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Abstract. We present an update on our determination of the electromagnetic form factors
and axial charge of the nucleon from the Nf = 2 + 1 CLS ensembles with increased
statistics and an additional finer lattice spacing. We also investigate the impact of O(a)-
improvement of the currents.

1 Introduction

The charges and form factors of the nucleon encode important information about nucleon structure,
such as the spatial distribution of charge and quark spin within the nucleon. From both a theoretical
and experimental point of view, the electromagnetic form factors and axial charge of the nucleon are
especially important: electromagnetic scattering processes are the most important experimental probe
of nucleon structure, and the axial charge is known to high precision from nuclear β decay, making its
accurate prediction from first principles a crucial benchmark for lattice QCD. Moreover, the persistent
discrepancy between the muonic and electronic determinations of the proton charge radius, and the
long-standing difficulties of lattice simulations to reproduce the experimental value of the axial charge
make lattice determinations of these quantities with fully controlled errors particularly relevant.

Nucleonic charges and form factors are known to be very difficult observables on the lattice,
since they suffer both from an exponentially decaying signal-to-noise ratio and from large excited-
state contamination, the combination of which makes it difficult to control statistical and systematic
errors at the same time. A variety of methods are therefore necessary to obtain reliable results, both
by increasing the statistical accuracy of the data at affordable cost, and by eliminating excited-state
contamination as far as possible.

Here we present an update on the Mainz effort [1, 2] to measure the electromagnetic form factors
and axial charge of the nucleon on the Nf = 2 + 1 CLS ensembles with controlled statistical and
systematic errors.
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2 Observables and Methods

2.1 Observables

The isovector nucleon matrix elements of the vector and axial vector currents Vµ(x) = ψ(x)γµψ(x) and
Aµ(x) = ψ(x)γµγ5ψ(x) can be decomposed in terms of the Pauli and Dirac form factors F1 and F2,
and the axial and induced pseudoscalar form factors GA and GP, respectively:

〈
N, p′, s′

∣∣∣Vµ(0)
∣∣∣N, p, s

〉
= ū(p′, s′)

[
γµF1(Q2) +

σµνQν
2mN

F2(Q2)
]

u(p, s),

〈
N, p′, s′

∣∣∣Aµ(0)
∣∣∣N, p, s

〉
= ū(p′, s′)

[
γµγ5GA(Q2) − iγ5

Qµ
2mN

GP(Q2)
]

u(p, s).

Here we study the Sachs electromagnetic form factors GE and GM, which can be written in terms of
the Pauli and Dirac form factors as

GE(Q2) = F1(Q2) − Q2

4m2
N

F2(Q2),

GM(Q2) = F1(Q2) + F2(Q2),

and the axial charge, which is given by the axial form factor at zero momentum transfer, gA = GA(0).

2.2 Improvement

We use the O(a)-improved isovector vector and axial vector currents,

A12
R,µ(x) = ZA(g2

0)
(
1 + b̃Atr(aMq) + bAam12

) (
A12
µ (x) + cA(g2

0)∂̃µP12(x)
)

Vc,12
R,µ (x) = Vc,12

µ (x) + cc
V(g2

0)∂̃νT 12
µν (x)

in the notation of [3] where Vc,12
µ (x) is the point-split vector current which satisfies a lattice vector

Ward identity, and consequently whose charge is correctly normalized. The non-perturbative deter-
mination of the factors ZA and cA has been performed in [4, 5], while bA and b̃A have been computed
non-perturbatively in [3]. The improvement coefficient cV has been estimated non-perturbatively by
imposing the improvement condition for Nf = 3 Wilson fermions derived from chiral Ward identi-
ties [6]

∫
d3y 〈δS 12A23

R,i(y
0, y)V31

i (0)〉 =
∫

d3y 〈Vc,13
R,i (y0, y)V31

i (0)〉

where

δS 12 = −
∫ tb

ta
dx0
∫

d3x
(
2m12P12

R (x) − ∂µA12
R,µ(x)

)

and for any ta < y0 < tb and any m3 > 0. The resulting preliminary value are cc
V = 0.23(3), 0.41(3) for

β = 3.4, 3.55 respectively. The tree-level value cc
V = 0.5 is used for β = 3.7.
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Table 1. CLS ensembles used in this work

Ensemble a [fm] mπ [MeV] L/a mπL Nmeas per ts ts/a

H102 0.086 350 32 4.9 7988 {12, 14, 16}
H105 280 32 3.9 55348 {12, 14, 16}
C101 220 48 4.7 33344 {12, 14, 16}
N200 0.064 280 48 4.4 20412 {12, 14, 16, 18, 20, 22}
D200 200 64 4.2 32672 {16, 18, 20, 22}
J303 0.05 280 64 4.1 5840 {20, 22, 24, 26}

2.3 Gauge Ensembles

We use the lattice ensembles listed in table 1 in this work, which were generated as part of the Coor-
dinated Lattice Simulations (CLS) effort [7] using Nf = 2 + 1 dynamical flavours of O(a)-improved
Wilson fermions, the tree-level Symanzik gauge action, open boundary conditions in time to com-
bat large autocorrelations in the topological charge when approaching the continuum limit [8], and a
twisted-mass regulator to prevent problems with (near-)exceptional configurations [9].

Since last year’s progress report [2], we have added an additional finer lattice spacing to better
control the continuum extrapolation, and significantly increased the statistics on most ensembles, as
well as implemented the O(a) improvement of the vector current (cf. section 2.2).

