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ÖZET

DOKTORA TEZİ

ELEKTRON-POZİTRON VE ELEKTRON-FOTON ÇARPIŞTIRICILARINDA
SÜPERSİMETRİ PARAMETRE UZAYININ İNCELENMESİ

Semra GÜNDÜÇ

Ankara Üniversitesi
Fen Bilimleri Enstitüsü

Fizik Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. Ali Ulvi YILMAZER

Günümüzde laboratuvar koşullarında ulaşılan enerji seviyelerindeki fiziği deneyle büyük uyum içinde
açıklayan bir model mevcuttur. Standart Model olarak adlandırılan bu model içerdiği ve değeri
model tarafından tesbit edilemeyen pekçok parametreye sahiptir. Ayrıca Standart Model simetri
kırılımı sonucu olarak öne sürdüğü fakat şimdiye kadar deneysel olarak gözlenememiş olan Higgs
bozonuna ve bu bozonun kütlesinin hesabında ciddi problemlere sahiptir.

Tezde değinilen bu ve benzeri pekçok problem Standart Modelin eksikliklerinin giderilmesi üzerine
genişletilmesini zorunlu kılar. Tez çerçevesinde Standart Modelin genişletilmesinde günümüzde
en olası uygun yapıya sahip olan Süpersimetri kavramının incelenmesi ve bu model çerçevesinde
Süpersimetri parametre uzayının tesbitine ait hesaplamaların yapılması planlanmıştır. Bu amaçla
yakın gelecekte deneysel olarak gözlenmesi en olası olan mevcut en hafif süpersimetrik parçacık-
lardan chargino üretimine ait süreçler e−γ ve e−e+ çarpıştırıcılarında hesaplanmışır.

Chargino üretiminde polarizasyonun çıkan charginoların kütlesi ve momentumuna bağlı olduğu gö-

zlenmiştir. Düşük momentum ve kütle Charginonun durgun olduğu gözlem çerçevesinden bakıldı-

ğında elektronun geliş yönüne göre pozitif yönde polarizasyona, yüksek kütle ve düşük momentum

durumu negatif polarizasyona neden olur. Tüm kütle değerleri için yüksek momentum değerleri

farkedilebilecek bir polarizasyonun olmadığı gözlenmiştir.

2006, 97 sayfa

Anahtar Kelimeler: Yüksek Enerji Fiziği, Standart Model, Süpersimetri, e−γ çarpıştırıcısı,
e−e+ çarpıştırıcısı,Chargino üretimi
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ABSTRACT
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SUPERSYMMETRY PARAMETER SPACE STUDIES IN ELECTRON-POZITRON AND
ELECTRON-PHOTON COLLIDERS
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Supervisor : Prof. Dr. Ali Ulvi Yılmazer

The Standard Model is very succesfull in explaining all the experimental observations up to today’s
laboratory energies. Despite its success for explaining the experimental data it possesses too
many parameters for such a fundamental theory and also it has some conceptual problems that
can not be explained in the framework of the Standard Model. One of the most important of these
conceptual problems is the introduction of Higgs particles. Higgs particles are responsible of giving
mass to all fermions and massive gauge boson but its own mass calculation creates a fundamental
problem which is called Higgs Hierarchy problem.

These conceptual problems which are reviewed in this work strongly suggest that Standard Model
is an effective theory of an extended theory. Among the various extensions beyond the Standard
Model the supersymmetry seems to be well motivated strong candidate to investigate the new
physics around TeV scale. If the supersymmetry is the true model of the nature it is expected
that at least some of the particles will be detected in the near future. Most probably the first
detected particle will be lightest charged particles namely charginos. Therefore thesis work is
devoted to the calculations of the interactions of the supersymmetric particles in order to discuss
the supersymmetry parameter space.

It is observed that the polarizations of the charginos in e−γ colliders depend on the mass of

the chargino and the momenta. Small mass and low momentum leads to the positively polarized

charginos, large mass and low momentum result in the positive polarization. For all mass region

charginos with high momenta are produced unpolarized.

2006, 95 pages

Key Words : High Energy Physics, Standard Model, Süpersymmmetri, e−γ colliders,
e−e+ colliders,chargino production
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TEŞEKKÜR
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ŞEKİLLER DİZİNİ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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4.5 Süpersimetrik etkileşmelerin özellikleri ve süpere¸ slerin yaratılması . . . . . . . . . . . . . . .45

4.6 MSSM parametre uzayı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
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Şekil 6.6 e−γ çarpıştırıcısında λ = +1 ve λ = −1 polarizasyonuna göre elde edilen

asimetrinin enerjiye göre değişimi, mχ̃−
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Şekil 6.8 e−γ çarpıştırıcısında sabit enerjilerde asimetrinin mχ̃−
1

’ye göre değişimi,
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1. GİRİŞ

Standart Model, kuantum renk dinamiğini kuvvetli etkileşmelerin kuramı olarak, Weinberg-

Salam kuramını (Weinberg 1967, Salam 1968) GIM mekanizması ile birlikte (Glashow

et al. 1970) elektromagnetik ve zayıf etkileşmelerin birleştirme kuramı olarak içermekte-

dir. Kuantum renk dinamiği ve Weinberg-Salam kuramı abelyen olmayan yerel ayar de-

ğişmezliği prensibine dayanan ayar kuramlarıdır. Kuantum renk dinamiğinin ayar simetri

grubu SU(3)C, ve Weinberg-Salam kuramının ayar simetri grubu SU(2)L ×U(1)Y dır.

Ayar simetri grubu SU(2)L ×U(1)Y Higgs mekanizması (Higgs 1964) yolu ile kendiliğin-

den simetri kırılımı gösterir. Bu kırılımın sonucunda kuvvetli etkileşmeleri ileten 8 kütlesiz

gluon, elektromagnetik etkileşmeleri ileten 1 kütlesiz foton ve yüklü ve yüksüz zayıf etki-

leşmeleri ileten 3 kütleli vektör bozon kuramın ayar alanlarını oluşturur. Standart Model

bu yapısı ile parçacıkların temel etkileşmelerini bügün ulaşılabilen deneysel enerji se-

viyelerinde büyük başarı ile açıklayan bir modeldir. Standart Modelin en önemli deneysel

başarıları yüksüz akımların ve kuramsal olarak önerilen zayıf etkileşmeleri ileten W± ve

Z0 bozonlarının deneysel olarak gözlenmesidir.

Weinberg ve Salam tarafından ortaya atılan birleştirme kuramı leptonların zayıf ve elek-

tromagnetik etkileşmelerini tanımlayan bir kuramdır. İlerleyen yıllarda Glashow-Iliopoulos-

Maiani (GIM) mekanizması (Glashow et al. 1970) ile kuarklar da bu birleştirme kuramının

içine dahil edilmiş ve bu arada anomalilerin yok olması için o tarihte bilinmeyen dördüncü

(charm, c) kuarkın gerekliliği ortaya atılmıştır. Üçüncü kuark ve lepton ailelerinin (t,b,ντ,τ)

modele ilavesi ile lepton-kuark aileleri arasında simetrik bir yapının olduğu görülür. Stan-

dart Modelin parçacık yapısında 3 aile olarak gruplanmış spin-1/2 kuarklar ve leptonlar

mevcuttur. Standart Modelde nötrinolar kütlesiz ve sağ elli olmasına karşın, mevcut diğer

tüm fermiyonlar sağ elli ve sol elli durumlara sahiptirler. Standart Modelde etkileşmeleri

ileten, başlangıçta kütlesiz 4 vektör bozon, 8 gluon ve kendiliğinden simetri kırılımı için

gerekli bir çift kompleks skaler Higgs alanı kuramın parçacık yapısını tamamlar.

Standart modelin tam olmadığına dair pekçok sebep mevcuttur. Bunlardan ilki model çok

sayıda ve serbest parametre içermektedir. İkinci olarak standart model üç farklı etkileşme
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sabitine sahiptir ve asimptotik olarak serbest değildir. Bu da herhangi bir enerji skalasında

etkileşmelerin kuvvetli olacağı anlamına gelmektedir. Birbirinden çok farklı 3 etkileşme

sabitinin çok yüksek enerjilerde aynı değere ulaşması beklenebilir. Bu skalanın çok yüksek

olması beklenmektedir. Bu durum Standart Modelin daha temel bir teorinin düşük enerji

skalasındaki efektif bir modeli olduğu sonucuna götürür.

Bu temel soruların yanında Standart Modelin daha geniş bir modelin görünen yüzü ol-

duğuna dair pek çok işaret vardır. Bunların bazıları, sol-elli fermiyonlar SU(2) çiftlisinde

iken sağ elliler neden SU(2) teklisindedirler? Neden üç lepton ve kuark ailesi mevcuttur?

Cabibbo-Kobayashi-Maskawa (Cabbibo 1963, Kobayashi and Maskawa 1972) açısı ve za-

yıf karışım açısının değerleri nereden gelmektedir? Bu soruların yanında Standart Mod-

elde simetrinin kendiliğinden kırılımı için gerekli olan Higgs bozonları halen gözlenebilmiş

değildir. Standart Modelin kendiliğinden simetri kırılımı üzerine kuramsal yapısının test

edilmesi gerekmektedir. LEP te yapılan deneylerde Higgs bozonu için kütlenin alt sınırı

olarak 114.4 GeV öngörülmüştür (Barate 2003, Giacomelli 2004). Temelde kendiliğinden

simetri kırılımı ve Higgs sektörü yapısı (ileride anlatılacak) Standart Modelin en zayıf nok-

tasını oluşturmaktadır. Bunun yanında Higgs bozonların ötesinde Standart Model mevcut

formu ile nötrino osilasyonları gözlemlerini açıklamaktan uzaktır (Bu durum modelin diğer

çok önemli başarısızlığını oluşturmaktadır).

Yukarıda değinilen ve tez içerisinde bahsedilecek olan pekçok sebepten ötürü Standart

Modelin genişletilmesi gerekliliği fikri doğar. Standart modelin genişletilmesi olarak, “Stan-

dart Model Ötesi” veya “Yeni Fizik” olarak adlandırılabilecek modellerden bahsedildiğinde

doğal olarak pekçok soru kendiliğinden ortaya çıkar. Bunlardan ilki hangi enerji skalasında

bu yeni fizikten bahsedileceği ve diğeri ise bu yeni fiziğin nasıl tanımlanacağıdır. Yeni fizik

için enerji aralığının 100GeV−1TeV olmasını öngören kuvvetli kuramsal sonuçlar mev-

cuttur. Bu aralığın alt sınırı CERN pp̄ çarpıştırıcısında incelenmiş durumdadır (Bareta et

al. 2003).

Günümüze kadar standart model ötesi fiziğin incelenmesi için oldukça fazla sayıda model

öne sürülmüştür. Bu yaklaşımlardan önemli yer tutan biri büyük birleştirme kuramlarıdır.

Bu kuramlarda gravitasyon hariç bütün ayar etkileşmelerinin MGUT ∼1016GeVskalalarında
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birleştirileceği varsayılır. Son yıllarda büyük ekstra boyutlar (large extra dimensions) fikri

ortaya atılmış ve yoğun şekilde çalışılmıştır. Kompozit modeller, technicolor, kuvvetli elektro-

zayıf simetri kırınımı v.b. yaklaşımlarda Standart Modelin kuramsal eksikliklerinin gideril-

mesi yönünde ortaya atılan fikirlerdir.

Standart Modelin genişletilmesi çabaları arasında birçok açıdan diğer yaklaşımlardan çok

daha öne çıkan yaklaşım Standart Modelin süpersimetrik genişletmesidir.

Standart Modelin genişletilmesine yönelik bütün bu fikirler halen yapımı CERN’de sürmekte

olan ve 2007 yılı içinde çalışır hale gelecek “Large Hadron Collider” (LHC) de test edilebile-

cektir (Branson 2002). Son on yıl içinde tasarımı üzerine pekçok çalışma yürütülen e+e−

lineer çarpıştırıcısı da Standart Modelin bütün genişletilme alternatiflerini büyük bir has-

sasiyetle test edebilecek olanağı ortaya koyabilecektir (Accomando 1998).

Standart Modelin spersimetrik genişletilmesinin en çekici ve en çok çalışılan model ol-

masında süpersimetrik kuramların süpersimetrik olmayan kuramlara göre genel olarak

daha iyi yüksek enerji davranışı göstermesi önemli olmuştur. Özellikle, Higgs kütlesine ge-

len düzeltme terimlerinde karşılaşılan kuadratik ıraksamalardan, ıraksayan bozonik ve fer-

miyonik katkıların birbirlerini yoketmesi yolu ile daha iyi bir yüksek enerji davranışı modelin

önemli bir başarısıdır. Bu mekanizma temel skaler Higgs alanlarının kütlesinin doğal olarak

Standart Model enerji skalasında ,O(MW), kalmasını sağlayan bilinen en başarılı mekaniz-

madır. Süpersimetrinin, cevap aranan temel problemlere çözüm getireceğine inanılmasını

sağlayacak kuvvetli fiziksel argümanlar olmasına rağmen yeni fiziğin ne formda olacağı

sorusu halen geçerliliğini korumaktadır. Fakat şurası vurgulanmaya değer ki eğer do ğa

süpersimetrik degilse bile böyle bir teorinin ayrıntılı bi r şekilde çalışılması Standart

Model ötesi hakkında çok de ğerli yeni bilgiler verecektir.

Süpersimetri, bozonlar ile fermiyonlar arasında ilişki yaratan bir simetridir. Standart Mode-

lin minimal süpersimetrik genişletilmesinde Standart Model de bilinen herbir parçacık için

bir süpereş öngörülür. Süpereşler bilinen parçacıklar ile aynı kuantum sayılarına sahiptir-

ler. Nötrinolar, leptonlar ve kuarkların süpereşleri spin-0 parçacıklardır. Ayar vektör bozon-

larının süpereşleri ise spin 1/2 parçacıklar olup gaugino olarak adlandırılırlar. Süpersimetri
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en az iki Higgs bozon çiftlisine gereksinim duyar. Higgs alanlarının süpereşleri, Higgsino-

lar, spin-1/2 parçacıklardır. Gaugino ve higgsinolar kuantum mekaniksel karışım durum-

larıdırlar; yüklü ve yüksüz kütle özdurumları charginolar χ̃±
1,2 ve nötralinolardır χ̃0

1,2,3,4.

Süpersimetri kırılmadığı takdirde bilinen alanların kütleleri ile onların süpersimetrik eş-

lerinin kütleleri aynı olmak zorundadır. Bu durumda kuark ve leptonların süper eşlerinin

gözlenmemiş olması Süpersimetrinin kendiliğinden kırılmış olduğu anlamını verir.

Günümüzde süpersimetri, Standart Model ötesi fiziğin incelenmesinde en ümit verici aday

olarak görülmektedir. Dolayısıyla süpersimetrik parçacıkların araştırılması ve deneysel

olarak gözlenmesi günümüzdeki ve gelecekteki çarpıştırıcıların öncelikli hedefidir. Stan-

dart Modelde olduğu gibi süpersimetrik genişletilmiş Standart Modelde de çok sayıda keyfi

parametre bulunmaktadır. Modelin öngörü kabiliyetinin artması ancak bu parametrelerin

belirlenmesine ve ilişkilerinin ortaya çıkmasına bağlıdır.

Tez çalışmasında süpersimetri parametrelerinin sadece üçünü açık bir şekilde içeren char-

gino parçacığı ile ilgili hesapları incelenmiştir. Süpersimetrik modellerde chargino ve nö-

tralino üretim süreçleri literatürde e+e− ve γe− çarpıştırıcılarında incelenmiş ve özellikle

etkileşmeye giren parçacıkların polarizasyonlarının etkisi yolu ile süpersimetri parame-

trelerinin ve dolayısıyla chargino kütlesinin öngörülmesi hedeflenmiştir. Chargino sek-

törünün ayrıntılı hesaplamaları ve araştırmaları literatürde mevcuttur. Tez çalışmasında

e+e− ve γe− çarpıştırıcılarında chargino üretimi süreçleri son durum parçacıklarının polar-

izasyonlarının sonucunda ortaya çıkan asimetriler incelenmiştir. Literatürdeki çalışmalar-

dan tez çalışmasını ayıran en temel özellik, literatürde yapılan tüm çalışmaların etkileş-

meye giren elektron ve fotonların polarizasyonlarının tesir kesitlerine etkisi yerine çıkan

parçacıkların seçimli polarizasyonlarının incelenmesidir.

Tez 7 bölümden oluşmaktadır. İkinci bölüm günümüzde deneysel gözlemleri tam olarak

açıklayabildiği halde, kavramsal güçlüklerden dolayı genişletilmesi gereken, tüm yeni fizi-

ği inceleyen kuramların üzerine inşa edildiği Standart Modelin tezin tamlığı açısından bir

özetine ayrılmıştır.

Üçüncü bölümde Standart Modelde gözlenen kavramsal eksikliklerin tartışılması ve Stan-
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dart Model ötesi fiziğin hangi eksiklikleri gidermesi gerektiği tartışması yapılmıştır.

Dördüncü bölüm yüksek enerjilerde ıraksamaların doğal olarak birbirlerini yok ettikleri ve

bunun sonucunda Standart Modelin genişletilmesinde en ümit verici aday olan Süper-

simetri kavramı ve Minimal Süpersimetrik Standart Modeli (MSSM) içermekteir.

Beşinci bölümde Süpersimetrik kuramlarda en düşük kütleli ve gözlenmesi en olası parça-

cıklardan olan charginoların kütle ve etkileşmelerinin kısa bir incelenmesi gerçekleşmiştir.

Altıncı bölüm tez çerçevesinde yapılan e+e− → χ̃−
1 ν̃ ve γe− → χ̃−

1 χ̃+
1 süreçlerinin kuram-

sal olarak incelenmesine ayrılmıştır.

Yedinci ve son bölümde çalışılan model tartışılarak sonuçlar sunulmuştur.
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2. STANDART MODEL

2.1 Giriş

Fermi kuramının renormalize edilememesi, bu kuramın başka bir kuramın düşük enerji

limitindeki efektif modeli olduğu ve gerçek modelin elektromagnetik kuramın yapısına ben-

zeyen bir ayar kuramı olabileceği 60’lı yıllarda yaygın olarak öngörülmüştür (Salam 1964,

Komar and Salam 1960). Bunun da ötesinde fiziğin en temel amaçlarından biri olan

farklı etkileşmeleri bir lagranjiyan altında birleştirme gereksinimi elektromagnetik ve za-

yıf etkileşmeleri aynı çreçeve içinde tanımlama çabalarını hızlandırmıştır. Bütün bu çalış-

malarda karşılaşılan en büyük güçlük, ortaya atılan lagranjiyenin simetrilerinden dolayı

madde alanlarına ve ayar alanlarına kütle verilememesidir. 60’lı yılların sonunda Higgs

mekanizması ile (Higgs 1964, Englert Brout 1964) parçacıkların elektromagnetik ve za-

yıf etkileştirmelerin bir lagranjiyen altında birleştirilmesi sağlanmıştır. Weinberg (1967)

ve Salam’ın (1968) birbirinden bağımsız olarak, leptonların zayıf ve elektromagnetik etk-

ileşmelerini birleştirmeyi amaçlayan modelleri 70’li yılların başında kuarkları da içerecek

şekilde genişletilmiştir (Glashow et al. 1970). Bir diğer önemli gelişme ise Yang-Mills

kuramlarının renormalize edilebilirliğinin t’Hooff (1971) tarafından gösterilmesi olmuştur;

ayar kuramlarının doğanın gerçek resmini tanımladığına olan inanç artmış ve bu alan tüm

fizikçiler için yoğun araştırma alanı haline gelmiştir. 70’li yılların başından itibaren deneysel

tekniklerde ortaya çıkan büyük gelişmeler temel parçacık fiziğinde elde edilen verileri ni-

cel ve nitel olarak son derece iyileştirmiştir. 1973 yılında GIM mekanizmasında önerilen c

kuarkı içeren J/ψ parçacığının gözlenmesi ve takip eden yıllarda zayıf yüksüz vektör akım-

ların ve gluonların etkilerinin deneylerde (Hasert 1973, Prescott 1978) gözlenmesi Stan-

dart Modeli parçacık fiziğinin temel ve vazgeçilmez modeli haline getirmiştir. Birleştirme

kuramları alanında yapılan öncü çalışmalar 1979 yılında Glashow, Weinberg ve Salam’ın

nobel ödülü ile ödüllendirilmesi ile sonuçlanmıştır.

Weinberg ve Salam tarafından başlatılan birleştirme kuramları pekçok alternatif birleştirme

kuramı için ümit verici bir ortam yaratmış olmasına karşın, kuvvetli ,elektromagnetik ve

zayıf etkileşmeleri bir lagranjiyen altında birleştiren ve günümüze kadar deneysel veri-
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leri öngörebilen ve büyük bir duyarlılıkla hesaplamaya olanak veren tek bir model mev-

cuttur. Zayıf vektör bozonların kuramsal öngörülen kütle ve kuantum değerlerinde gö-

zlenmesi kuvvetli etkileşmelerin abelyen olmayan bir ayar kuramı çerçevesinde formüle

edilmesi (Greenberg 1964, Weinberg 1973) ve deneysel olarak kuramsal öngörülerin kanıt-

lanması, zayıf, elektromagnetik ve kuvvetli etkileşmelerin bir lagranjiyen altında yazılabile-

ceği fikrini doğurmuştur. Weinberg - Salam modeli olarak bilinen zayıf ve elektromagnetik

etkileşmelerin birleştirildiği kuramın kuvvetli etkileşmeleri de içerecek şekilde genişletilme-

sine Standart Model adı verilmiştir.

60’lı yıllarda ortaya çıkan fikirlerden Standart Modele kadar olan gelişmeler çok kısa bir

süre önce Weinberg (2004) tarafından özetlenmiştir.

Bu bölüm zayıf, elektromagnetik ve kuvvetli etkileşmeleri tek bir kuram altında birleştiren

Standart Modelin içerdiği temel etkileşmelerin özelliklerini, parçacık yapısını ve etkileşme-

lerini tanımlayan lagranjiyenin tartışılmasına ayrılmıştır.

