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Abstract

Towards Excited Radiative Transitions in Charmonium

by Cian O’Hara

In this thesis lattice QCD is utilised to investigate the spectrum of charmonium

and charmed mesons with the aim of working towards investigating radiative tran-

sitions between excited states in the charmonium spectrum. Results are presented

from a dynamical Nf = 2 + 1 lattice QCD study of the excited spectrum of Ds

and D mesons at a single lattice spacing with pion mass Mπ = 236 MeV, which

has been published in reference [1]. A robust determination of the highly excited

spectrum of states, up to spin J = 4, was achieved with the use of distillation

and the variational method. A comparison with earlier studies of the spectra on

lattices with heavier light quarks was performed and the spectrum was found to

have little dependence on the light quark mass. Results from an investigation into

radiative transitions in the charmonium spectrum are also presented. A number

of transitions are investigated and compared to experiment where possible. Three

point correlation functions with a vector current insertion are calculated for a

range of source and sink momenta allowing for the extraction of radiative form-

factors for a wide range of Q2 values. In particular, the transition J/ψ → ηcγ was

investigated and found to be consistent with previous lattice results.



Acknowledgements
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Chapter 1

Introduction

From as far back as the ancient Greeks, mankind has sought to understand the

building blocks of the material world in which we live. The idea that all matter

is made up of indivisible units dates back to the 5th century BC. Since then our

understanding of the nature of these atoms, from the Greek, atomon, meaning

indivisible, has gone through many paradigm shifts. Due to the work of many

experimental physicists, primarily Ernest Rutherford, John Cockcroft and Ernest

Walton, in the early 20th century, the modern idea of the atom comprised of

other more fundamental constituents, the electron, the proton and the neutron,

emerged. These physicists pioneered the idea of accelerating particles to very high

energies and smashing them together to see what they are made of.

Our current understanding of the fundamental constituents of matter dates to the

1960s when Murray Gell-Mann and George Zweig proposed independently the idea

of the quark. Motivated by the ideas of SU(3) flavour symmetry, or the Eightfold

Way, six quarks were envisioned and subsequently discovered over the course of

30 years, with the top quark being the last to be experimentally confirmed in 1995

[2, 3]). To this day, particle physicists around the world are building accelerator

experiments reaching higher and higher energies than ever before in an attempt

to further probe these fundamental matter particles.

The idea of a force between these building blocks dates to Issac Newton in the

sixteenth century. In the ”Philosophiae Naturalis Principia Mathematica” [4], he

introduced the gravitational force which acts between any pair of massive objects.

1
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In the 19th century James Clerk Maxwell united the ideas of elctricity and mag-

netism into the electromagnetic force. Then in the 20th century Albert Einstein

revolutionised our understanding of gravity yet again with his theory of general

relativity [5]. We now know of two other fundamental forces that govern the way

subatomic particles interact. The strong nuclear force, which binds quarks to-

gether in nucleons and the weak nuclear force which is responsible for radioactive

beta decay. In 1968 Sheldon Glashow, Abdus Salam and Steven Weinberg unified

this weak force with the electromagnetic force into the electro-weak force [6–8].

The Standard Model of particle physics is the name given to the current theory

describing the known elementary particles and the three aformentioned funda-

mental forces, the strong, weak and electromagnetic forces. Gravity, described by

Einstein’s general relativity, is as of yet, not included. It is proposed that all four

forces may unite into a single force at extremely high energies but such a theory of

everything is currently unknown. This would require a quantum theory of gravity,

which is well beyond the scope of this thesis.

Mathematically the Standard Model is described as a quantum field theory (QFT).

QFT was developed in the mid 20th century to unify quantum mechanics with spe-

cial relativity. In it the various fermionic matter particles are described as quanta

of an underlying operator valued quantum field. The forces between elementary

particles are transfered by gauge bosons, the quanta of a gauge field. The most

well known QFT is quantum electrodynamics, or QED. Established by physicists

such as Paul Dirac and Richard Feynman, QED describes how electrically charged

fermions, such as electrons and protons, interact. The force between these particles

is mediated by the photon, the gauge boson of the theory. Photons are massless

particles with no charge which means they do not interact with each other.

The QFT of interest for the strong interaction is quantum chromodynamics, or

QCD. Based on a non-abelian gauge symmetry, with symmetry group SU(3), it

describes how the six known quarks, named up, down, charm, strange, top and

bottom, bind together under the stong interaction, via exchange of gluons, to

form the hadronic matter observed in nature. The main difference between QCD

and QED is that, unlike the photon, the gluons are charged under the strong

interaction with colour charge. This is due to the non-abelian nature of the gauge

group and means the gluons interact amongst themselves, which gives rise to two

related concepts; confinement and asymptotic freedom.
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The fact that these gluons interact among themselves, leads to what is known

as colour confinement. This is the statement that no lone quarks or composite

hadronic particles with non-zero colour charge are observed in experiment; ie. the

quarks are bound inside composite particles. The simplest colour singlet arrange-

ments of quarks consistent with this notion can be grouped into two classes, known

as baryons and mesons, or collectively as hadrons. Baryons consist of three quarks

(qqq) while mesons are made of a quark and an anti-quark (qq̄). It also allows

for more exotic states such as tetraquarks (qqq̄q̄) or pentaquarks (qqqq̄q̄), in which

there is much interest [9]. These states of matter may potentially explain some

currently unexplained resonances seen in experiment. However, for the purposes of

this thesis we are primarily concerned with mesons containing a charm (c) quark.

The relative strength of the theories of QCD and QED can be encapsulated by

their gauge couplings. In the case of QED, the fine structure constant, α, describes

how strongly charged matter interacts with photons. At energy scales of the order

of a hadron mass this takes a value of approximately 1/137. Due to this relatively

small coupling, the theory of QED can be accurately described via a perturbative

expansion to all orders. Perturbative calculations have had enormous success in

calculating QED phenomena, such as the anomolous magnetic moment of the

electron, to extremely high precision [10].

On the other hand, the coupling involved in the strong interaction, αS, “runs”

inversely to the energy scale. This asymptotic freedom means that at high energies,

the strong force becomes weaker and quarks become essentially free. However at

the energy scale of hadrons, αS is of the order one. This strong coupling is where

the strong force derives its name. The fact that this is of the order one means that

hadronic interactions via the strong force cannot be accurately described using

perturbation theory. Because of this another method to investigate the hadronic

bound states of QCD is needed.

A typical QFT calculation is mainly concerned with calculating correlation func-

tions of observables. Feynman showed that these can be expressed as a path

integral. However it was found that naive calculations in QFT led to many catas-

trophic infinities arising. It was not until the ideas of regularisation and renor-

malisation appeared that these infinities were dealt with. Regulators such as

dimensional regularisation or Pauli-Villars regularisation have had much success

in the perturbatitive regime.
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The work presented in this thesis utilises lattice regularisation, introduced by Wil-

son [11]. The use of a lattice as a regulator to investigate the strong force is

the basis of the discipline of Lattice QCD. By discretising the theory of QCD on

a spacetime lattice the path integral can be estimated explicitly using computa-

tional methods, avoiding the need to use perturbation theory. This will allow us to

investigate the theory of the strong interaction at the hadronic scale where the cou-

pling is large and elucidate the spectrum of hadrons allowed by the theory. Lattice

QCD calculations are systematically improvable calculations from first principles

allowing for accurate comparison to experiment with well defined sources of error.

1.1 Charm Physics

Any theory of sub-atomic particles is only valid provided it can hold up when com-

pared to the empirically observed spectrum of states seen in experiment. With

decades of data from accelerator experiments measured, by the 1970s a large “zoo”

of experimentally observed particles were known. However it took until the in-

troduction of the idea of quarks that any pattern amongst this zoo was obvious.

Simple models, describing the various observed particles as strongly bound com-

binations of valence quarks had great success in explaining the observed spectrum

of states. The discovery of the J/ψ meson, and hence the charm (c) quark, si-

multaneously by two different groups in 1974 was the final experimental evidence

needed to allow the quark model of hadrons to become widely accepted, [12, 13].

The charm quark is of particular interest as it is substantially heavier than the

lighter up, down and strange quarks, allowing it to be described by simple non-

relativistic potential models but also light enough that it lives long enough to

form observable bound states. In this way it is in a rather unique position and its

spectrum can be used to compare experiment to theory.

Since 1974, there have been as many as eighteen experimentally confirmed states

in the charmonium spectrum. Charmonium is a meson containing a c quark and

its anti particle (c̄), with the aforementioned J/ψ being the first observed meson

in the spectrum. There have also been many observed states in the spectrum of

charmed-strange mesons (cs̄) known as the Ds meson and the charmed-light (cl̄)

mesons known as the D meson.
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L S J JPC

0 0 0 0−+

1 1 1−−

1 0 1 1+−

1 2,1,0 2++, 1++, 0++

2 0 2 2−+

1 3,2,1 3−−, 2−−, 1−−

3 0 3 3+−

1 4,3,2 4++, 3++, 2++

L S J JP

0 0 0 0−

1 1 1−

1 0 1 1+

1 2,1,0 2+, 1+, 0+

2 0 2 2−

1 3,2,1 3−, 2−, 1−

3 0 3 3+

1 4,3,2 4+, 3+, 2+

Table 1.1: Possible JPC and JP values allowed from simple quark models.

For a long time, a simple model of valence quarks bound together in hadrons was

enough to explain the observed spectra. Simply, a meson is a hadronic bound

state composed of a quark and anti-quark pair. As quarks are spin 1
2

fermions, the

allowed spin S for a meson in its ground state is either 0, when the quarks spins

are anti-parallel or 1 when the spins are aligned.

When the the spins are aligned the meson is said to be in a spin triplet state as

there are three Sz projections 1,0,-1. If the spins are opposite then there is only

one Sz projection, namely Sz = 0 and the meson is said to be in a spin singlet

state.

Along with this spin angular momentum, the meson can have an orbital angular

momentum L. The total spin, J , of the meson is then given as

J = L+ S with |L− S| ≤ J ≤ |L+ S|. (1.1.1)

In this way the mesons can be classified using the familiar spectroscopic notation

of the Hydrogen atom, n2S+1LJ . Along with spin, each meson is also labelled

according to how it transforms under the operations of charge conjugation C and

parity transformations P . The charge and parity quantum numbers are related to

the spin of a meson via the following simple formulae.

P = (−1)L+1, C = (−1)L+S. (1.1.2)

Using these charge and parity quantum numbers the mesons and their excited

states can be classified according to their JPC . For mesons made of up of a quark
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and anti-quark of different flavour, such as the Ds and D mesons, C is not a good

quantum number and so the states can be labelled by just their JP numbers.

Using these formulae the allowed states in the spectrum of a meson can naively

be predicted as shown in Table 1.1. It is noteworthy that in this model some

JPC combinations, such as 0+− and 1−+ do not appear. These exotic quantum

numbers give rise to what are termed exotic states, and the search for such states

is ongoing.

Over the past decade many states that do not fit nicely into these naive classifi-

cations have been observed in experiment [14]. Specifically in the case of charmo-

nium, the observation of so-called X, Y, Z states highlight the need for a more com-

plete theoretical understanding of the hadronic spectrum, be they hybrid mesons,

tetra-quarks or some other hitherto unknown form of matter, [15, 16]. Similarly,

in the charm-light sector, states such as the Ds0(2317)± and Ds1(2460)± have been

found to have much narrower widths than expected [17].

In order for QCD to be an accurate description of nature, it must account for

these unexplained states seen in experiment. One way to test this is to perform

a first principles lattice QCD calculation of the theory and attempt to reproduce

the spectrum observed in experiment.

1.2 Lattice Basics

According to Feynman, a field theory with field Φ and relativistic action S[Φ] can

be quantised by writing down a path integral. From this one can calculate expec-

tation values of the theory’s observables O(Φ) from n-point correlation functions

as

〈0|O1(Φ),O2(Φ)...On(Φ)|0〉 =
1

Z

∫
DΦe−iS[Φ]O1(Φ),O2(Φ)...On(Φ). (1.2.1)

Z is known as the partition function and is given by

Z =

∫
DΦe−iS[Φ]. (1.2.2)
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These expressions involve integrals over all possible field configurations Φ weighted

by the Boltzmann factor e−iS[Φ]. To make such calculations possible and mathe-

matically well defined one must introduce a regulator, to avoid infrared and ultra-

violet divergences. There are many possibilities such as dimensional regularisation

or Pauli-Villars regularisation, however this work is performed using lattice regu-

larisation [11].

To do this, spacetime is modelled no longer as a continuum but a four dimensional

finite sized discrete box of length L, made of points with a finite spacing, a,

between them. Matter fields can now only live on the lattice points and the gauge

fields live on the links between them. In this way a natural ultraviolet cutoff, 1/a,

has been introduced which regulates any momentum integrals. The finite extent

of the lattice also acts as an infrared cutoff. Spacetime integrals over the field

configurations now become sums over a finite set of lattice field configurations.

This allows Eqn. 1.2.1 to be recast as a lattice path integral which is a sum over

operators acting on this finite set of lattice field configurations. As it appears in

Eqn. 1.2.1, the exponential weighting factor is highly oscillatory. However a Wick

rotation may be performed on the Minkowski time coordinate, such that t→ −iτ .

This allows Eqn. 1.2.2 to be rewritten as a Euclidean path integral, where SE is

now the discretised Euclidean action.

Z =

∫
DΦe−SE [Φ]. (1.2.3)

The lattice regularisation naturally lends itself to computational methods. Monte

Carlo importance sampling techniques can be used in the evaluation of any observ-

ables computationally. One can generate a large ensemble of lattice configurations

in a Markov chain weighted by e−SE which minimise the action and hence con-

tribute meaningfully to the path integral. An approximate expectation value of an

observable can then be computed by averaging its value over these configurations.

This is a systematically improvable procedure and is the only prudent way to

investigate strongly interacting theories. In the case of the strong interaction,

where the coupling is of the order one, perturbative methods fail and one must

use these Monte Carlo methods on a computer to evaulate these integrals explicitly.

This is important in investigating the question of confinement as it can only be
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explored using non-perturbative methods. It also allows the use of many methods

from the study of statistical mechanics which can be used to help understand

QCD.

1.3 Sources of Error

Introducing a lattice as a regulator and using Monte Carlo estimation techniques

to evaluate path integrals will necessarily result in the introduction of statistical

and various systematic errors in any lattice calculation. Any result must then

have these sources of error under control so as to be able to make contact with

experimental results. These various errors can classified as follows:

• Statistical errors - Approximating the path integral shown in Eqn. 1.2.1 as a

sum to be estimated via Monte Carlo integration introduces statistical errors.

These can be reduced by increasing the number of field configurations, N ,

used and fall off as 1√
N

. Errors quoted in this work will be purely statistical.

For more information see Appendix A.

• Discretisation errors - These arise due to discretising the action of the theory

on the lattice with finite spacing a. These errors appear in powers of a and

can be formally reduced via a procedure known as improvement which will

be discussed in Chapter 2. Calculations at smaller a will also reduce these

errors but increase the time needed to simulate on a computer.

• Finite volume errors - These arise due to the finite extent L of the lattice.

However these errors are proportional to e−ML, where M is the lattice pion

mass, and so can be mitigated by taking L to be large compared to the mass

scale of the system under investigation. Simulating at more than one value

of L allows these errors to be quantified.

• Errors due to scale setting - Lattice results will be expressed in units of

the lattice spacing, a, which is unknown. In order to convert the results

to physical units and compare to experiment the scale must be set. This

may be done by measuring the mass of one state, such as the Ω baryon, and

taking the ratio of its lattice value to its physical value. This introduces a

systematic uncertainty, which may vary depending on the chosen state.
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• Chiral extrapolation - Due to computational constraints, lattice simulations

are often performed using un-physically heavy light quark masses. Simu-

lating at multiple quark masses allows for an extrapolation to the physical

point, which introduces its own model dependent error. However more re-

cently calculations at physical quark masses have started to be performed

[18, 19].

• Heavy Quarks - The charm quark was traditionally difficult to simulate on

the lattice due to its large mass mc compared to the lighter quarks. While it

is light enough to be treated relativistically, finite volume and discretisation

effects can become large. Anisotropic lattices allow for a solution where

only the temporal spacing is reduced such that mcat � 1, without greatly

increasing the computational cost of simulating at small a, however errors

involving as will still exist.

Lattice calculations of hadronic spectra are now the definitive way of investigating

the theory of QCD in the non-perturbative regime. The accurate description of

the energies of low lying states in the QCD spectrum has been an important

benchmark of lattice studies for many years. For a recent review see [20, 21].

Recently newer technologies and increased computational power have allowed for

studies of higher-lying states and resonances. These studies allow for much more

precise determinations than ever before, as well as providing valuable insight into

previously unstudied regions such as hybrid or exotic states, [22–25].

In this thesis some topical questions in the charmonium spectrum will be inves-

tigated utilising the most up to date technologies and lattices available. Starting

with a discussion of QCD in Chapter 2, the technology needed to perform a spec-

troscopic calculation on the lattice will be introduced in Chapter 3. This will be

followed by an investigation of the Ds and D meson spectrum in Chapter 4, which

was reported on in reference [1]. Chapter 5 will extend the previously introduced

spectroscopic methods to investigate radiative transitions. Finally in Chapter 6,

results for radiative transitions between states in the charmonium spectrum will

be shown, making comparison with experiment where possible.





Chapter 2

Lattice Quantum

Chromodynamics

The main aim of this study is to use the techniques of lattice field theory to

investigate the spectrum of charmonium on the lattice. In order to do this one

must look to discretising quantum chromodynamics (QCD), the theory of the the

strong interaction. This is done by restricting the quark degrees of freedom to a

discrete set of regular points constituting a spacetime lattice while assigning the

gluonic gauge degrees of freedom to the links in between points. After a brief

recap of continuum QCD it will be shown how this discretisation is possible and

how some naive attempts will ultimately lead to failure. There will then be a

brief discussion on the idea of improvement, which increases the accuracy of any

predictions by reducing the effect of discretisation on the calculation of observables.

2.1 The Action of QCD

As was discussed in Chapter 1, nature contains six matter particles called quarks.

These quarks come together under the strong interaction to form all of the hadrons

that are observed in experiment. These quarks are described as spinor fields ψiαf (x),

where α is a Dirac index and f is a “flavour” index running from 1 to 6, for each

flavour or type of quark. i is a colour index running from 1 to 3, as the quarks

are charged under the fundamental representation of SU(3). Under a local gauge

transformation the fields transform as

11
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ψi(x)→ Λij(x)ψj(x), ψ̄i(x)→ ψ̄j(x)Λ†ij, (2.1.1)

where Λ(x) ∈ SU(3). In the usual way one can introduce a gauge field Gµ and

bare coupling constant g0, and define a covariant derivative Dµ = ∂µ− ig0Gµ that

transforms as

Dµ −→ Λ(x)DµΛ†(x), Gµ −→ Λ(x)GµΛ†(x) +
i

g0

Λ(x)∂µΛ†(x), (2.1.2)

to ensure gauge covariance of the lagrangian. Gµ is a lie algebra valued matrix

gauge field and can be written as a sum over the generators Ti of SU(3) as Gµ(x) =∑8
i=1 G

i
µ(x)Ti. In general Ti = 1

2
λi where λi are the standard Gell-Mann matrices.

