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ABSTRACT Quantum computers may solve some computing tasks more efficiently than classical com-
puters, but to do so requires the design of appropriate quantum circuits. However, it is hard to design even
simple quantum programs. Recent results have shown that deep learning augmented search has the potential
to discover good circuits for a problem, but it is not yet sufficiently understood how well deep learning is
able to model such a complex domain: the search space and output space grow exponentially. This work
explores the ability of neural networks to encode quantum circuits for tasks that require knowledge about
the unitary representation of the circuit. To this end, we trained neural networks to directly learn to predict
the unitary of a circuit and applied reinforcement learning to train neural networks to solve circuit based
quantum state preparation. This work finds that encoding quantum circuits is quite difficult especially with
regards to the amount of entanglement applied in both application domains. The use of intermediate states
and structure in quantum circuits combined with a reasonable inductive bias, where applicable, can alleviate
these problems to some extent. The use of intermediate states also greatly improves the results of Deep
Reinforcement Learning for quantum state preparation. Based on these results, we discuss the next set of
challenges to address if we are to design neural network-based approaches for the automatic generation of
quantum circuits.

INDEX TERMS Quantum state preparation, quantum program synthesis, quantum architecture search, gate-
based circuits, supervised machine learning, reinforcement learning, barren plateau.

I. INTRODUCTION

In recent years, developments in the building of quantum
computers has made significant progress. There are lower
errors in the results of quantum computations and more qubits
available. Yet, there are still many challenges that need to
be overcome: 1) quantum computers are difficult to apply to
non-trivial tasks; 2) preparing a specific quantum state, to,
for example, insert classical data in an appropriate encoding,
is very challenging [1], [2]; and 3) computations are not error-
free. There are enough application domains where quantum
computers could be truly beneficial, such as cryptography
(e.g. quantum key distribution), artificial intelligence and
algorithmic design (e.g. solving optimization problems like
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the traveling salesman problem) and chemistry (e.g. molecule
optimisation and drug discovery). However, in order to
leverage these potential benefits, these challenges must be
addressed to bring quantum computing forward. In this
article, we explore different applications and architectures for
deep learning and reinforcement learning that seek to aid in
the design and development of quantum programs (circuits).
We aim to shed light on different design considerations
for researchers seeking to undertake ML-driven quantum
architecture search.

There are many different ways to approach problems
requiring the design of quantum circuits, for example, there
exist different state preparation algorithms using numerical
approaches or decomposition [3], [4], [5]. However, the
challenge is that finding quantum algorithms for new tasks
requires the exploration of an exponential search space.
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One potential approach to these challenges might be the
use of various machine learning techniques (especially deep
and reinforcement learning), as they have proven quite
successful in a multitude of very complex, exponentially
growing domains like the game of GO [6], protein folding [7]
and language few-shot learning [8]. Neural network-based
approaches have shown that they can consistently beat all
other approaches by quite a margin and are still making
progress. This might make them a promising candidate for
current challenges in quantum computing. One might use
a neural network to learn a distribution over circuits for
different target states or use deep reinforcement learning to
find quantum circuits for new tasks or for designing ansitze
for variational quantum algorithms.

While the creation of quantum circuits using neural
networks seems like a good fit, there are open questions
regarding its usefulness when the neural network needs to
learn an implicit model of a unitary representing a quantum
circuit without specific structure. For example, results in [9]
show that information encoded in general random unitaries is
not necessarily on a lower dimensional plane. Thus, encoding
such a unitary using neural networks is quite difficult,
whereas unitaries with specific types of structure are easier
to encode. This is the case when the task is to predict
quantum circuit distributions without intermediate executions
of the circuits for preparing arbitrary states as well as when
using Reinforcement Learning to generate quantum circuits.
It is important to know whether neural networks are able
to encode general quantum circuits where their unitary is
important and how well such approaches are able to do so.

It may be tempting for researchers to just ‘“‘throw”
high capacity (deep learning) models at the problem and
hope that the architecture learns something useful. In this
paper, we illustrate that there are quite complex and
nuanced challenges in the applications of deep learning
and reinforcement learning to automate aspects of quantum
program design. Specifically, we highlight that it is difficult
to learn the behavior of the quantum circuit directly. Thus,
this work aims to explore how neural networks handle tasks
that need to encode quantum circuits and their unitaries
with a focus on creating quantum circuits automatically.
To study the behavior of neural network-based search, two
sets of experiments were conducted to highlight specific
challenges and identify neural network design decisions of
specific promise and importance. Using these experiments,
we discuss different architectural decisions one may make,
their impacts/limitations, and provide some remarks on
potential architecture designs and aspects of the training
regime that have shown some promise.

The first set of experiments investigates the ability of
neural networks to predict the unitary implemented by a given
quantum circuit. Since the unitary represents the action of a
quantum circuit, this shows how well a neural network can
encode a circuit’s action. We keep this experiment (relatively)
simple in order to analyze the ability of neural networks
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to learn how to encode quantum circuits. While there are
many potential tasks that could be suited to illustrate this (e.g.
quantum state preparation), the dependence between a circuit
and its expected output might be more convoluted or may not
strictly include information from the whole unitary.

The second set of experiments investigates the task of
automating the state preparation process. State preparation
is a common and important sub-step in quantum computing
as it is used to bring a Quantum Computer (QC) into
a specific state as part of an algorithm or workflow.
Quantum state preparation is a suitable task to show how
the difficulty of encoding quantum circuits affects tasks in
practice. It is perhaps one of the most common and necessary
tasks in quantum computing, and notably challenging: the
approximation error of a target state depends directly on a
part of the unitary of a circuit approximating it.

Tasks that require knowledge of the unitary (as imple-
mented by a quantum circuit), such as quantum state
preparation [10], unitary prediction [11], and when the input
is restricted to a description of quantum circuits, are quite
challenging to learn for neural networks. In such settings
the training is very slow and when reinforcement learning is
used often no real progress is made during the search for a
good policy. Our results show that the biggest impact factor is
the amount of entanglement in the quantum circuit, and also
that the use of intermediate states helps the neural network
significantly; making these kinds of tasks more feasible with
neural networks.

