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Bu tezde, spin-3/2 uyarilmis leptonlarin tek iiretimi, gelecek nesil yiiksek enerjili
elektron-pozitron ¢arpistiricilart ILC (International Linear Collider) ve CLIC (Compact
Linear Collider) enerjilerinde incelenmistir. Uyarilmis leptonlar, kompozit modeller
tarafindan Ongoriilen pargaciklardir. En disiik uyarim olarak spin-1/2 uyarilmis
leptonlar dikkate alinirken, spin-3/2 uyarilmis leptonlar bir iist uyarim olarak ele
alinmistir. Uyarilmig leptonlar, SM leptonlar1 ve ayar bozonlar1 arasindaki etkilegsmeler
icin etkin lagranjiyen yontemi kullanilmistir. Spin-3/2 uyarilmis leptonlar i¢in miimkiin
biitlin bozunma modlar1 incelenmis ve spin-1/2 uyarilmis leptonun bozunmalar ile
karsilastirilmistir. Sinyal ile buna karsilik gelen fon olaylar dikkate alinmis, son durum
gozlenebilir pargaciklar iizerine uygun kinematik sinirlamalar getirilerek ILC ve CLIC’

de uyarilmis leptonlarin kesfedilme limitleri bulunmustur.
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In this thesis, single production of excited spin-3/2 leptons have been studied at future
high energy electron-positron collider ILC (Internaional Linear Collider), and CLIC
(Compact Linear Collider) energies. Excited leptons are particles which are suggested
by composite models. Spin-1/2 excited leptons are considered as the lowest excitation
and spin-3/2 excited leptons are considered as an higher excitation. Effective lagrangian
method has been used for the interactions among excited leptons, SM leptons, and
gauge bosons. All of the possible decay modes of the excited spin-3/2 leptons have
been studied and compared with spin-1/2 excited lepton decay modes. Signal and
corresponding backgrounds have been taken into account and discovery limits at ILC
and CLIC have been obtained by applying suitable kinematical cuts on the final state
detectable particles.
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1. GIRIS

Maddeyi olusturan en kiigilk yap1 taslarimin ve bu yapi taslar1 arasindaki temel
etkilesmelerin neler oldugu sorular1 temel pargacik fiziginin cevap aradigi sorulardir.
Bugiine kadar yapilan yiiksek enerji fizigi deneylerinden maddenin temel bilesenlerinin
kuarklar ve leptonlar ile kuvvet tasiyicilari olan vektdr bozonlart oldugu anlagilmistir.
Dogada, parcaciklar arasindaki 4 temel etkilesme elektromanyetik, giiglii, zayif ve kiitle
cekimi (gravitasyon) etkilesmeleridir. Standart Model (SM), temel parcaciklari ve onlar
arasindaki etkilesmeleri agiklayan bir modeldir. Pargacik fiziginin SM’ i giiclii etkilesmeler
ile elektromanyetik ve zayif etkilesmelerin birlesik teorisi olan elektrozayif etkilesmeleri
aciklayabilmektedir. Giinlimiiz parcacik hizlandiricilarinin enerji 6lgeginde, SM’ nin
ongortileri deneysel veriler ile oldukga yiiksek hassaslikta dogrulanmistir. Bu model,
kuarklar, leptonlar ve kuvvet tasiyicilart yardimiyla madde ve maddenin yapis1 hakkinda
pek cok soruyu cevaplar. Bununla birlikte, fermiyonik ailelerin tekrarlanmasi, aile sayisi
bilmecesi, fermiyon kiitleleri, karisim acilari, Higgs mekanizmasi, nétrino salinimlari,
hiyerarsi problemi gibi bazi sorular cevapsiz kalmaktadir. Bu gibi sorulardan bir veya
birkagini cevaplayabilmek tizere SM 6tesinde baz1 modeller 6nerilmektedir. Boylelikle SM

Otesinde ne tiir bir yeni fizigin oldugu arastirilacaktir.

SM o6tesinde Ongoriilen modellerden baslicalari; biiylik birlestirme teorileri, stipersimetri,
sicim teorisi ve kompozit modellerdir. Fermiyonik ailelerin tekrarlanmasi kuark ve
leptonlarin kompozit yapilar olabilecegini diisiindiirmektedir. Kompozit modeller, kuark ve
leptonlarin, preon olarak adlandirilan daha temel parcaciklarin bagli durumu oldugunu
ongortirler. Eger kuarklar ve leptonlar daha temel bilesenlerden meydana gelmislerse, bu
bilesenlerin baglanma enerjileri 6l¢eginde, kuarklar ve leptonlar arasinda, A kompozitlik
Olcegi ile karakterize edilen yeni etkilesmeler agiga ¢cikmalidir. A kompozitlik dlgeginin
cok altindaki enerjilerde bu etkilesmer 1/A ’nin kuvvetleri ile bastirilmistir. Kuark ve
lepton kompozitligi i¢in en ikna edici kanit kuark ve lepton taban durumlarinin iizerinde

yer alan uyarilmis durumlarin kesfi olacaktir. Kompozit modellerde, spin-1/2 uyarilmis



fermiyonlar en diisiik radyal ve yoriingesel uyarimlardir. En diisiik fermiyonik uyarimlarin
spininin arastirilmasi preon yapist hakkinda bilgi verecektir. Spin-3/2 uyarilmis fermiyonlar

ise bir list uyarim olarak ele alinabilir.

Temel parcaciklar ve etkilesmelerini agiklayan Standart Model hakkinda 2. boliimde kisa
bir bilgi verilerek, SM’ nin sorunlar1 ve SM 6tesindeki modeller 6zetlenmistir. 3. boliimde
uyarilmis leptonlar ele alinmistir, ayrica uyarilmis leptonlar icin elde edilen son kiitle
sinirlarindan bahsedilmistir. Uyarilmis lepton ile SM leptonlar1 arasindaki etkilesmeler i¢in
etkin lagranjiyen yontemi kullanilmistir. Uyarilmis yiiklii ve yiliksiiz leptonlarin miimkiin
bozunma modlar1 incelenmis, bu modlara ait bozunma genislikleri ve dallanma oranlari
uyarilmig lepton kiitlesine bagli olarak hesaplanmistir. 4. Boliimde uyarilmis spin-1/2 ve
spin-3/2 elektronun ve noétrinonun gelecek nesil yliksek enerjili elektron-pozitron
carpistiricilarinda tek tiretimi igin tesir kesitleri hesaplanmistir. Sinyal olaylarinin yanisira
fon da dikkate alinmis, son durum gozlenebilir pargaciklar lizerine bazi kinematik
sinirlamalar  konularak ulasilabilecek kiitle ve baglanma parametreleri limitleri

belirlenmistir (Cakir and Ozansoy 2008, 2009).

Feynman diyagramlarinin  ¢izilmesinde =~ PSFGO (Cakir 2004) programindan
faydalanilmigtir. Feynman genliklerinin sembolik hesaplamalarinda iz yontemi kullanilmus,
bilgisayarda sembolik hesaplama programlarindan MATHEMATICA
(http://www.wolfram.com) progami ic¢in yiiksek enerji paketi TamarA’ dan
(http://library.wolfram.com/infocenter/MathSource/839/#downloads) faydalanilmistir.
Grafik ¢izimi icin GNUPLOT (http://www.gnuplot.info) ve MATHEMATICA programlari
kullanilmistir. Fon tesir kesitlerinin hesaplanmasinda CALCHEP 2.5.j (Pukhov et al. 1999,
2004) programindan faydalanilmstir.



2. STANDART MODEL ve OTESI

Parcacik fiziginin amact maddenin temel bilesenlerinin neler oldugunu ve bu bilesenlerin
nasil etkilestiklerini arastirmaktir. Bu amaca gore olaylara iki yonden yaklagabilinir: Madde
parcaciklart ve etkilesmeler. Maddenin i¢ yapisiz en kiigiik yapitaglar1 temel parcaciklardir
ve bu temel parcaciklar arasinda elektromanyetik, gii¢lii ve zayif kuvvet ile kiitlegekimi
kuvveti olmak tizere 4 temel kuvvet vardir. 1960’ I1 ve 1970’ li y1llarda gelistirilen parcacik
fiziginin Standart Model’ i (SM) gliniimiize kadar parcacik fiziginin teorisi olmustur. Bu
model, pargaciklarin davraniglarini agiklamamiza yardimei olacak sekilde temel parcaciklar

ve onlar arasindaki temel etkilesmelerin matematiksel bir anlatimidir.

2.1 SM’ de Temel Parcaciklar ve Temel Etkilesmeler

Parcaciklar arasindaki temel kuvvetlerin her biri fiziksel bir teoriye aittir. Kiitle ¢ekimi
kuvvetinin klasik ilk teorisi Newton tarafindan kurulan evrensel kiitle ¢ekim kanunudur.
Daha sonra bu teorinin goreli genisletilmesi Einstein’ in genel gorelilik teorisi ile
yapilmustir. Kiitle ¢ekiminin tam olarak kuantumlu bir teorisi heniiz kurulmamistir. Ayrica,

kiitle ¢ekim kuvveti temel pargacik fiziginde 6nemli bir rol oynamayacak kadar zayiftir.

Elektromanyetik kuvvetleri agiklayan teori elektrodinamiktir. Elektrodinamigin klasik
formiilasyonu 1873 yilinda Maxwell tarafindan yapilmistir. Maxwell’ in teorisi 6zel
gorelilik ile uyumludur. 1940’ 11 yillarda elektrodinamigin kuantumlu teorisi olan Kuantum
Elektrodinamigi (KED) Tomonaga, Feynman ve Schwinger tarafindan kurulmustur.

Kuantum elektrodinamigi en eski ancak en basit ve en basarili dinamik teoridir (Griffiths

1987).

Niikleer bozunmalardan sorumlu kuvvet zayif kuvvettir ve zayif etkilesmelerde lepton veya

kuark c¢esnisi degisebilir. Zayif kuvveti agiklayan teori ¢esnidinamigidir (flavordynamics).



Zayif kuvvet, temel parcaciklar lizerinde baglayici bir etkiye sahip degildir. Zayif

etkilesmelerin, ilk teorisi 1934’ te Fermi tarafindan kuantumlu bir teori olarak verilmistir.

Proton ve nétron arasinda, bunlar1 bir arada tutarak c¢ekirdegi olusturmalarindan sorumlu
kuvvet giiclii kuvvettir. Bu kuvvet kuarklararasi etkilesmelerden sorumludur. 1964’ te Gell-
Mann ve Zweig tarafindan kuark modeli kurulana dek, giiclii kuvvet Yukawa teorisi ile
aciklaniyordu. Kuarklarin gii¢lii etkilesmelerini agiklayan kuantumlu alan teorisi kuantum

renkdinamigidir (KRD).

Diisiik enerjilerde, elektromanyetik ve zayif kuvvetler oldukga farkli goriiniirler ancak
yeteri kadar yiiksek enerjilerde ve yiiksek momentum aktarimi oldugunda elektromanyetik
ve zayif etkilesmeler aym etkilesme siddetine sahiptirler. Elektrozayif teori,
elektromanyetik ve zayif kuvvetleri, aym kuvvetin iki farkli goriiniimii olarak ele alir ve 10
GeV mertebesindeki birlestirme 6l¢eginin iizerindeki enerjilerde, bu iki kuvvveti tek kuvvet
olarak (elektrozayif kuvvet) birlestirir. Glashow (1961), elektromanyetik ve zayif
etkilesmelerin  SU(2).xU(l)y ayar grubuna dayanan yerel bir ayar teorisi altinda
birlestirilebilecegini dnermistir. Daha sonra, Weinberg (1967) ve Salam (1968), baslangicta
kiitlesiz alinan ayar alanlarina kendiliginden simetri kirilmasi yoluyla kiitle kazandirarak
elektrozayif teoriyi, baska bir deyisle Glashow-Weinberg-Salam (GSW) modelini

kurmuslardir.

Elektrozayif teori ile kuantum renkdinamigi beraber Standart Model olarak adlandirilir.
SM’ ye gore goriiniim soyledir: Maddenin temel bilesenleri 1/2 spinli leptonlar ve kuarklar
ile spini 1 olan kuvvet tastyicilart olarak adlandirilan ayar bozonlaridir. Bunlarin disinda
SM, heniiz gbzlenmeyen, ancak pargaciklarin kiitle kazanmalarindan sorumlu olan en az bir
tane skaler Higgs bozonu 6nermektedir. Leptonlar, kuarklar ve ayar bozonlar1 giiniimiizdeki

en yiiksek enerjili hizlandiricilarin dl¢tiigii boyutlarda bir i¢ yapiya sahip degillerdir.



Leptonlar ve kuarklar birlikte fermiyon olarak adlandirilirlar. SM’ de fermiyonlar 3 aile
olustururlar. SM’ de fermiyonik aileler Cizelge 2.1° de verilmistir. Yiklii leptonlar,

elektron (e), miion ( x ) ve tau () -1 elektrik yiikiine sahiptir. Her bir yiiklii leptona karsilik

gelen notrinolar v,,v, ve v, ise yiksizdirler ve SM’ de kiitlesiz kabul edilirler. Bu

ailelerde sol-elli leptonlar, biri yiiklii digeri yiiksliz olmak iizere ikililer seklindedirler.
Yiikli leptonlar ise sag-elli tekliler olmak iizere smiflandirilirlar. Yiikli leptonlar

elektromanyetik ve zayif olarak, yiiksiiz leptonlar ise sadece zayif olarak etkilesirler.

Cizelge 2.1 SM’ de fermiyonik aileleler

Par¢acik 1.aile 2.aile 3.aile
Leptonlar v, V. V.
> € > Hp > TR
€ L H L v L
Kuarklar (uj p (cj (u) ,
s Up, dp > Cr> SR > Igs> Dp
d L S L d L

Kuarklar ise giiclii, elektromanyetik ve zayif olmak iizere 3 yolla etkilesirler. Kuarklar renk
yiikii ad1 verilen bir kuantum sayisina sahiptirler. Renk disinda kuarklar da leptonlar gibi 6
tanedir ve 3 aile olustururlar. Kuarkin her bir ¢esnisi 3 renge (kirmizi, mavi, yesil) sahiptir.
Kuarklar serbest olarak gozlenemezler, baryonlar: (3 kuark bagli durumu) ya da mezonlar

(bir kuark bir antikuark bagli durumu) olustururlar.

Kuvvet tastyicilart olan ara bozonlar spin 1 pargaciklardir. Elektromanyetik etkilesmelerin
tastyict pargacigl foton (), zayif etkilesmelerin tastyici pargaciklar1 Z° ve W* bozonlari,
gliclii etkilesmelerin  tasiyicilart ise 8 adet gluondur (g). Cizelge 2.2° de temel
etkilesmelerin siddetleri ve araci parcaciklar gosterilmistir. Temel etkilesmeleri tanimlayan
teorilerinin dayanak noktasi, koordinatlara bagli bazi doniisiimler altinda de8ismez

kalmalaridir. Ozellikle, elektromanyetik, zayif ve giiclii kuvvetlerin kuantumlu alan



teorileri yerel ayar teorileri olarak adlandirilan sinifa aittirler, ¢iinkii bu teoriler
pargaciklarin i¢ uzaylan iizerinde koordinatlara bagl doniisiimler altinda degismez kalirlar

(Ho-Kim and Pham 1998).

Cizelge 2.2 SM cercevesinde temel etkilesmeler ve araci parcaciklari

Etkilesme Siddet Araci Pargacik
Giicli 1 Gluon (g)
Elektromanyetik 107 Foton (y)
Zayif 10° wtve 7°

Pargaciklar arasindaki temel etkilesmelerden bahsettigimiz bu kesimde, kiitle ¢ekimi
kuvvetinden hi¢ bahsetmedik. Ciinkii, kiitle ¢ekim etkileri siddet bakimindan zayif
kuvvetten bile daha kiigiiktiirler ya da en azindan, bugiin elde edilen uzakliklardan daha
kiigiik uzakliklara ulasincaya kadar bu boyledir. Tim kiitleli maddeler kiitle ¢ekimine
uyarlar. Elektrik akimi elektromanyetik kuvvetin, zayif izospin ve zayif hiperyiik elektro-
zayif kuvvetin ve kuark renkleri de kuarklar arasindaki giiclii etkilesmelerin kaynagidir.
Ozel olarak “kiitlegekim yiikii” tagtyan fermiyonik bir kaynaga rastlanmamustir. Kiitlecekim
kuvveti de diger li¢ temel kuvvet gibi yerel ayar degismezligi prensibinden dogar, ancak
teoriyi degigsmez birakan doniisiimler uzay-zaman koordinatlar {izerine kendi kendilerine
etkirler ve sonug olarak korunumlu bir enerji-momentum tensoriinden tiiretilen kuvvet alani
vektorel degil tensoreldir. Kiitle ¢cekim kuvvetinin gravifon adi verilen spin-2 parcacik

tarafindan tasindigi ongorilmistiir.

2.2 Ayar Degismezligi ve Simetriler

Bu kesimde abelyen ve abelyen olmayan ayar gruplarinin uzay-zamana bagli olan ve
olmayan faz dontisiimleri altindaki degisimlerine bakilarak simetriler ve etkilesmeler

arasindaki iliski incelenecektir.



2.2.1 Global ayar degismezligi - abelyen durum

Ik olarak uzay-zamana bagli olmayan i¢ simetrilerle ilgilenelim. Burada pargacik
alanlarina 6rnek olarak serbest Dirac alanini ele alalim (Dirac denkleminin elde edilisi ve
serbest parcacik ¢oziimleri EK 1’ de verilmistir). m kiitleli serbest Dirac alani igin

lagranjiyen;

Ao=¥(iy*o, - m)¥ 2.1

ile verilir. Bu lagranjiyen global faz doniisiimleri altinda degismez kalir. Boyle bir simetri

elektrik yiikiiniin korunumuna karsilik gelir.

P(x)—> ¥ (x)=e ¥ (x) (2.2)

Burada ¢ parcacigin yiikii, € ise uzay-zamandan bagimsiz keyfi bir sabit sayidir ve
donilisiim parametresi olarak adlandirilir. Denklem (2.1) ile verilen ayar doniisiimleri bir
grup olustururlar. Gruptaki farkli doniigiimler birbiri ile sira degistireceginden, bu grup

abelyen bir gruptur, doniisiimler 6 gibi tek bir parametre ile ifade edilir. Bu grup, U(1)

olarak adlandirilan bir boyutlu tiniter doniistimlerin grubudur. Donlistim parametresi €
koordinatlardan bagimsiz oldugu i¢in parcacik alaninin gradyenti de alan ile ayni sekilde

doniisiir. Alan gradyentinin doniisiimd,
0,¥(x)>0,¥ (x)=e"""¥(x) (2.3)
seklindedir. U(1) global faz dontisiimleri altinda A, degismez kalacagindan U(1) grubu A,

lagranjiyeninin bir simetri grubudur. A,” n global faz simetrisine sahip olmasi, Noether

teoremi ile verilen korunumlu bir akima karsilik gelir. Bu korunumlu akim,



Ju¥)=q¥y,¥ (24)
ile verilir. Noether akimlarina karsilik gelen korunumlu yiik operatorleri ise

O=[d’xj,(x) (2.5)
seklinde yazilir.

2.2.2 Yerel ayar degismezligi - abelyen durum

Global ayar degismezligi durumunda, € fazi, dl¢iilebilir degildir ve keyfi olarak secilebilir.
Bu faz bir kere secildikten sonra, uzayda tiim zamanlarda ayni olmalidir. Global
dontistimler, yerel (lokal) dontisiimler olarak genellestirilmek istenirse faz, uzayda farklh

noktalarda farkli degerler alacak sekilde ele alinir.
P(x)—> ¥ (x)=e 4OP(x) (2.6)

Burada doniisiim parametresi 6(x) uzay-zamanin bir fonksiyonudur. Alan gradyentinin

doniisiimii global doniisiimlerde oldugu gibi alanla ayn1 yoldan gerg¢eklesmez.
0, W(x) >0, (x)=e [0, W —iq(@, 0(x) ¥ 2.7)

Burada, serbest alan lagranjiyeni yerel abelyen doniisiim altinda degismez kalmaz, ayar

degismezligini bozacak sekilde ilave bir terim kazanir.

Ao Ao =Ag+q V7" ¥ (0,0)

= Ao+j"0,0 (2.8)



Ayar degismezligini yeniden saglamak i¢in teoriye, pargacik akimlarina baglanacak vektor
alanlarinin eklenmesi gerekmektedir. Bu ise teoriyi etkilesen bir teori yapar. Boyle yerel
ayar degismezligine sahip teoriye bir Ornek elektrodinamiktir. Yeniden tanimlanan
lagranjiyen,

Aleo—jﬂA# (29)
seklidedir. A lagranjiyeninin degismez kalmasi vektor alaninin doniistimiiniin

A, —>A4,=4,+0,0 (2.10)

seklinde olmasini gerektirir. 4, vektdr alani ayar alani olarak adlandirilir. A,” in ayar

degismezligi, alan gradyentinin kovaryant olarak doniismesini gerektirir. Bu ayar grubu i¢in

kovaryant tiirev

D, =0, +iqd, (2.11)

ile tanimlanir. Kovaryant tiirev alanla ayni yoldan dontistir.

DY —>D,¥=¢""0Y (2.12)

Kovaryant tiirev cinsinden A, tekrar yazilirsa;

A=%D, y" — m)¥ (2.13)

4, vektor alanini dinamik sistemin ayrilmaz bir pargasi yapmak istersek, 4,’ niin

tiirevlerinden olusan ayar degismez bir terimi lagranjiyene eklemek gerekir. Boyle bir terim

F,=0,4,-0,4, (2.14)



seklindedir. 7, F*" terimi Lorentz skalerdir ve bu terimin lagranjiyene eklenmesiyle elde

edilen hareket denklemlerinin Maxwell denklemlerini vermesi i¢in -1/4 anlasmasal

katsayisti ile verilir. Son olarak ayar degismez lagranjiyen su sekilde yazilabilir:

A=A+tAg

_ 1 ,
=¥Y(@iD,r" -mW¥ —ZFWF”

A=W(i0 ,y" —m)¥ —q¥y" V4, - %FWF”" (2.15)

Madde alam ile ayar alaninin etkilesmesi, pargacigin dogasindan bagimsiz olarak sadece
pagacigin yiikii ile olmaktadir. Burada ayar alani i¢in kiitle terimi sadece —%mjA LAY

formunda olabilirdi. Ancak boyle bir kiitle terimi ayar degismez olmadigindan m ,=0

olmalidir. Ozetleyecek olursak; elektrodinamik, ayar alam olarak fotonu kiitlesiz birakacak

sekilde, abelyen, yerel ayar degismezligine sahip bir teoridir.
2.2.3 Global ayar degismezligi - abelyen olmayan durum

Parcacik alanlar1 es ¢oklular halinde karsimiza ¢ikabilirler. Bu durumda abelyen olmayan
doniistimler kullanilir. Global durumda abelyen olmayan doniisiimlerin genellestirilmesi
daha aciktir ancak yerel abelyen olmayan simetriler i¢in durum daha karmagiktir. Parcacik

alani

| (2.16)

seklinde es ¢oklu biciminde yazilabilir. Bu c¢okludaki bilesenler birbirlerine {iiniter

doniisiimler ile doniisiirler.
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Y >Y =UY, a,b=1,..n (2.17)

U, nxn’ lik liniter ve tinimodiiler matrislerdir ve bir Lie grubu G’ nin bazi temsillerini
tanimlarlar. Burada basitlik olmas1 bakimindan G’ nin basit bir grup oldugunu ve ¥’ nin

onun temel temsilinde oldugunu diisiiniiyoruz. Uniter {inimodiiler matrisler N=r’-1 adet 6,

parametresi (reel faz agisi) ile tanimlanirlar.
U =exp(-igT,0,) i=L..,N (2.18)

Burada reel g sabiti baglasim sabiti olarak adlandirilir ve 7; matrislerine grubun
jeneratorleri denir. U’ nun {niter ve inimodiiler olmasinin geregi olarak 7;” ler hermitik
(T=T;") ve izsiz (TrI=0) matrislerdir. Bu matrisler Lie cebrinin bir bazim

olusturduklarindan sira degistirme bagintilari;

(7.7, |=if, T, i, jok=1,., N (2.19)
seklindedir. f;;’ lar grubun yap: sabitleridir ve hepsi sifir olmadig1 zaman abelyen olmayan

bir cebir tanimlarlar. Jeneratorlerin normalizasyon bagintisi
1
Tr(TiT))= 5 5, (2.20)

ile tammlanabilir. Global abelyen olmayan U =e "% déniigiimleri altinda fermiyon alani
ve alan gradyenti ayn1 yoldan doniisecegi i¢in, serbest alan lagranjiyeni abelyen durumda
oldugu gibi degismez kalir. Bu degismezlige karsilik gelen i adet fermiyon akimi yine

Noether teoremi ile belirlenir.

jl=g¥Yr 'Y (2.21)
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2.2.4 Yerel ayar degismezligi- abelyen olmayan durum

—igT;0,(x)

Denklem (2.18) ile verilen doniisiim matrisini U(x)=e seklinde abelyen olmayan

yerel duruma genellestirelim. Burada doniisiim parametreleri 6, =6, (x) uzay-zamanin bir

fonksiyonu oldugu i¢in alan ve alan gradyenti ayn1 sekilde doniismeyecektir.

Y o5¥ =UGX)Y¥Y (2.22)

0,¥—0o,¥Y =U0,¥+(0,U)¥ (2.23)

Serbest alan lagranjiyeni abelyen olmayan yerel doniistimler altinda ek bir terim kazanarak

degismez kalmaz.
Ao—> Ao = Ao +Piy* (U, U)Y (2.24)

Simetriyi tekrar kurabilmek i¢in parcacik akimlarina baglanacak vektor alanlarina ihtiyag

vardir. Yeniden tanimlanan lagranjien,
Ai=Ag-g¥y*4,¥ (2.25)

seklindedir. Burada A4, , bilesenleri vektdr olan nxn’ lik izsiz, hermityen matrislerdir.

Vektor alaninin déniistimii
o oo .
A, =4, =UAU" +—- @, UV (2.26)

ile verilir. Kovaryant tiirev

12



D,=(0,+igd,) (2.27)
ile tanimlanir ve agagida verilen esitligi saglar
D, UY =UD,¥ (2.28)

Abelyen olmayan durumda alan tensorii, abelyen durumdaki gibi degismez degildir, daha

ziyade kovaryanttir.

F,, =UF,U"~F,, +ig[F,,.0] (2.29)

F,, , nxn’ lik matris oldugundan

F, =F,T, (2.30)
seklinde ayristirilabilir. Burada
F), =0,4, -0,4, - gf ALA, (2.31)

ile ifade edilir. Ayar alanlarinin tiirevlerini igerecek sekilde lagranjiyene eklenecek ayar ve

Lorentz degismez terim abelyen olmayan durumda

Tr(F,, F* )=%F;VFI.”V (2.32)

ile verilir. Vektor alanlari ile etkilesen Dirac spindr alanlari i¢in ayar degismez lagranjiyen

A=AotAg
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_ 1 ,
:‘P(lDy;/”—m)‘P—ETr(FWF” )
: (2.33)
=¥(io,r" —m)‘P—gAw‘P;/”Ti‘P—ETr(FWF”V)

seklinde ifade edilir. Abelyen durumda oldugu gibi, ayar alanlari kiitlesiz olmak
zorundadir. Ancak, (2.31) ile verilen ifadedeki lineer olmayan terimden dolayi, abelyen
durumdan farkli olarak ayar alaninin kendine baglagimi mevcuttur. Ciinkii abelyen olmayan

her bir ayar alan1 4,,, grubun karakteristigi olan bir ylik tasir ve bu nedenle benzer yiik

iu
tastyan herhangi bir alanla, kendisi veya ayar ¢oklusundaki diger bilesenlerle, etkilesir.
Abelyen olmayan yerel ayar gruplar altinda degismez kalan teorilere Yang-Mills teorileri

denir.
2.3 SM” nin Elektrozayif Teorisi

Elektromanyetik ve zayif kuvvetlerin birlesik teorisi elektrozayif teori abelyen olmayan
yerel bir ayar teorisidir ve yerel faz degismezligi kendiliginden kirilmistir. Bu kesimde
oncelikle leptonlarin elektromanyetik ve zayif etkilesmelerinin her ikisinin de 6zelliklerini
veren tek bir grup belirlenmeye calisilacak, daha sonra da leptonlar1 ve skaler alanlari
igeren ayar degismez bir model tanitilacaktir. Son olarak fermiyonlara ve ayar bozonlarina
kiitle vermekten sorumlu olan kendiliginden simetri kirilmasi olgusu tanitilarak madde ve

ayar alanlarinin kiitle kazanmalar1 incelenecektir.
2.3.1 Tek lepton ailesinin ayar degismez modeli

Buradaki incelememizi tek aileli duruma indirgeyebiliriz. Clinkii her bir aile i¢in leptonik
kuantum sayisi ayri ayri korunmaktadir. Ornegin birinci aile igin, elektron sayisi arti
elektron nétrinosu sayisi eksi bunlara karsilik gelen antipargaciklarin sayist korunur.

Benzer korunum yasalar1 miion tiirli ve tau tiirii leptonlar i¢in de gecerlidir.