This shows that the gauge field transforms in the adjoint representation of SU(3)

and that there are 8 individual gluon fields Gi
µ(x). A field strength tensor Gµν

which transforms in the same way as Dµ can be defined from the commutator of

two derivatives such that

Gµν ≡
i

g0

[Dµ, Dν ] = ∂µGν − ∂νGµ − ig0[Gµ, Gν ]. (2.1.3)

The commutator [Gµ, Gν ] here is non zero due to the non-abelian nature of the

gauge group. This allows a gauge invariant term for the lagrangian tr[GµνG
µν ] to

be written down. The field strength tensor can be expanded as a sum over the

individual gluon fields as

Gµν =
8∑
i=1

Gi
µνTi, where Gi

µν = ∂µG
i
ν − ∂νGi

µ + g0fijkG
j
µG

k
ν . (2.1.4)

Here the relation from SU(3) that [Ti, Tj] = ifijkTk has been used. The fijk are

known as the structure constants of the group. Using one final SU(3) relation,

tr[Ti, Tj] = 1
2
δij, the full gauge covariant QCD action, suppressing most indices,

can be written down as
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SQCD =

∫
d4x

(
ψ̄[iγµD

µ −m]ψ − 1

4

8∑
i=1

tr[Gi
µνG

iµν ]

)
, (2.1.5)

where γu are the standard Dirac gamma matrices. This looks to be quite similar

to the more well known lagrangian of QED. There is however one main difference,

the last term in Eqn. 2.1.4. This term encapsulates the self-interactions of the

gluon field and leads to the major differences between QED and QCD, namely

confinement.

2.2 Discretisation of the Action

As discussed in Chapter 1, to compute any observables one must regularise the

theory on a lattice. To this end, a hypercubic Euclidean lattice of size Lx × Ly ×
Lz×Lt is defined. Here the spatial extent Lx = Ly = Lz = nsas and the temporal

Lt = ntat where as, at, ns, and nt are the spatial and temporal lattice spacings

and number of points respectively. In this thesis all work is done on anisotropic

lattices, where at 6= as, which will be discussed in more detail later.

The quark fields of the theory are assigned to the points of the lattice such that

ψ(x) → ψ(n), where n = (nx, ny, nz, nt) specifies a point of the lattice. The first

term in Eqn. 2.1.5 involves a derivative and so necessarily links quark fields at

different points on the lattice. Focusing on the simple partial derivative in Dµ, it

can be approximated on the lattice symmetrically as

∂µψ(x)→ 1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)). (2.2.1)

This will result in terms of the form ψ̄(n)ψ(n+ µ̂) in the discretised action, which

are now no longer gauge invariant. This necessitates the introduction of a field

Uµ(n). The “link variable” Uµ(n) is assigned to the link between the lattice site n

and n+ µ̂. The link variable going in the opposite direction, ie. from n+ µ̂ to n, is

given by U †µ(n) = U−µ(n+ µ̂) as shown in Figure 2.1. The term ψ̄(n)Uµ(n)ψ(n+ µ̂)

is now gauge invariant provided Uµ(n) transforms as Uµ(n) −→ Λ(n)Uµ(n)Λ†(n+

µ̂).
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n n+ µ̂
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U †µ(n)
n n+ µ̂

Figure 2.1: The link variables Uµ(n) and U †µ(n).

A transformation such as this can be achieved by a lattice version of a gauge

transporter. For a gauge field Gµ in the continuum, a gauge transporter from the

point x to y, along the path C, is given by

UC(x, y) = P exp

i ∫
C

dxµG
µ(x)

 , (2.2.2)

where the P stands for path ordering of the exponential. It relates the points x

and y in a similar way to how parallel transport relates points on a manifold, and

transforms in the necessary way under a gauge transformation. To O(a) one can

approximate the integral by the value of Gµ at the point n times the spacing a

such that on the lattice,

Uµ(n) = exp(iaGµ(n)). (2.2.3)

This shows that Uµ(n) are gauge group valued, as Gµ(n) lives in the lie algebra

of SU(3). Any path between two points on the lattice made by multiplication of

individual link variables will transform in the same way as a single link, as all of

the gauge rotations will cancel except at the end points. Due to the fact that the

group is non-abelian, the order of the product of link variables is important.

Non-trivial paths that start and end on the same site of the lattice are of greater

interest as they can be made into gauge invariant objects by taking a trace. The

simplest such path, a square of side a, is known as a plaquette and is denoted by

Uµν(n). It is formed from the product of the four link variables around the square

in the order they are encountered, shown in Figure 2.2,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)Uν(n)†. (2.2.4)
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Figure 2.2: An elementary plaquette, Uµν(n).

Using plaquettes, a gauge invariant action known as Wilson’s action can be written

down. It is a sum over all the individual plaquettes on the lattice and is given as

SG[U ] =
2

g2
0

∑
n

∑
µ<ν

Re tr[1− Uµν(n)]. (2.2.5)

Expanding Eqn. 2.2.3 and using the Baker-Campbell-Hausdorff formula, it can be

seen that Uµν(n) = exp(ia2Gµν(n) +O(a3)). Gµν(n) here is the obvious discretised

version of the continuum field strength tensor. The Wilson action then becomes

a4

2g2
0

∑
n

∑
µ<ν

tr[Gµν(n)2] +O(a2). (2.2.6)

So it is clear that in the continuum limit Eqn. 2.2.5 will reduce to the Yang Mills

part of Eqn. 2.1.5 and so provides an appropriate lattice discretisation correct to

O(a2).

Returning now to the fermion derivative term one can write down a gauge invariant

action, known as the naive fermion action

SF [U, ψ.ψ̄] = a4
∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ)− U−µ(n)ψ(n− µ)

2a
−mψ(n)

)
,

(2.2.7)

where γµ are the discretised versions of the Dirac gamma matrices. This term

has errors in O(a). The total discretised action is now given by SF + SG. The
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formula for the evaluation of observables which are functions of the lattice fields

from Chapter 1 then becomes

〈0|O(U, ψ, ψ̄)|0〉 =
1

Z

∫
D[U, ψ, ψ̄]e−SF [U.ψ,ψ̄]−SG[U ]O(U, ψ, ψ̄). (2.2.8)

with

Z =

∫
D[U, ψ, ψ̄]e−SF [U.ψ,ψ̄]−SG[U ]. (2.2.9)

It is important to note here that fermions are described by Grassmann numbers.

Grassmann numbers anti-commute, ie. ηiηj = −ηjηi and follow various different

relations as explained in reference [26]. One important relation, which will be of

use in the path integral is, for matrix M and Grassmann valued fields η̄, η,

∫
D[η]D[η̄]eη̄iMijηj = det(M). (2.2.10)

This relation can be used to simplify the path integral. Eqn. 2.2.7 can be rewritten

as

SF [U, ψ, ψ̄] = a4
∑
n,m∈Λ

∑
a,b,α,β

ψ̄(n)α
a
D(n|m)αβ

ab
ψ(m)β

b
, (2.2.11)

where D is known as the Dirac fermion matrix,

D(n|m)αβ
ab

=
4∑

µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂.m

2a
+mδαβδabδn,m. (2.2.12)

By doing the integral over the fermionic fields analytically, the partition function

2.2.9 becomes

Z =

∫
D[U ]e−SG[U ]det(D[U ]). (2.2.13)
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Now the exponential weight needed to choose gauge configurations in the impor-

tance sampling is given by e−SG[U ]det(D[U ]). This is a very useful result as it

reduces the need to deal with anti-commuting numbers on the computer to sim-

ply calculating a determinant. That said, the fermion determinant is notoriously

expensive to compute and for many years it was taken to be 1, in what was known

as the quenched approximation. As the gauge configurations are basically snap-

shots of the vacuum, this amounts to taking the mass of any sea-quarks to infinity

effectivly “quenching” or freezing them, which removes the effect of vacuum quark

loops. However over the last decade or two, improvements in computational power

and algorithms have made configurations with dynamical sea-quarks more feasible

[27]. The work in this thesis uses Nf = 2 + 1 lattices containing two light quarks

of equal mass and one heavier strange quark in the sea [28].

Gauge configurations are generated in a Markov chain Monte Carlo process, with

a probability distribution proportional to the above Boltzmann factor. To start,

a simple configuration, U1 is chosen. For example all lattice links may take the

value of unity, known as a cold start, or random link values, known as a hot start.

Successive configurations are generated iteratively by making a small change or

update to one or a small group of the lattice links in what is knwon as a Markov

chain.

U1 → U2 → U3 → ...UN (2.2.14)

The simplest way of generating the Markov chain is by using the Metropolis algo-

rithm [29]. For each successive update step a new trial configuration is proposed.

This is then tested and accepted with a certain probability proportional to the

Boltzmann factor. This ensures the ensemble of configurations tend towards those

with lower energy and hence greater importance in the evaluation of path integrals.

The two necessary conditions for an appropriate Markov process where all possible

configurations are available to be sampled, ergodicity and detailed balance, can

be ensured with the correct choice of acceptance probability. Once the trial con-

figuration has been accepted or refused, the process restarts again from the most

recently updated configuration. More advanced algorithms, such as the Rational

Hybrid Monte Carlo (RHMC) algorithm [30, 31] used in the generation of the

configurations used in this thesis, provide a better choice of trial configurations.
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Depending on the starting choice, the first few configurations may be quite far from

minimising the action. Usually a number of update steps are performed initially,

to allow for thermalisation, so that the configurations obey the desired probability

distribution. Once this has been achieved every nth configuration is kept to account

for auto-correlations between successive steps in the Markov chain. Once the

ensemble of N configurations has been generated and accepted, an observable O

on the lattice can be estimated by evaluating it on the individual configurations

Ui and taking an average.

〈O〉 =
1

N

N∑
i=1

O[Ui]. (2.2.15)

Due to the importance sampling this sum will approximate the path integral as

N gets large and the associated statistical error will fall as 1√
N

, provided the

configurations are uncorrelated.

Ultimately these configurations generated using the discretised lattice action will

be used to calculate fermionic observables. One can take advantage of a theorem

known as Wick’s theorem to rewrite correlation functions of fermionic operators

as products of propagators [32] such that,

〈ηi1 η̄j1 ...ηin η̄jn〉F = (−1)n
∑

P (1,2,...,n)

sign(P )(D−1)i1jP1 (D−1)i2jP2 ....(D
−1)injPn .

(2.2.16)

This has reduced the problem to computing products of quark propagators which

are given by the inverse of the Dirac matrix. These propagtors must be evaluated

on each of the gauge configurations chosen with the correct weight as discussed

above. The computation of D−1 is another highly non-trivial problem, and so the

complete inverse is never fully computed.

There is one final subtlety with the lattice quark action that must be addressed.

Eqn. 2.2.7 actually describes sixteen fermions due to what is known as the fermion

doubling problem. These doubler fermions become apparent when looking at the

inverse of the Dirac matrix in momentum space. Due to the lattice discretisation

and hence discretised momenta, the inverse D−1(p) has multiple unphysical poles
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at the edges of the Brillouin zone. Wilson proposed the addition of a term (shown

below) in the Dirac operator proportional to a, such that in the continuum limit

it disappears.

− a
4∑

µ=1

Uµ(n)abδn+µ̂,m − 2δabδn,m + U−µ(n)abδn−µ̂,m
2a2

(2.2.17)

This new addition leads to a mass term for these unwanted doublers proportional

to 1
a
, effectively removing the poles. Unfortunately this explicitly breaks chiral

symmetry, even in the m = 0 limit. This is a consequence of the Nielsen-Ninomiya

no-go theorem [33], which states it is impossible to have a lattice gauge theory that

is simultaneously local and respects chiral symmetry while containing no doubler

fermions.

The inclusion of the Wilson term results in what is called the Wilson fermion

action. There are other discretisation procedures possible to describe quarks on the

lattice. Staggered, or Kogut-Susskind [34], fermions reduce the sixteen doublers

down to four by distributing them across the lattice via a field transformation.

Twisted mass fermions improve on Wilson fermions by adding a twisted mass term

which stops the occurance of exceptional configurations, where the eigenvalues of

the Dirac matrix become small leading to elongated inversion times, however they

break parity and flavour symmetries [35]. This thesis, however, is based on work

done with Wilson fermions.

2.3 Improvements

As has been stated before, naive discretisations of the QCD action lead to errors

proportional to powers of the lattice spacing, which should disappear when taking

the continuum limit. Unfortunately, it is not possible to perform lattice calcula-

tions at a = 0. However there are systematic ways of removing these errors by

exploiting the fact that any discretisation is not unique. It is possible to write

down a discretised action that has the same continuum limit as before, hence de-

scribing the same physics, but that has reduced errors. The process of removing

these errors systematically is known as Symanzik improvement.
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Figure 2.3: The dimension six 2× 1 rectangular operator.

As described in reference [36], Symanzik showed that in general, it is possible to

create an improved action which approaches the continuum limit more quickly by

adding higher order terms to the original lattice lagrangain L0. These new terms

must also respect the original symmetries of the lagrangian.

Simp =

∫
d4x(L0 + aL1 + a2L2 + ...). (2.3.1)

Eqn. 2.2.6 shows that the Wilson gauge action, which is made up of the dimension

four plaquette operator, has errors in O(a2). To remove these some higher order

gauge invariant terms made up of the link variables Uµ must be added. There are

no closed paths of gauge links possible containing an odd number of link variables.

So L1 = 0. At dimension six, there are three unique possible paths one can make

out of gauge links,

L2 = c1L(1)
2 + c2L(2)

2 + c3L(3)
2 . (2.3.2)

The improvement coefficients cn must be tuned so as to accurately remove the

O(a2) errors. It is shown in reference [37], that the rectangular Wilson loop of

2 × 1 links, shown in Figure 2.3, is the only necessary term to improve to O(a2)

such that one can take c1 = − 1
12

and c2 = c3 = 0.

Once the improvement term has been added there is one final improvement that

must be made before arriving at the complete gauge action, a rescaling of the link

variables in what is known as tadpole improvement [38],
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Uµ(x)→ Uµ
u0

, where u0 = 〈 1

N
ReTrUµν〉

1
4 . (2.3.3)

This rescaling removes the effect of vacuum tadpole diagrams, induced from the

definition of Uµ. If the exponential in Eqn. 2.2.3 is expanded, terms of a2 and

higher will have powers of the gauge field Gµ which are no longer supressed by

the lattice spacing, only the coupling g. These lattice artefacts have no continuum

analogue and can become large, destroying the connection between continuum and

lattice operators. However in reference [38] it is shown that a simple mean field

renomalisation as shown in Eqn. 2.3.3 is sufficient to remove the effect of the

tadpole diagrams. The tadpole coefficient u0 is taken as the fourth root of the

average plaquette and is tuned non-perturbatively on the lattice.

Turning back to the fermionic sector, the Wilson quark action has O(a) errors due

to discretisation. These errors can be systematically reduced using the Symanzik

improvement procedure. In the continuum there are five possible dimension five

operators that can be added to the lagrangian.

L(1)
1 (x) = ψ̄(x)σµνFµν(x)ψ(x),

L(2)
1 (x) = ψ̄(x)

−→
Dµ(x)

−→
Dµ(x)ψ(x) + ψ̄(x)

←−
Dµ(x)

←−
Dµ(x)ψ(x),

L(3)
1 (x) = mtr[Gµν(x)Gµν(x)],

L(4)
1 (x) = m(ψ̄(x)γµ

−→
Dµ(x)ψ(x)− ψ̄(x)γµ

←−
Dµ(x)ψ(x)),

L(5)
1 (x) = m2ψ̄ψ(x).

Using the field equations for the ψ fields results in the following relations,

L(1)
1 − L(2)

1 + 2L(5)
1 = 0, L(4)

1 + 2L(5)
1 = 0. (2.3.4)

It is therefore possible to eliminate L(2)
1 and L(4)

1 . It is also simple to absorb L(3)
1

and L(5)
1 into terms which already appear in the action as redefinitions of the

couplings, so all that is needed is the single term L(1)
1 . This allows one to write

down a single lattice operator known as the Sheikholeslami-Wohlert [39] or clover

term, needed to improve the action to O(a),
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Figure 2.4: The clover operator Ĝµν(n), showing the four plaquettes in
Qµ,ν(n).

cSWa
5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνĜµν(n)ψ(n). (2.3.5)

Here σµν = [γµ, γν ]/2. It is named the clover term due to the resemblence to a

four leaved clover as shown in Figure 2.4. The coefficient cSW must be tuned so

as to cancel the O(a) errors. The operator Ĝµν is given as a sum over the four

plaquettes about the point n,

Ĝµν = − i

8a2
(Qµν −Qνµ), Qµν ≡ Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n).

(2.3.6)

In the generation of the gauge fields, there can often be large fluctuations between

the individual links. This leads to short distance UV physics which is not of much

interest to low energy spectroscopy. With this in mind, one final adjustment to the

fermionic action is necessary. The gauge links appearing in the action are smeared.

Simply, this refers to replacing a link variable with some average of the nearby

links. This has been shown to greatly reduce the effect of the high frequency

modes of the theory.

Simple methods such as APE [40] or HYP [41] smearing can be used where one

takes a weighted average of the nearest staples, ie. the remaining links in the

plaquettes containing the original link.
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Cµ(n) =
∑
ν 6=µ

ρµν
(
Uν(n)Uµ(n+ ν̂)U †ν(n+ µ̂) + U †ν(n− ν̂)Uµ(n− µ̂)Uν(x− ν̂ + µ̂)

)
.

(2.3.7)

ρµν is a tunable parameter which allows one to choose which links to include,

for instance the smearing can be chosen to be only in the spatial or temporal

directions. In these simple methods, the new link variable is generally not a

member of SU(3) and so must be projected back into the group. This projection

step is not differentiable and can be problematic when generating these gauge

configurations. However for this work a more refined analytic method known as

Stout smearing is used, [42], making the replacement

Uµ(n)→ U ′µ(n) = eiQµ(n)Uµ(n). (2.3.8)

Qµ is a traceless Hermitian matrix constructed from the perpendicular staples

about Uµ(n) such that eiQµ(n) ∈ SU(3). Hence the new link variable is auto-

matically a member of SU(3) and no projection back into the group is needed.

Applying this smearing procedure iteratively many times results in what is known

as a stout link. Due to the exponential structure of this smearing algorithm these

stout links can be thought of as an incredibly large sum over different paths around

the lattice, and operators formed from these link have been shown to have much

greatly reduced exposure to the aforementioned UV divergences [42].

2.4 The Final Action

The discretised action used in the work described in this thesis can now be pre-

sented. A discussion on the tuning for many of the action parameters as well as

the technicalities of generation of the configurations can be found in [28, 43]. As

mentioned before, this work is performed anisotropic lattices where as 6= at, and

so there is a further splitting of the action into spatial and temporal components.

This gives a greater resolution in the temporal direction allowing for the more

robust extraction of excited state energies, which will be discussed in more detail

in Chapter 3.
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In the gauge sector the action is given as

SξG[U ] =
β

Ncγg

{∑
x,s 6=s′

[
5

6u4
s

ΩPss′
(x)− 1

12u6
s

ΩRss′
(x)

]

+
∑
x,s

γ2
g

[
4

3u2
su

2
t

ΩPst(x)− 1

12u4
su

2
t

ΩRst(x)

]}
.

