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Bu tezde, spin-3/2 uyarılmış leptonların tek üretimi, gelecek nesil yüksek enerjili 

elektron-pozitron çarpıştırıcıları ILC (International Linear Collider) ve CLIC (Compact 

Linear Collider) enerjilerinde incelenmiştir. Uyarılmış leptonlar, kompozit modeller 

tarafından öngörülen parçacıklardır. En düşük uyarım olarak spin-1/2 uyarılmış 

leptonlar dikkate alınırken, spin-3/2 uyarılmış leptonlar bir üst uyarım olarak ele 

alınmıştır. Uyarılmış leptonlar, SM leptonları ve ayar bozonları arasındaki etkileşmeler 

için etkin lagranjiyen yöntemi kullanılmıştır. Spin-3/2 uyarılmış leptonlar için mümkün 

bütün bozunma modları incelenmiş ve spin-1/2 uyarılmış leptonun bozunmaları ile 

karşılaştırılmıştır. Sinyal ile buna karşılık gelen fon olayları dikkate alınmış, son durum 

gözlenebilir parçacıklar üzerine uygun kinematik sınırlamalar getirilerek ILC ve CLIC’ 

de uyarılmış leptonların keşfedilme limitleri bulunmuştur.  
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high energy electron-positron collider  ILC (Internaional Linear Collider), and CLIC 

(Compact Linear Collider) energies. Excited leptons are particles which are suggested 

by composite models. Spin-1/2 excited leptons are considered as the lowest excitation 

and spin-3/2 excited leptons are considered as an higher excitation. Effective lagrangian 

method has been used for the interactions among excited leptons, SM leptons, and 

gauge bosons. All of the possible decay modes of  the excited spin-3/2 leptons have 

been studied and compared with spin-1/2 excited lepton decay modes. Signal and 

corresponding backgrounds have been taken into account and discovery limits at ILC 

and CLIC have been obtained by applying suitable kinematical cuts on the final state 

detectable particles. 
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1. GİRİŞ 

 

Maddeyi oluşturan en küçük yapı taşlarının ve bu yapı taşları arasındaki temel 

etkileşmelerin neler olduğu soruları temel parçacık fiziğinin cevap aradığı sorulardır. 

Bugüne kadar yapılan yüksek enerji fiziği deneylerinden maddenin temel bileşenlerinin 

kuarklar ve leptonlar ile kuvvet taşıyıcıları olan vektör bozonları olduğu anlaşılmıştır. 

Doğada, parçacıklar arasındaki 4 temel etkileşme elektromanyetik, güçlü, zayıf ve kütle 

çekimi (gravitasyon) etkileşmeleridir. Standart Model (SM), temel parçacıkları ve onlar 

arasındaki etkileşmeleri açıklayan bir modeldir. Parçacık fiziğinin SM’ i güçlü etkileşmeler 

ile elektromanyetik ve zayıf etkileşmelerin birleşik teorisi olan elektrozayıf etkileşmeleri 

açıklayabilmektedir. Günümüz parçacık hızlandırıcılarının enerji ölçeğinde, SM’ nin 

öngörüleri deneysel veriler ile oldukça yüksek hassaslıkta doğrulanmıştır. Bu model, 

kuarklar, leptonlar ve kuvvet taşıyıcıları yardımıyla madde ve maddenin yapısı hakkında 

pek çok soruyu cevaplar. Bununla birlikte, fermiyonik ailelerin tekrarlanması, aile sayısı 

bilmecesi, fermiyon kütleleri, karışım açıları, Higgs mekanizması, nötrino salınımları, 

hiyerarşi problemi gibi bazı sorular cevapsız kalmaktadır. Bu gibi sorulardan bir veya 

birkaçını cevaplayabilmek üzere SM ötesinde bazı modeller önerilmektedir. Böylelikle SM 

ötesinde ne tür bir yeni fiziğin olduğu araştırılacaktır. 

 

SM ötesinde öngörülen modellerden başlıcaları; büyük birleştirme teorileri, süpersimetri, 

sicim teorisi ve kompozit modellerdir. Fermiyonik ailelerin tekrarlanması kuark ve 

leptonların kompozit yapılar olabileceğini düşündürmektedir. Kompozit modeller, kuark ve 

leptonların, preon olarak adlandırılan daha temel parçacıkların bağlı durumu olduğunu 

öngörürler. Eğer kuarklar ve leptonlar daha temel bileşenlerden meydana gelmişlerse, bu 

bileşenlerin bağlanma enerjileri ölçeğinde, kuarklar ve leptonlar arasında, Λ  kompozitlik 

ölçeği ile karakterize edilen yeni etkileşmeler açığa çıkmalıdır. Λ  kompozitlik ölçeğinin 

çok altındaki enerjilerde bu etkileşmer 1/ Λ ’nın kuvvetleri ile bastırılmıştır. Kuark ve 

lepton kompozitliği için en ikna edici kanıt  kuark ve lepton taban durumlarının üzerinde 

yer alan uyarılmış durumların keşfi olacaktır. Kompozit modellerde, spin-1/2 uyarılmış 
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fermiyonlar en düşük radyal ve yörüngesel uyarımlardır. En düşük fermiyonik uyarımların 

spininin araştırılması preon yapısı hakkında bilgi verecektir. Spin-3/2 uyarılmış fermiyonlar 

ise bir üst uyarım olarak ele alınabilir.  

 

Temel parçacıklar ve etkileşmelerini açıklayan Standart Model hakkında 2. bölümde kısa 

bir bilgi verilerek, SM’ nin sorunları ve SM ötesindeki modeller özetlenmiştir.  3. bölümde 

uyarılmış leptonlar ele alınmıştır, ayrıca uyarılmış leptonlar için elde edilen son kütle 

sınırlarından bahsedilmiştir. Uyarılmış lepton ile SM leptonları arasındaki etkileşmeler için 

etkin lagranjiyen yöntemi kullanılmıştır.  Uyarılmış yüklü ve yüksüz leptonların mümkün 

bozunma modları incelenmiş, bu modlara ait bozunma genişlikleri ve dallanma oranları 

uyarılmış lepton kütlesine bağlı olarak hesaplanmıştır. 4. Bölümde uyarılmış spin-1/2 ve 

spin-3/2 elektronun ve nötrinonun gelecek nesil yüksek enerjili elektron-pozitron 

çarpıştırıcılarında tek üretimi için tesir kesitleri hesaplanmıştır. Sinyal olaylarının yanısıra 

fon da dikkate alınmış, son durum gözlenebilir parçacıklar üzerine bazı kinematik 

sınırlamalar konularak ulaşılabilecek kütle ve bağlanma parametreleri limitleri 

belirlenmiştir (Çakır and Ozansoy 2008, 2009). 

 

Feynman diyagramlarının çizilmesinde PSFGO (Çakır 2004) programından 

faydalanılmıştır. Feynman genliklerinin sembolik hesaplamalarında iz yöntemi kullanılmış, 

bilgisayarda sembolik hesaplama programlarından MATHEMATICA 

(http://www.wolfram.com) progamı için yüksek enerji paketi TamarA’ dan 

(http://library.wolfram.com/infocenter/MathSource/839/#downloads) faydalanılmıştır. 

Grafik çizimi için GNUPLOT (http://www.gnuplot.info) ve MATHEMATICA programları 

kullanılmıştır. Fon tesir kesitlerinin hesaplanmasında CALCHEP 2.5.j (Pukhov et al. 1999, 

2004) programından faydalanılmıştır.  
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2. STANDART MODEL ve ÖTESİ 

 

Parçacık fiziğinin amacı maddenin temel bileşenlerinin neler olduğunu ve bu bileşenlerin 

nasıl etkileştiklerini araştırmaktır. Bu amaca göre olaylara iki yönden yaklaşabilinir: Madde 

parçacıkları ve etkileşmeler. Maddenin iç yapısız en küçük yapıtaşları temel parçacıklardır 

ve bu temel parçacıklar arasında elektromanyetik, güçlü ve zayıf kuvvet ile  kütleçekimi  

kuvveti olmak üzere 4 temel kuvvet vardır. 1960’ lı ve 1970’ li yıllarda geliştirilen parçacık 

fiziğinin Standart Model’ i (SM) günümüze kadar parçacık fiziğinin teorisi olmuştur. Bu 

model, parçacıkların davranışlarını açıklamamıza yardımcı olacak şekilde temel parçacıklar 

ve onlar arasındaki temel etkileşmelerin matematiksel bir anlatımıdır.   

 

2.1  SM’ de Temel Parçacıklar ve Temel Etkileşmeler 

   

Parçacıklar arasındaki temel kuvvetlerin her biri fiziksel bir teoriye aittir. Kütle çekimi 

kuvvetinin klasik ilk teorisi Newton tarafından kurulan evrensel kütle çekim kanunudur. 

Daha sonra bu teorinin göreli genişletilmesi Einstein’ in genel görelilik teorisi ile 

yapılmıştır. Kütle çekiminin tam olarak kuantumlu bir teorisi henüz kurulmamıştır. Ayrıca, 

kütle çekim kuvveti temel parçacık fiziğinde önemli bir rol oynamayacak kadar zayıftır.  

 

Elektromanyetik kuvvetleri açıklayan teori elektrodinamiktir. Elektrodinamiğin klasik 

formülasyonu 1873 yılında Maxwell tarafından yapılmıştır. Maxwell’ in teorisi özel 

görelilik ile uyumludur. 1940’ lı yıllarda elektrodinamiğin kuantumlu teorisi olan Kuantum 

Elektrodinamiği (KED) Tomonaga, Feynman ve Schwinger tarafından kurulmuştur. 

Kuantum elektrodinamiği en eski ancak en basit ve en başarılı dinamik teoridir (Griffiths 

1987). 

 

Nükleer bozunmalardan sorumlu kuvvet zayıf kuvvettir ve zayıf etkileşmelerde lepton veya 

kuark çeşnisi değişebilir. Zayıf kuvveti açıklayan teori çeşnidinamiğidir (flavordynamics). 
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Zayıf kuvvet, temel parçacıklar üzerinde bağlayıcı bir etkiye sahip değildir. Zayıf 

etkileşmelerin, ilk teorisi 1934’ te Fermi tarafından kuantumlu bir teori olarak verilmiştir.  

 

Proton ve nötron arasında, bunları bir arada tutarak çekirdeği oluşturmalarından sorumlu 

kuvvet güçlü kuvvettir. Bu kuvvet kuarklararası etkileşmelerden sorumludur. 1964’ te Gell-

Mann ve Zweig tarafından kuark modeli kurulana dek, güçlü kuvvet Yukawa teorisi ile 

açıklanıyordu. Kuarkların güçlü etkileşmelerini açıklayan kuantumlu alan teorisi kuantum 

renkdinamiğidir (KRD).   

 

Düşük enerjilerde, elektromanyetik ve zayıf kuvvetler oldukça farklı görünürler ancak 

yeteri kadar yüksek enerjilerde ve yüksek momentum aktarımı olduğunda elektromanyetik 

ve zayıf etkileşmeler aynı etkileşme şiddetine sahiptirler. Elektrozayıf teori, 

elektromanyetik ve zayıf kuvvetleri, aynı kuvvetin iki farklı görünümü olarak ele alır ve 102 

GeV mertebesindeki birleştirme ölçeğinin üzerindeki enerjilerde, bu iki kuvvveti tek kuvvet 

olarak (elektrozayıf kuvvet) birleştirir. Glashow (1961), elektromanyetik ve zayıf 

etkileşmelerin SU(2)L×U(1)Y ayar grubuna dayanan yerel bir ayar teorisi altında 

birleştirilebileceğini önermiştir. Daha sonra, Weinberg (1967) ve Salam (1968), başlangıçta 

kütlesiz alınan ayar alanlarına kendiliğinden simetri kırılması yoluyla kütle kazandırarak  

elektrozayıf teoriyi, başka bir deyişle Glashow-Weinberg-Salam (GSW) modelini 

kurmuşlardır.  

 

Elektrozayıf teori ile kuantum renkdinamiği beraber Standart Model olarak adlandırılır. 

SM’ ye göre görünüm şöyledir: Maddenin temel bileşenleri 1/2 spinli leptonlar ve kuarklar 

ile spini 1 olan kuvvet taşıyıcıları olarak adlandırılan ayar bozonlarıdır. Bunların dışında 

SM, henüz gözlenmeyen, ancak parçacıkların kütle kazanmalarından sorumlu olan en az bir 

tane skaler Higgs bozonu önermektedir. Leptonlar, kuarklar ve ayar bozonları günümüzdeki 

en yüksek enerjili hızlandırıcıların ölçtüğü boyutlarda bir iç yapıya sahip değillerdir.  
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Leptonlar ve kuarklar birlikte fermiyon olarak adlandırılırlar. SM’ de fermiyonlar 3 aile 

oluştururlar. SM’ de fermiyonik aileler Çizelge 2.1’ de verilmiştir. Yüklü leptonlar, 

elektron (e), müon ( µ ) ve tau (τ ) -1 elektrik yüküne sahiptir. Her bir yüklü leptona karşılık 

gelen nötrinolar µνν ,e  ve τν  ise yüksüzdürler ve SM’ de kütlesiz kabul edilirler. Bu 

ailelerde sol-elli leptonlar,  biri yüklü diğeri yüksüz olmak üzere ikililer şeklindedirler. 

Yüklü leptonlar  ise sağ-elli tekliler olmak üzere sınıflandırılırlar. Yüklü leptonlar 

elektromanyetik ve zayıf olarak, yüksüz leptonlar ise sadece zayıf olarak etkileşirler.  

 

Çizelge 2.1 SM’ de fermiyonik aileleler 
 
Parçacık 1.aile 2.aile 3.aile 

 

Leptonlar 

L

e

e 






  ν
, Re  

L










µ
ν µ , Rµ  

L










τ
ν τ , Rτ  

Kuarklar 

L
d

u








 , RR du ,  

L
s

c








 , RR sc ,  

L
d

u








 , RR bt ,  

      

Kuarklar ise güçlü, elektromanyetik ve zayıf olmak üzere 3 yolla etkileşirler. Kuarklar renk 

yükü adı verilen bir kuantum sayısına sahiptirler. Renk dışında kuarklar da leptonlar gibi 6 

tanedir ve 3 aile oluştururlar. Kuarkın her bir çeşnisi 3 renge (kırmızı, mavi, yeşil) sahiptir. 

Kuarklar serbest olarak gözlenemezler, baryonları (3 kuark bağlı durumu) ya da mezonları 

(bir kuark bir antikuark bağlı durumu) oluştururlar.  

 

Kuvvet taşıyıcıları olan ara bozonlar spin 1 parçacıklardır. Elektromanyetik etkileşmelerin 

taşıyıcı parçacığı foton ( γ ), zayıf etkileşmelerin taşıyıcı parçacıkları 0Z  ve ±W  bozonları, 

güçlü etkileşmelerin  taşıyıcıları ise 8 adet gluondur (g). Çizelge 2.2’ de temel 

etkileşmelerin şiddetleri ve aracı parçacıkları gösterilmiştir. Temel etkileşmeleri tanımlayan 

teorilerinin dayanak noktası, koordinatlara bağlı bazı dönüşümler altında değişmez 

kalmalarıdır. Özellikle, elektromanyetik, zayıf ve güçlü kuvvetlerin kuantumlu alan 
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teorileri yerel ayar teorileri olarak adlandırılan sınıfa aittirler, çünkü bu teoriler 

parçacıkların iç uzayları üzerinde koordinatlara bağlı dönüşümler altında değişmez kalırlar 

(Ho-Kim and Pham 1998).  

 

Çizelge 2.2 SM çerçevesinde temel etkileşmeler ve aracı parçacıkları 
 

   

 

 

 

 

 

Parçacıklar arasındaki temel etkileşmelerden bahsettiğimiz bu kesimde, kütle çekimi 

kuvvetinden hiç bahsetmedik. Çünkü, kütle çekim etkileri şiddet bakımından zayıf 

kuvvetten bile daha küçüktürler ya da en azından, bugün elde edilen uzaklıklardan daha 

küçük uzaklıklara ulaşıncaya kadar bu böyledir. Tüm kütleli maddeler kütle çekimine 

uyarlar. Elektrik akımı elektromanyetik kuvvetin, zayıf izospin ve zayıf hiperyük elektro-

zayıf kuvvetin ve kuark renkleri de kuarklar arasındaki güçlü etkileşmelerin kaynağıdır. 

Özel olarak “kütleçekim yükü” taşıyan fermiyonik bir kaynağa rastlanmamıştır. Kütleçekim 

kuvveti de diğer üç temel kuvvet gibi yerel ayar değişmezliği prensibinden doğar, ancak 

teoriyi değişmez bırakan dönüşümler uzay-zaman koordinatları üzerine kendi kendilerine 

etkirler ve sonuç olarak korunumlu bir enerji-momentum tensöründen türetilen kuvvet alanı 

vektörel değil tensöreldir. Kütle çekim kuvvetinin graviton adı verilen spin-2 parçacık 

tarafından taşındığı öngörülmüştür. 

 

2.2 Ayar Değişmezliği ve Simetriler 

 

Bu kesimde abelyen ve abelyen olmayan ayar gruplarının uzay-zamana bağlı olan ve 

olmayan faz dönüşümleri altındaki değişimlerine bakılarak simetriler ve etkileşmeler 

arasındaki ilişki incelenecektir.   

Etkileşme Şiddet Aracı Parçacık 

Güçlü 1 Gluon (g) 

Elektromanyetik 10-2 Foton (γ) 

Zayıf 10-5 ±W ve Z0 
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2.2.1 Global ayar değişmezliği - abelyen durum 

 

İlk olarak uzay-zamana bağlı olmayan iç simetrilerle ilgilenelim. Burada parçacık 

alanlarına örnek olarak serbest Dirac alanını ele alalım (Dirac denkleminin elde edilişi ve 

serbest parçacık çözümleri EK 1’ de verilmiştir). m kütleli serbest Dirac alanı için 

lagranjiyen; 

 

Λ0 ( )i mµ
µγ= Ψ ∂ − Ψ                 (2.1) 

 

ile verilir. Bu lagranjiyen global faz dönüşümleri altında değişmez kalır. Böyle bir simetri 

elektrik yükünün korunumuna karşılık gelir.  

 

)()()( ' xexx iq Ψ=Ψ→Ψ − θ                (2.2) 

 

Burada q parçacığın yükü, θ  ise uzay-zamandan bağımsız keyfi bir sabit sayıdır ve 

dönüşüm parametresi olarak adlandırılır. Denklem (2.1) ile verilen ayar dönüşümleri bir 

grup oluştururlar. Gruptaki farklı dönüşümler birbiri ile sıra değiştireceğinden, bu grup 

abelyen bir gruptur, dönüşümler θ  gibi tek bir parametre ile ifade edilir. Bu grup, )1(U  

olarak adlandırılan bir boyutlu üniter dönüşümlerin grubudur. Dönüşüm parametresi θ  

koordinatlardan bağımsız olduğu için parçacık alanının gradyenti de alan ile aynı şekilde 

dönüşür. Alan gradyentinin dönüşümü,  

 

)()()( ' xexx iq Ψ=Ψ∂→Ψ∂ − θ
µµ               (2.3) 

 

şeklindedir. )1(U  global faz dönüşümleri altında Λ0 değişmez kalacağından )1(U  grubu Λ0 

lagranjiyeninin bir simetri grubudur. Λ0’ ın global faz simetrisine sahip olması, Noether 

teoremi ile verilen korunumlu bir akıma karşılık gelir. Bu korunumlu akım, 
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ΨΨ= µµ γqxj )(                 (2.4) 

 

ile verilir. Noether akımlarına karşılık gelen korunumlu yük operatörleri ise 

 

∫≡ )(ˆ
0

3 xxjdQ                        (2.5) 

 

şeklinde yazılır.  

 

2.2.2 Yerel ayar değişmezliği - abelyen durum 

 

Global ayar değişmezliği durumunda, θ  fazı, ölçülebilir değildir ve keyfi olarak seçilebilir. 

Bu faz bir kere seçildikten sonra, uzayda tüm zamanlarda aynı olmalıdır. Global 

dönüşümler, yerel (lokal) dönüşümler olarak genelleştirilmek istenirse faz, uzayda farklı 

noktalarda farklı değerler alacak şekilde ele alınır. 

 

)()()( )(' xexx xiq Ψ=Ψ→Ψ − θ                           (2.6) 

 

Burada dönüşüm parametresi )(xθ  uzay-zamanın bir fonksiyonudur. Alan gradyentinin 

dönüşümü global dönüşümlerde olduğu gibi alanla aynı yoldan gerçekleşmez. 

 

[ ]Ψ∂−Ψ∂=Ψ∂→Ψ∂ − ))(()()( )(' xiqexx xiq θµµ
θ

µµ             (2.7) 

 

Burada, serbest alan lagranjiyeni yerel abelyen dönüşüm altında değişmez kalmaz,  ayar 

değişmezliğini bozacak şekilde ilave bir terim kazanır.  

 

Λ0→Λ0
’ = Λ0 ( )q µ

µγ θ+ Ψ Ψ ∂  

    =Λ0 jµ µθ+ ∂                                                      (2.8) 
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Ayar değişmezliğini yeniden sağlamak için teoriye, parçacık akımlarına bağlanacak vektör 

alanlarının eklenmesi gerekmektedir. Bu ise teoriyi etkileşen bir teori yapar. Böyle yerel 

ayar değişmezliğine sahip teoriye bir örnek elektrodinamiktir. Yeniden tanımlanan 

lagranjiyen, 

 

Λ1 =Λ0 j Aµ
µ−                             (2.9) 

 

şeklidedir. Λ1 lagranjiyeninin değişmez kalması vektör alanının dönüşümünün 

 

θµµµµ ∂+=→ AAA '                             (2.10) 

 

şeklinde olmasını gerektirir. µA  vektör alanı ayar alanı olarak adlandırılır. Λ1’ in ayar 

değişmezliği, alan gradyentinin kovaryant olarak dönüşmesini gerektirir. Bu ayar grubu için 

kovaryant türev 

 

µµµ iqAD +∂≡               (2.11) 

 

ile tanımlanır. Kovaryant türev alanla aynı yoldan dönüşür. 

 

Ψ=Ψ→Ψ − )(' xiqeDD θ
µµ              (2.12) 

 

Kovaryant türev cinsinden Λ1 tekrar yazılırsa; 

 

Λ1 ( )iD mµ
µγ= Ψ − Ψ                          (2.13) 

 

µA  vektör alanını dinamik sistemin ayrılmaz bir parçası yapmak istersek, µA ’ nün 

türevlerinden oluşan ayar değişmez bir terimi lagranjiyene eklemek gerekir. Böyle bir terim  

µννµµν AAF ∂−∂=               (2.14) 
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şeklindedir. µν
µν FF  terimi Lorentz skalerdir ve bu terimin lagranjiyene eklenmesiyle elde 

edilen hareket denklemlerinin Maxwell denklemlerini vermesi için -1/4 anlaşmasal 

katsayısı ile verilir. Son olarak ayar değişmez lagranjiyen şu şekilde yazılabilir: 

 

Λ=Λ1+ΛG 

1
( )

4
iD m F Fµ µν

µ µνγ= Ψ − Ψ −            

Λ
1

( )
4

i m q A F Fµ µ µν
µ µ µνγ γ= Ψ ∂ − Ψ − Ψ Ψ −                       (2.15) 

 

Madde alanı ile ayar alanının etkileşmesi, parçacığın doğasından bağımsız olarak sadece 

paçacığın yükü ile olmaktadır. Burada ayar alanı için kütle terimi sadece µ
µ AAmA

2

2

1
−  

formunda olabilirdi. Ancak böyle bir kütle terimi ayar değişmez olmadığından 0=Am  

olmalıdır. Özetleyecek olursak; elektrodinamik, ayar alanı olarak fotonu kütlesiz bırakacak 

şekilde, abelyen, yerel ayar değişmezliğine sahip bir teoridir. 

 

2.2.3 Global ayar değişmezliği - abelyen olmayan durum 

 

Parçacık alanları eş çoklular halinde karşımıza çıkabilirler. Bu durumda abelyen olmayan 

dönüşümler kullanılır. Global durumda abelyen olmayan dönüşümlerin genelleştirilmesi 

daha açıktır ancak yerel abelyen olmayan simetriler için durum daha karmaşıktır. Parçacık 

alanı 

















Ψ

Ψ

=Ψ

n

M

1

               (2.16)

  

şeklinde eş çoklu biçiminde yazılabilir. Bu çokludaki bileşenler birbirlerine üniter 

dönüşümler ile dönüşürler. 
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nbaU b

b

aaa ,...,1,' =Ψ=Ψ→Ψ            (2.17) 

 

U , nn× ’ lik üniter ve ünimodüler matrislerdir ve bir Lie grubu G’ nin bazı temsillerini 

tanımlarlar. Burada basitlik olması bakımından G’ nin basit bir grup olduğunu ve Ψ’ nin 

onun temel temsilinde olduğunu düşünüyoruz. Üniter ünimodüler matrisler N=n2-1 adet iθ  

parametresi (reel faz açısı) ile tanımlanırlar. 

 

NiigTU ii ,...,1)exp( =−= θ             (2.18) 

 

Burada reel g sabiti bağlaşım sabiti olarak adlandırılır ve Ti matrislerine grubun 

jeneratörleri denir. U’ nun üniter ve ünimodüler olmasının gereği olarak Ti’ ler hermitik 

(Ti=Ti
†) ve izsiz (TrTi=0) matrislerdir. Bu matrisler Lie cebrinin bir bazını 

oluşturduklarından sıra değiştirme bağıntıları; 

 

, , , 1,...,i j ijk kT T if T i j k N  = =              (2.19) 

 

şeklindedir.  fijk’ lar grubun yapı sabitleridir ve hepsi sıfır olmadığı zaman abelyen olmayan 

bir cebir tanımlarlar. Jeneratörlerin normalizasyon bağıntısı 

 

Tr(TiTj)= ijδ
2

1
                (2.20) 

 

ile tanımlanabilir. Global abelyen olmayan iiigT
eU

θ−=  dönüşümleri altında fermiyon alanı 

ve alan gradyenti aynı yoldan dönüşeceği için, serbest alan lagranjiyeni abelyen durumda 

olduğu gibi değişmez kalır. Bu değişmezliğe karşılık gelen i adet fermiyon akımı yine 

Noether teoremi ile belirlenir. 

ΨΨ= ii Tgj µµ γ               (2.21) 
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 2.2.4 Yerel ayar değişmezliği- abelyen olmayan durum 

 

Denklem (2.18) ile verilen dönüşüm matrisini )()( xigT iiexU
θ−=  şeklinde abelyen olmayan 

yerel duruma genelleştirelim. Burada dönüşüm parametreleri )(xii θθ =  uzay-zamanın bir 

fonksiyonu olduğu için alan ve alan gradyenti aynı şekilde dönüşmeyecektir.  

 

Ψ=Ψ→Ψ )(' xU               (2.22) 

Ψ∂+Ψ∂=Ψ∂→Ψ∂ )(' UU µµµµ             (2.23) 

 

Serbest alan lagranjiyeni abelyen olmayan yerel dönüşümler altında ek bir terim kazanarak 

değişmez kalmaz.  

 

Λ0→Λ0
’ = Λ0

†( )i U Uµ
µγ+Ψ ∂ Ψ                        (2.24) 

 

Simetriyi tekrar kurabilmek için parçacık akımlarına bağlanacak vektör alanlarına ihtiyaç 

vardır. Yeniden tanımlanan lagranjien, 

 

Λ1= Λ0 g Aµ
µγ− Ψ Ψ               (2.25) 

 

şeklindedir. Burada Aµ , bileşenleri vektör olan n×n’ lik izsiz, hermityen matrislerdir. 

Vektör alanının dönüşümü 

 

' † †( )
i

A A UA U U U
g

µ µ µ µ→ = + ∂             (2.26) 

 

ile verilir. Kovaryant türev 
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)( µµµ igAD +∂≡               (2.27)

           

ile tanımlanır ve aşağıda verilen eşitliği sağlar 

 

Ψ=Ψ µµ UDUD '               (2.28) 

 

Abelyen olmayan durumda alan tensörü, abelyen durumdaki gibi değişmez değildir, daha 

ziyade kovaryanttır. 

 

' † ,F UF U F ig Fµν µν µν µν θ = ≈ +               (2.29) 

 

µνF , n×n’ lik matris olduğundan  

 

i
i TFF µνµν =                (2.30) 

 

şeklinde ayrıştırılabilir. Burada 

 

kj
ijk

iii AAgfAAF νµµννµµν −∂−∂=             (2.31) 

 

ile ifade edilir. Ayar alanlarının türevlerini içerecek şekilde lagranjiyene eklenecek ayar ve 

Lorentz değişmez terim abelyen olmayan durumda 

 

Tr( µν
µν FF )= µν

µν i
i FF

2

1
             (2.32) 

 

ile verilir. Vektör alanları ile etkileşen Dirac spinör alanları için ayar değişmez lagranjiyen 

Λ=Λ0+ΛG 
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1
( ) ( )

2
1

( ) ( )
2

i i

iD m Tr F F

i m gA T Tr F F

µ µν
µ µν

µ µ µν
µ µ µν

γ

γ γ

= Ψ − Ψ −

= Ψ ∂ − Ψ − Ψ Ψ −
          (2.33) 

 

şeklinde ifade edilir. Abelyen durumda olduğu gibi, ayar alanları kütlesiz olmak 

zorundadır. Ancak, (2.31) ile verilen ifadedeki lineer olmayan terimden dolayı, abelyen 

durumdan farklı olarak ayar alanının kendine bağlaşımı mevcuttur. Çünkü abelyen olmayan 

her bir ayar alanı µiA , grubun karakteristiği olan bir yük taşır ve bu nedenle benzer yük 

taşıyan herhangi bir alanla, kendisi veya ayar çoklusundaki diğer bileşenlerle, etkileşir. 

Abelyen olmayan yerel ayar grupları altında değişmez kalan teorilere Yang-Mills teorileri 

denir.   

 

2.3 SM’ nin Elektrozayıf Teorisi 

 

Elektromanyetik ve zayıf kuvvetlerin birleşik teorisi elektrozayıf teori abelyen olmayan 

yerel bir ayar teorisidir ve yerel faz değişmezliği kendiliğinden kırılmıştır. Bu kesimde 

öncelikle leptonların elektromanyetik ve zayıf etkileşmelerinin her ikisinin de özelliklerini 

veren tek bir grup belirlenmeye çalışılacak, daha sonra da leptonları ve skaler alanları 

içeren ayar değişmez bir model tanıtılacaktır. Son olarak fermiyonlara ve ayar bozonlarına 

kütle vermekten sorumlu olan kendiliğinden simetri kırılması olgusu tanıtılarak madde ve 

ayar alanlarının kütle kazanmaları incelenecektir.  

 

2.3.1 Tek lepton ailesinin ayar değişmez modeli 

 

Buradaki incelememizi tek aileli duruma indirgeyebiliriz. Çünkü her bir aile için leptonik 

kuantum sayısı ayrı ayrı korunmaktadır. Örneğin birinci aile için, elektron sayısı artı 

elektron nötrinosu sayısı eksi bunlara karşılık gelen antiparçacıkların sayısı korunur. 

