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Abstract

The key to resolving the black hole information loss paradox lies in clarifying the origin

of black hole entropy and the mechanism by which black holes store information. By

applying thermodynamic principles, we demonstrate that the entropy of a gravitational

field is negative and proportional to the strength of the field, indicating that gravitational

fields possess information storage capacity. For Schwarzschild black holes, we further

demonstrate that information conventionally attributed to the black hole’s interior is in fact

encoded within its external gravitational field. During black hole evaporation, the emitted

particles transmit this information via gravitational correlations. This study advances

our understanding of gravitational field entropy and provides valuable insights toward

resolving the black hole information loss problem.

Keywords: information loss problem; black hole entropy; gravitational field entropy

1. Introduction

In the early 1970s, Bekenstein’s seminal conjecture proposed that black holes must

possess entropy, lest the second law of thermodynamics be violated [1]. Hawking sub-

sequently determined the area entropy of black holes, and Hawking radiation was first

discovered [2,3]. In Hawking’s original theory, regardless of the initial state of the matter

that collapses to form a black hole, the black hole will evaporate in the form of thermal radi-

ation and ultimately evolve into a thermal state. This evolution implies that distinct initial

states (pure or mixed) all evolve into an identical thermal final state [4], directly violating

the unitarity principle of quantum dynamics for isolated systems and creating a conflict

between quantum mechanics and general relativity. This issue is commonly referred to as

the “black hole information loss paradox [5].” Over the past decades, numerous approaches

have been proposed to resolve this paradox [6–9]; however, a universally accepted solution

remains elusive.

The first category of viewpoints posits that information is lost. Hawking was a

prominent early advocate of this view; Unruh and Wald have proposed that the evolution

from a pure state to a mixed state during black hole collapse and evaporation does not

conflict with established physics, and thus they argue that information loss is acceptable [10].

The second viewpoint maintains that information is conserved within the semi-classical

framework [11–13]. Some scientists suggest that black holes may not completely evaporate

and could leave behind remnants or transform into a “baby universe” [14,15] to preserve

the relevant information. This idea holds a certain degree of plausibility and remains an

active area of research.

Using the WKB approximation and energy conservation, Parikh and Wilczek devel-

oped a tunneling model for Hawking radiation, naturally yielding non-thermal radiation
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spectra [16]. Based on the non-thermal black hole radiation spectrum, it has been demon-

strated that this spectrum not only contains correlations capable of carrying information

but also that the total entropy during the black hole radiation process (i.e., the sum of the

entropy of the remaining black hole and the radiation) is conserved [17–19]. When a black

hole emits radiation, this information is carried away by the emitted particles.

However, the question of where information is stored before being emitted remains

unresolved. Wheeler argued that information is stored inside the black hole and is not

lost; however, the event horizon prevents external observers from retrieving it. Accord-

ing to this perspective, when a black hole has no radiation or has not yet completed its

radiation, information is still stored inside the black hole. However, Zhang et al. have

argued that the degrees of freedom inside a black hole may be insufficient to store all the

information [20,21]. Thus, the location of information storage prior to emission remains

uncertain. Given that black hole entropy scales with its horizon area, a prevailing view

holds that information is stored on the event horizon; this is supported by studies of area

quantization and entanglement entropy [22–24]. Hawking and collaborators proposed

the existence of “soft hairs” on black hole horizons, which can encode information [25].

When the “soft hairs” on the event horizon of a black hole are excited, they can explain the

area entropy of the black hole. However, it is still unclear whether these “soft hairs” carry

information about the initial state of the black hole or whether such information can be

obtained by external observers.

The definition and nature of gravitational field entropy constitute a fundamental

question in cosmology, inspiring numerous attempts to derive black hole entropy [26–28].

Since entropy is a fundamental concept in thermodynamics, it offers insights into the

microstructure and information content of physical systems. Consequently, the study

of gravitational field entropy represents a key area of research in theoretical physics,

particularly within cosmology and black hole physics [29]. Understanding gravitational

entropy holds the potential to unravel profound mysteries in black hole physics and the

nature of spacetime itself.

