARl + AR + A”Ama&r”a)] L (432)

1
= (/&57‘%“” +RYF 4 H“&fr”’\) +

Note that, on the right-hand side of Eq. (4.31), only the projection k,0p** appears. Hence,

we shall only consider the equation of motion for this projected variable in our analysis,

. 2
(iQ7, + 1) kadp"* = _%np/izéfr‘“’ + 3—;77,, (Ko KFOTYY 4+ Kok"OTHY)

21
— SénpA“ Kaka0T* (4.33)

Similar to what has been performed so far, this analysis will be divided in terms of

transverse and longitudinal modes.

Transverse modes

The next step is to study the transverse degrees of freedom of the hyperbolic third-
order theory and analyze the linear stability of the corresponding modes. The transverse

component of Eq. (4.33) is obtained by the following projection

_@ e (2 N 8 np ~a
( K AV’”) FA0p 35407, + 157&' (4:34)

Therefore, inserting this equation in the partially transverse projection of Eq. (4.31), we

obtain

8 N,TeR? ) o7t s
i+ =T —ikou!, = 0. 4.35
( 35ZQTP+1 g0+ + ( )

Then, the equations that describe the transverse degrees of freedom of the novel third-order

theory can be written in a matrix form as

2 () 4 8 Nfak? iR o7
1T+ 55 07,11 T 1 Am oth | _ 0, (4.36)
—R Q o'y

In this case, the dispersion relation associated to the transverse modes read

8 Tx -

9! (ZTWQ L 8 FlR 1) ) (4.37)
35 ZQTP +1

One can straightforwardly recover the dispersion relation for the parabolic third-order

formulation by simply taking 7, = 7, and 7, = 0, see Eq. (4.8). In the last section, we

showed such formulation is linearly unstable.



92 Chapter 4. Third-order fluid dynamics

Once again, we begin looking at the transverse modes for perturbations on a static

background fluid, V' = 0. In this case, the dispersion relation, Eq. (4.37), reads simply

A A 1%2 R
& (m@ 8 Tellph” | 1) —ik?=0. (4.38)

The solutions of this equation are displayed in Fig. 27 in comparison to the transverse modes
of Israel-Stewart theory for perturbations on a static background fluid. The hyperbolic
third-order formulation has three transverse modes, while both the parabolic third order
formulation and Israel-Stewart theory have two transverse modes each. Considering the
values for the transport coefficients employed here, the modes are found to be linearly
stable not only in the vanishing wavenumber regime, but also for any value of k. We note
that the additional mode observed in this case is non-hydrodynamic. Furthermore, while
the transverse modes of the parabolic third-order theory have vanishing real parts for
perturbations on a static background fluid, the modes of the hyperbolic formulation have

non-zero real parts in such scenario.

05/~
0.4 \

N - 1

0.2 = b
\ _________

0.1 - .5 B
-
-/, - — — Hyperbolic third-order =~ ~ _
-~
0.0 1 —— Israel-Stewart =~
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

k k

Im (W

Figure 27 — Imaginary and real parts of the transverse modes of Israel-Stewart theory
(solid black lines) and hyperbolic third-order fluid dynamics (red dashed lines)
for perturbations on a static background fluid, considering 7, = 7, = 5 [64]
and 7, = 2.

We now consider the case of perturbations on a moving fluid. This case is usually
more interesting since instabilities in fluid-dynamical theories are usually displayed by
such perturbations. Once again, we assume that the background fluid velocity is parallel
to the wave-vector. Furthermore, for the sake of simplicity, we analyze the stability of
these modes in the vanishing wavenumber limit, k£ = 0, which corresponds to homogeneous
perturbations. In this case, the dispersion relation for the transverse modes of the hyperbolic
fluid-dynamical formulation, Eq. (4.37), simply reads