(2.4.1)

This is the Symanzik improved Wilson gauge action with tadpole improved coeffi-

cients as described in the previous sections. ΩW = ReTr(1−W ) where W = P is

the standard plaquette and W = R is the 2× 1 rectangular Wilson loop. us and

ut are the spatial and temporal tadpole factors respectively. The term γg is the

bare gauge anisotropy. Nc is the number of colours and β = 2Nc/g
2. The errors

here are O(a4
2, a

2
t , g

2a2
s).

For the fermionic action, the anisotropic clover action with stout smearing of the

link variables in the spatial directions is used.

SξF [U, ψ̄, ψ] =
∑
x

¯̂
ψ(x)

1

ũt

{
ũtm̂0 + γtŴt +

1

γf

∑
s

γsŴs

− 1

2

[
1

2
(
γg
γf

+
1

ξR
)

1

ũtũ2
s

∑
s

σtsF̂ts +
1

γf

1

ũ3
s

∑
s<s′

σss′F̂ss′

]}
ψ̂(x).

(2.4.2)

Here, γf is the bare fermion anisotropy and ξ = as/at is the renormalised anisotropy.

As before σµν = 1
2
[γµ, γν ]. Hats denote dimensionless quantites and Wµ ≡ ∇µ −

1
2
γµ∆µ is the Wilson quark operator as discussed before. ũs and ũt are tadpole

factors formed from the smeared links of the fermion action. The temporal and

spatial clover coefficients are given by ct = 1
2
( γg
γf

+ 1
ξR

) 1
ũtũ2s

and cs = ν
ũ3s

. Numerical

values for the action parameters used are shown in Table 2.1.

β us ũs ut ũt γg γf ν cs ct
light 1.5 0.7336 0.9267 1 1 4.3 3.4 1.265 1.589 0.902

charm 1.5 0.7336 0.9267 1 1 4.3 3.98 1.078 1.345 0.793

Table 2.1: Action parameters used in both the light and charm sectors.
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To summarise what was discussed in this chapter:

1. To investigate the theory of QCD the action, S, is discretised by restricting

the quark fields to the points of a lattice while assigining the gauge field to

the links in between points, naturally regulating the theory.

2. Simple discretisations lead to large errors of the order of the lattice spacing

as well as other non-trivial problems such as fermion doubling. Improved dis-

cretised actions can be created using the Symanzik improvement procedure,

to mitigate these effects.

3. Using Monte Carlo estimation techniques, an ensemble of gauge configura-

tions weighted by e−SGdet(D[U ]) is generated according to the path integral

Eqn. 2.2.13. The value of an observable can then be estimated as an average

over its value on the individual configurations.

4. Quark propagators can be estimated by inverting the lattice Dirac matrix

and used to calculate correlation functions involving fermionic operators,

such as two-point meson correlation functions.





Chapter 3

Lattice Hadron Spectroscopy

Our main aim is to use the technology of lattice QCD discussed in the previous

chapter to investigate the spectrum of charmed mesons. In doing this we have a

way to test the theory of QCD, by comparing results to experiment. The simplest

quantities one can investigate on the lattice are the ground state energies of the

lower lying hadrons. These are relatively well understood and have long been used

in benchmark calculations for lattice QCD which in recent years have achieved

unprecedented precision [20, 21, 44–46]. More recently many investigations of

the spectrum of higher lying excitations of these hadrons have been performed

[22, 24, 47–49].

This chapter begins with a discussion on lattice correlation functions from which

the necessary spectroscopic information can be extracted. This is followed by an

introduction to the technology pioneered by the Hadron Spectrum Collaboration

used to analyse these spectra. It will be shown that energies of excited states

can be found from diagonalising a correlation matrix of many different correlation

functions by solving a generalised eigenvalue problem. This process is made possi-

ble by the introduction of a special quark smearing algorithm known as distillation

[50] which allows for the efficient computation of a myriad of different correlators.

The use of appropriate lattice operators in these correlators will allow for the post

hoc identification of the spin of the hadronic states.

27
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3.1 Correlation Functions

It is well known from QFT that in the continuum it is the two point correlation

function that contains all the necessary spectral information about a particular

theory. In the same way, to investigate the spectrum of lattice QCD one must

calculate and analyse two point correlation functions on the lattice separated by

time t = ntat, shown below in Eqn. 3.1.1.

Cij(t) = 〈0|Oi(t)O
†
j(0)|0〉. (3.1.1)

Here O†j and Oi are known as interpolating operators 1. These interpolators are

functionals of the lattice fields which create or annihilate states of the theory on

the lattice. These take the form of Dirac bilinears, coupled with lattice derivatives

which allow for the interpolation of a range of states with different quantum num-

bers. The construction of these interpolators will be discussed at length later on in

this chapter. It is now relatively straightforward to see by inserting a complete set

of states of the lattice Hamiltonian into Eqn. 3.1.1, that the correlation function

contains a whole tower of discrete states, labelled by their energy En,

Cij(t) = 〈0|eHtOi(0)e−HtO†j(0)|0〉 =
∑
n

1

2En
e−Ent〈0|Oi(0)|n〉〈n|O†j(0)|0〉. (3.1.2)

This is a large, albeit finite and discrete sum, owing to the fact that the theory

has been discretised on a finite lattice. That being said, all possible allowed

states with the same quantum numbers as the interpolating operators are now

represented here. This equation can be rewritten as

Cij(t) =
∑
n

Zn
i Z

n
j

2En
e−Ent. (3.1.3)

1We will use the terms interpolator and operator interchangeably to refer to these interpo-
lating operators
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Zn
j = 〈n|O†j |0〉 is known as an overlap factor, which is a time independent measure

of how strongly the state created from the vacuum by the interpolator O†j overlaps

with the eigenstate n of the Hamiltonian.

It would be impossible to extract accurate spectroscopic information for any one

state from this sum as written, however it is evident that if the temporal separation

between the interpolators is taken to be large the ground state energy dominates

this sum as

⇒ lim
t→∞

Cij(t) ∼ e−E0t. (3.1.4)

Traditionally this method was used to determine the ground state energies, how-

ever we are primarily interested in extracting the energies of excited states in the

spectrum. Unfortunately, at lager t, any signal of interest will have decayed consid-

erably and the signal to noise ratio will no longer be negligible. So the separations

need to be kept as small as possible but large enough so that the exponential in

Eqn. 3.1.2 has had time to suppress most of the unwanted energies.

It is therefore necessary to utilise interpolators that create and annihilate the

lower states of the spectrum with greater efficiency, to filter out contamination

from other states in the sum of Eqn. 3.1.2 relatively quickly. If the overlaps of

these interpolators with the states in question were exact, the correlation func-

tion would plateau to the energy En for all t and the energy could be extracted

straightforwardly, however there will always be some small contamination from

other states in the theory at small times. The use of anisotropic lattices min-

imises the effect of this contamination as it provides a finer temporal than spatial

resolution and so allows for a more accurate extraction without increasing the

computational cost as much as isotropically reducing a would.

3.2 Interpolator Construction

At their most basic, the meson interpolators used in the aforementioned correlators

are color-singlet local fermion bilinears of the form
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Scalar Pseudo-scalar Vector Axial-Vector Tensor
Γ 1/γ0 γ5/γ0γ5 γi/γ0γi γ5γi γiγj
JPC 0++ 0−+ 1−− 1++ 1+−

Name a0/b0 π/π2 ρ/ρ2 a1 b1

Table 3.1: Gamma matrix quantum numbers, along with the naming scheme
used.

O ∼ ψ̄iα(~x, t)Γαβψiβ(~x, t), (3.2.1)

a gauge covariant combination of lattice quark fields ψ and a Dirac gamma ma-

trix Γ. Colour and spinor indicies will be suppressed in equations from now on.

These interpolators can again be labelled by their angular momentum, parity and

charge conjugation quantum numbers JPC . The charge conjugation and parity

quantum numbers of the operator are dependant on the choice of gamma matrix

Γ, whose different possible combinations are listed in Table 3.1. It is clear that

these simple interpolators do not allow for angular-momentum greater than one

nor do they permit any exotic quantum number combinations, such as 0+− and

1−+ as discussed in Chapter 1.

To have access to these exotic JPC as well as states with spin J > 1 one must use

non-local operators. This necessitates the introduction of the spatially directed,

gauge covariant, lattice forward-backward derivative
←→
D ≡ ←−D − −→D . In the con-

struction of these operators a circular basis of these derivatives is formed, which

transforms as spin J = 1.

←→
D m=+1 = − i√

2
(
←→
D x + i

←→
D y),

←→
D m=0 = i

←→
D z,

←→
D m=−1 =

i√
2

(
←→
D x − i

←→
D y).

(3.2.2)

Using this new basis and the rules for addition of angular momentum, along with

the Clebsch-Gordon coefficients of SO(3), the necessary higher spin interpolators
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can be created as described in reference [24]. In this thesis, interpolators of up to

spin J = 4 are used. All of the operators used have the form

O ∼
∑

m1,m2,m3,...

CGs(m1,m2,m3, ...)
∑
~x

ψ̄(~x, t)Γm1

←→
D m2

←→
D m3 ...ψ(~x, t), (3.2.3)

where the sum over spatial sites ~x projects to zero momentum. The construction of

interpolators at non zero momentum will be discussed later. The simplest example

comprises of one spin J = 1 covariant derivative coupled to a single vector-like

gamma matrix which allows for the creation of an interpolator with spin J = 0, 1, 2,

and Jz projection M .

(Γ×D[1]
J=1)J,M =

∑
m1,m2

〈1,m1; 1,m2|J,M〉 ψ̄Γm1

←→
D m2ψ. (3.2.4)

To create interpolators of higher spins necessitates the inclusion of more deriva-

tives, which are chosen to couple to each other first. For example, to create a

spin J = 3 state one first couples two spin J = 1 derivitives to give definite spin

JD = 0, 1, 2 which can be then coupled to a vector-like gamma matrix to give total

spin J = 3, as shown in Eqn. 3.2.5.

(Γ×D[2]
JD

)J,M =
∑
m1,m2,
m3,mD

〈1,m3; JD,mD|J,M〉 〈1,m1; 1,m2|JD,mD〉 ψ̄Γm3

←→
D m1

←→
D m2ψ.

(3.2.5)

With the inclusion of three or more derivatives, a convention for how to couple the

various derivatives together is needed. Coupling the derivatives so that the oper-

ator has definite charge conjugation symmetry is an appropriate choice. The use

of the forward-backward derivative allows this by simply coupling the outer most

derivatives first, shown below, as the act of charge conjugation basically amounts

to transposing the operators between the quark fields, which are interchanged

under charge conjugation. As this work uses only operators with J ≤ 4 there

need be at most three derivatives, as shown in Eqn 3.2.6, however this procedure

generalises readily to higher spins.
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(Γ×D[3]
J13,JD

)J,M =
∑
m1,m2,
m3,m4
m13,mD

〈1,m4; JD,mD|J,M〉 〈1,m2; J13,m13|JD,mD〉

× 〈1,m1; 1,m3|J13,m13〉 ψ̄Γm4

←→
D m1

←→
D m2

←→
D m3ψ. (3.2.6)

It is possible to form an interpolator comprising solely of two lattice covariant

derivatives with spin JD = 1 which is non zero on non-trivial gauge configurations.

This operator is proportional to the commutator of the derivatives and hence the

gluonic field strength tensor and so is useful in investigations of hybrid states or

glueballs.

3.3 Symmetry on the Lattice

Once a quantum field theory has been discretised on a lattice it is evident that

the full rotational symmetry of the continuum is explicitly broken, and one can no

longer label individual states of the theory by their continuum spin J . However

lattice operators must create eigenstates of the lattice Hamiltonian with well de-

fined quantum numbers, ie. they must transform in an irreducible representation,

or irrep, of the reduced symmetry group of the lattice. It is then possible to label

the states by these irreps and only later assign a continuum spin to each state in

the spectrum. The process of assigning a continuum spin to a certain excitation

will be discussed later in greater depth.

The symmetry group of the lattice is that of the octahedral group, Oh, of order 48,

of rotations and reflections of a cube. Focusing on the subgroup of rotations only,

the 24 elements of the group can be divided into five different conjugacy classes.

This leaves five irreducible representations, Λ, which are named A1, A2, E, T1, T2,

with dimensions (1,1,2,3,3) respectively.

Each interpolator used in the lattice computation must transform in one of these

irreps. The process of distributing the various M components of these operators

into the various lattice irreps is known as subduction. The pattern of subduction

for various spins is shown in Table 3.2. For example spin J = 2 subduces into
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Spin J Λ(dim)
0 A1(1)
1 T1(3)
2 E(2)⊕ T2(3)
3 A2(1)⊕ T1(3)⊕ T2(3)
4 A1(1)⊕ E(2)⊕ T1(3)⊕ T2(3)

Λ Contributing Spins
A1 0,4,6,8,...
A2 3,6,7,9,...
E 2,4,5,6,...
T1 1,3,4,5,...
T2 2,3,4,5,...

Table 3.2: The irreducible representations of the octahedral group a certain
spin J will be subjuced into as well as which spins contribute to each
individual irrep.

the five dimensional sum of irreps E(2) ⊕ T2(3) , ie. the five spin projections

M = (−2,−1, 0, 1, 2) are distributed across these two irreps.

Once the pattern of subduction is known, it is possible to construct an interpo-

lator O
[J ]
Λ,λ which transforms irreducibly in one irrep, Λ, as an appropriate linear

combination of the individual M projections.

O
[J ]
Λ,λ ≡ (Γ×D[nD]

... )JΛ,λ =
∑
M

SJ,MΛ,λ (Γ×D[nD]
... ) ≡

∑
M

SJ,MΛ,λ O
J,M . (3.3.1)

Here λ is the row of the irrep which runs from 1 to dim(Λ). The SJ,MΛ,λ are known

as subduction coefficients. As a trivial example, the subduction coefficient for a

J = 0 interpolator which only appears in A1 is S0,0
A1,1

= 1. T1 forms a faithful

representation of J = 1 shown in Table 3.3, where each row, λ, is in one to one

correspondence to an M component. In general, for higher spins the subduction

coefficients can be constructed starting from the J = 0 and J = 1 coefficients as

SJ,MΛ,λ = N
∑
λ1,λ2

∑
M1,M2

SJ1,M1

Λ1,λ1
SJ2,M2

Λ2,λ2
C

(
Λ Λ1 Λ2

λ λ1 λ2

)
〈J1,M1; J2,M2|J,M〉 .

(3.3.2)

λM 1 0 -1
1 1 0 0
2 0 1 0
3 0 0 1

Table 3.3: Subduction coefficients for (J = 1)→ T1.
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where C

(
Λ Λ1 Λ2

λ λ1 λ2

)
is the octahedral group Clebsch-Gordon coefficient for

Λ1 ⊗ Λ2 → Λ. For more information on the construction of these subduction

coefficients see reference [24]. It is important to note that a subduced operator

transforming in a certain irrep, Λ, will have some overlap with all spins in that

irrep. However the operator still has some memory of the spin from which it was

subduced and it is this fact that allows for the identification of the continuum spin

of the various states in the spectrum [24].

3.4 Distillation

Armed with the lattice subduced operators, one can now proceed with the calcula-

tion of the correlation function in Eqn. 3.1.1. However these operators still overlap

with a tower of unwanted states in any given irrep. This necessitates a procedure

to minimise this excited state contamination. Smearing of the quark fields is the

most useful tool at a lattice practitioner’s disposal in this regard. Rather than

using the quark fields which appear in the action directly, the process of smearing

involves applying a smearing operator which filters out the short distance fluctua-

tions from the fields in the path-integral, leaving behind the longer distance modes

of interest for hadron physics. The most well known method applies the gauge

covariant second-order three-dimensional lattice Laplacian operator

−∇2
xy(t) = 6δxy −

3∑
j=1

(Ũj(x, t)δx+ĵ,y + Ũ †j (x− ĵ, t)δx−ĵ,y), (3.4.1)

where the gauge fields Ũ have been appropriately smeared using a gauge smearing

procedure such as stout smearing, as discussed in Chapter 2. From this one can

define a smearing operator as

Jσ,nσ(t) =

(
1 +

σ∇2(t)

nσ

)nσ
, (3.4.2)

where the smearing weight σ and nσ are tunable parameters. Applying this smear-

ing operator to the quark fields many times, ie. taking nσ to be large, will ex-

ponentially supress the components which do not contribute to the physics of
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interest. As suggested in reference [50], it is possible to approximate this smear-

ing algorithm by forming an eigenvector representation, truncated to the lowest

modes.

Distillation is the definition of a new smearing operator �, known as the distillation

operator. This is a low rank operator, of rank N � M , where M = Nc × Nx ×
Ny ×Nz is the rank of the vector space, VM , of the three dimensional Laplacian.

� is then defined on timeslice t as a product of an M × N matrix V (t) and its

hermitian conjugate

�(t) = V (t)V †(t)→ �xy(t) =
N∑
k=1

v(k)
x v(k)†

y (t). (3.4.3)

Here v(k) are the first N eigenvectors of the lattice Laplacian, ∇2, ordered by eigen-

value. It is apparent here that the distillation operator is a projection operator as

�2 = �, which projects into the distillation subspace VN spanned by the N lowest

eigenvectors.

Distillation smearing is effectively a choice of fields to use in the operators, where

the smeared fields are defined as ψ̃ = �ψ. The choice of how many distillation

vectors to use, N , is important. It is clear that if the number of distillation vectors

is chosen to be maximal, ie. when N = M , that the distillation operator is then

given by the identity and the fields remain unchanged whereas if N is taken to

be too small then too much information is lost. It is shown in reference [50] that

an appropriate value of N does indeed dampen the effect of the unwanted higher

excited modes in the correlator allowing for an accurate energy to be extracted at

earlier times.

It is also worth noting that the distillation operator transforms as a scalar un-

der rotations, is covariant under gauge transformations and is parity and charge

conjugation invariant, so the newly smeared fields transform in the correct way.

One of the technical benefits of using distillation to smear the quark fields is that it

greatly simplifies the calculation of correlation functions needed for spectroscopic

calculations. The correlation function seen in Eqn. 3.1.1 can be expanded by

inserting simple bilinear interpolators ψ̄Γψ as
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e eΓj Γi e eΓj Γi

Figure 3.1: A simple schematic representation of the connected (left) and
disconnected (right) parts of the correlation function shown in Eqn. 3.4.4.

Cij(t) = 〈0|ψ̄x(t)Γixy(t)ψy(t) · ψ̄w(0)Γjwz(0)ψz(0)|0〉
= −Tr[M−1

zx (0, t)Γixy(t)M
−1
yw (t, 0)Γjwz(0)]

+Tr[M−1
yx (t, t)Γixy(t)]Tr[M−1

zw (0, 0)Γjwz(0)], (3.4.4)

where in the second line a Wick contraction over the quark fields has been per-

formed, leaving just a trace over products of the quark propagators and gamma

matrices. The first term is understood as the connected part of the correlator,

that is, it describes the propagation of quarks between the source at time 0 to sink

at time t. The second term, a product of two traces, is related to the disconnected

portion of the correlator, and describes two different propagations from a point

back to itself. Both terms are shown in Figure 3.1.