2.2 Standart Modelin Parçacık Yapısı

Parçacık fiziğinin en temel prensiplerinden biri etkileşmeleri simetri prensipleri yolu ile açık-

lamasıdır. Lagranjiyenin bazı simetri dönüşümleri altında değişmez kalması bir dizi ko-

runum yasalarını doğurur. Lorentz değişmezliği, parite değişmediği, zaman terslemesi

değişmezliği ve benzeri uzay-zaman simetrilerine ek olarak spin, izospin, çeşni gibi iç

simetriler de etkileşmelerin tanımlanmasında önemli rol oynar. Temel etkileşmeler üzerine

oluşan bilgi birikiminin gelişmesi büyük ölçüde tabiatın mevcut simetrileri üzerinde edinile

anlayışın gelişimine bağlanabilir. Kırılmamış simetriler ile korunum yasaları arasındaki i-

lişkinin bilinmesi ve yerel ayar değişmezliği ile kuantum alan kuramları için lagranjiyenin

tanımladığı dinamik arasındaki ilişkinin biliniyor olması temel etkileşmelerin birleştirilmesi

alanında atılan adımlar arasında en önemlilerindendir (Abers and Lee 1973).

Bilinen bütün temel etkileşmeler (gravitasyon hariç) bir ayar gurubu üzerine inşa edilen ayar

kuramları ile açıklanabilmektedirler. Parçacıklar arasındaki etkileşmeler ayar dönüşümleri

altında lagranjiyeni değişmez bırakan bozonik ayar alanları ile iletilirler. Ayar simetrileri
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aynı zamanda kuramda korunumlu yüklerin ve akımların varlığına neden olur. Standart

Model SU(3)c×SU(2)L ×U(1)Y simetrisi üzerine kurulmuş bir ayar kuramıdır ve Stan-

dart Model lagranjiyeni bu simetri altında değişmez kalacak şekilde yazılmak zorundadır.

Yerel simetriler simetri jeneratörleri kadar ayar alanının kurama etkileşmeleri ileten spin-

1 parçacıklar olarak katılmasını öngörür. Bu durumda standart model simetrileri ince-

lendiğinde:

• İlk simetri Kuantum Renk Dinamiğinin abelyen olmayan karakterli ve korunumlu

renk yüküne karşılık gelen SU(3)c simetrisidir. Bu simetrinin ayar bozonu Gµ
a

(a = 1,2, ..8) gluonlardır.

• İkinci simetri SU(2) zayıf izospin simetrisidir. Ayar alanlarının yalnız sol-elli fermiyon-

lar ile bağlaşımından ötürü çoğunlukla SU(2)L olarak yazılır. Lie grubu jeneratörleri

matrisler olduğundan bu simetri abelyen olmayan bir simetridir. Bu simetriye karşılık

gelen üç ayar alanı vardır. Bunlar W1
µ, W2

µ, W3
µ ve korunumlu yük, I3, zayıf izospinin

üçüncü bileşenidir.

• Son simetri U(1) zayıf hiperyük simetrisidir. Bu simetri Abelyen bir simetri olup Bµ

ile tanımlanan ayar alanına karşılık gelir. Bu simetriden kaynaklanan korunan yük

zayıf hiperyüktür.

Standart Modelin madde alanları gözönüne alındığında, Standart Modelde ayar alanları

ile birlikte ayar alanları ile etkileşmeye giren madde alanları ve onların uymak zorunda

oldukları simetrileri de göz önüne alınmak zorundadır.

Standart Modelde madde alanları arasında bilinen ilk grup leptonlardır. Leptonların en

yaygın bilineni olan elektron, maddenin proton ve nötronlarla birlikte yapı taşlarını oluştu-

rur. Leptonlar, elektron e, muon µ, ve tau τ, olmak üzere kütleleri artarak değişen bir yapıya

sahiptirler (Çizelge 2.1). Leptonlar Dirac parçacığı olmalarına karşın Standart Modelde

sol-elli ve sağ-elli bileşenleri farklı şekilde etkileşmeye girerler. Her bir lepton bir nötrino

ile birlikte varlık gösterir ve nötrinolar Standart Model çerçevesinde sol ellidir. Leptonlar

renk kuantum numarası taşımazlar, dolayısı ile kuvvetli etkileşmelere girmezler. Nötrinolar
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yüksüz olduklarından yalnız zayıf etkileşmeye girerlerken elektron, muon ve tau leptonlar

yükleri dolayısı ile zayıf ve elektromagnetik etkileşmelere girerler.

Leptonlar, lepton ve ona karşı gelen nötrino ile birlikte aileler halinde aynı lepton kuantum

numarasını taşırlar. Elektron ve elektron nötrinosu Le= 1, muon ve muon nötrinosu Lµ = 1,

tau parçacığı ve karşı gelen nötrino , Lτ = 1, lepton numarası taşırlar. Tüm parçacıkların

anti-parçacığı vardır ve bu parçacıklar zıt işaret ile aynı kuantum numaralarına sahiptirler.

Çizelge 2.1 Standart Model’de lepton spektrumu

Lepton Kütlesi Elektrik Yükü Yarı Ömrü

νe , e− mνe < 17eV 0,−1 Kararlı

me∼ 0.51MeV Γ > 2×1022 yıl

νµ,µ− mνµ < 0.27MeV 0,−1 νµ Kararlı

mµ ∼ 105.6MeV Γµ = 2.197×10−6 yıl

ντ,τ− mντ < 35eV 0,−1 ντ Kararlı

mτ = 1748MeV Γτ = (3.03±0.08)×10−3 yıl





νe

e





L

, eR;





νµ

µ





L

, µR;





ντ

τ





L

, τR (2.1)

Son yıllarda gözlenen nötrino osilasyonları nötrinoların kütlelerinin varlığının bir göstergesi

olmakla birlikte Standart Modelin minimal formuyla nötrinolar kütlesiz olarak kabul edilirler.

Hadronların yapısını anlamak için ortaya atılan (Gell-Mann 1964) ve daha sonra deneysel

olarak da gözlenen kuarklar yüklü ve kütleli parçacıklardır. Kütlelerinden dolayı gravitas-

yonal etkileşmeye, yüklerinden dolayı ise elektromagnetik etkileşmeye girerler. Kuarklar

kütle ve yüklerinin haricinde baryon numarası, isospin, strangeness, charm, bottom, top

ve renk kuantum numaralarını taşırlar (Çizelge 2.2).
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Çizelge 2.2 Standart Modelde kuark yapısı spektrumu

Kuark ailesi Elektrik yükü Kütlesi

(u,d) (2/3,-1/3) 0.33 GeV

(c,s) (2/3,-1/3) (1.5 GeV, 0.5 GeV)

(t,b) (2/3,-1/3) (>91 GeV, 45 GeV)

Gravitasyonal,elektromagnetik ve kuvvetli etkileşmeler altında bir tip kuark diğer bir tip

kuarka dönüşmezken zayıf etkileşmeler kuark çeşnisini değiştiren özellik taşırlar.

Her bir kuark renk simetrisi altında bir üçlü olarak davranır. SU(2)×U(1) simetrisi altında

Dirac parçacığı olmasından dolayı sol-elli çiftli yanında her iki kuarkın da sağ-elli bileşenleri

mevcuttur.

Kuarklar, Standart Modelde





u

d





L

,





c

s





L

,





t

b





L

(2.2)

uR,dR cR,sR tR,bR (2.3)

şeklinde gösterilebilirler.

Standart Model lagranjiyeninde kuarklar ve vektör bozonlara simetrilerden dolayı kütle

terimi yazılamaz; kuram bu haliyle, içerdiği parçacıkların tümünün kütlesiz olmalarından

dolayı tam değildir. Parçacıkların kütle kazanmaları, kendiliğinden simetri kırınımını sağ-

layan ve Standart Modelde kütleli tüm parçacıklara kütle kazandıran Higgs parçacığının

(kompleks skaler alan) kurama katılması ile mümkün olacaktır. SU(2) simetrisi altında

bir çiftli olan Higgs bozonlarının parçacık spekturumuna katılması ile Standart Modelin

parçacık yapısı tamamlanmaktadır. Higgs parçacığı sektörü bugüne kadar Standart Mod-

elin en az anlaşılan kısmıdır. Standart Modelde tüm parçacıklara fiziksel kütlelerini kazan-

dıran kendiğinden simetri kırılması EK 2’de anlatılacaktır.
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2.3 Standart Model Lagranjiyeni

Leptonların zayıf ve elektromagnetik etkileşmeleri SU(2)×U(1) ayar kuramı olarak yazı-

labilmektedir (Weinberg 1967, Salam 1968, Abers and Lee 1971). Kuarkların etkileşmeleri

gözönüne alındığında renk simetrisinin de kuramın simetrileri arasında olması gerekmek-

tedir. Bu çerçevede düşünüldüğünde temel parçacıkların gravitasyon haricinde tüm etk-

ileşmelerinin tanımlandığı ayar simetrisine sahip bir ayar kuramının varlığını beklemek

doğal görünmektedir. Zayıf, elektromagnetik ve kuvvetli etkileşmeleri içerecek bir lagranji-

yenin ayar simetri grubu G, en basit şekilde zayıf ve elektromagnetik etkileşimlerin tanım-

landığı SU(2)L×U(1)Y ayar grubunun kuvvetli etkileşmelerin ayar simetrisini tanımlayan

SU(3)C grubu ile genişletilmesi sonucu SU(3)C×SU(2)L ×U(1)Y formunda yazılmıştır.

Bu yerel ayar simetri grubu altında değişmez kalan lagranjiyenin, Standart Model lagranji-

yeni, 3 temel özelliğinin olması gereklidir.

• Kuram bir ayar kuramıdır.

• Renormalize edilebilir ve anomali serbest (anomalilerin olmadığı) bir kuram olmalıdır.

• Simetri kırılımı kendiliğinden simetri kırılım mekanizması ile gerçekleşirken foton ve

gluonlar haricinde tüm etkileşmeleri ileten vektör bozonların kütle kazanmış olmaları

gereklidir.

Standart Modelin lagranjiyeni kapalı formda,

LSM = LSU(3)c
+LSU(2)L×U(1)Y

(2.4)

şeklinde verilebilir. Renk simetrisinin kuvvetli etkileşmelerin dinamiğini tanımladığı, elek-

trozayıf etkileşmelerin ise LSU(2)×U(1) lagranjiyeni ile açıklanabildiği gözönüne alındığında

lagranjiyenin her iki parçası ayrı, ayrı incelenebilir.
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2.3.1 Kuantum renk dinami ği lagranjiyeni

Mezonların bir kuark ve bir anti-kuarktan, qq̄, ve baryonların 3 kuarktan, qqq, oluştukla-

rı gözönüne alındığında tüm hadronik spektrum elde edilebilir (Gell-Mann 1964). Buna

karşılık Fermi-Dirac istatistiğinin baryonik sistemlerde uygulanabilmesi için renk kuantum

numarası olarak adlandırılan yeni bir kuantum numarasına ihtiyaç duyulmaktadır. Her

kuark çesnisi 3 farklı renk taşır (Greenberg 1964). Fiziksel olarak gözlenen parçacıklar

olan Baryonlar ve mezonlar kuarkların renksiz kombinasyonları olarak ortaya çıkar.

|B >=
1√
6

εαβγ|qαqβqγ >, |M >=
1√
3

δαβ|qαq̄β > . (2.5)

Burada α,β,γ renk indislerini εαβγ anti-simetrik tensörü temsil eder.

Zayıf etkileşmeye giren diğer parçacıklar, leptonlar, renk kuantum numarası taşımazlar.

Bu anlamda Standart Model SU(3)c×SU(2)L×U(1)Y simetrisinin SU(3)c renk simetrisi

yalnız Standart Modelin renk kuantum numarası taşıyan alanlarını etkileyen bir simetridir.

Standart Model lagranjiyeninin renk simetrisi ile ilgili kısmı

Lc = −1
4∑

i
F i

µνF iµν +∑
f

q̄f αi 6Dα
β qβ

f , (2.6)

şeklinde verilmektedir. Burada α,β renk indisleri, f, tüm bilinen kuarklar üzerinden toplamı

tanımlamaktadır. gs, QCD ayar alanlarının etkileşme sabiti olmak üzere stres tensörü F i
µν,

F i
µν = ∂µGi

ν −∂νGi
µ−gs fi jk G j

µ Gk
ν (2.7)

olarak verilir.

Burada Gi
µ,( i = 1, · · · ,8), renk yükü taşıyan gluon alanlarını, fi jk (i, j,k = 1, · · · ,8) ise

SUc(3) ayar grubunun
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[λi,λ j ] = 2i f i jkλk, (2.8)

komütasyon bağıntısı ile verilen yapı sabitleridir. SU(3) ayar grubunun jeneratorlerini oluş-

turan Gell-Mann (λ) matrisleri EK 1’de verilmiştir.

Eşitlik (2.6)’de ilk terim ayar alanlarının kinetik terimidir ve karşılık gelen propagatörlerin

elde edilmesine imkan verir. Kuark ve gluonların etkileşmeleri ikinci terim olan kovaryant

türev tanımı ile verilir.

Dα
µβ = (Dµ)αβ = ∂µδαβ + igs Gi

µ Li
αβ, (2.9)

Burada Li = λi/2, α,β = 1,2,3 renk kuantum numaralarını tanımlayan indisler, gs ise

kuvvetli etkileşme sabitidir. Kuarklar renk dönüşümleri altında bir üçlü olarak davranırlar.

Eşitlik (2.7) ile verilen gluonların kinetik enerji terimi gluonların kendi kendileri ile etk-

ileşmeleri (renk kuantum numarası taşımaları nedeni ile ) sebebiyle gluonların kütlesiz

olmalarına rağmen QED den farklı olarak etkileşmelerin uzun erimli olmamalarına neden

olur.

Kuantum Renk Dinamiğinin Abelyen olmaması nedeni ile etkileşmeyi ileten gluonların

yük kuantum numarası taşıması ve kendileri ile etkileşmeye girmeleri, etkileşme sabi-

tinin momentumun bir fonksiyonu olarak değişmesi sonucunu doğurur. Kuvvetli etkileşme

sabiti (αs = gs(Q)2/4π) momentum, (Q), transferinin yüksek olduğu değerlerde küçük,

düşük olduğu değerlerde ise büyüktür. Bu özelliği ile yüksek momentumlu etkileşmelerde

renk kuantum numarası taşıyan alanlar serbest gibi (asymptotic freedom) (Wilson 1969)

davranırken alçak momentum değerlerinde büyüyerek bağlı durumların oluşturulmasına

imkan verdiği düşünülmektedir.

Asimtotik serbestliğin geçerli olduğu bölgede petürbasyon kuramının çalışmasına karşın

etkileşme sabitinin büyük olduğu "bağlı durum" bölgesinde pertürbatif olmayan tekniklerin

geliştirilmesi gereklidir. Kuarkların renk kuantum numarası taşımaları ve gluon alanları

ile etkileşmeye girmeleri hadronların etkileşmelerinde deneysel olarak ölçülebilir sonuçlar
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doğurur. Buna karşın Standart Modelde elektrozayıf etkileşmelerde etkileşmeyi ileten ayar

bozonlarının renk yükü taşıması nedeni ile QCD nin bu özellikleri Standart Modelin fene-

menolojik öngörülerini kuarkların olmadığı etkileşmelerde değiştirmez.

2.3.2 Elektro-Zayıf kuram lagranjiyeni

Tüm Standart Model madde alanları zayıf etkileşmelere girer. Bunun yanında yük taşıyan

madde alanları aynı zamanda elektromagnetik etkileşmelerde de yer alırlar. Bu anlamda

kuvvetli etkileşmeler haricindeki etkileşmeleri tanımlayan lagranjiyenin SU(2)L ×U(1)Y

ayar grubu altında değişmez kalması gerekmektedir. Elektro zayıf etkileşmelerin lagranjiyeni

içerdiği farklı etkileşmeler cinsinden açık olarak yazılırsa

LSU2×U1 = Lgauge+L f +Lϕ +LYukawa. (2.10)

Bu lagranjiyende mevcut 4 terim;

• Ayar alanlarının kinetik enerjisi ve kendileri ile etkileşme terimlerini

• Madde alanlarının kinetik enerjisini ve ayar alanları ile madde alanların etkileşmelerini

• Skaler alanların kinetik enerjisini ve kendileri ile etkileşme potansiyeli

• Skaler alanlar ile fermiyonik madde alanları arasındaki etkileşmelerini

tanımlamaktadır.

Standart Model lagranjiyeninin sahip olduğu simetriler ayar alanları ve fermiyon alanlarının

kütle terimlerinin bulunmasını yasaklar. Aynı simetri altında değişmez kalan ve mev-

cut alanlar ile etkileşen skaler alanların kurama ilavesi ile Standart Model lagranjiyeninin

kendiliğinden simetri kırılımı mekanizması yolu ile renormalize edilebilirliğini koruyarak

ayar ve madde alanlarına kütle verilebilir. Skalar alanların vakum beklenenn değerleri-

nin sıfırdan farklı olması Standart Modelde gereksinim duyulan kütleli parçacıkların kütle
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değerlerinin deneysel verilerden bazı Standart Model parametrelerinin değerlerinin elde

edilmesi yolu ile hesaplanmasına olanak verir.

SU(2)×U(1) ayar simetrisi 4 jeneratöre sahiptir. Bu jeneratörlere karşılık gelen ayar

bozonları Wi
µ,( i = 1, 2, 3) ve Bµ ayar alanlarının lagranjiyeni

Lgauge= −1
4

F i
µνFµνi − 1

4
BµνBµν, (2.11)

formuyla verilir. Burada

Bµν = ∂µBν −∂νBµ (2.12)

Fµν = ∂µW
i
ν −∂νW

i
µ−gεi jkW j

µWk
ν , (2.13)

şeklindedir.

Yukarıda g ve g′, SU(2) ve U(1) ayar gruplarının etkileşme sabitleridir. εi jk , SU(2) ayar

grubunun yapı sabiti de olan antisimetrik tensordür (EK 1).

SU(2) ayar alanları kuantum renk dinamiğinde olduğu gibi abelyen olmayan bir grubun

ayar alanları oldukları için W bozonları kendi kendileri ile etkileşirler Eşitlik (2.13).

Bµ, U(1) ayar grubuna karşılık gelen ayar alanıdır ve hiperyük kuantum sayısı taşır, Y =

(Q− I3), burada Q ve I3 elektrik yükü ve SU(2) ayar grubunun üçüncü bileşenini tanımlar.

Bµ alanı bir abelyen ayar grubunun ayar alanı olduğu için kendisi ile etkileşmesi yoktur

Eşitlik (2.12).

Fermiyon lagranjiyeni,

LF =
NF

∑
i=1

(ūiL i 6DuiL + d̄iL i 6DdiL + ūiRi 6DuiR+ d̄iRi 6DdiR (2.14)

+ν̄iL i 6DνiL + l̄ iL i 6Dl iL + l̄ iRi 6Dl iR).
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formunda verilir. Burada uiL ve diL , kuark ailelerinden i inci ailenin yukarı (u) ve aşağı

(d) sol elli bileşenleridir (Eşitlik 2.2). uiR, diR i inci kuark ailesinin sağ elli bileşenleri (Eşit-

lik 2.3), l iL , νiL i inci ailedeki sol elli lepton ve karşılık gelen nötrinoyu ve l iR ise leptonun

sağ elli bileşenini tanımlar. NF ≥ 3 fermiyon aile sayısını, ve L(R) ise sol (sağ) elli chi-

raliteyi tanımlar. Kuark ve leptonlar için sol-ellilik (sağ-ellilik) ilgili projeksiyon operatörünün

spinöre uygulanması ile elde edilir ψL(R) ≡ (1∓ γ5)ψ/2. Sol-elli kuark ve leptonlar SU(2)

ayar grubu altında bir çiftli olarak davranırlarken sağ elli kuark ve leptonlar bu modelde tek-

lidir. Burada kuarkların renk indisleri zayıf etkileşmelerde etkin olmadığından dolayı ihmal

edilmiştir.

Kuark ve lepton çiftlilerinin ayar dönüşümleri altında teklilerden farklı dönüşmeleri ko-

varyant türev tanımlarının da farklı yapılmasına neden olur.

DµuiL =

(

∂µ+
ig
2

τiWi
µ+ i

g′

6
Bµ

)

uiL

DµdiL =

(

∂µ+
ig
2

τiWi
µ+ i

g′

6
Bµ

)

diL

Dµl iL =

(

∂µ+
ig
2

τiWi
µ− i

g′

2
Bµ

)

l iL

DµuiR =

(

∂µ+ i
2
3

g′Bµ

)

uiR

DµdiR =

(

∂µ− i
g′

3
Bµ

)

diR

Dµl iR =
(

∂µ− ig′Bµ
)

l iR . (2.15)

Burada τi Pauli matrisleridir (EK 1).

Kovariyent türev tanımları fermiyonlar ile Wµ ve Bµ ayar alanları arasındaki etkileşmeleri

tanımlar (Eşitlik 2.15). Sağ-elli ve sol-elli fermiyonların farklı dönüşümleri sol-elli kuark ve

leptonların Wµ ve Bµ ayar bozonlar ile etkileşmeye girerken sağ-elli fermiyonların W bo-

zonlarla etkileşmeye girmedikleri sadece B bozonu ile etkileşmeye girdikleri vurgulanması

gereken bir noktadır. Aynı zamanda vurgulanması gereken ikinci konu da chiral simetrinin

fermiyonlar için kütle teriminin lagranjiyende bulunmasını engellediğidir.
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Lagranjiyenin skaler alanları içeren kısmı,

Lϕ = (Dµϕ)†Dµϕ−V(ϕ), (2.16)

olup burada

ϕ =





ϕ+

ϕ0



 (2.17)

SU(2) grubu altında çiftli olarak davranan Kompleks Higgs skalar alanlarını tanımlar, U(1)

yükleri ise Yϕ = +1
2 dir.

Higgs alanları SU(2) altında bir çiftli olduğu için ayar değişmez türev tanımından Wµ ve Bµ

bozonları ile etkileştiği görülür :

Dµϕ =

(

∂µ+ ig
τi

2
Wi

µ+
ig′

2
Bµ

)

ϕ, (2.18)

olup burada τi Pauli matrisleridir.