For an isolated ideal gas, it will eventually attain a state of uniform mixing, where the

maximum entropy is achieved. However, under the influence of gravity, such as on Earth,

this uniformly mixed gas system evolves into an inhomogeneous distribution described

by the Boltzmann distribution, where gas density increases with gravitational strength,

making the system inhomogeneous [30]. Consequently, the gas entropy decreases during

this spontaneous process. To satisfy the second law of thermodynamics, entropy must

increase elsewhere in the system. Critically, the gravitational field is the only component

undergoing change during this process, suggesting that entropy can be stored within it.

Thermodynamically, the entropy of photon gas (thermal radiation) is given by S ∼ T3 V.

Given that thermal radiation can be viewed as the superposition of an infinite ensemble of

plane electromagnetic waves, the entropy associated with thermal radiation underscores

the fact that the electromagnetic field possesses entropy. This analogy suggests that the

gravitational field should also possess entropy. Recently, the idea has been proposed that

gravitons can be separated from matter, and the number of gravitons is proportional to

the square of the mass Ng ≃ (m/Mp)2, providing an indirect constraint on gravitational

entropy [31].

In the realm of gravitational entropy, various approaches have been formulated to

define this elusive concept. Notably, gravitational entropy has been constructed from

the Weyl curvature tensor, employing expressions such as S = CabcdCabcd [32–34] or

S = CabcdCabcd/RabRab [35], where Cabcd and Rab denote the Weyl and Ricci tensors, re-

spectively. More recently, the Bel–Robinson tensor has been advocated as a foundation for

defining gravitational entropy [36], offering a new perspective in this ongoing research.
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Furthermore, inspired by the profound area law governing black hole entropy, Grøn [30]

derived an expression suggesting that the entropy density of the gravitational field scales

with the magnitude of the gradient of a potential function, i.e., s ∼ ∇⃗ · Ψ⃗. Building on these

foundations and thermodynamic principles, we rigorously calculate the entropy density

for a uniform gravitational field.

The paper is organized as follows: In Section 2, by constructing a uniform gravitational

field model and leveraging Verlinde’s hypothesis, our calculations show that the entropy

of the gravitational field is negative and proportional to the gravitational field strength. In

Section 3, we calculate the entropy of the gravitational field in the outer space of a spherical

object and extend the result to a Schwarzchild black hole, and we discuss the problem of

black hole information loss. Finally the paper ends with some conclusions and discussions.

2. Entropy of the Gravitational Field

To calculate the entropy of the gravitational field, we first construct a uniform gravi-

tational field. Consider an infinite plate with mass per unit area m; the gravitational field

strength (acceleration) on both sides of the plate can be obtained as

g = −2πGm
∫

∞

0

rx

(r2 + x2)
3/2

dr = −2πGm. (1)

Here, G is Newton’s gravitational constant. The gravitational field strength g is proportional

to the plate’s surface mass density. The negative sign in the formula indicates that the

gravitational field direction is towards the plate.

For two identical infinite parallel plates, as shown in Figure 1, it is easy to show that

the gravitational field is uniform gs = 2g = −4πGm on both sides of the parallel plates,

while the internal field is zero gin = 0. The volume occupied by the non-zero field increases

as the plate separation decreases.

Suppose the region between the plates is filled with thermal radiation at temperature

T. For the sake of analysis, we consider a cylinder of cross-sectional area A perpendicular

to the plates. The cross-section view of the model is shown in Figure 1.

Figure 1. A cross-section view of our model. The two gray areas represent infinite parallel plates

with mass surface density m; the gravitational field strength is gin = 0 between the plates and gs

outside them. A cylinder with cross-sectional area A perpendicular to the plate is selected as the

research object.

