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Abstract. The standard model (SM) has been a highly successful theory in explaining 
fundamental particles and their interactions among themselves. However, the SM has not yet 
explained several phenomena, and many beyond the standard model (BSM) have been 
introduced to solve these unexplained phenomena. One example is the bulk Randall-Sundrum 
(RS) model, which proposed a new higher dimensional mechanism for solving the hierarchy 
problem and predicted the existence of a hypothetical particle, bulk graviton. In this study, we 
investigate supervised machine learning methods to search for the bulk graviton decays into a 
pair of the SM Higgs bosons, and each Higgs boson decays into a pair of bottom anti-bottom 
quarks (GKK

* →hh→bbbb). We train machine learning models to classify events between 
GKK
* →hh→bbbb (signal) and QCD 4b multi-jet (background) processes. The evaluation metrics 

are calculated in the highest score to compare the classification efficiency between Adaptive 
Boosting and Neural Networks algorithms after performing feature importance and 
hyperparameter tuning techniques to optimize the models. The results show that the Neural 
Networks better classify our signal versus background events with the AUC score of 0.9836, 
compared to the Adaptive Boosting model of 0.9741. Furthermore, the signal significance is also 
predicted and scaled to the integrated luminosities of Run 2, Run 3 and HL-LHC, data-taking 
periods of the LHC. The predictions are obtained at 1.952, 2.858 and 9.037 for the Neural 
Networks and at 1.968, 2.881 and 9.111 for the Adaptive Boosting. 

1.  Introduction 
Many beyond the Standard Model (BSM) theories have been introduced to address several phenomena 
not explained by the Standard Model (SM), for example, hierarchy problems regarding the particle 
masses, neutrino oscillation, dark matter and dark energy, etc. An example of our interest is the bulk 
Randall-Sundrum (RS) [1], which predicts a rich spectrum of excited states of the graviton, the 
hypothetical particle responsible for mediating the gravitational force. In this model, the gravitational 
force is modified by an extra dimension, leading to a warped geometry that can explain the relatively 
weaker strength of gravity compared to the other fundamental forces. The RS model predicts a spin-2 
Kaluza-Klein graviton GKK* , a particle that carries gravitational force and has different energy states in 
the extra dimension. Throughout this analysis, a particularly interesting aspect in connection to the 
GKK* →hh→bbbb [2] the final state is an enhancement of the production cross-section of the graviton 
decays to the two Higgs bosons, corresponding to the SM mass of 125 GeV, and each Higgs boson 
decays to two b-quarks. The analysis focuses on the resolved channel, in which each of the four b-quarks 
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from the Higgs bosons leads to an individually reconstructed jet, a spray of quarks and gluons produced 
in high energy particle collisions. 

The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, of 
CERN, where two beams of hadron (either protons or lead ions) collide to create a massive amount of 
energy, up to 13 TeV, to study the origin of the Universe. Based on the latest experimental study by the 
CMS experiment at the LHC, a similar search was performed using the traditional cut-based analysis 
method with 2016-2018 data at 13 TeV, with respect to an integrated luminosity of 138 fb-1. The results 
show no significant excess of new exotic particles.  

Therefore, in this study, we are interested in developing an advanced analysis method to perform 
multivariate data analysis using a more sophisticated tool, namely machine learning techniques. This 
method is the most effective way of dealing with high dimensional data. We mainly study supervised 
machine learning models to classify signal and background events in the search for bulk graviton with 
a mass of 1200 GeV produced from proton-proton collisions at the LHC. Nonetheless, the mass of the 
bulk graviton is ambiguous, and we expect the trained models to be applied to any masses.  

2.  Methodology 
Simulated data (signal and background) are generated by MadGraph5_aMC@NLO 3.4.0 generator [3] 
to mimic hard scattering processes, occurring from proton-proton collisions at a center-of-mass energy 
of 13 TeV at the LHC, and supplemented with parton showering and hadronization. Particles from the 
collisions are then detected by the CMS detector using Delphes 3.5.0 [4], a fast detector response 
simulation framework.   

The characteristic signature of the signal process is the final state of two pairs of highly energetic b-
tagged jets, which are produced from the decay of the two Higgs bosons, initiated from the decay 
products of the bulk graviton as shown in figure 1 (left). Background contributions arise from the SM 
processes, dominated by QCD 4b multi-jet production [5]. This process leaves a similar signature of 
four b-tagged jets in the final state as the signal process, presented in figure 1 (right). The b-tagged jet 
is a cluster of reconstructed particles identified to come from bottom-quarks hadrons. 

