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Abstract

The subject of this thesis are ambitwistor string models that describe massive particles

by gauging currents to implement a symmetry reduction. Because the amplitude formu-

lae one obtains as correlators in these models are really reductions of the ones presented

in [1, 2], the body of the thesis will open with a discussion of properties and features of

the six-dimensional superamplitudes that the massive formulae will inherit. Two different

instances of symmetry reduction in the ambitwistor string will be considered. The first is

a massive version of the RNS ambitwistor string. This provides a derivation of massive

amplitude formulae that have support on massive scattering equations such as the ones

predicted by Dolan and Goddard [3] and Naculich [4], together with a solid understanding

of mass assignment both to external and propagating particles. The second consists of four

dimensional twistorial models that will be shown to have an alternative interpretation as

theories of maps into the phase space of complexified massive particles. This representa-

tion is more suitable to describe supersymmetric theories, such as the Coulomb branch of

N = 4 sYM. An interesting class of theories is presented, which is obtained by symmetry

reduction along the R-symmetry generators. For supergravity, this produces CSS gauged

supergravities in four dimensions. In these theories a novel instance of ‘massive’ double

copy structure arises.

Chapters 2, 3 and 4 are based on:

• G. Albonico, Y. Geyer and L. Mason, Recursion and worldsheet formulae for 6d superam-

plitudes, JHEP 08 (2020) 066, [2001.05928]
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and they present considerable overlap with the original papers. Chapters 5 and 6 contain

unpublished work in collaboration with Yvonne Geyer and Lionel Mason.
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CHAPTER 1

Introduction

When I first learned about scattering in particle physics, I was given the image of a small child

who learns what objects and toys do by knocking them into one another. When toys are elemen-

tary particles and his arms have grown up to be high-energy colliders, he can try to understand

the fundamental laws of nature by observing the results of scattering. Scattering amplitudes are

crucial physical observables in many branches of physics. A meeting point between theory and

experiment, they have been at the core of the development of the Standard Model of particle

physics. Today, the pursuit of higher precision in standard model prediction and the computa-

tion of classical gravitational observables from quantum scattering amplitudes put them on the

front line in the search for New Physics and in the booming field of gravitational-wave astron-

omy. Reassured by the idea that someone might be inspired by their work to make concrete

predictions, the mathematical physicist can then safely venture in a world of abstraction.

Recent years have seen incredible progress in the computation of scattering amplitudes, to

the point that there is today a whole field of study that goes by this name. Famously, one moti-

vation for these developments were the remarkably simple formulae for MHV gluon scattering

amplitudes [6]:

AMHV
(
1+, . . . , i−, . . . , j−, . . . , n+

)
=

⟨ij⟩4

⟨12⟩⟨23⟩ . . . ⟨(n− 1)n⟩⟨n1⟩
, (1.1)

where ± labels the helicity of the particles and the formula is written in spinor-helicity vari-

ables. Deriving amplitudes for the same processes in the traditional formalism of lagrangian

and Feynman diagrams would involve pages-long computations, only to simplify under great
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CHAPTER 1 - Introduction

efforts, indicating that some organising principle is obscured. The amplitude community is a

very heterogeneous one, composed of particle phenomenologists, string theorists and a wide

range of mathematicians who were attracted by the beautiful structures underlying these phys-

ical observables. The guiding principle in all works that fall under this umbrella is a search for

simplicity, a desire to explore how symmetries and physical principles constrain amplitudes as

mathematical objects, bypassing their description in terms of quantum fields. The variety of

backgrounds of the people involved mean that the field has ancestry in many different lines

of research across mathematics and physics. As a result, a number of previously undiscovered

dualities, symmetries and connections between seemingly unrelated phenomena have come

to light. Before I dive into the subject of the thesis, I will take a tour around the amplitude

landscape, pointing out the heritage from various fields of research and referencing their ap-

plications in the thesis.

Behind the formulae for gluon scattering amplitudes (1.1), is one of the major tools of all

modern amplitude methods, the spinor-helicity formalism. In order to manifest the need for it,

we’ll argue that the description of particles via quantum fields is redundant. This story has

by now appeared countless times in the amplitudes literature. Wigner’s classification defines

particles as unitary irreducible representations of the Poincaré group, momentum eigenstates

labelled by p and a set of quantum numbers σ such as helicity h. Under a Lorentz transfor-

mation, these are shown to transform in representations of the little group and this behaviour

is reflected in the transformation of scattering amplitudes. On the other hand, quantum fields

and hence Feynman amplitudes computed from Lagrangians are Lorentz tensors. This forces

one to introduce polarisation vectors that give amplitudes with the correct behaviour under

Lorentz transformations:

A(pi, ϵi) = ϵµ1
1,σ · · · ϵ

µn
n,σAµ1...µn , ϵµσ(Λp) = Dσσ′(W )Λµ

ν ϵ
ν
σ′(p) ,

with Dσσ′(W ) a representation of the little group. For massless particles such vectors ϵ as

functions of p, h can only be defined up to equivalence ϵµ ∼ ϵµ+αpµ, so that the full amplitude

2



CHAPTER 1 - Introduction

described with field theory has to obey the on-shell Ward identity1:

A(pi, ϵi)|ϵj→pj = 0 ∀j . (1.2)

One then expects that a more natural description exists that avoids this redundancy by working

directly with variables that transform in representations of the little group, instead of (pµ, h).

This is achieved by the spinor-helicity formalism that splits momentum into its ‘square roots’

that transform in little group transformations. We will describe this in detail in §2.3 and make

use of it throughout the thesis.

Quantum field theory is a century old science and has lead to the greatest advances in

our understanding of particle interactions. Obviously the idea is not to start from scratch but

rather to find a new language to express what we know. Quantum fields were defined axiomat-

ically [8] based on the physical principles of locality, unitarity and causality. Looking directly

at the amplitude, locality gives us information on the singularity structure of amplitudes. In

particular it tells us that any pole of a tree level scattering amplitude corresponds to a propa-

gating particle going on-shell. Unitarity, through the statement of the optical theorem, selects

processes that factorize over their poles as the product of two subamplitudes corresponding to

the diagrams on either side of the on-shell propagator:

lim
P 2→0

An =
1

P 2
ALAR (1.3)

We will refer to this property as factorization and the subamplitudes are on-shell vertices, the

basic building blocks of modern on-shell recursions such as BCFW [9–11]. These methods ex-

ploit (1.3) to build amplitudes iteratively from processes involving fewer particles [12]. We will

use a BCFW argument in §3.4 to prove superamplitude formulae. Off-shell recursion relations

by Berends and Giele [13] are ancestors of modern on-shell recursion and remain to this day an

algorithm employed for efficient evaluation of scattering amplitudes.

If locality and unitarity already give very powerful constraints on scattering amplitudes

1In an ‘amplitude’ approach [7], gauge invariance in the form (1.2) has been investigated as a more fundamental
principle and it was shown to uniquely select Yang Mills amplitudes.
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CHAPTER 1 - Introduction

and methods to compute them, the role of causality is at the heart of a beautifully rich subject

that is fundamental to the contents of this thesis. In the late 1960s, Roger Penrose first formu-

lated twistor theory [14–17] as a new framework for a quantum understanding of spacetime.

The conventional point of view at the time was that quantization should be applied to the met-

ric as a field on spacetime, thus introducing quantum aspects to the notion of null, timelike

and spacelike directions - and hence to causality. In Penrose’s perspective, causality should be

a fundamental principle that is untouched by quantum corrections, indicating that null-rays

are more fundamental objects than spacetime events. Broadly speaking, twistor space is the

space of such null-rays in spacetime and a point in spacetime is only determined as the focus

point of a set of null-rays. This space has a natural action of conformal transformations and

a non-local correspondence with spacetime, pointing to a quantised picture where spacetime

points rather than null cones are smeared out. Consolidating the role of twistor space, Penrose

found that massless free fields are encoded in geometric data on twistor space [18]. Lacking a

connection with quantum field theory, for decades the framework of twistor theory was mainly

oriented towards the study of integrable systems and geometry, see [19] for a review. Twistor

diagrams, introduced by Penrose as a twistorial analogue of Feynman diagrams, were devel-

oped by Hodges in the ′80s and ′90s, coming very close to a breakthrough in the connection

with field theory amplitudes [20].

In the meantime, string theory had lived through two revolutions and made it more and

more natural to think about amplitudes having to do with moduli spaces of Riemann surfaces.

Inspired by Nair’s interpretation [21] of the Parke-Taylor formula (1.1) for MHV amplitudes in

Yang-Mills as a current algebra correlator on a Riemann sphere, Witten was the first to combine

the power of twistors with that of string theory. In the original twistor-string [22–24] the target

space is (supersymmetric) twistor space CP3|4. At tree level and Nk−2MHV degree scattering

amplitudes in N = 4 super Yang Mills were shown to localise on degree k− 1 curves in twistor

space. Soon after, the RSV formula [25,26] re-expressed these amplitude formulae as sums over

residues. These results showed that, although a string theory, the twistor string was remark-

ably simpler than all of its known cousins: correlators appeared to be localised on solutions

of a set of equations [27], greatly simplifying the problem of performing the moduli integrals.

4



CHAPTER 1 - Introduction

Hodges’ gravitational analogue of (1.1) in terms of reduced determinants [28] inspired Skin-

ner and Cachazo’s worldsheet formula [29, 30] and twistor string [31] for N = 8 supergravity,

leading to the interpretation of Hodges’ reduced determinants as fermion correlators on the

worldsheet.

Any formula one might hope to obtain from worldsheet theories such as the twistor string

must obey the requirements we discussed earlier regarding unitarity, locality and the singular-

ity structure of amplitudes. In quantum field theory, it is natural to describe singularities on

the space of kinematic configurations:

K = {{kµi } i = 1, ...n |
∑
i

ki = 0, k2i = 0} . (1.4)

In general an n-point tree level scattering amplitude becomes singular as the sum of a sub-

set of momenta becomes null, corresponding to a physical particle propagating in an internal

channel:

sa1...aj = (ka1 + ...+ kaj )
2 = 0 ai ∈ 1, ...n . (1.5)

Different subsets of momenta can go simultaneously on shell but not all channels are compat-

ible (e.g. the channels s12 = 0 and s13 = 0 are inconsistent), so that a precise characterisation

of the singularities is quite complicated. Worldsheet formulae derived from the twistor string

point us toward a picture where we have an auxiliary space that offers a better understanding

of singular configurations and a map from this space to the space on kinematic invariants such

that a correspondence is established between the singularities of the two spaces.

At tree level this space is the moduli space M0,n of the n-punctured Riemann sphere, a

space of dimension n− 3 because of the SL(2,C) symmetry acting on it. The moduli space has

boundaries corresponding to the configurations in which the Riemann sphere collapses to two

subspheres glued at an extra puncture. These singular configurations can be identified by the

subset of punctures lying in one of the subspheres and one can find all compatible singularities

by examining iteratively the singularities of the remaining subspheres until all the subspheres

contain exactly three punctures.

Suppose we want to derive the map that relates degenerations of the moduli space and

5



CHAPTER 1 - Introduction

singularities of the scattering amplitude in such a way that degenerations of the sphere where

punctures {σi}i∈S belong to one subsphere correspond to poles of the form (
∑

i∈S ki)
2 → 0.

Wanting to recover the kinematic data from the Riemann sphere, we define a meromorphic one

form on the Riemann sphere that has at most simple poles, one at each puncture, where the

residues are given by

Resσ=σiP (σ) = ki , (1.6)

which is equivalent to

∂̄P = 2πidσ
∑
i

kiδ̄(σ − σi) . (1.7)

Fixing n punctures on the Riemann sphere, i.e. a point on M0,n, this is solved by

P (σ) =
∑
i

ki
σ − σi

dσ . (1.8)

Momentum conservation ensures that the pole at infinity vanishes. In order to establish a map

that gives the desired correspondence between singular configurations, we are led to demand

that the quadratic differential P 2 vanishes:

P 2 =
∑

1<i<j<n

2ki · kj
(σ − σi)(σ − σj)

dσ2 = 0 . (1.9)

Because the external momenta ki are null, P 2 is again a meromorphic function with only simple

poles, so that it is enough to impose

Resσ=σiP
2(σ) = ki · P (σi) =

∑
j ̸=i

ki · kj
σi − σj

dσ = 0 . (1.10)

This is precisely the statement of the scattering equations. By virtue of momentum conservation,

the set of equations is invariant under SL(2,C) transformations of the Riemann sphere, so that

three punctures can be fixed to arbitrary distinct values. One can also show that there are only

n − 3 independent equations. Given the kinematic data (1.4), the scattering equations have

(n − 3)! solutions for the set of punctures {σi}ni=1 [32]. This led Cachazo, He and Yuan [33–35]

to conjecture that amplitude formulae for massless particles at tree level can be written as an

6



CHAPTER 1 - Introduction

integral over the moduli space pf the n-punctured Riemann sphere:

ACHY
n = δd(

∑
ki)

∫
M0,n

∏′
dσiδ̄ (ki · P (σi))

Vol(SL(2,C))
I({k, e, σ}) , (1.11)

where the measure is quotiented by the action of SL(2,C) that fixes three punctures. The prime

on the product indicates that the measure only imposes n− 3 scattering equations in a permu-

tation invariant way. Since there are n − 3 delta functions for n − 3 integration variables, this

integral is actually completely localised on the solutions to the scattering equations. Because

we have not made any assumptions about the type of massless particles involved nor on the

number of dimensions that the momenta live in, we expect this to hold universally for all of

massless scattering, indicating that there is a common component to all theories that can be

separated from the matter specific contributions, here contained in the worldsheet integrand

I({k, e, σ}).

In order to complete the formula, we need an understanding of the integrands one would

need to insert in (1.11) to obtain amplitudes for scalars, gluons and gravitons. Parallel to the de-

velopment of worldsheet formulae, Bern, Carrasco and Johannsson had discovered that color

ordered scattering amplitudes for Yang-Mills theories enjoy a set of relations (known as BCJ

relations) by virtue of a duality between color and kinematic factors [36]. The way in which

color and kinematic could be disentangled so neatly was suggestive of a picture where one

could pair them up as color-color, color-kinematic, kinematic-kinematic: the remarkable result

of the BCJ double copy [37] is that gravity can be obtained by replacing the color factor in YM

with another kinematic one. This type of duality had an ancestor in the Kawai-Lewellen-Tye

relations expressing amplitudes for closed strings as products of pairs of open string partial

amplitudes via a specific bilinear form called the (KLT) momentum kernel [38]. In [39], Cac-

hazo showed that individual residues contributing to the RSV formula of [26] satisfied the BCJ

relations, not only their sum, which allowed a double copy construction of gravity formulae

in four dimensions [40]. This line of research led to the discovery that Parke-Taylor integrands

evaluated at different solutions of the scattering equations (1.10) are orthogonal with respect

to the KLT kernel [34] and to the completion of the formula of Cachazo, He and Yuan for scat-

7



CHAPTER 1 - Introduction

tering of massless particles in all dimensions [35]. The integrands I in (1.11) were conjectured

to be a product of two factors I = ILIR with each of IL and IR transforming under Möbius

transformations as a 1-form in each σi.2 For scalars, gluons and gravitons, each of these were

taken from two possibilities. The first was a Parke-Taylor factor that depends on a permutation

p

PT(p) =

n∏
i=1

1

σp(i) p(i+1)
. (1.12)

The second was the CHY reduced Pfaffian Pf ′(M) where M is the skew matrix that depends

on polarization vectors eiµ associated to each null momenta kiµ:

M =

 A C

−CT B

 , Aij =
ki · kj
σij

, Bij =
ei · ej
σij

, Cij =


ki·ej
σij

, i ̸= j∑
l
ki·el
σli

, i = j .

(1.13)

On the support of the scattering equations, the matricesM have a two-dimensional kernel, and

so to obtain a nontrivial Pfaffian, one must delete two rows and columns, say i and j produce

Mij and then define the reduced Pfaffian

Pf ′(M) :=
1

σij
Pf(Mij). (1.14)

For biadjoint scalar amplitudes, the integrand is a product of two Parke-Taylors, for Yang-

Mills a Parke-Taylor and a Pfaffian, and for gravity two Pfaffians. Further integrands were

conjectured for a variety of theories including Einstein-Yang-Mills and DBI [41, 42].

The form of the amplitude (1.11) was strongly suggestive of a stringy origin and it wasn’t

long before Mason and Skinner introduced ambitwistor strings [43] and showed they repro-

duced CHY formulae as correlators. These novel string theories are theories of holomorphic

maps into the space of complex null geodesics, ambitwistor space. Similarly to twistors, am-

bitwistors have a non-local correspondence with spacetime and they admit representations

in terms of twistors in various low-dimensional spacetimes, which connect them to Witten’s

twistor string. Ambitwistor strings will be at the center of this thesis and their original form

2It is customary to suppress the form degree when writing expresions for the integrands.
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CHAPTER 1 - Introduction

will be reviewed in detail in the next chapter. While the validation of the CHY formulae was an

important result, the importance of these worldsheet models goes far beyond it. They provide

a framework that can be modified to approach loop integrands, to introduce different matter

systems, to include supersymmetry and to find new parametrisations of amplitudes.

Up until this point we have focused on results about massless scattering. Despite the fact

that most of the particles we observe have mass, due to technical aspects of their description,

massive on-shell methods came later. As we argued earlier, modern amplitude methods often

rely on novel parametrisations that shed light onto the symmetries and otherwise hidden fea-

tures of known quantum field theories. The first formulations of spinor helicity for massive

particles appeared decades ago [44, 45] and were exploited in the first on-shell approaches to

amplitudes in the Coulomb branch of N = 4 SYM [46–52]. These works explored how state-of-

the-art amplitude methods such as on-shell recursion, supersymmetric Ward identities, could

be adapted to account for massive particles. The main shortcoming of these primordial forms

of massive spinor-helicity was the need to pick a decomposition of massive momenta into a

pair of massless ones, thus inserting auxiliary parameters into the amplitude formulae and of-

ten breaking Lorentz invariance: this gave the image that massive amplitudes didn’t have as

much to gain from on-shell methods as massless ones. All of these issues were resolved in [12],

where spinorial variables for massive momenta were introduced that are little group covariant

and give rise to beautifully compact formulae.

Over the past decade, massive amplitudes have been the object of increasing interest, even

more so after the detection of gravitational waves from a black hole merger [53]. A long stand-

ing program aimed at deriving classical gravity observables from scattering amplitudes has

produced results relevant to black hole scattering [54–69], see [70] for a review. While this com-

munity has mainly been interested in applications of the double copy, progress has also been

made on the front of massive BCFW relations, both in terms of massive shifts [71] and of the

formulae that have been produced [72, 73].

The work contained in this thesis has the purpose of introducing worldsheet models of

massive particles that produce amplitude formulae relying on a massive version of the scatter-

ing equations. The first attempts at generalizing the scattering equations to massive particles

9



CHAPTER 1 - Introduction

came from Dolan and Goddard [3, 32], who proposed a form of the scattering equations for

scalars of all equal masses in a ϕ3 theory. This form of the scattering equations however breaks

permutation invariance. Naculich generalised these equations to allow for the appearance of a

mixture of massive and massless particles in the amplitude, possibly with several mass param-

eters [4, 74, 75]. Naculich’s proposal for the massive scattering equations is:

Ei :=
∑
j ̸=i

ki · kj +∆ij

σij
= 0, σi ∈ CP1, i = 1, ...n , (1.15)

where ∆ is such that

∆ij = ∆ji

∑
j ̸=i

∆ij = m2
i , (1.16)

The conditions (1.16) are necessary to preserve the invariance of the set of equations (1.15)

under SL(2,C) transformations. The ∆s are functions involving the masses mi of the external

particles. For a general assignment of masses, such functions might be hard to determine and

are not guaranteed to exist.

Another idea that has long been exploited is to consider massive particles in four dimen-

sions as massless in six and five [76–81]. The six-dimensional worldsheet formulae of [1, 82]

where dimensionally reduced to four dimensions to write massive particles on the Coulomb

branch. Exploiting the independence of the original CHY representation (1.11) on the number

of spacetime dimensions, Naculich [4] reformulated the equations (1.15) by taking the external

momenta to lie in (d + M) dimensions so that it can be split into a d−dimensional physical

momentum and an M−dimensional internal momentum κ3:

Ki = (ki|κi) k2i = κ2i =: m2
i . (1.17)

With this notation, the scattering equations for a set of n external momenta Ki become:

Ei =
∑
j ̸=i

ki · kj − κi · κj
σij

= 0 . (1.18)

3Notice the use of a special character κ here to distinguish internal momentum from spinorial kinematic variables
κ.
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In his work internal momentum had to be assigned by hand, making it hard to formulate a

consistent and complete description of the corresponding amplitude formulae and the theories

they could belong to. The models we will present in chapters 4 and 5 describe a variety of

massive deformations of known gauge and gravity theories. They assign values of internal

momentum systematically and produce amplitude formulae that have support on equations

like (1.18) and a spinorial version of these. We will present the models both as standalone

theories of maps into a massive version of ambitwistor space and as symmetry reductions of

massless models in higher dimensions.

Outline of the thesis The thesis is organised as follows. After a review of background ma-

terial in chapter 2, we begin by presenting important properties of the six-dimensional super-

amplitude of [2] that will be relevant for the formulae derived in the massive models. Chapter

4 presents massive models in four dimensions as theories of holomorphic maps into the phase

space of complexified massive particle. In chapter 5 a more general formalism is presented to

build models of massive particles obtained by symmetry reduction. The first half of the chapter

covers the treatment of massive models in the RNS ambitwistor string and their implications

at the level of the amplitude formulae. In the second part twistorial models such as the ones

of chapter 4 are presented as symmetry reductions and we explore different ways of introduc-

ing masses in maximally supersymmetric gauge and gravity theories. Finally chapter 6 gives

a massless model in four dimension that is equivalent to the ones in [83] and allows us write

twistorial version of the gluing operator of [84], opening the way to loop integrand formulae.

11
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Review

This chapter contains a review of background material that is relevant to the rest of the thesis.

It is intended both as a technical treatment of the motivational arguments discussed in the

introduction and as an aide-mémoire to support chapters §3-6. It does not aspire to be complete

nor always rigorous: we hope to convey the gist of the subject and will point the reader to the

relevant literature and modern reviews whenever possible. While in the previous chapter we

have made an argument for CHY formulae from a rather historical perspective, here the main

focus will be on the ambitwistor string, the formulae being presented as correlators in this type

of theories. We begin with a brief review of the geometry of ambitwistor space. Section 2.2

contains a review of the RNS models of [42, 43]. After a section on spinor-helicity variables

for massless particles, the attention will turn to twistorial realisations of ambitwistor space and

the models for which they lay the basis [1, 83, 85]. Section 2.5 presents the 6d superamplitudes

of [1,2]. This is meant as a preview of chapter 3, where properties of this formula are discussed

in more detail: here we point the reader to the main results so that the following chapter can

be consulted rather than read from beginning to end.

Because there is considerable overlap between the models in [83,85] and the ones presented

in this thesis, some technical aspects are left to the main body in order to avoid repetitions.

2.1 Ambitwistor space

Ambitwisor space is the space of complex null geodesics in complexified spacetime M with

holomorphic metric g. The name comes from the fact that in four dimensions it can be repre-

12
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sented as a quadric in the product of chiral twistor and dual twistor space, as we will describe

in §2.4.1. Detailed descriptions of this space can be found in the original papers [86–90] and for

modern reviews see [43, 91].

Complex null directions are defined by cotangent vectors P ∈ T ∗
xM that span the zero

energy surface of the Hamiltonian

H =
1

2
g−1(P, P ) . (2.1)

We can write the space of such null directions:

T ∗
N =

{
(Xµ, Pµ) ∈ T ∗M|g−1(P, P ) = 0

}
. (2.2)

The space of complex null geodesics can be obtained by quotienting out the action of shifts

along null directions, parametrised by P · ∂X :

A =
{
(Xµ, Pµ) ∈ T ∗M|g−1(P, P ) = 0

}/
{P · ∂X} . (2.3)

Projective ambitwistor space PA is the space of unscaled null geodesics, obtained by quotient-

ing by the rescaling generated by Υ = P · ∂P so that the projective scale can be taken to be the

scale of P .

By construction, a point in PA corresponds to a complex null geodesic in M and conversely

a point in spacetime corresponds to a quadric Qx ∈ PA which can be interpreted as the space

of complex null rays through x. The non locality in the correspondence is what is responsible

for the simplifications in the ambitwistor string representation.

The cotangent bundle is a symplectic manifold, and a more rigorous description of am-

bitwistor space uses the language of symplectic geometry, defining a symplectic potential θ =

Pa dX
a on T ∗M and associating a Hamiltonian vector field to (2.1) to generate the flow along

null geodesics. Ambitwistor space inherits from this a holomorphic 1−form θ, homogeneous

of weight +1 in P . On PA, θ defines what is called a contact structure and it encodes information

on the complex structure of the space. Non-trivial deformations of the contact structure are co-
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homology classes δθ ∈ H0,1(PA,OP (1)) and the (ambitwistor) Penrose transform relates these

to non-trivial deformations of the metric on spacetime, i.e. of the conformal structure. More

generally, the Penrose transform relates cohomology classes on ambitwistor space to off-shell

fields in spacetime. The field equations only arise as quantum consistency conditions in the

ambitwistor string.

2.2 The RNS ambitwistor strings

Ambitwistor strings are theories of holomorphic maps from a Riemann surface Σ to projec-

tive ambitwistor space PA, as described above. Their action was first formulated by Ma-

son and Skinner [43] as the complexification of the worldline action for a massless particle in

d−dimensional spacetime. Under their prescription the worldline becomes a Riemann surface

Σ with holomorphic coordinate σ ∈ C and (Xµ, Pµ) on the target space become holomorphic

coordinates for the cotangent bundle T ∗M of complexified spacetime.

Bosonic action The simplest ambitwistor string describes a bosonic system:1

SB = SB[X,P ] =
1

2π

∫
Σ
P · ∂̄X − ẽ

2
P 2 , (2.4)

where ∂̄X = dσ̄∂σ̄X . Here X and P are fields on Σ and therefore carry a conformal weight:

while X ∈ Ω0(Σ) has weight (0, 0), P takes value in the canonical line bundle KΣ ≃ Ω(1,0)(Σ)

of holomorphic (1, 0) forms. Then ẽ is a (0, 1)-form taking values in the holomorphic tangent

bundle TΣ ≃ K−1
Σ . This field is a Lagrange multiplier for the constraint P 2 = 0 and it is the

gauge field for the transformation:

δẽ = ∂̄α, δX = αP, δP = 0 , (2.5)

where α ∈ Ω0(Σ, TΣ) is a bosonic gauge parameter. This gauge symmetry generates transla-

tions along null geodesics on the complexified cotangent bundle of Minkowski space, therefore

1The usual worldsheet diffeomorphism freedom can be parametrised by the gauge field e via the operator ∂̄e =
∂̄ + e∂, where in the action (2.4) the field has been gauge fixed to e = 0.
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confirming that the fields (Xµ, Pµ) parametrise ambitwistor space, with the gauge field ẽ con-

straining P to be null and quotienting by the action of (2.5). As recalled in the previous section,

projective ambitwistor space is obtained by quotienting by the scale of the null vector P : this

assigns projective weight +1 to P on PA and we identify the canonical line bundleKΣ with the

pullback to the worldsheet of the line bundle OP (1) so that we can recognise the target space

of 2.4 with PA.

Models in the ambitwistor string are built out of just a few matter systems on the world-

sheet, taken in pairs as:

S = SB + SL + SR . (2.6)

In [42] a variety of choices were introduced for SL/R but here we will focus on the ones that are

needed for the models we will study in the course of the thesis, namely those that give rise to

gauge and gravity theories.

Current algebra This system is a worldsheet realization of a current algebra j ∈ Ω0(Σ,KΣ⊗g)

of level k, with g some Lie algebra, satisfying the standard current algebra OPE:

ja(σ)jb(0) ∼ kδab

σ2
+
ifabcjc(σ)

σ
+ . . . , (2.7)

where fabc are the structure constants of the algebra g and δab is the Killing form. This model

can be realized via free fermions, WZW models or other constructions that we will indicate

generically by SC , as it represents a color contribution to the model.

Worldsheet fermions Under a choice of spin structure on the worldsheet, the second type of

system we consider is built out of a fermionic field Ψµ ∈ ΠΩ0(Σ,K
1/2
Σ ⊗ Cd) together with a

gauge field χ ∈ ΠΩ0,1(Σ, T
1/2
Σ ) imposing the constraint P ·Ψ = 0:

SΨ =

∫
gµνΨ

µ∂̄Ψν − χP ·Ψ . (2.8)
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The gauge transformations associated to χ are:

δXµ = ϵΨµ δΨµ = ϵPµ δPµ = 0 δχ = ∂̄ϵ , (2.9)

and they generate a form of worldsheet supersymmetry, with ϵ ∈ ΠΩ0(Σ, T
1/2
Σ ). We refer the

reader to the original discussion in [43] for a better understanding of these gauge transforma-

tions and a description of super ambitwistor space.

Models With this choice of matter systems, the simplest model that one can build is the one

made up of two current algebrae:

SBAS = SB + SC + SC̃ , (2.10)

describing bi-adjoint scalars. Much like the ϕ3 theory in QFT, this is a very popular toy model in

the amplitude community. Having no polarisation states, its amplitudes are purely kinematic

and they are the backbone of gauge and gravitational scattering. In the double copy literature

it is known as the zeroth copy of gauge theory and gravity. We will describe it in more detail in

§5.2.

The heterotic model has one current algebra and one worldsheet fermion system:

Shet = SB + SC + SΨ . (2.11)

It produces amplitudes for Yang Mills. The type II model contains two fermion systems SΨr

SII = SB + SΨ1 + SΨ2 , (2.12)

and it produces amplitudes for type II supergravity.

BRST gauge fixing Gauge fixing worldsheet diffeomorphisms and translations along null

geodesics via the BRST procedure introduces fermionic (b, c) and (b̃, c̃) ghosts associated to the
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gauge fields e, ẽ as well as bosonic (β, γ) ghost fields associated to χ, with:

b, b̃ ∈ ΠΩ0
(
Σ,K2

Σ

)
, c, c̃ ∈ ΠΩ0 (Σ, TΣ) ,

βr ∈ Ω0
(
Σ,K

3/2
Σ

)
, γr ∈ Ω0

(
Σ, T

1/2
Σ

)
.

The BRST operator is constructed via the standard procedure. One can compute the central

charge to find that the purely bosonic model is critical in 26 dimensions, the type II model

is critical in 10 and for the ones involving SC the critical dimension depends on the choice of

current algebra.

Vertex operators As in string theory, amplitudes are obtained as correlators of vertex oper-

ators, one for each external particle, inserted at puctures σi on the worldsheet. Fixed vertex

operators for all possible left and right matter systems are of the form

cic̃iVi = cic̃iwie
iki·X(σi) . (2.13)

at a puncture σi, for some operator wi ∈ Ω0(Σ,K2
Σ), determined by the choice of worldsheet

matter and constrained by quantum consistency, BRST invariance and possibly other symme-

tries. The matter contribution wi mirrors the left/right structure of the action and factorises

into two independent currents:

w = vlvr, vl, vr ∈ KΣ . (2.14)

For all matter systems we are going to consider, the contractions of these operators vi factorise

from the rest of the correlation function.

Gauge fixing revisited In the presence of vertex operators, the gauge fixing procedure presents

some subtleties. For the ambitwistor string, these were first treated carefully in [92]. We only

cite the result here and keep a more detailed description for the models in chapter 4 and 5, the

procedure is analogous. The gauge fixing of e is standard in the literature [93] and introduces
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integrations over the position of n − 3 punctures, thus making the distinction between fixed

and integrated vertex operators. Similarly gauge fixing ẽ and χ gives rise to different types

of vertex operators, according to how much residual gauge freedom they have. As explained

in [92], these two gauge fields have moduli (n− 3 for ẽ and n− 2 for χ at tree level) that cannot

be fixed to zero. Integrating these moduli produces bosonic and fermionic delta functions re-

spectively. The gauge fixing of ẽ produces n− 3 delta functions that are paired with integrated

vertex operators to give: ∫
Σ
Vi :=

∫
Σ
δ̄(Resσi(P (σi)

2)Vi(σi) , (2.15)

where

δ̄(z) = ∂̄
1

2πiz
= δ(ℜz)δ(ℑz)dz̄ . (2.16)

The integrand in (2.15) has the correct weight as V is a quadratic differential and the delta

function takes value in Ω(0,1)(Σ, TΣ). Gauge fixing χ also produces two sorts of vertex operators

vi in (2.14): we’ll refer to these as picture −1 and picture 0 vertex operators. In the twistor string

literature the nomenclature of fixed and integrated is commonly extended to this type of gauge

fixing.

Penrose transform Spacetime fields are represented on ambitwistor space via the Penrose

transform. Spin s plane-waves of the form ϵµ1 . . . ϵµse
ik·X were found to correspond to coho-

mology classes

(ϵ · P )sδ̄(k · P )eik·x ∈ H1(PA,O(s− 1)) , (2.17)

with s = 1 for a Maxwell field and s = 2 for linear gravitons. Matter models such as (2.11) and

(2.12) generate fully integrated vertex operators of this form, with quantum consistency in the

form of BRST invariance imposing the linearised equations of motion.

Correlators and CHY formulae Amplitude formulae are obtained as correlation functions of

vertex operators:

Mn =

〈
c1c̃1V1c2c̃2V2c3c̃3V3

n∏
i=4

∫
Σ
Vi

〉
(2.18)
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With respect to each gauge field, one should include as many fixed vertex operators as the num-

ber of ghost zero modes, here we only make the disctinction for worldsheet diffeomorphisms,

leaving the rest implicit. The X path integral can be carried out explicitly, and it produces both

a momentum conserving delta function and a set of equations for P that are solved, at genus

zero, by

Pµ(σ) =

n∑
i=1

kiµ
σ − σi

dσi . (2.19)

Integrating out P , the correlator localises on the solutions to the scattering equations:

Ei := Resσi(P
2) = ki · P (σi) =

n∑
j=1

ki · kj
σi − σj

dσj . (2.20)

We will discuss in more detail the derivation of these equations when treating the massive

model in chapter 5. As expected from the ambitwistor string, (2.20) shows that the geometric

interpretation of the scattering equations is that they encode the reduction of the target space

to ambitwistor space by enforcing the constraint P 2 = 0.

Putting everything together, the correlators reproduce the CHY formulae (1.11) of [35, 94]:

An = δd

(∑
i

ki

)∫
M0,n

∏′
dσiδ̄ (ki · P (σi))

Vol(SL(2,C))
⟨w1 · · ·wn⟩

∣∣∣∣∣
P ∗(σ)

, (2.21)

where the correlator ⟨w1 · · ·wn⟩ is determined by the worldsheet matter and the one-formP ∗(σ)

is given by (2.19). The Faddeev-Popov volume factor 1/Vol(SL(2,C)) comes from the contri-

bution of the c-ghost zero modes, whereas the one from the c̃-ghosts combines with the n − 3

delta functions δ̄(k · P ) to give a permutation invariant measure on the moduli space of the

n-punctured Riemann sphere.

Integrands Because the two matter systems don’t interact with each other, integrands mirror

their ‘double copy’ structure:

In = ⟨w1 · · ·wn⟩ = ⟨vl1 · · · vln⟩⟨vr1 · · · vrn⟩ = ILIR . (2.22)
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For the models we have described, each of the left/right contributions can either come from a

current algebra or from worldsheet fermions.

The current algebra gives contributions:

v(σ) = T · j(σ) (2.23)

where T ∈ g selects the color charge of the external state and j is a current in SC . Correlators

⟨T1 · j(σ1) · · ·Tn · j(σn)⟩ of n such states give Parke Taylor factors:2

Cn(α) =
tr
(
Tα(1) . . . Tα(n)

)
σα(1)α(2) · · ·σα(n)α(1)

= tr
(
Tα(1) . . . Tα(n)

)
PT(α) . (2.24)

Fully integrated vertex operators from the SΨ matter system have:

v(σ) = ϵ · P (σ) + k ·Ψ(σ)ϵ ·Ψ(σ) , (2.25)

with ϵ and k the polarisation vector and momentum of the external state. Correlators involve

two fixed vertex operators, that we don’t specify here and produce:

〈
vF1 v

F
2 v3 . . . vn

〉
= Pf ′(M) =

1

σ12
PfM

[12]
[12] , (2.26)

where M is the CHY matrix defined in (1.13). This completes the correlators with:

In = ILIR =


PT(α) PT(β), Biadjoint scalar

PT(α) Pf ′(M), Yang-Mills theory

Pf ′(M) Pf ′(M̃), RNS gravity.

(2.27)

The original models can be found in [42, 43] and we refer the reader to [95, 96] for reviews of

the subject.

2These also produce terms containing non cyclic permutations and multi-trace terms that are not expected to
appear in the amplitude for the bi-adjoint scalar.
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2.3 Interlude: spinor-helicity formalism

When working in a specific dimension, ambitwistor space has very convenient representations

in terms of variables that solve the P 2 = 0 constraint explicitly. Ignoring for the time being the

fact that we are dealing with fields on the worldsheet, we begin by introducing a decomposi-

tion of a massless fixed momentum k that solves the k2 = 0 constraint explicitly. This is the

well known spinor helicity formalism discussed in the introduction. Because this representation

exploits the accidental isomorphisms of the spin group, it is specific to each dimension. Spinor

helicity for massless particles is an essential tool of modern amplitude methods and there are

now a number of excellent reviews in the literature, e.g. [12, 97].

Massless particles in four dimensions In four dimensions we have the isomorphism Spin(4,C) ≃

SL(2,C) × SL(2,C). Positive and negative chirality spinors transform under this group in the

(12 , 0) and (0, 12) representation respectively. Undotted and dotted indices label the left and

right handed representations and can be raised and lowered with the Levi-Civita symbols εαβ

and εα̇β̇ defining inner products:

⟨λ1λ2⟩ = εαβλ1αλ2β = −⟨λ2λ1⟩ [λ1λ2] = εα̇β̇λ̃
α̇
1 λ̃

β̇
2 = −[λ2λ1] . (2.28)

Four-momentum kµ transforms in the (12 ,
1
2) representation and can thus be mapped to an ob-

ject carrying two spinor indices, one of each chirality:

kαα̇ = σµαα̇kµ . (2.29)

Then the on shell condition imposes k2 = det(kαα̇) = m2. We’ll focus here on the m = 0 case

and leave the discussion of massive particles to chapter 4 as we present our novel massive

models. For a massless particle the momentum kαα̇ is a hermitian matrix of rank 1 and it can

be decomposed as the outer product of two complex chiral spinors:

kαα̇ = κακ̃α̇ , (2.30)
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From the decomposition one can see that the little group SL(1,C) acts as:

κ→ w−1κ κ̃→ wκ̃ . (2.31)

Polarization data corresponds to irreducible representations of the little group. For massless

particles of helicity h, these are objects that scale as w2h under a little group transformation

(2.31). Weyl spinors have polarization data ϵκ and ϵ̃κ̃. The Maxwell field strength Fαα̇ββ̇ splits

into an antiself-dual Fα̇β̇ = ẽκ̃α̇κ̃β̇ and a self-dual Fαβ = eκακβ component corresponding to

helicity ±1 states and scaling accordingly.

Massless particles in six dimensions Spinor helicity variables in six dimensions were first

introduced by Cheung and O’Connell in [98]. The spin group of the complexified Lorentz

group in six dimensions is Spin(6,C) ≃ SL(4,C). This group has independent fundamental (4)

and antifundamental (4̄) representations, giving two independent Weyl spinor representations.

The simplest SL(4,C) invariant is given by the singlet in (4⊗ 4̄):

4 : νA 4̄ : πA 1 : νAπ
A . (2.32)

The only non-trivial invariant tensor is the four index object ϵABCD, which can be used to raise

pairs of skew indices and to construct invariants:

⟨κ1κ2κ3κ4⟩ = κ1Aκ2Bκ3Cκ4Dϵ
ABCD [κ1κ2κ3κ4] = κA1 κ

B
2 κ

C
3 κ

D
4 ϵABCD . (2.33)

The six-vector kµ is in the fundamental 6 of SO(6,C), which can be expressed as the anti-

symmetric product of two fundamentals or equivalently of two antifundamentals, the isomor-

phism being established through the chiral (skew) Pauli matrices σµAB . Because the matrix kAB

is skew, it has even rank, and since it doesn’t have full rank on account of the on-shell condi-

tion, it has rank 2. Then there’s a two dimensional space of solutions to the Dirac equation both

for chiral and anti-chiral spinors:

kAB = εȧḃκAȧκ
B

ḃ
≡
[
κAκB

]
, kAB = κaAκ

b
Bεab ≡ ⟨κAκB⟩ . (2.34)
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It is clear that both these definitions hold up to two distinct SL(2,C) actions on the undot-

ted and dotted indices of the Weyl spinors, so that the little group is SO(4,C) ∼= SL(2,C) ×

SL(2,C)/Z2 and ϵ in (2.34) implements inner products in each of the two copies of SL(2,C).3

Polarization data is given by representations of the little group. A Dirac particle has po-

larization data ϵA = ϵaκ
a
A. A Maxwell field strength is represented by FA

B , with FA
A = 0. For a

momentum eigenstate the Maxwell equations require kABϵA = 0 = kABϵB , so that all polariza-

tion data is encoded in little group spinors (ϵa, ϵȧ) with4

FA
B = ϵBϵ

A , ϵA = ϵȧκ
Aȧ , ϵA = ϵaκ

a
A . (2.35)

Massless particles in five dimensions As it was shown in [2, 82, 85], in order to dimension-

ally reduce to five dimensions, one picks a fixed non-null six-vector, ΩAB in spinor form, and

considers the five-dimensional plane C5 that is orthogonal to it. The choice of Ω breaks the spin

group SL(4,C) → Sp(4,C), isomorphic to Spin(5,C), and allows one to raise and lower spinor

indices using ΩAB and ΩAB = 1
2ϵABCDΩ

AB .

Five-vectors then have the same spinor helicity decomposition as in six dimensions, with

the additional constraint:

Ω · k = ΩAB(κAκB) = 0 . (2.36)

Because the fundamental and antifundamental representations are equivalent, the little group

is SL(2,C) and we denote its contractions as (·, ·).

