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Abstract
In the present work, we study the interplay between relativistic effects and
quantumness in the system of two relativistic fermions. In particular, we explore
entropic measures of quantum correlations and quantum discord before and
after application of a boost and subsequent Wigner rotation. We also study the
positive operator-valued measurements (POVMs) invasiveness before and after
the boosts. While the relativistic principle is universal and requires Lorentz
invariance of quantum correlations in the entire system, we have found specific
partitions where quantum correlations stored in particular subsystems are not
invariant. We calculate quantum discords corresponding of the states before
and after applying a boost, and observe that the state gains extra discord after
the boost. When analyzing the invasiveness of the POVMs, we have found that
the POVM applied to the initial entangled state reduces the discord to zero.
However, discord of the boosted state survives after the same POVM. Thus we
conclude that the quantum discord generated by Lorentz boost is robust con-
cerning the protective POVM, while the measurement exerts an invasive effect
on the discord of the initial state. Finally, we discuss potential implementation
of the ideas of this work using top quarks as a benchmark scenario.
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1. Introduction

Entanglement is a central concept of quantum information theory. Interest in quantum entan-
glement has fundamental theoretical, academic, and practical aspects. Entanglement can
be utilized in quantum communication and quantum computations. The quantum informa-
tion literature is dominantly focused on condensed matter physics, mainly non-relativistic
systems [1–6]. Nevertheless, last period attention was paid to the entanglement in a relativistic
realm [7–19]. Among different signatures of quantum entanglement, a central role belongs to
entropic measures. In opposite to classical systems, quantum entropies are not additive quant-
ities. For instance, while the entropy of the entire bipartite pure state ϱ̂AB is zero S(ϱ̂AB) =
−Tr(ϱ̂AB ln ϱ̂AB) = 0, typically the entropy of each subsystem ϱ̂A = TrB (ϱ̂AB) , ϱ̂B = TrA (ϱ̂AB)
is nonzero S(ϱ̂A) = S(ϱ̂B) ̸= 0 [3]. In essence, nonzero entropy in the subsystems is a sig-
nature of quantum entanglement and underlines the difference between the quantum and the
classical world.

The relativistic character of a system may play an intriguing role in the partitioning of the
Hilbert space when calculating the entropies of subsystems [20]. Invariance of the entire sys-
tem or its subsystem under the Lorentz boosts is required according to the fundamental phys-
ical principle and holds rigorously. Entropies of subsystems are invariant, S(ϱ̂A) = S

(
ϱ̂ΛA
)
=

S(ϱ̂B) = S
(
ϱ̂ΛB
)
= const, where ϱ̂ΛA , ϱ̂

Λ
B and ϱ̂A, ϱ̂B are reduced density matrices of subsystems

A and B in the boosted and rest frames, respectively. However, invariance of the entropy under
the Lorentz transformations can be violated for another type of partitioning [21]. Suppose that
both subsystems A and B of the bipartite state ϱ̂AB are in turn composed by two subsystems,
e.g. spin and momentum sectors ϱ̂AB = ϱ̂σApAσBpB . In the center of mass frame, we can divide
the entire system as ϱ̂AB = ϱ̂σApA ⊗ ϱ̂σBpB , σ = (σ̂A, σ̂B), P= (pA, pB), and explore entangle-
ment between spin and momentum sectors. There is no principle bound on the conservation of
subsectors entanglement. Therefore, through Lorenz boosts, we can reshuffle entanglements
of different sectors. We analyze this problem for a relativistic quantum system of two fermi-
ons. The results discussed here are quite general and concern different fields such as quantum
chromodynamics (QCDs), electroweak theory, and high-energy physics in general.

We consider the entanglement between the spins and momenta of two relativistic massive
spin-1/2 particles. The mathematical formalism and derivations are simpler in the center of
mass frame, where the particles have equal and antiparallel momenta. The spin state can be
ether singlet or triplet. Without loss of generality, we adopt the singlet state for illustrative
purposes. In the c.m. frame of the particles, we consider the total quantum state of the system
as a trivial product of the momentum and spin wave functions. The separability breaks after we
change the reference frame by a boost perpendicular to the direction of the momenta. After the
boost, the spin and momentum degrees of freedom get entangled, and extra boost-dependent
entanglement is added to the total entanglement of the system.

The general formalism presented here is of particular relevance for the study of particle–
antiparticle production at high-energy colliders. In this environment, massive fermions are cre-
ated typically in pairs of particle and antiparticle with relativistic momentum. The momentum
of those fermions is measured, and spin related properties, such as entanglement, can be
deduced by angular distributions of the measured objects. We discuss the special case of a
pair of top and antitop quarks generated at a hadron collider, as it was recently shown that
entanglement in this specific scenario can be measured [16, 17].

The work is structured as follows: in section 2 we specify the entropic measures used after-
wards. In section 3 we describe the quantum formalism of particle–antiparticle production.
In section 4 we calculate the total entanglement of the particle–antiparticle system, exploiting
the c.m. frame and different partitions of Hilbert space. The separable Hilbert space comprises
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the states of two spins and two momentum variables. We calculate the quantum discord and
entropic measures of the post-measurement density operator after measuring the spin of one
of the particles. We use the results of calculations to find the relative information between the
spins and momenta. In section 5 we perform the same calculations for the boosted state. The
non-trivial effects of the boosts depend on the angular parameter characterizing the boost (to
be defined later). In section 6 we calculate the quantum discord between the two spins in the
rest frame and after the boost. Finally, in section 7 we discuss potential experimental imple-
mentations of the results of this work using top quarks. Technical details and derivations we
present in the appendix.

2. Entropic measures

Below we define the mathematical formalism and quantities used hereafter. We first review
the basics of quantum measurements. Consider the quantum state of a certain system that is
described by a pure state

|Ψ⟩=
∑
n

cn|ϕn⟩ (1)

where the states |ϕn⟩ characterize the eigenstates of some observable O with eigenvalues
On. We consider a simple model of pre-measurement quantum state, in which the system
couples to the apparatus measuring O, described by states |χn⟩. This gives a total quantum
state System+Apparatus of the form

|ΨT⟩=
∑
n

cn|ϕn⟩⊗ |χn⟩. (2)

This total quantum state is described by the density operator

ϱ̂T = |ΨT⟩⟨ΨT|=
∑
n,m

cnc
∗
m|ϕn⟩⊗ |χn⟩⟨ϕm| ⊗ ⟨χm|. (3)

After tracing over the external degrees of freedom of the detector, we get the reduced density
operator describing only the quantum state of the system

ϱ̂O = TrAϱ̂T =
∑
n

|cn|2|ϕn⟩⟨ϕn|. (4)

The mixed state ϱ̂O contains all the information about |Ψ⟩ accessible in an experiment in which
we measure O.

The same result could have been derived by using the formalism of positive operator-valued
measurements (POVMs), where the post-measurement density measure ϱ̂O is directly obtained
after projecting onto the relevant states

ϱ̂O =
∑
n

Πn|Ψ⟩⟨Ψ|Πn =
∑
n

|cn|2|ϕn⟩⟨ϕn| (5)

with Πn is the rank-1 POVM projection operator onto the eigenstate |ϕn⟩, Πn = |ϕn⟩⟨ϕn|. If
the measured states |ϕn⟩ do not span over the Hilbert space, the previous expression should
have been properly normalized in order to ensure Trϱ̂O = 1,

ϱ̂O =

∑
nΠn|Ψ⟩⟨Ψ|Πn∑

n pn
,pn = ⟨Ψ|Πn|Ψ⟩ (6)

with pn the probability of measuring On.
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In the present work, we typically consider quantum states in a multipartite Hilbert space,
composed of several subsystems. The linear entropy of the density operator ϱ̂ of the composite
system corresponding to a particular partition P into several parts is defined as the sum of
entropies of different parts of the system [3]:

EP(ϱ̂) =
∑
i

(
1−Trϱ̂2i

)
, (7)

where ϱ̂i denotes a reduced density operator obtained by tracing over all subsystems except of
ith subsystem, and the sum runs over all elements of the partition. As it is shown in appendix A,
given a set of reduced density operators ϱ̂i with matrix elements {ρimn} in an orthogonal basis,
equation (7) reduces to the expression

EP(ϱ̂) =
∑
i

(
1−

∑
mn

|ρimn|2
)
. (8)

Linear entropy provides a quantitative measurement of the degree of entanglement while
allowing the derivation of simple analytical formulae, in contrast the logarithmic von Neu-
mann entropy [3].