The rest of the paper is structured as follows: section II
discusses relevant related work. This is followed by a
summary of relevant concepts in quantum computing and
machine learning in section III. Next, open technical
challenges (specifically the barren plateau problem [12], and
issues of having to scale to 22"‘1) are discussed in section IV,
followed by the experiment designs (section V) and their
results in section V1. Finally, we conclude the paper, highlight
its main contributions and outcomes, and discuss future work
in section VII.

Il. RELATED WORK

This section will introduce relevant related work starting
with deep reinforcement learning, which is necessary to
train a deep neural network when no ground truth/labeled
data for the intended behavior is available. Afterward,
more specific related work is presented first by intro-
ducing program synthesis as general background informa-
tion, followed by quantum program synthesis and state
preparation.

A. DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning consists of a set of different
algorithms that belong mainly to one of two classes [13]:
model-based RL [14] and model-free RL [15]. Model-based
RL uses a model to make predictions of the outcome of
a given action while model-free RL does not do so and
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directly aims at finding a policy or value function that can
be used to induce a policy to solve a specific task at hand.
In practice, the borders between them can blur [16] and are
not mutually exclusive [17], [18]. This work uses model-free
RL, as it has proven highly successful in various search tasks
such as Go [6].

Different deep model-free RL algorithms have been devel-
oped and successfully applied in various domains. Using a
neural network to learn the optimal q function, [15] was able
to play Atari games successfully without prior knowledge.
Alternatively, policy optimization algorithms for optimizing a
neural network representing the policy were developed in [19]
with the Trust Region Policy Optimization (TRPO) approach
and in [20] with the Proximal Policy Optimization (PPO)
algorithm. However, model-free RL has also been deployed
in quantum computing scenarios as well. Model-free Deep
RL was applied successfully on various problems related to
quantum computation. PPO was applied to optimize quantum
circuits in [21] and for quantum compilation in [22]. Deep
RL was used in [23] to control quantum systems and for state
preparation in [24].

B. PROGRAM SYNTHESIS

The automatic design of a program is commonly called
program synthesis [25]. It concerns itself with the automatic
creation of a program given a description of it. A common
description is a set of input-output pairs [26], consisting of
inputs to the program and the corresponding outputs, but
natural language descriptions are also used [27]. Program
Synthesis has been applied in a variety of problem domains.
It was applied to the generation of general programs
in [28], [29], and [30] where the programs are represented
using lambda calculus [31]. More domain-specific tasks
include applying program synthesis to automatic string
processing [32] and for the synthesis of rules for automated
knowledge extraction in [33]. It has seen a wide application
in computer graphics [34] where it was used to generate
material graphs from images of materials in [35]. In [36]
and [37] constructive solid geometry graphs were generated
from images of the object.

Program synthesis in general requires solving a search
problem with the goal of finding a program satisfying specific
conditions, for example, reproducing a set of input output
pairs. Approaches to solving the search problem are, for
example, the use of evolutionary algorithms [25] as done
in [38], [39], and [40] or genetic algorithms [41], [42].
Another direction of work creates programs using an expres-
sive language and transforming it into a set of constraints
that are then solved using a SAT solver [43] and an example
for this approach is the sketch system [44], [45], [46]. The
top-down search can be applied by starting at the output of
the program and filling in missing parts using enumerative
search [47] or probabilistic search [48]. DeepQPrep [10]
used top-down search to find quantum circuits to prepare
quantum states.
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As the problem of search for a program given a set
of potential instructions is exponential in nature, it is
necessary to have a good heuristic to steer probabilistic search
into a space of the solution space containing reasonable
solutions. These heuristics can be automatically learned by
using various machine learning techniques. The probability
distribution of the appearance of each operation in the
final program was learned to be predicted in [49]. Using
an attention-based neural network model [50] predict the
probability of each operation to be added to the program
next. In [51] a probabilistic model of the program space was
learned and in [52] it was viewed as an unsupervised learning
problem that was solved using a combination of modeling
with solver-based techniques. One very prominent technique
of learning the heuristic is deep learning. Reference [53]
used a Convolutional Neural Network (CNN) trained with
supervised learning to predict programs from hand-drawn
images and in [54] a RNN was used to encode the tree
structure of the current program. RL was used to learn a
neural network model, to guide the program search, without
the need for ground truth data in [55]. In [30], deep learning
was combined with automatic library discovery to learn a
probabilistic model of the program space. Automatic library
discovery allows the search complexity to be reduced by
adding functional units containing multiple operations as one
operation to be added to the program, done in [28] and [56].
Recently, large language models have become prevalent [8].
Although they are not necessarily trained to create programs,
they have shown remarkable acuity at doing so [57] from
natural language descriptions.

C. QUANTUM PROGRAM SYNTHESIS

Quantum Program Synthesis often, but not always, aims at
generating a representation of a quantum program called
a quantum circuit [58]; it can also be referred to as
Quantum Architecture Search. One specific task of quantum
circuit generation that absolutely requires the automatic
generation of circuits is quantum state preparation as various
algorithms [59], [60], [61], [62], [63], [64] require the
quantum computer to be in a specific non-trivial state (based
on classical data). In quantum state preparation, the goal
is to find a quantum circuit that brings the QC into a
specified state. Other applications include the creation of
a quantum circuit based on a unitary matrix representing
the desired computation as a 2" x 2" matrix (also called
quantum compilation). This matrix must be decomposed
into the elementary gates available to the quantum computer
which can be represented themselves as unitary matrices.
Another class of quantum circuit synthesis tasks receives
a form of high-level description of the task to be solved;
[65] uses high-level descriptions to generate sets input output
pairs describing the desired behavior of the system. Varia-
tional quantum circuits, a circuit parameterized by classical
parameters, used in variational quantum machine learning
and variational eigensolvers require the design of the circuit
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to be amenable to the optimization of its parameters [66].
This is necessary as the optimization of a quantum circuit
can suffer from the barren plateau problem [12], making
parameter optimization quite challenging.

