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Abstract

We consider the properties and behaviour of 2 U(2) noncommutative instantons:

solutions of the NC-deformed ADHM equations which arise from U(2) 5d Yang-Mills

theory, where the underlying space is R2
NC × R2

NC. The ADHM construction allows

us to find all such solutions, which form a moduli space of allowed configurations.

We derive the metric for such a space, and consider the dynamics of the instantons

on this space using the Manton approximation. We examine the reduction of this

system to lower-dimensional soliton theories, and finally consider the effect of adding

a Higgs field to the SYM theory, resulting in a potential on the instanton moduli

space.
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1

Introduction

“Lasciate ogni speranza, voi ch’entrate!”

– Dante, The Inferno

Instantons have long provided a fertile testing ground for exploring aspects of

Yang-Mills theory [3], and can play an important role in determining the behaviour

of non-perturbative effects in supersymmetric Yang-Mills theory (SYM) [4, 5, 6].

In comparison with other solitons, however, little is known about their dynamics.

In particular, when compared to monopoles, this paucity of information is most

apparent. We aim to elucidate some of the aspects of charge 2 instantons in a U(2)

gauge theory, which allows an insight into the underlying Yang-Mills and string

theoretical pictures.

The motivation for studying instantons begins with a consideration of superstring

theory. These theories admit dynamical extended objects known as D-branes, arising

from applying Dirichlet conditions on open string endpoints [7]. The D-branes can

be shown to source the magnetic and electric Ramond-Ramond charges, which are

necessary in order to guarantee superstring invariance under T-duality [8]. The
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Chapter 1. Introduction 2

coupling of a Dp-brane (that is, a D-brane extended in p spatial dimensions) is of

Dirac-Born-Infeld (DBI) form [9]:

SDp = −µp
∫

dp+1xTr
(
e−iΦ(− det

√
Gab +Bab + 2πα′Fab)

)
,

where Gab and Bab are the components of the NS-NS fields parallel to the brane, Fab

is the gauge field on the brane, Φ is the dilaton, and µp is some p-specific coupling

constant. In the limit of small separation between a stack of N Dp-branes, such

an action can be seen to reduce to the theory of maximally supersymmetric SU(N)

super-Yang-Mills, a point that we shall revisit shortly.

The presence of D-branes has a profound effect on the superstring theory, forcing

spontaneous symmetry breaking of some of the supersymmetries. In fact, D-branes

leave exactly half of the supersymmetries unbroken; they are BPS states of the

theory [10]. This is true for Dp-branes of any dimensionality, p. The study of

BPS states of a theory is common in a number of fields because of their relative

simplicity compared to a generic state of the theory: due to their fecundity in string

theories and general gauge theories, BPS states can be studied to calculate black hole

entropy [11], determine stability properties of Calabi-Yau manifolds [12], and more

abstractly may be used in the consideration of Teichmuller spaces [13]. Finding a

class of BPS solutions is a useful step in gaining understanding about the properties

of any theory that admits them.

To demonstrate the connection between BPS states in superstring theory and

instantons, we turn to the action of N coincident D4-branes. In the low-energy limit

(that is, when the strings stretched between such D-branes have low mass and hence

their contribution to the DBI action are subleading), the coupling takes the form of

2



Chapter 1. Introduction 3

a Chern-Simons term in the action:

SCS =
1

2
(2πα′)2µ4

∫
C1 ∧ tr(F2 ∧ F2),

where F2 is the 2-form field strength on the D4 world-volume. The integrated trace

term is simply 8π2c2, where c2 ∈ Z is the second Chern number [14]. Hence, for a

given integer c2, one may rewrite this action as

SCS = c2(4πα′)2µ4

∫
C1,

which, with the identification µ0 = (4πα′)2µ4 is the low-energy action of c2 D0-

branes. We also note that the integral of the Chern term appears in another context:

namely 5d super-Yang-Mills U(N) theory, where F2 is the field strength of the gauge

field A [15]. Hence the low-energy dynamics of D-branes is described by a super-

Yang-Mills theory, and any BPS states present in the string theory also arise in

SYM, representing D0-branes charged under a U(N) gauge field [16].

Nevertheless, the study of Yang-Mills theory, while simpler than string theory, is

still non-trivial. One may use arguments first presented in [10] to demonstrate that

BPS states in SYM arise as self-dual solutions to the static equations of motion: that

is, solutions for which ?F = ±F , where ? is the Hodge dual, ?Fµν = 1/2εµνρσFρσ.

