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Abstract

Eigensolvers have a wide range of applications in machine learning. Quantum eigensolvers have
been developed for achieving quantum speedup. Here, we propose a parallel quantum eigensolver
(PQE) for solving a set of machine learning problems, which is based on quantum multi-resonant
transitions that simultaneously trigger multiple energy transitions in the systems on demand. PQE
has a polylogarithmic cost in problem size under certain circumstances and is hardware efficient,
such that it is implementable in near-term quantum computers. As a verification, we utilize it to
construct a collaborative filtering quantum recommendation system and implement an
experiment of the movie recommendation tasks on a nuclear spin quantum processor. As a result,
our recommendation system accurately suggests movies to the user that he/she might be interested
in. We further demonstrate the applications of PQE in classification and image completion. In the
future, our work will shed light on more applications in quantum machine learning.

1. Introduction

The past decade has witnessed the great successes of machine learning in many areas [1]. However, with the
end of Moore’s law and the rapidly increasing demands for machine learning, it is necessary to develop new
computing machines [2—4]. Quantum computing is a potential candidate that has exceeded modern
supercomputers in the specific tasks of random circuit sampling and boson sampling [5, 6]. Quantum
machine learning (QML) implies that quantum computing may boost machine learning tasks using
quantum devices [7-11]. In QML, solving eigenproblems is often encountered in practical applications [12].
Many QML algorithms based on solving eigenproblems are designed, such as quantum recommendation
system (QRS) [13], quantum linear solver (QLS) [14—18], quantum singular value thresholding (QSVT)
[19], quantum support vector machine (QSVM) [9], and quantum principle component analysis (QPCA)
[20], but only some of them are realized in experiments, such as QPCA on 4 x 4 matrices [21, 22] and
QSVM on 2 X 2 training data [23]. QLS models are implemented in superconducting qubits [15, 24, 25],
nuclear magnetic resonance (NMR) [26, 27], and photonics [28, 29]. One of the main challenges is the
implementation of quantum phase estimation (QPE) because it costs many extra qubits to ensure high
precision [30]. Some variational quantum algorithms (VQAs) are also proposed to explore quantum
advantages on Noisy Intermediate-Scale Quantum (NISQ) devices, such as variational quantum eigensolver
and variational quantum linear solver [15, 31-37]. There are also some works that utilize linear combination
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of unitaries [38] or block encodings to solve linear algebra problems [39—41]. Recently, quantum resonance
transition (QRT) that merely needs two ancillary qubits and achieves squared acceleration over QPE has been
proposed to solve the eigenproblem of physical systems [42]. It is further developed to estimate the energy
spectrum of the H,O molecule on NMR [43] and to construct QPCA on the nitrogen-vacancy center [22].

In this work, inspired by QRT, we construct quantum multi-resonant transitions and propose parallel
quantum eigensolver (PQE) by designing its Hamiltonian dynamics. PQE directly solves a eigenproblem of
the projective summation of a vector b in the partial eigenspace of the hermitian matrix A in the given
weights, instead of individually solving each eigenvector. We develop PQE-based collaborative filtering QRS
and QLS in the time complexity O(xdRploylogN/¢) with the condition number , dimension N and sparsity
d, the number of non-degenerate eigenvalues R of matrix A, accuracy € and some assumption. We
implement a movie recommendation experiment on a four-qubit NMR quantum processor, where a 4 x 4
movie-scoring table (four users and four movies [44]) is considered. The experimental results show that the
recommender can predict the scores on unwatched movies and accurately recommend movies to user that
he/she might like. Finally, we numerically simulate the applications of PQE in data classification and image
completion.

2. Parallel quantum eigensolver

Given a matrix A, an N-dimensional vector b, and a function f{\;) where \;’s are partial or all eigenvalues
{A1,A2,..., AR} of A, how to obtain the solution

X = Zf()\k) (vk~b)vk, (1)

k=1

where R is the number of eigenvalues to be considered and vy is the eigenvector of A. It is the projective
summation of b in the partial eigenspace of A according to the given weight f(A\¢). f{\x) depends on specific
problems. For instance, QLS can be developed by f(\) = A~! [45]. Hence, studying how to solve this
eigenproblem will generate some QML applications. One direct idea is to use existing quantum eigensolvers
(20, 42, 46, 47] to individually solve each Ay and v, and sum directly in equation (1), but it consumes lots of
resources and cannot maintain the correct relative phase between individual |v) [48, 49]. PQE can directly
solve this eigenproblem without the need of diagonalization. It needs one probe qubit, an ancillary register
with r = [log, R| qubits, and a working system with # = [log, N| qubits. It includes critical steps as follows,
(a) Hamiltonian design. The (1 + r 4 n)-qubit Hamiltonian is constructed as