Benzer korunum yasaları müon türü ve tau türü leptonlar için de geçerlidir.  
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Herhangi bir Dirac spinör alanı sağ- ve sol-elli bileşenler cinsinden  

 

)()()( xxx RL Ψ+Ψ=Ψ               (2.34) 

 

şeklinde yazılabilir. Sağ- ve sol-elli bileşenler, spinör alanı ve izdüşüm operatörleri 

cinsinden şu şekilde yazılabilir: 

 

)()(),()( xaxxax RRLL Ψ=ΨΨ=Ψ             (2.35) 

 

Burada izdüşüm operatörleri, 

 

)1(
2

1
,)1(

2

1
55 γγ +≡−≡ RL aa             (2.36) 

 

ile verilirler. Sağ- ve sol-elli spinör bileşenlerinin adjoint eşlenikleri 

 

† †
0 0

† †
0 0

,L L L R

R R R L

a a

a a

γ γ

γ γ

Ψ = Ψ = Ψ =Ψ

Ψ = Ψ = Ψ = Ψ
                        (2.37) 

 

Deneysel veriler, sadece sol-elli leptonlar ile sağ-elli antileptonların zayıf bozunumlarının 

mümkün olduğunu göstermiştir. Bu nedenle bozunma genlikleri, alanların sol-elli 

bileşenlerini içerecek şekilde tanımlanabilir. Burada sadece ilk lepton ailesi gözönünde 

bulundurulduğundan, parçacık sembolleri spinör alanları yerine doğrudan kullanılmıştır.  

 

...)()(2 += xxeL eLL νγ µµ  + µ veτ  terimleri  

...)()1()( 5 +−= xxe eνγγ µ                                    (2.38) 

Bu ifadeye göre, Le ve Lν , )2(SU  grubu ile ilişkili olacak şekilde iki bileşenli vektör içinde 

bir araya gelmelidir. Diğer taraftan hiç bir parçacık ile etkileşmeyen sağ-elli bileşenler, tek 
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boyutlu temsillerde olmalıdırlar. Fakat, elektron için sağ-elli bileşen Re , sol elli bileşen Le  

ile aynı yüke ve aynı sıfırdan farklı kütleye sahip olduğundan tekli halinde ifade edilirken, 

Rν  elektriksel olarak nötral olduğundan, kütlesiz kabul edildiğinden ve sadece sol-elli 

olarak gözlendiğinden çıkarılmıştır. Bu nedenle tek aileli durumda )2(SU  grubunda madde 

alanlarını sol-elli ikili ve sağ-elli tekli şeklinde ifade edebiliriz. 

 

L

e

L
e 








=Ψ

ν
,       RR e=Ψ              (2.39)

  

2.3.2 Tek lepton ailesi için global simetri 

 

Kütlesiz sağ- ve sol-elli alanlar için serbest lagranjiyen; 

 

Λ0 L L R Ri iµ µ
µ µγ γ= Ψ ∂ Ψ + Ψ ∂ Ψ   

L Li ei eµ µ
µ µν γ ν γ= ∂ + ∂                                    (2.40) 

 

şeklinde yazılır. Λ0, (2)SU dönüşümleri altında değişmez kalır.  

 

iitig
eU

θθ −=)(2                (2.41) 

 

Burada, iθ , i=1,2,3 dönüşüm parametreleri, it ’ ler ise grubun jenaratörleridir. it , sol-elli 

bileşen LΨ  üzerine etkidiğinde Pauli spin matrislerine ( iiLt τ
2

1
= ), sağ-elli bileşen RΨ  

üzerine etkidiğinde ise  sıfıra ( 0=iRt ) eşit olur. LΨ  ve RΨ ’ nin bu dönüşüm altında 

değişimleri 

RRR

LLL

U

U

Ψ=Ψ→Ψ

Ψ=Ψ→Ψ

2
'

2
'

              (2.42) 
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Sonsuz  küçük dönüşümler için;  

 

2

2

(1 )
2

(1 ) 0

L L L i i L L i i L

R R R i i R R

g
U ig t i

U ig t

δ θ δ θ τ

δ θ δ

Ψ = Ψ + Ψ ≈ − Ψ Ψ = − Ψ

Ψ = Ψ + Ψ ≈ − Ψ Ψ =
         (2.43) 

 

elde edilir. Reel iα  parametreleri ile parametrize edilen sürekli global simetrilere, 

korunumlu akımlar karşılık gelir. Korunum yasaları ile sürekli global simetrileri birleştiren 

bu teorem Noether Teoremi olarak bilinir. Korunumlu akımlar şu şekilde ifade edilir: 

 

( )
a

i

a i

L
jµ

µ

δ
δα
Ψ∂

= +
∂ ∂ Ψ

Λ0

i

xµδ
δα

               (2.44) 

 

Parçacıkların iç uzayı üzerindeki dönüşümler için 0=µδx  olduğundan (2.44) denkleminde 

sağ taraftaki ikinci terim sıfırdır. Dikkate aldığımız global )2(SU  dönüşümü için ii gθα =  

olduğundan sağ- ve sol-elli alanların bu parametreye göre değişimleri 

 

0
)(

,
2)(

=
Ψ

Ψ−=
Ψ

i

R
L

i

i

L

g
i

g θδ
δτ

θδ
δ

            (2.45) 

 

ile verilir. Bu ifadelerin yardımıyla korunumlu zayıf izospin akımları; 

 

)3,2,1(
2

=ΨΨ= ij L
i

Li

τ
γ µµ             (2.46) 

 

olarak elde edilir. Korunumlu akımın sıfırıncı bileşeninin tüm uzay üzerinden integre 

edilmesi ile korunumlu yükler bulunur. Burada korunumlu yükler zayıf izospin 

operatörleridir. Kapalı formda bu zayıf izospin operatörleri, 

 

3 0 ( )i iI d x j x= ∫                            (2.47) 
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ile verilir. Bu operatörlerin açık yazılımları,  

 

3 † †
1

3 † †
2

3 † †
3

1
( ),

2

( ),
2

1
( )

2

L L L L

L L L L

L L L L

I d x e e

i
I d x e e

I d x e e

ν ν

ν ν

ν ν

= +

= − −

= −

∫

∫

∫

                        (2.48) 

 

Kütle terimi  

 

( )R R L Lmee m e e e e− = − +              (2.49) 

 

şeklinde yazılırsa SU(2) değişmezliği bozulacaktır. (2.40) ile verilen lagranjiyenin zayıf 

izospin simetrisine sahip olması istenirse fermiyonlar kütlesiz olmalıdır. Elektron ve onun 

nötrinosunu içeren tek aileli durum için denklem (2.40) ile verilen lagranjiyenin zayıf-

izospin dönüşümlerinin yanı sıra üniter  genel faz dönüşümleri  

 

fFieU θθ −=)(                (2.50) 

 

altında da değişmez kalması gerekir. Bu dönüşüm, F  matrisi ile verilen ve jeneratör gibi 

etki eden bir kuantum sayısı ile bir )1(U  grubu oluşturur. Elektron ailesinin 

elektromanyetik etkileşmelerini açıklayabilmek için )1(U  grubunu incelemek gerekir. 

Burda f sabiti, θ  dönüşüm parametresinden ayrı olacak şekilde bir bağlaşım sabiti olarak 

verilmiştir. Sonsuz küçük dönüşümler dikkate alındığında; 

 

Ψ−Ψ≈Ψ=Ψ→Ψ fFiU θθ )('                         (2.51) 
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F  matrisinin mertebesi, Ψ ’ nin ait olduğu temsilin boyutu ile verilir. Sağ- ve sol-elli 

bileşenlerin parametrelere göre değişimi  

 

R
R

L
L iF

f
iF

f
Ψ−=

Ψ
Ψ−=

Ψ

)(
,

)( θδ
δ

θδ
δ

            (2.52) 

 

şeklindedir. Buradan korunumlu akım; 

 

RRLL
F FFj ΨΨ+ΨΨ= µµµ γγ              (2.53) 

 

ile verilir. Korunumlu akıma karşılık gelen korunumlu yük operatörleri aşağıdaki gibidir.  

 

3 3 † †

0
( ) ( )

F

L L R RF d xj x d x F F= = Ψ Ψ + Ψ Ψ∫ ∫            (2.54) 

  

Burada, F’ yi F=Q şeklinde elektrik yükü operatörü olarak alalım. Bu durumda, (2.53) ile 

verilen korunumlu akım, elektromanyetik akıma karşılık gelir, ayrıca (2.54) ile verilen 

korunumlu yük operatörleri de elektron ve nötrinonun elektrik yüklerini ( =eQ -1 ve =νQ 0) 

veren elektriksel yük operatörleri olur.  

 

eeeeeeQj RRLL
em

µµµµ γγγ −=+= )(                 (2.55) 

eexdxjxdQ em
o

†33 )( ∫∫ −==                                               (2.56) 

 

Burada amacımız tek aileli durumda hem elektromanyetik hem de zayıf etkileşmeleri bir 

arada anlatacak, LSU )2( ve QU )1(  ayar gruplarını içeren bir grup kurmaktır. Bu nedenle 

böyle bir grupta, elektrik yükü operatörleri zayıf izospin operatörleri ile sıra değiştirmelidir. 

LΨ  ikilisindeki bileşenlerin yükleri birbirinden farklı olduğundan elektrik yükü sayısı iyi 

bir kuantum sayısı değildir. Başka bir deyişle; 
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3 † 3 †
3

1
(1 )

2

L R

L L R R

Q Q Q

d x d xe eτ

≡ +

= − Ψ − Ψ −∫ ∫
           (2.57) 

 

yük operatörleri 
1

2
i iI τ=   şeklinde verilen zayıf izospin operatörleri ile sıra değiştirmez. Bu 

operatörler arasında aşağıda verilen sıra değiştirme bağıntısı vardır: 

 

[ ] [ ]3 3, ,i i ij jQ I I I i Iε= =                          (2.58) 

 

Bu nedenle, QU )1(  ve LSU )2( , Λ0  için eş zamanlı simetriler olamazlar. Bununla birlikte, α  

keyfi bir sabit olmak üzere, )( 3IQ −α operatörü zayıf izospin operatörleri iI ’ ler ile sıra 

değiştirir ve LSU )2(  grubu ile sıra değiştiren )1(U  grubunun jeneratörü olarak 

düşünülebilinir. Deneysel verilerle uyumluluk için α =2 seçilmiştir, )(2 3IQ − operatörüne 

zayıf hiperyük operatörü adı verilir ve Y ile gösterilir.  

 

YIQ
2

1
3 +=                (2.59) 

 

(2.59) ile verilen ifade, ampirik bir ifadedir, Gell-Mann−Nishijima ifadesi olarak bilinir. Bu 

ifade, zayıf ve elektromanyetik etkileşmeler arasında ilişki kurararak, elektron ve elektron 

nötrinosu için, zayıf izospinin  3. bileşeni ile hiperyük cinsinden elektrik yüklerini verir. Y 

operatörünün daha açık yazımı 

3 † 3 † 3 †
3 3

3 † 3 †

(1 ) 2

2

L L R R L L

L L R R

Y d x d x d x

d x d x

τ τ= − Ψ − Ψ − Ψ Ψ − Ψ Ψ

= − Ψ Ψ − Ψ Ψ

∫ ∫ ∫
∫ ∫

         (2.60) 

 

Bu denklemi (2.54) ile özdeşleştirerek ve F=Y alarak, elektron ailesi için 

 

1−=LY  ve  2−=RY               (2.61) 
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elde edilir. Verilen eş çoklu (isomultiplet) için hiperyükün ortalama değeri, çoklunun 

elektrik yükünün ortalama değerinin 2 katına eşittir, QIQY 22 3 =−= . Korunumlu 

hiperyük akımı aşağıda verildiği şekildedir: 

 

RRRLLL
Y YYj ΨΨ+ΨΨ= µµµ γγ              (2.62) 

 

Elektromanyetik, izospin ve hiperyük akımları arasındaki ilişki, 

 

Yem
jjj µµµ

2

13 +=               (2.63) 

 

ile verilir. Buraya kadar elde edilen sonuçları özetleyecek olursak; tek aileli serbest lepton 

lagranjiyeni global dönüşümlerin YL USU )1()2( × grubu altında değişmez kalır.  

 

1

2
2(2) : ( )

i iig

LSU U e
θ τ

θ
−

=              (2.64)

  

Yig
Y eUU θθ '

1 )(:)1( −=                                                                                                (2.65) 

 

Burada, g ve g’ sırasıyla (2)LSU ve (1)YU  ayar grupları için bağlanma sabiti olarak 

adlandırılırlar. (2) (1)L YSU U×  simetri grubu için elektron ailesine atanan kuantum sayıları 

Çizelge 2.3’ de verilmiştir.  

Çizelge 2.3 Tek lepton ailesi için kuantum sayıları 

 
Eşçoklu I I3 Y Q 

L

e

e 






ν
 

2

1
 









− )2/1

2/1
 

-1 









−1

0
 

Re  0 0 -2 -1 
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2.4 Kendiliğinden Simetri Kırılması 

 

Bu kesimde parçacık fiziğinde büyük bir öneme sahip olan kendiliğinden simetri kırılması 

olgusu tanıtılacaktır. Bu kesimin incelenmesinde (Leader 1996, Ho-Kim 1999, Maggiore 

2005) esas referanslar olarak kullanılmıştır. Dinamik bir sistemi tanımlayan lagranjiyen 

global veya yerel bir simetriye sahip olsun. Sistem için vakum durumu lagranjiyenle aynı 

simetriye sahip olmadığında kendiliğiden simetri kırılması gerçekleşir. Bu durum vakumun 

sıfırdan farklı bir beklenen değere sahip olması ile açıklanabilir.  

 

Kuantumlu alan teorisinde, yerel ayar değişmezliğini sağlamak için teoriye ayar alanları 

dahil edilir. KED’ in QU )1(  grubuna uygulanan ayar prensibi ile foton grubun kütlesiz ayar 

alanı olarak tanımlanabilir. Zayıf etkileşmelerin daha kısa menzile sahip olması gibi farklı 

özelliklerinin olmasına rağmen, yüksek momentum aktarımı durumunda  elektromanyetik 

etkileşmelerle benzer özellikler göstermektedirler. Ancak foton alanı kütlesiz kalırken zayıf 

etkileşmelerin yayılmasından sorumlu W ve Z alanları kütlelidir. Bu durumda zayıf 

etkileşmelerin yerel abelyen olmayan bir teori ile nasıl tanımlanacağı sorundur. Ayar 

simetrisini bozmadan vektör bozonlarına kütle vermenin yolu, simetriyi kendiliğinden 

kırmaktır. Bu ifade, sistemin dejenere minumumları kümesinden rastgele bir tanesini 

fiziksel taban durumu olarak seçmekle eşdeğerdir. Simetri bozulmuş gibi gibi görünse de 

gerçekte simetri bozulmamıştır, saklanmıştır.  

 

2.4.1 Global simetrilerin kendiliğinden kırılması ve Goldstone teoremi  

 

Sürekli ayar simetrisine sahip en basit sistem kompleks skaler alandır. Bu sistemi 

tanımlayan lagranjiyen; 

 

Λ * *( , )Vµ
µφ φ φ φ= ∂ ∂ −  
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2**2* )(
4

φφ
λ

φφµφφ µ
µ −−∂∂=             (2.66) 

 

ile verilir. Burada 21 φφφ i+=  şeklinde kompleks skaler alandır. Potansiyel ifadesi 

2**2* )(
4

),( φφ
λ

φφµφφ +=V  ile verilir. 2µ  terimi, alan kuantumunun çıplak kütlesi olarak, λ  

ise öz etkileşmeyi tanımlayan bir bağlaşım olarak ele alınabilir. (2.66) ile verilen 

lagranjiyen global faz dönüşümleri altında değişmez kalır.  

 

)()()( ' xexx iq φφφ α−=→               (2.67) 

 

α , keyfi reel bir sabittir. Denklem (2.66)’ da ilk terim kinetik terimdir ve pozitiftir. Burada 

kararlı denge için 0>λ  seçilmelidir. 02 >µ  için taban durumu 0=φ  olacak şekilde tektir. 

Ancak 02 <µ  için taban durumu tek değildir. Sistemin minimum enerjisi, potansiyel 

ifadesinin alana göre türevinin alınarak sıfıra eşitlenmesi ile bulunur.  

 

)
2

(0 22

*
φ

λ
µφ

φ
+==

∂

∂V
                        (2.68) 

 

Buradan minumum koşulu 

 

λ
µ

φφφ
2

2
2

2
1

2 2
−=+=               (2.69) 

şeklinde elde edilir. Buna göre, 
λ
µ 22

−  yarıçaplı çember üzerinde sonsuz sayıda dejenere 

minumum yer alır. Bu minumumlardan herhangi biri taban durumu olarak seçildiğinde 

simetri kendiliğinden kırılmış olur. Bu minumumlardan biri diğerinden bir faz çarpanı 

kadar farklıdır ve hepsi aynı fiziğe dayanır. Taban durumu faz çarpanı ile beraber 
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δφφ i
taban e

v

2
==                                                           (2.70) 

 

şeklinde yazılabilir. Bu ifadede λµ /4 2−=v  ile tanımlanır. Yeni alanın 

 

21 χχχ i+=                                      (2.71) 

 

şeklinde verildiğini düşünelim. δ  faz açısının sıfır olduğu durumda 
2

v
=φ  ile verilen 

taban durumu (minumum noktası reel eksen üzereinde seçilmiş olur) ve bu yeni alan 

cinsinden φ  alanı  

 

)(
2

1

2

21 χχ

χ
φφ

iv ++=

+=

                         (2.72) 

 

biçiminde yeniden yazılabilir. 1χ  ve 2χ  alanları reeldir ve taban durumunda 

021 == χχ ’ dır. Bu alanlar, dejenere minumumlar çemberine teğet ve radyal 

doğrultulardaki salınımları ölçerler. Yeni alan cinsinden lagranjiyen; 

 

Λ 2 2
1 1 1 2 2

1 1
( 2 )

2 2
µ µ

µ µχ χ µ χ χ χ = ∂ ∂ − − + ∂ ∂   

222
2

2
11

2
2

2
1

4

1
)4)((

16
vv µχχχχχ

λ
−+++−            (2.73) 

 

Sonuç olarak, (2.73) ile verilen lagranjiyende 1χ  alanı kütle kazanırken, 2χ  alanı kütlesiz 

kalmıştır. Global simetrilerin kendiliğinden kırılması durumunda açığa çıkan bu kütlesiz 

parçacıklara Nambu-Goldstone bozonları denir.  
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Global abelyen simetriler için yaptığımız incelemeyi global abelyen olmayan durumlara 

genelleştirelim. 1,...,j n=  olmak üzere reel n tane skaler alandan oluşan φ  alanını 

düşünelim.  

 

















=

nφ

φ

φ M

1

               (2.74) 

 

Bu sistemi tanımlayan lagranjiyen, 

 

Λ
221 1

( ) ( ) ( )
2 2 16

j j T j j T j j Tµ
µ

λ
φ φ µ φ φ φ φ = ∂ ∂ − −                        (2.75) 

 

ile verilir. φ  alanının bileşenleri birbirlerine ortogonal dönüşümlerle dönüşürler. Bu 

nedenle lagranjiyen için invaryant (değişmez) grup O(n) grubudur. Grubun, )1(
2

1
−nn  adet 

jeneratörü vardır. 0>λ  ve 02 <µ  için potansiyel enerjinin dejenere minumumları kümesi 

 

∑ −==
λ
µ

φφφ
2

2 4
)( Tjj                         (2.76) 

 

koşulunu sağlar. Eğer jφ , φ  sütun vektörünün bir bileşeni olarak düşünülürse, (2.76) 

denklemi ile verilen minumum koşulu, vektörün doğrultusu keyfi olacak şekilde vektörün 

büyüklüğünü sabitler. Taban durumu için bir seçim; 

 

0

0

0
taban

v

φ φ

 
 
 
 = =
 
 
 
 

M                                                                      (2.77) 
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şeklinde olur. Vakum simetrisi, v’ yi değişmez bırakacak bütün dönmeleri içerir. Bu vakum 

durumu, O(n) grubunun aşikar olmayan bir alt grubu O(n-1) altında değişmez kalır. O(n-1) 

grubu, n. alanı diğer alanlar ile karıştırmaz. O(n-1) alt grubunun jeneratör sayısı ise, 

)2)(1(
2

1
−− nn  ile verilir.  

 

v−=φχ                (2.78) 

 

şeklinde yeni alan tanımlanabilir. Burada λµ /4 22
−=v ile verilir. Lagranjiyen yeni alan 

cinsinden yazılırsa, 

 

Λ
1 1

2 2
j j j k j kv vµ

µχ χ λ χ χ 
= ∂ ∂ −  

 

[ ] 22

4

1
)()(4)(

16
vv

TTT µχχχχχ
λ

−+−                       (2.79) 

 

elde edilir. Denklem (2.79)’ da kütle terimleri açık değildir ancak ikinci terimden elde 

edilir. Burada, O(n) grubu ve alt grubun jenaratörlerinin farkı, kırılan jeneratör sayısını 

verir. Bu sayı ise, kütlesiz kalan skaler bozonların sayısına eşittir. Özet olarak, global 

abelyen olmayan simetrilerin kendiliğinden kırılması sonucu,  kırılan her bir jeneratöre 

karşılık bir tane kütlesiz skaler Nanbu-Goldstone bozonu açığa çıkar.  

 

2.4.2 Yerel simetrilerin kendiliğinden kırılması ve Higgs mekanizması 

 

Yüklü skaler alanlar için U(1) ayar dönüşümlerini dikkate alalım. Daha önce kesim 2.2.2’ 

de bahsedildiği gibi, yerel ayar değişmezliği için µ∂  türev ifadeleri µµµ iqAD +∂=  
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kovaryant türevleri ile değiştirilip, lagranjiyene µν
µνFF

4

1
−  terimi ekleniyordu. Bu şekilde 

elde edilen lagranjiyen 

 

Λ * 2 * * 2 1
( )

4 4
D D F F

µ µν
µ µν

λ
φ φ µ φφ φφ= − − −                       (2.80) 

 

biçimindedir ve yerel abelyen ayar dönüşümleri 

 

)()( xiqeU αθ −=                (2.81) 

 

altında değişmez kalır. Bu dönüşümler altında skaler alan ve ayar alanının dönüşümü 

 

)()()( )(' xexx xiq φφφ α−=→              (2.82) 

)()()()( ' xxAxAxA αµµµµ ∂+=→               (2.83) 

 

şeklindedir. (2.80) denklemi ile verilen lagranjiyene göre µA  kütlesiz ayar bozonudur. 

0>λ  ve 02 <µ  için potansiyel enerjinin minumumları 

 

λµφ /2 22
−=                (2.84) 

 

koşulunu sağlarlar. 24 /v µ λ= −  olmak üzere, bu minumlar içerisinden taban durumu 

 

2

v
taban == φφ               (2.85) 

 

olarak seçildiğinde yerel abelyen simetri kırılmış olur. η  ve χ  reel skaler alanlar olmak 

üzere 
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[ ])()(
2

1
)( xixvx χηφ ++=              (2.86) 

 

değişken değiştirmesi yapılarak lagranjiyen yeniden yazılırsa 

 

Λ
2 2

2 2 2 21 1 1

2 2 2 2

q v
A A qvA q A Aµ µ µ µ µ

µ µ µ µ µη η χ χ µ η χ η= ∂ ∂ + ∂ ∂ − + − ∂ +  

21

4
F F vq A Aµν µ

µν µη− − +L                                        (2.87) 

 

elde edilir. Burada,  µ
µ AA

vq

2

22

 terimine göre µA  alanı kütle kazanmıştır. (2.80) denklemi 

ile verilen başlangıçtaki lagranjiyende, 2 tanesi φ  kompleks skaler alanından 2 tanesi de 

kütlesiz µA  alanından gelmek üzere toplam serbestlik derecesi sayısı dörttür. (2.87) ile 

verilen yeni lagranjiyende ise η  ve χ  reel skaler alanları ile bir adet kütleli vektör (ayar) 

alanı bulunmaktadır ve  toplam serbestlik derecesi sayısı beştir. Dolayısıyla fazladan bir 

serbestlik derecesi kazanılmıştır. Yerel ayar dönüşümleri için φ  alanının fazı tamamen 

keyfidir. Bu nedenle )(xα  dönüşüm parametresindeki herhangi bir değişim, Λ’ yi aynı 

bırakacak şekilde µA  üzerine uygun bir dönüşümle karşılanabilir (Aitchison and Hey 

2004). Ayar değişmezliğini sağlayacak şekilde, özel bir ayar seçilerek fiziksel olmayan 

serbestlik derecesi kaldırılabilir. η  ve χ  alanlarının dönüşümleri daha karmaşık 

görünmektedir.  

 

vqxqxvxx −++=→ )sin()()cos())(()()( ' αχαηηη         

)sin())(()cos()()()( ' αηαχχχ qxvqxxx +−=→                                            (2.88) 

 

Dönüşüm parametresinin, 
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)(tan
1

)( 1

η
χ

α
+

= −

vq
x               (2.89)

  

şeklinde seçilmesiyle 'χ  alanı tamamen ortadan kaldırılarak, 'η  ve 
'µA  alanlarının kalması 

sağlanabilir. Dönüşmüş alanların h≡'η  ve 
µµ AA ≡

'

 şeklinde yeniden tanımlanmasıyla  

 

Λ 2 2 21 1 1
2 ( )

2 4 2
h h h F F qv A Aµ µν µ

µ µν µµ = ∂ ∂ + − +    

2232

4

1
)4(

16
)2(

2

1
vvhhvhhAAq µ

λµ
µ −+−+=                      (2.90) 

 

lagranjiyeni elde edilir. Bu biçimi ile lagranjiyen, kütleli vektör bozonu 
µA  ile reel skaler, 

kütleli h alanı arasındaki etkileşmeleri tanımlar. Başlangıçta kütlesiz olan ayar alanının 

yerel ayar simetrisinin kırılmasından sonra kütle kazanmasına  Higgs mekanizması denir. 

Buna göre, ayar alanları teoriden kaybolan Goldstone bozonlarını yutarak kütle kazanırlar, 

Goldstone bozonları ayar alanlarının boyuna bileşeni olarak karşımıza çıkar. SM’ ye göre 

Higgs mekanizması, ±W  ve Z  bozonlarının kütle kazanmasından sorumludur.  

 

 

 

 

2.4.3 SU(2) ×××× U(1) simetrisinin kırılması 

 

Bu kesimde, SM’ nin elektro zayıf teorisi için gerekli olan yerel abelyen olmayan 

simetrilerin kırılması incelenecektir. Sonuçta, zayıf etkileşmelerle ilişkili olarak kütleli üç 

vektör bozonu ve elektromanyetik etkileşmelerden sorumlu kütlesiz foton alanı elde 

edebilmek için 3+1=4 adet bağımsız skaler alana ihtiyaç vardır. En basit seçim (minimal 

SM olarak da adlandırılır), biri yüklü ve diğeri yüksüz olmak üzere iki kompleks skaler 

alanı bir eş ikili içine yerleştirmektir.  
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







=

+

0φ
φ

φ                                                 (2.91) 

 

Yerel ayar dönüşümleri altında φ  alanı,  

 

' ˆ(2) : exp ( ) / 2SU i xφ φ τ θ φ → = − ⋅ 
r

            (2.92) 

[ ]'(1) : exp ( ) / 2U iI xφ φ α φ→ = −             (2.93) 

 

şeklinde dönüşür. Burada τ
r

 pauli matrislerini, I da birim matrisi göstermektedir. Skaler 

alan için ayar değişmez lagranjiyen, 

 

Λs
† 2 † † 2( ) ( ) ( )D Dµ

µφ φ µ φ φ λ φ φ= − −             (2.94) 

 

biçimindedir. SU(2) grubu için ayar alanı µW
r

 ve bağlaşım parametresi g; U(1) grubu için de 

ayar alanı µB  ve bağlaşım parametresi g’ olmak üzere kovaryant türev 

 

22
' Y
BigWigD µµµµ

τ
−⋅−∂=

rr
                                   (2.95) 

 

ile verilir. Simetriyi, kıracak sıfırdan farklı vakum beklenen değeri 

 









=

2/

0

v
φ                           (2.96) 

 

şeklindedir. Bu denkleme göre, vakum “ U(1) + SU(2) izospinin üçüncü bileşeni ”  birleşik 

dönüşümü altında değişmez kalır (Aitchison and Hey 2004). Burada, +φ  ve 0φ kompleks 

skaler alanları 1ξ , 2ξ , 3ξ  ve h  reel skaler alanları cinsinden  
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








+
=








=

+

hvv

i
ii

0
)

2
exp(

0
τξ

φ
φ

φ                         (2.97) 

 

şeklinde ifade edilebilir. Bu dört adet reel skaler alanın vakum beklenen değeri sıfırdır. 

Fiziksel olmayan alanları ortadan kaldırmak, fiziksel parçacık spektrumunu ve 

etkileşmelerini görebilmek için üniter ayar kullanılır. Kullanılacak üniter dönüşüm, 

 

ii
v

i
U τξ

2
exp(−= )              (2.98) 

 

biçimindedir. Bu üniter dönüşüm uygulandıktan sonra  

 

'

0

1
( )

2
v h

φ φ
 
 = =  + 
 

              (2.99) 

 

dönüşmüş alan elde edilir. Bu alan, (2.94) denklemi ile verilen lagranjiyende kinetik 

terimde kullanılırsa Higgs alanının ayar bozonlarına bağlaşımı bulunur.  

 

• Ayar bozonlarının Higgs alanı ile bağlaşımları: 

 

Kovaryant türevin ikinci terimini, 

 

3
3

2
2

1
1 ττττ µµµµ WWWW ++=⋅

rr
                                                        (2.100) 

 

biçiminde açıkça yazalım.  
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† 1 2 3 '( ) ( )( ) { ( )}( )
2 22 2

g v h i v h
D i W iW gW g Bµ

µ µ µ µ µφ
 + +

= + ∂ + − + 
 

                                (2.102) 

 

elde edilir. Bu ifadelerde  yüklü zayıf akımları tasvir edebilmek için, 

 

)(
2

1 21
µµµ WWW m=±                                   (2.103) 

 

tanımlaması yapılırsa, kinetik terim 

 

2 2 2
† 3 ' 21

( )( ) ( )
4 2 4 2

g v v
D D W W gW g Bµ

µ µ µ µ µφ φ + −= + − + +K         (2.104) 

 

elde edilir. Matematiksel 3
µW  ve µB  alanları, kütlesiz foton alanını ve kütleli Z alanını 

oluşturmak üzere karışırlar.  

 

WW WBA θθ µµµ sincos 3+=            (2.105) 

WW WBZ θθ µµµ cossin 3+−=            (2.106) 

 

µA  ve µZ  alanları fiziksel alanlardır ve sırasıyla foton ve Z bozonu alanlarına karşılık 

gelirler. Wθ , zayıf karışım açısı olarak adlandırılır.  
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g

g

g

g
WW

'

sincos == θθ                       (2.107) 

 

şeklindedir. Burada 2'2 ggg +=  şeklinde tanımlanmaktadır. Denklem (2.104)’ te ilk 

terimden W  bozonu için kütle terimi 

 

2242

1 22
2 gv

m
vg

m WW =⇒=            (2.108) 

 

olarak elde edilir. Denklem (2.104)’ te ikinci terim 2g  ile çarpılıp bölünürse,  

 

2 '2 2( )

4 2

g g v
Z Zµ µ

+
 

 

terimi elde edilir. Buradan faydalanarak Z  bozonunun kütlesi 

 

2 '22 ' 2 2 ( )( )1

2 4 2 2
Z Z

g g vg g v
m m

++
= ⇒ =          (2.109) 

 

şeklinde bulunur. W ve Z’ nin kütlelerin oranı zayıf karışım açısının kosinüsünü verir. 