14



Herhangi bir Dirac spindr alan1 sag- ve sol-elli bilesenler cinsinden
Y(x)="Y, (x)+ P, (x) (2.34)

seklinde yazilabilir. Sag- ve sol-elli bilesenler, spindr alan1 ve izdiisim operatorleri

cinsinden su sekilde yazilabilir:
Y, (x)=a,¥Y(x), Y (x)=ax¥(x) (2.35)
Burada izdiistim operatorleri,

1 1
aLEE(l_J’s): aREE(l"'?/s) (2.36)

ile verilirler. Sag- ve sol-elli spindr bilesenlerinin adjoint eslenikleri

el

=iz = 2.37)
\TIR :lPereVo :lPTaRVO :\T;aL

Deneysel veriler, sadece sol-elli leptonlar ile sag-elli antileptonlarin zayif bozunumlarinin
miimkiin oldugunu gostermistir. Bu nedenle bozunma genlikleri, alanlarin sol-elli
bilesenlerini igerecek sekilde tanimlanabilir. Burada sadece ilk lepton ailesi gézoniinde

bulunduruldugundan, parcacik sembolleri spindr alanlar1 yerine dogrudan kullanilmistir.

L,=2e,(x)y,V, (x)+.. + uver terimleri
—e(x)7, (1= 75V, () + .. (2.38)
Bu ifadeye gore, ¢, ve v,, SU(2) grubu ile iliskili olacak sekilde iki bilesenli vektor i¢inde

bir araya gelmelidir. Diger taraftan hi¢ bir parcacik ile etkilesmeyen sag-elli bilesenler, tek
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boyutlu temsillerde olmalidirlar. Fakat, elektron i¢in sag-elli bilesen e, , sol elli bilesen e,

ile ayn1 yiike ve aym sifirdan farkl kiitleye sahip oldugundan tekli halinde ifade edilirken,

v, elektriksel olarak nétral oldugundan, kiitlesiz kabul edildiginden ve sadece sol-elli
olarak gozlendiginden cikarilmistir. Bu nedenle tek aileli durumda SU(2) grubunda madde

alanlarini sol-elli ikili ve sag-elli tekli seklinde ifade edebiliriz.

v, =(VEJ . Wy=ep (2.39)
L

2.3.2 Tek lepton ailesi icin global simetri

Kiitlesiz sag- ve sol-elli alanlar i¢in serbest lagranjiyen;

Ao="V ,iy"0, ¥, + ¥ iy"0, ¥,

=v,iy"o,v, +eiy?0 e (2.40)
seklinde yazilir. Ay, SU(2)doniisiimleri altinda degismez kalir.
U,(8)=e % (2.41)

Burada, 6., i=1,2,3 doniisiim parametreleri, ¢, ler ise grubun jenaratorleridir. ¢,, sol-elli
bilesen W, lizerine etkidiginde Pauli spin matrislerine (¢, =%ri), sag-elli bilesen ¥,
tizerine etkidiginde ise sifira (7, =0) esit olur. ¥, ve W, nin bu doniisiim altinda
degisimleri

Y, 5%, =U,¥,

. (2.42)
¥, >, =U,¥,
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Sonsuz kii¢lik doniisiimler i¢in;

UsW, =W, + 0%, =(1-ight)¥, 0¥, =~iZ6z¥, 2.43)

U, Wp =Yy +V, ~(1-igt,)¥, Ny =

elde edilir. Reel ¢, parametreleri ile parametrize edilen siirekli global simetrilere,

korunumlu akimlar karsilik gelir. Korunum yasalar1 ile siirekli global simetrileri birlestiren

bu teorem Noether Teoremi olarak bilinir. Korunumlu akimlar su sekilde ifade edilir:

u
0L o¥,  »,0% (2.44)
00, ¥,) ba, " oa,

1

Jt=

Parcaciklarin i¢ uzay iizerindeki dontisiimler i¢cin &* =0 oldugundan (2.44) denkleminde

sag taraftaki ikinci terim sifirdir. Dikkate aldigimiz global SU(2) doniisiimii i¢in o, = g0,

oldugundan sag- ve sol-elli alanlarin bu parametreye gore degisimleri

oY, T oY,

:—l—l\P’ =
sgd) 2 7 5(g6)

0 (2.45)

ile verilir. Bu ifadelerin yardimiyla korunumlu zayif izospin akimlari;
e =P,y % v, (i=1,2,3) (2.46)

olarak elde edilir. Korunumlu akimin sifirinci bileseninin tiim uzay {izerinden integre
edilmesi ile korunumlu yiikler bulunur. Burada korunumlu yiikler zayif izospin

operatorleridir. Kapali formda bu zayif izospin operatorleri,

=[x () (2.47)
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ile verilir. Bu operatdrlerin agik yazilimlari,

1
I, :EJ.d3x(vZeL +ejv)),

i ;
L=- j d*x(vie, —ejv,), (2.48)

1 :
I :Ejaﬂx(vaL —ele,)

Kiitle terimi

—mee =—m(ege, +¢;¢€;) (2.49)
seklinde yazilirsa SU(2) degismezligi bozulacaktir. (2.40) ile verilen lagranjiyenin zayif
izospin simetrisine sahip olmasi istenirse fermiyonlar kiitlesiz olmalidir. Elektron ve onun

nétrinosunu iceren tek aileli durum i¢in denklem (2.40) ile verilen lagranjiyenin zayif-

izospin doniisiimlerinin yani sira liniter genel faz doniisiimleri
U@)=e " (2.50)

altinda da degismez kalmas: gerekir. Bu doniisiim, F matrisi ile verilen ve jenerator gibi

etki eden bir kuantum sayist ile bir U(l) grubu olusturur. Elektron ailesinin
elektromanyetik etkilesmelerini aciklayabilmek i¢in U(1) grubunu incelemek gerekir.
Burda f sabiti, & donilisim parametresinden ayri olacak sekilde bir baglasim sabiti olarak

verilmistir. Sonsuz kii¢iik doniisiimler dikkate alindiginda;

Y 5>Y¥Y =UGO)Y =Y -igF¥ (2.51)
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F matrisinin mertebesi, ¥’ nin ait oldugu temsilin boyutu ile verilir. Sag- ve sol-elli

bilesenlerin parametrelere gore degisimi

oY, _ oY,

=-iFY,, =-iF¥Y,
5(/0) 6(f0)
seklindedir. Buradan korunumlu akim;

in =¢Lny~PL +@Rny~PR

(2.52)

(2.53)

ile verilir. Korunumlu akima karsilik gelen korunumlu yiik operatdrleri asagidaki gibidir.

F
F= jd%g'o (x) = jd%(\}f}F\PL +WLEY,)

(2.54)

Burada, F” yi F=Q seklinde elektrik yiikii operatorii olarak alalim. Bu durumda, (2.53) ile

verilen korunumlu akim, elektromanyetik akima karsilik gelir, ayrica (2.54) ile verilen

korunumlu yiik operatdrleri de elektron ve ndtrinonun elektrik yiiklerini (Q,

veren elektriksel yilik operatdrleri olur.

];m :Q(ELy,ueL +ER7’/1€R):_E7’#€

Q=Id3x '(f'"(x)=—J‘d3xe%e

-1ve 0, =0)

(2.55)

(2.56)

Burada amacimiz tek aileli durumda hem elektromanyetik hem de zayif etkilesmeleri bir

arada anlatacak, SU(2),ve U(l), ayar gruplarii igeren bir grup kurmaktir. Bu nedenle

boyle bir grupta, elektrik yiikili operatdrleri zayif izospin operatdrleri ile sira degistirmelidir.

¥, ikilisindeki bilesenlerin yiikleri birbirinden farkli oldugundan elektrik yiikii sayist iyi

bir kuantum sayis1 degildir. Baska bir deyisle;

19



0=0, +0;

. 2.57
:-jd%‘l’l%(l—@)‘l’L—J‘d3xe;eR @57)

yiik operatorleri 7, = % 7, seklinde verilen zayif izospin operatorleri ile sira degistirmez. Bu

operatorler arasinda asagida verilen sira degistirme bagintis1 vardir:
[Q’Ii]:[139li]:i€3ij]j (2.58)

Bu nedenle, U(l), ve SU(2),, Ao i¢in es zamanli simetriler olamazlar. Bununla birlikte, o

keyfi bir sabit olmak {izere, a(Q —1I,)operatdrii zayif izospin operatdrleri 7,” ler ile sira
degistirir ve SU(2), grubu ile sira degistiren U(1) grubunun jeneratorii olarak
diisiiniilebilinir. Deneysel verilerle uyumluluk i¢in « =2 se¢ilmistir, 2(Q — /) operatoriine
zayif hiperyiik operatorii adi verilir ve Y ile gosterilir.

0-1, +%Y (2.59)

(2.59) ile verilen ifade, ampirik bir ifadedir, Gell-Mann—Nishijima ifadesi olarak bilinir. Bu
ifade, zayif ve elektromanyetik etkilesmeler arasinda iliski kurararak, elektron ve elektron
ndtrinosu i¢in, zayif izospinin 3. bileseni ile hiperyiik cinsinden elektrik ytiklerini verir. Y

operatdriiniin daha ag¢ik yazimi

Y=—[d'x¥ (1-7)¥, —2[ 2V} ¥, - [d*x¥]r ¥,

(2.60)
——[&xvw, —2f dxely,
Bu denklemi (2.54) ile 6zdeslestirerek ve F'=Y alarak, elektron ailesi i¢in
Y, =—1ve Y,=-2 (2.61)
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elde edilir. Verilen es coklu (isomultiplet) icin hiperyiikiin ortalama degeri, ¢oklunun

elektrik yiikiintin ortalama degerinin 2 katma esittir, ¥ =2(0—-1/;)=2(0). Korunumlu

hiperyiik akimi agagida verildigi sekildedir:
IR AT AT TIAT (2.62)
Elektromanyetik, izospin ve hiperyiik akimlar1 arasindaki iliski,

.em . 1 .
I =]z +5 z (2.63)

ile verilir. Buraya kadar elde edilen sonuglar1 6zetleyecek olursak; tek aileli serbest lepton

lagranjiyeni global doniisiimlerin SU(2), x U(1), grubu altinda degigmez kalir.

1
igt,—,

SUQ),: U@ =e 2" (2.64)

OPE U (@)=e =" (2.65)

Burada, g ve g sirasiyla SU(2), ve U(l), ayar gruplar i¢in baglanma sabiti olarak
adlandirilirlar. SU(2), xU(1), simetri grubu igin elektron ailesine atanan kuantum sayilari

Cizelge 2.3’ de verilmistir.
Cizelge 2.3 Tek lepton ailesi i¢in kuantum sayilari

Escoklu 1 I; Y (0]
o A 4 I &
e ), 2 -1/2) -1
ex 0 0 -2 -1
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2.4 Kendiliginden Simetri Kirilmasi

Bu kesimde pargacik fiziginde biiyiik bir 6neme sahip olan kendiliginden simetri kirilmasi
olgusu tanitilacaktir. Bu kesimin incelenmesinde (Leader 1996, Ho-Kim 1999, Maggiore
2005) esas referanslar olarak kullanilmistir. Dinamik bir sistemi tanimlayan lagranjiyen
global veya yerel bir simetriye sahip olsun. Sistem i¢in vakum durumu lagranjiyenle ayni
simetriye sahip olmadiginda kendiligiden simetri kirilmas1 gergeklesir. Bu durum vakumun

sifirdan farkli bir beklenen degere sahip olmasi ile agiklanabilir.

Kuantumlu alan teorisinde, yerel ayar de8ismezligini saglamak i¢in teoriye ayar alanlari

dahil edilir. KED’ in U(1),, grubuna uygulanan ayar prensibi ile foton grubun kiitlesiz ayar

alan1 olarak tanimlanabilir. Zayif etkilesmelerin daha kisa menzile sahip olmas1 gibi farkli
Ozelliklerinin olmasina ragmen, yiiksek momentum aktarimi durumunda elektromanyetik
etkilesmelerle benzer 6zellikler gostermektedirler. Ancak foton alani kiitlesiz kalirken zayif
etkilesmelerin yayilmasindan sorumlu W ve Z alanlan kiitlelidir. Bu durumda zayif
etkilesmelerin yerel abelyen olmayan bir teori ile nasil tanimlanacaglr sorundur. Ayar
simetrisini bozmadan vektér bozonlarina kiitle vermenin yolu, simetriyi kendiliginden
kirmaktir. Bu ifade, sistemin dejenere minumumlar1 kiimesinden rastgele bir tanesini
fiziksel taban durumu olarak se¢mekle esdegerdir. Simetri bozulmus gibi gibi goriinse de

gercekte simetri bozulmamistir, saklanmastir.

2.4.1 Global simetrilerin kendilig¢inden kirilmasi ve Goldstone teoremi

Siirekli ayar simetrisine sahip en basit sistem kompleks skaler alandir. Bu sistemi

tanimlayan lagranjiyen;

A=0,40"9" ~V(9.¢)
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0,044 — 1P —§<¢¢*>2 (2.66)

ile verilir. Burada ¢=¢, +i¢, seklinde kompleks skaler alandir. Potansiyel ifadesi
V(p¢' )= pd" + %(qﬁqﬁ*)2 ile verilir. z* terimi, alan kuantumunun ¢iplak kiitlesi olarak, A

ise 0z etkilesmeyi tanimlayan bir baglasim olarak ele almnabilir. (2.66) ile verilen

lagranjiyen global faz doniistimleri altinda degigmez kalir.
P(x) > ¢ (x) =€ P(x) (2.67)

a , keyfi reel bir sabittir. Denklem (2.66)’ da ilk terim kinetik terimdir ve pozitiftir. Burada
kararl1 denge icin A >0 segilmelidir. z* >0 icin taban durumu ¢=0 olacak sekilde tektir.
Ancak 4’ <0 igin taban durumu tek degildir. Sistemin minimum enerjisi, potansiyel

ifadesinin alana gore tiirevinin alinarak sifira esitlenmesi ile bulunur.

ov . A1,
o = Al (2.68)

Buradan minumum kosulu

o’ =42 + 93 =—% (2.69)

2

2u

seklinde elde edilir. Buna gore, ,|— yarigapli cember iizerinde sonsuz sayida dejenere

minumum yer alir. Bu minumumlardan herhangi biri taban durumu olarak secildiginde
simetri kendiliginden kirilmis olur. Bu minumumlardan biri digerinden bir faz c¢arpani

kadar farklidir ve hepsi ayni fizige dayanir. Taban durumu faz ¢arpani ile beraber
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¢taban = <¢> = L 6[6 (270)

seklinde yazilabilir. Bu ifadede v=+/—44* /A ile tanimlanir. Yeni alanmn

X=Xt 2.71)

seklinde verildigini diisiinelim. & faz agisinmn sifir oldugu durumda (¢) :% ile verilen
2

taban durumu (minumum noktasi reel eksen iizereinde segilmis olur) ve bu yeni alan

cinsinden ¢ alani

o=l0)+=

1 .
:ﬁ(v-"ll +iy,)

2.72)

bi¢iminde yeniden yazilabilir. », ve y, alanlant reeldir ve taban durumunda
(2:)=(x,)=0" dir. Bu alanlar, dejenere minumumlar g¢emberine teget ve radyal
dogrultulardaki salinimlar1 6lgerler. Yeni alan cinsinden lagranjiyen;
A=l 0" x,0 20y} 18“ 0

—5[ 200,00 — (217 ) J"'E X220, %2

A 2 2 2 2 1 2.2

e )@t +a) — (2.73)

Sonug olarak, (2.73) ile verilen lagranjiyende y, alani kiitle kazanirken, y, alam kiitlesiz

kalmistir. Global simetrilerin kendiliginden kirilmasi durumunda aciga ¢ikan bu kiitlesiz

parcgaciklara Nambu-Goldstone bozonlar1 denir.
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Global abelyen simetriler i¢in yaptigimiz incelemeyi global abelyen olmayan durumlara

genellestirelim. j=1,..,n olmak Tlizere reel n tane skaler alandan olusan ¢ alanim

disiinelim.
h

p=|: (2.74)
&,

Bu sistemi tanimlayan lagranjiyen,
1 . . 1 o A . 2

A==0¢"0 (' == 2’ (' =2\ ¢/ (/)T 2.75
SO0~ @) -4 @) ] (2.75)

ile verilir. ¢ alanimin bilesenleri birbirlerine ortogonal doniisiimlerle donisiirler. Bu
nedenle lagranjiyen i¢in invaryant (degismez) grup O(n) grubudur. Grubun, %n(n —1) adet

jeneratdrii vardir. 1>0 ve u® <0 igin potansiyel enerjinin dejenere minumumlari kiimesi
j JNT 2 4[[2
24 @ =l == (2.76)

kosulunu saglar. Eger ¢/, ¢ siitun vektoriiniin bir bileseni olarak diisiiniiliirse, (2.76)

denklemi ile verilen minumum kosulu, vektoriin dogrultusu keyfi olacak sekilde vektdriin

biiytikliiglinii sabitler. Taban durumu i¢in bir se¢im;

Baban =(#) =] (2.77)
0

v
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seklinde olur. Vakum simetrisi, v’ yi degigsmez birakacak biitiin donmeleri icerir. Bu vakum
durumu, O(n) grubunun asikar olmayan bir alt grubu O(n-1) altinda degismez kalir. O(n-1)

grubu, n. alani diger alanlar ile karistirmaz. O(n-1) alt grubunun jeneratdr sayisi ise,

%(n —1)(n—2) ile verilir.

= (2.78)

seklinde yeni alan tanimlanabilir. Burada |v|2 =—4u° / Aile verilir. Lagranjiyen yeni alan

cinsinden yazilirsa,

1 T
A==|0" 28,47 —= )V 1/ 4
2[ 201’ =5 Zﬂ(}

A 1
- MG+ D) (2.79)
elde edilir. Denklem (2.79) da kiitle terimleri agik degildir ancak ikinci terimden elde
edilir. Burada, O(n) grubu ve alt grubun jenaratorlerinin farki, kirilan jenerator sayisini
verir. Bu say1 ise, kiitlesiz kalan skaler bozonlarin sayisina esittir. Ozet olarak, global

abelyen olmayan simetrilerin kendiliginden kirilmasi sonucu, kirilan her bir jeneratore

karsilik bir tane kiitlesiz skaler Nanbu-Goldstone bozonu ag¢iga ¢ikar.
2.4.2 Yerel simetrilerin kendiliginden kirilmasi ve Higgs mekanizmasi

Yiiklii skaler alanlar i¢in U(7) ayar doniisiimlerini dikkate alalim. Daha 6nce kesim 2.2.2’

de bahsedildigi gibi, yerel ayar degismezligi icin o tiirev ifadeleri D* =0 +igA"
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kovaryant tiirevleri ile degistirilip, lagranjiyene —zllF“VFﬂv terimi ekleniyordu. Bu sekilde

elde edilen lagranjiyen

N=D"4D, ¢ ~ o S GF ) - FE,, (2.80)
bicimindedir ve yerel abelyen ayar doniistimleri

U(f) =e %™ (2.81)
altinda degismez kalir. Bu doniisiimler altinda skaler alan ve ayar alaninin doniisiimii

P(x) > ¢ (x) = e 1" g(x) (2.82)
A, () > A, (x)= A4, (x)+ 0 ,a(x) (2.83)

seklindedir. (2.80) denklemi ile verilen lagranjiyene gore 4, kiitlesiz ayar bozonudur.

A>0 ve p* <0 igin potansiyel enerjinin minumumlari
0" =247 14 (2.84)

kosulunu saglarlar. v=+/-44* /1 olmak iizere, bu minumlar igerisinden taban durumu

Buasan =(#) = (2.85)

S

olarak secildiginde yerel abelyen simetri kirilmis olur. n ve y reel skaler alanlar olmak

uzere
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¢(X)=%[V+U(X)+iz(ﬂ] (2.86)

degisken degistirmesi yapilarak lagranjiyen yeniden yazilirsa

2.2
Azéa”naﬂn +%8”){8H;(—,u2772 + 47 4,4" —qvAﬂa“;{Jr%qzr]zAﬂA”
—iF“VFW —-vg’nAd, A" +-- (2.87)

2.2

elde edilir. Burada, Y4 4 A" terimine gore 4* alam kiitle kazanmgtir. (2.80) denklemi

ile verilen baslangigtaki lagranjiyende, 2 tanesi ¢ kompleks skaler alanindan 2 tanesi de

kiitlesiz 4“ alanindan gelmek iizere toplam serbestlik derecesi sayis1 dorttiir. (2.87) ile

verilen yeni lagranjiyende ise n ve y reel skaler alanlari ile bir adet kiitleli vektor (ayar)

alan1 bulunmaktadir ve toplam serbestlik derecesi sayis1 bestir. Dolayisiyla fazladan bir

serbestlik derecesi kazanilmistir. Yerel ayar doniisiimleri i¢in ¢ alaninin fazi tamamen
keyfidir. Bu nedenle «(x) donilisiim parametresindeki herhangi bir degisim, A’ yi aym

birakacak sekilde A4 {izerine uygun bir doniisiimle karsilanabilir (Aitchison and Hey
2004). Ayar degismezligini saglayacak sekilde, 6zel bir ayar secilerek fiziksel olmayan

serbestlik derecesi kaldirilabilir. r ve y alanlarinin doniisiimleri daha karmasik

goriinmektedir.

7(x) =7 (x) = (v+77(x)) cos(ga) + x(x)sin(ga) v

2(x) = 1 (¥) = g(x)cos(qa) — (v +7(x))sin(gex) (2.88)

Doniisiim parametresinin,
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a(x) =~ tan ™ (—Z) (2.89)
q V47

seklinde segilmesiyle y' alam tamamen ortadan kaldirilarak, n ve A" alanlarinin kalmasi

saglanabilir. Déniismiis alanlarin =k ve A" =A4" seklinde yeniden tanimlanmasiyla

1 1 1
_ 1 u 272 | _ 1 v o= 2 H
A_2[8Hh6 h+ 2071 | 3 "+ 2 (@) 4,4

:%quyA“h(h+2v)—%h3(h+4v)—i,u2v2 (2.90)

lagranjiyeni elde edilir. Bu bigimi ile lagranjiyen, kiitleli vektor bozonu 4" ile reel skaler,
kiitleli /4 alan1 arasindaki etkilesmeleri tanimlar. Baglangicta kiitlesiz olan ayar alaninin
yerel ayar simetrisinin kirilmasindan sonra kiitle kazanmasina Higgs mekanizmas: denir.
Buna gore, ayar alanlar teoriden kaybolan Goldstone bozonlarini yutarak kiitle kazanirlar,

Goldstone bozonlar1 ayar alanlarinin boyuna bileseni olarak karsimiza ¢ikar. SM’ ye gore

Higgs mekanizmasi, W* ve Z bozonlarinin kiitle kazanmasindan sorumludur.

2.4.3 SU(2) x U(1) simetrisinin kirilmasi

Bu kesimde, SM’ nin elektro zayif teorisi i¢in gerekli olan yerel abelyen olmayan
simetrilerin kirilmasi incelenecektir. Sonugta, zayif etkilesmelerle iliskili olarak kiitleli ti¢
vektdor bozonu ve elektromanyetik etkilesmelerden sorumlu kiitlesiz foton alani elde
edebilmek icin 3+1=4 adet bagimsiz skaler alana ihtiya¢ vardir. En basit se¢im (minimal
SM olarak da adlandirilir), biri yiiklii ve digeri yiiksiiz olmak tizere iki kompleks skaler

alan1 bir es ikili i¢ine yerlestirmektir.
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¢=(¢+J 2.91)

Yerel ayar doniisiimleri altinda ¢ alani,

SUQ) :p—d =exp [—ﬁ (x)/ 2} p (2.92)

Ul) :¢—>¢ =exp[-ila(x)/2]4 (2.93)

seklinde doniisiir. Burada 7 pauli matrislerini, / da birim matrisi gostermektedir. Skaler

alan i¢in ayar degismez lagranjiyen,
A= (D, $)" (D“$) - 1*¢'p— A(¢'9)* (2.94)

bicimindedir. SU(2) grubu i¢in ayar alani Wy ve baglagim parametresi g; U(1) grubu i¢in de

ayar alam1 B, ve baglasim parametresi g olmak iizere kovaryant tiirev

L (2.95)
2

ile verilir. Simetriyi, kiracak sifirdan farkli vakum beklenen degeri

(9)= (v /(1/5] (2.96)

seklindedir. Bu denkleme gore, vakum “ U(1) + SU(2) izospinin tigiincii bileseni ” birlesik
doniisiimii altinda degismez kalir (Aitchison and Hey 2004). Burada, ¢* ve ¢°kompleks

skaler alanlan &, &,, & ve h reel skaler alanlari cinsinden
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(o) 0
¢—( ¢0]—exp<2v ;m(w ,J (2.97)

seklinde ifade edilebilir. Bu dort adet reel skaler alanin vakum beklenen degeri sifirdir.
Fiziksel olmayan alanlar1 ortadan kaldirmak, fiziksel pargacik spektrumunu ve

etkilesmelerini gorebilmek i¢in éiniter ayar kullanilir. Kullanilacak iiniter doniisiim,
U=exp(-=¢&7,) (2.98)
2v

bi¢imindedir. Bu {initer doniisiim uygulandiktan sonra

0

$=¢= % i) (2.99)

doniismiis alan elde edilir. Bu alan, (2.94) denklemi ile verilen lagranjiyende kinetik

terimde kullanilirsa Higgs alaninin ayar bozonlarina baglasimi bulunur.

e Avar bozonlarinin Higgs alani ile baglasimlari:

Kovaryant tiirevin ikinci terimini,
W, T=Wle, +Wit, +W.)r, (2.100)

H

biciminde acik¢a yazalim.
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i . . .
2, —E(ng+gYB,,) —%(W;—zwj) { 0 }

(D, #) = | vt
g E ! +iw? o —LaW+g B\ V2
—15( i) H_E(_g . tgYB,) 2
_I%(W; - iW;)—V}h
_ 2 (2.101)

i 3 ' v+ h
{0, _E(_gW" +8YB,)}—

V2

v+h

v+ h) {0, +é(_gW3 +g'By)}(—)] (2.102)

2

2

(D"’ =(z§(W; W
elde edilir. Bu ifadelerde yiiklii zayif akimlari tasvir edebilmek i¢in,

4 1 _
Wy=—=W,FW;) (2.103)

N5

tanimlamas1 yapilirsa, kinetik terim

2 .2 2
(D, #)(D"$)' =%%W*W* + v?(—ng +gB,) +... (2.104)

u'lp

A

elde edilir. Matematiksel Wj ve B, alanlar, kiitlesiz foton alamni ve kiitleli Z alanini

olusturmak iizere karisirlar.

4,=8, cosHWJer sin G, (2.105)

Z,=-B,sin0, + W: cos by, (2.106)

4, ve Z, alanlar fiziksel alanlardir ve sirasiyla foton ve Z bozonu alanlarma karsilik

gelirler. 6, , zayif karisim agisi olarak adlandirilir.
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(2.107)

oqp |02

cosfy, = % sing,, =
g

seklindedir. Burada g=4g” +g* seklinde tanimlanmaktadir. Denklem (2.104)’ te ilk

terimden W bozonu igin kiitle terimi
m2, =g—%:mwz% (2.108)

olarak elde edilir. Denklem (2.104)’ te ikinci terim g* ile ¢arpilip béliiniirse,

2 '2 2

terimi elde edilir. Buradan faydalanarak Z bozonunun kiitlesi

1 _(g+gH)v Vg +gh)y (2.109)

::
" 4 2 " 2

seklinde bulunur. W ve Z’ nin kiitlelerin oran1 zayif karisim agisinin kosiniisiinii verir.

My &2 0, (2.110)

my 1/(g2 +g'2)v/2

Lagranjiyende (B, cos @, + W/f sin @, )* igeren bir terim olmadigindan foton alan1 igin
m,=0 (2.111)

sonucu elde edilir.
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e Avar bozonlarinin 6z baglasimlari:

SU(2) ve U(1) ayar alanlart i¢in, ayar degismez terimler

(2.112)

seklinde yazilir. Bu terim, W*, Z ve y Kinetik enerjilerini ve 6z etkilesmelerini tanimlar.

Burada

B, =0,B,-0,B,

- ; . P
w, =o W, —0W,+ge" W, W,

bi¢imindedir.

e Avar bozonlarinin leptonlara baglasimlari

Leptonlarin ayar alanlar ile etkilesmelerini i¢eren lagranjiyen
L =Y,iy" DLV, + ¥4iy DY,
seklindedir. Kovaryant tiirevler,

1o - 1
D£=(6#—15g1~W#—15gYLBy)

1
Djj =@, ~is8 Y;B,)
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olarak verilir. (2.116) ve (2.117) denklemleri, verilen lagranjiyende kullanilirsa, elektron ve

nétrinosu igin kinetik terimler
?Li)/“aﬂ‘PL + ?Ri)/“ﬁﬂ‘PR =V, iy"0,v, +eiy"0 e (2.118)

olarak yazilabilir. Yiikli akim baglagimlari,

L=V Wie, + W)Y, (2.119)

V2
seklinde elde edilir. Burada 7, :%(r1 +ir,)olarak tammlanir. Fiziksel 4,ve Z, alanlarinin

tanimlar1 kullanilirsa, yiiksiiz akim baglasimlar ise
ne = 1 1
Lf =—e¥, y" {E (-4, - E(tan Oy Y +cotf, r, )Zy}‘PL (2.120)

olarak elde edilir. Burada g,, g, =gsin6, =g cosd, seklinde tamimlanan elektromanyetik

baglanma sabitidir.

e Leptonlarin Higes’ e baglasimlar::

Simetri kirilmasindan sonra leptonlarla Higgs’ in baglasimindan dolay: leptonlar kiitle
kazanirlar. Bu baglasimlara Yukawa baglasimlar: denir. Higgs ile leptonlar arasindaki

etkilesmeyi tanimlayan lagranjiyen
L =-G,[(P, 0wy + P ("¥,)] (2.121)

bi¢imindedir. ¢’ nin sifirdan farkli vakum beklenen degeri istenen baglasimlar1 verecektir.

Birinci aile leptonlari igin,
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L =-G, FL ((v s h(; ) ﬁ)j‘//R £ %0 (a2,

G h
= _L—” (e eg +egey)

V2

__Gvth 2 (2.122)

V2

elde edilir. Elektron alanina gore karesel olan terim, elektronun kiitle kazandigin1 gosterir.