2.4 Measurements

We compute two-point functions

C2(t; p) =
∑

x
eip·xΓαβ

〈
Nβ(x, t)N

α
(0)
〉

(1)

and (using sequential propagators in the fixed-sink setup) three-point functions

C3,J((t, ts; q) =
∑
x,y

eiq·yΓαβ
〈
Nβ(x, ts)J(y, t)N

α
(0)
〉
, (2)

where the nucleon sources and sinks are Wuppertal smeared [10] using APE smeared links [11] to
improve the overlap with the ground state. Forming the ratios [12]

RJ(t, ts; q) =
C3,J(t, ts; q)

C2(ts; q)

√
C2(ts − t; q)C2(t; 0)C2(ts; 0)
C2(ts − t; 0)C2(t; q)C2(ts; q)

(3)

which were found to be more advantageous than possible alternatives [13], we can determine effective
form factors via

Re RV0 (t, ts; q) =

√
mN + Eq

2Eq
Geff

E (t, ts; Q2) (4)

Re RVi (t, ts; q) =
εi j3q j√

2Eq(Eq + mN)
Geff

M (t, ts; Q2) (5)

Im RA3 (t, ts; 0) = geff
A (t, ts) (6)
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for baryons polarized using Γ = 1
2 (1 + γ0)(1 + iγ5γ3).

In order to address the signal-to-noise problem of baryonic correlation functions, we employ all-
mode-averaging (AMA) with a truncated solver [14] in order to obtain large statistics at moderate
expense by computing

OAMA =
1

NG

NG∑
g∈G
O(appx) g +

1
Norg

Norg∑
f∈G

[
O f − O(appx) f

]
︸������������︷︷������������︸

bias correction

(7)

where the cheap approximate evaluations O(appx)g computed with the truncated solver are averaged
over NG source positions, whereas the precise evaluations Of used to correct for the bias in the ap-
proximation are averaged only over Norg � NG source positions. We note that AMA has been found
to be well compatible with the deflated SAP-preconditioned solver used in the openQCD code if the
parameters are tuned appropriately [15].

2.5 Excited-State Analysis

At short time separations t, ts, excited states contribute significantly to the effective form factors
through the spectral decomposition of the two- and three-point functions,

Geff
X (t, ts) = GX +

∑
n>1

(
ane−(En−E1)t + bne−(E′n−E′1)(ts−t) + . . .

)
. (8)

For the source-sink separations ts � 1.0 fm used in this work, the excited-state contributions are still
non-negligible at t = ts/2; in particular, the data show no evidence of reaching a reliable plateau.

To address this problem, and to check whether excited-state effects are under control, we use two
different methods, namely

• Two-state fits, where we perform an explicit fit assuming that the first excited state dominates the
deviations from a plateau, and the

• Summation method, which is based on eliminating the t-dependence using the summed ratios [16]

S X(ts) ≡
ts−a∑
t=a

Geff
X (t, ts) = C + tsGX + O(e−(E2−E1)ts ), (9)

which allows extracting GX from a straight-line fit to S X(ts) at moderate values of ts, albeit at the
expense of increased statistical errors.

For the axial charge gA, we also use a many-state fit ansatz [17] based on the observation that is this
case the coefficients an = bn are slowly varying and the energy levels E′n = En are close to those of
a free nucleon-pion system in order to enable an explicit fit incorporating contributions from many
excited states.

3 Results

We have extracted the Sachs electromagnetic form factors and axial charge using each of the methods
discussed above on each of the CLS ensembles listed in Table 1. The results from the two-state and
summation methods, and where applicable the many-states method, agreed within errors on most
ensembles, indicating that excited-state effects are not dominant (cf. Fig. 1).
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Figure 1. The pion-mass dependence of the axial charge using the two-state (left panel) and summation (right
panel) methods, respectively. Within errors, both methods agree.

Comparing the matrix elements for improved and unimproved currents, we find that improvement
moves the form factors closer to the experimental curves (cf. Fig. 2), but does not reduce the difference
between the final results obtained at different lattice spacings (cf. Fig. 3).

Overall, we find no appreciable trend in the lattice spacing for any of the observables studied here
(cf. right column of Fig. 4). Concerning the chiral trend, we do find an approach to the experimental
results for the form factors as the pion mass is lowered (cf. left column of Fig. 4). A full chiral and
continuum extrapolation is left for a future publication.

4 Outlook

We are working on finalizing our results for the electromagnetic form factors and axial charge of
the nucleon from the CLS 2 + 1 flavour ensembles. In particular, we plan to add additional pion
mass points at the finest lattice spacing in order to perform a fully controlled chiral and continuum
extrapolation. We are also looking into adding the generalized pencil-of-functions (GPOF) method as
an additional procedure for removing excited-state contaminations.

On the same set of ensembles, we have also measured the three-point functions required to deter-
mine a number of further observables, such as the axial form factors GA(Q2) and GP(Q2) at Q2 > 0,
and the scalar and tensor charges gS and gT, as well as some additional structure observables, including
the average quark-momentum fraction 〈x〉 [18].

Our current plans to extend the scope of this investigation include adding a point at the physical
pion mass [19], and in the longer term including isospin-breaking effects [20] and isoscalar form
factors.

Acknowledgements: Our calculations were performed on the “Clover” HPC cluster at Helmholtz In-
stitute Mainz, and on the MOGON-II HPC cluster at the University of Mainz. We thank our colleagues
in the Coordinated Lattice Simulations (CLS) effort [https://wiki-zeuthen.desy.de/CLS/CLS] for the
joint generation of the gauge field ensembles on which the computation described here is based.
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Figure 2. An illustration of the effect of the improvement of the vector current on the Sachs electric (top row) and
magnetic (bottom row) form factors (left column: unimproved, right column: improved). Improvement moves
the results closer to the Kelly parameterization.
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Figure 4. The Sachs electric form factor GE(Q2); the left column shows the chiral trend at a lattice spacing of
a = 0.086 fm, and the right column shows the lattice-spacing dependence at a pion mass of mπ = 280 MeV.
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