It is clear that the calculation of these correlators amounts to the calculation

of quark propagators. Traditionally disconnected diagrams were not included in

calculations as they are notoriously noisy and prohibitively expensive to calculate

as they include propagators of the form M−1
yx (t, t), which must be calculated at

every point of the lattice. Distillation allows for a simple solution. By smearing

the quark fields in the interpolators it amounts to making the substitution

Oi(t) = ψ̄(t)Γi(t)ψ(t)→ ψ̄�(t)Γi(t)�ψ(t). (3.4.5)

Then performimg the same Wick contraction as before by evaluating the quark

field portion of the path integral results in, for the connected part of the correlator,
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Cij(t) = −Tr[M−1(0, t)�(t)Γi(t)�(t)M−1(t, 0)�(0)Γj(0)�(0)]

= −Tr[V †(0)M−1(0, t)V (t)V †(t)Γi(t)V (t)V †(t)M−1(t, 0)V (0)V †(0)Γj(0)V (0)]

= −Tr[τ(0, t)Φi(t)τ(t, 0)Φj(0)],

(3.4.6)

where

ταβ(t, 0) = V †(t)M−1
αβ (t, 0)V (t), (3.4.7)

Φi
αβ(t) = V †(t)[Γi(t)]αβV (t). (3.4.8)

The correlator can now be written as a simple product of τs and Φs. Φ contains

the particular operator construction, while τ , known as a perambulator, describes

quark propagation. The choice of source and sink interpolators is entirely indepen-

dent of the computation of τ , and contains only information about the individual

quark propagators. This means that the perambulators can be computed and

stored and then used at a later time to construct correlators containing any source

or sink operators, greatly decreasing the time needed to compute large numbers

of correlation functions.

The size of the matrices ταβ and Φi
αβ depends on the number of distillation vectors

chosen. They are of size N×Nσ where Nσ is the number of components of a lattice

Dirac spinor, and hence it takes this many inversions of the Dirac matrix M to

calculate the perambulators. This number is O(100) with a reasonable number

of distillation vectors, orders of magnitude smaller than the size of the full Dirac

matrix which can be O(108). This allows for the computation of many correlation

functions quickly, as well as providing access to disconnected correlators. Following

the same procedure above one finds for the disconnected part of the correlator

Cij(t) = Tr[Φi(0)τ(0, 0)]Tr[Φj(t)τ(t, t)], (3.4.9)

where the necessity of calculating M−1
yx (t, t) has been replaced with the perambula-

tor τ(t, t), which is computationally more accessible. This process readily extends

to more complicated correlation functions such as three-point functions.
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3.5 The Variational Method

We have seen how a correlation function of the form in Eqn. 3.1.1 can be used

to extract the lowest energy levels of the meson spectrum. However, it has been

long known that a practical way to investigate excited states on the lattice is

to diagonalise a correlation matrix of a large basis of creation and annihilation

operators {Oi, O
†
j} [51, 52],

Cij(t) = 〈0|Oi(t)O
†
j(0)|0〉. (3.5.1)

This equation is now to be thought of as a matrix with i and j running from 1 to

n. One such correlation matrix is calculated for each irrep of interest. Once again,

the distillation method allows for the calculation of many correlation functions

between operators in the basis at computationally little cost, and it is prudent

to take advantage of the ability to create many redundant interpolators in each

symmetry channel.

Intuitively, it is reasonable for one to assume that there is some linear combination

of interpolators contained in the basis that will overlap most strongly with the

desired eigenstates and hence be useful in achieving a strong signal for the excited

states. It can be shown that the optimal linear combinations are found by solving

a generalised eigenvalue problem (GEVP) of the form

Cij(t)v
n
j = λn(t, t0)Cij(t0)vnj . (3.5.2)

Here the λn are know as the generalised eigenvalues, or principal correlators, and

are related to the energies of the n states in the spectrum. vn are known as the

generalised eigenvectors and are related to the operator state overlaps from Eqn.

3.1.3 as

Zn
j =
√

2mne
mnt0/2vn∗i Cij(t0). (3.5.3)

t0 is a carefully chosen reference timeslice on which the eigenvectors are orthogonal,

ie. vn
′†C(t0)vn = δn,n′ , with λn(t0) = 1. Due to the finite nature of the interpolator

basis, it is important to take care in choosing a t0 that is large enough [22]. If



Chapter 3. Lattice Hadron Spectroscopy 39

the correlator is not dominated by the lightest n states on the chosen timeslice

t0, because higher excited states still contribute with a significant signal, then the

orthogonality relation on C(t0) will not be valid. So it is necessary for t0 to be

large enough that the higher excited states have decayed away but not so high as

to just extract noise.

Eqn. 3.5.2 is solved independently on each timeslice, and to ensure the ordering

of the energies is consistent, eigenvectors for each t are compared to reference

eigenvectors taken from some reference t. The actual calculation is performed

using singular value decomposition (SVD) on C(t0) to recast Eqn. 3.5.2 as an

ordinary eigenvalue problem. At large times the principal correlators behave as

λn(t, t0) ∼ e−En(t−t0) +O(e−En+1(t−t0)). (3.5.4)

From this one can extract the spectroscopic data necessary by fitting the principal

correlators to

λn = (1− An)e−En(t−t0) + Ane
−E′

n(t−t0), (3.5.5)

with fit parameters En, E
′
n and An. The second exponential is included here to

“mop up” the effect of any remnant excited states and allows one to consider

the behaviour of the principal correlator at earlier times. This second exponential

decreases rapidly with increasing t0 and for sufficiently large t0, E ′n is indeed larger

than En as needed. This is not necessarily true for smaller t0, which is indicative

of forcing an incorrect orthogonality [24].

Figure 3.2 shows principal correlator fits for the first four states in the T−1 irrep of

the Ds meson spectrum for t0 = 10. Points with errors above a certain threshold

relative to the signal are not included in the fits, shown with red error bars on the

plots. A plateau can be clearly seen in the case of the ground state which extends

to late t. In the case of the excited states the plateau degrades into noise at large

t but nevertheless persists long enough to extract an accurate energy for the state.

The fact that the statistical uncertainty in the energies doesn’t increase is due to

the use of an appropriate opperator basis with the GEVP. Higher excited states

can overlap with a different subset of operators to the ground state and so the

signal does not necessarilly degrade going up in the spectrum.
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Figure 3.2: Example principal correlators for the first four states in the T−1
irrep of the Ds spectrum at t0 = 10. Plotted is λn(t)emn(t−t0) with the bands
showing the one sigma uncertainty in the fits. Points, shown in red, with errors
above a certain threshold relative to the signal are not included in the fits.
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In practice the GEVP is solved for a range of different t0 and then the most

appropriate value is chosen a posteriori via the reconstruction method as described

in Reference [22]. In the reconstruction method, each energy En and overlap

Zn
i are calculated on a single timeslice and substituted into Eqn. 3.1.3. This

newly reconstructed correlation matrix is then compared to the original for t >

t0 by defining a χ2 like quantity, with the degree of agreement indicating the

acceptability of the spectral decomposition. The agreement between the matrices

generally improves with increasing t, up until some point where noise in the signal

becomes a problem.

Figure 3.3 shows the energy in lattice units extracted from the principal corre-

lator fits vs t0, for the first three states in the T−1 irrep of the Ds spectrum at

t0 = 10. There is little change in the energy extracted as t0 is varied. This

is expected, as the principal correlator fits included a second exponential which

absorbed contributions from excited states, allowing for a more stable extracted

spectrum. Larger changes in the energy vs t0, can indicate contributions from

excited states are playing a more significant role in the signal.

3.6 Spin Identification

Once the energies of the first few excitations in the spectrum have been determined

by choosing an appropriate t0 and extracting the energies from the principal cor-

relators, one must have a way of identifying the continuum spin for each extracted

energy. This is a non-trivial problem on the lattice. The most rigorous way of

achieving this is to identify degeneracies across the spectrum as the continuum

limit is approached.

In analyses of the spectrum as the lattice spacing is decreased, these degeneracies

become more apparent. For example, as shown in Table 3.2 a spin J = 3 state will

be subduced into the A1, T1 and T2 irreps on the lattice. This state is expected to

appear across these three irreps with nearly degenerate energies. In principle as

the continuum limit is approached these energies should become degenerate due

to the absence of discretisation effects. It would be possible to use this procedure

to identify and assign a spin to each state in the spectrum.
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Figure 3.3: Example t0 dependence of the energy for the first three states in
the T−1 irrep of the Ds spectrum at t0 = 10. The bands, which are not fit to
the data, show the energy, with the one sigma uncertainty, extracted from the
principal correlators at t0 = 10.

However in practice this method is generally problematic. The calculation of the

spectra at finer and finer lattice spacing is often not feasable due to the increasing

computational costs. As well as that, above the lowest lying states in the meson

spectrum, many states appear with naturally nearly degenerate energies. When

dealing with the reduced symmetries of the cube, these natural degeneracies are

vastly magnified, due to multiple spins being subduced into a single irrep. The

problem of identifying which states are naturally degenerate and which are due to

the lattice discretisation becomes impossible and would require statistically precise
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data beyond which is available.

Ideally there would exist a method that allows for the accurate identification of

the spin of a state using data from only one lattice spacing, significantly reducing

computation time. Using the methods pioneered by the Hadron Spectrum col-

laboration it is possible by considering the overlap factors Zn
i of the interpolating

operators. Each of these carefully constructed operators, described in the previous

sections, transforms irreducibly in a certain representation of the cubic symme-

try group. However, as was stated before, each of these operators contains some

memory of the continuum spin operator it was subduced from [24].

As the continuum limit is approached, where the symmetry breaking is small, one

would assume an operator that was subduced from J = 1 would have a much larger

overlap with a state of the same spin as opposed to say a state of J = 3. In this

way, if the lattice spacing is fine enough as to not break the rotational symmetry

of the continuum too forcefully, one would assume that each state would have

relatively strong overlaps with a subset of the operator basis, subduced from a

single spin J .

This effect is seen quite strongly on the level of individual states, each of which

in general show a strong preference to overlap with operators of a certain spin,

as shown in Figure 3.4. Shown are the overlaps for each operator in the T−1 irrep

of the Ds spectrum, for the ground and third excited state. Operators subduced

from J = 1 are coloured red where as operators coloured blue are subduced from

J = 3. In each case the operators are normalised so that the largest overlap is

one. It is clear that the ground state predominantly overlaps with the spin J = 1

operators, giving good indication that it is a spin J = 1 state. Similarly for the

third excited state, there is strong overlap with spin J = 3 operators, indicating a

state with spin J = 3.

To be even more quantitative, one can also compare the overlaps for the same

states between different irreps. Obviously continuum operators will only overlap

with a single spin, and therefore only spin J states should overlap with a subduced

operator, not any other spins in the particular irrep the operator is in.

〈
0|OJ,M |J ′,M ′〉 = Z [J ]δJ,J ′δM,M ′ ⇒ 〈0|O[J ]

Λ,λ|J ′,M〉 = SJ,MΛ,λ Z
[J ]δJ,J ′ . (3.6.1)
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Ground state Third excited state

Figure 3.4: Example overlaps for the ground and third excited state in the
T−1 irrep of the Ds meson spectrum. Operators are colour coded with red
being spin one and blue being spin three. In both cases the operators have
been normalised so the highest overlap has a value of unity.

Using the fact that the subduction coefficients form an orthogonal matrix, or

∑
M

SJ,MΛ,λ S
J,M∗
Λ′,λ′ = δΛ,Λ′δλ,λ′ , (3.6.2)

it can be shown that the spectral decomposition of the correlation function has a

term proportional to Z [J ] ∗ Z [J ′], ie. there is no irrep dependence. It should be

possible to see this manifest as similar overlap values for states degenerate across

the different irreps. One would expect the Z values for the aforementioned J = 3

state to be similar in the A2, T2 and T1 irreps. Figure 3.5 shows the operator

overlaps for the lowest state identified as a spin J = 3 state in each irrep, again for

Ds. It is evident that the overlap with the blue operators follows the same pattern

across irreps, signalling the fact that it is the same state that has been identified

in each irrep.

The absolute values of the overlaps, |Z|, for each operator can also be compared,

and are expected to be degenerate for a single state subduced across different

irreps. They will not be exactly degenerate due to discretisation effects however

these are not too large, as shown in Figure 3.6, for three spin J = 3 operators. As
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A−2 T−2 T−1

Figure 3.5: Comparison of operator overlaps for the first state identified
with spin J = 3 across the A−2 , T

−
2 and T−1 irreps in the Ds spectrum. As

before in each case the operators have been normalised so that the highest
overlap has a value of unity. A clear pattern across irreps can be seen.

was discussed, all states with spins J ≥ 2 will appear with slight differences across

the different irreps. This will also arise in the energies extracted from the fits to

the principal correlators. Rather than averaging over the different irreps, a joint

fit to each principal correlator is performed while allowing for a differing second

exponential in each fit. This is generally very successful with correlated χ2/Nd.o.f.

values close to one.
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Figure 3.6: Absolute value for the operators overlap |Z| for three different
spin J = 3 operators across irreps A−2 , T

−
2 and T−1 for the Ds meson. The near

degeneracy of the operator overlap for in each irrep can be seen.
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In summary, it has been shown how one can calculate the excited meson spectrum

of QCD:

1. Create a large basis of lattice interpolators O†i with different JPC combina-

tions, from distillation smeared quark fields, with up to three latice deriva-

tives.

2. Using these interpolators compute a matrix of cross correlations between

each interpolators, Cij(t) = 〈0|Oi(t)O
†
j(0)|0〉, aided by the use of distillation

smeared fields.

3. The variational method is then used to solve Cij(t)v
n
j = λn(t, t0)Cij(t0)vnj ,

for a range of values of t0, with an appropriate t0 being chosen so as to ensure

orthongonality of the eigenvectors.

4. Principal correlators λn are then fit to a two exponential fit of the form of

Eqn. 3.5.5, from which the energies of the excited states in the spectrum En

can be extracted.

5. The continuum spins of the states in the spectrum are then assigned by

analysing the operator overlaps for individual states. Degeneracies across

irreps are seen in the value of these overlaps and correlated fits to these de-

generate states allow for the extraction of a final energy for the spin identified

states.



Chapter 4

Ds and D Meson Spectrum

The spectrum of charmonium has long been a valid testing ground for lattice QCD,

with comparisons of precise lattice data to experiment allowing for unprecedented

probes of the theory. However investigations into the spectrum of open-charm

mesons can also provide much needed insight. As mentioned before, there have

been puzzling discoveries in the open-charm sector. The masses and widths of

D∗s0(2317)± and Ds1(2460)±, seen at BABAR [53] and CLEO [54] have been found

to be lighter and narrower than expected from quark model calculations. The

nature of these enigmatic resonances is still up for debate and lattice investigations

may elucidate some of this uncertainty.

In this chapter results from an investigation of the Ds and D meson spectrums

which has been published in reference [1] will be discussed. This was performed on

a 322×256 lattice with a pion mass, Mπ, of approximately 236 MeV, slightly higher

than its experimental value of 135 MeV. After first looking at some of the technical

details of the calculation, the full meson spin spectrum calculated will be shown.

This will then be used to make a comparison with data from an earlier study

described in reference [48], with Mπ ∼ 391 MeV. This allows for an investigation

into how the spectrum changes as the light quark mass is varied, which is suggested

to be non-trivial for excited heavy quarkonia [55]. There has been many lattice

studies into the open-charm meson spectrum, some of which focused on precision

calculations of the lower lying states [44], whereas others focused on more complete

spectrums including states above threshold [47, 49, 56–58]. There have also been

lattice studies taking into account scattering resonances, such as [59–61]. In this

47
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Lattice Volume Mπ (MeV) Ncfgs Ntsrcs for cs̄, cl̄ Nvecs

323 × 256 236 484 1, 2 384
243 × 128 391 553 16, 16 162

Table 4.1: Details of the lattice gauge field ensembles used. Volume is given
as (L/as)

3 × (T/at) where L and T are respectively the spatial and temporal
extents of the lattice. The number of gauge configurations used, Ncfgs, and the
number of time-sources used per configuration, Ntsrcs, are shown along with
the number of eigenvectors used in the distillation Nvecs.

work this resonance behavior of states above threshold is not taken into account

however this study paves the way towards extending earlier scattering analyses to

lighter pion masses.

4.1 Calculation Details

As discussed in the previous chapter, the energies of the excitations in the spec-

trum are found by solving a generalised eigenvalue problem à la Eqn. 3.5.2 and

extracting energies by fitting a double exponential to the generalised eigenvalues,

or principal correlators λn. This is achieved by diagonalising a correlation matrix

Cij for a large basis of interpolating operators for each lattice irrep Λ.

These correlation functions are calculated on dynamical Nf = 2 + 1 anisotropic

gauge ensembles generated with the action described in section 2.4, with details

shown in Table 4.1. For both ensembles the strange quark is tuned to approx-

imately its physical value, but the light quark masses differ between ensembles

resulting in the different pion mass.

The charm quark is treated the same as the lighter quarks with a fully relativistic

action as described in chapter 2. The valence charm quark anisotropy and mass is

tuned so as to reproduce the physical ηc mass and relativistic dispersion relation

with lattice discretised momenta ~p = 2π
L
~n [25]. This dispersion relation can be

written as

(atE)2 = (atM)2 +

(
2π

ξL/as

)2

n2. (4.1.1)
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Figure 4.1: Points show the dependence of the ηc (upper panel) and D
(lower panel) energy on momentum; error bars show the one sigma statistical
uncertainty on either side of the mean. Lines are fits to the relativistic
dispersion relation, Eq. 4.1.1, giving ξηc = 3.456(4) (χ2/Nd.o.f = 1.08) and
ξD = 3.443(7) (χ2/Nd.o.f = 0.38). Plot reproduced from [1].

This is shown in Figure 4.1 for the ηc and D meson for the Mπ ∼ 236 MeV

ensemble. The anisotropy ξ was found from a linear fit to be ξηc = 3.456(4) for

the ηc and ξD = 3.443(7) for the D meson, both in reasonable agreement with the

anisotropy found from the pion dispersion relation of ξπ = 3.453(6) [62].

Traditionally it has been difficult to treat heavy quarks relativistically on the

lattice. Discretisation artifacts of O(amq) become large when mq is large. The
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use of anisotropic lattice with finer temporal spacing circumvents this problem by

reducing at without being too computationally expensive. This is especially salient

in the case of mesons with non-zero momenta, as large discretisation artifacts will

ruin the relativistic dispersion relation.

As the anisotropy has been tuned in the cc̄ sector, the fact that ξD is in agreement

with ξηc is a sign that discretisation effects are small. This is expected as the four-

momentum for a heavy meson will be predominantly in the temporal direction, at

least for mesons moving with modest momenta, meaning the discretisation errors

proportional to atm will be small.

From the dispersion fit Mηc = 2945(17) MeV is found, to be compared to the

experimental value of 2983.9(5) MeV [63]. From this, the systematic uncertainty

from tuning the charm-quark mass can be estimated to be of order 1%. It is

possible to include a p4 term in the dispersion fit but this term is found to be

negligible.

When extracting energies on the lattice all numbers are given in lattice units. To

convert to physical units the scale wa set via a−1
t = Mphys

Ω /(atMΩ) using the Ω

baryon mass measured on this ensemble, atMΩ = 0.2789(16) [62]. This leads to a

conversion factor of a−1
t = 5997 MeV. When quoting Ds and D meson energies in

physical units half of Mηc is subtracted to reduce any small error due to the tuning

of the charm quark, leaving it negligible compared to other sources of error.