 

W

Z

W

vgg

gv

m

m
θcos

2/)(

2/
2'2

=
+

=                                                       (2.110) 

Lagranjiyende 23 )sincos( WW WB θθ µµ +  içeren bir terim olmadığından foton alanı için 

 

0=Am                       (2.111) 

 

sonucu elde edilir.  
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• Ayar bozonlarının öz bağlaşımları: 

 

SU(2) ve U(1) ayar alanları için, ayar değişmez terimler 

 

µν
µν

µν
µν BBWWLGB

4

1

4

1
−⋅−=

rr
          (2.112) 

 

şeklinde yazılır. Bu terim, ±W , Z ve γ  kinetik enerjilerini ve öz etkileşmelerini tanımlar. 

Burada 

 

µννµµν BBB ∂−∂=                         (2.113) 

lkjkljjj WWgWWW νµµννµµν ε+∂−∂=           (2.114) 

 

biçimindedir.  

 

• Ayar bozonlarının leptonlara bağlaşımları 

 

Leptonların ayar alanları ile etkileşmelerini içeren lagranjiyen 

 

R
R

RL
L

Ll DiDiL ΨΨ+ΨΨ= µ
µ

µ
µ γγ                      (2.115) 

 

şeklindedir. Kovaryant türevler, 

 

'1 1
( )

2 2
L

LD i g W i g Y Bµ µ µ µτ= ∂ − ⋅ −
rr

          (2.116) 

'1
( )

2
R

RD i g Y Bµ µ µ= ∂ −                          (2.117) 
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olarak verilir. (2.116) ve (2.117) denklemleri, verilen lagranjiyende kullanılırsa, elektron ve 

nötrinosu için kinetik terimler 

 

eieiii LLRRLL µ
µ

µ
µ

µ
µ

µ
µ γνγνγγ ∂+∂=Ψ∂Ψ+Ψ∂Ψ          (2.118) 

 

olarak yazılabilir. Yüklü akım bağlaşımları, 
 

LL
cc
l WW

g
L Ψ+Ψ−= −

−
+

+ )(
2

ττγ µµ
µ           (2.119) 

şeklinde elde edilir. Burada 1 2

1
( )

2
iτ τ τ± = ± olarak tanımlanır. Fiziksel µA ve µZ  alanlarının 

tanımları kullanılırsa, yüksüz akım bağlaşımları ise 

 

3 3

1 1
( ) (tan cot )

2 2
nc
l L W W LL e Y A Y Zµ

µ µγ τ θ θ τ 
= − Ψ − − + Ψ  

       (2.120) 

 

olarak elde edilir. Burada eg , 'sin cose W Wg g gθ θ= =  şeklinde tanımlanan elektromanyetik 

bağlanma sabitidir.   

 

• Leptonların Higgs’ e bağlaşımları: 

 

Simetri kırılmasından sonra leptonlarla Higgs’ in bağlaşımından dolayı leptonlar kütle 

kazanırlar. Bu bağlaşımlara Yukawa bağlaşımları denir. Higgs ile leptonlar arasındaki 

etkileşmeyi tanımlayan lagranjiyen 

 

†( ) ( )Y
l e L R R LL G φ ψ φ = − Ψ + Ψ Ψ            (2.121) 

 

biçimindedir. φ ’ nin sıfırdan farklı vakum beklenen değeri istenen bağlaşımları verecektir. 

Birinci aile leptonları için, 
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elde edilir. Elektron alanına göre karesel olan terim, elektronun kütle kazandığını gösterir. 

Elektron kütlesi 

 

2

vG
m e
e =              (2.123) 

 

olarak elde edilir. Nötrino için RΨ  kısmı olmadığından, nötrino kütlesiz kalmaktadır.  

 

2.5 Standart Modelin Sorunları 

 

Parçacık fiziği ile ilgili pek çok şey SM  çerçevesinde açıklanabilmektedir. Lorentz 

değişmezliği, üniterlik gibi genel ilkelerle uyumlu olduğundan ve renormalize edilebilir 

olduğundan SM’ nin içeriği oldukça güçlüdür. SM’ nin büyük başarısı elektromanyetik ve 

zayıf etkileşmeleri  SU(2)L×U(1)Y ayar grubu altında birleştirmesidir. Bununla birlikte, SM’ 

nin öngörüleri deneylerden elde edilen verilerle çok büyük hassaslık mertebelerinde 

doğrulansa da, SM tarafından açıklanamayan sorular vardır. Bu soruların başlıcaları, Higgs 

mekanizmasının orijini, parametre sayısının fazlalığı, aile sayısı, nötrino kütleleri, hiyerarşi 

problemi ve SM’ nin birleşik bir teori olmamasıdır.  

 

Higgs mekanizmasının orijini: SM, deneysel veriler olmadan bir parçacığın kütlesini 

tahmin edememektedir. Elektrozayıf simetrinin (SU(2)L×U(1)Y simetrisi) kırılması Higgs 
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alanı olarak adlandırılan skaler bir alanın tanıtılması ile açıklanmaktadır. SM’ nin 

öngörüsü, fermiyonların ve ayar bozonlarının kütlelerini kuramsal Higgs parçacığı ile 

etkileşmelerinden almalarıdır. Ancak, parçacıkların kütle kazanmalarından sorumlu Higgs 

mekanizmasının orijini hakkında SM sessiz kalmaktadır. Burada skaler alan için yazılan 

potansiyel teriminde  neden 2µ <0 seçildiğinin sorusu SM ötesine dayanmaktadır. Ayrıca 

Higgs parçacığının henüz gözlenmemiş olması da önemli bir sorun oluşturur. Bu sorunlar, 

Higgs mekanizmasının,  SM’ de öngörülenden daha karmaşık olabileceği ya da 

SU(2)L×U(1)Y simetrisinin kırılmasının temelinin skaler bir alana ihtiyaç duyulmadan 

başka mekanizmalarla açıklanabileceği gibi yeni fikirleri de beraberinde getirmektedir. 

 

Parametre sayısının fazlalığı: Standart Model, kuarkların, yüklü leptonların, zayıf vektör 

bozonların ve Higgs parçacığının kütleleri, 3 adet karışım açısı, CP bozulumundan sorumlu 

1 adet faz ve 3 adet bağlaşım sabiti gibi oldukça fazla sayıda parametreye sahiptir. Bu 

parametreler deneylerden ölçülerek teoriye eklenirler. Bu parametreleri az sayıdaki temel 

sabitlerden hesaplayarak parametre sayısını azaltacak matematiksel bir yapı SM 

çerçevesinde yoktur.  

 

Aile sayısı: SM’ de leptonlar ve kuarklar 3 aile oluşturacak şekilde sınıflandırılırlar. Aile 

sayısının neden 3 olması gerektiğini modelin kendisi söylemez. Ayrıca bir aile içindeki 

yapının diğer ailelerde tekrarlanması da SM tarafından açıklanamaz. Parçacık 

kütlelerindeki farklılık dışında bir aileyi diğerinden ayıran temel şeyin ne olduğu 

bilinmemektedir.  

 

Nötrino kütleleri: SM çerçevesinde leptonik kuantum sayıları her bir lepton çeşnisi için ayrı 

ayrı korunmaktadır. Ayrıca nötrinolar kütlesiz kabul edilmektedir. Ancak elde edilen son 

deneysel veriler, nötrinoların salınım yaptıklarına ve küçük de olsa bir kütleye sahip 

olduklarına işaret etmektedir. Dolayısıyla SM, nötrino salınımları ve kütleleri için bir 

açıklama yapamamaktadır. 
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SM birleşik bir teori değil: Elektromanyetik ve zayıf kuvvetler SM çerçevesinde 

birleştirilirken güçlü kuvvet bu birleşmeye dahil edilememiştir. Bu üç kuvvetin 

birleştirilmesinde önemli nokta, güçlü, zayıf ve elektromanyetik etkileşmelerin bağlanma 

sabitlerinin tek bir bağlanma sabiti şeklinde ifade edilebileceği bir enerji ölçeğinin 

bulunmasıdır. Böyle bir birleşmenin ∼1015 GeV mertebesinde GUTM  olarak adlandırılan bir 

enerji ölçeğinde olacağına inanılıyor. Bu noktada, bu birleşmeyi SM çerçevesinde 

incelenmeyen kütle çekim kuvvetini de içerecek şekilde genişletilmesi fikri doğar. Dört 

temel kuvvetin tek kuvvet şeklinde birleşebileceği enerji ölçeği ise Plank ölçeği ( PlM ) 

olarak adlandırılır. Bu ölçek ∼1019 GeV mertebesindedir. 

 

Hiyerarşi problemi: Elektrozayıf enerji ölçeği (∼102 GeV) ile GUTM  ya da PlM  arasındaki 

farkın oldukça büyük olması hiyerarşi problemi olarak adlandırılır. Bu  enerji ölçekleri  

arasında kalan enerji sahasında ne tür bir fizik olduğu cevapsız kalan sorulardandır.  

 

Bu sorular ve problemler SM’ nin yanlış bir teori olduğu sonucunu gerektirmez. Daha 

ziyade, SM’ nin parçacık fiziğinin nihai teorisi olmadığı, etkin bir teori olduğu fikrine 

götürür. Düşük enerji limiti olarak SM’ yi kapsayacak şekilde daha temel modelin ne 

olacağının, gelecekte kurulacak yüksek enerjili çarpıştırıcılarla ve hassas ölçümlerle 

belirlenebileceği düşünülmektedir.  

 

 

 

2.6 SM Ötesi Modeller 

 

SM ötesinde yeni fiziğin ne olduğunu bulmak amacıyla, SM ötesi modeller olarak bilinen 

yeni modeller öngörülmüş ve bunlar üzerinde ayrıntılı çalışmalar yapılmıştır. Bu 

modellerden her biri SM ile açıklanamayan sorulardan bir ya da bir kaçını açıklar. Bu 
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modellerde, SM’ de bulunmayan yeni parçacıklar ve yeni etkileşmeler yer alır. SM ötesi 

teorilerden bazıları, büyük birleştirme teorileri (GUT), süpersimetri (SUSY), sicim teorisi 

ve kompozitlik olarak sıralanabilir.  

 

1970’ li yılların başı ile beraber fizikçiler güçlü ve elektrozayıf etkileşmeleri birleştirme 

konusu üzerinde çalışmaya başlamışlardır. Büyük birleştirme teorileri (GUT) olarak bilinen 

bu teoriler, SU(3)C×SU(2)L×U(1)Y grubunu, teorinin düşük enerji bölgesinden sorumlu bir 

alt grup olarak kapsayacak şekilde, güçlü ve elektrozayıf etkileşmeleri, tek bir G grubu 

altında birleştirmeye çalışan teorilerdir. Buna göre, elektromanyetik, zayıf ve güçlü 

etkileşmelerin bağlanma sabitlerinin tek bir bağlanma sabiti olarak tanımlanacağı bir enerji 

ölçeği büyük birleştirme ölçeği )( GUTM olarak adlandırılır. 2q  ilgili süreçteki momentum 

aktarımı olmak üzere, zayıf ve güçlü etkileşmelerin bağlanma sabiti, 2q  ile logaritmik 

olarak azalır. Zayıf bağlanma sabiti, güçlü bağlanma sabitine göre daha yavaş azalır. 

Bununla birlikte, elektromanyetik bağlanma sabiti 2q  ile artar. Bu üç bağlanma sabitinin 

yaklaştığı ortak enerji ölçeğinin GUTM ∼1015 GeV olduğu hesaplanmıştır. Ayrıca büyük 

birleştirme teorileri çerçevesinde, bilinen ayar bozonları dışında daha ağır ayar bozonları da 

beklenmektedir.  

 

Kuantumlu alan teorisine göre, korunum yasaları bir ayar değişmezliği ve buna karşılık 

gelen uzun menzilli, kütlesiz bir alanın varlığı ile ilişkilidir. Buna göre baryon veya lepton 

sayısı korunumu ile ilgili bir alanın varlığı bilinmemektedir. Bu nedenlerle pekçok GUT 

senaryosu, B (baryon sayısı) ve L (lepton sayısı)’ nin korunmadığı süreçleri öngörür. Bu 

süreçlerden  bazıları, proton bozunumu ( 0≠∆B ve 0≠∆L ), nötron-antinötron veya döteron-

pion salınımları ( 2=∆B ve 0=∆L ), nötrinosuz çift beta bozunumu, nötrinolar sadece sonlu 

kütleye sahip olduklarında gözlenebilecek olan nötrino salınımları ( 0≠∆L ) süreçleridir 

(Leader and Predazzi 1996). Buna gör SM’ nin sorunlarından biri olan nötrino salınımları 

büyük birleştirme teorileri ile cevap bulabilir.   
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SU(2), SU(3) ve U(1) ayar gruplarını global bir ayar simetrisini içerecek şekilde 

birleştirmenin pek çok yolu vardır. SU(3)C×SU(2)L×U(1)Y grubunu alt grup olarak içerecek 

minimal ayar grubununun  SU(5) olduğu (Georgi and Glashow 1974) söylenmiştir. Bu 

model bilinen fermiyonları çoklular içinde sunar. En küçük çokluda 5 eleman vardır. Bu 

çoklularda kuarklar leptonlara ve kuarklar antikuarklara, yükleri sırasıyla -1/3  ve -4/3  olan 

yaklaşık  10 15   GeV kütleli  X ve Y bozonları aracılığı ile dönüşür. SU(5) çerçevesinde, 

protonun ortalama yaşam süresi ( pτ ) ve Wθ
2sin ölçülebilir. SU(5)’ te proton için baskın 

bozunum kanalı 0π+→ ep  olmak üzere pτ ∼1027 yıl olarak bulunmuştur. Bununla birlikte 

deneysel verilerden bu değerin ∼10 31  yıl olduğu sonucu elde edilmiştir. Bu nedenle 

minimal grup olarak SU(5) dışarlanmıştır. SU(5) dışındaki diğer gruplar SO(10) ve E6’ dır.   

 

SM’ ye göre, bir fermiyon ile bir bozon aynı eş çokluda yer alamazlar. Süpersimetrik 

teoriler ise, bir fermiyon ve bir bozonu aynı eş çokluya koyarak aralarında bir simetri kurar. 

Herhangi bir süpersimetrik modelde, en az bir fermiyon ve bir bozon aynı ayar kuantum 

sayısına sahip olacak şekilde bir eş çokluya yerleştirilmelidir (Wess and Zumino 1974). Bu 

modellerde, SM parçacıklarının süper eşleri yer almaktadır. Süper eşlerin spinleri, SM 

parçacıklarının spinlerinden ½ kadar farklıdır. Buna göre, kuark ve leptonların süper eşleri 

spin-0 olan skuarklar ve sleptonlar; foton, W, Z, gluon ve Higgs’ in süper eşleri ise 

sırasıyla spin-1/2 “fotino”, “wino” , “zino” , “gluino”  ve “Higgsino” olarak adlandırılan 

süper parçacıklardır. Süper parçacıklar şimdiye kadar gözlenmediği için kütlelerinin TeV 

bölgesinde olması beklenmektedir. 

 

Diğer tüm temel simetriler gibi, süpersimetri de bir yerel ayar simetrisidir. İki tane yerel 

SUSY dönüşümü, uzay-zamana bağlı bir parametre ile verilen bir ötelemeye eş değerdir. 

Bu genel bir koordinat dönüşümüdür. Bu şekilde, kütleçekimini de içerecek şekilde 

süpersimetrinin genişletilmiş haline süper kütleçekimi (SUGRA) denir.  
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SUSY teorilerinin, kütleler ve bağlaşımlar arasındaki koşullardan dolayı teorideki 

ıraksaklık derecelerini azaltma, hiyerarşi problemine cevap verebilme gibi önemli 

özellikleri vardır.  

  

Sicim teorisi ise, doğadaki bütün kuvvetlerin birleşik teorisi için mükemmel bir adaydır. 

Sicim teorisi kuantumlu bir teoridir, ayrıca kütle çekimini de içerdiği için kütle çekimi 

etkileşmelerinin de kuantumlu teorisidir. Sicim teorisine göre, her bir parçacık, temel, 

mikroskobik bir sicimin özel bir titreşim moduna karşılık gelecek şekilde tanımlanmıştır. 

Sicimin farklı titreşim modları farklı parçacıklara karşılık gelmektedir. Sadece bir tek sicim 

olduğundan ve her bir parçacık onun titreşimlerinden açığa çıktığından,  tüm parçacıklar 

hep birlikte bir tek teori tarafından kapsanırlar (Zwiebach 2004). Sicim teorisine göre, 

sicimlerin boyutunun  10 33−  cm olduğu ve bütün uzay-zamanın bu sicimlerle dolu olduğu 

düşünülür. Uzay-zaman boyutu 10 ile sabitlenmiştir. Bizim algıladığımız 3 uzay ve 1 

zaman boyutundan başka 6 uzay boyutu yoğunlaşarak kapanmıştır.  

 

Sicim teorisinin başarıları kütle çekimi kuvvetini diğer kuvvetler ile birleştirmesi,  bilinen 

tüm parçacıkları  bir tek sicimden elde ederek temel parçacık ve parametre sayısını 

azaltmasıdır.  

 

2.6.1 Kompozit Modeller 

 

Kompozit modellerde SM’ de temel (iç yapısız) olarak kabul ettiğimiz kuark ve leptonların  

bir iç yapıya sahip oldukları, preon adı verilen daha temel parçacıkların bağlı durumları 

oldukları öngörülür. SM’ de kuark ve leptonlar 3 aile şeklinde sınıflandırılmaktadır. Bir aile 

içindeki yapı diğer ailelerde de karşımıza çıkmaktadır. Ailelerin birbirini tekrarlaması, 

fermiyonların kütle spektrumundaki hiyerarşi, kuark ve leptonların zayıf etkileşmelerde 

benzerlik göstermesi ve SM çerçevesinde temel olarak adlandırdığımız parçacık sayısının 

fazla oluşu, kuark ve leptonların kompozit yapılar olabileceğini düşündürmektedir.  
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Kuark ve lepton kompozitliği için gözlenebilir etkilerden bazıları, anomal manyetik 

momentlerin SM tahminlerinden sapması, yüklü zayıf akımların V-A formundan sapmaları 

ve uyarılmış durumların varlığı şeklinde sıralanabilir (Terazawa et al. 1982).  Kuark ve 

leptonların mümkün iç yapıları için en ikna edici kanıt, kuark ve lepton taban durumları 

üzerinde yer alan uyarılmış durumların varlığıdır (Baur et al. 1990). Buna göre bilinen 

lepton ve kuarklar taban durumu olmak üzere, taban durumu üzerinde yer alan uyarılmış 

durumların geniş bir spekturumu beklenir.   

 

Kompozit modellerde preonlar, lepton ve kuarkların alt bileşenleri olan noktasal parçacık 

olarak ele alınırlar. Böyle bir alt bileşen fikri ilk olarak 1974 yılında Jogesh Pati ve Abdus 

Salam tarafından (Pati and Salam 1974) ortaya atılmıştır. Pati, Salam ve Strathdee’ nin bir 

yıl sonra yaptıkları çalışmalarında bu alt bileşenlere “pre” ismi verilmiştir (Pati et al. 1975). 

Daha sonra preonik modellerle ilgili çalışmalar sürmüştür. Preonik  modellerin ayrıntılı 

incelemesi D’ Souza ve Kalman (1992) tarafından verilmiştir. Bu modellerden bazıları şu 

şekildedir: 

 

Fritzsch-Mandelbaum (Haplon) Modeli:  Fritzsch ve Mandelbaum (1981) tarafından 

önerilen bu modele göre leptonlar, kuarklar ve zayıf etkileşmelerin aracı parçacıkları 

kompozit parçacıklar olarak ele alınmaktadır. Bu modele göre zayıf etkileşmelerin bir ayar 

teorisi olmadığı, lepton ve kuark iç yapısına bağlı olan artık bir etki olduğu 

düşünülmektedir. Ayrıca bu modele göre, kütleleri elde etmek için kendiliğinden simetri 

kırılmasına ihtiyaç duyulmamaktadır. Kuark, lepton ve ağır bozonları oluşturan bu alt 

bileşenlere Yunanca’ da “basit” anlamına gelen haplon kelimesi kullanılmıştır. Kuark ve 

leptonları oluşturabilmek üzere 2 tane fermiyonik, 2 tane de bozonik haplon önerilmiştir. 

Fermiyonik ve bozonik haplonlar için kuantum sayıları Çizelge 2.4’ te verilmiştir. 

  

Çizelge 2.4 Fermiyonik ve bozonik haplonların kuantum sayıları 
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Haplon Elektrik 

yükü 

Renk Spin Hiper renk 

α -1/2  3  1/2  1n+  

β +1/2  3  1/2  1n+  

x -1/6  3  0  1n−  

y +1/2  3  0  1n−  

 

Haplonların “hiper renk” olarak da adlandırılan süper güçlü bir kuvvetle bağlandığı 

düşünülmektedir. Bu kuvvet SU(n) kuvveti olabilir. Kütlelerin de bu kuvvet tarafından 

üretildiği düşünülmektedir. Bu kuvvetin dinamiği kuantum haplodinamiği (QHD) ile 

gösterilir. QHD’ nin de bir ayar teorisi olduğu düşünülür. Kuarklar, leptonlar ve ağır vektör 

bozonları QHD’ ye göre tekliler şeklindedirler. Birinci aile fermiyonları 

 

3 3

1 1

( ) , ( )

( ) , ( )e

u x d x

y e y

α β

ν α β

= =

= =
 

 

şeklinde elde edilirler. Haplon modeline göre pek çok yeni egzotik kuark ve lepton da 

beklenmektedir. Bu egzotik parçacıkların kütlelerinin daha ağır olduğu düşünülmektedir. 

Haplon modeline göre sadece ilk fermiyonik aile dikkate alınmıştır. Diğer aileler birinci 

ailenin uyarılmış durumları olarak ele alınırlar.  

 

Harari-Seiberg-Shupe (rishon) modeli: Bu modele göre kuarkların ve leptonların 3 

preondan oluştuğu varsayılır (Harari 1979, Shupe 1979, Harari and Seiberg 1982). Bu 

modelde sadece fermiyonik preonlar yer alır. T ve V olarak adlandırılan bu preonlara 

İbranice  “temel” anlamına gelen rishon denir. Rishonlar için kuantum sayıları Çizelge 2.5’ 

te verilmiştir. Her bir rishona karşılık bir de antirishon (t ve v) bulunmaktadır.  

 

Çizelge 2.5 Rishon modelinde kuantum sayıları 
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Rishon Elektrik yükü Renk Hiper renk 

T / 3e  3  3  

V 0  3  3  

 

Pozitron ve elektron nötrinosu rishon modeline göre sırasıyla e TTT+ = ve e VVVν = olarak 

yazılır. u-kuarkın üç rengi TTV, TVT ve VTT olarak, d-kuarkın 3 rengi ise TVV, VTV ve 

VVT olarak yazılır. Bu modele göre W+
 =TTTVVV şeklindedir. Rishon modeline göre ikinci 

ve üçüncü lepton ve kuark aileleri de ilk ailenin uyarımı oarak ele alınır. 

 

Terazawa-Akama-Chikashige (WCH) modeli: İlk olarak Akama ve Terazawa (1976), sonra 

da Terazawa, Chikashige ve Akama (Terezawa et al. 1977) kuarkların, 3 adet spin-1/2  wi 

(i=1,2), hi (i=1,2,…,N) ve Ci (i=1,2,3) alt kuarklarından oluştuğu bir model önerdiler. Alt 

kuarkların isimlerinden dolayı bu modele WCH modeli de denir. w alt kuarkları wL, w1R ve 

w2R  sırasıyla ikili, tekli ve SU(2) teklisi oluştururlar. h alt kuarkları, SU(N)’ nin bilinmeyen 

bir H simetrisinin N-lisini oluştururlar. C alt kuarkları ise, SU(3) renk simetrisinin üçlüsünü 

oluştururlar. Bu modele göre leptonlar, bir tane w bir  tane h alt kuark ve bir de SU(3) renk 

simetrisi altında tekli oluşturan ilave C0 alt kuarkın bağlı durumudur. WCH modeline göre, 

birinci aile leptonları ve kuarkları  

 

2 1 0 1 1 0

1 1 2 1

( ), ( )

( ), ( )
e

i i i i

e w h C w h C

u w h C d w h C

ν= =

= =
 

 

olarak elde edilir. Burada i, renk yükünü göstermektedir. Bu modele göre diğer aileler de w, 

h ve C alt kuarkları cinsinden elde edilebilirler.  

Preon üçlüsü (trinity) modeli: Bu modele göre, leptonlar, kuarklar ve ağır vektör bozonları 

kompozit parçacıklar olarak düşünülürler. Preon üçlüsü modelinde spin-1/2 olan, ,α β  ve 

δ  preonları vardır (Dugne et al. 1998, 1999, 2002). Bu modele göre, kuark-antikuark 

durumları yoluyla nükleer kuvvetin sızıntı yapmasına benzer olarak preon-antipreon 
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durumlarının olabileceği, böylece, zayıf kuvvetin temel bir kuvvet olmaktan ziyade daha 

güçlü bir kuvvetin artığı olabileceği düşünülmektedir. Buna göre, parçacıklara kütle 

kazandırmak üzere Higgs mekanizmasına ihtiyaç duyulmaz.  

 

Bu modele göre, süpersimetride spin-1/2 parçacıkların spin-0 süper eşlerinin olması gibi, 

her bir spin-1/2 preon için spin-0 anti-dipreon vardır. Spin-1/2 preonlar temel olarak 

alınırken, spin-0 anti-dipreon bağlı durumları temel değildir. Preon üçlüsü modeli için 

kuantum sayıları Çizelge 2.6’ da verilmiştir.  

 

Çizelge 2.6  Preon üçlüsü modelinde kuantum sayıları 
 
Elektrik yükü / 3e+  2 / 3e−  / 3e+  

Preon (spin-1/2) α  β  δ  

Anti-dipreon (spin-0) ( )βδ  ( )αδ  ( )αβ  

 

Preon üçlüsü modeline göre leptonlar, preon ve dipreon bağlı durumu, kuarklar preon ve 

anti-dipreon bağlı durumu, ağır vektör bozonları da preon ve antipreon bağlı durumu olarak 

yazılırlar. Bu modele göre 3 tane yeni lepton (
1 2
, ,κ κν ν κ + ) ve 3 tane de yeni kuark (X, g, h) 

yer almaktadır. Bu modelde leptonik kuantum sayısı dipreon sayısına eşit olduğundan yeni 

leptonlar için dördüncü leptonik kuantum sayısına gerek yoktur ve tüm süreçler için 

leptonik kuantum sayısı korunmaktadır. Preon üçlüsü modeline göre lepton ve kuarkların 

spektrumu Çizelge 2.7’ de verilmiştir.  

 

 
 
Çizelge 2.7 Preon üçlüsü modelinde leptonlar ve kuarklar 
 
 ( )βδ  ( )αδ  ( )αβ  ( )βδ  ( )αδ  ( )αβ  

α  
eν  µ+  τν  u s c 
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β  e−  µν  τ −  d X b 

δ  
1κ

ν  κ +  
2κν  t g h 

 

2.6.2 Kompozitlik ölçeği 

  

Kompozitlik ölçeği Λ, kompozit bir sistemin onu oluşturan alt bileşenlere ayrılabileceği 

enerji ölçeği olarak tanımlanır. Kuark ve leptonların kompozit olduğu modellerde Λ, bu 

parçacıkların noktasal parçacık davranışlarından uzaklaştıkları enerji ölçeği olarak ele 

alınır. Bu enerji ölçeğinde kuarklar ve leptonlar arasında yeni etkileşmeler açığa çıkabilir.  

Bu etkileşmeler, Λ’ nın altındaki enerjilerde Λ’ nın ters kuvvetleri ile bastırılmıştır. Eğer 

kompozitlik ölçeği, çarpışan parçacıkların kütle merkezi enerjisinden çok büyük ise, 

kompozitliğin açığa çıktığı etkileşmeler 4-fermiyon kontakt etkileşmeleri olacaktır. En 

düşük boyuttan, elli-değişmez 4-fermiyon kontakt etkileşmesini tanımlayan lagranjiyen,  

 

Λ
2

2
2

2
LL L L L L RR R R R R LR L L R R

g µ µ µ
µ µ µη ψ γ ψ ψ γ ψ η ψ γ ψ ψ γ ψ η ψ γ ψ ψ γ ψ = + + Λ

     (2.124) 

 

ile verilir. Bu forma sahip olan etkin etkileşmeler kullanılarak Λ belirlenebilir. Anlaşmasal 

metod, yeni etkileşmelerin bağlaşım sabitini 14/)(4/ 22 =Λ= ππ gg olarak seçip, 1=αβη  

olacak şekilde katsayıları atamaktır (Eichten et al. 1983). Örneğin; 

 

)0,0,1(),,( ±=LRRRLL ηηη için ±Λ=Λ LL  

)0,1,0(),,( ±=LRRRLL ηηη için ±Λ=Λ RR  

)1,1,1(),,( ±±±=LRRRLL ηηη için ±Λ=Λ VV  

)1,1,1(),,( m±±=LRRRLL ηηη için ±Λ=Λ AA          (2.125) 
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verilebilir. Kontakt etkileşmeler için kompozitlik ölçeği üzerine getirilen bazı üst sınırlar şu 

şekildedir:  

 

eeee etkileşmesi için, =s 192-208 GeV’ de ALEPH, DELPHI, OPAL ve L3 

deneylerinden alınan verilerin birleşik analizi sonucu %95 güvenilirlik seviyesinde (CL) 

>Λ+
LL 8.3 TeV ve 3.10>Λ−

LL TeV olarak (Bourilkov 2001) elde edilmiştir.  

 

µµee  etkileşmesi için %95 CL’ de, =s 189-209 GeV’ de ALEPH detektöründen elde 

edilen veriler sonucu >Λ−
LL 9.5 TeV (Schael et al. 2007) ve =s 130-189 GeV’ de L3 

detektöründen elde edilen veriler sonucu >Λ+
LL 8.5 TeV (Acciari et al. 2000) sınırlaması 

getirilmiştir.  

 

ττee  etkileşmesi için %95 CL’ de, =s 189-209 GeV (Schael et al.  2007) ve =s 130-

207 GeV’ de (Abdallah et al. 2006) ALEPH detektöründen elde edilen veriler sonucu 

>Λ+
LL 7.9 TeV ve =s 130-207 GeV’ de OPAL detektöründen elde edilen veriler sonucu 

>Λ−
LL 7.2 TeV (Abbiendi et al. 2004) olarak elde edilmiştir.  

 

Lepton evrenselliği dikkate alınarak llll kontakt etkileşmesi için, %95 CL’ de, =s 189-

209 GeV’ de ALEPH deney grubu tarafından >Λ−
LL 10.3 TeV (Schael et al. 2007) ve 

=s 130-207 GeV’ de DELPHI deney grubu tarfından >Λ+
LL 9.1 TeV (Abdallah et al. 

2006) sınırlamaları getirilmiştir.  

 

qqµµ  kontakt etkileşmesi için, −+µµ  kütle dağılımının =s 1.8 TeV’ de Xpp −+→ µµ  

sürecinden alınmasıyla %95 CL’ de CDF deney grubu tarafından >Λ+
LL 2.9 TeV ve 

>Λ−
LL 4.2 TeV (Abe et al. 1997) sınırlaması getirilmiştir.  

 



 48

Elli değişmez etkileşmeler dikkate alınarak, ee ννµ µ
++ → sürecinden ννll etkileşmesi için 

%90 CL’ de >Λ±
LR 3.10 TeV (Jodido et al. 1986) olarak elde edilmiştir. 

 

qqeν etkileşmesi için %95 CL’ de CDF deney grubu tarafından >Λ±
LR 2.81 TeV (Affolder 

et al. 2001) sınırlaması getirilmiştir.  