2.4 Twistorial ambitwistor string

While the RNS ambitwistor string produces beautifully compact formulae for bosonic ampli-

tudes in any dimension, it poses some difficulties when it comes to the study of its fermionic

sector and target space supersymmetry [99]. On the other hand the RSVW formulae [10, 26]

in four dimensions extended to supersymmetric theories, exploiting the spinorial nature of

3We denote contractions of pairs of little group indices [·, ·] and ⟨·, ·⟩. This notation is used in four dimensions
for contractions of chiral spinors, the distinction should be clear from the context.

4Note that ϵa and ϵȧ cannot be taken to be real in Lorentz signature.
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twistors. We mentioned in the introduction that these two frameworks are related by twistorial

representations of ambitwistor space. Geyer, Lipstein and Mason [83] wrote a twistorial reali-

sation of the ambitwistor string in four dimensions and proposed new models and amplitude

formulae for gauge and gravity theories with any amount of supersymmetry §2.4.2. In this

context it becomes apparent how spinor-helicity variables are naturally ‘twistorial’. Following

the same approach, one can seek analogous representations in six and five dimensions §2.4.3.

Although we will see that the six dimensional models present some issues [85], the formulae

they produce have undergone numerous checks and they have been proven by BCFW recur-

sion [1, 2] for gauge theory and gravity. In §2.5 we introduce the formulae and summarise the

results of [2], referring to chapter 3 for details.

2.4.1 Twistors and ambitwistors in four dimensions

In four dimensions, twistor space PT is an open subset of CP3. We take homogeneous co-

ordinates on CP3 ZA carrying a natural action of SL(4,C). The connection with spacetime is

established by a geometric correspondence between the space of lines in CP3 and the complex-

ified compactified Minkowski spacetime represented as a quadric Q in CP5. In order to lie on

the line defined by a point x in spacetime, a twistor has to obey linear relations, known as inci-

dence relations, that are more easily expressed by splitting the twistor coordinates into two Weyl

spinors of opposite chirality, carrying the same weight:

ZA = (λα, µ
α̇) . (2.37)

Then the incidence relations become:

µα̇ = ixαα̇λα, (2.38)

Thus establishing the non-local correspondence anticipated in the introduction. The SL(4,C)

action on twistor is isomorphic to the complexified conformal group. We can find a repre-

sentation of SL(4,C) for which the generators are linear and holomorphic and we can form
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conformal invariants, such as the inner product defining dual twistors Z̃ ∈ PT∗:

Z · Z̃ := λαµ̃
α + µα̇λ̃α̇ . (2.39)

Going back to the task of writing an alternative parametrization of ambitwistor space, given a

null momentum P , we can seek spinor helicity variables for it in the form P = λλ̃. Then by the

twistor correspondence, given a null geodesic with momentum P = λλ̃ going through a point

x, we can introduce:

Z = (λα,−ixαα̇λα) ∈ PT Z̃ = (ixαα̇λ̃α̇, λ̃α̇) ∈ PT∗ . (2.40)

One can easily verify that these define a null geodesic iff they satisfy:

Z · Z̃ = 0 . (2.41)

The twistor and dual twistor have two independent scalings, one corresponds to the scale of

the null geodesic. The second is generated by Υ = Z · ∂Z − Z̃ · ∂Z̃ and is redundant. We can

then write ambitwistor space as a symplectic reduction from the product of twistor and dual

twistor space:

A =
{
(Z, Z̃) ∈ PT× PT∗|Z · Z̃ = 0

}/
Υ (2.42)

Quotienting by the scale of the null geodesic further reduces to PA. The Penrose transform

relates massless on-shell fields on spacetime to cohomology classes on twistor and dual twistor

space. On ambitwistor space, representatives are built out of the pullback of cohomology

classes on PT and PT∗.

2.4.2 Four dimensional ambitwistor string

We give here a brief review of the four dimensional model by Geyer, Lipstein and Mason [83].

This is both a warm up for the later discussions of six dimensional formulae and massive mod-

els as well as a special case that presents some unique features. We will only discuss the model

for super Yang-Mills and we will not be very rigorous about the implementation of super-
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symmetry. What we’d like to emphasise is how the reparametrisation of ambitwistor space A

carries with it an enhancement of the scattering equations to incorporate the polarisation data

and the redundancy of the little group action.

The bosonic action for the four-dimensional ambitwistor string of [83] is based on the

parametrisation of ambitwistor space as a quadric in the product of twistor and dual twistor

space (2.42). When constructing the model, twistors and dual twistors become fields on the

worldsheet and they must be taken to have value in some line bundles L and KΣ ⊗ L−1 on

Σ. Contrary to the twistor string [22, 100], where the line bundle degree wasn’t fixed in the

model but rather summed over all possible values, the four-dimensional ambitwistor string

takes L = K
1/2
Σ so that both the twistor and dual twistors are valued in K

1/2
Σ , see [95, 96] for a

more detailed comparison. Beside this choice, both models are built on the action:

S =
1

2π

∫
Σ
Z̃ · ∂̄Z − Z · ∂̄Z̃ + aZ · Z̃ , (2.43)

where the Lagrange multiplier a ∈ Ω(0,1)(Σ) imposes the constraint Z · Z̃ = 0 and gauges the

transformations generated by Υ. Identifying K
1/2
Σ with both the pullback to the worldsheet

of the line bundle OZ(1) on PT and OZ̃(1) on PT∗ reduces the target space to projective am-

bitwistor space.

One can write models with N supersymmetries by extending the twistor and dual twistor to

their supersymmetric analogues. Here we employ a notation that will be natural in the context

of higher dimensional models and dimensional reduction. We can repackage the degrees of

freedom of both the twistor and dual twistor into one Dirac supertwistor Y = (λA, µ
A, ηI),

where λ and µ are Dirac spinors made up of the homonymous chiral and antichiral components

of Z and Z̃. The fermionic components ηI carry an N -dimensional R-symmetry index. In this

notation, the supersymmetric analogue of (2.43) is given by:

S =
1

2π

∫
Σ
Y · ∂̄Y + aY · Y , (2.44)

with the inner product Y · Y = Z · Z̃ + ηIη
I . While the liberty to choose the degree of the line

bundle L in (2.43) is controversial in the ambitwistor string community, in (2.44) we are clearly
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compelled to take Y ∈ Ω0(Σ,K
1/2
Σ ).

BRST gauge fixing introduces fermionic ghosts for the field a and for e,5 gauging worldsheet

reparametrisations. Constructing the BRST charge, one can verify that the obstructions toQ2 =

0 vanish for maximal supersymmetry and a choice of worldsheet matter with central charge

c = 14 for super Yang-Mills, which we take to be a current algebra.

We mentioned that gauge fixing in the presence of vertex operators is a subtle procedure

that generates different types of vertex operators on account of how much residual gauge free-

dom they have. Here we will not be rigorous about this and simply discuss integrated vertex

operators, we refer the reader to [101] for details. We will insert manually the effects of this

gauge fixing in the formula for correlators in the form of a Faddeev-Popov determinant.

The Penrose transform on twistor and dual twistor space relates massless on-shell fields of

helicity h to cohomology classes H1(PT,O(2h− 2)) and H1(PT∗,O(−2h− 2)). For a Maxwell

field of momentum k = κκ̃ we have representatives (taking N = 0):

v =

∫
ds

s
δ̄2 (κα − sλα(σ)) e

is[µκ̃] ∈ H1(PT)

ṽ =

∫
ds

s
δ̄2
(
κ̃α̇ − sλ̃α̇(σ)

)
eis⟨µ̃κ⟩ ∈ H1 (PT∗)

(2.45)

These cohomology classes pull back to ambitwistor space and combine to give the spin 1

plane wave representative (2.17). In order to understand the equations enforced by the delta

functions in the vertex operators, it is insightful to inspect the ordinary scattering equations

written in spinor helicity variables:

ki · P (σi) = 0 = ⟨κiλ(σi)⟩[κ̃iλ̃(σi)] . (2.46)

As per the vertex operators, on the support of the ordinary scattering equations the polarised

data must satisfy either ⟨κiλ(σi)⟩ = 0 or [κ̃iλ̃(σi)] = 0.

Amplitude formulae at Nk−2MHV degree6 were obtained by taking correlators of k vertex

operators on dual twistor space and n− k on twistor space, built out of the ones in (2.45) with

5This should be included as always by writing ∂e = ∂̄ + e∂ and then gauge fixing e to zero.
6Here k is the number of negative helicity gluons.
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a standard contribution from the current algebra. The path integral localises on:

Z(σ) = (λ, µ) =
k∑

i=1

si (κi, 0)

σ − σi
Z̃(σ) = (µ̃, λ̃) =

n∑
p=k+1

sp (0, κ̃p)

σ − σp
(2.47)

The polarisation data s can be absorbed as a component of homogeneous coordinates on the

Riemann sphere σα = 1
s (1, σ), whose contraction we write (σiσj). With this notation we write:

A(4d)
n =

∫ ∏n
a=1 d2σa

volGL(2,C)

k∏
i=1

δ̄2
(
κ̃i − λ̃ (σi)

) n∏
p=k+1

δ̄2 (κp − λ (σp))︸ ︷︷ ︸
dµ4d

PT(α) , (2.48)

where the GL(2,C) extends the SL(2,C) Mobius invariance to include the little group C∗ =

GL(1) generated by ∑
i≤k

si∂si −
∑
i>k

si∂si . (2.49)

A quick counting tells us that we have four more delta functions than integrations, the remain-

ing ones encoding momentum conservation. The Parke-Taylor factor comes from the integra-

tion of the current algebra.

The amplitude formulae have support on the solutions of the polarised scattering equa-

tions:

κ̃i = λ̃ (σi) κp = λ (σp) , (2.50)

for i ≤ k and p > k. From (2.46) we know that the ordinary scattering equations vanish

on their support. An inspection of the (n − 3)! solutions {σi} of (2.20) shows that they split

into n − 3 sectors, each corresponding to a different MHV degree: for a given k the polarised

measure only has support on A(n − 3, k − 2)7 solutions, defining the corresponding sector.

The evaluation of the formula was studied in [102]. It is important to notice that, despite the

fact the new moduli si ‘polarise’ the scattering equations on factorisation channels, the pole

structure of the amplitude formula is still described by the degenerations of M0,n, since the si

don’t introduce any singularities in the scattering equations.

7The Eulerian number A(n,m) is the number of permutations of n elements in which m elements are greater
than their predecessors after the permutation.
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2.4.3 Twistors and ambitwistors in six dimensions

In six dimensions, twistors are pure spinors of the conformal group SO(8,C). This group has

three eight dimensional representations, two spinorial ones with opposite chirality and the

vector. Triality permutes these three representations into each other.

Both chirality spinors can be employed to define twistor spaces. They can be represented

as pairs of six-dimensional spinors:

ZA =
(
µA, λA

)
∈ 4̄⊕ 4, Z̃A =

(
µ̃A, λ̃

A
)
∈ 4⊕ 4̄ (2.51)

where A labels the fundamental and antifundamental representations of SL(4,C) as in (2.32).

Both chiralities have natural inner products with themselves, so that twistor space Q is a

quadric in the projectivisation of the chiral spinor representation of SO(8,C) defined as [103–

106]:

Q =
{
[Z] ∈ CP7 | Z · Z = 2µAλA = 0

}
. (2.52)

Similarly one can define primed twistor spaceQ′, built on antichiral spinors. Here twistor space

and primed twistor space are each dual to themselves through the canonical inner product in

(2.52), contrary to the four dimensional case where primed twistor space is isomorphic to the

dual of twistor space.

Another feature of six dimensions that follows from this concerns the non-local correspon-

dence between ambitwistor space and complexified compactified Minkowski spacetime, viewed

as a quadric M ⊂ CP7. Points of Q are related to totally null self-dual 3−planes in M via the

incidence relations:

µA = xABλB . (2.53)

More insightfully, if two twistors are such that Z1 · Z2 = 0, meaning that the line they define

lies entirely in twistor space and not just in CP7, then the two corresponding 3−planes, α1 and

α2, intersect in M and they do so along a null line L = α1 ∩ α2. Then the correspondence is

between complex null geodesics and null lines in Q and ambitwistor space can be defined by a
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pair of twistors (one twistor and one dual twistor in four dimensions), via:

A6 =
{
[Za] ∈ CP7 | Za · Zb = 0 a, b = 1, 2

}/
SL(2,C) , (2.54)

This description can be extended to superambitwistor space by replacing twistors Z with su-

pertwistors Z . Supertwistor space is defined as the quadric QN in CP7|2N :

QN =
{
[Z] ∈ CP7 | Z · Z = 2µAλA + ωIJη

IηJ = 0
}
, (2.55)

parametrized by [Z] =
[
µA, λA, η

I
]
. Here ωIJ is a skew 2N × 2N matrix, N = N (6d) = N (5d) is

the number of supercharges in six and five dimensions. The incidence relations

µA = xABλB + ωIJθ
AIηJ ηI = θAIλA , (2.56)

establish the correspondence with chiral Minkowski superspace C6|8N , parametrized by (xAB, θAI),

I = 1, . . . 2N .

By our initial remark, an alternative description of ambitwistor space exists based on an-

tichiral spinors in Q′ and by triality a third one is also on an equal footing. Intuitively, the way

we have a correspondence between Q and M and Q′ and M, there is also one between Q and

Q′ as well as a parametrisation of ambitwistor space based on M [85].

2.4.4 Models in six dimensions

In light of the geometry presented in the previous section, we can proceed as in four dimensions

and write a twistorial model that solves the P 2 = 0 constraint explicitly. Contrary to what we

argued in four dimensions, here we have no choice but to take the twistors to be spinors on the

worldsheet, as is clear from the action (2.57).

In [1] a bosonic action was formulated that was further studied in [2, 85]:

S6d =

∫
Σ

1

2

(
Z · D̄Z

)
, (2.57)
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where D̄Za = ∂̄Za+Aa
bZ

b, andAa
b ∈ Ω0,1 (Σ, sl2) a worldsheet (0, 1)−form gauging the sl2 little

group. In (2.57) deformations of the complex structure have been gauged fixed via the Beltrami

differential e in ∂̄e = (∂̄+e∂). The twistors Za are sections ofK1/2
Σ and here also we identify this

line bundle with the pullback to the worldsheet of O(1) → CP7 so that they define the projective

scale on twistor space. One can include (0, N) supersymmetry by replacing the twistors Za

with supertwistors Za. As it should be clear from the discussion above, two other distinct

models exist based on the alternative representations of ambitwistor space in six dimensions.

For a discussion of BRST gauge fixing and a model for the biadjoint scalar, including a dis-

cussion of the vertex operators that will be at the origin of our massive ones in later chapters,

we refer the reader to [85]. A model was proposed in [1] with worldsheet matter that would

produce the expected integrands for gauge theory and gravity. This can be realised by intro-

ducing worldsheet fermions (ρA, ρ̃A) ∈ Ω0(Σ,K
1/2
Σ ) with action:

Sρ =

∫
Σ
ρ̃A∂̄ρA + baλ

AaρA + b̃aλ
a
Aρ̃

A , (2.58)

where (ρA, ρ̃
A) ∈ Ω0(Σ,K

1/2
Σ ) are worldsheet fermions and

(
ba, b̃a

)
are (0, 1)−forms on the

worldsheet and fermionic gauge fields imposing the constraints λAaρA = 0 = λaAρ̃
A. The issue

with this model that has not been solved yet is that this type of matter requires both chiral and

antichiral spinors and the two models are not easily combined. Once the model is reduced to

five dimensions, the fundamental and antifundamental representations are equivalent so that

this issue vanishes.

Although the six dimensional model is problematic, it has inspired amplitude formulae

that were presented in [1] and underwent a number of checks in [2]. We will review their main

features in section §2.5 and present some of the checks in chapter §3.

2.4.5 Models in five dimensions

Ambitwistor string models in five dimensions take the form

S5d =

∫
Σ

1

2

(
Z · D̄Z

)
+ aΩAB

1 (λAλB) + Sm , (2.59)
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Here Sm denotes the action for the matter systems, we will specify their content in later chap-

ters as we further reduce these models. The field a is a Lagrange multiplier for the constraint

(λAλA) and it acts as a gauge field for the transformations:

δa = ∂̄α δµAa = αΩAB
1 λaB δλaA = 0 . (2.60)

From the incidence relations, we see that these correspond to translations in the Ω1 direction8.

These are generated by the Hamiltonian vector field ΩAB
1 λaA∂/∂µ

Ba associated to the constraint

(λAλA) = 0. The gauging of this constraint then reduces the target space to the space of null

geodesics in five dimensions as the symplectic quotient:

A5 =
{
Za ∈ T× T | Za · Zb = 0, (λAλA) = 0

}/
{SL(2,C)× C} , (2.61)

with the extra quotient by C accounting for the transformations (2.60). As described in (2.36),

this description picks a fixed non-null six-vector, ΩAB
1 in spinor form, and considers null geodesics

along null tangent vectors in the five-dimensional plane C5 that is orthogonal to it. The choice

of Ω1 breaks the spin group SL(4,C) → Sp(4,C), isomorphic to Spin(5,C), and allows one to

raise and lower spinor indices using ΩAB
1 and Ω1AB = 1

2ϵABCDΩ
AB
1 . For supersymmetric the-

ories, the model is naturally extended by replacing Za with Za, thus obtaining the target space

A5|2N .

A rigorous discussion of BRST gauge fixing and vertex operators for this model can be

found in [85] and we will discuss it in the context of the four dimensional massive models of

chapters 4-5.

8We label this direction Ω1 anticipating the further reduction we will perform in chapter 5.
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2.5 Six dimensional formula

We present here the integral formula for massless six-dimensional tree level amplitudes, with

(N, N̄) supersymmetry:

An =

∫ ∏n
i=1 δ

4 (EiA) δ
(
⟨viϵi⟩ − 1

)
dσi d

2ui d
2vi

vol SL(2,C)σ × SL(2,C)u
I(N,N̄)
n . (2.62)

These formulae have support on the polarised scattering equations:

EiA := uiaλ
a
A(σi)− viaκ

a
iA = 0 ⟨ϵivi⟩ = 1 , (2.63)

Integration is carried out over the positions of the n punctures σi as well as on extra moduli

(uai , v
a
i ) for each particle, with the Faddeev-Popov volume in the denominator taking care of

gauge fixing three σs for Möbius invariance and three u components for the action on the little

group index a that we’ll explain briefly. By a quick counting, we can see that after integration of

the 5n − 6 unconstrained moduli there are 6 residual delta functions. We will show in chapter

3 that these enforce momentum conservation. The integrand I(N,N̄)
n contains all the matter-

specific factors.

The aim of this section is to simply introduce all the ingredients of this formula and give a

preview of statements that we will develop further in the next chapter. For this we will:

→ Present the intuitive origin of the polarised scattering equations from the original scatter-

ing equations, see §2.5.1.

→ Introduce the parametrisation we employ for (N, N̄) on shell superspace, see §2.5.2.

→ Describe the integrands I(N,N̄)
n for theories in [2] with different amounts of supersymme-

try and show that the supersymmetric part factors out and can be seen as an expansion

in supermomenta around the leading term for the top states of the multiplet, see §2.5.3.
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2.5.1 Polarized scattering equations framework in 6 dimensions

We proceed as we did in four dimensions, seeking a factorisation into spinor helicity variables

for the map P (σ) over the Riemann sphere:

PAB(σ) = λaA(σ)λBa(σ) =
1

2
εABCDλ

C
ȧ (σ)λ

Dȧ(σ) . (2.64)

The ordinary scattering equations are the statement:

ki · P (σi) = det(κaiA, λ
b
A) = 0 . (2.65)

This determinant vanishes iff there exist non zero (uai , v
a
i ) defined up to a scale such that:

EiA := uiaλ
a
A(σi)− viaκ

a
iA = 0 . (2.66)

We can fix the scale by imposing:

⟨ϵivi⟩ = 1 . (2.67)

Motivated by the ambitwistor string model (2.57) we write an ansatz for λAa(σ):

λaA(σ) =

n∑
i=1

uiaϵiA
σ − σi

. (2.68)

Then (2.66)-(2.68) constitute the polarised scattering equations. One can easily verify that on

their support:

λaA(σ)λ
a
B(σ) = PAB(σ) =

∑
i

kiAB

σ − σi
(2.69)

They are a set of 5n equations on 5n− 6 variables (σi, uai , v
a
i )/SL(2,C)σ × SL(2,C)u. The vs can

be eliminated from the equations by exploiting their normalization:

∑
i

uijϵj[AϵiB]

σij
= viaκ

a
i[Aϵbκ

b
iB] = kiAB . (2.70)
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In this form it is straightforward that they imply momentum conservation:

KAB =
∑
i

kiAB =

3∑
i=1

ϵi[AEiB] = 0 . (2.71)

where in the first equality we have used (2.70) and the last one is due to the symmetry proper-

ties of the object we are summing.

Although these are 6 equations, skewing with ϵiC vanishes identically by construction and

there are only three independent equations per point that serve to determine the uia and σi.

Despite their non-linear appearance, later we will see that

→ They are underpinned by linear equations, see §3.1.2,

→ And there exists a unique solution to these equations for each solution σi to the unpolar-

ized scattering equation, see §3.1.1.9 It can also be shown that (2.66)-(2.67) have a unique

solution {ui, vi, σi}

We will also see that

→ The polarised measure is equivalent to the CHY measure in §3.1.3.

2.5.2 Supersymmetry in 6d

Here we review supersymmetry representations in 6d, in particular that in [1]. That represen-

tation depends on individual solutions to the scattering equations, so we introduce a variant

that maintains the same simple structure, but that is global. This representation was introduced

in [2].

Supersymmetry in six dimensions has been studied in the context of scattering amplitudes

by a number of authors [79, 98, 107], [82], [108]. The generators of (N, Ñ) supersymmetry in

six dimensions are QAI , Q
Aİ , where I, İ are indices for the R-symmetry group Sp(N)× Sp(Ñ)

and range from 1 to 2N/2Ñ respectively. Their action on momentum eigenstates is defined by:

{QAI , QBJ} = kAB ΩIJ , {QA
İ
, QB

J̇
} = kAB ΩİJ̇ (2.72)

9Unique up to an SL(2,C)-transformation on the global a index.
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where ΩIJ and ΩİJ̇ are the R-symmetry symplectic metrics.

For massless particles, the generators reduce to the little group as:

QAI = κaAQaI , QA
İ
= κAȧQ

ȧ
İ
, (2.73)

with the anti-commutation relations:

{QaI , QbJ} = ϵabΩIJ , {Qȧİ , QḃJ̇} = ϵȧḃΩİJ̇ . (2.74)

We now construct the on-shell superspace, i.e. we introduce Grassmann variables that allow

us to group all the states of a supermultiplet into a superfield. Different choices for these

coordinates are available, depending on the specific theory and on the symmetries we wish to

keep manifest. We will focus on (1, 1) super Yang-Mills but the description is easily generalised

to (N, Ñ) supersymmetry.

(1, 1) super Yang-Mills has 16 supercharges. It arises as a dimensional reduction of N = 1

SYM in ten dimensions and its reduction to four dimensions is N = 4 SYM. The linearized

‘super-Maxwell’ multiplet is

F := (FB
A , ψ

A
I , ψ̃Aİ , ϕIİ) , (2.75)

consisting of a 2-form curvature FB
A as described in section 2.3, spinors of each chirality ψA

I and

ψ̃Aİ and four scalars ϕIİ . On momentum eigenstates with null momentum kAB , QCJ acts on this

multiplet by

QCJF = (kACψ
B
J , ΩJIF

A
C , kACϕJİ , ΩJIψ̃İC) . (2.76)

To construct on-shell superspace, we need to choose half of the QaI as anticommuting super-

momenta. The possibilities discussed in the literature [79, 98, 107] focus on halving either the

I or the a-indices manifesting only full little-group or only R-symmetry respectively. The for-

mer was used successfully in recent work on 6d scattering amplitudes for a variety of the-

ories [82, 108]. However, the latter is more natural from the perspective of the ambitwistor

string [109], and will be the formulation we work with here. The two approaches are of course
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related by appropriate Grassmann Fourier transforms.

The polarised scattering equations provide a natural basis (ϵa, va) for the little group space.

This basis gives a choice of supermomenta that manifests the full R-symmetry because the su-

percharges ϵaQaI anti-commute. The normalization condition ensures that the basis is always

non degenerate. However, v introduces a dependence on the solutions to the scattering equa-

tions, making the basis dynamic. While we could in principle work with this basis by taking

special care when extracting component amplitudes in the final supermomentum expansion,

we choose to work with a global basis for each particle

(ϵia, ξia) , with (ξiϵi) = 1 . (2.77)

Using this basis, ϵaQaI again anti-commute, and can be represented by Grassmann viariables

qI = ϵaQaI . However, the supersymmetry generators are now globally defined,

QaI =

(
ξaqI + ϵaΩIJ

∂

∂qJ

)
, Q̃ȧ

İ =

(
ξȧq̃İ + ϵȧΩ̃İ J̇

∂

∂q̃J̇

)
. (2.78)

Note that due to the normalization condition (vϵ) = 1, we know that va and ξa are related by

va = ξa + (ξv)ϵa . (2.79)

Returning to the example of super Yang-Mills, the multiplet now takes the form

F (qI, q̃İ) =
(
(ϵA + q2⟨ξκA⟩)(ϵB + q̃2⟨ξκB⟩), qI(ϵA + q̃2⟨ξκA⟩), q̃İ(ϵA + q2⟨ξκA⟩), qI q̃İ

)
, (2.80)

and the (1, 1)-super-Yang-Mills superfield becomes

ΦR = gϵϵ̃ + qI ψ
Iϵ̃ + q̃J̇ ψ̃

ϵJ̇ + q2gξϵ̃ + q̃2gϵξ̃ + qI q̃J̇ ϕ
IJ̇ + · · ·+ q2q̃2 gξξ̃ . (2.81)

where gϵϵ̃ = ϵaϵ̃ȧ g
aȧ denotes the gluon field strength with polarization ϵaϵ̃ȧ. By construction,

this representation is now global and independent of the solution to the polarized scattering

equations. Of course, this global definition comes at the expense of having to introduce an
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additional reference spinor ξa.

2.5.3 Integrands

Supersymmetry determines the full super-amplitude from the amplitudes involving only the

top of the multiplet. For an (N, Ñ) theory, supersymmetry imposes that the integrand in (2.62)

breaks down as I(N,Ñ)
n = In eFN+F̃Ñ so that the total dependence on the supermomenta is

encoded in the exponential factor that we define below.

Supersymmetry The dependence on supermomenta is carried by the exponential eF , with

F = FN + F̃Ñ where10

FN = F pol
N − 1

2

n∑
i=1

⟨ξivi⟩ q2i , F pol
N =

∑
i<j

⟨uiuj⟩
σij

qiIq
I
j , (2.82a)

F̃Ñ = F̃ pol

Ñ
− 1

2

n∑
i=1

[ξivi] q̃
2
i , F̃ pol

Ñ
=
∑
i<j

[ũiũj ]

σij
q̃iİ q̃

İ
j . (2.82b)

For example for N = (1, 1) super Yang-Mills we take the exponential factor expFYM = exp(F1+

F̃1). In the dynamic R-symmetry preserving representation we mentioned in the previous sec-

tion, as used in [1], only the terms F pol
N remain in the exponential. In the next chapter we will

show that the exponential factors above are indeed invariant under supersymmetry transfor-

mations §3.2.2.

Matter For the ambidextrous spin one contribution, define an n× n matrix H by

Hij =


ϵiAϵ

A
j

σij
i ̸= j

ei · P (σi) , i = j

(2.83)

where ei is the null polarization vector and P (σ) is as defined in (2.19). We can define Hii

equivalently by

λaA(σi)ϵ
A
i = −uiaHii , λȧA(σi)ϵiA = −uȧiHii . (2.84)

10Here we decompose our factors for the new fixed SUSY representation in terms of the F pol
N factors used in [1].
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See §3.2.1 for details. On the polarized scattering equations, the determinant detH vanishes

because H has co-rank 2 due to

∑
i

uiaHij = λaA(σj)ϵ
A
j + ujaHjj = 0 . (2.85)

The first term follows from the definition (2.68) of λaA and the second equality from (2.84).

Similarly,
∑

j Hijujȧ = 0. These identities nevertheless imply thatH has a well defined reduced

determinant

det ′H :=
det(H

[i1i2]
[j1j2]

)

⟨ui1ui2⟩[uj1uj2 ]
. (2.86)

Here H [i1j1]
[i2j3]

denotes the matrix H with the rows i1, i2 and columns j1, j2 deleted.

→ We will show that det ′H is well-defined in the sense that the (2.86) is invariant under

permutations of particle labels, and thus independent of the choice of i1,2, j1,2, see §3.2.1

for the proof.

The reduced determinant det ′H is manifestly gauge invariant in all particles, carries SL(2,C)σ

weight −2, as expected for a half-integrand Ispin−1 and is equally valid for even and odd num-

bers of external particles, in contrast to earlier formulae.

→ On the support of the polarized scattering equations, it is verified using factorization in

§3.4.2 that det ′H is equal to the CHY half-integrand Pf ′M .

In [2] integrands were given for theories of D5 and M5 branes. In this thesis we will mainly

be concerned with gauge theory and gravity. Therefore we refer the interested reader to the

original paper for details of the construction and only briefly define the integrands here. For

these theories two additional integrands need to be defined: the skew matrixA : Aij = ki·kj/σij ,

familiar from the CHY formulae [35, 110] and a family of matrices U (a,b) constructed from

(σi, uia, ũiȧ), only needed for M5-branes

U
(a,b)
ij =

⟨uiuj⟩a [ũiũj ]b

σij
. (2.87)
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With these ingredients, we have the following integrands of various supersymmetric theories:

(1,1)-Super Yang-Mills: PT(α) det ′H eF1+F̃1 (2.88a)

(2,2)-Supergravity: det ′H det ′H̃ eF2+F̃2 (2.88b)

(1,1)-D5-branes: det ′A det ′H eF1+F̃1 (2.88c)

(2,0)-M5-branes: det ′A
Pf ′A

Pf U (2,0)
eF2 (2.88d)

The resulting superamplitudes are SL(2,C)σ × SL(2,C)± invariant, the super Yang-Mills and

supergravity amplitudes are gauge invariant, and the supergravity amplitudes are permuta-

tion invariant. We also see colour-kinematics duality expressed in the form of the super Yang-

Mills and supergravity amplitudes. The M5 amplitudes are manifestly chiral. The most impor-

tant statement about these formulae is:

→ The amplitude formulae (2.62) with integrands (2.88) all factorize correctly. There exists

valid BCFW shifts for the gauge and gravity formulae so that their equivalence with the

corresponding tree-level S-matrices is guaranteed by recursion and the three-point exam-

ples of §3.3. We will prove this statement in §3.4.

In computing low-multiplicity amplitudes, we will:

→ Verify that we reproduce known formulae §3.3.2.

→ Show the features of the novel supersymmetry representation and illustrate how to ex-

tract component amplitudes §3.3.4.

The solutions to the polarised scattering equations (2.63) as well as the integrands depend

on the polarisation data of the external particles. This differs from the usual spinor-helicity

representation of the amplitude as an object with free little group indices. From the explicit

low particle results we obtain it is obvious that one can go from representation to the other via

Aϵ1ϵ̃1...ϵnϵ̃n =
∏

i ϵiai ϵ̃iȧi . . . A
a1ȧ1...anȧn
n . When considering the full superamplitude formula, two

checks are in order:

→ We verify that the integrands are indeed linear in the polarisation data §3.2.4.
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→ The fact that we can pick the polarisation data also means that we can select equivalent

gluon states both from the top and from the bottom state of the multiplet. We verify that

the two different representations of the same state are compatible in that they give rise to

the same amplitude formula §3.2.3.
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Properties of the six dimensional superamplitude

A framework was developed in six dimensions [82, 108] that allows the supersymmetric ex-

tension of the original CHY formulae and those for brane theories. These models have some

features of the original RSVW formulae [25, 26] in that moduli of maps from the worldsheet to

chiral spin space in six-dimensions are integrated out against delta functions. These authors

were able to obtain amplitude formulae for a variety of supersymmetric theories in this way.

However the formulae distinguish between even and odd numbers of particles, and become

quite awkward for odd numbers of particles in gauge and gravity theories where such dis-

tinctions are not natural. Their possible origins from worldsheet models remain obscure. The

amplitude formulae we presented in the review, based on [1, 2], give a different take on six

dimensional scattering amplitudes, where some of these issues are resolved.

In this chapter we give a more rigorous analysis of these formulae. In §3.1 the polarized

scattering equations and measure are studied in more detail. It is shown that given a solution

to the original scattering equations, there exists generically a unique solution to the polarized

scattering equations which can be obtained essentially by solving linear equations and then

normalizing. The associated measures are also shown to reduce to the CHY measure. Section

3.2 goes on to prove basic properties of the integrands we use, permutation invariance, invari-

ance under supersymmetry and compatibility of the supersymmetry factors with the reduced

determinants. In §3.3 the three and four point amplitudes are computed from the new formulae

and shown to agree with the standard answers for the corresponding theories.

The full proof of the gauge and gravity formulae by BCFW recursion is given in section
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3.4. Along the way we prove factorization for all non-controversial formulae. Somewhat sur-

prisingly, despite their poor power counting at large momenta, our brane formulae have no

boundary contribution for large BCFW shifts, as outlined in §7.3.3 of [2].

Finally in §3.5 we discuss further issues and directions. These include a brief discussion of

the Grassmannian approach of [82] and its use in [111] to obtain a correspondence between the

formulae studied in this chapter and those of [82]. This leads to some brief remarks concerning

analogues of the momentum amplituhedron of [112] in 6d.

3.1 Polarized scattering equations and measure

In this section we prove various statements made in the review section 2.5 regarding the mea-

sure dµpol in the six-dimensional superamplitude. In §3.1.1 we prove the existence and unique-

ness for solutions to the polarized scattering equations given an initial solution to the scattering

equations. Underlying this is a linear formulation of the polarized scattering equations that we

make explicit in §3.1.2. The final subsection §3.1.3 proves that the polarized scattering equa-

tions measure is equivalent to the standard CHY measure.

With the definitions we presented in §2.5, one can berify that, on the support of the polarised

scattering equations:

λAa(σ)λ
a
B(σ) = PAB(σ) :=

∑
i

kiAB
σ − σi

. (3.1)

The LHS has no double poles and taking its residues one finds

ResσiλAa(σ)λ
a
B(σ) = ϵi[Auiaλ(σi)

a
B] = ⟨viϵi⟩κi[A|aκaB]i =: kiAB , (3.2)

where the PSE were used in the second equality. When the scattering equations are not im-

posed, although the residue of ResσiP (σ) is no longer ki, there is nevertheless an alpha-plane

that contains both P (σi) and ki.
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3.1.1 Existence and uniqueness of solutions

In this subsection we prove existence and uniqueness using algebreo-geometric arguments. We

define the bundle over CP1 in which λaA, a = 0, 1, takes its values to show that it is a rank-

two bundle with canonically defined skew form, and so generically has a pair of sections that

can be normalized. We work with bundles on CP1 which will be direct sums of line bundles

O(n) whose sections can be represented in terms of homogeneous functions of degree n in

terms of homogeneous coordinates σα, α = 0, 1 on CP1 with skew inner product (σiσj) :=

σi0σj1 − σi1σj0. We prove:

Proposition 3.1.1 For each solution {σi} to the scattering equations and compatible polarization data

in general position, there exists a unique solution to the polarized scattering equations (2.63) and (2.68)

up to a global action of SL(2,C) on the little-group index.

Proof: Let PAB(σ) arise from the given solution to the scattering equations as the spinor form

of (2.19). To remove the poles, define Π(σ)AB := PAB
∏
(σσi) which is now a holomorphic

object of weight n− 2 on CP1 and is a null 6-vector so as a skew matrix has rank 2 on CP1 (for

momentum and σi in general position it will be vanishing on CP1).

We require λaAPAB = 0 for a = 0, 1 so to study solutions to this equation, define the rank-2

bundle E = kerP ⊂ SA on CP1 where SA is the rank four trivial bundle of spinors over CP1.

To calculate the number of sections we wish to compute the degree of this bundle. To do so

consider the short exact sequence

0 −→ E −→ SA −→ E0(n− 2) −→ 0 , (3.3)

where the second map is multiplication by Π(σ)AB and E0(n−2) ⊂ SA(n−2) is the annihilator

of E twisted by O(n − 2), that being the weight of ΠAB . In such a short exact sequence the

degree of SA is the sum of that of E and E0(n − 2) since the degree is the winding number of

the determinant of the patching function, and the maps of the exact sequence determine these

up to upper triangular terms that don’t contribute to the determinant. Since SA is trivial, it has
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degree 0, so we find

degE + degE0 + 2(n− 2) = 0 . (3.4)

Because E0 = (S/E)∗ and S is trivial, we have degE0 = degE so this gives degE = 2− n.

Now ΛaA := λaA
∏
(σσi) is a section of E(n− 1) which by the above has degree n. Our ΛaA

is subject to the n conditions, one at each marked point, as we impose ΛaA|σ=σj ∝ ϵjA. This

has the effect of defining a subbundle with a reduction of degree by 1 at each marked point,

so the total degree is now zero. Thus this subbundle therefore has degree zero. For data in

general position, it will therefore be trivial with a two-dimensional family of sections spanned

by ΛaA, a = 0, 1. These can be normalized because Λ0[AΛ1B] = fΠAB where f is a holomorphic

function of the sphere of weight n. The conditions on ΛaA at σi imply that f vanishes at each σi

so f = c
∏

i(σ σi) and we can normalize our sections so that c = 1 reducing the freedom in the

choiced of frame ΛaA to SL(2). On dividing through by
∏

i(σ σi)
2 we obtain PAB = λaAλ

a
B . □

For the non-chiral theories that we are considering, we will need both chiralities of spinors

satisfying polarized scattering equations i.e, we can also define

λAȧ(σ) :=
∑
i

uiȧϵ
A
i

σ − σi
, uiȧλ

ȧA(σi) = viȧκ
ȧA
i . (3.5)

3.1.2 An explicit linear version of the polarized scattering equations

The above argument is rather abstract and it is helpful to see explicitly at least the underlying

linearity of the problem of solving the polarized scattering equations. However we have not

been able to give explicit versions of all the algebreo geometric proofs above.

According to the above, we are trying to find a pair of solutions λaA, a = 1, 2 to the equations

P (σ)ABλB(σ) = 0 , (3.6)

where λA(σ) has projective weight −1 in σ and P weight −2. The argument above gives

λA
∏
(σσi) as a section of E(n − 1) which has degree n and rank 2 so generically has n + 2
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global sections. To make this more explicit, make the ansatz1

λA =
∑
i

uiaiκ
ai
A

(σσi)
, (3.7)

which removes double poles from (3.6). Given that the total weight of (3.6) is negative, it will

be satisfied if the residues at its poles vanish. The vanishing of the residue at σi yields

kABi
∑
j

κ
aj
jB

σij
uajj + P (σi)

ABκaiiBuaii = 0 . (3.8)

Now define paȧi after solving the CHY scattering equations (2.20) by

PAB(σi)κ
a
iA = κBiȧp

aȧ
i . (3.9)

This makes sense at σi as κaiA annihilates the pole, and a second contraction with κbiB leads to

zero as it gives ki ·P , so it must be a multiple of κBiȧ. We can understand this also by considering

the 2-form P (σi) ∧ ki which in spinors gives, using the above,

P (σi)ACk
BC
i = P (σi)

BCkiAC = pBiA , pBiA = κiAaκ
B
ȧp

aȧ
i . (3.10)

We can now see for example that

ei · P (σi) = [ϵi|pi|ϵi⟩ , (3.11)

using eiAB = ϵi[Aϵ̃B]i where ϵ̃AκABi = ϵBi . Following Cheung and O’Connell [98], we further

define

κȧaij := κAȧi κajA , (3.12)

that relate the ij-particles little group indices.

1We attach the additional i-index to ai here to distinguish this uaii from the uia in the original ansatz for λAa;
the ai is a little group index associated to momentum ki rather than the global one associated to λAa. We will drop
these sub-indices when the equations are unambiguous.
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With this notation we see that (3.8) can be written as κAiȧ multiplied by

∑
a,j

H
ȧaj
ij uajj = 0, H ȧa

ij =


κȧa
ij

σij
i ̸= j

paȧi i = j .

(3.13)

The discussion of the previous subsection implies that generically these equations have n + 2

solutions. These equations reduce to the original polarized scattering equations if we supple-

ment them with n further equations ⟨ϵjuj⟩ = 0, since we will then have uajj = ϵjajuj as in the

original ansatz (2.68). We then expect to find a pair of linearly independent solutions uia, with

a = 1, 2 now global little group indices, so that we now have

uaaii = ϵiaiu
a
i . (3.14)

In order to normalize these solutions, observe that for a pair of solutions λ1A, λ2A to (3.6), we

must have that

λ1[Aλ
2
B] = fPAB (3.15)

for some meromorphic function f on CP1 with poles at the σi. However, when we impose

(3.14), the double poles in (3.15) vanish and f must be constant, so we can normalize the pair

of solutions uai so that the coefficient is 1. The full n+2-dimensional space of solutions also has

a volume form determined by (3.15).