These problems have been approached using classical
techniques similar to those presented in the previous section.
Genetic algorithms were used to generate quantum circuits
in [67], and [68] used an evolutionary algorithm to design
a quantum circuit for quantum state preparation. Bayesian
optimization was used in [65] to generate a quantum circuit
from a high-level description. Deep reinforcement learning
was used in [22] and [69] to generate a quantum circuit
from a unitary matrix that represents the whole computation.
When the goal is quantum compilation, creating a circuit from
a unitary matrix, matrix decomposition approaches can be
used. These approaches decompose the unitary into smaller
and smaller unitaries until elementary gates are reached.
[3] uses the Householder transformation to decompose
the matrix and [4] uses cosine-sine decompositions. The
time complexity of these approaches was improved in [5]
by combining fixed position and variable position unitary
decompositions with numerical optimization techniques.

The synthesis of quantum circuits from a target unitary was
performed using diffusion models [70] in [11]. A combina-
tion of deep learning and non-machine learning-based circuit
synthesis can also be used to first propose potential circuits
using a deep learning model and then to use bottom-up
synthesis to improve those circuits, as was done in [9]. The
paper also presents results on the ability of neural networks
to encode unitaries which are related to the results of this
work showing the difficulties of neural networks in encoding
quantum circuits.

lll. BACKGROUND

This section will go into the background of this work. First,
subsection III-A will give an introduction to the necessary
background in quantum computation followed by a short
introduction to the necessary background in Deep Learning in
subsection III-B. subsection III-C will give an explanation on
how both concepts are combined in this work to do quantum
circuit search.

A. QUANTUM PROGRAMS

Quantum programs can be represented in different ways, for
example, as a form of pseudo code or high-level description
which allows us to prove properties of the program and to
get an understanding of the overall working of the algorithm.
The issue with such a high-level approach is that it needs to be
implemented using low-level primitive operations. The exact
implementation of the algorithm depends on many factors,
such as the number of qubits, the available operations on
the QC and its physical properties. However, we consider
a quantum program as a sequence of (unitary) operations,
i.e. gates, acting on 1 or more qubits. We note that different
configurations in the number and/or quality of qubits can
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require the creation of different quantum circuits even for
similar tasks.

1) PROGRAM STRUCTURE AND OPERATIONS

A common representation of quantum programs is in the
form of quantum circuits where qubits are represented as
wires, and operations, referred to as gates, act on those wires
(i.e., qubits). An example quantum circuit can be seen in
Figure 1. Quantum programs are executed from left to right
and represent the time evolution of a quantum system from an
initial (or ground) state to an observed (or measured) set of
outcomes. All gates are reversible operations (they are unitary
transformations), except measurement, which collapses the
quantum wave form into an observed value.

It is important to note that the number of wires at each
gate that affects multiple qubits cannot increase or decrease.
Quantum circuits may contain gates that affect one or more
qubits, but this work restricts itself to gates acting only on one
or two qubits. (It is possible to decompose n qubit gates into
one and two qubit gates). Typically, multi-qubit gates involve
some degree of entanglement. Entanglement is necessary to
leverage multiple qubits in programs and generate increased
expressivity in the functional form(s) a program represents.

Gates can be fixed in their operation or can be parame-
terized by a classical real value. All 1-qubit gates represent
a rotation of the qubit around one or multiple of three
orthogonal basis vectors, (e.g. the X, Y, and Z bases (see
Figure 3)). As more gates are added to a circuit, its depth
increases. The depth of a quantum circuit is defined as the
number of gates on the longest path through the circuit. For
example, the circuit in Figure 2 has a depth of 4.

o4 T HX

g1 < H

g, Rz

m/16

FIGURE 1. Example circuit with depth 3.

2) LAYERED UNITARY REPRESENTATION

Each gate or combination of gates can be represented as
complex unitary matrices of the shape 2"t x 2"™act where mg,
is equal to the number of qubits the gate acts on for a quantum
circuit with mg; qubits. The unitaries of one-qubit gates
therefore have a shape of 2 x 2. Multiple sequential one-qubit
gates can be combined into one unitary matrix by multiplying
them. This unitary can be represented by a sequence of three
rotations with different angles (ignoring the global phase) [4].
A potential sequence is R;RyR;. Each complex value v;; in the
unitary is constrained by 0 < |v;| < 1 and the whole unitary
matrix is normalized.
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FIGURE 2. Example circuit with depth 4.

qu%it 0 qubit 1 qubit 2
3 ,

|0)
,//

|0)
=S

FIGURE 3. Visualization of a rotation about 7 around the x,y and z-Axis
for qubit 1, 2, and respectively.

Each entry in each 1-qubit unitary is a sum of the product
of three values that depend on the different parameters of
the rotations. As such, programs can be represented by
interleaving layers of one qubit unitary gates followed by an
arbitrary entanglement pattern, as can be seen in Figure 4.
If a qubit does not have a unitary gate applied to it in a layer,
it can simply be represented by the identity unitary, and it
does not matter whether the entanglement gates or rotations
are applied first in a layer. If there are no rotations before the
first entanglement operations, the rotation layer can simply
consist of identities. An entanglement layer at the end of the
circuit is optional.

The total unitary implemented by a quantum circuit Uy,
on m qubits can be calculated by computing the product of
the unitaries of all N layers U; with0 < i < N:

Ucire = Uy ... U2 U] (1

The unitary of each layer U; is computed by:

m

Uunir.i = ) Ui, @
j=1
Rex,i

Uent,i = H Ck.i 3
k=1

Ui - Uent,iUum't,i (4)

where the U;; represent the single qubit unitaries in a layer
and Cy ; (of size 2™ x 2™) is the kth CX gate between two
qubits for a total of n., ; CX gates that are added in layer i.
For a more detailed introduction, see [71]. While it is clear
that a unitary can be derived from a quantum program, so too
is the potential value of being able to predict the unitary of an
arbitrary program without executing it.
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3) INITIAL STATE AND DATA LOADING

A quantum computer starts in a base state commonly
represented by |0). To bring the quantum computer into a
specific target state |y,) a quantum circuit which represents
a unitary Uy, needs to be found such that:

Ustate 10) = Y1) &)

The quantum state vector represented by |0) in the standard
basis contains a 1 in the first row and zeros in all other
positions. This matrix multiplication means that the first
column of the unitary represents the quantum state it prepares.