Elektron kiitlesi

Q
<

m, =—= 2.123
5 ( )

olarak elde edilir. Notrino i¢in ¥, kism1 olmadigindan, nétrino kiitlesiz kalmaktadir.

2.5 Standart Modelin Sorunlari

Parcacik fizigi ile ilgili pek ¢ok sey SM cercevesinde agiklanabilmektedir. Lorentz
degismezligi, liniterlik gibi genel ilkelerle uyumlu oldugundan ve renormalize edilebilir
oldugundan SM’ nin igerigi oldukca gii¢liidiir. SM’ nin biiyiik basaris1 elektromanyetik ve
zayif etkilesmeleri SU(2).xU(1)y ayar grubu altinda birlestirmesidir. Bununla birlikte, SM’
nin 6ngoriileri deneylerden elde edilen verilerle ¢ok biiylik hassaslik mertebelerinde
dogrulansa da, SM tarafindan agiklanamayan sorular vardir. Bu sorularin baslicalari, Higgs
mekanizmasinin orijini, parametre sayisinin fazlaligi, aile sayisi, nétrino kiitleleri, hiyerarsi

problemi ve SM’ nin birlesik bir teori olmamasidir.

Higgs mekanizmasinmin orijini: SM, deneysel veriler olmadan bir pargacigin kiitlesini

tahmin edememektedir. Elektrozayif simetrinin (SU(2).xU(1)y simetrisi) kirilmas1 Higgs
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alanm1 olarak adlandirilan skaler bir alanin tamitilmasi ile agiklanmaktadir. SM’ nin
Ongoriisii, fermiyonlarin ve ayar bozonlarimin kiitlelerini kuramsal Higgs parcacigr ile
etkilesmelerinden almalaridir. Ancak, pargaciklarin kiitle kazanmalarindan sorumlu Higgs

mekanizmasinin orijini hakkinda SM sessiz kalmaktadir. Burada skaler alan i¢in yazilan
potansiyel teriminde neden x*<0 secildiginin sorusu SM 6tesine dayanmaktadir. Ayrica

Higgs parcaciginin heniiz gozlenmemis olmasi da dnemli bir sorun olusturur. Bu sorunlar,
Higgs mekanizmasinin, SM’ de Ongoriilenden daha karmasik olabilecegi ya da
SUR2).xU(1)y simetrisinin kirilmasinin temelinin skaler bir alana ihtiya¢ duyulmadan

baska mekanizmalarla agiklanabilecegi gibi yeni fikirleri de beraberinde getirmektedir.

Parametre sayisimin fazlaligr: Standart Model, kuarklarin, yiiklii leptonlarin, zayif vektor
bozonlarin ve Higgs pargaciginin kiitleleri, 3 adet karisim acisi, CP bozulumundan sorumlu
1 adet faz ve 3 adet baglagim sabiti gibi olduk¢a fazla sayida parametreye sahiptir. Bu
parametreler deneylerden oOlgiilerek teoriye eklenirler. Bu parametreleri az sayidaki temel
sabitlerden hesaplayarak parametre sayisini azaltacak matematiksel bir yapt SM

cercevesinde yoktur.

Aile sayisi: SM’ de leptonlar ve kuarklar 3 aile olusturacak sekilde siniflandirilirlar. Aile
sayisinin neden 3 olmasi gerektigini modelin kendisi sdylemez. Ayrica bir aile igindeki
yapmnin diger ailelerde tekrarlanmasi da SM tarafindan agiklanamaz. Pargacik
kiitlelerindeki farklilik disinda bir aileyi digerinden ayiran temel seyin ne oldugu

bilinmemektedir.

Notrino kiitleleri: SM gercevesinde leptonik kuantum sayilari her bir lepton ¢esnisi i¢in ayri
ayr1 korunmaktadir. Ayrica nétrinolar kiitlesiz kabul edilmektedir. Ancak elde edilen son
deneysel veriler, notrinolarin salinim yaptiklarina ve kiiciik de olsa bir kiitleye sahip
olduklarina isaret etmektedir. Dolayisiyla SM, nétrino salimimlart ve kiitleleri igin bir

aciklama yapamamaktadir.
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SM birlesik bir teori degil: Elektromanyetik ve zayif kuvvetler SM cercevesinde
birlestirilirken gliglii kuvvet bu birlesmeye dahil edilememistir. Bu {i¢ kuvvetin
birlestirilmesinde 6nemli nokta, gii¢lli, zayif ve elektromanyetik etkilesmelerin baglanma
sabitlerinin tek bir baglanma sabiti seklinde ifade edilebilecegi bir enerji Olgeginin

bulunmasidir. Boyle bir birlesmenin ~10"> GeV mertebesinde M, olarak adlandirilan bir

enerji Ol¢eginde olacagina inaniliyor. Bu noktada, bu birlesmeyi SM ¢ergevesinde
incelenmeyen kiitle ¢cekim kuvvetini de icerecek sekilde genisletilmesi fikri dogar. Dort

temel kuvvetin tek kuvvet seklinde birlesebilecegi enerji 6lgegi ise Plank élgegi (M ;)

olarak adlandirilir. Bu 6lgek ~10"° GeV mertebesindedir.

Hiyerargi problemi: Elektrozayif enerji 6lgegi (~10> GeV) ile M, ya da M, arasindaki

farkin oldukga biiyiik olmas1 hiyerarsi problemi olarak adlandirilir. Bu enerji dlgekleri

arasinda kalan enerji sahasinda ne tiir bir fizik oldugu cevapsiz kalan sorulardandir.

Bu sorular ve problemler SM’ nin yanlis bir teori oldugu sonucunu gerektirmez. Daha
ziyade, SM’ nin parcgacik fiziginin nihai teorisi olmadigi, etkin bir teori oldugu fikrine
gotiiriir. Diisiik enerji limiti olarak SM’ yi kapsayacak sekilde daha temel modelin ne
olacaginin, gelecekte kurulacak yiiksek enerjili c¢arpistiricilarla ve hassas Olgiimlerle

belirlenebilecegi diisiiniilmektedir.

2.6 SM Otesi Modeller

SM 6tesinde yeni fizigin ne oldugunu bulmak amaciyla, SM 6tesi modeller olarak bilinen
yeni modeller Ongoriilmiis ve bunlar iizerinde ayrintili g¢alismalar yapilmistir. Bu

modellerden her biri SM ile agiklanamayan sorulardan bir ya da bir kagini agiklar. Bu
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modellerde, SM’ de bulunmayan yeni pargaciklar ve yeni etkilesmeler yer alir. SM Gtesi
teorilerden bazilari, biiyiik birlestirme teorileri (GUT), siipersimetri (SUSY), sicim teorisi

ve kompozitlik olarak siralanabilir.

1970’ li yillarin bas1 ile beraber fizikgiler giiclii ve elektrozayif etkilesmeleri birlestirme
konusu tizerinde ¢aligmaya baslamiglardir. Biiyiik birlestirme teorileri (GUT) olarak bilinen
bu teoriler, SU(3)cxSU(2).xU(1)y grubunu, teorinin diisiik enerji bolgesinden sorumlu bir
alt grup olarak kapsayacak sekilde, giiclii ve elektrozayif etkilesmeleri, tek bir G grubu
altinda birlestirmeye calisan teorilerdir. Buna gore, elektromanyetik, zayif ve giiclii

etkilesmelerin baglanma sabitlerinin tek bir baglanma sabiti olarak tanimlanacagi bir enerji

olgegi bilyiik birlestirme olgedi (M, )olarak adlandirilir. ¢* ilgili siiregteki momentum
aktarimi olmak iizere, zayif ve giiclii etkilesmelerin baglanma sabiti, ¢* ile logaritmik
olarak azalir. Zayif baglanma sabiti, gli¢lii baglanma sabitine gore daha yavas azalir.
Bununla birlikte, elektromanyetik baglanma sabiti ¢* ile artar. Bu ii¢ baglanma sabitinin
yaklastigi ortak enerji olgeginin M, ~10"° GeV oldugu hesaplanmistir. Ayrica biiyiik

birlestirme teorileri ¢ergcevesinde, bilinen ayar bozonlar1 disinda daha agir ayar bozonlar1 da

beklenmektedir.

Kuantumlu alan teorisine goére, korunum yasalar1 bir ayar degismezligi ve buna karsilik
gelen uzun menzilli, kiitlesiz bir alanin varlig: ile iliskilidir. Buna gore baryon veya lepton
sayist korunumu ile ilgili bir alanin varligi bilinmemektedir. Bu nedenlerle pek¢ok GUT
senaryosu, B (baryon sayisi) ve L (lepton sayisi)’ nin korunmadig siirecleri ongdriir. Bu
stireclerden bazilari, proton bozunumu (AB #0ve AL #0), ndtron-antindtron veya doteron-
pion salinimlart (AB=2ve AL =0), nétrinosuz ¢ift beta bozunumu, nétrinolar sadece sonlu
kiitleye sahip olduklarinda gozlenebilecek olan nétrino salinimlart (AL #0) siiregleridir
(Leader and Predazzi 1996). Buna gér SM’ nin sorunlarindan biri olan ndtrino salinimlari

biiylik birlestirme teorileri ile cevap bulabilir.
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SU2), SUB) ve U(l) ayar gruplarimi global bir ayar simetrisini igerecek sekilde
birlestirmenin pek ¢ok yolu vardir. SU(3)cxSU(2) . xU(1)y grubunu alt grup olarak igerecek
minimal ayar grubununun SU(5) oldugu (Georgi and Glashow 1974) sdylenmistir. Bu
model bilinen fermiyonlar1 ¢oklular i¢inde sunar. En kiigiik ¢cokluda 5 eleman vardir. Bu
coklularda kuarklar leptonlara ve kuarklar antikuarklara, yiikleri sirasiyla -1/3 ve -4/3 olan

yaklasik 10" GeV Kkiitleli X ve Y bozonlar1 araciligi ile déniisiir. SU(5) cercevesinde,

protonun ortalama yasam siiresi (z,) ve sin” 9, dlgiilebilir. SU(5)’ te proton igin baskin
bozunum kanali p —e* z° olmak iizere ¢ » ~10% yil olarak bulunmustur. Bununla birlikte

deneysel verilerden bu degerin ~10°' yil oldugu sonucu elde edilmistir. Bu nedenle

minimal grup olarak SU(5) disarlanmistir. SU(S) disindaki diger gruplar SO(10) ve E¢’ dir.

SM’ ye gore, bir fermiyon ile bir bozon ayni es cokluda yer alamazlar. Siipersimetrik
teoriler ise, bir fermiyon ve bir bozonu ayni es ¢okluya koyarak aralarinda bir simetri kurar.
Herhangi bir siipersimetrik modelde, en az bir fermiyon ve bir bozon ayni ayar kuantum
sayisina sahip olacak sekilde bir es ¢cokluya yerlestirilmelidir (Wess and Zumino 1974). Bu
modellerde, SM parcaciklarinin siiper esleri yer almaktadir. Siiper eslerin spinleri, SM
parcaciklarinin spinlerinden '% kadar farklidir. Buna gore, kuark ve leptonlarin siiper esleri
spin-0 olan skuarklar ve sleptonlar; foton, W, Z, gluon ve Higgs’ in siiper esleri ise
strastyla spin-1/2 “fotino”, “wino” , “zino” , “gluino” ve “Higgsino” olarak adlandirilan

siiper parcaciklardir. Siiper pargaciklar simdiye kadar gozlenmedigi i¢in kiitlelerinin TeV

bolgesinde olmas1 beklenmektedir.

Diger tiim temel simetriler gibi, siipersimetri de bir yerel ayar simetrisidir. Iki tane yerel
SUSY doniisiimii, uzay-zamana bagli bir parametre ile verilen bir 6telemeye es degerdir.
Bu genel bir koordinat doniistimiidiir. Bu sekilde, kiitlegekimini de igerecek sekilde

stipersimetrinin genisletilmis haline siiper kiitlecekimi (SUGRA) denir.
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SUSY teorilerinin, kiitleler ve baglasimlar arasindaki kosullardan dolay1 teorideki
wraksaklik derecelerini azaltma, hiyerarsi problemine cevap verebilme gibi Onemli

Ozellikleri vardir.

Sicim teorisi ise, dogadaki biitiin kuvvetlerin birlesik teorisi i¢in miikemmel bir adaydir.
Sicim teorisi kuantumlu bir teoridir, ayrica kiitle ¢ekimini de icerdigi i¢in kiitle ¢ekimi
etkilesmelerinin de kuantumlu teorisidir. Sicim teorisine gore, her bir parcacik, temel,
mikroskobik bir sicimin 6zel bir titresim moduna karsilik gelecek sekilde tanimlanmistir.
Sicimin farkli titresim modlar1 farkli pargaciklara karsilik gelmektedir. Sadece bir tek sicim
oldugundan ve her bir pargacik onun titresimlerinden ac¢iga ¢iktigindan, tiim parcaciklar
hep birlikte bir tek teori tarafindan kapsanirlar (Zwiebach 2004). Sicim teorisine gore,
sicimlerin boyutunun 10 cm oldugu ve biitiin uzay-zamanm bu sicimlerle dolu oldugu
diisliniiliir. Uzay-zaman boyutu 10 ile sabitlenmistir. Bizim algiladigimiz 3 uzay ve 1

zaman boyutundan baska 6 uzay boyutu yogunlasarak kapanmaigtir.

Sicim teorisinin basarilar1 kiitle ¢ekimi kuvvetini diger kuvvetler ile birlestirmesi, bilinen
tim pargaciklari  bir tek sicimden elde ederek temel pargacik ve parametre sayisini

azaltmasidir.

2.6.1 Kompozit Modeller

Kompozit modellerde SM’ de temel (i¢ yapisiz) olarak kabul ettigimiz kuark ve leptonlarin
bir i¢ yapiya sahip olduklari, preon adi verilen daha temel pargaciklarin bagli durumlari
olduklar1 6ngoriiliir. SM” de kuark ve leptonlar 3 aile seklinde siniflandirilmaktadir. Bir aile
icindeki yap1 diger ailelerde de karsimiza c¢ikmaktadir. Ailelerin birbirini tekrarlamasi,
fermiyonlarin kiitle spektrumundaki hiyerarsi, kuark ve leptonlarin zayif etkilesmelerde
benzerlik gostermesi ve SM ¢ercevesinde temel olarak adlandirdigimiz pargacik sayisinin

fazla olusu, kuark ve leptonlarin kompozit yapilar olabilecegini diisiindiirmektedir.
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Kuark ve lepton kompozitligi i¢in gozlenebilir etkilerden bazilari, anomal manyetik
momentlerin SM tahminlerinden sapmasi, yliklii zayif akimlarin V-A formundan sapmalari
ve uyarilmis durumlarin varligi seklinde siralanabilir (Terazawa et al. 1982). Kuark ve
leptonlarin miimkiin i¢ yapilart i¢in en ikna edici kanit, kuark ve lepton taban durumlari
tizerinde yer alan uyarilmis durumlarin varligidir (Baur ef al. 1990). Buna gore bilinen
lepton ve kuarklar taban durumu olmak iizere, taban durumu iizerinde yer alan uyarilmis

durumlarin genis bir spekturumu beklenir.

Kompozit modellerde preonlar, lepton ve kuarklarin alt bilesenleri olan noktasal pargacik
olarak ele aliirlar. Boyle bir alt bilesen fikri ilk olarak 1974 yilinda Jogesh Pati ve Abdus
Salam tarafindan (Pati and Salam 1974) ortaya atilmistir. Pati, Salam ve Strathdee’ nin bir
yil sonra yaptiklar1 ¢aligmalarinda bu alt bilesenlere “pre” ismi verilmistir (Pati et al. 1975).
Daha sonra preonik modellerle ilgili ¢alismalar stirmiistiir. Preonik modellerin ayrintili
incelemesi D’ Souza ve Kalman (1992) tarafindan verilmistir. Bu modellerden bazilar1 su

sekildedir:

Fritzsch-Mandelbaum (Haplon) Modeli:  Fritzsch ve Mandelbaum (1981) tarafindan

Onerilen bu modele gore leptonlar, kuarklar ve zayif etkilesmelerin araci parcaciklar
kompozit parcaciklar olarak ele alinmaktadir. Bu modele gore zayif etkilesmelerin bir ayar
teorisi olmadigi, lepton ve kuark i¢ yapisina bagli olan artitk bir etki oldugu
diisiiniilmektedir. Ayrica bu modele gore, kiitleleri elde etmek i¢in kendiliginden simetri
kirilmasina ihtiya¢ duyulmamaktadir. Kuark, lepton ve agir bozonlar1 olusturan bu alt
bilesenlere Yunanca’ da “basit” anlamina gelen haplon kelimesi kullanilmistir. Kuark ve
leptonlar1 olusturabilmek iizere 2 tane fermiyonik, 2 tane de bozonik haplon &nerilmistir.

Fermiyonik ve bozonik haplonlar i¢in kuantum sayilar1 Cizelge 2.4’ te verilmistir.

Cizelge 2.4 Fermiyonik ve bozonik haplonlarin kuantum sayilari
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Haplon Elektrik Renk Spin Hiper renk
yuki
o -1/2 3 1/2 +1n
+1/2 3 1/2 +1n
X -1/6 3 0 —1n
y +1/2 3 0 ~1n

Haplonlarin “hiper renk” olarak da adlandirilan siiper giiglii bir kuvvetle baglandigi
diisiiniilmektedir. Bu kuvvet SU(n) kuvveti olabilir. Kiitlelerin de bu kuvvet tarafindan
dretildigi distliniilmektedir. Bu kuvvetin dinamigi kuantum haplodinamigi (QHD) ile
gosterilir. QHD’ nin de bir ayar teorisi oldugu diistiniiliir. Kuarklar, leptonlar ve agir vektor

bozonlar1t QHD’ ye gore tekliler seklindedirler. Birinci aile fermiyonlari

u=(ax);,d= (BJ_C)3
v, =(@y),e=(By)

seklinde elde edilirler. Haplon modeline gore pek ¢ok yeni egzotik kuark ve lepton da
beklenmektedir. Bu egzotik parcaciklarin kiitlelerinin daha agir oldugu diisiiniilmektedir.
Haplon modeline gore sadece ilk fermiyonik aile dikkate alinmistir. Diger aileler birinci

ailenin uyarilmis durumlari olarak ele alinirlar.

Harari-Seiberg-Shupe (rishon) modeli: Bu modele gore kuarklarin ve leptonlarin 3

preondan olustugu varsayilir (Harari 1979, Shupe 1979, Harari and Seiberg 1982). Bu
modelde sadece fermiyonik preonlar yer alir. 7 ve V olarak adlandirilan bu preonlara
Ibranice “temel” anlamina gelen rishon denir. Rishonlar i¢in kuantum sayilar1 Cizelge 2.5’

te verilmistir. Her bir rishona karsilik bir de antirishon (¢ ve v) bulunmaktadir.

Cizelge 2.5 Rishon modelinde kuantum sayilari
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Rishon Elektrik yiikii Renk Hiper renk
T e/3 3 3
14 0 3 3

Pozitron ve elektron notrinosu rishon modeline gore sirastyla e” =T7TT ve v, =VVV olarak

yazilir. u-kuarkin li¢ rengi 77V, TVT ve VTT olarak, d-kuarkin 3 rengi ise TVV, VIV ve
VVT olarak yazilir. Bu modele gore W' =TTTVVV seklindedir. Rishon modeline gore ikinci

ve liglincii lepton ve kuark aileleri de ilk ailenin uyarimi oarak ele alinir.

Terazawa-Akama-Chikashige (WCH) modeli: 11k olarak Akama ve Terazawa (1976), sonra

da Terazawa, Chikashige ve Akama (Terezawa et al. 1977) kuarklarin, 3 adet spin-1/2 w;
(i=1,2), h; =1,2,...,N) ve C; (i=1,2,3) alt kuarklarindan olustugu bir model 6nerdiler. Alt
kuarklarin isimlerinden dolay1r bu modele WCH modeli de denir. w alt kuarklar1 w;, w;z ve
wpr strastyla ikili, tekli ve SU(2) teklisi olustururlar. 4 alt kuarklari, SU(N)’ nin bilinmeyen
bir H simetrisinin N-lisini olustururlar. C alt kuarklar1 ise, SU(3) renk simetrisinin ti¢liisiinii
olustururlar. Bu modele gore leptonlar, bir tane w bir tane 4 alt kuark ve bir de SU(3) renk
simetrisi altinda tekli olusturan ilave Cj alt kuarkin bagli durumudur. WCH modeline gore,

birinci aile leptonlar1 ve kuarklari

e=wnCy), v, =(whCy)
u; =(wmnC), d; =(w,hC,)

olarak elde edilir. Burada i, renk yiikiinii gostermektedir. Bu modele gore diger aileler de w,
h ve C alt kuarklar1 cinsinden elde edilebilirler.

Preon iicliisii (trinity) modeli: Bu modele gore, leptonlar, kuarklar ve agir vektdr bozonlari

kompozit parcaciklar olarak diistiniiliirler. Preon tgliisii modelinde spin-1/2 olan, «,8 ve

6 preonlar1 vardir (Dugne et al. 1998, 1999, 2002). Bu modele gore, kuark-antikuark

durumlar1 yoluyla niikleer kuvvetin sizinti yapmasina benzer olarak preon-antipreon
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durumlariin olabilecegi, boylece, zayif kuvvetin temel bir kuvvet olmaktan ziyade daha
giicli bir kuvvetin artig1 olabilecegi diislinlilmektedir. Buna gore, pargaciklara kiitle

kazandirmak tizere Higgs mekanizmasina ihtiya¢ duyulmaz.

Bu modele gore, siipersimetride spin-1/2 pargaciklarin spin-0 siiper eslerinin olmasi gibi,
her bir spin-1/2 preon i¢in spin-0 anti-dipreon vardir. Spin-1/2 preonlar temel olarak
alinirken, spin-0 anti-dipreon bagli durumlart temel degildir. Preon {gliisii modeli i¢in

kuantum sayilar Cizelge 2.6’ da verilmistir.

Cizelge 2.6 Preon tigliisii modelinde kuantum sayilari

Elektrik yiikii +e/3 —2e/3 +e/3

Preon (spin-1/2) a Yij o

Anti-dipreon (spin-0) (B5) (@d) (@f)

Preon iicliisii modeline gore leptonlar, preon ve dipreon bagli durumu, kuarklar preon ve

anti-dipreon bagli durumu, agir vektdr bozonlar1 da preon ve antipreon bagli durumu olarak
yazilirlar. Bu modele gore 3 tane yeni lepton (v, ,v, ,x") ve 3 tane de yeni kuark (X, g, /)
yer almaktadir. Bu modelde leptonik kuantum sayist dipreon sayisina esit oldugundan yeni
leptonlar i¢in dordiincii leptonik kuantum sayisina gerek yoktur ve tiim siirecler icin
leptonik kuantum sayisi korunmaktadir. Preon {i¢liisii modeline gore lepton ve kuarklarin

spektrumu Cizelge 2.7’ de verilmistir.

Cizelge 2.7 Preon tigliisii modelinde leptonlar ve kuarklar

(B9) (ad) (af) (BS) (@d) (@B)

a v /m 1% u S c

e T
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2.6.2 Kompozitlik 6lcegi

Kompozitlik 6l¢egi A, kompozit bir sistemin onu olusturan alt bilesenlere ayrilabilecegi
enerji Olcegi olarak tanimlanir. Kuark ve leptonlarin kompozit oldugu modellerde A, bu
parcaciklarin noktasal parcacik davraniglarindan uzaklastiklart enerji Olgegi olarak ele
alinir. Bu enerji dl¢eginde kuarklar ve leptonlar arasinda yeni etkilesmeler aciga ¢ikabilir.
Bu etkilesmeler, A’ nin altindaki enerjilerde A’ nin ters kuvvetleri ile bastirilmistir. Eger
kompozitlik 06lgegi, carpisan pargaciklarin kiitle merkezi enerjisinden c¢ok biiyiik ise,
kompozitligin aciga ciktig1 etkilesmeler 4-fermiyon kontakt etkilesmeleri olacaktir. En

diistik boyuttan, elli-degismez 4-fermiyon kontakt etkilesmesini tanimlayan lagranjiyen,

2
g e 7/ 17 T, — —
A= A2 I:ULLV/Ly#V/Ll//LyHl//L + erW R Y W RV RV VR +277LR1//L7/;1(//L(//R7/#1//R:| (2.124)

ile verilir. Bu forma sahip olan etkin etkilesmeler kullanilarak A belirlenebilir. Anlagmasal

metod, yeni etkilesmelerin baglasim sabitini g? /47 =g*(A)/4x =1olarak secip,

770,/}|:1

olacak sekilde katsayilar1 atamaktir (Eichten et al. 1983). Ornegin;

(11 >Mrr>M1r) = (£1,0,0)igin A = AiLL
(1L>Mrr>M1r) = (0,21,0)igin A = AtRR
(11T rp>M1r) = (FLELED) iGIN A = AiVV

(11> Mge>1e) = (FLELF) i¢in A = A7, (2.125)
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verilebilir. Kontakt etkilesmeler i¢in kompozitlik 6l¢egi iizerine getirilen bazi iist sinirlar su

sekildedir:

eeee ctkilesmesi igin, Js=192-208 GeV’ de ALEPH, DELPHI, OPAL ve L3
deneylerinden alinan verilerin birlesik analizi sonucu %95 giivenilirlik seviyesinde (CL)

A, >8.3 TeV ve A}, >10.3TeV olarak (Bourilkov 2001) elde edilmistir.

ceuu etkilesmesi icin %95 CL’ de, /s =189-209 GeV’ de ALEPH detektoriinden elde
edilen veriler sonucu A;;, >9.5 TeV (Schael et al. 2007) ve +s=130-189 GeV’ de L3

detektoriinden elde edilen veriler sonucu A, >8.5 TeV (Acciari et al. 2000) sinirlamasi

getirilmistir.

cerr etkilesmesi icin %95 CL’ de, /s = 189-209 GeV (Schael ez al. 2007) ve +/s =130-
207 GeV’ de (Abdallah et al. 2006) ALEPH detektoriinden elde edilen veriler sonucu
A5, >7.9 TeV ve /s =130-207 GeV’ de OPAL detektoriinden elde edilen veriler sonucu

A, >7.2 TeV (Abbiendi ef al. 2004) olarak elde edilmistir.

Lepton evrenselligi dikkate alinarak ///l kontakt etkilesmesi i¢in, %95 CL’ de, Vs = 189-
209 GeV’ de ALEPH deney grubu tarafindan A7, >10.3 TeV (Schael et al. 2007) ve

Js =130-207 GeV’ de DELPHI deney grubu tarfindan A}, >9.1 TeV (Abdallah et al.

2006) sinirlamalar1 getirilmistir.

wugq kontakt etkilesmesi igin, u*p kiitle dagihmmin s =1.8 TeV’ de pp—> u* X
sirecinden alinmasiyla %95 CL’ de CDF deney grubu tarafindan A', >2.9 TeV ve

A, >4.2 TeV (Abe et al. 1997) sinirlamasi getirilmistir.
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Elli degismez etkilesmeler dikkate alinarak, 4" —Vv e"v, siirecinden /v/v etkilesmesi igin

%90 CL’ de A%, >3.10 TeV (Jodido ez al. 1986) olarak elde edilmistir.

evqq etkilesmesi i¢in %95 CL’ de CDF deney grubu tarafindan A’, >2.81 TeV (Affolder

et al. 2001) sinirlamasi getirilmistir.

qqqq etkilesmesi icin, %95 giivenilirlik seviyesinde DO deney grubu tarafindan A, >2.7

TeV (Abbott et al. 1999) olarak elde edilmistir. Burada, Js=1.8 TeV’ de pp

carpismalarinda igsel (inclusive) dijet kiitle spektrumundan sonuglar alinmistir.
2.6.3 Anomal manyetik momentler

Leptonlarin ve kuarklarin manyetik momentlerinin SM’ de tahmin edilen degerlerinden
miimkiin sapmalar, lepton ve kuark kompozitligi i¢in agik bir kanit olacaktir. Miion i¢in g-2
deneylerinden elde edilen sonuglarin KED ile uyusmasi, A kompozitlik 6lgegi iizerine

kosullar koymay1 saglar (Shaw et al. 1980).

Dirac denklemi, spin-1/2 noktasal pargacik i¢in jiromanyetik orant g =2 olarak 6ngoriir.

Buna gore, manyetik moment M, = g, 2i§ (i=e, u,7) olmak iizere, leptonlar i¢in g, =2
m.

1

ile verilir. Anomal manyetik moment
g =82 (2.126)

olmak iizere «, ile parametrize edilir. Bu nedenle, teori ve deneyin karsilastiriimasi

kuantum ilmek seviyesinde SM’ yi test eder. « niceligi SM ¢ercevesinde kesin olarak
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deney  degerinin SM tahminlerinden sapmasi, TeV mertebesine kadar

hesaplanabilir. «a
ulasabilecek bir kiitle l¢eginde yeni fizik icin bir isaret olacaktir. Elektron i¢in elde edilen

deneysel anomal manyetik moment degeri (Amsler et al. 2008)
a%" =1159.6521811+0.0000007) x 107 (2.127)
miion i¢in elde edilen deger (Amsler ef al. 2008)

i =11659208.0(5.4)x 107" (2.128)

ve tau i¢in anomal manyetik momente koyulan sinirlama da (Amsler et al. 2008)
—0.052 < a®" <0.013 (%95 CL) (2.129)

seklindedir. Deneysel olarak elde edilen degerler ile SM 6ngoériisii arasindaki farkliligin
yeni fizik etkilerinden geldigi varsayilarak, yeni fizik i¢in gozlenebilirlik sinirlari {izerine
sinirlamalar  getirilebilir. Leptonlarin jiromanyetik degerleri i¢in kesinlik oOl¢iimleri
miimkiin lepton i¢ yapist lizerine simirlar koyar. Fermiyonlarin anomal manyetik
momentlerinin, onlarin kompozit yapilar ile iliskisi Brodsky’ nin (1980) c¢alismasinda
tartisilmistir. Burada ilk olarak, fermiyonlarin daha agir i¢ bilesenlerin bir bagli durumu
olduklar diistiniilerek oldukga kiiciik bir uzaysal uzantiya sahip olduklari dngoriilmiistiir.