We consider POVMs done on both momentum and spin degrees of freedom throughout the
work. After measuring the variable of the kth subsystem, the state of the system is described
by the post-measurement density operator

ϱ̂k =
∑
ik

(
|φkik⟩⟨φ

k
ik | ⊗ Îk

)
ϱ̂
(
|φkik⟩⟨φ

k
ik | ⊗ Îk

)
, (9)

where Ik denotes a unit operator in the complementary space to the kth subsystem, and |φkik⟩
are the eigenstates of the measured variable corresponding to a value with index ik.

The conditional entropy between two subsystems X and Y has the form:

E(ϱ̂X|Y) = E(ϱ̂XY)−E(ϱ̂Y), (10)

and the mutual information between X and Y is defined as follows:

I(X,Y) = E(ϱ̂X)+E(ϱ̂Y)−E(ϱ̂XY). (11)

Classically, an equivalent expression for the mutual information is

J(X,Y) = E(ϱ̂X)−E(ϱ̂X|Y). (12)

However, for a quantum system, a quantum version of equation (12) arises when considering
a set of POVMs {Π̂i} performed at the Y subsystem, where Π̂i = |i⟩⟨i| is the POVM projector
applied to Y, with |i⟩ the corresponding eigenstate associated to themeasurement. The resulting
quantum expression for J(X,Y) is calculated through the formula:

J(X,Y){Π̂i} = E(ϱ̂X)−E(ϱ̂X|{Π̂i}Y), (13)

where

E(ϱ̂X|{Π̂i}Y) =
∑
i

piE(ϱ̂X|Π̂iY
) (14)

is the conditional entropy of the post-measurement state [22]

ϱ̂X|Π̂iY
=

Tr
[̂
IX⊗ Π̂iϱ̂XYÎx⊗ Π̂i

]
pi

,pi = Tr
(
Π̂iϱ̂XY

)
. (15)
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Quantum discord is then defined through the minimum of the differences between the clas-
sical and quantum expressions for the mutual information:

D(ϱ̂XY) = min
{Π̂i}

[
I(X,Y)− J(X,Y){Π̂i}

]
(16)

= min
{Π̂i}

[
E(ϱ̂Y)−E(ϱ̂XY)+E

(
ϱ̂X|{Π̂i}Y

)]
.

In the following, we use entropic measures of quantum correlations and apply the above
mathematical formalism to relativistic particle–antiparticle production. We note that the linear
entropy measure is suitable for indistinguishable particles to quantify the quantum correlation
of any two-fermion pure state based on the Slater rank concept. It represents the natural gener-
alization of the linear entropy used to treat quantum entanglement in systems of non-identical
particles [23]. For pure bipartite states, the quantum discord becomes a measure of quantum
entanglement [24]. Therefore in what follows, we calculate quantum discord only for mixed
states, obtained after tracing momentum degrees of freedom of the boosted system.

3. Quantum formalism in particle–antiparticle production

We describe here the formalism used to study the relativistic production of a particle–
antiparticle pair [17]. In what follows we adopt standard notations of quantum field theory.
Greek indices µ, ν, run over the values (0,1,2,3), and Einstein summation convention is often
understood unless otherwise stated. The metric is given through gµν = diag[1,−1,−1,−1].
The four-momentum takes the form p= (p0,p), satisfying the usual Lorentz-invariant disper-
sion relation pµpµ = (p0)2 −p2 = m2, with m the mass of the particle, and we adopt dimen-
sionless units ℏ= 1, c= 1.

A particle–antiparticle pair typically arises in a relativistic process as the annihilation of
some initial state I. Due to conservation of energy and momentum, the initial state I has
the same energy and total momentum that the produced particle–antiparticle pair. For the
kinematical description of the production process, we switch to the c.m. frame, where the
pair is described by its invariant mass M and the direction of the particle p̂. In this frame,
the particle/antiparticle four-momenta are, respectively, pµ± = (p0,±p), with p̂= p/|p|. The
invariant mass M is the c.m. energy of the pair, defined from the usual invariant Mandelstam
variable

M2 ≡ s= (p+ + p−)
2. (17)

Regarding the quantum state of the particle–antiparticle pair, the amplitude of a certain pro-
duction process from the initial state |I⟩ is given in terms of the on-shell T-matrix, ⟨Mp̂λσ|T|I⟩,
where

|Mp̂λσ⟩ ≡ |p+p−⟩⊗ |λσ⟩. (18)

The first/second subspace in both momentum and spin corresponds to the particle/antiparticle,
respectively, and λ,σ label spin indices. Since energy is conserved from the initial state I, M
is fixed and the wave function describing the particle–antiparticle pair is

|Ψ⟩= N
∑
λσ

ˆ
dΩ|Mp̂λσ⟩⟨Mp̂λσ|T|I⟩ (19)

where Ω being the solid angle related to p̂ and N some normalization factor. In high-energy
experiments, typically only momentum measurements of the product particles are carried out.
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The resulting density operator ϱ̂ after a momentum POVM applied to |Ψ⟩ is given in terms of
the so-called production spin density operator

Rλσ,λ ′σ ′(M, p̂)≡ ⟨Mp̂λσ|T|I⟩⟨I|T†|Mp̂λ ′σ ′⟩. (20)

In this way,

ϱ̂=
1
Z

∑
λσ,λ ′σ ′

ˆ
dΩ Rλσ,λ ′σ ′(M, p̂)

|Mp̂λσ⟩⟨Mp̂λ ′σ ′|
⟨Mp̂|Mp̂⟩

(21)

with Z=
´
dΩ TrR(M, p̂) a normalization factor. The production spin density matrix is not

properly normalized to unity, with its trace proportional to the differential cross-section of the
particle–antiparticle production process at c.m. energy and direction (M, p̂). A proper spin
density matrix ϱ̂λσ,λ ′σ ′(M, p̂) is obtained as ϱ̂λσ,λ ′σ ′(M, p̂) = Rλσ,λ ′σ ′(M, p̂)/TrR, which
yields the following simple expression for the total quantum state

ϱ̂=
∑

λσ,λ ′σ ′

ˆ
dΩ w(M, p̂)ϱ̂λσ,λ ′σ ′(M, p̂)

|Mp̂λσ⟩⟨Mp̂λ ′σ ′|
⟨Mp̂|Mp̂⟩

(22)

where the probability distribution w(M, p̂) = TrR(M, p̂)/Z is indeed normalized,´
dΩ w(M, p̂) = 1. Thus, we can understand ϱ̂(M, p̂) as the density matrix describing the

quantum state of the produced particle–antiparticle pair for fixed c.m. energy and momentum,
and the total quantum state as the sum over all possible quantum states, weighted with the
differential cross-section of each production process.

In general, as a 4× 4 Hermitian matrix, any production spin density matrix R can be written
in terms of direct products of the 2× 2 matrices σµ = [σ0,σi], with σi the usual Pauli matrices
and σ0 the identity. Specifically, R is determined by 16 parameters C̃µν ,

R= C̃µνσ
µ ⊗σν (23)

with TrR= 4C̃00. The associated spin density matrix ϱ̂, obtained by normalization, is then

ϱ̂=
Cµνσ

µ ⊗σν

4
,Cµν =

C̃µν

C̃00
. (24)

By taking into account the trace orthogonality of the Pauli matrices, we have that Tr [σµσν ] =
2δµν , and thus we find that the 15 coefficients

Cµν = tr[ϱ̂σµ ⊗σν ] (25)

provide precisely the expectation values of the spin observables. In particular, C00 = 1 is
fixed by normalization, Bi = Ci0, B̄i = C0i are the vectors describing the particle/antiparticle
spin polarizations, respectively, and the correlation matrix Cij describes the spin correlations
between the particle and the antiparticle.