Many quantum algorithms and applications need the QC
to be in a specific state that captures some input data
(a process called state preparation). Depending on how input
is passed into a quantum circuit, it might be necessary to put
another quantum circuit in front of the computing algorithm
(i.e., concatenate them) to bring the QC into the required
initial state that encodes the input data. As shown in [10],
automatically generating quantum programs to undertake this
process is not straightforward. However, there has been some
success in the applications of machine learning to do so.

B. DEEP LEARNING

The goal of Deep Learning is to train a multilayered neural
network to minimize a loss /, a scalar function of inputs X,
and some target Y. Neural networks are commonly optimized
using stochastic gradients computed with backpropagation.
The stochastic gradient is computed by taking batches of
random subsets of the whole dataset. Neural networks use
multiple layers of typically non-linear functions f; of the input
X, and some parameter vector p;.

Xout = Ji(Xin, Pi) (6)

Depending on the structure of the input data X, different
architectures are possible. This work views the quantum
circuits as layers as discussed in subsection III-A. Therefore,
it is a sequence of layers that can be approached using
different architectures like recurrent neural networks or
transformer neural networks. Recurrent neural networks
compute the output at each step in the sequence in an iterative
fashion, computing the results using the encoding of the last
step and the next element in the sequence. Transformers take
as input the whole sequence and perform a self-attention
mechanism over the whole input for each input position.

C. QUANTUM CIRCUIT SEARCH

To create quantum circuits using deep learning, a search
algorithm must be established. An obvious choice might be to
build the circuit layer by layer as the content of each layer is
well defined: a unitary gate for each qubit, including identity
gates, and a set of CX-Gates between the different qubits.
While this is certainly possible, it might lead to difficulties
when applying RL to the task of quantum state preparation.
Since a layer is, in a way, quite complex, it might be difficult
to learn the influence of each of its parameters, as only a
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FIGURE 4. A circuit with N Layers. Each layer consists of a set of unitary gates followed by a set of entanglement gates.

-

Neural Network

O
5

FIGURE 5. Overview of the neural network based search.

reward for the full layer is computed. An alternative would be
to view each sub-part (each unitary gate and the entanglement
pattern) as separate steps, thereby computing a reward at
each step making it easier to learn about the influence of
each sub-step.

Figure 5 gives an overview of the approach applied in this
paper. In this approach, each time sub-step can be represented
as a valid layered circuit at any sub-step. This is done by
applying an identity to each unitary qubit that does not have a
unitary added to it and applying no CX-Gates. A circuit that
is not yet completed (all circuits before the final step during
the search) is called a partial circuit, but there is in principle
no difference between them, it is just used to signify that
the circuit still has more gates that are going to be appended
to it. As the circuit is built sub-step by sub-step and layer
by layer the neural network needs to be able to predict the
unitary to add to a qubit and the entanglement pattern. Since
both parts have different shapes, it does so by having two
different output layers. The first layer predicts a unitary to
be added to one qubit. The second layer predicts the pattern
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of CX-Gates to add. The search algorithm will add the gates
to the current partial circuit appropriately. The neural network
receives information about the current step as a one-hot input
vector with ng,p;; + 1 elements: one for each qubit and the
entanglement sub-step.

Instead of predicting a unitary, the neural network will
predict three rotation values for three rotations around
the z, y, and z axes. This combination of rotations is universal
up to a global phase term, as discussed previously. During
the search, two intermediate sets of information are used as
input to the neural network: 1) the current partial circuit to
which a new operation must be added; and 2) the state the
QC is in after applying the current partial circuit or an output
distribution of the measurements of it.

While the second input might make it easier to learn what
to do for the neural network, it requires more intermediate
executions of a circuit, which can be expensive. In contrast,
the current partial circuit is readily available without much
additional computational cost. Thus, the question arises of
how well a neural network is able to encode and extract
information from such a circuit in a manner that is conducive
to its learning process.

IV. OPEN TECHNICAL CHALLENGES

Various tasks in quantum computing require knowledge of the
unitary implemented by a quantum circuit. As an example,
take circuit-based quantum state preparation as defined in
Equation 5.

Finding a quantum circuit such that its unitary U prepares
the target state |y;) is not an easy task. One potential
approach would be to use machine learning and especially
deep learning to learn a distribution over potential circuits,
as deep learning has proven quite successful in a wide range
of very difficult domains [6], [7], [8] and in quantum state
preparation [10]. For a task like state preparation without
any intermediate states, the model needs to make a decision
based on a current partial circuit. In order to be able to make
a reasonable decision, the model would need to create an
encoding of the circuit that contains important information,
which in this case would be related to the unitary of the circuit
(as it needs to know what the circuit computes in order to
bring it closer to the target state). This is the case if there is
little or no structure that can be assumed in the circuits that
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it needs to encode. An example for such a situation would
be when using Reinforcement Learning for quantum state
preparation and the initial policy shows a behavior that is
close to a uniform distribution, which is often the case if no
prior information is available.

We argue that there are two problems with the need to
encode quantum circuits when there are no or few restrictions
on the set of circuits. The first problem is related to the
vanishing gradient in quantum circuits also called barren
plateaus [12] and how it makes it difficult for the neural
network to learn the relation between the gates in the circuits
and the output especially for parameterized circuits. The
second problem is the exponential growth of information
needed to model the unitary when controlled operations
are used.