Since the energy of thermal radiation in the cylinder depends on the temperature T

and the volume V of the thermal radiation, that is U = aT4V, where a = π
2k4/15c3h̄3, the

differential of U can be written as



Entropy 2025, 27, 870 4 of 11

dU =

(

∂U

∂T

)

x

dT +

(

∂U

∂x

)

T

dx,

= 4aAT3xdT + aAT4dx. (2)

where x represents the distance between the two parallel plates, A is the cross-sectional

area of the cylinder, and k and h̄ denote the Boltzmann constant and the reduced Planck

constant, respectively.

As the plates approach each other, gravity performs positive work (dW = mgAdx).

According to the law of energy conservation, all the positive work is converted into the

energy of the thermal radiation in a quasi-static process, dU = dW = mgAdx. Combining

this with Equation (2), one can obtain

mgdx = 4aT3xdT + aT4dx. (3)

From Equation (3), we obtain

dT =
mg − aT4

4aT3x
dx. (4)

Since the entropy of thermal radiation is Sr = 4aT3V/3, the change in entropy of thermal

radiation between two parallel plates can be obtained as

dSr =

(

∂Sr

∂T

)

x

dT +

(

∂Sr

∂x

)

T

dx,

=

(

aT3

3
+

gm

T

)

Adx. (5)

Assuming a quasi-static process, the radiation pressure Pr = aT4/3 must balance the

gravitational force per unit area. Thus, aT4/3 = −mg. Substituting this into the expression

for dSr gives dSr = 0, confirming that thermal radiation entropy remains constant during

this quasi-static process.

Verlinde postulated that when a test particle with mass m moves by ∆x towards a holo-

graphic screen, the entropy on the holographic screen increases by ∆S = 2πkcm∆x/h̄ [37].

We consider a holographic screen parallel to and located between the plates. When the

plate separation decreases by dx, the entropy increase on this holographic screen is

dSsc =
2πkc

h̄
mAdx. (6)

If the entropy of the whole system is equal to the entropy of the thermal radiation plus

the entropy of the holographic screen, it would increase during the process (dSr +dSsc > 0).

However, since the whole system is in an adiabatic quasi-static process, the total entropy of

the system should remain constant; this violates the second law of thermodynamics. Since

the only significant change is in the volume occupied by the gravitational field, we conclude

that the gravitational field itself must possess entropy Sg that changes. To satisfy the second

law dSr + dSsc + dSg = 0, the change in gravitational entropy density sg associated with

field strength gs must be

sg = −
dSsc

Adx
= −

kc

h̄G

|gs|

2
. (7)

Here, m = −gs/4πG was utilized. This is the key result of the paper. Equation (7) represents

the change in the entropy density of the gravitational field when the gravitational field

changes, and the absolute value of the entropy density of a gravitational field cannot

be determined by this method. It is obvious that the entropy density is proportional

to the magnitude of gravitational acceleration gs. Since entropy is a scalar quantity, an
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absolute value sign has been added to the gravitational acceleration gs in Equation (7).

Since acceleration is observer-dependent and can be transformed away by switching to

a freely falling reference frame, Equation(7) implies that the entropy density vanishes.

This is consistent with the third Law of thermodynamics, as the Unruh effect predicts

a zero-field temperature in the absence of acceleration. Consequently, gravitational

entropy is similarly observer-dependent.

Interestingly, the entropy of the gravitational field is negative, and we all know that

information is negative entropy, which means that the gravitational field carries information;

this implies that the gravitational field carries information proportional to its strength. The

entropy of a system can be obtained by integrating the entropy density over the volume,

Sg =
∫

sgdV,

= −
kc

2h̄G

∫

|gs|dV. (8)

Suppose there exists a vector Ψ⃗ that satisfies |gs| = ∇ · Ψ⃗; then according to the Gaussian

divergence theorem, it can be obtained as follows:

Sg = −
kc

2h̄G

∫

∇ · Ψ⃗dV,

= −
kc

2h̄G

∫

σ
Ψ⃗ · d⃗σ. (9)

Since gravitational acceleration is equal to the negative gradient of the gravitational poten-

tial, the vector Ψ⃗ is closely related to the potential of the gravitational field. In particular,

for the one-dimensional case, the magnitude of vector Ψ⃗ is equal to the magnitude of the

gravitational potential.