 

qqqq etkileşmesi için, %95 güvenilirlik seviyesinde D0 deney grubu tarafından >Λ+
LL 2.7 

TeV (Abbott et al. 1999) olarak elde edilmiştir. Burada, s =1.8 TeV’ de pp  

çarpışmalarında içsel (inclusive) dijet kütle spektrumundan sonuçlar alınmıştır. 

 

2.6.3 Anomal manyetik momentler 

 

Leptonların ve kuarkların manyetik momentlerinin SM’ de tahmin edilen değerlerinden 

mümkün sapmalar, lepton ve kuark kompozitliği için açık bir kanıt olacaktır. Müon için g-2 

deneylerinden elde edilen sonuçların KED ile uyuşması, Λ kompozitlik ölçeği üzerine 

koşullar koymayı sağlar (Shaw et al. 1980).  

 

Dirac denklemi, spin-1/2 noktasal parçacık için jiromanyetik oranı 2g =  olarak öngörür.  

Buna göre, manyetik moment 
2

i i

i

e
M g S

m
=

rr
 ( , ,i e µ τ= ) olmak üzere, leptonlar için 2ig =  

ile verilir. Anomal manyetik moment 

 

2

2
i

i

g
a

−
≡                (2.126) 

 

olmak üzere ia  ile parametrize edilir. Bu nedenle, teori ve deneyin karşılaştırılması 

kuantum ilmek seviyesinde SM’ yi test eder.  a  niceliği SM çerçevesinde kesin olarak 
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hesaplanabilir. deneya  değerinin SM tahminlerinden sapması, TeV mertebesine kadar 

ulaşabilecek bir kütle ölçeğinde yeni fizik için bir işaret olacaktır. Elektron için elde edilen 

deneysel anomal manyetik moment değeri (Amsler et al. 2008) 

 

61159.6521811 0.0000007) 10deney
ea

−= ± ×                                                                         (2.127) 

 

müon için elde edilen değer (Amsler et al. 2008) 

 

1011659208.0(5.4) 10deneyaµ
−= ×                                  (2.128) 

 

ve tau için anomal manyetik momente koyulan sınırlama da (Amsler et al. 2008) 

 

0.052 0.013 (%95 )deneya CLτ− < <                      (2.129) 

 

şeklindedir. Deneysel olarak elde edilen değerler ile SM öngörüsü arasındaki farklılığın 

yeni fizik etkilerinden geldiği varsayılarak, yeni fizik için gözlenebilirlik sınırları üzerine 

sınırlamalar getirilebilir. Leptonların jiromanyetik değerleri için kesinlik ölçümleri 

mümkün lepton iç yapısı üzerine sınırlar koyar. Fermiyonların anomal manyetik 

momentlerinin, onların kompozit yapıları ile ilişkisi Brodsky’ nin (1980) çalışmasında 

tartışılmıştır. Burada ilk olarak, fermiyonların daha ağır iç bileşenlerin bir bağlı durumu 

oldukları düşünülerek oldukça küçük bir uzaysal uzantıya sahip oldukları öngörülmüştür. 

Anomal manyetik momente fermiyon kompozitliğinden gelecek katkının 
*

( )l
m

a O
m

δ �  

şeklinde kütle oranlarına lineer bağımlı olacağı söylenmiştir. Burada lm  leptonun, *m  da iç 

bileşenlerin kütlesini göstermektedir. Böyle bir modelde lepton öz enerjisine birinci 

mertebeden gelecek katkılar oldukça büyük olacaktır. Ancak, gözlenen lepton kütleleri 

daha küçüktür. Bu zorluğu ortadan kaldırmak için ikinci bir kütle limiti tanıtılmıştır. 

Brodsky’ e (1980) göre, kompozit leptonlar için en basit modelde, leptonlar fm  kütleli 

yüklü bir fermiyon ile λ  kütlesine sahip nötral bir bozonun (vektör veya sanki-skaler) bağlı 
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durumu olarak ele alınmıştır. Gözlenen lepton kütlelerini sağlayabilmek için, 2 2
fm λ<<  

şeklinde seçilmiştir. Elektromanyetik form faktörü hesabı için üçgen ilmek diyagramlarının 

hesabı sonucu, 2 2
fmλ =  için nötral alt bileşenin vektör olması durumunda anomal manyetik 

moment /l fa m m= olarak; nötral alt bileşenin sanki-skaler olması durumunda ise 

1
/

2
l fa m m= −  olarak elde edilmiştir.  

 

Brodsky’ nin (1980) çalışmasında ayrıca anomal manyetik momentler üzerine lepton iç 

yapısından gelen katkılar üzerine daha detaylı çalışmalar için elli (chiral) simetri 

düşünülmüştür. Bu elli modelde, * *m m→−  dönüşümü altında genliklerin simetrik olması 

özelliğinden, anomal manyetik momente gelecek katkılar, kütle oranlarına lineer bağımlı 

değildir. Burada, * 2~ ( / )la m mδ  şeklinde küçük bir katkı elde edilmiştir. İç bileşenlerin 

kütle ölçeği büyüdükçe, anomal manyetik momente lepton iç yapısından gelen katkıların 

küçüleceği sonucuna ulaşılmıştır. 

 

 

 

 

 

 

 

 

 

3. UYARILMIŞ LEPTONLAR 

 

Lepton ve kuark ailelerinin tekrarlanması onların daha temel parçacıklardan 

oluşabileceklerini düşündürmektedir. Lepton ve kuarkların kütle spektrumu ve karışım 

yapıları mümkün bir iç yapı için önemli ipuçları verecektir. Lepton ve kuark 
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kompozitliğinin önemli bir gözlenebilir etkisi ise uyarılmış lepton ve kuarkların varlığı 

olacaktır. Buna göre bilinen lepton ve kuarklar preon adı verilen daha temel bileşenlerin 

bağlı durumlarıdır. Lepton ve kuark alt bileşenleri (preonlar), Λ kompozitlik ölçeği ile 

karakterize edilen bir enerji ölçeğinde, yeni etkileşmeler aracılığı ile etkileşirler. Bu 

etkileşmeler preon alışverişi veya ayar bozonları aracılığı ile olabilir. Λ’ nın altındaki 

enerjilerde 1/Λ’  nın kuvvetleri ile bu etkileşmeler bastırılmıştır.   

 

Eğer leptonlar kompozit iseler, uyarılmış spin-1/2 leptonlar, üç tane spin-1/2 alt parçacığın 

(Terazawa et al. 1977) ya da spin-1/2 ve spin-0 alt parçacıkların (Ne’eman 1979) bağlı 

durumu olarak atanabilir. Benzer olarak, spin-3/2 uyarılmış durumlar ise, üç tane spin-1/2 

alt parçağın ya da spin-1/2 ve spin-1 alt parçacıkların bağlı durumu olarak atanabilirler 

(Çakır and Ozansoy 2009). SM leptonları  taban durumunu oluşturmak üzere, bu taban 

durumunun üzerinde yer alan zengin bir uyarılmış durumlar spektrumu yer alır. Uyarılmış 

yüklü leptonlar e*, µ*, τ* ve uyarılmış yüksüz leptonlar *
eν , *

µ
ν , *

τν   olmak üzere, SM 

leptonlarına benzer olarak uyarılmış leptonların da (l*) üç aile olacağı öngörülmektedir. 

Fenomenolojik olarak uyarılmış bir lepton, bilinen bir lepton ile aynı leptonik kuantum 

sayısına (çeşnisine) sahip olan ağır bir leptondur. Örneğin, uyarılmış spin-1/2 elektron, 

elektron ile sıfırdan farklı bir geçiş manyetik bağlaşımı olan parçacıktır. Uyarılmış spin-1/2 

durumlar en düşük radyal ve yörüngesel uyarımlardır. Standart teorinin genişletilmiş 

gruplarındaki kompozit modeller ayrıca spin-3/2 leptonlara işaret etmektedir (Lopes et al. 

1980, 1981, 1982). Buna göre spin-3/2 uyarılmış durumlar  üst uyarım olarak ele alınabilir.  

 

 

3.1 Spin-1/2 Uyarılmış Leptonlar 

 

Spin-1/2 uyarılmış leptonlar, SU(2)×U(1) kuantum sayılarına göre 3 farklı şekilde 

sınıflandırılabilirler (Hagiwara et al. 2002). Bunlar: 
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1. Normal Tipli (Sequential Type): Sol-elli uyarılmış leptonlar eş ikilide, sağ-elliler ise 

teklide yer alırlar. 

 

*

*
L

l

ν 
  
 

 ,   *
Rν      ,   *

Rl     

 

2. Görüntü Tipli (Mirror Type): Sol-elli uyarılmış leptonlar teklide , sağ-elliler ise eş ikilide 

yer alırlar. 

 

*
Lν       ,   *

Ll    ,   
*

*

R
l

ν 
  
 

 

 

3. Eş İkililer Tipli (Homodoublet Type): Sol-elli ve sağ-elli uyarılmış leptonlar eş ikililerde 

yer alırlar. 

 

*

*
L

l

ν 
  
 

   ,   
*

*
R

l

ν 
  
 

 

 

Uyarılmış leptonların, bilinen leptonlardan daha ağır oldukları varsayımını yaparak 

SU(2)×U(1) simetri kırılmasına göre kütle kazandıkları düşünülecektir. Uyarılmış 

leptonların hem sağ hem de sol elli bileşenleri zayıf eş ikililerde yer alırlar, bu nedenle 

uyarılmış leptonların ayar alanlarına bağlaşımları vektör tiplidir (Boudjema et al. 1993). İki 

uyarılmış spin-1/2 lepton ve bir ayar bozonu arasındaki etkileşmeyi tanımlayan lagranjiyen; 

 

RRLLVll B
Y

gWgB
Y

gWgL ψ
τ

γψψ
τ

γψ µµ
µ

µµ
µ







+⋅+





+⋅=

2222
''

**

r
r

r
r

          (3.1) 
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ile verilir. Burada, µW
r

 ve µB
r

 sırasıyla SU(2) ve U(1) ayar alanları; g ve g’ bu alanlara 

karşılık gelen ayar bağlanma sabitleridir. Burada alt bileşenlerin varlığı durumunda 

noktasal yapıdan ayrılmaları anlatmak için form faktörleri de eklenmelidir. τ
r

 Pauli spin 

matrisi ve Y de zayıf hiperyüktür. Denlem (3.1) ile verilen lagranjiyen, SU(2) ayar alanı 

µW
r

’ ye sağ-elli leptonların da bağlanabilmesi dışında, SM leptonları ile ayar alanlarının 

bağlaşımını ifade eden lagranjiyen (bkz. 2.115) ile benzer yapıdadır. 

 

Uyarılmış leptonların bilinen leptonlardan oluşan temel durumlara geçişine izin verilir. 

Spin-1/2 uyarılmış lepton, bir SM leptonu (l) ve bir ayar bozonu (V) arasındaki etkileşmeyi 

tanımlayan lagranjiyen, hem uyarılmış leptonun bozunumunu hem de tek üretimini 

açıklayabilmelidir. l*lV bağlaşımını tek olarak belirleyen etkileşmenin SU(2)L × U(1)Y ayar 

değişmezi olması için tensörel yapıda olması gerekmektedir, başka bir deyişle spin-1/2 

uyarılmış leptonlar ve SM leptonları arasında manyetik geçiş tipli bağlaşımlar vardır. Bu 

etkileşme vektörel yapıda olsaydı, SU(2)L altında değişmez kalmazdı, çünkü uyarılmış 

leptonun sağ- elli bileşeni eş ikilide yer alırken, SM leptonunun sağ-elli bileşeni ise teklide 

yer almaktadır. Bu nedenle bir uyarılmış lepton hem sağ-elli hem de sol-elli leptona 

bağlanmamalıdır. Böyle bir elli (chiral) simetri olmazsa, KED tahminlerine ve hassaslık 

deneylerinden elde edilen sonuçlara ters düşecek şekilde leptonlar büyük bir anomal 

manyetik moment kazanırlar (Kuhn and Zerwas 1984, Hagiwara et al. 1985, Boudjema et 

al. 1993). Burada elliliğin değişmezliği, kuark ve lepton kütlelerinin, Λ’ dan niçin daha 

küçük olduklarına doğal bir açıklama verir. 

 

Spin-1/2 uyarılmış lepton, bir SM leptonu ve ayar bozonu arasındaki etkileşmeyi 

tanımlayan, elli simetriye sahip,  SU(2)×U(1) değişmez etkin lagranjiyen (Hagiwara et al. 

1985); 

 

* ' '1
. .

2 2 2
R L

Y
L gf W g f B h cµν

µν µν
τ

ψ σ ψ

→
→ 

 = + +
 Λ
 

                                                                (3.2) 
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ile verilir. Burada Λ, yeni etkileşmelerden sorumlu yeni fizik için enerji ölçeği, 
→

µνW ve µνB  

sırasıyla SU(2) ve U(1) ayar alanları için alan tensörleridir. τ
r

 Pauli spin matrisleri ve Y  

hiperyük, bu alanlara karşılık gelen ayar yapı sabitleridir. f  ve f’’ ise ölçeklendirme 

çarpanlarıdır. Bu bağlaşımlar farklı ayar grupları için ii f/Λ=Λ  olarak alınan farklı 

ölçekler olmak üzere ağırlık faktörleri olarak da yorumlanabilir (Eboli et al. 2002). Bu 

parametreler kompozitlik dinamiği ile ilgilidir ve ilgili süreçlerdeki momentum aktarımına 

(q) bağlı form faktörleri f(q2) şeklinde ifade edilebilirler. Bunların biçimleri 

2
2

*2
( ) 2 /(1 )

n

q
F q F

m

 
= + 

 
 şeklindedir ( ',F f f= ) (Baur et al. 1987). SU(2) ve U(1) ayar 

alanları için bağlaşımlar g ve g’, elektromanyetik bağlanma sabiti ( eg ) cinsinden şu şekilde 

ifade edilir: 

 

W

e

s

g
g = , 

WW

e

cs

g
g ='                                       (3.3)     

                                              

Burada Ws  ve Wc  kısaltmaları sırasıyla, Wθsin  ve Wθcos  yerine kullanılmıştır. Fiziksel 

olarak, etkin lagranjiyen şu şekilde yazılabilir (Boudjema 1993):  
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Λ
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Λ

=
−
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∑∑
−

µν

ν
µν

µν

ν
µν σσ                                           (3.4)            

 

İlk terim üç katlı bir köşe içerir ve f=f’ için sıfırdır. Burada köşegen terim  

νµWWνµµν Z)c/s(AN ∂−∂=                                                                                             (3.5)  

                                  

ile verilir. İkinci terim hem üç hem de dört katlı köşeleri içerir. Burada  
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                                                (3.6) 

 

ile verilir. Bütün katkıları hesaplayarak *Vl l  köşesi için köşe faktörü; 

 

( ) V
effV

fq
g

5
* 1

2
γσ µν

ν
µ −

Λ
=Γ

−

                                                                                               (3.7) 

 

şeklinde elde edilir. γ,Z,WV =  ve  q  ise V ’ nin momentumudur. Zayıf izospinin üçüncü 

bileşeni ve uyarılmış leptonun elektrik yükü cinsinden 

 

f
s

f

W

W
2

1
=                        (3.8) 

( )
WW

WfWWL

Z
cs

fsefsfcI
f

4

44 '2'22
3 −+

=                                                                                      (3.9) 

( )'3
' ffIfef Lf −+=γ                 (3.10) 

 

şeklinde yeni bağlaşım terimleri elde edilebilir. Burada fe  uyarılmış spin-1/2 leptonun 

elektrik yükünü, LI 3  zayıf izospinin üçüncü bileşenini göstermektedir. Uyarılmış spin-1/2 

elektron (e*) için ( ) ( ) 2/,2/' '22 fffcsfcfsf WWWWZ +−=−= γ  ve  uyarılmış spin-1/2 

elektron nötrinosu (ν*) için ( ) ( ) 2/,2/' '22 fffcsfcfsf WWWWZ −=+= γ  olarak elde edilir. 

 

3.1.1  Spin-1/2 uyarılmış leptonlar için  kütle limitleri  
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LEP e+e- çarpıştırıcısında, OPAL detektöründe s =183-209 GeV alınarak 684.4 pb-1’ lik 

veri kullanılarak,  f=f’ için %95 CL’ de uyarılmış elektron için çift üretimden gelen kütle 

limiti  me
*
 >103.2 GeV (Abbiendi et al. 2002) olarak elde edilmiştir. Burada uyarılmış 

müon ve uyarılmış tau çift üretimi için aynı kütle limiti getirilmiştir. LEP çarpıştırıcısında 

L3 deney grubu tarafından s =192-209 GeV’ de toplam ışınlık 427 pb-1 olmak üzere, 

%95’ lik güvenilirlik seviyesinde t-kanalında e* değiş tokuşu yoluyla uyarılmış elektron 

için dolaylı etkilerden gelen kütle limiti  me
*
 >310 GeV (Achard et al. 2002) olarak elde 

edilmiştir.  

 

Uyarılmş elektronun tek üretimi için, HERA ep çapıştırıcısında ( s ~ 330 GeV), H1 deney 

grubu, f=f’ = *
emΛ  için %95 CL’ de toplam ışınlık 120 pb-1 alınarak kütle limitini me

* > 

255 GeV (Adloff et al. 2002) olarak elde etmiştir. 

 

Fermilab Tevatron pp  çarpıştıcısında ( s =1.96 TeV) CDF deney grubu tarafından, f=f’ 

= *
µmΛ   için %95’ lik  güvenilirlik seviyesinde toplam ışınlık  371 pb-1  alınarak, uyarılmış  

müonun tek üretimi ve ona ardışık olarak µγµ →*  bozunumu dikkate alınarak, kütle limiti 

*
µm > 221 GeV (Abulencia et al. 2006) olarak elde edilmiştir.  

 

Uyarılmış tau için tek üretimden gelen kütle limiti, LEP OPAL detektöründe, s =183-209 

GeV’ de ' *f f mτ= = Λ  için %95 CL’ de, τγτ →*  bozunumu da dikkate alınarak *
τm > 185 

GeV (Abbiendi et al. 2002) olarak elde edilmiştir.  

 

L3 deney grubu tarafından  s =189-209 GeV’ de %95’ lik güvenilirlik seviyesinde toplam 

ışınlık 217 pb-1 alınarak 'f f= −  için %95 CL’ de  uyarılmış nötrino için çift üretimden 

gelen kütle limiti  >*
νm 102.6 GeV (Achard et al. 2003) olarak elde edilmiştir. Ayrıca, 
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'f f=  için kütle limitleri >*

e
mν 101.7 GeV, >*

µνm 101.8 GeV ve >*

τν
m 92.9 GeV olarak 

elde edilmiştir. Bu deney grubu ' *f f mν= − = Λ için %95 CL’ de  uyarılmış nötrino için tek 

üretiminden gelen kütle limitini  >*
νm 190 GeV olarak elde etmiştir.  

 

3.2 Spin-3/2 Uyarılmış Leptonlar 

 

Yüksek spinli parçacıkların incelenmesi kuantumlu alan teorisinde oldukça büyük öneme 

sahiptir. Bu parçacıklar ilk olarak pion-nükleon saçılmasında rezonans uyarımları olarak 

gözlenmişlerdir. Daha sonra yüksek spine sahip baryon rezonansları bulunmuştur 

(Napsuciale 2006). Bununla birlikte, yüksek spinli alanları içeren en dikkat çekici modeller, 

süpersimetri başta olmak üzere, Standart Model ötesinde önerilen modeller arasında yer 

almaktadır. 

 

Spin-3/2 parçacıklar için motivasyon farklı modellerden gelmektedir. SM’ de baryon 

spektrumu incelendiğinde ∆0, ∆+, ∆-, ∆++,  Ω-  gibi spini 3/2 olan baryonlara rastlanır.  Süper 

simetrik ayar teorilerinde,  spin-3/2 parçacık gravitino, spin-2 parçacık gravitonun süper 

eşidir. Süper simetrik teoriler, evreninin gelişiminin anlaşılmasında önemli bir rol 

oynayabilecek olan, evrenin yakın zamanlarında temel spin-3/2 parçacıkların üretildiği 

tartışmasını açmıştır. Kompozit modellerde ise spin-3/2 leptonlar bir üst uyarım olarak ele 

alınır.  

Leptonik aileler arasında kütlelerdeki büyük farklılıklar ve baryon spektrumunda spin-1/2 

baryonların, aynı kuark içeriği ile,  spini 3/2 olan uyarılmış durumlarının olduğu gerçeğine 

benzeşim, leptonların da spin-3/2 uyarılmış durumlarda bulunabileceklerini 

düşündürmektedir.  

 

Ancak, etkileşen spin-3/2 alanlar için istikrarlı bir teori mevcut değildir. Spin-3/2 alanlar 

için renormalize edilebilir bir teori yoktur. Bir dış manyetik alanın varlığında, spin-3/2 alan 

denklemlerinin klasik çözümlerinde, ışıktan daha hızlı yayılan modlar bulunmaktadır (Velo 
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and Zwanziger 1969). Bunların yanısıra, spin-3/2 parçacıkların elektromanyetik 

etkileşmeleri, tesir kesitini enerji ile oldukça güçlü bir şekilde arttırır ve bu nedenle 

üniterlik bozulur (Alles and Borelli 1976). Bu problemler, spin-3/2 parçacıklar için teorik 

tahminler yapmayı zorlaştırmaktadır. Bu problemlerden bazıları, spin-3/2 fermiyonların 

kütleli elektrozayıf ayar bozonlarına bağlaşımı ile düzeltilebilir (Lopes et al. 1980, 1981, 

1982). Bu hipotez spin-3/2 alanlarla ilgili tüm sorunları çözmek için yeterli olmasa da, 

zayıf etkileşmeler için etkin Fermi teorisiyle aynı anlamda, güvenilir fenomenolojik 

tahminlerin yapılmasına olanak verir (Almeida et al. 1996). Kütleli ayar bozonu 

propagatörü, etkin form faktörü gibi davranır ve böylece üretim tesir kesitinin 

hesaplanmasına olanak verir.  

 

3.2.1 Spin-3/2 parçacıklar için göreli alan denklemleri: Rarita-Schwinger denklemleri 

 

Herhangi bir spin sayısına (tam sayı ya da yarım tamsayı) sahip serbest parçacığı anlatan 

denklemler, Bargmann-Wigner (Bargmann and Wigner 1948) denklemleridir. Bu 

denklemler şu şekilde verilirler: 

 

0)()(

0)()(

0)()(

''

''

''

...

...

...

=Ψ−∂/

=Ψ−∂/

=Ψ−∂/

xmi

xmi

xmi

tabtt

tabbb

tbaaa

M
             (3.11) 

)(... xtabcΨ  niceliği, m kütleli, s spinine sahip, ½ spinli özdeş alanların birleşiminden 

oluşmuş parçacığın dalga fonksiyonunun bileşenleri olarak düşünülebilir. Burada a, b,…,t 

spinör indisleridir ve )(... xtabcΨ , bu indislere göre tamamen simetriktir. Bu nedenle 

)(... xtabcΨ , Clifford cebrinin standart temsilindeki simetrik matrislerin lineer bir 

kombinasyonu olarak yazılabilir. Simetrik matrisler; 

 

CC ˆ,ˆ µνµ σγ                (3.12) 
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ve antisimetrik matrisler, 

 

CCiC ˆ,ˆ,ˆ
55 γγγ µ               (3.13) 

 

şeklinde verilir. Burada 02ˆ γγiC =  şeklinde verilen yük eşleniği işlemcisidir. Spin-3/2 

parçacık için Bargmann-Wigner çoklu spinörü 3 indise sahiptir ve bu indislere göre 

simetriktir.  

 

0)()( '' =Ψ−∂/ xmi
bcaaa

               (3.14) 

0)()( '' =Ψ−∂/ xmi
cabbb

              (3.15) 

0)()( '' =Ψ−∂/ xmi
abccc

              (3.16) 

 

a ve b indislerine göre simetri, )(xabcΨ ’nin abC)ˆ( µγ  ve abC)ˆ( µνσ  simetrik matrisleri 

cinsinden yazılması ile elde edilir.  

 

)()ˆ()()ˆ()( xCBxCAx cabcababc
µνµνµ

µ ψσψγ +=Ψ           (3.17)

  

Burada A ve B keyfi sabitlerdir. Denklem(3.17)’ deki )(xc
µψ  bir vektör ve spinörün çarpımı 

ve )(xc
µνψ  de bir tensör ve spinörün çarpımı olarak ele alınabilir. )(xc

µνψ , antisimetrik µνσ  

ile kontrakte ettiğinden antisimetrik olmalıdır, aksi durumda bu kontraksiyon sıfır verir. b 

ve c’ ye göre simetriyi sağlayabilmek için, (3.17) denklemini bcbcbc CCC )ˆ(,)ˆ(,)ˆ( 5
1

5
11

λγγγ −−−  

antisimetrik matrisleri ile çarpmalıyız. Bu çarpımların sonucu sıfır verecektir.  

 

0)()()()( =+ xBxA caccac
µνµ

µ ψσψγ µν              (3.18) 

 

0)()()()( 55 =+ xBxA caccac
µνµ

µ ψγσψγγ µν            (3.19) 
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0)()()()( 55 =+ xBxA caccac
µν

λ
µ

λµ ψγγσψγγγ µν            (3.20) 

 

(3.19) ve (3.20) denklemleri soldan ba)( 5γ  ile çarpılıp 5 5{ , } 0, , 0µ µνγ γ γ σ = =  ve 

12
5 =γ bağıntılarının kullanılmasıyla 

 

0)()()()( =+− xBxA caccac
µνµ

µ ψσψγ µν            (3.21) 

0)()()()( =+− xBxA caccac
µν

λ
µ

λµ ψγσψγγ µν            (3.22) 

 

denklemleri elde edilir. (3.18) ve (3.21)’ in toplanması ile  

 

0)()( =xcac
µν

µν ψσ               (3.23) 

 

koşulu elde edilir. Başka bir koşul ise (3.18)’ den (3.21)’ in çıkarılması ile elde edilir.  

 

0)()( =xcac
µ

µ ψγ               (3.24) 

 

Denklem (3.22), µννµ γγ g2},{ = ve , 2 ( )i g gα µν αµ ν αν µγ σ γ γ  = −  bağıntıları kullanılarak 

yeniden düzenlenirse; 

 

0)()22()()2( =+−+−− xigigBxgA caccac
µν

µνλνµλµνλ
µ

µλµλ ψγγσγψγγ        (3.25) 

 

elde edilir. (3.25) denkleminde (3.23) ve (3.24) denklemleri ile bulunan koşullar uygulanıp 

düzenleme yapılırsa; 

 

0)(2)(2)(2 =−+− xiBgxiBgxAg µν
νµλ

µν
µνλ

µ
µλ ψγψγψ  

 

0)(2)(2)(2 =−+− xiBgxiBgxAg αβ
βαλ

µν
µνλ

µ
µλ ψγψγψ   

µ→α, ν→β 
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0)(2)(2)(2 =−+− xiBgxiBgxAg νµ
µνλ

µν
µνλ

µ
µλ ψγψγψ          (3.26) 

 

elde edilir. Bu denklemde µνψ ’ nün antisimetrikliği de kullanılırsa 

 

0)(4)(2 =+− xiBgxAg µν
µνλ

µ
µλ ψγψ  

 

)(2)( xiBxA µλψγψ µ
λ =              (3.27) 

 

sonucuna ulaşılır. (3.23), (3.24) ve (3.27) denklemleri bağımsız değillerdir. Denklem (3.27) 

soldan λγ  ile çarpılıp, denklem (3.24) ile verilen koşul kullanılırsa denklem (3.23) elde 

edilir.  

 

0)(

)()(
2

20)(2)(

==

−−=−

x

x
i

BxiBxA

µλ
µλ

µλλµµλ
µλ

µλ
λ

λ

ψσ

ψγγγγψγγψγ
 

 

abcΨ  alanının denklem (3.17) ile verilen açılımı, denklem (3.16)’ da yazılan Bargman-

Wigner denklemlerini ayrı ayrı sağlamalıdır.  

 

' ' '
ˆ ˆ( ) ( ) ( ) ( ) ( ) 0aa a b c a b ci m A C x B C xµ µν

µ µνγ ψ σ ψ ∂/ − + =    

   

' ' ' '
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )aa a b c aa a b cA i m C x B i m C xν µ λ µν

ν µ λ µνγ γ ψ γ σ ψ   ∂ − + ∂ −            (3.28) 

 

0)()()ˆ()()()ˆ( '''' =−∂/+−∂/ xmiCBxmiCA cbbabcbbab
µν

µν
µ

µ ψσψγ          (3.29) 

 

0)()()ˆ()()()ˆ( '''' =−∂/+−∂/ xmiCBxmiCA cccabcccab
µν

µν
µ

µ ψσψγ                     (3.30) 

α→ν, β→µ 
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Denklem (3.28)’ de matris çarpımına göre terimler doğru sıradadır, Lorentz indisleri 

herhangi bir probleme neden olmadan kaldırılabilir. Ancak denklem (3.29)’ da işler daha 

zordur. Matris çarpımına göre b ve b’ indislerinin yeri yer değiştirmiş gibidir. İndis 

sıralarını düzenlemek için ihtiyaç duyulan bağıntı; 

 

ν
νµ

ν
νµ γγγγ ∂=∂ bb

T

fbafbbfbaf CC '''' )(ˆ)()(ˆ)(            (3.31) 

 

şeklindedir. Burada Ĉ matrisi için 1ˆˆ =TCC  ve 1)ˆ( 2 −=C özellikleri ve Ĉµγ ’ nin simetrikliği 

kullanılarak 

 

CCCCCCCC TTTT ˆ)ˆ(ˆˆ)ˆˆ(ˆˆ
νµνµνµνµ γγγγγγγγ −===           (3.32) 

 

elde edilir. Buna göre denklem (3.29)’ da,  ∂/  teriminde γ ’ nın Ĉ  ile yer değiştirmesi ile 

bir (-) işareti gelir.  

 

ˆ ˆ( ) ( ) ( ) ( ) 0c c
ab ab

A i m C x B i m C xν µ λ µν
µ ν µν λγ γ ψ σ γ ψ   − ∂ − + − ∂ − =            (3.33) 

Denklem (3.28)’ i ve denklem (3.33)’ ü toplayalım.  