4. Spin-momentum density operator

4.1. Spin-momentum system in the rest frame

In order to gain some insight on the relevant physics, and due to its simplicity and illustrative
character, we choose for our study a simplified separable spin-momentum wave function for
the particle/antiparticle (in the following labeled as systemsA,B, respectively) with antiparallel
spins and momenta in the c.m. frame [21]:

|ψ⟩AB = |ψ⟩pApB |ψ⟩σAσB , (26)

7
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where the spin and momentum states are defined as follows:

|ψ⟩pApB = cosα|p+p−⟩+ sinα|p−p+⟩, (27)

|ψ⟩σAσB = cosβ| ↑↓⟩+ sinβ| ↓↑⟩. (28)

Here | ↑⟩ and | ↓⟩ denote z-projections of the spin operators. We choose coordinate systemwith
z-axis oriented along the momenta of the particles, and therefore p± = (p0,0,0,±pz). In the
rest frame, both wave functions have a similar mathematical structure and can be tackled simil-
arly within a qubit formalism, as it is demonstrated in appendix B. We note that the wave func-
tion equation (26) presents mirror symmetry under the transformation A↔ B, α→ π/2−α,
β→ π/2−β. Moreover, for α= β = π/4, it also possess symmetry under spatial inver-
sion, P|ψ(α)⟩pApB = |ψ(α)⟩pApB , and discrete spin rotation Z2|ψ(β)⟩σAσB = |ψ(β)⟩σAσB , Z2 =
ei

π
2 σx . Thus PZ2|ψ(α= π/4, β = π/4)⟩AB = |ψ(α= π/4, β = π/4)⟩AB. The same symmet-

ries are generally expected in the boosted state. Before the boost, the full density matrix is the
direct product of the momentum and spin matrices:

ϱ̂AB = |ψ⟩AB⟨ψ|AB = ϱ̂pApB ⊗ ϱ̂σAσB . (29)

For the two-particle system, we calculate the total entanglement for three different types of
partitioning procedures applied to the four variables:

• 1+ 3, the density matrix is reduced through the tracing of all possible combinations of 3
degrees of freedom, and all contributions are summed;

• p+σ, taking trace over the momentum and the spin separately;
• A+B, bipartition into parts of particle A and antiparticle B. Part A contains the spin and the
momentum of the particle, and partB contains the spin and themomentum of the antiparticle.

Reducing the density matrix by all degrees of freedom except the momentum of the particle,
we obtain

E(ϱ̂pA) =
sin2 2α

2
. (30)

Similarly for the particle spin:

E(ϱ̂σA) =
sin2 2β

2
. (31)

Taking into account similar contributions from the antiparticle and by summing all contribu-
tions for the total entanglement we deduce:

E1+3(ϱ̂AB) = sin2 2α+ sin2 2β. (32)

Partitioning into spin and momentum parts leads to zero entanglement

Ep+σ(ϱ̂AB) = 0, (33)

as E(ϱ̂pApB) = E(ϱ̂σAσB).
We proceed with partitioning A+B when the remnant spin and momentum belong to the

particle/antiparticle and the antiparticle/particle is traced out. The reduced matrix after taking
trace over the spin and momentum of the part B reads:

ϱ̂pAσA =
(
cos2α|p+⟩⟨p+|A+ sin2α|p−⟩⟨p−|A

)
⊗
(
cos2β| ↑⟩⟨↑ |A+ sin2β| ↓⟩⟨↓ |A

)
. (34)

8
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Contribution of the state ϱ̂pAσA into the entanglement can be calculated straightforwardly and
has the form:

E(ϱ̂pAσA) = 1−
(
cos4α+ sin4α

)(
cos4β+ sin4β

)
=

sin2 2α
2

+
sin2 2β

2
− 1

4
sin2 2αsin2 2β. (35)

The total entanglement then reads

EA+B(ϱ̂AB) = sin2 2α+ sin2 2β− 1
2
sin2 2αsin2 2β. (36)

4.2. Measurement

We perform a POVM along the z-projection of the spin of the particle. According to
equation (9), the post-measurement density matrix has the form

ϱ̂pAσAzB = ϱpApB ⊗
(
cos2β| ↑↓⟩⟨↑↓ |+ sin2β| ↓↑⟩⟨↓↑ |

)
. (37)

The expression obtained for ϱ̂pAσAzB is straightforwardly adapted to a momentum POVM
through the replacement α↔ β in the momentum sector.

Simultaneous measurement of the spin and momentum of particle A yields the density mat-
rix

ϱ̂pAzσAzB =
(
cos2α|p+p−⟩⟨p+p−|+ sin2α|p−p+⟩⟨p−p+|

)
⊗
(
cos2β| ↑↓⟩⟨↑↓ |+ sin2β| ↓↑⟩⟨↓↑ |

)
. (38)

In the case of 1+ 3 partitioning the entanglement in both cases is equal to:

E1+3(ϱ̂pAzσAzB) = E1+3(ϱ̂pAσAzB) = sin2 2α+ sin2 2β

= E1+3(ϱ̂AB). (39)

On the other hand, partitioning into spin and momentum sectors leads to nonzero entangle-
ment because of the non-vanishing contribution of the spin part:

Ep+σ(ϱ̂pAσAzB) =
sin2 2β

2
, (40)

and

Ep+σ(ϱ̂pAzσAzB) =
sin2 2α

2
+

sin2 2β
2

. (41)

Partitioning in two particles A and B, i.e. (σ̂A, pA), (σ̂B, pB) leads to the same result as in the
previous section:

EA+B(ϱ̂pAσAzB) = EA+B(ϱ̂pAzσAzB) = sin2 2α+ sin2 2β− 1
2
sin2 2αsin2 2β. (42)

Same results would have been obtained for POVMs on the antiparticle B.

4.3. Conditional entropies

The conditional entropy of a subsystem is found from equation (10). Let AB be an entire sys-
tem depending on the spin and momenta of both A and B subsystems. The entropy of the
entire system depends on the type of partition chosen. The entropy of a particular subsystem is
defined after tracing of the second subsystem. The entropy of the spin part of A was found in

9
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equation (31). The relative entropy of the spin part of A follows the same type of partitioning
1+ 3 and is equal to

E1+3(ϱ̂pApBσB|σA) = E1+3(ϱ̂AB)−E(ϱ̂σA) = sin2 2α+
sin2 2β

2
. (43)

For p+σ partition we have:

Ep+σ(ϱ̂pApBσB|σA) =− sin2 2β
2

, (44)

and for partition A+B we obtain:

EA+B(ϱ̂pApBσB|σA) = sin2 2α+
sin2 2β

2
− 1

2
sin2 2αsin2 2β. (45)

The entropy of the subsystems of two spins and two momenta is equal to zero in the initial
state:

E(ϱ̂σAσB) = E(ϱ̂pApB) = 0. (46)

We calculate the relative entropy for 1+ 3 partition:

E1+3(ϱ̂pApB|σAσB) = E1+3(ϱ̂AB)−E(ϱ̂σAσB) = sin2 2α+ sin2 2β, (47)

as well as for the remaining partitions

Ep+σ(ϱ̂pApB|σAσB) = 0, (48)

EA+B(ϱ̂pApB|σAσB) = sin2 2α+ sin2 2β− 1
2
sin2 2αsin2 2β. (49)

Similar relations hold for relative entropies of the spins and the momenta.
We also can calculate the relative entropy between particles A and B. Using equation (34)

we easily obtain:

E1+3(ϱ̂pBσB|pAσA) =
sin2 2α

2
+

sin2 2β
2

+
1
4
sin2 2αsin2 2β, (50)

Ep+σ(ϱ̂pBσB|pAσA) =− sin2 2α
2

− sin2 2β
2

+
1
4
sin2 2αsin2 2β, (51)

EA+B(ϱ̂pBσB|pAσA) =
sin2 2α

2
+

sin2 2β
2

− 1
4
sin2 2αsin2 2β. (52)

The mutual information between the spins and momenta is then determined by the formulae:

I(pA,pB) = sin2 2α, (53)

I(σA,σB) = sin2 2β, (54)

I(σA,pA) =
1
4
sin2 2αsin2 2β. (55)

The mutual information between the subsystems of spins and momenta is zero

I(σAσB,pApB) = 0. (56)

10
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5. Relativistic transformations

5.1. Influence of the Wigner rotations on entanglement

The Lorentz group contains boosts, which are rotation-free Lorentz transformations connect-
ing two uniformly moving frames, plus rotations. We follow the same notation of Weinberg
[20], and introduce Lorentz transformations T̂(Λ) of the coordinates, x ′µ = Λµ

ν x
ν . From the

generators of boosts K̂ and rotations Ĵ, one can construct two new generators Â= 1/2(Ĵ+ iK̂)
and B̂= 1/2(Ĵ− iK̂). These new generators form closed algebras and therefore are equivalent
to the direct product of two groups SU(2)⊗ SU(2). Due to this fact, the formal action of two
subsequent boosts is equivalent to the action of a boost and a rotation.