              
(a) (b) 

Figure 1. (a) Feynman diagram of the signal process (GKK* →hh→bbbb) and (b) background process 
(QCD 4b multi-jet) 

After simulating MadGraph-Delphes data, at least 4 jets and two of them are b-tagged required for 
each event. Each jet should also have transverse momentum (pT) ³ 30 GeV and pseudo-rapidity (|η|) < 
2.4, the region where b-tagging is highly possible. Before training the models, we add labels of 0 and 1 
as target variables to all simulated events belonging to background and signal processes, respectively. 
The dataset contains 69 input features divided into 23 low-level and 46 high-level features. The low-
level features represent physics variables directly measured by the CMS detector. The high-level 
features, on the other hand, are calculated from the low-level features using four-momentum vector to 
reconstruct parent particles such as the Higgs bosons and the bulk graviton. Furthermore, we selected 
50 input features by scrutinizing characteristic differences between signal and background processes 
using histograms for a higher possibility of being classified more efficiently by machine learning. 
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The overall dataset is then separated into 80% training and 20% testing datasets. We balance a 
proportion of 0 (background) and 1 (signal) labeled events in the training dataset using the synthetic 
minority oversampling technique (SMOTE) [6]. This method uses interpolation to avoid the risk of 
majority-biased prediction in our machine learning models and creates synthetic data points between the 
two nearest data points joined by a straight line. The training data is further split into 80% training and 
20% validation datasets to validate the models and prevent bias before employing the models in the 
testing dataset. In this study, we are interested in two types of algorithms: Tree-Based Adaptive Boosting 
[7], and Artificial Neural Network algorithms [8]. Adaptive Boosting is a boosting method that 
sequentially builds a weak decision tree, the most basic model of Tree-Based algorithms that can be a 
base estimator for more complex ensemble methods and tries to correct the net error of the preceding 
tree. The Neural Networks model, on the other hand, resembles the human brain based on non-linear 
activation functions. It consists of node layers, including input, multiple hidden, and output layers. Each 
neuron connects to another neuron in the next layer and is assigned weights and biases. The well-known 
non-linear activation functions include rectified linear units (ReLU) and sigmoid. 

In addition, each input feature passes Gaussian standardization [9] with a mean value of 0 and a 
variance of 1, which is applied before the training. Finally, we build and train the two models using 
Scikit-learn [10] and TensorFlow [11] libraries in Python. The feature importance method is applied to 
reduce computational time and disk space while improving the predictive performance of both models. 
In particular, the permutation importance technique [12] is performed for Neural Networks by randomly 
shuffling the values of one feature at a time and measuring a decrease of model’s accuracy accordingly. 
This process is repeated for all features and the feature importance is ranked by their impact on accuracy 
values. On the other hand, the impurity-based feature importance [13] measures the reduction in the 
impurity of Adaptive Boosting by splitting each feature. Impurity refers to the degree of uncertainty in 
the classification in a decision tree node. The importance of given feature is then calculated as the total 
impurity reduction achieved by using the feature to split the data. 

The models are also optimized through hyperparameter tuning [14]. For Neural Networks, hidden 
layers, hidden nodes, dropout rate and learning rate are looped through several selected values to search 
for the best values which maximize model’s accuracy and AUC (area under Receiver Operating 
Characteristic (ROC) curves) scores [15]. The results show that a multi-layer perceptron with 2 hidden 
layers, each layer contains 100 hidden nodes, and 0.1 dropout rate and 0.001 learning rate in optimizer 
is the best set of hyperparameters. ReLU is selected as activation function for hidden layers and sigmoid 
function is applied to output layer to provide output score in terms of probability. Regarding Adaptive 
Boosting model, a maximum depth of base estimator of 200 and learning rate of 1.0 are selected to 
guarantee the best performance.  

Lastly, the evaluation metrics, including precision, recall, F1 score, and AUC scores, are calculated 
based on the two models' classification predictions from the testing dataset. Precision is the fraction of 
correctly identified signal events among all events identified as signals, recall is the fraction of correctly 
identified signal events among all actual signals, and the F1 score is the harmonic mean of precision and 
recall. Additionally, the signal significance is also predicted and scaled to the integrated luminosities of 
Run 2, Run 3 and HL-LHC, data-taking periods of the LHC. 