1 , ;
HPQEZEJZ@)I‘?( 1)1 @ Hy @ ID o)
+IN1RE" RA+ 0, @SR

c is the coupling parameter, I, is a 2 X 2 identity and o, , are the Pauli operators. The four parts of
equation (2) describe the Hamiltonians of probe qubit, ancillary register, working system, and the
interaction between them, respectively. H and S are diagonal matrices. H can trigger multi-resonant
transitions by encoding the eigenvalues of resonant energy levels into the diagonal elements iy = 1 — Ax. The
element s; in S controls the strength of the kth transition. Figure 1 illustrates the mechanism design.

(b) Dynamical evolution. The system starts from |¥);, = |0) Zf;ol |k)|b) /+/R and evolves under Hpq;,
where |b) = b/||b|| and |k) is the computational basis of the ancillary register. As shown in figure 1. Hpqg is a
sparse block matrix. In the subspace of {|0)|k)|vk),|1)|k)|vk)}, Hoo = Hi1 = 1/2 and Hyy = H7,y = csg. Its
evolution corresponds to a rotation from |0) |k) |vk) to |1)|k)|vk) with the strength of cs. There is still a small
transition from |0)|k)|v;) to |1)|k)|v;) for |v;)(j # k). Ignoring this effect for the moment, |¥);, evolves into

W1 (1)),

—it/2 Rl

) sin (eset) (vl b) k) [vi) + [ W) e (3)
k=0

e

— 1
VR

After Hadamard gates are applied on the ancillary register, the final state | ¥, (¢)) is

e~ it/2 R—1 .
) 1) |0>®'Zsm (esit) (vielb) [vi) 4 o159 ") else- (4)
k=0

at and a; are the factors in uninterested subspaces.
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Figure 1. Quantum multi-resonant transitions. (a) Block structure of Hamiltonian Hpqe. A j’ "=A+1/2—XandI= I? ", (b)

Energy levels of Hpqg in the subspace of ancillary register. b; = (v;|b) and cs is the transition strength from |0)|k)|v¢) to
|1)|k)|vk) when the resonance happens for each pair of |k) and |v).

f})\k)
the work system in the ancillary subspace of |1)|0)®". The final result is

[fA0%)]. Then we measure

(¢) Measurements. We set t = % and s, =

71/26 R—1

XpQe = R - Zf (M) (vl b) v - (5)

It differs from equation (1) by a constant factor. Compared with quantum single-resonant transitions [42,
50, 51], we add an r-qubit register that encodes the eigenvalues, and we design the Hamiltonian Hpqg and its
dynamics in PQE, such that PQE can trigger multi-resonant transitions simultaneously. Thus, it can directly
obtain equation (5) without diagonalizing the matrix A. Here, the main steps in the complexity analysis are
briefly presented. First, the success probability of the measurement at the end of the quantum circuit can be
easily calculated. It is,

fz R—1
min 2
m sz%jaxzbt)\k bk Rzﬁnangbk

where by = (v¢|b). This probability can be increased to a constant by O(1/+/P,,) times amplitude
amplification [52]. Second, the query complexity of implementing the evolution of a d-sparse Hamiltonian
H is O(#d||H||max) pre amplitude amplification. Third, if the error € is defined as the distance between the
PQE result xpq; and the ideal result x, the magnitude of error introduced by the off-resonant effect is

€ ~ ¢/|A\j — A|. When the interval between the eigenvalues is €2(1/polylogN), the total time complexity of
PQE will be O(||H||maxkdRB~>polylogN/e) with £ = fiax/fmin and 8 = 21152—01 b;. Similar to the previous
[14], we also assume that ||H||imay is bounded by some constant. We stress that the complexity of PQE
depends on the specific problems, for example, 5 ~ 1 and the final complexity will be O(xdRpolylogN/e) in
the QRS and QLS. More details can be found in supplement material [45]. Next, we demonstrate its
application in QRS [53].