In general (3.13) are 2n-equations on 2n-unknowns, so we must have n + 2 relations to

agree with the discussion of the previous subsection and to allow us to impose these extra n

conditions. The relations follow from the original equation (3.6) and the nilpotency PABPBC = 0

that follows from the original scattering equations. This leads to the nilpotency

∑
ja

Haȧ
ji Hjk

ḃ
a = 0 . (3.16)

This can be checked explicitly using a Schouten identity. We can use this nilpotency to generate
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solutions

λA(σ) = P (σ)ABW
B(σ) , W (σ)A =

∑
i

κAiȧw
ȧ
i

(σσi)
(3.17)

where the WB has weight 1 in σ so wȧi has weight 1 in σi and 2 in σ. The ansatz guarantees no

double poles in λA and by taking residues we obtain2

uai =
∑
ȧ,j

Haȧ
ij wȧj . (3.19)

3.1.3 The equivalence of measures

We first show that

δ̄(k · P ) =
∫
d2u d2v δ4(EA)δ(⟨ϵv⟩ − 1) , with EA := ⟨uλA⟩ − ⟨vκA⟩ . (3.20)

After integrating out the four components of (ua, vb), we are left with a single delta-function

on both sides of the equation. It is easy to see that they have the same support as the latter

delta function on the left implies that va ̸= 0, but this can only be true when (λaA, κ
b
A) have rank

less than four, which happens iff εABCDλ0Aλ1Bκ0Cκ1D := k · P = 0. Furthermore the weights in λaA

and κaA are −2 on both sides. A systematic proof uses a basis with ϵa = (0, 1), κ03 = κ14 = 1

and all other components zero. This allows us to integrate out the va directly against the delta

functions reducing the right side to

∫
d2u δ(uaλ

a
0) δ(uaλ

a
1) δ(uaλ

a
3 − 1) = δ(⟨λ0 λ1⟩) , (3.21)

where the latter equality follows by direct calculation integrating out the ua; this gives (3.20) in

this basis.
2We also have the special solutions when W (σ)A has no poles that leads to the 8 solutions

uai = κiaA(W
A
0 + σiW

A
1 ) . (3.18)
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The CHY measure is defined to be

dµCHY
n := δ6 (K)

∏n
i=1 δ̄(ki · P (σi))dσi

Vol(SL(2,C)σ × C3)
= δ6 (K) (σ12σ23σ31)

2
n∏

i=4

δ̄(ki · P (σi))dσi , (3.22)

where K =
∑

i ki, the volume of SL(2,C)σ quotients by the Möbius invariance of σ, and the

C3 is a symmetry of the ambitwistor string whose quotient removes the linearly dependent

scattering equations delta functions.

Proposition 3.1.2 We have

dµpoln :=

∫ ∏n
i=1 d

2ui d
2vi dσi δ

4(EiA)δ(⟨ϵivi⟩ − 1)

Vol(SL(2,C)σ × SL(2,C)u)
= dµCHY

n , (3.23)

where SL(2,C)σ denotes Möbius invariance of σ as above in the CHY measure, the SL(2,C)u is acting

on the little group index of ua, and the integrals are over the (ui, vi) variables.

Proof: We first reduce the SL(2,C)σ factor fixing (σ1, σ2, σ3) to be constant with the standard

∏
i dσi

Vol SL(2,C)σ
= σ12σ13σ23

∏
i≥4

dσi . (3.24)

Similarly Faddeev-Popov gauge fixing3 SL(2,C)u by

ua1 = (1, 0), ua2 = (0, u12), ua3 =

(
−u23
u12

, u13

)
, (3.25)

so that uij = ⟨uiuj⟩ for i < j ≤ 3 yields

∏
i d

2ui
Vol SL(2)u

= du12du13du23

n∏
i=3

d2ui , (3.26)

On the support of the delta functions
∏

i>3 δ
4(EiA) we can write, using (2.71),

KAB =

(
3∑

i=1

ϵi[AEiB]

)
. (3.27)

3This entails contracting a normalized basis of the Lie algebra of SL(2,C)u into the form
∏

i d
2ui and restricting

to the given slice.
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We can trivially perform one of each of the vi integrals against the δ(⟨viϵi⟩ − 1) delta functions

by choosing a basis of the little group spin space for each i so that ϵia = (1, 0) fixing vai = (vi, 1).

Choosing a basis of spin space consisting of {ϵiA, ϵ0A} with i = 1, 2, 3 and ϵ0A chosen so that

⟨0123⟩ = 1, and dual basis ϵ̃Ai , i =, 0, . . . , 3 we find via (3.27)

K0i = Ei0 , Kij = E[ij] , (3.28)

so that these polarized scattering equations can be replaced by δ6(K). The remaining scattering

equations in
∏3

i=1 δ
4(EiA) are, for i, j = 1, . . . , 3,

E(ij) =


uij

σij
+ . . . i ̸= j

vi + . . . , i = j

(3.29)

where the . . . denotes terms involving i, j > 3. Thus we can integrate out duij and dvi against

these remaining polarized scattering equation delta functions δ(E(ij)) for i, j ≤ 3 yielding an

extra numerator factor of σ12σ23σ13.

Finally we can use (3.20) to replace the remaining polarized scattering equations delta func-

tions by standard ones thus yielding the desired formula. □

3.2 Integrands

In this section, we discuss the integrands In and the supersymmetry representation in more de-

tail. We first show that the spin-one contribution det ′H is permutation invariant, and that it is

equivalent to the CHY pfaffian Pf ′M in providing the correct dependence on the spin-one po-

larization data. We move on to giving further details of the supersymmetry factors. Finally, we

prove crucial properties such as linearity of the spin-one contribution in the polarization data,

and the compatibility of the reduced determinant with the supersymmetry representation.
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3.2.1 The kinematic reduced determinant det ′H .

For our ambidextrous spin one contribution, recall that we defined an n× n matrix H by

Hij =


ϵiAϵAj
σij

i ̸= j

ei · P (σi) , i = j

, (3.30)

where ei is the null polarization vector above and P (σ) is as defined in (2.19). We first prove

the equivalence between this definition of Hii and that in (2.84). In order to use the vector

representation of the polarization vector, we introduce a spinor ϵ̃A so that ϵA = kAB ϵ̃B . Then

the polarization vector is eAB = ϵ[Aϵ̃B]. The equivalent definition of Hii (2.84) is

λaA(σi)ϵ
A
i = −uiaHii , λȧA(σi)ϵiA = −uȧiHii . (3.31)

The left side is a multiple of uia (or uȧi ) due to the scattering equation and the identity kABκaA =

0. Starting from the second last formula we obtain the first from

ei · P (σi) = ϵ[Aϵ̃B]λaA(σi)λ
a
B(σi) = −Hiiϵ̃

Buaλ
a
B(σi) = −Hiiϵ̃

Bvaκ
a
B = −Hii . (3.32)

This then, being neither chiral nor antichiral justifies the equivalence.

The matrix Hij is not full rank because

∑
i

uiaHij = λaA(σj)ϵ
A
j + ujaHjj = 0 , (3.33)

and so, as above, we define the generalized determinant

det ′(H) : =
det(H [ij])

⟨uiuj⟩[uiuj ]
=

det(H
[i1i2]
[j1j2]

)

⟨ui1ui2⟩[uj1uj2 ]
(3.34)

where H [ij] denotes the matrix H with the ij rows and columns deleted and H
[i1i2]
[j1j2]

the matrix

with the with rows i1, i2 and columns j1, j2 removed. These are well-defined as
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Lemma 3.2.1 The generalized determinant defined above is permutation invariant.

Proof: We can extend the argument of appendix A of [30] on such generalized determinants as

follows.

Consider an n × n matrix Hj
i with a p-dimensional kernel and cokernel, i.e., that satisfies∑

iw
i
aH

j
i = 0 and

∑
j H

j
i w̃

b
j = 0 where a, b = 1, . . . , p. We must also assume that there are

volume p-forms on these kernels, ⟨w1 . . . wp⟩ and [w̃1, . . . w̃p]. Our reduced determinant can be

understood as the determinant of the exact sequence

0 → Cp w̃→ Cn H→ Cn w→ Cp → 0 . (3.35)

To make this explicit, note that we have

εj1...jnε
i1...inH

jp+1

ip+1
. . . Hjn

in
⟨w1 . . . wp⟩⟨w̃1 . . . w̃p⟩ = det ′(H)w

[i1
1 . . . w

ip]
p w̃1

[j1
. . . w̃p

jp]
(3.36)

for some det′(H). This formula follows because skew symmetrizing a free index on the left with

a wr or w̃r vanishes as it dualizes via the ε to contraction with Hj
i . Thus it must be a multiple of

the right hand side as defined. The definitions (3.34), (2.86) then follow by taking components

of this definition in the case p = 2 on the i1, i2, j1, j2 indices. In our context the natural volume

form on the kernel is defined on the 2-dimensional space of uiai = uiϵai by the f on the right

hand side of (3.15) but for our polarized scattering equation framework, the normalizations are

such that this is 1 so the bracketed terms on the left of (3.36) reduce to unity in (3.34). □

Note that the first term on the left side of (3.36) is simply the pth derivative of detH where

we have to relax the scattering equations and momentum conservation to make the determi-

nant not identically zero. The CHY matrix is also non-degenerate away from the support of the

scattering equations and momentum conservation. We have

Proposition 3.2.1 The determinant is related to the full CHY Paffian by det(H) = PfM .

Proof: We use the form of the CHY Pfaffian due to Lam & Yao [113]. They show that the full
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Pfaffian of M can be expanded into a sum over the permutations ρ ∈ Sn of the particle labels,

Pf
(
M
)
=
∑
ρ∈Sn

sgn(ρ)MI ...MJ , (3.37)

where each term has been decomposed into the disjoint cycles I = (i1 . . . iI), J = (j1 . . . jJ) of

the permutation ρ. The terms in this cycle expansion are given by

MI =


tr(Fi1

...FiI
)

σI
if |I| > 1 ,

Cii if I = {i} ,
(3.38)

and σI =
(
σi1i2 . . . σiI i1

)−1 denotes the Parke-Taylor factor associated to the cycle.

Euler’s formula for the determinant of H similarly gives

det(H) =
∑
ρ∈Sn

sgn(ρ)HI ...HJ (3.39)

where the terms HI are given by

HI = Hi1i2 ...HiI i1 =


tr(Fi1

...FiI
)

σI
if |I| > 1 ,

Hii if I = {i} ,
. (3.40)

Here the trace over the F s is taken in the spin representation and we have Cii = Hii hence the

equivalence. □

This result provides some circumstantial evidence that Pf ′M = det′H on the support of

the scattering equations, but we do not have a direct proof. We prove this only indirectly via

factorization in §3.4.2. Our det′H can therefore be used as a half-integrand in place of Pf ′(M)
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in the theories as described in [110] to give full integrands

Yang-Mills: PT(α) det ′H (3.41a)

Gravity: det ′H det ′H̃ (3.41b)

D5-branes: det ′A det ′H . (3.41c)

3.2.2 The supersymmetry factors

Here we show that the supersymmetry factors eFN , with

FN = F pol
N − 1

2

n∑
i=1

⟨ξivi⟩ q2i , F pol
N =

∑
i<j

⟨uiuj⟩
σij

qiIq
I
j , (3.42a)

F̃Ñ = F̃ pol

Ñ
− 1

2

n∑
i=1

[ξivi] q̃
2
i , F̃ pol

Ñ
=
∑
i<j

[ũiũj ]

σij
q̃iİ q̃

İ
j , (3.42b)

are invariant under supersymmetry. The full supersymmetry generator for n particles is de-

fined by the sum QAI =
∑n

i=1QiAI for each particle as defined by (2.78),

QiAI = ⟨ξiκiA⟩qiI + ϵiAΩIJ

∂

∂qiJ
, Q̃A

iİ =
[
ξiκ

A
i

]
q̃iİ + ϵAi Ω̃İ J̇

∂

∂q̃iJ̇
. (3.43)

Superamplitudes must be supersymetrically invariant and so are annihilated by the total QAI

and indeed this determines the amplitude for the whole multiplet from the amplitudes involv-

ing only the top of the multiplets.

It is easily verified that the supersymmetry factors give an amplitude that is supersymetri-

cally invariant, since

QAI e
FN =

∑
i

(
⟨ξiκiA⟩+ ⟨ξivi⟩ϵiA

)
qiI −

∑
i,j

⟨uiuj⟩ ϵiA
σij

qjI

 eFN

=

∑
i

⟨viκiA⟩ qiI −
∑
i,j

⟨uiuj⟩ ϵiA
σij

qjI

 eFN = 0 , (3.44)

and similarly QA
İ
eF = 0. Here, the second equality follows from vi = ξi + ⟨ξivi⟩ϵi, and the sum

vanishes on the support of the polarized scattering equations. Conversely, given an integrand
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In for the top states of a multiplet, (2.62) is the unique supersymmetric completion using the

supersymmetry representation (2.78), as can be verified using supersymmetric Ward identities.

3.2.3 Consistency of the reduced determinant with the supersymmetry representa-

tion

Our gauge (and gravity) formulae in effect give two different representations of bosonic am-

plitudes with gluons coming from different parts of the multiplets. One comes from simply

substituting gluon polarizations from different parts of the multiplet in the kinematic inte-

grand det ′H and the other from expanding out the supersymmetry factors. In this subsection

we show that these give the same formulae.

When a subset I of the particles are in states at the bottom of the (chiral part of the) super-

symmetry multipet, the integrals over the supercharges lead to the integrand

Ih
n = detU I det ′H eF

Ī+F̃ , (3.45)

where U I
ij = U

(1,0)
ij and the superscripts indicate the restriction to the subsets I and Ī respec-

tively. On the other hand, for any choice of polarization data, the integrand for gluons (gravi-

tons) takes the form of a reduced determinant,

I
vi1 ...vi|I|
n = det ′HI eF

Ī+F̃ , with HI
ij =


Hij i /∈ I

⟨ξiκiA⟩ϵAj
σij

i ∈ I ,

(3.46)

whereHI is defined with polarization spinors ⟨ξiκiA⟩ instead of ϵiA for i ∈ I . For the supersym-

metry to be compatible with the representation of the integrand, the two prescriptions for the

amplitude must agree, Ih
n = I

ξi1 ...ξi|I|
n .

A lemma on reduced determinants. To prove the equivalence of (3.45) and (3.46), the general

strategy will be to first identify the relation between H and HI . To draw conclusions about

the behaviour of their reduced determinants though, we will need a few results discussed in

appendix A of [30], which we review here for convenience.
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In contrast to regular determinants, it does not make sense to ask how a reduced determi-

nant behaves under the addition of an arbitrary vector to a row or column of H , because this

will in general spoil the linearity relations among its rows and columns. On the other hand,

we can define a new reduced determinant by multiplication with an invertible n× n matrix U ,

since this leaves the (full) determinant detH = det Ĥ = 0 unaffected,

Ĥj
i := Uk

i H
j
k . (3.47)

Since the kernel and co-kernel of H are spanned by w and w̃,4 the kernel of Ĥ = UH is ŵ =

U−1w. To be explicit, Ĥ and ŵ satisfy relations analogous to (2.85),

∑
i

ŵi
aĤ

j
i = 0 ,

∑
j

w̃b
jĤ

j
i = 0 , for ŵi

a =
(
U−1

)i
k
wk
a . (3.48)

We can thus define a reduced determinant det ′Ĥ as in (3.36) by

εi1i2...inεj1j2...jnĤ
jp+1

ip+1
. . . Ĥjn

in
⟨ŵ1 . . . ŵp⟩

[
w̃1 . . . w̃p

]
= det ′Ĥ ŵ

[i1
1 . . . ŵ

ip]
p w̃1

[j1
. . . w̃p

jp]
. (3.49)

Let us multiply this equation by p facors of U . On the right-hand-side, this cancels the factors

of U−1 from the kernel ŵ[i1
1 . . . ŵ

ip]
p , whereas on the left, it combines with the (n−p) factors from

Ĥ = UH to detU . Putting this all together, we arrive at the following lemma [30]:

Lemma 3.2.2 Under multiplication by an invertible matrix U , the reduced determinant of a matrix

Ĥ := U H behaves as

det ′Ĥ = detU det ′H , (3.50)

with the reduced determinant defined using the kernel ŵ = U−1w.

This implies in particular that the usual row- and column operations leave the reduced

determinant unaffected, det ′Ĥ = det ′H , due to detU = 1.
4As discussed above, for super Yang-Mills and supergravity, we take wi

a = uia, where a denotes the chiral little
group index, and similarly for w̃ḃ

j = ũḃ
j .
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Equivalence of the reduced determinants. Lemma 3.2.2 now allows us to prove the compat-

ibility of the supersymmetry representation with the reduced determinant. We first note that

on the support of the polarized scattering equations, HI and H are related via

HI
ij =

∑
k ̸=i

⟨uiuk⟩
σik

ϵkAϵ
A
j

σij
− ⟨ξivi⟩

ϵiAϵ
A
j

σij

=
∑
k ̸=i

⟨uiuk⟩
σik

Hkj −
1

σij

∑
k ̸=i

⟨uiuk⟩Hkj︸ ︷︷ ︸
=0

−⟨ξivi⟩Hij =:
∑
k

U I
ikHkj , (3.51)

for i ∈ I . In the second equality, the middle term vanishes because u spans the kernel of H ,

and we use the last equality to define U I . Combining the above result with HI
ij = Hij for i /∈ I ,

we thus have

HI = U IH , with U I
ij =


U

(1,0)
ij i ̸= j , i ∈ I

−⟨ξivi⟩ i = j ∈ I

δij i /∈ I .

(3.52)

Since detU I is generically non-zero, and lemma 3.2.2 gives directly that

det ′HI = detU I det ′H , (3.53)

confirming the equivalence of the two prescriptions.

3.2.4 Linearity in the polarization data

As another important check on the amplitudes (2.88), we verify that they are multilinear in

the polarization data. This is of course a mandatatory requirement for amplitudes, but is not

manifest in the integrands for gauge and gravity theories because the reduced determinants

depend on the u-variables and these can potentially depend in a complicated way on the po-

larization data via the polarized scattering equations. We first observe that linearity is manifest

for amplitudes with two external scalars and n−2 gluons. Given the supersymmetry of the for-
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mulae this provides strong circumstantial evidence. Then we show explicitly that the reduced

determinant is linear on the support of the polarized scattering equations and go on to the full

superamplitude.

3.2.4.1 Linearity from supersymmetry

Linearity of the gluon states is most easily seen from the mixed amplitudes with two external

scalars, e.g. j = 1, 2, and n − 2 gluons. In this case, we can choose to reduce the determinant

det ′H on the scalar states, giving

Aϕ1ϕ2ϵ3ϵ̃3... =

∫
dµpoln

1

σ212
detH

[12]
[12] PT(α) . (3.54)

The integrand is then manifestly independent of {ui, vi} as well as ϵ1,2, and only depends on

the punctures σi and the polarization of the gluons. Due to the invariance of the measure

established by proposition 3.1.2, the ‘polarization’ spinors of the scalars ϵ1,2 are choices of ref-

erence spinors. For the gluons on the other hand, the integrand is now manifestly linear in ϵi.

Supersymmetry then guarantees that linearity extends to the all-gluon amplitude.

The consistency between the supersymmetry representation and the reduced determinant

discussed in the last section further guarantees that the argument above holds for gluons both

at the top and the bottom of the multiplet; we simply replace H by HI . For gravity and brane-

amplitudes, the argument is completely analogous, and follows again from the multilinearity

of the amplitude Mϕ1ϕ2ϵ3ϵ̃3... with two scalars and n− 2 gravitons.

3.2.4.2 Linearity for non-supersymmetric amplitudes.

We now study the dependence of the reduced determinant on the polarization data directly by

expanding the spinors ϵa in a basis. This gives the desired linearity for pure Yang-Mills and

gravity directly, where the above supersymmetry argument seems excessive, but can equally

be applied to supersymmetric theories. We first discuss (chiral) linearity for gluons, but the

proof extends straightforwardly to linearity in the anti-chiral polarization data, as well as (bi-

)linearity for gravity amplitudes.
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Consider the amplitudeAϵ1 or the superamplitude Aϵ1 , where one of the particles is a gluon

with polarization ϵ1, and all other particles are in arbitrary states. We can expand ϵ1 in an

(arbitrarily chosen) polarization basis ζa1 , ζ
a
2 via

ϵa1 = α1ζ
a
1 + α2ζ

a
2 , with ⟨ζ2ζ1⟩ = 1 . (3.55)

It will be helpful to think of this new basis (ζ1, ζ2 =: ξζ11 ) as playing a similar role to (ϵ1, ξ1), both

in the polarized scattering equations and in the integrands. To prove linearity of the (super-)

amplitudes in the polarization, we then have to show that amplitudes in the two different bases

are related via

Aϵ1 = α1A
ζ1 + α2A

ζ2 , (3.56)

where the amplitudes Aϵ1 and Aζr are respectively given by

Aϵ1 =

∫
dµpoln det ′H PT(α) , Aζr =

∫
dµpol,ζrn det ′Hζr PT(α) , (3.57)

and the superscripts ζr indicate that the respective quantities are defined using the polariza-

tion ζr. For the measure, proposition 3.1.2 guarantees that dµpoln = dµ
pol,ζr
n , but the integration

variables uζri = ui(ζr) defined by dµpol,ζrn enter into the definition of the reduced determinant

det ′Hζr . Since the measure and the Parke-Taylor factors are invariant under changes of polar-

ization, the linearity relation (3.56) for the amplitude is equivalent to linearity of the spin-one

contribution;

det ′H = α1 det
′Hζ1 + α2 det

′Hζ2 , (3.58)

where the (implicit) map between {ui, vi} on the left-hand side and {uζri , v
ζr
i } on the right hand

side is determined by the polarized scattering equations.

Proposition 3.2.2 For ϵa1 = α1ζ
a
1 + α2ζ

a
2 expand also va1 = β1ζ

a
1 + β2ζ

a
2 so that ⟨ϵ1v1⟩ = 1 gives
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α1β2 − α2β1 = 1. Then we have that {ui, vi} and {uζri , v
ζr
i } are related by

va1 = β2 v
ζ1 a
1 ua1 = β2 u

ζ1 a
1 (3.59a)

vai = v
ζ1 a
i + α2β2

⟨uζ11 u
ζ1
i ⟩2

σ21i
ϵai uai = u

ζ1 a
i − α2β2

⟨uζ11 u
ζ1
i ⟩

σ1i
u
ζ1 a
1 , (3.59b)

with identical expressions for {ui, vi} in terms of {uζ2i , v
ζ2
i }.

Proof: First note that the punctures σi are unaffected so we omit the superscripts here. First

write ϵa1 = (ζa1 + α2v
a
1)/β2. Using this, the polarized scattering equations Ei can be written in

the form

E1A =
∑
j ̸=1

⟨u1uj⟩
σ1j

ϵjA − ⟨v1κ1A⟩ (3.60)

EiA =
∑
j ̸=1,i

(
⟨uiuj⟩
σij

+
α2

β2

⟨u1ui⟩
σ1i

⟨u1uj⟩
σ1j

)
︸ ︷︷ ︸

!
=

⟨uζ1
i
u
ζ1
j
⟩

σij

ϵjA +
1

β2

⟨u1ui⟩
σ1i

⟨ζ1κ1A⟩ −
(
⟨viκiA⟩ −

α2

β2

⟨u1ui⟩2

σ21i
ϵiA

)
︸ ︷︷ ︸

!
=⟨vζ1i κiA⟩

.

It is now simple to map this to the polarized scattering equations Eζ1i via the change of variables

(3.59a). □

As an aside, although Proposition 3.1.2 implies that the measures are unchanged, it is easily

checked directly that dµpoln = dµpol,ζ1n : the rescaling (3.59a) gives an overall factor of β−4
2 coming

from the scattering equation δ(E1) = β−4
2 δ(Eζ11 ), which exactly compensates the factor from

d2u1d
2v1 = β42 d

2uζ11 d
2vζ11 . The remaining part of the measure is invariant under the linear shift

in α2β2, and thus the polarized measure is invariant under the choice of polarization data.

Theorem 1 With the above definitions

det ′H = α1 det
′Hζ1 + α2 det

′Hζ2 . (3.61)

Proof: For each solution to the scattering equations, the above correspondence (3.59) maps the
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reduced determinant by

det ′H =
1

⟨u1ui⟩ [ũ1ũi]
detH

[1i]
[1i] =

1

β2
det ′Hζ1 . (3.62)

Here, we have reduced on particle 1 for convenience, and used the fact that the diagonal entries

Hii for i ̸= 1 are independent of the polarization ϵ1 by (3.32). Similarly, the map from {ui, vi} to

{uζ2i , v
ζ2
i } induced by the polarized scattering equations gives

det ′H = − 1

β1
det ′Hζ2 . (3.63)

Note that β1,2 depend on the solutions to the polarized scattering equations, so the relations

(3.62) and (3.63) between the reduced determinants only hold on individual solutions to the

scattering equations, and do not lead to an analogous relation for the amplitudes. However, by

combining the two expression we get the following linearity relation

det ′H = (α1β2 − α2β1) det
′H = α1 det

′Hζ1 + α2 det
′Hζ2 , (3.64)

as required. This is now independent of the solutions to the scattering equations, and thus lifts

to the full amplitudes, confirming (3.56). □

Superamplitudes. The above analysis extends straightforwardly to superamplitudes to give

checks on the supersymmetry factors. As before, we take particle 1 to be a gluon, though we

do not restrict its position in the multiplet in the supersymmetric case. In the top state, its

polarization is ϵ1 = α1ζ1 + α2ζ2 as above, and in the bottom state we choose the polarization

ξ1 = αξ
1ζ1 + αξ

2ζ2 , (3.65)

with constant αξ
1,2 such that α1α

ξ
2 − α2α

ξ
1 = 1 due to the normalization condition ⟨ϵ1ξ1⟩ = 1.

As indicated above, in the supersymmetric case it will be helpful to treat the basis spinors

(ζ1, ζ2) as the new basis for the multiplet of particle 1. In the explicit change of variables given

in proposition 3.2.2, ζ1 plays the rôle of the original ϵ1, and ζ2 provides the additional polariza-
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tion spinor to parametrize the full mutiplet, i.e. ξζ11 = ζ2.5 Using this choice, we can verify by

expanding out both sides and using the relation between {ui, vi} and {uζ1i , v
ζ1
i } from proposi-

tion 3.2.2 that

∫
d2q1 q

2
1 e

F =

∫
d2qζ11 β2

(
α1

(
qζ11
)2

+ α2

)
eF

ζ1
. (3.66)

The superscript ζ1 again indicates that the supersymmetry factor is defined with the multiplet

parametrized by the polarization ζ1, as well as the variables uζ1i . Similarly, for gluon states at

the bottom of the multiplet, we find

∫
d2q1 e

F =

∫
d2qζ11 β2

(
αξ
1

(
qζ11
)2

+ αξ
2

)
eF

ζ1
. (3.67)

Combining this with the result (3.62) for the reduced determinant det ′H = β−1
2 det ′Hζ1 , we

find the expected linearity relations for supersymmetric integrands with one gluon,

det ′H

∫
d2q1 q

2
1 e

F = det ′Hζ1

∫
d2q

ζ1
1

(
α1

(
q
ζ1
1

)2
+ α2

)
eF

ζ1
, (3.68)

and similarly for the gluon at the bottom of the multiplet with polarization ξ1. The simplicity

of this relation is due to our choice of ξζ11 = ζ2: using this, as well as the results from §3.2.3, the

second term on the right gives indeed the amplitude for a gluon with polarization ζ2 with a pro-

portionality factor of α2. As in the bosonic case, the final linearity relation (3.68) is independent

of the solution to the polarized scattering equations, and thus lifts to the full superamplitude,

Aϵ1 = α1Aζ1 + α2Aζ2 , Aξ1 = αξ
1A

ζ1 + αξ
2A

ζ2 . (3.69)

3.3 The three and four-point amplitudes

In this section, we discuss the three-particle and four-particle amplitudes in our polarized scat-

tering equations formalism (2.88), and compare them to previous results available in the lit-

5Of course, we are free to reverse the roles of ζ1 and ζ2 in this discussion, at the expense of a minus sign due to
our normalization conventions.
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erature, e.g. [98]. We first focus on the three-particle amplitudes that will serve as the seed

amplitudes for the BCFW recursion relation of section 3.4. Since the configuration of three

momenta is highly degenerate, we include a treatment of the four-particle case for further il-

lustration.

For the calculations below, two general observations will be helpful. First, for low num-

bers of external particles, the most useful form of the scattering equations arises from (2.70),

obtained by skew-symmetrizing the ith polarized scattering equation with ϵiA to give

∑
j

⟨uiuj⟩ϵj[AϵB]i
σij

= KiAB . (3.70)

This can be skewed with further polarization spinors to obtain formulae for Uij := ⟨uiuj⟩/σij .

We will use this below to construct explicit solutions to the polarized scattering equations, both

for three and four particles.

After solving the polarized scattering equations and simplifying the integrands on these so-

lutions, amplitudes are expressed in the formAϵ1ϵ̃1...ϵnϵ̃n , with all little group indices contracted

linearly into the polarization spinors ϵai and ϵ̃ȧi . To compare our results to the formulae obtained

in e.g. [98], we thus have to convert between our polarized formalism and the standard, little-

group covariant spinor-helicity formalism, where amplitudes Aa1ȧ1...anȧn
n carry the little group

indices of the scattered particles. Using that the amplitudes (2.88) are linear in the polarization

spinors ϵai and ϵ̃ȧi as shown in §3.2.4, the two formalisms are related via

Aϵ1ϵ̃1...ϵnϵ̃n =
∏
i

ϵiai ϵ̃iȧi . . . A
a1ȧ1...anȧn
n . (3.71)

3.3.1 Three-point amplitudes

We now compute the three particle case to compare to the Yang-Mills result given in [98]. This

case is somewhat degenerate as momentum conservation implies that the three null momenta

are also mutually orthogonal. In Lorentz signature they would of necessity be proportional,

which would be too degenerate to calculate with. We therefore allow complex momenta so
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that they span a null two-plane. This can be expressed by the non-vanishing 2−form that is

given in spinors by

κBκ
A := (k1 ∧ k2)AB = −(k1 ∧ k3)AB = (k2 ∧ k3)AB . (3.72)

The spinors κA and κA are defined up to an overall scale and its inverse and are orthogonal to

each momentum.

We can represent each momentum kiAB as a line in the projective spin space CP3 through

the two spinors κiaA for a = 1, 2. That each line contains κA means that they are concurrent and

that they are orthogonal to κA means that they are co-planar as in the diagram 3.3.1.

To compare to the results of [98], we introduce little group spinors ma
i , m̃ȧ

i for each i

κA = ma
i κiAa , κA = m̃ȧ

i κ
A
iȧ . (3.73)

These are defined in [98] equivalently by

κiAaκ
A

jḃ
= miam̃jḃ . (3.74)

As in [98], we further introduce spinors wi, w̃i normalized against mi, m̃i such that

miaw
a
i = 1 , m̃iȧw̃

ȧ
i = 1 . (3.75)

This normalization does not fully fix wi, w̃i, since we have the further freedom to add on terms

proportional tomi, m̃i. We can partially fix this redundancy wia → wia+cimia by the condition

wa
1κ1Aa + wa

2κ2Aa + wa
3κ3Aa = 0 , (3.76)

which imposes co-linearity of the three points ⟨wiκiA⟩ on the lines ki and reduces the redun-

dancy to shifts satisfying c1 + c2 + c3 = 0.

In what follows we will compute the three gluon amplitude from the general formula (2.62)
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in Yang Mills theory. For three particles the σi can be fixed to (0, 1,∞) and the formula reduces

to

A3 = det′H|∗ =
ϵ1Aϵ

A
2

U23Ũ13

, (3.77)

evaluated on the solution to the polarized scattering equations, as indicated by the star. Note

that the Jacobian from solving the polarized scattering equations is trivial due to proposi-

tion 3.1.2. Having gauge fixed three of the u variables as in §3.1.3, we only need to solve

the polarized scattering equations for the three Uij := U
(1,0)
ij = ⟨uiuj⟩/σij , with Uij = Uji for

i ̸= j,

U12ϵ2A + U13ϵ3A = ⟨v1κ1A⟩ , and cyclic, (3.78)

together with the normalization conditions ⟨viϵi⟩ = 1. These three scattering equations define

lines in the plane spanned by the three momenta in the projective spin space as in the diagram

3.3.1.

ϵ2A

⟨v1κ1A⟩

k1

k2

k3
ϵ3A

⟨v2κ2A⟩

ϵ1A

κA

⟨v3κ3A⟩

Figure 3.1: Each ki corresponds to a line in the projective spin space spanned by κiaA. The
lines lie in a common two-plane orthogonal to κA and are concurrent meeting at κA defined by
(3.73). Thus the line k1 joins ϵ1A and κA and so on. The polarized scattering equations give 3
further lines, e.g. with E1A giving the line joining ϵ2A and ϵ3A and intersecting k1 at ⟨v1κ1A⟩.

In order to solve the polarized scattering equations we use the ϵiA as a basis of the plane in
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the projective spin space orthogonal to κA to write

κA =
∑
i

aiϵiA (3.79)

Using the normalization ⟨viϵi⟩ = 1, we can further expand vi in the polarization basis ϵi,mi;

via =
1

⟨miϵi⟩
(⟨mivi⟩ϵia +mia) ,

and solve the system (3.78) to obtain

Uij =
ai

⟨mjϵj⟩
=

aj
⟨miϵi⟩

, ⟨mivi⟩ = ai . (3.80)

To compare to [98], we can similarly decompose

wi = − 1

⟨ϵimi⟩
ϵi +

⟨ϵiwi⟩
⟨ϵimi⟩

mi, (3.81)

and impose the condition (3.76) to obtain:

ai =

∏
k ̸=i⟨ϵkmk⟩

⟨ϵ1m1⟩⟨ϵ2m2⟩⟨ϵ3w3⟩+ cyc.
(3.82)

The scattering equations for spinors in the antifundamental representation are solved entirely

analogously and together we obtain from (3.77) the three point amplitude as

A3 =
(
⟨ϵ1m1⟩⟨ϵ2m2⟩⟨ϵ3w3⟩+ cyc.

)(
⟨ϵ̃1m̃1⟩⟨ϵ̃2m̃2⟩⟨ϵ̃3w̃3⟩+ cyc.

)
, (3.83)

where we have used that ϵ1AϵA2 = ⟨ϵ1m1⟩[ϵ2m̃2] from (3.74). This is precisely the result in [98],

contracted into the polarization spinors as discussed around (3.71).

3.3.2 Four-point Yang-Mills amplitudes

To illustrate these techniques in a slightly more generic setting, consider next the four-gluon

amplitude in Yang-Mills theory. As before, we can fix three of the marked points on the sphere,

66



CHAPTER 3 - Properties of the six dimensional superamplitude

e.g. σ1, σ2 and σ4, so that the solution to the scattering equation in homogeneous coordinates

is

σ1 = [(1, 0)] σ2 = [(1, 1)] σ3 = [(1,−s13
s12

)] σ4 = [(0, 1)] . (3.84)

From the measure, we thus pick up the CHY Jacobian |Φ|[j1j2j3][i1i2i3]
:= |∂Ei/∂σj |[j1j2j3][i1i2i3]

as well as the

usual Fadeev-Popov factors (σi1i2σi2i3σi3i1) and (σj1j2σj2j3σj3j1) due to the equality between

the polarized measure and the usual CHY measure established in proposition 3.1.2. Combining

this with the four-particle Yang-Mills integrand (2.88a) gives

Aϵ1ϵ̃1...ϵ4ϵ̃4
4 =

(σi1i2σi2i3σi3i1)(σj1j2σj2j3σj3j1)

detΦ[j1j2j3]

[i1i2i3]

PT(1234) det′H

∣∣∣∣
∗

=
σ212(σ13σ34σ41)(σ23σ34σ42)

s12
PT(1234)

H13H24 −H14H23

⟨u3u4⟩ [ũ1ũ2]

∣∣∣∣
∗

(3.85)

=
1

⟨u3u4⟩ [ũ1ũ2]
σ12σ34
s12

(
ϵ1Aϵ

A
3ϵ2Bϵ

B
4 − σ31σ42

σ41σ32
ϵ1Aϵ

A
4ϵ2Bϵ

B
3

)∣∣∣∣
∗
,

where ∗ again denotes evaluation on the (single) solution to the polarized scattering equations.

Using (3.84), the amplitude then becomes

Aϵ1ϵ̃1...ϵ4ϵ̃4
4 = − 1

s12U34Ũ12

(
ϵ1Aϵ

A
3ϵ2Bϵ

B
4 +

s13
s14

ϵ1Aϵ
A
3ϵ2Bϵ

B
4

)∣∣∣∣
∗
, (3.86)

evaluated on the solution to the scattering equations. At four points there are 8−3 independent

variables uai and we can take them to be Uij = ⟨uiuj⟩/σij = Uji, i ̸= j, with the extra relation

⟨uiuj⟩⟨ukul⟩+
(

cyc jkl
)
= 0, (3.87)

given by the Schouten identity. The skewed form (3.70) of the scattering equations give

∑
j ̸=i

Uijϵj[AϵiB] = kiAB , (3.88)

In order to solve for U34 we contract this for i = 3 with εABCDϵ1Cϵ2D to obtain

U34 = −⟨k312⟩
⟨1234⟩

, (3.89)
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where we define

⟨1234⟩ = εABCDϵ1Aϵ2Bϵ3Cϵ4D , ⟨k312⟩ = εABCDk3ABϵ1Cϵ2D . (3.90)

Similarly we obtain, using square brackets for 4-brackets of upper-indexed quantities,

Ũ12 = − [k134]

[1234]
. (3.91)

Using these we can solve for the via to give

v1a =
⟨κ1a234⟩
⟨1234⟩

, (3.92)

and so on.

The resulting expression for A4 can be simplified by expanding the product of upper and

lower ε tensors as skew product of Kronecker deltas. Consider the quantity

⟨k312⟩[k134] = 4 ϵ1Dϵ
D
3 k3AB k

AC
1 ϵB4 ϵ2C + 2k1 · k3(ϵ1AϵA4 ϵ2BϵB3 − ϵ1Aϵ

A
3 ϵ2Bϵ

B
4 ). (3.93)

The first term can be rewritten using using momentum conservation as

k3AB k
AC
1 κB4ȧκ2Ca = −k2ABkAC1 κB4ȧκ2Ca = −1

2
κ2Aaκ

A
4ȧ k1 · k2 , (3.94)

such that ⟨k312⟩[k134] is proportional to the numerator of the amplitude,

⟨k312⟩[k134] = s14

(
ϵ1Aϵ

A
3 ϵ2Bϵ

B
4 +

s13
s14

ϵ1Aϵ
A
4ϵ2Bϵ

B
3

)
. (3.95)

The amplitude then agrees with the result of [98],

Aϵ1ϵ̃1...ϵ4ϵ̃4
4 =

⟨1234⟩[1234]
s12s14

, (3.96)

upon the usual identification (3.71).
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As discussed in section 4.1.4, the supersymmetry representation we use breaks little group

symmetry so that little group multiplets are spread in different degrees in the superfield ex-

pansion (2.81) in terms of supermomenta. All above expressions are for gluons in the top state

gϵϵ̃, but the calculations extend directly to other amplitudes as well. As we have seen in sec-

tion 3.2.3, amplitudes for gluons appearing at order q2 in the multiplet can be calculated either

from the supersymmetry representation, or by replacing ϵi → ξi in the integrand. At four

points, this can be seen explicitly: consider first the amplitude A4(g
ϵ1ϵ̃1gϵ2ϵ̃2gξ3ϵ̃3gξ4ϵ̃4) obtained

from the supersymmetry representation,

A4(g
ϵ1ϵ̃1gϵ2ϵ̃2gξ3ϵ̃3gξ4ϵ̃4) = Aϵ1ϵ̃1...ϵ4ϵ̃4

4 ΩIJΩKL ∂

∂qI3

∂

∂qJ3

∂

∂qK4

∂

∂qK4
eF+F̃

∣∣∣∣
∗

∣∣∣∣
qi=0

. (3.97)

The only non-vanishing term comes from the F 2 in the expansion of the exponential, and gives

an extra factor of detU{34} = −U2
34 + ⟨ξ3v3⟩ ⟨ξ4v4⟩ in the amplitude. When we evaluate this on

the solutions to the polarized scattering equations we obtain, using (3.89) and (3.92),

detU{34}
∣∣∣∣
∗
=

1

⟨1234⟩2
(
⟨ξ3 312⟩ ⟨ξ4 412⟩ − ⟨ξ3 124⟩ ⟨ξ4 123⟩

)
=

⟨12 ξ3ξ4⟩
⟨1234⟩

. (3.98)

Here we have used kiAB = ξi[Aϵi|B] in the first equality, as well as the notation ξiA := ⟨ξiκiA⟩,

and the last equality follows from a Schouten identity in the two-dimensional space defined by

εABCDϵ1Cϵ2D. Using the result (3.96) for the amplitude where all gluons are in the top state, we

thus find

A4(g
ϵ1ϵ̃1gϵ2ϵ̃2gξ3ϵ̃3gξ4ϵ̃4) =

⟨12 ξ3ξ4⟩[1234]
s12s14

. (3.99)

This clearly agrees with the result from the integrand det ′HI for I = {3, 4}, i.e. by replacing

ϵia by ξia for i = 3, 4 in (3.96). Similar conjugate formulae apply for amplitudes with a pair of

external particles in the gϵξ̃ states.

3.3.3 Other theories

The Yang-Mills calculations extend directly to the other theories expressed as integrals over the

polarized scattering equations. For any theory that admits the representation (2.62), the four
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point amplitude for the top states of the supersymmetry multiplet has the form:

A4 =
1

det′Φ
Ih
L Ih

R

∣∣∣∣
∗
, (3.100)

where the ∗ indicates that the formula is evaluated on the solutions to the polarized scattering

equations. Having solved the polarized scattering equations at four point, (3.84), it is now an

easy task to evaluate the amplitude for other theories than Yang-Mills (2.88). We have already

discussed the Jacobian,

1

det′Φ
=

(σi1i2σi2i3σi3i1)(σj1j2σj2j3σj3j1)

detΦ[j1j2j3]

[i1i2i3]

= − s412
s12s13s14

(3.101)

The main ingredients that appear in the half integrands evaluated on such solutions are as

follows:

PT(1234) = −s12
s14

det′H = ⟨1234⟩[1234] s212
s12s13s14

(3.102a)

Pf U (1,1) =
s13s14

⟨1234⟩ [1234]
Pf U (2,0) =

s13s14
⟨1234⟩2

(3.102b)

Pf ′A = s12 . (3.102c)

It is then straightforward to calculate all four-particle amplitudes for the theories we have dis-

cussed. In (2, 2) supergravity, for all particles in the top state, we obtain:

Mgrav
4 =

⟨1234⟩2[1234]2

s12s13s14
, (3.103)

which corresponds to the result in [79, 82] and reproduces the KLT relation. For the brane

theories we have

AD5
4 = ⟨1234⟩[1234] , (3.104)

AM5
4 = ⟨1234⟩2 , (3.105)
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agreeing with [108]. As expected these give the same result on reducing to four or five dimen-

sions where fundamental and anti-fundamental spinors are identified.