 

ˆ ˆ ˆ( ) ( ) 2 ( ) ( ) ( ) ( )

ˆ2 ( )

c ab c c
ab ab

ab c

A i C x mA C x B i C x

mB C

ν µ µ λ µν
ν µ µ ν µ λ µν µν λ

µν
µν

γ γ γ γ ψ γ ψ γ σ σ γ ψ

σ ψ

   − ∂ − + − ∂ −     (3.34) 

                   

µνσ ’ nün antisimetrikliği ve µννµ γγ g2},{ =  antikomütasyon bağıntıları kullanılarak 

denklem (3.34)’ teki birinci ve üçüncü terimler yeniden düzenlenebilir. İlk terim; 

 

[ ] )(ˆ)(ˆ)(ˆ)(

22)(

xCAxCAxCiA

i

µν
νµ

µν
µν

µν
νµµν

νµµνµννµνµµν

ψσψσψγγγγ

σσσσγγγγ

∂+∂−=∂−

+−=−==−
 

ν→α, µ→β 
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)(ˆ)(ˆ xCiAxCiA βα
αβ

µν
µν ψσψσ ∂+∂−=  

 

)(ˆ)(ˆ xCiAxCiA νµ
µν

µν
µν ψσψσ ∂+∂−=  

 

ˆ ˆ( ) ( ) ( ){ ( ) ( )}A i C x C A x A xν µ ν µ µ ν
ν µ µ ν νµγ γ γ γ ψ σ ψ ψ − ∂ = ∂ − ∂ 

                    (3.35) 

 

şeklinde elde edilir. Üçüncü terim; 

 

ˆ ˆ( ) ( ) ( , ) ( )

ˆ{2 ( ) } ( )

ˆ ˆ2 ( ) 2 ( )

ˆ ˆ2 ( ) 2 ( )

B i C x B i C x

iB i g g C x

B C x B C x

B C x iB C x

λ µν λ µν
λ µν µν λ λ µν

λ µν
λµ ν λν µ

µν µν
ν µ µ ν

νµ µν
ν µ µ ν

γ σ σ γ ψ γ σ ψ

γ γ ψ

γ ψ γ ψ

γ ψ γ ψ

   − ∂ = ∂  

= − ∂

= − ∂ + ∂

= ∂ + ∂

 

 

)(ˆ2)(ˆ2 xCBxCB µν
νµ

αβ
βα ψγψγ ∂+∂=  

 

)(ˆ2)(ˆ2 xCBxCB µν
νµ

µν
νµ ψγψγ ∂+∂=  

ˆ ˆ( ) ( ) 4 ( )B i C x B C xλ µν µν
λ µν µν λ µ νγ σ σ γ ψ γ ψ − ∂ = ∂            (3.36) 

 

Denklem (3.35)’ de ve denklem (3.36)’ da elde edilen sonuçlar kullanılarak denklem (3.34) 

yeniden düzenlenirse; 

 

0)}(2)(4){ˆ(}2)()(){ˆ( =−∂++∂−∂ xmAxBCmBxAxAC µµν
νµ

µννµµν
νµ ψψγψψψσ          (3.37) 

 

elde edilir. Ĉµνσ  ve Ĉµγ  matrisleri lineer bağımsız değillerdir, bu nedenle katsayıları ayrı 

ayrı sıfıra eşit olmalıdır.  

 

α→µ, β→ν 

ν→α, µ→β 

α→µ, β→ν 
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µννµµν ψψψ mBxxA 2))()(( −=∂−∂             (3.38) 

)(4)(2 xBxmA µν
ν

µ ψψ ∂=              (3.39) 

 

Denklem (3.39), µ∂  ile çarpılıp µνψ ’ nün açık ifadesi ve antisimetrikliği kullanılırsa spin-

3/2 alanlar için gerçek serbestlik derecesini bulmada ihtiyaç duyulan koşullardan biri elde 

edilir. 

 

  

0)(4

)(4

)(4

)(4)(2

=∂∂∂−∂∂∂=

∂∂∂−∂∂∂=

∂−∂∂∂=

∂∂=∂

µν
νµ

νµ
µν

µν
νµ

νµ
νµ

µννµ
νµ

µν
νµ

µ
µ

ψψ

ψψ

ψψ

ψψ

B

B

B

xBxmA

 

    

  0)( =∂ xµ
µψ                         (3.40) 

 

Denklem (3.38)’ in denklem (3.39)’ da kullanılması ile )(xµψ  alanı için Klein-Gordon 

denklemi elde edilir.  

 

m

A
BmBAmBxxA

2
22))()(( =⇒=⇒−=∂−∂ µνµνµννµµν ψψψψψ         (3.41) 

µν
ν

µ

µν
ν

νµ
ν

µ

µν
ν

µ

ψψ

ψψψ

ψψ

kare

xm

x
m

A
xmA

−∂∂=

∂∂−∂∂=

∂=

)(

)()
2

(4)(2

2   

 

2( ) ( ) 0m xµψ+ =�               (3.42) 

 

Buraya kadar elde edilen denklemlerden, µψ  ve µνψ  alanları için Dirac denklemi 

çıkarılabilir. µψ  alanı için, denklem (3.27)  m  ile çarpılıp, denklem (3.38) kullanılırsa 

 

=0 
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)(2)( xiBxA µλψγψ µ
λ =  

)

)(
2

2

)(
2

)(

µ
µ

λλµ
µ

µλλµ
µ

µ
λ

ψγψγ

ψψγ

ψγψ µλ

∂−∂=

∂−∂=

=

ii

mB

A

A

iBm

xm
A

iB
xm

 

 

0)( =−∂ λµ
µ ψγ mi               (3.43) 

 

elde edilir. µνψ  alanı için denklem (3.38)’ den 

 

)(
2

)()( νµµν
µ

µµν
µ

µ ψψγψγ ∂−∂−∂=−∂
mB

A
mimi                      (3.44) 

 

bulunur. µψ  ve µνψ  alanları bağımsız değillerdir. Eğer, µψ  biliniyorsa denklem (3.38)’ 

den µνψ  tek olarak belirlenebilir. Spin-3/2 parçacığı tanımlayabilmek için µψ  alanını 

bulmak gerekmektedir. Bu alan üzerindeki koşullarla beraber Rarita-Schwinger (Rarita and 

Schwinger 1941) denklemleri 

0)(,0)(,0)()( =∂==−∂/ xxxmi aaa
µ

µ
µ

µ
µ ψψγψ           (3.45) 

 

olarak elde edilir. Burada 1, 2,3, 4a =  olmak üzere spinör (Dirac) indisi ve 0,1, 2,3µ =  

olmak üzere vektör (Lorentz) indisidir. Buna göre )(xa
µψ  alanı 16 serbestlik derecesi 

anlamına gelen 16 tane bileşene sahiptir. Gerçekte spin-3/2 alan için serbestlik derecesi 

sayısı 8’ dir (2×(2s+1)=8). Denklem (3.45)’ te verilen iki koşul istenmeyen serbestlik 

derecelerini indirgemek için kullanılır.  

 

 )(xa
µψ  alanının Fourier dönüşümü 

 

=0 
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ipx
aa eppdx )(

)2(

1
)( 3

2/3

µµ ψ
π

ψ ∫=             (3.46) 

 

şeklindedir. )(pa
µψ alanını, spin-3/2 alanlar için spinörlerin lineer bir kombinasyonu olacak 

şekilde yazabiliriz. 

 

∑=
λ

µµ λλψ ),(),()( pupAp aa                     (3.47) 

 

Burada ),( λpA ’ ler bazı keyfi katsayılar olmak üzere, bir Lorentz indisi taşıyan ),( λµ pua  

spinörleri, spin-3/2 alan için spinör ifadeleridir. Bunlara vektör-spinör adı verilir. Vektör-

spinörler, spin-1/2 alanlar için spinörler ve spin-1 alanlar için polarizasyon vektörlerinin 

lineer bir kombinasyonu olacak şekilde 

 

),(),(),(
,

2

3
,1

2

1

, mpnpuCpu a

mn

mna
µ

λ
µ ελ ∑=                 (3.48) 

 

yazılır. Burada 2

3
,1

2

1

,λmnC  katsayıları Clebsh-Gordon katsayılarıdır. Bu katsayıların 

yerleştirilmesiyle vektör-spinörler 

 

)1,()
2

1
,()

2

3
,( ppupu aa

µµ ε=              (3.49) 

 

)0,()
2

1
,(

3

2
)1,()

2

1
,(

3

1
)

2

1
,( ppuppupu aaa

µµµ εε +−=               (3.50) 

 

)0,()
2

1
,(

3

2
)1,()

2

1
,(

3

1
)

2

1
,( ppuppupu aaa

µµµ εε −+−=−                   (3.51) 
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)1,()
2

1
,()

2

3
,( −−=− ppupu aa

µµ ε                  (3.52) 

 

şeklinde elde edilirler. İzdüşüm operatörü 

 

)(
2/3

2/3

)()( λ
ν

λ

λ
µµν uup ∑

−=

=Λ               (3.53) 

 

daha açık şekilde 

 








 −
+++−

+/=Λ
m

pp

m

pp
g

mp
p

33

2

3

1

3
)(

2

µννµνµ

νµµνµν
γγ

γγ          (3.54) 

 

olarak yazılabilir. Spin-3/2 propagatörü ise, 

 

ε
µν

µν
imp

P
+−

Λ
=

22
              (3.55) 

 

şeklinde elde edilir.  

 

3.2.2 Spin-3/2 uyarılmış leptonlar için etkileşme akımları 

 

Spin-1/2 uyarılmış leptonlar için literatürde etkin lagranjiyen yöntemi çok sık 

kullanılmaktadır. Bu yöntemi spin-3/2 uyarılmış leptonlar için de  kullanabiliriz. Buna göre 

spin-3/2 uyarılmış leptonlar için literatürde sıklıkla geçen 3  fenomenolojik akım şu şekilde 

verilir: 

 

)2/1,())(2/3,( 5111 kuccpugJ AVe γµµ −=            (3.56) 

)2/1,()()2/3,( 5222 kuccqpu
g

J AV
e γγ µ

λ
λµ −

Λ
=           (3.57) 
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)2/1,()()2/3,( 5
3323 kuccqiqpu

g
J AV

e γσ ν
µν

λ
λµ −

Λ
=           (3.58) 

 

Burada µu  Rarita-Schwinger vektör-spinörü, iVc  ve iAc ’ lar serbest parametrelerdir. 

lVl 2/3*  köşesi için köşe faktörü, farklı akımlar için denklem 3.56 - 3.58 ile verilen akım 

değerlerinde alanlar silindikten sonra denklemin ( i− ) ile çarpılmasıyla elde edilir (Köşe 

faktörleri EK 4.1’ de verilmiştir).  

 

Spin-3/2 uyarılmış leptonların kütleleri üzerine getirilen deneysel bir sınırlama yoktur. 

Ancak literatürde, spin-3/2 leptonların kütleleri ve bağlaşımları üzerine sınırlamalar getiren 

bazı çalışmalar vardır. 2e e γ+ − →  sürecinde, virtüel spin-3/2 uyarılmış lepton değiş tokuşu 

ile KED’ den mümkün sapmalar Walsh ve Ramalho’ nun (1999) çalışmasında ele 

alınmıştır. 183s = GeV’ de OPAL verileri kullanılarak, sadece sol-elli Dirac spinör 

alanları dikkate alınarak ( 2 21, 0L Rc c= = için) akım-2 tipli etkileşmeler için kütle limiti 

*3 / 2 125m > GeV ve akım-3 tipli etkileşmeler için de kütle limiti *3 / 2 142m >  GeV olarak 

bulunmuştur.  

3.3 Uyarılmış Leptonların Bozunumları 

 

Uyarılmış lepton iki cisim bozunmasına uğrar. Uyarılmış bir lepton, bir ayar bozonuna ve 

bilinen bir leptona bozunur. Uyarılmış leptonların bozunma genişliklerini verecek analitik 

ifadeleri elde edebilmek için 1→ 2 sürecinin kinematiği EK 2’ de incelenmiştir.   

 

Burada sadece uyarılmış bir leptonun bir ayar bozonuna ve bilinen bir leptona bozunduğu 

durum ele alınacaktır. Uyarılmış leptonun mümkün 3 bozunma modu; 

γνν )()( ** ll → (ışımasal bozunum), Zll )()( ** νν →  (yüksüz akım bozunumu) ve 

Wll )()( ** νν →  (yüklü akım bozunumu) şeklindedir (Şekil 3.1).  

 

 

      p ,m* p1,m1 
 

p2,m2         

 
γ,Z(W) 

l
* 

l(ν) 
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Şekil 3.1 Uyarılmış yüklü lepton için iki cisim bozunmasının temsili gösterimi 

 

Uyarılmış spin-1/2 leptonun bozunumu ile ilgili genlik, 

 

)()2/1,()1()2/1,(
2

5 qkufqpu
g
iM V

e
µν

µν εγσ −
Λ

=           (3.59) 

 

ile verilmektedir. Burada WZV ,,γ= olmak üzere, Vf , elektrik yükü, zayıf karışım açısı ve 

zayıf izospinin üçüncü bileşeni cinsinden ifade edilen yeni bağlaşımlardır.  

 

Uyarılmış spin-3/2 leptonun bozunumu için üç akım kullanarak elde edilen genlikler 

denklem (3.60) – (3.62) ile verilmiştir. Burada p , k  ve q sırasıyla spin-3/2 uyarılmış 

leptonun, SM leptonunun ve vektör bozonunun dörtlü momentumlarıdır. i indisi WZi ,,γ=  

olmak üzere farklı vektör bozonlarını göstermektedir.  

 

1 1 1 5( ,3 / 2)( ) ( ,1/ 2) ( )i i
e V AM g u p c c u k qµ

µγ ε= −                        (3.60) 

2 2 2 5( ,3 / 2) ( ) ( ,1/ 2) ( )i ie
V A

g
M u p q c c u k q

µ λ
µ λγ γ ε= −

Λ
              (3.61) 

)()2/1,()()2/3,( 53323 qkuccqqpu
g
iM

i

A

i

V
e

αβ
αβ

µ
µ εγσ −

Λ
=          (3.62) 

 

Spin-1/2 uyarılmış lepton için ışımasal bozunum modu için bozunma genişliği ifadesi, son 

durumdaki SM leptonunun kütlesi ihmal edilerek  
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                          (3.63) 

 

şeklinde elde edilir. Spin-1/2 uyarılmış lepton için yüklü akım ve yüksüz akım bozunum 

modları için bozunma genişliği ifadesi; 
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şeklindedir. Denklem (3.63) ve (3.64) incelendiğinde, bozunma genişliklerinin fV 

bağlaşımlarının kareleri ile doğru orantılı olduğu görülmektedir. Burada Vmm >>*  ve 

*m=Λ  alınırsa bozunma genişlikleri için *2mfV≈Γ  elde edilir. Uyarılmış spin-3/2 lepton 

için, farklı akımlar için ışımasal bozunum modunda elde edilen bozunma genişlikleri; 
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şeklindedir. Spin-3/2 uyarılmış leptonların yüklü ve yüksüz akım bozunum modları için 

bozunma genişlikleri ZWV ,= olmak üzere, 
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)3( κκ
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m

mcc AVV            (3.70) 

 

olarak elde edilir. Burada κ =(mV /m
*)2 ile verilir. Üç akım için de bozunma genişliği 

ifadesinin serbest parametrelerin karelerinin toplamı ile doğru orantılı olduğu görülmüştür. 

Kütle boyutu 5 ve 6 olan operatörler bozunma genişliğine sırasıyla  2−Λ  ve 4−Λ  orantılı 

olacak şekilde katkı verirler. *m=Λ alındığı durumda bu ifadelerin bağıl önemi 

olmayacaktır.  

 

Spin-1/2 uyarılmış elektron ve farklı akımlar dikkate alınarak spin-3/2 uyarılmış elektron 

için toplam bozunma genişliğinin kütleye göre değişimi Şekil 3.2’ de verilmiştir. Burada 

Λ=m*, spin-1/2 akım için 1' == ff , spin-3/2 akımlar için 05.0,05.0 == iAiV cc  olarak 

alınmıştır.  

 

Şekil 3.2  Spin-1/2 ve spin-3/2 uyarılmış leptonun bozunma genişliğinin kütleye göre  
değişimi 

 

Çizelge 3.1’ de uyarılmış spin-1/2 elektron için 1' == ff (uyarılmış spin-1/2 nötrino 

1' =−= ff ) ve 5.0== iAiV cc  için uyarılmış spin-3/2 leptonun kütlesine bağlı olarak toplam 
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bozunma genişliği değerleri verilmiştir. Çizelge 3.1’ de görüldüğü gibi, spin-1/2 uyarılmış  

leptonların bozunma genişlikleri 5.0* <m  TeV için oldukça küçüktür. Bu ise, uyarılmış 

leptonlar üretilirse, bozunma köşesini (vertex) deneysel olarak saptama olanağını 

bulamadan, detektör içinde bozunacakları anlamına gelmektedir (Boudjema et al. 1993). 

İkinci sütunda parantez içindeki değerler uyarılmış spin-1/2 elektron 1' =−= ff  (uyarılmış 

spin-1/2 nötrino 1' == ff ) için elde edilen değerlerdir. Burada *m=Λ  olarak alınmıştır. 

 

 
 
 
 
 
 
 
 
 
Çizelge 3.1 Spin-1/2 ve spin-3/2 uyarılmış leptonların toplam bozunma genişlikleri 
 
 

*m (TeV) 

 

)2/1(JΓ  (GeV) 

 

)2/3(1J
Γ  (GeV) 

 

)2/3(2J
Γ  (GeV) 

 

)2/3(3J
Γ  (GeV) 

0.2 1.15 (1.03) 0.54 0.14 0.06 

0.3 1.93 (1.85) 1.22 0.55 0.12 

0.4 2.67 (2.61) 2.29 1.36 0.18 

0.5 3.39 (3.35) 3.89 2.71 0.23 

0.75 5.18 (5.15) 11.12 9.31 0.36 

1.0 6.95 (6.93) 24.62 22.20 0.48 

1.5 10.47 (10.45) 78.89 75.24 0.73 

2.0 13.98 (13.97) 183.48 178.61 0.97 

2.5 17.49 (17.47) 355.16 349.07 1.22 

3.0 20.99 (20.98) 650.72 603.41 1.46 
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Toplam bozunma genişliği, her bir bozunma modu için bozunma genişliklerinin toplamı 

olarak ifade edilir.  

 

∑
=

Γ=Γ
n

i

itop

1

            (3.71) 

 

Dallanma oranı (BR), özel bir bozunum modu için bozunma genişliğinin toplam bozunma 

genişliğine bölünmesi ile elde edilir.  

 

BR
top

i

Γ

Γ
=             (3.72) 
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Şekil 3.3  Spin-1/2 uyarılmış elektronun kütlesine bağlı (%) BR grafiği 
     ( 1' == ff  için (kalın çizgiler) ve 1' =−= ff  için (ince çizgiler) verilmiştir) 

 

Şekil 3.3’ te spin-1/2 uyarılmış elektron için dallanma oranı grafiği *m=Λ  için verilmiştir. 

Bu grafikte, 1' == ff  için (%) BR değerleri kalın çizgiler ile, 1' =−= ff  için (%) BR 
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değerleri ise ince çizgiler ile verilmiştir. Açıkça görüleceği gibi 'ff −=  için spin-1/2 

uyarılmış elektronun foton bozunum modu kapalıdır (bozunma genişliği sıfırdır). Uyarılmış 

spin-1/2 elektron için en büyük katkı m*>150 GeV için W-kanalından gelmektedir. Büyük 

kütlelerde dallanma oranı değerleri, Z-kanalı için % 12 ve foton kanalı için % 28 dir. 

 

Uyarılmış spin-1/2 nötrinonun ise 'ff =  için foton kanalı kapalıdır. Bu durumda, uyarılmış 

nötrino için büyük kütle değerlerinde, dallanma oranları yaklaşık olarak, W-kanalı için % 

60 ve Z-kanalı için % 40 olarak elde edilmektedir. *m=Λ  için spin-1/2 uyarılmış 

nötrinonun dallanma oranlarının kütleye göre değişimi grafiği Şekil 3.4’ te verilmiştir. 
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Şekil 3.4  Spin-1/2 uyarılmış nötrinonun kütlesine bağlı (%) BR grafiği 
     ( 1' =−= ff için (kalın çizgiler) ve 1' == ff  için (ince çizgiler) verilmiştir)   

 

Uyarılmış spin-3/2 elektronun üç akıma göre verilen dallanma oranlarının kütleye göre 

değişimi grafiği Şekil 3.5’ te verilmiştir. Eşit bağlaşımlarda ve *m=Λ  alındığında, 

bozunma genişlikleri arasındaki farklılık, her akım için ışımasal moddaki katkıların farklı 
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olmasından ve κ  terimlerinden kaynaklanmaktadır. Şekil 3.5’ ten görüldüğü gibi, yaklaşık 

≥*m 200 GeV için akım-1 ( 1J )’ e ve akım-2 ( 2J )’ ye karşılık gelen zayıf bozunum modları 

baskındır. Büyük kütlelerde, eşit bağlaşımlar alındığında  3J  için zayıf ve ışımasal 

bozunum modlarının eşit olasılığa sahip olduğu görülmektedir. Spin-3/2 uyarılmış nötrino 

için dallanma oranının kütleye göre değişimi grafiği, bağlaşımlar aynı alındığında spin-3/2 

uyarılmış elektronunki ile aynı olacaktır.   
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Şekil 3.5 Farklı akımlar için spin-3/2 uyarılmış leptonun dallanma oranları 
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4. ELEKTRON-POZİTRON ÇARPIŞTIRICILARINDA UYARILMIŞ  

    LEPTONLARIN TEK ÜRETİMİ 

 

Elektron-pozitron çarpışmalarının deneysel olarak büyük avantajları vardır. e+e- etkileşmesi 

elektrozayıf teori çerçevesinde iyi anlaşılmıştır ve mümkün SM süreçleri için büyük 

belirsizlikler olmadan tahminler yapılabilir. Elektron-pozitron sistemi, sıfır elektrik yüküne, 

sıfır lepton sayısına vb. sahip olduğu için yeni parçacıklar üretmek için oldukça uygundur. 

Simetrik elektron ve pozitron demetleri kullanıldığında laboratuar çerçevesi kütle merkezi 

çerçevesi ile özdeş olur, böylelikle tüm kütle merkezi enerjisi mümkün en yüksek fizik 

eşiği için kullanılabilir (Han 2005). Bu nedenlerle, yüksek enerjili elektron-pozitron 

çarpıştırıcıları uyarılmış leptonların araştırılması için mükemmel bir ortam sağlar.  

 

Uyarılmış leptonların, e+e- çarpıştırıcılarında çift ve tek üretimi mevcuttur. Tek üretim 

süreçleriyle, kütle merkezi enerjisine yakın kütle değerlerine kadar ulaşılabilinir. Elektron-

pozitron çarpıştırıcılarında uyarılmış elektronun tek üretimi meeee *±−+ →  ve uyarılmış 

nötrinonun tek üretimi ise νν *→−+ee  süreçleri ile mümkündür. Uyarılmış elektron ve 

nötrino tesir kesitlerinin hesabı için kütle merkezi sisteminde 2→2 sürecinin kinematiği 

kullanılmıştır. Kinematik ile ilgili ayrıntılı hesaplamalar EK 3’ te verilmiştir.  

  

4.1 Elektron-Pozitron Çarpıştırıcılarında Uyarılmış Elektronun Tek Üretimi 

 

Spin-3/2 ve spin-1/2 uyarılmış elektronun, gelecek nesil yüksek enerjili −+ee  çarpıştırıcıları 

ILC (International Linear Collider) ve CLIC (Compact Linear Collider)’ de tek üretimi 

mümkündür. s -kanalı ve t -kanalında Z  ve γ  değiş-tokuşu yoluyla tek üretime katkıda 

bulunan Feynman diyagramları Şekil 4.1’ de verilmiştir.  
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Şekil 4.1 Uyarılmış elektronun tek üretimi için mümkün Feynman diyagramları  

     (a) s -kanalı ve (b) t -kanalında Z  ve γ  değiş-tokuşu 

 

−+ee  çarpışmalarında s -kanalında γ aracılığı ile uyarılmış elektronun tek üretimi sürecinin 

genlik ifadeleri spin-1/2 akım ve spin-3/2 fenomenolojik akımlar 21 , JJ  ve 3J  için 

sırasıyla; 
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ile verilir. Spin-1/2 ve spin-3/2 uyarılmış elektronun −+ee  çarpışmalarında s -kanalında 

Z aracılığı ile tek üretimi süreci için genlik ifadeleri; 
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şeklindedir. t -kanalında γ aracılığında tek üretimi süreci için genlik ifadeleri; 
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ile verilir. t -kanalında Z aracılığı ile tek üretimi süreci için genlik ifadeleri; 
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şeklindedir. Denklem (4.1) - (4.16) arasında verilen genlik ifadelerinde, 1p  gelen 

elektronun, 2p  gelen pozitronun, 3p  çıkan uyarılmış elektronun, 4p  uyarılmış elektrona 

eşlik eden pozitronun ve q  ise aracılık eden vektör bozonunun dörtlü momentumlarıdır.  

 

4.2 Elektron-Pozitron Çarpıştırıcılarında Uyarılmış Nötrinonun Tek Üretimi 

 

Uyarılmış nötrino e+e- çarpıştırıcısında Şekil 4.2’ de gösterildiği gibi, foton ve Z  bozonu 

değişimi ile −s kanalında ve W  değişimi ile −t kanalında tek olarak üretilebilir.  
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Şekil 4.2 Uyarılmış nötrinonun tek üretimi için mümkün Feynman diyagramları  

     (a) s -kanalında Z  ve γ  değiş-tokuşu ve (b) t -kanalında W değiş-tokuşu 

 

−+ee  çarpışmalarında, spin-1/2 uyarılmış nötrino için ve spin-3/2 uyarılmış nötrinonun üç 

fenomenolojik  akımı için, s -kanalında γ aracılığı ile tek üretimi sürecinin  genlik ifadeleri; 
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ile verilir. Spin-1/2 ve spin-3/2 uyarılmış nötrinonun −+ee  çarpışmalarında s -kanalında 

Z aracılığı ile tek üretimi süreci için genlik ifadeleri; 
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şeklindedir. t -kanalında W aracılığı ile uyarılmış nötrino tek üretimi süreci için genlik 

ifadeleri; 
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şeklindedir. Denlem (4.17)-(4.28) arasında verilen genlik ifadelerinde, 1p  gelen elektronun, 

2p  gelen pozitronun, 3p  çıkan uyarılmış nötrinonun, 4p uyarılmış nötrinoya eşlik eden 

antinötrinonun, q  ise aracılık eden vektör bozonunun dörtlü momentumlarıdır.  

 

4.3 Tesir Kesitlerinin Hesaplanması 

 

Kütle merkezi sisteminde gelen parçacık kütleleri sıfır alındığında  2→2 süreci için 

diferansiyel tesir kesiti 
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bağıntısı ile verilmektedir. 2→2 sürecinin sembolik gösterimi Şekil 4.3’ te verilmiştir. 

Uyarılmış elektron ve uyarılmış nötrino için diferansiyel tesir kesitlerinin analitik ifadeleri 

EK 4.2-4.3’ te verilmiştir. Burada 2
43

2
21 )()( pppps +=+=  ve 2

42
2

31 )()( ppppt −=−=  

şeklinde tanımlanan Lorentz değişmezi Mandelstam parametreleridir. −+ee  çarpışmalarında 

uyarılmış elektronun tek üretimi ile ilgili diyagramlardan, t - kanalında fotonun aracılık 

ettiği diyagram tesir kesitine en büyük katkıyı verecektir. Düşük momentum aktarımı 

olduğu durumda ( 02 →q ), foton  propagatöründeki 2/1 q  teriminden dolayı ıraksaklık 

meydana gelir. Fiziksel bir tesir kesitinin elde edilebilmesi ve bu tesir kesitinin deneysel 

olarak ölçülebilmesi için, ıraksaklığı gidermek üzere süreçte çıkan gözlenebilir 

parçacıkların kinematik değişkenleri ( θcos,, ypT ,…vb.) üzerine bir takım sınırlamalar 

getirilebilir. Bununla birlikte, toplam tesir kesitini bulmak için diferansiyel tesir kesitinin 



 84

( dtd /σ ) integrali alınırken, integralin alt ve üst sınır değerleri ( mint ve maxt ) üzerine de 

sınırlamalar koyulabilir (Hagiwara 1985).  

 

 

Şekil 4.3  2→2 sürecinin sembolik gösterimi (PDG 2008) 

 

Kütle merkezi sisteminde mint ve maxt değerleri (Amsler et al. 2008) 
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ile hesaplanabilir. Kütle merkezi momentumları, im  ilgili parçacığın momentumu olmak 

üzere, 
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şeklindedir. Gelen ve çıkan parçacıkların kütle merkezi enerjileri ise 
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şeklinde verilir. Bu değerler kullanılarak Lorentz değişmez Mandelstam parametresi t , SM 

leptonlarının kütleleri ihmal edildiğinde, θ  saçılma açısı olmak üzere, 

 



 85

θcos(2)( 3131
2

31 cmcmcmcm ppEEppt
rr

−−≈−=            (4.33) 

 

elde edilir. *
4 mm =  alınarak, enerji ve momentum değerleri  

smspEspE cmcmcmcm 2)(,2 2*
3311 −====
rr

 olarak hesaplanabilir. Bu değerler t  

ifadesinde yerine yazılırsa t  ve θcos  arasındaki ilişki; 
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olarak bulunur. θcos ’ ya bağlı diferansiyel tesir kesiti ifadesi; 
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olarak elde edilir. Burada spin-1/2 ve spin-3/2 uyarılmış elektronun ve nötrinonun tek 

üretimi için toplam tesir kesitleri bulunurken θcos  üzerine sınırlama koyulmuştur 

(diferansiyel tesir kesiti [-0.95, 0.95] aralığında integre edilmiştir).  

 

Tesir kesitleri hesaplanırken, parametre sayısını azaltmak ve teorik tahminlerde 

bulunabilmek için uyarılmış lepton bağlaşımları ile ilgili bazı kabullenmeler yapılabilir. 

Spin-1/2 uyarılmış leptonlarla ilgili olarak literatürde sıklıkla 1' == ff  ve 1' =−= ff  

durumları dikkate alınmaktadır. Spin-3/2 uyarılmış leptonların tek üretim tesir kesiti ile 

ilgili teorik bir tahminin olmayışı ve serbest parametre sayısının fazlalığından dolayı, sinyal 

tesir kesitleri hesaplanırken, her bir ayar bozonuna bağlaşım ayrı ayrı dikkate alınmıştır; 

yani, ayar bozonlarından sadece birine olan bağlaşım sıfırdan farklı alınırken diğer ayar 

bozonlarına bağlaşım sıfır olarak alınmıştır. Spin-1/2 ve spin-3/2 uyarılmış leptonların tek 
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üretimi için hesaplamalar yapılırken, yapılabilecek kabullenimler Çizelge 4.1’ de 

verilmiştir.  

 

Çizelge 4.1 Uyarılmış leptonlar için bağlaşımların seçimi 
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4.3.1 Uyarılmış elektron tek üretiminde  Z -bozonuna bağlaşım 

 

s ve t  kanallarında Z -bozonu değiş tokuşu ağır propagatör ile etkin bir form faktörü gibi 

davranır. Spin-3/2 uyarılmış elektronun ( *e ) tek üretiminde sadece Z -bozonuna bağlaşım 

istediğinde 0)( =γ
AiVc ve 0)( ≠z

AiVc  almak yeterlidir. Spin-1/2 uyarılmış elektron için ise, 

'ff −=  alındığında foton bağlaşımı ortadan kalkacak ve *e  tek üretimi için sadece Z -

bozonuna bağlaşım kalacaktır. Spin-1/2 ve spin-3/2 uyarılmış elektronun (pozitronun) −+ee  

çarpışmalarında tek üretiminde, toplam tesir kesitinin uyarılmış lepton kütlesine göre 

değişimi, ILC ( 5.0=s  TeV) ve CLIC ( 3=s  TeV) enerjileri için sırasıyla Şekil 4.4 ve 

Şekil 4.5’ te verilmiştir. Bu grafiklerde düz çizgi, nokta, çizgi, nokta-çizgi sırasıyla 

1' =−= ff  için spin-1/2 akımlara, 5.0== z
iV

z
iA cc  için spin-3/2 akımlara karşılık 

gelmektedir. Burada *m=Λ alınmıştır. 

