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Abstract: Dynamical symmetry plays a dominant role in the interacting boson model in elucidating

nuclear structure, for which group theoretical or algebraic techniques are powerful. In this work, the

higher-order interactions required in describing triaxial deformation in the interacting boson model

are introduced to improve the fitting results to low-lying level energies, B(E2) values and electric

quadrupole moments of even–even nuclei. As an example of the model application, the low-lying

excitation spectra and the electromagnetic transitional properties of even–even 176–198Pt are fitted

and compared to the experimental data and the results of the consistent-Q formalism. It is shown

that the results obtained from the model are better than those of the original consistent-Q formalism,

indicating the importance of the higher-order interactions in describing the structure and the shape

phase evolution of these nuclei.

Keywords: shape phase transition; higher-order interactions; the interacting boson model; Pt isotopes

PACS: 21.10.Re; 21.60.Ev

1. Introduction

It has so far been shown that the interacting boson model (IBM) proposed by Arima
and Iachello [1–5] is very successful in describing low-lying spectra of medium and heavy
mass even–even nuclei [6,7]. Shape phase evolution in these nuclei has also been exten-
sively investigated [8–11]. The dynamical symmetry concept plays a dominant role in the
interacting boson model, for which group theoretical or algebraic techniques are powerful.
The model with no distinction between neutrons and protons is called IBM-1, which is
simply called IBM in this paper. In addition, as another application of symmetry concept
in nuclear structure, it has been shown very recently that the charge and matter radii of
4,6,8He and the sizes of the self-conjugate A = 4n nuclei calculated from the quantitative
geometrical thermodynamics in taking the symmetry of alpha-particle into account agree
closely with observed values [12].

In the IBM, an even–even nucleus is treated as an inert closed-shell core plus valence
nucleons or holes outside of the core. It is assumed that the valence-like nucleons are paired
with angular momentum l = 0 or 2, and can be approximately treated as s-bosons and
d-bosons. Hence, the IBM is equivalent to the shell model confined within the neutron
and proton valence shells truncated within S- and D-pair subspace [13] without Pauli
exclusion. Since the total number of valence nucleons is a conserved quantity, the total
number of bosons in the IBM is an invariant. The single s-boson and five d-boson creation
operators denoted as {s†, d†

ν} (ν = −2,−1, · · · , 2) form a basis of the vector representation
of the U(6) group [1,6]. Thus, the model Hamiltonian can be realized by 36 generators
{s†dν, d†

νs, d†
νdν′ , s†s} of the U(6) group after the second quantization procedure, and must

be kept as an SO(3) scalar due to the rotational symmetry of nuclei. As the consequence,
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for the given total number of bosons N, all possible linearly independent N-boson states
form the symmetric irreducible representation (irrep) [N, 0] of the U(6) group. Due to the
SO(3) invariance, the N-boson states organized as the basis vectors of the irrep [N, 0] of
U(6) classified in a group chain U(6)⊃SO(3) are convenient to be used in diagonalizing the
model Hamiltonian.

In previous IBM descriptions of Pt isotopes, the model Hamiltonian only contains
one- and two-body interactions [14,15]. However, electric quadrupole moments of low-
lying states near the O(6) limit are too small due to the O(6) selection rules, which is
obviously inconsistent to the experimental results. Besides the three- and four-body inter-
actions required to describe triaxiality, an exponential modification to the strength of the
quadrupole–quadrupole interaction has been proposed [16,17], which improves the fitting
quality of low-lying excited states, B(E2) values and electric quadrupole moments [17].
Based on the CQ Hamiltonian, we make use of the general quadrupole operators Qν(χ) in
replacing the SU(3) generators Qν(−

√
7/2) in the rigid triaxial rotor descriptions [18,19] or

the γ-soft rotor descriptions with the O(6) generators Qν(0) [17] to construct a more general
soft rotor model Hamiltonian, which is called the modified soft rotor model. The modified
soft rotor model Hamiltonian includes the general quadrupole–quadrupole interaction,
the three- and four-body terms, and the d-boson number operator. Hence, the model can
be used to describe medium and heavy mass even–even nuclei with better fitting quality.
As an example of the model application, some low-lying positive parity level energies,
B(E2) values and electric quadrupole moments of some low-lying states in the even–even
176–198Pt are fitted and compared to the experimental data and the results of the consistent-Q
formalism.

2. The CQ Formalism and Its Extension

The simplest IBM Hamiltonian contains only one- and two-body terms, with other pos-
sible higher-order terms neglected. The compact form, in which the quadrupole operators
in both the Hamiltonian and the E2 operator are taken to be the same, is called consistent-Q
(CQ) formalism [20,21]. In the CQ formalism, the model Hamiltonian is expressed as [15,22]

ĤCQ =c

(

η n̂d +
η − 1

4N
Q(χ) · Q(χ)

)

, (1)

where N is the total boson number, c is the scaling parameter, n̂d = Σνd†
νdν and

Qν(χ) = s†d̃ν + d†
νs + χ(d† × d̃)

(2)
ν with d̃ν = (−)νd−ν, which are the d-boson number

operator and quadrupole operator, respectively, (d† × d̃)
(k)
ν stands for the tensor coupling,

and the parameters η ∈ [0, 1] and χ ∈ [−
√

7
2 ,

√
7

2 ]. When the SO(3) irreps characterized by
the quantum numbers of the angular momentum of the bosons are embedded within the
irrep [N, 0] of U(6), there are three and only three possible ways [6]:

U(6) ⊃
U(5) ⊃ O(5)
O(6) ⊃ O(5)

SU(3) or SU(3)

⊃ SO(3), (2)

where U(5) is generators by (d† × d̃)
(k)
ν (k = 0, 1 · · · , 4), O(6) is generated by

{Lν′ =
√

10(d† × d̃)
(1)
ν′ , (d† × d̃)