It must be noted that only single meson operators are included in the calculation

and as such all of the excitations are treated as stable states. This is of course not

correct above the relevant decay thresholds and so these spectra should only be

taken as a guide to the pattern of resonances. In the light sector many scattering

studies taking into account the unstable nature of these states have been performed

to great success, [62, 64]. In the charm sector, there has been some work on this

issue at the higher pion mass of 391 MeV [59]. This study paves the way for these

to be extended towards the physical point on the newer lattices.
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Figure 4.2: Extracted Ds meson spectrum in lattice units labelled by lattice
irrep, ΛP . The one sigma statistical uncertainty on either side of the mean is
represented by the verticle height of each box while the different colours
represent different continuum spins as discussed in the text.

4.2 Ds and D Spectrum

In Figure 4.2 the extracted spectrum of charm-strange excitations is shown in

lattice units labelled by lattice irrep, ΛP , for both positive and negative parity.

As discussed earlier, mesons that are not eigenstates of the charge conjugation

operator, such as the Ds meson (cs̄), are grouped by their JP quantum numbers

as opposed to JPC .

The energies are extracted from the principal correlators and spins are assigned

according to the pattern of operators overlaps as detailed in the previous chapter.

The various different colors in Figure 4.2 correspond to different continuum spins.

States with J = 0 are grey, J = 1 are red, J = 2 are green, J = 3 are blue and

J = 4 are orange.

The pattern of subduction into the different irreps for all J ≥ 2, as described in

Table 3.2 is evident. For example, for both positive and negative parity, in the A2,

T2 and T1 irreps the appearance of two almost degenerate blue states can be seen,

as expected for a spin J = 3 state. As discussed before, it is checked that the states

have similar operator overlap values, to ensure the matching across the different

irreps is correct, shown in Figure 3.5. These degeneracies should become more

exact as the continuum limit is approached. This overlap method is necessary as
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Figure 4.3: Ds meson spectrum labelled by JP . Green and red boxes are the
masses computed on the Mπ ∼ 240 MeV ensemble while black boxes are
experimental masses of the neutral Ds mesons from the PDG summary
tables [65]. The vertical size of the boxes indicates the one-sigma statistical
(or experimental) uncertainty on either side of the mean. Red boxes show
states identified as constituting the lightest hybrid supermultiplet, as
described in the text. Dashed lines indicate the DK threshold using computed
(coarse green dashing) and experimental (fine grey dashing) masses.

higher in the spectrum there is a large amount of overlapping states which would

be impossible to untangle by eye alone.

Having identified the spin of the states, a joint fit to the principal correlators is

performed across the various subduced irreps to extract a single energy for the

spin identified spectrum. In Figure 4.3 the energies of the different excitations are

shown in MeV for each value of J ≤ 4. As was stated before, the energies are

shown with half of the mass of the ηc subtracted. This is to reduce any systematic

uncertainty which may arise due to the tuning of the charm quark mass.

The energy threshold for strong decays into DK has also been included in Figure

4.3. Above this line the various excitations should be thought of as resonances,

however as was stated before, there are no operators that interpolate two-meson

states in the operator basis for the GEVP, so these states are treated as stable.

The energies of the experimentally observed states have also been added in black.

On inspection, among the states a clear pattern can be seen. They follow the

simple quark model n2S+1LJ pattern. For instance the lowest two states with

negative parity can be identified as an S wave doublet, with an excited doublet
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Figure 4.4: As Figure 4.2 but for the D spectrum.

about 700 MeV higher. In the positive parity sector the lowest four states are

a P wave singlet and triplet. Above these excited S and P as well as D and F

multiplets can be identified.

There are however some states which do not fit in with this pattern in the negative

parity sector, labelled in red in Figure 4.3. These states have relatively strong

overlap with operators that are proportional to the gluonic field strength tensor ie.

states where the gluonic field has explicit excited degrees of freedom. It is proposed

that these are members of the lightest hybrid supermultiplet, [(0−, 1−, 2−), 1−].

This is consistent with a 1+− gluonic excitation coupled to an S wave meson.

In Figure 4.4 the spectrum computed on the same gauge configurations for the

D meson is shown labelled by lattice irrep. The D meson correlators used two

different time sources as opposed to one for the Ds meson. The spectrum can be

seen to be qualitatively the same as the previous Ds meson spectrum shown in

4.2. The states of spin J ≥ 2 are subduced across the appropriate irreps and the

overall pattern is the same. Some higher lying states have not been included in

the plot due to noisy principal correlators.

The spin identified D meson spectrum is shown in 4.5. This time two relevant

decay thresholds are included, that of Dπ and D∗π, using both experimental and

calculated masses. A similar spin structure can be seen and S, P,D and F wave

multiplets can be identifed. A hybrid multiplet in the negative parity sector is
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Figure 4.5: As Figure 4.2 but for the D meson spectrum. Dashed lines show
the Dπ and D∗π thresholds using computed (coarse green dashing) and
experimental (fine grey dashing) masses.

also identified in the same position in the spectrum as before. The energies shown

in both the Ds and D spin plots are tabulated in Appendix B.

It is worth noting that the data agrees quite closely with the few available ex-

perimentally observed masses. The fact that the calculation was performed at an

unphysically heavy pion mass may go some way towards explaining any discrep-

ancies. There may also be discretisation effects due to the finite lattice spacing

which lead to increased uncertainty.

4.3 Light Quark Mass Comparison

A comparison of the results discussed in the previous section with those shown in

[48] was also performed. This comparison is made with energies extracted from

a smaller volume and heavier pion mass, but it is noteworthy that the statistical

precision is greater on the Mπ ∼ 400 lattices due to the number of time sources

used in the construction of the correlation functions, as shown in Table 4.1.

Figures 4.6 and 4.7 show the comparison for the Ds and D mesons respectively.

It can be seen that while there is some movement due to the difference in quark

masses there is no major overall change in the pattern of states extracted between
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Figure 4.6: Comparison of the Ds meson spectrum for two different light
quark masses labelled by JP . Data from the Mπ ∼ 240 MeV lattices is shown
on the left of each column with opaque boxes, while Mπ ∼ 400 MeV data is
transparent. As before, hybrids are marked in red and the lowest relevant
decay threshold is marked.

the two different ensembles. Particularly in the D spectrum there is a tendency

for the energies to drop, an expected consequence of the lighter valence quark.

On the lower end of the spectrum some slight movement is seen in the lowest

few excitations, the most apparent being in the 0+ channel. This is where one

would expect to find the enigmatic D∗s0(2317). The large movement might be

explained by the close proximity to the decay thresholds. For the Ds meson this

state has decreased just enough to stay below the DK threshold, as expected from

experiment. In the case of the D meson, there is also an appreciable change seen

in the 1+ channel which would also be affected by the nearby decay threshold.

Interestingly the most obvious movement between the two is in the hybrid super-

multiplet, particularly in the case of Ds which contains no light quark. It is found

that the hybrid states become heavier as the quark mass is decreased, an obser-

vation shared with the charmonium spectrum, [1]. This is due to an increase in

the splitting between the hybrids and the lower lying conventional mesonic states

as Mπ is increased. This general trend is less obvious in the case of the D meson

due to the reduction in the mass of the light quark. It is worth noting that due

to lying higher in the spectrum, these states are statistically less precise and the

choice to disregard their unstable nature may have an effect.
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Figure 4.7: As Figure 4.6 but for the D meson spectrum labelled by JP .

4.4 Spin-Singlet and Spin-Triplet state mixing

Due to the large difference in the value of the mass of a charm quark and the

lighter quarks, any potential SU(4) symmetry in our system is badly broken. This

leads to the fact that charm-light and charm-strange mesons are not eigenstates of

charge conjugation or any potential generalisation. There is therefore some mixing

of singlet and triplet states when J = L, ie. the quark model singlet (1LJ=L) and

triplet (3LJ=L) states can mix. An analysis of this mixing can help quantify this

flavour symmetry breaking.

Assume energy independent mixing and two states written in terms of the singlet

and triplet states,

|A〉 = +cosθ|1LJ=L〉+ sinθ|3LJ=L〉,
|B〉 = −sinθ|1LJ=L〉+ cosθ|3LJ=L〉. (4.4.1)

B is chosen to be the heavier of the two states. Certain operators, using the

naming convention shown in Table 3.1, such as
[
(ρ− ρ2)×D[L]

L

]
J=L

only overlap

onto 3LJ=L states, where as
[
{π, π2} ×D[L]

L

]
J=L

only overlap onto 1LJ=L states.

Taking ratios of the operator overlap combinations allows for the extraction of

this mixing angle for a range of states, as shown in Table 4.2. Also shown are
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|θ|/◦
JP Mπ /MeV ∼ (ρ− ρ2) ∼ π ∼ π2 Heavy-quark limit

c-s 1+ 240 60.2(0.4) 63.1(0.7) 65.4(0.7)
54.7 or 35.3

400 60.9(0.6) 64.9(0.2) 66.4(0.4)
2− 240 56.3(0.9) 60.7(0.8) 63.5(0.9)

50.8 or 39.2
400 64.9(1.9) 68.7(2.0) 70.9(1.8)

1− (hybrid) 240 58.9(1.0) 66.2(1.9) 65(2.0)
400 59.9(1.7) 67.9(0.9) 67.3(0.9)

c-l 1+ 240 52.7(0.9) 61.4(0.4) 67.1(1.0)
54.7 or 35.3

400 60.1(0.4) 62.6(0.2) 65.4(0.2)
2− 240 50.4(0.7) 57.5(0.8) 61.4(0.9)

50.8 or 39.2
400? 63.3(2.2) 67.8(3.7) 71.1(3.9)

1− (hybrid) 240 57.8(1.1) 71.4(2.2) 69.9(2.5)
400 59.7(1.1) 68.4(0.8) 67.4(0.9)

Table 4.2: Absolute value of the mixing angles for the lightest pairs of 1+,
2− and hybrid 1− states in the charm-strange (c-s) and charm-light (c-l)
sectors on the two ensembles. The mixing angles expected in the heavy-quark
limit are also shown [66]. In the Mπ ∼ 400 MeV case highlighted by the ?, the
angle given in reference [48] from 90◦ so that the mass ordering of the states is
consistent between the two ensembles. Reproduced from [1].

the values expected in the heavy quark limit where mc � mu,d,s [66]. There the

mixing angle for the lightest pairs of P -wave (JP = 1+), D-wave (JP = 2−) and

JP = 1− hybrid states are shown as well as a comparison with the angles found in

[48]. The overall sign of the angle is unobservable in the calculation so we show

only the absolute value.

By using the three different operators to determine the variation between mixing

angles an estimate of the size of the systematic uncertainties can be found as

discussed in reference [48]. The 1+ mixing angle from the ρ − ρ2 operator in

the charm-light sector is closer to the heavy-quark limit value on the Mπ ∼ 240

MeV ensemble, but the analogous angle in the charm-strange sector does not

differ significantly between the ensembles. For both charm-light and charm-strange

mesons, the 2− mixing angle is closer to the heavy-quark limit value for the lighter

pion mass whereas the 1− hybrid mixing angle shows no significant difference

between the two ensembles.

We see a larger difference between the angles for the charm light and charm strange

mesons on the 240 MeV lattice as expected. In the previous analysis the light

quarks were closer to the strange quark mass and we would expect similar θ values
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as we approach the SU(3) limit. Even though the charm quark is much heavier

than the light and strange quarks, it is not heavy enough to be considered in the

heavy-quark limit. The extracted mixing angles for both ensembles can be seen

to lie somewhere between the heavy quark limit values and the flavour symmetry

limit (0◦ or 90◦), as expected.
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4.5 Summary of Results

Ds and D meson spectra have been shown, calculated on 323 × 256 lattices with

a pion mass of approimately 236 MeV. A matrix of correlation funtions between

a wide range of operators with spin J ≤ 4 was calculated using distillation and

diagonalised using the generalised eigenvalue problem method. The energies of

states were extracted from the principal correlators and the use of appropriately

chosen operators allowed for the reliable assigning of continuum spins to each

state extracted in the spectrum. It is clear that this robust method allows for

the accurate extraction of a plethora of states above threshold, including some

potential hybrid states.

The pattern of both Ds and D meson states follows the traditional potential

model pattern n2S+1LJ , with the exception of the potential hybrid states which

are not expected from these simple models. A hybrid supermultiplet was identified,

consistent with an S wave quark-anitquark excitation coupled to an 1+− gluonic

excitation. The overall pattern of states including these hybrids is found to be

in close allignment with previous studies in the light and charmed meson sectors,

[24, 48, 67, 68].

A comparison with previous results from lattices with a pion mass of approximately

391 MeV discussed in reference [48] showed little qualitative change in the overall

spectrum, confirming the validity of the method. Small quanitative differences can

be accounted for with the lower pion mass. The hybrid mesons appear to show a

mild increase in mass however the overall pattern is the same.

While not containing operators that look like two meson states, necessary for the

correct treatment of states above threshold, this work provides valuable insight for

future studies in the charmed meson sector. This will allow for previous studies

investigating scattering in charm-light and charm-strange mesons, such as [59], to

advance closer to the physical point.





Chapter 5

Radiative Transitions in

Charmonium

As discussed in previous chapters, charmonium spectroscopy allows for the preci-

sion testing of the theory of the strong interactions. Accurate lattice calculations

of meson spectra, which can be compared to recent experimental results, go a long

way towards investigating the theory of QCD, as well as potentially predicting

states which have yet to be discovered. However a complete picture of the spec-

trum will necessitate more than just the calculation of the various allowed energy

levels. Radiative transition matrix elements describing decays involving the emis-

sion of a photon can also be calculated on the lattice and provide an opportunity

to investigate other properties of the spectrum. These calculations give access to

photocouplings for the various states as well as providing some insight into the size

and internal structure of these bound states, information unavailable from simple

spectrum calculations. Knowledge of these couplings is particularly relevant in

the charmonium sector as the low lying states in the spectrum lie below the en-

ergy level needed to create two lighter charmed mesons, the DD̄ threshold. These

states are unable to decay via an OZI allowed strong decay and so have relatively

large branching fractions to radiative decays, many of which have been measured

experimentally [14, 63]. In addition, knowledge of the photocouplings for char-

monium is of great interest to many experiments where the photo-production of

charm mesons is relevant, such as ALICE [69], Glue-X and the proposed PANDA

experiment [17].

61
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In this chapter the innovative technology for extracting radiative transition form-

factors from lattice three-point correlation functions will be discussed. This was

first introduced in the light sector in reference [70]. To extract these form-factors

there will be a need to compute correlation functions between states of various mo-

menta, necessitating the introduction of helicity states, or states with well defined

helicity. As before with the two point functions, a simple spectral decomposition

shows that all states with the same quantum numbers will be present in the corre-

lation function. The idea of an improved or optimised operator which interpolates

a particular state with greater accuracy will be introduced. This will allow for the

eventual goal of investigating decays involving the higher lying, and traditionally

more noisy, excited states in the spectrum. This is the first investigation of radia-

tive transitions in charmonium using this technology on lattices with Nf = 2 + 1

dynamical quarks. Preliminary discussion of this work can be found in [71] as well

as earlier work in charmonium on quenched lattices in [72, 73].

5.1 Radiative Transitions on the Lattice

The continuum object of interest is the electro-magnetic vector current jµ matrix

element between, a hadron h of spin J with helicity projection λ along ~p and a

second hadron h′ with J ′, λ′, ~p ′, namely

〈h′J ′(λ′, ~p ′)|jµ|hJ(λ, ~p)〉. (5.1.1)

Here jµ = 2
3
c̄γµc is the standard vector current coupling to a charm quark, where

2
3

is the charge of the charm quark in units of e. To leading order in αem these

matrix elements encode the coupling of hadrons to the photon and can be related

to the helicity amplitude for the process γh → h′ simply by contracting with a

photon polarisation vector,

M(γ(λγ, ~q)hJ(λ, ~p)→ h′J ′(λ′, ~p ′)) = εµ(λγ, ~q)〈h′J ′(λ′, ~p ′)|jµ|hJ(λ, ~p)〉. (5.1.2)
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It is possible to write these matrix elements as a sum over various form factors

F (Q2) multiplying kinematic Lorentz factors Ki as

〈h′J ′(λ′, ~p ′)|jµ|hJ(λ, ~p)〉 =
∑
i

Kµ
i [h′J ′(λ′, ~p ′);hJ(λ, ~p)]Fi(Q

2). (5.1.3)

Q2 is the photon virtuality, which measures the degree to which the photon is off

shell and is given as Q2 = −q2 = |~p′−~p|2− (Eh′(~p
′)−Eh(~p))2. It is these unknown

form factors Fi(Q
2) that are of interest in the calculation of decay rates. If the

initial and final states are the same when calculating matrix elements of the form

of Eqn. 5.1.1, one extracts what are called radiative or charge form-factors. If the

states are different then transition form-factors are extracted.

The general procedure for decomposing the matrix elements is to write down

all possible kinematic factors consistent with Lorentz invariance from the meson

four-momenta and any necessary polarisation tensors. Constraints due to the

conservation of the current and parity invariance can then be used to constrain

the form-factor decompositon. The general procedure is decribed in detail in

reference [72]. As an example, take the simplest case of interest, a transition from

a pseudoscalar state , P , with momentum p to itself with momentum p′. This can

be expressed in terms of two form-factors multiplying two kinematic factors,

〈P (p′)|jµ|P (p)〉 = (p′ + p)µF1(Q2) + (p′ − p)µF2(Q2). (5.1.4)

However, due to current conservation there is the constraint that

〈P (p′)|∂µjµ|P (p)〉 = (p′ − p) · 〈P (p′)|jµ|P (p)〉 = 0 (5.1.5)

This constraint eliminates the need for F2(Q2), and results in one single form-

factor for this decomposition. In the case of charmonium this is the ηc state and

the decomposition can be written as

〈ηc(p′)|jµ|ηc(p)〉 = (p+ p′)µFηc(Q
2). (5.1.6)



Chapter 5. Radiative Transitions in Charmonium 64

A slightly more complicated case is a transition between a vector particle, such as

the J/ψ, and the pseudoscalar ηc. In this case there are multiple possible Lorentz

covariant kinematic factors allowed, however the constraints again eliminate all

but one, leaving the decomposition as

〈ηc(p′)|jµ|J/ψ(λ, p)〉 = εµνρσp′νpρεσ(λ, p)
2

mηc +mJ/ψ

FJ/ψηc(Q
2). (5.1.7)

Here εσ(λ, p) is the polarisation vector for the J/ψ. This decomposition will allow

for the extraction of the form-factor needed to calculate the decay rate for J/ψ →
ηcγ. Similarly, the transitions from a vector state to a scalar can be parameterised

using two form factors, an electromagnetic form-factor E(Q2) and a transverse

form-factor C1(Q2),

〈χc0(~p ′)|jµ|J/ψ(λ, ~p)〉 = Ω−1(Q2) (E1(Q2)[Ω(Q2)εµ(λ, ~p)

− ε(λ, ~p) · p′(pµp · p′ −mJ/ψp
µ′)]

+
C1(Q2)√

q2
mJ/ψε(λ, ~p) · ~p ′[~p · ~p ′(~p+ ~p ′)µ

− m2
χc0
pµ −m2

J/ψp
µ′]
)
. (5.1.8)

Finally a vector to vector transition has three form-factors, which can be written

as

〈J/ψ(λ′, ~p ′)|jµ|J/ψ(λ, ~p)〉 =− [(p+ p′)µε∗(λ′, ~p ′) · ε(λ, ~p)]G1(Q2)

+ [εµ(λ, ~p)ε∗(λ′, ~p ′) · p+ εµ∗(λ′, ~p ′)ε(λ, ~p) · p′]G2(Q2)

− [(p+ p′)µε∗(λ′, ~p ′) · pε(λ, ~p) · p′ 1

2m2
]G3(Q2).