Anomal manyetik momente fermiyon kompozitliginden gelecek katkinin dall O( mi)
m

seklinde kiitle oranlarina lineer bagimli olacagi sdylenmistir. Burada m, leptonun, m" da ig

bilesenlerin kiitlesini gostermektedir. Bdyle bir modelde lepton 6z enerjisine birinci
mertebeden gelecek katkilar oldukca biiylik olacaktir. Ancak, gozlenen lepton kiitleleri
daha kiigiiktiir. Bu zorlugu ortadan kaldirmak icin ikinci bir kiitle limiti tanitilmustir.

Brodsky’ e (1980) gore, kompozit leptonlar i¢in en basit modelde, leptonlar m, kitleli

yiiklii bir fermiyon ile A kiitlesine sahip ndétral bir bozonun (vektor veya sanki-skaler) bagl
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durumu olarak ele alinmistir. Gozlenen lepton kiitlelerini saglayabilmek i¢in, m? <A’
seklinde secilmistir. Elektromanyetik form faktorii hesabi i¢in liggen ilmek diyagramlarinin
hesab1 sonucu, 1* = m? i¢in ndtral alt bilesenin vektdr olmasi durumunda anomal manyetik

moment a=m; /m,olarak; nétral alt bilesenin sanki-skaler olmasi durumunda ise

a= —% m, /m, olarak elde edilmistir.

Brodsky’ nin (1980) calismasinda ayrica anomal manyetik momentler {izerine lepton i¢

yapisindan gelen katkilar iizerine daha detayli c¢alismalar icin elli (chiral) simetri

diistiniilmiistiir. Bu elli modelde, m" — —m" doniisiimii altinda genliklerin simetrik olmasi

ozelliginden, anomal manyetik momente gelecek katkilar, kiitle oranlarina lineer bagimh
degildir. Burada, Sa~(m,/m")* seklinde kiigiik bir katki elde edilmistir. I¢ bilesenlerin

kiitle 6lcegi biiyiidiikce, anomal manyetik momente lepton i¢ yapisindan gelen katkilarin

kiigtilecegi sonucuna ulagilmaistir.

3. UYARILMIS LEPTONLAR

Lepton ve kuark ailelerinin tekrarlanmasi onlarin daha temel parcaciklardan
olusabileceklerini diisiindiirmektedir. Lepton ve kuarklarin kiitle spektrumu ve karigim

yapilart miimkiin bir i¢ yapt i¢in Onemli ipuglart verecektir. Lepton ve kuark
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kompozitliginin 6nemli bir gdézlenebilir etkisi ise uyarilmis lepton ve kuarklarin varhigi
olacaktir. Buna gore bilinen lepton ve kuarklar preon adi verilen daha temel bilesenlerin
bagli durumlaridir. Lepton ve kuark alt bilesenleri (preonlar), A kompozitlik 6lcegi ile
karakterize edilen bir enerji Olgeginde, yeni etkilesmeler aracilii ile etkilesirler. Bu
etkilesmeler preon aligverisi veya ayar bozonlari aracilifi ile olabilir. A’ nin altindaki

enerjilerde 1/A° nin kuvvetleri ile bu etkilesmeler bastirilmistir.

Eger leptonlar kompozit iseler, uyarilmis spin-1/2 leptonlar, {i¢ tane spin-1/2 alt pargacigin
(Terazawa et al. 1977) ya da spin-1/2 ve spin-0 alt parcaciklarin (Ne’eman 1979) bagh
durumu olarak atanabilir. Benzer olarak, spin-3/2 uyarilmis durumlar ise, ii¢ tane spin-1/2
alt parcagin ya da spin-1/2 ve spin-1 alt pargaciklarin bagli durumu olarak atanabilirler
(Cakir and Ozansoy 2009). SM leptonlar1 taban durumunu olusturmak {iizere, bu taban

durumunun tizerinde yer alan zengin bir uyarilmis durumlar spektrumu yer alir. Uyarilmis

yiiklii leptonlar ¢’, 4, 7 ve uyarilmg yiiksiiz leptonlar v;,v", v, olmak iizere, SM

leptonlarina benzer olarak uyarilmis leptonlarin da (1) g aile olacagi ongoriilmektedir.
Fenomenolojik olarak uyarilmis bir lepton, bilinen bir lepton ile ayni leptonik kuantum
sayisina (gesnisine) sahip olan agir bir leptondur. Ornegin, uyarilmis spin-1/2 elektron,
elektron ile sifirdan farkli bir gecis manyetik baglasimi olan parcaciktir. Uyarilmis spin-1/2
durumlar en diisiik radyal ve yoriingesel uyarimlardir. Standart teorinin genisletilmis
gruplarindaki kompozit modeller ayrica spin-3/2 leptonlara isaret etmektedir (Lopes et al.

1980, 1981, 1982). Buna gore spin-3/2 uyarilmis durumlar {ist uyarim olarak ele alinabilir.

3.1 Spin-1/2 Uyarilms Leptonlar

Spin-1/2 uyarilmis leptonlar, SU(2)x U(1) kuantum sayilarmma gore 3 farkli sekilde
siniflandirilabilirler (Hagiwara et al. 2002). Bunlar:
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1. Normal Tipli (Sequential Type): Sol-elli uyarilmis leptonlar es ikilide, sag-elliler ise
teklide yer alirlar.

2. Goriintii Tipli (Mirror Type): Sol-elli uyarilmis leptonlar teklide , sag-elliler ise es ikilide

yer alirlar.

3. Es Ikililer Tipli (Homodoublet Type): Sol-elli ve sag-elli uyarilmis leptonlar es ikililerde

yer alirlar.

Uyarilmis leptonlarin, bilinen leptonlardan daha agir olduklar1 varsayimini yaparak
SUR)xU(1) simetri kirilmasma gore kiitle kazandiklar1 disiiniilecektir. Uyarilmig
leptonlarin hem sag hem de sol elli bilesenleri zayif es ikililerde yer alirlar, bu nedenle
uyarilmis leptonlarn ayar alanlaria baglasimlar1 vektor tiplidir (Boudjema et al. 1993). iki

uyarilmig spin-1/2 lepton ve bir ayar bozonu arasindaki etkilesmeyi tanimlayan lagranjiyen;

T = Y _ T = Y
_Wy—"_g EBy:|l//L+l//R}/#|:g_Wy+g_By:|l//R (3'1)

Lypy =y 7" [g 5

[\]
[\8]

52



ile verilir. Burada, Wy ve B ., strasiyla SU(2) ve U(1) ayar alanlari; g ve g bu alanlara

karsilik gelen ayar baglanma sabitleridir. Burada alt bilesenlerin varligt durumunda
noktasal yapidan ayrilmalar1 anlatmak i¢in form faktorleri de eklenmelidir. 7 Pauli spin

matrisi ve Y de zayif hiperyiiktiir. Denlem (3.1) ile verilen lagranjiyen, SU(2) ayar alani

W, ye sag-elli leptonlarin da baglanabilmesi disinda, SM leptonlar ile ayar alanlarinin

baglasimini ifade eden lagranjiyen (bkz. 2.115) ile benzer yapidadir.

Uyarilmis leptonlarin bilinen leptonlardan olusan temel durumlara gecisine izin verilir.
Spin-1/2 uyarilmis lepton, bir SM leptonu (/) ve bir ayar bozonu (V) arasindaki etkilesmeyi
tanimlayan lagranjiyen, hem uyarilmis leptonun bozunumunu hem de tek iiretimini
agiklayabilmelidir. /'/V baglasimini tek olarak belirleyen etkilesmenin SU(2). x U(1)y ayar
degismezi olmasi igin tensorel yapida olmasi gerekmektedir, baska bir deyisle spin-1/2
uyarilmis leptonlar ve SM leptonlar1 arasinda manyetik gegis tipli baglasimlar vardir. Bu
etkilesme vektorel yapida olsaydi, SU(2). altinda degismez kalmazdi, ¢iinkii uyarilmis
leptonun sag- elli bileseni es ikilide yer alirken, SM leptonunun sag-elli bileseni ise teklide
yer almaktadir. Bu nedenle bir uyarilmis lepton hem sag-elli hem de sol-elli leptona
baglanmamalidir. Boyle bir elli (chiral) simetri olmazsa, KED tahminlerine ve hassaslik
deneylerinden elde edilen sonuglara ters diisecek sekilde leptonlar biiylik bir anomal
manyetik moment kazanirlar (Kuhn and Zerwas 1984, Hagiwara et al. 1985, Boudjema et
al. 1993). Burada elliligin degismezligi, kuark ve lepton kiitlelerinin, A’ dan ni¢in daha

kiiciik olduklarina dogal bir agiklama verir.

Spin-1/2 uyarilmis lepton, bir SM leptonu ve ayar bozonu arasindaki etkilesmeyi
tanimlayan, elli simetriye sahip, SU(2)xU(1) degismez etkin lagranjiyen (Hagiwara et al.
1985);

. 4
wtef EB’” v, +he. (3.2)
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N
ile verilir. Burada A, yeni etkilesmelerden sorumlu yeni fizik i¢in enerji dlgegi, W, ve B,

ny
sirastyla SU(2) ve U(1) ayar alanlart i¢in alan tensorleridir. 7 Pauli spin matrisleri ve Y
hiperyiik, bu alanlara karsilik gelen ayar yapi sabitleridir. f ve f ise olceklendirme
carpanlaridir. Bu baglasimlar farkli ayar gruplari i¢cin A, =A/f; olarak alman farkli

Olgekler olmak tizere agirlik faktorleri olarak da yorumlanabilir (Eboli et al. 2002). Bu
parametreler kompozitlik dinamigi ile ilgilidir ve ilgili siire¢clerdeki momentum aktarimina
(g9) bagh form faktorleri f(qz) seklinde ifade edilebilirler. Bunlarin bigimleri
qZ
m*z

F(qz):F(Z/(H )j seklindedir (F=f,f") (Baur ef al. 1987). SU22) ve U(1) ayar

alanlar i¢in baglasimlar g ve g, elektromanyetik baglanma sabiti ( g, ) cinsinden su sekilde

ifade edilir:
g8 oo & (3.3)
Sy SwCw

Burada s, ve ¢, kisaltmalan sirasiyla, sin6, ve cosé, yerine kullanmlmistir. Fiziksel

olarak, etkin lagranjiyen su sekilde yazilabilir (Boudjema 1993):

L=gn = W SI* 0™l 45 f 3001 + b (34)

I=v,e Ll'=v,e

flk terim ii¢ katl1 bir kdse igerir ve f=f i¢in sifirdir. Burada kdsegen terim

N, =0,4,~(sy/cy)0,Z, (3.5)

ile verilir. Ikinci terim hem ti¢ hem de dort katli koseleri icerir. Burada

on-—L 5,7, —ifey
N

uv u“v
SwCy

W~

+
i v

2
w
o cp —sp g
@ =—20,4, + L—"0p 7, —itew w,S

uv
Sy Cy Sy



(3.6)
ile verilir. Biitiin katkilar1 hesaplayarak V7'l kosesi i¢in kose faktorii;
r/’l/f*f Zf_j\qvo-yv (1 —7s )fV (37)

seklinde elde edilir. V' =W ,Z,y ve ¢ ise V'’ nin momentumudur. Zayif izospinin {igiincii

bileseni ve uyarilmis leptonun elektrik yiikii cinsinden

1

- 3.8

fW \/ESW f ( )

, - Haleh! +4S5Vfl)_4efsfyfl (3.9)
Sy Cyr

fy=ef + 11 - 1) (3.10)

seklinde yeni baglagim terimleri elde edilebilir. Burada e, uyarilmis spin-1/2 leptonun
elektrik yiikiinii, /,, zayif izospinin ii¢lincii bilesenini gostermektedir. Uyarilmis spin-1/2
elektron (e’ icin f, = (sfyf'—cﬁ,f)/ 2sycy, f, = —(f+f')/2 ve uyarilmig spin-1/2

elektron nétrinosu (v') i¢in f, = (sfyf'+cfyf)/ 2syey, f, = (f - f')/2 olarak elde edilir.

3.1.1 Spin-1/2 uyarilmis leptonlar icin Kkiitle limitleri
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LEP e'e carpistiricisinda, OPAL detektdriinde s =183-209 GeV alinarak 684.4 pb™" lik
veri kullanilarak, f=f"icin %95 CL’ de uyarilmis elektron i¢in ¢ift iiretimden gelen kiitle
limiti m. >103.2 GeV (Abbiendi e al. 2002) olarak elde edilmistir. Burada uyarilmis

miion ve uyarilmis tau ¢ift iiretimi i¢in ayn kiitle limiti getirilmistir. LEP carpistiricisinda

L3 deney grubu tarafindan Vs =192-209 GeV’ de toplam 15mhk 427 pb” olmak iizere,
%95 lik giivenilirlik seviyesinde #-kanalinda e” degis tokusu yoluyla uyarilmis elektron
icin dolayh etkilerden gelen kiitle limiti m, >310 GeV (Achard er al. 2002) olarak elde

edilmistir.

Uyarilms elektronun tek tiretimi i¢in, HERA ep ¢apistiricisinda (\/_ ~ 330 GeV), H1 deney
grubu, /=" =A/m’ igin %95 CL’ de toplam 1sinlik 120 pb™ alinarak kiitle limitini m, >
255 GeV (Adloff et al. 2002) olarak elde etmistir.

Fermilab Tevatron pp carpisticisinda (\/; =1.96 TeV) CDF deney grubu tarafindan, f=f’
=A/ m# icin %95 lik giivenilirlik seviyesinde toplam 1smlik 371 pb™ almarak, uyarilms
miionun tek {iretimi ve ona ardigik olarak " — uy bozunumu dikkate alinarak, kiitle limiti

mﬂ > 221 GeV (Abulencia et al. 2006) olarak elde edilmistir.

Uyarilmis tau igin tek tiretimden gelen kiitle limiti, LEP OPAL detektoriinde, Vs =183-209
GeV’ de f=f =A/m igin %95 CL’ de, r* — 7y bozunumu da dikkate alinarak m’ > 185
GeV (Abbiendi et al. 2002) olarak elde edilmistir.

L3 deney grubu tarafindan Vs =189-209 GeV’ de %95’ lik giivenilirlik seviyesinde toplam
1sinlik 217 pb'l almarak f=-f i¢in %95 CL’> de uyarilmis nétrino igin ¢ift iiretimden

gelen kiitle limiti m, >102.6 GeV (Achard et al. 2003) olarak elde edilmistir. Ayrica,
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f=/ i¢in kiitle limitleri m; >101.7 GeV, m, >101.8 GeV ve m, >92.9 GeV olarak
elde edilmistir. Bu deney grubu f =—f" =A/m i¢in %95 CL’ de uyarilmis nétrino igin tek

tiretiminden gelen kiitle limitini m, > 190 GeV olarak elde etmistir.

3.2 Spin-3/2 Uyarilms Leptonlar

Yiiksek spinli pargaciklarin incelenmesi kuantumlu alan teorisinde oldukga biiyilk 6neme
sahiptir. Bu pargaciklar ilk olarak pion-niikleon sagilmasinda rezonans uyarimlari olarak
gozlenmiglerdir. Daha sonra yiiksek spine sahip baryon rezonanslart bulunmustur
(Napsuciale 2006). Bununla birlikte, yiiksek spinli alanlar1 igeren en dikkat ¢ekici modeller,
stipersimetri basta olmak lizere, Standart Model 6tesinde Onerilen modeller arasinda yer

almaktadir.

Spin-3/2 parcaciklar i¢in motivasyon farkli modellerden gelmektedir. SM’ de baryon
spektrumu incelendiginde A%, A", A, A", Q) gibi spini 3/2 olan baryonlara rastlanir. Siiper
simetrik ayar teorilerinde, spin-3/2 pargacik gravitino, spin-2 pargacik gravitonun siiper
esidir. Stiper simetrik teoriler, evreninin gelisiminin anlagilmasinda onemli bir rol
oynayabilecek olan, evrenin yakin zamanlarinda temel spin-3/2 pargaciklarin iiretildigi
tartismasin1 agmistir. Kompozit modellerde ise spin-3/2 leptonlar bir iist uyarim olarak ele
alinir.

Leptonik aileler arasinda kiitlelerdeki biiyiik farkliliklar ve baryon spektrumunda spin-1/2
baryonlarin, ayn1 kuark igerigi ile, spini 3/2 olan uyarilmis durumlarinin oldugu gergegine
benzesim, leptonlarin da spin-3/2 uyarilmis  durumlarda  bulunabileceklerini

disiindiirmektedir.

Ancak, etkilesen spin-3/2 alanlar igin istikrarli bir teori mevcut degildir. Spin-3/2 alanlar
icin renormalize edilebilir bir teori yoktur. Bir dis manyetik alanin varliginda, spin-3/2 alan

denklemlerinin klasik ¢oziimlerinde, 1s1iktan daha hizli yayilan modlar bulunmaktadir (Velo

57



and Zwanziger 1969). Bunlarin yanisira, spin-3/2 pargaciklarin elektromanyetik
etkilesmeleri, tesir kesitini enerji ile olduk¢a giiclii bir sekilde arttirir ve bu nedenle
tiniterlik bozulur (Alles and Borelli 1976). Bu problemler, spin-3/2 pargaciklar i¢in teorik
tahminler yapmay1 zorlagtirmaktadir. Bu problemlerden bazilari, spin-3/2 fermiyonlarin
kiitleli elektrozayif ayar bozonlarina baglasimu ile diizeltilebilir (Lopes ef al. 1980, 1981,
1982). Bu hipotez spin-3/2 alanlarla ilgili tiim sorunlari ¢6zmek icin yeterli olmasa da,
zayif etkilesmeler ic¢in etkin Fermi teorisiyle ayni anlamda, giivenilir fenomenolojik
tahminlerin yapilmasina olanak verir (Almeida er al. 1996). Kiitleli ayar bozonu
propagatorli, etkin form faktorii gibi davranir ve bdylece iiretim tesir kesitinin

hesaplanmasina olanak verir.
3.2.1 Spin-3/2 parcaciklar icin goreli alan denklemleri: Rarita-Schwinger denklemleri

Herhangi bir spin sayisina (tam say1 ya da yarim tamsayi) sahip serbest parcacigi anlatan
denklemler, Bargmann-Wigner (Bargmann and Wigner 1948) denklemleridir. Bu

denklemler su sekilde verilirler:

(l@ - m)aa' \Pa'b...t (x) =0

:(ia_m)bb‘ ¥, (0)=0 3.11)

(i - m)tt' \Pab...t‘ (x)=0
¥, . (x) niceligi, m Kkiitleli, s spinine sahip, 2 spinli 6zdes alanlarmn birlesiminden

olusmus parcacigin dalga fonksiyonunun bilesenleri olarak diisiiniilebilir. Burada q, b, ...,

spindr indisleridir ve ¥, ,(x), bu indislere gore tamamen simetriktir. Bu nedenle
¥, (x), Clifford cebrinin standart temsilindeki simetrik matrislerin lineer bir

kombinasyonu olarak yazilabilir. Simetrik matrisler;

y*C, o™ C (3.12)
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ve antisimetrik matrisler,

A A

y'7sC, iysC, C (3.13)

seklinde verilir. Burada C=iy?y° seklinde verilen yiik eslenigi islemcisidir. Spin-3/2

parcacik icin Bargmann-Wigner ¢oklu spindrii 3 indise sahiptir ve bu indislere gore

simetriktir.

(io-m) ¥, (x)=0 (3.14)
(i@-my,, ¥ (x)=0 (3.15)
(io-m) ¥, . (x)=0 (3.16)

a ve b indislerine gore simetri, ¥, (x) nin (yC), ve (c*'C), simetrik matrisleri

cinsinden yazilmasi ile elde edilir.

¥ (0= A(7,C) vl (x) + B(c" C) " (%) (3.17)

Burada 4 ve B keyfi sabitlerdir. Denklem(3.17)” deki w* (x) bir vektdr ve spindriin ¢arpimi

ve w¥(x) de bir tensor ve spindriin ¢arpimui olarak ele alinabilir. /" (x), antisimetrik o*"
ile kontrakte ettiginden antisimetrik olmalidir, aksi durumda bu kontraksiyon sifir verir. b
ve ¢’ ye gore simetriyi saglayabilmek igin, (3.17) denklemini (C™"),.,(C™'7), (C7'757 )i

antisimetrik matrisleri ile carpmaliy1z. Bu ¢arpimlarin sonucu sifir verecektir.

A )0 WE () + B(0,0) (o () =0 (3.18)

A7 u75)ac Ve () +B(0,075) W () =0 (3.19)
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A7 757 ) acWE )+ B(O w5y 1) o W () =0 (3.20)

(3.19) ve (3.20) denklemleri soldan (y;),, ile carpilip {yﬂ,ys}:o,[;fs,aﬂvJ:OVe

72 =1bagmtilarinin kullanilmasiyla

_A(}/y)acl//cﬂ(x)-’-B(O-w')acl//c{lv(x):o (321)

—AG Y)W+ B0y ;)W (x)=0 (3.22)
denklemleri elde edilir. (3.18) ve (3.21)’ in toplanmasi ile

(O ) (x)=0 (3.23)
kosulu elde edilir. Bagka bir kosul ise (3.18)’ den (3.21)’ in ¢ikarilmast ile elde edilir.

(V) e (x)=0 (3.24)

Denklem (3.22), {y*,y"}=2g""ve [;f”‘ ,o!" ] =2i(g™y” — g”"y*)bagmtlar kullanilarak

yeniden diizenlenirse;
— A28 =727 )W E )+ B(y,0,, =208 37, + 28,7 1) 0¥ () =0 (3.25)

elde edilir. (3.25) denkleminde (3.23) ve (3.24) denklemleri ile bulunan kosullar uygulanip

diizenleme yapilirsa;



a—»v, f—u

—24g " (x) + 2iBg 7 " (x) = 2iBg ¥, ™ (x) =0 (3.26)
elde edilir. Bu denklemde w“"’ niin antisimetrikligi de kullanilirsa
—24g v (x)+4iBg,,y v (x)=0

Ay, (x)=2iBy*"y . (x) (3.27)

sonucuna ulagilir. (3.23), (3.24) ve (3.27) denklemleri bagimsiz degillerdir. Denklem (3.27)
soldan y* ile carpilip, denklem (3.24) ile verilen kosul kullanilirsa denklem (3.23) elde

edilir.

, i
Ayt (x)=2iBy y*y , (x) =0 - 235(717“ — 7"y (x)

=0,y (x)=0

Y . alanmin denklem (3.17) ile verilen agilimi, denklem (3.16)’ da yazilan Bargman-

abc

Wigner denklemlerini ayr1 ayri saglamalidir.

(10 =) | A7, C) Wl () + B(,,C)p 0! ()| =0

A 07,8 =M (7, 0¥t ) |+ B[ i7,0" =), (0, Oyl () (3.28)
A(?/yé)ab' (i@ —m),w i (x) + B(G/wé)ab' (i0 —m) " (x)=0 (3.29)
A ,C) 4y (10 = m) oy () + B(0,,C) 4y (10 — m) o 1 (x) =0 (3.30)
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Denklem (3.28)’ de matris carpimina gore terimler dogru siradadir, Lorentz indisleri
herhangi bir probleme neden olmadan kaldirilabilir. Ancak denklem (3.29)’ da isler daha
zordur. Matris carpimmna gore b ve b indislerinin yeri yer degistirmis gibidir. indis

siralarini diizenlemek i¢in ihtiyag¢ duyulan bagnti;
(ylu)af éﬂ;'(}/v)bh'av = (ylu)af éﬁ'(va)h'h av (3'3 1)

seklindedir. Burada € matrisi i¢in CC” =1 ve (C)? =-106zellikleri ve y ﬂé > nin simetrikligi

kullanilarak
v,.Crl =7,C(CCTYy! =y,CC(r,O) ==7,7,C (3.32)

elde edilir. Buna gore denklem (3.29)° da, & teriminde y’ nin C ile yer degistirmesi ile

bir (-) isareti gelir.

A7, Cind =mC| vt )+ B[ o, (ir,d" ~mC] ! (=0 (3.33)

Denklem (3.28)’ i ve denklem (3.33)’ i toplayalim.

A[i(yv V=Vl )C"Lb "y (x) = 2mA(y €)W () + B [i(n G~ O )élb oMyt (x) -

. (3.34)
2mB(o,,C),, i

o, nin antisimetrikligi ve {y*,y"}=2g*" antikomiitasyon  bagmtilari kullanilarak
denklem (3.34)’ teki birinci ve iigiincii terimler yeniden diizenlenebilir. 1k terim;
W7,V y = Vur) =20, =-20,, =0, +0,
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=-ido,,C0"y" (x) + iAaaﬁc"a“y/{’ (x)

=-ido,,C0"y" (x)+ido,,Co"y" (x)
[0, 7, = 7,0)€C |0V () = (0,,O) {40 y* (x) - 40"y (x)} (3.35)

seklinde elde edilir. Ugiincii terim;

Bi(7,0,, = 0,,7,)C |0'y" ()= B[ 7,,0,, | O)0'v" (x)

=iB{2i(g,,, — &:,7,)C}0 W (%)
=-2By,C0 ,w"" (x) + 2By, Co,y*™ (x)

= ZByﬂéﬁvwﬂV (x)+ 2B;/ﬂét3vt//”v(x)

Bi(7,0,, =0,,7,)C |o'v™ (x) = 4By, Co,p*" (x) (3.36)

Denklem (3.35)’ de ve denklem (3.36)’ da elde edilen sonuglar kullanilarak denklem (3.34)

yeniden diizenlenirse;
(0, OIAD Y " (x) = 40"y (x) + 2mBy ™"} + (7 ,C){4BD, ™" (x) — 2mAy * (x)} =0 (3.37)
elde edilir. o Wé ve y #C’ matrisleri lineer bagimsiz degillerdir, bu nedenle katsayilar ayr

ayri sifira esit olmalidir.
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A@ "y (x)-0"w" (x))=-2mBy"" (3.38)

2mAy ¥ (x) =480,y (x) (3.39)

Denklem (3.39), 0, ile garpilip *"” niin agik ifadesi ve antisimetrikligi kullanilirsa spin-

3/2 alanlar i¢in gergek serbestlik derecesini bulmada ihtiya¢ duyulan kosullardan biri elde

edilir.

2mAD y* (x) = 4B3 0,y " (%)
=4B0,0,(0"y" -=0"y")
—4B(0,0,0"y" —0,0,0"y")
—4B(0,0,0"y" —0,0,0"y")=0

0w (x)=0 (3.40)

Denklem (3.38)’ in denklem (3.39)’ da kullanilmasi ile w*(x) alani i¢in Klein-Gordon
denklemi elde edilir.

A@ v  (x) - 0%y (x) =—2mBy "’ = Ay*" =2mBy*" = B =2i (3.41)
m

2y (1) =400 ()

m*y(x)=0,0"y" -0,0"y"
=0"0,w" —karey"

-

=0
O+m> " (x) =0 (3.42)

Buraya kadar elde edilen denklemlerden, yw*“ ve w*” alanlan i¢in Dirac denklemi

cikarilabilir. # alani i¢in, denklem (3.27) m ile carpilip, denklem (3.38) kullanilirsa
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Ay, (x)=2iBy"y ., (x)

2iB
my, (x)=7m7“r//m. (x)

2iBm A
= 4 }/Hzn/l_B(aﬂl//l _all//y)
:i}/‘ua/ul//l _ialy/ul///u)
Ly_l

=0

(iy*0, —my, =0 (3.43)

elde edilir. " alani i¢in denklem (3.38)’ den
. v 4 v
(iy“o, —my* =(17’”5ﬂ—m)2m—3(a yt —ofy") (3.44)

bulunur. w* ve w*" alanlar1 bagimsiz degillerdir. Eger, w* biliniyorsa denklem (3.38)’

den w* tek olarak belirlenebilir. Spin-3/2 pargacigi tanimlayabilmek i¢in w* alanim

bulmak gerekmektedir. Bu alan iizerindeki kosullarla beraber Rarita-Schwinger (Rarita and

Schwinger 1941) denklemleri

@ - myt(D)=0, 7wl @=0, 0,k x)=0 (3.45)

olarak elde edilir. Burada a=1,2,3,4 olmak {izere spindr (Dirac) indisi ve x=0,1,2,3
olmak tizere vektor (Lorentz) indisidir. Buna goére w/(x) alam1 16 serbestlik derecesi
anlamina gelen 16 tane bilesene sahiptir. Gergekte spin-3/2 alan i¢in serbestlik derecesi

sayist 8’ dir (2x(2s+1)=8). Denklem (3.45)’ te verilen iki kosul istenmeyen serbestlik

derecelerini indirgemek i¢in kullanilir.

w* (x) alaninin Fourier doniistimii
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l/’f(x)zwj.fpy/f(p)e"’” (3.46)

seklindedir. y*(p)alanini, spin-3/2 alanlar i¢in spindrlerin lineer bir kombinasyonu olacak

sekilde yazabiliriz.

wi(p)=D. Alp,A)ul(p,A) (3.47)
A

Burada A(p,A)’ ler baz1 keyfi katsayilar olmak {izere, bir Lorentz indisi tasiyan u*(p, 1)

spinorleri, spin-3/2 alan i¢in spindr ifadeleridir. Bunlara vektor-spinor adi verilir. Vektor-
spinorler, spin-1/2 alanlar i¢in spindrler ve spin-1 alanlar i¢in polarizasyon vektdrlerinin

lineer bir kombinasyonu olacak sekilde

ul (p,A)= Zcmu (p,m)&" (p,m) (3.48)

n,m

1.3
yazilir. Burada C,f,:j katsayilar1 Clebsh-Gordon katsayilaridir. Bu  katsayilarin

yerlestirilmesiyle vektor-spindrler

1
u (p,§)=ua(p,5)e”(p,1) (3.49)
1 1 1 2 1
uy (p,E) =3 (p,—E)g” (p. D)+ \Eua (p,E)g" (p,0) (3.50)
1 1 1 2 1
uf(p,—5)= gua(p,g)g”(p,—l)+\Eua(p,—5)8”(p,0) (3.51)
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ul ()=, (p= )" (p. =) (3.52)

seklinde elde edilirler. izdiisiim operatorii

3/2
A ()= D uu® (3.53)
A=-3/2
daha acik sekilde
p+m 1 2p*p" Py =Py
A = - += + + 3.54
v (D) 3 ur ¥Vl ¥ 3 ™ (3.54)

olarak yazilabilir. Spin-3/2 propagatdrii ise,

p - (3.55)

seklinde elde edilir.