(3)
µ , Qν(0)}, in which Lν′ (ν′ = −1, 0,+1) are the total

angular momentum operators of the bosons, SU(3) is generated by {Lν′ , Qν(−
√

7/2)},

while SU(3) is generated by {Lν′ , Qν(+
√

7/2)}. It should be noted that SU(3) is isomor-

phic to SU(3), but the generators of SU(3) are obviously different from those of SU(3) with
different geometric explanations shown in the following. When η = 1, the basis vectors of
U(6)⊃U(5)⊃O(5)⊃ SO(3) are eigenstates of the Hamiltonian (1), which is called the U(5)
(spherical) vibrational limit of the model. In the U(5) limit, the nuclear shape is spherical
with small β-vibration. When η = 0 and χ = 0, the eigenstates of the Hamiltonian (1) are
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the basis vectors of U(6)⊃O(6)⊃O(5)⊃ SO(3), which is called the O(6) (γ-unstable) limit. In
the O(6) limit, the nuclear shape is an ellipsoid with indefinite (unstable) triaxiality, where
the triaxiality 0◦ ≤ γ ≤ 60◦ and the dimensionless quadrupole deformation parameter β

are the Bohr variables to describe the shape of an ellipsoid used in the collective model [23].
When η = 0 and χ = ∓

√
7/2, the eigenstates of the Hamiltonian (1) are the basis vectors

of U(6)⊃SU(3)⊃ SO(3) with the minus sign or U(6)⊃SU(3)⊃ SO(3) with the plus sign. The
former is called the SU(3) limit, in which the nuclear shape is an axially deformed prolate

ellipsoid with γ = 0◦, while the latter is called the SU(3) limit, in which the nuclear shape
is an axially deformed oblate ellipsoid with γ = 60◦. In the three limiting cases, the Hamil-

tonian (1) is invariant under the U(5), O(6), SU(3) [SU(3)] transformation, respectively.

Therefore, U(5), O(6), and SU(3) (SU(3)) are the dynamical symmetry groups in the three
limiting cases, respectively. Accordingly, within the CQ formalism, the shape of a nucleus
is determined by the parameters (η, χ), which can be represented vividly by the extended
Casten triangle [8,9] shown in Figure 1, where the three vertices are labeled by the three

limits of the CQ Hamiltonian, the U(5)–SU(3) and U(5)–SU(3) sides are the connection of
the (η = 1, χ = ∓

√
7/2) and (η = 0, χ = ∓

√
7/2) vertices, while the SU(3)–SU(3) side

is the connection of the (η = 0, χ = −
√

7/2) and (η = 0, χ =
√

7/2) vertices, and the
O(6) point with (η = 0, χ = 0) is on the SU(3)–SU(3) side. The above correspondence
between the special IBM parameters and the shape defined by the Bohr variables (β, γ)
in the collective model was established by using the coherent state formalism [24–26]. By
using the coherent state formalism, it is further shown that, besides the limiting cases,
the point at (η = 0.5, χ = 0) along the U(5)–O(6) line shown in Figure 1 is the critical
point of the U(5) (spherical) to the O(6) (γ-unstable) shape phase transition in the large-N
limit, which is called the E(5) dynamical symmetry in the collective model [27]. Similarly,

the point at (η = 0.4707, χ = ∓
√

7/2) on the U(5)–SU(3) [SU(3)] side is the critical point

of the U(5) (spherical) to the SU(3) [SU(3)] (axially deformed) shape phase transition in

the large-N limit, which is called the X(5) [X(5)] dynamical symmetry in the collective
model [28]. Anyway, the extended Casten triangle elucidates possible nuclear shapes and
their evolutions with the variation of the model parameters η and χ in the CQ formalism,
except that the triaxial shapes are missing.

2/7

2/7

0h=0.5,

h=0,

h=1

U(5) SU(3)X(5)

X(5)

E(5)

O(6)

SU(3)

hC=0.4707

hC=0.4707 0

h=0,

h=0,

Figure 1. The extended Casten triangle in representing the entire parameter range of the IBM CQ

formalism with the correspondence of the special model parameter values to the limits and the critical

points of the shape phase transitions.

Since the IBM Hamiltonian with up to two-body interactions is unable to describe
stable triaxial deformation, in order to reproduce a γ-rigid triaxial shape, higher-order terms
have to be included [29–35]. For example, the IBM Hamiltonian with [[d† × d†](k) × d†](3) ·
[[d̃ × d̃](k

′) × d̃](3) term can give rise of the stable triaxial deformation [30]. It is shown that
the double γ anharmonic vibration reflects the importance of three-body interaction [31].
A similar conclusion was also made in [32,33]. Moreover, the O(6) symmetry-conserving
higher-order interactions were investigated [34]. The influences of symmetry-conservation
higher-order interactions in the β- and γ-band of the IBM SU(3) limit were also discussed
in detail [35], where the β-band refers to the excited levels following the rotational level
pattern established on the first excited 0+ level, and γ-band refers to those established on
the second excited 2+ level in the collective model, in which the β-band head (the first
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excited 0+ level) is due to the β-vibration excitation, while the γ-band head (the second
excited 2+ level) is due to the excitation related to the γ-vibration energy. In this case,
the even–even nucleus concerned is assumed to be axially deformed with small β- and
γ-vibrations. The situation in the transitional nuclei is different because the nuclear shape
in this case is not prolate and often γ-unstable. Therefore, levels established on the second
excited 2+ level in transitional nuclei are often called quasi γ-band. In addition, it is
shown that the rotational spectra, which is the result of the two-body SU(3) quadrupole–
quadrupole interaction, can also be generated by using the triple coupling scalar of the
O(6) quadrupole operator [36]. Although the two descriptions can offer similar rotational
spectra, the electromagnetic transitional properties are quite different [37]. The model with
the triple coupling scalar of the O(6) quadrupole operators was also used to describe the
triaxial deformation and the prolate to oblate shape phase evolution [38].