Based on the area law of black hole entropy, Rudjord and his collaborators [38] pro-

posed a gravitational entropy estimation considering the Bekenstant–Hawking entropy;

they suggested that it can be expressed as

S = ks

∫

σ
Ψ⃗ · d⃗σ, (10)

where σ⃗ is the surface area of the event horizon of the black hole, and the vector function is

defined as Ψ⃗ = Pe⃗r, with e⃗r as a radial unit vector. The scalar function P is define using the

Weyl and Kretschmann scalars, where

P2 =
CabcdCabcd

RabcdRabcd
. (11)

It was shown that while the Weyl–Kretschmann estimator reproduces the Hawking–

Bekenstein entropy for a Schwarzschild black hole, it does not in the charged case [38,39]; a

new definition of the scalar P could help to solve the problem. Our work provides a new

clue for defining P from the perspective of thermodynamics. Henceforth, we adopt Planck

units, where G = c = h̄ = k = 1

3. The Black Hole Entropy and the Black Hole Information Loss Problem

Consider a spherical mass M. When a test particle of mass m approaches it, Verlinde’s

hypothesis states that the entropy on the holographic screen increases by

dSsc = 2πmdx. (12)
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Building upon this hypothesis and the holographic principle, Verlinde derived Newton’s

law of gravitation and proposed that gravity is an entropic force [37]. We now analyze the

evolution of the gravitational field and its entropy as m approaches M.

For analytical simplicity, we model the mass m as a thin, concentric spherical shell

surrounding the central object M, as illustrated in Figure 2.

R

dx

M

Figure 2. A spherical shell of mass m near a holographic screen enclosing an object of mass M. The

gray region represents the volume dV swept by the shell’s displacement dx.

When the spherical shell m contracts its radius and approaches object M by a infinites-

imal distance dx, the increase in entropy on an enclosing holographic screen is still given

by Equation (12). The gravitational field strength changes only within the swept volume

dV(i.e., the gray region in Figure 2), where ∆g = m/r2, while the gravitational field in the

remaining space remains unaltered.

Assuming this process is adiabatic and quasi-static, the total entropy of the system

must remain constant. The contraction of the shell increases the holographic screen entropy

by dSsc, but since the gravitational field only varies within dV, the entropy associated with

the field in this region must decrease to preserve the total entropy. Then, according to

Equation (12), the change in gravitational entropy density in dV is

∆sg = −
dSsc

4πr2dx
,

= −
∆g

2
. (13)

This result aligns with the earlier conclusion in Equation (7). The decrease in entropy

accompanying the increase in field strength implies that the gravitational field carries

negative entropy—effectively encoding information. Thus, the information content density

of the gravitational field is proportional to its field strength.

The entropy of the gravitational field can be obtained by integrating over the space

with respect to the entropy density of the gravitational field; then the total entropy of the

gravitational field generated by a mass M can be expressed as

Sg(M) =
∫

∞

R
sg4πr2dr = −2πM

∫

∞

R
dr. (14)

where sg = −M/2r2. It is evident that this result is divergent. This divergence arises

because gravity is a long-range force and space is infinite, causing the gravitational field

entropy of even an infinitesimal mass δm object to diverge. To resolve this, we define the

reference state such that when matter is uniformly distributed throughout infinite space,

the gravitational entropy is maximized and set to zero. As matter localizes, the entropy of
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the gravitational field decreases. For a localized mass M, the entropy change relative to the

reference state is

∆Sg(M) = Sg(M)− lim
δm→0

M

δm
Sg(δm) = −2πMR. (15)

This conclusion is consistent with Bekenstein’s entropy constraint [40].