A. VANISHING GRADIENTS

As was shown in [12], many parameterized quantum circuit
ansitze have a high probability of having a gradient close
to zero. Although this result mainly influences the training
of variational quantum circuits using classical algorithms,
this also has important implications for the training of neural
networks that need to model the unitary implicitly. The main
argument is that the mass of probability of states that fall
outside zero decreases exponentially as the number of qubits
increases. This means that the probability of the gradient
being close to zero grows exponentially. This again results
in a very weak coupling between the input (the gates) and the
output as the number of qubits grows. As the neural network
tries to learn connections between the circuit and its behavior,
this becomes exceedingly hard.

Another way to analyze the situation would be to look at
how the unitary is influenced by each of its gates. For this we
use the representation of circuits as a sequence of layers as
discussed in section III. Each layer consists of two parts:

o The application of a unitary to each qubit

« Addition of an arbitrary pattern of controlled operations
The unitary encoding for a rotation layer / of a circuit is
computed by

Ui = Q) R(d)Ry ()R (6y) (7)

Therefore each entry in the Unitary is a product of 2n values
where n is equal to the number of qubits. The CX-gates
in each layer essentially permute the unitary resulting from
the unitary part, thereby creating a dependency between the
involved qubits. To compute the total unitary of multiple
layers, the product of the unitary of all the layers needs
to be computed. This means that the resulting unitary is a
sum of products. Each sum consists of 2"V terms, where
Np is equal to the number of layers to be combined. Each
of those terms consists of a product of 2nNy values (see
subsection III-A on the number of results in the unitary of
each layer). The absolute value of each term is < 1, so the
terms decay exponentially to zero while the number of terms
grows exponentially. The influence of each term of each

75226

element on the unitary layers is therefore small. This situation
is exacerbated as the depth of the circuit increases, resulting
in a shrinking gradient; similar to the vanishing gradient that
occurs during neural network training [12]. This behavior
gets even more complicated when CX-gates are taken into
account as they change which unitary values influence which
final unitary element, and how strongly.

We can view a quantum circuit as an object connecting
input qubits to output qubits via different paths. A three-
qubit circuit without any entanglement operations has only
three paths that can be taken through it. The number
of paths through the circuit grows exponentially as the
entanglement gates are added and the qubits influence each
other [12]. Through this, the number of interactions between
the qubits grows exponentially with each path representing
one combination of information, and thus the combinations of
information grow exponentially. Overall, this behavior might
make it very hard for a neural network to learn as each
element has a very complex small influence on the unitary.
The network would need to learn the behavior of something
where the impact of each single input element can be fairly
small but still important in the end.

B. EXPONENTIAL GROWTH OF INFORMATION

When the task requires implicit knowledge of the unitary, the
neural network may need to realize (potentially implicitly) it.
The issue with the need to realize the unitary lies in the fact
that while the circuit might not contain exponentially many
gates, the neural network still needs to periodically compute
its unitary (a product of a unitary for each layer). Each
unitary is of size 22, thus the overall computation will require
at least a feature representation of that size, or some data
structure that allows the encoding of this object efficiently.
If the set of quantum circuits is constrained and thus its
unitaries as well, we can store reduced amounts of data.
An example of a structure that would reduce the amount of
data that needs to be encoded is the set of circuits that contain
no gates that act on more than one qubit. In such a case,
the total unitary of a circuit is computed as the Kronecker
product of the independent one-qubit unitaries. Therefore,
the encoding the neural network computes would only need
to store information on each qubit separately, yielding n
unitary complex unitaries of shape 2 x 2. In contrast, when
there are multiple qubit gates combining all qubits, the whole
unitary would need to be stored as all qubits depend on
each other. Other sets of circuits that only create connections
between a subset of qubits would result in unitaries with such
a substructure. Thus, depending on the connectivity pattern
between the qubits the size of the needed encoding changes,
it grows exponentially in the number of connected qubits.

C. PRACTICAL IMPLICATIONS AND CONTRIBUTIONS

These effects (i.e. the barren plateau and exponential growth
of information) have practical implications when learning
circuits that have no clear structure. As an example, assume
that the goal is to learn which gates to add to a partial circuit to
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prepare a specific state using Reinforcement Learning. If the
neural network is trained from scratch without any imitation
learning (e.g. without any circuit examples), it will generate
random circuits but learning the connection between the gates
added and the new resulting state is difficult. This means that
the neural network only learns very slowly (if at all), making
it extremely challenging to solve the problem. If the neural
network would receive the state generated by the partial
circuit and not the partial circuit, things might be different.
These implications mean that it is not possible to design a
neural network architecture easily, but that research is needed
to explore (even the most obvious) architectural decisions that
may, or may not work. To this end, in the rest of this paper
we show that we cannot just “throw” deep (reinforcement)
learning at the problem and hope it works. Rather, it is
difficult to learn the behavior of the quantum circuit directly.
The combination of exponential growth of information and
the barren plateau problem make a complex search space even
harder to navigate: approaches like RL suffer greatly when
attempting to explore a large space of circuits as the feedback
gained from adding gates (or layers of gates) is basically zero,
which makes the training very slow or even halt completely.

V. EXPERIMENT DESIGN

To explore the influence of the effects of an exponential
growth of information and the barren plateau problem on
the difficulty to learn to encode quantum circuits in practice,
we performed two different sets of experiments: 1) focusing
on predicting the unitary matrix of a given quantum circuit;
and 2) focusing on using RL for the automated generation of
state preparation circuits. We ensure that all neural networks
have an encoding size bigger than the number of values
in the unitary, that is, they could in principle store the
whole unitary in the encoding of the circuit. This allows
us to explore the difficulty to learn to encode a quantum
circuit without the influence of the exponential scaling of
the unitary of the circuit. We investigate two different neural
network architectures commonly used for sequences (as
a quantum circuit is a sequence of operations) and how
different entanglement patterns affect the results: an LSTM
and a transformer-based architecture.