The more exotic and controversial formulae in [2], obtained by double-copying the above

integrands. When combining the M5 half integrand with a Parke Taylor factor, we get

A
(2,0)−PT
4 =

⟨1234⟩2

s12s14
. (3.106)

As expected, the formula is chiral, and has the same reduction to 5d as the Yang-Mills ampli-

tude. We can also look at the formulae for other ‘double copied’ theories:

A
(3,1)
4 =

⟨1234⟩3[1234]
s12s13s14

(3.107)

A
(4,0)
4 =

⟨1234⟩4

s12s13s14
. (3.108)

We note that (3.107)-(3.108) give the same result as the gravity amplitudes (3.103) upon reduc-

tion to four and five dimensions. However, in six dimensions, as remarked in [82, 107], the

formulae are more problematic as soft limits (or factorization) to three-point amplitudes are

not obviously well-defined. This is because the three-particle kinematics κA = ma
i κiaA and

κA = m̃ȧ
i κ

A
iȧ of (3.73) each have a scaling ambiguity

ma
i → αma

i , m̃ȧ
i → α−1m̃ȧ

i , (3.109)

that cancels in κAκ
B . In our discussion of the Yang-Mills three-particle amplitudes, this was

reflected in the the two factors
(
⟨ϵ1m1⟩⟨ϵ2m2⟩⟨ϵ3w3⟩ + cyc.

)
× (its tilded version) not being in-

dividually invariant under the scaling (3.109), although of course this ambiguity cancels in the

full amplitude (3.83). In the chiral double-copied amplitudes (3.106) - (3.108) however, this

scaling ambiguity cannot cancel anymore, so there are no invariant three-point amplitudes for

gerbe theories. On reduction to 5d, there is an identification between the chiral and anti-chiral

spinors so the scaling in (3.109) is fixed up to sign. This is also reflected in the factorization

discussion of the related formulae in [82], where it was shown that the resulting three-particle
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formulae are non-local. As discussed there, the non-locality can be made manifest in two dif-

ferent ways. To factorize the four-particle formula into the product of two three-particle ob-

jects summed over internal states, we have to either fix a scale α or fix the shift redundancy

wia → wia + cimia of the dual variables. In both cases, the required ‘frame choice’ depends on

the kinematics of all four particles, and the three-particle objects are not invariant under the a

rescaling of α (in the first case) or a shift in ci (in the latter case).

Thus it seems unlikely that the formulae (3.106) - (3.108) can be interpreted as tree-level

S-matrices in the normal sense.

3.3.4 Fermionic amplitudes

We can also evaluate amplitudes involving the fermionic sector. We will show here how this

works for the scattering of two gluons with two gluini in (1, 1) super Yang-Mills, but the results

can be adapted easily to supergravity and the brane theories.

Consider the four particle amplitude A4(g
ϵϵ̃
1 , g

ϵϵ̃
2 , ψ

I ϵ̃
3 , ψ

J ϵ̃
4 ) for two gluons and two gluini,

obtained in our supersymmetry representation by extracting the fermionic components as fol-

lows,

A4(g
ϵϵ̃
1 , g

ϵϵ̃
2 , ψ

I ϵ̃
3 , ψ

J ϵ̃
4 ) =

⟨1234⟩[1234]
s12s14

∂

∂qI3

∂

∂qJ4
(1 + F1 + F̃1 + ...)

∣∣∣∣
qi=q̃i=0

=
⟨1234⟩[1234]

s12s14
U34ΩIJ (3.110)

Inserting the solution to the polarized scattering equations (3.89) we obtain,

A4(g
ϵϵ̃
1 , g

ϵϵ̃
2 , ψ

Iϵ̃
3 , ψ

Jϵ̃
4 ) =

⟨12k3⟩[1234]
s12s14

ΩIJ (3.111)

We can compare this to the amplitude representation of [79] in the little-group preserving su-

persymmetry representation;

Asusy
4 =

δ4(
∑
q)δ4(

∑
q̃)

s12s14
, (3.112)

where the supercharges are qAI = εȧḃκAȧ η̃
I

ḃ
and qIA = εabκ

a
Aη

bI . The amplitude A4(g
aȧ
1 , gbḃ2 , ψ

ċ
3, ψ

ḋ
4)
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is now the following coefficient of the Grassmann variables η and η̃,

A4(g
aȧ
1 , gbḃ2 , ψ

ċ
3, ψ

ḋ
4) =

∂

∂ηa1

∂

∂η̃ȧ1

∂

∂ηb2

∂

∂η̃ḃ2

∂

∂η̃ċ3

∂

∂η̃ḋ4

∂

∂ηe4

∂

∂ηg4
εeg

δ4(
∑
q)δ4(

∑
q̃)

s12s14

∣∣∣∣
ηi=η̃i=0

=
⟨1a2bk3⟩ [1ȧ2ḃ3ċ4ḋ]

s12s14
(3.113)

This agrees with our result (3.111) after contraction into the external polarization states.

3.4 Proof of the formula by BCFW recursion

In this section, we give a proof of the gravity and Yang-Mills formulae using BCFW recur-

sion [9, 11]. This is a powerful on-shell tool that has been used to prove a variety of explicit

amplitude representations. This technique has two main ingredients. The first is to introduce a

deformation of the formula for the amplitude depending on a complex parameter z, and to use

complex analysis to reconstruct the amplitude in terms of its residues at poles in z. The second

key ingredient in the argument is the factorization property of amplitudes. We know from the

Feynman diagram representation of amplitudes that they are multilinear in the polarization

vectors and rational in the momenta. The only poles arise from propagators, so that they can

only arise along factorization channels, where partial sums of the momenta go on shell. At tree-

level, factorization is the statement that the residues at such poles are tree amplitudes on each

side of the propagator. This then allows us to identify the residues in z in terms of lower point

amplitudes, setting up the recursion.

BCFW shifts are generally based on the following one-parameter deformation of the exter-

nal momenta,

k̂1µ = k1µ + z lµ , k̂nµ = knµ − z lµ , (3.114)

with q2 = q · k1 = q · kn = 0. Cauchy’s theorem applied to A/z then gives an equality between

the original undeformed amplitude at z = 0 and the sum over all other residues at the possible

factorisation channels of the amplitude and at ∞. If

lim
z→∞

A(z) = 0 , (3.115)
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we say that there are no boundary terms at z = ∞ and the shift is valid. Provided that the

amplitude has the factorisation properties we expect from unitarity, the residue theorem then

expresses it as a sum over products of lower point amplitudes AnL+1 and AnR+1, with nL + 1

and nR + 1 = (n− nL) + 1 particles respectively, but at shifted values of z

An =
∑
L,R

AnL+1 (zL)
1

k2L
AnR+1 (zL) . (3.116)

The sum runs over partitions of the n particles into two sets L and R, with one of the deformed

momenta in each subset, 1 ∈ L and n ∈ R. In the propagator, kL =
∑

i∈L ki denotes the (unde-

formed, off-shell) momentum, whereas the amplitudes are evaluated on the on-shell deformed

momentum k̂L =
∑

i∈L ki + zL q with zL = −k2L/2q · kL. See also fig. 3.2 for a diagrammatic

represenation of the recursion. For particles transforming in non-trivial representations of the

little group, the BCFW shift (3.114) has to be extended to the polarization vectors as well [114],

and the boundary terms vanish if the shift vector lµ is chosen to align with the polarization

vector of one of the shifted particles, lµ = e1µ. In this case the sum over partitions in the BCFW

recursion relation (3.116) also includes a sum over a complete set of propagating states, labeled

for example by their polarization data for gluons or gravitons.

An

n1

=
∑
L,R

AnL+1

1̂

1
K2

L AnR+1

n̂

Figure 3.2: A diagrammatic representation of the BCFW relation (3.116).

The recursion (3.116) has been a useful tool to prove novel amplitude representations. In

particular, it guarantees that any expression satisfying factorization6 and the boundary condi-

tion (3.115) is a representation of the amplitude. In §3.4.1 we adapt the shift to our formulae, in

6including the correct 3-particle amplitudes
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§3.4.2, we show that our amplitudes factorize correctly. The proof of the vanishing of bound-

ary terms for gauge theory and gravity follows a similar strategy to the one employed to show

factorization and we refer the interested reader to the original paper [2].

3.4.1 Shift

Fundamental spinors. In the 6d spinor-helicity formalism, we introduce a BCFW shift de-

pendent on the chiral polarization data of the shifted particles by

κ̂a1A = κa1A + z ϵa1 ϵnA , κ̂anA = κanA + z ϵan ϵ1A . (3.117)

This shift evidently leaves the polarization spinors ϵA invariant, but shifts the spinors ⟨v1κ1A⟩

and ⟨vnκnA⟩ featuring in the polarised scattering equations by a term proportional to the polar-

ization spinor of the other particle. The invariance of the polarization spinors ϵ1,n ensures that

the shift is well-defined, in the sense that the ‘shift-spinors’ δκ1,n are themselves unaffected.

In terms of momenta, the spinorial deformation (3.117) corresponds to a standard BCFW shift,

k̂1AB = k1AB + z lAB , k̂nAB = knAB − z lAB . (3.118)

In contrast to the usual construction however, the shift vector lAB is composed of the polariza-

tion spinors of both particles 1 and n,

lAB = ϵn [Aϵ1B] . (3.119)

In addition to preserving momentum conservation and being orthogonal to the momenta of the

shifted particles, this choice of shift vector is also orthogonal to the polarization of the shifted

particles, which guarantees the vanishing of boundary terms for Yang Mills and gravity.

For generic polarization data of the particles 1 and n, the BCFW shift (3.119) differs from the

standard BCFW shift for Yang-Mills theory and gravity [114], as well as the 6d spinorial shift

of [98]. There the shift vector for gluons and gravitons is chosen to align with the polarization

of one of the shifted particles, lµ = e1µ, to ensure that the boundary terms vanish. This setup
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can be recovered from the shift (3.117) only if the polarization spinors for particles 1 and n are

related in a specific way, so the two shifts are in general inequivalent.

Anti-fundamental spinors. The anti-fundamental shift

k̂AB1 = kAB1 + z lAB , k̂ABn = kABn − z lAB , (3.120)

is of course related to the chiral one via lAB = εABCDqCD, but this does not fully determine the

shift of the anti-chiral spinors κ̂Aȧ . We can use this freedom to choose a BCFW shift where both

deformations δκA1ȧ and δκAnȧ are proportional to the same spinor ϵ̃A:

κ̂1
A
ȧ = κ1

A
ȧ − z ϵ̃A

(
ϵnBκ1

B
ȧ

)
, (3.121a)

κ̂n
A
ȧ = κn

A
ȧ − z ϵ̃A

(
ϵ1Bκn

B
ȧ

)
. (3.121b)

The spinor ϵ̃A is constructed such that it is a valid choice for ϵ̃A1 = ϵ̃A and ϵ̃An = ϵ̃A,

ϵ̃A = ϵ1 aκn
A
ȧ

(
κn

B
ȧ κ1

a
B

)−1
+ ϵnaκ1

A
ȧ

(
κ1

B
ȧ κn

a
B

)−1
. (3.122)

The first term is just the canonical choice for ϵ̃A1 and pure gauge for particle n, and vice versa

for the second term so that:

ϵ̃A κa1A = ϵa1 , ϵ̃A κanA = ϵan . (3.123)

The anti-fundamental BCFW deformation then leads to the shift (3.120) for the momenta, where

the shift vector q is again determined by the chiral polarization spinors of both shifted particles.

The polarization spinor ϵ̃A as well as the shift-spinors δκ1Aȧ and δκn
A
ȧ are invariant under the

BCFW deformation, and the shift (3.121) is well-defined.

Shifting the supermomenta. In the R-symmetry preserving supersymmetry representation,

the supershift is not implemented via a linear shift in the fermionic variables, but rather by a
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multiplicative exponential factor

In → În = In exp
(
−z q1IqnJΩIJ

)
. (3.124)

This is the fermionic Fourier transform of the standard linear super-BCFW shift in the little-

group preserving representation, see e.g. [115]. As expected, the Fourier transform interchanges

linear shifts of the variables in z with a multiplication by an exponential factor.

3.4.2 Factorisation

In this section we want to show how the singularities of the amplitude (2.62) appear in the limit

k2I → 0, where I is a subset of {1, ...n}, and that in this limit the amplitude factorises as:

An =
∑′

AnL+1
1

k2L
AnR+1 (3.125)

with nL + nR = n and
∑′ indicates a sum over polarization states or a ’supersum’ over states

in the supermultiplet when considering superamplitudes.

The integrands in (2.62) are polynomials in the kinematic variables. The singularities can then

only arise from the boundary of the moduli space ∂Mpol
0,n. This is the moduli space encod-

ing the locations of the punctures σi as well as the values for ui, vi, modulo the symmetry

group SL(2,C)σ × SL(2,C)u. Moreover, the permutation invariance of the reduced determi-

nant det′H guarantee that for Yang Mills and supergravity the singularities actually come from

the boundary of the moduli space of the Riemann sphere, ∂M̂0,n ⊂ ∂Mpol
0,n. Here ∂M̂0,n denotes

the Deligne-Mumford compactification of the moduli space of marked Riemann surfaces, ob-

tained by adding nodal surfaces to ensure compactness [116], [93].

This boundary of the moduli space corresponds to separating degenerations that split the

sphere Σ into two components, ΣL and ΣR, and that partition the punctures as n = nL + nR,

∂M̂0,n ≃ M̂0,nL+1 × M̂0,nR+1 . (3.126)
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The boundary ∂M̂0,n can be parametrised by gluing two Riemann spheres ΣL and ΣR as fol-

lows. Choose a marked point on each sphere, σR ∈ ΣR and xL ∈ ΣL, and remove the disks

|σ− σR| < ε1/2 and |x− xL| < ε1/2, where ε is the parameter governing the degeneration. Then

we can form a single Riemann surface by identifying,

(x− xL) (σ − σR) = ε . (3.127)

The boundary of the moduli space ∂M̂0,n corresponds to the limiting case ε→ 0.

First of all we can establish the correspondence between degenerations of the punctured Rie-

mann sphere and the factorisation channels of the amplitude.

Using the parametrization of the boundary (3.127), one can see that the spinor λ(σ) induces

spinors λ(L)(σ) and λ(R)(σ) on ΣL and ΣR respectively and that these stay of order one through-

out the degeneration and so do the polarised scattering equations. In particular we have:

n∏
i=1

δ4 (Ei) =
∏
i∈L

δ4
(
E(L)
i

)∏
p∈R

δ4
(
E(R)
p

)
. (3.128)

One then finds that in the degeneration limit the propagator

kL :=
∑
i∈L

ki (3.129)

goes on shell, i.e.

k2L = O(ε) (3.130)

as ε→ 0, which corresponds to a factorisation channel.

It is then possible to track the behaviour of the measure of integration in the degeneration and

to verify that it mirrors the behaviour of the boundary of the moduli space [3] [117]. This results

in:

dµpoln =
ε2(nL−1)∏

i∈L x
4
iL

dε

ε

∫
(κ)

d8κaA
vol SL(2,C)

dµpolnL+1 dµ
pol
nR+1 . (3.131)

The delta-functions δ
(
k2L − εF

)
enforcing that ε ∼ k2L ∼ k2R are part of the momentum conser-

vation contained in the polarised measure.
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It remains to spell out the behaviour of the integrands. We find for the Parke-Taylor factor:

PT(α) = ε−(nL−1)
∏
i∈L

x2iR PT(αL)PT(αR) , (3.132)

where the particles in the subset L are all consecutive in α, the ordering of the external particles

(for a given color-ordered amplitude). If the particles in L are not consecutive in α, the Parke-

Taylor contributes with more powers of ε, thus cancelling the pole. It is indeed this integrand

that selects the singularities corresponding to planar diagrams of a given color ordering.

As for the reduced determinant, we find

det′H = ε−(nL−1)⟨vLvR⟩[ṽLṽR]
∏
i∈L

x2iR det′HL det
′HR . (3.133)

For amplitudes involving only gluons in the top state of the super Yang Mills superfield (2.81),

we expect the amplitude to factorise as7:

∑
states

AnL+1AnR+1 = ϵabAa
nL+1Ab

nR+1 = v
[a
L ϵ

b]
L Aa

nL+1Ab
nR+1

=
1

⟨ϵLϵR⟩
AnL+1(ϵL)AnR+1(ϵR) + ⟨ϵLϵR⟩AnL+1(vL)AnR+1(vR)︸ ︷︷ ︸

=0

,
(3.134)

where the second factor vanishes because the subamplitudes have a single particle in the bot-

tom state. The polarised scattering equations impose ⟨vLvR⟩ = ⟨ϵLϵR⟩−1, so that (3.131),(3.132)

and (3.133) together determine the correct factorisation behaviour.

Sum over states. We discuss here what behaviour we expect under factorization from the

susy factors. In general, supersymmetric invariance determines the ‘gluing factor’ G(qL, qR)

that is responsible for the sum over states in a factorization channel,

An =
1

k2L

∫
d2NqLd

2NqR AnL+1AnR+1 G(qL, qR) . (3.135)

7We look here at N = (1, 0), the result for the other chirality is analogous.
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This can be seen as follows: acting on the LHS with the full susy generatorQAI we need to have

QAIAn = 0 Q
(L)
AI AnL+1 = Q

(R)
AI AnR+1 = 0 . (3.136)

Using that

QAIAnL+1 = −QLAIAnL+1 , QAIAnR+1 = −QRAIAnR+1 , QAIG(qL, qR) = 0 , (3.137)

we find that

G(qL, qR) = ⟨ϵLϵR⟩N exp
(
i⟨vLvR⟩ qLIqRJΩIJ

)
(3.138)

solves this, where the normalization is fixed by comparison with the purely bosonic case. To

conclude the proof of factorization, it can be shown that the supersymmetry representation

factorizes as:

eFN = ⟨ϵLϵR⟩2N
∫
d2NqLd

2NqR e
FL+FR ei⟨vLvR⟩ qLIqRJΩ

IJ
. (3.139)

3.5 Discussion

In this chapter we have argued that the polarized scattering equations provide a natural gener-

alization of the twistor and ambitwistor supersymmetric formulae from four dimensions. They

lead to formulae for a full spectrum of supersymmetric gauge, gravity and brane theories in

six-dimensions. These formulae are furthermore shown to factorize properly as a consequence

of properties of the polarized scattering equations themselves, as described in §3.4. This led to

a proof of the main formulae by BCFW recursion.

There remain issues that are not optimally resolved in our framework. Because the solutions

to the polarized scattering equations themselves depend on the polarization data, it is no longer

obvious that the formulae we obtain are linear in each polarization vector as they need to be,

although the proof is relatively straightforward. As shown in §3.1, there is an n+2 dimensional

vector space of potential solutions to the polarized scattering equations whose dimensionality

is then reduced by choice of polarization spinors. It should be possible to develop this further

to produce formulae that are manifestly linear in the polarization data, or alternatively with
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free little-group indices as is more usually in higher-dimensional spinor-helicity frameworks.

Further avenues are as follows.

Grassmannians, polyhedra, and equivalence with other formulations. In four dimensions,

twistor-string formulae for amplitudes, and indeed general BCFW terms, can be embedded as

2n− 4-dimensional cycles in the Grassmannian G(k, n) for amplitudes with k negative helicity

particles, [118, 119].

In [82] it was similarly shown that their 6d formulae could be embedded into a Lagrangian

Grassmannian, i.e., the Grassmannian LG(n, 2n) of Lagrangian n-spaces in a symplectic 2n-

dimensional vector space. Ref. [111] further discussed how the polarized scattering equation

formulation of [1, 2] can also be embedded in the same Grassmannian, allowing one to see

that the two formulations are essentially gauge equivalent representations. In the formulation

in this chapter, an element of the Grassmannian can be represented as an n × 2n matrix Cia
l

with a being the little group index for ki and l being also a particle index.8 The symplectic

form is given by Ωiajb = εabδij and the condition that Cia
l defines an element of the Lagrangian

Grassmannian is that

Cia
l C

jb
mΩiajb = 0 . (3.140)

This skew form is natural in the sense that it arises from momentum conservation in the form

κaiAκ
b
jBΩiajb = 0 . (3.141)

The Grassmannian integral formula then takes the form

∫
Γ
dµ I

∫ ∏
j

δ4(Cia
j κiaA) . (3.142)

Here I is a theory dependent integrand, Γ a cycle in the Grassmannian of dimension 4n − 6,

8For [82, 111] this l-index is replaced by ak where a is the global little group index, and k = 0, . . . , (n − 2)/2
indexes a basis in the space of polynomials on C of degree (n− 2)/2.
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and dµ a measure on Γ. Our data embeds into the Grassmannian by

Cai
j =

⟨uiuj⟩
σij

ϵai − δijv
a
i , (3.143)

with Γ parametrized by (σi, ui, vi) subject to the constraints ⟨viϵi⟩ = 1 and modulo the Möbius

transformations on the σi, and SL(2) on the ui. A different parametrization9 for Γ is given in

[82], and in [111] it was argued that the two representations are gauge equivalent in LG(n, 2n).

In this chapter in §3.2.4, the argument for linearity of the reduced determinants in the polar-

ization data relies on a map between solutions to the polarized scattering equations that have

different polarization data. This map should therefore similarly arise from an analogous gauge

transformation in the Grassmannian LG(n, 2n).

Polyhedra such as the amplituhedron [120] emerge when BCFW cycles in a Grassmannian

are united into one geometric object whose combinatorics are determined by a certain posi-

tive geometry. The original amplituhedron was adapted to momentum twistor or Wilson-loop

descriptions of N = 4 super Yang-Mills amplitudes [121–123], but there is, at least as yet, no

analogue of this in six dimensions. The version of the 4d amplituhedron ideas that are most

natural in the context of the Grassmannian descriptions here is that described in [112], a 2n−4-

dimensional space. It follows from the above that the analogue in 6d should therefore be a

4n − 6 dimensional space. In our context this space will then be naturally embedded in R4n

(perhaps projected onto some quotient) as the image of the positive Lagrangian Grassmannian

LG+(n, 2n) under the map

YlA = Cia
l κiaA . (3.144)

There is of course an anti-chiral version also. It remains to explore these frameworks.

Worldsheet models in 6d. Another gap in our description is to identify ambitwistor string

models that underly the formulae. Ambitwistor-string models that admit vertex operators that

yield the polarized scattering equations and supersymmetry factors were introduced in [1],

together with worldsheet matter that provides the reduced determinants. However, these were

9In the notation of those references, the 4n− 6-cycles are parametrized by (σi, w
b
ia) subject to a normalization of

the determinants of the W b
ia in terms of the σi.
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chiral, and combining both chiralities to produce the gauge and gravity formulae has so far

proved problematic: there are constraints needed to identify the two otherwise independent

chiral halves. However, as seen here such constraints don’t seem to matter too much at the

level of the formulae. The chiral models would seem to be a better bet for the various (N, 0)

theories, but for these the worldsheet matter required to provide the integrands has yet to be

identified. The issues facing the 6d worldsheet models are resolved on reduction as we will

describe in later chapters.

Higher dimensions. Representations of ambitwistor space, in terms of twistor coordinates

with little-group indices exist in higher dimensions also. Furthermore, naive ambitwistor mod-

els in those coordinates lead to higher-dimensional analogues of the polarized scattering equa-

tions. A discussion of such models was given in [124]. Again one can obtain supersymmet-

ric ampltude formulae without worrying too much about the detailed implementation of the

models. In particular, there are many more constraints required to restrict the representation

to ambitwistor space as in the space of null geodesics, and again these were not implemented

in any systematic way. Indeed closely related models were proposed over the years by Bandos

and coworkers [109, 125–129]. Bandos takes the attitude that the additional constraints should

not be imposed, and instead that it should be possible to find genuine M-theory physics in

these extra degrees of freedom [125, 130, 131].

Symmetry reduction Although the six dimensional models that inspired the formulae of the

present chapter still present issues, they were successfully reduced to five dimensions where

matter systems for gauge theory and gravity were found in [85]. Both the six dimensional

formulae presented here and the ones of [82] have been dimensionnally reduced to five and

four dimensions, including to derive expressions for amplitudes on the Coulomb branch of

N = 4 SYM. Because the reduction was only performed at the level of the formula, one still

needs to input by hand kinematic data that solves momentum conservation. We will show in

the next two chapters that it is possible to write ambitwistor string models of massive particles

that automatically assign values to the masses. These will be first formulated as intrinsically

four dimensional theories in chapter 4, by implementing a twistorial description of massive
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particles in a worldsheet model. In chapter 5 we will present them as symmetry reductions of

the five dimensional models of [85], adding RNS-type models we obtained in a similar fashion.
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Massive models in four dimensions

In their original form, all ambitwistor-string theories and associated worldsheet formulae ap-

pear to be tightly restricted to theories and amplitudes involving only massless particles. The

underlying approach suggests that, if one wishes to compute amplitudes for theories with mas-

sive particles, one should consider quantum field theories of holomorphic strings whose target

is the complexified phase space of massive particles. The massless case has also shown that,

in order to incorporate fermions simply, we should use a twistor representations of the phase

space.

Nearly 50 years ago, Roger Penrose, followed by Zoltan Perjes, gave a twistor descrip-

tion of massive particles in terms of a set of two or more twistors up to an internal symmetry

group [132, 133]. He proposed the twistor-particle programme based on the twistor quantization

of this description. In particular, it was hoped that the representation theory of the internal

symmetry group should classify elementary particles; see for example [134–137] and references

therein. Although this programme has not been pursued further by the twistor community, the

framework was taken up by other authors in the particle physics community. For these authors,

quantization via a worldline Lagrangian approach was used leading to studies of the spec-

trum of such twistor particle models, often incorporating supersymmetry. Two-twistor particle

models include [138–140], see also [141, 142] for more recent studies that have a good number

of references to the evolution of the subject, including [143, 144].1 Such worldline actions are a

stepping stone to ambitwistor-string formulations. These are holomorphic strings whose target

1Note also a two-twistor model along the lines of an ambitwistor string [145, 146], but focussed on massless
particles.
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is a complexified phase space; the action being built directly from the holomorphic symplectic

potential on such a complexified phase space [43].

A particular advantage of the two-twistor representation of the phase space of massive par-

ticles is that it reduces to the nonlinear massive phase space via a symplectic quotient from the

vector space of a pair of twistors. Such a symplectic quotient can be done via BRST in the quan-

tum field theory, and all computations can be performed in a linear free-field quantum field

theory on the Riemann surface. However, a key lesson from the massless cases is that, even if

one is only interested in bosonic Yang-Mills or gravity, fermionic symmetries are needed on the

worldsheet and supersymmetries on space-time to obtain simple uniform formulae incorporat-

ing all relevant helicities. We will see that these supersymmetries can also be introduced in the

massive case, leading to simple compact formulae for amplitudes in otherwise complicated,

non-linear gauge and gravity theories.

In its simplest approach, massive particles were understood in terms of a pair of 4d twistors

(Za, Z̄a) ∈ T × T, a = 1, 2. Each twistor Z ∈ T has four complex components, that according

to more recent (and less Penrosian) conventions are written as Z = (λα, µ
α̇) i.e., as a pair of

2-component spinors; Z̄ is the SU(2, 2) complex conjugate of Z, defining a dual twistor by Z̄ =

(λ̄α̇, µ̄
α). This description of massive particles was defined up to an internal symmetry group

SU(2) × C, where the SU(2) acts conformally invariantly on the a index. It can be understood

in more conventional terms as the stabilizer of the massive momentum in the Lorentz group,

the little group, see for example the massive spinor-helicity framework of [12].2 The factor of

C in the symmetry group breaks conformal invariance and determines the particle masses.

Here we complexify twistors so that the complex conjugate twistor Z̄ becomes a dual

twistor Z̃ independent of Z̄ giving the pair Y = (Z, Z̃) ∈ TC := T × T∗. We can also think

of such a complexified twistor as a Dirac twistor Y = (λA, µ
A), given as a pair of 4-component

Dirac spinors λA = (λα, λ̃α̇) and µA = (µ̃α, µα̇). We will also incorporate supersymmetry ex-

tending Y → Y = (λA, µ
A, ηI) with N additional fermionic components ηI . This description

gives a natural inner product Y ·Y := Z · Z̃+ηIη
I from the duality between T and T∗ and skew

2More generally, n-twistor descriptions were considered with symmetry groups containing SU(n); in the twistor
particle programme, particle multiplets were to be understood via the representation theory of such internal sym-
metry groups. The quantization of massive worldline models based on these descriptions has been studied by a
number of authors, see [141, 147] and references therein.
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form ΩIJ .

Our 4d massive twistorial models are given by holomorphic maps from the Riemann sur-

face Σ to the complexified two-twistor description of massive particles. They consist of a pair

of complexified twistor fields Ya(σ) = (Za(σ), Z̃a(σ)), a = 1, 2 taking values in worldsheet

spinors K
1/2
Σ . To reduce to the twistor representation of the massive particle phase space, we

also gauge the currents (Ya · Yb, λ
2, λ̃2) that generate the (complexified) internal symmetry

group SL(2)×C× C̃. Here λ2 := det(λ) and its conjugate λ̃2 determine the squared mass of the

massive momentum Pαα̇ = λaαλ̃
b
α̇ϵab. Thus we arrive at the model

S4d =

∫
Σ
Ya · ∂̄Ya +AabYa · Yb +A(λ2 − jH) + Ã(λ̃2 − jH) + Sm . (4.1)

Here Sm is some theory dependent additional worldsheet matter that in particular can give rise

to a current jH associated to some symmetry generator H . The Aab = A(ab) are gauge fields for

the SL(2) little group, and (A, Ã) gauge the C× C̃ part of the internal symmetry group; they are

also Lagrange multipliers relating the values of the particle masses to their charges under H .

Although this two-twistor massive model is a string whose target is the complexified two-

twistor description of massive particles of [133], it can be identified with the dimensional re-

duction of the 6d and 5d ambitwistor strings in [85]. The contractions of the massive spinor

helicity variables correspond to two components of the internal momentum when embedding

the massive variables in a six dimensional massless momentum. The two-twistor string pro-

duces correlators that localize on delta functions that fix the values of internal momenta in

terms of charges under H and H̃ for all particles involved. In addition to this, the correlators

are further localized by delta functions imposing a polarised version of the scattering equations

as in [1, 2].

The models above not only allow us to derive formulae involving any number of massive

particles, but also give an alternative formulation of the massless models in [83]. This is of

particular importance as it presents a framework in which a massless field can be deformed

to go off-shell, which is a necessary prerequisite for defining a gluing operator in the four

dimensional twistorial model and producing loop amplitudes.
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In the next section we introduce the two-twistor geometry of the massive particle phase

space. We then briefly present the Penrose transform and its complexification. This can be

used in a two-twistor string that computes amplitudes for theories with massive particles in

four dimensions. Such formulae incorporate fermions and supersymmetry, generalizing the

massless case of [83]. They are based on the polarised scattering equations that have already

been introduced and studied in six and five dimensions [2, 85, 124]; these can also be related

[111] to the formulae of [82]. We focus on a model adapted to the Coulomb branch of N = 4

SYM; this contains a gauge field, fermions and scalars that have a vacuum expectation value to

give masses to some of the particles, analogous to the standard model. Nevertheless, as in the

models of [85,117], we can write down a full range of models for particles of spin 0, spin 1 and

spin 2 following the double copy, although the scope for introducing masses into the gravity

models are limited. We will not provide a discussion of amplitude formulae in this chapter as

they have considerable overlap with the ones of §5.4.

4.1 Massive particles

We first review the twistor description of massive particles in terms of a pair of twistors with

redundancy described by the two-twistor internal symmetry group SU(2)×C. This framework

ties in directly with the (more recent) spinor-helicity formalism for expressing polarization data

for massive particles. Anticipating the string model we then complexify the two-twistor de-

scription, and introduce the Penrose transform for massive momentum eigenstates.

4.1.1 Review of twistor internal symmetry groups for massive particles

Massless particles: As described in [103, 132–134], a general twistor ZA = (λα, µ
α̇) ∈ T de-

termines a massless particle whose momentum Pαα̇ and angular momentum Mµν =Mαβεα̇β̇+

c.c. about the origin, can be assembled into the angular momentum twistor given by

LAB :=

 0 P β̇
α

P α̇
β M α̇β̇

 =

 0 λαλ̄
β̇

λβλ̄
α̇ λ̄(α̇µβ̇)

 = Z(AIB)CZ̄C . (4.2)
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In this formula, the infinity twistor breaks conformal invariance and is defined by

IABZ̄B = (0, λ̄α̇) , IABZ
B = (0, λα) ,

extending the spinor contractions to degenerate inner products ⟨Z1Z2⟩ := IABZ
A
1 Z

B
2 = ⟨λ1λ2⟩

on twistor space. The angular momentum twistor is invariant under the internal symmetry

transformation Z → eiθZ, which we can identify as the little group rotating the phase of the

constituent spinors of the massless momentum Pαα̇ = λαλ̄α̇.

Massive particles: In order to describe massive particles, we introduce a sum over two twistors

ZA
a , a = 1, 2 with complex conjugates Z̄a

A. These yield the angular momentum twistor

LAB = Z(A
a IB)CZ̄a

C . (4.3)

In particular, the momentum is given by

Pαα̇ = λaαλ̄
a
α̇ , (4.4)

and so we can identify the indices a, b as the SU(2) little-group indices that stabilizes the mas-

sive momentum Pαα̇ inside the Lorentz group.

Penrose and Perjes [132, 133] define the two-twistor internal symmetry group to be the

Poincaré invariant transformations that preserve the angular momentum twistor. This group

is SU(2)×C where the SU(2) acts as the massive little group, and the factor of C is given by the

complex transformations

δZA
a ∝ IABZ̄b

Bϵba .

These symmetries all preserve the symplectic form and potential [148]

Ωm := dΘm, 2Θm := iZA
a dZ̄

a
A − iZ̄a

AdZ
A
a .

The internal symmetry group action with respect to the potential Θm is generated by the Hamil-
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tonians

ZA
(a · Z̄b)A , λ2 :=

1

2
λaαλ

α
a =

1

2
⟨Za, Z

a⟩ = 1

2
IABZ

A
a Z

Ba ,

for the factors of SU(2) and C respectively. We can therefore define the phase space Pm for

particles of mass m as the symplectic quotient

Pm = {Za ∈ T× T|Z(a · Z̄b) = 0, ⟨ZaZ
a⟩ = m}/{SU(2)× C} . (4.5)

It is easy to see that this is a 6 real-dimensional symplectic manifold with symplectic potential

Θm.

4.1.2 Dirac spinors and spinor-helicity for massive particles

As remarked above, the SU(2) of the internal symmetry group is the massive particle ‘little

group’, the subgroup of the spin double cover of the Lorentz group that preserves a time-

like momentum Pαα̇; the representations of this little group are naturally identified with the

polarization states of massive particles as follows. For a massive particle of momentum kαα̇ we

write as above

kαα̇ = κaακ̃
a
α̇ ,

where a = 1, 2 is an SU(2) little group index raised and lowered by εab = ε[ab], ε12 = 1. In the

real case κ̃aα̇ can be taken to be the complex conjugate of καa reducing the little group to SU(2).

We denote little group contractions by:

(v1v2) := v1av2bε
ab .

The mass m is given by k2 = m2 = det(kαα̇) = detκdet κ̃; so defining

detκ =M , det κ̃ = M̃ , (4.6)

we have MM̃ = m2 and although we can fix the phases of κ and κ̃ so that M = M̃ = ±m, later

we will want to keep them independent before they are fixed by the model.
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Massive particles are not chiral, and two-component spinors necessarily double up with

their conjugates. For a more compact notation, we introduce Dirac 4-component spinors with

indices denoted by capital Roman letters from the beginning of the alphabet as

ψA = (ψα, ψ̃
α̇) , ψA = εABψA := (ψα, ψ̃α̇), ψ1Aψ

A
2 = ψ1αψ

α
2 + ψ̃α̇

1 ψ̃2α̇,

and we will raise and lower indices with εAB , εAB , εABεAC = δBC . Also note the γ5 matrix

defined by

γB5AψB = i(ψα,−ψ̃α̇) .

The mass-m Dirac operator Dm
AB = Dm

[AB] in this notation is

Dm
AB := −i∇AB +mεAB = −i

 0 ∇ β̇
α

−∇α̇
β 0

+mεAB .

The spin s massive field equations for ΨA1...A2s = Ψ(A1...A2s) becomes

Dm
BA1

ΨA1...A2s = 0 . (4.7)

At spin s = 1, we obtain FAB = F(AB) whose 2 × 2 block-decomposition contains the 2-form

curvature spinors along the diagonal andmAαβ̇ on the off-diagonal, whereAαα̇ is the one-form

potential.

Introducing a little group spinor ϵa, the general plane wave on Minkowski space of spin-s

can be decomposed into Dirac spinor wave functions as

ΨA1...A2s = ϵA1 . . . ϵA2se
ik·x , ϵA = ϵaκ

a
A =: (ϵκA) , κAa = (καa, κ̃

α̇
a ) . (4.8)

For spin 1/2, this is an ordinary massive Dirac field momentum eigenstate with polarization ϵa;

for spin s = 1 this describes a massive field with potentialAαα̇ = 1
mϵab κ

a
ακ̃

b
α̇ e

ik·x, with polariza-

tion ϵ(ab) = ϵaϵb. In general, spin-s massive particles transform as the symmetric part of rank 2s

tensors of the massive little group SU(2), with polarization data ϵa1...a2s = ϵ(a1...a2s). Note that
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the polarization in (4.8) is taken to be simple to tie in with later supersymmetric expressions,

corresponding to a null polarization vector. We refer to [12, 52, 149] for more extended recent

discussions of spinor-helicity for massive particles.

To reduce to the massless case, we can take half the spinor components to vanish κ1α =

0 = κ̃α̇0 , whereupon the little group spinor components ϵ0 and ϵ1 parametrize the positive and

negative helicity states respectively.

4.1.3 The complexified particle phase space and Penrose transform

In all (massless) ambitwistor strings [43], the target space is the complexification of the massless

particle phase space, often referred to as ambitwistor space and denoted by A. To define this

we first introduce complexified twistor space TC by

Y = (Z, Z̃) ∈ TC := T× T∗ .

Then the complexified phase space of massless particles in four dimensions has become known

as ambitwistor space A, defined non-projectively as the holomorphic symplectic quotient

A = {Y ∈ TC|Y · Y := Z · Z̃ = 0}/{Z · ∂Z − Z̃ · ∂Z̃} , (4.9)

with respect to the symplectic structure

ΩA = dΘA , ΘA := iZ · dZ̃ − iZ̃ · dZ .

This is the target of the original twistor strings [22, 23, 31] and the closely related ambitwistor

strings [83].

In analogy with the massless case, here we take the target space to be PC
m, the complexifica-

tion of the massive particle phase space Pm. We represent PC
m as the holomorphic symplectic

quotient analogue of (4.5) as

PC
m := {Ya ∈ TC × TC|Z(a · Z̃b) = 0 , ⟨ZaZ

a⟩ = [Z̃aZ̃
a] = m}/SL(2,C)× C× C̃ . (4.10)
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One of the oldest applications of twistor theory has been to provide solutions to the free field

equations. In the massless case this is achieved via the Penrose transform, which represents

zero-rest mass helicity-h fields as twistor cohomology classes H1(PT,O(2h − 2)). Using the

identifications A = T ∗PT = T ∗PT∗, representatives of these cohomology classes can also be

pulled back to ambitwistor space. While two-twistor descriptions in the literature [137] lead to

H2 representatives by building on the real massive particle phase space, we use the complexi-

fication PC
m to obtain representatives in (Dolbeault) cohomology classesH1(PC

m,O(2s−2)) that

couple naturally to the worldsheet. Here we will focus on the scalar case s = 0, the extension to

spinning particles can be achieved most straightforwardly via supersymmetry and is discussed

in §4.1.4.

To represent the plane wave (4.8) with momentum kαα̇ = καaκ̃
a
α̇ on TC × TC it will be

convenient to reorganise the spinor constituents of Ya as a ‘Dirac twistor’

Ya = (λaA, µ
A
a ) , λaA := (λaα, λ̃

α̇
a ), µAa := (µα̇a , µ̃αa) .

Writing κAa = (καa, κ̃
α̇
a ), we define the corresponding cohomology representative inH1(PC

m,O(−2))

by introducing four auxiliary complex variables ua, va;

Φκ(Ya) =

∫
d2u d2v δ̄4((uλA)− (v κA))δ̄((v, ϵ)− 1) exp

(
(uµA)ϵA

)
. (4.11)

Here the line bundle O(n) is the bundle of homogeneity degree n in the Ya, and for a complex

variable z we define δ̄(z) to be the distributional (0, 1)-form

δ̄(z) = ∂̄
1

2πiz
= δ(ℜz)δ(ℑz)dz̄ .

After the ua, va integrals have been performed, Φκ(Ya) ∈ H1(PC
m,O(−2)) is indeed a (0, 1)-

form as desired, and the integration over u ensures invariance under the SL(2,C) little group.

For the Penrose transform, we take det(κ) and det(κ̃) to be unconstrained; in the two-twistor

string these quantities will be constrained to agree with the particle masses determined by the

underlying theory.
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To see that this indeed corresponds to a plane-wave on space-time, we impose the incidence

relations µα̇a = ixαα̇λaα and µ̃αa = −ixαα̇λ̃aα̇. Then on the support of the delta functions we have

(uλA) = (vκA) and (vϵ) = 1, giving 3

(uµA)ϵA = ixαα̇(vκα)(ϵκ̃α̇)− ixαα̇(vκ̃α̇)(ϵκα) = ix · k . (4.12)

The parameters (ua, va) can be integrated against the delta functions to yield the single delta

function δ̄(k ·P −mλ2−mλ̃2) where Pαα̇ = λaαλ̃
a
α̇; this gives the Dolbeault representation for a

simple pole. This delta function imposes a massive analogue of the scattering equations that play

a key role in the CHY formulae for massless amplitudes [29,30,33,83]. A version of these massive

scattering equations has been studied for massive amplitudes in the CHY representation [75], see

the discussion in §4.3 for more details. The delta-functions in Φκ have become known as the

polarized scattering equations due to their dependence on a choice of polarization spinor.4 These

serve to define additional and unique parameters ua, va on the support of the massive scattering

equations that will play a key role later.