(5.1.9)

In principle states in the charmonium spectrum have no radiative form factors.

This is because the photon has a charge conjugation quantum number C = −1 and

charmonium states are eigenstates of charge conjugation. A radiative transition

can therefore only occur between states of different C. This can be explained by
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the photon coupling equally to both the quark and the anti-quark in the meson.

However in a lattice calculation, by coupling the photon to only the quark, transi-

tions between states of equal C can be investigated. These unphysical transitions

can not be compared to experiment but can be used to shed some light on the

inner structure of the meson such as giving an estimate for the charge radius.

To investigate these transitions on the lattice one is interested in calculating the

three point function

Cµ
ij(∆t, t) = 〈0|Oi(∆t)j

µ(t)O†j(0)|0〉. (5.1.10)

from a large basis of lattice subduced helicity operators Oi,O†j with a local vector

current insertion placed at time t. As mentioned in Chapter 2, Wick’s theorem

says that evaluating the correlation function amounts to evaluating products of

quark propagators on the lattice. There are three different classes that these

products, or Wick contractions, fall into, which are shown in Figure 5.1. However

the first class of diagram, the connected part of the correlator, it solely necessary

for this calculation. The second class is highly OZI suppressed and so should have

little influence. The third class of contraction, with a vacuum loop should also

be negligible. In the case of a charge form-factor this will be zero due to charge-

conjugation invariance. In addition the large mass of the charm quark makes the

occurance of these vacuum loops small and so is not included in the computation.

The correlators are computed using the distillation method as described in Chapter

3, with one alteration. As the quark fields in the vector current should be the

unsmeared fields of the action, perambulators involving a current insertion are

replaced with generalised perambulators which are unsmeared at one end, [70].

e eeΓi Γf

γµ

e eeΓi Γf

γµ

e e
e

Γi Γf

γµ����
Figure 5.1: Schematic of the possible Wick contractions for the three point
function 5.1.10. Generalised perabulators are highlighted in red.
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As before in the case of a two point function it is possible to expand Eqn. 5.1.10

over a complete set of states of the lattice Hamiltonian. From this spectral de-

composition it is evident that the correlator contains contributions from all of the

states having the same quantum numbers as the interpolating operators,

Cµij(∆t, t) =
∑
m,n

1

2Em

1

2En
e−Em(∆t−t)e−Ent〈0|Oi(0)|m〉〈m|jµ(0)|n〉〈n|O†j(0)|0〉. (5.1.11)

This correlator now contains, unlike in Eqn. 3.1.2, the required matrix element,

〈m|jµ(0)|n〉, between state m and n. As before, taking large ∆t will ensure that

all higher lying excited states will go to zero more quickly than the ground state

due to the exponential suppression and so one may extract the matrix element

between the lowest energy states of the theory. However in practice on the lattice

it is not possible to take very large t separations as it has been shown to increase

the amount of noise in the correlator. In addition, if the goal is to analyse higher

excited states in the spectrum, t must be small enough so that the signal for the

excited state has not decayed to zero. For this reason, methods that allow the

extraction of information from the correlation function at earlier times are crucial.

5.2 Helicity Operator Construction

When attempting to calculate radiative form-factors F (Q2), in many cases the

physical point, where Q2 → 0, is inaccessible to lattice calculations due to the

discretised momenta available. The value of the form-factor at Q2 = 0 is necessary

to make contact with experiment so one must interpolate between spacelike and

timelike values of Q2. It is therefore important to have as many values of Q2 as

possible to ensure a reliable fit.

To access the form-factor for a wide range of Q2 one must calculate three point

functions between interpolating operators having a wide range of different mo-

menta. However creating operators of definite momenta is not as straight forward

as just Lorentz boosting previously constructed at-rest operators. As described in

Chapter 3, each operator in the basis is formed from appropriate combinations of

Dirac gamma matrices and lattice derivatives. These operators are then subduced
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Lattice Momentum Little Group Irreps(Λ or Λp)
(0, 0, 0) OD

h A±1 A±2 E± T±1 T±2
(0, 0, n) Dic4 A1 A2 B1 B2 E2

(0, n, n) Dic2 A1 A2 B1 B2

(n, n, n) Dic3 A1 A2 E2

Table 5.1: Allowed lattice momenta on a cubic lattice in a finite cubic box,
along with the corresponding little groups for relevant momenta. Lattice
momenta are given in units of 2π/(Lsas) where n ∈ Z is a non-zero integer.
The A and B irreps have dimension one, E is dimension two and T is
dimension three. Dicn is the dicyclic group of order 4n.

into the proper lattice irrep to take into account the reduced rotational symmetry

after discretising on a lattice, as shown in Eqn. 3.3.1.

In the case of an operator at non-zero momentum, the symmetry group of the

lattice is further reduced. The relevant group is now the little group of lattice

rotations which keep the momentum invariant. The distribution of the various

possible lattice momenta into lattice irreps is shown in Table 5.1. As before we

define an operator with spin J , spin z component M and spatial momentum ~p as

OJ,M(~p) ∼
∑

m1,m2,m3,...

CGs(m1,m2,m3, ...)
∑
~x

ei~p·~xψ̄(~x, t)Γm1

←→
D m2

←→
D m3 ...ψ(~x, t)

(5.2.1)

up to a constant, where D are the forward-backward lattice covariant derivatives

defined in Eqn. 3.2.2. At ~p = 0 this operator will have definite spin J and z-

projection M , however when ~p 6= 0, M is no longer a good quantum number,

unless the momentum is purely in the z direction. Instead it is more useful to

use operators with definite helicity λ, or the projection of the spin component

in the direction of momentum. These helicity operators can be formed using the

appropriate Wigner-D matrix D(J)∗
Mλ (R), [74].

OJ,λ(~p) =
∑
M

D(J)∗
Mλ (R)OJ,M(~p). (5.2.2)

Here, R is the rotation that takes (0, 0, |~p|) to ~p. In the continuum, there are an

infinite number of rotations that will achieve this, however on the finite volume

lattice the correct choice of R is important. Due to the reduced symmetry, an
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Little group ~pref φ θ ψ
Dic4 (0, 0, n) 0 0 0
Dic2 (0, n, n) π/2 π/4 −π/2
Dic3 (n, n, n) π/4 cos−1(1/

√
3) 0

Table 5.2: Rotations, Rref , used as described in the text, for rotation

R̂φ,θ,ψ = e−iφĴze−iθĴye−iψĴz that takes (0, 0, |~p|) to ~pref [74].

incorrect choice of R can lead to inconsistencies when dealing with different mo-

menta and different irreps may end up mixing. The rotation is broken up into

two separate steps, R = RlatRref . First, Rref rotates from (0,0,|~p|) to a specially

chosen reference momenta ~pref . This rotation is in general not an allowed lattice

rotation. This ensures consistency when dealing with different momenta in the

star of ~p, ie. momenta equivalent up to a simple lattice rotation. Each type of mo-

menta shown in Table 5.1 belongs to a different star. The allowed lattice rotation

Rlat then rotates from ~pref to ~p. Table 5.2 shows the angles used to rotate to the

reference momenta ~pref . In this work it is beneficial to work with operators whose

momenta aligns with one of the reference momenta as in this case the rotation R

simplfies to just Rref .

As for the zero-momentum case, due to the reduced symmetry of the discretised

lattice, operators must be subduced into the relevant lattice irreps so as to have well

defined behaviour under a transformation. It is then possible to form a subduced

helicity operator, in lattice irrep Λ as

O[J,P,|λ|]
Λ,µ (~p) =

∑
λ̂=±|λ|

S η̃,λ̂Λ,µO
JP,λ̂(~p). (5.2.3)

Here η̃ ≡ P (−1)J where J and P are the spin and parity of the operator and

µ is the row of the irrep Λ. These subduced operators are formed as orthogonal

combinations of the two helicities +|λ| and −|λ|. Table 5.3 shows the appropriate

subduction coefficients needed for construction of the subduced operators used in

this work. There are other procedures one could follow to create lattice helicity

operators, for example projecting directly from the continuum Jz operators into

little group irreps, however the method employed here allows for the relatively

simple post hoc identification of the continuum quantum numbers of the identified

spectrum of states. A full discussion on the construction of these states can be

found in reference [74].
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Group |λ|η̃ Λ(µ) S η̃,λΛ,µ

Dic4 0+ A1(1) 1
(0, 0, n) 0− A2(1) 1

1 E2(12) (δs,+ ± η̃δs,−)/
√

2

2 B1(1) (δs,+ + η̃δs,−)/
√

2

2 B2(1) (δs,+ − η̃δs,−)/
√

2

3 E2(12) (±δs,+ + η̃δs,−)/
√

2

4 A1(1) (δs,+ + η̃δs,−)/
√

2

4 A2(1) (δs,+ − η̃δs,−)/
√

2
Dic2 0+ A1(1) 1

(0, n, n) 0− A2(1) 1

1 B1(1) (δs,+ + η̃δs,−)/
√

2

1 B2(1) (δs,+ − η̃δs,−)/
√

2

2 A1(1) (δs,+ + η̃δs,−)/
√

2

2 A2(1) (δs,+ − η̃δs,−)/
√

2

3 B1(1) (δs,+ + η̃δs,−)/
√

2

3 B2(1) (δs,+ − η̃δs,−)/
√

2

4 A1(1) (δs,+ + η̃δs,−)/
√

2

4 A2(1) (δs,+ − η̃δs,−)/
√

2
Dic3 0+ A1(1) 1

(n, n, n) 0− A2(1) 1

1 E2(12) (δs,+ ± η̃δs,−)/
√

2

2 E2(12) (±δs,+ − η̃δs,−)/
√

2

3 A1(1) (δs,+ − η̃δs,−)/
√

2

3 A2(1) (δs,+ + η̃δs,−)/
√

2

4 E2(12) (δs,+ ∓ η̃δs,−)/
√

2

Table 5.3: Subduction coefficients, Sη̃,λΛ,µ, for |λ| ≤ 4 with s ≡ sign(λ),
reproduced from [74].
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5.3 Optimised Operators and Extracting Form-

Factors

Excited state contamination of three point correlation functions is a well known

and significant problem especially in precision calculations of quantities, such as

the muon anomalous magnetic moment g− 2. To ameliorate this issue of contam-

ination from higher lying states in the three point correlation funtions the three

point functions were calculated using improved operators, Ωn. These operators are

chosen as a linear combination of the standard operators in the basis so as to have

maximum overlap with a particular state in the spectrum.

In general, any one interpolating operator has some overlap onto all states in the

spectrum with the same quantum numbers, and will create a tower of states as

can be seen by inserting a complete basis of states,

O†i |0〉 =
∑
n

1

2En
|n〉〈n|O†i |0〉. (5.3.1)

However as discussed in Chapter 3, it is reasonable to assume that some linear

combination of the operators in the basis will overlap more strongly onto the

desired state.

Ω†n =
∑
i

w
(n)
i O†i ∼

1

2En
|n〉〈n|O†i |0〉+ ... (5.3.2)

It can be shown that the best estimates for the weights wi for this optimal linear

combination are given by solving the GEVP as described in the previous chapters

[22]. Using the generalised eigenvalues v
(n)
i extracted from the two point corre-

lation function analysis, one can form these improved operators by dotting the

eigenvector v
(n)
i into the basis of operators Oi,

Ω†n(~p) =
√

2Ene
−Ent0/2

∑
i

v
(n)
i O†i (~p). (5.3.3)

As an example of how this optimisation procedure affects the correlation function,

Figure 5.2 shows the principal correlator for the lowest state in the charmonium
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Figure 5.2: λeMηc (t−t0) plotted for the ηc at rest using the optimised ηc-like
operator (shown in red) and the standard ψ̄γ5ψ operator (in black). The
earlier plateau in the case of optimised operator can be seen clearly.

spectrum, the ηc, calculated with a simple pseudo-scalar γ5 operator vs an opti-

mised ηc operator. It is clear that the optimised operator plateaus a significant

number of timeslices earlier, allowing for the efficent extraction of the state’s en-

ergy. This is of particular benefit in the case of a three point function where the

plateau must be approached from both sides.

Figure 5.3 shows a similar plot but for the first excited state in the T−−1 irrep, the

ψ′. Shown in black is the principal correlator for the state using two operators,

a γi and γiγ0 operator, as it is necessary to use at least two operators to extract

a state which is orthogonal to the ground state. Shown in red is the principal

correlator for the optimised operator formed from a basis of 26 operators. It can

be seen that the optimised operator again plateaus at earlier t allowing for a more

accurate energy extraction, before the signal degrades into noise.

Once a set of optimised operators has been formed, the three point function shown

in Eqn. 5.1.11 can be rewritten more simply. Using operators Ωm,Ωn which project

onto state m and n, and a normalisation where 〈n|Ω†n|0〉 = 2En, the equation

becomes
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Figure 5.3: λeM(t−t0) plotted for the first excited state at rest in the T−−1

irrep using the fully optimised operator (shown in red) and the operator
formed from a two operator basis(in black). The earlier plateau in the case of
optimised operator can be seen clearly.

Cµ
mn(∆t, t) = 〈0|Ωm(∆t)jµ(t)Ω†n(0)|0〉 = e−Em(∆t−t)e−Ent〈m|jµ(0)|n〉+ ... (5.3.4)

The ellipsis here represents any leftover contamination from other states in the

spectrum which should be minimal with appropriately chosen optimised operators,

at least for the lower lying states. It is simple to see that the desired matrix

element can be extracted now by simply dividing out the dominant Euclidean

time dependence from the three point correlation functions.

When the decomposition shown in Eqn. 5.1.3 contains only one form factor, such

as in the pseudo-scalar to pseudo-scalar transition, it is a simple task to extract

a value for the form factor from the matrix element. In some cases however

the form-factor decomposition will involve multiple form factors. In these cases,

one correlation function will obvioulsy not contain enough information to extract

multiple form factors. However multiple correlation functions at the same value
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Figure 5.4: The temporal ηc form-factor calculated on 50 configurations for
∆t = 40 (left) and ∆t = 32 (right), with ~p = (0, 1, 1) at both source and sink.
The use of only a small subset of the 603 configurations available has resulted
in a larger statistical uncertainty.

of Q2 can be used to over-constrain the system and form a matrix equation which

can be inverted to find the various form-factors, [70].

When calculating the three point functions, the source and sink separation ∆t

is held constant and the current insertion is evaluated at each value of t, for

0 < t < ∆t. Figure 5.4 shows the ηc form-factor calculated on 50 configurations

for ∆t = 40 and ∆t = 32. Both form-factors are statistically in agreement and

∆t = 40 was chosen for this work to allow ample time for any excited state

contamination at either the source or the sink to decay.

For each momentum and Q2 combination one extracts a value for the form factor

F (Q2) by fitting to F (Q2; t) vs t. As a first attempt, a constant fit is used when

clear plateau behaviour is observed. If there is a relatively noisy plateau a fit

using up to two exponential forms can allow for some residual contamination from

higher excited states with energies of the order δEn and δEm,

F (Q2; t) = F (Q2) + fne
−δEn(∆t−t) + fme

−δEmt. (5.3.5)

Here F (Q2), fn, fm, δEn and δEm are all real fit parameters. A selection of spatial

current three point functions with improved ηc operators at the source and sink
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Figure 5.5: A selection of correlation functions plotted for a range of
different source and sink momenta. Shown is
ZsV

(p+p′)i
eEηc (∆t−t)eEηc t〈0|Ωηc |γi|Ω†ηc |0〉. Fits of the form of Eqn. 5.3.5 allow for

the extraction of F (Q2).
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Figure 5.6: The temporal ηc form-factor F (Q2) vs Q2. Each individual point
is from a fit to a three point correlation function as shown in Figure. 5.5

are shown in Figure 5.5. The leading energy dependence shown in Eqn. 5.3.4

and the appropriate kinematic factor (p + p′)µ for a pseudoscalar form-factor has

been removed. The data has also been renormalised by a renormalisation factor

Zs
V . For the upper most fit, it is clear that the data plateau in the central region,

allowing for the extraction of F (Q2) with a simple constant fit, for that particular

Q2 value. These plateaus become shorter as the momentum at the source and sink

is increased but the separation is large enough to allow a plateau to form. For the

lower two fits a single exponential fit plus a constant is used, to account for some

of the excited state contamination at later times.

This procedure is repeated many times and correlation functions are calculated

for a range of different source and sink momenta allowing for a range of different

Q2 values. A fit can then be performed to the F (Q2) vs Q2 allowing for the

extraction of the form-factor at zero virtuality. This is shown in Figure 5.6, for

the ηc form-factor. The data here has been renormalised so that the value of the
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ηc form-factor at Q2 = 0 is one, as will be described in the next section. When

analysing transitions between different states, one cannot calculate the value of

Q2 directly for Q2 = 0. A fit to the points at Q2 > 0 allows one to extrapolate to

Q2 = 0 and make connection with experiment.

5.4 Renomalisation and Improvement of the Vec-

tor Current

In the construction of the three point correlation functions used in this work the

local vector current ψ̄γµψ is utilised. This is not conserved on a lattice with finite

lattice spacing, so it must be multiplicatively renormalised with a factor ZV . Due

to the anisotropic nature of the lattice, this renormalistion factor will be different

for spatial and temporal currents, giving Zs
V and Zt

V respectively.

0 1 2 3 4
0.76

0.78

0.80

0.82

0.84

0.86

0.88

F (Q2)

n2
p
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spatial

Figure 5.7: Value for zero momentum transfer form-factor. Plotted are the
spatial (red) and temporal (blue) unrenormalised ηc form-factors for different
values of n2

p = ( L2π )2|~p|2. The horizontal bands are not fits to the data shown
but show the average with the one sigma uncertainty about the average,
excluding the points at n2

p = 4.
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It is possible to extract these renormalisation constants from the pseudoscalar

charge form-factor, which arises in the three point function with an improved ηc

operator at the source and sink for zero momentum transfer. Figure 5.7 shows the

value of the ηc form-factor for zero momentum transfer, for source and sink mo-

mentum ~p = (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) and (0, 0, 2) Its lattice value F lat
ηc (0),

is normalised to its continuum value of unity (in units of e),

ZV =
F cont.
ηc (0)

F lat.
ηc (0)

=
1

F lat.
ηc (0)

. (5.4.1)

The inverse of the average of the values for F (Q2) is used to find the renormalisa-

tion constant. The values found from a fit to the average renormalisation factor

data, not including the highest momentum point were,

Zs
V = 1.251(4), Zt

V = 1.144(3), (5.4.2)

where the errors are in the last significant figure. The errors here a purely statis-

tical. A more complete estimate could included errors due to the discretisation,

by varrying the lattice spacing at which this calculation was performed. All sub-

sequent form-factors shown, as well as those shown in the previous section are

renormalised using the appropriate renormalisation factor.