8 Tailp(Y0V)?

0 |17 (Y — T T 1| —i(yOV)2 = 0. 4.39
90 |i7(92) + g TR 1| —i(aY) (439)
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As it was also observed for perturbations on a static fluid, there is one hydrodynamic

mode, and two non-hydrodynamic modes. The latter can be written as

n i [Fe = V2 G+ 5 — V224 220, V2 4 45,(V2 — 7,)

w = —
shear ~ [~ 8 ~ ~
27y To(Tr = V) = 5207 V2

(4.40)

These modes are stable if their imaginary part is positive, which is guaranteed if both
numerator and denominator have the same sign. Once again, we impose neither change
their signs for any causal value of the background velocity V', otherwise resulting in a
discontinuity in the modes. We note that both the denominator and the numerator are

positive for V' = 0. Thus, they must remain positive for all physical values of velocity.

In order for the denominator to be positive for 0 < V' < 1, the transport coefficients
must satisfy,

. L8
(Fr = D)7 > 3 Talp. (4.41)

Furthermore, in order for the numerator to be positive for all physical values of velocity,

the relaxation times must satisfy the condition
Te + 7, > 1, (4.42)

which guarantees that the term outside the square root in the numerator is always positive.
We note that this constraint reduces to the linear causality and stability conditions obtained
for Israel-Stewart theory, Eqgs. (2.68) and (2.71), respectively, if 7, = 0. However, we further
remark that the stability condition (4.41) forbids this limit — a linearly stable theory can
only be obtained if 7, is non-zero. Finally, note that conditions (4.41) and (4.42) combined
guarantee that the square root in the numerator, if real, is always smaller than 7, +7, — V2,
leading to a stable transverse mode. If the square root in the numerator is not real, then

it does not contribute to the stability of the mode.

For the sake of illustration, the transverse modes are displayed as function of
wavenumber in Fig. 28, considering three values for the background velocity and transport
coefficients that satisfy the linear stability conditions for the transverse modes, Eqs. (4.41)
and (4.42). Here, one can see that, for perturbations on a moving background fluid, the
imaginary part of the non-hydrodynamic modes (upper panels) are no longer degenerated
for large values of the wavenumber, a behavior also observed in Israel-Stewart theory, see
Chapter 3.

In Fig. 29 we display the transverse modes of the theory considering values for
the transport coefficients that violate the linear stability condition, Eq. (4.41), for a
background velocity of V' = 0.9. Here one can easily identify the occurrence of a linearly
unstable (non-hydrodynamic) mode. Note that the unstable mode is also acausal, as it can
be seen by looking at its real part. As it was mentioned several times throughout this work,
causality and stability are usually related and must be satisfied simultaneously. However,

in this analysis we shall not study the linear causality of the novel third-order theory.
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Figure 28 — Imaginary and real parts of the transverse modes for 7, = 7, = 5, 7, = 2,
considering three different values for the background velocity V = 0.1, V = 0.4,
and V' = 0.9, respectively
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Figure 29 — Imaginary and real parts of the transverse modes for 7, = 7, = 5, 7, = 1,
considering the background velocity as V' = 0.9.

The analysis developed in this section is restricted to the transverse modes of this
theory. Therefore, the next step is to analyze the effects of the inclusion of the novel
transport coefficients on the longitudinal modes of the theory and the constraints they

must satisfy in order to be linearly stable.
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Longitudinal modes

We now analyze the case of the longitudinal modes. The longitudinal component

of Eq. (4.33) is obtained by contracting it with x,k,, thus leading to

. V ~ v 9‘ ~
(iQ7, + 1) (“:*; ) A0 = — 25T (4.43)

Inserting this result in the longitudinal projection of Eq. (4.31), we obtain

A9 D,TRR? or i
i+ =T 11 — —Rouy = 0. 4.44
( 35007, + 1 ) s+h 3 449

It is possible to write the equation for the longitudinal modes in the following matrix form

e gﬁpi—ﬂ"%2 P 57~TH
”—WQ + 35 Q7,41 +1 L3k 0 eo+Po
-k Q —Cg,% (57]” = 0. (4.45)
N A de
0 —R Q —=R