In the IBM, the SU(3) implementation of a rigid triaxial rotor was established [18,19]
based on the early observation [39,40]. Specifically, a general rotor Hamiltonian is given as

Hrot = A1L2
1 + A2L2

2 + A3L2
3 , (3)

where Lα is the projection of the angular momentum onto the α-th body-fixed principal
axis, and Aα is the corresponding inertia parameter, which can be expressed in terms of the
Bohr variables (β, γ) in the collective model [23]. The asymmetry parameter κ related to
the inertia ellipsoid is defined by

κ = (2A1 − A2 − A3)/(A3 − A2) . (4)

The rotor is prolate when A1 = A2 < A3 with κ = −1; oblate when A2 < A1 = A3 with
κ = +1; and most asymmetric when A1 = 1

2 (A2 + A3) with κ = 0 [39,40]. It is obvious
that the shape referred to here is the dynamical shape determined by the inertia parameters
along the principal axes, though it coincides with the geometric shape of the rotor in most
cases. The algebraic image of the general rotor Hamiltonian (3) can be realized [39,40]
by rewriting Hrot in a frame-independent form by introducing and using the angular
momentum Lu and the mass quadrupole tensor operators Qu with

Lu =
∫

ρ(~r)(~r ×~v)u dτ ,

Qν =
√

16π/5
∫

ρ(~r)r2Y2ν(Ω) dτ , (5)

where ρ(~r) is the nuclear mass density, and the integration is over the whole nuclear volume.
It can be proven that these operators satisfy the following commutation relations:

[Lu, Lν] = −
√

2〈1u, 1v|1u + v〉Lu+ν ,

[Lu,Qν] = −
√

6〈1u, 2v|2u + v〉Qu+ν , (6)

[Qν,Qν′ ] = 0 ,

which thus generate the dynamical symmetry group of the quantum rotor, the semidirect
product group T5 ⊗s SO(3). In the body-fixed principal-axial system, one has [39,40]

L2 = L2
1 + L2

2 + L2
3 ,

X3 = ∑
αβ

LαQαβLβ = λ1L2
1 + λ2L2

2 + λ3L2
3 , (7)

X4 = ∑
αβγ

LαQαβQβγLγ = λ2
1L2

1 + λ2
2L2

2 + λ2
3L2

3 ,

where Lα and Qαβ are the Cartesian form of Lu and Qu introduced in (5), and λα are
the eigenvalues of Q in the body-fixed principal-axial system: 〈Qαβ〉 = λαδαβ. From (7),
we have
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L2
α = [(λ1λ2λ3)L2 + λ2

αXc
3 + λαXc

4]/(2λ3
α + λ1λ2λ3) . (8)

Thus, the rotor Hamiltonian (3) can be expressed as [39,40]

Hrot = aL2 + bX3 + b′ X4 , (9)

where the parameters a, b, and b′ depend on the inertia parameters Aα and the eigenvalues
of Q with

a = ∑
α

zα Aα, zα = λ1λ2λ3/Dα ,

b = ∑
α

bα Aα, bα = λ2
α/Dα , (10)

b′ = ∑
α

cα Aα, cα = λα/Dα ,

and
Dα = 2λ3

α + λ1λ2λ3 . (11)

The expression (9) was used to make the SU(3) realization of the rotor Hamiltonian in
the IBM framework [18,19]. In the SU(3) realization [18,19], the mass quadrupole tensor
components Qν is replaced by the SU(3) generators Qν(−

√
7/2). Hence, besides the L2

term, the high order terms

X3 = (L × Q(−
√

7/2)× L)(0),

X4 =
(

(L × Q(−
√

7/2))(1) × (L × Q(−
√

7/2)(1)
)(0)

(12)

should be included in the Hamiltonian to describe a rigid rotor with fixed triaxiality [18,19,39].
Recently, it has been further shown that the IBM with the SU(3) third-order term can be
used to describe the oblate shape [41] and to explain the B(E2) anomaly in some neutron
deficient nuclei [42–44]. It should be pointed out that the inertia parameters along the
principal axes are indefinite due to the fact that γ is a variable in the O(6) limit, which
answers why it is called γ-unstable, while the inertia parameters along the three principal
axes are fixed when the rotor is realized in the SU(3) limit with nonzero b and b′ in (9)
corresponding to the rigid triaxial (γ-rigid) case.

Since the triaxiality of the rotor is always fixed when X3 and X4 are realized by using
the SU(3) generators Qν(−

√
7/2) [19] or γ-indefinite (unstable) when the O(6) generators

Qν(0) are used in X3 and X4, in order to describe a more general situation of triaxial nuclei,
we use the general quadrupole operators Qν(χ) with χ ∈ [−

√
7/2,

√
7/2] to construct

the high order terms X3 and X4, with which the model is called modified soft rotor. The
modified soft rotor model covers not only the rigid triaxial case with χ = ∓

√
7/2 and

the γ-indefinite (unstable) case with χ = 0, but also the intermediate (soft) case with
χ ∈ (−

√
7/2, 0)

⋃

(0,
√

7/2).

3. The Modified Soft Rotor Model

Based on the CQ Hamiltonian, in addition to the d-boson number operator and
quadrupole–quadrupole interaction, the three- and four-body terms are introduced to
cover the emergence of triaxiality. Thus, the modified soft rotor model Hamiltonian is
expressed as

Ĥ =c0

(

η n̂d +
η − 1

4N
eξ Q·Q Q(χ) · Q(χ) +

2a1

N2

(

L̂ × Q(χ)× L̂
)(0)

+
4a2

N3

(

(L̂ × Q(χ))(1) × (L̂ × Q(χ))(1)
)(0)

+
a3

4N
L̂ · L̂

)

, (13)
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where ξ, a1, a2, a3 are the dimensionless real parameters, and Qν ≡ Qν(−
√

7/2) in the
exponential of the second term is adopted, which is introduced to reduce the excitation
energies of the eigenstates with higher angular momentum, while the other terms are the
same as those shown in (1). The microscopic shell model foundation of these high-order

interactions is shown in [16]. Most importantly, instead of Qν(−
√

7
2 ) for the rigid rotor in

the SU(3) limit or Qν(0) of the γ-unstable rotor in the O(6) limit, the general quadrupole

operators Qν(χ) with χ ∈ [−
√

7
2 ,

√
7

2 ] are used in the three- and four-body terms. The
Hamiltonian (13) not only maintains the consistency to the CQ Hamiltonian, but also covers
the emergence of triaxiality, so it should provide a better description of structural evolution
of medium and heavy mass nuclei.