4.1.4 Supersymmetric extension

We will aim to generate supersymmetric formulae for two reasons. Amplitudes for theories

with a variety of spins become drastically simpler in the supersymmetric case because many or

all the particles can be expressed as one multiplet. This leads to uniform formulae from which

different sectors with particles of different spins can be read off. Moreover, amplitudes for

non-supersymmetric theories can be extracted from these superamplitudes at tree-level and

at one-loop [117, 153]. A more structural reason is that all (ambi-) twistor string models that

describe gauge theory and gravity require space-time supersymmetry to be anomaly free—the

supersymmetric extension of twistor space includes additional fermionic variables that cancel

3This Penrose transform is closely related to the (indirect) 6d Penrose transform [104, 150]. The twistor space for
6d is TC|Y ·Y =0 and the plane wave (4.8) is represented by

Ψκ(Y ) =

∫
(ϵv)n

ds

sn−1
(vdv) δ̄4(sλA − (vκA)) exp

(
sµAϵA/(ϵv)

)
∈ H2(PA,O(n− 2)) .

Following [85,106,151,152], the massive Φκ(Ya) in (4.11) can then be constructed via Φκ(Ya) =
∫
Ψκ((u, Y ))(udu) .

4The polarization spinor will play a more prominent role in amplitude formulae based on the polarized scatter-
ing equations, because the path integrals introduce ϵ-dependence in λA(σ).
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anomalies from the bosonic variables. Thus we introduce a supersymmetric extension of PC
m,

as well as the plane wave Φκ.

On the Coulomb branch of N = 4 super Yang-Mills, some scalars acquire a vacuum expec-

tation value, effectively breaking the gauge group from SU(N +M) down to SU(N)× SU(M).

The states can then be organised into two types of multiplets; a massless vector multiplet trans-

forming in the adjoint of the residual gauge group, and a massive vector multiplet in the bi-

fundamental of SU(N) × SU(M). Massive multiplets are in the so-called 1/2-BPS, ultrashort

massive representations of N = 4 with central extension ZIJ = 2MΩIJ , with Sp(N/2) R-

symmetry, with skew form ΩIJ and indices I, J = 1, . . . ,N = 4. For massless multiplets on the

other hand, R-symmetry is enhanced to a full SU(4) by the vanishing of the central extension

as m → 0. Employing the notation of the previous section, we can combine the supercharges

into a Dirac spinor QA
I = (QαI , Q

†α̇
I ), such that the supersymmetry algebra takes the compact

form

{QAI , QBJ} = 2ΩIJD
m
AB .

In the massless case, the structure of the supersymmetry algebra greatly simplifies as the only

non vanishing component of the Dirac operator is D0
αα̇ = ∇αα̇.

The action of the supercharges arranges the states in multiplets as follows. The massive

multiplet is composed of a massive spin one field FAB , five massive scalars ϕIJ and four mas-

sive Weyl-Majorana spinors ΨI
A:

Fm = (ϕIJ = ϕ[IJ ],Ψ
A
I , F

AB = F (AB)) , ϕIJΩ
IJ = 0 . (4.13)

The massless multiplet is:

F 0 = (ϕIJ = ϕ[IJ ] ,Ψ
I
α, Ψ̃Iα̇ , Fαβ, Fα̇β̇) , (4.14)

where the R-symmetry indices now label the fundamental of SU(4) and can therefore no longer

be raised and lowered. It contains the two familiar ±1 helicity states of the massless spin-1, six

real massless scalars ϕIJ and eight massless gluino states via the chiral parts of ΨI
α, Ψ̃Iα̇. We
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note that the massless scalars ϕIJ are no longer trace-free; the extra 6th component arises from

the loss of one of the polarization degrees of freedom going from the massive spin-1 field FAB

to the massless case.

For momentum eigenstates with space-time dependence ϕ = exp(ik·x), the supersymmetry

generators reduce to the massive little group as

QAI = κaAQaI , {QaI , QbJ} = 2ΩIJεab

where κAa is defined by (4.8), because the Dirac operator reduces as Dm
ABϕ = (κAκB)ϕ. In the

massless limit we have the natural embedding of the little group via κ1α = 0 = κ̃0α̇, κ0α =

κα, κ̃1α̇ = κ̃α̇.

Both the massive and massless multiplets are annihilated by half of the supercharges so

that their 8 bosonic and 8 fermionic states can all be encoded into the exterior powers of N = 4

fermionic supermomenta qI , I = 1, . . . 4. These are defined to be the eigenvalues of an anticom-

muting subset of theQIa. To define this subset, we introduce a basis (ϵa, ξa) of the fundamental

representation of SL(2) so that the supermomenta are defined by the action of the supercharges

on functions on on-shell superspace via:

QaIF̃ (κ, q) =

(
ξaqI + ϵaΩIJ

∂

∂qJ

)
F̃ (κ, q) . (4.15)

The massive and massless multiplets are expanded on on-shell superspace as follows:

F̃
(m)
(κ,q) = F ϵϵ(κ) + qIΨ

ϵI(κ) + q2F ϵξ(κ) +
1

2
qIqJΦ

IJ(κ) + q2qIΨ
ξI(κ) + q4F ξξ(κ)

F̃
(0)
(κ,q) = gh(κ) + qIΨ

ϵI(κ) +
1

2
qIqJφ

IJ(κ) + q2qIΨ
ξI(κ) + q4g−h(κ) ,

(4.16)

with q4 = (qIqJ)(q
IqJ) and (q3)Ia = ∂q4/∂qaI .

It is then standard procedure to encode such multiplets in superfields on a supersymmet-

ric extension of Minkowski space satisfying (4.15) and to derive a supersymmetric Penrose

transform by establishing a supergeometric correspondence with super-twistor space. We can

bypass some of this by studying the action of supersymmetry on super-twistors.
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Supertwistors and the Penrose transform. We extend the bosonic complexified twistor Y ∈

TC with N fermionic coordinates ηI , I = 1, . . . ,N to give Y = (λA, µ
A, ηI) ∈ T C, using Dirac-

spinor notation. These Fermionic coordinates allow the supersymmetry to act geometrically

as

QAI = λA
∂

∂ηI
+ ηJΩJI

∂

∂µA
, {QAI , QBJ} = 2ΩIJλ[A

∂

∂µB]
,

where the anticommutator now generates the action of translations on T C. This extends in the

obvious way to the two-twistor description of supersymmetric massive particles in terms of

Ya with sums over the a-index in each term. Again, the supersymmetric extension for the Ya

becomes:

Ya = (λaA, µ
A
a , η

I
a) ,

with again I = 1, . . . ,N . The plane wave representative for particles with spinor helicity data

κAa = (καa, κ̃
α̇
a ), supermomentum q and polarization data ϵa will take the form:

Φ(κ,q)(µ, λ) =

∫
d2u d2v w δ̄4((uλA)− (v κA)) δ̄((ϵv)− 1) eiua(µAaϵA+qIη

Ia)− 1
2
(ξv) q2 (4.17)

Here w is a function of weight 2 in Ya(or −2 in u); as far as the Penrose transform is concerned,

this can be taken to be w = (λαλ̃α̇)e
αα̇ where eαα̇ is a polarization vector for the spin-1 1-form.

In the string model however, w plays an important role in the vertex operators, and will be

constructed differently. This representative indeed satisfies

QAIΦκ,q(Ya) = ((κAξ)qI + ϵAΩIJ
∂

∂qI
)Φκ,q(Ya) ,

and we can then read off the Penrose transform for the component fields from the action of the

supersymmetry generators.

4.2 Massive two-twistor string

The significance of the twistor representations of spaces of massless and massive particles is

that they are represented as symplectic quotients of vector spaces. This means that in order to
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construct a theory of maps from a Riemann surface Σ → PC
m, we can start with a quantum field

theory of maps Σ → TC in the massless case and Σ → TC×TC in the massive case; in both cases,

by virtue of the twistor representations, these are free field theories on the worldsheet Σ. We

then realize the symplectic quotient in the Lagrangian framework by gauging the Hamiltonian

symmetries as we shall describe below. These gauge symmetries are then dealt with via BRST in

the quantum field theory. In both cases, the free field theory action is based on the restriction of

the symplectic potential Θ to T 0,1
Σ . This has the consequence that the worldsheet commutators

and OPEs encode the symplectic structure Ωm on PC
m.

We first briefly review the massless case; although the construction for the massive two-

twistor string will be analogous, but with target PC
m and the different massive supersymmetry

representation. In the next section we explain how the models allow us to construct amplitudes

as correlation functions of vertex operators in these models.

The massless case. The twistor strings of Witten & Berkovits [22, 23] and the 4d ambitwistor

string of [83] are theories of holomorphic maps Y = (Z, Z̃) : Σ → TC gauged by C∗ where we

now use supertwistors Z = (λα, µ
α̇, ηI) ∈ T = C4|N , I = 1, . . . ,N and their complexification

TC = T×T∗; this is the complexification of the four-dimensional massless Ferber superparticle

[154].

The four-dimensional ambitwistor string of [83] is closest to the massive case, being with

worldsheet fields twisted to take values in Ω
1/2,0
Σ and so we briefly review it here. It is a theory

of holomorphic maps from a Riemann surface Y : Σ → TC⊗Ω
1/2,0
Σ , so that the coordinates Y are

worldsheet spinors. The reduction to ambitwistor space is enforced by gauging the little-group

Hamiltonian Y · Y := Z · Z̃ with the worldsheet gauge field A ∈ Ω0,1
Σ . The basic bosonic 4d

ambitwistor action in conformal gauge5 is based on the symplectic potental

S0
4d =

∫
Σ
Z̃ · ∂̄Z − Z · ∂̄Z̃ +AY · Y . (4.18)

5The full action would start with a term eT where e ∈ T 1,0
Σ ⊗ Ω0,1

Σ is a Beltrami differential thought of as
a gauge field parametrizing complex structures on Σ up to coordinate transformations and T ∈ (Ω1,0

Σ )2 is the
holomorphic stress energy tensor; this is then gauge fixed, giving rise to ghosts (b, c) ∈ ((Ω1,0

Σ )2, T 1,0
Σ ) and BRST

operator Q =
∮
cT + bc∂c/2.
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Classically, A is a Lagrange multiplier that enforces the constraint Y ·Y = 0 and the quotient by

its Hamiltonian vector field arises because (Z, Z̃) → (αZ,α−1Z̃) are gauge symmetries of the

action when accompanied by the gauge transformationsA→ A+∂̄ logα. Thus the holomorphic

symplectic quotient to A in (4.9) is realized in this Lagrangian framework by the gauge field

A. In the QFT this is implemented via BRST quantization. The models of [83] also include

additional worldsheet matter fields but these are much as described for the massive case below.

Massive models. In order to have target space PC
m, we start with maps Ya : Σ → TC × TC,

with the reduction to PC
m obtained by gauging the complexified two-twistor massive internal

symmetry group. Thus, our theory is one of maps Ya : Σ → TC ⊗C2 ⊗Ω
1/2,0
Σ with action (again

in conformal gauge)

S4d =

∫
Σ
Ya∂̄Ya +AabYa · Yb +A(λ2 − jH) + Ã(λ̃2 − jH) + Sm . (4.19)

Here a = 1, 2 is the little group index, and (Aab = A(ab), A, Ã) are worldsheet (0, 1)-forms that

act as Lagrange multipliers for the constraints, and as gauge fields for the internal two-twistor

symmetry group. With this symmetry, we no longer have the freedom to allow worldsheet

fields of different degrees as we did for the twistor-string. In order to describe specific space-

time theories, the basic action must be supplemented by further worldsheet fields such as a

current algebra for gauge theory and some analogue of worldsheet supergravity for gravity

with details given below. Here we assume that it contains a current-algebra that gives rise to a

(1, 0)-form jH on the worldsheet that generates some symmetry.

To be more explicit, in quantizing the fields Ya(σ) = (Za(σ), Z̃a(σ)), for σ a coordinate on

Σ, the only non-trivial OPEs are

ZA
a (σ)Z̃bB(0) =

δAB
σ
εab + . . . .

reflecting the Poisson brackets. These OPEs can lead to anomalies for the little group SL(2,C)

generated by Jab = Ya · Yb. For a consistent model these anomalies have to vanish, which

requires judicious choices for the worldsheet matter Sm.
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The fields a, ã gauge the constraints λ2 − jH = 0 = λ̃2 − jH . These equations constrain the

mass operators

λ2 :=
1

2
λaαλ

α
a = det(λaα) , λ̃2 :=

1

2
λ̃aα̇λ̃

α̇
a = det(λ̃α̇a ) ,

to be given by a (1, 0)-form jH on the worldsheet Σ. We write jH to indicate that this will

be taken to be the current associated to the element h ∈ g, living in the Cartan subalgebra of

some symmetry of the system. This jH will be constructed from the matter fields and, through

the constraints above, will determine the masses of the particles. For a given matter content,

different choices of jH correspond to different distributions of masses within the models. The

massless models (4.18) are recovered from these massive ones when jH = 0 by reducing the

path integral.

Worldsheet matter. A variety of physically interesting models can be constructed from differ-

ent choices of Sm. These will be made up of current algebras, whose action will be denoted by

SC , and worldsheet fermions providing a supersymmetric extension of the worldsheet gauge

algebra, denoted by Sρ. The latter will play a similar role to worldsheet supergravity in the

superstring, and is requried for models describing gauge theory and supergravity.

A worldsheet current algebra is a theory on the worldsheet from which one can construct

worldsheet currents ja ∈ Ω1,0
Σ ⊗ g for some Lie algebra g, satisfying the OPE

ja(σ)jb(0) ∼ l δab

σ2
+
fabc j

c

σ

where a, b are Lie-algebra indices, l ∈ Z is the level and fabc the structure constants of g. Such

current algebras can be constructed in a number of ways, most easily for SO(n) and SU(n) by

‘real’ or ‘complex’ free fermions on the worldsheet. See also [117] for a construction referred to

as a comb-system, with level zero and novel properties that allow the construction of Einstein-

Yang-Mills amplitudes. We will not specify the action SC explicitly, but merely assume that we

have the currents ja in the theory.

For gauge and gravity theories, we need a supersymmetric extension of the worldsheet
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gauge algebra. This plays a similar role to the worldsheet supergravity of the conventional

RNS models, see also [43] for the ambitwistor-string version. The supersymmetric extension

of the bosonic gauge algebra sl2 × C2 is constructed by introducing the worldsheet fermions

(ρA, ρ̃
A) ∈ Ω0(Σ,K

1/2
Σ ) with action

Sρ =

∫
Σ
ρ̃A∂̄ρA + ba

(
γAB5 λaAρB

)
+ b̃a λ

a
Aρ̃

A . (4.20)

Here the (ba, b̃a) are fermionic gauge fields and so are (0, 1)-forms on the worldsheet. They

are Lagrange multipliers that impose the constraints γAB5 λaAρB = λaAρ̃
A = 0 and their gauge

transformations translate µAa in the direction of (ρA, ρ̃A). The only non-trivial OPE’s of the

constraints are given by

(
γAB5 λaAρB

)
(z)
(
λbBρ̃

B
)
(w) ∼ εab

z − w

(
λ2 − λ̃2

)
. (4.21)

These symmetries thus give a supersymmetric extension of the two-twistor internal symmetry

group C× sl2 ⋉H(0, 4), where H denotes the Heisenberg Lie superalgebra6.

Models. With these ingredients, models without SL(2,C)-anomalies can be constructed by

combining a pair of worldsheet matter systems, much along the lines of the double copy for

the RNS ambitwistor strings as in [117] as follows:

massive bi-adjoint scalar SBAS = S4d + SC + SC̃ ,

super Yang-Mills on the Coulomb branch SCB = S4d + Sρ + SC ,

super-gravity Ssugra = S4d + Sρ1 + Sρ2 .

In this construction two points are worth highlighting:

(i) The closure of the constraint algebra requires that both constraints λ2− jH = 0 = λ̃2− jH

6The Heisenberg superalgebra H(mb,mf ) has a central element z, as well as 2mb even and mf odd generators,
H = ⟨x1, . . . , x2mb , z⟩ ⊕ ⟨ψ1, . . . , ψmf ⟩. The generators satisfy the ‘usual’ commutation relations

[xi, x2i] = z , {ψr, ψs} = 2δrs z .
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involve the same current jH for super Yang-Mills, whereas a more general construction is

possible for the bi-adjoint scalar.

(ii) Unlike the twistor- and ambitwistor models for 4d massless theories, these models fit

neatly into the double copy format [37] expressed directly in the CHY formulae [33] and

in the corresponding RNS ambitwistor strings [43]. However, it is harder to find a jH

to endow our particles with mass in the gravitational case because there is no additional

current algebra, and with jH = 0 our models are massless. We also note that as in [43,85,

155], both SCB and SBAS also contain a gravity sector, but it is of higher order and remains

massless.

BRST and anomalies: Gauge fixing the action via BRST generates ghost systems, the well-

known (b, c) ∈ (Ω1
Σ)

2 × TΣ for worldsheet diffeomorphisms, as well as additional fermionic

ghosts associated to internal two-twistor symmetry group, and bosonic ghosts for the fermionic

currents in Sρ. The BRST operator takes the usual form:

Q =

∮
ci(Tm

i +
1

2
T g
i ) , (4.22)

where the sum runs over all sets of ghosts, and Tm and T g are the matter and ghost parts of the

currents respectively. By construction Q2 = 0 classically, but in the QFT double contractions

(or worldsheet bubble diagrams with two external gauge fields) can lead to anomalies so that

Q2 ̸= 0 with a potential obstruction arising from any of the gauged symmetries. Here we briefly

summarize the results of such calculations.

The models above only have a vanishing SL(2,C) anomaly (corresponding to the two-

twistor internal symmetry group) for maximal space-time supersymmetry, as evident from the

anomaly coefficient

aSL(2) =
∑
i

(−1)FitrRi(t
ktk) =


4 trF(t

ktk)− tradj(t
ktk) = 0 bi-adjoint scalar

3
4 (4−N ) Coulomb branch

3
4 (8−N ) supergravity .
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The anomaly coefficient vanishes trivially for the bi-adjoint scalar, and for maximal supersym-

metry in the case of gauge theory and gravity. The sum here runs over all fields that transform

non-trivially under the internal two-twistor symmetry group SL(2,C). Similarly, the Virasoro

central charge can be calculated for all models, giving

cBAS = −40 + cj , cCB = −32 +N + cj , csugra = −20 +N ,

where cj denotes the central charge of the internal current algebra. The conformal anomaly

thus vanishes for suitable choice of Sj , with N = 4 and cj = 28 for Yang-Mills theory on the

Coulomb branch, and cj = 40 for the bi-adjoint scalar. The Virsaoro anomaly for the supergrav-

ity model also vanishes if we include a central charge term c6d = 12 arising from six compact-

ified dimensions. After BRST gauge-fixing, all such models are free worldsheet theories with

vanishing anomalies.7 In the next chapter we explain how to obtain n-point amplitudes from

these models.

4.3 Summary and discussion

We have seen that a chiral string whose target is the complexification of Penrose’s two-twistor

representation of the massive particle phase space yields theories of massive particles in four

dimensions. The spectrum of these models includes massive particles, and correlators give

amplitude formulae for super Yang-Mills on the Coulomb branch among other theories. These

string models represent the confluence of two separate developments: the twistor-particle pro-

gram of the 70’s describing massive particles, and the more recent ambitwistor string models

describing scattering amplitudes for massless particles. In the latter approach a chiral or holo-

morphic string whose target is the complexification of the space of massless particles yields

amplitudes for theories of massless fields. Here we have seen that the logic extends natu-

rally to massive particles. The significance of Penrose’s twistor description is that it provides

a canonical representation of the space as the symplectic quotient of a vector space modulo

7Strictly speaking, the Lie algebra element H should also be null or the current algebra should have level l = 0
as in the comb systems of [42].
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a Hamiltonian group action allowing the BRST quantization of a free quantum string. The

twistorial description furthermore facilitates the incorporation of fermions and supersymme-

try.

The models described in this chapter, and related ones, can also be derived via a symmetry

reduction of the higher-dimensional ambitwistor string models, as we will show in the next

chapter. This alternative interpretation of the two-twistor string highlights that these world-

sheet models describe a subset of massive models, where the particle masses are related to their

(higher-dimensional) charges under a symmetry. While this may appear restrictive, it includes

many theories of immediate interest; in particular, all massive particles that we encounter in the

standard model arise from the Higgs mechanism that can be obtained by symmetry reduction.

Chapter 5 will contain full details of the fixed vertex operators and picture changing op-

erators that we omitted for brevity. Mirroring the close relation of the models, the result-

ing amplitude formulae for massive particles are also closely related to those obtained pre-

viously by dimensional reduction from six and five dimensions [1, 2, 85]. These can further

be related to the formulae of [82] by a change of gauge choice of an embedding inside a La-

grangian grassmannian [111]. At low point orders, these expressions match the results obtained

in [12, 50, 71, 72, 156, 157] by BCFW recursion.
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Massive models from symmetry reduction

Symmetry reduction has long been used in the study of differential equations, with numerous

applications across mathematical physics, including the twistorial take on integrability [158].

In string theory, Kaluza-Klein (KK) reductions are the result of compactification followed by

a truncation of massive modes and they constitute a simple example of symmetry reduction

where the theory is taken to be independent of one or several spacetime dimensions:

Φ(xµ, z) = Φ(xµ) . (5.1)

The work of Cremmer, Scherk and Schwarz [159, 160] instructs us on how to generalise the

procedure in order to introduce masses into the system. The idea is to ‘twist’ the KK cylinder

condition by the action of some symmetry of the original theory:

Φ(xµ, z) = gz(Φ(x
µ)) , (5.2)

giving rise to a mass matrix via the group element gz . The aim of this chapter is to show how

this kind of reduction can be implemented at the level of the ambitwistor string.

In the previous chapter we have introduced massive models in four dimensions as theories

of maps into the phase space of the complexified massive particles in its twistorial description.

We take here a different approach and present them as symmetry reductions of models in five

dimensions [85]. The formalism we employ is along the lines of the dimensional reduction to

five dimension, with the difference that the extra components of momentum along which we
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are reducing are combined with currents of some symmetry of the system.

As discussed in the introduction, Dolan & Goddard and Naculich [3, 75] had conjectured a

massive form of the scattering equations (1.18). Their work was based solely on the original

CHY formulae for massless scattering, so that it wasn’t clear at that point whether the full CHY

formulae described consistent amplitudes and what theories these would correspond to. More

importantly, the formulae didn’t give any indication of what values the masses should take,

other than that internal momentum should be conserved. This raises the question of whether

the full CHY formulae would admit a consistent description of amplitudes for massive parti-

cles, such that masses of both external and internal propagating particles would correspond to

masses in some field theory.

In this chapter we will take a ‘top-down’ approach. We define models of massive particles

in the ambitwistor string as symmetry reductions of higher dimensional massless theories.

Because the models and amplitudes that we employ in higher dimensions have been proven to

correspond to the known massless theories, the massive amplitudes are also verified, provided

that we have an understanding of the corresponding theory as a symmetry reduction. It is then

natural to expect that the amplitude formulae factorise on poles corresponding to masses in the

spectrum of the theory we are representing. The first few sections will be dedicated to showing

the consistency of factorisation in the amplitudes formulae we derive. The massive polarised

scattering equations on which correlators in the twistorial models localise are closely related to

(1.18). After the path-integral we will find that λAa is given in (5.81) and we can compute [1,2]:

PAB(σ) := (λAλB) =
∑
i

KiAB

σ − σi
dσ , (5.3)

where Ki is defined as in (1.17). Because we noted below (4.12) that the polarise scattering

equations imply KAB · PAB = 0, on their support we have:

0 = KiAB P
AB(σi) =

∑
j ̸=i

ki · kj − κi · κj
σi − σj

, (5.4)

which are precisely the massive scattering equations predicted by Naculich. As it was the

case for massless scattering, singularities both in the RNS and twistorial ambitwistor string
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stem from degenerations of the system of equations (5.4). Therefore we introduce an RNS-type

model for biadjoint scalars in section 5.2 in order to carefully study the mass assignment of

internal particles. We show how to introduce masses by gauging currents more generally in

the original ambitwistor string [43] and we give an argument for the consistency of the mass

assignment for internal propagating particles using factorisation and symmetry invariance in

§5.3.

To describe more interesting supersymmetric models, the second part of the chapter (see

§5.4) focuses on the four-dimensional models such as the ones presented in chapter 4, where

special attention is given to a model for the Coulomb branch of N = 4 SYM in §5.5. For this

model we establish several explicit examples and interesting properties of the amplitudes.

In §5.6 we present symmetry reductions that exploit the R-symmetry of maximally su-

persymmetric theories in five dimensions. These are CSS reductions of the type described

in [159, 160]. Theey produce a range of massive theories with various degrees of residual su-

persymmetry and massless gluons and gravitons in sYM and gravity respectively. We study

the spectrum of the reduced theory and present instances of double copy that produce gauged

supergravities in four dimensions, such as the ones that were studied in [161].

5.1 Symmetry reduction

The aim of this chapter is to show how the procedure of symmetry reduction can be integrated

in the ambitwistor strings of [43, 83] to produce models of massive particles and derive am-

plitude formulae that naturally rely on a massive version of the scattering equations. In this

section we review the basics of symmetry reduction and introduce the toy model that we will

use to implement it in the ambitwistor string.

The simplest example of a symmetry reduction that we will consider is a trivial dimensional

reduction

∂dΦ = 0, (5.5)

where Φ stands for any field in the theory. This arises as the limit of a compactified theory as the

size of the compact dimension goes to zero. More generally, translations in the extra dimension
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can be combined with the action of some symmetry G of the theory to impose, schematically:

(∂d +H) · Φ = 0 . (5.6)

Here H is an element in a choice of Cartan subalgebra h ⊂ g.

In the supergravity literature, reductions of this type arise in the limit of vanishing com-

pact dimensions for what are known as (Cremmer-)Scherk-Schwarz reductions. These were

first studied in [159, 160] as a way to derive effective supergravities in four dimensions with

spontaneous breaking of supersymmetry at various scales. They generalize dimensional re-

duction, here along the direction z, by twisting the periodicity condition under the action of

some symmetry of the theory:

Φ(xµ, z + 2πR) = gz(Φ(x
µ, z)) gz = g(z) = eiHz, H ∈ h , (5.7)

The field can then be expanded in a basis of eigenfunctions for the compact dimensions, mod-

ulo the action of gz :

Φ(xµ, z) = eiHz
∑
n

Φn(x
µ)ein

z
R . (5.8)

In the limit as the compactification radius goes to zero, the tower of massive modes decouples

and we can write:

Φ(xµ, z) = gz(Φ(x
µ)) . (5.9)

Several remarks are due. The periodicity condition is equivalent in the R→ 0 limit to:

∂zΦ(x
µ, z) = iHΦ(xµ, z) . (5.10)

This is what we schematically wrote as (5.6) and we can see that it produces mass terms such

as:

(∂zΦ(x
µ, z))2 = H2Φ(xµ)2 , (5.11)

for all fields that are charged under H . The most important consequence of the decomposition

(5.9) is that the whole dependence on the compactified dimension is carried by gz and hence
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drops out on account of the symmetry of the theory.

Bi-adjoint scalar The simplest model we will construct describes bi-adjoint scalars, a theory

of scalar fields Φ = ϕaȧT aT̃ ȧ, in the adjoint of two Lie algebrae g and g̃ with structure constants

f, f̃ . We recall the lagrangian:

L =
1

2
∂µϕaȧ∂µϕaȧ +

λ

3
fabcf̃ ȧḃċϕaȧϕbḃϕcċ = Tr

(
1

2
∂µΦ∂µΦ+

λ

3
[Φ,Φ]Φ

)
, (5.12)

One can reduce the theory above from d+ 1 to d dimensions via a symmetry reduction:

∂

∂xd
ϕaȧ = Ha

b ϕ
bȧ + H̃ ȧ

ḃ
ϕaḃ , (5.13)

where H, H̃ are in the Cartan subalgebra of g and g̃ respectively. Upon this reduction, the

kinetic term (∂dϕ
aȧ)2 of the bi-adjoint scalar action gives rise to a mass-matrix for the theory.

The reduction (5.13) fixes the dependency of the fields on the xd coordinate. For the field

Φ = ϕaȧT aT ȧ, such a reduction (say H̃ = 0) dictates that Φ(xµ, xd) = eHxd
Φ(xµ)e−Hxd

so

that the xd dependency drops out of the acti.

In the case of a generic flavour group, the element H defining the reduction can be any

linear combination of elements of the Cartan subalgebra, where the mass parameters are the

rank(g) coefficients of the linear combination. For instance, if we takeG×G̃ = SU(N)×SU(Ñ)

with N = Ñ = 2, there is only one element in the Cartan subalgebra, so we can write:

H = mdiag(1, 0,−1) H̃ = m̃ diag(1, 0,−1) , (5.14)

Expanding the mass matrix, one can read off the mass of the various states in the theory.

5.2 Massive model for bi-adjoint scalar

The theory we introduced above will be the playground for us to establish the mechanism of

symmetry reduction in the ambitwistor string: introducing masses in the simple context of the

biadjoint scalar theory, we will derive the massive scattering equations and study the factor-
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ization properties of the massive correlators. These are universal to all formulae derived from

the ambitwistor string and we will then be able to extend our description to more interesting

theories in the following sections.

5.2.1 Worldsheet model for the massive bi-adjoint scalar

Our aim is to construct a massive model by performing a symmetry reduction of the mass-

less bi-adjoint scalar worldsheet action described in §2.2. To ease into the implementation of

(5.9), let us first take a look at how a trivial dimensional reduction can be realised by gauging

translations in the d− 1 direction:

S = Sm=0 +

∫
Σ
aPd−1 . (5.15)

This action is invariant under the gauge transformation:

δa = ∂̄α, δXd−1 = α, δP = 0 , (5.16)

which indeed generates translations along the d − 1 axis. Because of the additional term in

the action, BRST gauge fixing imposes the constraint Kd−1 = 0 on the kinematics of the vertex

operators.

When performing a symmetry reduction, we can then gauge a current that is the sum of one

component of momentum with an element jH that acts as a symmetry on the original higher

dimensional theory. The natural candidate in the case of the bi-adjoint scalar is the symmetry

associated to the current algebra1:

S = Sm=0 +

∫
Σ
a(Pd−1 − jH) (5.18)

Here jH is the current corresponding to the element H in the Cartan subalgebra h ⊂ g. Notice

1We can combine this with the action of both current algebrae:

S = Sm=0 +

∫
Σ

a(Pd−1 − jH − jH̃) , (5.17)

but we will use the action above for the sake of readability.
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that it would be impossible to set Pd−1 equal to a constant mass M through this construction,

as the gauged current needs to be a one-form.

The action above is invariant under the gauge transformation:

δa = ∂̄α, δXd−1 = α, δP = 0, δSj =

∫
Σ
jH(σ)∂̄α , (5.19)

corresponding to a translation in the d− 1 direction composed with the action of the symmetry

element H . We can recognise the variation of Sj as the definition of the current jH . In addition

to the usual (b, c) and (b̃, c̃) ghosts, we have to introduce fermionic π ∈ ΠΩ0(Σ,KΣ) and ξ ∈

ΠΩ0(Σ) ghosts. The BRST operator contains an additional term:

∮
1

2
cT gh

a + ξ(Pd−1 − jH +
1

2
T gh
a ) , (5.20)

with T gh
a = ∂ξπ. For the massive bi-adjoint scalar we take vertex operators that as in (2.13),

with kinematical data Ki = (ki, κi) as in (1.17):

cic̃i(T · j)(T̃ · j̃)eiKi·X(σi) . (5.21)

Here ki are the physical components of momentum while κi are an artifact of the construction

via symmetry reduction: BRST invariance of the model constrains their value, thus assigning

masses to the external particles. Indeed BRST gauge fixing in the presence of vertex operators

produces n − 1 so-called picture changing operators, one for each modulus of the gauge field a.

This procedure was outlined in the review §2.2 and it is analogous to the twistorial case that

we will treat in detail in §5.4.3. The result of gauge fixing are n− 1 delta functions enforcing:

δ(Resσi(Pd−1 − jH)) . (5.22)

On color eigenstates,

jH(σ) · Vi(σi) ∼
hi

σ − σi
Vi(σi) , (5.23)

where hi is the charge of the external state under H , hi : [H,T ai ] = hiT
ai . Anticipating the
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localisation of the path integral in (5.29), we can evaluate the residues to find: Then the delta

functions constrain internal momentum as:

δ(κi − hi) , (5.24)

BRST invariance still requires the states to be on-shell K2
i = 0. Then, although we will keep

writing the full momentum K, the conditions above tell us that the vertex operators describe

massive states in d− 1 dimensions:

Ki = (ki|κi) k2i = κ2i = h2i =: m2
i . (5.25)

Massive amplitudes as correlators We derive amplitude formulae as n-point correlators in

this model:

An =

〈
n∏

k=2

δ(Resσk
(Pd−1 − jH))

3∏
l=1

clc̃l(Tl · j(σl))(T̃l · j̃(σl))eiKl·X(σl)
n∏

i=4

∫
Σ
Vi

〉
(5.26)

where Vi are the integrated vertex operators in (2.15) with the replacement ki → Ki. These

contain the n− 3 delta functions δ(Ki · P (σi)) that give rise to the scattering equations.

We can integrate out the X field in the path integral by incorporating the plane waves factors

into an effective action, which then contains all the dependence on X in the form:

1

2π

∫
Σ
(P · ∂̄X)(σ) + 2πi

n∑
i=1

δ̄(σ − σi)Ki ·X(σ) , (5.27)

When performing the path integral for the X field, the zero modes contribute delta functions

δd−1(
∑
ki)δ(

∑
κi), conserving both momentum and internal momentum. The rest of the inte-

gration generates delta functions enforcing the equations:

∂̄Pµ = 2πi
∑
i

Kiµδ̄ (σ − σi) . (5.28)
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As in the massless case, at genus zero these are solved by:

Pµ(σ) =
n∑

i=1

Kiµ

σ − σi
. (5.29)

so that P is completely localised on this solution.

What we obtain is a worldsheet formula for the scattering amplitude of n states in a theory

of massive and massless scalar fields. The amplitude is decomposed into a sum of color ordered

amplitudes over all color structures:

An =
∑

α∈Sn/Zn

∑
β∈Sn/Zn

tr
(
Tα(1) . . . Tα(n)

)
tr
(
T̃ β(1) . . . T̃ β(n)

)
mn(α|β) , (5.30)

The double partial amplitudes is given by the correlator as:

mn(α|β) = δd−1

(∑
i

ki

)
δ

(∑
i

κi

)
n∏

k=2

δ(κk − hk)

∫ ∏′

i dσiδ̄(E
i)

Vol(SL(2,C))
PT(α) PT(β) , (5.31)

localised on the solutions to the massive scattering equations:

Ei =
∑
j ̸=i

ki · kj − κi · κj
σij

, (5.32)

with masses assigned via:

κi = hi [H,T ai ] = hiT
ai |κi| = mi . (5.33)

These equations here simply arise by inserting the solution for Pµ(σ) in Ki · P (σi) = 0. Recall

that, as explained in the massless case, the delta functions imposing these equations come from

fixing the moduli of the gauge field ẽ in the presence of n vertex operators, that is they enforce

the constraint P 2 = 0 in the original d dimensional space.

The massive scattering equations Ei are in the form of the equations proposed by Naculich

(1.15), with ∆ij = −κi ·κj These equations are invariant under simultaneous SL(2,C) transfor-
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mations of the punctures {σi} by conservation of the internal momentum,

∑
i

κi = 0 , (5.34)

which guarantees that the constraints (1.16) are satisfied:

−
∑
i ̸=j

κi · κj = m2
i .

In this derivation we provided a worldsheet description of massive theories, together with

amplitude formulae and mass assignments that follow automatically from the model. We will

show in the next section that the invariance of the scattering amplitude under the original

global symmetry guarantees the consistency of mass assignments also for particles propagating

in the internal channels.

5.2.2 Consistency of the bi-adjoint scalar massive model

While Naculich’s work had shown that the scattering equations could be modified to include

massive particles, it wasn’t obvious that the full CHY formulae would describe amplitudes

fot an underlying massive field theory. The model that we have described above for biadjoint

scalars and that we generalise in the next section provides us with a well established worldsheet

description of known massive theories. To make the matter more concrete, in this section we

will show that (5.31) gives a consistent representation of scattering amplitudes in the massive

theory described in section 5.1. In order to do so we want to show that also the particles

propagating in the factorisation channels have masses corresponding to their charges under the

flavor group. For instance, in the case of an SU(2) flavor group we expect the masses of internal

particles to take value in the spectrum of the corresponding lagrangian theory, namely 0 and

m, and the interactions are consistent with that lagrangian. We make this manifest by showing

that also for the particles propagating in the factorization channels, internal momentum κ is

assigned as their flavour charge. The mass assignment then follows straightforwardly. Before

we go through the argument in more detail, we briefly recall the factorisation properties of
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CHY-type amplitude formulae, as outlined in the introduction.

Factorization in the CHY formalism The tree level scattering equations relate the boundaries

of the moduli space of the n-punctured Riemann sphere to factorization channels of the ampli-

tude. The boundaries correspond to configurations where the Riemann sphere degenerates

into two subspheres joint at a node and can be parametrized as:

σi = σI + εxi +O(ε2) for i ∈ I , (5.35)

where I is the subset of {1, . . . n} labelling the punctures on one of the two subspheres. The

degeneration corresponds to the limit ε → 0. In this limit the scattering equations tell us that

Ki · PI(xi) = O(ε), where PI is the original one form restricted to the I component of the

degenerate Riemann sphere. This entails:

K2
I := (

∑
i∈I

Ki)
2 =

1

2

∑
i,j∈I

Ki ·Kj =
∑

i,j∈I,i ̸=j

xiKi ·Kj

xi − xj
=
∑
i∈I

xiKi · PI(xi) = O(ε) , (5.36)

i.e. in the limit ε → 0, the particle ’I’ goes on-shell. The boundary described above indeed

corresponds to a factorization channel on the support of the scattering equations.

Furthermore the scattering equations factorise on each of these channels: as ε → 0 they

reduce to two sets of constraints on the two subspheres with an additional puncture I on each,

corresponding to the node by which they are joint and such that the residue of the one form on

that puncture is ±KI . For theories of interest, this factorization property is carried over to the

whole amplitude, allowing to write [3]:

K2
I ACHY

n → ACHY
|I| ACHY

|I| as K2
I → 0 , (5.37)

for all factorization channels I .
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Masses of the internal particles When considering a symmetry reduction, the factorization

channels correspond to:

0 =
(∑

i∈I
ki
)2 − (∑

i∈I
κi
)2

= k2I − κ2I . (5.38)

If the values of κ are assigned consistently, we must have κ2I = m2
I , where mI is in accordance

with the spectrum of the theory, for any factorization channel that can appear in the amplitude.

In other words, we want the mass of the particle propagating in the internal channel as defined

via conservation of internal momentum on the subspheres to match with the mass we expect

for the propagator of that particle from the lagrangian description of the given theory. We will

see that this is automatic for internal momenta assigned via symmetry reduction and we find

κ2I = h2I = m2
I . We want to show that all internal particles in (5.31) are consistent with the

lagrangian theory (5.12) reduced via (5.13). The masses in the amplitude formula are assigned

via:

κi = hi hi : [H,T
ai ] = hiT

ai . (5.39)

For any collection of generators {T a1 , . . . T an} we can write:

0 = Tr

[
[H,T a1 · · ·T an ]

]
=

(∑
i

hi

)
Tr

[
T a1 · · ·T an

]
. (5.40)

This means that either the sum of all the internal momenta vanishes or the corresponding trace

structure does, i.e. all the partial amplitudes that give a non vanishing contribution obey over-

all conservation of charge under H .

Now we can exploit what we know about the factorization properties of (5.31). Singularities

arise as a collection of punctures {σi}i∈I become degenerate. The leading pole in the degen-

eration parameter ε corresponds to subsets I of the external labels that are adjacent in both

orderings α and β. By the considerations that lead to (5.36), we have that these singularities

correspond to momentum KI =
∑

i∈I Ki, going on shell. The particle propagating in the inter-

nal channel has internal momentum
∑

i∈I κi. In order to show that
∑

i∈I κi is the H eigenvalue
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for the state propagating in the internal line, we manifest the factorisation of the amplitude

formula. In the limit K2
I → 0 we have:

(k2I − (
∑
i∈I

κi)
2)An

→
∑

αI ,αn−I

∑
βI ,βn−I

Tr[T aα(1) · · ·T aα(n) ]Tr[T̃ bβ(1) · · · T̃ bβ(n) ]m|I|+1(αI |βI)m|Ī|+1(αĪ |βĪ) ,

where the orderings αI , βI , count |I| + 1 indices each, including the one for the extra punc-

ture inserted at the node. We refer to appendix B.1 for details of the factorization of the trace

structure, which follows from the completeness relation for SU(N). Then the amplitude (5.30)

factorizes as:

(k2I − (
∑
i∈I

κi)
2)An

→
∑
aI ,bI

∑
αI ,βI

Tr[aαIaI ]T̃r[bβI
bI ]m|I|+1(αI |βI)

∑
αĪ ,βĪ

Tr[aIaαĪ
]T̃r[bIbβĪ

]m|Ī|+1(αĪ |βĪ) ,

where the trace factors are Tr[aα; aI ] = Tr[T aα(i1) · · ·T aα(i|I|)T aI ]. The argument (5.40) for this

trace implies hI = −
∑

i∈I hi. From the form of the amplitude (5.31), we can see that the delta

functions enforce conservation of internal momentum and κi = hi for all but one particles in

the subamplitude, which we take to be particle I . Then putting all these conditions together,

we can write:

κI = −
∑
i∈I

κi = −
∑
i∈I

hi = hI , (5.41)

where in the first equality we have used internal momentum conservation in the subamplitude,

in the second one we have used the |I| ‘mass assigning’ delta functions in m|I|+1(αI |βI) and

the last equality follows from charge conservation in the subamplitude. This proves that the

particles propagating in the internal channels all have masses corresponding to their charges

under the SU(N) flavor group. By the same argument, we can take |I| = n−1 to show that the

constraint κi − hi = 0 holds for all n external particles despite the fact that the delta functions

only enforce it on n− 1 of them.
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5.3 Massive amplitudes from gauged currents

In this section we summarise the results we obtained for the bi-adjoint scalar theory in the

previous section in a language that extends naturally to all theories possessing an ambitwistor

string representation that factorises on singularities. We consider symmetry reductions of the

type we described in section 5.1. They are obtained in the ambitwistor string by gauging cur-

rents that generate a combination of translations along the d−1 dimension and transformations

under an internal symmetry group G of the theory:

Sred =

∫
Σ
a(Pd−1 − jH) (5.42)

where Pd−1 is the d-th component of the spacetime vector Pµ and it is a (1, 0)-form on the

worldsheet. The current jH is a (1, 0)-form on the worldsheet valued in the Cartan subalgebra

of some internal symmetry algebra g. Under the transformation:

δa = ∂̄α, δXd−1 = α, δP = 0 , (5.43)

the total action S = Sbos + Sred + Sm has an overall variation:

δS =

∫
Σ
jH(σ)∂̄α , (5.44)

where α ∈ Ω0(Σ) is a bosonic gauge parameter. This can be compensated by a symmetry

transformation generated by jH. Then a ∈ Ω0,1(Σ) gauges translations in the d− 1 direction up

to a symmetry transformation H as in (5.9).