Lagranjiyenin skaler alanların kinetik enerji teriminde Kovariyent türevin karesinin varlığı

ayar alanları ile skaler alanlar arasında üçlü ve dörtlü etkileşme terimlerinin ortaya çık-

masına neden olur.

Renormalize edilebilirlik ve SU(2)L×U(1)Y ayar simetrisi altında lagranjiyenin degişmez

kalma şartı Higgs potansiyelin, V(ϕ), formunu sınırlar.

V(ϕ) = +
µ2

2
ϕ†ϕ+

λ
4
(ϕ†ϕ)2 (2.19)

Bu potansiyelde mevcut birinci terim Higgs alanlarının çıplak kütlesi ikinci terim ise λ etk-

ileşme sabiti ile Higgs alanlarının kendisi ile etkileşme terimini tanımlar. Kütle teriminin

µ2 < 0 olması durumunda sistemde detayları EK 2’de verildiği gibi kendiliğinden simetri

kırılması gözlenir. Kendiliğinden simetri kırılımı sonunda Kompleks Higgs alanlarından

yüksüz olan sıfırdan farklı vakum beklenen değerine sahip olur, ν =< ϕ >6= 0.
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Kompleks Higgs alanlarının,

ϕ =
1√
2

ei∑iεiLi





0

ν+H



 (2.20)

formunda yazılmaları Higgs alanları potansiyelini

V(ϕ) = −µ4

4λ
−µ2H2+λνH3+

λ
4

H4 (2.21)

formuna dönüştürür. Başlangıçta iki kompleks alandan oluşan Higgs çiftlisi MH kütlesinde

bir reel skaler alanına dönüşmüş olur. Standart Modelde bir adet

MH =
√

−2µ2 =
√

2λν (2.22)

kütlesinde Higgs alanı mevcuttur. Eşitlik (2.17) ve Eşilik (2.20) ile tanımlanan dört alan-

dan üçü kendiliğinden simetri kırılımı sonunda sistemden uzaklaşmış olurlar. Bu üç alan

kütlesiz Wi bozonlarının kütle kazanarak bir serbestlik derecesi daha kazanmalarında rol

oynarlar ve Goldstone bozonu olarak adlandırılırlar.

Higgs alanlarının Eşitlik (2.20) formunda yazılması vektör bozonlar ile Higgs alanları ve fer-

miyonlar ile Higgs alanları arasındaki etkileşmelere özel bir anlam getirir. Bu etkileşme ter-

imleri aynı zamanda simetri kırılımı sonucunda kütlesiz kalan Goldstone bozonların sayısı

kadar vektör bozona kütle (bir fazla serbestlik derecesi) kazandırarak sistemde mevcut

serbestlik derecesinin korunmasına ve vektör bozon ve fermiyonların fiziksel olarak bekle-

nen kütlelerine renormalize edilebilirlik koşulu bozulmadan sahip olmalarını sağlar. Ayar

simetrisinin kendiliginden kırılma sonucunda ayar alanlarının kütle kazanması, kuramın

mevcut renormalize edilebilirlik durumunu korur.

18



2.3.3 Vektor bozon kütleleri

Eşitlik (2.20) skaler alanların kovariyent türevinin basit bir form almasını sağlar. Bu türev

terimi Higgs alanları ile ayar alanları arasındaki etkileşmeleri tanımladığı gibi kendiliğinden

simetri kırılması, W ve Z ayar bozonlarının kütleli olmasına olanak verir.

(Dµϕ)†(Dµϕ) =
1
2
(0 H +ν)

[

g
2

τiWi
µ+

g′

2
Bµ

]2




0

H +ν



+ . . .

= M2
WW+µW−

µ +
M2

Z

2
ZµZµ+ . . . , (2.23)

Lagranjiyende tanımlanmış olan Bµ, W1
µ ,W2

µ ,W3
µ alanları kendiliğinden simetri kırılması

sırasında kalan simetri ile ilişkili olarak elektrik yük operatörünün öz fonksiyonları W± ola-

cak şekilde karışarak fiziksel alanları oluştururlar. W± bozonların kütleleri MW olarak ver-

ilir. Yeni fiziksel yüksüz alanlar, Z0 ve A, Weinberg açısı olarak da bilinen zayıf açının,

tanθW ≡ g′/g tanımlanması ile biri kütlesiz ve diğeri kütleli olmak üzere photon, γ, ve Z0

olarak ortaya çıkar. Kütleli yüksüz bozonun kütlesi MZ’tir.

Yük ve kütle özfonksiyonları olan ayar alanları aşağıdaki gibidir:

W± =
1√
2
(W1∓ iW2)

Zµ = −sinθWBµ+cosθWW3
µ . (2.24)

A = cosθWB+sinθWW3

Bu alanların kütleleri etkileşme sabitleri ve Higgs alanının vakum beklenen değeri cinsin-

den,

MW =
gν
2

, MZ =
√

g2+g′2
ν
2

=
MW

cosθW
(2.25)

olarak verilirken foton alanı kütlesiz kalır.

19



Muon yarı ömründen hesaplanabilen Fermi etkileşme sabiti, GF = 1.16639(2)×10−5 GeV−2,

W ve Z bozonların kütleleri arasında ilişkilerin hesaplanmasına olanak verir.

MW = MZ cosθW =
(πα/

√
2GF)1/2

sinθW
, (2.26)

burada α ∼ 1/137 ince yapı sabitidir. Deneysel verilerden sin2θW ∼ 0.23 değeri bu-

lundugunda, W bozonlarının kütlesini MW ∼ 78 GeV, ve MZ ∼ 89 GeV. olarak elde

edilir. Hesaplamalara düzeltme terimlerinin katıldığı durumda, Standart Model vektör bo-

zon kütlelerinin deneysel değerleri öngörmekte büyük başarı gösterir.

(GF/
√

2∼ g2/8M2
W) ilişkisi dolayısı ile kendiliğinden simetri kırılması yolu ile Higgs alan-

larının vakum beklenen değerleri ile ilişkilendirilebilir.

ν = 2MW/g≃ (
√

2GF)−1/2 ≃ 246GeV. (2.27)

benzer olarak elektrik yükü, e ile etkileşme sabitleri g ve g′ arasında g = e/sinθW, ilişkisi

bulunabilir.

2.3.4 Yukawa etkileşmeleri ve fermiyon kütle terimleri

Eşitlik (2.10) ile verilen Standart Model lagranjiyenin son terimi fermiyonlar ile skaler alan-

ların etkileşmelerini tanımlayan Yukawa terimidir ve bu terim fermiyonların kütle kazan-

masına olanak verir.

−LYukawa=
NF

∑
i, j=1

Γu
i j (ūiLϕ0u jR− d̄iLϕ−u jR) +

Γd
i j (ūiLϕ+d jR+ d̄iLϕ0d jR) + (2.28)

Γe
i j (ēiLϕ+ejR + ν̄l iLϕ0ejR) + H.C.

Burada Γi j matrisleri Higgs çiftlisi, ϕ, ile i inci ve j inci fermiyon çeşnileri arasında Yukawa
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etkileşme matrisini temsil etmektedir. Her kuark ailesinde yukarı (u) ve aşağı (d) kuarklara

kütle kazandırmak için Y = 1
2 ve −1

2 hiperyüklerine sahip iki adet Higgs çiftlisi gerekmek-

tedir. Standart Modelin ayar simetrisinin özelliği olarak ϕ†, Y = −1
2, yüküne sahiptir ve

SU(2) grubu altında, 2̄ formunda dönüşür. Bunun yanında SU(2) simetrisinde 2̄ ve 2

temsilleri bir benzetim dönüşümü ile ilişkilendirilir :

ϕ̃ ≡ iτ2ϕ† =





ϕ0†

−ϕ−





Yϕ̃ = −1
2 kuantum sayısını taşır.

Bu durum, Standart Modelde bütün kütlelerin tek bir Higgs çiftlisi yolu ile tanımlanabile-

ceğini gösterir.

Başlangıçta tanımlanan kuark alanları simetrinin özvektörleri iken Yukawa etkileşmesi sonu-

cunda ortaya çıkan kütle matrisinin diagonal olmaması her aile için tanımlanan çiftlilerin

kütle özvektörleri olmadığı bilgisini taşır. Bu durumda zayıf ve kütle özdurumlarını ilişki-

lendiren matris NF ×NF üniter matris olacaktır. Bu matris Cabibbo-Kobayashi-Maskawa

matrisi olarak bilinir. İki aile için matris basit bir form alır.

V =





cosθc sinθc

−sinθc cosθc



 , (2.29)

Burada sinθc ≡ 0.22Cabibbo açısı (Cabibbo 1963) olarak bilinir. Bu karışım açısı u,d,s,c

kuarkların etkileşmelerde beklenen çeşni değiştiren akımlar için iyi bir yaklaşımdır. İlk iki

ailenin üçüncü aile ile çiftlenimi sıfırdan farklı olmakla birlikte çok küçüktür. Üç aileyi içeren

CKM matrisi (Cabbibo 1963, Kobayashi and Maskawa 1972)

V =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











, (2.30)

formunda verilir.

21



Yukarıda kısaca matematiksel yapısı tartışılan ve kuramsal öngörüleri deneylerle çok büyük

bir uyum gösteren Standart Model, bu büyük başarısına rağmen günümüzde herşeyi içere-

cek bir son model olarak görülmemektedir. Takip eden bölüm bunun nedenleri ve olası

çözümleri ele almaktadır.
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3. STANDART MODEL İN PROBLEMLER İ

3.1 Giriş

Standart Model matematiksel olarak tutarlı, renormalize edilebilir, deneysel sonuçları önce-

den öngörebilen ve tüm deneysel bulgularla uyum içinde olan bir modeldir. Tüm deneysel

sonuçları başarı ile vermesinin ötesinde Standart Modelin en başarılı öngörüleri arasında

zayıf yüksüz akımların formu, W ve Z bozonlarının varlığı ve kütle değerleri, ve GİM

mekanizması sonucu anomalilerin yok edilmesi için fermiyonların aileler halinde gelmesi

gerektiği bilgisi sayılabilir.

Zayıf ve elektromagnetik etkileşmeler, kuvvetli etkileşmeleri de gözönüne alabilmek için

kuantum renk dinamiği ile birleştirildiğinde Standart Model, tabiatı 10−16 cm boyutuna

kadar doğru tanımlayan bir model olarak karşımıza çıkar. Bu büyüklük Standart Modelde

Higgs bozonunun vakum beklenen değeri ile ilişkilidir. Higgs bozonunun vakum beklenen

değeri için v∼ 246GeV kullanılarak d =6hc/v = 0.8x10−16 cm büyüklüğü elde edilir. Bu

değerin altındaki uzunluklarda fiziğin incelenmesi için yeni bir kurama ihtiyaç duyulmak-

tadır.

Standart Modelde en büyük eksiklik parçacıklara kütle vermek üzere kurama ilave edilmiş

olan Higgs parçacıklarının halen gözlenememiş olmasıdır. Bunun yanında Standart Model

çok sayıda keyfi parametre içermektedir. Modelin en basit versiyonunda dahi değeri model

tarafından belirlenemeyen ancak deneysel verilerden bulunabilecek olan 21 serbest parame-

tre mevcuttur. Bu sayıda serbest parametrenin olması Standart Modelin bir temel kuram

olması olasılığını azaltmaktadır. Standart Modelin güçlükleri 4 ana başlık altında toplan-

abilir. Bu problemler; i) Standart Modelin temel aldığı grubun basit bir grup olmaması, ii)

fermiyon ailelerinin sayısı hakkında Standart Modelin bir bilgi vermemesi ve kuark ailelerin

kütleleri arasındaki büyük fark, kuark aileleri arasında CKM (Cabbibo 1963, Kobayashi and

Maskawa 1972) karışımı, iii) Higgs hiyerarşi problemi ve iv) Standart Modele dördüncü

temel etkileşme olan gravitasyonun doğal bir yapı altında birleştirilememesidir.
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3.2 Ayar Problemi

Standart Model 3 farklı grubun direkt çarpımından oluşan ve her grubun ayrı ayrı etkileş-

me sabitlerine sahip olduğu bir ayar simetri grubuna sahiptir. Bir birleştirme kuramının

bu kadar farklı etkileşme sabitlerine sahip olması parametre sayısının artarak öngörü ka-

biliyetinin azalmasına neden olmakla birlikte fiziğin basite ulaşma prensibinden de uzak-

tır. Tüm etkileşme sabitlerinin bir enerji skalasında tek bir değerde toplanması ve enerji

skalası değiştikçe farklılıkar göstermesi birleştirme kuramlarında temel fikirdir. Standart

Model çerçevesinde renormalizasyon grubu teknikleri kullanılarak yapılan hesaplamalar

da kuantum renk dinamiği, zayıf etkileşmeler ve elektromagneik etkileşmelere ait etkileşme

sabitlerin aynı enerji ölçeğinde birleşmediği görülür.

Etkileşme sabitlerinin bir enerji ölçeğinde aynı değere gitmesini beklemenin de ötesinde

parçacıkların dinamiğini tanımlayan simetriler arasında iç simetri gupları olduğu gibi

Poincare grubunun da bulunması estetik ve gravitasyonel etkileşmelerin birleştirilmesi açısın-

dan büyük önem taşır. Standart Modelin bu aşamada gravitasyonel etkileşmeler hakkında

herhengi birşey söyleme olanağı yoktur.

3.3 Fermiyon Problemi

Fermiyonların Standart Modelin elektro zayıf ayar grubu olan SU(2)L ×U(1)Y altında

dönüşümleri ve bu grup altında kuantum sayılarının tanımlanması elde edilmesinde Stan-

dart Modelin fenomenolojik gereksinimler dışında hiçbir kuramsal temele dayanmaz. Özel-

likle

• Sağ elli fermiyonlar SU(2)L ×U(1)Y grubu altında bir tekli olarak dönüşmelerine

karşın neden sol elli fermiyonlar bir çiftli olarak dönüşür?

• Neden fermiyon aileleri mevcuttur ve kuark ve leptonlar için bu ailelerin sayısı üçtür?

• Neden fermiyon aileleri arasında kütle farkı bu denli büyüktür (mτ/me∼ 106)?
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• Neden hiperyük kuantum sayısı 1/6’nın katları olarak gelmektedir. Burada hiper-

yükün kuantumlanması maddenin yüksüz olması için büyük önem taşımakta ve

hiperyükün seçimi Standart Modelin renormalize edilebilirliğine en büyük tehdit oluş-

turan anomalilerin yok olmasında temel rol oynar.

sorularının cevapları Standart Model çerçevesinde bulunamaz. Bunun yanında Standart

Modelde neden yalnız zayıf kısmın parite simetrisini bozan özelliğe sahip olduğuna dair bir

açıklama da mevcut değildir.

Evrendeki tüm olaylar ilk lepton ve kuark ailelerinin νe,e,u,d fermiyonları ile açıklanabilir.

Bunun yanında laboratuvar çalışmalarından üç ailenin varlığı bilinmektedir. Bu daha ağır

ailelerin doğadaki rollerinin ne olduğu da açık değildir. Standart Model, bu daha ağır

ailelerin varlığı ve sayısı için hiçbir açıklama getiremez. Bununda ötesinde fermiyon küt-

lelerinin birbirinden bu kadar farklı olması veya fermiyonların zayıf karışımlarının orijini

hakkında da Standart Modelde bir açıklama yoktur.

3.4 Higgs Hiyerarşi Problemi

Standart Modelde, W±, Z bozonları ile fermiyonlara kütle kazandırabilmek için Higgs

alanları kurama ilave edilmiştir. Kütlesiz fermiyon ve bozonlara kütle vermek için öne

sürülen mekanizma Standart Model ayar grubu altında bir çiftli olarak davranan kom-

pleks spin-0 alanlardan yüksüz alanın sıfırdan farklı vakum beklenen değere sahip olması

prensibine dayanır. Bu mekanizma Higgs potansiyelinin fiziksel gerekçeye dayanmaksızın

potansiyelin Standart Model ayar simetrisini SU(2)L×U(1)Y →U(1)QED kıracak şekilde

seçilmesini gerektirir (EK 2).

Bu durum, Ek 2’de verildiği gibi Higgs alanlarının sıfırdan farklı vakum beklenen değerine

sahip olması için,

λ > 0 ve µ2 < 0 (3.1)
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seçimi için gerçekleşir. Higgs potansiyelinin vakum beklenen değeri

ν =

√

−µ2

λ
(3.2)

olarak bulunur.

Modelin tutarlı olabilmesi için Higgs kütlesinin W kütlesinden çok farklı olmaması gerekir.

Eğer Higss kütlesi W kütlesinden mertebelerce farklı ise aşağıda anlatılan ve hiyerarşi

problemi olarak bilinen problem ortaya çıkar. Aynı zamanda Higgs alanlarının kendileri ile

etkileşmeleri son derece kuvvetli olur. Laboratuvar sonuçları ile kuramsal bulgular birleştir-

ildiğinde Higss kütlesinin MH ≤ 1TeV olması gerektiği öngörülmektedir.

Standart Modelde Higgs parçacıklarının vakum beklenen değerlerinin v∼ 246GeVolması

fenomenolojik bir gereksinim olarak ortaya çıkmaktadır. Bu değer Standart Modelin geçerli

olduğu enerji skalasını da belirler. Deneysel veriler TeV enerjilerine kadar Standart Mod-

elin öngördüğünün dışında yeni bir yapının olduğuna dair tartışmalı olan sonuçlar ver-

memesine karşın gravitasyonel etkileşmeleri de içeren bir modelin MP = 8πGNewton∼
2.4x1018GeVmertebelerindeki fiziğin incelenmesine olanak verecek yapıda olması gerek-

liliği açıktır.

Büyük birleştirme kuramlarının ortaya koyduğu MGUT enerji skalası ve daha da yüksek

bir enerji skalası olan Plank kütlesi MP’nin Standart Modelin kütle skalası olan MW’dan

neden bu kadar büyük olduğu ve aralarında hiçbir enerji skalasının tanımlanmamış olması

hiyerarşi problemi olarak adlandırılan problemin temelini oluşturmaktadır.

Higgs kütlesine Higgs parçacığı ile doğrudan veya dolaylı olarak etkileşen tüm parçacık-

lardan kuantum düzeltme katkıları gelir. Örneğin kütlesi mf olan bir Dirac fermiyonu Higgs

alanları ile Yukawa etkileşmesi −λ f Hψ̄ψ ile etkileşsin. Bu etkileşmelerden dolayı Higgs

kütlesine gelen katkı

∆M = −|λ f |2
8π2 Λ2+ . . . (3.3)

26



olarak hesaplanır. Burada Λ çevrim integralini regüle eden kesim parametresidir ve ku-

ramın yüksek enerji davranışını düzenler. Tüm kuarklar ve leptonlar benzer katkıları vere-

cektir. Buna karşın en önemli katkı kütlesinin en büyük olmasından dolayı t kuarktan gelir.

Higgs kütlesinin Standart Model çerçevesinde Lagranjiyene Higgs kütle parametresi olarak

giren çıplak kütle değerine (µ) gelen düzeltme terimleri

M2
H = µ2+O(Λ2) (3.4)

Λ ölçek parametresine kuadratik bağımlılık gösterir. Burada Λ kuramdaki bir sonraki enerji

skalasıdır. Eğer bu kuramdan daha yüksek bir enerji skalası yok ise Λ ultraviyole kesim

parametresi olacak ve MH ölçülen Higgs kütlesini tanımlayacaktır. Eğer Standart Modelin

daha geniş bir kuramın içinde olduğu varsayılırsa Λ “yeni fiziğin” enerji ölçeğini tanımlar.

Örnek olarak eğer bir sonraki ölçek gravitasyon ise Λ, Planck sabiti MP = GN
1/2 ∼ 1019GeV

dir. Bunun yanında Standart Modelin büyük birleştirme kuramlarının bir alt kuramı olduğu

varsayılırsa kesim parametresi Λ’ nın birleştirme ölçeğinde MGUT = 1014GeVmertebesinde

olması beklenir. Bu durumda MH Higgs kütlesi beklenen değerden çok daha büyüktür.

Beklenen değere ulaşılabilmesi için çıplak kütle ve düzeltme terimleri arasında fiziksel ol-

mayan bir ince ayar yapılarak biribirlerini yok etmeleri sağlanmalıdır.

Higgs hiyerarşi problemine olası bir çözüm W ve Higgs bozonlarının temel parçacık ol-

mayıp bir yapıya sahip oldukları varsayımı ile ulaşılabilir. Bu durum ise Standart Modelin

başarısını etkileyecektir. Bir diğer yaklaşım, Higgs alanlarını fermiyonların bağlı durumları

olarak varsaymaktır. Technicolor ve Higgs parçacıklarının iç yapıları olduğunu varsayan

modeller bu grupta modellerdir. Üçüncü olasılık süpersimetridir. Bu problemin çözümü her

fermiyona karşılık gelen bir skaler alanın bulunduğu süpersimetrik kuramlarda doğal bir

şekilde gerçekleşir. Süpersimetri formulasyonunda kütle düzeltme terimi ve fermiyon ve

bozonlardan gelen farklı işaretli katkılardan gelen sonsuzlukların birbirlerini yok etmesi ile

modelin higgs kütlesini deneysel olarak beklenen mertebelerde tutar.

Takibeden bölüm Süpersimetri ve Standart Modelin süpersimetrik genisletilmesine ayrılmıştır.
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4. SÜPERSİMETRİ

4.1 Giriş

Bölüm 3.’de tüm fenomenolojik olayları çok büyük bir başarı ile açıklamasına rağmen temel

kavramsal yapıda gözlenen eksikliklerden dolayı Standart Modelin parçacık fiziğinde son

kuram olamayacağı tartışılmıştır. Standart Modelde gözlenen hiyerarşi problemi Standart

Modelin daha geniş bir kuramın düşük enerjilerde görünümü olduğuna dair en önemli fizik-

sel gerçektir. Hiyerarşi probleminin doğal bir yolla çözümü için en olası kuramsal yaklaşım

süpersimetrik kuramlar çerçevesinde mümkündür.