It should be noted that the full set of the basis vectors of any group chain shown
in (2) is complete. The Hamiltonian (13) is diagonalized in theU(6)⊃SU(3)⊃SO(3)⊃SO(2)
basis, of which the basis vectors are denoted as {|N (λ µ) κ, L M〉}, where (λ, µ) labels the
irreducible representation of the SU(3) group, κ is the additional quantum number required
in the reduction SU(3) ↓ SO(3), L is the quantum number of the angular momentum, and
M is the quantum number of the angular momentum projection. Thus, the eigenstates of
the Hamiltonian (13) can be expressed as

|NLς〉 = ∑
(λ µ)κ

C
Lς

(λ µ)κ
|N(λ µ)κL〉, (14)

where ς labels different eigenstates, but with the same L, and C
Lς

(λ µ)κ
is the expansion

coefficient. As with the CQ formalism, the E2 transition operators is defined as

Tν(E2) = q2 Qν(χ), (15)

where q2 is the effective boson charge-related parameter. Hence, the B(E2) values are
given by

B(E2; Lς → L′
ς′) =

1

2L + 1
|〈N L′

ς′‖T(E2)‖N Lς〉|2, (16)

in which the reduced matrix element 〈N L′
ς′‖T(E2)‖N Lς〉 is defined in terms of the 3j-

symbol according to the Wigner–Eckart theorem. A Fortan code of this work is written
based on the results shown in [15,45], in which the SU(3) ⊃ SO(3) Wigner coefficients are
taken from the Draayer–Akiyama code [46].

4. Shape Phase Transition in 176–198 Pt

Shape phase transition and possible cross-shell excitations in even–even Pt isotopes
with mass number 172 ≤ A ≤ 194 have been investigated. In [14,15,47], the analysis on
the shape phase transition behaviors from the prolate to γ-unstable then to the oblate
shape in several lower excited states of the even–even Pt isotopes was made by using
the CQ Hamiltonian without configuration mixing. The IBM-2 model calculation for the
even–even Pt isotopes was reported in [48], in which only the level energies up to 8+1 state
in the yrast band and a few excited states in the quasi-β and quasi-γ band and the electric
quadrupole moment of 2+1 state were fitted, where the yrast band consists of a series of the
lowest energy levels for given quantum number of the angular momentum. In these Pt
isotopes, configuration mixing with intruder excitation is likely to occur. A comparison and
analysis of the model with and without configuration mixing are made in [49], in which
possible intruder states in the excitation spectra of Pt isotopes are pointed out. In [17], the
configuration mixing calculation of the low-lying spectrum of 194Pt is carried out in the
γ-soft rotor model, in which the O(6) quadrupole operators are used. The results show
that the γ-soft rotor model fitting results to the low-lying level energies and the electric
quadrupole moments are much improved.
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As an example of the modified soft rotor model application, the low-lying excitation
spectra and the electromagnetic transitional properties of even–even 176–198Pt are fitted and
compared to the experimental data and the results of the consistent-Q formalism, in which
the configuration mixing is not considered for simplicity.

Since the IBM is equivalent to the valence shell model calculation, it is only suit-
able to describe low-lying positive parity states of medium and heavy even–even nuclei
except for 1+ states, which are due to the proton–neutron coupling or cross-shell particle-
hole excitation. Hence, in this work, except 1+ levels, only low-lying positive-parity
level energies and related electromagnetic properties of even–even 176–198Pt are consid-
ered. Moreover, experimentally measured level energies in smaller mass Pt are fewer,
which also limits the number of levels to be fitted. In this work, the highest level en-
ergy Emax to be fitted in even–even 176–198Pt are set as follows: Emax = 0.91 MeV for 176Pt,
Emax = 0.8 MeV for 178Pt, Emax = 1.2 MeV for 180Pt, Emax = 1.3 MeV for 182Pt, Emax = 1.06 MeV
for 184Pt, Emax = 0.935 MeV for 186Pt, Emax = 1.7 MeV for 188Pt, Emax = 2.08 MeV for 190Pt,
Emax = 1.95 MeV for 192Pt, Emax = 2.6 MeV for 194Pt, Emax = 2.3 MeV for 196Pt, and
Emax = 2.1 MeV for 198Pt.

The modified soft rotor model has seven parameters. In order to reveal the influ-
ences of the modified soft rotor terms, the present model results are compared with those
of the CQ formalism, which only has three parameters. The parameters of the present
model and those of the CQ formalism adopted after best fits are shown in Tables 1 and 2,
respectively, in which the corresponding boson number is also provided. As shown in
Table 1, the parameter ξ in the exponential is a very small quantity, but very sensitive to
the excitation energy of the states with higher angular momentum. The exponential term
effectively brings the excitation energy of the states with higher angular momentum closer
to the corresponding experimental value. Furthermore, although the model parameters of
higher-order terms are small, the energy contribution of these higher-order terms to the
excitation energies is still significant. Therefore, relatively larger values of the parameters
of the CQ formalism with only one- and two-body interactions are required as shown in
Table 2. It is also noticeable that the parameters c or c0 and η of both the models are not
continuous functions of the mass number, which is consistent to the description of 174−200Pt
shown in [14,15,47,50], in which 174−186Pt and 188−200Pt are grouped separately with the
parameters in each group as continuous functions of the mass number A. Specifically,
176–186Pt are near to the critical point of the spherical to prolate shape, for which η varies
in the range η ∈ [0.45, 0.48], while η becomes smaller in 188–198Pt with η ∈ [0.11, 0.19],
indicating that the quadrupole deformation of these nuclei becomes larger. In addition, the
three- and four-body interactions become more important in 188–198Pt in the present model
indicating the emergence of soft triaxiality in these nuclei.