3.2.2 Spin-3/2 uyarilms leptonlar icin etkilesme akimlari

Spin-1/2  uyarilmis leptonlar igin literatiirde etkin lagranjiyen yontemi c¢ok sik
kullanilmaktadir. Bu yontemi spin-3/2 uyarilmis leptonlar i¢in de kullanabiliriz. Buna gore

spin-3/2 uyarilmis leptonlar icin literatiirde siklikla gegen 3 fenomenolojik akim su sekilde

verilir:
J =gt (p,312)(c;, —cpu7s)u(k,1/2) (3.56)
J4 =5 (.31 27" (€ — ez 75uk]12) (3.57)
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Jy :%El(pa?’/z)q/lio'qu (cap _C3A75)u(k’1/2) (3.58)

Burada »“ Rarita-Schwinger vektor-spindrii, c,, ve c¢,,’ lar serbest parametrelerdir.

V1*¥'% | kosesi icin kose faktorii, farkli akimlar icin denklem 3.56 - 3.58 ile verilen akim
degerlerinde alanlar silindikten sonra denklemin (—i) ile ¢arpilmasiyla elde edilir (Kose

faktorleri EK 4.1° de verilmistir).

Spin-3/2 uyarilmis leptonlarin kiitleleri lizerine getirilen deneysel bir sinirlama yoktur.

Ancak literatiirde, spin-3/2 leptonlarin kiitleleri ve baglasimlar: {izerine sinirlamalar getiren
bazi caligmalar vardir. e'e” — 2y siirecinde, virtiiel spin-3/2 uyarilmis lepton degis tokusu
ile KED’ den miimkiin sapmalar Walsh ve Ramalho’ nun (1999) calismasinda ele
almmustir. /s =183GeV’> de OPAL verileri kullanilarak, sadece sol-elli Dirac spinor
alanlar1 dikkate alinarak (c; =1,c; =0i¢in) akim-2 tipli etkilesmeler igin kiitle limiti
m>'? >125GeV ve akim-3 tipli etkilesmeler igin de kiitle limiti m™'? >142 GeV olarak

bulunmustur.

3.3 Uyarilmis Leptonlarin Bozunumlan

Uyarilmis lepton iki cisim bozunmasina ugrar. Uyarilmis bir lepton, bir ayar bozonuna ve
bilinen bir leptona bozunur. Uyarilmig leptonlarin bozunma genisliklerini verecek analitik

ifadeleri elde edebilmek ig¢in 1— 2 siirecinin kinematigi EK 2’ de incelenmistir.

Burada sadece uyarilmig bir leptonun bir ayar bozonuna ve bilinen bir leptona bozundugu

durum ele alinacaktir. Uyarilmig leptonun miimkin 3 bozunma modu;

I"(v') = I(v)y istmasal  bozunum), ['(v')—I(v)Z (yiiksiz akim bozunumu) ve

I"(v") > v(OW (yiiklii akim bozunumu) seklindedir (Sekil 3.1).

2Z(W)

p.m prm;

pam;

I(v)



Sekil 3.1 Uyarilmis ytiklii lepton i¢in iki cisim bozunmasinin temsili gosterimi

Uyarilmis spin-1/2 leptonun bozunumu ile ilgili genlik,

M=i

f; Z(pl/ 20" q, (1= 7s) fyulk,1/2)s . (q) (3.59)

ile verilmektedir. Burada V =y, Z,W olmak iizere, f, , elektrik yiikii, zayif karigim agis1 ve

zay1f izospinin li¢lincii bileseni cinsinden ifade edilen yeni baglagimlardir.

Uyarilmis spin-3/2 leptonun bozunumu i¢in ii¢ akim kullanarak elde edilen genlikler

denklem (3.60) — (3.62) ile verilmistir. Burada p, k ve g sirasiyla spin-3/2 uyarilmis
leptonun, SM leptonunun ve vektér bozonunun dortlii momentumlaridir. 7 indisi i=y, Z,W

olmak iizere farkli vektdr bozonlarini gdstermektedir.

M, =g u"(p,3/2)(c," =, vs)uk,1/2)e,(q) (3.60)
My =2 (p.312)g,7 (e e 7 ulko1/ D, (9) (3.61)
M, :iig T (p312)q,07q (e’ =3y ulk1/2)e,(9) (3.62)

Spin-1/2 uyarilmig lepton i¢in 1s1masal bozunum modu i¢in bozunma genisligi ifadesi, son

durumdaki SM leptonunun kiitlesi ihmal edilerek
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fm* a
= (3.63)

seklinde elde edilir. Spin-1/2 uyarilmis lepton i¢in yiiklii akim ve yliksiiz akim bozunum

modlari i¢in bozunma genisligi ifadest;

2 43 2 \?2 2
T, :fV;"A2 0([1_ my J (1+2nm11;2J V=zWw) (3.64)

seklindedir. Denklem (3.63) ve (3.64) incelendiginde, bozunma genisliklerinin f;
baglagimlarmin kareleri ile dogru orantili oldugu goriilmektedir. Burada m”™ >>m, ve
A=m" alimirsa bozunma genislikleri i¢in '~ f;’m" elde edilir. Uyarilmig spin-3/2 lepton

icin, farkl akimlar i¢in 1s1masal bozunum modunda elde edilen bozunma genislikleri;

I =5 el e om’ (3.65)
(04 2 2 % *

FV(Z) ZQ(C%/A +chy )m (mT)z (3.66)
(04 2 2 % *

L =2 (ehy +efom (’"7)4 (3.67)

seklindedir. Spin-3/2 uyarilmis leptonlarin yiiklii ve yiiksiiz akim bozunum modlar igin

bozunma genislikleri ¥ =W, Z olmak iizere,

2
50 =% +ezym LD 1110k 4 12 (3.68)
48 K
* Y
r,? :%(cgy +c§A)m*(mT)2M(1+2K) (3.69)
K
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(04 % m*
r,? =g(ciy +c3)m (7)“(1—z<)“(2+z<>

olarak elde edilir. Burada x =(my /m’)’ ile verilir. U¢ akim icin de bozunma genisligi
ifadesinin serbest parametrelerin karelerinin toplami ile dogru orantili oldugu goriilmiistiir.
Kiitle boyutu 5 ve 6 olan operatorler bozunma genisligine sirastyla A ve A™ orantili

olacak sekilde katki verirler. A=m" alindigi durumda bu ifadelerin bagil 6nemi

olmayacaktir.

Spin-1/2 uyarilmis elektron ve farkli akimlar dikkate alinarak spin-3/2 uyarilmis elektron
icin toplam bozunma genisliginin kiitleye gore degisimi Sekil 3.2° de verilmistir. Burada

A=m* spin-1/2 akim i¢in f=f =1, spin-3/2 akimlar i¢in ¢, =0.05,c, =0.05 olarak

almmustir.
Spin-1
1 L p

g‘ 0.1¢ = _:’_:__,;-:'—"'
] T
o e
~ o 0.01 Jy

0.00L =" g T

,J_d'_':”’ R J:}
100 150 200 300 500 700 1000
m* (GeV)

Sekil 3.2 Spin-1/2 ve spin-3/2 uyarilmis leptonun bozunma genisliginin kiitleye gore

degisimi

Cizelge 3.1’ de uyarilmis spin-1/2 elektron i¢in f = f =1(uyarilmis spin-1/2 nétrino

f=-f =1)ve ¢, =c,, =0.5 i¢in uyarilmig spin-3/2 leptonun kiitlesine bagl olarak toplam
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bozunma genisligi degerleri verilmistir. Cizelge 3.1° de gorildiigii gibi, spin-1/2 uyarilmig
leptonlarin bozunma genislikleri m" <0.5 TeV icin oldukga kiiciiktiir. Bu ise, uyarilmis
leptonlar {iretilirse, bozunma kosesini (vertex) deneysel olarak saptama olanagini

bulamadan, detektor i¢inde bozunacaklari anlamina gelmektedir (Boudjema et al. 1993).
Ikinci siitunda parantez igindeki degerler uyarilmis spin-1/2 elektron f=—f" =1 (uyarilmis

spin-1/2 nétrino f = 1" =1) i¢in elde edilen degerlerdir. Burada A =m" olarak alinmstir.

Cizelge 3.1 Spin-1/2 ve spin-3/2 uyarilmis leptonlarin toplam bozunma genislikleri

" Tev) Ty (GeV) | Ty (GeV) | T (GEV) [ T, (GeV)
0.2 1.15 (1.03) 0.54 0.14 0.06
0.3 1.93 (1.85) 122 0.55 0.12
0.4 2.67 (2.61) 2.29 136 0.18
0.5 339 (3.35) 3.89 2.71 0.23
0.75 5.18 (5.15) 1112 9.31 0.36
1.0 6.95 (6.93) 24.62 22.20 0.48
15 10.47 (10.45) 78.89 75.24 0.73
2.0 13.98 (13.97) 18348 178.61 0.97
25 17.49 (17.47) 355.16 349.07 122
3.0 20.99 (20.98) 650.72 603.41 1.46
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Toplam bozunma genisligi, her bir bozunma modu i¢in bozunma genisliklerinin toplami

olarak ifade edilir.
L, =>T (3.71)
i=1

Dallanma orani (BR), 6zel bir bozunum modu i¢in bozunma genisliginin toplam bozunma

genisligine boliinmesi ile elde edilir.

BR-L: (3.72)
1—‘top
90 T T T T T T ! !
e*.eZ
80 | €% UW wremeee |
70 1 e* ey ~mom- !
60 4!._ """""""""""""" )

BR(%)

500 600 700 800 900 1000
m*(GeV)

Sekil 3.3 Spin-1/2 uyarilmis elektronun kiitlesine bagli (%) BR grafigi
(f=s" =1 i¢in (kalin ¢izgiler) ve f=_7"=1 icin (ince ¢izgiler) verilmistir)

Sekil 3.3’ te spin-1/2 uyarilmis elektron i¢in dallanma orami grafigi A =m" i¢in verilmistir.

Bu grafikte, f=f =1 icin (%) BR degerleri kalin ¢izgiler ile, f=—f =1 i¢in (%) BR
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degerleri ise ince cizgiler ile verilmistir. Agik¢a goriilecegi gibi f=—f igin spin-1/2
uyarilmis elektronun foton bozunum modu kapalidir (bozunma genisligi sifirdir). Uyarilmis
spin-1/2 elektron igin en biiylik katki m*>150 GeV i¢in W-kanalindan gelmektedir. Biiyiik

kiitlelerde dallanma oran1 degerleri, Z-kanal1 i¢in % 12 ve foton kanali i¢in % 28 dir.

Uyarilmis spin-1/2 nétrinonun ise f =/ icin foton kanali kapalidir. Bu durumda, uyarilmis
ndtrino i¢in biiyiik kiitle degerlerinde, dallanma oranlar1 yaklasik olarak, W-kanali i¢in %

60 ve Z-kanali igcin % 40 olarak elde edilmektedir. A=m" icin spin-1/2 uyarilmis

nétrinonun dallanma oranlarinin kiitleye gore degisimi grafigi Sekil 3.4’ te verilmistir.

100 [ T T T T T T T T T

v vy
\ v eW ----eeeee
80 - VLY Z 8
< 007 I —
g |\
o
om
40 r E
20 | 4
0 .‘;‘i..sa‘.‘... 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

m.(GeV)

Sekil 3.4 Spin-1/2 uyarilmis nétrinonun kiitlesine bagli (%) BR grafigi
P y g gralng
(s =-s" =1icin (kalin gizgiler) ve = s' =1 igin (ince cizgiler) verilmistir)

Uyarilmis spin-3/2 elektronun {i¢ akima gore verilen dallanma oranlarinin kiitleye gore

degisimi grafigi Sekil 3.5> te verilmistir. Esit baglasimlarda ve A=m" alindiginda,

bozunma genislikleri arasindaki farklilik, her akim i¢in 1s1masal moddaki katkilarin farkli
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olmasindan ve x terimlerinden kaynaklanmaktadir. Sekil 3.5 ten goriildiigii gibi, yaklasik
m” >200 GeV igin akim-1 (J,)’ e ve akim-2 (J,)’ ye karsilik gelen zayif bozunum modlart
baskindir. Biiyiik kiitlelerde, esit baglasimlar alindiginda J; igin zayif ve 1simasal

bozunum modlarinin esit olasiliga sahip oldugu goriilmektedir. Spin-3/2 uyarilmis nétrino
icin dallanma oranimnin kiitleye gore degisimi grafigi, baglasimlar ayn1 alindiginda spin-3/2

uyarilmig elektronunki ile ayni olacaktir.
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Sekil 3.5 Farkli akimlar i¢in spin-3/2 uyarilmis leptonun dallanma oranlari
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4. ELEKTRON-POZITRON CARPISTIRICILARINDA UYARILMIS
LEPTONLARIN TEK URETIMI

Elektron-pozitron carpismalarmin deneysel olarak biiyiik avantajlar1 vardir. e’e” etkilesmesi
elektrozayif teori cercevesinde iyi anlasilmistir ve miimkiin SM siiregleri i¢in biiyiik
belirsizlikler olmadan tahminler yapilabilir. Elektron-pozitron sistemi, sifir elektrik yiikiine,
sifir lepton sayisina vb. sahip oldugu i¢in yeni pargaciklar liretmek icin olduk¢a uygundur.
Simetrik elektron ve pozitron demetleri kullanildiginda laboratuar cergevesi kiitle merkezi
cergevesi ile O0zdes olur, bdylelikle tim kiitle merkezi enerjisi miimkiin en yiliksek fizik
esigi icin kullanilabilir (Han 2005). Bu nedenlerle, yliksek enerjili elektron-pozitron

carpistiricilar: uyarilmis leptonlarin arastirilmasi igin miikkemmel bir ortam saglar.

Uyarilmis leptonlarmn, e'e” carpistiricilarinda gift ve tek iiretimi mevcuttur. Tek iiretim

stirecleriyle, kiitle merkezi enerjisine yakin kiitle degerlerine kadar ulasilabilinir. Elektron-
pozitron carpistiricilarinda uyarilmis elektronun tek iiretimi e*e” — e e® ve uyarilmus
notrinonun tek iiretimi ise e’e” —v'v siiregleri ile miimkiindiir. Uyarilmis elektron ve
noétrino tesir kesitlerinin hesabi igin kiitle merkezi sisteminde 2—2 siirecinin kinematigi

kullanilmigtir. Kinematik ile ilgili ayrintili hesaplamalar EK 3’ te verilmistir.

4.1 Elektron-Pozitron Carpistiricilarinda Uyarilms Elektronun Tek Uretimi

Spin-3/2 ve spin-1/2 uyarilmis elektronun, gelecek nesil yiiksek enerjili e"e” ¢arpistiricilart
ILC (International Linear Collider) ve CLIC (Compact Linear Collider)’ de tek tiretimi

miimkiindiir. s-kanali ve ¢-kanalinda Z ve y degis-tokusu yoluyla tek liretime katkida

bulunan Feynman diyagramlar1 Sekil 4.1° de verilmistir.
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(@ )

Sekil 4.1 Uyarilmis elektronun tek iiretimi i¢in miimkiin Feynman diyagramlari

(a) s -kanal1 ve (b) ¢ -kanalinda Z ve y degis-tokusu

e'e” carpismalarinda s -kanalinda y aracilig ile uyarilmis elektronun tek {iretimi siirecinin

genlik ifadeleri spin-1/2 akim ve spin-3/2 fenomenolojik akimlar J,,J, ve J, igin

sirastyla;
MY = %f;” qiz[v(pnwu(pl)] & [H(p)0"™ (1= 75)a,(p,) | (4.1)
M =‘f1—§[v(p2>y”u(pl>]gw [ (o)l ~ el )] 4.2)
My =f—52[V(p2)y”u(pl)]gM [ ()7 (el L Wp (4.3)
My = % o)y up)le,uli” (0o (€ - Ly W) lndy (4.4)

ile verilir. Spin-1/2 ve spin-3/2 uyarilmis elektronun e‘e” c¢arpismalarinda s -kanalinda

Z araciligy ile tek tiretimi siireci igin genlik ifadeleri;
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1
T V()" (€ = ey up) (8 = 4,0, /m2)
an 7 (qz—m§+imzr2)[ A e A 4.5)

[#(p;)0" (1= 75)4,7(py) ]

MO —_ 8.8 N Hle —¢ " B Im?
1 2(q2 _mzz +imzrz)[ (p2)7/ ( 14 AJ/S) (pl)kgyv q,uqv z) (46)

[ (ps)ciy — i W)

gegz —
MPP =— [F(o)r" (e = caroulpp) g —aua, I m2)

2A(q° —m> +im_T.) 4.7)
[L_‘V (P (ciy =57’ )V(p4)]9v

MO - g.8-

3 [‘_’(pz)?/ﬂ(cv _CAVS)“(kag#a ~ 49,9 /mf)

2A*(g* —m? +im.T.) (4.8)
@ (p)o (5, —C§Ay5)V(p4)]qvqp

seklindedir. 7-kanalinda y aracilifinda tek iiretimi siireci i¢in genlik ifadeleri;

M(l/z)—ﬁf@)i[ﬁ( Yo (1= 7 )q. u( )]g [\7( )W )] 4.9
BRIV 75)9a4(P1) 8 1 [V(P2)7 V(P4 '

ME? =f1—;2[z7”(p3 )y — el P [F(p2)y v(p)]

(4.10)
2

M = ) el e )l B ) S
)

M =—;§;2 [ (p)0 (¢ — 1,75V, p1 (P g on [F (P27 V()] (4.12)

ile verilir. 7-kanalinda Z aracilig1 ile tek iiretimi siireci i¢in genlik ifadeleri;
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-gegz e 1 —_ a
MO =8Bz o (27 1= y)a“u(p) kg 0 — 4,00, /M)

4N 77 (¢7 —=m? +im.T,) (4.13)
[V(pz )" (ey —cu7s )V(p4)]
MO —_ g.8: T i —ci _ I m?
P g et (UG G AP R AR i
[‘_}(pz)yﬂ (cy _CA75)V(P4)]
MeD £.8- G i e v Vg u _ /m?
2 2A(q2—m22+imzrz)[ (p3)r " (e3y —cauy )qy (pl)kgiv 4,49, /m;) 4.15)
[V(pz)]/"(cV —C4Ys )V(p4)]
MO g8 - (¢ _cZ S u _ I m?
3 2A2(q2—m22 +imzrz)[ (p3) (3 =347 )qﬂQﬁ (pl):kgav 4,9, /m:) (4.16)

[V(pz);/" (cy —c 75 )V(P4)]

seklindedir. Denklem (4.1) - (4.16) arasinda verilen genlik ifadelerinde, p, gelen
elektronun, p, gelen pozitronun, p, ¢ikan uyarilmis elektronun, p, uyarilmis elektrona

eslik eden pozitronun ve ¢ ise aracilik eden vektor bozonunun dortlii momentumlaridir.

4.2 Elektron-Pozitron Carpistiricilarinda Uyarilmus Notrinonun Tek Uretimi

Uyarilmis nétrino e’e” carpistiricisinda Sekil 4.2° de gosterildigi gibi, foton ve Z bozonu

degisimi ile s —kanalinda ve W degisimi ile ¢ — kanalinda tek olarak {iretilebilir.
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Sekil 4.2 Uyarilmis nétrinonun tek tiretimi i¢in miimkiin Feynman diyagramlari

(a) s -kanalinda Z ve y degis-tokusu ve (b) 7 -kanalinda W degis-tokusu

e'e” carpigsmalarinda, spin-1/2 uyarilmig nétrino i¢in ve spin-3/2 uyarilmis ndtrinonun g

fenomenolojik akimi i¢in, s -kanalinda y araciligi ile tek iiretimi siirecinin genlik ifadeleri;

M =%f}” q%[v(pm”u(pl)]g,w [E(py)o™ - s (P ki (4.17)
M =‘Z’—§[V(pzwu(pl>]gw [ (o)l — ety )] (4.18)
My =Ag—52[wp2)y”u(pl el (p)r* (3 — et W (4.19)
M = Zgg—jz F(o) 7 utp)le i ()0 (el -y o lavas (4.20)

ile verilir. Spin-1/2 ve spin-3/2 uyarilmis ndtrinonun e’e” c¢arpigmalarinda s -kanalinda

Z araciligi ile tek iiretimi siireci igin genlik ifadeleri;
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1
M gegz o) v “e, —c u v v /m?
AA f: (q2 _ng imT )[ (p)y" (cy 47s) (P1)kg# 9.9 :) (4.21)

[#(p3)0, 1=y ()"

gegz = )7 2
v Cp —C Vs v —4,49,m;
T +l_mzrz)[ (D)7 (e =y (PN, — 4,4, 1 m2) )

[ (o)), — 2y ()]

M1(3/2) __

g.8; —
M = F(p)r* ey vt kg, - a,a, Im?)

2A(q> —m? +im_T.) (4.23)
[ (07 (3 - Mk,

MO - £.8:

3 [V(pz )7 ey —cu7s )u(pl)](g,m ~q,4q,/m?)

2A*(g* —m? +im_T.) (4.24)
[@" (p)o (ciy -ty Wp ) lva,

seklindedir. ¢-kanalinda W aracilif1 ile uyarilmis nétrino tek iiretimi siireci i¢in genlik

ifadeleri;

MW = 88w ) 7(p3)o " (1= 75)q,u(P)G o —4uqy | m2)
T @ mi)[ ’ ’ e =, (4.25)

Fo )y = rsmpa)

MO —_ ge8w —u w w5 _ I m2

W FTIEi —mi>[” (e =y PN, — 0,4,/ m2) w26)
F(pa)r" = yow(p))

M§3/2) 2\/—/\g(egvL [ ﬂ(pa)J’ (cop —Cyqy )q#u(Pl)kg,w quv/m ) (4.27)

F(pa)ra —ys)v(m)]
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MY =i el i (p3)o ™ (cyy — )0, (P& — 90, | ML)
3 2\/§A2(q2 _mi)[ 3 3V 34 H ﬂ 1 k (4.28)

[‘_’(1’2 )y (=ys)v(p, )]

seklindedir. Denlem (4.17)-(4.28) arasinda verilen genlik ifadelerinde, p, gelen elektronun,
p, gelen pozitronun, p, ¢ikan uyarilmis nétrinonun, p,uyarilmis ndtrinoya eslik eden

antinétrinonun, ¢ ise aracilik eden vektor bozonunun dortlii momentumlaridir.

4.3 Tesir Kesitlerinin Hesaplanmasi

Kiitle merkezi sisteminde gelen pargacik Kkiitleleri sifir alindiginda 2—2 siireci i¢in

diferansiyel tesir kesiti

do (M)
dt 167

(4.29)

bagmtist ile verilmektedir. 2—2 siirecinin sembolik gosterimi Sekil 4.3 te verilmistir.
Uyarilmis elektron ve uyarilmis notrino icin diferansiyel tesir kesitlerinin analitik ifadeleri
EK 4.2-4.3” te verilmistir. Burada s=(p, + p,)° =(p; + p,)”> ve t=(p, — p;)° =(p, — p,)°
seklinde tanimlanan Lorentz degismezi Mandelstam parametreleridir. e"e” ¢arpismalarinda

uyarilmig elektronun tek tiretimi ile ilgili diyagramlardan, - kanalinda fotonun aracilik

ettigi diyagram tesir kesitine en biiylik katkiyr verecektir. Diisiik momentum aktarimi
oldugu durumda (¢*> —0), foton propagatoriindeki 1/¢* teriminden dolay1 iraksaklik

meydana gelir. Fiziksel bir tesir kesitinin elde edilebilmesi ve bu tesir kesitinin deneysel
olarak Olgiilebilmesi i¢in, 1raksakligi gidermek iizere siiregte ¢ikan gozlenebilir

parcaciklarin kinematik degiskenleri ( p,,y,cos@,...vb.) lizerine bir takim sinirlamalar

getirilebilir. Bununla birlikte, toplam tesir kesitini bulmak i¢in diferansiyel tesir kesitinin
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(do/dt) integrali alinirken, integralin alt ve iist sinir degerleri (7., ve ¢, ) lizerine de

max

sinirlamalar koyulabilir (Hagiwara 1985).

Py 11y P3. 11y

Py, 11 Py 1My

Sekil 4.3 2—2 siirecinin sembolik gosterimi (PDG 2008)

Kiitle merkezi sisteminde ¢, ve ¢, degerleri (Amsler et al. 2008)

2 2 2 2
my —my —m3 +my

Z‘min(max) :( 2\/— )2 - (plcm + P3cm )2 (430)
S

ile hesaplanabilir. Kiitle merkezi momentumlari, m, ilgili par¢acigin momentumu olmak

lizere,

l_jicm = izcm _m‘z (431)

1

seklindedir. Gelen ve ¢ikan pargaciklarin kiitle merkezi enerjileri ise

2 2 2 2
s+ m1(3) - m2(4) N m2(4) - m1(3)

E e C) G} E 4.32
13)em 2\/; 2(4)em 2\/; ( )

seklinde verilir. Bu degerler kullanilarak Lorentz degismez Mandelstam parametresi ¢, SM

leptonlarinin kiitleleri ihmal edildiginde, @ sacilma agis1 olmak iizere,
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cos @ (4.33)

[:(pl _p3)2 z_2(E‘lcme30m _|[_ﬁlcm ﬁScm

elde edilir. m,=m alinarak, enerji ve momentum degerleri

Ey, = Pun =Vs/2 . Es, =Ps, =(s—m?)/24/s olarak hesaplanabilir. Bu degerler ¢

ifadesinde yerine yazilirsa ¢ ve cos@ arasindaki iligki;
t= —%(s —m™)(1-cos6) (4.34)

olarak bulunur. cos@’ ya bagl diferansiyel tesir kesiti ifadesi;

do _d_O' dt
dcos@ dt dcosé
2
_l(S_m*2)<‘M ) (4.35)
2 167s*

olarak elde edilir. Burada spin-1/2 ve spin-3/2 uyarilmis elektronun ve notrinonun tek
diretimi icin toplam tesir kesitleri bulunurken cosé@ {lizerine sinirlama koyulmustur

(diferansiyel tesir kesiti [-0.95, 0.95] aralifinda integre edilmistir).

Tesir kesitleri hesaplanirken, parametre sayisini azaltmak ve teorik tahminlerde
bulunabilmek i¢in uyarilmis lepton baglasimlari ile ilgili baz1 kabullenmeler yapilabilir.
Spin-1/2 uyarilmis leptonlarla ilgili olarak literatiirde siklikla f=f" =1 ve f=-f =1
durumlart dikkate alinmaktadir. Spin-3/2 uyarilmis leptonlarin tek tiretim tesir kesiti ile
ilgili teorik bir tahminin olmayisi ve serbest parametre sayisinin fazlaligindan dolayi, sinyal
tesir kesitleri hesaplanirken, her bir ayar bozonuna baglasim ayr1 ayri dikkate alinmistir;
yani, ayar bozonlarindan sadece birine olan baglasim sifirdan farkli alinirken diger ayar

bozonlarina baglagim sifir olarak alinmistir. Spin-1/2 ve spin-3/2 uyarilmis leptonlarin tek
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tiretimi i¢in hesaplamalar yapilirken, yapilabilecek kabullenimler Cizelge 4.1° de

verilmistir.

Cizelge 4.1 Uyarilmis leptonlar i¢in baglasimlarin se¢imi

Spin-1/2 Spin-3/2

Lf=f l.c? =c? =0,cZ2 20

2.f=-f 2.¢/ =c"=0,c7 20
3.c7=cl=0,c) 20
d.c?=cl=c =0

4.3.1 Uyarilmis elektron tek iiretiminde Z-bozonuna baglasim

s ve ¢ kanallarinda Z -bozonu degis tokusu agir propagator ile etkin bir form faktorii gibi
davranir. Spin-3/2 uyarilmis elektronun (") tek iiretiminde sadece Z-bozonuna baglasim
istediginde cj, , =0ve ¢, #0 almak yeterlidir. Spin-1/2 uyarilmis elektron i¢in ise,
f=—f" almdiginda foton baglasim ortadan kalkacak ve e" tek iiretimi igin sadece Z-
bozonuna baglasim kalacaktir. Spin-1/2 ve spin-3/2 uyarilmis elektronun (pozitronun) e*e”
carpismalarinda tek iiretiminde, toplam tesir kesitinin uyarilmig lepton kiitlesine gore
degisimi, ILC (Vs =0.5 TeV) ve CLIC (s =3 TeV) enerjileri i¢in sirastyla Sekil 4.4 ve
Sekil 4.5 te verilmistir. Bu grafiklerde diiz ¢izgi, nokta, ¢izgi, nokta-cizgi sirasiyla
f=-f =1 ig¢in spin-1/2 akimlara, ¢, =c;, =0.5 ig¢in spin-3/2 akimlara karsilik

gelmektedir. Burada A =m" almmustir.