Tarihsel olarak 1960’ların sonlarında iç simetriler, örneğin çeşni simetrileri SU(2) veya

SU(3) ile Lorentz simetrilerini birleştirme çabaları başlamıştır. Sadece bozonik karak-

terli yapılar kullanılarak böyle bir birleştirmenin mümkün olmayacağı Coleman ve Mandula

(1971) tarafından gösterilmiştir. Poincare cebirinin fermiyonik yükler ile trivial olmayan bir

şekilde ilk birleştirilmesi 1971 yılında Golfmand ve Likhtmann (1971) tarafından daha sonra

aynı yıl içinde Neveu ve Schwarz (1971) ve Ramond (1971) tarafından yapılmıştır. Bu

çalışmalar baryonlarla uyum içinde çalışabilen fermiyonik sicim kuramları inşa etmek için

iki boyutlu süpersimetrik modellerdir.

Wess ve Zumino (1974) dört boyutlu renormalize edilebilir süpersimetrik alan kuramını

yazmışlardır. Bu çalışmadan kısa bir süre sonra Iliopoulos ve Ferrara bir süpersimetrik

kuramda diğer alan kuramlarında mevcut olan ıraksamaların olmadığını göstermişlerdir

(Ferrare et al. 1974).

Süpersimetrik kuramlarda Lagranjiyen yoğunluğu, spinleri arasında 1/2 fark olan alan-

ları (Volkov and Akulov 1972, Wess and Zumino 1974) birbirine dönüştüren dönüşüm-

ler altında değişmez kalır. Süpersimetri iç simetrilerden yani ayar simetrilerinden bağım-

sızdır; Poincare cebirinin farklı spin temsillerinin genelleştirilmesi (Gol’fand and Likhtman

1971, Volkov and Akulov 1972) çabaları sonucunda ortaya çıkmıştır. Poincare grubunun

farklı gösterimlerinin basit bir şekilde birleştirilemeyeceğinin matematiksel kanıtlar ile or-

taya konulmasından sonra (Coleman and Mandula 1967) bu tür bir birleştirmenin yapıyı
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genişleterek, Poincare cebrinde mevcut komütatörlerin yanına antikomütatörlerin eklen-

mesi yoluyla gerçekleşebileceği gösterilmiştir. Bu genişletilmiş cebir “Graded Lie cebiri”

olarak adlandırılır (EK 3).

Süpersimetri bozonlar ve fermiyonlar gibi farklı spin istatistiğine uyan parçacıkları birbir-

leri ile ilişkilendirir. Spinleri 1/2 farklı olan ve süpersimetrik dönüşümler altında ilişk-

ilendirilen parçacıklara süpereşler denir. Süpereşler farklı spine sahip olmalarına karşın

elektrik yükü, zayıf izospin, renk ve diğer tüm kuantum numaraları aynıdır, hatta süper-

simetri kırılmadığı sürece süpereşlerin kütleleri de aynıdır. Bu özellikleri hiyerarşi proble-

mine süpersimetrik kuramların çözüm bulmasına olanak veren özelliktir. Süpersimetrik bir

lagranjiyende süpereşlerin etkileşmeleri aynı olacağına göre, aynı Feynman diagramlarını

verecekler buna karşın fermiyon çevrimleri bir negatif işaret ile geldiği için bozon ve fer-

miyon çevrimleri birbirlerini yok edeceklerdir. Bu özellik Higgs kütlesine gelen kuadratik

ıraksamaların süpersimetrik kuramlarda olamayacağını garanti eder.

Gerçekte süpersimetri, süpersimetri kırılma skalasında kırılır. Bu kırılma sonucunda skaler

ve fermiyonik süpereşlerin aynı kütleye sahip olmamalarından dolayı tam bir yok etme

sözkonusu olmamakla birlikte kuram kuadratik ıraksamalardan kurtulmuş MSUSYlog( Λ
mw

)

mertebesinde bir logaritmik ıraksama kalmıştır. Bu anlamda süpersimetrik kuramlar diğer

kuramlara göre daha iyi yüksek enerji davranışı sergilerler. SUSY kırılma skalasının çok

yüksek olmaması yeni bir hiyerarşi probleminin ortaya çıkmaması için şarttır. Bu sınırlama

süpersimetrinin parçacık fiziğinde anlamlı olabilmesi için MSUSY∼ 1TeV mertebesinde

olması gerektiği ortaya çıkar.

Standart Modelin eksikliklerinin tartışıldığı Bölüm 3.’de Standart Modelin genişletilmesine

yüksek enerjilerdeki fiziği tanımlamakta yetersiz kalması, hiyerarşi problemi v.b. sebepler

gösterilmiştir. Standart modelin genişletilmesinde en fazla çalışılan modellerin başında

Standart Modelin süpersimetrik genişletilmesi gelmektedir. Bunun en önemli nedeni yu-

karıda belirtildiği gibi süpersimetrik kuramların yüksek enerji davranışlarının süpersimetrik

olmayanlara göre daha iyi olmasıdır. Bir çevrim mertebesinde radiative düzeltmelerde

bozon ve fermiyon katkılarının kırılmış süpersimetri durumunda kuadratik değil, logar-

itmik ıraksama vermesi elementer higgs kütlelerinin tabii olarak Standart Model enerji
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skalalarında kalmasının bilinen en iyi yoludur. Bunun yanında süpersimetrinin gravitasy-

onel etkileşmeleri doğal olarak birleştirme kuramına katabileceği beklentisi ayrıca süper-

simetrinin yeni fizik için en güçlü aday olmasına neden olur.

Standart Modelde mevcut üç etkileşme sabitinin yüksek enerjilerde aynı değere gitmemesi,

buna karşın süpersimetrik Standart Modelde bu üç etkileşme sabitinin yüksek enerji limi-

tinde aynı değere yakınsıyor olması süpersimetrik kuramların fenomenolojik açıdan öne-

mini artırır. Bir diğer ve çok önemli özellik de evrende mevcut gözlenemeyen madde

miktarıdır. Süpersimetrik kuramlarda en düşük kütleye sahip parçacıklar yüksüz olup

madde ile sadece zayıf etkileşmeye girerler. Süpereşler ile bilinen parçacıkları birbirle-

rinden ayırmak için öngörülmüş olan global simetri R-paritenin korunduğu süpersimetrik

kuramlarda kararlı olan en düşük kütleli süpersimetrik parçacık gözlenemeyen maddenin

kaynağı olarak yorumlanmaktadır.

Bir diğer önemli nokta ise Standart Model çerçevesinde nötrinolar kütlesiz kabul edilmek-

tedirler. Fakat son yıllarda yapılan çalışmalar nötrino osilasyonlarını açıklayabilmek için

nötrinoların kütleye sahip olmaları gerektiğini ileri sürmektedir.

Yukarıda sayılan ve benzeri pekçok neden süpersimetrik genişletmenin Standart model

ötesi fiziğin anlaşılmasında en olası kuram olduğunu ortaya koymaktadır.

Süpersimetrik Standart Model, Standart Modelin ve büyük birleştirme kurallarının problem-

lerinin çözümü için önerilmiştir. Standart modelin süpersimetrik genişletilmesine dayanan

modellerin standart model ötesi fiziği açıklamakta en ümit verici model olması bu konuda

deneysel, fenomenolojik ve kuramsal çalışmaların yoğunlugunu arttırmış ve bu alanda li-

teratürün son derece zenginleşmesine olanak vermiştir. Bu bölümde Süpersimetri cebiri,

Standart Modelin genişletilerek TeV enerjilerindeki fiziğin anlaşılması için önerilen Minimal

Süpersimetrik Standart Model (MSSM) matematiksel ayrıntıya girmeden, tez çerçevesin-

deki fenomenolojik gereksinimleri karşılayacak detayda tartışılacaktır.
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4.2 SUSY Cebiri

Süpersimetri transformasyonları bilinen alanlar ve onların süperimetrik eşleri arasında fer-

miyonik karakterli simetri jeneratörleri aracılığıyla ilişki kurarlar. Q ve Q̄ SUSY cebirinin

jeneratörleri olmak üzere bozon durumuna etki ettiği takdirde bunu bir fermiyon durumuna,

fermiyon durumuna etki ettiği takdirde bunu bir bozon durumuna dönüştürecektir.

Q̄|bozon>= | f ermiyon> ve Q| f ermiyon>= |bozon> .

Bozonlar birbirleriyle sıra değiştirirlerken fermiyonlar değiştirmezler, bu durum SUSY jener-

atörlerinin antikomüt etmelerine fermiyonik özellikte olmalarına neden olur. Süpersimetrik

jeneratörler spin kuantum numarasını 1/2 değiştirerek alanın istatistiği değiştirirler.

Süpersimetri jeneratörleri arasındaki ilişkiler,

{Qα,Q̄α̇} = 2σµ
α,α̇Pµ, (4.1)

antikomütasyon bağıntısı ile verilir. Burada Q ve Q̄ SUSY generatorlerini ve Pµ ötelenme

generatörü olan 4-momentumu tanımlar. Süpersimetrik jeneratörlerin Lorentz grubu jene-

ratörleri ve iç simetri grubu jeneratörleri ile olan komütasyon ve antikomütasyon bağıntıları

EK 3’te verilmiştir. Antikomütasyon bağıntısındaki uzay-zaman ötelenme operatörü Pµ’

nun varlığı süpersimetri ile genel görelilik ve gravitasyon kuramlarının ilişkisinin temelini

oluşturur. Çünkü yerel bir süpersimetrik kuram yerel koordinat dönüşümleri altında değiş-

mez kalmalıdır. SUSY cebirinin matematiksel yapısı literatürde pekçok makale ve kitapta

detaylı olarak anlatılmıştır (Haber and Kane 1985, Kazakov 2001) .Bu alt bölümün amacı

fenomenolojik olarak Standart Modelin minimal genişletilmesi ile süpersimetrik yapıya dö-

nüştürülmesinin yani Minimal Süpersimetrik Standart Modelin (MSSM) incelenmesine ola-

nak verecek temel kavramlardan bahsetmektir. Süper-poincare Lie cebiri ve süper uzayla

ilgili temel ifadeler tezin okunurluğunu arttırmak amacıyla EK 3’te sunulmuştur.

Süpersimetrik kuramlarda süperalanlar (süperçoklular) süperuzayda tanımlanmışlardır ve
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bu kuramda bozonik ve fermiyonik serbestlik dereceleri eşittir. En basit süperçoklu, bir

Weyl fermiyonu (2 serbestlik derecesi) ve bir kompleks skalerden (2 serbestlik derecesi)

oluşur. Bu yapıdaki süperçoklu Φ(φ,ψ), chiral veya madde veya skaler çoklu olarak ad-

landırılır.

Diğer basit süperçoklu ise bir vektör bozon ve onun fermiyonik süpereşini içerir. Kuramın

renormalize edilebilmesi için bu vektör bozonun kütlesiz olması gerekir. Kütlesiz bir vektör

bozon (s= 1) iki bozonik serbestlik derecesi taşır. Bu durumda süperçokluda vektör bozon

ile birlikte bir adet iki helisite durumuna sahip Weyl fermiyonunun bulunması gereklidir. Bu

süperçoklu V(Vµ,λ), ayar veya vektör süperçoklu olarak adlandırılır.

Standart Modelin süpersimetrik genişletilmesinde bilinen tüm temel parçacıklar chiral veya

ayar (vektör) çoklulardan birine aittir. Standart Modelde bilinen herbir parçacık spini 1/2

farklı olan süpereşi ile aynı süperçoklu içinde bulunur. Fenomenolojik açıdan bu iki tip

süperçoklunun hangi fiziksel parçacıkları tanımladıklarının belirlenmesi gerekir.

Sağ-elli ve sol-elli kuark ve leptonların Standart Model ayar dönüşümleri altında farklı

davranması bu kuark ve leptonların süpereşleri olarak süperçoklu içinde bulunan kom-

pleks skaler alanların da sol-elli ve sağ-elli olarak adlandırılmasına neden olur. Sol- veya

sağ-ellilik tüm süperçoklu için kullanılmasına rağmen spin-0 parçacık olan süpereşlerin

helisitesinin olmayacağı, helisitenin kuark ve leptonların özelliği olduğu unutulmamalıdır.

Standart Modelde sağ-elli ve sol-elli kuark ve leptonların farklı davranması bunlara karşılık

gelen süperçokluların belirlenmesini gerektirir. Chiral süperçoklu durumunda Φ(φ,ψ) spin-

0 olan bir kompleks skaler alan, helisitesi 1/2 olan bir Weyl fermiyonu ile birlikte bir süper-

çoklu oluştururlar.

CPT dönüşümleri altında bu süperçoklunun Weyl fermiyonu −1/2 helisite durumuna sahip

olur.

|0,1/2> → |0,−1/2 >

Standart olarak helisitesi 1/2 olan Weyl fermiyonu ve skaler alandan oluşan süperçokluya
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sol-elli ve helisitesi −1/2 fermiyona sahip süperçokluya sağ-elli adı verilmektedir.

İkinci en basit süperçoklu chiral çokluda olduğu gibi 2 helisite durumuna sahip olmasına

karşın burada durum daha karmaşıktır. Spini 1 olan ve ayar simetrilerinden dolayı kütlesiz

olmak zorunda olan vektör bozon iki spin durumuna sahiptir (−1,1).

Mayorana fermiyonu ise helisite durumu +1 ve −1 olacak şekilde 2 durumda bulunabilir.

Bu durumda vektör süperçoklu CPT dönüşümleri altında,

|1,1/2> → |1/2,−1 >

formunda dönüşür. Bu durumda vektör süperçoklu icinde bulunan fermiyonların herhangi

bilinen fermiyon ile ilişkilendirilmesi mümkün değildir.

Yukarıdaki özellikler chiral süperçoklu içinde tanımlanmış olan fermiyonun sağ-elli ve sol-

elli kısımlarının farklı davranış gösterebileceğini ifade eder. Bu durumda Standart Modelde

bilinen tüm fermiyonlar chiral çoklularla ilişkilendirilebilir.

Takip eden alt bölümde Standart Model parçacıklarının süpersimetrik eşleri ile Minimal

Süpersimetrik Standart Modelin (MSSM) parçacık yapısı anlatılacaktır.

4.3 Minimal Süpersimetrik Standart Modelin Parçacık Yapıs ı

Standart modelin süpersimetrik genelleştirilmesinin karakteristik yapısı süpereşlerin varlı-

ğıdır. Süpersimetri ile Standart Modelde mevcut hangi bozon ve fermiyonların birbirleriyle

ilişkilendirileceği süpersimetrinin ilk ortaya atıldığı günlerde oldukça önemli bir soru olmuş-

tur. Buna karşın bilinen hiçbir Standart Model parçacığı süpersimetri aracılığıyla biribiriyle

ilişkilendirilemez. Standart model 28 bozonik ve 90 fermiyonik serbestlik derecesine sahip-

tir. Süpersimetrik kuramlarda bozonik ve fermiyonik serbestlik derecelerinin eşit olması

ve süpereşlerin aynı kuantum sayılarına sahip olması gerekir. Bu açıdan bakıldığında

Standart Model süpersimetrik bir çerçeveye sokulamaz. Süpereşlerin bilinen alanlar ile

aynı kuantum numaralarını taşıyacağı gözönüne alındığında Standart Modele yeni par-
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çacıklar ilave ederek süpersimetrik forma getirilmesi gerekliliği açıktır. Süpersimetrinin

ilk günlerinde ileri sürülen en büyük problemlerden biri, bilinen bütün fiziksel süreçlerde

korunan ve yalnız temel fermiyonlar tarafından taşınan lepton ve baryon sayılarının ko-

runumunun nasıl sağlanabilecği olmuştur. Bunun üstesinden gelebilmek için fermiyonik

alanların yanısıra bozonik alanlara da baryon ve lepton sayısı önerilmesi gerekliliği ortaya

çıkar. Standart Modelin süpersimetrik genişletilmesinde dikkat edilmesi gereken hususlar:

• Ayar bozonları kuantum numaralarını taşıyan hiçbir fermiyon yoktur.

• Higgs alanları sıfırdan farklı vakum beklenen değerine sahiptirler. Bunun sonucu

olarak kuark ve leptonların süpereşleri olamazlar, olmaları halinde baryon ve lepton

sayısı korunumu ihlal olur.

• Standart Modelde tüm kuarklara kütle vermek için tek bir Higgs çiftlisinin yeterli ol-

masına karşın süpersimetrik kuramlarda kuark ailelerinin üst (u) ve alt (d) kuarklara

kütle vermek için en azından iki kompleks Higgs çoklusuna ihtiyaç vardır. Bu duru-

mun sebeplerinden biri her Higgs alanına bir fermiyonik süpereşin tanımlanmasıdır.

Pratik olarak Standart Modelin tüm süpersimetrik genişletilmeleri yerel N=1 süpersimetriye

dayanır. Standart Modelin minimal süpersimetrik genişletilmesinde (MSSM) her Standart

Model parçacığına bir süpersimetrik eş tanımlanır. Kuark ve leptonların spin-0 süpereş-

lerinin adlandırılmasında parçacığın isminin başına ’s’ getirilerek skaler olduğu vurgulanır.

Skuark skaler kuark, slepton skaler lepton ve selektron skaler elektron anlamını taşırlar.

Skaler süpereşlerin fermiyon alanlardan ayrılması için üstlerine “ ˜ ” işareti konur. Örnek

olarak elektronun süpereşi selektron ẽL, ẽR ve benzer şekilde µ̃L, µ̃R, τ̃L, τ̃R diğer leptonlara

karşılık gelen süpereşlerdir. Sağ- ve sol-elli skaler kuarklar q̃L,q̃R olarak adlandırılır.

SU(3) renk ayar etkileşmelerini ileten gluonların (g), renk simetri dönüşümleri altında 8’li

olarak davranan fermiyonik süpereşleri gluino (g̃) olarak adlandırılır.

Standart Modelin vektör bozonları doğal olarak vektör süperçoklu içinde bulunur. Vektör

alanların (s= 1) fermiyonik süpereşleri (s= 1/2) genel olarak gaugino olarak adlandırılır.
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Çizelge 4.1 MSSM Parçacık Spekturumu

Bozonlar Fermiyonlar SUc(3)SUL(2) UY(1)

Ayar Alanları

Ga gluon ga gluino g̃a 8 1 0

Vk Zayıf Wk (W±,Z) wino, zino w̃k (w̃±, z̃) 1 3 0

V ′ Hiperyük B (γ) bino b̃(γ̃) 1 1 0

Madde Alanları

Li

Ei

slepton







L̃i = (ν̃, ẽ)L

Ẽi = ẽR

lepton







Li = (ν,e)L

Ei = eR

1

1

2

1

−1

2

Qi

Ui

Di

skuark



















Q̃i = (ũ, d̃)L

Ũi = ũR

D̃i = d̃R

kuark



















Qi = (u,d)L

Ui = uc
R

Di = dc
R

3

3∗

3∗

2

1

1

1/3

−4/3

2/3

Higgs Alanları

H1

H2

Higgsler







H1

H2

higgsinolar







H̃1

H̃2

1

1

2

2

−1

1
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Fotino γ̃, wino W̃±, zino Z̃0 ve gluino g̃ sırasıyla foton, W±, Z0 ve gluon alanlarının

süpereşleridir. Yerel süpersimetri gözönüne alındığına gravitonun süpereşi gravitino spin-

3/2 parçacık olarak gözlenmesi beklenir.

Spin-0 Higgs bozonlarının skaler çoklu yada chiral çokluda olmaları doğaldır. Bu süperçok-

lunun kuarkların içinde bulunduğu çoklu olamayacağından dolayı Higgs alanları yeni spin-

1/2 süpereşlerin tanımlanmasına gereksinim duyar. Higgs alanları ile ilişkilendirilecek

süperçokluların sayısının en az iki olması anomalilerin birbirini yok etmesi için şarttır. Stan-

dart Modelde kuark ve lepton sayıları ve hiperyükleri, tüm fermiyonların hiperyüklerinin

toplamını (∑ f ermiyonY = 0) sıfır verecek şekilde olması kurama eklenecek yeni fermiyon-

ların da aynı şekilde anomalileri yok edebilmek için toplam hiperyükün birbirini yok edecek

şekilde kuantum numarası taşımasını gerektirir. Bir tek Higgs çoklusu hiperyük olarak

Y = +1/2 veya Y = −1/2 taşıyacaktır. En az iki Y = +1/2 ve Y = −1/2 olan Higgs

çokluları anomalilerin birbirini yok etmeleri için gereklidir.

Gaugino ve Higgsinolar kuantum mekaniksel olarak karışım durumlarıdır. Yüklü ve yük-

süz kütle özdurumları charginolar χ̃±
1,2 ve nötralinolardır χ̃0

1,2,3,4. Bu kütle özdurumları

altbölüm 4.4 de ayrıntılı olarak verilecektir.

Çizelge 4.1 de bilinen alanlar ve süpersimetrik eşleri Standart Modelin simetrileri çerçe-

vesinde çoklular olarak gösterilmiştir. Bu çizelgede görüleceği gibi gluon ga ve gluinolar

g̃a a = 1. . .8 SU(3) altında 8’li olarak dönüşürken SU(2)L altında teklidirler.

Benzer şekilde zayıf vektör bozonlar ve bunların süpereşleri renk kuantum numarası taşı-

mazken SU(2)L altında 3’lü olarak dönüşürler. Fermiyon sektöründe sol-elli leptonlar ve

kuarklar ve süpereşleri bir ikili olarak dönüşürken sağ-elli leptonlar, kuarklar ve bunların

süpereşleri teklidirler. MSSM modelinde iki adet çiftli Higgs alanları SU(3)C×SU(2)L×U(1)Y

grubunun (1,2,−1) ve (1,2,1) kuantum numaralarını taşırlar.

H1 =





φ0
1

φ−1



=





ν1+H0
1

H−
1



 , H2 =





φ+
2

φ0
2



=





H+
2

ν2+H0
2



 ,
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burada νi (i = 1,2) yüksüz bileşenlerinin vakum beklenen değeridir.