Therefore, the dispersion related to the longitudinal degrees of freedom of the hyperbolic

third-order formulation introduced in this chapter reads

~ ~ & H R2 47 ~
(@2 - %) (zmz 4 ) TR 1) 2oz =o. (4.46)
3507, + 1 3

Again, one can straightforwardly recover the dispersion relation for the longitudinal
modes using the formulation developed in Ref. [56], Eq. (4.19), by simply taking the novel
relaxation time to zero, 7, = 0 and the viscosity coefficient to be 7, = 7. In particular,
the dispersion relation associated to the longitudinal modes of the Israel-Stewart in the
absence of coupling, see Eq. (2.77), is immediately recovered if both of these transport
coefficients are set to zero. Once again, the inclusion of a relaxation term in the equation
for the hydrodynamic current p**, see Eq. (4.27), leads to the a dispersion relation one
order higher than the one obtained for the parabolic theory. However, in the present case,
the number of modes does not increase when considering perturbations on top of a moving

fluid — which was previously observed for the transverse modes of the theory.

Once again, we first look at the longitudinal modes of the theory for perturbations
on a static fluid. In this case, the dispersion relation associated to the longitudinal modes,
Eq. (4.46), is written as

[ 9 Tk’ 40, 5
N2 2)2 PO+ ——CPr ) - k% =0. 4.47
G Tt S, 11 3" @47

The solutions of this equations are displayed in Fig. 30 in comparison with the corresponding
longitudinal modes of Israel-Stewart theory, and are found to be linearly stable for the

values of the transport coefficients employed here.
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Figure 30 — Imaginary and real parts of the longitudinal modes of Israel-Stewart theory
(solid black lines) and hyperbolic third-order fluid dynamics (red dashed line)
for perturbations on a static background fluid, considering 7, = 7j, = 5 [64]
and 7, = 3 in the ultra-relativistic regime, ¢? = 1/3

Next, we consider the longitudinal modes for perturbations on a moving fluid. In
this case, we assume that the background velocity is parallel to the wave-vector, thus QO
and & are written in the form depicted in Eqs. (2.29) and (2.30). Moreover, for the sake
of simplicity, we analyze the modes in the vanishing wavenumber limit, a case in which
we can obtain necessary linear stability conditions the hyperbolic third-order formulation
must satisfy. In this case, the dispersion relation associated to the longitudinal modes,

Eq. (4.46), can be written as
(AB+47,V?) (7@)* +i (3AC — 4V?) (7@) + 3A = 0, (4.48)

where the following variables were introduced

A = 1-c2V3 (4.49)
B = 3, (?iﬁpw - %p) , (4.50)
C = %47, (4.51)

There are two hydrodynamic longitudinal modes, which are linearly stable in this
regime, and two non-hydrodynamic longitudinal modes. The stability of the latter modes is
not guaranteed and must be analyzed. The explicit form of the non-hydrodynamic modes

is

BAC — 4V & \/(BAC — 4V?)2 + 124 (AB + 47,172)
- 2y (AB + 47,172) ’

Therefore, these modes of the novel third-order theory are stable if both the numerator

(Di

(4.52)

and denominator have opposite signs, leading to a positive imaginary part of the modes.

Once again, we make the assumption that neither the numerator nor the denominator
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change their signs for any causal value of the background velocity V', otherwise leading
to a non-physical discontinuity. Taking the background fluid velocity to be zero, V =0,
one can see that the numerator is positive definite, and thus the denominator must be
negative. The latter is guaranteed as long as the following inequality is satisfied,

. >§A R 1—03
T gs T (1= 2y — 4

(4.53)

In the ultra-relativistic limit, i.e., when the speed of sound is given by ¢? = 1/3, this
relation further simplifies to
9
(T = 2)7, > 3 Tallp. (4.54)

As it was also observed when analyzing Israel-Stewart theory, both in the absence and
in the presence of diffusion-viscous coupling, the linear stability condition obtained for
the novel relaxation time from the longitudinal modes, Eq. (4.54), is stronger than the
constraint derived from the transverse modes, Eq. (4.41). The next step is to evaluate the

condition that a positive numerator implies.