Sekil 4.4 (Sekil 4.5)’ ten goriildiigi gibi uyarilmis spin-3/2 elektron (ya da pozitron)
Js=0.53) TeV igin J, akimi dikkate alimdiginda 0.25 (0.8) TeV’ den daha diisiik
kiitlelerde diger akimlara gére daha yiiksek tesir kesitine sahiptir. Tesir kesitleri ¢,,,c;,

baglasimlarinin kareleri ve baglasimlarin ¢apraz carpimlar ile orantili oldugundan, bu
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baglasimlar farkli alindiginda, spin-3/2 akimlarin spin-1/2° ye gore bagil Onemleri

degisecektir.

100 ;-

10 ¢

o (pb)

0.1

0.01;

0.001 200 300 400 500
m (GeV)

Sekil 4.4 Uyarilmis elektronun (pozitronun) Z- bozonuna baglasimi oldugunda iiretim tesir
kesitinin kiitleye gore ILC (Vs =0.5 TeV) enerjilerinde degisimi
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Sekil 4.5 Uyarilmis elektronun (pozitronun) Z- bozonuna baglasimi oldugunda {iretim tesir
kesitinin kiitleye gére CLIC (+/s =3 TeV) enerjilerinde degisimi
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Spin-3/2 ve spin-1/2 uyarilmis elektron (pozitron) sinyallerini birbirinden ayirt edebilmek
icin son durum gozlenebilir pargaciklarin agisal dagilimlari incelenmistir. Normalize tesir
kesitlerinin sa¢ilma agisinin kosiniisiine gére degisimi ILC ve CLIC enerjilerinde sirasiyla,

Sekil 4.6’ da ve Sekil 4.7’ de verilmistir. Burada A =m"=350 GeV, spin-1/2 akim i¢in

f=—f =1 vespin-3/2 akimlar i¢in ¢, =¢, =0.5 olarak alinmgtir.

< 0.05 o ]
o 7T =302
0.2 - TIRBR
0.01 ’:_:__‘,,——""/ --J3(3/2) |
20.750.50.25 0 0.25 0.5 0.75
Cc0S6

Sekil 4.6 Z-bozonuna baglasim durumunda uyarilmis elektron (pozitron) tek iiretimi igin
ILC (\/_ =0.5TeV) enerjilerinde normalize acisal dagilim

0.1/
0.05:

do
dcose

) 0.01;
0.005 |

0.001 /

C0so

Sekil 4.7 Z-bozonuna baglasim durumunda uyarilmis elektron (pozitron) tek iiretimi igin
CLIC (+/s =3 TeV) enerjilerinde normalize agisal dagilim
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Agisal dagilimlar incelendiginde, spin-1/2 ve spin-3/2 uyarilmis elektron (pozitron)
sinyalinin birbirinden ayirt edilebildigi, uyarilmis spin-1/2 elektronun daha ¢ok ileri yonde
retildigi ve akim-3 i¢in spin-3/2 uyarilmis elektronun farkli bir agisal dagilima sahip
oldugu goriilmektedir. Baglasimlar esit segildiginde normalize acisal dagilmlarin
baglasimlara bagimlilig1 kalmayacaktir. Segilen farkli baglagimlar ve kiitle degerlerine gore

acisal dagilimlarin bicimi degisecektir.

4.3.2 Uyarilms elektron tek iiretiminde fotona baglasim

Spin-3/2 uyarilmig elektron igin sadece y’ ya baglagim istediginde cf,,, #0ve ¢, =0
almak uygundur. Spin-1/2 uyarilmis elektron igin ise, baglagimlar f =/ almmustir.
Burada, uyarilmis elektronun sadece fotona baglasim diisiiniildiigiinden ¢ — ey sinyali
dikkate almarak (spin-1/2 uyarilmis elektron sinyali i¢in elde edilen tesir kesiti e” — ey

dallanma orani ile ¢arpilarak) inceleme yapilmistir. Spin-1/2 ve spin-3/2 uyarilmis

elektronun (pozitronun) e'e” c¢arpismalarinda tek tiretiminde sadece fotona baglasimi
oldugunda, toplam tesir kesitinin uyarilmis lepton kiitlesine gore degisimi, ILC ve CLIC

enerjileri i¢in sirastyla Sekil 4.8 de ve Sekil 4.9” da verilmistir. Burada, spin-1/2 uyarilmig

elektron i¢in f = f" =1, spin-3/2 akimlar i¢in ¢/, =¢, =0.5 ve A=m" almmustir.

Sekil 4.8 den (Sekil 4.9’ dan) goriildigii gibi uyarilmis spin-3/2 elektron (ya da pozitron)
Js=0.53)TeV igin J, akimi dikkate alindiginda 0.22 (1.3) TeV’ den daha diisiik

kiitlelerde diger akimlara gore daha ytiksek tesir kesitine sahiptir.

89



100\ J1(3/2) ...
o)
2 10|
o
1 L
100 200 300 400 500

m (GeV)

Sekil 4.8 Uyarilmis elektronun (pozitronun) fotona baglasimi oldugunda iiretim tesir
kesitinin kiitleye gére ILC (/s =0.5 TeV) enerjilerinde degisimi
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Sekil 4.9 Uyarilmis elektronun (pozitronun) fotona baglasimi oldugunda iiretim tesir
kesitinin kiitleye gére CLIC (Vs =3 TeV) enerjilerinde degisimi

Fotona baglasim oldugu durumda spin-3/2 ve spin-1/2 uyarilmis elektron (pozitron)
sinyallerini birbirinden ayirt edebilmek igin normalize tesir kesitlerinin sagilma agisinin

kosiniisiin gore degisimi  Sekil 4.10° da ve Sekil 4.11° de incelenmistir. Burada

A=m =350 GeV, spin-1/2 akim i¢in f=f =1 ve spin-3/2 akimlar i¢in ¢/, =c}, =0.5
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olarak alinmigtir. Secilen bu baglasim ve kiitle degeri i¢in Js=3 TeV’ de spin-3/2
uyarilmis elektronun (pozitronun) agisal dagilimin digerlerinden farkli oldugu goriilmiistiir.
Sadece fotona baglagim oldugu durumda da spin-1/2 ve spin-3/2 uyarilmis elektron

(pozitron) sinyallerinin birbirinden ayirt edilebilecekleri gozlenmistir.

o T
O. 005 ’///,t"’/ R J<1/2)
T §1(<%/22>
-- J2(3/2) |
0.001) T TT 330
-0.75-0.5-0.25 0 0.25 0.5 0.75
C0oso

Sekil 4.10 Fotona baglasim durumunda uyarilmis elektron (pozitron) tek {iretimi i¢in
ILC (Vs =0.5TeV) enerjilerinde normalize agisal dagilim

‘O . 3
0.005 ¢ L — J(1/2)
- ﬂl((%/zz)
L7 -- J2(3/2)
o.001r~ 332
-0.75-0.5-0.25 0 0.25 0.5 0.75
coso

Sekil 4.11 Fotona baglasim durumunda uyarilmis elektron (pozitron) tek tiretimi i¢in
CLIC (\/_ =3TeV) enerjilerinde normalize agisal dagilim
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4.3.3 Uyarilmis notrino tek iiretiminde fotona baglasim

Uyarilmis nétrinolarm (v*), SM nétrinolarindan farkli olarak elektromanyetik baglagimi
vardir. Uyarilmis nétrinolarin e"e” c¢arpigsmalarinda tek olarak iiretilmesi i¢cin miimkiin
Feynman diyagramlarindan biri s -kanalinda fotonun aracilik ettigi diyagramdir. Spin-3/2

uyarilmis nétrinonun sadece fotona baglasimi istendiginde ¢, #0ve ¢, =ciys) =0

almak yeterlidir. Spin-1/2 uyarilmig elektron igin, baglasimlar f=-/ alindiginda iig

bozunum (1s1masal, yiikli zayif ve yiiksliz zayif) modu miimkiin olacaktir. Burada,

uyarilmig spin-1/2 nétrinonun sadece elektromanyetik baglagiminin olmasi istendiginden,
f=—f icin elde edilen toplam tesir kesiti v" — vy dallanma orani ile ¢arpilmustir. ee”

carpismalarinda spin-1/2 ve spin-3/2 uyarilmis noétrinonun tek tiretim siirecinde yalnizca
fotona baglasimi dikkate alindiginda, tesir kesitinin uyarilmis nétrino kiitlesine gore

degisimi, ILC ve CLIC enerjileri igin sirasiyla Sekil 4.11 ve Sekil 4.12° de verilmistir. Diiz
cizgi, nokta, kesik ¢izgi, nokta-¢izgi sirasiyla f =—f =1 igin spin-1/2 akima, ¢/, =c/, =0.5
i¢in spin-3/2 J,,J,,J, akimlarina karsihk gelmektedir. Burada A=m" almmustir. Sekil
4.11 (Sekil 4.12)’ den goriildiigii gibi spin-3/2 uyarilmis nétrino /s =0.5(3) TeV igin J,
akimi dikkate alindiginda 0.22 (1.3) TeV’ den daha diisiik kiitlelerde diger akimlara gore
daha ytiksek tesir kesitine sahiptir.
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Sekil 4.12 Uyarilmis nétrinonun fotona baglasimi oldugunda iiretim tesir kesitinin
kiitleye gore ILC (/s =0.5 TeV) enerjilerinde degisimi
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Sekil 4.13 Uyarilmis ndtrinonun fotona baglagimi oldugunda iiretim tesir kesitinin
kiitleye gore CLIC (+/s =3 TeV) enerjilerinde degisimi

Tek {iiretim siirecinde uyarilmis nétrinolara eslik eden bir SM antindtrinosu agiga cikar.
Spin-3/2 ve spin-1/2 uyarilmis notrino sinyallerini ayirt edebilmek igin eslik eden
antindtrinonun kayip enine momentum dagilimlarmma bakilir. Enine momentum

dagilimlarin bigimine gore spin-3/2 ve spin-1/2 uyarilmis nétrino sinyallerini ayirt etmek
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miimkiin olacaktir. Uyarilmig nétrino {iretim tesir kesitinin eslik eden antindtrinonun enine

momentumuna gore degisimi

19 _Js ! (d—(’j (4.36)

ile verilir. Bu ifadenin elde edilisi EK 3.2° de ayrintili olarak verilmistir. Uyarilmig
nétrinonun yalnizca fotona baglasimi dikkate alindiginda spin-3/2 ve spin-1/2 uyarilmig

notrino Uretimi i¢in kayip enine momentum dagilimlari Sekil 4.14 ve Sekil 4.15° te
verilmistir. Bu sekillerde, spin-1/2 akim igin f=-f =1 ve spin-3/2 akimlar igin
¢!, =c, =0.5 olarak alinmustir. Ayrica, Sekil 4.14” te ILC (v/s =0.5TeV) igin A =m" =350
GeV ve Sekil 4.15° te CLIC (Vs =3TeV) icin A=m" =1 TeV olarak almmistir. Verilen

bu baglasimlar ve kiitle degerleri i¢in kayip enine momentum dagilimlarina bakilarak spin-

1/2 ve spin-3/2 uyarilmis ndtrino sinyallerinin birbirinden ayirt edilebilecegi goriilmiistiir.

0.01:

0.0001 |

do/dpt (pb/GeV)

1. x10°®

Sekil 4.14 Fotona baglasim durumunda uyarilmis nétrino tek tiretimi i¢in ILC
(/s =0.5TeV) enerjilerinde kayip enine momentum dagilim
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Sekil 4.15 Fotona baglasim durumunda uyarilmig nétrino tek {iretimi i¢cin CLIC
(s =3 TeV) enerjilerinde kayip enine momentum dagilimi

4.3.4 Uyarilms notrino tek iiretiminde Z-bozonuna baglasim

Spin-3/2 uyarilmus nétrinonun sadece Z-bozonuna baglasimi istediginde cj,,, #0ve
clyay =Clyay =0 almir. Spin-1/2 uyarilmis nétrino i¢in, baglasimlar f =/ alindiginda
1simasal bozunum modu ortadan kalkarken sadece yiiklii zayif ve yiiksiiz zayif bozunum
modu miimkiin olur. Burada uyarilmis spin-1/2 nétrinonun sadece Z’ ye baglasiminin
olmas: istediginden, f = f alinarak elde edilen toplam tesir kesiti v* —1Z dallanma orani
ile carpilmistir. e*e” carpigsmalarinda spin-1/2 ve spin-3/2 uyarilmis nétrinonun tek {iretim
siirecinde yalnizca Z-bozonuna baglasimi dikkate alindiginda, tesir kesitinin uyarilmis
notrino kiitlesine gore degisimi, ILC ve CLIC enerjileri icin sirasiyla Sekil 4.16” da ve
Sekil 4.17° de verilmistir. Bu grafiklerde diiz ¢izgi, nokta, kesik ¢izgi, nokta-¢izgi sirasiyla
f=/f =1 igin spin-1/2 akima, ¢/, =c/, =0.5 igin spin-3/2 J,,J,,J; akimlarma karsilik

gelmektedir. Burada A =m" alinmustir.
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Sekil 4.16 Uyarilmis notrinonun Z-bozonuna baglagimi oldugunda iiretim tesir kesitinin
kiitleye gore ILC (/s =0.5 TeV) enerjilerinde degisimi
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Sekil 4.17 Uyarilmis notrinonun Z-bozonuna baglagimi oldugunda iiretim tesir kesitinin
kiitleye gore CLIC (+/s =3 TeV) enerjilerinde degisimi

Yalnizca Z-bozonuna baglasim dikkate alindiginda kiigiik kiitle degerlerinde spin-3/2

uyarilmis ndtrinonun J, ic¢in J, ve J,  den daha biiyiik tesir kesitlerine sahip oldugu Sekil

4.16> dan ve Sekil 4.17° den goriilmektedir. Uyarilmis ndtrinolara eslik eden SM
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antindtrinolarinin kayip enine momentum dagilimlar incelendiginde ILC igin A =m" =350
GeV ve CLIC i¢in A=m" =1 TeV almmdiginda, kayip enine momentum dagilimlarinim farkl
oldugu goriilmiistiir. Her iki kiitle merkezi enerjisinde de kiigiik kiitle degerlerinde spin-3/2
akim-2 ve akim-3 (J,veJ;) p, dagilimlarinin, uyarilmis notrinonun sadece fotona
baglasimi oldugu durumdaki gibi, birbirine ¢ok yakin oldugu Sekil 4.18” den ve Sekil 4.19’
dan goriilmektedir. Bu grafiklerde, spin-1/2 akim i¢in f = f =1ve spin-3/2 akimlar igin

¢’ =c/, =05 olarak alinmustir.

1
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©
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Sekil 4.18 Z- bozonuna baglasim durumunda uyarilmis nétrino tek tiretimi i¢in ILC
(/s =0.5TeV) enerjilerinde kayip enine momentum dagilimi
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Sekil 4.19 Z- bozonuna baglasim durumunda uyarilmis nétrino tek tiretimi i¢in CLIC
(s =3 TeV) enerjilerinde kay1p enine momentum dagilimi

4.3.5 Uyarilmis nétrino tek iiretiminde W-bozonuna baglasim

Spin-3/2 uyarilmig nétrinonun sadece W -bozonuna baglasim istediginde cjj, ,, =0 ve
¢y =Civiay =0 almr. Spin-1/2 uyarilmig nétrino igin, baglasimlar =/ ya da f=-f
alindiginda yiiklii zayif bozunum modu miimkiin olacaktir. Burada uyarilmis spin-1/2
ndtrinonun sadece W’ ya baglasiminin olmasi istediginden, f=-7 alinmis ve elde edilen

toplam tesir kesiti v* — el dallanma orani ile ¢arpilmistir. e*e” ¢arpismalarinda spin-1/2
ve spin-3/2 uyarilmig nétrinonun tek iiretim siirecinde yalnizca W bozonuna baglasimi
dikkate alindiginda, tesir kesitinin uyarilmis notrino kiitlesine gore degisimi, ILC ve CLIC

enerjileri icin sirasiyla Sekil 4.20 ve Sekil 4.21° de verilmistir. Bu grafiklerde, diiz ¢izgi,
nokta, kesik ¢izgi, nokta-¢izgi sirasiyla f =—f =1 i¢in spin-1/2 akima, ¢; =c}, =0.5 igin

spin-3/2 J,,J,,J, akimlaria karsilik gelmektedir. Ayrica A =m" alinmustir.
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Sekil 4.20 Uyarilmis ndtrinonun W-bozonuna baglagimi oldugunda iiretim tesir kesitinin
kiitleye gore ILC (+/s = 0.5 TeV) enerjilerinde degisimi

\ — J(1/2)
e jl(eé/%)
‘ -- Ja( 3/2)
1000 ; — J3(3/2)

o (pb)

0.001

500 1000 1500 2000 2500 3000
m (GeV)

Sekil 4.21 Uyarilmig ndtrinonun W-bozonuna baglagimi oldugunda iiretim tesir kesitinin

kiitleye gore CLIC (/s =3 TeV) enerjilerinde degisimi

W-bozonuna baglagim dikkate alindiginda, diger ayar bozonlarina kiyasla daha biiyiik tesir

kesitleri elde edilmektedir. /s =3 TeV igin J, ile, t-kanalinda W degis-tokusununda spin-

3/2 uyarilmig nétrino iiretimi m" <1.4 TeV igin daha gozlenebilirdir. Tek olarak iiretilen
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uyarilmig notrinolara eslik eden SM antinétrinolarinin kayip enine momentum dagilimlari
Sekil 4.22° de ve Sekil 4.23° te verilmistir. Bu grafiklerde, spin-1/2 akim i¢in f =—f =1ve
spin-3/2 akimlar i¢in ¢!, =¢!;, =0.5, ILC igin A=m" =350 GeV ve CLIC i¢in A=m" =1
TeV olarak alinmistir. Verilen bu baglasim ve kiitle degerleri i¢in spin-1/2 ve spin-3/2

uyarilmis nétrino sinyallerinin birbirinden ayirt edilebildigi goriilmustiir.
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Sekil 4.22 W- bozonuna baglasim durumunda uyarilmis nétrino tek tiretimi i¢in ILC

(Vs =0.5TeV) enerjilerinde kayip enine momentum dagilimi
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Sekil 4.23 W- bozonuna baglasim durumunda uyarilmis nétrino tek tiretimi i¢in CLIC
(/s =3 TeV) enerjilerinde kayip enine momentum dagilimi
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4.4 Analiz

Spin-3/2 ve spin-1/2 uyarilmis leptonlarin elektron-pozitron carpistiricilarinda verecegi
sinyallerin istatistik dnemini incelemek i¢in farkli bozunma kanallarinda karsilik gelen
fonlar cesitli kinematik sinirlamalar altinda incelenmistir. Uyarilmis lepton sinyalinin iyi
algilanabilmesi i¢in fonun miimkiin oldugu kadar azaltilmas: gerekmektedir. Bunun igin
son durumdaki gozlenebilir pargaciklarin enine momentumlari, hizliliklar1 (rapidity),
ayrilmalar1 ve degismez kiitleleri iizerine bazi kinematik siirlamalar konulmalidir (Cakir et

al. 2004).

4.4.1 Uyarilms elektron icin analiz

Uyarilmis  elektronun  bozunumlar1  dikkate alindiginda, SM  fonu olarak
e'e” >ee'yee »>ee'Z ve e'e e vW' siregleri ele alinmistir. Fon tesir

kesitlerinin hesaplanmasinda Calchep programi kullanilmistir. Getirilen ilk sinirlamalar,

py’ >20 GeV
Mo, <2.5 (4.37)
AR >04

(e'e ) (e%y)

seklindedir. Burada p, son durum gozlenebilir pargaciklarin enine momentumu, 7, sanki-

hizlilhik (pseudorapidite), AR ayrilma agis1 olarak bilinen, son durum go6zlenebilir

pargaciklar arasindaki ayirimdir. Bu kinematik sinirlamalar getirdikten sonra SM fon tesir
kesitleri, sirasiyla, e e'y, e e"Z ve e vW~ son durumlart igin, Js=0.5 (3) TeV’ de
o =1.93(0.16) pb, 0.11 (0.03) pb ve 0.92 (0.46) pb olarak elde edilmistir.
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Uyarilmis elektron sinyalini fon siire¢lerinden daha iyi ayirabilmenin bir yolu eZ ve ey

sistemlerinin degismez kiitlesi {lizerine V =Z,y olmak iizere

m,y, —m*‘ <25 smirlamasini

getirmektir. Boylelikle kiitle araligt Am= 50 GeV igin fon tesir kesitleri elde edilir. Spin-
3/2 uyarilmus elektron i¢in J, ve J, dikkate alindiginda, m™ > 1 TeV igin toplam bozunma
genisligi 50 GeV’ in iizerindedir. Sinyalin daha kolay algilanabilmesi i¢in daha biiytik kiitle
degerleri igin degismez kiitle simirlamasi m,, >1 TeV i¢in m" >1.5 TeV olarak

genisletilmistir.

Uyarilmis elektronun sadece Z-bozonuna baglasimi dikkate alindiginda, spin-1/2 akim i¢in
f=—f"=1 ve spin-3/2 akimlar i¢in ¢;, =c;, =0.5 almarak, A=m" i¢in /s =0.5 (3) TeV’
de sinyal tesir kesitleri ve sinyale karsilik gelen fon tesir kesitleri Cizelge 4.2 de (Cizelge

4.3’ te) verilmistir.

Cizelge 4.2 Uyarilms elektron i¢in Z-bozonuna baglasim durumunda+/s =0.5 TeV’ de
sinyal ve fon tesir kesitleri

m* (GeV) J(1/2) J1(3/2) J,(3/2) J5(3/2) oy (Am)
o, (GeV) o (GeV) o, (GeV) o (GeV)
200 8.50x10™" 8.70x10™" 2.13x10° 3.68x10° 1.47x107?
250 5.00x107" 6.90x10~" 1.31x10° 9.70x10" 1.27x107?
300 3.00x107" 5.60x107" 8.80x107" 3.40x107" 1.26x1072
350 1.90x10™" 4.40x107" 6.00x107" 1.40x107" 1.44x107?
400 1.20x10™ 3.10x107" 3.70x107" 7.00x1072 1.73x1072
475 3.00x107 8.00x107 7.00x1072 2.00x107* 9.73x107
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Cizelge 4.3 Uyarilmus elektron i¢in Z-bozonuna baglasim durumunda /s =3 TeV’ de
sinyal ve fon tesir kesitleri

m* (GeV) J(1/2) J1(3/2) J,(3/2) J5(3/2) oy (Am)
os (GeV) og (GeV) oy (GeV) oy (GeV)
250 2.18x10° 1.69x10° 1.44%10' 1.38x10° 1.67x107*
500 530x10" 1.17x10° 2.22x10° 2.17x10' 8.26x107*
1000 1.20x10™" 9.60%x107" 1.08x10° 3.70x107! 3.24x107"
1500 5.00x107 7.90%107! 8.40x10™" 4.00x1072 3.67x107
2000 2.00x1072 6.00x1072 6.00x107 1.00x107 1.66x1072
2500 1.00x107 3.20x107 3.20x1072 4.00x107 1.66x1072
2750 7.00x107 1.70x1072 1.70x1072 3.00x107 1.66x107

Uyarilmis elektron i¢in sadece fotona baglasim ele alindiginda, spin-1/2 akim igin
f=f =1 ve spin-3/2 akimlar i¢in ¢/, =c/, =0.5 almarak, Js=0.5 (3) TeV’ de sinyal ve

ilgili fon tesir kesitleri Cizelge 4.4 (Cizelge 4.5)’ te verilmistir.

Cizelge 4.4 Uyarilmis elektron i¢in fotona baglasim durumunda /s =0.5 TeV’ de
sinyal ve fon tesir kesitleri

m* (GeV) J(1/2) J1(3/2) J,(3/2) J5(3/2) oy (Am)
og (GeV) o (GeV) o (GeV) o (GeV)
200 3.61x10° 4.75x10° 9.06x10° 1.23x10' 9.76x1072
250 2.22x10° 4.27x10° 6.28x10° 3.46x10° 1.17x107"
300 1.48x10° 4.07x10° 5.05%10° 1.33x10° 1.37x10™
350 1.03x10° 4.00x10° 4.41x10° 6.50x10" 1.52x10"
400 7.40x107! 4.02x10° 4.05%x10° 3.70x107! 1.49%107"
475 4.50%107" 4.16x10° 3.75x10° 2.10x10™" 5.05x107

103




Cizelge 4.5 Uyarilmus elektron i¢in fotona baglasim durumunda /s =3 TeV’ de
sinyal ve fon tesir kesitleri

m* (GeV) J(1/2) J1(3/2) J,(3/2) J5(3/2) oy (Am)
os (GeV) os (GeV) o (GeV) oy (GeV)

250 2.52x10° 1.04x10° 3.85x10' 4.10x10° 3.15x107
500 6.30x10"" 3.30x107" 2.93x10° 6.35x10' 1.75x107°
1000 1.50x107" 1.50x107" 3.70x107! 9.90%x107" 1.37x107
1500 7.00%x1072 1.20x10™ 1.70%x10™" 1.00x10™" 9.19x107*
2000 4.00x1072 1.10x10™" 1.30x10™" 2.00x1072 3.31x1072
2500 3.00x107 1.10x10™ 1.10x10™ 9.00x107 3.31x1072
2750 2.00x1072 1.10x10™" 1.10x10™" 7.00x107" 3.31x1072
[statistiksel gdzlenebilirlik,

SS = (4.38)

Os [ T
\/Z & int

ile tanimlanir. Burada L., carpistiricinin toplam 1simnhig1, & ise segilen bir kanalda sinyali

gozleyebilme verimliligidir ve leptonik kanalda bire yakindir (Denklem (4.38) ile verilen
ifade S sinyal olay sayis1 ve B de fon olay sayis1 olmak iizere S /B seklinde de ifade edilir).
ILC igin (s =05TeV) L =2x10° pb”' ve CLIC igin (+/s=3TeV) L =4x10° pb"
degerleri alinarak, uyarilmis elektronun Z-bozonuna baglasimi oldugu durum igin istatistik
gozlenebilirlik grafikleri sirasiyla Sekil 4.24 ve Sekil 4.25° te verilmistir. Bu grafiklerde
spin-1/2 akim i¢in f=-f =1, spin-3/2 akimlar i¢in ¢/, =c? =0.05 ve A=m" olarak

alinmustir.
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Sekil 4.24 Uyarilmus elektronun Z-bozonuna baglasimi oldugunda /s = 0.5 TeV’ de
istatistik gézlenebilirlik
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Sekil 4.25 Uyarilmus elektronun Z-bozonuna baglasimi oldugunda /s =3 TeV’ de
istatistik gozlenebilirlik
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Sekil 4.24’ ten gorildigi gibi, SS >3 kosulunu saglayacak sekilde, uyarilmis elektronun
tek tiretiminde yalnizca Z-bozonuna baglagim oldugu durumda, ¢/, =c/ =0.05 igin ILC’ de
spin-3/2 uyarilmis elektron akim-3 (J;) i¢in 0.39 TeV’ e kadar, akim-1 (J,) ve akim-2
(J,) i¢in ise kiitle merkezi enerjilerine kadar gozlenebilir. Ayn1 baglagimlar icin CLIC’ de

ise spin-3/2 uyarilmis elektron akim-3 i¢in 1.8 TeV’ e kadar gozlenebilir.

Uyarilmis elektronun sadece fotona baglasimi oldugu durum igin istatistiksel
gozlenebilirligin kiitleye gore degisimi Sekil 4.26° da ve Sekil 4.27° de verilmistir. Bu
grafiklerde spin-1/2 akim i¢in f = f =1, spin-3/2 akimlar i¢in ¢/, =c/, =0.05 ve A=m’

olarak alinmustir.

10° ‘ ‘ ‘ ‘ J§1/2; ‘

100 Il L L L L
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Sekil 4.26 Uyarilmus elektronun fotona baglasimi oldugunda /s =0.5 TeV’ de
istatistik gozlenebilirlik
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Sekil 4.27 Uyarilmus elektronun fotona baglasimi oldugunda /s =3 TeV’ de
istatistik gozlenebilirlik

SS >3 kosulunu saglayacak sekilde, yalnizca fotona baglasim oldugu durumda, spin-3/2
uyartlmis leptonlar ic¢in baglasimlart ¢/, =c¢/, =0.05 alarak spin-3/2 uyarilmis elektron,

akim-3 i¢in ILC’ de 0.48 TeV’ e kadar, CLIC’ de ise 1.8 TeV’ e kadar gozlenebilir.
4.4.2 Uyarilmis nétrino icin analiz

Uyarilmis  ndétrinonun  bozunumlari  dikkate  alindiginda, SM  fonu olarak
e'e” >vvy,ete” > vZ ve ee” e vW " siiregleri ele alinmistir. Fon tesir kesitlerinin

hesaplanmasinda getirilen ilk sinirlamalar,

py>20 GeV, p, >20GeV

In,|<2.5 (4.39)

seklindedir. Burada, p, ndtrinonun kayip enine momentumudur.
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e*e” - v'v > vy siireci gdzoniine alindiginda son durumdaki fotonun enine momentumu
icin p7 >20GeV ve sanki-hizlilig1 i¢in |77y| < 2.5 smirlamalari ile, son durumdaki nétrino ve
antindtrinonun kayip enine momentumu iizerine p, >20GeV smirlamasi konuldugunda
fon tesir kesitleri /s =0.5 (3) TeV’ de 1.062 (2.049) pb olarak elde edilmistir. Spin-1/2
akim i¢in f=-f =1ve spin-3/2 akimlar igin ¢/, =c}, =0.5 alinarak, A=m" igin sinyal

tesir kesitleri ise, s =0.5 (3) TeV i¢in Cizelge 4.6’ da ve Cizelge 4.7’ de verilmistir.