At the quantum level, we consider the effect of a Lorentz transformation T̂(Λ) on the eigen-
state of the four-momentum operator P̂µ:

P̂µ|p,σ⟩= pµ|p,σ⟩. (57)

The effect of the coordinate transformation T̂(Λ) on any state |ψ⟩ is described by the operator
Û(Λ), |ψ ′⟩= Û(Λ)|ψ⟩. Taking into account that

Û(Λ)P̂γÛ−1(Λ) = Λγ
µP̂

µ, (58)

and, by comparing with equation (57), we infer that Û(Λ)|p,σ⟩ must be a linear combination
of the boosted momentum eigenstates:

Û(Λ)|p,σ⟩=
∑
σ ′

Wσ ′σ(Λ,p)|Λp,σ ′⟩ ≡ |Λp,σΛ⟩. (59)

Thus, Lorentz transformations act on both momentum and spin variables. We can compute
explicitly the matrixWσ ′σ(Λ,p) by noting that, if the particle is massive, any state |p,σ⟩ can be
in turn obtained from the rest frame state |k,σ⟩ through the appropriate Lorentz transformation
L[p]:

|p,σ⟩= Û(L[p])|k,σ⟩, (60)

where we stress that a boost from the rest frame does not modify the spin σ.
Thus, concatenating both Lorentz transformations gives

|Λp,σΛ⟩= Û(Λ)|p,σ⟩= Û(ΛL[p])|k,σ⟩= Û(L[Λp])Û(L−1[Λp]ΛL[p])|k,σ⟩. (61)

We note that the total Lorentz transformation Û(L−1[Λp]ΛL[p]) boosts twice, and then goes
back to the rest frame. Therefore, from equation (59), we conclude that its effect amounts to a
spin rotation, known as the Wigner rotation, described precisely by the matrix Wσ ′σ(Λ,p):

|Λp,σΛ⟩=
∑
σ ′

Wσ ′σ(Λ,p)|Λp,σ ′⟩. (62)

In the following, we consider that the initial momentum p is aligned along the z-axis, while the
boostΛ is perpendicular and chosen along the x-axis without loss of generality. After these two
consecutive boosts [25], the Wigner rotation matrixW(Λ,p) is characterized by the parameter

tanδ =
sinhξ sinhη

coshξ+ coshη
, (63)

where ξ and η are the hyperbolic rotation angles corresponding to the boosts along the z and
x axes, respectively: tanhξ = vz/c, tanhη = vx/c. Figure 1 represents the dependence of the
Wigner angle δ on ξ and η. One can see that, for ξ,η≫ 1, the Wigner angle δ approaches π/2.
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Figure 1. Dependence of the Wigner rotation angle δ on the parameter ξ for different
values of η, plotted through equation (63). The parameter ξ characterizes the boost along
x-direction, while η is the boost parameter of the particle moving in the rest frame.

We now apply this formalism to the quantum state of equation (26). In particular, we con-
sider a boost in the c.m. frame perpendicular to the anti-parallel particle momenta p±. Con-
sequently, the total boosted state can be written as

|ΨΛ⟩total = cosα|Λp+,Λp−⟩(U+ ⊗U−)|ψ⟩spin + sinα|Λp−,Λp+⟩(U− ⊗U+)|ψ⟩spin, (64)

where U± are the spin rotation matrices describing the transformation from the rest frame of
a particle with momentum p± to the final boosted state:

U± =

(
cos δ

2 ±sin δ
2

∓sin δ
2 cos δ

2

)
. (65)

By expanding these transformations, we get

|ΨΛ⟩total = cosα|Λp+,Λp−⟩|a1⟩+ sinα|Λp−,Λp+⟩|a2⟩, (66)

where

|a1⟩ ≡ c1| ↑↓⟩+ c2| ↓↑⟩+ c3| ↑↑⟩+ c4| ↓↓⟩ (67)

|a2⟩ ≡ c1| ↑↓⟩+ c2| ↓↑⟩− c3| ↑↑⟩− c4| ↓↓⟩ (68)

and

c1 =
1
2
(cosβ+ sinβ)+

cosδ
2

(cosβ− sinβ), (69)

c2 =
1
2
(cosβ+ sinβ)− cosδ

2
(cosβ− sinβ), (70)

c3 =
1
2
sinδ(sinβ− cosβ), (71)

c4 = c3. (72)

The total density matrix of the boosted system then reads

ϱ̂ΛAB = cos2α|Λp+,Λp−⟩⟨Λp+Λp−| ⊗A11 + sinαcosα

× (|Λp+Λp−⟩⟨Λp−Λp+| ⊗A12 + |Λp−Λp+⟩⟨Λp+Λp−| ⊗A21)

+ sin2α|Λp−Λp+⟩⟨Λp−Λp+| ⊗A22, (73)

12
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where the 4× 4 spin matrices Aik, i,k= 1,2, result from the direct products of the spin states
|ai⟩ at the r.h.s. of equation (66):

Aik = |ai⟩⊗ ⟨ak|. (74)

Due to the relativistic effects, momentum and spin operators are not separable in the dens-
ity operator of boosted system equation (73). To calculate the quantum discord we trace out
momentum degrees of freedom in equation (73). Due to the entanglement between momentum
and spin operators in the boosted state the reduced density matrix of the boosted spin subsys-
tem appears to be mixed. Thus in what follows we calculate quantum discord for the mixed
state.

We refer the reader to appendix C for the derivation of useful relations between the coef-
ficients ci and the properties of the spin density matrices Aik. The contribution of momentum
degrees of freedom is similar to the unboosted case:

E(ϱ̂ΛpA) = E
(
ϱ̂ΛpB
)
=

sin2 2α
2

. (75)

Due to theWigner rotation, the final expressions for spin degrees of freedom aremore involved.
To derive them, we trace the momentum degrees of freedom. The resulting spin density
matrices are expressed in equations (C.10) and (C.11) in appendix C. Using equations (69)–
(72), one deduces explicitly the spin contribution:

E(ϱ̂ΛσA) = E
(
ϱ̂ΛσB
)
=

sin2 2β
2

+
1
2
sin2 δ sin2 2αcos2 2β. (76)

After adding both the spin and momentum contribution, we finally obtain

E1+3
(
ϱ̂ΛAB
)
= sin2 2α+ sin2 2β+ sin2 δ sin2 2αcos2 2β. (77)

Partitioning into spin and momentum degrees of freedom leads to zero entanglement in the
rest frame. In the case of the boosted system, one can show that the sums of squares of matrix
elements in equations (C.10) and (C.12) are identical, E(ϱ̂ΛσAσB) = E(ϱ̂ΛpApB), with

E
(
ϱ̂ΛσAσB

)
=

1
2
sin2 δ sin2 2α

[
cos2 2β+ cos2 δ(1− sin2β)2

]
, (78)

and thus

Ep+σ

(
ϱ̂ΛAB
)
= sin2 δ sin2 2α

[
cos2 2β+ cos2 δ(1− sin2β)2

]
. (79)

Finally, for the A+B partition, we get

EA+B
(
ϱΛAB
)
= sin2 2α+ sin2 2β− 1

2
sin2 2αsin2 2β. (80)

The obtained result EA+B(ϱΛ) does not depend on the boost parameter δ and coincides with
equation (36). This results from the relativistic invariance of the entropy of each subsystem A
and B.

5.2. Measurement

We perform a POVM on the boosted state and explore the entanglement of the resulting post-
measurement state. At first, we consider spin measurements. The post-measurement mat-
rix after measuring the spin of A is given by ϱ̂ΛσA , whose explicit expression is provided in
appendix D. To find the spin contribution in the 1+ 3 partition, we trace over the momentum

13
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variables. The contribution to the entropy is equal to

E
(
ρ̂ΛσAz
)
=

1
2
sin2 2β+

1
2
sin2 δ cos2 2β. (81)

The total entanglement is shown to be

E1+3
(
ρ̂ΛpAσAzB

)
= sin2 2α+ sin2 2β+ sin2 δ cos2 2β. (82)

This result is different from equation (77) since the last term on the r.h.s. does not depend on
α. For the spin-momentum partition we have:

Ep+σ

(
ρ̂ΛpAσAzB

)
=

3
4
sin2 δ sin2 2α

[
cos2 2β+ cos2 δ(1− sin2β)2

]
+

sin2 2β
2

+
1
2
sin2 δ cos2 2β. (83)

In the limit δ→ 0 we recover equation (40). Similarly

Ep+σ

(
ϱ̂ΛpAzσAzB

)
=

1
4
sin2 δ sin2 2α

[
cos2 2β+ cos2 δ(1− sin2β)2

]
+

sin2 2α
2

+
sin2 2β

2
+

1
2
sin2 δ cos2 2β, (84)

converts into equation (41) as δ→ 0. After partitioning into each subsystem A and B one
obtains:

EA+B
(
ϱ̂ΛpAσAzB

)
= EA+B

(
ϱ̂ΛpAzσAzB

)
= sin2 2α+ sin2 2β− 1

2
sin2 2αsin2 2β

+
1
2
sin2 δ cos2 2β

(
1− sin2 2α

2

)
. (85)

Remarkably, unlike in equations (36), (42) and (80), now there is an extra term in equation (85)
which does depend on the strength of the boost δ.