The quantisation of the action in the presence of the term Sred involves introducing fermionic

ghosts π ∈ ΠΩ0(Σ,KΣ) and ξ ∈ ΠΩ0(Σ) associated to the gauge field a and additional terms in

the BRST operator: ∮
ξ(Pd−1 − jH) ⊂ Q (5.45)
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The vertex operators are of the form (2.13):

cic̃iwi e
iKi·X . (5.46)

Here wi carries a representation of the algebra g, so that :

jH(σ) · wi(σi) ∼
hi

σ − σi
wi(σi) . (5.47)

BRST invariance puts the states on-shell and gauge fixing in the presence of n vertex opera-

tors, via the additional term (5.45) in the BRST operator, generates delta functions giving an

assignment of κ = Kd−1 to n− 1 of the Kµ-momentum eigenstates:

δ(Resσi(Pd−1 − jH)) = δ(κi − hi) . (5.48)

The element H lives in the Cartan subalgebra of g:

H =

rank(g)∑
k=1

mkHk , (5.49)

whereHi are the Cartan generators and li, the coefficients of the linear combination, correspond

to mass parameters.

The computation of correlators is analogous to the case of the bi-adjoint scalar, in particular

the X path integral can be performed explicitly and the tree level amplitudes are found to be

completely localised on the solutions to the massive scattering equations:

Ei =
∑
j ̸=i

ki · kj − κi · κj
σij

, (5.50)

with masses assigned as mi = |κi| = |hi|. The contributions from the matter systems are

computed exactly as in the massless case, then evaluated on the reduced kinematics.

Additionally, we find that the amplitudes are only non vanishing on the support of a

κ−conserving delta function. This has two important consequences: on the one hand internal
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momentum conservation guarantees SL(2,C) invariance of the massive scattering equations.

Moreover it plays an essential role in showing the consistency of the masses of particles prop-

agating in the internal channels, generalising the argument in the previous section. In section

5.2.2 we recalled the factorisation properties of amplitudes obtained as correlators in the mass-

less ambitwistor string. For the massive models obtained by symmetry reduction it follows

that:

(k2I −
(∑

i∈I
κi
)2
)ACi1

...Cin
n →

∑
CI ,...

ACi1
...CI

|I|+1 ACI ...Cin

|I|+1
as (k2I −

(∑
i∈I

κi
)2
) → 0 , (5.51)

for all factorization channels I . Here Ci label the quantum number associated to the symmetry

group G. The sum above runs over all possible values of quantum numbers of the internal

particle, including CI . In appendix B.2 we review how the symmetry of the original system

implies charge conservation
∑

j hj = 0 on the scattering amplitudes. This argument applied

to sub-amplitudes tells us that the only non vanishing contributions to the channel come from

intermediate states I such that −
∑

i ̸=I hi = hI where hI is the H eigenvalue of the propagating

state. One can then use κ-conservation in the subamplitude and the |I| delta functions fixing

κi = hi to find:

κI = −
∑
i ̸=I

κi = −
∑
i ̸=I

hi = hI , (5.52)

thus showing that the assignment of masses given by the symmetry reduction is consistent:

also for the states propagating in the internal channels the masses are assigned consistently as

charges under the internal symmetry group.

One should notice that charge conservation
∑

i hi = 0 does not come automatically out

of the computation of the correlator. Indeed we can run the argument above on the full am-

plitude: the delta functions in the amplitude fix κi = hi for n − 1 particles. Then we have

κn = −
∑

i ̸=n κi = −
∑

i ̸=n hi and in order to show that κn is indeed an eigenvalue under the

original symmetry group, one needs to derive the equation
∑

i hi = 0 from an argument like

the one in appendix B.2.

In principle we could apply this type of reduction to the heterotic ambitwistor string. How-

ever, as we discussed in the introduction the twistorial realisations of the ambitwistor string
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offer a better representation of supersymmetry. In the following sections we will then consider

massive theories obtained by symmetry reduction from the five dimensional models of [85]. As

we argued earlier, although additional moduli are introduced, the amplitudes are supported

on the scattering equations obtained in the dimension-agnostic description and the singularity

structure is still determined by the boundaries of M0,n so that this argument remains valid.

5.4 Two-twistor string as a symmetry reduction

In the first part of this chapter we have described symmetry reductions and their implementa-

tion in the context of the RNS ambitwistor string. We have used the vectorial models to study

the singularity structure of the amplitude formulae and the mass assignment for internal prop-

agating particles. In this section we implement the symmetry reduction in the twistorial models

of [85] to obtain more interesting massive models in four dimensions with various degrees of

supersymmetry. We begin by studying how the symmetry reduction acts on five dimensional

momentum space, which will lead us to the embedding of massive and massless spinor helicity

variables and ambitwistors in four dimensions.

5.4.1 From five to four dimensions

Our starting point are models such as the ones outlined in §2.4.5. We pick another fixed non-

null vector Ω2 (Ω1 · Ω2 = 0). In a non-dynamical setting, the reduction we seek constrains five

dimensional momenta to obey:

Ω2 ·K =M , (5.53)

where M is fixed by the worldsheet model in the way we will detail in the next section. The

choice of Ω2 breaks the spin group Sp(4,C) → SL(2,C)×SL(2,C) ≃ Spin(4,C), each factor act-

ing separately on positive and negative chirality spinors. The index A of Sp(4,C) decomposes

accordingly into (α, α̇), one for each factor of the spin group. In the language of symmetry

reduction we used in part one, the component Ω2 ·K is the internal momentum κ. By the dis-

cussion above, five dimensional momentum also satisfies Ω1 ·K = 0 so that we can pick a frame
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such that:

KAB =

 K · Ω2ϵαβ k β̇
α

kα̇β K · Ω2ϵ
α̇β̇

 , (5.54)

where kαβ̇ = k γ̇
α εγ̇β̇ is the spinorial form of the four dimensional massive momentum with

mass m = |Ω2 ·K| = |M |, as expected in the (2, 2) representation of the spin group. The spinor

helicity decomposition of the massive momentum, as in [12], follows from the decomposition

of KAB :

kαα̇ = κaακ̃α̇a detκ =
1

2
(κα, κ

α) =M = K · Ω2 = det κ̃ , (5.55)

where a = 1, 2 is an SL(2,C) massive little group index raised and lowered by ϵab = ϵ[ab], ϵ12 =

1. These spinor helicity variables consistently require k2 = m2 = det (kαα̇) = detκdet κ̃ = M2.

As before we denote little group contractions by (· , ·) and contractions of undotted and dotted

indices as ⟨· , ·⟩ and [· , ·] as is standard for four dimensional spinor-helicity.

Coming from higher dimension, it is natural to build representations out of the four dimen-

sional Dirac spinor representation labelled by A. We understand this as a reflection of the fact

that massive particles are not chiral, so that for physical states Weyl spinors double up with

their conjugates. The polarization states of massive particles are understood as representations

of the massive little group. Spin-s massive particles transform as the symmetric part of rank 2s

tensors of the massive little group, with polarization data ϵa1...a2s = ϵ(a1...a2s). In particular we

can write

ψA = (ϵκA)e
ik·x = ϵaκ

a
A e

ik·x , κAa = (καa, κ̃α̇a) (5.56)

for a massive Dirac field momentum eigenstate with polarization ϵa. Similarly, a massive spin-1

field has polarization given by a symmetric ϵ(ab):

FAB = ϵ(aϵ̃b)κ
a
Aκ

b
B e

ik·x . (5.57)

For generic spin-s massive fields we will take the decomposition in Dirac indices:

ΨA1...A2s = ϵ(a1...a2s)κ
a1
A1

· · ·κa2sA2s
eik·x . (5.58)
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Massless particles are naturally embedded in this description by taking M = m = 0, which

can be achieved with the above spinor helicity variables by restricting to κ2α = 0 = κα̇1 , so that

the little group indices a = 1, 2 correspond to self-dual and anti-self-dual polarizations.

5.4.2 Massive models from symmetry reduction

In section 5.3 we have seen that we can implement a symmetry reduction in a worldsheet

model by gauging constraints that relate the extra components of momentum to currents for

an internal symmetry of the higher-dimensional theory. Here we apply the same procedure to

the five dimensional models (2.59) and show that we obtain massive models in four dimensions

such as the ones described in chapter 4.

In order to perform the symmetry reduction, we want to gauge a constraint that will im-

plement (5.53) at the level of the worldsheet. Because P has weight (1, 0), the mass ‘M ′ needs

to be implemented by a (1, 0)−form on the worldsheet that we will take to be a current jH for

some symmetry of the five-dimensional model we are reducing. In twistorial variables, the

constraints to be implemented for the reduction2 are:

JΩ1 =
1

2
(λ2 − λ̃2) JΩ2 =

1

2
(λ2 + λ̃2)− jH , (5.59)

where λ2 = 1
2(λαλ

α) = det(λaα) and similarly for λ̃. Here jH denotes a current generator

associated to the element H ∈ g in the Cartan subalgebra of some symmetry of the theory in

five dimensions. It is generally constructed out of fields appearing in the model. Here we will

first discuss the case where H is in the Cartan of the color group of a (S)YM theory so that it is

an element of the current algebra in the matter model, as described below.

We can rearrange the currents in a more symmetric form by taking combinations JΩ± =

JΩ2 ± JΩ1 , leading to:

S =

∫
Σ
Za · ∂̄eZa +AabZa · Zb +A(λ2 − jH) + Ã(λ̃2 − jH) + Sm . (5.60)

The supertwistor fields Za are worldsheet spinors as in the five-dimensional models. Little

2including the trivial reduction from six dimensions that was included in (2.59)
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group transformations are gauged by the fields Aab = A(ab) ∈ Ω0,1(Σ, sl2) and deformations of

the worldsheet complex structure ∂̄e = ∂̄ + e∂ by the Beltrami differential e ∈ Ω0,1(Σ, TΣ). The

fields A, Ã ∈ Ω0,1(Σ) are Lagrange multiplers imposing the constraints JΩ± = 0 and effectively

enforcing the symplectic reduction to the target space of the model. We recognize this as the

phase space of the complexified massive particle by comparison with the construction we pre-

sented in chapter 4. The action Sm is composed of matter systems such as the ones described

in [85], which we briefly review below.

Symmetry reduction The fields a, ã gauge transformations that combine translations along

the Ω2 and Ω1 directions with the action of the symmetry groupG viaH . These transformations

are:

δA = ∂̄α δµAa = α(ΩAB
2 +ΩAB

1 )λaB δλaA = 0 δSm =

∫
Σ
∂̄α jH , (5.61)

and

δÃ = ∂̄α̃ δµAa = α̃(ΩAB
2 − ΩAB

1 )λaB δλaA = 0 δSm =

∫
Σ
∂̄α̃ jH . (5.62)

Without the need to specify the action of the symmetry on the matter fields in Sm, we can

specify the variation of the action by the definition of the Noether current jH . It is then the

symmetry of the theory specified by Sm that guarantees the consistency of the reduction. In

terms of the original constraints (5.59), these disentangle into translations in the Ω1 direction

and combinations of translations in the Ω2 direction and transformations underH , as we expect

in the optic of the reduction 6 → 5 → 4d.

Here the phase space of complexified massive particles arises as a symplectic quotient of the

five dimensional ambitwistor space parametrized as in (2.61) with the additional constraints

JΩ± = 0 and the gauging of transformations that combine translations along the Ω± direc-

tion and the action of the symmetry element H . The five dimensional little group combines

with the gauging along the two reduced dimension to form the internal symmetry group of

the complexified massive particle. We can then identify the six dimensional supertwistor Z
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with the Dirac supertwistor Y we used to construct the four dimensional models in (4.19). As

expected, these have N = N (4d) = 2N fermionic components ηI . Through the reduction, we

obtain the correspondence with four dimensional Minkowski superspace M4|4N parametrized

by (xαα̇, θ
AI), with θAI = (θIα, θ̃

α̇I) in the usual notation and I = 1, . . .N via:

µA =

 0 xαβ̇

−xα̇β 0

λB + ωIJθ
AIηJ , ηI = θAIλA , (5.63)

Worldsheet matter For the models we will consider, the relevant matter systems were pre-

sented in §4.2. One is a current algebra, whose action we denote SC and recall the defining

relations for the currents ja ∈ Ω0(Σ,KΣ ⊗ g):

ja(σ)jb(0) ∼ lδab

σ2
+
fabc j

c

σ
. (5.64)

The second type of matter we need to consider in order to build gauge and gravity models is

the system of worldsheet fermions (ρA, ρ̃A) ∈ ΠΩ0(Σ,K
1/2
Σ ) with action given by (4.20).

Out of these two types of systems, we can construct models without SL(2,C) anomalies for

bi-adjoint scalars, gauge theory and gravity as follows:

massive bi-adjoint scalar SBAS
m = SC + SC̃ ,

super Yang-Mills on the Coulomb branch SCB
m = Sρ + SC ,

super-gravity S
sugra
m = Sρ1 + Sρ2 .

Algebra of constraints One might be tempted to generalize the models in (5.60) by taking

different currents jH and jH̃ in the constraints. This would correspond to performing a less

trivial reduction directly from the six dimensional model, where translations are combined

with the action of a symmetry in both extra dimensions. However, as we showed in (4.21),

in order to guarantee the closure of the algebra of constraints in the presence of worldsheet

supersymmetry Sρ we need to take jH = jH̃ . This fact is consistent with the lack of well

functioning models for gauge and gravity theories in six dimensions.
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Gauge fixing The BRST gauge fixing of the model (5.60) has been discussed in (4.2), where

we introduced fermionic ghosts associated to the gauge fixing of worldsheet diffeomorphisms,

the little group and the internal symmetry group SL(2,C) × C × C̃, as well as bosonic ghosts

associated to the fermionic constraints in Sρ. The gauge field e can be fixed to zero and, in the

absence of operator insertions, so can the fields Aab, A, Ã, b
a, b̃a.

We defined the BRST charge and verified the possible obstructions to the vanishing of Q2 at

the level of the QFT. These can in principle arise from an sl2,C anomaly or a conformal anomaly.

The sl2,C anomaly coefficient was shown to vanish for maximally supersymmetric gauge theory

and gravity. The central charge vanishes for a suitable choice of Sj such that cj = 28 for Super

Yang-Mills, cj = 40 for biadjoint scalars and the residual central charge in the gravitational

theory can be understood as coming from six compactified dimensions.

Plane wave representatives We will consider scattering of plane wave representatives on am-

bitwistor space as in [85]. For scalar states, these are obtained from the indirect Penrose trans-

form in six dimensions as elements of H1(PA,O(−2)) that naturally give the H1(PC
m,O(−2))

representatives described in chapter 4 upon dimensional reduction. For scalar external states

of kinematics κaA we have:

Φκ (Ya) =

∫
d2ud2vδ̄4 ((uλA)− (vκA)) δ̄((v ϵ)− 1) exp

((
uµA

)
ϵA
)
, (5.65)

where ua, va are four auxiliary complex variables. As noted in [5], the components det(κ) and

det(κ̃) of the external kinematics are unconstrained in the eyes of the Penrose transform, and

are only fixed by the model via BRST to give the signed mass of the state.

Supersymmetric extension In order to describe supersymmetric theories, we take the exten-

sion of (5.65) as in §4.2 following [5, 85]. When considering momentum eigenstates of mo-

mentum KAB = (κAκB), the supersymmetry algebra {QAI , QBJ} = 2ΩIJPAB of six and five

dimensions reduces to the little group as:

QAI = κaAQaI , {QaI , QbJ} = 2ΩIJεab (5.66)
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This leads to the four dimensional supersymmetry algebra with a central extension ZIJ =

2det(κ)ΩIJ . We are primarily interested in describing the Coulomb branch as a symmetry

reduction, in which case the symplectic form ΩIJ is preserved and the action of the super-

charges organizes the states in massive and massless supermultiplets as we will detail in §5.5.

For now, let it suffice to say that both kinds of multiplets are annihilated by half of the su-

percharges so that on shell superspace can be parametrized by N = 4 fermionic supermo-

menta qI , I = 1, · · · 4. These are taken to be eigenvalues of an anticommuting subset of the

supercharges QaI , thus necessarily breaking either the action of either the little group or the R-

symmetry. In line with previous work, we employ the R-symmetry preserving representation

and define supermomenta qI as:

QaIF̃ (κ, q) =

(
ξaqI + ϵaΩIJ

∂

∂qJ

)
F̃ (κ, q) , (5.67)

where (ϵa, ξa) define a basis of the little group fundamental representation and F̃ (κ, q) is a

function on on-shell superspace.

We will detail later how the states of multiplets on the Coulomb branch of N = 4 SYM

are encoded in the exterior powers of the supermomenta. The standard procedure would

then imply expanding the multiplets in superfields on superspacetime and establish a super

Penrose transform to ambitwistor space. Here we simply present the supersymmetric exten-

sion of the plane wave representative (5.65) on superambitwistor space parametrized by Ya =

(λAa, µ
A
a , η

I
a). On this space, the supercharges act geometrically as QAI = λA

∂
∂ηI

+ ηJΩJI
∂

∂µA ,

so that the function:

Φ(κ,q)(Ya) =

∫
d2ud2vδ̄4 ((uλA)− (vκA)) δ̄((ϵv)− 1)eiua(µAaϵA+qIη

Ia)− 1
2
(ξv)q2 (5.68)

obeys the correct intertwining relations between superambitwistor space and on-shell momen-

tum superspace.
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5.4.3 Vertex operators and pictures

In building correlators we will need to define various types of vertex operators, whose form

is determined by how much residual gauge freedom they have left. Most well known are

the effects of gauge fixing diffeomorphisms on the vertex operators, namely the distinction

between fixed and integrated vertex operators. We will not detail how this distinction arises as

it is well known in the literature and refer the reader to [93], where integrated vertex operators

are derived from the treatment of the moduli space of metrics. Here we will content ourselves

in saying that at tree level the c-ghosts associated to the gauge field e have three zero modes

that need to be saturated in the correlator, calling for three fixed and n − 3 integrated vertex

operators as described below. We will structure the discussion around vertex operators for

symmetry reductions of maximal Super Yang-Mills in five dimensions. Because these involve

both a current algebra and worldsheet fermions it is easy to carry the discussion over to the

biadjoint scalar and supergravity case via the double copy.

On the worldsheet, we build (1, 1)-form vertex operators by combining the plane wave rep-

resentative (5.68) with a theory-specific factor w ∈ Ω0(Σ,K2
Σ) via a product ◦, which should be

understood as a convolution so that w may depend on u. Gauge fixing worldsheet diffeomor-

phisms distinguishes fixed and integrated vertex operators as:

V = cw ◦ Φ(κ,q)(σ) V =

∫
dσ w ◦ Φ(κ,q)(σ) , (5.69)

where Φ(κ,q)(σ) ∈ H1(Σ, TΣ) is the pullback to the worldsheet of the plane wave representative

(5.68).

Fixed vertex operators A similar distinction between fixed and integrated vertex operators

appears when gauge fixing the other gauge fields present in the models. We take here the

perspective whereby fixed vertex operators are fundamental objects and the integrated ones

are derived from the integration of moduli associated to the gauge field e. We will say more

generally that the fixed vertex operators are in picture −1 and the integrated ones in picture 0,

in analogy with the fermionic symmetries in ordinary string theory. There is one distinct picture
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number for each of the gauge fields we are fixing: w(pb,pb̃)

(pa,pã)
. For these symmetries, we will show

in more detail how to gauge fix them in the presence of punctures and how integrated vertex

operators arise. We begin by writing fully fixed vertex operators:

w(-1,-1)
(-1,-1) = t t̃ δ ((uγ)) δ ((uγ̃)) taj

a . (5.70)

Here t t̃ are the c-ghosts associated with the gauging of theA and Ã fields, while the γ ghosts are

associated with the fermionic gauge fields ba, b̃a3. Because the vertex operator is automatically

invariant under the u-projected fermionic currents (uλA)ρ
A and (uλA)ρ̃

A, the vertex operator

above is BRST invariant, without the need to force the corresponding components of γ to van-

ish.

Picture changing operators In this section we discuss in more detail the BRST gauge fixing of

the fields A, Ã as well as the fermionic ba, b̃a in the presence of vertex operators. The approach

is analogous to the one described in [85, 99] and it produces so called picture changing operators.

For each of the gauge fields we introduce a gauge fixing term in the action of the form:

{QB, b F (ϕ)} , (5.71)

where F (ϕ) = ϕ− ϕGF is the gauge fixing condition and b is the associated antighost (here not

referring to diffeomorphisms).4

Having already fixed worldsheet diffeomorphisms, the gauge transformations associated to

a, ã are as in (5.61) and (5.62), where the variations are required to vanish at the vertex operators

insertion points. This means that we are not able to gauge fix the fields to zero and these are

only allowed to vary within a cohomology class of H0,1 (Σ,O (−σ1 − . . .− σn)). The gauge

fixed fields can then be expanded in a basis hi of (0, 1)-forms on the worldsheet that span this

3These shouldn’t be confused with the antighost b for the gauging of worldsheet diffeomorphisms.
4The reader might notice that here we give a general prescription to gauge fix all residual gauge transformations

after having gauge fixed worldsheet diffeomorphisms, but we do not discuss the gauge fixing of the little group via
the fieldsAab in the same manner. While the vertex operators (5.68) are well understood from the Penrose transform,
we expect that there should also be a way to make sense of the polarised scattering equations and additional moduli
integrations via a description such as the one outlined above for the other gauge fields.
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n− 1 dimensional cohomology group:

AGF =

n−1∑
i=1

hiAi ÃGF =

n−1∑
i=1

hiÃi . (5.72)

The off-shell BRST transformations of the fields are:

δB A = ∂̄t δB Ai = αj δB s = N

δB αj = 0 δB N = 0 ,

(5.73)

where N is the Nakanishi-Lautrup field that acts as a Lagrange multiplier for the gauge fixing

condition. Then the gauge fixing term for A (and similarly for Ã) can be expanded as follows:

∫
Σ
{QB, s (A−AGF)} =

∫
Σ
N(A−AGF) + s∂̄t+

n−1∑
i=1

αi

∫
Σ
s hi (5.74)

Integrating out the auxiliary field N enforces the gauge fixing condition and produces a term

of the form
n−1∑
i=1

Ai

∫
Σ
hi JΩ+ (5.75)

Then integrating out the fermionic and bosonic moduli αi, Ai we obtain n− 1 insertions of:

Ξi = δ

(∫
Σ
hiJΩ+

)(∫
Σ
hi s

)
, (5.76)

as well as analogous contributions Ξ̃i from Ã. The basis elements hi can be chosen to extract

residues at given points.

The treatment of the fermionic gauge fields is analogous and was presented in [85]. By the

invariance of the vertex operators under half of the Heisenberg superalgebra, the components

of ba, b̃a that are parallel to u can be gauge fixed to zero, while the orthogonal ones develop
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moduli and produce n− 2 picture changing operators 5:

Υ(zl) = δ(⟨ûβ⟩) ⟨ûλA⟩ ρA, Υ̃ (zl) = δ(⟨ûβ̃⟩) ⟨ûλB⟩ ρ̃B , (5.77)

where û, u form a local basis for the little group.

As both the Ξi, Ξ̃i and Υj , Υ̃j come in pairs, in addition to (5.70) we will only need vertex

operators in pictures (0, 0;−1,−1) and (0, 0; 0, 0) in order to compute correlators. These are

obtained as the limit as σ → σi of the OPE PCO(σ) · w(σi), and we obtain:

w(-1,-1)
(0,0) = δ

(
Resσi(λ

2 − jH)
)
δ
(
Resσi(λ̃

2 − jH)
)
δ ((uγ)) δ ((uγ̃)) taj

a , (5.78)

w(0,0)
(0,0) = δ

(
Resσi(λ

2 − jH)
)
δ
(
Resσi(λ̃

2 − jH)
)(⟨ûλA⟩ ϵA

⟨uû⟩
+ ϵAϵBρAρ̃

B

)
taj

a . (5.79)

From this derivation we observe that the term

Qm :=

∮
t(λ2 − jH) + t̃(λ̃2 − jH) .

in the BRST operator is responsible for fixing the masses of the external particles via the delta

functions in (5.78). The mass is assigned as the residue of the current jH acting on the external

state as an OPE. This action depends on the choice of current jH and we will detail it later on

as we consider specific theories.

5.4.4 Massive amplitudes as correlators

We compute scattering amplitudes as correlators in the models described above. Because the

ghost zero modes need to be saturated6 and the residual gauge symmetry fixed, the only non

trivial correlators with n insertions must contain vertex operators in the various pictures as:

An =

〈
V (-1,-1)
1 (-1,-1)V

(-1,-1)
2 (0,0) V

(0,0)
3 (0,0)

n∏
i=4

V (0,0)
i (0,0)

〉
.

5The picture changing operators actually contain other terms involving mixed ghost products that are generated
by the term {Q, βa}Fa(b

a), where (βa, γa) is the ghost system for the gauging of ba. These however don’t contribute
to the scattering amplitude as they either vanish on the support of the delta functions or they have the wrong ghost
number.

6The c ghosts have 3 zero modes, the t, t̃ have one each, and the γa, γ̃a have two each.
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After gauge fixing, all the fields are free. The evaluation of the scattering amplitude is analo-

gous to the one in [5, 85], so we only discuss here the main features of the formulae we obtain:

An =

n∏
i=2

δ(κ2i − hi) δ(κ̃
2
i − hi)

∫
dµpoln In eFN , (5.80)

The 2 × (n − 1) delta functions sitting in front of the formula fix the mass parameters κ2i and

κ̃2i of the external particles to be equal to the eigenvalue hi under the group by which we are

reducing. These come from the picture changing operators Ξ, Ξ̃, where the basis elements hi

are chosen to extract residues at given points. As in [85], when computing the path integral one

finds that it localizes on the solution

λaA(σ) =
n∑

i=1

uai ϵiA
σ − σi

. (5.81)

This way we can extract the residue in the delta functions in (5.78) on the support of the po-

larised measure that we describe below:

Resσi(λ
2 − jH) = κ2i − hi . (5.82)

Here we write hi to indicate the eigenvalue of the external state under the action of the element

jH . It is important to note that hi is not the mass but rather a ‘signed mass’: we will refer to

the mass as mi = |hi|. In general, the vertex operator will carry some representation of the

symmetry group so that:

jH(σ) · Vi(σi) ∼
hi

σ − σi
Vi(σi) . (5.83)

More specifically, in the case of the Coulomb branch massive external states carry a factor maj
a

and jH is an element of the current algebra. We will discuss this in more detail around (5.96).

This way the delta function enforce the mass-shell condition for n− 1 particles.

The integration measure is strongly reminiscent of the six and five dimensional one:

dµpoln :=

∏
j dσj d

2uj d
2vj

vol SL(2,C)σ × SL(2,C)u

n∏
i=1

δ̄4
(
(uiλA(σi))− (viκiA)

)
δ̄
(
(viϵi)− 1

)
, (5.84)
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localised on the solutions to the polarized scattering equations:

EiA = (uiλA(σi))− (viκiA) =
∑
j ̸=i

(uiuj)ϵjA
σi − σj

− (viκiA) = 0 , (5.85)

as described in detail in [1, 2]. As shown in [5], these equations imply the massive scattering

equations for the σi that we have seen arise in the symmetry reduced RNS models of section

5.3 and that were originally conjectured by Naculich [4] and Dolan & Goddard [3]:

∑
j ̸=i

ki · kj − hihj
σi − σj

= 0 . (5.86)

The 5n delta functions are used to localise the ui, vi, σi integrations but, because three of the

us and three of the σs are already fixed by the gauge, overall six delta functions remain af-

ter integration. These impose conservation of the six dimensional momentum (5.54) and ulti-

mately lead to the consistency of the mass assignments. Indeed they give κ21 = −
∑n

i=2 κ
2
i =

−
∑n

i=2 hi = h1, where the last equality is given by charge conservation. As discussed in §5.3

this guarantees that the amplitudes vanish unless
∑
hi = 0.

As described in [5], we obtain the following integrands:

IBAS
n = PT(α) PT(β) , ICB

n = PT(α) det ′H , IGrav
n = det ′H det ′H̃ , (5.87)

where PT(α) denotes the Parke-Taylor factor and the reduced determinant is obtained from the

evaluation of the ρρ̃ system (c.f. [85]):

det ′H :=
1

(u1u2)
detH

[12]
[12] ,

where, the n× n matrix H is defined by

Hij =
ϵiAϵ

A
j

σij
, Hii = −eABi (λAλB) (σi) ,

and the sub- and superscripts indicate that both the rows and the columns 1 and 2 have been

removed.
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The exponential factors in the supersymmetric plane wave give rise to the term

eFN := exp

∑
j<k

(ujuk)qj · qk
σj − σk

− 1

2

n∑
j=1

(ξjvj)q
2
j

 . (5.88)

All the dependence on the supermomenta is contained in this factor and when expanding it in

different powers of q one can read off it the various component amplitudes as we will detail

below. We note that, while in the reduction that leads to the Coulomb branch supersymmetry

is preserved and all states in the original multiplets have the same mass, there are other ways of

performing a reduction, such as the R-symmetry reduction described below in §5.6, that break

the original supersymmetry and give rise to smaller supermultiplets. In these cases we can

still read component amplitudes off this formula, but we should keep in mind that states in the

same higher dimensional multiplet can have different masses.

5.5 Coulomb branch

We have claimed that the model we focused on in the previous sections describes the Coulomb

branch of N = 4 SYM. In this section we will justify our claim, showing that the Lagrangian

theory can be defined via a symmetry reduction of 5d N = 2 SYM. This procedure imposes a

specific dependence of fields on the extra dimension, which can be eliminated by a gauge trans-

formation at the price of giving a vacuum expectation value to a scalar field, thus producing

the more familiar formulation of this theory. We will begin by a review of the usual description

of the Coulomb branch, show the equivalence to the model derived via symmetry reduction

and identify the spectrum of this theory of massive particles. We will then implement the sym-

metry reduction in the worldsheet model for maximal super Yang-Mills in five dimensions and

derive amplitude formulae.

Coulomb branch via VEV’d scalars The Coulomb branch of N = 4 SYM with Lie algebra g

is usually described by assigning a vacuum expectation value to some of the scalar fields. The

theory at the origin of the moduli space is a theory of massless particles describing a vector

potential fieldAµ, six real scalars Φa transforming in the 6 of the SO(6) R-symmetry group and
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four Majorana spinors ΨI
A in the fundamental of SU(4) ≃ SO(6). All the fields transform in

the adjoint representation of the gauge group.

In the simplest case, a gauge group U(N +M) is spontaneously broken to U(N) × U(M)

by the vacuum configurations of some of the scalars, e.g.:

⟨Φ1⟩ = iH ∼ iv · diag(1N , 0M ) ⟨Φa⟩ = 0 a ̸= 6 . (5.89)

Writing the scalars as the antisymmetric product of two fundamentals of SU(4), this is equiva-

lent to:

⟨ΦIJ⟩ = ΩIJH , (5.90)

where Ω has two dimensional Levi-Civitas on the off diagonal blocks and zeros in the diagonal

blocks. Then the theory on the Coulomb branch has a residual Sp(4) ⊂ SU(4) R-symmetry,

preserving the bilinear form Ω.

Because the fields transform in the adjoint representation, they are represented by (N +

M) × (N + M) matrices. Under this symmetry breaking, the (N + M)2 generators of the

original gauge group reduce to the generators for the residual U(N) and U(M), together with

2NM broken generators:

adN+M → (adN , 1)⊕ (1, adM )⊕ (N, M̄)⊕ (N̄,M) =

Aab
µ W aḃ

W̄ ȧb Aȧḃ
µ

 . (5.91)

One can see the mass terms arise upon replacing ΦI → H+ϕI in the Lagrangian of N = 4 SYM.

The decomposition (5.91) of the adjoint under symmetry breaking and the form of H (5.89) tell

us that the generators of the residual U(N) × U(M) symmetry remain massless, whereas the

broken generators W and W̄ aquire a mass proportional to v. The fermions and the scalars also

live in the adjoint representation of the gauge group, and decompose similarly to the vector.

In addition to this, however, they also transform non-trivially under the R-symmetry group,

which is broken to Sp(4). Under this residual symmetry, the six scalars w transform in a 5

plus a singlet, consisting of the trace ΩIJw
IJ . This component is absorbed by the gluons and
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becomes a polarization state of the massive spin-one field via the Higgs mechanism. Then the

massive scalars are w12, w13, w34, w24 and the combination of w14 and w23 that is orthogonal to

the longitudinal boson, i.e. (w14 + w23)/
√
2.

Spectrum The procedure outlined above leaves two types of states with respect to the color

group. The first corresponds to elements t ∈ uN × uM , that commute with H and therefore

correspond to massless states. The second are the off-diagonal blocks consisting of elements

m ∈ CN ⊗ (CM )∗ ⊕ CM ⊗ (CN )∗ for which [H,m] = MH
m m so that they define massive states

with mass |MH
m |.

Supersymmetry The action of the supercharges casts the massless states in a vector multiplet

transforming in the adjoint of the residual gauge group:

F 0 = (ϕIJ = ϕ[IJ ] ,Ψ
I
α, Ψ̃Iα̇ , Fαβ, Fα̇β̇) . (5.92)

For these multiplets the R-symmetry is enhanced to a full SU(4), so that the fundamental in-

dices can no longer be raised and lowered. The multiplet contains the two familiar ±1 helicity

states of the massless spin-1, six real massless scalars ϕIJ and eight massless gluino states via

the chiral parts of ΨI
α, Ψ̃Iα̇.

The massive supermultiplets are the so-called 1/2-BPS, ultrashort massive representations

of N = 4 with central extension ZIJ = 2MΩIJ , with Sp(N ) R-symmetry, with skew form ΩIJ

and indices I, J = 1, . . . ,N = 4. They are bifundamentals of U(N) × U(M), composed of a

massive W-boson (3 bosonic d.o.f.) FAB , five massive scalars ϕIJ and the fermionic partners,

four massive Weyl-Majorana spinors ΨI
A (8 fermionic d.o.f.):

Fm = (ϕIJ = ϕ[IJ ],Ψ
A
I , F

AB = F (AB)) , ϕIJΩ
IJ = 0 . (5.93)

Coulomb branch as a symmetry reduction We show now that there is an alternative deriva-

tion of this theory as a symmetry reduction of five dimensional maximally supersymmetric

Yang-Mills. The gauge field A(4) on the Coulomb branch of N = 4 SYM can be embedded
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in a five dimensional gauge field, where the extra component is the vev’d scalar Φ1, so that

A(5) = A(4) + (iH + ϕ)dx4. The field ϕ has vanishing vev and neither ϕ nor A(4) have any

dependence on the coordinate x4, i.e. in this gauge ∂4A(5) = 0.

Under a gauge transformation U = exp(iHx4), the connection transforms as

A(5)′ = UA(5)U† + U∂4U†dx4 = UA(5)U† − iHdx4 = UA(4)U† + UϕU†dx4. (5.94)

The gauge transformation has eliminated the non zero vev of the scalar. The price is the intro-

duction of an explicit dependence on the x4 coordinate:

∂4A(5)′ = ∂4UA(5)U† + UA(5)∂4U† = i[H,UA(5)U†] = i[H,A(5)′ ] . (5.95)

This equation defines a symmetry reduction fromN = 2 SYM in five dimensions to the Coulomb

branch. In this description the mass terms are derived from the kinetic terms of the five-

dimensional theory via (5.95) and the dependency of the fields on x4 is fixed in such a way

that this drops out of the action. This is sketched in appendix B.4.

From Lagrangian theory to ambitwistor model The model presented in [85] has been shown

to reproduce tree level scattering amplitudes for 5d N = 2 SYM. The model we built in the

previous section (5.60) is built as a symmetry reduction in the ambitwistor string. The elements

t ∈ uN × uM and m ∈ CN ⊗ (CM )∗ ⊕CM ⊗ (CN )∗ of the broken algebra described above define

states in the worldsheet theory via the current algebra generators: massless t · j(σ) and massive

m · j(σ). This is consistent with the mass assignments for these states as the OPEs (5.83) of the

respective currents take the following form:

jH(σ) t · j(σ̃) ∼ 0, jH(σ) m · j(σ̃) ∼ MH
m

σ − σ̃
m · j , (5.96)

as by (5.64). We can thus identify vertex operators built from currents t · j with the massless

vector multiplet transforming in the adjoint of the residualU(N)×U(M) gauge group, whereas

vertex operators built from m · j describe the massive vector multiplet.
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Expanded on the on-shell superspace we described in (5.67), the supermultiplets are orga-

nized as follows:

F̃
(m)
(κ,q) = F ϵϵ(κ) + qIΨ

ϵI(κ) + q2F ϵξ(κ) +
1

2
qIqJΦ

IJ(κ) + q2qIΨ
ξI(κ) + q4F ξξ(κ)

F̃
(0)
(κ,q) = gh(κ) + qIΨ

ϵI(κ) +
1

2
qIqJφ

IJ(κ) + q2qIΨ
ξI(κ) + q4g−h(κ) ,

(5.97)

with q4 = (qIqJ)(q
IqJ) and (q3)Ia = ∂q4/∂qaI . This tells us that the leading term in the am-

plitude involves n (massive or massless) bosons, which is what we expect from the way we

constructed vertex operators. Component amplitudes can be read off the exponential factor in

the superamplitude by matching the corresponding powers in the multiplets.

5.5.1 Amplitudes

The formula for the superamplitude of N = 4 SYM on the Coulomb branch is given by:

ACB
n (α, {ki}, {Mi}, {qi}) =

∫
dµn PT(α) det ′HCB eFN . (5.98)

We begin by considering amplitude involving only the leading vector component of either the

massive or massless supermultiplet (5.97), i.e. ACB
n (α, {ki}, {Mi}, {qi = 0}). This is either a

massive W boson (W ϵϵ = ϵaϵbW
(ab)) or a gluon of helicity h dictated by the polarization ϵi. In

this case the amplitude is simply:

∫
dµn PT(α) det ′HCB = δ

∑
j

kj

 δ

∑
j

Mj

 (n−3)!∑
i=1

PT(α) det ′HCB (σijσjkσki)
2

detΦijk
ijk

, (5.99)

with:

|Φij | := |∂Ei/∂σj | =


(ki+kj)

2−(Mi+Mj)
2

σ2
ij

i ̸= j∑
k ̸=i

(ki+kk)
2−(Mi+Mk)

2

σ2
ik

, i = j
(5.100)

Four vector bosons At four points, taking the ordering α = (1234), the expression above

reads:

A4 =
1

(u1u2)(u3u4)

σ12σ34
((k1 + k2)2 − (M1 +M2)2)

(
ϵ1Aϵ

A
3 ϵ2Bϵ

B
4 − σ31σ42

σ41σ32
ϵ1Aϵ

A
4 ϵ2Bϵ

B
3

)∣∣∣∣
∗

(5.101)

138



CHAPTER 5 - Massive models from symmetry reduction

where ∗ indicates that we are evaluating the expression on the unique solution:

σ1 = [(1, 0)] σ2 = [(1, 1)] σ3 =

[(
1,−((k1 + k3)

2 − (M1 +M3)
2)

((k1 + k2)2 − (M1 +M2)2)

)]
σ4 = [(0, 1)] (5.102)

(u1u2) = − εABCDk1ABϵ3Cϵ4D
εABCDϵ1Aϵ2Bϵ3Cϵ4D

(u3u4) = − εABCDk3ABϵ1Cϵ2D
εABCDϵ1Aϵ2Bϵ3Cϵ4D

(5.103)

We obtain the generic formula for amplitudes involving gluons and W bosons7:

A4 =
(εABCDϵ1Aϵ2Bϵ3Cϵ4D)

2

((k1 + k2)2 − (M1 +M2)2)((k1 + k4)2 − (M1 +M4)2)
. (5.104)

From this expression one can extract four point amplitudes for specific states by assigning the

correct kinematics, polarization and mass to the external particles. W -bosons have massive mo-

menta, decomposed into massive spinor-heliciy variables, and generic polarization, together

with the following assignment of mass parameters8:

MW = m MW̄ = −m (5.105)

Gluons, on the other hand, have massless momenta, whose spinor helicity variables are em-

bedded in the massive ones as explained in section (5.4.1). They have Mg = 0 polarization

vectors are:

ϵ+1
a = (1, 0) ϵ−1

a = (0, 1) . (5.106)

From the discussion in §5.3, it is clear that the amplitude vanishes unless
∑

iMi = 0, i.e. unless

W and W̄ come in pairs, with any number of gluons. Let us consider for example the amplitude

for a WW̄ pair and two negative helicity gluons. From (5.104) we get:

A4(W, W̄ , g−, g−) = ϵ1aϵ1bϵ2cϵ2d
[1a2c][1b2d]⟨34⟩2

s12(s14 −m2)
, (5.107)

7The details of this evaluation can be found in the derivation of the four point amplitude in 6d SYM, in section
5.2 of [2].

8One should keep in mind that MH denotes the eigenvalue under the symmetry by which we are reducing and
it corresponds to a signed mass parameter. Here m is the (positive) mass of the W -bosons.