First, we note that, in order to obtain linearly stable modes, the term inside the
square root in the numerator must be either: positive and smaller than the term outside,
or negative. Both conditions are guaranteed by imposing 3.AC — 4V? > 0. Naturally, this
constraint must be valid for any physical value of the fluid velocity, V. In this case, the
strongest condition possible is obtained considering the maximum value for the background

velocity, V' = 1. Then, we have
3(1— ) (7 +17,) >4, (4.55)
which, in the ultra-relativistic limit, simply reduces to
Tr + 7, > 2. (4.56)

Note that the stability conditions derived above reduce to the causality and stability
conditions derived for Israel-Stewart theory, Eqs. (2.83) and (2.86), in the limit of vanishing
7, and 7),. Nevertheless, we remark that simply taking 7, = 0 is forbidden by Eq. (4.54).

The solutions of Eq. (4.46) for perturbations on a moving fluid are displayed
in Fig. 31. In these plots, we only considered values for the transport coefficients that
satisfy the linear stability conditions derived in this section. In this scenario, we note that
the modes are linearly stable beyond the vanishing wavenumber limit. Once again, as it
was also observed for the transverse modes, the degeneracy between the imaginary part
of the modes that occurs for large values of wavenumber disappears when considering

perturbations on a moving fluid, as displayed in the upper panels.

For the sake of illustration and comparison, an example of linearly unstable

longitudinal modes is shown in Fig. 32. Here, we use values that violate the constraints
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Figure 31 — Imaginary and real parts of the longitudinal modes for 7, =7, = 5, 7, = 3,
considering three different values for the background velocity V' = 0.1, V = 0.4,
and V = 0.9, respectively, in the ultra-relativistic regime, ¢ = 1/3.

obtained in this section. As it was first observed for the transverse modes, the unstable
longitudinal mode is also linearly acausal, as can be seen by looking at its real part in the

right panel.
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Figure 32 — Imaginary and real parts of the longitudinal modes for 7, =17, =5, 7, =2
considering the background velocity as V' = 0.99.

Y

After carefully analyzing both transverse and longitudinal modes of the novel third-
order formulation, we concluded that the inclusion of the transport coefficients 7, and 7,
are essential to obtain a linearly stable theory. However, the novel transport coefficients

cannot assume arbitrary values in order to produce only linearly stable modes, and must
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be somehow constrained. In this chapter, we obtained such conditions from the dispersion
relation satisfied by perturbations on a moving fluid in the vanishing wavenumber limit.
Once again, as it was first observed when analyzing the linear stability of Israel-Stewart
theory, see Chapter 2, the stability conditions associated to the longitudinal modes are
stronger than the ones associated to the transverse modes of the theory. In summary, the

stability conditions are

27 1—¢?
Al > N Aﬂp S , 457
7 3T 1 - 2) — 4 (4.57)

4
3(1—c2)

S

Te+T, > (4.58)
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5 Conclusions and Perspectives

In this dissertation, we investigated the linear causality and stability of several
different relativistic fluid-dynamical formulations in the linear regime. We derived conditions
that the transport coefficients must satisfy so that these theories yield only causal and stable
modes. In the following, we briefly summarize each chapter and provide our conclusions

and future perspectives.

In Chapter 1 we presented two fluid-dynamical formulations: relativistic Navier-
Stokes theory and Israel-Stewart theory, both obtained from a phenomenological derivation
using the second law of thermodynamics. The main difference between them lies on the
definition of the entropy 4-current. While in the first, only up to first-order terms in the
dissipative currents are taken into account in the expression for the entropy, see Eq. (1.38),

in the latter up to second-order terms are accounted, see Eq. (1.53).

In Chapter 2, we performed a linear stability analysis of both theories around
global equilibrium. We reproduced the well known result that relativistic Navier-Stokes
theory is linearly acausal and unstable. We further rederived the linear causality and
stability conditions for Israel-Stewart theory considering dissipation only via shear-stress.
The linear stability condition for the shear relaxation time, 7., in this case is then given
by

Tﬂ‘ Z 277 bl
go+ Py

(5.1)

where 7 is the shear viscosity, g is the energy density and F, is the thermodynamic

pressure.