Kuantum sayılarının korunumu gereksinimi ile baryon ve lepton sayısı taşıyan bu yeni bo-

zonik alanlar ekstra bir zorluğun kaynağıdırlar. Bilinen etkileşmeler spin-1 ayar bozon-

larının (gluon, f oton,W±,Z) aracılığı ile taşınmaktadır. Süpersimetride ortaya çıkan bu

yeni spin-0 parçacıkların istenmeyen, yeni bir takım etkileşmelere neden olması yeni prob-

lemler yaratır. Bu problem eğer skuarklar ve sleptonlar bilinen fermiyon ve leptonlar ile

Yukawa etkileşme terimine sahip olmazlarsa ortadan kalkabilir. Bu durum yeni bir simetri

ilkesi ile sağlanabilir. Bu yeni simetri R-parite olarak adlandırılır. Tüm bilinen parçacıklar

ve süpereşleri yeni bir kuantum numarası taşırlar.

Bilinen parçacıklar için R-çift, süpereşleri için ise R-tek dir. Bu durumda süpersimetri je-

neratörü bu iki farklı parçacık grubunu R-tek bir jeneratör aracılığıyla ilişkilendirmiş olur.

Çarpımsal olarak korunan bu kuantum sayısı bilinen parçacıklar için R= +1 onların sü-

pereşleri içinse R= −1 dir. Sparçacığın spini, B, baryon sayısı ve L, lepton sayısı olmak

üzere R paritesi,

R= (−1)2S(−1)3B+L (4.2)

ifadesi ile verilebilir. R paritesi eğer lagranjiyen yoğunluğunun sahip olduğu bir simetri

ise yeni spin-0 skuark ve sleptonların bilinen spin-1/2 kuark ve leptonlar ile direk etki-

leşmesini yasaklar. R-paritesinin korunumu açıkça süperpotaniyelde (Eşitlik (EK 3.13))

baryon ve lepton korunumunu ihlal eden terimlerin bulunmasını engeller. Yukarıdaki ifad-

ede R-paritenin kırılması baryon ve lepton sayısının korunumunu ihlal eder dolayısıyla

istenmeyen etkileşmelerin taşınması riski de gündeme gelir.

Korunsun yada korunmasın Rparitesi süpersimetrik kuramlarda önemli bir yere sahiptir. R

parite korunuyorsa süpereşler sadece çiftler halinde üretilirler. (korunmuyorsa bile pekçok

etkileşmede süpereşlerin çiftler halinde üretilmeleri beklenir.) Bununla birlikte R paritesi

pekçok süpereş parçacığın kararsız olmasını öngörür. Bunun yanında R paritesinin mut-

lak korunumu en hafif süpersimetrik parçacığın (Lightest Supersymmetric Particle, LSP)

kararlı olmasını gerektirir. Süpersimetrik lagranjiyen yazılması için R paritenin korunması
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şartı yoktur, doğada lepton ve baryon numaralarının korunmadığı etkileşmelerin bulunması

da mümkündür. Deneysel olarak bu etkileşmeler için etkileşme sabitleri üzerinde limitler

literatürde mevcuttur (Dreiner and Ross 1991).

Eğer süpersimetri kırılmamış olsa idi süpereşlerin bilinen parçacıklar ile aynı kütlelerde

gözlenmesi gerekirdi. Bugüne kadar erişilen labaratuvar enerjilerinde süpereşlerin göz-

lenememiş olması süpersimetrinin kırılmış olduğunu ve süpereşlerin günümüz laboratu-

var koşullarında ulaşılabilen enerji seviyelerinde gözlenemeyecek kadar ağır olduklarını

göstermektedir. Süpersimetrik lagranjiyenin ve süpersimetri kırınımı ile ilgili kuramların

tartışılacağı takip eden altbölümde süpersimetri kırılımını süpersimetrik parçacıkların kütle

kazandırması, Higgs ve ayar bozonları arasındaki karışım sonucunda kütle özdurumları

olarak ortaya çıkan chargino ve nötralino parçacıklarının kütle matrisleri tartışılacaktır.

4.4 MSSM Lagranjiyeni

MSSM lagranjiyeni iki bölümden oluşur. Bu terimlerden biri Standart Modelin süpersimetrik

genelleştirilmesi LSUSYdiğeri ise süpersimetriyi kıran Lso f t terimlerini içerir.

L = LSUSY+LSOFT (4.3)

Burada LSUSY tüm ayar alanı, madde alanı kinetik enerji terimlerini, madde ayar alanı

etkileşmelerini ve Yukawa etkileşmelerini içerir. İkinci terim Lso f t süpersimetriyi kıran kü-

tle terimi ve etkileşme sabitlerini içeren terimdir. Bu yapının istenmesi keyfi gibi görünse

de kuramsal çalışmalar ve hiyerarşi probleminden kurtulmak için kuramın kuadratik ırak-

samalardan arınmış olması gereksinimi simetri kırılım terimlerini limitler. Standart Modelin

süpersimetrik genişletilmesi,

LSUSY = ∑
Ayar

1
4

(

Z

d2θ TrWαWα +

Z

d2θ̄ TrW̄α̇W̄α̇

)

+ ∑
Madde

Z

d2θd2θ̄ Φ†
i e(g3V̂3+g2V̂2 +g1V̂1)Φi
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+

Z

d2θ (WR+WNR)+h.c. (4.4)

süpersimetrik lagranjiyen ile verilebilir. Burada ayar ve madde alanları üzerinden toplamlar

tüm Standart Model ayar ve madede alanlarını ve onların süpereşlerinin süpersimetrik

lagranjiyende yer almasına olanak verir. W’ler EK 3 te verilen süperpotansiyeldir.

Yukarıdaki ifadede R, R pariteyi temsil eder (Fayet 1975, Salam and Srathdee 1975).

Süperpotansiyelin R simetrik kısmı

WR = εi j (y
U
abQ

j
aUbH i

2+yD
abQ

j
aDbH i

1+yL
abL

j
aEbH i

1+µHi
1H j

2), (4.5)

ile verilir. Burada i, j = 1,2,3 SU(2) indislerini ve a,b = 1,2,3 ise madde alanlarının

jenerasyon indislerini tanımlar. H1,H2,Q,L,U,D 4.1 ile verilmiş olan chiral süperçok-

lulardır. Bu ifadede renk indisleri denklemin sadeliğinin sağlanması için belirtilmemiştir.

Lagranjiyenin R parite koruyan, WR, kısmı Standart Model lagranjiyeni ile aynı olup alanlar,

süper alanlarla değiştirilmiştir. Bu terimi Standart Model lagranjiyeninden ayıran tek terim

Higgs alanlarının karışımını tanımlayan son terimdir. Bu terimin Standart Modelde olma-

masının nedeni Standart Modelde tek bir Higgs alanı çiftlisinin bulunmasıdır. sol-elli lepton

superçokluları

L =





Φ(ν̃e,νe)

Φ(ẽL,eL)



 ;





Φ(ν̃µ,νµ)

Φ(µ̃L,µL)



 ;





Φ(ν̃τ,ντ)

Φ(τ̃L,τL)



 (4.6)

ve benzer şekilde Q, kuarklar ve skuarkları içeren süperalanlardır.





Φ(ũ, u)

Φ(d̃, d)



 ;





Φ(c̃, c)

Φ(s̃, s)



 ;





Φ(t̃, t)

Φ(b̃, b)



 . (4.7)

Boyutsuz yukawa etkileşme sabitleri, yU
ab, yD

ab ve yLab bilinen lepton ve kuark aileleri

uzayında tanımlı 3×3 matrislerdir.
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Yukawa matrisleri, kendiliğinden simetri kırılımından sonra CKM karışım açılarını ve bilinen

kuark ve leptonların kütlelerini belirler.

Bu hali ile süperpotansiyel fenomenolojik gereksinimleri karşılayacak en temel terimleri

içerir. Bu terimlerin dışında süpersimetrik lagranjiyenin tüm simetri prensiplerine uyan bazı

terimler mevcuttur. Bu terimler Standart Modelin minimal süpersimetrik genişletilmesine

baryon numarası (B) veya lepton numarası (L) nin korunumunu engeller.

Süperpotansiyelin ikinci kısmı ise R-parite altında değişmez kalmayan terimdir.

WNR = εi j (λL
abcL

i
aL j

bEc +λL′
abcL

i
aQ j

bDc +µ′aLi
aH j

2)+λB
abcUaDbDc. (4.8)

Bu terimler Standart Modelde bulunmaz. Bunun nedeni; Eşitlik (4.8) ile verilen süper-

alanları Standart Model alanları ile yerdeğiştirme imkanı Lorentz değişmezliğinden dolayı

olmamasıdır. Bu terimler farklı bir yapıya sahiptirler ve lepton yada baryon korunumunu

bozarlar. Lagranjiyende, Eşitlik (4.8), parantez içinde verilen ilk üç terim lepton numarası

korunumunu bozarken son terim λB etkileşme sabiti ile baryon numarası korunumunu

kırar. Doğada bu etkiler gözlenmediği için bu etkilerin bastırılmış veya gerçekte olmadığı

düşünülebilir. Süpersimetrik lagranjiyende R simetrisini kıran terimler globalU(1) simetrisinin

korunumu yolu ile lagranjiyenden uzaklaştırılabilir.

Bütün süpersimetrik eşler kendiliğinden simetri kırınımından önce kütle sahibi olabilirler.

Skaler alanlar için m2φ2 terimi ayar simetrisini bozmaz bunun yanında ayar alanlarının

süpereşleri ise fermiyon olmasına karşın reel gösterimde oldukları için kütle terimi ayar

simetrisini bozmaz. Bu durum sÜpersimetriyi kıran terimlerin kütle ve etkileşme sabiti

içeren terimlerden oluşmasını yeterli kılar Eğer Lso f t içindeki en büyük kütle skalası mso f t

terimi ile ilişkili ise Higgs kütlesine gelen ve süpersimetrik olmayan düzeltme terimlerinin

mso f t → 0 limitinde tamamıyla ortadan kalkması gereklidir. Genel olarak süpersimetrik ku-

ramların pertürbasyon kuramının tüm mertebelerinde skaler alanların kütle düzeltme terim-

lerine gelecek ıraksamaların birbirini yok edeceğini garanti etmesi ve momentum çevrim in-

tegralinin Λ → limitinde kuadratik veya logaritmik ıraksaması Higgs kütlesine “soft” kırılma

terimleri sonucunda gelecek düzeltme terimlerinin
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∆M2
H ∼ m2

so f t[
λ

16π2 ln(Λ/mso f t)+ . . .]

formunda olacağını söyler. Burada λ boyutsuz etkileşme sabitlerini tanımlar.

Standart Modelde tanımlanan parçacıklar ile süpereşleri arasında kütle farkı Lso f t içinde

tanımlanan mso f t ile tanımlanır. mso f t parametresinin Higgs kütlelerine gelen düzeltme

teriminde bulunması mso f t’ un çok büyük olamayacağını aksi takdirde yeniden bir hiyer-

arşi problemi ile karşılaşılabileceğini söyler. Bu durum süpereşler ile Standart Model

parçacıkları arasında kütle farkının en fazla 1TeV olacağının beklenmesi süpersimetrinin

Fermi Laboratuvarında (Tevatronda) veya CERN de “large hadron collider” da veya TeV

kütle merkezi enerjili e+e− çarpıştırıcılarında yakın bir gelecekte gözlenebileceği ümidini

kuvvetlendirmektedir.

Fermiyon, vektör ve skaler alanların kütle kazanmaları Standart Modelde Higgs alanlarının

sıfırdan farklı vakum beklenen değerine sahip olmasına bağlıdır. MSSM’de ise hiçbir alan

ayar değişmezliğini bozmadan süpersimetriyi kırarak vakum beklenen değerine sahip ola-

maz. Bu durumda süpersimetri kırılımının başka alanlar tarafından gerçekleştiği varsayıla-

bilir. Düşük enerji süpersimetri kırılımı için öngörülen en yaygın senaryoda iki sektörün

olduğu bilinen madde alanlarının “görülen” sektöre ait olduğu simetri kırılımında etkin olan

alanların ise “saklı” sektörde bulunduğu varsayılır (Hall et al. 1983). Bu iki sektörün bir-

biri ile etkileşmesi SUSY kırılımını gerçekleştirir. Saklı sektör kavramı MSSM in en zayıf

yönüdür. Bu güne kadar dört farklı mekanizma ile süpersimetrinin kırılabileceği önerilmiştir.

• “Gravity mediation” (SUGRA) (Nilles 1982)

• “Gauge mediation” (Dine ve Nelson 1993)

• “Anomaly mediation” (Randall ve Sundrum 1999)

• “Gaugino madiation” (Kaplan, Kibs ve Schmaltz 2000)

Bu dört simetri kırılımı mekanizması detayda birbirinden farklı olmalarına rağmen çok ben-

zer sonuçlara ulaşılır. Buna karşılık süpereş parçacık spektrumu süpersimetrinin kırılma
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mekanizmasına yakından bağlıdır.

Süpersimetriyi kıran terimler çok sayıda serbest parametre içererek modelin öngörü gücünü

azaltırlar. Parametre sayısını azaltmak için yüksek enerji skalalarında farklı parametrelerin

birbirlerine eşdeğerliği veya evrenselliği düşünülebilir. Evrensellik öngörüsü ve bu kabuller

fiziksel yapıyı niteliksel olarak değiştirmezler.

MSSM lagranjiyeninde,Eşitlik (4.4), R pariteyi koruyan SUSY kırılma terimi

−Lso f t = ∑
i

m2
0i |ϕi |2+

1
2∑

α
Mαλ̃αλ̃α +BH1H2 (4.9)

+ AU
abQ̃aŨbH2+AD

abQ̃aD̃bH1+AL
abL̃aẼbH1+h.c.

formundadır.

Burada ϕi bütün skaler alanlar, λ̃α gaugino alanları, Q̃,Ũ , D̃ ve L̃, Ẽ skuark ve slepton

alanları, H1,2 ve SU(2) çiftlisi Higgs alanlarıdır. m0i ,Mα,B,A ve Yukawa etkileşme sabitleri

süpersimetri parametreleri olarak bilinir.

Eğer Esitlik (4.9) de bütün spin-0 parçacıkların kütleleri evrensel değer m0’a, bütün spin-

1/2 parçacık kütleleri m1/2 ye eşitlenirse simetri kırılım terimleri,

−Lso f t = m2
0∑

i
|ϕi |2+

1
2

m1/2∑
α

λ̃αλ̃α (4.10)

+ A[yU
abQ̃aŨbH2+yD

abQ̃aD̃bH1+yL
abL̃aẼbH1]

+ B[µH1H2]+h.c.

formunda elde edilir. Burada bahsedilen evrensellik zorunlu olmayıp süpersimetrinin grav-

ity yoluyla kırılması durumunda olması beklenen bir durumdur. Tercih edilen bu durumun

bir avantajı da sonuçta ortaya çıkacak parçacık spekturumunu değiştirmeyecek olmasıdır.

Bilinen kuark ve leptonlar, SU(2) değişmezliği kendiliğinden simetri kırılımı ile kırılmadığı
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sürece kütlesiz kalırlar buna karşın süpereşler elektro-zayıf simetri kırılımından önce susy

kırılım mekanizmasının özelliklerine göre farklı kütleler kazanırlar.

Lagranjiyendeki kütle terimlerinin kaynağı Standart Modelde olduğu gibi lagranjiyenin simetri

kırılımı kısmı ve Yukawa etkileşme terimleridir. Bu terimlerde mevcut bulunan parametre-

lerden m0,m1/2,µ,Yt = yt
2/(4π)2,Yb = yb

2/(4π)2,Yτ = yτ
2/(4π)2,A ve B bütün bilinen

parçacıkların kütle matrislerinin elde edilmesi için yeterlidir. Burada yt ,yb,yτ, t kuark, b

kuark ve tau leptonun Yukawa etkileşme değerleridir. GUT ölçeğinde bu parametrelerin

değerlerinin bilinmesi renormalizasyon grubu denklemleri ile tüm enerji skalalarında bu

parametrelerin değerlerini bilmek için yeterli olacaktır. Bu ise GUT ölçeğinden elektro-

zayıf ölçeğe kadar bir ilişki kurulmasına olanak verir. Bu parametrelerin kütle matrislerine

sokulması durumunda süpereşlerin kütle spektrumları tahmin edilebilir.

Gaugino-higgsino kütle terimleri: Ayar bozonlarının süpereşleri olan gauginoların ve

higgs bozonlarının süpereşleri olan higgsinoların kütle matrisleri diagonal değildir ve bu iki

grubun karışımına imkan verir. Lagranjiyenin ilgili kütle terimi

LGaugino−Higgsino= −1
2

M3λ̄aλa−
1
2

χ̄M(0)χ− (ψ̄M(c)ψ+h.c.), (4.11)

şeklinde olup burada λa, a = 1,2, . . . ,8, ve Majorana gluino alanlarıdır. χ ile ψ ise,

χ =

















B̃0

W̃3

H̃0
1

H̃0
2

















, ψ =





W̃+

H̃+



 (4.12)

çokluları ile verilen Majorana neutralino ve Dirac chargino alanlarıdır.

Nötralino kütle matrisi
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M(0) =

















M1 0 -MZ cosβsinW MZ sinβsinW

0 M2 MZ cosβcosW -MZ sinβcosW

-MZ cosβsinW MZ cosβcosW 0 -µ

MZ sinβsinW -MZ sinβcosW -µ 0

















, (4.13)

olup tanβ = v2/v1 Higgs alanlarının vakum beklenen değerleri oranı ve sinW = sinθW

zayıf karışım açısının sinüsüdür. Fiziksel parçacık olan nötralino χ̃0
i bu matrisin diagonal-

izasyonundan sonra elde edilen kütle özvektörüne eşit olacaktır.

Chargino için kütle matrisi

M(c) =





M2
√

2MW sinβ
√

2MW cosβ µ



 . (4.14)

şeklinde olup bu matrisin köşegenleştirilmesinden iki adet chargino özdurumu, χ̃±
1,2, elde

edilir. Karşılık gelen kütle özdeğerleri

M2
χ̃1,2

=
1
2

[

M2
2 +µ2+2M2

W (4.15)

∓
√

(M2
2−µ2)2+4M4

W cos22β+4M2
W(M2

2 +µ2 +2M2µsin2β)

]

.

dir.

Skuark and slepton kütle terimleri: Yukava etkileşme terimlerinden en ağır parçacıklar

olan t b ve τ parcacıklarına karşılık gelen terimler haricindekiler ihmal edilebilirler. İhmal

edilemez Yukawa etkileşme terimleri üçüncü jenerasyon parçacıklarının kütle özdurumları

ile elektro-zayıf özdurumlarının karışmasına sebep olur. m̃2
t ,m̃

2
b ve m̃2

τ için karışım matris-

leri





m̃2
tL mt(At −µcotβ)

mt(At −µcotβ) m̃2
tR



 , (4.16)
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



m̃2
bL mb(Ab−µtanβ)

mb(Ab−µtanβ) m̃2
bR



 , (4.17)





m̃2
τL mτ(Aτ −µtanβ)

mτ(Aτ −µtanβ) m̃2
τR



 (4.18)

ve olup bu kütle matrislerinin özdeğerleri,

m̃2
tL = m̃2

Q +m2
t +

1
6
(4M2

W −M2
Z)cos2β,

m̃2
tR = m̃2

U +m2
t −

2
3
(M2

W −M2
Z)cos2β,

m̃2
bL = m̃2

Q +m2
b−

1
6
(2M2

W +M2
Z)cos2β,

m̃2
bR = m̃2

D +m2
b+

1
3
(M2

W −M2
Z)cos2β,

m̃2
τL = m̃2

L +m2
τ −

1
2
(2M2

W −M2
Z)cos2β,

m̃2
τR = m̃2

E +m2
τ +(M2

W −M2
Z)cos2β

formundadır.

İlk terimler (m̃2) GUT skalasındaki kütle değerlerinden başlanarak renormalizasyon grubu

denklemleri yardımı ile hesaplanan “soft” terimler, ikinci terimler kuark ve leptonların genel

kütleleri ve son terimler potansiyeldeki D-terimleridir (EK 3).

4.5 Süpersimetrik Etkileşmelerin Özellikleri ve Süpere¸ slerin

Yaratılması

R-paritenin korunduğu varsayılırsa süpereşlerin etkileşmeleri Standart Modelde olduğu

gibi olacaktır. Süpersimetri, 3 parçacık etkileşmesi içeren her köşede üç parçacıktan i-

kisinin süpereşler ile değiştirilmesini gerektirir. Bunun nedeni R-paritesinin korunumudur.

R-paritesinin korunumu iki önemli sonuca sahiptir.

• Süpereşler mutlaka çiftler halinde üretilirler

45



• En hafif süperparçacık (LSP) kararlıdır. (LSP genellikle fotonun süpereşi olan fotino

γ̃ olarak kabul edilir.)

Bu kurallar gözönünde tutularak Standart Model lagranjiyeninden elde edilen köşeler

MSSM köşelerine genişletilebilir. Bu yolla superparçacıkların üretim süreçleri ile ilgili temel

bilgiler edinmek mümkündür. Süpersimetrik Standart Modelin test edilmesi için en ümit

verici süreçlerden biri e+e− yokolmasıdır. Süpersimetrik parçacıkların gözlenmesinde

diğer önemli bir süreç te eγ etkileşmesidir. Bu etkileşme tezin ana inceleme konusu olup

Bölüm 6 da detaylı olarak incelenmiştir.

R-paritenin korunumuna göre bütün süpersimetrik reaksiyonlar en hafif süpersimetrik par-

çacıkla sonlanmalıdır. LSP elektriksel olarak yüksüz olup madde ile çok az etkileştiğin-

den algılanması da oldukça zor olup etkileşme sonunda kayıp bir momentum olması söz

konusudur. Böyle bir durum süpersimetrinin varlığı olarak algılanır.

4.6 MSSM Parametre Uzayı

Minimal süpersimetrik standart modelin sahip olduğu serbest parametreler

• üç adet ayar sabiti αi ;

• üç adet yukawa sabiti yab
i , i=L,U,D;

• Higgs alanı karışım parametresi µ;

• “soft” susy kırılma parametreleri.

Standart Model serbest parametreleri ile kıyaslandığında burada ilave olarak Higgs karı-

şım parametresi göze çarpar. Fakat buradaki fark Standart Modelin aksine süpersimetri

tarafından bu parametrenin alacağı değer sabitlenmiştir.