5.3. Conditional entropies

Let us consider conditional entropies andmutual information of the boosted system. In analogy
with section 4.3, the relative entropy with respect to the spin A in the case of 1+ 3 partition
reads:

E1+3

(
ϱ̂ΛpApBσB|σA

)
= sin2 2 α+

sin2 2 β
2

+
1
2
sin2 δ sin2 2 αcos2 2β. (86)

For the spin-momentum and A+B partitions we deduce:

Ep+σ

(
ϱ̂ΛpApBσB|σA

)
=− sin2 2β

2
+ sin2 δ sin2 2α

[
cos2 2β

2
+ cos2 δ(1− sin2β)2

]
, (87)

EA+B
(
ϱ̂ΛpApBσB|σA

)
= sin2 2α+

sin2 2β
2

− 1
2
sin2 2αsin2 2β− 1

2
sin2 δ sin2 2αcos2 2β. (88)

As we already have seen, the entropy of the spin and momentum subsystems is not zero
after the boost. Therefore, the relative entropies between the spins and momenta are expressed
by following formulae:

E1+3

(
ϱ̂ΛpApB|σAσB

)
= sin2 2α+ sin2 2β+

1
2
sin2 δ sin2 2 α

[
cos2 2β+ cos2 δ(1− sin2β)2

]
, (89)
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Ep+σ

(
ϱ̂ΛpApB|σAσB

)
=

1
2
sin2 δ sin2 2α

[
cos2 2β− cos2 δ(1− sin2 β)2

]
, (90)

EA+B
(
ϱ̂ΛpApB|σAσB

)
= sin2 2α+ sin2 2β− 1

2
cos2 δ sin2 2αsin2 2β

− sin2 δ sin2 2α[1+ cos2 δ(1− sin2β)2]. (91)

The relative entropies between the particles A and B are equal to

E1+3

(
ϱ̂ΛpBσB|pAσA

)
=

sin2 2α
2

+
sin2 2β

2
+

1
4
sin2 2αsin2 2β+ sin2 δ sin2 2αcos2 2β, (92)

Ep+σ

(
ϱ̂ΛpBσB|pAσA

)
=− sin2 2α

2
− sin2 2β

2
+

1
4
sin2 2αsin2 2β

+ sin2 δ sin2 2α[cos2 2β+ cos2 δ(1− sin2β)2], (93)

EA+B
(
ϱ̂ΛpBσB|pAσA

)
=

sin2 2α
2

+
sin2 2β

2
− 1

4
sin2 2αsin2 2 β. (94)

The mutual information between the spins and the momenta takes the form:

IΛ(pA,pB) = sin2 2α− 1
2
sin2 δ sin2 2α[cos2 2β+ cos2 δ(1− sin2 2β)2], (95)

IΛ(σA,σB) = sin2 2β+
1
2
sin2 δ sin2 2 α[cos2 2β− cos2 δ(1− sin2β)2], (96)

IΛ(σA,pA) =
1
4
sin2 2αsin2 2β+

1
2
sin2 δ sin2 2αcos2 2β. (97)

Finally, the mutual information between the subsystems of spins and momenta reads:

IΛ(σAσB,pApB) = sin2 δ sin2 2α[cos2 2β+ cos2 δ(1− sin2β)2]. (98)

6. Quantum discord

We explore the quantum discord of the particle–antiparticle pair (denoted as Alice A and Bob
B, respectively) for arbitrary boost. We also analyze the quantum discord of the boosted post-
measurement state after performing a POVM on the spin of one of the particles of the pair.

6.1. General expressions and definitions

The quantum discord is expressed by

D= min
{Π̂B

j }
{E(B)−E(A,B)+E(A|{Π̂B

j })}, (99)

where E(A) and E(A,B) are calculated from their respective density matrices, ϱ̂A = TrB(ϱ̂AB)
and ϱ̂AB, according to the expression for the entropy in equations (7) and (8):

E(ϱ̂) =
∑
i

(1−Tr(ϱ2i )) =
∑
i

(1− |ρi,mn|2). (100)

Projected states of the density matrix:

ϱ̂A|Π̂B
j
= Π̂B

j ϱ̂ABΠ̂
B
j /pj, (101)

where the probabilities pj are expressed as

pj = Tr(ϱ̂ABΠ̂
B
j ). (102)
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The combined entropy of the projected states is equal to

E
(
ϱ̂A|{Π̂B

j }

)
=
∑
j

pjE(ϱ̂A|Π̂B
j
). (103)

Define quantum states corresponding to opposite orientations of spins along any arbitrary dir-
ection s defined by all possible states of the spin of particle B [26]:

|s−⟩B = cosθ/2| ↓⟩B+ sinθ/2eiφ| ↑⟩B, (104)

|s+⟩B = e−iφ sinθ/2| ↓⟩B− cosθ/2| ↑⟩B, (105)

where the angle parameters θ and φ span the Bloch sphere:

0⩽ θ ⩽ π, 0⩽ φ < 2π. (106)

For the case when the two variables are the spins σA and σB, the first and the second terms in
equation (99), according to the previous results, are expressed as

E
(
ϱ̂ΛσB
)
=

sin2 2β
2

+
1
2
sin2 δ sin2 2αcos2 2β, (107)

E
(
ϱ̂ΛσAσB

)
=

1
2
sin2 δ sin2 2α[cos2 2β+ cos2 δ(1− sin2β)2], (108)

and their combination yields

E
(
ϱΛσB
)
−E

(
ϱ̂ΛσAσB

)
=

sin2 2β
2

− 1
2
sin2 δ cos2 δsin2 2α(1− sin2β)2. (109)

Using equations (B.5) and (B.6) from appendix B, it is possible to write down spin projec-
tion operators corresponding to s± in equations (104) and (105):

Π̂σB
s± =

1
2


1∓ cosθ 0 ∓eiφ sinθ 0

0 1± cosθ 0 ∓e−iφ sinθ
∓e−iφ sinθ 0 1± cosθ 0

0 ∓eiφ sinθ 0 1∓ cosθ

 . (110)

Setting notation t= tanθ/2,

Π̂σB
s+ =

1
1+ t2


t2 0 −teiφ 0
0 1 0 −te−iφ

−te−iφ 0 1 0
0 −teiφ 0 t2

 (111)

and

Π̂σB
s− =

1
1+ t2


1 0 teiφ 0
0 t2 0 te−iφ

te−iφ 0 t2 0
0 teiφ 0 1

 . (112)

6.2. Quantum discord for arbitrary boost

We consider the matrix of spins given in the appendix by equation (C.10). After projecting
matrices as it is described above and finding their entropies and simplification of the resulting
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expressions, the combined entropy of equation (109) takes the form of a ratio of two fourth-
order polynomials by t= tan(θ/2):∑

s

psE
(
ϱ̂Λ
σA|Π̂

σB
s

)
=
PA(t,φ)
PB(t,φ)

= R(t,φ), (113)

where the coefficients of the polynomials of PA are functions of φ, α, β, δ and can be written
in the form

A4 = A0 = c23 sin
2 2α[c21 + c22 − (c21 − c22)

2], (114)

A3 =−A1 = 4 c33 sin2 2αcos2 αcosφ× (c1 + c2)
2(c1 − c2), (115)

A2 = 8c1c2c
2
3 sin2 2αsin2φ+ 2c23 sin2 2α× [(c21 − c22)

2 − 2c1c2], (116)

and similarly, the coefficients of PB,

B4 = B0 = (c21 + c23)(c
2
2 + c23), (117)

B3 =−B1 = 2c3 cos2 αcosφ× (c1 + c2)
2(c1 − c2), (118)

B2 = c41 + c42 + 2c43 + 2c23 ×
[
c21 + c22 − 2 cos2 2αcos2φ(c1 + c2)

2
]
. (119)

There exist a relatively simple analytically solvable case when α= π/4 which corresponds
to maximal mixing of momentum degrees of freedom. Then it is easy to see that the minimal
value of R(t,φ) by φ is obtained when sinφ= 0. After taking derivative of R(t,0) by t, the
extremal values, where the derivative becomes 0, are t= 0 and t= 1, which correspond to θ= 0
and θ = π

2 , respectively. The ratio of the polynomials depending on β and δ can be expressed
for t= 0,1 by respective functions:

r0(β,δ) =
A4

B4
= sin2 δ(1− sin2 β)×

[
1− 1

2
sin2 δ(1− sin2β)
1− cos2 δ cos2 2β

]
, (120)

r1(β,δ) =
2A4 +A2

2B4 +B2
=

sin2 δ cos2 δ
2

× (1− sin2β)2. (121)

It is seen that both functions are equal to zero before the boost δ= 0 and r1 = 0 when δ = π/2.
The equality of the minimum combined entropy to zero holds for δ = 0,π/2 for any α ̸= π/4
as it can be proven from equations (114)–(119) based on relations with coefficients ci, i=
1,2,3, equations (C.1)–(C.8). Figure 2 shows the dependence of the difference r1 − r0 on β
for different values of boost δ at fixed α= π

4 . It becomes 0 as δ→ 0+ and always negative for
all values of δ and β, therefore the choice t2 = 1 is optimal for all δ ̸= 0 and β. The dependence
of r1, which is the minimized combined entropy, on β and δ is plotted in figure 3. The figure
demonstrates the symmetry to δ→ π/2− δ which is evident from equation (121).