Table 1. The parameters of the modified soft rotor model determined by the best fit to the excitation

energies of 176–198Pt.

Nucleus ξ c0 (MeV) η a1 a2 a3 χ N

176
78 Pt98 −0.008 0.6216 0.4795 0 0 0.1287 −1.1218 10
178
78 Pt100 0 0.8363 0.4594 0 0 0.1841 −1.0001 11
180
78 Pt102 0.0002 0.9624 0.4483 −0.0449 0 0.0499 −0.8625 12
182
78 Pt104 0.0006 0.9996 0.4462 0 −0.1648 0 −0.6456 13
184
78 Pt106 0.0007 0.9481 0.4530 0.1747 −0.0775 0.2886 −0.6085 12
186
78 Pt108 0.001 0.8079 0.4690 0 −0.2471 0 −0.4868 11
188
78 Pt110 0.0011 1.0696 0.1061 −0.2197 −0.5142 0 −0.0159 10
190
78 Pt112 0.00201 1.0708 0.1225 −0.3707 −0.2638 0.1009 0.0265 9
192
78 Pt114 0.0009 1.0514 0.1389 −0.2587 −0.4614 0.2395 0.0635 8
194
78 Pt116 0.0014 1.0113 0.1553 −0.2083 −0.3281 0.2547 0.0741 7
196
78 Pt118 0.001 0.9507 0.1717 −0.2007 −0.3380 0.2777 0.0846 6
198
78 Pt120 0.00148 0.8694 0.1882 −0.2085 −0.3810 0.2553 0.0953 5
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Table 2. The parameters of the CQ Hamiltonian determined by the best fit to the excitation energies

of 176–198Pt.

Nucleus c (MeV) η χ N

176
78 Pt98 0.9814 0.5240 −1.2382 10
178
78 Pt100 1.0296 0.4761 −1.1959 11
180
78 Pt102 1.0402 0.4457 −0.9631 12
182
78 Pt104 1.0133 0.4329 −0.7461 13
184
78 Pt106 0.9490 0.4376 −0.7302 12
186
78 Pt108 0.8471 0.4598 −0.6456 11
188
78 Pt110 1.3784 0.3609 −0.1058 10
190
78 Pt112 1.7264 0.2848 −0.0212 9
192
78 Pt114 1.9379 0.2182 0.0159 8
194
78 Pt116 2.0130 0.1612 0.0688 7
196
78 Pt118 1.9515 0.1138 0.1111 6
198
78 Pt120 1.7535 0.0759 0.1217 5

In order to reduce the adjustable parameters of the model, a polynomial of the mass
number A fit to the parameters c0 and η is made, from which these two parameters can be
expressed in terms of the mass number A as

c0 =

{

−365.851 + 4.03488A − 0.0110946A2, 176 ≤ A ≤ 186,
−91.0528 + 0.97428A − 0.00257589A2, 188 ≤ A ≤ 198,

η =

{

37.5408 − 0.408827A + 0.00112643A2, 176 ≤ A ≤ 186,
− 1.43657 + 0.00820571A, 188 ≤ A ≤ 198,

which are quite similar to the empirical formulae shown in [15]. Similarly, the parameters c
and η in the CQ formalism are expressed as

c =

{

−150.104 + 1.68344A − 0.0046875A2, 176 ≤ A ≤ 186,

−640.823 + 6.62379A − 0.0170629A2, 188 ≤ A ≤ 198,

η =

{

73.3809 − 0.799588A + 0.00219107A2, 176 ≤ A ≤ 186,

50.2558 − 0.490327A + 0.00119643A2, 188 ≤ A ≤ 198.

The fitting quality of the two models is measured by

σ(E) =

(

1

N0 − Npar

N0

∑
i=1

(Ei,theor − Ei,expt)
2

)1/2

(17)

where Npar is the number of parameters, N0 is the total number of level energies to be
fitted, Ei,theor and Ei,expt are the level energies of the theory and the corresponding ex-
perimental data, respectively. The root-mean-square deviation of the fitting result to the
excitation energies of 176–198Pt under Emax is σ(E) = 0.215 MeV in the present model, while
σ(E) = 0.768 MeV in the CQ formalism, indicating that the fitting quality of the present
model is much better, which manifests the high-order interactions included in the modified
soft rotor model are of importance.

The low-lying levels of 176–198Pt are presented in Figure 2, in which the corresponding
levels obtained from the present model and the CQ formalism (CQ) are also shown. It is
shown that the fitting quality becomes better and the number of levels to be fitted becomes
more with the increasing of the mass number. In comparison to the CQ formalism, the
fitting quality of the present model in the ground-state band of 176–186Pt is better. As the
mass number increases, the fitting quality of the present model is significantly better than
the CQ formalism for 188–198Pt, which implies that higher-order interactions play important
roles in these nuclei. The fitting results show that 176–186Pt are in the vibration-prolate phase
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transitional region, and 188–190Pt are in the U(5)-O(6) transitional region, while 192,194,196Pt is
near to the O(6) limit (γ-unstable) point, which is consistent with the previous conclusions
shown in [49,51].

Experimentally, the 0+2 level is lower than that of 4+1 in 198Pt, which is a characteristic
in the U(5) (vibrational) spectrum. Thus, 198Pt seems closer to the three-phase coexis-
tence point with both spherical vibration and unstable triaxial deformation. The obvious
shortcoming of the present model is that the 0+2 level of 192−196Pt is lower than the corre-
sponding experimental value. In addition, the 0+2 state of 176–188Pt may be an intruder state
as analyzed in [52–54]. Except the 0+2 level of 176Pt, which is higher than the experimental
value, the other level energies of 178−188Pt with the excitation energy less than Emax are
well-fitted. Moreover, the 0+4 state of 192Pt may be an intruder state [51]. Similarly, the 0+4 ,
2+7 and 2+11 states of 194Pt may also be the intruder states [17]. These possible intruder level
energies are higher than Emax and not considered in the present work.