As has been previously discussed in Chapter 2, when discretising on a lattice, there

are artefacts proportional to the lattice spacing in any observables calculated. One

way to reduce the effect of these artefacts is via an improvement procedure [36],

where additional terms are added to the lattice action so as to cancel the leading

order behavior of the discretisation artifacts. The process necessary to arrive at

the improved action given in Eqn. 2.4.2 can be recast as a field redefinition. Ap-

plying this same field redefinition to the fields in the vector current introduces an

improvement term such that the improved renormalised currents can be ultimately

written as

j0 = Zt
V (ψ̄γ0ψ +

1

4

νs
ξ

(1− ξ)as∂j(ψ̄σ0jψ)),

jk = Zs
V (ψ̄γkψ +

1

4
(1− ξ)at∂0(ψ̄σ0kψ)). (5.4.3)
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It is clear from these expressions that it is in fact the use of an anisotropic lattice

that leads to the introduction of this term, which will disappear if at = as, as

then the anisotropy ξ will equal one. Figure 5.8 shows the effect of the use of the

improved current vs the unimproved on the ηc form factor with a temporal and

spatial current. It is clear that the addition of the improvement term has an effect

on the values for the form-factor F (Q2) calculated, at least in the case for high Q2,

narrowing the difference observed between the spatial and temporal currents. We

will utilise the improved current for the various transitions shown in the following

chapter.
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Figure 5.8: ηc spatial and temporal form-factors, using the unimproved
(above) and improved (below) currents. Each spatial (red) and temporal
(green) data point and its associated statistical error is take froma fit to
F (Q2; t) vs t data, such as those shown in Figure 5.5.
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In summary, in this chapter it was shown how it is possible to investigate radiative

transition matrix elements on the lattice:

1. Create a large basis of lattice subduced helicity operators O†i for a range of

different momentum values, in any symmetry channel of interest.

2. Form optimal combinations of the operators in this basis for each symme-

try channel which interpolate from the vacuum the state in question. This

is done by using the variational method to solve the GEVP Cij(t)v
n
j =

λn(t, t0)Cij(t0)vnj for the generalised eigenvectors vnj .

3. Using these improved operators compute three point correlation functions

between the states in question with a vector current insertion. Different

combinations of source and sink momentum allows access to a range of Q2

values.

4. After proper normalistion, these three point functions can be expressed as a

sum over a number of form-factors F (Q2). These can be extracted from the

time slice data by removing the dominant energy dependence and fitting to

plateaus in the F (Q2 : t) vs t data.

5. When enough values for F (Q2) have been computed a fit vs Q2 allows for

the extraction of the form-factor at Q2 = 0. This can then be used to make

contact with experiment.



Chapter 6

Radiative Transitions Results

It has been shown how Lattice QCD can be used to investigate the charmed meson

spectrum by analysing two point functions using the variational method. It was

also discussed how this can be extended to the analysis of three point functions

which allows one to investigate some interesting quantities such as vector current

matrix elements involved in decays. In this chapter, results of a lattice calculation

in the charmonium sector for a number of transitions involving the emission of a

photon are discussed. This data is used to extract form-factors and where possible

make a link to experimentally measured transition rates [75, 76].

These transitions in charmonium were first investigated by members of the Hadron

Spectrum Collaboration on quenched lattices using domain wall fermions in refer-

ence [72]. This was expanded on in reference [73] where some higher excited and

exotic transitions in charmonium were included. The first use of the distillation

method and variationally optimised operators to investigate radiative transitions

was in the light sector with Nf = 3 dynamical lattices discussed in reference [70].

These studies paved the way for this work which employs distillation and the

variationally optimised operator technology on Nf = 2 + 1 dynamical lattices to

investigate radiative transitions in charmonium for the first time.

A number of other groups have also performed studies of transitions in the charmo-

nium spectrum. In particular for the decay J/ψ → ηcγ, calculations using Nf = 2

twisted mass fermions [77, 78] or the highly improved staggered quark action on

81
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Figure 6.1: A simple charmonium spectrum calculated on the 203 lattices.
Shown schematically are the experimentally allowed transitions, as well as the
exotic hybrid state in the JPC = 1−+ channel. In each case the height of the
box denotes the statistical uncertainty measured in the energy.

Nf = 2 + 1 lattices [79] have been performed. These results provide a fairly con-

sistent theoretical estimate of this decay width which provides a benchmark for

the work discussed here.

Figure 6.1 shows the spectrum of states calculated on the lattice described in the

following section with details shown in Table 6.1. Plotted is the energy of the

lowest few states in the JPC channels relevant for the ηc, J/ψ, χc0 and exotic

hybrid 1−+ ηc1 state. The energies have been converted form lattice units to GeV

and the height of each box represents the statistical uncertainty associated with

each energy.

As has been stated before, transitions involving the emission of a photon occur

only between states of different C, as shown in the figure. However in this study

the photon is coupled solely to the quark line in the meson and so it is possible to

analyse transitions between states of the same C. The arrows in Figure 6.1 show

some of the potential transitions allowed in the charmonium spectrum via the
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emission of a photon. These transitions all have experimentally measured partial

decay widths which have been tabulated in reference [63].

6.1 Calculation Details

The three point correlation functions necessary for this calculation were calculated

on an Nf = 2+1 anisotropic lattice of volume 203×128, generated using the same

action as described in reference [28]. The pion mass, Mπ, was measured to be

approximately 391 MeV. Information on these gauge configurations can be seen

in Table. 6.1. More details on these ensembles can be found in [59].

The majority of the correlators were evaluated on the full 603 gauge configura-

tions available, however due to time and storage constraints some transitions were

calculated on a reduced set of 300 configurations. All correlation functions were

calculated with ∆t = 40.

As discussed before, the charm quark mass has been tuned so as to reproduce

the relativistic dispersion relation shown in Eqn. 4.1.1. The dispersion relation

for the ηc meson is shown in Figure. 6.2. The anisotropy was determined, when

not including the final n2 = 4 point, to be 3.476(3) which agrees closely with the

value extracted from the D meson dispersion relation of ξ = 3.454(6) on the same

lattice. This allows us to be sure that discretisation effects due to the tuning

are small. With the inclusion of the n2 = 4 point the anisotropy is found to be

approximately ξ = 3.5, however the χ2/Nd.o.f. for the fit was very large. This is

consistent with a larger discretisation effect in the case of data involving a boost

of ~p = (0, 0, 2). This effect can also be seen in Figure 5.7 in the extraction of ZV .

Primarily, boosts of up to ~p = (1, 1, 1) were used to minimize any effect this may

have on the F (Q2) extraction. The Ω-baryon mass was found on this lattice to

Lattice Volume Mπ (MeV) Ncfgs Ntsrcs Nvecs

203 × 128 391 603(300) 1 128

Table 6.1: Details of the lattice gauge field ensembles used. Volume is given
as (L/as)

3 × (T/at) where L and T are respectively the spatial and temporal
extents of the lattice. The number of gauge configurations used, Ncfgs, and the
number of time-sources used per configuration, Ntsrcs, are shown along with
the number of eigenvectors used in the distillation, Nvecs.
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Figure 6.2: Dispersion relation for the ηc meson measured on the mπ ∼ 391
lattice. The fit in the above panel does not include the n2 = 4 points, which is
included in the lower panel.

be atmΩ = 0.2951, leading to an inverse lattice spacing and conversion factor of

a−1
t = 5.667 GeV [59].

6.2 Form-Factors

First some elastic radiative form-factors in charmonium, namely the ηc, η
′
c and χc0

form-factors will be investigated. These benchmark calculations can be used to

test the efficacy of the method used as well as compare to previous studies of the

same quantities, such as references [72, 77].
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6.2.1 ηc Form-Factor

The simplest transition to investigate is between a ground state pseudoscalar ηc

meson and itself, ηc → ηcγ. As this is not a physical transition it cannot be

compared to experiment, however it may be used to shed some light on the internal

charge distribution of the meson resulting in a charge radius.

The single form factor of interest, Fηc(Q
2), appears in the Lorentz decomposition

of the vector current matrix element with improved ηc operators at the source and

sink,

〈ηc(p′)|jµ|ηc(p)〉 = (p+ p′)µFηc(Q
2). (6.2.1)

Three point correlation functions were evaluated for a range of source and sink mo-

mentum combinations allowing for momentum transfers of ~p = (0, 0, 0), (0, 0, 1), (0, 1, 1),

(1, 1, 1) and (0, 0, 2). This provides for an adequate range of Q2 values, allowing

for an accurate fit to the F (Q2) data vs Q2.

These correlation functions are calculated for temporal and spatial currents and are

renormalised by the aformentioned renormalisation factors Zt
V or Zs

V respectively.

This then gives the matrix element of interest by removing the dominant energy

dependence given in Eqn. 5.3.4. As was seen earlier in Figure 5.5, a number of

correlation functions with clear plateaus away from the source and sink allow for

an accurate extraction for F (Q2). Figure 6.3 shows the ηc form-factor Fηc(Q
2) vs

Q2 calculated for the unimproved temporal and spatial current.

The data was fit using an exponential form as described in [72],

F (Q2) = F (0)exp[− Q2

16β2
(1 + αQ2)], (6.2.2)

with fit parameters, F (0), α and β, for values of Q2 > 0. It is clear that for the

unimproved current the temporal data is described more accurately by the fit. A

larger spread of points about the fit can be seen in the case of the spatial current,

and the extracted value of F (0) is not consistent with one. This may be due to the

larger spacing in the spatial directions, leading to increased discretisation errors.
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Figure 6.3: ηc form-factor, F (Q2), for unimproved temporal (above) and
spatial (below) currents. Each data point and its one sigma uncertainty is
from a fit to a three-point function with different source and sink momentum.
Q2 = 0 data is not included in the fit.
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Figure 6.4 again shows the ηc form-factor, this time computed with the improved

current. It can be seen that the addition of the improvement term reduces the

spread in the spatial current so that it is more accurately described by the fit.

The extracted value of F (0) is now consistent with unity for both spatial and

temporal currents, which is expected as the data has been renormalised such that

the form factor at Q2 = 0 is unity. The fact that the fit to the Q2 > 0 data gives

an appropriate F (0) value shows that no extra renormalisation is necessary.

In addition, as was mentioned in Chapter 5, the improved temporal and spatial

currents agree more closely than in the unimproved case. It is possible to define

a squared charge radius for the meson [72], via the slope of the form-factor at Q2

= 0, as

〈r2〉 =
6

16β2
. (6.2.3)

This can be used to characterise the distribution of charge in the meson. The

values extracted from the fit using the improved current shown in Figure 6.4 can

then be used to give an estimate of this charge radius. The fits to both the

improved spatial and temporal currents now show an appropriate χ2/Nd.o.f. close

to one. Using the values for β from these fits it was found that

〈r2
s〉

1
2 = 0.234(4)fm, 〈r2

t 〉
1
2 = 0.236(2)fm. (6.2.4)

These values are in line with previous results from references [72, 77], the former

finding a value of 0.255(2) fm from a quenched study, while the latter found a

value of 0.213(1) fm from a Nf = 2 calculation. As described in [77], it is expected

that an unquenched calculation should give a smaller radius than its quenched

counterpart, due to the increased coupling strength due to the unquenching. A

more complete analysis taking into account the various systematic errors discussed

in Chapter 1, could explain some of the descrepancy with previous results.
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Figure 6.4: ηc form-factor for improved temporal (above) and spatial
(below) currents. Each data point and its one sigma uncertainty is from a fit
to a three-point function with different source and sink momentum. Q2 = 0
data is not included in the fit.
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6.2.2 χc0 Form-Factor

The second form-factor of interest is for the ground state χc0. In this case the

decomposition for the matrix element 〈χc0(p′)|jµ|χc0(p)〉 is the same as for the ηc,

shown in Eqn. 6.2.1.

The signal in both the two-point functions for this state necessary to create the

optimised χc0 operator and the three point functions calculated with this optimised

operator were slightly noiser than those for the ηc. This is reflected in the larger

statistical errors in the individual F (Q2) values. As well as this a number of

momentum combinations failed to produce a satisfactory plateau, and so were not

included.

Despite the noisier signal, a number of combinations showed appropriate plateaus.

Figure 6.5 shows F (Q2) vs Q2 for the χc0 computed for the improved temporal

and spatial currents. The data is again fit with the analytic form shown in Eqn.

6.2.2. The data is accurately described by this fit, with low χ2/Nd.o.f. values in

part due to the increased statistical uncertainty.

Following the same procedure as before the charge radius for the χc0 can be esti-

mated from the fit parameter β. This results in

〈r2
s〉

1
2 = 0.34(3)fm, 〈r2

t 〉
1
2 = 0.30(2)fm. (6.2.5)

As is expected, the charge radius for the χc0 is notably larger than the ηc. This

makes sense as the χc0 can be thought of as a P -wave state, which is spatially

larger due to the increased angular momentum of the constituent quarks.

It should be noted that it was necessary to include some data points at Q2 = 0 in

the fit so as to extract a value for F (0) which is consistent with one.
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Figure 6.5: χc0 form-factor for improved temporal (above) and spatial
(below) currents. Each data point and its one sigma uncertainty is from a fit
to a three-point function with different source and sink momentum.
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6.2.3 η′c Form-Factor

As the aim is to work towards investigating transitions involving excited states

in the charmonium spectrum, it is prudent to investigate the form-factor for the

lowest lying excited state, the η′c. The form-factor decomposition is the same here

as it was in the previous two cases, with one single form-factor as shown in Eqn.

6.2.1.

Unfortunately when dealing with excited states, considerably more noise is ob-

served in the three point correlation functions leading to increased uncertainty

in any form-factor extraction. This uncertainty is then increased further when

dealing with correlation functions involving states with higher momenta.

Figure 6.6 shows the form-factor F (Q2) vs Q2 temporal and spatial currents. It is

evident that there is a much larger statistical uncertainty in each F (Q2) extraction,

which is subsequently reflected in the rather low χ2/Nd.o.f. value and large errors

on the individual fit parameters. F (0) is found to not be consistent with one, even

when the data at Q2 = 0 is included in the fit. This suggests that an additional

renormalisation constant is necessary in the case of excitations with weaker signals.

The values for the charge radius were found to be

〈r2
s〉

1
2 = 0.49(13)fm, 〈r2

t 〉
1
2 = 0.45(7)fm. (6.2.6)

Again it was found that the spatial extent of the η′c is larger than that of the ηc

and χc0, as expected for an excited state.
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Figure 6.6: η′c form-factor for improved temporal (above) and spatial
(below) currents. Each data point and its one sigma uncertainty is from a fit
to a three-point function with different source and sink momentum.
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6.3 Radiative Transitions

In this section two different transitions will be investigated. First the transi-

tion between the two lightest states in the charmonium spectrum, J/ψ → ηcγ,

which will then be followed by an investigation of the transition χc0 → J/ψγ.

As was mentioned before, below the DD̄ threshold, charmonium states are OZI

suppressed, meaning these transitions have non-negligible, transition rates which

can be measured in experiment [80].

6.3.1 J/ψ → ηcγ Transition

The matrix element of interest for the J/ψ → ηcγ transition can be expressed with

a single form-factor as

〈ηc(p′)|jµ|J/ψ(λ, p)〉 = εµνρσp′νpρεσ(λ, p)
2

mηc +mJ/ψ

FJ/ψηc(Q
2), (6.3.1)

where εσ(λ, p) is the polarisation vector for the J/ψ with momentum p and helicity

λ. The partial decay width for this transition can be related to the form-factor at

zero virtuality measured on the lattice by

Γ(J/ψ → ηcγ) =
64α

27

|q|3
(mηc +mJ/ψ)2

|FJ/ψηc(0)|2, (6.3.2)

where α is the fine structure constant. In the frame where the J/ψ is at rest it is

found that, for Q2 → 0,

|q|2 =
(m2

J/ψ −m2
ηc)

2

4m2
J/ψ

(6.3.3)

There is however a slight ambiguity in whether to use lattice or experimental

masses in these equations to make connection to experimental results. Table 6.2

shows the values for the masses found on the lattice as well as their experimental

counterparts. While the energies extracted on the lattice are quite close to the

experimental values, the difference between the lightest two charmonium states,

the ηc and J/ψ, known as the hyperfine splitting, is found to be less than in
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mηc mJ/ψ mχc0

Lattice 2966.4(3) 3046.9(4) 3430(2)
Experiment 2983.9(5) 3096.9(6) 3414.7(3)

Table 6.2: Summary of the masses for the ηc, J/ψ and χc0 found on the
lattice, as well as their experimental values quoted in the PDG [63]. All figures
are quoted in MeV. All errors are in the last digit.

experiment. This is a well known problem in lattice studies and is sensitive to

the discretisation used, the values for the quark masses and the inclusion of the

disconnected diagrams in the correlators [81]. The value for the splitting found

here of 81(1) MeV is consistent with that found on 163 and 243 lattices with the

same pion mass [25], suggesting it is not due to finite volume effects. In references

[25, 48] it was discussed that an increase of the clover coefficient from the tree-level

tadpole-improved value of cSW = 1.35 to 2 resulted in a value for the hyperfine

splitting which was in line with the experimental value. This allows for an estimate

of the leading O(as) systematic uncertainty which was found to be ∼ O(40) MeV

on these lattices. This uncertainty is not included in the results presented in this

thesis.

In the same way as before, improved spatial current correlation functions for dif-

ferent momentum combinations at source and sink are calculated which will allow

for the extraction of a value for the form-factor F (Q2) at zero virtuality. Combina-

tions resulting in Q2 < 0, ie. when pi = pf , were found to produce no discernable

plateau or were polluted with large amounts of noise and so are not included. To

extract the form-factor at zero virtuality the data was fit to an exponential fit

form

F (Q2) = F (0)e
− Q2

16β2 , (6.3.4)

with fit parameters F (0) and β. This form is motivated by simple quark model

considerations as described in reference [72]. Figure 6.7 shows the form-factor

F (Q2) vs Q2. The data was found to be well described by the fit, up to momentum

transfers of ~p = (1, 1, 1). A single point, with momentum transfer ~p = (0, 0, 2) is

shown in Figure 6.7, but is not included in the fit. The same discretisation errors

when dealing with higher momentums seen before arise here.
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Figure 6.7: Form-factor F (Q2) vs Q2 for the J/ψ → ηc transition using the
improved spatial current. Each data point and its one sigma uncertainty is
from a fit to a three-point function with different source and sink momentum.

Using the value of F (0) = 2.041(5) extracted from the fit to the F (Q2) data the

partial decay width, Γ, can be estimated using Eqn. 6.3.2 and was found to be

Γmexp = 2.66(4)keV, Γmlat = 1.01(1)keV, (6.3.5)

where mexp and mlat are found using the experimental and lattice masses for the

ηc and J/ψ respectively. These values lie on either side of the value for the decay

width quoted in the PDG of 1.6(4) keV [63].

As q is quite sensitive to differences in the hyperfine splitting any change in the

value used will have a large effect on these decay rates, which depends on q3, and

explains the large difference between the two values. Moving towards physical

quark masses with a more accurate value for the hyperfine splitting may help to

decrease this difference.
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Figure 6.8: Comparison of the results from different lattice calculations of
Γ(J/ψ → ηcγ) using experimental masses, as well as the PDG average [63] and
experimental result from KEDR [76] in red. The error budgets in references
[78] and [79] are more complete than in this work and so result in larger error
bars.