139



CHAPTER 5 - Massive models from symmetry reduction

where we have used sij = (ki+kj)
2. In line with previous work by the authors, the amplitudes

obtained are contracted into arbitrary polarisation data and one can deduce the amplitude in

the standard form with free little group indices by stripping it of the polarization 2-vectors ϵi:

A4(W
ab, W̄ cd, g−, g−) =

[1a2c][1b2d]⟨34⟩2

s12(s14 −m2)
+ symmetrize (a,b);(c,d) . (5.108)

A particularly compact notation was introduced in [12], which we will employ from here on.

Massive spinor-helicity variables are written in bold, to indicate that they carry completely

symmetrized little group indices. We can then rewrite (5.107) one more time:

A4(W, W̄ , g−, g−) =
[12]2⟨34⟩2

s12(s14 −m2)
. (5.109)

Similarly one can obtain expressions for different orderings and helicity assignments:

A4(W, W̄ , g−, g+) =
(⟨13⟩[24]− ⟨23⟩[14])2

s12(s14 −m2)
A4(W, g

−, W̄ , g−) =
[13]2⟨24⟩2

(s12 −m2)(s14 −m2)
.

Finally, for four W bosons:

A4(W, W̄ ,W, W̄ ) =
1

s12s14
·
(
⟨12⟩[34] + [12]⟨34⟩ − ⟨13⟩[24]− [13]⟨24⟩+ ⟨14⟩[23] + [14]⟨23⟩

)2
Similar expressions were obtained in [82], by dimensional reduction, and in [50, 71] by BCFW

recursion.

We verified numerically that the amplitude formula reproduces at five point the n-point

formula obtained by recursion in [50, 71, 72] for a pair of WW̄ bosons and n − 2 same-helicity

gluons:

A5(W, W̄ , g+, g+, g+) =
⟨12⟩2[3|(m2 + (k4 + k5 + k1)(k2 + k3 + k4))|5]

⟨34⟩⟨45⟩((k2 + k3)2 −m2)((k2 + k3 + k4)2 −m2)
. (5.110)

The existence of compact expressions at n point give hopes that a simplification might occur in

the scattering equations when this particular set of polarisation data is chosen, reminiscent of

MHV in four dimensions. Despite our efforts we were unable to reproduce the n-point result
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as the formula appears to have support on all (n− 3)! solutions of the scattering equations. We

will return to this point briefly in §5.7.

Massive scalars and gluons In order to obtain amplitudes for states further down the multi-

plet, one needs to consider the expansion in supermomenta (5.97) and take the corresponding

derivatives of the exponential factor. The massive and massless supermultiplet have a similar

structure, with the main distinction that in the massless multiplet the component ∼ q2ΩIJ is a

scalar state. Let us consider for instance the amplitude for two massive scalars and two gluons.

This component amplitude is extracted from the superamplitude as follows:

A4 (wIJ , g, g, w̄KL) = A4
∂

∂qI1

∂

∂qJ1

∂

∂qK4

∂

∂qL4
eFN

∣∣∣∣
qi=0

, (5.111)

where A4 is the leading amplitude (5.104) and the exponential is given by (5.88). The only term

contributing is the quadratic one in the expansion of the exponential. Since for massive scalar

states ΩIJw
IJ = 0, the terms ∼ q2j do not contribute and the derivatives bring down a factor of

U2
14(ΩIKΩJL +ΩILΩJK) in front of the amplitude, with Uij =

uij

σij
. Evaluated on the solution to

the scattering equations, this gives:

A4 (wIJ , g, g, w̄KL) = (ΩIKΩJL +ΩILΩJK)
(εABCDϵabκ

a
1Aκ

b
1Bϵ2Cϵ3D)

2

(s12 −m2)s14
. (5.112)

We can now evaluate the amplitude for different helicity assignments:

A4

(
wIJ , g

+, g−, w̄KL

)
= (ΩIKΩJL +ΩILΩJK)

⟨3|k1|2]2

(s12 −m2)s14
,

A4

(
wIJ , g

+, g+, w̄KL

)
= (ΩIKΩJL +ΩILΩJK)

m2[23]2

(s12 −m2)s14
.

(5.113)

These expressions match the results obtained in [12, 162].

Massive quarks We can perform the symmetry reduction to generate the symmetry breaking

SU(N + 1) → SU(N) × U(1). From the discussion in the previous section, we know that the

massive states are in the fundamental of SU(N). At tree level, when looking at amplitudes

involving only gluons and massive fermions, the truncation of the theory is consistent with the
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standard model description of massive quarks in QCD. We can generate amplitudes that match

the results in the literature [72]:

A4(ψ, ψ̄, g
+, g+) = m

⟨12⟩[34]2

s12(s14 −m2)
A4(ψ, ψ̄, g

−, g+) =
⟨3|k1|4]([14]⟨23⟩ − [24]⟨13⟩)

s12(s14 −m2)
,

5.5.2 Supersymmetry ”Ward identities”

At n-points, while we cannot simplify the formula further, we can establish relations between

the different component amplitudes for one pair of massive particles and all other particles glu-

ons of positive (negative) helicity. Indeed, for this specific configuration the α (α̇) component

of the polarized scattering equations is particularly simple because only the massive particles

contribute to it, so it decouples from the rest of the system:

U12ϵ2α = (v1κ1α) U12 =
m

⟨12⟩
(5.114)

We know that the component amplitudes are related for example by:

An(ψ, ψ̄, g
+, . . . g+) = An(W, W̄ , g+, . . . g+)∂q1∂q2 exp(FN ) = U12An(W, W̄ , g+, . . . g+)

This identification follows from the expansion of the supermultiplets on on-shell superspace

(5.97). This establishes a supersymmetry Ward identity:

An(ψ, ψ̄, g
+, . . . g+) =

m

⟨12⟩
An(W, W̄ , g+, . . . g+) , (5.115)

which is consistent with the n-point formulae obtained in [162] and [72]. Similar relations hold

for scalars:

An(w, w̄, g
+, . . . g+) =

( m

⟨12⟩

)2
An(W, W̄ , g+, . . . g+) , (5.116)

142



CHAPTER 5 - Massive models from symmetry reduction

which can be compared to [157]. We can see this coming from the requirement of supersym-

metry by writing:

An = An(W, W̄ , g+, . . . g+)
(
1 +

∑
j<k

Ujkqj · qk −
1

2

∑
j

(ξjvj)q
2
j +O(q4)

)
, (5.117)

for a supersymmetric amplitude involving two massive and n− 2 massless states. Then by the

definition of on-shell superspace (5.67):

[QAI ,An] =
∑
i

[QiAI ,An] = An(W, W̄ , g+, . . . g+)
∑
i

(
(κiAξi)qiI − ϵiA(ξivi)qiI

+
∑
j ̸=i

ϵjAUjiqjI +O(q3)
)
.

(5.118)

Then at order O(q1), supersymmetry imposes:

(κ1Aξ1) +
∑
k ̸=1

Uk1ϵkA − (ξ1v1)ϵ1A = 0 , (5.119)

Taking the α components and contracting into ϵα1 , we see that this is equivalent to the polarised

scattering equation (5.114), using that ξ is normalised against ϵ as (ϵiξi) = 1.

5.6 R-symmetry reduction

The machinery of symmetry reduction only requires the choice of a symmetry group. It can

thus be applied to obtain less familiar theories of massive particles. We illustrate this here by

performing a reduction of maximally supersymmetric gauge and gravity theories via a gener-

ator of the R-symmetry. This principally affects the scalars and spinors that are in nontrivial

R-symmetry representations, thus producing a theory with less than maximal supersymmetry.

This type of reductions are known in the supergravity literature as (Cramer)-Scherk-Schwarz

reductions and have been shown to generate gauged supergravities in four dimensions. We

will present a few examples of these theories in our formalism and point out a peculiar in-

stance of double copy at the level of the worldsheet.
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5.6.1 Reducing SYM

We want to study the reduction of 5d N = 2 SYM to four dimensions, obtained by associating

one component of momentum to charges under the R−symmetry group:

∂

∂x4
(Am,ΦIJ ,Ψ

I
A) = (0, HK

[I ΦJ ]K , H
K
I ΨAK) , (5.120)

where HK
I is in the fundamental representation of Sp(4)R. Expanding the kinetic terms under

(5.120), one obtains mass terms for the fermions and the scalars as well as some interaction

terms. The reduced theory contains one massless vector Aµ, two massless scalars, four massive

scalars and four massive Majorana fermions. Details of the reduction are given in appendix

B.5.

Spectrum For Sp(4), in the Cartan-Weyl basis we can write a linear combination of the two

Cartan elements in the fundamental as:

H = diag(m1,m2,−m1,−m2) , (5.121)

where mi are the parameters of the linear combination. In this basis the symplectic matrix Ω is

Ω =

 0 12

−12 0

 (5.122)

Then we can take as independent scalars Φ12,Φ13,Φ23,Φ24,Φ34, with Φ13 = −Φ24. Expanding

the mass term for the scalars we find that Φ12 and Φ34 have mass |m1 +m2| while Φ14 and Φ23

have mass |m1 −m2|. Similarly, we find that Ψ1 + iΨ3 is a massive Dirac spinor of mass |m1|,

while Ψ2 + iΨ4 has mass |m2|. The scalars Φ13 and ϕ, coming from the extra component of the

five dimensional vector, remain massless.

We note that for the choice m1 = m = m2 one obtains a theory of one massless vector, four

massless scalars, four massive fermions of mass m and two massive scalars of mass 2m. We

will refer to this theory as N = 0∗ SYM.
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Supersymmetry It is clear from these mass assignments that the original SO(5) R-symmetry

is broken. Counting on shell degrees of freedom one sees that there can be no residual super-

symmetry in this theory for both m1,2 non vanishing. However it is possible to preserve N = 2

supersymmetry by performing the reduction only along one of the two directions in the Car-

tan, i.e. taking for example m2 = 0, m1 = m. In this case half of the fermions are massless and

we can group the on shell degrees of freedom into one massive ultrashort matter multiplet Ψm

and one massless vector multiplet V0, with:

Ψm = 1 massive Dirac fermion ΨB
1 + iΨB

3 ,

2 massive complex scalars Φ12 + iΦ23 and Φ14 + iΦ34

V0 = 1 vector (Fαβ, Fα̇β̇)

2 Weyl fermions (Ψ2,Ψ4)

1 complex scalar ϕ+ iΦ24 ,

where we have named Fαβ, Fα̇β̇ the vector components of the five-dimensional vector in 4d

and ϕ the scalar component. One can then verify that:

[
QAJ , P

5
]
(ΨB

1 + iΨB
3 ,Φ12 + iΦ23,Φ14 + iΦ34) = 0[

QAJ , P
5
]
(Fαβ, Fα̇β̇,Ψ2,Ψ4, ϕ+ iΦ24) = 0 ,

(5.123)

for J = 2, 3 with the choice of basis in (5.121) andm2 = 0. Then the states of the reduced theory

sit in N = 2 supermultiplets generated in this basis by the action of Q2,3, whereas the two

remaining supercharges of the higher dimensional theory bring us from massless to massive

states and viceversa.

We recognize the reduced theory as the N = 2∗ theory that one obtains by giving a mass to

the adjoint N = 2 hypermultiplet sitting inside the N = 4 massless vector. More generally, for

a reduction with p non-vanishing mass parameters we obtain a theory with N = 4−2p residual

supersymmetries.
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Worldsheet model The operators:

JIJ = η(I · ηJ) (5.124)

are generators for the Sp(4) R-symmetry acting on worldsheet operators. We can then take the

current:

jH = η(I · ηJ)HI
KΩJK = m1η(1 · η3) +m2η(2 · η4) , (5.125)

to construct an ambitwistor string model such as the ones described in section 5.4 for the class

of theories above. This element spans the Cartan subalgebra for different values of m1,2 and

does not spoil the closure of the algebra of constraints 9.

One can then read the mass assignment for various states in the multiplet by considering

the OPE:

jH(σ) · Φκ,q(σi) ∼
1

σ − σi

2∑
s=1

ms

(
qi;s

∂

∂qi;s
− qi;s+2

∂

∂qi;s+2

)
Φκ,q (5.127)

where Φκ,q is the supersymmetric plane wave representative as in (5.68). Following the discus-

sion around (5.83), this gauging assigns masses:

m1

(
q1

∂

∂q1
− q3

∂

∂q3

)
+m2

(
q2

∂

∂q2
− q4

∂

∂q4

)
, (5.128)

which corresponds to the spectrum we derived above from the lagrangian mass terms.

Formulae From these models we obtain amplitude formulae for theories with various amounts

of residual supersymmetry, such as the N = 2∗ theory discussed above. The peculiarity in these

expressions is that the full superamplitude remains expressed as an expansion in the original

(now broken) N = 4 superspace. One can then extract amplitudes involving the desired mas-

sive or massless particles by reading them off the appropriate coefficients. As we have seen

above, the mass operator contains derivatives with respect to specific components of supermo-

menta, so massive and massless multiplets of the reduced theory can be embedded together in

9The only non-trivial OPE is:
(λ2 − jH) ◦ (Z(a · Wb)) ∼ 0 (5.126)
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the larger (broken) superspace, at the price of introducing derivatives in the scattering equa-

tions.

5.6.2 CSS gauged supergravities

The same kind of symmetry reduction can be carried out on the gravitational model, exploiting

the Sp(8) R-symmetry of five dimensional maximal supergravity. In the supergravity litera-

ture this procedure goes by the name of CSS reduction, after Cremmer, Scherk and Schwarz

[159, 160], as outlined in §5.1. It has been shown [163] that the result of a CSS reduction of

five dimensional supergravity by an element H of the E6(6) is a gauged supergravity in four

dimensions. We will then equivalently refer to such models as CSS reductions or CSS gaug-

ings. When taking the element H in the maximal compact subgroup USp(8) of E6(6), the gauge

group is called ‘flat’ and the theory has Minkowski vacua. It depends on four independent

mass parameters, corresponding to the four elements of the Cartan subgroup of Sp(8). These

fix the scale of the spontaneous supersymmetry breaking, which produces a theory with resid-

ual N = 8− 2p supersymmetry, with p the number of non-vanishing mass parameters.

Maximal supergravity in five dimensions has a gravity multiplet whose content is summa-

rized in table 5.1. All particles but the graviton transform non trivially as Sp(8) antisymmetric

Spin dof Sp(4)R

2 5B 1
3
2 8× 4F 8
1 27× 3B 27
1
2 48× 2F 48
0 42× 1B 42

Table 5.1: Degrees of freedom and R-symmetry representation for the states in the gravity mul-
tiplet in 5d N = 4 supergravity.

traceless10 tensors. As a consequence, under an R-symmetry reduction

∂4ΦI1I2...Ik = HJ
[I1
ΦI2...Ik]J (5.129)

10This is intended as ΦI1I2...IkΩ
IiIj = 0.
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some of the gravitinos, graviphotons, gravi-photinos and scalars aquire a mass. For Sp(8),

choosing the same basis as above for Sp(4), we can write a generic element of the four dimen-

sional Cartan subalgebra as:

H = diag(m1,m2,m3,m4,−m1,−m2,−m3,−m4) . (5.130)

Then, for a k−index tensor, the mass assignment is:

|
k∑

i=1

hIi | . (5.131)

These theories are described by worldsheet models of the form:

S =

∫
Σ
Za · ∂̄eZa +AabZa · Zb + a

(
λ2 − jHR

)
+ ã

(
λ̃2 − jHR

)
+ Sρ1 + Sρ2 , (5.132)

where the Sp(8) current is given by:

jHR = ηI · ηJHI
KΩJK . (5.133)

Similarly to the massive gauge models of section 5.6.1, this current generates masses only for

part of the original supermultiplet by acting as a derivative in the supermomenta:

jHR(σ) · Φκ,q(σi) ∼
1

σ − σi

4∑
s=1

ms

(
qi;s

∂

∂qi;s
− qi;s+4

∂

∂qi;s+4

)
Φκ,q =:

Dqi
σ − σi

Φκ,q , (5.134)

As a consequence, the formulae we obtain are superamplitudes containing both massive and

massless component amplitudes. It is only once we specify the external states that we can talk

about the scattering equations that localise the correlator being massive or massless:

δ
( n∑

j=1

ki · kj −DqiDqj
σij

)
eFN . (5.135)

CSS gauging with N = 6. We begin by considering the case m1 = m, m2,3,4 = 0. Taking into

account the tracelessness conditions, we summarize below the massive and massless spectrum
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of the reduced theory. We find that the reduction preserves N = 6 supersymmetry and the

states make up one massless gravity multiplet and one massive ultrashort gravitino multiplet.

This corresponds to a model with jH = mη(1 · η5).

Spin
Mass

0 m

2 2B
3
2 6× 2F 2× 4F
1 16× 2B 12× 3B
1
2 26× 2F 28× 2F
0 30× 1B 28× 1B

H0
N=6 2Xm

N=6

Table 5.2: Spectrum of the reduced theory under the choice H = diag(m, 0, 0, 0,−m, 0, 0, 0).

CSS gauging with N = 4. By the same procedure we can obtain theories with residual N = 4

supersymmetry. Taking m1 = m = −m2, m3,4 = 0, we obtain one massless graviton multiplet,

four massless vector multiplets, four massive gravitino multiplets with mass m and two mas-

sive vector multiplets of mass 2m. All massive multiplets are ultrashort representations. The

corresponding model has jH = m (η(1 · η5) − η(2 · η6)).

Spin
Mass

0 m 2m

2 2B
3
2 4× 2F 4× 4F
1 10× 2B 16× 3B 2× 3B
1
2 20× 2F 24× 2F 8× 2F
0 26× 1B 16× 1B 10× 1B

H0
N=4 ⊕ 4V0 4Xm

N=4 2V2m

Table 5.3: Spectrum of the reduced theory under the choice H = diag(m,−m, 0, 0,−m,m, 0, 0).
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5.6.3 Double copy

The gauged supergravities described above have been the object of recent work by Chiodaroli,

Günaydin, Johansson and Roiban [161,164,165], who have studied how they can be obtained as

double copies of massive gauge theories. Worldsheet models in the ambitwistor string and the

formulae they produce have an explicit double copy structure, whereby one chooses a left and

a right systems, which can be combined in any pairing. Having constructed models for gauged

supergravities, we observe an instance of double copy where one supergravity theory can be

arise from several different left/right pairs. Here below we describe this novel ‘worldsheet’

double copy, we illustrate it with examples and we relate it to the spacetime double copy of

[161].

On the worldsheet, we establish a prescription for double copying gauge theory models.

We start with two models that are composed of one set of worldsheet fermions Sρ and one

current algebra Sj . We also consider the η system to come as part of the matter action11 and

to incorporate supersymmetry breaking terms such as the ones in the R-symmetry reductions

discussed above. Altogether the models take the form:12

Sη
N (HR) + Sρ + Sj +

∫
Σ
a(λ2 − jHCB) + ã(λ̃2 − jHCB) , (5.136)

where jHCB is associated to an element of the color group as before for the Coulomb Branch.

Here we take:

Sη
N (HR) =

∫
Σ
ηi · ∂̄ηi +Aabη

a
i η

bi + a(λ2 − ηi · ηj(HR)ikΩ
jk) + ã(λ̃2 − ηi · ηj(HR)ikΩ

jk) ,

so that N = 4−2p, with p the number of non-vanishing mass parameters, indicates the amount

of residual supersymmetry after SSB and the R-symmetry indices run up to 4.

From two models of this type we can form a gravitational model by discarding the cur-

rent algebrae (and associated Coulomb-Branch-like gaugings) and combining the worldsheet

11This is justified by the criticality of the models.
12When double copying two models such as this, we discard the greyed out part of the action and combine the

two fermionic systems as described below.
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fermion systems to write:

Sη
N1+N2

( HR
1 0

0 HR
2

)+ Sρ1 + Sρ2 . (5.137)

We identify ηI = (ηi1, η
i
2) as well as ΩIJ =

 ΩR
1 0

0 ΩR
2

, so that schematically we can write:

SYM(H1)⊗ SYM(H2) ∼ sugra(H1 ⊕H2) (5.138)

The charge associated to the symmetry reduction is the sum of the charges of the two gauge

theories, through jHsugra = jH1
SYM + jH2

SYM . This indicates that on the worldsheet the double copy

as prescribed here doesn’t need the mass spectra of the left and right theories to match. There

is in fact a lot of different pairings that should in principle produce the same double copy. Not

only can we have different values of N1 and N2 summing to N , but we are also free to add any

Coulomb-branch-like reductions to both gauge models, see Table 5.4.

As an example, let us consider the CSS gauged supergravity with residual N = 6 super-

symmetry. Here we have no choice but to take one of the two models to be N = 4 SYM and the

other the N = 2∗ massive theory of section 5.6.1. Both of these models are in principle free to

be on the Coulomb branch. The multiplets and respective R-symmetry charges of the left and

right theories combine as follows:

V0 ⊗ V0 → H0 V0 ⊗Ψ±m → X±m , (5.139)

so that overall they double copy to N = 6∗ supergravity with one gravity multiplet and two

massive gravitino multiplets:

V0︸︷︷︸
N=4

⊗ (V0 ⊕Ψ+m ⊕Ψ−m)︸ ︷︷ ︸
N=2∗

→ (H0 ⊕X+m ⊕X−m)︸ ︷︷ ︸
N=6∗

. (5.140)

We insist on the fact that this is a double copy prescription on the worldsheet. In order to un-

derstand what this implies for spacetime amplitudes, it is easier to consider a component am-
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plitude instead of the full superamplitude, so that the equations (5.135) become proper mas-

sive or massless scattering equations. We pick a component amplitude involving two massive

gravitinos and all massless top state gravitons, so that the kinematic variables involved in the

scattering equations are massive for i = 1, 2 and massless for the rest. We obtain the desired

amplitude on spacetime by evaluating the correlator on the solutions to the scattering equa-

tions: ∑
{σi,ui,vi}

U12
(σijσjkσki)

2

detΦijk
ijk

det ′H det ′H , (5.141)

where the factor U12 comes from the supersymmetry exponential factor. This expression still

presents a double copy structure, where each of the two reduced determinants can be taken

as a contribution from a gauge theory model. However, both sub-integrands are evaluated

on the solutions to scattering equations that are massive in particles 1 and 2, so that the mass

spectrum has to match between the two gauge theories, contrary to the worldsheet double

copy. In particular, here a spin 3/2 massive state has to come as a double copy of a massive

spin 1/2 with a massive spin 1. Repeating the same reasoning with the rest of the states, we find

that on spacetime the amplitude comes from double copying:

(V0 ⊕Wm)︸ ︷︷ ︸
CB N=4

⊗ (V0 ⊕Ψ+m ⊕Ψ−m)︸ ︷︷ ︸
N=2∗

→ (H0 ⊕X+m ⊕X−m)︸ ︷︷ ︸
N=6∗

. (5.142)

That is, the massive scattering equations require the N = 4 theory to be on the Coulomb branch.

Then evaluating the correlator on spacetime selects one pair of theories out of all the candidates

for the worldsheet double copy. This result corresponds to what was observed in [161] using

BCJ numerators.

This phenomenon is even more explicit in the case of the N = 4∗ CSS supergravity. Here

the worldsheet double copy allows both:

(V0 ⊕Ψ+m ⊕Ψ−m)︸ ︷︷ ︸
N=2∗

⊗ (V0 ⊕Ψ+m ⊕Ψ−m)︸ ︷︷ ︸
N=2∗

→ (H0 ⊕ 4V0 ⊕ 4Xm ⊕ 2V2m)︸ ︷︷ ︸
N=4∗

. (5.143)
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and

(V0 ⊕Wm ⊕W2m)︸ ︷︷ ︸
CB N=4

⊗ (4ψm ⊕A0 ⊕ 2ϕ2m ⊕ 4ϕ0)︸ ︷︷ ︸
N=0∗

→ (H0 ⊕ 4V0 ⊕ 4Xm ⊕ 2V2m)︸ ︷︷ ︸
N=4∗

. (5.144)

where N = 0∗ is an R-symmetry reduction of Super-Yang Mills with no residual supersymme-

try as described in section 5.6.1. On spacetime, on the other hand, double copying two N = 2∗

we couldn’t possibly produce states of mass 2m because of the requirement of mass matching.

The only way we can obtain the desired spectrum is by double copying the N = 0∗ with N = 4

on the Coulomb branch with color symmetry breaking pattern SU(3N) → SU(N)× SU(N)×

SU(N). We expect this to hold in the formalism of [161].

Left
Right

N = 2∗ N = 2∗ on CB N = 4 N = 4 on CB

N = 0∗ N = 2∗ N = 2∗ N = 4∗ N = 4∗N = 4∗N = 4∗

N = 0∗ on CB N = 2∗ N = 2∗ N = 4∗ N = 4∗

N = 2∗ N = 4∗ N = 4∗ N = 6 N = 6
N = 2∗ on CB N = 4∗ N = 4∗ N = 6 N = 6N = 6N = 6

Table 5.4: Double copy on the worldsheet. Within each coloured block, all resulting CSS su-
pergravities are the same, so multiple left/right gauge theories double copy to the same super-
gravity on the world-sheet. The (unique) space-time double copy is highlighted in bold-face.

5.7 Summary and discussion

In this chapter we have shown how symmetry reduction can be implemented in the am-

bitwistor string to obtain models and amplitude formulae involving massive particles. This

opens many possibilities in a framework that seemed until recently to be intrinsically massless.

The RNS ambitwistor string of §5.3 is a solid foundation for the factorisation properties of the

amplitudes formulae in all models, both vectorial or twistorial, that one can obtain as symme-

try reductions. We have shown how the two-twistor string of chapter 4 gives a rich ground

to develop new models from maximally supersymmetric theories in five dimensions. These
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include both Coulomb-branch-type theories and more unusual CSS reductions.

From the path integral of these models, we have arrived at the compact formulae (5.80),

supplemented by (5.84) and (5.87), supported on a massive version (5.85) of the polarised scat-

tering equations and with manifest supersymmetry for appropriate gauge and gravity theories

including massive particles. Like all twistor-string, CHY and ambitwistor-string amplitude for-

mulae, all the integrations are saturated against delta functions so that these are really residue

formulae summing contributions from the (n− 3)! solutions to a massive extension of the scat-

tering equations discussed further below. As shown in chapter 3, the extra data in the polarised

extension is uniquely obtained by linear equations on the support of these scattering equations

and the amplitude formulae are linear in the polarization data.

Contrary to the massless four-dimensional formulae of [83], in which the double copy prop-

erties are hidden in the measure, the expressions derived here present the standard structure

with two half integrands that can be combined to form amplitudes for scalars, spin-one and

spin-two particles as in the CHY formulae and corresponding RNS models of [42, 43]. In the

context of R-symmetry reductions we presented a novel instance of worldsheet double copy be-

tween gauge theories with massive matter and various degrees of supersymmetry and gauged

supergravities.

To conclude this chapter, we will give an overview of open research directions.

Reductions along several dimensions and ‘spectrum’ of accessible theories While here we

have only considered reductions from (d + 1) to d dimensions, the formalism is expected to

extend to more complicated reductions from (d +M) dimensions. In the twistorial models of

chapters 4 and 5 we are limited in this regard. While in principle we could perform reductions

along two extra dimensions (i.e. coming down from six), we have mentioned that the six di-

mensional models of [85] are not consistent in their present state. One way of circumventing

this issue would be to start with the ten dimensional pure spinor model of [166,167]. Neverthe-

less, in the RNS models it is clear how one should proceed — and in fact we have written the

discussion of §5.3 in a notation that automatically extends to the more general case where κi is

an M−dimensional vector. Reductions from higher dimensions could be either successive cir-
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cle reductions or even more complicated non-abelian patterns dictated by a choice of compact

manifold.

At the level of the formulae one might hope to obtain from new models of this type, the most

appealing feature would be the additional freedom in the assignment of masses. Because we

have seen that symmetry reduction relates masses to charges under a symmetry group of the

original theory, all the formulae we obtained had to satisfy ‘signed mass conservation’. What

we really were saying was that symmetry reduction relates internal momentum to charges, so

that when this is an M dimensional vector its norm is equal to the mass. Charge conservation

constrains each of its components but the norm is overall less constrained. For instance we

could have a massless momentum k in d dimensions with an internal momentum that has

several non-vanishing components. This allows kinematic configurations with odd numbers

of external massive particles (such as the four-point amplitudes considered in [12]) or even

all massless external kinematics with propagating massive states such as the massive graviton

exchange of [168]. We outline an example in appendix B.6.

As the models stand, we have only performed symmetry reductions along the color and R

symmetry generators. While coming down from more than one dimension we would have the

choice to gauge larger subgroups, we could also explore whether other types of symmetries

could be exploited, for instance to generate massive spin-2 particles. Following this thought

further, we would like to know what is the ‘spectrum’ of theories that we are able to describe

by symmetry reduction and which remain unattainable — together with this should also come

a better understanding of the physical relevance of the theory we can represent.

R-symmetry and double copy In section 5.6 we have presented symmetry reductions per-

formed along theR−symmetry generators in maximally supersymmetric Yang-Mills and grav-

ity. For gauged supergravities obtained as (CSS) symmetry reductions, we have given a novel

form of massive double copy on the worldsheet. Going back to the table 5.4, we have seen

that there is a whole family of left and right pairs for one given supergravity theory and that

the amplitude formula automatically selects one of these pairs on spacetime via the scattering

equations. Looking at this from a different perspective we see that for all the other possible
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pairs we don’t have a way of deriving double copy constructions on spacetime. It seems obvi-

ous that for the pairs that don’t have matching mass spectra there shouldn’t be a valid double

copy but it would be interesting to see if this extends to all discarded pairs.

There is a well established formalism for the construction of gauged supergravities (see

[169] for a review). For further investigations of these theories in the context of the ambitwistor

string, it would be good to make contact with the relevant objects in that description such as

the embedding tensor and the symplectic frame.

Solutions to the polarised scattering equations and Ward identities The amplitude formu-

lae we have derived rely on the polarised scattering equations (5.85). Following our remarks in

chapter 3, we evaluate the integrands on the solutions {σi, ui, vi} by first solving the massive

scattering equations (5.50) and then solving the polarised ones on top of those. Finding ana-

lytic solutions becomes a challenging task already at five point. An interesting approach to the

evaluation of formulae that rely on the scattering equations has been developed in [170–172].

It relies on the (computationally costly) construction of a Gröbner basis of the ideal generated

by the scattering equations and allows one to evaluate the amplitude formula without the need

to know the individual solutions to the scattering equations. It would be interesting to gain a

better understanding of how this is reflected at the level of the path integral.

The massless polarised scattering equation in four dimensions exhibit a special structure

(see section 2.4.2) whereby solutions are split into MHV sectors, so that for instance at n−point

and MHV degree only one solution for {σi} contributes to the MHV amplitude and this can be

evaluated explicitly [173]. For massive particles, even in the case of two massive particles and

n− 2 massless gluons of the same helicity, we can checked numerically that the amplitude has

support on all the (n− 3)! solutions for {σi}.

In recent years several n−point formulae have been derived by BCFW recursion [72, 73].

We have seen in 5.5.2 that the supersymmetry of the full superamplitude can be exploited to

obtain Ward identities relating the different component amplitudes. This can be done for any

superamplitude formula and one obtains relations where the coefficients are the polynomials

in the moduli Uij . What is interesting is that we have found a case where we could easily
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solve for one particular coefficient Uij without the need to solve the full system, thus relating

different n−point amplitudes that had previously appeared in the literature [72, 162]. We have

hope that further investigation of special configurations could lead to more cases where we can

solve for a subset of coefficients Uij to find more Ward identities.

Loops The two-twistor string also provides an alternative formulation of the massless am-

bitwistor string [83], but in a framework in which a massless field can be deformed to go off-

shell. This allows us to adapt the elegant method of deriving loop amplitudes in [84] via a

gluing operator but now to theories with fermions and supersymmetry such as super Yang-

Mills theory. This construction arises from the vector model of the ambitwistor string, where

it has been shown that loop integrands can be localized on a nodal sphere rather than the torus

that more usually arises in string theory [117, 174]. At the level of the worldsheet model, this

nodal structure of loop correlators is realized in the worldsheet CFT as the gluing operator ∆,

which encodes the propagator of the target-space field theory. One-loop amplitudes then have

two equivalent descriptions; a string-inspired one as correlators on a torus, and an alternative

representation as g = 0 correlators in the presence of a gluing operator. We will extend this

construction to the twistorial models in chapter 6.
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Loops from the gluing operator in four dimensions

Wen and Zhang [175] have recently presented D3 brane loop amplitude formulae derived as

forward limits of M5 brane tree level amplitudes in six dimensions. Starting from the twistorial

formulae of [108] and [2], n−point loop amplitudes in four dimensions were derived from an

(n+2)−point tree level amplitude in six. This procedure was understood in the CHY formalism

[176] as coming from the nodal Riemann sphere description of loop integrands in the RNS

ambitwistor string [117, 174]. Whereas loop-level correlators have long been an active field of

research in the RNS ambitwistor string [99,117,174,176–198], progress for the twistorial models

has been rather limited [175, 199, 200]. The cause for this discrepancy seems to be two-fold; in

the N = 4 (ambi-)twistor string, superconformal gravity states propagating in the loop make

it difficult to extract the N = 4 super Yang-Mills integrand, whereas for N = 8 supergravity

the absence of a bc-system complicates the calculation of torus correlators [31]. However, the

progress in the RNS ambitwistor string model suggests that both of these difficulties can be

resolved by adopting a different approach, where loop integrands arise from a nodal sphere

rather than a torus in the worldsheet model.

This relies on a property specific to the ambitwistor string models: the one-loop integrands,

in addition to being modular invariant, are fully localized on a loop-level extension of the scat-

tering equations [99]. They can therefore be simplified by a residue theorem on the moduli

space [174], effectively trading one of the scattering equations for a localization on the non-

separating boundary divisor, where the torus degenerates to a nodal sphere. The resulting am-

plitude formulæ over the nodal sphere are compact, manifestly rational, and can be extended
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from 10d supergravity to a variety of other theories and dimensions [117, 176, 178]. Moreover,

extensions of this argument remain valid at two loops, recasting the two-loop integrand as a

moduli integral over the two-nodal sphere [185, 186].

At the level of the CFT, the simple structure of the loop correlators originates from the

presence of a so-called gluing operator ∆, which encodes the propagator of the target-space field

theory [84]. As an off-shell object, ∆ cannot be a local operator in the CFT, 1 and it contains (in

addition to a genuinely non-local factor) a pair of local operators — corresponding to the off-

shell states of the propagator — inserted at two special points σ+ and σ−. If the two marked

points lie on different worldsheets, ∆ functions as a standard tree-level propagator, and can

be used to formulate the BCFW recursion at the level of the underlying CFT [84]. However,

if both σ± lie on the same sphere2 the correlators reproduce precisely the one-loop integrand

formulæ localized on the nodal sphere. In the ambitwistor string, one-loop integrands can thus

be recovered from g = 0 correlators in the presence of a gluing operator.

Here we propose that many of the issues plaguing the twistorial models at loop level can be

resolved by following this latter strategy of defining a gluing operator and working directly on

the nodal sphere. In an important distinction from the RNS model however, it turns out that the

inherently on-shell nature of the 4d twistorial ambitwistor strings hinders our ability to define

a gluing operator [22, 23, 31, 83].3 This can be understood intuitively from the degeneration

from genus one to the nodal sphere: as discussed above, the residue theorem trades one of the

scattering equations for the localization on the nodal sphere, and therefore P 2 ̸= 0 on the nodal

sphere. At the level of the CFT, this arises from the non-local component of ∆, which modifies

the effective gauged current from P 2 to P 2 − ℓ2ω2
+−. The twistorial models, on the other hand,

solve the constraint P 2 = 0, and thus cannot account for the deformations away from P 2 = 0

necessary for the definition of the gluing operator.

The models of chapters 4 and 5 give an alternative massless model in four dimension. Be-

cause it is embedded in higher dimensions, it allows for more degrees of freedom. While all

1to be precise, it cannot be local and BRST-invariant, but we’d like to retain the latter
2corresponding to a non-separating boundary divisor of the genus-one moduli space
3Here, we mean by ‘on-shell’ that the constraint P 2 = 0, which is gauged in the RNS ambitwistor string, is

explicitly solved in the twistor models, with Pαα̇ = λαλ̃α̇.
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external particles remain on-shell in 4d, we will see that this introduces enough ‘off-shell’ as-

pects into the model to allow for a gluing operator to be defined in close analogy with [84]. We

begin this chapter by discussing the action for the massless worldsheet model, its origin from

the massive model in §5.4.2, and its relation to the familiar 4d ambitwistor string. The extra

currents in this model play an important role in the construction of the gluing operator, and we

highlight the differences and similarities to ∆RNS of [84]. We conclude by calculating n-point

correlators involving ∆, which give rise to the twistorial one-loop integrand formulæ of [175].

6.1 The model

Let us first introduce an ambitwistor worldsheet model that (i) agrees with the familar 4d am-

bitwistor string models for tree-level correlators involving only vertex operators and (ii) allows

for the definition of a gluing operator, i.e. contains gauged currents that allow for deforma-

tions with P 2
4d ̸= 0. One way of achieving this in the twistorial models is to reduce a higher-

dimensional model (e.g. the 5d worldsheet model of [85]) and dimensionally reducing it to 4d.

While in these models P 2 = 0 is still solved exactly, the 4d part P4d can now satisfy P 2
4d ̸= 0.

Equivalently, we may start with the massive model of section 5.4.2, but restrict to the massless

case where jH = 0. This gives the action:

S0
4d =

∫
Σ
Za · ∂̄eZa +AabZa · Zb +Aλ2 + Ãλ̃2 + Sm , (6.1)

where Z are as before the equivalent of the Dirac supertwistors Y = (λA, µ
A, ηI) we considered

in the models of [5]. That this reduces the target space to A4 is intuitively clear from the mass

relations (4.6). In appendix C we show this by explicit integration of the additional degrees of

freedom in the path integral.

We also include the same worldsheet matter Sm as in the massive case, with

SsYM
m = Sρ + Sj , S

sugra
m = Sρ + Sρ̃ , (6.2)

where Sj is a current algebra, and Sρ lifts the worldsheet gauge algebra to a super gauge alge-
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bra, which can be identified as sl2⋉H(0, 2p), where H is the Heisenberg Lie superalgebra, and

p = 1 for super Yang-Mills and p = 2 for supergravity respectively.

Since the model (6.1) is a special case of the massive model discussed in the previous section,

it is clear that the BRST gauge-fixing is only modified trivially so that:

Q = Qm

∣∣∣∣
jH=j̃H̃=0

(6.3)

The anomaly counting is also unaffected by taking jH = j̃H̃ = 0, so we still have

asYM
SL(2) =

3

4
(4−N ) , a

sugra
SL(2) =

3

4
(8−N ) , (6.4)

for the gauge-theory and gravity models respectively, and the SL(2) gauge anomaly vanishes

for maximal supersymmetry. The models also maintain the same central charges,

csYM = −32 +N + cj , csugra = −20 +N . (6.5)

As in the massive case, the models are therefore critical if we include the central charge from

six compactified dimensions, as well as a current algebra of central charge cj = 16 for super

Yang-Mills.

Vertex operators and tree-level correlators. As before, the vertex operators take the form

(5.68). Because we take jH = 0, the BRST cohomology only contains massless states

Q ◦ V (σi) ⊃
(
Aκ2 + Ãκ̃2

)
V (σi) = 0 , (6.6)

which is reflected in the delta functions produced by the picture changing operators as in (5.78).

Tree-level correlators take the form:

An =

n∏
i=2

δ(κ2i ) δ(κ̃
2
i )

∫
dµpoln In eFN , (6.7)
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These are trivial dimensional reductions of the six and five dimensional formulae to four di-

mensional massless kinematics: in chapter 2 they have been shown to agree with the famil-

iar amplitudes in maximal super Yang-Mills and maximal supergravity, as obtained from the

twistor or ambitwistor string.

6.2 Gluing operator

While the 4d ambitwistor string and the worldsheet model (6.1) are equivalent at tree-level, a

gluing operator may readily be defined in the latter, but not the former. The reason for this

is that the gluing operator plays the role of a target-space propagator, and is therefore an in-

herently off-shell object. The constraint P 2 = 0 is solved rather than gauged in the original

twistorial models, thus preventing any deformation that leads to P 2 ̸= 0. For S0
4d on the other

hand, PAB is reduced from six to four dimensions via the gauged currents λ2 and λ̃2, so a non-

local operator can lead to P 2
4d ̸= 0 by deforming them.

We may also see the need for a non-local operator from a different perspective, as stressed

in [84]: since the propagator is off-shell, the gluing operator cannot both be local and BRST

invariant. We will follow the approach of ref. [84], and construct the gluing operator as a non-

local, but BRST invariant object. We thus require that the gluing operator ∆:

(i) encodes a target-space propagator, i.e. includes two local operators O±, which are exten-

sions of the vertex operators V to off-shell momentum ±ℓ, as well as the appropriate sum

over states

(ii) is BRST invariant.

From these requirements, we write the following general form of the gluing operator (c.f. [84]),

∆(σ+, σ−) =

∫
dDℓ

ℓ2
W (σ+, σ−)

∑
states

O+(σ+)O−(σ−) . (6.8)

For the operators O±, we will need two off-shell, back-to-back momenta ±ℓ, which we parametrize
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in the massive spinor-helicity formalism as4

ℓαα̇ = (κ+ακ̃+α̇) , −ℓαα̇ = (κ−ακ̃−α̇) , κa−A = (−1)aκa+A , (6.9)

where the mass parameter Mℓ =: L is defined as usual via

ℓ2 = L2 , det(κ±) = ±L . (6.10)

We may then define the operators O± as the (trivial) extension of the vertex operators V to an

off-shell momentum,

O± = V

∣∣∣∣
k→±ℓ

. (6.11)

While this is enough to satisfy condition (i) above, other choices of O± may in principle be

possible that also satisfy O±
∣∣
±ℓ→k

= V . We will verify below that for the choice (6.11), there

exists a W such that the gluing operator ∆ is BRST-invariant. To be explicit, this gives

O±(σ±) =

∫
d2u d2v δ̄4

(
(uλA)− (v κ±A)

)
δ̄
(
(ϵ±v)− 1

)
w eiua(µAaϵ±A+q± Iη

Ia)− 1
2
(ξv)q2± . (6.12)

The sum over states depends on the model in question. For both super Yang-Mills and super-

gravity, it will be convenient to take (ϵ+ϵ−) = 1. For the Sρ matter system, the sum over states

can then conveniently be performed by a fermionic integral over the supermomenta q± of the

propagating particle, whereas for the current algebra Sj the colour-flow through the propaga-

tor takes the form δab. For super Yang-Mills, we thus have

∑
states

O+(σ+)O−(σ−) =

∫
dN q+ d

N q− δab Oa
+(σ+)Ob

−(σ−) e
iq+·q− , (6.13)

and similarly for supergravity.