Figure 3 shows the evolution behaviors of the 2+1 , 4+1 , 0+2 , 2+2 , 6+1 levels of 176–198Pt in
the present model and the CQ formalism. As shown in Figure 3, though the deviation of
the CQ formalism is larger, the evolution behaviors of these levels revealed from both the
models follow the experimental data pattern except for the 0+2 level.
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Figure 2. The low-lying energies of even–even 176–198Pt. The experimental data are taken

from [55–66].

As shown in [8,9], several energy ratios are useful order parameters in elucidating the
shape phase transitions, which are

R4/2 =
E(4+1 )

E(2+1 )
, R2/1 =

E(2+2 )

E(2+1 )
, R0/2 =

E(0+2 )

E(2+1 )
. (18)
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For example, in both the IBM and the collective model [8,9], R4/2 = 10/3 when the nuclear
shape is prolate or oblate, R4/2 = 2.5 when the shape is γ-unstable, and R4/2 = 2 when the
shape is near spherical. The energy ratios R4/2, R2/1, and R0/2 of 176–198Pt are presented
in Figure 4, which clearly shows that R4/2 and R2/1 obtained from the present model are
closer to the experimental data. It can be observed that, with the increasing of the mass
number A, these Pt nuclei evolve from the spherical shape with R4/2 ∼ 2.15 to the γ-soft
triaxial shape with R4/2 ∼ 2.4. Though the R0/2 curves of both the models roughly follow
the experimental data pattern, there are significant deviations from the corresponding
experimental data, especially those of 188–198Pt, which should be further improved.
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Figure 3. The low-lying level energies of even–even 176–198Pt as functions of the mass number A.

(a) The present model; (b) the CQ formalism.
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Figure 4. The energy ratios of even–even 176–198Pt as functions of the mass number A. (a) R4/2;

(b) R2/1; (c) R0/2, where the horizontal dotted lines from the top to the bottom are the values at the

SU(3), the O(6), and the U(5) limit, respectively, accept for panel (c), in which the SU(3) limit value is

too large and not included.

Besides the level energies, E2 transition rates and electric quadrupole moments are
also the key quantities to be analyzed. Once the model parameters are determined in fitting
to the level energies, the effective boson charge parameter q2 is determined by the exper-
imental B(E2; 2+1 → 0+1 ) except for 178Pt, which is determined by the experimental B(E2;
4+1 → 2+1 ) because the experimental B(E2; 2+1 → 0+1 ) of 178Pt is unavailable. The theoretical
and the corresponding experimental B(E2) values of 176–198Pt for several transitions among
the excited states concerned are shown in Tables 3 and 4, in which the standard deviations
of the experimental results are given in parentheses on the right side of the corresponding
experimental values. The underlined theoretical value indicating the effective boson charge
parameter q2 is determined by the corresponding experimental value. Except for a few
inter-band transitions, the E2 transition rates within the yrast band are well fit by both
the models.
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Table 3. Some B(E2) values (in W.u.) and the corresponding half-lives (in ps) of 176–186Pt calculated

from the present model and the CQ formalism. The experimental data are taken from [55–63], where

the symbol “–” indicates that the corresponding value is experimentally not available.

Lς −→ L
′

ς′ BExp(E2) BThis Work(E2) BCQ(E2) (T1/2)Exp (T1/2)This Work (T1/2)CQ

176Pt 2+1 → 0+1 87(8) 87.011 87.008 76 130.180 130.184

4+1 → 2+1 163(15) 148.646 159.366 22.2 40.214 37.509
6+1 → 4+1 174(16) 191.204 197.981 11.2 16.237 15.681
8+1 → 6+1 192(25) 217.843 215.919 4.7 6.512 6.570

178Pt 4+1 → 2+1 195(17) 195.068 195.009 37.5 65.430 65.450

6+1 → 4+1 186(14) 231.816 232.173 10.9 13.993 13.971
8+1 → 6+1 206(23) 248.684 249.205 – 4.789 4.779

180Pt 2+1 → 0+1 154(15) 154.051 154.027 374 1091.599 1091.769

4+1 → 2+1 3.1 × 102 (4) 247.620 251.145 22.9 49.808 49.109

6+1 → 4+1 ≥50 290.043 296.687 ≤35 9.662 9.446

182Pt 2+1 → 0+1 114(8) 114.002 114.004 479 1361.953 1361.929

4+1 → 2+1 192(12) 176.723 184.507 32.5 61.294 58.708
6+1 → 4+1 292(20) 203.217 219.257 5.28 12.124 11.237

184Pt 2+1 → 0+1 127(5) 127.009 127.014 360 936.807 936.770

2+3 → 0+1 >0.0100 2.960 1.385 ≤0.0015 10.800 23.081
2+3 → 0+2 >0.095 47.809 74.740 ≤0.0015 52.991 33.897
4+1 → 2+1 210(8) 202.506 207.042 25.3 44.583 43.606
6+1 → 4+1 226(12) 236.014 246.825 6.1 9.331 8.923
8+1 → 6+1 271(18) 251.128 267.136 2.15 3.623 3.406

186Pt 2+1 → 0+1 94(5) 94.010 94.426 240 550.146 547.722

188Pt 2+1 → 0+1 89(4) 89.167 89.014 66 112.028 112.220

4+1 → 2+1 150(+4-5) 117.39 129.247 5.1 10.400 9.446
6+1 → 4+1 158(15) 132.752 148.733 1.53 2.820 2.517
8+1 → 6+1 118(17) 137.830 155.836 0.97 1.262 1.116

190Pt 2+1 → 0+1 56(3) 56.010 56.018 62.3 103.070 103.055

192Pt 2+1 → 0+1 57.2(12) 57.199 57.198 43.7 70.653 70.654

2+2 → 0+1 0.55(4) 1.911 0.004 26.5 78.849 37,670.042
2+2 → 2+1 109(7) 69.760 77.975 26.5 81.611 73.013
4+1 → 2+1 89(5) 77.345 78.108 4.2 7.450 7.377
3+1 → 2+1 0.68(7) 1.525 0.007 21.3 105.526 22,989.550
3+1 → 2+2 102(10) 46.093 60.795 21.3 101.257 76.770
6+1 → 4+1 70(30) 84.382 84.901 1.8 2.316 2.302
3+1 → 4+1 38(10) 26.257 24.342 21.3 10,589.454 11,422.533

Table 4. The same as Table 3, but for 194−198Pt. The experimental data are taken from [64–67].