Cizelge 4.6 Uyarilmus notrino icin fotona baglasim durumunda +/s = 0.5 TeV’ de sinyal
tesir kesitleri

m" (GeV) J(1/2) J,(3/2) J,(3/2) J;(3/2)
o (GeV) os (GeV) os (GeV) og (GeV)
200 5.36x10° 1.85x10™" 6.49x10! 2.60x10°
250 3.21x10° 1.27x10" 1.76x10™ 4.90x10"!
300 2.05x10° 8.50x10 4.70x107 9.90x107
350 1.43x10° 5.10x10 1.10x107 1.80x10
400 0.95x107 2.50x107 1.17x107 2.30x107
475 0.33x10™ 1.80x107 5.10x10°° 5.40x10°
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Cizelge 4.7 Uyarilmis ndtrino icin fotona baglasim durumunda +/s =3 TeV’ de sinyal

tesir kesitleri

m" (GeV) J(1/2) J,(3/2) J,(3/2) J;(3/2)

os (GeV) o (GeV) o (GeV) os (GeV)
250 4.97x10° 6.90x10 1.73x10" 1.35x10°
500 1.13x10° 2.00x107 1.00x10° 2.01x10"
1000 2.80x10"! 6.70x107 4.60x107 2.50x10"!
1500 1.29x10™" 3.50x107 4.90x107 1.40x107
2000 7.60x107 1.70x107 5.10x10™ 9.10x10™
2500 5.00x107 5.00x10™ 2.10x107 2.70x107
2750 4.20x10"! 1.30x10™ 1.14x10° 1.29x10°°

Uyarilmig nétrinonun Z-bozonuna baglasimi oldugu durumda, e*e” —v'v —vvZ siireci

icin son durumdaki nétrino ve antindtrinonun kayip enine momentumlar1 {izerine

pr >20GeV smirlamasi getirilerek fon tesir kesitleri Vs =0.5 (3)TeV icin 0.329 (2.083) pb
olarak elde edilmistir. Spin-1/2 akim igin f = f =1ve spin-3/2 akimlar igin ¢/, =c/ =0.5

almarak, A=m" i¢in +s=0.5 (3) TeV’ de elde edilen sinyal tesir kesitleri ise sirasiyla

Cizelge 4.8’ de ve Cizelge 4.9’ da verilmistir.

Cizelge 4.8 Uyarilmis nétrino igin Z-bozonuna baglasim durumunda /s =0.5 TeV’ de
sinyal tesir kesitleri

m’ (GeV) J(1/2) J,(3/2) J,(3/2) J5(3/2)

o (GeV) os (GeV) o (GeV) o (GeV)
200 5.68x10" 7.00x107 2.40x10™" 9.90x10!
250 3.82x10° 4.80x107 6.70x107 1.90x10"!
300 2.61x10° 3.20x107 1.80x107 3.80x107
350 1.84x10° 2.00x107 4.20x107 6.90x107
400 1.27x10° 9.50x107 6.40x10™ 8.80x10™
475 4.40x10"! 6.80x10™ 1.92x10° 2.07x10°
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Cizelge 4.9 Uyarilmis ndtrino igin Z-bozonuna baglasim durumunda /s =3 TeV’ de
sinyal tesir kesitleri

m’ (GeV) J(1/2) J1(3/2) J,(3/2) J3(3/2)
os (GeV) o (GeV) o (GeV) os (GeV)
250 5.95%x10° 2.50x107 6.15x10° 4.80x10
500 1.50x10° 7.00x107 3.60x10™" 7.16x10°
1000 3.90x10™" 2.40x107 1.60x10 9.00x10
1500 1.79x10™" 1.30x107 1.70x107 4.80x107
2000 1.05x10™ 6.10x10™ 1.80x10™ 3.20x10™
2500 7.00x107 1.80x10™ 7.54x10° 9.74x10°
2750 5.90x107 4.80x107 4.10x107 4.60x107

e'e” »>v'V > veW sinyali son durumdaki elektrondan dolay1 daha kolay algilanabilir.

Ayrica uyarilmis notrinonun dallanma oraninin en yiliksek oldugu mod, W’ ya bozunum

modudur. Bu nedenlerle, v’ —eW sinyali, uyarilmis nétrinolarm gelecek nesil
carpistiricilarda arastirilmasi igin tercih edilen bir kanaldir. Son durumdaki elektron igin
py >20GeV ve |n,|<2.5 simrlamalar ile antindtrinonun kayip enine momentumu tizerine
pr >20GeV simrlamasi getirildiginde fon tesir kesitleri +/s=0.5 (3) TeV igin 0.918
(0.463) pb olarak elde edilmistir. Uyarilmis notrino sinyalini daha iyi algilamak igin

el sisteminin degismez kiitlesi iizerine ‘meW - m‘ >25 GeV simirlamasi getirilebilir. Daha
yiiksek kiitle degerleri igin bu sinirlama m" >15TeV igin m,, >1 TeV olarak
genigletilmigtir. Spin-1/2 akim i¢in f=-f =1 ve spin-3/2 akimlar i¢in ¢}, =c}, =0.5

almarak, A=m" i¢in vs=0.5 (3) TeV’ de elde edilen sinyal tesir kesitleri ve kiitle

araliklarinda fon tesir kesitleri sirasiyla Cizelge 4.10° da ve Cizelge 4.11° de verilmistir.
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Cizelge 4.10 Uyarilmus nétrino i¢in W-bozonuna baglasim durumunda /s =0.5 TeV’ de
sinyal ve fon tesir kesitleri

m’ (GeV) J(1/2) J,(3/2) J,(3/2) J,(3/2)
o (pb) as (pb) o (pb) o (pb) o 5 (Am)

200 8.82x10° 2.30x10° 3.61x10° 7.70x10° 9.36x10
250 5.81x10° 1.83x10° 2.39x10° 2.75x10° 9.12x10
300 4.02x10° 1.52x10° 1.76x10° 1.25x10° 9.65x10
350 2.82x10° 1.26x10° 1.32x10° 6.60x10" 1.21x10™
400 1.97x10° 9.50x10™" 9.10x10™" 3.60x10™ 1.69x10"!
475 6.70x10"! 2.80x10™" 2.10x10™ 9.50x107 1.23x10™"

Cizelge 4.11 Uyarilmis nétrino i¢in W-bozonuna baglasim durumunda /s =3 TeV’ de
sinyal ve fon tesir kesitleri

m*(GeV) J(1/2) J,(3/2) J,(3/2) J3(3/2)
o, (GeV) o, (GeV) o, (GeV) o, (GeV) op(Am)

250 9.01x10° 1.23x10° 2.08x10" 1.54x10° 1.96x107
500 2.35x10" 3.70x10™" 1.70x10° 2.69x10" 1.69x10
1000 6.00x10"! 1.60x10™" 2.70x10™" 6.50x10"! 1.00x107
1500 2.76x10" 1.20x10"! 1.50x10" 1.00x10™! 6.32x107
2000 1.62x10™" 1.10x10™" 1.20x10™" 3.50x107 1.83x10™!
2500 1.08x10" 1.00x10™ 1.00x10" 1.70x10 1.83x10’!
2750 9.00x107 9.70x107 9.00x107 1.30x107 1.83x10™!

Uyarilmig noétrinonun fotona baglasimi oldugu durumda istatistiksel gozlenebilirligin

uyarilmis nétrino kiitlesine gore degisimi Sekil 4.28” de ve Sekil 4.29° da verilmistir.
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Sekil 4.28 Uyarilmig notrinonun fotona baglasimi oldugunda /s =0.5 TeV’ de istatistik

gozlenebilirlik
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Sekil 4.29 Uyarilmis notrinonun fotona baglasimi oldugunda /s =3 TeV’ de istatistik
gozlenebilirlik

Uyarilmis noétrinonun fotona baglasimi oldugunda, baglasimlar spin-1/2 akim igin

f=—f"=1 ve spin-3/2 akimlar i¢in ¢/, =¢, =0.5 alindiginda, ILC i¢in L,, =2x10° pb’

ve CLIC igin L, =4x10’ pb™ degerlerinde, spin-3/2 uyarilmis nétrinolar ILC’ de akim-2
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(J,) ve akim-3 (J;) i¢in yaklasik 0.38 TeV’ e kadar, CLIC’ de spin-3/2 uyarilmis
notrinolar farkli akimlar i¢in 1.3-1.5 TeV araliginda ve spin-1/2 uyarilmis noétrinolar ise

kinematik limite kadar gozlenebilirler.

Uyarilmis nétrinonun sadece Z-bozonuna baglasimi oldugu durumda, Z-bozonunun da son
durumda 2 leptona gegtigi durum (Z — 1" ) i¢in ILC ve CLIC enerjilerinde istatistiksel
gozlenebilirlik grafikleri Sekil 4.30° da ve Sekil 4.31° de verilmistir. Burada uyarilmis
ndtrinonun sadece Z” ye baglasimi oldugunda elde edilen tesir kesitleri Z — "/~ dallanma
orant (%3.37) ile ¢arpilmigtir. Bu grafiklerde, A=m" ve baglasimlar spin-1/2 akim igin

f=f =1, spin-3/2 akimlar igin ¢/, =c/, =0.5 olarak alinmistir.
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Sekil 4.30 Uyarilmis nétrinonun Z-bozonuna baglagimi oldugunda ve Z —[*I” igin
Js =0.5 TeV’ de istatistik gozlenebilirlik
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Sekil 4.31 Uyarilmis nétrinonun Z-bozonuna baglagimi oldugunda ve Z — 1" igin
Js =3 TeV’ de istatistik gozlenebilirlik

Spin-3/2 uyarilmis nétrino baglasimi ¢/, =c¢/, =0.5 alindiginda, uyarilmis nétrinolar ILC’
de akim-1 (J,) i¢in kinematik limite kadar, akim-2 (J,) ve akim-3 (J;) i¢in yaklagik 0.33
TeV’ e kadar gozlenebilirler. CLIC’ de ise, akim-1 ve akim-2 i¢in m" ~ 1.3 -1.5 TeV Kkiitle

degerine kadar ulasilabilinir.

Uyarilmis nétrinonun sadece W-bozonuna baglasimi oldugu durumda ise, son durumda W’

larin iki jete bozundugu (W — 2;) durum dikkate alinmistir. Burada uyarilmis nétrinonun
sadece W’ ya baglasimi oldugunda elde edilen tesir kesitleri W —2; dallanma oram

(%67.60) ile carpilmistir. Bu durum icin istatistik gozlenebilirligin uyarilmis nétrino

kiitlesine gore degisimi grafikleri Sekil 4.32° de ve Sekil 4.33” te verilmistir. Burada spin-
3/2 nétrinolar igin baglagimlar ¢ =c);, =0.05 ve spin-1/2 uyarilmig nétrinolar igin

f=-f =1 olarak almmgtir. Ayrica A=m" alinmustir.
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Sekil 4.32 Uyarilmis ndtrinonun W-bozonuna baglasimi oldugunda ve W —2; icin
Js =0.5 TeV’ de istatistik gozlenebilirlik
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Sekil 4.33 Uyarilmis ndtrinonun W-bozonuna baglasimi oldugunda ve W —2; icin
Js =3 TeV’ de istatistik gozlenebilirlik

w

¢! =cly =0.05 igin spin-3/2 uyarilmis notrinolar akim-3 igin ILC’ de 0.4 TeV’ e kadar

gozlenebilirler. CLIC’ de ise ayni baglasimlar kullanilarak spin-3/2 uyarilmis nétrinolar
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icin m" ~1.5 TeV ve spin-1/2 uyarilmis notrinolar igin f =—f" =lalinarak m" ~2 TeV
kiitle limitlerine kadar ulasilabilinir. Uyarilmis nétrino igin v — e modu diger bozunma

modlarina gore daha baskindir. v* — el sinyali dikkate alinarak, daha kiiciik baglasim
parametrelerinde biiyiik kiitle degerlerine ulasilmaktadir, bu nedenle gelecek nesil yiiksek
enerjili carpistiricilarda gergeklestirilecek olan deneylerde uyarilmis nétrino arastirmalari

i¢in bu sinyal tercih edilen bir kanal olacaktir.
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5. SONUCLAR ve TARTISMA

Kompozit modellerde bugiin temel olarak bildigimiz kuark ve leptonlarin daha temel alt
bilesenlerin bagli durumu oldugu disiiniilir. Bu alt bilesenlerin baglanma enerjisi
Olceginde yeni etkilesmeler agiga cikabilir. Bu yeni etkilesmeler kompozitlik 6lgegi A’ nin
altindaki enerjilerde 1/A” nin kuvvetleri ile bastirilmistir. Kuark ve lepton kompozitliginin
gozlenebilir etkilerinden biri uyarilmis durumlarin varligi olacaktir. Fenomenolojik olarak,
uyarilmig leptonlar bilinen leptonlar ile benzer kuantum sayisina sahip olan daha agir bir
leptondur. En diisiik radyal ve yoriingesel uyarilma olarak spin-1/2 uyarilmis leptonlar
almir. En diisiik uyarilmalarin incelenmesi alt bilesenlerin &zellikleri hakkinda 6nemli

bilgiler verebilir. Spin-3/2 uyarilmis durumlar ise iist uyarim olarak dikkate alinir.

Gelecek nesil yiiksek enerjili dogrusal elektron-pozitron ¢arpistiricilart  uyarilmis
leptonlarin arastirilmasi i¢in miikemmel bir ortam saglar. Bu c¢arpistiricilarda uyarilmis
leptonlar tek ve cift olarak iiretilebilirler. Uretilen bu uyarilmis leptonlar bilinen bir SM
leptonuna ve bir vektdr bozonuna bozunacaktir. Bozunma modlarini inceleyerek sinyal
hakkinda bilgi edinmek miimkiindiir. Son durumdaki g6zlenebilir parcaciklar lizerine belirli
kinematik sinirlamalar koyarak, normalize acisal dagilimlar, degismez kiitle dagilimlar1 ve

enine momentum dagilimlarindan faydalanarak uyarilmis leptonlar algilanabilir.

Bu ¢alismada, uyarilmis spin-3/2 leptonlarin e'e” carpistiricilarinda tek iiretimi, bunlarin
spin-1/2 uyarilmig leptonlar ile nasil ayirt edilebilecegi incelenmistir. Alt bilesenlerin
dinamigi bilinmediginden uyarilmis leptonlar, SM leptonlar1 ve ayar bozonlar1 arasindaki
etkilesmeyi tanimlamak tiizere etkin lagranjiyen yontemi kullanilmistir. Analizlerimizde
sadece ayar etkilesmeleri dikkate alinmistir, ancak, uyarilmis leptonlar kesfetme limitlerini

genisleten kontakt etkilesmeler yoluyla da bilinen kuark ve leptonlara baglanabilir (Cakir et

al. 2003). Bununla birlikte bu c¢aligmanin amaci gelecek nesil yiiksek enerjili e'e”
carpistiricilart ILC ve CLIC’ de wuyarilmig elektron ve onun nétrinosu igin kesfedilme

potansiyellerinin bulunmasidir.
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Uyarilmis yiikli leptonlar i¢in miimkiin son durumlar /+y,/1+2/,3/ ve [+F, seklinde
olabilir. Uyarilmis nétrinolar icin ise y+E,,2[+E,,2j+E,, E, ve [+2j mimkiin son
durumlardir. Bu sinyaller, uyarilmig yiikli lepton ve uyarilmis nétrinonun bozunum
triinleri olan vektor bozonlarmin da farkli (hadronik, leptonik veya yari Ileptonik)

bozunumlara ugramasi sonucu elde edilmistir. Burada £, ndtrinonun enine kayip

enerjisine karsilik gelmektedir.

Spin-3/2 pargaciklar i¢in etkilesme akimlar1 bilinmeyen baglasimlara sahiptir. Tesir kesiti
hesaplarinda basitlik olmasi bakimindan, parametre sayisinm1 azaltabilmek ve teorik
tahminlerde bulunabilmek i¢in spin-3/2 uyarilmis leptonun bir ayar bozonuna baglagimi

sifirdan farkli tutulurken digerleri sifir olarak alinmistir. Spin-1/2 uyarilmis leptonlar igin

literatiirde siklikla kullanilan parametre se¢imi ise f = f ve f=—f seklindedir.

Bu ¢alismada, sinyal ve fon olaylarinin analizi i¢in § B seklinde ifade edilen istatistiksel

gozlenebilirlik (SS) degerleri farkli kanallar i¢in hesaplanmistir. Bu hesaplarda, ILC igin
kiitle merkezi enerjisi v/s =0.5 TeV ve toplam 1sinlik 2x10°pb™ olarak, CLIC igin ise kiitle

merkezi enerjisi /s =3 TeV ve toplam 1smlik 4x10°pb™' olarak alinmustir.

ILC’ de SS >3 kosuluna gore, uyarilmis elektronun sadece Z-bozonuna baglasimi oldugu
dikkate alimirsa A=m" ve ¢/, =c/, =0.05 igin spin-3/2 uyarilmis elektron akim-3 (J,) tiirii
etkilesmeler i¢in 0.39 TeV’ e kadar, akim-1 (J,) ve akim-2 (J,) tiirli etkilesmeler i¢in ise
kiitle merkezi enerjisine kadar gozlenebilirler. CLIC’ de ise SS >3 kosuluna gére, A=m’
ve c/,=c7, =0.05 igin spin-3/2 uyarilmis elektron akim-3 (J,) igin 1.8 TeV’ e kadar

gozlenebilir.

Uyarilmig elektronun sadece fotona baglasgimi dikkate alindiginda, A=m"  ve

¢, =c, =0.05 alinarak SS >3 olacak sekilde, spin-3/2 uyarilmis elektron akim-3 (J,) tiirii
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etkilesmeler i¢in ILC* de 0.48 TeV’ e, CLIC’ de ise 1.8 TeV’ e kadar gozlenebilir. Diger
akimlar i¢in daha yiiksek kiitle degerlerine ulasilabilinir.

Uyarilmig notrinonun sadece fotona baglagimi dikkate alindiginda, A =m" ve ¢/, =c}, =0.5
alinarak SS >3 olacak sekilde, spin-3/2 uyarilmis nétrino ILC’ de J, ve J, tiiri
etkilesmeler icin yaklasik 0.38 TeV’ e kadar, CLIC’ de ise farkli akimlar i¢in 1.3-1.5 TeV’

e kadar gozlenebilir.

Uyarilmis nétrinonun sadece Z-bozonuna baglasimi oldugu ve Z” nin de iki leptona gegtigi
durum (Z —/*I") dikkate alindiginda, SS>3 kosulunu saglayacak sekilde, A=m" ve
¢/, =c/, =0.5 i¢in spin-3/2 uyartlmis nétrino ILC* de J, i¢in kinematik limite kadar, J, ve
J, tiirii etkilesmeler dikkate alindifinda yaklasik olarak 0.33 TeV’ e kadar, CLIC’ de ise J,

ve J, tiirii etkilesmeler icin yaklasik 1.5 TeV’ e kadar gozlenebilir.

Uyarilmis ndtrinonun sadece W-bozonuna baglasimi oldugu ve W nun de iki jete gectigi

durum (W —2;) dikkate alinmirsa, SS>3 kosulunu saglayacak sekilde, A=m"ve
¢l =cly =0.05 i¢in spin-3/2 uyarilmis nétrino ILC” de J, i¢in 0.40 TeV’ e kadar, CLIC’ de
yaklasik 1.5 TeV’ e kadar gozlenebilir.

Bu calisma sonucu, spin-1/2 ve spin-3/2 uyarilmis elektronlarin acisal dagilimlar
yardimiyla, uyarilmis notrinolarin ise kayip enine momentum dagilimlart yardimiyla ayirt
edilebilecegini gosterdik. Burada uyarilmis leptonlarin birinci ailesi igin yaptigimiz
analizler diger ailelere de genisletilebilir. Uyarilmig miion ve tau, s-kanalinda tek olarak
iiretilebilir. Lepton ¢esnisini bozon (LFV) etkilesmeler dikkate alindiginda uyarilmis miion
ve taunun #-kanalinda tek iiretimleri de miimkiin olacaktir. Uyarilmis elektron i¢in acisal
dagilimlarin incelenmesinde #-kanali katkist dnemlidir. Uyarilmis miion ve tau nétrinosu ise

s-kanalinda foton ve Z degis tokusu ile ¢-kanalinda ise W degis-tokusu ile lepton ¢esnisini
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bozan veya bozmayan etkilesmeler yoluyla tek olarak iiretilebilirler. Eger uyarilmis miion
ve tau notrinosu f-kanalinda lepton ¢esnisini bozan bir diyagram yoluyla {retilirse,

dagilimlar1 uyarilmis elektron nétrinosundan farkl olacaktir.

Literatiirde spin-3/2 uyarilmis leptonlar ile yapilan caligmalar oldukga azdir. Spin-3/2
uyarilmis leptonlar ile ilgili tiretim tesir kesitlerinin ve bozunma genisliklerinin hesaplarinin
yapilmasi, elde edilen sonuglarin spin-1/2 uyarilmis leptonlar icin elde edilen sonuglarla
kargilastirilmas: uyarilmis leptonlar ile ilgili yapilan caligmalara onemli bir katki

saglamustir.
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EK 1. DIRAC DENKLEMI ve COZUMLERI

Bu kesimde spin-1/2 pargaciklar i¢in goreli alan denklemi olan Dirac denkleminin elde
edilmesi ve serbest parcacik icin ¢oziimleri ele almacaktir. Oncelikle goreli olmayan
kuantum mekanigi ile ilgili temel kavramlar verildikten sonra, goéreli enerji-momentum
bagmtisindan elde edilecek Klein-Gordon denkleminden kisaca bahsedilecektir. Daha
sonra, Klein-Gordon denkleminin olasilik yorumundaki zorlugu ve Dirac denkleminin
aciga c¢ikisindan bahsedilecektir. Bu boliimiin hazirlanmasinda (Griffiths 1987, Greiner

1997, Aitchison and Hey 2003) esas referanslar olarak kullanilmislardir.
EK 1.1 Schrodinger Denklemi

Goreli olmayan kuantum mekaniginde pargaciklar Schrodinger denklemi ile tanimlanirlar.

Klasik mekanikteki toplam enerji ifadesi

L iy=E (EK 1.1)

2m

ile verilir. Kuantum mekaniginin temel varsayimlarindan biri, fiziksel gdzlenebilirlere bir
islemcinin karsilik geldigidir. Bu islemciler ¢izgisel ve hermitseldir (Vergin 2000). Enerji

ve momentumun islemci gosterimleri

p=-iV, E= m% (EK 1.2)

seklindedir. Kuantum mekaniginde bir sistem belli bir ¢ aninda, tlirevlenebilir ve stirekli

w(7,t) dalga fonksiyonu ile tanimlanir. Denklem (EK 1.1) ile verilen klasik toplam enerji

ifadesinde enerji ve momentum yerine islemci karsiliklar1 yazilip, bu islemciler dalga

fonksiyonu lizerine etkirse Schrodinger denklemi elde edilir.
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2 —
—h—%//(f,z) +Vy(F,1) _ip Y (EK 1.3)
2m ot

Olasilik yogunlugu p(7,f)=w v seklinde verilir. Olasihigm korundugunu goérmek igin

olasilik yogunlugunun zamana gore tiirevi alinir.

op Ll « Oy
o _, 0w oV EK 1.4
a Va TV a ( )

Denklem (EK 1.3) ve onun kompleks eslenigi alinip, denklem (EK 1.4)’ te yerine yazilip

gerekli diizenlemeler yapilirsa;

ap h =0k 1 * h =) 1 *
LNy —— iy -y Vi —yY
o 2m YV TRV TV VTR Y
h * = = *
=——— (' Vy—yViy)
2im

=—?{2L(l//*§w —Ww*)}
m

(EK 1.5)
bulunur. Burada vektorel bir nicelik olarak olasilik akisi
- W e =
JF,O)=——( Vy -yVy ) (EK 1.6)
2im
seklinde tanimlanirsa,
P0G 5,0 =0 (EK 1.7)

ot

elde edilir. Bu, Schrodinger denklemi i¢in siireklilik denklemidir.
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EK 1.2 Klein-Gordon Denklemi

Klein ve Gordon goreli kuantum mekanigini olusturmak i¢in, Schrodinger denkleminin
toplam klasik enerji ifadesinde enerji ve momentumun islemci karsiliklarinin yazilarak elde
edilmesine benzer olarak, goreli enerji-momentum ifadesinden yola ¢iktilar. Goreli enerji-

momentum ifadesi

E* - p*c* =m’c* (EK 1.8)
ile verilir. Dortlii notasyonda bu ifade

p“p,—mict=0 (EK 1.9)
seklinde verilir. Dortlii momentumun islemci karsilig

p,=ihd,  (0,=—) (EK 1.10)

seklindedir. Dortlii momentumun islemci karsilig1 denklem (EK 1.8)’ de yerlestirilip bir ¢

dalga fonksiyonu tizerine etkirse Klein-Gordon denklemi elde edilir.

- hza“am— mctp=0

mc

_§2¢+(h)2¢:() (EK 1.11)

1
2

o’
c? or?

Klein-Gordon denklemi i¢in dortlii olasilik akisi

i =(p.J) =2i—h<¢*a”¢—¢a”¢*> (EK 1.12)
m
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seklinde verilir. Dortlii notasyonda siireklilik denklemi,

0"}, 0 (EK 1.13)

seklindedir. Olasilik yogunlugu ve uzaysal akim yogunlugunu ayr1 ayr1 yazacak olursak;

__th_ 0 04"
P W S ) (EK 1.14)
ve
J =2i—h(¢*§¢—¢ﬁ¢*) (EK 1.15)
m

elde edilir. Klein-Gordon denklemi i¢in uzaysal akim yogunlugu Schrodinger denklemi i¢in
verilen uzaysal akim yogunlugu ile ayni1 formdadir, ancak olasilik yogunluklar1 ayni formda
degildir. Klein-Gordon denklemi zaman gore ikinci tiirevleri igerdiginden, olasilik
yogunlugu da zamana gore birinci tiirevleri igermektedir. Bu ise olasilik yogunlugunu
yorumlamada bazi giicliikler getirir. ¢=Ne ™ = Ne"* 7Y diizlem dalga ¢dziimlerini

dikkate alirsak olasilik yogunlugu

p=2N]’E (EK 1.16)
seklinde elde edilir. Bu denklemde N normalizasyon Kkatsayisidir. Burada olasiligi
yorumlamadaki zorluk kendini gosterir. £’ nin isaretine gore p negatif veya pozitif

olabilir. Klein-Gordon denklemiyle ilgili zorluklar,

1. E* = p*c* + m*c* bagmtisindan hareketle, verilen bir p {iclii momentumu i¢in enerjinin

E=+p’c> +m’c* seklinde pozitif ve negatif miimkiin 2 ¢dziimiiniin olmasinda,
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2. olasilik yogunlugu ifadesinin &/dr terimlerini igermesinden dolayr negatif olasilik

yogunluklarinin ortaya ¢ikmasinda

kendini gostermektedir.

EK 1.3 Dirac Denklemi

Klein-Gordon denklemi hem zamana hem de uzaysal koordinatlara gore ikinci mertebe
tiirevleri icermektedir. Goreli enerji-momentum bagintisindan hareketle elde edilen Klein-
Gordon denkleminin tek pargacik goreli dalga denklemi olarak yorumlanmasinda negatif
enerjili ¢oziimlerin bulunusu ve olasilik yogunlugunun pozitif tanimli olmayis1 gibi iki
zorluk ortaya ¢ikar. Bu zorluklar1 ortadan kaldirmak tizere, Dirac 1928 yilinda pozitif

tanimli bir olasilik yogunlugu ( p>0) elde edebilmek i¢in /0 terimine gore cizgisel olan

bir denklem yazdi. Géreli kovaryantligim saglanmasi i¢in bu denklem, V terimine gore de

cizgisel olmaliydi. Serbest parcacik i¢in Dirac denklemi;

ih%:ﬂfy/ (EK 1.17)
. al// hc 6 2

pOV _hes 0 EK 1.18
"l [izi:a’axi fme }/l ( )

seklinde verilir. Uzaysal donmeler altinda denklem (EK 1.18)’ in degismez kalabilmesi i¢in

a;’ ler say1 olmamalidirlar. Dalga fonksiyonu y, N x1° lik siitun matris olmak tizere, «;,’

ler N x N’ lik matrislerdir. (EK 1.18)’ 1 bilesenler cinsinden yazarsak;

8 he & 0
I//A - Z( %1y +0‘2 o %5 )/15‘//5 +mc Zﬂm‘/fg (EK 1.19)
2 5=1
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elde edilir. Buradaki temel problem « ve p matrislerinin bulunmasidir. Bunlari

bulabilmek icin oncelikle goreli bir dalga denklemi kurmak igin gerekli Ozellikleri

Ozetleyelim:

1. Eve parasinda goreli bir iliski — E* = p*c* + m*c*;

2. Olasilik yogunlugu yorumu ig¢in p>0;

3. Lorentz doniisiimleri altinda kovaryantlik (form degismezligi).

Ik 6zelligin saglanabilmesi igin, dalga fonksiyonunun her bir bileseninin Klein-Gordon

denklemini sagladigini diistiniiyoruz.

2
—hz%z[—hzczﬁz +mictly, (EK 1.20)

Bundan sonra amacimiz Dirac denklemini Klein-Gordon denkleminin formuna
benzetebilmektir. Bunun igin denklem (EK 1.18) ile yazilan Dirac denkleminin zamana

gore tiirevini alalim ve i ile ¢arpalim.