In particular, for a black hole of mass M with Schwarzschild radius R = 2M, the

entropy of the gravitational field outside the black hole is

SBHg(M) = −4πM2. (16)

The corresponding information stored in the gravitational field is IBHg = 4πM2, which is

equal to the entropy of the Schwarzschild black hole itself, where SBHg(M) = 4πM2.

SBHg(M) + SBH(M) = 0. (17)

This cancellation suggests a profound connection between black hole entropy and the

gravitational field. When an object falls into a black hole, the entropy of the external

gravitational field decreases (i.e., its information content increases). Since IBHg = SBH, all

information associated with the black hole is stored in its external gravitational field [41].

During black hole evaporation, when a particle of mass m in the black hole is radi-

ated away via Hawking emission, the external gravitational field weakens, reducing its

information content by [41,42]

∆I(M, m) = 8π(M − m/2)m. (18)

This transfer of information from the gravitational field to the radiation is mediated by

gravitational correlations. According to the tunneling method [16], the tunneling probability

rate is given by the following expression:

Γ(M, m) = exp[−8π(M − m/2)m]. (19)

Obviously, this probability rate deviates from a purely thermal behavior, contrasting with

the simpler thermal case where Γ ∼ exp(−8πMm). Specifically, the deviation indicates

that the radiated particles carry information from the black hole’s gravitational field via

gravitational interactions. When the black hole evaporates completely, the total information

recovered matches the initial entropy I(M) = 4πM2, thereby ensuring the conservation of

information in black hole dynamics [17–19].

4. Entropic-Accelerating Universe

The concept of an accelerating universe driven by entropy has emerged as a compelling

alternative to traditional dark energy models. Several theories, such as entropic cosmology

and entropic-force models, propose that the acceleration of cosmic expansion is due to the

increase in entropy at the cosmic horizon, leading to an “entropy force” that drives the

expansion. These models aim to explain the observed acceleration without invoking dark

energy or the cosmological constant, offering a new thermodynamic perspective on cosmic

dynamics. For instance, Easson, Frampton, and Smoot suggest that the entropy associated

with the cosmic horizon generates a force that accelerates the universe’s expansion, and

they present a phenomenological model based on surface terms that fits supernova data

well [43]. Similarly, Zamora and Tsallis develop a thermodynamically consistent entropic

model that explains late-time cosmic acceleration without dark energy, showing good

agreement with supernova data and Hubble parameter measurements [44].
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We now calculate the gravitational field entropy of the universe and investigate its

potential role in cosmic acceleration. According to Hubble’s law, the recession velocity of a

galaxy is given by

v = Hr, (20)

where H = ȧ/a denotes the Hubble parameter (a is the scale factor of the universe), while

r is the proper distance between the galaxy and the observer. The cosmic acceleration

g(r) experienced by the galaxy can be derived by differentiating the velocity with respect

to time, with

g(r) =
dv

dt
= (H2 + Ḣ)r, (21)

where Ḣ is the time derivative of the Hubble parameter.

Using our gravitational entropy density result from Equation (7), the total entropy of

the cosmic gravitational field within the Hubble volume (up to the Hubble radius, where

RH = c/H) is calculated as

SU =
∫ RH

0
g(r)dV,

= πR2
H + πḢR4

H. (22)

This expression for SU, which explicitly depends on RH and Ḣ, differs from previous

formulations in the literature [43,45]. As the Hubble radius RH evolves, the cosmic entropy

SU changes accordingly. The associated entropic force Fs is given by

Fs = −T
dSU

dRH
,

= −H
(

RH + 2ḢR2
H

)

. (23)

where we have adopted the horizon temperature T = H/2π. The pressure associated with

this entropic force is

Ps =
Fs

4πR2
H

= −
H2 + 2Ḣ

4π
. (24)