Süpersimetrideki temel belirsizlik süpersimetrinin “soft” kırılması sonucu ortaya çıkan belir-

siz parametrelerdir. Temelde bu kırılma ile ilgili beş parametre vardir. Bunlar µ,m0,m1/2, tan(β),A

46



dir. Ancak deneylerden belirlenebilecek bu parametrelerin bazıları için, bugünkü deneysel

şartlarda günümüze kadar hiçbir süpereş parçacığın gözlenememiş olmasından gelen bil-

giler ışığında bir takım sınırlamalar mevcuttur.

tanβ’nın sınırlamalar sonucunda düşük ve yüksek olmak üzere iki olası bölgesi gözlenmiş-

tir. Düşük tanβ çözümlerinin önerdiği parçacık spektrumu LEP tarafından araştırılmış ve

ne süpereşler ve ne de düşük kütleli Higgs bozonları gözlenmemiştir. Bu durum tanβ için

daha yüksek kütleli parçacıklar öngören tanβ = 30− 60 aralığının daha olası olduğunu

gösterir. Bu bölgede Higgs bozon kütlesinin 114 GeV’nin üzerinde olması beklenir. Bunun

da ötesinde birçok SUSY radyatif düzeltmeleri tanβ ile ilişkili olduğundan tanβ’nın büyük

değerleri bu yönde de tercih edilidir.

µ parametresi üzerindeki sınırlamalar radyatif elektrozayıf simetri kırılımından gelmektedir.

A parametresi kütle spektrumunun tayininde etkin değildir.

Evrensel kütle parametresi m0 ve SU(2) gaugino kütle parametresi m1/2 kütle spekturu-

munun ve tesir kesitlerinin hesaplanması için kullanılabilir. Literatürde parametre setleri ve

tipik kütle spekturumu verilmiştir (Boer 2003).
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5. CHARGİNO SEKTÖRÜ

5.1 Giriş

Süpersimetri günümüzde Standart Modelin en olası genişletilmesi olarak görülmektedir.

Kuramsal olarak bu denli güçlü bir modelin deneysel gözlemlerle de desteklenmesi gü-

nümüz ve gelecekte yapılması planlanılan çarpıştırıcılar için çok büyük bir önem teşkil

etmektedir. Tez çalışmasında kütle değerleri üç temel SUSY parametresine bağlı chargino

parçacığına ait kuramsal hesaplamalar sunulmuştur.

W± ve yüklü Higgs bozonlarının süpereşleri karışarak kütle matrisinin özdurumları olan

charginoları,

H+
1 ,H−

2 ,W+,W− ⇒ charginolar χ̃±
i i = 1,2

ve foton, Z0 bozon ve yüksüz Higgs bozonlarının süpereşleri karışarak nötralinoları oluş-

turur.

H0
1 ,H0

2 ,Z0,γ ⇒ neutralinolar χ̃0
i i = 1,2,3,4

Charginolar iki farklı kütle değerine ve her kütle değerine karşılık gelen + ve - yüklü iki

duruma sahiptirler. Nötralinolar ise 4 farklı kütle değerine sahiptirler. En düşük kütleli

süperparçacığın pekçok modelde nötralino veya fotino olduğu öngörülmektedir.

Tez çerçevesinde değinilen pekçok geçerli sebepten ötürü Standart Modelin genişletilmeni

zorunlu kılar. Bu genişletme için günümüze kadar en uygun ve popüler olan Süpersimetri

kuramsal olarak başarılı bir yapıya sahip olmasına rağmen deneysel olarak doğrulanmayı

beklemektedir. Dolayısıyla günümüzdeki ve gelecekte yapılması planlanılan çarpıştırıcılar-

daki temel hedef Süpersimetrinin deneysel olarak gözlenmesi ve temel SUSY parame-

trelerinin elde edilmesi olacaktır.
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Bu aşamada Chargino üretim süreci süpersimetri fenomenolojisinin anlaşılmasında oldukça

önemli bir yere sahiptir. Buradaki en önemli neden charginonun yüklü, hafif kütleli ve

dolayısıyla günümüz ve gelecek laboratuvar koşullarında üretilmesi en olası olan süper-

simetrik parçacıklardan olmasıdır. Dolayısıyla süpersimetrik bir parçacık gözlemlemek ve

temel SUSY parametrelerini elde etmek açısından chargino süreçi oldukça büyük öneme

sahiptir.

5.2 Chargino Sektörü

Elektro-zayıf ayar simetrisi kırılımından sonra Chargino kütle matrisi (Haber and Kane

1985) (W̃−, H̃−) bazında;





M2
√

2mW cosβ
√

2mW sinβ µ





formunda diyagonal olmayan bir yapıya sahiptir. Bu matrisin ve dolayısıyla chargino sek-

törünün en önemli noktası taşıdığı temel susy parametreleridir. Bu parametreler;

• SU(2) Gaugino kütlesi M2,

• Higgsino kütle parametresi µ,

• Higgs bozonlarının vakum beklenen değerleri oranları tanβ = ν2/ν1

dır. CPdeğişmez olmayan kuramlarda µ= µe−iφµ olup 0≤ φµ ≤ 2π ve M2 reel ve pozitiftir.

Burada

m2
W =

1
4

g2(ν1
2 +ν2

2) (5.1)

olarak tanımlanır. Yukarıda belirtildiği gibi chargino kütle matrisi köşegen olmayan bir

yapıya sahiptir. Chargino kütle özdurumlarını elde etmek için bu matrisin köşegenleşti-

rilmesi gerekmektedir. Bu işlem
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U⋆XV−1 = MD (5.2)

formunda olup iki farklı 2×2 üniter matrisin yardımı ile gerçekleşmektedir. Burada U ve V

matrisleri

U = O−, V =





O+, detX≥ 0

σ3O+, detX< 0



 (5.3)

ve,

O± =





cosφ± sinφ±

−sinφ± cosφ±



 (5.4)

olarak tanımlanmıştır. φ± açıları

tan2φ− = 2
√

2mw
(µcosθν +M sinθν)

(M2−µ2+2m2
W cos2θν)

(5.5)

tan2φ+ = 2
√

2mw
(µcosθν +M sinθν)

(M2−µ2−2m2
W cos2θν)

(5.6)

bağıntılarından elde edilebilir.

Kütle matrisinin köşegenleştirilmesinden sonra elde edilen kütle özdurumları pozitif ve

negatif yüklü chargino durumları için aşağıdaki gibi verilir:

χi
+ = Vi j ψ j

+, χi
− = Ui j ψ j

−, i = 1,2 . (5.7)

Dört boyutlu notasyonda χ̃1 ve χ̃2 yüklü Dirac spinörleri olmak üzere

χ̃1 =





χ1
+

χ̄1
−



 , χ̃2 =





χ2
+

χ̄2
−



 (5.8)
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olarak da tanımlanabilir.

Elde edilen fiziksel chargino özdurumlarının kütle özdeğerleri (Haber and Kane 1985),

M2
χ̃1,2

=
1
2

[

M2
2 +µ2 +2M2

W

]

(5.9)

∓ 1
2

√

(M2
2−µ2)2+4M4

W cos22β+4M2
W(M2

2 +µ2 +2M2µsin2β).

fomülü ile hesaplanır.

5.3 Chargino Kütlesinin Süpersimetri Parametrelerine Ba ğımlılı ğı

Bölüm 5.2 de değinildiği gibi chargino parçacığının kütlesi Yukawa etkileşmeleri sonucunda

ortaya çıkan köşegen olmayan kütle matrisinin köşegenleştirilmesi sonucu elde edilir. Küt-

le özvektörü olarak elde edilen chargino kütlesi üç temel SUSY parametresi SU(2) olan

gaugino kütle parametresi M2, Higgsino kütle parametresi µ ve Higgs alanlarının vakum

beklenen değerleri oranı tanβ cinsinden Eşitlik (5.9) ile verilmiştir. Bu ifadenin incelenme-

sinde ilk göze çarpan SUSY parametrelerinden ikisinin M2 ve µ’nin denklemde yer değiş-

tirilebilir özelliğe sahip olmasıdır. Bu durumda herhangi bir tanβ değeri için M2 ve µ’nun

birden fazla değerinde aynı chargino kütlesi elde edilebilir. Chargino kütlesinin büyüklüğü

SUSY parametrelerinin çok değerli bir fonksiyonudur.

Chargino kütlesi ve SUSY parametreleri arasındaki ilişki görsel olarak Şekil 5.1’da gösteril-

miştir. Şekil 5.1 sabit tanβ değeri için chargino kütlesinin süpersimetri parametreleri M2 ve

µ ile değişimini göstermektedir. Yukarıda ifade edildiği gibi M2 ve µ’ nun değişimlerinin etk-

isi benzer özellik taşıdığı için aynı chargino kütle değerlerine karşılık gelen eşkütle çizgileri

grafik üzerinde ve zeminde gösterilmiştir. Bu eşkütle çizgileri kütlenin yukarıdan aşağıya

doğru 400,300,200 ve 100GeV değerlerine karşılık gelmektedir. Bu grafiğin en önemli

özelliği, farklı susy parametre setlerinin (M2, µ, tanβ) aynı Mχ̃ değerini verebiliyor ol-

masının yanında chargino kütlesinin geniş bir aralıkta tanβ değerine duyarlılığının az ol-

masıdır. Bu nedenle deneysel veya kuramsal sonuçların SUSY parametrelerine doğrudan
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Şekil 5.1 Chargino kütlesinin SUSY parametreleri ile değişimi, tanβ = 50

ilişkilendirilmesi ancak parametre bölgelerinin tanımlanmasına olanak verir.

Takibeden bölümde iki farklı süreç ile chargino üretiminde çıkan charginoların polarizas-

yonlarının tesir kesitleri ile ilişkileri incelenerek SUSY parametre uzayı hakkında sınırlama

ve ilişkiler incelenecektir.

52



6. CHARGINO ÜRETİMİNİN e−γ ve e+e−

ÇARPIŞTIRICILARINDA İNCELENMESİ

6.1 Giriş

Tez çalışmasında iki ayrı çarpıştırıcıda chargino üretimlerinin incelenmesi amaçlanmıştır.

Bunlar e−γ çarpıştırıcısında, e−γ → ν̃Lχ̃ j
− süreci ile chargino, χ̃−

j , ve snötrino ,ν̃e üre-

tilmesi ve e+e− çarpıştırıcısında e+e− → χ̃ j
−χ̃ j

+ süreçleri ile chargino çiftlilerinin, χ̃ j
±

üretilmeleridir.

Bölüm 5.’ de anlatıldığı gibi chargino kütle matrisi 5 temel SUSY parametresinden üçünü

(M2,µ, tanβ) açık bir şekilde içermektedir. Gerek bu özelliğinden gerekse charginonun

yüklü olması, kütlesinin en düşük olmasından dolayı üretilmesi en olası süpereş parçacık-

lardan olarak yorumlanması bu parçacığın incelenmesini süpersimetri çalışmaları açısın-

dan oldukça ilginç ve popüler kılmaktadır.

Chargino kütle değerini veren üç SUSY parametresi için kesin bir sınırlama olmamakla

birlikte günümüze kadar olan deneysel çalışmalar bu parametrelerin alt limitlerini belir-

lemiş durumdadır. Kuramsal olarak ise bu parametreler üzerindeki değer aralığı tesir kesiti

hesaplarından elde edilecek bilgiler yolu ile tesbit edilebilir.

Bu amaçla tez çalışmasında yukarıda verilen süreçler, ilgili tesir kesitleri ve seçilen pola-

rizasyonlara göre elde edilen asimetriler incelenmiş ve bunların SUSY parametre seti ile

olan değişimleri tartışılmıştır.

Takip eden ilk bölüm e−γ çarpıştırıcılarında chargino ve snötrino üretimini ve son bölüm

e−e+ çarpıştırıcısında chargino çifti üretimini içermektedir.
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6.2 e−γ → χ̃−
1,2ν̃L Süreci

e− γ → ν̃eχ̃ j
− süreci literatürde ilk olarak Grifolds ve Pascual tarafından polarize olmayan

foton demetleri kullanılarak yapılmıştır. Bu çalışmada chargino, wino tipinde alınmış ve

kütleler günümüzde kabul edilen deneysel sınırların dışında kalmıştır (Grifolds and Pascual

1984).

İkinci çalışma Hasselbach ve Fraas tarafından yapılmıştır. Bu çalışmada ν̃’ lar önemle vur-

gulanmış ve farklı foton polarizasyonları ile 3 farklı SUSY parametre seti için tesir kesitleri

ve polarizasyon asimetrileri incelenmiştir (Hasselbach and Fraas 1997).

Aynı yıl yapılan bir diğer çalışma V. Barger, T. Han ve J. Kelly ’ye aittir (Barger et al. 1998)

. Bu çalışmada

e− γ → ẽχ̃0

e− γ → ν̃eχ̃ j
−

süreçleri incelenmiş olup χ̃ j
± ve ˜χ1,2

0 kütlelerinin LHC ve NLC deneylerinden bilindiği

varsayılarak foton polarizasyonuna göre asimetri hesaplanmış ve m2
ν̃L
−m2

ẽL
kütle hesabın-

dan m2
W cos2β parametresi model bağımsız bir şekilde hesaplanmıştır.

e−γ çarpıştırıcısında elektron yüksek enerjili bir foton ile etkileşmeye girer. Yüksek enerjili

fotonun üretilmesinde ise düşük enerjili bir lazer fotonu demeti ile yüksek enerjili bir elektron

demetinin çarpışması sözkonusudur. e−γ çarpıştırıcılarının en önemli özelliği düşük fon

sinyaline sahip olmalarıdır. Bu açıdan deneysel avantaj sağlayacağı düşünülen e−γ çar-

pıştırıcılarının süpersimetrik kuramların incelenmesinde önemli yeri olması umulmaktadır.

e− γ → ν̃eχ̃ j
−

süreci için MSSM köşeleri
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Şekil 6.1 e−γ çarpıştırıcısında χ̃−
1 ν̃L üretimi diagramları

Leν̃χ̃ = −g∑
j=1

2
Vj1

⋆χ̄ j
cPLeν̃e

⋆ +Vj1ēPLχ̃c ¯̃νe

L χ̃χ̃γ = −eAµ∑
j=1

2χ̃ jγµχ̃ j (6.1)

Leeγ = eAµēγµe

Burada PL,R = (1∓ γ5)/2 ve g = e/sinθw olup burada Vi j Eşitlik (5.3) ile verilmis olan,

chargino kütle matrisini köşegenleştiren 2×2 üniter matristir.

e−γ çarpışması sonucunda chargino ve snötrino üretimi s-kanalında elektron ve t-kanalında

chargino değiş tokuşu ile gerçekleşmektedir (Şekil 6.1). s-kanalı için genlik Ma ve t-kanalı

için Mb olmak üzere
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Ma = − ieg
ŝ

ū(p′)
1
2
(1− γ5)( 6k+ 6 p) 6ε(k)u(p)

(6.2)

Mb = − ieg
(t̂−mχ̃i )

ū(p′) 6ε(k)[( 6 p− 6k′)+mχ̃1]
1
2
(1− γ5)u(p)

şeklinde elde edilir.

Toplam genlik iki sürecin genliklerinin toplamının mutlak değer karesi ile ifade edilir. Burada

g = e/sinθw, e =
√

4πα dır. Hesaplamalarda Chargino kütlesi yanında elektron kütlesi

ihmal edilmiştir.

M = |Ma+Mb|2

e−γ çarpışmasında SUSY parametre setini incelemek amacı ile literatürde elektronun

helisite bazında ve fotonun polarizasyonu incelenmiştir (Barger et al. 1998). Tez çalış-

masında literatürden farklı olarak çıkan charginonun polarizasyonu incelenerek asimetriler

çalışılmıştır. Charginonun polarizasyonu geleneksel helisite bazından farklı olarak seçilen

sµ vektörü yönündeki polarizasyonu incelenmiştir.

Charginonun momentumu p olmak üzere yoğunluk matrisi aşağıdaki gibidir.

∑
spin

u(p)ū(p) = ρχ̃ =
1
2
(1+ γ5 6s)( 6 p+m1) (6.3)

Parçacığın durgun olduğu sistemde (DS) dörtlü spin vektörü sµ en genel anlamda aşağı-

daki gibi tanımlanmaktadır.

(sµ
χ̃)DS = (0,~s′) (6.4)

Durgun sistemde tanımlanan bu dörtlü vektör,m kütleli parçacığın bir ~k momentumu ile

hareket ettiği başka bir gözlem çerçevesine geçildiğinde,
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Sµ
χ̃ =

(

~k.~s′

m
,~s′+

~k.~s′

m(k+m)

)

(6.5)

formunu alacaktır. Burada ~s′ parçacığın durgun olduğu sistemdeki spin vektörüdür. Tez

çerçevesinde yapılan çalışmalarda bu spin vektörünün yönü charginonun durgun olduğu

gözlem çerçevesinde tanımlanan elektronun momemtumunun yönüne göre seçilmiştir. Bu

durumda~s′ vektörü şu formda yazılabilir.

~s′ = λ
~PCRF

e

|~PCRF
e |

, λ = ± (6.6)

Eşitlik (6.6) ile tanımlanan spin vektorü, λ = +1 spinin elektron momemtumu ile aynı yönlü

olduğu ve λ = −1 spinin elektron momentumu ile zıt yönlü olduğu durumu temsil edilmek-

tedir.

Charginonun durgun olduğu gözlem çerçevesinde elektronun momentumu aşağıdaki gibi

tanımlanmaktadır.

~Pe
CRF

= ~Pe+
γ−1

β2 (~β.~Pe)~β−Eeγ~β. (6.7)

Burada β ve γ

~β =
~Pχ

Eχ
, γ =

1
1−β2 (6.8)

dır.

Diferansiyel tesir kesiti

dσ̂
dt̂

=
1

16πŝ2 |M|2(s, t,u,mχ̃,mν̃) (6.9)

ifadesinden elde edilir. Bu ifadenin Mandelstam değişkeni t üzerinden integrali alındığında
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toplam tesir kesiti σ̂, toplam enerji ŝ chargino kütlesi mχ̃i ve neutralino kütlesi mν̃’nun

fonksiyonu olarak elde edilir.

Etkileşmenin toplam tesir kesiti

σ̂(s,mχ̃,mν̃) =
Z tmax

tmin

1
16πŝ2 |M|2dt

ifadesi ile verilir.

Burada integral sınırları momentum ve kütleler cinsinden,

tmin = mχ̃
2−2EγEχ̃ +2|~k||~p′|

tmax = mχ̃
2−2EγEχ̃ −2|~k||~p′|

formunda verilir.

e−γ çarpıştırıcılarında yüksek enerjili foton demetleri yüksek enerjili e± demeti ile düşük

enerjideki lazer fotonu demetlerinin Compton geri saçılmasına uğratılması yolu ile elde

edilir. Geri saçılan fotonun e± demetinin enerjisinin ne kadarını alacağı kinematik olarak

sınırlandırılmıştır. Bu oranı Eγ/Ee olmak üzere, en yüksek değeri, 0.83dür. Prensipte foton

enerjisi lazer demetinin enerjisinin arttırılması ile arttırılabilir. Buna karşılık foton enerjisinin

artması fotonun elektron ile etkileşmesi sonucu e+e− çiftlerinin yaratılmasına sebep olur.

Yukarıda elde edilen tesir kesiti hesabında lazer fotonunun elektron ile çarpışması sırasında

kazanacağı enerjinin sabit ve s değerine sahip olduğu öngörüsü yapılmıştır. Buna karşılık

elektron ile çarpışan lazer fotonları elektronun enerjisini alırken bir dağılım çerçevesinde

enerji kazanır (Ginzburg et al. 1983). e−γ çarpıştırıcılarında gerçekçi tesir kesiti değer-

lerinin hesaplanabilmesi ancak foton enerji dağılımının gözönüne alınması ile mümkündür.

Bir e−γ çarpıştırıcısında tesir kesiti sabit enerjide elde edilen tesir kesitinin foton enerji

dağılımı olasılığı fonksiyonu fγ/e ile çarpılarak integralinin alınması ile elde edilir. Bu

dağılım fonksiyonu
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fγ/e(x) = (
1

1.840
)(1−x+

1
(1−x)

− 4x
(4.8(1−x))

+
4x2

(4.82(1−x)2)
) (6.10)

olmak üzere yüksek enerjili foton enerjisinin dağılımını göz önüne alan toplam tesir kesiti

σ =
Z xmax

xmin

fγ/e(x)σ̂(x,s,mχ̃,mν̃)dx (6.11)

formunda verilebilir. Burada x düşük enerjili lazer fotonu demetinin yüksek enerjili elektron

demetinin enerjisinin ne kadarını alacağını gösteren orandır. Bu integralin sınırları

x =
|~pγ|
|~pe|

=
Eγ

Ee

xmin =
mχ̃

2+mν̃
2 +2mχ̃mχ̃

s
(6.12)

xmax = 0.83

olarak verilir.

Tez çerçevesinde e−γ sürecinde, yüklü ve kütlesinin en düşük olması nedeni ile en yük-

sek olasılıkla ilk gözlenmesi beklenen ve bu nedenle ilgi alanına giren parçacık olan χ̃±
1

parçacığının polarizasyonunun toplam tesir kesitine etkisi ve farklı polarizasyonlar sonu-

cunda gözlenen asimetri yolu ile deneysel gözlemlere temel teşkil edecek bilgilere ulaşıl-

ması amaçlanmıştır.

Şekil 6.2 polarize olmamış χ̃± parçacığının üretilmesi ile ilgili tesir kesitini göstermekte-

dir. Şekil, farklı değerlerdeki chargino kütlelere karşı gelen tesir kesiti eğrilerini üst üste

içermektedir. Kütleler yukarıdan aşağıya sırasıyla 100,150,200,300,400GeVdir. Şekilde

chargino kütlesinin artışı ile tesir kesitinde ortaya çıkan azalma gözlenmektedir.