In Chapter 3, we present the main results of this dissertation. Here, we extended
the linear stability analysis of Israel-Stewart theory performed in Chapter 2 by further
including the effects of net-charge diffusion. In particular, we investigate the effects that
second order terms (that are linear in the dissipative currents) that couple one dissipative
current with the other, the diffusion-viscous couplings, can have on the linear causality
and stability of the theory.

We first considered the case where the coupling terms are zero. In this case, the
modes related to fluctuations of energy, momentum and net-baryon number decouple.
The dispersion relation for the modes related to fluctuations of energy and momentum
obtained here are identical to the ones first derived in Ref. [30] and explicitly reproduced
in Chapter 2. The linear stability condition for the shear relaxation time, 7., in this case

remains being 7, > 2017’7]30. Furthermore, we also obtained a novel linear causality and
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stability condition for the net-baryon diffusion relaxation time, 7,

K
w2 o (5.2)

where k,, is the diffusion coefficient and ng the baryon number density.

We then investigated how the introduction of the aforementioned coupling terms
affects these stability conditions. In order to be consistent with kinetic theory calculations
and the derivation of fluid dynamics from the second law of thermodynamics, the product
of the coupling terms was assumed to be negative. We then showed that the linear stability
conditions for the relaxation times are not modified by the inclusion of the viscous-diffusion
coupling terms. Furthermore, we obtained a linear stability condition that must be satisfied

by the coupling terms themselves, ., and /,,, published in Ref. [59], given by

3 277 Kn
&rngnﬂ' <<7r_ )(n__> 53
| |_2 7 50+P0 7 npg ( )

Once more, it is crucial to emphasize that these conditions are obtained assuming ¢, ¢,, < 0.
However, we showed some example that the system can be stable for £,,¢,, > 0, but these

cases were not studied thoroughly.

Although these are novel results which constrain the values the transport coefficients
can assume, in particular the diffusion-viscous couplings, they are obtained considering a
vanishing bulk viscosity and can be generalized when such dissipative current is taken into
account as in Ref. [48]. However, it is not possible to recover the results displayed here
simply taking the bulk viscosity and relaxation time to zero in the analysis developed by
Olson in the aforementioned paper, otherwise leading to divergent equations. Therefore,
in order to obtain the linear causality and stability conditions explicitly in terms of the
hydrodynamic variables such as derived in Ref. [59], it is essential to include bulk viscous

pressure in the calculations from start. This task shall be performed in a future work.

In Chapter 4, we analyzed the linear stability of third-order fluid dynamics. The
parabolic third-order fluid-dynamical formulation for the shear-stress tensor proposed in
Ref. [56] was shown to be linearly unstable. In particular, there is the occurrence of an
additional unstable non-hydrodynamic mode for perturbations on a moving background
fluid for both transverse and longitudinal degrees of freedom of the theory. This problem

is similar to what was observed in relativistic Navier-Stokes theory.

We then propose a novel third-order theory introducing a new dynamical variable
" that couples to the shear-stress tensor. We then require that this new current satisfies a
relaxation equation. We derived the linear stability conditions the new transport coefficients

7, and 1), the relaxation time and viscosity coefficient associated to this novel dissipative
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current, shall fulfill. In terms of the hydrodynamic variables, these conditions are given by

2 Ui 27 2
[377r (1 — cs) - 450 n PJ To > 3elpTn (1 — cs> , (5.4)
4n
3(1 — ) (7 > . 5.5
( CS)(T +7—P) - €0 T PO ( )

A complete non-linear third-order fluid-dynamical theory was not explicitly derived
here and will be investigated in an upcoming work. Furthermore, we are also interested in
performing simulations using our hyperbolic formulation and further compare them with
results from the parabolic third-order theory and Israel-Stewart theory. In order to check
how the improvements to preserve causality and stability performed in this work shall
enhance the agreement with exact solution of the relativistic Boltzmann equation, we shall
investigate this theory within the framework of the highly-symmetrical boost-invariant

Bjorken expansion [71].
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APPENDIX A - Classification of partial

differential equations

In this dissertation, we have used the terms hyperbolic and parabolic to refer to
the linearized fluid-dynamical equations. However, we have not formally defined this
terminology. This is the purpose of this appendix, where we follow the discussion developed
in Refs. [57, 58].