Comparing equations (121) with (109) and (99), one finds that

DΛ

(
α=

π

4
,β,δ

)
=

sin2 2β
2

, (122)

when α= π/4 for any β and δ.
The discord for other values of α including those different from π/4, is found by numerical

methods. First note that the derivative by φ from R(t,φ) based on the form of the coefficients
of polynomials PA and PB it is possible to prove that the minimum condition sinφ= 0 holds of
all values of α, β and δ. This implies cosφ=±1, the plus sign corresponding to the minimum
and the minus to the maximum by φ.
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Figure 2. Difference between the measurement entropies r1 equation (121) and r0,
equation (120), corresponding to t= 1 and t= 0, where the ratio of polynomials R(t,φ)
reaches its extremal values forα= π/4. It is seen r1 ⩽ r0 as 0⩽ δπ/2 and the difference
reaches its maximum when δ = π/2.

Figure 3. β-dependence of the function r1 for different values of δ.

Figure 4 depicts the dependence of the value tmin which minimizes the ratio of polynomials
PA/PB for different pairs of values of β and δ. Every pair (β,δ) is characterized by a traject-
ory. All trajectories pass through t= 1 as α= π/4 in agreement with our previous discussion.
The trajectories are strongly δ-dependent at small β but the dependence becomes weaker at
intermediate values and it becomes a constant t= 1 when β = π/4.

Figure 5 represents the dependence onα of theminima of the combined entropy for different
values of β and δ. The minimal entropy is identically zero at β = π/4 and rises at small β
reaching maximum value at δ = π/4.

The dependence of the quantum discord on α for several values of β is demonstrated in
figure 6 and the projection on β-axis is shown in figure 7. The maximum variation is observed
at β = 0,π/2, for intermediate β-s it is approximately equal to sin2(2β)/2 for intermediate
values of α.
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Figure 4. α-dependence of the tmin minimizing the entropy for different values of the
parameters β and δ. For every pair there exist a trajectory on the plot. All trajectories
cross t= 1 as α= π/4.

Figure 5. α-dependence of the minimum of combined entropy for different values of β
and δ.

Figure 6. α-dependence of the discord for different values of β and δ.
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Figure 7. β-dependence of the discord for different values of α and fixed δ = π/4. The
discord is approximately equal to sin2(2β)/2, analytical results for α= π/4, except of
the ends of the interval β= 0 and β = π/2.

6.3. Quantum discord after the measurement

The concept of quantum correlations and entanglement is related to quantum coherence and
measurements. Typically, measurements performed on a quantum system involve classical
devices, and therefore the measurement setup exerts an unavoidable invasive effect on the
coherence of the quantum state [27–36]. In order to explore the robustness of quantum discord
with respect to measurements for a particle–antiparticle pair, we evaluate quantum discord
after implementing a POVM. Specifically, we consider the case when before and after the
boost we measure the spin polarization of one of the particles, chosen without loss of gener-
ality that corresponding to Alice. We denote the wave function of the bipartite system before
measurement as |ϕ⟩ for both the boosted and unboosted case. An efficient quantum measure-
ment of spin polarization transforms this state i into the post-measurement state

ϱ̂σAzσB =
∑
i=±

(
Π̂i

⊗
Î(B)
)
ϱ̂
(
Π̂i

⊗
Î(B)
)
, (123)

where ϱ̂= |ϕ⟩⟨ϕ|, Î(B) is the identity operator acting on the antiparticle B spin space, and Π̂±
projects onto the ± spin component along the z-axis

∣∣Φ〉= (
Π̂±
⊗
Î(B)
)∣∣ϕ〉√〈

ϕ
∣∣(Π̂±

⊗
Î(B)
)∣∣ϕ〉 , (124)

the positive/negative-helicity projector operator:

Π̂± =
1± p̂ ·σ

2
. (125)

For our case The explicit expression for the post-measurement spin density matrix is given
in appendix D. Based on it we compute the one-particle

E
(
ϱ̂ΛσB
)
=

1
2

(
1− cos2 δ cos2 2β

)
− 1

2
sin2 δ cos2 2β cos2 2α, (126)
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and two-particle spin entropies:

E
(
ϱ̂ΛσAzσB

)
=

1
2

(
1− cos2 δ cos2 2β

)
+

1
2
sin2 δ sin2 2α(1− sin2β)

[
1− 1

2
sin2 δ(1− sin2β)

]
,

(127)

and the discord reads

DΛ (σAz ,σB) =−1
2
sin2 δ(1− sin2β)

[
1+ sin2β− sin2 2 α(sin2β+

sin2 δ
2

[1− sin2β])

]

+min

∑
j

pjE
(
ϱ̂σAz |Π̂B

j

) . (128)

Calculation of the combined entropy follows the same lines as that for the case before
measurement. The coefficients of the polynomials in the ratio similar to equation (113) are

A4 = A0 = c23[c
2
1 + c22 − (c21 − c22)

2], (129)

A3 =−A1 = 4c3 cos2αcosφ(c2 − c1)×
[
c43 − (c1 + c2)

2c23 − c21c
2
2

]
, (130)

A2 = 2c43[1− 4
(
c21 + c22

)
cos2 2αcos2φ] + 2c23[

(
c21 − c22

)2 − 8c21c
2
2 cos

2 2αcos2φ] + 2c21c
2
2,

(131)

and

B4 = B0 =
(
c21 + c23

)(
c22 + c23

)
, (132)

B3 =−B1 = 2c3 cos2αcosφ× (c1 + c2)
2(c1 − c2), (133)

B2 = c41 + c42 + 2c43 + 2c23 ×
[
c21 + c22 − 2cos2 2αcos2φ(c2 + c1)

2
]
. (134)

As before, one can observe that the minimum value by φ corresponds to sinφ= 0, cosφ= 1.
A simplest case where the model can be solved analytically, again corresponds to α= π/4.
Then analogously to equations (120) and (121), the extremal values by t are at t= 0,1 with
corresponding functions

r0(β,δ) = sin2 δ(1− sin2 β)×

[
1− 1

2
sin2 δ(1− sin2β)
1− cos2 δ cos2 2β

]
, (135)

r1(β,δ) =
1
2

(
1− cos2 δ cos2 2β

)
. (136)

Unlike the previous case, now r1 > r0 for all values of β and δ. Another important difference
from the pre-measurement case is that the minimal value of the combined entropy is equal to
0 only for δ= 0, and it rises as δ goes to π/2. The corresponding discord has the form:

DΛ

(
α=

π

4
,β,δ

)
=

1
2
sin2 δ(1− sin2β)

[
1− 1

2
sin2 δ(1− sin2β)

1+ cos2 δ cos2 2β
1− cos2 δ cos2 2β

]
. (137)

The dependence of the discord on β and δ is shown in figure 8 The values of t minimizing
the combined entropy for any α ̸= π/4 and different pairs of β and δ are shown in figure 9.
The trajectories cross each other at t= 0 when α= π/4.

The discord dependence on β for different α-s is presented in figure 10
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Figure 8. Post-measurement quantum discord as a function of β for different choices
of δ and fixed α= π/4.

Figure 9. tmin minimizing the combined entropy vs α for several pairs of values of the
parameters β and δ. The trajectories go through t= 0 as α= π/4.

7. Experimental remarks

7.1. Top-antitop quark production

We finally discuss real high-energy processes, relating them to the results of this work. We
focus on the particular case of a top/antitop (t̄t) pair, quite unique in high-energy physics
because of its large mass (indeed, the top quark is the most massive fundamental particle in
the Standard Model). This large mass is translated into a large decay width that makes each
one of top/antitop in the t̄t pair to decay well before any other process, such as hadronization
or spin decorrelation, can affect the t̄t spins. As a consequence, the information regarding the
spins of the t̄t pair is inherited uncorrupted by the decay products. Specifically, the decay spin
density matrix of the top quark, describing the decay of the top quark to some final state F, is
defined as

Γσ ′σ ≡ ⟨F|T|tσ⟩⟨tσ ′|T†|F⟩ (138)
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Figure 10. Dependence of the discord for post-measurement spin density matrix on β
for different α-s at δ = π/2.

where |tσ⟩ is a top quantum state with spin σ, and T the on-shell T-matrix of the decay process.
A similar decay spin density matrix Γ̄σ ′σ can be defined for the decay of an antitop quark to
a state F̄. We restrict to the case of a dileptonic decay of the t̄t pair

t→ b+ l+ + νl, (139)

t̄→ b̄+ l− + ν̄l.