3.  Results 
Table 1 shows the top-ranked important features for Neural Networks and Adaptive Boosting models, 
resulting in different orders. The rank includes low-level features, such as number of jets (njets), number 
of b-tagged jets (nbjets), scalar sum of transverse momentum of all jets (ht), invariant mass of the first 
and second leading jets ordered by pT (mj1, mj2), transverse momentum of the first, second, third, and 
fourth jets (ptj1, ptj2, ptj3, ptj4), pseudo-rapidity of the fourth jet (etaj4), and a binary possibility of 
b-tagged jets of the first and third jets (btagj1, btagj3). There are also some high-level features in the 
rank which are di-jet invariant mass (m12, m13, m23), and transverse momentum of the di-jet (pt12, 
pt13, pt14, pt23). The variables of di-jet are calculated from a pair of jets, assuming they are the decay 
products of the Higgs boson. Additionally, the delta-R (dR) or difference in the azimuthal angle (ϕ) and 
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the pseudo-rapidity between the two leading jets is also used (dR13, dR14, dR23, dR24, dR34). Lastly, 
there is the transverse momentum of the four jets (pt1234), which is assumed to be a feature of the bulk 
graviton. 

Table 1. The top-ranked input features from Neural Networks versus Adaptive Boosting models. 

Model Number of input 
features Input features (ordered) 

Neural 
Networks 19 ht, mj1, dR23, pt14, mj2, nbjets, dR13, ptj2, m12, dR14, m23, 

m1234, ptj1, btagj3, ptj3, pt13, dR24, pt1234, pt23 
Adaptive 
Boosting 19 njets, ht, mj1, m23, m12, mj2, m14, pt13, nbjets, m13, ptj3, 

dR24, btagj1, etaj1, pt12, ptj1, ptj4, dR34, pt1234 

Comparison of the AUC scores from the two models considering the ranked input features on both 
training and testing datasets is shown in figure 2. In this study, we first calculate and compare the AUC 
scores for the two models by using the default threshold value of 0.5 (0.0) for Neural Networks 
(Adaptive Boosting), and the scores can obtain good predictions. Table 2 also indicates that Neural 
Networks yield the AUC score of 0.9836, while the Adaptive Boosting provides the AUC score of 
0.9741.  

Additional performance metrics including precision, recall and F1 score are further evaluated at 
various threshold values to seek for the optimal value of each model. The results from the highest F1 
score show that the cut value of 0.3794 is optimal for the Neural Networks model, while the Adaptive 
Boosting is optimal at the threshold of -0.0001 which is very close to the default value. In both cases, 
we found no significant difference of the AUC scores with the default threshold values.  

Moreover, the signal significance is also predicted and scaled to the integrated luminosities of Run 
2, Run 3, and HL-LHC of the LHC, as listed in table 2. By assuming a simple counting experiment and 
applying the best-cut value of 0.3794 for Neural Networks and -0.0001 for Adaptive Boosting, signal 
significances yield at 1.952, 2.858, and 9.037 for the Neural Networks and at 1.968, 2.881, and 9.111 
for the Adaptive Boosting. Figure 3 compares signal efficiency (blue), background efficiency (red) and 
signal significances as a function of the cut value of Neural Networks (a) and Adaptive Boosting (b) 
classifiers. The primary y-axis provides the efficiency values, while the secondary y-axis takes care of 
the signal significance. Note that the ranges of the cut value on x-axis are different among the two 
models. The cut values of Adaptive Boosting mainly gather around the default value of 0.0, while Neural 
Networks distribute along the value of 0 to 1. This is because the Adaptive Boosting uses a decision 
function which is the weighted sum of the predictions from all weak classifiers to produce output score 
or weight for each event. Therefore, the model is less confident in its predictions than the Neural 
Networks.    

 
Figure 2. ROC curve and AUC of Neural Networks (blue) and Adaptive Boosting (red) 
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Table 2. Comparisons of the AUC scores and signal significances for the integrated luminosities of Run 
2, Run 3 and HL-LHC of the LHC on the two models when predicting on the testing dataset. 