2 3
_pp oy {h_.czdiw,mz}ha_‘/’ (EK 1.21)

2 S a.a,+a.a; p? 33
_h2a_'//=_h2 2 % 1% 0 Z +hn;c Z(aiﬂ+ﬂai)%//+m2c4ﬂ2y/ (EK 1.22)
j P i
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Denklem (EK 1.20) ve (EK 1.22) karsilastirilirsa ¢ ve S matrisleri igin su kosullar elde

edilir:

aa;+a,a,=20,1=>{a;,a,}=0,i#j (EK 1.23)
a,p+pa, =0={a,,p}=0 (EK 1.24)
a; =p> =1 (EK 1.25)

af=a, B =p (EK 1.26)

a ve f matrisleri hermitsel oldugundan 6zdegerleri reeldir. ¢ =3 =1 kosulundan dolay1

Ozdegerler +1 olabilir. « ve # matrislerinin izleri de sifirdir.

@p+pé, =0)p

a,p’ =-pa,p

Tr(a,)=-Tr(Ba,f)=-Tr(B’a,) =-Tr(a;)

Tr(et,)=0 (EK 1.27)
ve

Tr(f)=0 (EK 1.28)

elde edilebilir. Bu matrislerin izlerinin sifir olmasi ve 6zdegerlerinin =1 olmasindan dolayi
boyutlarimin ¢ift olmast gerekmektedir. N=2 olamaz. Ciinkii 2x2’ lik matrisler Pauli
matrisleri ve birim matris cinsinden ifade edilebilir. Ancak burada birbiri ile antikomiite

eden 4 adet matris sozkonusudur. Bu nedenle N’ nin en kiigiik degeri 4 olmalidir. 4x4” liik
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a ve B matrislerinin se¢imi tek degildir. Bu matrislerin farkli temsillerdeki gosterimlerine

tiniter bir doniisiim ile gegilir.

a,=Ua, U™
B =UpU™! (EK 1.29)

a ve B matrisleri i¢in en ¢ok kullanilan iki temsil Dirac Temsili (Standart Temsil) ve Weyl

Temsili (Chiral Temsil)’ dir. & Pauli matrisleri ve / birim matris olmak {iizere;

Dirac Temsili (Standart Temsil):

c 0

0 6) ,B:(I 0) (EK 1.30)

Qi
1l
—

. (-0 0 0 7
70 L)) e 131

seklinde tanimlidir. Dirac denkleminin kovaryant formunu elde edebilmek i¢in (EK 1.18)

denklemini £ ile ¢arpalim:

. 8_1// (L L, 2.2

ihf Py =(—ihcfa -V + fme” )y (EK 1.32)
Burada y* = (8, fa) seklinde bir tanim yapilirsa;

(thy*0,, —me)yy =0 (EK 1.33)
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seklinde Dirac denkleminin kovaryant formu elde edilir. Burada Dirac spindrii ya da

bispindr olarak adlandirilan w ’ nin dort bilesenli bir siitun matris olduguna dikkat

edilmelidir.
vy (x)

w(x) = ;/28 (EK 1.34)
v 4(x)

Siireklilik denklemini elde edebilmek icin, Dirac denkleminin soldan ', Dirac

denkleminin hermitik eslenigi de soldan y ile ¢arpalim.

ihw%%—i[:—ihcw%&ﬁw+mczt//%ﬂw (EK 1.35)
—ihl//aa—l/; =iheyd -V +mctypy’ (EK 1.36)

Elde edilen son iki denklemin birbirinden ¢ikarilmasiyla
i< () =iV - )
0 + =3 . 8/) - =
E(W w)+V-(w Cal//)=0:>E+V-J=0 (EK 1.37)

stireklilik denklemi bulunur. Dirac denklemi igin olasilik yogunlugu ve olasilik akimi
yogunlugu, ' =(@")" olmak iizere sirasiyla, p=y'w ve j=w'cay seklinde tanimlanir.

Olasilik yogunlugu

133



4

* * * * l//
p=vlv=(vi v vi vi) Wz
’ (EK 1.38)
YV,
= 1//az>0

a=1
seklinde agik bigimde yazilabilir. Denlem (EK 1.38) ile taniml1 Dirac denklemi i¢in olasilik

yogunlugu skaler ve pozitif tanimli bir ifadedir. Bu o6zellikler olasilik yogunlugu i¢in

istenen ozelliklerdir.
EK 1.4 Dirac Denkleminin Serbest Parcacik I¢in Céziimleri

Dirac denklemi i¢in diizlem dalga ¢6ziimlerini dikkate alacagiz (h=c=1).

y(x)=e""a(p) (p=p" =(E,p),x=x"=(1,X)) (EK 1.39)

Burada w(p), x ve e™”’ den bagimsiz 4-bilesenli Dirac spinoriidiir. @, 2x2° lik ¢ ve y

spindrleri cinsinden,

a):(¢] (EK 1.40)
X

seklinde yazilabilir. Burada ¢:[0)1j ve Z:[%J seklindedir. Denklem (EK 1.39)’ un

, @,

denklem (EK 1.18) ile verilen Dirac denkleminde yerine koyulmasiyla;

AR Yo SHE (0
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EV}J:(%’"{ 5'13]("5] (EK 1.41)
x) \o-p —ml\y

elde edilir. Buradan ¢ ve y icin baglasimli denklemler

(E-m)¢=6-py (EK 1.42)
(E+my=6-p (EK 1.43)

seklindedir. Bu baglasimli denklem sistemi i¢in katsayilar determinant1 sifira esit olmalidir.

(E-m) -o-p
-o-p (E+m)

E?—m*—(G-p)G-P)=0 (EK 1.44)

Denklem (EK 1.44) de (6-A)6-B)=A-B+i6-(AxB) ozelligi kullanilarak, E ve p

arasindaki iligski bulunabilir.

E*—m?—p2=0

E=+{p> +m> (EK 1.45)

Verilen bir iicli momentum igin enerjinin pozitif ve negatif olmak {lizere miimkiin 2
¢oziimii vardir. Daha sonra da agiklanacagi gibi pozitif ¢oziimler pargacik durumlar ile,
negatif ¢oziimler de antiparcacik ¢oziimleri ile iliskilendirilir. Denklem (EK 1.42) ve (EK

1.43) kullanilarak y ve ¢ spinorleri birbiri cinsinden yazilabilir.

y=—2L 4 (EK 1.46)
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¢=(;j1)z (EK 1.47)

Buradan, 4-bilesenli w(p) spindrii ¢ cinsinden
(E+m)

¢
o(p)= [Q ¢J (EK 1.48)

olarak elde edilir. - p carpimin agik bigimi

(EK 1.49)

_ D- (p.—1ip,)
(ps +ip,) P

seklinde yazilir. Denklem (EK 1.46), (EK 1.47) ve (EK 1.49) kullanilarak, Dirac

denkleminin dort bagimsiz ¢ézlimii yazilabilir.

(1 _a-p (1) 1 p.

¢_[0j31_ (E +m) (OJ_ (E +m) ((px +ipy)) (EK 1.50)
_(90 _G6-p (0)_ 1 (p,—ip,)

¢_(lj:>l_(E+m)(lJ_(E+m)( . J (EK 1.51)
(! _Ga-p (1) 1 p.

Z_(0j2>¢_ (E —m) (0)_(E—m) ((px +z'py)J (EK 1.52)
(O, B (01 ((p.—ip)

Z_(lj:>¢_(E—m)(lJ_(E_m)( . j (EK 1.53)
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Denklem (EK 1.50) ve (EK 1.51)’ de enerji i¢in pozitif kok (£ >0) alinmalidir. Aksi

durumda p —0icin y spindrii iraksar. Bu iki denklem parcacik durumlarina karsilik gelir.

Denklem (EK 1.52)’ de ve (EK 1.53)’ te ise enerji i¢in negatif kok (£ <0) alinmalidir,

yoksa p—>0 icin ¢ spindrii wraksar. Bu son iki denklem de antiparcacik durumlarina

karsilik gelir.
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EK 2. 152 SURECI iCIN KINEMATIK

Verilen bir siire¢ igin bir ilk durumdan son duruma gegis orani Fermi’ nin altin kuralina

gore
(Gegis Orani) ~ (2 1) |M |2 (Faz Uzay1) (EK 2.1)

seklinde ifade edilir. m Kkiitleli bir parcacigin kendi durgun ¢ergevesinde n tane pargaciga

bozunmasi orani Lorentz degismezi matris eleman1 M cinsinden verilir.

27 N
a’I“z%|M|2 do, (p;pl,pz,...,pn) (EK 2.2)

Burada d®, n-cisim faz uzay: elemanidir.

n n d3 )
d®, (p: pysenp,) =06 (p—Zpi]H—pl (EK 2.3)

h = c =1 birim sisteminde diferansiyel bozunma genisligi ifadesi daha agik olarak

N 2 d3p1 d3p2 d*p 4 o4
dl' =—|M s 2z) 8" (p—p, — Pyepy (EK 24)
Vi [(2;;)3 2E, (27) 2B, (27) 2E, (r) 5 p=pi=puvpa)

olarak verilir. Burada j son durum 6zdes pargacik sayist olmak iizere, istatistik ¢arpan

S=1/;! ile verilir. iki cisim bozunmasi i¢in degisken tanimlamas1 Sekil 1’ de yapilmistir.
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P,

‘Y

P2,m;

Sekil 1 ki cisim bozunmast.

Burada p, p; ve p, dortli momentumlardir. Goéreli enerji-momentum bagintisina gore

parcacigin dortlii momentumu pargacigin kiitlesine esittir.

E2 — =2 + 2
P (EK 2.5)
E2 _132 —m? :>p2 —m?
Momentumun korunumundan,
=P~ D
py=p’+pi -2p-p (EK 2.6)
m; =m* +m} —2EE, -2 pp,
elde edilir. m kiitleli pargacigin durgun sisteminde
m;, =m* +m] —2mE, (EK 2.7)
bulunur. Benzer bir ifade 1 pargacigi i¢in de yazilir.
ml =m* +m; —2mE, (EK 2.8)

Buradan 1 ve 2 numaral1 pargaciklarin enerjileri elde edilir.
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m2+m12—m§ m2+m22—m12

E, , Ey =

2m 2m

(EK 2.9)

m kiitleli parcacigin durgun c¢ergevesinde, 1 ve 2 numarali pargaciklarin momentumlar esit

biiyiikliikte fakat zit yonliidiirler.

(O e ) o )]

AR oy (EK 2.10)

Difernsiyel bozunma genisligi

dFZ%ﬂ)nMFéA(p—pl—pz) d3|f’1| d3|f’2| (EK 2.11)

m (2z) 2E, (2x)’ 2E,

ifadesinde p =0 ve E =m yazilarak delta fonksiyonunu yeniden diizenlenirse;

5" (p-p—p,)=06(m-E -E,)5 (b, - p,) (EK 2.12)

olur. Diferansiyel bozunma genisligi ifadesi yeniden diizenlenirse

dr:Lwﬁ(m —E - E,)8 (-, - p,)d’ |p|d* | b, (EK 2.13)
8m(2z) EE,

Burada p, iizerinden integral alinirsa

r-—5 2j'MF(S(M_El_EZ)aﬁ|pl| (EK 2.14)

E,E,
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bulunur.|p,|=p ve E=E +E, = E = \/mf +p° + \/mzz + p* seklinde yeniden tanimlama

1
Jp*+m ' Jp* +m;

hacim elemani yazilir. Bu ifadelere gore denklem (EK 2.14) diizenlenirse

yapilirsa, dE = pdp[ } olmak iizere, d’p = p’dpdp,df, seklinde

r=—f_|uf (EK 2.15)
&zm

elde edilir. Elde edilen bu son ifade iki cisim bozunmasi i¢in bozunma genisligi ifadesidir.

- - 1 . .-
Burada |p,|=|p,|=p =%\/m4 +m' +mi —2m*m? —2m*m? —2m*m? ile verilir.
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EK 3. 22 SURECI ICIN KINEMATIK

EK 3.1 Tesir Kesiti ifadesinin Elde Edilmesi

Fermi’ nin altin kuralina gére 1+2—3+4+...+n siireci i¢in tesir kesiti

S d’p d’p d’p 4o
do = (M[*) e S B L (ex)s'(B+R-P-P—..-P,
M 4(B-B) —(mm,y | 27)2E, 2x)2E, (27)2E, @r) o )
(EK 3.1)
ile verilir. Burada
2 2
F=4y(py-p:) —(mm,) (EK 3.2)

ile verilen nicelik Lorentz degismez akidir. Kiitle merkezi sisteminde iki cisim sa¢ilmasinin

sematik gosterimi Sekil 1° de gosterilmistir.

P3

P 0
P2

Y
A

P4

Sekil 1 Kiitle merkezi sisteminde iki cisim sagilmasi
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Kiitle merkezi sisteminde, gelen pargaciklarin tiglii momentumlar: esit biiyiikliikte fakat zit
yonli ( p, =—p, ) oldugundan Lorentz degismez aki F= (El +E, 1 f)l| = \/§| ]31| olarak elde

edilir. Buna gore

(MPY  @pdp,

do=
4s || (27) 4E,E,

Y (p+ =y pa) (EK3.3)

Dortlii Delta fonksiyonu 8 (p, + p, — py — py) =8 (p, + b, — P; — P,)O(E, + E, —E; — E,)
seklinde yazilir ve d’p, integrali kaldirilabilir. Geriye d°p, integralinin alimmasi kalir.
d’p,=prdp,dQ (dQ=sin0dOd¢ seklinde verilen kati agi, € ise sagilma agisidir),

mi+p;  ve E,=+lm;+p; seklinde yazihp E,+E, =E degisken degistirmesi

yapildiginda
' 2 =2 2 =2
3:d£ \/m3+p3 \/m4+p3 (EK 3.4)
B[ Jm2 + p2 + Jm? + p2

elde edilir. Buradan diferansiyel tesir kesiti

do (M) |5,
dQ  64r’s|p,|

(EK 3.5)

S do
=|p,| ise son momentumdur. Buradan o
t

olarak bulunur. |,|=|p,| ilk momentum ve |p,

ifadesine gegilebilir. Burada #; 1 =(p, — p, )2 seklinde tanimlanan Mandelstam degiskenidir.

Bazi tanimlamalar
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t=(p - ps)’ =m? +mi =2 EE; ~|p||ps|cos 6]

do _do di
dQ  dt dQ
dQ  2zxd(cos0) 2x d(cosh)
seklinde yazilir. Buradan
do <|M| ’ )
— = (EK 3.7)
dt 647rs| 13[|

elde edilir. Kiitle merkezi sisteminde m, =m, =0 i¢in | [31.|=\/;/2 olarak bulunur. Bu

ifade kullanilarak diferansiyel tesir kesiti

M 2
do _ u (EK 3.8)

dt  l6xs

olarak elde edilir. Tesir kesiti ifadesi
tmax
2
M

o= dt (EK 3.9)

‘ 167s®

integrali alinarak bulunur. § =0 ve 6 =z igin ¢, Ve ty, uygun kinematik bagintilardan
bulunur. Uyarilmis elektron ve noétrinosu igin tesir kesiti hesaplarinda kinematikten

*2

faydalanarak ¢, =m~ —s ve ¢, =0 olarak bulunmustur.
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EK 3.2 Enine Momentum Dagihm ifadesinin Elde Edilmesi

Iki pargacik sagilmasi i¢in diferansiyel tesir kesiti,

2 4
da(1+2—>3+4):2iz|M(1+2—>3+4)| (27)

N

\ \ (EK 3.10)
d’p d’p
5@ tp —p — 3 4
(pl p2 p3 p4)(272')32E3 (272')32E4
ile verilir.
d3
[S2=d pys(pi -m)) (EK 3.11)
2E,
S(pi-m))=06(s+t+u—m;) (EK 3.12)
do 1 2
— |= M(A+2->3+4 EK 3.13
[ dt j 1675 2 M¢ ) ( )
bagintilarinin EK 3.10° da yerlestirilmesiyle
Edo 1
d33p :ZZ|M|25(4)(M +py =Py —p)d p,S(s+t+u—m) (EK 3.14)
3

elde edilir. Bu denklemde
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[‘Z‘:j — S Ma+2-53+4) (EK 3.15)

3}73 :(dp3)z (P3 )T(dp3 )T d¢ (EK 316)
B, _ 1 (EK 3.17)
(dpy). dy,

bagntilarinin ve p, = p, + p, — p; seklinde momentumun korunumunun kullanilmasiyla

do
(dp;)r

2s(p3)Tjdy3( ZJﬁ(s+t+u m;) (EK 3.18)

elde edilir. Burada y, tiglincii pargacik i¢in hizliliktir. Enine kiitle ifadesi m; =m* + p; ile
verilir ve kiitlesiz pargacik i¢in m, =m seklindedir. Burada iiglincii parcacik icin kiitle

my =0 almarak Mandelstam parametreleri,

1=—=(p, )r\/geiy3 » u=—(p; )T\/;ey3 (EK 3.19)

seklinde elde edilir. Buradan denklem EK 3.18

do
(dp) 2S(P3)Tde’3 ( j5(s —m4 (ps )T\/_(e B te”) (EK 3.20)
3 T
olarak elde edilir. Burada 2cosh y; =e” + e bagintisi kullanilarak
2
(s —m; —2(psy)y Js cosh ¥3)=0[2(p;)r Js(=cosh vy + &)] seklinde Dirac delta
2py)s

fonksiyonu diizenlenebilir. Burada cosh y, =w degisken degistirmesi yapilarak,
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do dw (do 1 s —m?
=25(py); a0 S(—w+— " EK 3.21
o)y ) J x/wz—l(dIJZ(Pa)r\/; ( " s ( :
do 1 do (EK 3.22)
(%)
@ [oomt N
Z(Ps)r\/;

enine momentum dagilimi bulunur.
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EK 4. DIFERANSIYEL TESIR KESITLERININ ANALITiK iIFADELERI

EK 4.1 Uyarilmis Leptonlar Icin Kose Faktorleri

Spin-1/2 uyarilmis lepton, SM leptonu ve vektoér bozonu kdsesi

P =g =)y (V=720 (EK 4.1)

ile verilir. Burada f,, baglasimlari

1
fw - \/ESW f
41, (lezl/f + SVZVfI)_4eva2Vf'
T 4s, cp
f=e,f + L, (F - 1) (EK 4.2)

seklindedir. Burada e, uyarilmis spin-1/2 leptonun elektrik yikiini, 7,, zayif izospinin

ticiincii bilesenini s, (¢, ) ise zayif karigim agisinin siniisiinii(kosiniisiinii) gostermektedir.

Uyarilmis spin-1/2 elektron (e’) i¢in

FO=(shrci f) 2suans 10 =—(f+1)12, 12 = (EK43)
f sW
ve uyarilmis spin-1/2 elektron notrinosu (v*) icin
fO =(sp fven f) 2spey, [ =(F-F )2,/ = (EK 4.4)
e A N
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olarak elde edilir. Spin-3/2 uyarilmis lepton, SM leptonu ve vektor bozonu igin akim-1 (J;)
tipli etkilesmeler dikkate alindiginda kose faktorii

T ——ig (¢l —clyys) (i=7,2Z,W) (EK 4.5)
ile verilir. Spin-3/2 uyarilmis lepton, SM leptonu ve vektdr bozonu i¢in akim-2 (J,) tipli

etkilesmeler dikkate alindiginda kose faktori

_ige
A

e
I, =

a7 (¢ —chys) (i=y.ZW) (EK 4.6)

seklindedir. Akim-3 (J;) tipli etkilesmeler i¢in, spin-3/2 uyarilmis lepton, SM leptonu ve

vektor bozonu igin kose faktorii

e 8, a i i .
ry :Fquo- ﬂqﬁ(cw —c,7s) =y, Z,W) (EK 4.7)

ile wverilir. i=y,Z,Wolmak ftizere (c,,c/,), (¢ ,ch,) Ve (ci,cy,)” lar serbest

parametrelerdir.

EK 4.2 Uyarilmus Elektron Icin Diferansiyel Tesir Kesiti ifadeleri

Spin-1/2 uyarilmis elektronun elektron-pozitron carpistiricilarinda tek iiretimi i¢in toplam

diferansiyel tesir kesiti ifadesi;
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de/? [%gH=m? +2(s + 1)) (cA +cI) 1 gl g t(-m” + 2(s + 1))
dt 4{ 4rs* A 87s*(m> —t)A?
A fOf g g (m™ +as(s+)—mP(As+1)) [ Pgl(m™ +4s(s+1)—m” (45 +1))
- 87752 (m’ —z)A2 - 8752 1A
s (! +c]) [ g2 g2 t(—m™ —ds(s + 1)+ m > (ds +1))
327s* (m?> —t)* A*
S} gl ™ +2u(s 40 =m” (s +20) (¢ +l )f(e)f“)ge g.(m? —s)=m” +2(s +1))
- 475’ A2 87s(m’ + 5> +m> (<25 + T2 )A>
(cA +cl ) fPg? gzt(m —5)(=m"? +2(s +1))
drs(m? —t)(m? + s> +m> (=25 +T2)A*
f;e)fz(e)gegz(m —s)cim? (=m™ + s+ 26) + ¢ (m"™ +2(s + 1) —m" (s + 21)))

4rs* (m + 5 + m; (—2s+1“2))/\2

_fz(e)zgegz(ZcAch (-m™ +S+2t)+(c +el ) m™ +2t(s + 1) —m (s +21)))
167s(m? +5° +m? (~2s +T2)A*

(EK 4.8)

seklindedir. Spin-3/2 uyarilmis elektron akim-1 (J,) i¢in fotonun aracilik ettigi diyagramlar

(s-kanali, #- kanali, s- ve #- kanali girisimi) i¢in diferansiyel tesir kesitleri asagidaki gibidir.

do'® _-& Sl el m? = s)(—t(s + 1) +m (25 +1))

EK 4.9
dt 24m™ zs* ( )
dol” gl (c[i +7)m” —)(=s(s+1)+m" (s +20) (EK 4.10)
dt 24m™ st |
dol™ (=g (cli +clp)m™ +s0)(s +1) = m>(s* +1*) (EK 4.11)

dt 48m" rs’t

Spin-3/2 uyarilmis elektron akim-2 (J, ) i¢in fotonun aracilik ettigi diyagramlar igin

diferansiyel tesir kesitleri
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doy’ =gl (chh + 5 )m” =) (=s® —2st = 2% + m” (s +20))} (EK 4.12)
dt 48m" 7n*s* .

doy) {-gi(chi +cip)m™ 1) (-25* — 25t 1 + m” (25 +1))} (EK 4.13)
dt 48m" 7A* st .

do{" _te S+ M —s—t)(s+t)mt —st—m” (s +1))} (EK 4.14)
dt 48m™ N> s’t .

Spin-3/2 uyarilmis elektron akim-3 (J;) i¢in fotonun aracilik ettigi diyagramlar i¢in

diferansiyel tesir kesitleri

ol =gl (&7 +ep)m™ — ) (m™ +21(s + 1) —m” (s + 20)} (EK 4.15)
dt 48m™ 7A*s? .

dol (g S e m =) (m™ o 2s(s + 1) —m (25 + 1))} (EK 4.16)
dt 48m™ in*s’t .

dG:‘Ext) {gé (072 +c}/2)(m —S—t)SZ} (EK4 17)
dt 48m™ 7A*s? .

ile verilir.

Spin-3/2 uyarilmis elektronun tek iretiminde J, ic¢in Z-bozonunun aracilik ettigi

diyagramlar i¢in diferansiyel tesir kesitleri asagidaki gibidir.

151



doy’ _{-g.g: (4eliciycicim s(m” —s—2t)+(c1A +cw )i + ) m™? —s)(—t(s + 1)+ m” (25 +1))}
dt 96m™ ws* (m? + 5> + m?(-2s +T?2))

(EK 4.18)

do) _{gigl(Aciciychelm>t(-m™ + 25 +1) —(cff +cw )el? +efP)m™ =) (=s(s +1)+m” (s +20))}
dt 96m™ s* (m? —t)*

(EK 4.19)

dal(”) { ge g: ( 4clAc1VcA cV + (CIA + cl,, )(c + c,, )(m Bs—t)+st(s+1)+ m’” (—3s2 +1 N}
dt 192m™ s (mz +57 4 m; 2(2s + Fﬁ ))(mz2 —1)

(EK 4.20)

Spin-3/2 uyarilmis elektronun tek iiretiminde J, i¢in Z-bozonunun aracilik ettigi

diyagramlar i¢in diferansiyel tesir kesitleri

dol" _i= glgl(m™ —s)* (=4t L el s(-m” +s+2t)+(02A + eI + el ) (=s? =25t =267 + m (s + 21)))}
dt 192m"? ms*)A(m? + 5> + m2s(=2s +T2))A*

(EK 4.21)

doé” { gegz(m t) (4c2Ac2VcAcV (m s—t)t+(c“ +c2,,)(c +c,, )( 252 2st—tz+m*2(2s+t)))}
dt 192m>zs® (m> —1)° A*

(EK 4.22)

do_(?l)
dt

={-g. gl (4ci el chel + (5] + i) el + el (m? =) (=m™ + ) (=2m™ s+ m™ (s - 1)
+st(s+1)+m (s + ) N/192m P ns® (m? —t)(m? + 57 +m? (=25 + T2)A?

(EK 4.23)
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seklinde verilir. Spin-3/2 uyarilmis elektronun tek liretiminde J, i¢in Z-bozonunun aracilik

ettigi diyagramlar i¢in diferansiyel tesir kesitleri ise asagidaki gibidir.

d (s) « - % *
9L el o0 el el s on™ s 20) 4
+ (L + B + el m™ +25(s + 1) —mP (25 + 1))} /192m P s* (m2 — 5)* + m>T2)A*
(EK 4.24)
do—gl) 2 2 zZ Z . f .f, *2 *2 2 *2
” ={-g g.(4cj c5pcicpm t(m~ —t) (—=m " +2s+1) +

(L + D+ ) m™ +2s(s + 1) —m (25 + )} /1192m ™ s> (m? —1)* A*

(EK 4.25)

2,2 z z z2 | 72 2 2y, 2 2,2 2
doi™" _ {—g.g: (—4c3Ac3Vc£cif +(c5 1 vy )(cg +elPY(m? - $)s7 (—=m” + 5+ 1)

dt 192m™ s> (m? — t)(m? +s* + m2 (=25 + T2)A*

(EK 4.26)

EK 4.2 Uyarilmis Notrino icin Diferansiyel Tesir Kesiti ifadeleri

Spin-1/2 uyarilmis nétrinonun elektron-pozitron ¢arpistiricilarinda tek tiretimi i¢in toplam

diferansiyel tesir kesiti ifadesi;

dt 4| Sas(my, —H)A° 4rs®A?

do¥? 1 { FW2g202 sy gl m™ +21(s + 1) —m” (s + 21))
fy(")fz(")gng (m2 —s)(c,m™? (=m™ +5+20) + ¢l (M + 2t(s + 1) —m” (s + 21)))
4rs* (m? +s° +m> (25 +T2)A?
F2g2a2 et el m™® (=m™ + 5+ 20) + (¢} + ¢ m™ + 2t(s + 1) —m" (s + 21)))
167zs(m} +s° +m? (—2s +T2))A>

(EK 4.27)
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ile verilir. s-kanalinda fotonun aracilik ettigi diyagram i¢in spin-3/2 uyarilmis nétrino J,,J,

ve J, i¢in sirastyla diferansiyel tesir kesitleri,

(3/2) 4,72 72 2N #
daallt _ g, (c[y +cly )m s)( z(f+z)+m (2s +1)) (EK 4.28)

24m™ s

daf;m _ gl (5h e )m” —s) (=57 =25t =20 +m” (s +21)) (EK 4.29)

48m™ rs* A?

doy’? (=gl (i + ) m™ —s)’ (m™* +2t(s +1)—m” (s +21))}
dt 48m™ A s’

(EK 4.30)

seklindedir. s-kanalinda Z-bozonunun aracilik ettigi diyagram i¢in spin-3/2 uyarilmis

notrino J;,J, ve J; i¢in sirasiyla diferansiyel tesir kesitleri,

dop? _{~grg:(Aciciycicim s(m™ —s =20+ (cff +ci” ey +¢)*)m™ —s)(—t(s +1) + m” (25 + 1))}
dt 96m ™ 7ws* (m? + s> +m2(~2s +T2))

(EK 4.31)

dot?  {-glgl(m” —s5) (-Acl el chels(—m™ +s+20) +(c5; + 5PNk + )7 ) =s" =25t =26 + m” (s + 21)))}

dt 192m s> )(m? + 5> + mis(=2s + T)A?

(EK 4.32)

daf'/z)

dt

= {—gezgz2 (m*2 - S)2 (4c3ZAc3ZVC‘/; c,fm*zs(—m*2 +5+2t)+

+ (LT + B + el (m™ + 2t(s + 1) —m P (s + 200)}/192m P s* (m? — ) + m>T2)A*

(EK 4.33)
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ile verilir. -kanalinda W-bozonunun aracilik ettigi diyagram icin spin-3/2 uyarilmis notrino

J,,J, ve J; i¢in sirastyla diferansiyel tesir kesitleri,

d61(3/2) 3 {—gezgfv (clel2 + cﬂ/,z )(—m*2 +1)(s(s+1)— m? (s +21) + 2cmcff, m? (m*2 -2s -0t}
dt 967zm" s> (m2, — 1)

(EK 4.34)

dof/z) 3 {—gezgfv ((—m*2 + t)2 (2c§VAcZ, m™ (m*2 —2s—1)t+ (C;ZZ + cZ,z )(—2s2 —2st—t* +m™ (2s + 1))}
dt 9677m™ s* (mi, —1)*A?

(EK 4.35)

doy'?  {—glgr(-m” + 1) t2c,clym? (—m” + 25+ 1)+ (4] + ) m™ +2s(s + 1) —m> (25 +1))))}
dt 967zm" s (t —m2)* A*

(EK 4.36)
seklinde verilir.
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