At this stage, it is easy to verify explicitly that the operator (6.13) is not BRST-closed due to

the off-shell momentum ℓ. The failure to be BRST-closed must be compensated by the operator

W (σ+, σ−) in (6.8), which is therefore genuinely non-local. Using the BRST-closure to define

4To be explicit, the last equation implies that we use the following convenient choice for the relation between the
spinors of the back-to-back momenta: κ0

−A = κ0
+A and κ1

−A = −κ1
+A.
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W , we find

W (σ+, σ−) = exp

(
±
∫
Σ
(LA+ L Ã)ω+−

)
, (6.14)

where ωij is the differential with simple poles at the marked points, ωij =
σij dσ

(σ−σi)(σ−σj)
. Let us

see explicitly that this achieves the objective, and that ∆ is now in the BRST cohomology. Since

W depends on the gauge fields A and Ã, it modifies the BRST operator to an effective BRST

operator Qeff . After BRST quantization and integrating out the gauge fields in the presence of

the gluing operator, this effective BRST operator takes the form5

Qeff ⊃
∮
cT + ν

(
λ2 − Lω+−

)
+ ν̃

(
λ̃2 − Lω+−

)
, (6.15)

where we have only given the currents affected by the presence of W . We see that the effective

BRST operator contains precisely the correct terms to render the gluing operator BRST-closed,

Qeff ◦∆ = 0 . (6.16)

6.3 One-loop amplitudes

Having constructed the gluing operator ∆ as the BRST-closed operator encoding the propaga-

tor, we can now calculate loop amplitudes (here for super Yang-Mills) as correlators including

∆ on a single Riemann sphere:

∫
M1,n

⟨V1 (σ1) · · · Vn (σn)⟩Σ =

∫
M0,n+2

⟨∆(σ+, σ−)V1 (σ1) · · · Vn (σn)⟩Σ . (6.17)

As proposed in [84] for the RNS ambitwistor string, this will calculate one-loop amplitudes. We

will see that the expressions precisely match the one-loop amplitudes obtained in [175] from a

back-to-back forward limit of the 6d spinorial amplitude formulæ.

From the form of the gluing operator in the previous section we can write the amplitude

5The calculation here mirrors [84] closely, and many additional details can be found there.
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(6.17) as:

∫
d4ℓ

ℓ2
dN q+ dN q−e

iq+·q−
∫
M0,n+2

W (σ+, σ−)δab

〈
V1 (σ1) · · · Vn (σn)Oa

+ (σ+)Ob
− (σ−)

〉
Σ
.

(6.18)

Here the factor W (σ+, σ−) acts as we described in the previous section to provide an effective

‘mass term’ for punctures σ± associated with the on-shell momentum. Then the correlator is

computed as an (n + 2)−point correlator with two off-shell particles with back-to-back mo-

menta. This formula is an analogue of the ones we derived for tree level scattering in the

previous chapter, with adjacent particles ± in the color-ordering because of the sum over states

dictated by the gluing operator. Because of the special kinematic configuration involved, the

scattering equation and the spin 1 integrand can be simplified as follows.

Polarized scattering equations. We embed the spinors κ± and κ̃± as usual into 6d kinematics

κa±A, so that the 4D part of the loop momentum ℓ is now off-shell, c.f. (6.10). Similarly, we

embed the external momenta (massless in 4D) via

κaα = (0,−κα) , κ̃aα̇ = (κ̃α̇, 0) , (6.19)

and 4D polarization data can be incorporated naturally via

ϵia = (0,−1) i ∈ − , ϵpa = (1, 0) p ∈ + , (6.20)

corresponding to the usual ± helicity eigenstates. In particular, this implies that

ϵαi := (ϵi κ
α
i ) = καi ϵ̃α̇i := (ϵi κ̃

α̇
i ) = 0 i ∈ − , (6.21a)

ϵαp := (ϵpκ
α
p ) = 0 ϵ̃α̇p := (ϵpκ̃

α̇
p ) = κ̃α̇p p ∈ + . (6.21b)

As in 6D, the polarized scattering equations for any particle i ∈ {1, 2, . . . , n,+,−} are then

given by

Eiα := (uiλα(σi))− (viκiα) Ẽiα̇ := (uiλ̃α̇(σi))− (viκ̃iα̇) . (6.22)
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where, as before, λ and λ̃ are defined by

λaα(σ) =
∑
i∈h−

uai ϵiα
σ − σi

+
ua+ϵ+α

σ − σ+
+
ua−ϵ−α

σ − σ−
, (6.23a)

λ̃aα̇(σ) =
n∑

p∈h+

uap ϵ̃pα̇

σ − σp
+
ua+ϵ̃+α̇

σ − σ+
+
ua−ϵ̃−α̇

σ − σ−
. (6.23b)

Here, we have used that half the ϵ’s vanish, (6.21), and wlog, we can choose the polarization of

the loop momentum to be

ϵ+a = (1, 0) , ϵ−a = (0, 1) , (6.24)

i.e. in the conventions of [175]:

ϵα+ := (ϵ+ κ
α
+) = κα0+ ϵ̃α̇+ := (ϵ+ κ̃

α̇
+) = κ̃α̇0+ for + ℓ , (6.25a)

ϵα− := (ϵ− κ
α
−) = κα1− = −κα1+ ϵ̃α̇− := (ϵ− κ̃

α̇
−) = κ̃α̇1− = −κ̃α̇1+ for − ℓ . (6.25b)

This implies in particular that we can express the loop momentum ℓ as

ℓαα̇ = (κα+κ̃
α̇
+) = ϵα−ϵ̃

α̇
+ − ϵα+ϵ̃

α̇
− . (6.26)

Integrands. The only non-trivial part comes from det ′H , which we can simplify in this one-

loop set-up. With data as above, H is given by

Hij =H
−
ij =

⟨ϵiϵj⟩
σij

Hpq =H
+
pq =

[ϵ̃pϵ̃q]

σpq
Hip = 0 (6.27a)

Hi± =
⟨ϵiϵ±⟩
σi±

Hp± =
[ϵ̃pϵ̃±]

σp±
, (6.27b)

Here, we take i, j ∈ h− and p, q ∈ h+. We have the freedom to define the reduced determinant

by removing the ± rows and columns from H . With this choice, the resulting determinant is

block-diagonal, and the result has the appealing form

det ′H =
1

(u+u−)2
detH [+−]

[+−] =
1

(u+u−)2
detH+ detH− , (6.28)
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reminiscent of tree-level. Indeed, this form makes it obvious that the integrand behaves cor-

rectly on a single cut.

Putting everything together, we can write the loop amplitude (6.18) as:

A1−loop
n =

∫
d4ℓ

ℓ2
dN q+ dN q−e

iq+·q−
∫

dµpoln+2

1

(u+u−)2
detH+ detH−PT(α, σ+, σ−) e

FN ,

where the polarisation measure is familiar from the six-dimensional tree level formulae, with

the polarised scattering equations as described above. A similar expression can be found for

supergravity and both agree with the formulae presented in [175].

6.4 Comparison to the gluing operator in the RNS ambitwistor string

In section 6.2, we constructed the gluing operator ∆4d following the same guiding principles

used for ∆RNS in ref. [84]; both are built from two local operators that trivially extend the vertex

operators off-shell, and are BRST-closed. In this section, we compare the two gluing operators,

and discuss similarities and differences. As we will see below in more detail, ∆RNS can be

constructed directly in the 10d model, but requires the constraint P 2 to be gauged rather than

solved, and thus does not exist in spinorial models. For clarity, we will compare the two gluing

operators in the RNS model reduced to d < 10, where both constructions are well-defined and

lead to equivalent gluing operators.

∆RNS∆RNS∆RNS : Let us start by reviewing briefly the gluing operator ∆RNS as constructed in [84].

Following the same motivation as given above, the gluing operator takes the form

∆RNS(σ+, σ−) =

∫
dDℓ

ℓ2
W (σ+, σ−)

∑
states

O+(σ+)O−(σ−) , (6.29)

where O± are again off-shell extensions of the vertex operator, obtained by replacing the on-

shell momentum k by the off-shell ±ℓ respectively as in (6.11). 6 In the RNS ambitwistor string,

6For the bi-adjoint scalar Oaȧ
+ = cc̃ jaj̃ȧ eiℓ·X , with the sum over states implemented via ∆abȧḃ = δabδȧḃ.
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BRST invariance requires W to be the following Wilson-line-like operator,

WRNS(σ+, σ−) = exp

(
ℓ2

2

∫
Σ
ẽ ω2

+−

)
. (6.30)

After BRST quantization, this leads to an effective BRST operator of the form

Qeff =

∮
c T +

c̃

2

(
P 2 − ℓ2ω2

+−
)
. (6.31)

Note that this operator is well-defined in D = 10 dimensions, and no dimensional reduction

has been necessary in its derivation. As discussed in the beginning of the section, this reflects

that in the RNS ambitwistor string, P 2 = 0 is a gauged constraint, which can be deformed by

the Wilson-line-like operator W .

In order to compare ∆RNS to the gluing operator in the twistorial model, we reduce it to

4d. Due to the absence of non-trivial winding modes, the toroidal compactification is trivial

in the RNS ambitwistor string [117], and the formula (6.29) remains valid, but with the loop

momentum ℓ(4d) reduced to 4d. This extends straightforwardly to the BRST operator:

Q
(4d)
eff =

∮
c T +

c̃

2

(
P 2
(4d) − ℓ2(4d)ω

2
+−

)
. (6.32)

∆4d∆4d∆4d : It is helpful to transpose the construction of the last section from the twistorial to the

RNS model. In analogy with (6.1), we toroidally compactify five dimensions, and gauge the

reduction from 5d to 4d by including the following term in the action,

S ⊃
∫
Σ
aP · Ω . (6.33)

Here Ω1 is the vector pointing in the ‘fifth’ dimension, and the constraint both restricts tangent

vectors to 4d and identifies different parallel 4-planes as explained in §2.4.5. While we may still

define W as in (6.30), we can now alternatively achieve BRST invariance of the gluing operator

by taking

W 4d
RNS(σ+, σ−) = exp

(
|ℓ|
∫
Σ
aω+−

)
. (6.34)
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This is the RNS equivalent of W4d in the twistorial model. Note that in contrast to WRNS, this

construction is only possible when dimensionally reducing to D < 10. On the other hand, it

has the advantage of being applicable in models where the P 2 = 0 constraint is solved rather

than gauged, as we have seen explicitly in the preceding section.

Despite the slightly differing constructions, both gluing operators give the same effective

BRST operator after quantization;

Q
(4d)
eff =

∮
c T +

c̃

2
P 2
(5d) =

∮
c T +

c̃

2

(
P 2
(4d) − ℓ2(4d)ω

2
+−

)
. (6.35)

In the second equality, we have integrated out the gauge field a to find P · Ω = |ℓ(4d)|ω+−, as

dictated by the inclusion of the effective term in (6.34).

6.5 Discussion

In this chapter we have shown that the formalism that we developed in chapter 5 gives an

alternative massless model for the ambitwistor string in four dimensions, which can be used to

derive loop amplitudes via a gluing operator. The construction makes clear that the model (6.1)

can only encode nodal operators at one and two loops. This can be seen from comparison to the

Q-cut formalism [180], where D-dimensional linearized loop propagators arise from massless

propagators in (D + g) dimensions, where g is the loop level. To be able to replicate the linear

propagators via a gluing operator, the model similarly needs to start in D + g dimensions.

Because the models (6.1) should be considered to come down from five dimensions rather

than six, as discussed in the previous chapters, we don’t expect this description to hold at

two loops. Even in the RNS ambitwistor string, the nodal operator has currently only been

formulated at one loop, with important new features appearing at two loops [185, 186]. As

such, any discussion of loops beyond g = 1 is beyond the scope of this thesis.
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APPENDIX A

Mathematical toolbox

This appendix is meant to clarify some mathematical language that is employed throughout

the thesis. The aim is not to give rigorous definitions and it is not intended for an audience

of mathematicians but it might result useful to the reader who is unfamiliar with the subject

in order to understand various notations. Excellent discussions of the material of the first two

paragraphs can be found in [201].

Complex projective spaces Complex projective space CPn is the space of complex lines through

the origin in Cn+1:

CPn =
(
Cn+1 \ {0}

) /
C∗ , (A.1)

with the action of C∗ defined as:

[X0, X1 . . . , Xn] ∼ [λX0, λX1 . . . , λXn] λ ∈ C∗ , (A.2)

thus identifying non-zero multiples in Cn+1. The coordinates {Xi} are called homogeneous coor-

dinates.

Line bundles on complex projective spaces Throughout the thesis we will be interested in

many examples of complex projective spaces. Both twistor and ambitwistor space are projec-

tive spaces and so is the worldsheet, the compact Riemann surface that describes the embed-

ding of the string in its target space. We want to describe objects that live on these spaces,

namely ‘functions’ of their coordinates that are projectively well defined. This requires us to
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consider, rather than maps from a projective spaceX to C, maps into line bundles overX . These

are complex vector bundles with one-dimensional fibers and holomorphic transition functions.

Over CPn, the most natural line bundle to construct is the tautological line bundle J , whose

fiber over a point is the line it represents in Cn+1 as in (A.1). More generally, line bundles

over CPn are classified according to their transition functions as powers of the tautological line

bundle J and its dual, the hyperplane line bundle H . We get lots of other bundles by taking

powers of J and H , with Jd and Hd having transitions functions that are dth powers of the

transition functions for J and H . The tautological line bundle has inverse transition functions

with respect to H so J = H−1 and we can label line bundles by positive or negative dth powers

of H , often written OCPn(d). Their global sections are homogeneous polynomials of degree d.

An important line bundle we will often consider is the canonical line bundle KCPn . This

is the (holomorphic) line bundle of holomorphic (n, 0)−forms on CPn. On Σ, these are holo-

morphic (1, 0)−forms and we identify KΣ with the (one-dimensional) cotangent bundle T ∗
Σ,

with negative powers of the canonical bundle indicating powers of the tangent bundle TΣ. The

canonical bundle KΣ is the line bundle OΣ(−2).

Conformal Field Theory Ambitwistor strings are two-dimensional CFTs. Their actions are

expressed in terms of fields on a closed Riemann surface that we refer to as the worldsheet.

The (primary) fields are characterised by their statistics and conformal weight.1 This is a pair

of half-integer indices (h, h̄) that label the field’s behaviour under two-dimensional confor-

mal transformations. Because in two dimensions conformal transformations are equivalent to

holomorphic coordinate transformations, we can identify the conformal weight with the form

degree. This implies that we take fields Φ(σ) to be valued in powers of the holomorphic and

antiholomorphic canonical line bundles:

Φ ∈ Ω0(Σ,Kh
Σ ⊗ K̄ h̄

Σ) . (A.3)

1We also often refer to the sections of line bundles OX(d) as having ‘weight’ d in the projective scale of X .
It should always be clear from the context what weight we are referring to but if not specified it is usually the
conformal weight.
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The CFTs that we encounter in the ambitwistor string are chiral CFTs: these are free theories

described by the bc−system for anticommuting fields and by the βγ−system for commuting

fields. We describe the two systems jointly as a BC−system, using ϵ = ±1 to keep track of

bosonic/fermionic statistics. This discussion is standard in string theory and CFT textbooks

such as [202], here we only list the main properties of these systems that we use throughout the

thesis. The action of the chiral CFT in conformal gauge is:

S =
1

2π

∫
d2zB∂̄C , (A.4)

The fields have weights:

B ∼ (h, 0) C ∼ (1− h, 0) , (A.5)

and OPEs:

C(z)B(w) ∼ 1

z − w
B(z)C(w) ∼ − ϵ

z − w
, (A.6)

Noether’s theorem gives the holomorphic stress energy tensor:

T = −hB∂C + (1− h)(∂B)C , (A.7)

The central charge is twice the coefficient of the fourth order pole in the OPE T (z)T (w):

c = 2ϵ(6h2 − 6h+ 1) (A.8)

The Riemann-Roch theorem implies that the number of zero modes at genus g for the two fields

is given by:

nC − nB = (2h− 1)(1− g) , (A.9)

for the minimal total number of zero modes.
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Symmetry reductions

This appendix contains a collection of diverse material in support of chapter 5.

B.1 Factorization of the trace structure

Consider only one SU(N) ordering:

An =
∑
α

Tr[T aα(1) · · ·T aα(n) ]An(α(1) · · ·α(n)) . (B.1)

In the limit K2
I → 0 the color ordered amplitude An(α(1) · · ·α(n)) has a non vanishing residue

on the pole K−2
I only if the labels in the subset I ⊂ {i}n1 are consecutive in the ordering α. If

we split the indices as {1, ...n} = I ∪ I = {k}|I|k=1 ∪ {l}|I|l=1, we can write the total amplitude An

in the limit K2
I → 0 as:

K2
I ·An →

∑
β,γ

Tr[T aβ(k1) · · ·T aβ(k|I|)T aγ(l1) · · ·T
aγ(l|I|) ]A|I|+1(β(k1) · · ·β(k|I|I))A|I+1|(Iγ(l1) · · · γ(l|I|)) ,

(B.2)

where I is the particle propagating on the internal leg going on shell. We can use the complete-

ness relation of SU(N) to factorize the trace structure:

Tr[T aβT aγ ] =
∑
aI

Tr[T aβT aI ]Tr[T aIT aγ ] +
1

N
Tr[T aβ ]Tr[T aγ ] , (B.3)
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where we have used the shorthand notation Tr[T aβ ] = Tr[T aβ(k1) · · ·T aβ(k|I|) ]. The first term

gives the correct term for the factorization of the amplitude:

K2
I · An → A|I|A|I| , (B.4)

so it remains to show that the second term vanishes when summed over all permutations β, γ,

i.e.: ∑
β,γ

Tr[T aβ ]Tr[T aγ ]A|I|+1(β(k1) · · ·β(k|I|)I)A|I+1|(Iγ(l1) · · · γ(l|I|)) = 0 . (B.5)

In order to show this, let us recall that the color-ordered amplitudes are cyclic and they obey

the U(1) decoupling identity:

An[1, 2, . . . n] +An[2, 1, . . . n] + · · ·+An[2, 3, . . . n− 1, 1, n] = 0 = An[Cycles{2, . . .n}, 1] . (B.6)

We can split the sum over permutations β of the labels in I into permutations β̃ of all labels in I

but k1 which we choose to fix combined with a sum over cycles of {k1, β̃} for a given ordering

β̃: ∑
β

=
∑
β̃

∑
Cycles{k1,β̃}

. (B.7)

Because of the ciclicity of the trace we have:

∑
β

Tr[T aβ ]A|I|+1(β(k1) · · ·β(k|I|I)) =
∑
β̃

Tr[T ak1T aβ̃ ]
∑

Cycles{k1,β̃}

A|I|+1(k1β̃I) = 0 . (B.8)

B.2 Invariance argument

In showing the consistency of the factorization channels in the reduced theory, we have in-

voked the invariance of the scattering amplitudes under the action of the group G to claim

that the sum of the charges of all the particles involved in the process should vanish. Here we

review how the invariance of the theory provides the argument generalising (5.40).
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Let us write a generic n−point amplitude as:

An = ⟨ΦR1
1 · · ·ΦRn

n |S|0⟩ . (B.9)

The transformed amplitude under the action of an element of the Cartan subgroup:

A′
n = ⟨Φ

′R1
1 · · ·Φ′Rn

n |S′ |0⟩

= ⟨(1+ (

rank(g)∑
i=1

liHi) + . . . )ΦR1
1 · · · (1+ (

rank(g)∑
i=1

liHi) + . . . )ΦRn
n |S|0⟩ .

(B.10)

To first order in l:

A′
= A+HR1⟨ΦR1

1 · · ·ΦRn
n |S|0⟩+ · · ·+ ⟨ΦR1

1 · · ·HRnΦRn
n |S|0⟩ . (B.11)

By the definition taken in (5.48):

A′
= A+ (h1 + · · ·+ hn)⟨ΦR1

1 · · ·ΦRn
n |S|0⟩ . (B.12)

Then invariance of the amplitude A = A′
implies

0 = (h1 + · · ·+ hn)⟨ΦR1
1 · · ·ΦRn

n |S|0⟩ . (B.13)

So that for all non vanishing amplitudes the internal momenta of the particles defined as (5.48)

involved sum up to zero.

B.3 Scalars in maximal SYM in five and four dimensions

In this appendix we describe the representations of scalars in maximal super Yang Mills upon

reduction from 10 dimensions. When reducing this theory from 10 to d dimensions, the l =

10 − d extra components of the connection are reduced to l real scalars fields {Φa}la=1. The

theory is invariant under rotations of the scalars, i.e. these transform in the fundamental rep-

resentation of SO(l) R-symmetry transformations. We can alternatively write these scalars in
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terms of representations of the spin covering group Spin(l).

In four dimensions we have Spin(6) ≃ SU(4) and the 6 scalars transform in the antisymmetric

tensor ΦIJ = −ΦJI (I, J = 1, . . . 4), satisfying the self-duality condition ⋆Φ = Φ†, with:

(⋆Φ)IJ =
1

2
ϵIJKLΦKL . (B.14)

We can construct such a representation from {Φa}6a=1 as follows. We label the six components

Φa = (ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3) and construct ΦIJ via:

Φmn = ϵmnp(ϕ̃
p − iϕp) ϕm4 = ϕ̃m + iϕm m,n = 1, 2, 3 . (B.15)

In five dimensions Spin(5) ≃ Sp(4) and we can use Euclidean gamma matrices to relate the

fundamental of SO(5) to the antisymmetric tensor of Sp(4):

ΦJ
I = (Γa)JIΦa . (B.16)

Sp(4) indices are raised and lowered via the matrix ΩIJ .

B.4 The Coulomb Branch as a symmetry reduction from the Lagrangian

In this picture, mass terms for the Coulomb branch arise in the symmetry reduction from the

kinetic terms in the action of N = 2 SYM:

S =

∫
d5xTr[− 1

4
FmnF

mn − 1

2
DmΦjDmΦj

+
1

4
[Φj ,Φk]2 +

i

2
Ψ̄AI(γm)BADmΨBI −

1

2
Ψ̄AI(Γj)KI [Φj ,ΨAK ]] ,

(B.17)

where m runs from 0 to 4 and i runs from 1 to 5. γm and Γi are respectively Lorentzian and

Euclidean gamma matrices in five dimensions. The spinors result from the reduction of the 16+
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representation of SO(1, 9) which decomposes under the subalgebrae SO(1, 4)× SO(5) as

16+ → (4, 4) : ψI
A , (B.18)

where the 4 is the fundamental of Sp(4) ≃ SO(5). They are subject to a Majorana condition.

One can easily check that the condition:

∂4(Aµ,Φ
IJ ,ΨI

A) = [H, (Aµ,Φ
IJ ,ΨI

A)] , (B.19)

produces equivalent masses to the ones generated by vev’d scalars in N = 4 SYM.

B.5 R-symmetry reduction

In this appendix we describe the R-symmetry reduction of maximal super Yang-Mills from five

to four dimensions at the level of the lagrangian. We begin expanding the kinetic terms under

(5.120). Starting with the field strength:

FmnF
mn = FµνF

µν + 2DµϕD
µϕ , (B.20)

with ϕ = A4. This is the kinetic term for a four dimensional vector plus the kinetic term for an

extra scalar. The kinetic term for the scalars ΦIJ is:

1

α
DmΦiDmΦi = DmΦIJD

mΦIJ =DµΦIJD
µΦIJ +HM

[I ΦJ ]MH
[I
P ΦJ ]P − iHM

[I ΦJ ]M [ϕ,ΦIJ ]

− i[ϕ,ΦIJ ]H
[I
MΦJ ]M − [ϕ,ΦIJ ][ϕ,Φ

IJ ] .

(B.21)

Here we have the kinetic term for the 5 scalars in four dimensions, a mass term for the 5d

scalars, a cubic and a quartic interaction term between the 5d scalars and the extra scalar ϕ.

Now the kinetic term for the fermions:

Ψ̄AI(γm)BADmΨBI = Ψ̄AI(γµ)BADµΨBI +HJ
I Ψ̄

AI(γ4)BAΨBJ − iΨ̄AI(γ4)BA [ϕ,ΨBI ] , (B.22)

178



CHAPTER B - Symmetry reductions

corresponding to the four dimensional kinetic term, mass terms for the spinors and a Yukawa

interaction term between the spinors and the extra scalar coming out of the vector.

However, the fermions here are still in the spinor representation of SO(1, 4), whereas we’d

like to write these as spinors in four dimensions. First, let’s remind ourselves that the original

10−dimensional Weyl spinors obey a Majorana condition:

ΨT
+C = Ψ̄+ . (B.23)

This condition reads

ΨAIC
ABΩIJ = ΨAI(γ0)

B
Aδ

J
I = Ψ̄BJ , (B.24)

for spinors in 5 spacetime dimensions. Now we want to further bring this down to four di-

mensions. We need make a choice for the 4d gamma matrices in terms of the five dimensional

ones, and in particular we will do that so that the charge conjugation matrix is the same as the

five dimensional one. This is possible because both in 4 and 5 dimensions the C-matrix is an-

tisymmetric. However in five dimensions the C-matrix is C−, i.e. the five dimensional gamma

matrices have the following symmetry:

CγαC
−1 = γTα α = 0, . . . 4 . (B.25)

In four dimensions there are in principle two choices for theC-matrix but onlyC+ is compatible

with the Majorana condition, so that the symmetry property of gamma matrices in this basis

differs in four and five dimensions:

CGµC
−1 = −GT

µ µ = 0, . . . 3 . (B.26)

On the other hand the chiral matrixG5 = iG0 · · ·G3 in four dimensions has the same symmetry

properties as the five dimensional gamma matrices so we can take G5 = γ4. Then for the other

four dimensional gamma matrices it’s easy to verify that Gµ = −iγµγ4 satisfy (B.26).
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We can further choose to write the four dimensional gamma matrices in the Weyl basis:

Gµ =

 0 σµ

σ̄µ 0

 G5 =

1 0

0 −1

 . (B.27)

In this basis the charge conjugation matrix can be written

C = iG0G2 = −i

σ2 0

0 −σ2

 . (B.28)

The Majorana condition (B.24) can then be written:

ΨAIC
ABΩIJ = iΨ̄CJ(G5)

B
C , (B.29)

or equivalently

ΨAI = iC−T ·G−T
5 ·G−T

0 Ψ∗ = −(G0 ·G2 ·G5 ·G0)AC ·Ψ∗
CJΩJI =

 0 σ2

σ2 0


AC

Ψ∗
CJΩJI , (B.30)

where we kept the notation A, ... for the four dimensional Dirac spinor indices. We can further

look at the condition on the projected left and right components of the fermion:

 0 σ2

σ2 0


AC

((
1±G5

2
)DCΨDJ)

∗ΩJI = (
1∓G5

2
)BA

 0 σ2

σ2 0


BD

(ΨDJ)
∗ΩJI

= (
1∓G5

2
)DAΨDI ,

(B.31)

So we have:

ΨR/L;I = σ2Ψ
∗
L/R;JΩJI . (B.32)

Now the mass term for the fermions reads:

HJ
I Ψ̄

AI(G5)
B
AΨBJ = −iHJ

I Ω
KIΨLK · σ2 ·ΨLJ − iHJ

I Ω
KIΨRK · σ2 ·ΨRJ

= −iHJ
I Ω

KI(ΨLK · σ2 ·ΨLJ −Ψ∗
LM · σ2 ·Ψ∗

LNΩMKΩNJ) ,

(B.33)
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in terms of Majorana spinors in four dimensions ΨI = (χI σ2χ
∗
JΩJI)

T .

If we write out the scalar mass terms explicitly we find:

1

2
HM

[I ΦJ ]MH
[I
P ΦJ ]P = Φ12Φ

12(m1+m2)
2+Φ13Φ

13(m1−m2)
2+Φ24Φ

24(m1−m2)
2+Φ34Φ

34(m1+m2)
2 ,

(B.34)

whereas for the spinors we simply have:

HJ
I Ω

KIΨLK · σ2 ·ΨLJ =−m1(ΨL1 · σ2 ·ΨL4 +ΨL4 · σ2 ·ΨL1)

+m2(ΨL2 · σ2 ·ΨL3 +ΨL3 · σ2 ·ΨL2) ,

(B.35)

and similarly for the conjugate term.

Overall the lagrangian describes one massless vector Aµ, two massless scalars ϕ,Φ14, four

massive scalars and four massive Majorana fermions:

S =

∫
d4xTr[− 1

4
FµνF

µν − 1

2
DµϕD

µϕ− α

2
DµΦIJD

µΦIJ +
i

2
Ψ̄AI(γm)BADmΨBI

+
1

2
HJ

I Ω
KI(ΨLK · σ2 ·ΨLJ −Ψ∗

LM · σ2 ·Ψ∗
LNΩMKΩNJ)

− α

2
HM

[I ΦJ ]MH
[I
P ΦJ ]P

− 1

2
Ψ̄AI(Γj)KI [Φj ,ΨAK ]− 1

2
Ψ̄AI(G5)

B
A [ϕ,ΨBI ]

+
α

2
iHM

[I ΦJ ]M [ϕ,ΦIJ ] +
α

2
i[ϕ,ΦIJ ]H

[I
MΦJ ]M

+
1

4
[Φj ,Φk]2 +

α

2
[ϕ,ΦIJ ][ϕ,Φ

IJ ])] .

(B.36)

B.6 Massive amplitudes with a single massive particle

Performing a symmetry reduction along several higher dimensions allows for the presence of

massless particles with non vanishing internal momenum. In this section we will illustrate

how, starting from a theory of massless particles in six dimensions with signature (2, 4), we can

perform a symmetry reduction along two null directions. We will detail the procedure in the

simple case of the biadjoint scalar theory in six dimensions.

It is instructive to start with an example of an amplitude we would wish to construct: a
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four point amplitude with one massive particle and three massless paricles. This case is simple

enough that we can assign by hand values of internal momenta to each of the particles in such

a way that internal momenum is conserved and each particle has the desired mass:

K1 = (k1, κ, iκ) K2 = (k2, κ,−iκ) K3 = (k3, 0, 0) K4 = (k4, 2κ, 0) . (B.37)

It is easy to see that for this assignment of kinematic data, with ki four dimensional momenta

summing to zero, the full six dimensional momentum is conserved and particles 1, 2 and 3 are

massless whereas particle 4 is massive.

We can accomplish this configuration of masses by picking two elements in a Cartan of the

group G, under which the original theory is invariant, and assign masses as:

∂+Φ = mH1 · Φ ∂−Φ = mH2 · Φ , (B.38)

where:

∂+ = (0, 0, 0, 0, 1, 1) · ∂ ∂− = (0, 0, 0, 0, 1,−1) · ∂ . (B.39)

In the case of the biadjoint scalar theory, we write:

∂+ϕ
aȧ = mHab

1 ϕ
bȧ + m̃H̃ ȧḃ

1 ϕ
aḃ ∂−ϕ

aȧ = mHab
2 ϕ

bȧ + m̃H̃ ȧḃ
2 ϕ

aḃ , (B.40)

where hi, h̃i are elements of the Cartan of the groups SU(N), SU(Ñ). This assigns values to the

internal momentum (here taking m̃ = 0):

κs1

κs2

 =

m(hs1 + hs2)

m(hs1 − hs2)

 , (B.41)

where the notation is in line with sections 5.3-5.2.2.

For instance, in the case N = Ñ = 3, we can take:

H1 = diag(1,−1, 0) H2 = (0, 1,−1) , (B.42)
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in the fundamental representation, andHAd
1 ·Φ = [H1,Φ]. It’s easy to see we can give rise to the

internal momenta given above for the four point amplitudes with these assignment of charges.

It is clear that in order to perform this construction we need a Lie group whose Cartan

subalgebra has at least dimension 2. When performing this type of reduction on N = (1, 1)

SYM in six dimensions, we can obtain more general patterns of symmetry breaking U(N) →

U(N1)× U(N2)× U(N −N1 −N2) on the Coulomb branch of N = 4 SYM.
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Embedding of the massless models

We want to show here that the massless model (6.1) that we introduced to describe loops is

equivalent to the massless models presented in [83].

We start with the action:

S =

∫
Σ
(λa · ∂̄µb + µa · ∂̄λb)ϵab +

a

2
λ2 +

ã

2
λ̃2 +Aabλ

a · µb + Sm . (C.1)

The kinetic term can be expanded as:

⟨λ1∂̄µ̃2⟩ − ⟨λ2∂̄µ̃1⟩+ ⟨µ̃1∂̄λ2⟩ − ⟨µ̃2∂̄λ1⟩+ [λ1∂̄µ̃2]− [λ2∂̄µ̃1] + [µ̃1∂̄λ2]− [µ̃2∂̄λ1] . (C.2)

And the gauged currents:

λ2

2
=a⟨λ1λ2⟩ (C.3)

λ̃2

2
=ã[λ̃1λ̃2] (C.4)

λ1 · µ1 =⟨λ1µ̃1⟩+ [λ̃1µ1] (C.5)

λ2 · µ2 =⟨λ2µ̃2⟩+ [λ̃2µ2] (C.6)

λ1 · µ2 + λ2 · µ1 =⟨λ1µ̃2⟩+ [λ̃1µ2] + ⟨λ2µ̃1⟩+ [λ̃2µ1] (C.7)

Integrating out the fields a, ã fixes:

λ1 = tλ2 λ̃1 = t̃λ̃2 , (C.8)
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More precisely, this is how we integrate out the constraints. We can expand both λ1α and

λ̃1α̇ as:

λ1α =
a

⟨λ2ξ⟩
λ2α − b

⟨λ2ξ⟩
ξ , (C.9)

and similarly for the tilded version. Here ξ is some auxiliary spinor orthogonal to λ2. Then we

make a change of variables from λ1α to a, b. The jacobian is −1. Then the path integral is:

∫
Dλ1αδ(⟨λ1λ2⟩)(· · · ) →

∫
DaDbδ(b)(· · · ) →

∫
⟨λ2ξ⟩DtDbδ(b)(· · · ) . (C.10)

We can further perform the change a → t = a
⟨λ2ξ⟩ , with jacobian ⟨λ2ξ⟩. We can replace every-

where λ1 = tλ2 − b
⟨λ2ξ⟩ξ and enforce the delta function b = 0. The kinetic term then reads:

t⟨λ2∂̄µ̃2⟩−⟨λ2∂̄µ̃1⟩+⟨µ̃1∂̄λ2⟩−t⟨µ̃2∂̄λ2⟩−∂̄t⟨µ̃2λ2⟩+t̃[λ̃2∂̄µ2]−[λ̃2∂̄µ1]+[µ1∂̄λ̃2]−t̃[µ2∂̄λ̃2]−∂̄t̃[µ2λ̃2]−

This suggests the field redefinition:

µ̃2 = t−
1
2 µ̃

′2 , (C.11)

µ̃1 = t
1
2 µ̃

′1 , (C.12)

λ2 = t−
1
2λ

′2 , (C.13)

Which modifies the kinetic term to:

⟨λ2∂̄µ̃2⟩+ t
1
2 ∂̄(t−

1
2 )⟨λ2µ̃2⟩ − ⟨λ2∂̄µ̃1⟩ − t−

1
2 ∂̄(t+

1
2 )⟨λ2µ̃1⟩+ ⟨µ̃1∂̄λ2⟩+ t

1
2 ∂̄(t−

1
2 )⟨µ̃1λ2⟩

−⟨µ̃2∂̄λ2⟩ − t
1
2 ∂̄(t−

1
2 )⟨µ̃2λ2⟩ − t−1∂̄t⟨µ̃2λ2⟩

= ⟨λ2∂̄µ̃2⟩ − ⟨λ2∂̄µ̃1⟩+ ⟨µ̃1∂̄λ2⟩ − ⟨µ̃2∂̄λ2⟩ − 1

2
t−1∂t(⟨λ2µ̃2⟩ − ⟨µ̃2λ2⟩ − 2⟨µ̃2λ2⟩+ ⟨λ2µ̃1⟩+ ⟨µ̃1λ2⟩)

= ⟨λ2∂̄µ̃2⟩ − ⟨λ2∂̄µ̃1⟩+ ⟨µ̃1∂̄λ2⟩ − ⟨µ̃2∂̄λ2⟩

The transformation has determinant 1.

In order to check if the t and t̃ path integrals decouple, one also needs to see how the
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remaining gauge currents behave under the field redefinition:

J11 = ⟨λ1µ̃1⟩+ [λ̃1µ1] → t⟨λ2µ̃1⟩+ t̃[λ̃2µ1] (C.14)

J22 = ⟨λ2µ̃2⟩+ [λ̃2µ2] → t−1⟨λ2µ̃2⟩+ t̃−1[λ̃2µ2] (C.15)

J12 = ⟨λ1µ̃2⟩+ [λ̃1µ2] + ⟨λ2µ̃1⟩+ [λ̃2µ1] → ⟨λ2µ̃2⟩+ [λ̃2µ2] + ⟨λ2µ̃1⟩+ [λ̃2µ1] (C.16)

One can then rewrite the gauge fields:

α+ β + γ = A12
α

t̃
+
β

t
= −A11 αt̃+ βt = −A22 , (C.17)

so that the corresponding contribution to the action is:

α(J12 − 1

t̃
J11 − t̃J22) + β(J12 − 1

t
J11 − tJ22) + γJ12 , (C.18)

with

Jα = J12 − 1

t̃
J11 − t̃J22 = (

t− t̃

tt̃
)⟨λ2(t̃µ̃2 − tµ̃1)⟩ , (C.19)

Jβ = J12 − 1

t
J11 − tJ22 = (

t̃− t

tt̃
)[λ̃2(tµ2 − t̃µ1)] , (C.20)

Jγ = J12 = ⟨λ2µ̃2⟩+ [λ̃2µ2] + ⟨λ2µ̃1⟩+ [λ̃2µ1] , (C.21)

The determinant of this transformation is | ∂A
∂(αβγ) | =

(t−t̃)(t+t̃)

tt̃
. We can also rescale α′ = tt̃

t−t̃
α

and β′ = tt̃
t−t̃
β, with determinant −( t−t̃

tt̃
)2.

One can then integrate out the fields α′ and β′, enforcing:

δ(⟨λ2(t̃µ̃2 − tµ̃1)⟩) , (C.22)

δ([λ̃2(tµ2 − t̃µ1)]) , (C.23)

We can first define (µ̃2)′ = t̃µ̃2 − tµ̃1, (µ2)′ = tµ2 − t̃µ1 with determinant 1
t2 t̃2

(notice that

this change should be carried out in the rest of the action too but we’ll do that below). Then
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decompose µ2, µ̃2 on a basis (λ2, ξ) and tilded as we did for λ1.

µ̃1α =
a

⟨λ2ξ⟩
λ2α − b

⟨λ2ξ⟩
ξ . (C.24)

Then the path integral is:

∫
Dµ̃2Dµ2δ(⟨λ2µ̃2⟩)δ([λ̃2µ2])(· · · ) →

∫
DaDbδ(b)DcDfδf(· · · ) →

∫
⟨λ2ξ⟩[λ̃2ξ̃]DmDnDbδ(b)Dfδ(f)(· · · ) .

We can then replace everywhere:

µ̃2 =
t

t̃
µ̃1 +m′λ2 , (C.25)

µ2 =
t̃

t
µ1 + n′λ̃2 , (C.26)

and further multiply by tt̃ for m,n→ m′n′.

The kinetic terms become:

⟨λ2∂̄µ̃2⟩ − ⟨λ2∂̄µ̃1⟩+ ⟨µ̃1∂̄λ2⟩ − ⟨µ̃2∂̄λ2⟩+ [λ̃2∂̄µ2]− [λ̃2∂̄µ1] + [µ1∂̄λ̃2]− [µ2∂̄λ̃2] =

= (
t− t̃

t̃
)(⟨λ2∂̄µ̃1⟩ − ⟨µ̃1∂̄λ2⟩) + ∂̄(

t

t̃
)⟨λ2µ̃1⟩+ (

t̃− t

t
)([λ̃2∂̄µ1]− [µ1∂̄λ̃2]) + ∂̄(

t̃

t
)[λ̃2µ1] ,

And the remaining current:

J12 = (
t+ t̃

t̃
)⟨λ2µ̃1⟩+ (

t+ t̃

t
)[λ̃2µ1] . (C.27)

Let us write (note that this is just notation, not a change of variables):

y =
t− t̃

t̃
ȳ =

t+ t̃

t̃
z =

t̃− t

t
z̄ =

t+ t̃

t
. (C.28)

So that:

∂̄
t

t̃
= ∂̄y ∂̄

t̃

t
= ∂̄z

t+ t̃

t− t̃
=
ȳ

y
= − z̄

z
. (C.29)
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Then we can write the kinetic terms:

(⟨λ2∂̄(yµ̃1)⟩ − ⟨(yµ̃1)∂̄λ2⟩+ [λ̃2∂̄(zµ1)]− [(zµ1)∂̄λ̃2] . (C.30)

And the current:

ȳ⟨λ2µ̃1⟩+ z̄[λ̃2µ1] . (C.31)

This suggest the field redefinition:

µ1 → z−1µ1 µ̃1 → y−1µ̃1 γ → y

ȳ
γ = −z

z̄
γ . (C.32)

Overall we obtain the effective action:

Seff =

∫
Σ
⟨λ2∂̄µ̃1⟩ − ⟨µ̃1∂̄λ2⟩+ [λ̃2∂̄µ1]− [µ1∂̄λ̃2] + γ(⟨λ2µ̃1⟩+ [µ1λ̃2]) , (C.33)

which is the original action for massive models in four dimensions, with Z = (λ2, µ1) and

W = (µ̃1, λ̃2). The determinant is:

⟨λ2ξ⟩2[λ̃2ξ̃]2 1
tt̃
. (C.34)
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[150] C. Sämann and M. Wolf, On twistors and conformal field theories from six dimensions, Journal
of Mathematical Physics 54 (jan, 2013) 013507.

[151] R. Reid-Edwards, On Closed Twistor String Theory, 1212.6047.
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