3. Quantum recommendation system

In the various recommendation systems, collaborative filtering is the mainstream model which uses the
similarity between users or items to recommend the target items to the users [54]. The item-based
collaborative filtering recommendation system, as an example, contains three steps shown in figure 2. First,
collect the scoring table B with M users and N items. Second, compute the similarity between the ith and jth
items by dot product sim(i,j) = B.; - B;; with column-normalized B. Here, singular value decomposition [52,
55] is adopted to decompose B into a low-dimensional space and then compute the dot product matrix by
sim = Z,If: A2V VI with the first R maximum singular values Ay. V is the right singular matrix of B.
Third, calculate the prediction of a new-user vector b on the jth item by

W, = Zb -sim (4,5) =

i=1 k=1

M»

A2 (Vi b) Vo (6)

The system will recommend the item with the highest score to the user. Similar procedure can be made for
the user-based collaborative filtering recommendation system.

Obviously, equation (6) is the solution of equation (1), so PQE can realize the item-based QRS by setting
A = BiBand f(\) = M. The unitary operator e~#'5 can be implemented by the method in [9]. Besides, we
can also set
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(a) Rating Table B

Users Rates ITtems

New Item New User

Like

B,
ey

(b) I
Input: |b) Input: A = BTB or BBt

[ carpos R Call 2; = QRT (A)
Output: |x) Recommend

Figure 2. PQE-based quantum recommendation process. (a) Left: the user may like the item based on the rating of the item by
other users with similar tastes as the target user. Right: the user may like the item which has the high similarity with the other item
given a high score by the user. (b) A new rating vector from the new user or on new item is encoded by |b). The rating table is
encoded by A. Center box is the subroutine for finding the eigenvalues { A1, ..., Az} of A. If the eigenvalues are known in advance,
it can be omitted. PQE routine inputs the user-vector |b) and H to output the recommendation results |x).

Call PQE

0 B
St

to construct the Hermitian matrix containing the information of B in QRS with input state |b) o< [b, 0] .
Figure 2 presents the workflow schematic for the PQE-based QRS by taking the item-based case as an
example. Hpqg can be directly performed if the eigenvalues of A are known. Otherwise, some quantum
eigensolvers are needed to obtain the first R larger-weight eigenvalues before that. Here, we propose an
improved QRT to finish this task [45].

A normalized state vector |b) = > . bj|i)/||b|| encodes a new-user vector b. We feed Hpqg and |b) into
PQE and execute it. In the ancillary subspace of |1)|0)®", measuring the work system will output the result
equation (6) by a constant factor. Considering that scores are positive values and only the probabilities of

wave functions can be measured, we use an experiment-friendly definition as our result by

WP |x) o] = Diag(p}lm). Diag(pjl,10> ) are the diagonal elements of final density matrix ps in the

ancillary space of |1)|0)®". For ensemble quantum devices, like NMR Diag|( p]‘(m) can be inferred by

measuring the operators {I,0,}®" [56]. For quantum devices with projective measurements such as
superconducting circuits [57], WP is easily obtained on the computational basis of work qubits. Finally, we
can recommend the item with the highest score to the new user. The user-based case can be similarly
obtained using A = BB' and row-normalized B.

4. Experiments

As a verification, we implement a movie recommendation experiment on a four-qubit NMR Here, we
consider a small-scale user-movie scoring table with four users and four movies that is selected from
GroupLens [44],

M-1 M-2 M-3 M-H4

U-1 5 4 2

B=1] U2 5 5
U-3 1 4 4
U-4 5 5

The four-qubit sample is unlabeled iodotrifluroethylene (C,FsI) molecule dissolved in d-chloroform, in
which the half-spin nucleus (one '*C and three '°F) in the sample are used as the qubits. The structure and
properties of the molecule are shown in figure 3(a), where one '*C and three '°F form a four-qubit all-to-all
connected quantum processor. 1>C has both the abilities of individual address and readout, while '°F nucleus
lack the individual readout. This problem can be overcome by transferring '°F channel to '*C channel using
SWAP operation in experiments. Under weak coupling approximation, the internal Hamiltonian of this
4-qubit system is
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Control 4 v v v
Read v x x x
T, 33s 2.7s 26s 2.7s

BC 232125 2979 2755 39.2

9F, 49537.1 643 51.2
19F, 639045  -128.9

9F, Unit in Hz 84619.8
Us 11)

A
] .@

10)®* 10)+)1b) 1¥:) 1¥,)

U
— {50)

195, _| |

F, |

Initialization

Figure 3. (a) Molecular properties and the Hamiltonian parameters of the '*C-iodotrifluoroethylene (C,F5I). Top part: the
encoding, controllability, readability, and coherent time T of Q1-Q4. Bottom part: the diagonal and off-diagonal elements give
the chemical shifts v; and the scalar coupling strengths J; (in units of Hz), respectively. (b) NMR quantum circuit to realize
quantum recommendation system via PQE. C; and C, are used as probe and register qubits. C3 and C4 are work qubits to encode
|b) and |x). It starts from |0)®* which is prepared via the initialization method. U; and U, are applied to prepare |0)|+)|b) and
realize the dynamics of H. Last, we measure the state of the work qubits in the ancillary subspace |10).