If we switch to the top/antitop rest frames and integrate all the degrees of freedom of the final
states except for the antilepton/lepton directions, due to rotational invariance, the spin decay
density matrices take the simple form [37]

Γ∝ σ0 + ℓ̂+ ·σ
2

, Γ̄ =
σ0 − ℓ̂− ·σ

2
(140)

ℓ̂± being the antilepton/lepton directions. With the help of the decay density matrices, the
angular differential cross-section characterizing the dileptonic decay of a t̄t pair is computed
in the so-called narrow-width approximation [38] as

dσℓℓ̄
dΩ+dΩ−

∼
ˆ

dM dΩ Tr
[
ΓR(M, p̂)Γ̄

]
(141)

where we are integrating over all possible values of the t̄t energy and momentum M, p̂. Since
after integrating over all lepton/antilepton directions, Γ, Γ̄∼ σ0, the total dileptonic cross
section σℓℓ̄ is proportional to the integral of C̃00. As a result, the normalized angular distri-
bution reads

1
σℓℓ̄

dσ
dΩ+dΩ−

=
1+B+ · ℓ̂+ −B− · ℓ̂− − ℓ̂+ ·C · ℓ̂−

(4π)2
. (142)

The vectors B± are the integrated top (antitop) spin polarizations and C is the integrated spin
correlationmatrix (see equation (25) and ensuing discussion), where the integrated expectation
value of an observable O is

⟨O⟩=
´
dM dΩ Tr [R(M, p̂)O]´
dM dΩ TrR(M, p̂)

. (143)
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Interestingly, one can cut the integrals in bothM and p̂ in a high-energy collider by reconstruct-
ing the t̄tmomenta, restricting these expectations values to certain regions of phase space [16,
17]. In this way, one can in principle reconstruct the spin quantum state of the t̄t pair as given
by its spin density matrix ϱ̂(M, p̂).

7.2. Specific measurements with top-antitop quark pairs

We now relate the results of this work with relevant experimental observables for t̄t pairs
at the Large Hadron Collider (LHC). For that purpose, we compare the wave function of
equation (26) with the spin density matrix ϱ̂(M, p̂), accessible in experiments.

Regarding the momentum part of the wave function, we note that ϱ̂(M, p̂) already describes
the result of a POVM of the momentum of any particle of the pair. Indeed, the momenta of
the t̄t pair can be measured on an event by event basis. Moreover, regardless of the direction
p̂, due to the properties of t̄t QCD production, at the LHC it can only be α=±π/4 [16, 17].

Regarding the spin part of the wave function of equation (26), in general ϱ̂(M, p̂) is not a
pure state. However, for t̄t production at the LHC, close to threshold or at high-pT , ϱ̂(M, p̂) is to
a very good approximation a singlet (β =−π/4) or triplet (β = π/4) pure state, respectively
[16, 17]. In contrast to the case of the momentum, directly measurable, the t̄t spin correlations
and polarizations are only obtained a posteriori by fitting the cross-section of equation (142).
We stress that the appealing distribution of the decay spin density matrix of equation (140)
only arises after integrating over all the remaining degrees of freedom. Thus, spins cannot be
directly measured and the POVM formalism cannot be applied to them.

As a result of the above considerations, we conclude that the result of any POVM that does
not involve at least themomentum of one of the quarks cannot be implemented in a high-energy
collider. For the partitions used throughout this work, this implies:

• All density matrices of the 1+ 3 partitioning can be obtained from the production spin dens-
ity matrix.

• Regarding the p+σ partitioning, only the density matrix after tracing over momentum can
be measured.

• The density matrices of the A+B partitioning can be also measured from the production
spin density matrix.

Finally, we discuss the role of a Lorentz transformation. So far, we have analyzed the spin
density matrix ϱ̂(M, p̂), which describes the t̄t momenta in the c.m. frame, as in the wave
function of equation (27), while the spins are described in their respective top (antitop) rest
frames [see equation (140) and ensuing discussion], where spin is well defined.

In principle, since t̄t momenta are reconstructed from the directions of the decay products,
they can be determined in any reference frame. However, within the current experimental
scheme, the spin observables are always measured in the parent t̄t rest frames. Neverthe-
less, one could think about measuring the lepton directions in different frames. Future works
should examine in detail how the dileptonic cross section of equation (141) behaves under a
Lorentz transformation of the lepton/antilepton momenta, and which Lorentz transformed t̄t
spin observables can be extracted.

8. Conclusions

Relativistic effects may exert a specific impact on the quantumness of a system. The inherently
quantum correlations are quantified through entropic entanglement measures and quantum
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discord. Inspired by this idea, we have studied the effect of a Wigner rotation in a particle–
antiparticle pair. The relativistic principle is universal, and it requires Lorentz invariance.
Thus, the quantum correlations stored in the entire system or each of its subsystems should
be also invariant under Lorentz transformations. Nevertheless, while entropies of subsystems
are indeed invariant S(ϱ̂A) = S

(
ϱ̂ΛA
)
= S(ϱ̂B) = S

(
ϱ̂ΛB
)
, one can find different types of par-

titions of the Hilbert space whose entropies are not Lorentz invariant. Here, we consider a
bipartite system ϱ̂AB whose subsystems are in turn composed by two subsystems, i.e. spin and
momentum sectors: ϱ̂AB = ϱ̂σApAσBpB . We trace the entire system over all possible partitions
and apply relativistic boosts, computing their entropy and the mutual information between the
different parts of the system. Regarding quantum discord, we have shown that, depending on
the initial state and the parameters of the boost, the discord of the boosted state can become
quite large. We have calculated the difference between discords corresponding to the states
before and after boost. We observe an interesting fact: an initially disentangled state with zero
discord can become entangled after the boost. Another interesting fact concerns symmetries.
We have also observed that quantum discord generated by Lorentz boost is robust concerning
the protective POVM, while the same measurement exerts an invasive effect on the discord of
the initial state. Finally, we have discussed how the results of this work could be measured
using top quarks, opening the perspective to implement our scheme in a high-energy collider
such as the LHC.
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Appendix A. Calculation of entropy for any density matrix

We consider a multipartite quantum system consisting of n subsystems. Sets of orthonormal
basis states ψ1

i1 , . . . ,ψ
n
in span the Hilbert spaces of 1, . . . ,nth subsystem, respectively, with

indices in running in the range from 1 to the dimension of the nth subsystem. Any state of
the full quantum system can be expressed as follows

|Ψ⟩=
∑
i1,...,in

ci1,...,in |ψ1
i1⟩⊗ · · · ⊗ |ψnin⟩. (A.1)

The density matrix can be written in the form

ϱ̂= |Ψ⟩⟨Ψ|=
∑
[i],[j]

ρ[i][j]|ψ[i]⟩⟨ψ[j]|, (A.2)

where [i], [j] denote sets of indices 1, . . . , in, j1, . . . , jn, ρ[i][j] = c[i]c∗[j], and ψ[i], ψ[j] stand for
direct products of basis states. The reduced density matrix of the kth subsystem is defined
after taking the trace over the all other subsystems except of kth:
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ϱ̂k =
∑
[i]/k

⟨ψ[i]/k|ϱ̂|ψ[i]/k⟩=
∑
ikjk

ρkikjk |ψ
k
ik⟩⟨ψ

k
jk |. (A.3)

Here [i]/k in the above equations denotes the set of indices of all subsystems i except those of
the kth subsystem, ik.

The elements of the reduced density matrix ϱ̂k are expressed in terms of the matrix elements
of the full density matrix equation (A.2) by taking tracing all pairs of indices except {ik, jk}:

ρkikjk =
∑
[i]/k

ρ[i]/k,[i]/k. (A.4)

Now we calculate the trace of the square of the reduced matrix ϱk:

Trϱ̂2k =
∑
i

⟨ψki |ϱ̂2k |ψki ⟩=∑
i,j

⟨ψki |ϱ̂k|ψkj ⟩⟨ψkj |ϱ̂k|ψki ⟩=
∑
i,j

|ρkij|2, (A.5)

since the densitymatrix is Hermitian and ⟨ψi||ψj⟩= δij because of the orthonormality condition
for the basis functions.