Model AUC 
Signal significance 

Run 2 Run 3 HL-LHC 

Neural Networks 0.9836 1.952 2.858 9.037 
Adaptive Boosting 0.9741 1.968 2.881 9.111 

 

  
(a) (b) 

Figure 3. Signal efficiency (blue), Background efficiency (red) and Signal significances for integrated 
luminosities of Run 2 (green), Run 3 (purple), and HL-LHC (magenta) as a function of the cut value 
of Neural Networks (a) and Adaptive Boosting (b) classifiers. The dashed vertical black line 
represents the best-cut value of each model.  

4.  Summary and discussion 
The results show Neural Networks and Adaptive Boosting models perform comparably well on our 
signal versus background classification. This is because both models can optimize their model 
parameters by learning from the error of prior predictions. The predictions of signal significance simply 
provide the degree of confidence in observing our signal in the simple counting experiment. Note that 
the uncertainties are not yet included and would remarkably affect the signal significances and final 
sensitivity. Subsequently, the classifiers generated by each model can be used to predict events from 
actual collision data and compare them with well-estimated background events to search for possible 
excess of the signals. More effectively, these models can be adapted for statistical analyses searching 
for the bulk graviton in a wide mass range and different decay channels of the Higgs boson. For example, 
the models can be trained for bulk graviton signals in the mass range of a few hundreds to thousand 
GeV, given they have functions for automatically monitoring and setting the parameters to the best 
performance. Then, the output classifiers are used to perform a maximum likelihood fit with the real 
data and search for any potential excess above the SM predictions. A selection of which algorithm will 
be based on the analysis’s preference and the sensitivity of the search. According to their structures, the 
Neural Networks algorithm will benefit for analyses with high similarity of background to signal events. 
While Adaptive Boosting is simpler and requires fewer computational resources.  

Acknowledgements 
This research has received funding support from the NSRF via the Program Management Unit for 
Human Resources & Institutional Development, Research and Innovation [B37G660013] and 
financially supported by Sci-Super IX fund from Faculty of Science, Chulalongkorn University. 
 



18th Siam Physics Congress
Journal of Physics: Conference Series 2653 (2023) 012032

IOP Publishing
doi:10.1088/1742-6596/2653/1/012032

6

 

References 
[1] Randall L and Sundrum R 1999 Large mass hierarchy from a small extra dimension Phys. Rev. 

Lett. 83 3370–73  
[2] CMS Collaboration 2018 Search for resonant pair production of Higgs bosons decaying to bottom 

quark-antiquark pairs in proton-proton collisions at 13 TeV J. High Energy Phys. 08 1–38 
[3] Alwall J et al 2014 The automated computation of tree-level and next-to-leading order differential 

cross sections, and their matching to parton shower simulations J. High Energy Phys. 07 1–
157 

[4] Favereau J D et al 2014 DELPHES 3: a modular framework for fast simulation of a generic 
collider experiment J. High Energy Phys. 02 1–26 

[5] Behr J K et al 2016 Boosting Higgs pair production in the bbbb final state with multivariate 
techniques Eur. Phys. J. C 76 1–31 

[6] Chawla N V et al 2002 SMOTE: synthetic minority over-sampling technique J. Artif. Intell. Res. 
16 321–57 

[7] Chengsheng T et al 2017 AdaBoost typical Algorithm and its application research MATEC Web 
Conf. 139 00222  

[8] Schmidhuber J 2015 Deep learning in neural networks: An overview Neural Netw. 61 85–117 
[9] Ali P J M and Faraj R H 2014 Data normalization and standardization: a technical report Mach. 

Learn. Tech. Rep. 1 1–6 
[10] Pedregosa F et al 2011 Scikit-learn: Machine learning in python J. Mach. Learn. Res.  12 2825–

30 
[11] Abadi M et al 2016 TensorFlow: Large-scale machine learning on heterogeneous distributed 

systems Preprint arXiv:1603.04467  
[12] Altmann A et al 2010 Permutation importance: a corrected feature importance measure 

Bioinformatics 26 1340–47. 
[13] Scornet E 2021 Trees, forests, and impurity-based variable importance in regression Preprint 

arXiv:2001.04295 
[14] Yu T and Zhu H 2020 Hyper-parameter optimization: A review of algorithms and applications 

Preprint arXiv:2003.05689  
[15] Bradley A P 1997 The use of the area under the ROC curve in the evaluation of machine learning 

algorithms Pattern Recognit. 30 1145–59 