To incorporate this entropic pressure Ps into cosmology, we modify the Friedmann

equation by defining an effective pressure Peff = P + Ps, where P encompasses ordinary

matter, dark matter, and radiation pressures. Substituting Peff into the standard Friedmann

equation yields the following:

ä

a
= −

4π

3
(ρ + 3Peff), (25)

where ρ is the total energy density of the universe. By substituting Peff into the equation,

we obtain
ä

a
= −

4π

3
(ρ + 3P) + (H2 + 2Ḣ). (26)

Recall that the standard relation between the scale factor and the Hubble parameter gives

ä/a = H2 + Ḣ, Substituting this into Equation (26) simplifies it to

Ḣ =
4π

3
(ρ + 3P). (27)

For ordinary matter, dark matter, and radiation, the energy–momentum condition

ρ + 3P > 0 always holds. Combining Equations (27) and (26) shows that the universe

undergoes accelerated expansion even without dark energy, driven primarily by the en-

tropic force. As the universe expands, the energy density ρ and pressure P decrease
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monotonically, causing Ḣ to approach zero. In the late universe, the Hubble parameter thus

tends to a constant, leading to exponential expansion of the scale factor a(t) = a0eH(t−t0).

5. Conclusions and Discussion

In this study, we constructed an ideal model of a uniform gravitational field and, based

on Verlinde’s entropy increment hypothesis, rigorously demonstrated that the entropy

density of the gravitational field is proportional to the gravitational acceleration. A key

finding is the negative gravitational entropy, implying an information storage capacity

within the field proportional to its strength. Applying this result to Schwarzschild black

holes, we showed that the entropy of a black hole is equivalent to the information stored

in the gravitational field outside its event horizon. This indicates that the information

traditionally thought to be “confined within the black hole” is actually encoded in its

external gravitational field. During black hole evaporation, radiated particles transmit

this information through gravitational correlations, resulting in a non-thermal spectrum of

Hawking radiation—consistent with the tunneling model predictions [16,17].

Although our derivation of gravitational field entropy was performed under quasi-

static thermal equilibrium conditions, since entropy is a state function (independent of

the specific process), this conclusion holds universally, regardless of whether the system

undergoes a quasi-static process. Our framework naturally yields T = g/2π for the

gravitational field temperature, aligning with the Unruh effect prediction. This consistency

further validates the robustness of our framework.

The second law requires a low-entropy initial state for the universe. This appears

paradoxical, as the standard Big Bang model describes the early universe as nearly ho-

mogeneous, isotropic, and uniformly distributed in temperature—properties typically

associated with high entropy [30]. However, this contradiction is resolved by accounting

for gravitational entropy: in the early universe, where matter was densely concentrated,

the gravitational field contributed a large negative entropy; when integrated into the total

entropy budget, this negative gravitational entropy places the early universe a low-entropy

state, satisfying the second law.

Notably, we observe a striking distinction in entropy scaling: the entropy of a uni-

form gravitational field is proportional to its volume, whereas the entropy of gravitational

fields generated by horizon-bearing sources (e.g., black holes) scales with the surface

area—consistent with the black hole entropy area law. Extended to cosmology, our grav-

itational entropy expression, combined with the entropy increase principle, explains the

observed cosmic acceleration without dark energy. This suggests that entropic forces may

play a fundamental role in cosmic dynamics [45–47].

While our work provides a thermodynamic framework for understanding gravita-

tional entropy and black hole information storage, several questions remain. For instance,

the generalization of our results to rotating (Kerr) or charged (Reissner-Nordström) black

holes requires further investigation, as their gravitational field structures and entropy

properties may introduce new complexities. Additionally, the microscopic origin of grav-

itational field entropy—such as its connection to gravitons or holographic degrees of

freedom—warrants deeper exploration to solidify the link between thermodynamics and

quantum gravity. Nevertheless, our findings offer a new perspective on resolving the black

hole information loss paradox and shed light on the role of gravitational entropy in cosmic

evolution, bridging key gaps between quantum theory, gravity, and thermodynamics.
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