 

Şekil 4.4 (Şekil 4.5)’ ten görüldüğü gibi uyarılmış spin-3/2 elektron (ya da pozitron) 

)3(5.0=s TeV için 3J  akımı dikkate alındığında 0.25 (0.8) TeV’ den daha düşük 

kütlelerde diğer akımlara göre daha yüksek tesir kesitine sahiptir. Tesir kesitleri iviA cc ,  

bağlaşımlarının kareleri ve bağlaşımların çapraz çarpımları ile orantılı olduğundan, bu 
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bağlaşımlar farklı alındığında, spin-3/2 akımların spin-1/2’ ye göre bağıl önemleri 

değişecektir.  
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Şekil 4.4  Uyarılmış elektronun (pozitronun) Z- bozonuna bağlaşımı olduğunda üretim tesir  

      kesitinin kütleye göre ILC ( 5.0=s  TeV) enerjilerinde değişimi 
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Şekil 4.5  Uyarılmış elektronun (pozitronun) Z- bozonuna bağlaşımı olduğunda üretim tesir  

      kesitinin kütleye göre CLIC ( 3=s  TeV) enerjilerinde değişimi 
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Spin-3/2 ve spin-1/2 uyarılmış elektron (pozitron) sinyallerini birbirinden ayırt edebilmek 

için son durum gözlenebilir parçacıkların açısal dağılımları incelenmiştir. Normalize tesir 

kesitlerinin saçılma açısının kosinüsüne göre değişimi ILC ve CLIC enerjilerinde sırasıyla, 

Şekil 4.6’ da ve Şekil 4.7’ de verilmiştir. Burada *m=Λ =350 GeV, spin-1/2 akım için 

1' =−= ff  ve spin-3/2 akımlar için 5.0== z
iV

z
iA cc  olarak alınmıştır. 
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Şekil 4.6 Z-bozonuna bağlaşım durumunda uyarılmış elektron (pozitron) tek üretimi için  

    ILC ( 5.0=s TeV) enerjilerinde normalize açısal dağılım 
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Şekil 4.7 Z-bozonuna bağlaşım durumunda uyarılmış elektron (pozitron) tek üretimi için  

    CLIC ( 3=s TeV) enerjilerinde normalize açısal dağılım 
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Açısal dağılımlar incelendiğinde, spin-1/2 ve spin-3/2 uyarılmış elektron (pozitron) 

sinyalinin birbirinden ayırt edilebildiği, uyarılmış spin-1/2 elektronun daha çok ileri yönde 

üretildiği ve akım-3 için spin-3/2 uyarılmış elektronun farklı bir açısal dağılıma sahip 

olduğu görülmektedir. Bağlaşımlar eşit seçildiğinde normalize açısal dağılmların 

bağlaşımlara bağımlılığı kalmayacaktır. Seçilen farklı bağlaşımlar ve kütle değerlerine göre 

açısal dağılımların biçimi değişecektir. 

 

4.3.2 Uyarılmış elektron tek üretiminde  fotona bağlaşım 

 

Spin-3/2 uyarılmış elektron için sadece γ ’ ya bağlaşım istediğinde ( ) 0iV Acγ ≠ ve ( ) 0z
iV Ac =  

almak uygundur. Spin-1/2 uyarılmış elektron için ise, bağlaşımlar 'ff =  alınmıştır. 

Burada, uyarılmış elektronun sadece fotona bağlaşımı düşünüldüğünden γee →*  sinyali 

dikkate alınarak (spin-1/2 uyarılmış elektron sinyali için elde edilen tesir kesiti γee →*  

dallanma oranı ile çarpılarak) inceleme yapılmıştır. Spin-1/2 ve spin-3/2 uyarılmış 

elektronun (pozitronun) −+ee  çarpışmalarında tek üretiminde sadece fotona bağlaşımı 

olduğunda, toplam tesir kesitinin uyarılmış lepton kütlesine göre değişimi, ILC ve CLIC 

enerjileri için sırasıyla Şekil 4.8’ de ve Şekil 4.9’ da verilmiştir.  Burada, spin-1/2 uyarılmış 

elektron için 1' == ff , spin-3/2 akımlar için 5.0== γγ
iViA cc  ve *m=Λ  alınmıştır. 

 

Şekil 4.8’ den (Şekil 4.9’ dan) görüldüğü gibi uyarılmış spin-3/2 elektron (ya da pozitron) 

)3(5.0=s TeV için 3J  akımı dikkate alındığında 0.22 (1.3) TeV’ den daha düşük 

kütlelerde diğer akımlara göre daha yüksek tesir kesitine sahiptir.  
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Şekil 4.8  Uyarılmış elektronun (pozitronun) fotona bağlaşımı olduğunda üretim tesir  

      kesitinin kütleye göre ILC ( 0.5s =  TeV) enerjilerinde değişimi 
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Şekil 4.9  Uyarılmış elektronun (pozitronun) fotona bağlaşımı olduğunda üretim tesir  

      kesitinin kütleye göre CLIC ( 3=s  TeV) enerjilerinde değişimi 
 
 
Fotona bağlaşım olduğu durumda spin-3/2 ve spin-1/2 uyarılmış elektron (pozitron) 

sinyallerini birbirinden ayırt edebilmek için normalize tesir kesitlerinin saçılma açısının 

kosinüsün göre değişimi  Şekil 4.10’ da ve Şekil 4.11’ de  incelenmiştir. Burada 

==Λ *m 350 GeV, spin-1/2 akım için 1' == ff  ve spin-3/2 akımlar için 5.0== γγ
iViA cc  
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olarak alınmıştır. Seçilen bu bağlaşım ve kütle değeri için 3=s  TeV’ de spin-3/2 

uyarılmış elektronun (pozitronun) açısal dağılımın diğerlerinden farklı olduğu görülmüştür. 

Sadece fotona bağlaşım olduğu durumda da spin-1/2 ve spin-3/2 uyarılmış elektron 

(pozitron) sinyallerinin  birbirinden ayırt edilebilecekleri gözlenmiştir.  
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Şekil 4.10 Fotona bağlaşım durumunda uyarılmış elektron (pozitron) tek üretimi için  

       ILC ( 5.0=s TeV) enerjilerinde normalize açısal dağılım 
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Şekil 4.11 Fotona bağlaşım durumunda uyarılmış elektron (pozitron) tek üretimi için  

      CLIC ( 3=s TeV) enerjilerinde normalize açısal dağılım 
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4.3.3 Uyarılmış nötrino tek üretiminde  fotona bağlaşım 

 

Uyarılmış nötrinoların ( *ν ), SM nötrinolarından farklı olarak elektromanyetik bağlaşımı 

vardır. Uyarılmış nötrinoların −+ee  çarpışmalarında tek olarak üretilmesi için mümkün 

Feynman diyagramlarından biri s -kanalında fotonun aracılık ettiği diyagramdır. Spin-3/2 

uyarılmış nötrinonun sadece fotona bağlaşımı istendiğinde 0)( ≠γ
AiVc ve 0)()( == W

AiV
z
AiV cc  

almak yeterlidir. Spin-1/2 uyarılmış elektron için, bağlaşımlar 'ff −=  alındığında üç 

bozunum (ışımasal, yüklü zayıf ve yüksüz zayıf)  modu mümkün olacaktır. Burada, 

uyarılmış spin-1/2 nötrinonun sadece elektromanyetik bağlaşımının olması istendiğinden, 

'ff −=  için elde edilen toplam tesir kesiti νγν →*  dallanma oranı ile çarpılmıştır. −+ee  

çarpışmalarında spin-1/2 ve spin-3/2 uyarılmış nötrinonun tek üretim sürecinde yalnızca 

fotona bağlaşımı dikkate alındığında, tesir kesitinin uyarılmış nötrino kütlesine göre 

değişimi, ILC ve CLIC enerjileri için sırasıyla Şekil 4.11 ve  Şekil 4.12’ de verilmiştir. Düz 

çizgi, nokta, kesik çizgi, nokta-çizgi sırasıyla 1' =−= ff  için spin-1/2 akıma, 5.0== γγ
iViA cc  

için spin-3/2 321 ,, JJJ  akımlarına karşılık gelmektedir. Burada *m=Λ  alınmıştır. Şekil 

4.11 (Şekil 4.12)’ den görüldüğü gibi spin-3/2 uyarılmış nötrino )3(5.0=s TeV için 3J  

akımı dikkate alındığında 0.22 (1.3) TeV’ den daha düşük kütlelerde diğer akımlara göre 

daha yüksek tesir kesitine sahiptir.  
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Şekil 4.12  Uyarılmış nötrinonun fotona bağlaşımı olduğunda üretim tesir kesitinin 

        kütleye göre ILC ( 5.0=s  TeV) enerjilerinde değişimi 
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Şekil 4.13 Uyarılmış nötrinonun fotona bağlaşımı olduğunda üretim tesir kesitinin 

       kütleye göre CLIC ( 3=s  TeV) enerjilerinde değişimi 
 

Tek üretim sürecinde uyarılmış nötrinolara eşlik eden bir SM antinötrinosu açığa çıkar.  

Spin-3/2 ve spin-1/2 uyarılmış nötrino sinyallerini ayırt edebilmek için eşlik eden 

antinötrinonun kayıp enine momentum dağılımlarına bakılır. Enine momentum 

dağılımlarının biçimine göre spin-3/2 ve spin-1/2 uyarılmış nötrino sinyallerini ayırt etmek 
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mümkün olacaktır. Uyarılmış nötrino üretim tesir kesitinin eşlik eden antinötrinonun enine 

momentumuna göre değişimi 

 

2
*2

1

1
2

T

T

d d
s

dp dt
s m

p s

σ σ 
=  

   − −     

                        (4.36) 

 

ile verilir. Bu ifadenin elde edilişi EK 3.2’ de ayrıntılı olarak verilmiştir. Uyarılmış 

nötrinonun yalnızca fotona bağlaşımı dikkate alındığında spin-3/2 ve spin-1/2 uyarılmış 

nötrino üretimi için kayıp enine momentum dağılımları Şekil 4.14 ve Şekil 4.15’ te 

verilmiştir. Bu şekillerde, spin-1/2 akım için 1' =−= ff  ve spin-3/2 akımlar için 

5.0== γγ
iViA cc  olarak alınmıştır. Ayrıca, Şekil 4.14’ te ILC ( 5.0=s TeV) için  *mΛ = =350 

GeV  ve Şekil 4.15’ te CLIC ( 3=s TeV) için  *mΛ = =1 TeV olarak alınmıştır.  Verilen 

bu bağlaşımlar ve kütle değerleri için kayıp enine momentum dağılımlarına bakılarak spin-

1/2 ve spin-3/2 uyarılmış nötrino sinyallerinin birbirinden ayırt edilebileceği görülmüştür. 
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Şekil 4.14 Fotona bağlaşım durumunda uyarılmış nötrino tek üretimi için ILC  

      ( 5.0=s TeV) enerjilerinde kayıp enine momentum dağılımı 
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Şekil 4.15 Fotona bağlaşım durumunda uyarılmış nötrino tek üretimi için CLIC  

      ( 3s = TeV) enerjilerinde kayıp enine momentum dağılımı 
 

4.3.4 Uyarılmış nötrino tek üretiminde  Z-bozonuna bağlaşım 
 

Spin-3/2 uyarılmış nötrinonun sadece Z -bozonuna bağlaşımı istediğinde 0)( ≠Z
AiVc ve 

0)()( == W
AiVAiV cc γ  alınır. Spin-1/2 uyarılmış nötrino için, bağlaşımlar 'ff =  alındığında 

ışımasal bozunum modu ortadan kalkarken sadece  yüklü zayıf ve yüksüz zayıf bozunum 

modu mümkün olur. Burada uyarılmış spin-1/2 nötrinonun sadece Z ’ ye  bağlaşımının 

olması istediğinden, 'ff =  alınarak elde edilen toplam tesir kesiti Zνν →* dallanma oranı 

ile çarpılmıştır. −+ee  çarpışmalarında spin-1/2 ve spin-3/2 uyarılmış nötrinonun tek üretim 

sürecinde yalnızca Z -bozonuna bağlaşımı dikkate alındığında, tesir kesitinin uyarılmış 

nötrino kütlesine göre değişimi, ILC ve CLIC enerjileri için sırasıyla Şekil 4.16’ da ve 

Şekil 4.17’ de  verilmiştir. Bu grafiklerde düz çizgi, nokta, kesik çizgi, nokta-çizgi sırasıyla 

1' == ff  için spin-1/2 akıma, 5.0== Z
iV

Z
iA cc  için spin-3/2 321 ,, JJJ  akımlarına karşılık 

gelmektedir. Burada *m=Λ alınmıştır. 
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Şekil 4.16 Uyarılmış nötrinonun Z-bozonuna bağlaşımı olduğunda üretim tesir kesitinin 

       kütleye göre ILC ( 0.5s =  TeV) enerjilerinde değişimi 
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Şekil 4.17 Uyarılmış nötrinonun Z-bozonuna bağlaşımı olduğunda üretim tesir kesitinin 

       kütleye göre CLIC ( 3s =  TeV) enerjilerinde değişimi 
  

Yalnızca Z -bozonuna bağlaşım dikkate alındığında küçük kütle değerlerinde  spin-3/2 

uyarılmış nötrinonun 3J  için 1J  ve 2J ’ den daha büyük tesir kesitlerine sahip olduğu Şekil 

4.16’ dan ve Şekil 4.17’ den görülmektedir. Uyarılmış nötrinolara eşlik eden SM 
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antinötrinolarının kayıp enine momentum dağılımları incelendiğinde ILC için  *mΛ = =350 

GeV ve CLIC için *mΛ = =1 TeV alındığında, kayıp enine momentum dağılımlarının farklı 

olduğu görülmüştür. Her iki kütle merkezi enerjisinde de küçük kütle değerlerinde spin-3/2 

akım-2 ve akım-3 ( 2J ve 3J ) Tp/  dağılımlarının, uyarılmış nötrinonun sadece fotona 

bağlaşımı olduğu durumdaki gibi, birbirine çok yakın olduğu Şekil 4.18’ den ve Şekil 4.19’ 

dan görülmektedir. Bu grafiklerde, spin-1/2 akım için 1' == ff ve spin-3/2 akımlar için 

5.0== Z
iV

Z
iA cc  olarak alınmıştır. 
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Şekil 4.18 Z- bozonuna bağlaşım durumunda uyarılmış nötrino tek üretimi için ILC  

      ( 5.0=s TeV) enerjilerinde kayıp enine momentum dağılımı 
  



 98

200 400 600 800 1000 1200
pTHGeVL

1. ´ 10-6

0.0001

0.01

1

d
Σ
�
d
p
T
H
p
b
�
G
e
V
L J3H3�2L

J2(3�2L
J1H3�2L
JH1�2L

                    

Şekil 4.19 Z- bozonuna bağlaşım durumunda uyarılmış nötrino tek üretimi için CLIC  

      ( 3s = TeV) enerjilerinde kayıp enine momentum dağılımı 
 

4.3.5 Uyarılmış nötrino tek üretiminde  W-bozonuna bağlaşım 

 

Spin-3/2 uyarılmış nötrinonun sadece W -bozonuna bağlaşımı istediğinde 0)( ≠W
AiVc ve 

0)()( == Z
AiVAiV cc γ  alınır. Spin-1/2 uyarılmış nötrino için, bağlaşımlar 'ff =  ya da 'ff −=  

alındığında yüklü zayıf bozunum modu mümkün olacaktır. Burada uyarılmış spin-1/2 

nötrinonun sadece W ’ ya bağlaşımının olması istediğinden, 'ff −=  alınmış ve elde edilen 

toplam tesir kesiti eW→*ν dallanma oranı ile çarpılmıştır. −+ee  çarpışmalarında spin-1/2 

ve spin-3/2 uyarılmış nötrinonun tek üretim sürecinde yalnızca W  bozonuna bağlaşımı 

dikkate alındığında, tesir kesitinin uyarılmış nötrino kütlesine göre değişimi, ILC ve CLIC 

enerjileri için sırasıyla Şekil 4.20 ve Şekil 4.21’ de verilmiştir. Bu grafiklerde, düz çizgi, 

nokta, kesik çizgi, nokta-çizgi sırasıyla 1' =−= ff  için spin-1/2 akıma, 5.0== W
iV

W
iA cc  için 

spin-3/2  321 ,, JJJ  akımlarına karşılık gelmektedir. Ayrıca *m=Λ alınmıştır. 
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Şekil 4.20 Uyarılmış nötrinonun W-bozonuna bağlaşımı olduğunda üretim tesir kesitinin 

       kütleye göre ILC ( 0.5s = TeV) enerjilerinde değişimi 
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Şekil 4.21 Uyarılmış nötrinonun W-bozonuna bağlaşımı olduğunda üretim tesir kesitinin 

       kütleye göre CLIC ( 3s = TeV) enerjilerinde değişimi 
 
 

W-bozonuna bağlaşım dikkate alındığında, diğer ayar bozonlarına kıyasla  daha büyük tesir 

kesitleri elde edilmektedir. s =3 TeV için 3J  ile, t -kanalında W değiş-tokuşununda  spin-

3/2 uyarılmış nötrino üretimi 4.1* <m  TeV için daha gözlenebilirdir. Tek olarak üretilen 
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uyarılmış nötrinolara eşlik eden SM antinötrinolarının kayıp enine momentum dağılımları 

Şekil 4.22’ de ve Şekil 4.23’ te verilmiştir. Bu grafiklerde, spin-1/2 akım için 1' =−= ff ve 

spin-3/2 akımlar için 5.0== W
iV

W
iA cc , ILC için  *mΛ = =350 GeV ve CLIC için *mΛ = =1 

TeV olarak alınmıştır. Verilen bu bağlaşım ve kütle değerleri için spin-1/2 ve spin-3/2 

uyarılmış nötrino sinyallerinin birbirinden ayırt edilebildiği görülmüştür. 
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Şekil 4.22 W- bozonuna bağlaşım durumunda uyarılmış nötrino tek üretimi için ILC  

      ( 0.5s = TeV) enerjilerinde kayıp enine momentum dağılımı 
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Şekil 4.23 W- bozonuna bağlaşım durumunda uyarılmış nötrino tek üretimi için CLIC  

      ( 3s = TeV) enerjilerinde kayıp enine momentum dağılımı 
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4.4 Analiz 
 

Spin-3/2 ve spin-1/2 uyarılmış leptonların elektron-pozitron çarpıştırıcılarında vereceği 

sinyallerin istatistik önemini incelemek için farklı bozunma kanallarında karşılık gelen 

fonlar çeşitli kinematik sınırlamalar altında incelenmiştir. Uyarılmış lepton sinyalinin iyi 

algılanabilmesi için fonun mümkün olduğu kadar azaltılması gerekmektedir. Bunun için 

son durumdaki gözlenebilir parçacıkların enine momentumları, hızlılıkları (rapidity), 

ayrılmaları ve değişmez kütleleri üzerine bazı kinematik sınırlamalar konulmalıdır (Çakır et 

al. 2004).  

 

4.4.1 Uyarılmış elektron için analiz 

 

Uyarılmış elektronun bozunumları dikkate alındığında, SM fonu olarak 

Zeeeeeeee +−−++−−+ →→ ,γ  ve +−−+ → Weee ν  süreçleri ele alınmıştır. Fon tesir 

kesitlerinin hesaplanmasında Calchep programı kullanılmıştır. Getirilen ilk sınırlamalar,  
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e
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                            (4.37) 

 

şeklindedir. Burada Tp  son durum gözlenebilir parçacıkların enine momentumu, η  sanki-

hızlılık (pseudorapidite), R∆  ayrılma açısı olarak bilinen, son durum gözlenebilir 

parçacıklar arasındaki ayırımdır. Bu kinematik sınırlamaları getirdikten sonra SM fon tesir 

kesitleri, sırasıyla, ,e e e e Zγ− + − +  ve −− We ν  son durumları  için, s =0.5 (3)  TeV’ de 

=σ 1.93 (0.16) pb, 0.11 (0.03) pb ve 0.92 (0.46) pb olarak elde edilmiştir.   
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Uyarılmış elektron sinyalini fon süreçlerinden daha iyi ayırabilmenin bir yolu eZ  ve γe  

sistemlerinin değişmez kütlesi üzerine γ,ZV = olmak üzere 25* <− mmeV  sınırlamasını 

getirmektir. Böylelikle kütle aralığı m∆ = 50 GeV için fon tesir kesitleri elde edilir. Spin-

3/2 uyarılmış elektron için 1J  ve 2J  dikkate alındığında, >*m 1 TeV için toplam bozunma 

genişliği 50 GeV’ in üzerindedir. Sinyalin daha kolay algılanabilmesi için daha büyük kütle 

değerleri için değişmez kütle sınırlaması >eVm 1 TeV için >*m 1.5 TeV olarak 

genişletilmiştir.  

 

Uyarılmış elektronun sadece Z-bozonuna bağlaşımı dikkate alındığında, spin-1/2 akım için 

1' =−= ff  ve spin-3/2 akımlar için 5.0== z
iV

z
iA cc  alınarak, *m=Λ  için s =0.5 (3)  TeV’ 

de sinyal tesir kesitleri ve sinyale karşılık gelen fon tesir kesitleri Çizelge 4.2’ de (Çizelge 

4.3’ te) verilmiştir.  

 

Çizelge 4.2 Uyarılmış elektron için Z-bozonuna bağlaşım durumunda s =0.5 TeV’ de  
         sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

Bσ  ( ∆m) 

200 18.50 10−×  18.70 10−×  02.13 10×  03.68 10×  21.47 10−×  

250 15.00 10−×  16.90 10−×  01.31 10×  19.70 10−×  21.27 10−×  

300 13.00 10−×  15.60 10−×  18.80 10−×  13.40 10−×  21.26 10−×  

350 11.90 10−×  14.40 10−×  16.00 10−×  11.40 10−×  21.44 10−×  

400 11.20 10−×  13.10 10−×  13.70 10−×  27.00 10−×  21.73 10−×  

475 23.00 10−×  28.00 10−×  27.00 10−×  22.00 10−×  39.73 10−×  
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Çizelge 4.3 Uyarılmış elektron için Z-bozonuna bağlaşım durumunda s =3 TeV’ de  
         sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

Bσ  (∆m) 

 

250 02.18 10×  01.69 10×  11.44 10×  31.38 10×  41.67 10−×  

500 15.30 10−×  01.17 10×  02.22 10×  12.17 10×  48.26 10−×  

1000 11.20 10−×  19.60 10−×  01.08 10×  13.70 10−×  43.24 10−×  

1500 25.00 10−×  17.90 10−×  18.40 10−×  24.00 10−×  43.67 10−×  

2000 22.00 10−×  26.00 10−×  26.00 10−×  21.00 10−×  21.66 10−×  

2500 21.00 10−×  23.20 10−×  23.20 10−×  34.00 10−×  21.66 10−×  

2750 37.00 10−×  21.70 10−×  21.70 10−×  33.00 10−×  21.66 10−×  

 

Uyarılmış elektron için sadece fotona bağlaşım ele alındığında, spin-1/2 akım için 

1' == ff  ve spin-3/2 akımlar için 5.0== γγ
iViA cc  alınarak, s =0.5 (3)  TeV’ de sinyal ve 

ilgili fon tesir kesitleri Çizelge 4.4 (Çizelge 4.5)’ te verilmiştir.  

 

Çizelge 4.4 Uyarılmış elektron için fotona bağlaşım durumunda s =0.5 TeV’ de  
        sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

Bσ  (∆m) 

200 03.61 10×  04.75 10×  09.06 10×  11.23 10×  29.76 10−×  

250 02.22 10×  04.27 10×  06.28 10×  03.46 10×  11.17 10−×  

300 01.48 10×  04.07 10×  05.05 10×  01.33 10×  11.37 10−×  

350 01.03 10×  04.00 10×  04.41 10×  16.50 10−×  11.52 10−×  

400 17.40 10−×  04.02 10×  04.05 10×  13.70 10−×  11.49 10−×  

475 14.50 10−×  04.16 10×  03.75 10×  12.10 10−×  25.05 10−×  
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Çizelge 4.5 Uyarılmış elektron için fotona bağlaşım durumunda s =3 TeV’ de  
        sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

Bσ  (∆m) 

 

250 02.52 10×  01.04 10×  13.85 10×  34.10 10×  33.15 10−×  

500 16.30 10−×  13.30 10−×  02.93 10×  16.35 10×  31.75 10−×  

1000 11.50 10−×  11.50 10−×  13.70 10−×  19.90 10−×  31.37 10−×  

1500 27.00 10−×  11.20 10−×  11.70 10−×  11.00 10−×  49.19 10−×  

2000 24.00 10−×  11.10 10−×  11.30 10−×  22.00 10−×  23.31 10−×  

2500 23.00 10−×  11.10 10−×  11.10 10−×  39.00 10−×  23.31 10−×  

2750 22.00 10−×  11.10 10−×  11.10 10−×  17.00 10−×  23.31 10−×  

 

İstatistiksel gözlenebilirlik, 

 

intLSS

B

S ⋅= ε
σ

σ
                                                                                                           (4.38) 

 

ile tanımlanır. Burada intL , çarpıştırıcının toplam ışınlığı, ε  ise seçilen bir kanalda sinyali 

gözleyebilme verimliliğidir ve leptonik kanalda bire yakındır (Denklem (4.38) ile verilen 

ifade S sinyal olay sayısı ve B de fon olay sayısı olmak üzere S /√B şeklinde de ifade edilir). 

ILC için ( 5.0=s TeV) intL = 2×105 pb-1 ve CLIC için ( 3=s TeV) intL = 4×105 pb-1 

değerleri alınarak, uyarılmış elektronun Z-bozonuna bağlaşımı olduğu durum için istatistik 

gözlenebilirlik grafikleri sırasıyla  Şekil 4.24 ve Şekil 4.25’ te verilmiştir. Bu grafiklerde 

spin-1/2 akım için 1' =−= ff , spin-3/2 akımlar için 05.0== Z
iV

Z
iA cc  ve *mΛ =  olarak 

alınmıştır.  
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Şekil 4.24 Uyarılmış elektronun Z-bozonuna bağlaşımı olduğunda s = 0.5 TeV’ de 
        istatistik gözlenebilirlik 
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Şekil 4.25 Uyarılmış elektronun Z-bozonuna bağlaşımı olduğunda s = 3 TeV’ de 
        istatistik gözlenebilirlik 
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Şekil 4.24’ ten görüldüğü gibi, >SS 3 koşulunu sağlayacak şekilde, uyarılmış elektronun 

tek üretiminde yalnızca Z-bozonuna bağlaşım olduğu durumda, 05.0== Z
iV

Z
iA cc  için ILC’ de 

spin-3/2 uyarılmış elektron akım-3 ( 3J )  için 0.39 TeV’ e kadar, akım-1 ( 1J ) ve akım-2 

( 2J ) için ise kütle merkezi enerjilerine kadar gözlenebilir. Aynı bağlaşımlar için CLIC’ de 

ise spin-3/2 uyarılmış elektron akım-3 için 1.8 TeV’ e kadar gözlenebilir. 

 

Uyarılmış elektronun sadece fotona bağlaşımı olduğu durum için istatistiksel 

gözlenebilirliğin kütleye göre değişimi Şekil 4.26’ da ve Şekil 4.27’ de verilmiştir. Bu 

grafiklerde spin-1/2 akım için 1' == ff , spin-3/2 akımlar için 05.0== γγ
iViA cc  ve *mΛ =  

olarak alınmıştır. 
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Şekil 4.26 Uyarılmış elektronun fotona bağlaşımı olduğunda s = 0.5 TeV’ de 
        istatistik gözlenebilirlik 
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Şekil 4.27 Uyarılmış elektronun fotona bağlaşımı olduğunda s = 3 TeV’ de 
        istatistik gözlenebilirlik 

 

>SS 3 koşulunu sağlayacak şekilde, yalnızca fotona bağlaşım olduğu durumda, spin-3/2 

uyarılmış leptonlar için bağlaşımları 05.0== γγ
iViA cc  alarak spin-3/2 uyarılmış elektron, 

akım-3  için ILC’ de 0.48 TeV’ e kadar, CLIC’ de ise 1.8 TeV’ e kadar gözlenebilir.  

 

4.4.2 Uyarılmış nötrino için analiz 

 

Uyarılmış nötrinonun bozunumları dikkate alındığında, SM fonu olarak 

Zeeee ννγνν →→ −+−+ ,  ve +−−+ → Weee ν  süreçleri ele alınmıştır. Fon tesir kesitlerinin 

hesaplanmasında getirilen ilk sınırlamalar, 

 

20>γ
Tp  GeV, 20>/ Tp GeV 

5.2<γη           (4.39) 

 

şeklindedir. Burada, Tp/  nötrinonun kayıp enine momentumudur.  
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γvvvvee →→−+ * süreci gözönüne alındığında son durumdaki fotonun enine momentumu 

için 20>γ
Tp GeV ve sanki-hızlılığı için 5.2<γη  sınırlamaları ile, son durumdaki nötrino ve 

antinötrinonun kayıp enine momentumu üzerine 20>/ Tp GeV sınırlaması konulduğunda 

fon tesir kesitleri s =0.5 (3)  TeV’ de 1.062 (2.049) pb olarak elde edilmistir. Spin-1/2 

akım için 1' =−= ff ve spin-3/2 akımlar için 5.0== γγ
iViA cc  alınarak, *m=Λ  için sinyal 

tesir kesitleri ise,  s =0.5 (3)  TeV için Çizelge 4.6’ da ve Çizelge 4.7’ de verilmiştir.  

 

Çizelge 4.6 Uyarılmış nötrino için fotona bağlaşım durumunda s = 0.5 TeV’ de sinyal  
        tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

200 5.36×100 1.85×10-1 6.49×10-1 2.60×100 

250 3.21×100 1.27×10-1 1.76×10-1 4.90×10-1 

300 2.05×100 8.50×10-2 4.70×10-2 9.90×10-2 

350 1.43×100 5.10×10-2 1.10×10-2 1.80×10-2 

400 0.95×10-1 2.50×10-2 1.17×10-3 2.30×10-3 

475 0.33×10-1 1.80×10-3 5.10×10-6 5.40×10-6 
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Çizelge 4.7 Uyarılmış nötrino için fotona bağlaşım durumunda s = 3 TeV’ de sinyal  
         tesir kesitleri 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

250 4.97×100 6.90×10-2 1.73×101 1.35×103 

500 1.13×100 2.00×10-2 1.00×100 2.01×101 

1000 2.80×10-1 6.70×10-3 4.60×10-2 2.50×10-1 

1500 1.29×10-1 3.50×10-3 4.90×10-3 1.40×10-2 

2000 7.60×10-2 1.70×10-3 5.10×10-4 9.10×10-4 

2500 5.00×10-2 5.00×10-4 2.10×10-5 2.70×10-5 

2750 4.20×10-1 1.30×10-4 1.14×10-6 1.29×10-6 

 

Uyarılmış nötrinonun Z-bozonuna bağlaşımı olduğu durumda, Zvee ννν →→−+ *  süreci 

için son durumdaki nötrino ve antinötrinonun  kayıp enine momentumları üzerine 

20>/ Tp GeV sınırlaması getirilerek fon tesir kesitleri s =0.5 (3)TeV için 0.329 (2.083) pb 

olarak elde edilmiştir. Spin-1/2 akım için 1' == ff ve spin-3/2 akımlar için 5.0== Z
iV

Z
iA cc  

alınarak, *m=Λ  için s =0.5 (3)  TeV’ de elde edilen sinyal tesir kesitleri ise sırasıyla 

Çizelge 4.8’ de ve Çizelge 4.9’ da verilmiştir.  