Comparing these experiments shows how well the neural
networks can encode quantum circuits with entanglement
and how intermediate quantum state information can help
improve results greatly for quantum state preparation. This,
in turn, aids in the design of training regimes for neural
network architectures, as we highlight easy to occur pitfalls
in the training process, and discuss some potential remedies
for these.

A. UNITARY PREDICTION

The first experiment is focused on learning to predict the
unitary of a circuit given different entanglement patterns.
The motivation to learn to predict unitaries is to explore
how well neural networks are able to learn what operation
(essentially its unitary) the quantum circuit performs without
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the influence of issues like the need for exploration, as is
the case in reinforcement learning. Instead, we explore the
influence of different circuit properties like the degree of
entanglement (exercised through the number of CX-Gates).

As mentioned previously, the neural network has an
encoding size that could in theory fit the whole unitary matrix
into it more than once. This alleviates any issue arising from
the encoding size being too small. Thus, this experiment
highlights the difficulty of learning quantum circuits as the
number of entanglement gates between qubits increases,
while keeping the training itself “simple(r)”.

To support this experiment, a dataset was created by
sampling circuits consisting of a predefined number of layers
and qubits at random. The dataset consists of 2 million
circuits with up to 16 layers and 3 qubits and is available
at [72]. The low number of qubits is sufficient for the
difficulty of the task while at the same time keeping
the resulting unitary reasonably small (8 x 8). For some
experiments, CX-Gates were added only to specific qubits at
specific layers to show their influence more clearly.

The angles in each layer are three sampled angles in
(0, 27r) and computing the unitary of a U-Gate which is a
universal gate up to global phase [4]. The entanglement in
each layer is created by uniformly sampling a subset from
the set of possible entanglement patterns. We restrict the
entanglement to one possible direct connection between two
qubits going from the lower position qubit to the higher one.
The entanglement is always applied in the order of the qubits.
A set of potential patterns can be seen in Figure 4. The
entanglement operation chosen in this work is the controlled
X-Gate, also called CX-Gate. For 3 qubits there are three
potential CX-Gates that can be added in each layer. After
the circuit is sampled, we compute the unitary matrix of each
layer in the circuit, and store the results; we also compute the
unitary of the whole circuit.

The features of the neural network are: sequences of layers
consisting of a 2 x 2 x 2 matrix for each qubit (representing
the real and imaginary parts of a unitary as a real value); and
a binary encoding of whether a CX-Gate was selected or not.

The neural network architecture can be seen in Figure 6.
The neural networks first combine the features in each layer
into one encoding tensor in the Layer Encoder by applying
one or multiple linear layers with the ReLU activation
function to the unitary features and the entanglement binary
encoding. These are then combined using another linear layer
with the ReLU activation function. This results in a sequence
of shape n; x ny where n; is the number of layers and ny the
number of features. This sequence is then passed to either a
LSTM or Transformer [73] in the Seq Encoder.!

The results are then decoded separately for each element
in the sequence. This is done by applying two sets of
linear layers, the Kron Predictor and the Full Predictor, with

INote that we also experimented with a CNN-based architecture (not
reported here) but its performance was worse than the LSTM and
transformer-based architectures.
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FIGURE 6. The neural network used for predicting unitaries from
quantum circuits.

ReLU activation except the last which has a hyperbolic
tangents activation. The Kron Predictor predicts 2 x 2 unitary
matrices, one for each qubit, which are combined using
the Kronecker product. The motivation behind the Kron
Predictor is that 1 qubit unitaries are combined through
the Kronecker product to a multi qubit unitary. The Kron
Predictor essentially predicts 1 qubit unitaries which are then
combined in the same way. The second set of linear layers
directly predicts a potential unitary matrix of the shape 8 x 8.
Both layers also predict a weight for the respective matrices.
The results are combined by computing a weighted sum using
the predicted weights and then normalized.

The optimization is performed using the Adam [74]
optimizer with batches of size 256. The learning rate for
the different sequence encoders used are 0.00025 for the
LSTM model and 0.0005 for the transformer model. The
models optimize the mean squared error between the ground
truth unitary and the predicted unitary after each layer.
Using results after each layer should give the neural network
information for intermediate results helping the optimization.
We found that only predicting the unitary after the last layer
completly prevents learning when CX-Gates are present in
the circuit. The encodings created by the neural network
components had a size of 256 making it in theory possible
to store the whole unitary at each step. The hyperparameters
were found using probabilistic search using a uniform
distribution over reasonable parameters.

B. DEEP RL FOR STATEPREPARATION

The second set of experiments focuses on finding a circuit
that prepares a specific target state using deep reinforcement
learning. State preparation is performed in two distinct
manners (or design choices): 1) using intermediate states;
2) providing the circuit as input. These two design choices
show that the need to learn to encode circuits in RL tasks
is quite challenging. The results show that the difficulty
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of learning a circuit encoding — when the goal is to do
sufficient exploration initially — hampers progress greatly.
Thus, this experiment explores the potential benefit of using
intermediate states to reduce the difficulty of encoding
quantum circuits making training with RL more viable.

The experiment has practical relevance, but is influenced
by the previously described effects (section IV) due to the
need to explore the space of potential circuits sufficiently, and
because a possible distribution of gates is close to a uniform
distribution initially. However, any meaningful application of
RL would need to be able to handle a wide range of circuits.
The results are compared to results achieved in the same
setting but with the use of the quantum state created by the
circuit after each step.

In this experiment, circuits are built inductively by first
adding a unitary to each qubit and then a set of CX-Gates
to create a layer, as discussed in subsection III-C. A layer is
not created in one step but each unitary is sampled separately
followed by sampling the CX-Gates. The unitaries are created
by predicting the three rotation angles of a U-Gate; a gate able
to represent all 1-qubit unitaries [4]. The angles are samples
from diagonal Gaussian distributions where the mean is
predicted using the neural network. The CX pattern is chosen
as in the previous sets of experiments and the neural network
predicts the probability of adding a CX-gate in a binary
probability distribution for each possible gate.