A number of other lattice studies investigating this transition have also been per-

formed, with results shown in Figure 6.8 The value found in this study using

experimental masses for the ηc and J/ψ of 2.66(4) keV is consistent with the re-

sult of 2.57(11) keV found in the original quenched paper [72]. It is also consistent

with the results found in dynamical studies of 2.64(11) keV [78] and 2.49(19) keV

[79]. While not included in the PDG average, a recent experimental study at

KEDR [76] quotes a larger decay width of Γ(J/ψ → ηcγ) = 2.98(18) keV, which

is considerably closer to the lattice results. The inclusion of this result in the

PDG average could remove some of the descrepancy between the lattice and PDG

results.
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6.3.2 χc0 → J/ψγ Transition

The matrix element for the χc0 → J/ψγ transition can be characterised by two

form-factors as shown in Eqn. 5.1.8, an electric form-factor E1(Q2) and a longitu-

dinal form-factor C1(Q2). Physically, only E1 is measurable in experiment, as all

photons must be on-shell ie. Q2 = 0. It is possible to choose certain momentum

combinations such that C1 does not contribute, even for values of Q2 > 0, leaving

the matrix element simply proportional to E1(Q2),

〈χc0(~p ′)|jµ|J/ψ(λ, ~p)〉 = E1(Q2)εµ(λ, ~p). (6.3.6)

Here again εµ(λ, ~p) is the polarisation of the vector J/ψ. In order to make connec-

tion with experiment, the partial decay width for the χc0 → J/ψγ can be expressed

as

Γ(χc0 → J/ψγ) = α
|~q|
m2
χc0

16

9
|Ê1(0)|2, (6.3.7)

where α is the fine structure constant and Ê1 is the form-factor extracted on

the lattice. As before there is some ambiguity as to whether one should use the

experimental or lattice mass for the χc0 in this equation. The value for mχc0

extracted on this lattice was found to be 3430(2) MeV, which is to be compared

with the experimental value of 3414.7(3) MeV quoted in the PDG [63].

Spatial three point functions for a number of momentum combinations were com-

puted using the improved current such that the decomposition shown in Eqn. 6.3.6

could be used. The form-factor E1(Q2) was then found by fitting the data to an

exponential form again motivated by simple relativistic quark model calculations

as suggested in [72],

F (Q2) = Ê1(0)(1 + λQ2)exp[− Q2

16β2
], (6.3.8)

with fit parameters Ê, λ and β. This fit can be seen in Figure 6.9. From the fit a

value for the form-factor Ê(0) of 0.140(1) in lattice units was found.
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Figure 6.9: Form-factor E(Q2) vs Q2 for the χc0 → J/ψ transition using the
improved spatial current. Each data point and its one sigma uncertainty is
from a fit to a three-point function with different source and sink momentum.

The results for the partial decay width using both experimental and lattice masses

were found to be

Γmexp = 212(3) keV, Γmlat = 251(3) keV (6.3.9)

This is to be compared with the PDG average experimental value of 147(12) keV.

In the previous quenched studies, the values found for this transitions using the

experimental masses were 232(41) keV [72] and 131(14) keV [73], which fall either

side of the value found here. Reference [77] also quotes a value for this transition,

however it is substantially lower at 85(7) keV.
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6.4 Exotic ηc1 (1−+) State

The goal of this current work was to work towards the calculation of transitions

involving exotic or hybrid states. This would be a timely goal as there is cur-

rently much interest in the phenomenology of these hybrid states in the physics

community. In reference [73], the authors investigate a transition between the

exotic JPC = 1−+ state, referred to as the ηc1, and J/ψ, where it is identified as

a hybrid. This state was also identified to be a hybrid in reference [25], where it

was proposed that it is part of the lightest hybrid supermultiplet in charmonium.

It can be explained as an S-wave quark-antiquark pair coupled to a 1+− gluonic

excitation.

Figure 6.10 shows the principal correlators for the ηc, η
′
c and ηc1 as found in this

work. It is clear that the signal for the ηc1 state is considerably more noisy than the

relatively flat ηc and η′c. The plateau exists only for a short number of timeslices

before disappearing into noise. It is proposed that to investigate this transition

a greater number of timesources are necessary to get an adequate plateau that

extends out far enough to extract a reliable signal from the three point functions.

As this was an exploratory study only one timesource was used, in contrast to

the maximum of 128 used in reference [25]. Unfortunately the generaton of more

timesources was not feasible due to the time constraints for this thesis but a more

in-depth analysis of this transition would be next in line to be analysed.
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Figure 6.10: Principal correlators λneMn(t−t0) for ηc, η

′
c and ηc1 at rest for

t0 = 11. Points in red are not included in the fit. The hybrid state ηc1 signal
disappears into noise after a small number of timeslices.
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6.5 Summary of Results

Results from a dynamical Nf = 2 + 1 lattice study of radiative transitions in

charmonium using technology pioneered by the Hadron Spectrum Collaboration

have been presented. This is the first such dynamical study attempted in the

charmonium spectrum. Distillation and a variational approach to optimising in-

terpolating operators was used to create a large number of three point correlation

functions with a range of souce and sink momenta. This allowed for the calcu-

lation of radiative form-factors F (Q2) at a wide range of Q2 values. Fits to this

data was used to find a value for F (0) which provided a way to calculate physical

decay rates that can be compared to experiment.

First the charge form-factors for the ηc, χc0 and η′c were presented. From fits to the

form-factor data a value for the charge radius of these excitations was measured.

The charge radius for the ηc was found to be 0.234(4) fm from the spatial current

and 0.236(2) fm from the temporal current. These values lie in between the values

of 0.255(2) fm found from a quenched analysis in reference [72] and 0.213(1) fm

presented in reference [77] from a dynamical Nf = 2 study. The radius for the

χc0 was then found to be slightly larger at 0.34(3) fm for the spatial current and

0.30(2) for the temporal current. The values for the radius of the η′c were found

to be larger still at 0.49(13) for the spatial current and 0.45(7) for the temporal

current. These larger radii are to be expected and can be explained as the χc0 is

a P wave state and the η′c is an excitation of the ground state ηc.

Next results for two transitions in the charmonium spectrum were presented. First

the partial decay width for the transitions J/ψ → ηcγ was found to be 2.66(4)

keV and 1.01(1) keV using experimental and lattice masses respectively in Eqn.

6.3.2. This large discrepancy can be explained by the fact that the value for the

hyperfine splitting, which the decay width is sensitive to, was found to be lower

than its experimental value. A number of other studies resulted in comparable

decay widths, as shown in Figure 6.8. Then the partial decay width for χc0 → J/ψγ

was found to be 212(3) keV and 251(3) keV using experimental and lattice masses

respectively in Eqn. 6.3.7.

Finally some preliminary correlators were presented for the exotic hybrid state ηc1.

This state is involved in the phenomenologically interesting transition ηc1 → J/ψγ.

The signal for this state was found to be short lived and it is proposed that for a
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robust determination of this transition more time sources would be needed. This

was employed in reference [25], where up to 128 timesources were used to extract

robust energy levels for high lying and exotic states.



Chapter 7

Conclusions and Future

Directions

This thesis began with an attempt to motivate why lattice quantum chromody-

namics is necessary to move forward in the quest to understand the world at its

most fundamental level. The Standard Model of particle physics encapsulates our

theoretical understanding of the sub-atomic world and should continue to be tested

via both experimental and theoretical studies. Unfortunately, the non-abelian na-

ture of the strong interaction results in a large coupling at hadronic energy scales.

This prohibits perturbative investigations and so one must turn to the lattice.

This is especially important as many unexplained hadronic resonances have been

observed in collider experiments and there is great interest in understanding their

nature.

After a brief recap of continuum QCD, the need for regularisation when calculating

path integrals in quantum field theory led to the introduction of a finite spacetime

lattice on which the theory of QCD was discretised. It was discussed how one may

write down a simple discretised action which reproduces the continuum action in

the limit where the lattice spacing goes to zero. With this comes discretisation

errors which are systematically improvable by a procedure known as Symanzik

improvement. Then the technology necessary to extract mesonic energy levels

on the lattice was introduced. Correlation functions between interpolators with

appropriate quantum numbers contain all the requisite information however it is

buried in a tower of other excited state energies. The variational method along

103
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with distillation were introduced which provided a way to extract accurate energies

for ground and excited states in the meson spectrum.

In Chapter 4 results of a dynamical Nf = 2 + 1 spectrum calculation for Ds

and D mesons were shown, as presented in [1]. A correlation matrix between a

large basis of interpolating operators was calculated using the distillation method

and then diagonalised by solving a generalised eigenvalue problem. This allowed

for the extraction of the highly excited energies in the spectrum and the use of

appropriately chosen operators provided a way for the post hoc identification of

each state’s continuum spin. The states were found to lie in the traditional n2S+1

pattern with some exceptions, which were identified as potential hybrid states. The

overall pattern of states was found to be qualitatively in line with that of similar

earlier studies of the charm-light spectrum on lattices with heavier pion mass [48].

While not accounting for the unstable nature of the states above threshold, this

study paves the way to extend earlier scattering studies in the charm-light sector

performed at higher pion mass towards the physical point.

This was followed by a discussion on extracting radiative transition form-factors

on the lattice. The ideas used in the calculation of the meson spectra were ex-

tended so as to access radiative transition matrix elements on the lattice which

appear in the decomposition of three point correlation functions. To minimise con-

tamination from higher excited states improved operators construced via solving

the generalised eigenvalue problem were used. Finally results were shown from a

recent study investigating radiative transitions between states in the charmonium

spectrum. The individual form-factors for the ηc, χc0 and η′c were investigated.

This allowed for an estimate of the charge radius of these mesons. The transi-

tions J/ψ → ηcγ and χc0 → J/ψγ were then measured, resulting in a value for

the partial decay rates which can be compared to experimentally measured val-

ues. However these calculations are primarily exploratory and only account for

errors which are statistical in nature. To make a more accurate comparison to

experiment or provide valid predictions, a more conservative investigation of the

associated systematic errors would need to be performed.

The work discussed in this thesis has laid the ground work needed to study ra-

diative transitions involving higher excited states in the spectrum of charmonium.

Of particular interest is the transition involving the exotic 1−+ state, ηc1 → J/ψγ.
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Previous studies of the charmonium spectrum have identified this state as a po-

tential gluonic hybrid. A lattice calculation of this transition using up to date

dynamical lattices and the technology discussed here would be the first of its kind.

This would allow access to photocouplings of great interest to many experiment

where the photo-production of these mesons is thought to be significant and so

would be a timely endeavour.





Appendix A

Error Analysis

A.1 Jackknife Resampling

For a set of N uncorrelated measurements, {xi}, of some observable on a set

of Monte Carlo generated configurations one can define the standard mean and

variance of the observable as

〈x〉 =
1

N

N∑
i

xi, (A.1.1)

σ2
x =

1

N

N∑
i

(xi − 〈x〉)2. (A.1.2)

From this one can then quote a value for the observable with a one sigma uncer-

tainty as 〈x〉 ± σx.

In order to make an improved estimate for the variance of the data one may use

a process known as single elimination jackknife resampling. A new set of N data,

{yi}, is defined by forming N subsets of the original data via removing the ith

measurement,

yi =
1

N − 1

N∑
j 6=i

xj. (A.1.3)
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This new set of data {yi} has the same mean as the original data set as

yi =
1

N − 1

N∑
j

xj −
1

N − 1
xi

=
1

N − 1
(N〈x〉 − xi)

= 〈x〉+
1

N − 1
(〈x〉 − xi). (A.1.4)

From this it is clear that

〈y〉 =
1

N

N∑
i

yi = 〈x〉. (A.1.5)

The variance of the new jackknife data set is given as

σ2
y =

N − 1

N

N∑
i

(yi − 〈y〉)2

=
N − 1

N

N∑
i

(〈x〉+
1

N − 1
(〈x〉 − xi)− 〈y〉)2

=
N − 1

(N − 1)2

1

N

N∑
i

(〈x〉 − xi)2

=
1

N − 1
σ2
x. (A.1.6)

It is clear that the new estimate for the value of the observable 〈y〉 ± σy has a

reduced error compared to the original estimate.

The use of jackknife resampling also allows for the estimate of errors for various

quatities which may not be just simple functions of the measured lattice data

such as fits to the data, without the need for complicated formulae relating to

propagation of errors. All errors quoted in this work are calculated from the

appropriate jackknife data sets.



Appendix B

Tables of Results

B.1 Ds and D meson energies

In Tables B.1 and B.2 numerical values for Ds and D meson masses obtained for

Mπ ∼ 240 MeV are presented. Masses are given in MeV with half the mass of the

ηc subtracted in order to minimise the systematic uncertainty in tuning the charm

quark mass. In all cases the quoted error corresponds to the (one-sigma) statistical

uncertainty. As discussed earlier, above the lowest multi-hadron threshold in each

channel states can decay strongly into lighter hadrons and, aside from any other

systematic uncertainties, the masses are only expected to be correct up to around

the width of the state [24].
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JP M −Mηc/2 (MeV )
0− 467(11) 1225(17) 1679(27) 1873(31)
1− 593(12) 1286(12) 1399(21) 1740(30) 1891(33) 1898(38)
2− 1424(19) 1440(20) 1952(35) 1993(36) 2002(32)
3− 1481(19) 2029(28)
4− 2075(29) 2109(31)
0+ 886(14) 1567(35) 1934(51)
1+ 1022(15) 1064(16) 1612(25) 1670(26) 1929(44) 2030(35)
2+ 1100(15) 1675(24) 1773(23) 2000(37)
3+ 1766(22) 1779(22)
4+ 1811(24)

Table B.1: Summary of the Ds meson spectrum presented in Figure 4.3.
Masses are shown with Mηc/2 subtracted. Quoted uncertainties are statistical
only. Reproduced from [1].

JP M −Mηc/2 (MeV )
0− 382(10) 1138(17) 1569(26) 1783(29) 2176(37)
1− 509(11) 1233(22) 1315(21) 1610(33) 1801(34) 1838(36)
2− 1352(19) 1429(20) 1912(34) 1935(34)
3− 1441(19) 2032(26)
4− 2037(29)
0+ 770(15) 1494(25) 2201(45) 1874(26)
1+ 881(17) 984(14) 1559(27) 1603(26)
2+ 1020(16) 1623(26) 1665(29) 1925(36)
3+ 1724(21) 1743(21)
4+ 1804(22)

Table B.2: Summary of the D meson spectrum presented in Figure 4.5.
Masses are shown with Mηc/2 subtracted. Quoted uncertainties are statistical
only. Reproduced from [1].
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B.2 Form-Factor Values

The following tables show the values used in the form factor fits shown in Chapter

6.

ηc Q2 FF (Q2) δFF (Q2)
temporal 0.26027 0.94811 0.00043

1.04858 0.81391 0.00062
0.52429 0.90096 0.00059
0.78456 0.85553 0.00060
0.76960 0.85746 0.00062

temporal 0.26027 0.93911 0.00043
improved 1.04858 0.78377 0.00059

0.52429 0.88360 0.00057
0.78456 0.83132 0.00056
0.76960 0.83414 0.00064

spatial 0.26023 0.94092 0.00186
0.51671 0.87680 0.00126
0.76960 0.81949 0.00104
0.26027 0.94085 0.00119
1.04858 0.79129 0.00111
0.52429 0.89119 0.00125
0.51671 0.87755 0.00250
0.51689 0.87916 0.00097
0.26032 0.93808 0.00079
1.04858 0.78942 0.00123
0.78456 0.83702 0.00106
0.78456 0.83775 0.00119
0.76960 0.82182 0.00236

spatial 0.26023 0.94871 0.00186
improved 0.51671 0.89137 0.00125

0.76960 0.83998 0.00105
0.26027 0.94473 0.00120
1.04858 0.79129 0.00111
0.52429 0.89119 0.00125
0.51671 0.89223 0.00255
0.51689 0.88878 0.00098
0.26032 0.94098 0.00150
1.04858 0.78942 0.00123
0.78456 0.83929 0.00106
0.78456 0.84003 0.00119
0.76960 0.84242 0.00243

Table B.3: Summary of the ηc form-factor values.
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χc0 Q2 FF (Q2) δFF (Q2)
temporal 0.26041 0.91445 0.01729
improved 1.02682 0.67103 0.01864

0.51804 0.82936 0.01700
0.26074 0.89821 0.02151
0.52429 0.82898 0.01888
0.51819 0.82801 0.02587
0.26049 0.89506 0.02573
1.04858 0.67237 0.02373
0.78503 0.74192 0.01771
0.78503 0.74158 0.01820
0.78566 0.73788 0.02951

0.0 1.00719 0.02269
0.0 1.03123 0.03305

χc0 Q2 FF (Q2) δFF (Q2)
spatial 0.25093 0.87357 0.02793

improved 0.26074 0.91750 0.03687
1.04858 0.62205 0.03814
0.52429 0.79816 0.04413
0.51804 0.78749 0.02971
1.04858 0.61407 0.03956
0.78503 0.67869 0.04402
0.78503 0.68786 0.03992

0.0 1.01415 0.02697
0.0 1.02668 0.02672

Table B.4: Summary of the χc0 form-factor values.
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η′c Q2 FF (Q2) δFF (Q2)
temporal 1.02567 0.41278 0.06873
improved 0.26097 0.65881 0.09376

0.52429 0.59724 0.07620
0.51861 0.58948 0.09369
0.78525 0.51092 0.07882
0.78525 0.49110 0.07718

0.0 0.88288 0.09606
0.0 0.86040 0.12300

η′c Q2 FF (Q2) δFF (Q2)
spatial 0.26067 0.50162 0.16725

improved 1.02567 0.29951 0.08759
0.77350 0.47738 0.12629
0.24938 0.65872 0.14058
1.04858 0.35157 0.14396
0.52429 0.39550 0.14477
0.51861 0.54748 0.14132
1.04858 0.30520 0.15669
0.78525 0.50881 0.15739
0.77350 0.43294 0.11223

0.0 0.87273 0.12979
0.0 0.86345 0.14199

Table B.5: Summary of the η′c form-factor values.
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J/ψ → ηc Q2 FF (Q2) δFF (Q2)
0.26082 1.91582 0.00522
0.52423 1.80113 0.00447
0.78392 1.69439 0.00393
0.26082 1.91889 0.00437
0.52423 1.80503 0.00335
0.78392 1.69524 0.00398
0.49692 1.81043 0.00518
0.74361 1.70883 0.00549
0.49692 1.80992 0.00580
0.74361 1.70638 0.00631

χc0 → J/ψ Q2 FF (Q2) δFF (Q2)
-0.14699 0.12451 0.00157
-0.14699 0.12404 0.00150
0.08207 0.14886 0.00205
0.08207 0.14596 0.00205
0.76617 0.18952 0.00335
0.76617 0.18562 0.00431
0.30893 0.16559 0.00238
0.30893 0.16585 0.00238
-0.14595 0.12585 0.00177
-0.14595 0.12280 0.00186
-0.14374 0.12869 0.00213
-0.14374 0.12515 0.00229

Table B.6: Summary of the J/ψ → ηc and χc0 → J/ψ transitionform-factor
values.
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