 

Çizelge 4.8 Uyarılmış nötrino için Z-bozonuna bağlaşım durumunda s = 0.5 TeV’ de  
        sinyal tesir kesitleri 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

200 5.68×100 7.00×10-2 2.40×10-1 9.90×10-1 

250 3.82×100 4.80×10-2 6.70×10-2 1.90×10-1 

300 2.61×100 3.20×10-2 1.80×10-2 3.80×10-2 

350 1.84×100 2.00×10-2 4.20×10-3 6.90×10-3 

400 1.27×100 9.50×10-3 6.40×10-4 8.80×10-4 

475 4.40×10-1 6.80×10-4 1.92×10-6 2.07×10-6 
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Çizelge 4.9 Uyarılmış nötrino için Z-bozonuna bağlaşım durumunda s = 3 TeV’ de  
        sinyal tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

250 5.95×100 2.50×10-2 6.15×100 4.80×102 

500 1.50×100 7.00×10-3 3.60×10-1 7.16×100 

1000 3.90×10-1 2.40×10-3 1.60×10-2 9.00×10-2 

1500 1.79×10-1 1.30×10-3 1.70×10-3 4.80×10-3 

2000 1.05×10-1 6.10×10-4 1.80×10-4 3.20×10-4 

2500 7.00×10-2 1.80×10-4 7.54×10-6 9.74×10-6 

2750 5.90×10-2 4.80×10-5 4.10×10-7 4.60×10-7 

 

eWvee νν →→−+ *  sinyali son durumdaki elektrondan dolayı daha kolay algılanabilir. 

Ayrıca uyarılmış nötrinonun dallanma oranının en yüksek olduğu mod, W’ ya bozunum 

modudur. Bu nedenlerle, eW→*ν  sinyali, uyarılmış nötrinoların gelecek nesil 

çarpıştırıcılarda araştırılması için tercih edilen bir kanaldır. Son durumdaki elektron için 

20>e
Tp GeV ve 5.2<eη  sınırlamaları ile  antinötrinonun kayıp enine momentumu üzerine 

20>/ Tp GeV sınırlaması getirildiğinde  fon tesir kesitleri s =0.5 (3) TeV için 0.918 

(0.463) pb olarak elde edilmiştir. Uyarılmış nötrino sinyalini daha iyi algılamak için 

eW sisteminin değişmez kütlesi üzerine 25* >− mmeW  GeV sınırlaması getirilebilir. Daha 

yüksek kütle değerleri için bu sınırlama 5.1* >m TeV için >eWm 1 TeV olarak 

genişletilmiştir. Spin-1/2 akım için 1' =−= ff  ve spin-3/2 akımlar için 5.0== W
iV

W
iA cc  

alınarak, *m=Λ  için s =0.5 (3)  TeV’ de elde edilen sinyal tesir kesitleri ve kütle 

aralıklarında fon tesir kesitleri  sırasıyla Çizelge 4.10’ da  ve Çizelge 4.11’ de verilmiştir.  
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Çizelge 4.10 Uyarılmış nötrino için W-bozonuna bağlaşım durumunda s = 0.5 TeV’ de  
           sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (pb) 

)2/3(1J  

Sσ  (pb) 

)2/3(2J  

Sσ  (pb) 

)2/3(3J  

Sσ  (pb) 

 

)( mB ∆σ  

200 8.82×100 2.30×100 3.61×100 7.70×100 9.36×10-2 

250 5.81×100 1.83×100 2.39×100 2.75×100 9.12×10-2 

300 4.02×100 1.52×100 1.76×100 1.25×100 9.65×10-2 

350 2.82×100 1.26×100 1.32×100 6.60×10-1 1.21×10-1 

400 1.97×100 9.50×10-1 9.10×10-1 3.60×10-1 1.69×10-1 

475 6.70×10-1 2.80×10-1 2.10×10-1 9.50×10-2 1.23×10-1 

 

Çizelge 4.11 Uyarılmış nötrino için W-bozonuna bağlaşım durumunda s = 3 TeV’ de  
           sinyal ve fon tesir kesitleri 
 

*m (GeV) )2/1(J  

Sσ  (GeV) 

)2/3(1J  

Sσ  (GeV) 

)2/3(2J  

Sσ  (GeV) 

)2/3(3J  

Sσ  (GeV) 

 

)( mB ∆σ  

250 9.01×100 1.23×100 2.08×101 1.54×103 1.96×10-2 

500 2.35×100 3.70×10-1 1.70×100 2.69×101 1.69×10-2 

1000 6.00×10-1 1.60×10-1 2.70×10-1 6.50×10-1 1.00×10-2 

1500 2.76×10-1 1.20×10-1 1.50×10-1 1.00×10-1 6.32×10-3 

2000 1.62×10-1 1.10×10-1 1.20×10-1 3.50×10-2 1.83×10-1 

2500 1.08×10-1 1.00×10-1 1.00×10-1 1.70×10-2 1.83×10-1 

2750 9.00×10-2 9.70×10-2 9.00×10-2 1.30×10-2 1.83×10-1 

 

Uyarılmış nötrinonun fotona bağlaşımı olduğu durumda istatistiksel gözlenebilirliğin 

uyarılmış nötrino kütlesine göre değişimi Şekil 4.28’ de ve Şekil 4.29’ da verilmiştir.  
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Şekil 4.28 Uyarılmış nötrinonun fotona bağlaşımı olduğunda 0.5s =  TeV’ de istatistik  
       gözlenebilirlik 
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Şekil 4.29 Uyarılmış nötrinonun fotona bağlaşımı olduğunda 3s =  TeV’ de istatistik  
      gözlenebilirlik 

 

Uyarılmış nötrinonun fotona bağlaşımı olduğunda, bağlaşımlar spin-1/2 akım için 

1' =−= ff  ve spin-3/2 akımlar için 5.0== γγ
iViA cc  alındığında, ILC için 5

int 102×=L  pb-1 

ve CLIC için 5
int 104×=L  pb-1 değerlerinde, spin-3/2 uyarılmış nötrinolar ILC’ de akım-2 
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( 2J ) ve akım-3 ( 3J ) için yaklaşık 0.38 TeV’ e kadar, CLIC’ de spin-3/2 uyarılmış 

nötrinolar farklı akımlar için 1.3-1.5 TeV aralığında ve spin-1/2 uyarılmış nötrinolar ise 

kinematik limite kadar gözlenebilirler.  

 

Uyarılmış nötrinonun sadece Z-bozonuna bağlaşımı olduğu durumda, Z-bozonunun da son 

durumda 2 leptona geçtiği durum ( Z l l+ −→ ) için ILC ve CLIC enerjilerinde istatistiksel 

gözlenebilirlik grafikleri Şekil 4.30’ da ve Şekil 4.31’ de verilmiştir. Burada uyarılmış 

nötrinonun sadece Z’ ye bağlaşımı olduğunda elde edilen tesir kesitleri Z l l+ −→  dallanma 

oranı (%3.37) ile çarpılmıştır. Bu grafiklerde,  *mΛ =  ve bağlaşımlar spin-1/2 akım için 

1' == ff , spin-3/2 akımlar için 5.0== Z
iV

Z
iA cc  olarak alınmıştır.  
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Şekil 4.30 Uyarılmış nötrinonun Z-bozonuna bağlaşımı olduğunda ve Z l l+ −→  için 

       0.5s =  TeV’ de istatistik gözlenebilirlik 
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Şekil 4.31 Uyarılmış nötrinonun Z-bozonuna bağlaşımı olduğunda ve Z l l+ −→  için 

       3s =  TeV’ de istatistik gözlenebilirlik 
 

Spin-3/2 uyarılmış nötrino bağlaşımı 5.0== Z
iV

Z
iA cc  alındığında, uyarılmış nötrinolar ILC’ 

de akım-1 ( 1J ) için kinematik limite kadar, akım-2 ( 2J ) ve akım-3 ( 3J ) için yaklaşık 0.33 

TeV’ e kadar gözlenebilirler. CLIC’ de ise, akım-1 ve akım-2 için ≈*m 1.3 -1.5 TeV kütle 

değerine kadar ulaşılabilinir. 

 

Uyarılmış nötrinonun sadece W-bozonuna bağlaşımı olduğu durumda ise, son durumda W’ 

ların iki jete bozunduğu ( 2W j→ ) durum dikkate alınmıştır. Burada uyarılmış nötrinonun 

sadece W’ ya bağlaşımı olduğunda elde edilen tesir kesitleri 2W j→  dallanma oranı 

(%67.60) ile çarpılmıştır. Bu durum için istatistik gözlenebilirliğin uyarılmış nötrino 

kütlesine göre değişimi grafikleri Şekil 4.32’ de ve Şekil 4.33’ te verilmiştir. Burada spin-

3/2 nötrinolar için bağlaşımlar 05.0== W
iV

W
iA cc  ve spin-1/2 uyarılmış nötrinolar için 

1' =−= ff  olarak alınmıştır. Ayrıca *mΛ =  alınmıştır. 
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Şekil 4.32 Uyarılmış nötrinonun W-bozonuna bağlaşımı olduğunda ve  2W j→  için 

       0.5s =  TeV’ de istatistik gözlenebilirlik 
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Şekil 4.33 Uyarılmış nötrinonun W-bozonuna bağlaşımı olduğunda ve  2W j→  için 

       3s =  TeV’ de istatistik gözlenebilirlik 
 

05.0== W
iV

W
iA cc  için spin-3/2 uyarılmış nötrinolar akım-3 için ILC’ de 0.4 TeV’ e kadar 

gözlenebilirler. CLIC’ de ise aynı bağlaşımlar kullanılarak spin-3/2 uyarılmış nötrinolar 
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için ≈*m 1.5 TeV ve spin-1/2 uyarılmış nötrinolar için 1' =−= ff alınarak ≈*m 2 TeV 

kütle limitlerine kadar ulaşılabilinir. Uyarılmış nötrino için * eWν →  modu diğer bozunma 

modlarına göre daha baskındır. * eWν → sinyali dikkate alınarak, daha küçük bağlaşım 

parametrelerinde büyük kütle değerlerine ulaşılmaktadır, bu nedenle gelecek nesil yüksek 

enerjili çarpıştırıcılarda gerçekleştirilecek olan deneylerde uyarılmış nötrino araştırmaları 

için bu sinyal tercih edilen bir kanal olacaktır. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117

5. SONUÇLAR ve TARTIŞMA 

 

Kompozit modellerde bugün temel olarak bildiğimiz kuark ve leptonların daha temel alt 

bileşenlerin bağlı durumu olduğu düşünülür. Bu alt bileşenlerin bağlanma enerjisi 

ölçeğinde yeni etkileşmeler açığa çıkabilir. Bu yeni etkileşmeler kompozitlik ölçeği Λ’ nın 

altındaki enerjilerde 1/Λ’ nın kuvvetleri ile bastırılmıştır. Kuark ve lepton kompozitliğinin 

gözlenebilir etkilerinden biri uyarılmış durumların varlığı olacaktır. Fenomenolojik olarak, 

uyarılmış leptonlar bilinen leptonlar ile benzer kuantum sayısına sahip olan daha ağır bir 

leptondur. En düşük radyal ve yörüngesel uyarılma olarak spin-1/2 uyarılmış leptonlar 

alınır. En düşük uyarılmaların incelenmesi alt bileşenlerin özellikleri hakkında önemli 

bilgiler verebilir. Spin-3/2 uyarılmış durumlar ise üst uyarım olarak dikkate alınır.   

 

Gelecek nesil yüksek enerjili doğrusal elektron-pozitron çarpıştırıcıları uyarılmış 

leptonların araştırılması için mükemmel bir ortam sağlar. Bu çarpıştırıcılarda uyarılmış 

leptonlar tek ve çift olarak üretilebilirler.  Üretilen bu uyarılmış leptonlar bilinen bir SM 

leptonuna ve bir vektör bozonuna bozunacaktır. Bozunma modlarını inceleyerek sinyal 

hakkında bilgi edinmek mümkündür. Son durumdaki gözlenebilir parçacıklar üzerine belirli 

kinematik sınırlamalar koyarak, normalize açısal dağılımlar, değişmez kütle dağılımları ve 

enine momentum dağılımlarından faydalanarak uyarılmış leptonlar algılanabilir.  

 

Bu çalışmada, uyarılmış spin-3/2 leptonların e e+ −  çarpıştırıcılarında tek üretimi, bunların 

spin-1/2 uyarılmış leptonlar ile nasıl ayırt edilebileceği incelenmiştir. Alt bileşenlerin 

dinamiği bilinmediğinden uyarılmış leptonlar, SM leptonları ve ayar bozonları arasındaki 

etkileşmeyi tanımlamak üzere etkin lagranjiyen yöntemi kullanılmıştır. Analizlerimizde 

sadece ayar etkileşmeleri dikkate alınmıştır, ancak, uyarılmış leptonlar keşfetme limitlerini 

genişleten kontakt etkileşmeler yoluyla da bilinen kuark ve leptonlara bağlanabilir (Çakır et 

al. 2003). Bununla birlikte bu çalışmanın amacı gelecek nesil yüksek enerjili e e+ −  

çarpıştırıcıları ILC ve CLIC’ de  uyarılmış elektron ve onun nötrinosu için keşfedilme 

potansiyellerinin bulunmasıdır.  
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Uyarılmış yüklü leptonlar için mümkün son durumlar , 2 , 3l l j lγ+ + ve Tl E+ /  şeklinde 

olabilir. Uyarılmış nötrinolar için ise , 2 , 2 ,T T T TE l E j E Eγ + / + / + / /  ve 2l j+  mümkün son 

durumlardır. Bu sinyaller, uyarılmış yüklü lepton ve uyarılmış nötrinonun bozunum 

ürünleri olan vektör bozonlarının da farklı (hadronik, leptonik veya yarı leptonik) 

bozunumlara uğraması sonucu elde edilmiştir. Burada  TE/
  nötrinonun enine kayıp 

enerjisine karşılık gelmektedir.  

 

Spin-3/2 parçacıklar için etkileşme akımları bilinmeyen bağlaşımlara sahiptir. Tesir kesiti 

hesaplarında basitlik olması bakımından, parametre sayısını azaltabilmek ve teorik 

tahminlerde bulunabilmek için spin-3/2 uyarılmış leptonun bir ayar bozonuna bağlaşımı 

sıfırdan farklı tutulurken diğerleri sıfır olarak alınmıştır. Spin-1/2 uyarılmış leptonlar için  

literatürde sıklıkla kullanılan parametre seçimi ise 'f f=  ve 'f f= −  şeklindedir.  

 

Bu çalışmada, sinyal ve fon olaylarının analizi için S /√B şeklinde ifade edilen istatistiksel 

gözlenebilirlik (SS) değerleri farklı kanallar için hesaplanmıştır. Bu hesaplarda, ILC için 

kütle merkezi enerjisi 0.5s =  TeV ve toplam ışınlık 52 10× pb-1 olarak, CLIC için ise kütle 

merkezi enerjisi 3s =  TeV ve toplam ışınlık 54 10× pb-1 olarak alınmıştır. 

 

ILC’ de 3SS >  koşuluna göre, uyarılmış elektronun sadece Z-bozonuna bağlaşımı olduğu 

dikkate alınırsa *mΛ =  ve 0.05Z Z
iA iVc c= =  için spin-3/2 uyarılmış elektron akım-3 ( 3J ) türü 

etkileşmeler için 0.39 TeV’ e kadar, akım-1 ( 1J ) ve akım-2 ( 2J ) türü etkileşmeler için ise 

kütle merkezi enerjisine kadar gözlenebilirler. CLIC’ de ise 3SS >  koşuluna göre,   *mΛ =  

ve 0.05Z Z
iA iVc c= =  için spin-3/2 uyarılmış elektron akım-3 ( 3J ) için 1.8 TeV’ e kadar 

gözlenebilir.  

 

Uyarılmış elektronun sadece fotona bağlaşımı dikkate alındığında, *mΛ =  ve 

0.05iA iVc cγ γ= =  alınarak 3SS >  olacak şekilde, spin-3/2 uyarılmış elektron akım-3 ( 3J ) türü 
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etkileşmeler için ILC’ de  0.48 TeV’ e, CLIC’ de ise 1.8 TeV’ e kadar gözlenebilir. Diğer 

akımlar için daha yüksek kütle değerlerine ulaşılabilinir.  

 

Uyarılmış nötrinonun sadece fotona bağlaşımı dikkate alındığında, *mΛ =  ve 0.5iA iVc cγ γ= =  

alınarak 3SS >  olacak şekilde, spin-3/2 uyarılmış nötrino ILC’ de 2J  ve 3J  türü 

etkileşmeler için yaklaşık 0.38 TeV’ e kadar, CLIC’ de ise farklı akımlar için 1.3-1.5 TeV’ 

e  kadar gözlenebilir.  

 

Uyarılmış nötrinonun sadece Z-bozonuna bağlaşımı olduğu ve Z’ nin de iki leptona geçtiği 

durum ( Z l l+ −→ ) dikkate alındığında, 3SS >  koşulunu sağlayacak şekilde, *mΛ =  ve 

0.5Z Z
iA iVc c= =  için spin-3/2 uyarılmış nötrino ILC’ de 1J  için kinematik limite kadar, 2J  ve 

3J  türü etkileşmeler dikkate alındığında yaklaşık olarak 0.33 TeV’ e kadar, CLIC’ de ise 1J  

ve 2J  türü  etkileşmeler için yaklaşık 1.5 TeV’ e kadar gözlenebilir. 

 

Uyarılmış nötrinonun sadece W-bozonuna bağlaşımı olduğu ve W’ nun de iki jete geçtiği 

durum ( 2W j→ ) dikkate alınırsa, 3SS >  koşulunu sağlayacak şekilde, *mΛ =  ve 

0.05W W
iA iVc c= =  için spin-3/2 uyarılmış nötrino ILC’ de 3J  için 0.40 TeV’ e kadar, CLIC’ de 

yaklaşık 1.5 TeV’ e kadar gözlenebilir. 

 

Bu çalışma sonucu, spin-1/2 ve spin-3/2 uyarılmış elektronların açısal dağılımlar 

yardımıyla, uyarılmış nötrinoların ise kayıp enine momentum dağılımları yardımıyla ayırt 

edilebileceğini gösterdik. Burada uyarılmış leptonların birinci ailesi için yaptığımız 

analizler diğer ailelere de genişletilebilir. Uyarılmış müon ve tau, s-kanalında tek olarak 

üretilebilir. Lepton çeşnisini bozon (LFV) etkileşmeler dikkate alındığında uyarılmış müon 

ve taunun t-kanalında tek üretimleri de mümkün olacaktır. Uyarılmış elektron için açısal 

dağılımların incelenmesinde t-kanalı katkısı önemlidir. Uyarılmış müon ve tau nötrinosu ise 

s-kanalında foton ve Z değiş tokuşu ile t-kanalında ise W değiş-tokuşu ile lepton çeşnisini 
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bozan veya bozmayan etkileşmeler yoluyla tek olarak üretilebilirler. Eğer uyarılmış müon 

ve tau nötrinosu t-kanalında lepton çeşnisini bozan bir diyagram yoluyla üretilirse, 

dağılımları uyarılmış elektron nötrinosundan farklı olacaktır.  

 

Literatürde spin-3/2 uyarılmış leptonlar ile yapılan çalışmalar oldukça azdır. Spin-3/2 

uyarılmış leptonlar ile ilgili üretim tesir kesitlerinin ve bozunma genişliklerinin hesaplarının 

yapılması, elde edilen sonuçların spin-1/2 uyarılmış leptonlar için elde edilen sonuçlarla 

karşılaştırılması uyarılmış leptonlar ile ilgili yapılan çalışmalara önemli bir katkı 

sağlamıştır. 
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EK 1. DIRAC DENKLEMİ ve ÇÖZÜMLERİ 

 

Bu kesimde spin-1/2 parçacıklar için göreli alan denklemi olan Dirac denkleminin elde 

edilmesi ve serbest parçacık için çözümleri ele alınacaktır. Öncelikle göreli olmayan 

kuantum mekaniği ile ilgili temel kavramlar verildikten sonra, göreli enerji-momentum 

bağıntısından elde edilecek Klein-Gordon denkleminden kısaca bahsedilecektir. Daha 

sonra, Klein-Gordon denkleminin olasılık yorumundaki zorluğu ve Dirac denkleminin 

açığa çıkışından bahsedilecektir. Bu bölümün hazırlanmasında (Griffiths 1987, Greiner 

1997, Aitchison and Hey 2003) esas referanslar olarak kullanılmışlardır. 

 

EK 1.1 Schrödinger Denklemi 

 

Göreli olmayan kuantum mekaniğinde parçacıklar Schrödinger denklemi ile tanımlanırlar. 

Klasik mekanikteki toplam enerji ifadesi 

 

EV
m

p
=+

2

2r

            (EK 1.1) 

 

ile verilir. Kuantum mekaniğinin temel varsayımlarından biri, fiziksel gözlenebilirlere bir 

işlemcinin karşılık geldiğidir. Bu işlemciler çizgisel ve hermitseldir (Verçin 2000). Enerji 

ve momentumun işlemci gösterimleri   

 

t
iEip

∂
∂

=∇−= h
r

h
r

,ˆ           (EK 1.2) 

 

şeklindedir. Kuantum mekaniğinde bir sistem belli bir t anında, türevlenebilir ve sürekli 

),( tr
r

ψ  dalga fonksiyonu ile tanımlanır. Denklem (EK 1.1) ile verilen klasik toplam enerji 

ifadesinde enerji ve momentum yerine işlemci karşılıkları yazılıp, bu işlemciler dalga 

fonksiyonu üzerine etkirse Schrödinger denklemi elde edilir.  
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t

tr
itrVtr

m ∂
∂
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2

2
2 r

h
rrrh ψ

ψψ         (EK 1.3) 

 

Olasılık yoğunluğu ψψρ *),( =tr
r

 şeklinde verilir. Olasılığın korunduğunu görmek için 

olasılık yoğunluğunun zamana göre türevi alınır.  

 

ttt ∂
∂

+
∂

∂
=

∂
∂ ψ

ψ
ψ

ψ
ρ *

*

                   (EK 1.4) 

 

Denklem (EK 1.3) ve onun kompleks eşleniği alınıp, denklem (EK 1.4)’ te yerine yazılıp 

gerekli düzenlemeler yapılırsa; 

 

 

 

 

 

                       (EK 1.5) 

                                   

bulunur. Burada vektörel bir nicelik olarak olasılık akısı  

 

)(
2

),( ** ψψψψ ∇−∇=
rrhrr

im
trJ          (EK 1.6) 

 

şeklinde tanımlanırsa,  

 

0),(
),(

=⋅∇+
∂

∂
trJ

t

tr rrrr
ρ

         (EK 1.7)

  

elde edilir. Bu, Schrödinger denklemi için süreklilik denklemidir.  
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EK 1.2 Klein-Gordon Denklemi 

 

Klein ve Gordon göreli kuantum mekaniğini oluşturmak için, Schrödinger denkleminin 

toplam klasik enerji ifadesinde enerji ve momentumun işlemci karşılıklarının yazılarak elde 

edilmesine benzer olarak, göreli enerji-momentum ifadesinden yola çıktılar. Göreli enerji-

momentum ifadesi 

 

42222 cmcpE =−
r

                     (EK 1.8) 

 

ile verilir. Dörtlü notasyonda bu ifade 

 

042 =− cmpp µ
µ           (EK 1.9) 

 

şeklinde verilir. Dörtlü momentumun işlemci karşılığı 

 

)(
µµµµ
x

ip
∂

∂
≡∂∂= h                                        (EK 1.10) 

 

şeklindedir. Dörtlü momentumun işlemci karşılığı denklem (EK 1.8)’ de yerleştirilip bir φ  

dalga fonksiyonu üzerine etkirse Klein-Gordon denklemi elde edilir.  

 

0422 =−∂∂− φφµ
µ cmh  

0)(
1 22

2

2

2
=+∇−

∂

∂
φφ

φ
h

r mc

tc
                             (EK 1.11) 

 

Klein-Gordon denklemi için dörtlü olasılık akısı 

 

)(
2

),( ** φφφφρ µµµ ∂−∂==
m

i
jj

hr
                 (EK 1.12) 
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şeklinde verilir. Dörtlü notasyonda süreklilik denklemi, 

 

0=∂ µ
µ j                                (EK 1.13) 

 

şeklindedir. Olasılık yoğunluğu ve uzaysal akım yoğunluğunu ayrı ayrı yazacak olursak; 
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                  (EK 1.14) 

 

ve 

 

)(
2

** φφφφ ∇−∇=
rrh

m

i
j                               (EK 1.15) 

 

elde edilir. Klein-Gordon denklemi için uzaysal akım yoğunluğu Schrödinger denklemi için 

verilen uzaysal akım yoğunluğu ile aynı formdadır, ancak olasılık yoğunlukları aynı formda 

değildir. Klein-Gordon denklemi zaman göre ikinci türevleri içerdiğinden, olasılık 

yoğunluğu da zamana göre birinci türevleri içermektedir. Bu ise olasılık yoğunluğunu 

yorumlamada bazı güçlükler getirir. ).( xpEtiipx NeNe
rr

−−− ==φ  düzlem dalga çözümlerini 

dikkate alırsak olasılık yoğunluğu  

 

EN
2

2=ρ                     (EK 1.16) 

 

şeklinde elde edilir. Bu denklemde N normalizasyon katsayısıdır. Burada olasılığı 

yorumlamadaki zorluk kendini gösterir. E’ nin işaretine göre ρ  negatif veya pozitif 

olabilir. Klein-Gordon denklemiyle ilgili zorluklar, 

 

1. 42222 cmcpE +=
r

bağıntısından hareketle, verilen bir  p
r

 üçlü momentumu için enerjinin 

4222 cmcpE +±=
r

 şeklinde pozitif ve negatif mümkün 2 çözümünün olmasında,  
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2. olasılık yoğunluğu ifadesinin t∂∂ terimlerini içermesinden dolayı negatif olasılık 

yoğunluklarının ortaya çıkmasında  

 

kendini göstermektedir.  

 

EK 1.3 Dirac Denklemi  

 

Klein-Gordon denklemi hem zamana hem de uzaysal koordinatlara göre ikinci mertebe 

türevleri içermektedir. Göreli enerji-momentum bağıntısından hareketle elde edilen Klein-

Gordon denkleminin tek parçacık göreli dalga denklemi olarak yorumlanmasında negatif 

enerjili çözümlerin bulunuşu ve olasılık yoğunluğunun pozitif tanımlı olmayışı gibi iki 

zorluk ortaya çıkar. Bu zorlukları ortadan kaldırmak üzere, Dirac 1928 yılında pozitif 

tanımlı bir olasılık yoğunluğu ( 0≥ρ ) elde edebilmek için t∂∂ terimine göre çizgisel olan 

bir denklem yazdı. Göreli kovaryantlığın sağlanması için bu denklem, ∇
r

 terimine göre de 

çizgisel olmalıydı. Serbest parçacık için Dirac denklemi; 
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şeklinde verilir. Uzaysal dönmeler altında denklem (EK 1.18)’ in değişmez kalabilmesi için 

iα ’ ler sayı olmamalıdırlar. Dalga fonksiyonu ψ , 1×N ’ lik sütun matris olmak üzere, iα ’ 

ler NN × ’ lik matrislerdir. (EK 1.18)’ i bileşenler cinsinden yazarsak; 
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elde edilir. Buradaki temel problem α  ve β  matrislerinin bulunmasıdır. Bunları 

bulabilmek için öncelikle göreli bir dalga denklemi kurmak için gerekli özellikleri 

özetleyelim: 

 

1. E ve p
r

arasında göreli bir ilişki → 42222 cmcpE +=
r

; 

2. Olasılık yoğunluğu yorumu için 0≥ρ ; 

3. Lorentz dönüşümleri altında kovaryantlık (form değişmezliği).  

 

İlk özelliğin sağlanabilmesi için, dalga fonksiyonunun her bir bileşeninin Klein-Gordon 

denklemini sağladığını düşünüyoruz. 
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hh                             (EK 1.20) 

 

Bundan sonra amacımız Dirac denklemini Klein-Gordon denkleminin formuna 

benzetebilmektir. Bunun için denklem (EK 1.18) ile yazılan Dirac denkleminin zamana 

göre türevini alalım ve hi  ile çarpalım. 
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Denklem (EK 1.21)’ de denklem (EK 1.18) yerine konulup düzenleme yapılırsa; 
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Denklem (EK 1.20) ve (EK 1.22) karşılaştırılırsa α  ve β  matrisleri için şu koşullar elde 

edilir: 

 

jijiijijji ≠=⇒=+ ,0},{12ˆˆˆˆ ααδαααα                 (EK 1.23) 

0},{0ˆˆˆˆ =⇒=+ βααββα iii                      (EK 1.24) 

1ˆˆ 22 == βα i                                    (EK 1.25) 

 

fĤ  serbest Dirac hamiltonyeni hermitsel olduğundan α  ve β  matrisleri de hermitseldir.  

 

† †ˆ ˆˆ ˆ ,i iα α β β= =                                     (EK 1.26) 

 

α ve β matrisleri hermitsel olduğundan özdeğerleri reeldir. 1ˆˆ 22 == βα i  koşulundan dolayı 

özdeğerler  ±1 olabilir. α ve β matrislerinin izleri de sıfırdır.  
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0)( =iTr α                     (EK 1.27) 

 

ve 

 

0)( =βTr                                (EK 1.28) 

 

elde edilebilir. Bu matrislerin izlerinin sıfır olması ve özdeğerlerinin ±1 olmasından dolayı 

boyutlarının çift olması gerekmektedir. N=2 olamaz. Çünkü 2×2’ lik matrisler Pauli 

matrisleri ve birim matris cinsinden ifade edilebilir. Ancak burada birbiri ile antikomüte 

eden 4 adet matris sözkonusudur. Bu nedenle N’ nin en küçük değeri 4 olmalıdır. 4×4’ lük 
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α ve β matrislerinin seçimi tek değildir. Bu matrislerin farklı temsillerdeki gösterimlerine 

üniter bir dönüşüm ile geçilir.  

 

1' −= UU ii αα   

1' −= UUββ                                (EK 1.29) 

 

α ve β matrisleri için en çok kullanılan iki temsil Dirac Temsili (Standart Temsil) ve Weyl 

Temsili (Chiral Temsil)’ dir. σ
r

 Pauli matrisleri ve I  birim matris olmak üzere; 

 

Dirac Temsili (Standart Temsil): 
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Weyl Temsili (Chiral Temsil): 
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şeklinde tanımlıdır. Dirac denkleminin kovaryant formunu elde edebilmek için (EK 1.18) 

denklemini β  ile çarpalım: 

 

ψβαβ
ψ

β )( 22mcci
t
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hh                  (EK 1.32) 

 

Burada ),( αββγ µ r
=  şeklinde bir tanım yapılırsa; 

 

0)( =−∂ ψγ µ
µ mcih                    (EK 1.33) 
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şeklinde Dirac denkleminin kovaryant formu elde edilir. Burada Dirac spinörü ya da 

bispinör olarak adlandırılan ψ ’ nin dört bileşenli bir sütun matris olduğuna dikkat 

edilmelidir.  
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Süreklilik denklemini elde edebilmek için, Dirac denkleminin soldan †ψ , Dirac 

denkleminin hermitik eşleniği de soldan ψ ile çarpalım. 
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Elde edilen son iki denklemin birbirinden çıkarılmasıyla 
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süreklilik denklemi bulunur. Dirac denklemi için olasılık yoğunluğu ve olasılık akımı 

yoğunluğu, † *( )Tψ ψ=  olmak üzere sırasıyla, †ρ ψ ψ=  ve †j cψ αψ=
r r

 şeklinde tanımlanır. 

Olasılık yoğunluğu 
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şeklinde açık biçimde yazılabilir. Denlem (EK 1.38) ile tanımlı Dirac denklemi için olasılık 

yoğunluğu skaler ve pozitif tanımlı bir ifadedir. Bu özellikler olasılık yoğunluğu için 

istenen özelliklerdir.  