Second-order partial differential equations can be divided in three different types
with very characteristic properties and solutions, namely elliptic, parabolic and hyperbolic.
Let us consider a linear differential operator of second order £ whose action on an arbitrary
function of two independent variables = and y, given by u = u(z,y), results in the most

general second-order partial differential equation
Llu] = atgy + 2bugy + cuyy + du, + euy + fu =g, (A.1)

with a, b, ¢, d, e, f and g being not simultaneously vanishing functions of the variables x
and y. The first three terms that contain second-order derivatives are called the principal
part of the equation, as they essentially carry the properties of its solutions. It is possible
to define another linear differential operator L, that accounts only the principal part of

the equation above. In this case,
Lolu] = atiyy + 2buyy + Cly,. (A.2)

The different classes of partial differential equations are carried by the relations between

the coefficients a, b and c. In particular, a partial differential equation is

e elliptic if ¥* — ac < 0 (e.g. the Laplace equation);
e parabolic if * — ac = 0 (e.g. the diffusion equation);

e hyperbolic if b* — ac > 0 (e.g. the wave equation).

Note that these relations were obtained based on considering two independent
variables. However, a generalization for the case with N independent variables can be
straightforwardly extended. In such case, it is necessary to analyze the elements of the
matrix formed by the coefficients of the second-order derivatives. If the eigenvalues of such
matrix are all negative or all positive, the equation is elliptic. If at least one is zero, it is
a parabolic equation. If there is at least one positive (negative) and the rest is negative

(positive), it is a hyperbolic equation.
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In this dissertation, we actually determine the parabolicity of partial differential
equations by comparing the highest order of the spatial and time derivatives in the
equations. If there are spatial derivatives of higher order than the time derivatives, we say
the equation is parabolic. This is consistent with the definitions presented above. If the
highest order of the time derivative is larger than the highest order spatial derivatives,
then we refer to the equation as hyperbolic. For the equations of motion discussed in this

dissertation, this turns out to be true.
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APPENDIX B - Tensor decomposition

It is always possible to decompose an arbitrary tensor in two parts: one parallel
and the other orthogonal to a given normalized 4-vector, e.g., a*, which is normalized by
definition a,a* = £1. Such 4-vector may be, for instance, the 4-velocity of a fluid, the wave
4-vector, and so on. Thereby, the projection operator A*” is defined as a mathematical

object whose purpose is split parallel and orthogonal terms to the 4-vector a*. Therefore

w v
A’“’:g“”—aa

(B.1)

ara

This tensor acts projecting 4-vectors onto the orthogonal space to a*, and one can
straightforwardly notice that A*a, = A*a, = 0. Therefore, an arbitrary tensor A" can

be expressed in the following form
AP = AHCLN + Ai, (BQ)

with A = a,A* and A = A" A, being the parallel and orthogonal parts of A* with

respect to the 4-vector a* respectively.

An analogous analysis can be extended to the case of an arbitrary second-rank

tensor B*”. In this case, an extremely convenient decomposition has the following form
B" = Bja"a” + ot'a” + o”a" — BAM + oM, (B.3)

where the following definitions have been employed

1
axar

aua, B, ot =

loa v v « — 1 «
| = v Ata,B%, oM = ALIBYP, B = —gAaﬂB f.(B.4)

with ALS = LARAY + SABAY — LA™ A5 being the traceless symmetric projection

operator. Here, B) is the component that is parallel to B*” on both indices, o/ is a
partially orthogonal 4-vector, o is a symmetric traceless second-rank, while all the trace

information is carried by the term f.
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