Şekil 6.3’de sabit kütle merkezi enerjilerinde tesir kesitinin chargino kütlesine bağımlılığı

verilmektedir. Farklı sabit enerjilerde elde edilen tesir kesitlerinin karşılaştırılmasından

düşük kütlenin düşük enerji bölgesinde daha tercih edilir bir durum olduğu yüksek enerji

bölgesinde ise yaklaşıklıkla aynı tesir kesitine ulaşıldığı gözlenmektedir.
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ış
,

λ
=

+
1

ve
λ

=
−

1
po

la
riz

e

du
ru

m
la

rı
nd

a
te

si
r

ke
si

tin
in

en
er

jiy
e

gö
re

de
ği
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Şekil 6.5 e−γ çarpıştırıcısında sabit enerjilerde λ = +1 ve λ = −1 polarizasyonu ve

polarizasyonsuz hal için tesir kesitinin mχ̃−
1

ile değişimi

enerjilerde (λ = +1) polarizasyonuna sahip tesir kesiti λ = −1 durumunda çıkan chargi-

noların tesir kesitinin üstünde değer alırken
√

s= 450GeV civarında bu durum değişerek

λ =−1 değerine karşılık gelen tesir kesiti λ =−1 durumundan daha büyük değere ulaşır.

mχ̃−
1

∼ 170GeV değeri bahsi geçen küçük kütle bölgesi ile büyük kütle bölgesi olarak

adlandırılabilecek mχ̃−
1

> 170GeV bölgesini kesin bir çizgi ile ayırır. mχ̃−
1

= 170GeV

değerinden itibaren λ = −1 polarizasyonuna karşılık gelen tesir kesiti tüm izinli enerji ar-

alığında λ = +1 polarizasyonu ile gözlenen tesir kesitlerinin üzerinde değerlere sahiptir.

λ = +1 polarizasyonlu tesir kesiti değerleri tüm enerji bölgesinde aynı sıra ile aşağıda

kalır. Bu durum mχ̃−
1

> 170GeV bölgesinde geçerlidir ve mχ̃−
1

= 300,400GeV değerleri

için tesir kesitleri Şekil 6.4’de son iki grafik ile gösterilmiştir.

Şekil 6.5 λ =+1 ve λ =−1 için sabit enerjilerde tesir kesitlerinin chargino kütlesine bağım-

lılığını göstermektedir. Bu şekillerde yukarıdaki tartışmayı destekler şekilde düşük ener-

jilerde
√

s = 400,450GeV λ = +1 polarizasyonu chargino kütlesinin 170 GeV değerine

kadar λ = −1 için hesaplanan tesir kesitinden daha büyük kalmakta
√

s= 450−500GeV

enerji aralığında her iki polarizasyon ve polarize olmamış durum aynı eğerlere yakın-
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Şekil 6.6 e−γ çarpıştırıcısında λ = +1 ve λ = −1 polarizasyonuna göre elde edilen

asimetrinin enerjiye göre değişimi, mχ̃−
1

=100,125,150,170,200 GeV

samakta ve enerjinin 450 GeV’den daha büyük olduğu değerlerde çıkan charginonun

λ = −1 polarizasyonu tercih ettiği gözlenmektedir.. Bu tartışmayı asimetrilerin incelen-

mesi yolu ile de yapmak mümkündür.

Çıkan charginolardan λ = +1 ve λ = −1 polarize olmuş durumlara karşılık gelen tesir

kesitlerinden hesaplanan asimetri ;

A =
σ(s,mχ̃,mν̃,λ = +1)−σ(s,mχ̃,mν̃,λ = −1)

σ(s,mχ̃,mν̃,λ = +1)+σ(s,mχ̃,mν̃,λ = −1)
(6.13)

formunda tanımlanabilir.

Şekil 6.6’da düşük kütle olarak adlandırılan mχ̃−
1

= 100,120,150GeV için hesaplanan

asimetriler pozitif değerden başlar ve bir pik yaparak
√

s ∼ 450GeV civarında negatif

değerlere düşerler. Bu durum başlangıçta λ = +1 polarizasyonuna karşılık gelen tesir

kesiti λ = −1 polarizasyonuna karşılık gelen tesir kesitinden daha büyükken bahsedilen
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Şekil 6.7 e−γ çarpıştırıcısında asimetrinin geniş mχ̃−
1

aralığında enerjiye göre değişimi,

mχ̃−
1

=100,125,150,170,200,300,400 GeV

enerji değerinde ters durumun ortaya çıkmasının sonucudur.

mχ̃−
1

∼ 170GeV özel bir durumdur. Bu değerde asimetri eğrisi, bir noktada A = 0 de-

ğerine teğet olması haricinde tüm değerleri negatiftir. Daha büyük kütle değerlerinde

asimetri daima λ = −1 polarizasyonuna karşılık gelen tesir kesitinin daha büyük değere

sahip olduğunun ifadesi olarak negatif değerlerde kalır. Şekil 6.7 geniş bir kütle aralığında

asimetrinin davranışını göstermektedir. Enerjinin chargino-nötralino parçacıklarının yaratıl-

masına ancak yetecek değerlerinde üretilen charginoların bir polarizasyonu en cok tercih

ettikleri durumlardır (mχ̃−
1

< 170Gev. için λ = +1 ve mχ̃−
1

> 170Gev için λ = −1 ). Bu

durum, chargino üretiminin ayırıcı özelliği olarak ortaya çıkmaktadır.

Şekil 6.8’de e−γ çarpıştırıcılarında tesir kesitinin mχ̃−
1

ile değişimi sunulmuştur. Şekilde

görüldüğü gibi düşük enerjilerde mχ̃−
1

’nin daha küçük değerleri göreli olarak daha büyük

tesir kesitine neden olurken yüksek kütle değerlerinde beklendiği gibi çok hızlı azalır. Po-

larize durumda aynı davranış gözlenmesine karşın λ = +1 ve λ =−1 durumlarına karşılık

gelen tesir kesitleri enerji değerlerine bağlı olarak farklı davranış gösterirler.
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Şekil 6.8 e−γ çarpıştırıcısında sabit enerjilerde asimetrinin mχ̃−
1

’ye göre değişimi,
√

s= 400,450,500,750,1000 GeV

Şekil 6.5 e−γ çarpıştırıcılarında sabit kütle merkezi enerjilerinde λ = +1 ve λ = −1 po-

larizasyonları için tesir kesitlerinin mχ̃−
1

ile değişimi verilmektedir. Şekillerde görüleceği

gibi düşük enerji
√

s∼ 400,450GeV değerlerinde λ = +1 durumuna karşılık gelen tesir

kesiti λ = −1 durumuna karşılık gelen tesir kesitinden daha büyüktür. Daha yüksek ener-

jilere gidildiğinde
√

s∼ 500GeV farklı polarizasyon durumları aynı eğri üzerinde birleştik-

ten sonra daha yüksek enerjilerde
√

s > 500GeV durum tersine dönerek λ = −1 pola-

rizasyonuna karşılık gelen tesir kesiti λ = +1 durumuna karşılık gelen tesir kesitinin üz-

erine çıkar. Eşitlik (6.13) ile verilen asimetri ifadesi mχ̃−
1

’ye göre çizildiğinde (Şekil 6.8)

çok yüksek enerjilerde
√

s∼ 1 TeV tüm mχ̃−
1

değerleri için sabit bir değere sahip olan

asimetri düşük enerjilerde kütleye duyarlı olarak pozitif değerlerden negatif değerlere hızlı

bir değişim gösterir.

Şekil 6.9’da yukarıda bahsi geçen iki farklı polarizasyon durumuna karşı gelen tesir kesit-

lerinin süpersimetri parametrelerine bağamlılığı gösterilmiştir. Sabit kütle merkezi enerjisi,
√

s = 1TeV ve tanβ = 5 değerlerinde SUSY parametreleri M2 ve µ’nun küçük değer-
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Şekil 6.9 e−γ çarpıştırıcısında tesir kesitinin M2 ve µ ile değişimi,yukarıdan aşağıya spin

polarizasyonu λ = +1 ve λ = −1 , tanβ = 5, mν̃L = 100GeV

lerinde farklı polarizasyonlara karşı gelen tesir kesitleri arasında belirgin bir farklılaşma

gözlenirken, artan susy parametre değerleri için tesir kesitleri arasında farklılık ortadan

kalkar. Bu grafiğin çiziminde ν̃ kütlesi 100GeV, χ̃−
1 kütlesi ise değişen herbir M2 ve µ

değerleri için (Eşitlik 5.9) ifadesi kullanılarak elde edilmiştir.

Şekil 6.10 SUSY parametrelerinden tanβ’ ya tesir kesitlerinin duyarlılığını göstermek için

sunulmuştur. Bir önceki şekil ile tek fark Şekil 6.9’da tanβ’nın değerinin 50 alınmasıdır.

Görüleceği gibi tesir kesitlerinin tanβ’ya bağımlılığı sadece SUSY parametre uzayının M2

ve µ’nun küçük değerlerinde mevcuttur. M2 ve µ’nun büyük değerlerinde (M2,µ > 200)

tesir kesitleri polarizasyondan bağımsız olarak ayni değere yakınsamaktadır.

Tesir kesitlerinin tanβ’ya bağımlılığını gösterebilmek için Şekil 6.11’de spin polarizasyonu

λ = +1 değerine karşılık gelen tesir kesiti, tanβ’nın küçük (5) ve büyük (50) değerleri için

Şekil 6.11’de üst üste çizilmiştir.

Son şekil, Şekil 6.12 ise yukarıdaki grafiklerden elde edilen asimetrinin yine üç boyutlu
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ış

tır
ıc

ıs
ın

da
te

si
r

ke
si

tin
in

M
2

ve
µ

ile
de

ği
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Şekil 6.12 e−γ çarpıştırıcısında spin polarizasyonu λ = +1 ve λ = −1 için asimetrinin

(A) M2 ve µ ile değişimi, tanβ = 5, mν̃L = 100GeV

olarak M2 ve µ ile değişimini göstermektedir. Bu şekilde parametre değerlerinin küçük

olduğu bölgeden parametre degerlerinin büyük olduğu bölgeye geçilirken asimetride +0.2

den −0.5’e kadar değişim gösterir. M2 ve µ’nun büyük değerlerinde (M2,µ> 200) ise limit

bir değere yakınsamaktadır.
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6.3 e+e− → χ̃−
1,2χ̃−

1,2 Süreci

Charginolar e+e− çarpıştırıcısında çiftler halinde üretilirler.

e+e− → χ̃+
1 χ̃−

1 , χ̃+
1 χ̃−

2 , χ̃+
2 χ̃−

1 , χ̃+
2 χ̃−

2

e+e− çarpıştırıcılarında chargino üretiminde charginoların tüm, χ̃+
1 χ̃−

1 , χ̃+
1 χ̃−

2 , χ̃+
2 χ̃−

1 , χ̃+
2 χ̃−

2

kombinasyonları olasıdır. İkinci chargino kütlesi, mχ̃±
2

, ilkine, mχ̃±
1

, oranla daha büyük

olduğundan e+e− çarpıştırıcısında en olası süreç düşük kütleli chargino çiftinin, χ̃1χ̃1,

üretilmesidir.

e+e− → χ̃+
1 χ̃−

1

Süpersimetrik kuramlarda en hafif süpersimetrik parçacığın, (LSP), yüksüz olması ve madde

ile zayıf etkileşmeye giriyor olması χ̃±
1 parçacığının LEP2 veya e+e− lineer çarpıştırı-

cılarında elde edilebilecek en olası parçacıklar olması beklentisini doğurur. Bu incelemel-

erde charginoların beklenen kütle aralıklarında ve beklenen kuantum numaraları ile gö-

zlenmesi süpersimetrik kuramların test edilmesinde önemli bir rol oynayacaktır. Literatürde

polarize e+e− demetleri ile yapılan çalışmalar mevcuttur (Choi et al. 1999, Choi et al.

2000, Choi et al. 2000).

e+e− çarpıştırıcılarında chargino çiftleri üretimi s kanalında γ ve Z değişimi ve t kanalında

ν̃ değişimi aracılığıyla gerçekleşmektedir. Bu kanallar için genlikler aşağıda verilmiştir.

Ma =
−e2

ŝ
ū(k′)γµv̄(p′)γµu(k)

Mb =
−e2

4c2
wsw(ŝ−M2

z)
ū(k′)γµ(O

′LPL +O
′R
R PR)v(p′)

v̄(p)γµ(PL −2S2
w)u(k) (6.14)

Mc =
−e2

t̂ −m2
ν̃

1
2
V2

11ū(k′)γµPRv̄(p′)v(p)γµPLu(k)
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Şekil 6.13 e+e− çarpıstırıcısında χ̃−
1 χ̃+

1 üretimi diagramları

Burada p, p′ v k,k′ gelen elektron,pozitron, ve çıkan charginoların momentumlarını, PL,R =

(1∓γ5) projeksiyon operatörlerini, V11 chargino kütle matrisini köşegenleştirilmesinde kul-

lanılan 2×2 üniter matrislerin elamanını ifade etmektedir.

Bu sürecin Feynman diyagramları Şekil 6.13’de gösterilmektedir.

e+e− → χ̃+
1 χ̃−

1 sürecinin köşe faktörleri,

LZ0χ̃χ̃ = (g/cosθW)Zµ[ ¯̃χγµ(O
′L
i j PL +O

′R
i j PR)χ̃+

j (6.15)

+
1
2

¯̃χ0
i γµ(O

′′L
i j PL +O

′′R
i j PR)χ̃0

j ] (6.16)

L γχ̃+χ̃− = −eAµ ¯̃χ+
i γµχ̃−

i (6.17)

formunda verilen lagranjiyen ifadelerinden elde edilir. Buradan Z0χ̃+
j χ̃−

i köşe faktörü Eşit-

lik (6.15) den

ig
2cosθW

γµ[O
′L
i j (1− γ5)+O

′R
i j (1+ γ5)] (6.18)
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ve Eşitlik (6.17)’den γ χ̃+
i χ̃−

i köşe faktörü

−ieγµ (6.19)

olarak elde edilir. Burada,

O
′L
i j = −Vi1V

⋆
j1−

1
2
Vi2V

⋆
j2+δi j sin2 θW

O
′R
i j = −Ui1U

⋆
j1−

1
2
Ui2U

⋆
j2+δi j sin2 θW (6.20)

formunda olup,Ui, j ve Vi, j Bölüm 5. çerçevesinde verilen chargino kütle matrisinin köşe-

genleştirilmesinde kullanılan 2 matrisleridir Eşitlik (5.3) ve Eşitlik (5.4).

Eğer helisite bazında polarizasyonlar düşünülürse elektron ve pozitronun helisiteleri daima

birbirlerine terstir. Buna karşın χ̃+
1 ve χ̃−

1 charginoların yüksek kütlelerinden dolayı he-

lisiteleri genel olarak birbirleri ile ilişkili değildir. Hesaplamalarda χ̃−
1 polarizasyonu bir

önceki bölümde anlatılan polarizasyon yöntemine benzer şekilde, charginonun durgun

olduğu gözlem çerçevesinde elektronun momentumu yönünde seçilen spin vektörü tanım-

lanması yolu ile yapılmaktadır Eşitlikler (6.3), (6.6) ve (6.7).

e−e+ hesaplarında süpersimetri parametre uzayında M2, µ ve tanβ değerleri değiştirile-

rek karşı gelen chargino kütleleri kullanılmıştır. Hesaplarda tanβ’nın etkisini anlamak için

düşük (5) ve yüksek (50) tanβ değerleri için elde edilen kütleye göre hesaplar yapılmıştır.

Bölüm 5. de tartışıldığı gibi aynı M2 ve µ değerleri için farklı tanβ değerleri farklı olmakla

birlikte birbirine yakın mχ̃±
1

değerleri verecektir. Elde edilen sonuçlar üretim sürecinin çok

fazla tanβ bağımlılığı olmadığını göstermiştir.

Charginonun momentumunun elektronun momentumuna paralel λ = +1 ve anti-paralel

λ = −1 olduğu durumlar bu süreçte çok düşük, ∼ 10−3, bir asimetri doğurmaktadır.
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Şekil 6.14’de e+e− çarpıştırıcısında chargino çiftinin üretiminin SUSY parametrelerine

bağımlılığı gösterilmiştir. Her grafik iki farklı, tanβ (= 5 ve 50) değerinde elde edilen tesir

kesitlerini göstermektedir. Şekillerde alttaki tanβ = 50 için elde edilen büyük mχ̃−
1

’ye

karşılık gelen, üstteki ise tanβ = 5 için düşük mχ̃−
1

’ye karşılık gelen eğrilerdir. İlk grafikte

yukarıdan aşağı doğru, SUSY parametre değerleri ve chargino kütleleri M2 = 400GeV,µ=

200GeV, tanβ = 5 için mχ̃−
1

= 183GeV, M2 = 400GeV,µ= 200GeV, tanβ = 50 için mχ̃−
1

=

189GeV, ikinci grafikte M2 = 400GeV,µ= 300GeV, tanβ = 5 için mχ̃−
1

= 269GeV, M2 =

400GeV,µ = 200GeV, tanβ = 50 için mχ̃−
1

= 278GeV ve son grafikte M2 = 400GeV,µ=

400GeV, tanβ = 5 için mχ̃−
1

= 335GeV ve M2 = 400GeV,µ = 400GeV, tanβ = 50 için

mχ̃−
1

= 346GeV, hesaplanmıştır.

Düşük parametre değerlerinde daha hafif chargino kütlesi elde edilmesinden dolayı tesir

kesitinde hissedilebilir bir artış gözlenmektedir. Yüksek enerjilere çıkıldığında tüm grafik-

lerde ortak olarak tanβ bağımlılığı yok olmaktadır.
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Ş
ek

il
6.

14
e+

e−
ça

rp
ış
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Şekil 6.15 e−e+ çarpıştırıcısında farklı mχ̃−
1

değerleri için tesir kesitinin enerji ile değişimi,

λ = +1 ,yukarıdan aşağıya sırasıyla mχ̃−
1

= 73,83,95,138GeV

Şekil 6.15 farklı mχ̃−
1

değerlerindeki tesir kesitinin davranışını göstermektedir. e−e+ çar-

pıştırıcısında seçilen polarizasyon durumları fark göstermediği için grafiklerde sadece λ =

+1 durumu çizilmiştir.
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Şekil 6.16 e−e+ çarpıştırıcısında spin polarizasyonu λ = +1 için tesir kesitinin M2 ve µ

ile değişimi, tanβ = 5,
√

s= 1TeV

Son iki şekil SUSY parametrelerine bağımlı 3 boyutlu değişimleri göstermektedir. Şekil

6.16 ve Şekil 6.17 de tanβ = 5 ve tanβ = 50 için M2 ve µya bağlı değişimler görülmektedir.

Eşitlik (5.9) ile verilen chargino kütlesinin M2 ve µ’ya göre simetrik olması Şekil 6.16 ve

Şekil 6.17’de tesir kesitinin SUSY parametrelerine bağımlılığının simetrik bir görünümde

olmasını sağlamaktadır. M2 ve µ’nun eşit olduğu değerlerin en büyük chargino kütlesine

karşılık gelmesi tesir kesitinin iki parametrenin eşit olduğu bölgede daha düşük olmaya

zorlamıştır.

Takip eden bölümde tez çalışmasında yapılan çalışmalar kısaca özetlenerek tezin temel

bulguları anlatılacaktır.
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7. TARTIŞMA VE SONUÇ

Standart Model yüksüz zayıf akımlar, gluonlar ve zayıf ayar bozonları, W± ve Z0’ın deney-

sel olarak gözlenmesi ile günümüzde parçacık fiziğinin en temel modeli olmuştur. Modelin

günümüz laboratuvar koşullarında ulaşılabilen enerjilere kadar göstermiş olduğu başarısına

rağmen bazı kavramsal sorular Standart Model çerçevesinde cevaplandırılamaz. Bu kav-

ramsal güçlükleri çözme yönünde pekçok yeni model ortaya atılmış olmasına karşın bütün

bu modeller fenomenolojik başarısından dolayı Standart Modeli düşük enerji etkin kuram

olarak içlerinde barındırmaktadır. Son yıllarda Standart Modelin geçerli olmadığı ve “Yeni

Fizik” veya “Standart Model Ötesi Fizik” olarak adlandırılan yüksek enerjilere gidildiğinde

karşılaşılacak problemleri çözmek için öneriler ve yeni modeller ortaya atılmaktadır. Tez

çerçevesinde bu modeller arasında en iyi yüksek enerji davranışı gösteren Minimal Süper-

simetrik Standart Model incelenmiştir.

Süpersimetri, tüm alanlar için spini 1/2 kadar farklı süper eş öngörüsü, ayar ve Higgs bo-

zonlarının fermiyonik eşleri olması zorunluluğunu getirir. Standart Modelin süpersimetrik

genişletilmesinde Higgs ve ayar bozonlarının fermiyonik eşleri kütle özfonksiyonu olma-

malarından dolayı bunların karışımı olan charginolar χ̃±
1 ve χ̃±

2 yüklü Higgs bozonları

(H+
1 ,H−

2 ) ve yüklü ayar bozonlarının, W±, süpereşlerinin kütle özdurumları olarak ortaya

çıkar. Aynı şekilde yüksüz Higgs bozonları (H0
1 ,H0

2) ve yüksüz ayar bozonlarının (γ,Z)

süpereşlerinin fermiyonik kütle özdurumları da nötralinolardır χ̃0
1,4.

Standart Modelin kavramsal olarak en zayıf yönlerinden biri olarak gösterilen çok sayıda

serbest parametreye sahip olması süpersimetrik kuramlarda parametre sayısının 100 mer-

tebesine çıkması ancak yüksek enerjilerde , (MGUT,MPlanck), skaler bozon vektör bozon

ve benzeri kütlelerin tek bir değere yakınsayacağı beklentisi SUSY parametre uzayının

sınırlanmasına olanak verir. Bu durumda parametre uzayının daralması süpersimetrik ku-

ramların büyük birleştirme kuramları gibi yüksek enerjilerde fiziği tanımlayan kuramlarla

karşılaştırılabilmesine olanak verir. Chargino bu anlamda özel bir yere sahiptir. Chargino

etkileşmelerinin üç SUSY parametresi ile tanımlanabilmesi ve en düşük kütleli chargino-

ların LHC veya Fermi Laboratuvarında (Tevatronda) ilk gözlenebilecek parçacıklardan ol-
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ması charginoları özel bir yere koyar.