 

EK 1.4 Dirac Denkleminin Serbest Parçacık İçin Çözümleri 

 

Dirac denklemi için düzlem dalga çözümlerini dikkate alacağız )1( == ch .  
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Burada )( pω , x ve pixe ⋅− ’ den bağımsız 4-bileşenli Dirac spinörüdür. ω , 2×2’ lik φ  ve χ  

spinörleri cinsinden, 
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şeklinde yazılabilir. Burada 
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χ  şeklindedir.  Denklem (EK 1.39)’ un 

denklem (EK 1.18) ile verilen Dirac denkleminde yerine koyulmasıyla; 
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elde edilir. Buradan φ  ve χ  için bağlaşımlı denklemler 

 

χσφ pmE
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φσχ pmE
rr

⋅=+ )(                    (EK 1.43) 

 

şeklindedir. Bu bağlaşımlı denklem sistemi için katsayılar determinantı sıfıra eşit olmalıdır.  
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Denklem (EK 1.44)’ de )())(( BAiBABA
rrrrrrrrr

×⋅+⋅=⋅⋅ σσσ  özelliği kullanılarak, E ve p
r

 

arasındaki ilişki bulunabilir.  

 

0222 =−− pmE
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22 mpE +±=
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                   (EK 1.45) 

 

Verilen bir üçlü momentum için enerjinin pozitif ve negatif olmak üzere mümkün 2 

çözümü vardır. Daha sonra da açıklanacağı gibi pozitif çözümler parçacık durumları ile, 

negatif çözümler de antiparçacık çözümleri ile ilişkilendirilir. Denklem (EK 1.42) ve (EK 

1.43) kullanılarak χ  ve φ  spinörleri birbiri cinsinden yazılabilir. 
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Buradan, 4-bileşenli )(pω  spinörü φ cinsinden  
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olarak elde edilir. p
rr

⋅σ  çarpımın açık biçimi 
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şeklinde yazılır. Denklem (EK 1.46), (EK 1.47) ve (EK 1.49) kullanılarak, Dirac 

denkleminin dört bağımsız çözümü yazılabilir.  
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Denklem (EK 1.50) ve (EK 1.51)’ de enerji için pozitif kök ( 0>E ) alınmalıdır. Aksi 

durumda 0→p
r

için χ  spinörü ıraksar. Bu iki denklem parçacık durumlarına karşılık gelir. 

Denklem (EK 1.52)’ de ve (EK 1.53)’ te ise enerji için negatif kök ( 0<E ) alınmalıdır, 

yoksa 0→p
r

 için φ  spinörü ıraksar. Bu son iki denklem de antiparçacık durumlarına 

karşılık gelir.  
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EK 2. 1→→→→2 SÜRECİ İÇİN KİNEMATİK 

 

Verilen bir süreç için bir ilk durumdan son duruma geçiş oranı Fermi’ nin altın kuralına 

göre  

 

(Geçiş Oranı) ~ (2 π ) 
2

M (Faz Uzayı)                   (EK 2.1) 

 

şeklinde ifade edilir. m  kütleli bir parçacığın kendi durgun çerçevesinde n tane parçacığa 

bozunması oranı Lorentz değişmezi matris elemanı M cinsinden verilir. 
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Burada ndΦ  n-cisim faz uzayı elemanıdır. 
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1== ch  birim sisteminde diferansiyel bozunma genişliği ifadesi daha açık olarak 
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olarak verilir. Burada  j son durum özdeş parçacık sayısı olmak üzere, istatistik çarpan 

S=1/j! ile verilir. İki cisim bozunması için değişken tanımlaması Şekil 1’ de yapılmıştır.  
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Şekil 1 İki cisim bozunması. 

 

Burada p, p1 ve p2 dörtlü momentumlardır. Göreli enerji-momentum bağıntısına göre 

parçacığın dörtlü momentumu parçacığın kütlesine eşittir.  
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Momentumun korunumundan, 
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elde edilir. m kütleli parçacığın durgun sisteminde  

 

2 2 2
2 1 12m m m mE= + −                                                                                                    (EK 2.7) 

 

bulunur. Benzer bir ifade 1 parçacığı için de yazılır. 

 

2 2 2
1 2 22m m m mE= + −                      (EK 2.8) 

 

Buradan 1 ve 2 numaralı parçacıkların enerjileri elde edilir. 

 

p,m 

 p1,m1   
 

p2,m2 
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2 2 2 2 2 2
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1 2,
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m m m m m m
E E
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m kütleli parçacığın durgun çerçevesinde, 1 ve 2 numaralı parçacıkların momentumları eşit 

büyüklükte fakat zıt yönlüdürler. 
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Difernsiyel bozunma genişliği 
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ifadesinde 0=p
r

 ve E m=  yazılarak delta fonksiyonunu yeniden düzenlenirse; 
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olur. Diferansiyel bozunma genişliği ifadesi yeniden düzenlenirse 
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Burada 2p
r

 üzerinden integral alınırsa 
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bulunur. ρp =1

r
 ve 22

2
22

121 ρmρmEEEE +++=⇒+= şeklinde yeniden tanımlama 

yapılırsa,  
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hacim elemanı yazılır. Bu ifadelere göre denklem (EK 2.14)  düzenlenirse 
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elde edilir. Elde edilen bu son ifade iki cisim bozunması için bozunma genişliği  ifadesidir. 

Burada 4 4 4 2 2 2 2 2 2
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EK  3.  2→→→→2 SÜRECİ İÇİN KİNEMATİK 

 

EK 3.1 Tesir Kesiti İfadesinin Elde Edilmesi 

 

Fermi’ nin altın kuralına göre 1+2→3+4+…+n süreci için tesir kesiti  
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 (EK 3.1) 

 

 ile verilir. Burada  

 

F= ( ) ( )2 2

1 2 1 24 p p m m⋅ −          (EK 3.2) 

 

ile verilen nicelik Lorentz değişmez akıdır. Kütle merkezi sisteminde iki cisim saçılmasının 

şematik gösterimi  Şekil 1’ de gösterilmiştir.  

 

  

Şekil 1 Kütle merkezi sisteminde iki cisim saçılması 

 

p1 P

p3 

p4 

 
θ 

p2 
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Kütle merkezi sisteminde, gelen parçacıkların üçlü momentumları eşit büyüklükte fakat zıt 

yönlü ( 1 2p p= −
r r

) olduğundan Lorentz değişmez akı  F= ( ) 1121 pspEE
rr

=+  olarak elde 

edilir. Buna göre  

 

( )
( )

2 3 3
(4)3 4

1 2 3 42
1 3 4

4 2 4

d p d p
d p p p p

s p E E
σ δ

π

〈 Μ 〉
= + − −

r r

r       (EK 3.3) 

 

Dörtlü Delta fonksiyonu (4) (3)
1 2 3 4 1 2 3 4 1 2 3 4( ) ( ) ( )p p p p p p p p E E E Eδ δ δ+ − − = + − − + − −

r r r r
 

şeklinde yazılır ve 3
4d p
r

 integrali kaldırılabilir. Geriye 3
3d p
r

 integralinin alınması kalır. 

3 2
3 3 3d p p dp d= Ω
r r r

 ( φθθ ddd sin=Ω  şeklinde verilen katı açı, θ  ise saçılma açısıdır), 

2 2
3 3 3E m p= +

r
 ve 2 2

4 4 3E m p= +
r

 şeklinde yazılıp  '
43 EEE =+  değişken değiştirmesi  

yapıldığında 

 

2 2 2 2'
3 3 4 3

3
2 2 2 2

3 3 3 4 3

m p m pdE
dp

p m p m p

 + +
 =
 + + + 

r r
r

r r r
        (EK 3.4)

  

elde edilir. Buradan diferansiyel tesir kesiti  

 

i

s

p

p

sπd

σd
r

r

2

2

64

Μ

Ω

〉〈
=                                 (EK 3.5) 

 

olarak bulunur. 1ip p≡
r r

 ilk momentum ve 3sp p=
r r

 ise son momentumdur. Buradan  
dt

σd
 

ifadesine geçilebilir. Burada  t; ( )2

1 3t p p= −  şeklinde tanımlanan Mandelstam değişkenidir. 

Bazı tanımlamalar 
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( )2 2 2
1 3 1 3 1 3 1 32 cost p p m m E E p p θ = − = + − − 

r r
            

ΩΩ d

dt

dt

σd

d

σd
=                   

( ) ( )θcosd

dt

πθcosdπ

dt

d

dt

2

1

2Ω
==                                      (EK 3.6) 

 

şeklinde yazılır. Buradan 

 

2

2

64

Μ

ipsπdt

σd
r

〉〈
=           (EK 3.7) 

 

elde edilir. Kütle merkezi sisteminde 021 == mm  için  ip
r

= 2s  olarak bulunur. Bu 

ifade kullanılarak diferansiyel tesir kesiti 

 

 
2

2

16 sdt

d

π
σ 〉Μ〈

=            (EK 3.8) 

 

olarak elde edilir.Tesir kesiti ifadesi 

 

σ = ∫
max

min

t

t

dt
sπ 2

2

16

Μ 〉〈
                                                                                                        (EK 3.9) 

 

integrali alınarak bulunur. 0=θ ve πθ =  için tmin ve tmax  uygun kinematik bağıntılardan 

bulunur. Uyarılmış elektron ve nötrinosu için tesir kesiti hesaplarında kinematikten 

faydalanarak  *2
mint m s= −  ve max 0t =  olarak bulunmuştur. 
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EK 3.2 Enine Momentum Dağılımı İfadesinin Elde Edilmesi 

 

İki parçacık saçılması için diferansiyel tesir kesiti, 

 

2 4

3 3
(4) 3 4

1 2 3 4 3 3
3 4

(1 2 3 4) (2 )1
(1 2 3 4)

2

( )
(2 ) 2 (2 ) 2

M
d

s

d p d p
p p p p

E E

π
σ

δ
π π

+ → +
+ → + =

+ − −

∑
                         (EK 3.10) 

 

ile verilir.  

 

3
4 2 24

4 4 4
4

( )
2

d p
d p p m

E
δ= −∫                   (EK 3.11) 

 

2 2 2
4 4 4( ) ( )p m s t u mδ δ− = + + −                           (EK 3.12) 

 

2

2

1
(1 2 3 4)

16

d
M

dt s

σ
π

 
= + → + 

 
∑                      (EK 3.13) 

 

bağıntılarının EK 3.10’ da yerleştirilmesiyle  

 

 

2 (4) 4 23
1 2 3 4 4 43

3

1
( ) ( )

2

E d
M p p p p d p s t u m

sd p

σ
δ δ= + − − + + −∑                                  (EK 3.14)  

 

elde edilir. Bu denklemde  
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2

2

1
(1 2 3 4)

16

d
M

dt s

σ
π

 
= + → + 

 
∑                      (EK 3.15) 

 

3
3 3 3 3( ) ( ) ( )Z T Td p dp p dp dφ=                                                                            (EK 3.16) 

 

3

3 3

1

( )z

E

dp dy
=                                                        (EK 3.17) 

 

bağıntılarının ve 4 1 2 3p p p p= + −  şeklinde momentumun korunumunun kullanılmasıyla 

 

2
3 3 4

3

2 ( ) ( )
( )

T

T

d d
s p dy s t u m

dp dt

σ σ
δ = + + − 

 ∫                  (EK 3.18) 

 

elde edilir. Burada 3y  üçüncü parçacık için hızlılıktır. Enine kütle ifadesi 2 2 2
T Tm m p= +  ile 

verilir ve kütlesiz parçacık için Tm m=  şeklindedir. Burada üçüncü parçacık için kütle 

3 0m =  alınarak Mandelstam parametreleri, 

 

3 3
3 3( ) , ( )y y

T Tt p s e u p s e
−= − = −                                                                          (EK 3.19) 

 

şeklinde elde edilir. Buradan denklem EK 3.18 

       

3 32
3 3 4 3

3

2 ( ) ( ( ) ( )
( )

y y
T T

T

d d
s p dy s m p s e e

dp dt

σ σ
δ − = − − + 

 ∫                                     (EK 3.20) 

 

olarak elde edilir. Burada 3 3
32cosh y y
y e e

−= + bağıntısı kullanılarak 

2
2 4
4 3 3 3 3

3

( 2( ) cosh ) [2( ) ( cosh )]
2( )

T T

T

s m
s m p s y p s y

p s
δ δ

−
− − = − +  şeklinde Dirac delta 

fonksiyonu düzenlenebilir. Burada 3cosh y w=  değişken değiştirmesi yapılarak,  
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2
4

3
2

3 3 3

1
2 ( ) ( )

( ) 2( ) 2( )1
T

T T T

s md dw d
s p w

dp dt p s p sw

σ σ
δ

− = − + 
 −

∫                           (EK 3.21) 

 

 

                   (EK 3.22) 

 

 

enine momentum dağılımı bulunur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
3 4

3

1

( )
1

2( )

T

T

d d
s

dp dts m

p s

σ σ =  
 −

−
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EK 4. DİFERANSİYEL TESİR KESİTLERİNİN ANALİTİK İFADELERİ 

 

EK 4.1 Uyarılmış Leptonlar İçin Köşe Faktörleri 

 

Spin-1/2 uyarılmış lepton, SM leptonu ve vektör bozonu köşesi 

 

*(1 / 2)

5(1 ) ( , , )
2

ll V e
V

g
q f V Z W
α

µ µασ γ γΓ = − =
Λ

        (EK 4.1) 

 

ile verilir. Burada Vf  bağlaşımları 

 

1

2
w

W

f f
s

=                      

( )2 2 ' 2 '
34 4

4

L W W f W

z

W W

I c f s f e s f
f

s c

+ −
=                                                                                      

( )'3
' ffIfef Lf −+=γ             (EK 4.2) 

 

şeklindedir. Burada fe  uyarılmış spin-1/2 leptonun elektrik yükünü, LI 3  zayıf izospinin 

üçüncü bileşenini ( )W Ws c  ise zayıf karışım açısının sinüsünü(kosinüsünü) göstermektedir. 

Uyarılmış spin-1/2 elektron (e*) için  

 

( ) ( )( ) 2 2 ( ) ' ( ) 1
' / 2 , / 2 ,

2

e e e
z W W W W w

W

f s f c f s c f f f f f
s

γ= − = − + =      (EK 4.3) 

 

ve  uyarılmış spin-1/2 elektron nötrinosu (ν*) için  

 

( ) ( )( ) 2 2 ( ) ' ( ) 1
' / 2 , / 2 ,

2
z W W W W w

W

f s f c f s c f f f f f
s

ν ν ν
γ= + = − =      (EK 4.4) 
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olarak elde edilir. Spin-3/2 uyarılmış lepton, SM leptonu ve vektör bozonu için akım-1 ( 1J ) 

tipli etkileşmeler dikkate alındığında köşe faktörü 

 
*(3 / 2 )

1 1 1 5( ) ( , , )
ill i i

e V Aig c c i Z Wγ γΓ = − − =         (EK 4.5) 

 

ile verilir. Spin-3/2 uyarılmış lepton, SM leptonu ve vektör bozonu için akım-2 ( 2J ) tipli 

etkileşmeler dikkate alındığında köşe faktörü 

 

*(3 / 2 )

2 2 2 5( ) ( , , )
ill i ie

V A

ig
q c c i Z Wλ
µγ γ γ

−
Γ = − =

Λ
                  (EK 4.6) 

 

şeklindedir. Akım-3 ( 3J ) tipli etkileşmeler için, spin-3/2 uyarılmış lepton, SM leptonu ve 

vektör bozonu için köşe faktörü 

 

*(3 / 2)

3 3 3 52
( ) ( , , )

ill i ie
V A

g
q q c c i Z Wαβ
µ βσ γ γΓ = − =

Λ
                  (EK 4.7) 

 

ile verilir. , ,i Z Wγ= olmak üzere 1 1( , )i i
V Ac c , 2 2( , )i i

V Ac c  ve 3 3( , )i i
V Ac c ’ lar serbest 

parametrelerdir. 

 

EK 4.2 Uyarılmış Elektron İçin Diferansiyel Tesir Kesiti İfadeleri 

 

Spin-1/2 uyarılmış elektronun elektron-pozitron çarpıştırıcılarında tek üretimi için toplam 

diferansiyel tesir kesiti ifadesi; 
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( )2 4 *2 ( ) ( ) 3 *2(1/ 2)

2 2 2 2 2

( ) ( ) 3 *4 *2 ( )2 4 *4 *2

2 2 2 2 2

2

( 2( )) ( ) ( 2( ))1

4 4 8 ( )

( 4 ( ) (4 )) ( 4 ( ) (4 ))

8 ( ) 8

(

fe f e e
e A V z e z

z

f e e e
V z e z e

z

f
A

f g m s t c c f f g g t m s td

dt s s m t

c f f g g m s s t m s t f g m s s t m s t

s m t s t

c c

γ γ

γ γ

σ
π π

π π

 − + + + − + +
= +

Λ − Λ

+ + − + + + − +
− −

− Λ Λ

+
+

2 ( )2 2 2 *4 *2

2 2 2 2

( )2 4 *4 *2 ( ) ( ) 3 2 *2

3 2 4 2 2 2 2

2 ( )2 2 2 2

) ( 4 ( ) (4 ))

32 ( )

( 2 ( ) ( 2 )) ( ) ( )( 2( ))

4 8 ( ( 2 ))

( ) ( )(

f e
V z e z

z

fe f e e
e A V z e z z

z z z

f f e
A V z e z z

f g g t m s s t m s t

s m t

f g m t s t m s t c c f f g g m s m s t

s s m s m s

c c f g g t m s m

γ γ

π

π π

− − + + +

− Λ

+ + − + + − − + +
− +

Λ + + − + Γ Λ

+ − −
+

*2

2 4 2 2 2 2

( ) ( ) 3 2 *2 *2 *4 *2

2 4 2 2 2 2

2( )2 2 2 *2 *2 2 *4

2( ))

4 ( )( ( 2 ))

( )( ( 2 ) ( 2 ( ) ( 2 )))

4 ( ( 2 ))

(2 ( 2 ) ( )( 2 ( )

z z z z

fe e f
z e z z A V

z z z

f fe f f
z e z A V A V

s t

s m t m s m s

f f g g m s c m m s t c m t s t m s t

s m s m s

f g g c c m m s t c c m t s t m

γ

π

π

+ +

− + + − + Γ Λ

− − + + + + + − +
−

+ + − + Γ Λ

− + + + + + + −
−

*2

4 2 2 2 2

( 2 )))

16 ( ( 2 ))z z z

s t

s m s m sπ

+ 


+ + − + Γ Λ 
                  

 (EK 4.8) 

 

şeklindedir. Spin-3/2 uyarılmış elektron akım-1 ( 1J ) için fotonun aracılık ettiği diyagramlar 

(s-kanalı, t- kanalı, s- ve t- kanalı girişimi) için diferansiyel tesir kesitleri aşağıdaki gibidir.  

 

( ) 4 2 2 *2 *2
1 11

*2 4

( )( )( ( ) (2 ))

24

s
e A Vg c c m s t s t m s td

dt m s

γ γσ

π

− + − − + + +
=                                                 (EK 4.9) 

 

( ) 4 2 2 *2 *2
1 11

*2 2 2

( )( )( ( ) ( 2 ))

24

t
e A Vg c c m t s s t m s td

dt m s t

γ γσ

π

− + − − + + +
=               (EK 4.10) 

 

( ) 4 2 2 *4 *2 2 2
1 11

*2 3

( ( )( )( ) ( ))

48

st
e A Vg c c m st s t m s td

dt m s t

γ γσ

π

− + + + − +
=                (EK 4.11) 

 

Spin-3/2 uyarılmış elektron akım-2 ( 2J ) için fotonun aracılık ettiği diyagramlar için 

diferansiyel tesir kesitleri  



 151

( ) 4 2 2 *2 2 2 2 *2
2 22

*2 2 4

{ ( )( ) ( 2 2 ( 2 ))}

48

s
e A Vg c c m s s st t m s td

dt m s

γ γσ

π

− + − − − − + +
=

Λ
                 (EK 4.12) 

 

( ) 4 2 2 *2 2 2 2 *2
2 22

*2 2 2 2

{ ( )( ) ( 2 2 (2 ))}

48

t
e A Vg c c m t s st t m s td

dt m s t

γ γσ

π

− + − − − − + +
=

Λ
              (EK 4.13) 

 

( ) 4 2 2 *2 *4 *2
2 22

*2 2 3

{ ( )( )( )( ( ))}

48

st
e A Vg c c m s t s t m st m s td

dt m s t

γ γσ

π

− + − − + − − +
=

Λ
             (EK 4.14) 

 

 

Spin-3/2 uyarılmış elektron akım-3 ( 3J ) için fotonun aracılık ettiği diyagramlar için 

diferansiyel tesir kesitleri  

 

( ) 4 2 2 *2 2 *4 *2
3 3 3

*2 4 3

{ ( )( ) ( 2 ( ) ( 2 ))}

48

s
e A Vd g c c m s m t s t m s t

dt m s

γ γσ

π

− + − + + − +
=

Λ
               (EK 4.15) 

 

 

( ) 4 2 2 *2 2 *4 *2
3 3 3

*2 4 2

{ ( )( ) ( 2 ( ) (2 ))}

48

t
e A Vd g c c m t m s s t m s t

dt m s t

γ γσ

π

− + − + + − +
=

Λ
             (EK 4.16) 

 

( ) 4 2 2 *2
3 3 3

*2 4 2

{ ( )( ) }

48

st
e A Vd g c c m s t st

dt m s

γ γσ

π

+ − −
=

Λ
                    (EK 4.17) 

 

 

ile verilir.  

 

Spin-3/2 uyarılmış elektronun tek üretiminde 1J  için Z-bozonunun aracılık ettiği 

diyagramlar için diferansiyel tesir kesitleri aşağıdaki gibidir.  
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2( ) 2 2 *2 *2 2 2 2 *2 *2
1 1 1 11

*2 2 4 2 2 2

{ (4 ( 2 ) ( )( )( )( ( ) (2 )))}

96 ( ( 2 ))

f fs Z Z f Z Z f
e z A V A V A V A V

z z z

g g c c c c m s m s t c c c c m s t s t m s td

dt m s m s m s

σ

π

− − − + + + − − + + +
=

+ + − + Γ

 

          (EK 4.18) 

 

2( ) 2 2 *2 *2 2 2 2 *2 *2
1 1 1 11

*2 2 2 2

{ (4 ( 2 ) ( )( )( )( ( ) ( 2 )))}

96 ( )

f ft Z Z f Z Z f
e z A V A V A V A V

z

g g c c c c m t m s t c c c c m t s s t m s td

dt m s m t

σ

π

− + + − + + − − + + +
=

−

                      

           (EK 4.19) 

 

2( ) 2 2 2 2 2 *4 *2 2 2
1 1 1 11

*2 2 4 2 2 2 2

{ ( 4 ( )( )( (3 ) ( ) ( 3 )))}

192 ( ( 2 ))( )

f fst Z Z f Z Z f
e z A V A V A V A V

z z z z

g g c c c c c c c c m s t st s t m s td

dt m s m s m s m t

σ

π

− − + + + − + + + − +
=

+ + − + Γ −
 

 

           (EK 4.20) 

 

Spin-3/2 uyarılmış elektronun tek üretiminde 2J  için Z-bozonunun aracılık ettiği 

diyagramlar için diferansiyel tesir kesitleri  

 

2( ) 2 2 *2 2 *2 2 2 2 2 2 *2
2 2 2 22

*2 2 4 2 2 2 2

{ ( ) ( 4 ( 2 ) ( )( )( 2 2 ( 2 )))}

(192 )4( ( 2 ))

f fs Z Z f Z Z f
e z A V A V A V A V

z z z

g g m s c c c c s m s t c c c c s st t m s td

dt m s m s m s s

σ

π

− − − − + + + + + − − − + +
=

+ + − + Γ Λ

 

                       (EK 4.21) 

 

2( ) 2 2 *2 2 *2 2 2 2 2 2 *2
2 2 2 22

*2 2 2 2 2

{ ( ) (4 ( 2 ) ( )( )( 2 2 (2 )))}

192 ( )

f ft Z Z f Z Z f
e z A V A V A V A V

z

g g m t c c c c m s t t c c c c s st t m s td

dt m s m t

σ

π

− − − − + + + − − − + +
=

− Λ

 

           (EK 4.22) 

 

( )
22 2 2 2 2 2 *2 *4 *42

2 2 2 2

*2 2 *2 2 2 4 2 2 2 2

{ (4 ( )( )( )( )( 2 ( )

( ) ( ) ))} /192 ( )( ( 2 ))

st
f fZ Z f Z Z f

e z A V A V A V A V z

z z z z

d
g g c c c c c c c c m s m s m s m s t

dt

st s t m s t m s m t m s m s

σ

π

= − + + + − − + − + −

+ + + + − + + − + Γ Λ

 

           (EK 4.23) 
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şeklinde verilir. Spin-3/2 uyarılmış elektronun tek üretiminde 3J  için Z-bozonunun aracılık 

ettiği diyagramlar için diferansiyel tesir kesitleri ise aşağıdaki gibidir.  

 

( )
2 2 *2 2 *2 *23

3 3

22 2 2 *4 *2 *2 2 2 2 2 2 4
3 3

{ ( ) (4 ( 2 )

( )( )( 2 ( ) (2 )))} /192 (( ) )

s
fZ Z f

e z A V A V

fZ Z f
A V A V z z z

d
g g m s c c c c m s m s t

dt

c c c c m s s t m s t m s m s m

σ

π

= − − − + + +

+ + + + + − + − + Γ Λ

 

            

           (EK 4.24) 

( )
2 2 *2 *2 2 *23

3 3

22 2 2 *4 *2 *2 2 2 2 4
3 3

{ (4 ( ) ( 2 )

( )( )( 2 ( ) (2 )))} /192 ( )

t
fZ Z f

e z A V A V

fZ Z f
A V A V z

d
g g c c c c m t m t m s t

dt

c c c c m s s t m s t m s m t

σ

π

= − − − + + +

+ + + + + − + − Λ

 

         

           (EK 4.25) 

( ) 22 2 2 2 2 2 2 2 *2
3 3 3 3 3

*2 2 2 4 2 2 2 4

{ ( 4 ( )( )( ) ( )

192 ( )( ( 2 ))

st f fZ Z f Z Z f
e z A V A V A V A V z

z z z z

d g g c c c c c c c c m s s t m s t

dt m s m t m s m s

σ

π

− − + + + − − + +
=

− + + − + Γ Λ
        (EK 4.26) 

 

 

EK 4.2 Uyarılmış Nötrino İçin Diferansiyel Tesir Kesiti İfadeleri 

 

Spin-1/2 uyarılmış nötrinonun elektron-pozitron çarpıştırıcılarında tek üretimi için toplam 

diferansiyel tesir kesiti ifadesi; 

 

( )2 4 *4 *2( )2 2 2(1/ 2)

2 2 3 2

( ) ( ) 3 2 *2 *2 *4 *2

2 4 2 2 2 2

( )2 2 2

( 2 ( ) ( 2 ))( )1

4 8 ( ) 4

( )( ( 2 ) ( 2 ( ) ( 2 )))

4 ( ( 2 ))

(2

ew e w

W

f f
z e z z A V

z z z

z e z A

f g m t s t m s tf g g t s td

dt s m t s

f f g g m s c m m s t c m t s t m s t

s m s m s

f g g c

νν
γ

ν ν
γ

ν

σ
π π

π

+ + − + +
= − −

− Λ Λ

− − + + + + + − +
−

+ + − + Γ Λ

−
2*2 *2 2 *4 *2

4 2 2 2 2

( 2 ) ( )( 2 ( ) ( 2 )))

16 ( ( 2 ))

f ff f
V A V

z z z

c m m s t c c m t s t m s t

s m s m sπ

− + + + + + + − + 


+ + − + Γ Λ 

                          

           (EK 4.27) 
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ile verilir. s-kanalında fotonun aracılık ettiği diyagram için spin-3/2 uyarılmış nötrino 1 2,J J  

ve 3J  için sırasıyla diferansiyel tesir kesitleri, 

 

(3 / 2) 4 2 2 *2 *2
1 11

*2 4

( )( )( ( ) (2 ))

24
e A Vg c c m s t s t m s td

dt m s

γ γσ

π

− + − − + + +
=                                            (EK 4.28) 

 

(3 / 2) 4 2 2 *2 2 2 2 *2
2 22

*2 2 2

( )( ) ( 2 2 ( 2 ))

48
e A Vg c c m s s st t m s td

dt m s

γ γσ

π

− + − − − − + +
=

Λ
                               (EK 4.29) 

 

(3 / 2) 4 2 2 *2 2 *4 *2
3 3 3

*2 4 3

{ ( )( ) ( 2 ( ) ( 2 ))}

48
e A Vd g c c m s m t s t m s t

dt m s

γ γσ

π

− + − + + − +
=

Λ
                              (EK 4.30) 

 

şeklindedir. s-kanalında Z-bozonunun aracılık ettiği diyagram için spin-3/2 uyarılmış 

nötrino 1 2,J J  ve 3J  için sırasıyla diferansiyel tesir kesitleri, 

 

2(3 / 2) 2 2 *2 *2 2 2 2 *2 *2
1 1 1 11

*2 2 4 2 2 2

{ (4 ( 2 ) ( )( )( )( ( ) (2 )))}

96 ( ( 2 ))

f fZ Z f Z Z f
e z A V A V A V A V

z z z

g g c c c c m s m s t c c c c m s t s t m s td

dt m s m s m s

σ

π

− − − + + + − − + + +
=

+ + − + Γ
 

           (EK 4.31) 

 

2(3 / 2) 2 2 *2 2 *2 2 2 2 2 2 *2
2 2 2 22

*2 2 4 2 2 2 2

{ ( ) ( 4 ( 2 ) ( )( )( 2 2 ( 2 )))}

(192 )( ( 2 ))

f fZ Z f Z Z f
e z A V A V A V A V

z z z

g g m s c c c c s m s t c c c c s st t m s td

dt m s m s m s s

σ

π

− − − − + + + + + − − − + +
=

+ + − + Γ Λ

           

           (EK 4.32) 

 

(3 / 2)
2 2 *2 2 *2 *23

3 3

22 2 2 *4 *2 *2 2 2 2 2 2 4
3 3

{ ( ) (4 ( 2 )

( )( )( 2 ( ) ( 2 )))} /192 (( ) )

fZ Z f
e z A V A V

fZ Z f
A V A V z z z

d
g g m s c c c c m s m s t

dt

c c c c m t s t m s t m s m s m

σ

π

= − − − + + +

+ + + + + − + − + Γ Λ

 

 

                       (EK 4.33) 
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ile verilir. t-kanalında W-bozonunun aracılık ettiği diyagram için spin-3/2 uyarılmış nötrino 

1 2,J J  ve 3J  için sırasıyla diferansiyel tesir kesitleri, 

 

(3 / 2) 2 2 2 2 *2 *2 *2 *2
1 1 1 11

*2 2 2 2

{ ( )( )( ( ) ( 2 )) 2 ( 2 ) }

96 ( )

W W W W
e w A V A V

w

g g c c m t s s t m s t c c m m s t td

dt m s m t

σ

π

− + − + + − + + − −
=

−
 

           (EK 4.34) 

 

(3 / 2) 2 2 *2 2 *2 *2 2 2 2 2 *2
2 2 2 22

*2 2 2 2 2

{ (( ) (2 ( 2 ) ( )( 2 2 (2 ))))}

96 ( )

W W W W
e w A V A V

w

g g m t c c m m s t t c c s st t m s td

dt m s m t

σ

π

− − + − − + + − − − + +
=

− Λ

 

           (EK 4.35) 

 

(3 / 2) 2 2 *2 2 *2 *2 2 2 *4 *2
3 3 3 3 3

*2 2 2 2 4

{ (( ) (2 ( 2 ) ( )( 2 ( ) (2 ))))}

96 ( )

W W W W
e w A V A V

w

d g g m t t c c m m s t c c m s s t m s t

dt m s t m

σ

π

− − + − + + + + + + − +
=

− Λ

         

                       (EK 4.36) 

şeklinde verilir. 
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