(CY
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Figure 4. The found eigenvalues via QRT. (a) The measured eigenvalues for A = B' B with column-normalized B. (b) The
measured eigenvalues for A = BB with row-normalized B. The resonant peaks appear when wy is close to the eigenvalue \;. After
the rough resonance points are found, the delicate sweep with smaller ¢ is performed.

4

4
. T .
Hint = —Zﬂ'yja;—k Z E]jkcﬂzof, (7)

i=1 j<k,=1

where v; is the chemical shift and Jj is the J-coupling strength between jth and kth nuclei. The dynamic of
the spins is controlled by designing the shaped radio-frequency pulses, which can be used to realize the
evolution of quantum multi-resonant Hamiltonians.

First, we implement QRT to search for the first two eigenvalues that are necessary for the subsequent
procedure. It needs one probe qubit (**C) and two work qubits (first two °F). The Hamiltonian is
Haorr = we|0)(0]%% +[1)(1| ® A + co, ® IS, Starting from |0)©3, we first roughly locate the resonant
positions by setting ¢ = 0.1 and sweeping w, from 1 to 3 with the step Aw, = 0.1 and then accurately find the
eigenvalues by fixing ¢ = 0.01 and sweeping w, near resonance peaks. We optimize the shaped pulses by the
gradient ascent pulse engineering technique [58, 59] and implement Uqrr = e~ ex™ with 7 = 2 /¢ for each
pair of ¢ and w,. The width of the shaped pulses is 20 ms. The probability P,y of probe qubit is obtained by
Py =1—Tr(po})/8 [45]. Figure 4 presents the experimental results of sweeping wy for A = B'B
(item-based) and A = BB (user-based). For A = BB, there are two resonance peaks corresponding to two
eigenvalues \J = 2.263 (A = 2.264) and \;¥ = 1.700 (A = 1.699). AT = 2.316 (A = 2.316) and
ASP = 1.650 (A = 1.649) are estimated for A = BB'. The remaining smaller eigenvalues are outside the
frequency range of the scan.

Second, we perform PQE with A["* and \J™. It needs one probe qubit (}*C), one register qubit (**F;) and
two work qubits (the remaining '°F). To prepare the initial state |b), it usually needs some quantum devices
for a general |b) like quantum random access memory. Fortunately, the initial state |b) is usually sparse
enough in the QRS to be prepared from a product state through a few gates. In the item-based
recommendation, we consider the recommendation task for two new users U-5 and U-6 with vectors
|b)Y° o [5,0,1,0]T and |b)V® o [1,0,5,0]” respectively. They have watched M-1 and M-3 but did not watch

5
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Figure 5. The results of the movie recommendation experiment. (a) The user-based QRS: WP<E for four users on the new movies
M-5 and M-6. (b) The item-based QRS: WP for the users U-5 and U-6 on four movies. (c) The similarities between the
different movies or users. The error bars come from 8 repeated experiments with different shaped pluses, and the bars are the
numerical simulations. The similarities are displayed based on self-similarity. The light and dark bars represents watched and
unwatched movies, respectively.

M-2 and M-4. The task is to predict their scores on M-2 and M-4 and recommend the movie to them. In the
user-based case, we recommend one of two new movies M-5 and M-6 to the users. Their scoring vectors are
|bYM->  [5,0,2,0] and |b)M® o [2,0,5,0]7. U-1 and U-3 watched and scored new movies, but U-2 and U-4
have not watched them. The task is to predict the scores of U-2 and U-4 on new movies and recommend the
movie to them.