As mentioned, RL experiments were performed in two
different settings: 1) using only the current partial circuit
to which new gates must be added as input for the neural
network; and 2) using the intermediate state generated by
applying the current partial circuit to the base state as input for
the neural network. The use of intermediate states instead of
using the circuit removes the requirement to learn to encode
the quantum circuit since it has information of the behavior
of the current quantum circuit instead of needing to infer
this information from the circuit. The goal here is to show
that extracting such necessary information from the circuit
is difficult and the use of intermediate states can reduce
these issues.

Both neural networks, seen in Figure 7, first create an
encoding of the input and then a fully connected 2-layer
prediction neural network is applied to it that predicts the
3 angles of the U-Gate and the probability of each possible
CX gates that can be added. Only one of those two options
is used at each step, depending on whether a unitary is to be
added to a qubit next or the CX-gates. The neural network
that uses the current quantum circuit as input is the same as
the LSTM model in subsection IV-A, but the last element
of the output of the LSTM layer is used as the encoding of
the input. The neural network that uses the current state as
input uses a 3 layer feed-forward neural network to encode the
state. The real and complex components of the state vector are
combined so that the neural network receives real input data.

The target state vector of the reinforcement learning
algorithm for which a distribution of circuits needs to be
found is randomly sampled according to the uniform Haar
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FIGURE 7. The neural network used for predicting unitaries to add to
each qubit and entanglements from quantum circuits (left) and quantum
states (right).

measure and are restricted to 3 qubits. The models were
trained with the implementation of the PPO algorithm [20]
from [75] using Stochastic Gradient Descent with a batch
size of 256 and a learning rate of 0.0003. For both cases, the
prediction network’s first layer has a shape of 128 x 64 and the
second 64 x S,,; where S,,; represents the shape of the output
equal to 3 angles plus the number of potential entanglement
gates (for 3-qubits there are 3 possibilities). The activation
function is Tanh in both cases.

The reinforcement learning training is performed for
10° search steps and after every 2048 search steps the model
is trained for 10 epochs using the PPO algorithm. The entropy
factor for the PPO algorithm is set to 0.05 in the clip range 0.2.
A and y are set to 0.95 and 0.99 respectively. The reward is
computed using the minimal similarity as proposed in [10]
after each action. The motivation is that the neural network
should learn to improve the circuit with each gate it adds to
the circuit overall.

VI. RESULTS

This section will first show the results achieved for unitary
prediction (subsection V-A) followed by the results achieved
when doing state preparation using reinforcement learning
(subsection V-B).

A. UNITARY PREDICTION

The goal of the experiment is to train neural networks to
predict unitaries implemented by a specific quantum circuit.
In these settings, the capacity of the feature vector, its
dimension, is ensured to be sufficient for the storage of
the whole unitary (to ensure that this is not a performance
inhibitor). The experiments are undertaken with special
interest on the influence of entangling gates (i.e., CX-Gates),
as they significantly increase the complexity of the unitary.
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FIGURE 8. Results achieved using a LSTM based Neural Network
architecture for applying a CX-Gate in every 1st, 2nd and 4th layer.
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FIGURE 9. Results achieved using a transformer based Neural Network
architecture for applying a CX-Gate in every 1st, 2nd and 4th layer.

The prediction results for different layers for the experi-
ment using completely random entanglement patterns after
training can be seen in Figure 8 and Figure 9 for LSTM
and Transformer based neural network architectures (in blue)
after training for 400000 steps. It can be seen that both fail
to produce reasonable results for more than a few layers. The
prediction accuracy quickly drops to a value of zero, which
is equal to a prediction of the mean value in the unitary. The
accuracy of the LSTM neural network drops to below half the
maximum value after just 3 layers while the transfomer neural
network sharply drops to zero after 3 layers. This behavior
remains consistent for different samples of the data set in
general. The LSTM based neural network is clearly able to
make good predictions for one and two layers, but after that,
results degrade exponentially.

Figure 8 and Figure 9 show the resulting accuracy when
one entanglement gate is added every 2 (orange) and 4
(green) layers. Between these entanglement layers, the results
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FIGURE 10. Squared difference achieved training LSTM neural networks
for quantum state preparation without entanglement gates using a
Kronecker product of predicted parts(blue) and predicting the Unitary
directly(orange).

degrade less overall. This becomes especially clear for the
LSTM neural network trained on circuits that have a CX-Gate
added every 4 layers (Figure 8 green). The results first decline
a bit after adding a CX-Gate but then tend to plateau. This
means that the neural networks can make use of the fact
that they can be decomposed for each qubit in these layers.
The transformer struggles to learn anything beyond the first
layer that has a CX-Gate added to it. The transformer-based
architecture performs quite poorly overall. This might be due
to its attention mechanism, which focuses on specific parts in
the input, but in quantum circuits (as designed for this set of
experiments), every gate and layer is of importance making it
harder to focus on one specific part.

Figure 10 shows results when no entanglement is applied
using a Kronecker prediction layer and directly predicting
the unitary for the LSTM neural network. In these cases,
it becomes apparent that the neural networks can use the
fact that the problem can be decomposed when a Kronecker
predictor, a strong inductive bias, is used as it learns to predict
the unitary with very high accuracy. In contrast, it is not able
to learn to predict the unitaries at all when no strong inductive
bias is present in the neural network through the Kronecker
prediction layer.

The results indicate that it is challenging for neural
networks to learn to predict unitaries as more controlled
operations (CX-Gates) are added or no inductive bias through
the use of the Kronecker prediction is present even for a small
number of qubits.

B. DEEP RL STATE PREPARATION
The goal of the second set of experiments is to learn to
generate circuits, using RL, for quantum state preparation
using intermediate quantum states or quantum circuits as
input to the neural network.