After partitioning the full system into a set of subsystems, each subsystem is characterized
by its reduced density matrix ϱi. Using equation (A.5), it is shown that equation (7) can be
simply rewritten as equation (8).

Appendix B. Simplest case: a system of two spins

For the sake of simplicity, we consider a bipartite system of two spins A and B shared between
Alice and Bob. The spin states are formed by the direct product of Alice’s and Bob’s single
spins functions, and the complete basis for the two spin states is formed by the eigenstates of
the z-spin component:

{|ψ1⟩, |ψ2⟩, |ψ3⟩, |ψ4⟩}= {| ↑↓⟩, | ↓↑⟩, | ↑↑⟩, | ↓↓⟩}. (B.1)

Any density matrix in this Hilbert space has the general form

ϱ̂=
4∑

i,k=1

ρik|ψi⟩⟨ψk|. (B.2)

We explicitly express the wave functions corresponding to definite spin orientation for both
subsystems A and B by tracing the basis vectors given in equation (B.1):

| ↑⟩A = |ψ1⟩⟨↓ |B+ |ψ3⟩⟨↑ |B, (B.3)

| ↓⟩A = |ψ2⟩⟨↑ |B+ |ψ4⟩⟨↓ |B, (B.4)

| ↑⟩B = |ψ2⟩⟨↓ |A+ |ψ3⟩⟨↑ |A, (B.5)

| ↓⟩B = |ψ1⟩⟨↑ |A+ |ψ4⟩⟨↓ |A. (B.6)

The matrix of the subsystem of Alice is obtained by taking the trace over the states of Bob
using equations (B.5) and (B.6):

ϱ̂A = TrBϱ̂=

(
ρ11 + ρ33 ρ14 + ρ32
ρ41 + ρ23 ρ22 + ρ44

)
. (B.7)
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Bob’s spin density matrix is obtained by exchanging 2↔ 1. As a next step we measure the
spin of particle A. equations (B.3)–(B.6) can be expanded into the following form:

| ↑⟩⟨↑ |A = |ψ1⟩⟨ψ1|+ |ψ3⟩⟨ψ3|, (B.8)

| ↓⟩⟨↓ |A = |ψ2⟩⟨ψ2|+ |ψ4⟩⟨ψ4|, (B.9)

| ↑⟩⟨↑ |B = |ψ2⟩⟨ψ2|+ |ψ3⟩⟨ψ3|, (B.10)

| ↓⟩⟨↓ |B = |ψ1⟩⟨ψ1|+ |ψ4⟩⟨ψ4|. (B.11)

The result of the measurement of the spin of particle A in the basis of equation (B.1) is given
by the following matrix:

ϱ̂σAzσB =


ρ11 0 ρ13 0
0 ρ22 0 ρ24
ρ31 0 ρ33 0
0 ρ42 0 ρ44

 . (B.12)

As one can see, only the diagonal elements and those containing pairs of indices (1,3) and
(2,4) are non-zero. After performing the same measurement for the spin of particle B, one
finds that the non-zero elements correspond to the diagonal elements and to those with pairs
of indices (1,4) and (2,3). As a result of these measurements, an initially non-entangled state
may become entangled after the measurement because it removes some matrix elements from
the squared sum of equation (8), which as a result it is no longer equal to 1.

In this work we consider a mixed state of two antiparallel spins depending on the angular
parameter β:

|ψ⟩= cosβ| ↑↓⟩+ sinβ| ↓↑⟩. (B.13)

The density matrix corresponding to the function in equation (B.13) has the form:

ϱ̂σAσB =


c2 s · c 0 0
s · c s2 0 0
0 0 0 0
0 0 0 0

 , (B.14)

where c= cosβ, s= sinβ. It is easy to see, that the sum of the squares of matrix elements is
equal to 1, therefore the entanglement of the entire matrix is zero.

Taking trace over the states of B,

ϱ̂σA = cos2β| ↑⟩⟨↑ |A+ sin2β| ↓⟩⟨↓ |A, (B.15)

and the associated contribution to the entanglement is

E(ϱ̂σA) = 1− (cos4β+ sin4β) =
sin2 2β

2
. (B.16)

Similarly we find the contribution associated with Bob’s spin which is exactly the same and
the total entanglement is

E(ϱ̂σAσB) = E(ϱ̂σA)+E(ϱ̂σB) = sin2 2β. (B.17)

It reaches its maximum value 1 when β = π/4 and is zero at β = 0,π/2.
Now consider a measurement. If z-component of the spin of A is measured, the density

matrix becomes
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ρ̂σAzσB = cos2β| ↑↓⟩⟨↑↓ |+ sin2β| ↓↑⟩⟨↓↑ |. (B.18)

The sum of squares of the matrix elements is no longer equal to 1, and the entanglement is
equal to

E(ϱ̂σAzsB) =
sin2 2β

2
. (B.19)

Appendix C. Structure of the density matrix for the boosted system

We derive here some useful expressions for the spin density matrices Aik, i,k= 1,2, of
equation (73), and for the coefficients ci, i= 1,2,3,4 given in equations (69)–(72). We first
list some useful relations between the coefficients ci:

c21 + c22 + c23 + c24 = c21 + c22 + 2c23 = 1, (C.1)

c1 + c2 = cosβ+ sinβ, (C.2)

c1 − c2 = cosδ(cosβ− sinβ), (C.3)

c21 + c22 = 1− 1
2
sin2 δ(1− sin2β), (C.4)

c21 + c23 =
1
2
(1+ cosδ cos2β), (C.5)

c22 + c23 =
1
2
(1− cosδ cos2β), (C.6)

c1c2 =
1
2

[
sin2β+

1
2
sin2 δ(1− sin2β)

]
, (C.7)

c1c3 =−1
4
sinδ [cos2β+ cosδ(1− sin2β)] , (C.8)

c2c3 =−1
4
sinδ [cos2β− cosδ(1− sin2β)] . (C.9)

Taking trace over momentum variables, we get a matrix for spins:

ϱ̂ΛσAσB =


c21 c1c2 c1 c3 cos2α c1 c4 cos2α

c1 c2 c22 c2 c3 cos2α c2 c4 cos2α

c1 c3 cos2α c2c3 cos2α c23 c3c4
c1 c4 cos2α c2 c4 cos2α c3 c4 c24

 . (C.10)

Taking trace over the spin of B, one gets according to equation (B.7):

ϱ̂ΛσA =

(
c21 + c23 (c1 c4 + c2 c3)cos2α

(c1 c4 + c2 c3)cos2α c22 + c24

)
. (C.11)
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The contribution of momentum degrees of freedom to the entropy can be calculated taking
trace over spin degrees of freedom in equation (73) and taking into account equation (C.1).
The density matrix for momenta has the form

ϱ̂ΛpApB =


c2α cαsαT 0 0

cαsαT s2α 0 0
0 0 0 0
0 0 0 0

 , (C.12)

where cα = cosα, sα = sinα, T= TrA12 = c21 + c22 − c23 − c24 (note that TrA11 = TrA22 = 1
according to equation (C.1)).

If we take trace over the spin and momentum of a particle B, we get

ϱ̂ΛpAσA = cos2αA ′
11|Λp+⟩⟨Λp+|+ sin2αA ′

22|Λp−⟩⟨Λp−|, (C.13)

where A ′
11 and A

′
22 are the spin density matrices A11 and A22, correspondingly, reduced by the

spin of B:

A ′
11 =

(
c21 + c23 c1c4 + c2c3

c1c4 + c2c3 c22 + c24

)
, (C.14)

A ′
22 =

(
c21 + c23 −c1c4 − c2c3

−c1c4 − c2c3 c22 + c24

)
. (C.15)

Finding the sum of squares of the element of the matrix of equation (C.13), one arrives at

E(ϱ̂ΛpAσA) = 1− 1
2
(sin4α+ cos4α)(1+ cos2 2β), (C.16)

which coincides with equation (36).

Appendix D. Boosted density matrix after the measurement

If we measure a spin of particle A, according to our previous considerations, after taking
trace over the momentum variable, the remaining spin density matrix is matrix is equal to
equation (C.10), with corresponding elements put identically to zero as in equation (B.12):

ϱ̂ΛσAzσB =


c21 0 c1c3 cos2α 0
0 c22 0 c2c4 cos2α

c1c3 cos2α 0 c23 0
0 c2c4 cos2α 0 c24

 , (D.1)

which after simplification by the spin of B becomes

ρ̂ΛσAz =

(
c21 + c23 0

0 c22 + c24

)
, (D.2)

and after taking trace by the spin of A,

ρ̂ΛσB =

(
c22 + c23 (c1c3 + c2c4)cos2α

(c1c3 + c2c4)cos2α c21 + c24

)
. (D.3)
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