Tez çerçevesinde en düşük kütleli chargino parçacığının χ̃±
1 iki farklı çarpıştırıcıda üretimi

incelenmiştir. Bunlardan ilki e−γ çarpıştırıcısında chargino ve snötrino üretimi, diğeri ise

e−e+ çarpıştırıcısında chargino çiftlerinin üretilmesidir. Literatürde her iki süreçe ait çalış-

malar mevcuttur. Literatürde polarize olmamış e ve γ, polarize olmuş e ve γ çarpışmaları

sonucunda chargino üretimi incelendiği gibi, e−e+ çarpıştırıcılarında polarize ve polarize

olmayan demetlerle chargino üretimi hesapları yapılarak toplam tesir kesitleri hesaplan-

mıştır. Bu çalışmalarda özellikle e−e+ çarpıştırıcısında polarize genliklerin oranlarından

SUSY parametrelerinin genlikler cinsinden tayini yoluna gidilmiştir.

e−γ çarpışmalarında tesir kesiti hesaplarında charginoların polarizasyonlarının chargino-

nun durgun olduğu gözlem çerçevesinde elektronun momentum vektörü yönünde seçilmesinin

etkileri incelenmiştir. Chargino kütlesinin düşük olması halinde toplam enerjinin küçük

olduğu durumlarda
√

s∼ 500GeV charginolar pozitif polarizasyonu tercih etmektedir. Bu

durum enerji arttıkça negatif polarizasyon bölgesine kaymaktadır. Chargino kütlesinin

170GeV’nin üzerinde olması durumunda ise düşük enerjilerde büyük ölçüde λ =−1 pola-

rizasyonuna sahip charginolar üretilmektedir. Charginolar yüksek momentumla üretildikleri

takdirde asimetri bir limit değere yakınsar gibi görülmektedir.

Etkileşme sonucunda sistemin toplam enerjisinin bir chargino ve bir snötrinoyu yaratabile-

cek olması durumunda düşük chargino kütlesi için mχ̃−
1

∼ 170GeV olması durumunda

baskın polarizasyonun pozitif, mχ̃−
1

> 170GeV olması durumunda ise negatif polarizas-

yonun baskın olarak gözlenmesi bu süreç çerçevesinde üretilebilecek ağır ve hafif kütleli

charginolar arasında bir seçici özellik olarak görülebilir.

e−e+ çarpıştırıcısında chargino çifti üretimi süreçleri aynı polarizasyon yöntemleri kul-

lanılarak hesaplanmıştır. e−e+ çarpıştırıcısında seçilen polarizasyon doğrultusunda char-

ginoların polarizasyona bağlı bir seçicilik gözlenmemiştir.
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EK 1 SU(N) Cebiri

SU(N), N×N üniter,UU† = U†U = 1, ve detU = 1 matrislerin oluşturduğu bir gruptur.

Herhangi bir SU(N) matrisi aşağıdaki formda yazılabilir.

U = exp
{

iT iθa
}

, a = 1,2, . . . ,N2−1, (EK 1.1)

Burada T i = λi/2 hermitik ve izsiz matrislerdir. Bunların komütasyon ilişkileri

[T i ,T j ] = i f i jk Tk (EK 1.2)

şeklinde olup SU(N) cebirini tanımlarlar.

Grubun jeneratörleri SU(N) cebirinin temel temsilini oluştururlar. Bu jeneratörler yapı

sabitileri f i jk reel ve tamamıyla anti-simetrik olacak şekilde seçilebilirler.

N = 2 durumu için λi lar bilinen Pauli matrisleridir.

σ1 =





0 1

1 0



 , σ2 =





0 −i

i 0



 , σ3 =





1 0

0 −1



 , (EK 1.3)

BU matrisler aşagıdaki komütasyon bağıntısını sağlarlar.

[

σi ,σ j
]

= 2i εi jk σk . (EK 1.4)

Aynı zamanda
{

σi ,σ j
}

= 2δi j

ve

Tr
(

σiσ j
)

= 2δi j

dır.
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N = 3 durumu için teme temsil Gell-Mann matrislerine dönüşür.

λ1 =











0 1 0

1 0 0

0 0 0











, λ2 =











0 −i 0

i 0 0

0 0 0











,

λ3 =











1 0 0

0 −1 0

0 0 0











, λ4 =











0 0 1

0 0 0

1 0 0











,

(EK 1.5)

λ5 =











0 0 −i

0 0 0

i 0 0











, λ6 =











0 0 0

0 0 1

0 1 0











,

λ7 =











0 0 0

0 0 −i

0 i 0











, λ8 =
1√
3











1 0 0

0 1 0

0 0 −2











.

Bu jeneratörlerin sağladığı komütasyon ve anti-komütasyon ilişkileri ise

[λi,λ j ] = 2i f i jkλk, (EK 1.6)

{

λi ,λ j} =
4
N

δi j IN + 2di jk λk , (EK 1.7)

ifadeleri ile verilir.

SU(3), grubu için f i jk ve di jk sabitlerinin sıfırdan farklı değerleri

1
2

f 123 = f 147 = − f 156 = f 246 = f 257 = f 345 = − f 367 =
1√
3

f 458 =
1√
3

f 678 =
1
2

,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1
2

,

d118 = d228 = d338 = −2d448 = −2d558 = −2d668 = −2d778 = −d888 =
1√
3

.
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EK 2 Kendili ğinden Simetri Kırılması

Ayar değişmezliği (ve dolayısıyla renormalize edilebilirlik) ayar bozonlarının ve chiral fer-

miyonların kütle terimlerinin lagranjiyende bulunmasına izin vermez. Buna karşın zayıf etk-

ileşmelerin kısa erimli olması ayar bozonlarının kütleli olmasını zorunlu kılar. Bu durumda

ayar simetrisinin kendiliğinden kırılma yolu ile kırılarak doğada kırılmayan tek simetri olan

U(1)EM simetrisine gitmesi arzu edilir.

SUL(2)×UY(1) simetrisine sahip bir skaler alan lagranjiyeni yazabilmek için bir Higgs

çiftlisi yeterli olacaktır.

ϕ =





ϕ+

ϕ0



=





1√
2
(ϕ1− iϕ2)

1√
2
(ϕ3− iϕ4)



 , (EK 2.1)

Burada ϕi iki kompleks Higgs alanının dört bileşenini temsil eder,ϕi = ϕ†
i . Bu bazda Higgs

potansiyeli,

V(ϕ) =
1
2

µ2

(

4

∑
i=1

ϕ2
i

)

+
1
4

λ

(

4

∑
i=1

ϕ2
i

)2

, (EK 2.2)

formunu alır ki açık olarak O4 değişmezdir. Bu dört boyutlu uzayda genelliği bozmadan

simetri kırılımı için bir yön seçilebilir; 〈0|ϕi|0〉 = 0, (i = 1,2,4) ve 〈0|ϕ3|0〉 = ν. Bu

durumda, potansiyelin aldığı değer

V(ϕ) →V(v) =
1
2

µ2ν2 +
1
4

λν4, (EK 2.3)

şeklindedir.

Bu ifade ν’ya göre minimize edildiğinde iki durum mümkündür.

• µ2 > 0 durumunda minimum ν = 0 da gözlenir. Bu durum, vakumun boş uzay

olduğunu ve SU2×U1 simetrisinin minimumda kırılmadığın gösterir.
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• µ2 < 0 durumunda ν = 0 noktası bir extremum olmasına karşın kararsızdır ve min-

imum ν nun sıfırdan farklı simetrik noktalarında bulunur ki bu noktalar, potansiyelin

değişim noktalarıdır.

Vakum beklenen değeri, v Higss potansiyelini (V(ϕ) → V(v)) minimum yapan v

değeri olarak bulunur.Bu durumda v klasik hareket denkleminin en düşük enerji

çözümüne karşılık gelir.

V ′(ν) = ν(µ2+λν2) = 0, (EK 2.4)

denkleminin çözümleri, ν =
(

−µ2/λ
)1/2

skaler alanların vakum beklenen değerlerini verir.

µ2 < 0, durumunda hangi Higgs çiftlisinin vakum beklenen değeri oluşturduğunun bilinmesi

önemlidir. ϕ → 1√
2





0

ν



≡ v.

Jeneratörler L1, L2, ve L3−Y kendiliğinden kırılmıştır yani, L1v 6= 0) dır. Diğer taraftan

vakumun elektrik yükü taşımaması (Qv = (L3 +Y)v = 0), durumunda elektromagnetik

kuramın simetrisine karşılık gelen U(1),in kırılmamış olması gereklidir; SU(2)×U(1) →
U(1).

Kuantum kuramı bu klasik çözüm etrafındaki dalgalanmaların göz önüne alınması ile elde

edilir, ϕ = v+ϕ′.

Klasik vakum etrafında kuantize etmek için, ϕ = v+ ϕ′, burada ϕ ler vakum beklenen

degeri sıfır ( < ϕ >→ 0 ) olan kuantum alanlarını tanımlar.

Higgs alanlarının fiziksel parçacık yapısını tanımlayabilmek için dört alanı yük kuantum nu-

maralarına göre yeniden yazmak gerekir [?]: Eğer global bir simetri göz önüne alınıyorsa

üç hermitiyen alan, ξi kırılmış jeneratorler ile ilişkilendirilerek kütlesiz Goldstone bosonlar

olarak kuramda bulunacaklardır.

Higgs alanları, SU(2) grubunun jeneratorleri yardımı ile,

87



ϕ =
1√
2

ei ∑ξiLi





0

ν+H



 . (EK 2.5)

formunda yazılabilir. Burada dört alandan üçü bir faz formunda yazılabilmekte ve la-

granjiyende görülmemekte, dördüncü alan H ise bir simetri kırılımı sonunda fiziksel, kütleli

Higgs alanı olarak kalacaktır. Buna karşın ayar kuramında Goldstone bozonlar lagranjiyende

görülmezler. Uniter ayar kullanılarak,

ϕ → ϕ′ = e−i ∑ξiLi
ϕ =

1√
2





0

ν+H



 , (EK 2.6)

Simetri kırılmasından sonra Higgs alanları potansiyeli

V(ϕ) = −µ4

4λ
−µ2H2+λνH3+

λ
4

H4. (EK 2.7)

formunu alır. İkinci terim H Higss alanının kütle terimidir MH =
√

−2µ2 =
√

2λν. Üçüncü

ve dördüncü terimler ise Higgs skaler alanının kendisi ile etkileşme terimleridir.
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EK 3 Süpersimetri Cebiri

Süpersimetri transformasyonlarını ve değişmezlerini elde etmenin yolu süper uzayda çalış-

maktır. Süperuzay, bilinen Minkowski uzayından, uzaya θα ve θ̄α̇ değişkenlerinin ilavesi ile

elde edilebilir. Bu yeni değişkenler Grassman değişkenleridir ve sıra değiştirmezler.

{θα,θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2
α = 0, θ̄2

α̇ = 0, α,β, α̇, β̇ = 1,2.

Bu durumda Minkowski uzayından süperuzaya geçiş,

Uzay ⇒ Superuzay

xµ xµ,θα, θ̄α̇

formunda uzayın genişletilmesi yolu ile gerçekleşir. Süpersimetri transformasyonları süpe-

ruzayda ötelenmeleri tanımlar.

xµ → xµ+ iθσµε̄− iεσµθ̄,

θ → θ+ ε, θ̄ → θ̄+ ε̄
(EK 3.1)

ε ve ε̄ Grassmannian değişkenleridir. Bu uzayda jeneratörler,

Qα =
∂

∂θα
− iσµ

αα̇θ̄α̇∂µ, Q̄α̇ = − ∂
∂θ̄α̇

+ iθασµ
αα̇∂µ. (EK 3.2)

Süperuzayda alanlar SüperPoincare grubunun gösterimleri gözönüne alınarak elde edilir.

Poincare’ grubu Minkowski uzayında tanımlıdır. 10− jenaratörü olan kompakt olmayan

grup relativistik kuantum alan kuramlarının simetrilerini tanımlar.

[Pµ,Pν] = 0,

[Pµ,Mρσ] = i(gµρPσ−gµσPρ),

[Mµν,Mρσ] = i(gνρMµσ −gνσMµρ −gµρMνσ +gµσMνρ),

(EK 3.3)
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Burada,

Pµ :Ötelenmelerin simetri grubu

Mµν :Lorentz dönüşümlerinin simetri grubu

gµν :Minkowski metriği

P parite C yük konjugesi J toplam açısal momentum olmak üzere temel parçacıklar kuan-

tum sayıları JPC olan Poincare’ grubunun represantasyonlarıdır.

Poincare’ simetrilerinden başka parçacıklar iç simetri olarak adlandırılan simetrilere de

sahip olabilirler. Spin, Isospin, çeşni, renk simetrileri bu tür simetrilere örnektir (Ek 1). İç

simetri grubunun jeneratorleri Gi olmak üzere aşağıdaki komütasyon bağıntılarını sağlar-

lar.

[Gi,G j ] = i f k
i j Gk, (EK 3.4)

Burada f k
i j grubun yapı sabitleridir (Ek 1).

İç simetri grubu,Gi , ile Poincare’ grubunun generatörleri birbiri ile sıra değiştirirler.

[Gi,Pµ] = [Gi ,Mµν] = 0. (EK 3.5)

α, α̇,β, β̇ spin indislerini temsil etmek üzere Q ve Q̄ SUSY jeneratorleridir.

Süpersimetri jeneratörleri arasındaki ilişkiler:

{Qα,Q̄β̇} = 2(σµ)αβ̇Pµ,

[Qα,Qβ] = 0 [Q̄α̇,Q̄β̇] = 0

{Qα,Qβ} = 0 {Q̄α̇,Q̄β̇} = 0

(EK 3.6)

formundadır. Poincare’ grubunun jeneratörlerinin de Süpersimetri jeneratörleri ile komüta-

syon bağıntılarına bakılmasını gereklidir.
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[Qα,Pµ] = [Q̄i
α̇,Pµ] = 0,

[Qα,Mµν] =
1
2(σµν)

β
αQβ, [Q̄α̇,Mµν] = −1

2Q̄β̇(σ̄µν)
β̇
α̇,

(EK 3.7)

Poincare’ grubu elemanları gibi süpersimetri grubu elemanları da iç simetri grubu eleman-

ları ile komüt eder.

[Qα,Gi] = 0 [Q̄i
α̇,Gi] = 0 (EK 3.8)

N=1 SUSY multipletleri : chiral skaler alan Φ(x,θ, θ̄) ve vectör alan V(x,θ, θ̄) dir. Grass-

man değişkenleri θ ve θ̄ cinsinden Taylor serisine açıldığında :

Φ(x,θ, θ̄) = φ(x)+ iθσµθ̄∂µφ(x)+
1
4

θθθ̄θ̄2φ(x)

+
√

2θψ(x)− i√
2

θθ∂µψ(x)σµθ̄+θθF(x).

2 bozonik serbestlik derecesine sahip bir kompleks skaler alan, φ ve 2 fermiyonik serbestlik

derecesi (Weyl spinor alanı) ψ mevcuttur. φ ve ψ bileşenleri süpereşler olarak adlandırılır.

F alanı yardımcı alan olup, cebirin kapanması için gereklidir; fiziksel bir anlama sahip

değildir.

Kompleks skaler alan ve fermiyon alanının süper uzayda dönüsümleri bklendiği gibi skaler

alanın fermıyon alanına, fermiyon alanının da skaler alana dönüşümü seklindedir.

δεφ =
√

2εψ,

δεψ = i
√

2σµε̄∂µφ+
√

2εF, (EK 3.9)

δεF = i
√

2ε̄σµ∂µψ.

F alanındaki değişim bir tam türev olarak gelmekta ve uzay-zaman üzerinden integre

edilmesi durumda yok olmaktadır.
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Vektör süperalan reeldir (V = V+ ). Vektör süperalanın Grasman değişkenleri cinsinden

Taylor serisi açılımı ise ,

V(x,θ, θ̄) = C(x)+ iθχ(x)− iθ̄χ̄(x)+
i
2

θθ[M(x)+ iN(x)]

− i
2

θ̄θ̄[M(x)− iN(x)]−θσµθ̄vµ(x)+ iθθθ̄[λ(x)+
i
2

σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ+
i
2

σµ∂µχ̄(x)]+
1
2

θθθ̄θ̄[D(x)+
1
2
2C(x)]. (EK 3.10)

formundadır.

Reel vektör süperalana karşılık gelen fiziksel serbestlik dereceleri vektör ayar alanı vµ ve

Majorana spinor alanı λ dır; Tüm diğer bileşenler fiziksel olmayıp yokedilebilirler. Wess-

Zumino ayarı kullanıldığında, C = χ = M = N = 0, D haricinde hiçbir fiziksel serbestlik

derecesi görülmez.

Ayar kuramlarındaki alan şiddet tensörü Fµν ya benzer şekilde

Wα = −1
4

D̄2eVDαe−V , W̄α̇ = −1
4

D2eVD̄αe−V , (EK 3.11)

alan şiddet tensörleri tanımlanabilir. Burada D ler süperkovaryant türevlerdir.

Wess-Zumino ayarında şiddet tensörü bileşen alanlarının polinomu cinsinden yazılabilir.

Wα = Ta
(

−iλa
α +θαDa− i

2
(σµσ̄νθ)αFa

µν +θ2(σµDµλ̄a)α

)

, (EK 3.12)

Burada Ta iç simetri grubunun jeneratörleri ve

Fa
µν = ∂µva

ν −∂νva
µ+ f abcvb

µvc
ν, Dµλ̄a = ∂λ̄a+ f abcvb

µλ̄c.

dür.
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Abelyen durumda

Wα = −1
4

D̄2DαV, W̄α̇ = −1
4

D2D̄αV.

şeklindedir.

Süperalan notasyonunda SUSY değişmez lagranjiyenler, süperalanların polinomları for-

mundadırlar. Diğer durumlara benzer şekilde eylemin uzay-zaman üzerinden integrali

alınır fakat burada uzay süperuzaydır. Lagranjiyen yoğunluğu en basit süpersimetrik model

olan Wess-Zumino modeli için

L =
Z

d2θd2θ̄ Φ+
i Φi +

Z

d2θ [λiΦi +
1
2

mi j ΦiΦ j +
1
3

yi jkΦiΦ jΦk]+h.c. (EK 3.13)

ile verilir. Burada ilk kısım kinetik terim olup ikinci kısım süperpotansiyeldir W.

Süperuzay üzerinden integral alma işlemi Grasman integrasyon kurallarına göre yapılmak-

tadır.

Z

dθα = 0,
Z

θα dθβ = δαβ.

Grasman parametreleri üzerinden integral alındığında

L = i∂µψ̄i σ̄µψi +φ∗i 2φi +F∗
i Fi (EK 3.14)

+ [λiFi +mi j (φiFj −
1
2

ψiψ j)+yi jk(φiφ jFk−ψiψ jφk)+h.c.].

elde edilir. Buradaki son iki terim etkileşme terimleridir.

Lagranjiyenin alışılagelmiş bir formunu elde etmek için
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∂L
∂F∗

k
= Fk +λ∗

k +m∗
ikφ∗i +y∗i jkφ∗i φ∗j = 0, (EK 3.15)

∂L
∂Fk

= F∗
k +λk +mikφi +yi jkφiφ j = 0. (EK 3.16)

sınırlayıcı denklemlerinin çözülmesi gerekmektedir. Bu denklemlerden yardımcı alanlar F

ve F∗ elde edildiğinde

L = i∂µψ̄iσ̄µψi +φ∗i 2φi −
1
2

mi j ψiψ j −
1
2

m∗
i j ψ̄iψ̄ j

−yi jkψiψ jφk−y∗i jkψ̄iψ̄ jφ∗k −V(φi ,φ j), (EK 3.17)

olacak şekilde lagranjiyen elde edilir. Burada skalar potensiyel V = F∗
k Fk dir.

Ayar değişmez SUSY lagranjiyenine geldiğimizde, bu lagranjiyen madde alanlarının ayar

alanları ile olan ayar değişmez etkileşmelerini, kinetik terimi ve ayar alanlarının kendilieri

ile olan etkileşme terimlerini içerecektir.

Ayar alanı kinetik terimi Wess-Zumino ayarında

WαWα|θθ = −2iλσµDµλ̄− 1
2

FµνFµν +
1
2

D2+ i
1
4

FµνFρσεµνρσ, (EK 3.18)

şeklindedir. Burada Dµ = ∂µ+ ig[vµ, ] genel kovaryent türevdir. Ayar değişmezi Lagranjiyen

bu durumda

L =
1
4

Z

d2θ WαWα +
1
4

Z

d2θ̄ W̄α̇W̄α̇

=
1
2

D2− 1
4

FµνFµν − iλσµDµλ̄. (EK 3.19)

olacaktır. Chiral madde alanları ile ayar değişmez bir etkileşme elde etmek için kinetik

terim aşağıdaki operatör yardımı ile değiştirilmek zorundadır.
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Φ+
i Φi ⇒ Φ+

i egVΦi . (EK 3.20)

Sonunda SUSY ve ayar değişmez lagranjiyen

LSUSY Y M =
1
4

Z

d2θ Tr(WαWα)+
1
4

Z

d2θ̄ Tr(W̄αW̄α) (EK 3.21)

+
Z

d2θd2θ̄ Φ̄ia(e
gV)a

bΦb
i +

Z

d2θW (Φi)+
Z

d2θ̄ W̄ (Φ̄i),

olacaktır. Burada W süperpotansiyeldir. Bileşen alanları cinsinden yukarıdaki lagranjiyen

LSUSY YM = −1
4

Fa
µνFaµν − iλaσµDµλ̄a+

1
2

DaDa (EK 3.22)

+ (∂µφi − igva
µTaφi)

†(∂µφi − igva
µTaφi)− iψ̄iσ̄µ(∂µψi − igva

µTaψi)

− DaA†
i Taφi − i

√
2A†

i Taλaψi + i
√

2ψ̄iT
aφi λ̄a+F†

i Fi

+
∂W
∂φi

Fi +
∂W̄
∂φ†

i

F†
i − 1

2
∂2W

∂φi∂φ j
ψiψ j −

1
2

∂2W̄

∂φ†
i ∂φ†

j

ψ̄iψ̄ j .

formunu alır.
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Eğitim Durumu

Lise : Kurtuluş Lisesi
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