As shown in figure 3(b), the experiment includes three procedures. (i) Preparing the initial state.
Single-qubit rotations are applied on ?F; and 'F, to prepare the state |0)|+)|b) from |0)®*. The shaped
pulses are used realize them in experiments. (ii) Realizing the evolution operators. The shaped pulse is
optimized to implement the evolution e~/ similar to the above experiments. The last Hadamard gate
on F, is decomposed into single-qubit rotations. Totally, we engineer the implementation of the quantum
circuit with a 15 ms shaped pulse. (iii) Obtaining recommendation results. By using 7 /2 readout pulses and
collecting the NMR signal spectrum, we measure the expectation values of {I,0,}%* to infer the diagonal
elements Diag(p‘ 10)) [45]. Before the measurement, we also perform the amplitude amplification to increase
the probability Pyyy|o) [45, 60]. It is also realized with a 20 ms shaped pulse. Finally, the movie with the
highest score will be recommended to the user. Equation (6) shows that W will give information about
similarities between movies or users when the input |b) is a simple product state. Here, we also individually
feed product states |b) = |00) and |b) = |10) into both item-based and user-based QRS experiments. Their
results WfOQOE and WY respectively provide the similarities of M-1 and M-3 with the remaining movies

|10)
(item-based) and the similarities of U-1 and U-3 with the remaining users (user-based).

5. Results

Figure 5 presents the experimental results of both item-based and user-based QRS. The results agree well
with the numerical simulations, verifying the feasibility of the PQE. In the item-based QRS, the user U-5 has
watched the movies M-1 and M-3 and rated the former with a higher score. For unwatched movies, the
recommendation system rated M-2 higher than M-4. Thus, it will reccommend M-2 to U-5. It is an accurate
recommendation because both M-1 and M-2 are action movies [44]. Therefore U-5 is likely to appreciate
M-2. Experimental results also support this recommendation, of which M-2 has a higher similarity with M-1
than M-4. Based on a similar analysis, it will recommend M-4 to U-6. In the user-based QRS, U-1 and U-3
have watched M-5, but U-2 and U-4 did not watch it. The results show that U-2 will rate M-5 a higher score
than U-4 after watching M-5. Thus M-5 will be recommended to U-2. It makes sense that U-1 rates M-5
highly because the taste between U-1 and U-2 is similar. Namely, they may both enjoy action movies. With
the same logic, U-4 might prefer M-6 since U-3 rated M-6 highly.

The deviation between experimental and ideal diagonal elements is 1.56%, mainly from the
imperfections of pulses and decoherence. The simulation shows that their contribution is approximately
1.49% [45]. The accuracy of the found eigenvalues may affect the performance of PQE. In QRT experiments,
the found eigenvalues have a deviation of 10~ from the real one, and ¢ = 1072 in PQE. In such a setting, the
final state of PQE has a fidelity of over 0.998 [45].
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(a) 10°

0
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c

Figure 6. The numerical simulations for the extended applications in SVM and image completion. (a) The insimilarity of the
SVM solutions with ideal ones and an application example on the classification (Insert figure. Circle: training points. Triangular:
test points. Lines: SVM hyperplane). (b) The recovered images via classical SVT and our method from the 50%-sampled images,
respectively.

6. Other applications

Our work can be extended to solve other problems in machine learning, like classification and image
completion, by setting different functions f in PQE. We simulate the application in data classification by
using our method as a quantum linear solver and image completion by using our method to realize singular
value threshold (SVT).

For data classification, given the training data with M points {(Z,y;)|Z; € R",y; = +1,j = 1,...,M}, the
support vector machine (SVM) classifies a new point Zy,, into one of two classes. Here, y; = &1 is the label of
the points. The critical step of predicting sample classification is to solve the linear equation,

T
MY _a(9) a8 L N (8)
Ui y I K+~471

K is the kernel matrix with the element Cj = Z]T Z. ¥ = (1, . ,yM)T and T) =(1,...,1)T. PQE solves the
above equation by constructing the Hamiltonian of the composite system with one probe qubit, an

r = [log, R]-qubit register, and an n-qubit work system. The Hamiltonian is designed as equation (2) with
the function form f(\) = A~1. The system starts from the initial state |¥);, = [0) ® Zf;ol |k) ® |b). Here, |b)
is the normalized vector of (0,%). The Hadamard gates are applied on the register after time dynamics with

t = 1/c. Measuring the state of work qubits in the ancillary subspace of |1)|0)®" gives the result xyork. The

solution of equation (8) can be written as,
iR
< 12? ) =N- % * Xwork- (9)
PQE

Here, N is the normalized factor of (0,7)7. This solution can be further used to classify new data into one of
two classes [45]. Some classification results are placed in figure 6.