Lς −→ L
′

ς′ BExp(E2) BThis Work(E2) BCQ(E2) (T1/2)Exp (T1/2)This Work (T1/2)CQ

194Pt 2+1 → 0+1 49.2(8) 49.214 49.205 41.7 68.261 68.274

2+2 → 0+1 0.29(4) 1.008 0.137 35 135.900 999.908
2+2 → 2+1 89(11) 62.116 63.507 35 93.474 91.427
4+1 → 2+1 85(5) 65.238 66.106 3.7 7.437 7.339
4+2 → 2+1 0.36(7) 1.279 0.0003 3.8 16.793 71,595.730
4+2 → 2+2 21(4) 36.687 36.299 3.8 4.219 4.229
4+2 → 4+1 14 24.721 31.944 3.8 40.428 31.287
0+2 → 2+1 0.63(14) 3.269 0.396 6.1 5.344 44.117
0+2 → 2+2 8.4(19) 87.311 67.085 6.1 1.308 1.703
3+1 → 4+1 <75 21.289 19.870 – 35,551.848 38,090.754
3+1 → 2+2 100 42.538 50.148 – 121.345 102.931
3+1 → 2+1 <0.64 0.766 0.190 – 225.150 907.709
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Table 4. Cont.

Lς −→ L
′

ς′ BExp(E2) BThis Work(E2) BCQ(E2) (T1/2)Exp (T1/2)This Work (T1/2)CQ

194Pt 6+1 → 4+1 67(21) 69.313 69.965 1.6 2.347 2.325

8+1 → 6+1 50(14) 64.454 66.068 1.1 1.284 1.252
8+2 → 6+2 53(10) 40.362 42.628 0.61 1.222 1.157

196Pt 2+1 → 0+1 40.60(20) 40.608 40.605 34.15 54.244 54.248

2+2 → 0+1 4 × 10−6(4) 1.373 0.309 33.8 59.081 262.519

2+3 → 0+2 5(5) 0.003 11.079 – 7,121,171.886 1928.289
2+3 → 0+1 0.0025(24) 0.064 0.033 – 42.145 81.735
0+2 → 2+2 18(10) 69.587 51.888 4.2 10.143 13.602
0+2 → 2+1 2.8(15) 3.072 0.545 4.2 14.201 80.047
0+3 → 2+1 <5.0 1.046 0.380 1.6 9.571 26.345
0+3 → 2+2 <0.41 0.009 1.218 1.6 7541.910 55.728
2+2 → 2+1 54(+11-12) 45.337 50.195 33.8 31.224 28.203
2+3 → 2+2 0.26(23) 0.277 0.086 – 329.352 1060.819
4+1 → 2+1 60.0(9) 53.551 53.566 3.55 6.127 6.125
4+2 → 2+2 29(+6-29) 28.837 28.323 2.6 5.389 5.487
4+2 → 2+1 0.56(+12-17) 0.691 0.002 2.6 25.103 8673.028
2+3 → 4+1 0.13(12) 0.600 0.370 – 782.267 1268.541
4+2 → 4+1 17(6) 18.093 23.829 2.6 55.878 42.427
6+1 → 4+1 73(+4-73) 54.709 54.661 0.98 2.000 2.001
6+3 → 4+1 0.48(14) 0.029 0.0003 0.77 234.695 22,687.186
6+3 → 4+2 49(13) 0.036 0.008 0.77 1885.478 8484.649
6+3 → 6+1 16(5) 0.007 0.020 0.77 69,886.211 24,460.174
8+1 → 6+1 78(+10-78) 47.562 48.542 0.42 1.304 1.278

198Pt 2+1 → 0+1 31.81(22) 31.813 31.818 22.25 34.950 34.945

2+2 → 0+1 0.038(12) 1.035 0.148 27 42.912 300.093
2+3 → 0+1 0.05(3) 0.066 0.009 9.7 54.756 401.545
2+3 → 2+1 0.6(4) 0.003 0.0001 9.7 8209.613 246,288.402
2+3 → 2+2 2.2(15) 0.469 0.060 9.7 806.114 6301.127
2+2 → 2+1 37(7) 34.484 37.277 27 54.085 50.033
0+2 → 2+1 26(7) 2.225 0.302 – 166.593 1227.382
4+1 → 2+1 38(4) 40.519 40.567 3.3 4.750 4.745
6+1 → 4+1 >57 38.899 39.092 ≤ 0.7 1.550 1.543

In addition, the half-lives (in second) due to E2 decay in the IBM can be estimated
by [68]

(T1/2)IBM =
1

1.23 × 109 × E5
γ × ln 2 × BIBM(E2)

(19)

based on the standard definition [69], where Eγ (in MeV) is the transition energy between
the two levels, and the unit of B(E2) is e2fm4. As shown in Tables 3 and 4, though there
are obvious deviations in the T1/2 values, except for a few exceptions, the data pattern
of the results of this work and those of the the CQ formalism roughly follow that of the
experimental data.