Figure 11 shows the results of using PPO to learn
a distribution of quantum circuits to prepare a specific
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quantum state. As can be seen, the neural network that
receives the current state as input is learning to predict a
more suitable gate at each time step. It achieves a value of
roughly 0.25 out of 1.0. In contrast, the neural network trained
using the current partial circuit as input only shows a slight
improvement at the beginning, which then quickly reaches a
plateau at which point no further improvement can be seen.
This clearly indicates that not much learning is taking place
for the neural network that receives the current partial circuit
as input. Figure 12 shows that the neural network trained to
use the current state places a higher probability on the gates
that yield a higher reward compared to the neural network
trained on the current circuit. The neural network trained on
the circuit only puts a higher probability for good gates in the
first gate, and then the results degrade further. The results also
show a drop every 4 gates for the state input neural network
which is probably due to the addition of controlled gates
which seem to be harder to learn in terms of what is “good”
or “bad”.

Although there is definitely an influence due to the amount
of data for shallower circuits (the space of states is smaller
for shallower circuits), since the neural network-augmented
search for quantum state preparation was shown to be
successful in [10] for a simpler set of circuits, it still
clearly shows that the neural network trained on the partial
circuits struggles a lot more than the one trained on the
current state. This aligns with the results observed in
subsection VI-A which show that neural networks seem to
struggle when encoding deep circuits. This issue takes place
in this reinforcement learning task since the created circuits
do not have any specific structure, therefore making learning
an encoding model of them quite hard. It is important to note
that training the neural network using RL can be harder since
the learned target is not fixed for each example but behaves on
the trajectories through the state space of the problem domain
potentially making already hard learn domains even harder.
Overall, both approaches could be combined by getting the
quantum state only every few layers and using the circuit

VOLUME 13, 2025



P. Selig et al.: On the Challenges of Quantum Circuit Encoding Using Deep and Reinforcement Learning

IEEE Access

0.6
0.4 -
©
g 0.2+ —— Circuit Input Reward
q;) State Input Reward
x 0.0
—0.2 A
—0.4 -
0 20 40 60 80
Gates

FIGURE 12. Comparison of the reward achieved with the number of gates
achieved on the x-Axis after training.

input for the layers in between. Preliminary experiments (not
reported here) have shown that this does not really seem to
work even for just two layers, as the improvement compared
to only using the circuit as input is marginal. This might be
related to the fact that just predicting unitaries without any
strong inductive bias, the Kronecker product in the predictor,
for example, in the neural network, is hard.

VII. CONCLUSION

In this paper, we have explored the ability of neural network
based approaches to learn unitary related properties given a
corresponding circuit encoding through two sets of experi-
ments: 1) predicting the unitary of a circuit, and 2) performing
neural network driven state preparation (or quantum architec-
ture search). We discussed open challenges and specifically
why training is difficult. We have also highlighted that
learning to predict the unitary implemented by a circuit is
quite difficult. Thus, a great deal of domain knowledge is
needed in designing neural network architectures for quantum
circuit encoding and that it is not possible to (simply) “apply”’
deep learning to the problem.

Our simulations have shown that the interaction between
the input and output can be extremely difficult when no
decomposition of the problem is possible or when the neural
network does not contain a sufficiently strong inductive bias.
We have shown that a Kronecker predictive layer could be
an appropriate addition to the neural architecture to achieve
sufficient inductive bias in the model. An additional outcome
is the realization that we can reduce the need to encode deep
circuits by using intermediate states.

While the use of intermediate states alleviates some of
the challenges presented, there is the issue that using those
intermediate states increases the cost of the approach greatly
as each state would need to be computed using quantum
computer evaluations and be processed by the neural network.

Our results show that overall the quality of predic-
tions decreases exponentially in the number of controlled
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operations (i.e., as the degree of entanglement increases).
This occurs even for a small number of qubits and when
the capacity of the neural network should be high enough
to store the whole unitary matrix. For automating quantum
state preparation, this effect is of significant importance when
reinforcement learning is used to train the neural network.
However, this effect was alleviated when intermediate states
were used.

From our experiments and results, we can highlight the
following conclusions, insights, and remarks on the design
of neural network architectures:

o The complex dependencies in quantum circuits make
the learning of unitary related properties potentially very
slow and difficult, i.e. it is difficult to learn the behavior
of the quantum circuit directly. This is largely due to the
barren plateau problem.

« Increases in the degree of entanglement greatly exacer-
bate the difficulty of training.

« Quantum state preparation is difficult to solve using RL
when the circuit is the input, but intermediate quantum
states can alleviate problems in RL for quantum state
preparation.

« It is important to maintain a strong inductive bias
for unitary prediction tasks; we highlight a Kronecker
prediction layer as an enabler of inductive bias.

« Despite the challenges highlighted in this paper, we have
shown that a small number of layers (for example, in an
ansatz) are easily achievable with neural network-based
approaches.

o Approaches in reinforcement learning suffer greatly
from the issues raised (low gradient variance, and
exponentially growing representations) as they need to
explore a large space of circuits, but have little to no
information gained from individual gate additions.

Potential ways to alleviate these issues might be to
select datasets more carefully and create more structured
circuits according to some specific problem domains. Using
intermediate information of the state created by the circuit
might alleviate this problem, and (as others have shown,
e.g. [24]) performance issues could potentially be overcome
when information of the state is used and the target domain
is narrower. Based on our results, more research on the
optimal ratio of circuit depth and computation of intermediate
states is needed. Studying and designing other neural
network architectures might also provide further insights and
solutions to the challenges highlighted in this work. Another
potential solution might be to learn and combine ‘“‘local”
layer-wise information. Finally, it might be useful to use
a gradient through circuit simulation with respect to the
rotations.

Since the intermediate states are scaling exponentially in
the number of qubits, it might be important to study whether
partial information from the quantum state might be enough
to reduce the impact of exponential growth in the state.
Further work might look at using only the parts of the
quantum state that deviate the most from a given target state.
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Based on our results, more work is needed to show the
influence on other quantum computing related tasks that
require at least a partial knowledge of the computed unitary.
A more formal mathematical analysis of these problems
would be beneficial in giving more insight into what classes
of tasks might be possible and which not.
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