For image completion, SVT is one of the common methods in matrix completion. For a sampled matrix
B € RN*M it has the singular value decomposition B = Zf:] Akﬁkf/',t, where i and 7 are left and right
singular vectors corresponding to singular value Ay. The task of SVT is to recover a new matrix B’ with the
eigenvalue threshold A,

R

B'= f (M) i, f- (A) = max (A — A,,0). (10)
k=1

To solve this problem, we need to design a Hamiltonian, which is a little different from equation (2),
1
Hsvr = (20z®lﬁ®r+"1 +1){1| @ Hy @ E™

+ N1 @A+, @SRLE™) @ ™.

Here, A = BB'. S and H, are the diagonal matrices with the elements s; = arcsin I 5\1:") and hy =1— Ai,
respectively. The other next steps are the same as QRS. The initial state denotes the input matrix B, and the
completed matrix B’ will be encoded in the final state. Figure 6 presents the simulated results, and more
details can be found in supplemental information [45].

7
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7. Discussion and conclusion

In this section, we first make some discussions related to QRT. The time complexity of QRT is O(RdlogN/4)
with the precision § of eigenvalues [45]. It is worth noting that QRT is not the only option to solve the
eigenvalues. There are some quantum approaches here that can solve the eigenvalues, such as near-optimal
ground state preparation using a method called block coding [61], but this approach seems to solve directly
only for the ground state and requires more ancilla qubits. In this work, we propose a modified QRT and use
it to find eigenvalues, as it requires only one ancilla qubit and can easily obtain several large eigenvalues,
which is very friendly for our experiments.

We second discuss the complexity and error source of the PQE. There is still a small transition from
|0)|k)|v;) to |1)|k)|vj) even if ¢ < |Aj — Ag|, which introduces an error and this error € = ||xpqg — X|| is related
with ¢/|\j — Ax|. When the interval between the eigenvalues is O(1/ploylogN), the total complexity of PQE is
O(kdRB ™% polylogN/e) with sparsity d, 3 = Z]R:l |bj?, and K = finax/fmin [45]. Here, we assume that
|| H||max is bounded by some constant. Hence, the scaling behavior of PQE depends on the problem studied.
PQE-based QRS and QLS has the complexity O(xdRpolylogN/e€). Meanwhile, PQE still works when the
degenerate eigenvalues exist because resonant transitions are triggered according to eigenvalues instead of
eigenstates [42].

We third make a comparison with the previous QRS and QLS. Different from previous QRS [13], our
work is based on a collaborative filtering recommendation system rather than low-rank approximate matrix
completion. Besides, it solves the eigenproblem using the PQE proposed in this paper rather than quantum
phase estimation, which uses fewer qubits than the previous work. To our knowledge, the best collaborative
filtering QRS before PQE has linear scaling in N [62]. Thus, PQE for collaborative filtering QRS can reduce
the complexity to polylogarithmic scaling in N when R = O(logN). Compared with the HHL method whose
complexity is O(r?d*1ogN/¢), PQE has linear scaling in x and d, and it may achieve polynomial speedup
when R = O(logN). For QLS, it can be solved by some works based on linear combinations of unitaries [18,
63]. They need to calculate O(log(r/€)r /€ x klog(x/€)) different overlaps with O(xlog(x/€)) evolution
time, or compute a linear combination of so many unitary operators. In contrast to them, the number of
ancilla qubits 1 + [log, R] is independent of x and € in PQE. At the same time, PQE does not require the
measurement of many overlaps or summing over a lot of terms.

Last, we also compare the PQE with VQAs-based NISQ methods. VQAs have different structures and
complexities for different problems and currently suffer from some challenges in trainability and efficiency
[32-34]. PQE has a definite structure and complexity, and it does not need optimization, but its essential
constituent is the simulation of Hamiltonians. There are some efficient methods for realizing Hamiltonian
dynamics, such as Taylor-series methods [64—67], product-formula-based methods [68-72], VQA-based
methods [73-77], and quantum signal processing [78, 79].

This letter focuses on solving eigenproblems in QML. We propose PQE that can solve the eigenproblems
in parallel and further demonstrate the feasibility of PQE by constructing QRS and implementing the movie
recommendation experiments. The first experimental realization of QRS benefits from the implementable
dynamics and fewer qubit resource requirement. Our framework is friendly to quantum devices and it will
pave the way towards more practical applications in QML. Here, we numerically simulate the applications in
data classification (PQE is used as QLS) and image completion ( PQE is used to realize QSVT) [45]. The
images are accurately recovered even under the low sampling rate of 50%. Moreover, it is expected to develop
quantum fidelity estimators without full state tomography [80, 81] and the SWAP test [82], because the
overlap (vi|b) is computable in PQE. It is also interesting to explore quantum chemistry simulations [83].
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