The quadrupole moments of some low-lying states of 192−198Pt obtained from both
the models and the corresponding experimental data are shown in Table 5. It can be
observed that Q(2+1 ) and Q(4+1 ) values of the present model are closer to the corresponding
experimental results, but deviations in the values of other states from the experimental
data are noticeable. Though the experimental data of 176–198Pt are still absent, the evolution
behaviors of Q(2+1 ) and Q(4+1 ) as functions of the mass number A are shown in Figure 5,
which indicates the shape evolution from prolate to oblate with the increasing of the
mass number.
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Table 5. Some quadrupole moments (in eb) of 188–194Pt. The experimental data are taken from [63–66].

Experiment This Work CQ

192Pt Q(2+1 ) +0.55(21) +0.478 +0.051
194Pt Q(2+1 ) +0.409(+62

−43) +0.348 +0.267

Q(2+2 ) −0.303(+93
−37) −0.322 −0.249

Q(4+1 ) +0.752(+92
−105) +0.624 +0.268

Q(4+2 ) −0.06(11) +0.111 −0.106

Q(6+1 ) +0.195(+85
−188) +0.794 +0.263

Q(8+1 ) −0.06, 0.28 +0.908 +0.262
196Pt Q(2+1 ) +0.62 +0.503 +0.399

Q(2+2 ) −0.39 −0.474 −0.372
Q(4+1 ) +1.03 +0.662 +0.397
Q(6+1 ) −0.18 +0.762 +0.380

198Pt Q(2+1 )
+0.42(12),
0.54(12)

+0.431 +0.305
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Figure 5. The electric quadrupole moments of even–even 176–198Pt as functions of the mass number

A. (a) Q(2+1 ); (b) Q(4+1 ).

In order to reveal the shape evolution of 176–198Pt further, the polar coordinates are
used to plot the parameter evolution within the extended Casten triangle shown in Figure 1,
which is illustrated in Figure 6. The model parameters η and χ are converted into the radial
and angular variables (ρ, θ) with

ρ =

√
3(1 − η)

2 cos π χ

3
√

7

, θ =
π

6
+

π χ

3
√

7
, (20)

where 0 ≤ η ≤ 1, −
√

7
2 ≤ χ ≤

√
7

2 , so that 0 ≤ ρ ≤ 1 and 0◦ ≤ θ ≤ 60◦. Thus, ρ = 0 and
θ = 0 correspond to the U(5) limit; ρ = 1 and θ = 0 correspond to the SU(3) limit; ρ = 1 and

θ = 60◦ correspond to the SU(3) limit, ρ = 0.866 and θ = 30◦ correspond to the O(6) limit.
Furthermore, when θ = 0◦ or 60◦ the parameter ρ changes within the closed interval [0,1],

there exists the first-order phase transition from the U(5) limit to the SU(3) or SU(3) limit,

of which the critical point is labeled as X(5) or X(5) in Figures 1 and 6. The corresponding
value ηc is given by [26]

ηc =
14

28 + χ2
c
= 0.4707 (21)

with χc = ∓
√

7
2 . Similarly, there is the critical point of U(5)-O(6) transition with ρ =

√
3/4

and θ = 30◦, of which the point in the extended Casten triangle is labeled as E(5). By
using (20), the trajectories of these even–even Pt isotopes determined by the two parameters
of both the models in the extended Casten triangle are shown in Figure 7. It can be seen
that the two discontinuous trajectories determined by the two models are quite similar
to the previous results [14]. The reason that the evolution trajectory of 188–198Pt in the
present model is in opposite direction of that in the CQ formalism is due to the significant
contribution of the third and fourth order terms involved in the present model, as clearly
shown by the parameters presented in Table 1.



Symmetry 2021, 14, 2610 14 of 17

X(5)

E(5)

SU(3)U(5)
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Figure 6. The extended Casten triangle in the polar coordinates.
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Figure 7. 176–198Pt evolution trajectories in the extended Casten triangle. (a) The present model;

(b) the CQ formalism.

5. Conclusions

Based on the IBM CQ formalism, the exponential type modification to the strength
of the quadrupole–quadrupole interaction with three- and four-body interactions are
introduced. As an example of the model application, low-lying positive-parity level
energies, the related B(E2) values, and some electric quadrupole moments of even–even
176–198Pt are fitted and compared to the experimental data and the results of the consistent-Q
formalism.

The results show that the exponential modification to the quadrupole–quadrupole
interaction effectively reduces the excitation energies of excited states with higher angular
momentum in accordance to the experimental data, which cannot be achieved in the original
consistent-Q formalism. The higher-order interactions introduced in the present model
make the level energies of the ground-state band and the quasi-γ band much improved,
especially in the isotopes with large mass number, so that the fitting results of level energies
of these nuclei are significantly improved, indicating that the high-order interactions are
of importance in these nuclei. Though the B(E2) values of the transitions within the yrast
band are all well fit by both the models, the electric quadrupole moments Q(2+1 ) and Q(4+1 )
obtained from the present model are also significantly better than those obtained from
the CQ formalism. However, deviations in quadrupole moments of other states from the
experimental data are still noticeable. According to the fitting results, the shape evolution
of even–even 176–198Pt is revealed through the typical low-lying energy ratios R4/2, R2/1,
R0/2 and the electric quadrupole moments Q(2+1 ), Q(4+1 ). The trajectories in the extended
Casten triangle are also determined. Though the discontinuous evolution trajectories
determined by the present model are quite similar to those of the CQ formalism, namely,
176–186Pt are near the X(5)-E(5) critical line, while 188–198Pt are near the E(5)-O(6) critical line
with triaxial γ-unstable shape, the evolution trajectory of 188–198Pt in the present model
is in the opposite direction of that in the CQ formalism, which is due to the significant
contribution of the three- and four-body terms involved in the present model.

Although the present model improves the CQ formalism, besides deviations in some
quadrupole moments, the 0+2 level in the quasi-β band is still lower than the experimental
result of the nuclei with larger mass number, which may be due to the occurrence of cross-
shell particle-hole excitation in these nuclei. To improve the model further, it is necessary
to consider multi-particle and multi-hole excitations with configuration mixing, which may
be studied in our future work.
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