These solutions are called instantons and are 1/2 BPS, cementing the correspondence

between BPS states from D-branes and those in Yang-Mills theory. Moreover, an

algebraic formulation of such solutions exists via the ADHM construction [17], gen-

erating the class of all instantons with a given “instanton charge” c2 and for a given

gauge group U(N). These are solutions in the 4-dimensional Euclidean Yang-Mills

theory and may be identified with the static solutions of the full 4 + 1-dimensional

3



Chapter 1. Introduction 4

theory.

Away from the coincident limit in the D-brane theory, one may still obtain BPS

solutions. By introducing a Higgs field (and breaking yet more of the supersym-

metries), one may consider 1/4-BPS states. From the point of view of the D4-D0

theory, Higgsing the branes introduces bound states between D0s and fundamental

strings; from the perspective of the Yang-Mills BPS states, this is equivalent to

introducing a non-zero scalar field in the action [18]. The instantons arising from

such a theory behave as if under the influence of an external electric charge and are

referred to as dyonic instantons [5].

A further connection facilitated by the study of instantons has been seen in M-

theory [19]. Consider the (2, 0) superalgebra generated by the M5-brane. Under

dimensional reduction of M-theory along, say, the x5 direction, one obtains a charge

Z5 ≡ −
1

8g2
YM

∫
d4x tr(FijFklεijkl),

which for consistency of supersymmetry must be identified with the Kaluza-Klein

(KK) momentum, P5, corresponding to the compactified direction [9]. Again, we

observe that the instanton charge appears in this context, and the tower of KK

states is classified by the instanton charge, P5 = c2/R5, where R5 ≡ g2
YM/4π

2 is

the radius of compactification in the x5 direction. Crucially, in order for index

calculations of the number of degenerate BPS states to agree in both the M-theory

and superstring theory cases, the instanton contribution must be taken into account

[20]. In fact, the duality between the D4-brane theory and the compactified M-

theory is only UV-complete with the addition of the instanton contributions [21, 22].

Localisation techniques have been employed to examine such index calculations from

the point of view of dyonic instantons [23], where the contributions to the index are

4



Chapter 1. Introduction 5

centred around the zeroes of the instanton potential. For the case of the single U(N)

instanton, the result was found to agree with the explicit calculation in maximally

supersymmetric N = 8 SQM [24]. Thus, a consideration of instantons may allow us

to scry into the behaviour of the M5-brane.

There are also a large number of identifications that can be made between instan-

tons and other solitonic solutions in reduced dimensions. It is known that noncom-

mutative instantons in gauge group SU(2N) displaying SO(3) invariance can produce

a class of non-Abelian vortices [25, 26] and it is believed that a more general class

of vortices coupled non-trivially to a gauge field can be obtained by considering a

dimensional reduction of noncommutative dyonic instantons [27]. As an extension,

a large body of material is dedicated to the study of vortex systems with impurities,

thus providing an entry point into problems considered in condensed matter physics:

see, for example, [28]. By considering instantons whose ADHM data has circle in-

variance, one can obtain monopoles in hyperbolic space with platonic symmetries

[29, 30] and in a similar vein, Skyrmions may be constructed (in Euclidean [31] or

hyperbolic [32] space) by computing the holonomy of SU(2) instantons.

It is not straightforward to gain a deep understanding of the dynamics of in-

stantons on the full field theory. Instead, it proves fruitful to employ an observation

due to Manton [33] and study the motion of instantons as geodesics on the moduli

space of solutions. The moduli space is a 4kN -dimensional space made up of all

instanton solutions for a given gauge field U(N) and topological charge k. Config-

urations within this moduli space can be seen as minimum energy solutions of the

field theory and, should we perturb such a solution by a small velocity, we expect

that it will remain in (or energetically close to) the moduli space. It transpires that

one may view the dynamics of slow-moving instantons as geodesic motion on this

moduli space, endowed with a suitable hyperKähler metric, and it then becomes

5
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feasible to consider low-energy scattering and evolution of the field theory.

The moduli space of instantons constructed contains singularities arising from

instantons of zero size. Such “small” instantons have a dual picture in the string

theory of a transition between the Higgs and Coulomb branches of the D0 theory

[6]. The Coulomb branch of the theory corresponds to D0 branes separated from the

D4s: the moduli describe the positions of the D0s transverse to the D4s. The Higgs

branch corresponds to the D0s ‘dissolved’ in the D4s, and their moduli are precisely

the moduli of instantons in the Yang-Mills theory. The singularity in the metric of

this moduli space, attained when the instantons hit zero-size, then corresponds to

the transition point between the two branches. To circumvent this problem, it is

possible to use a noncommutative framework in which a minimum bound is placed

on the instantons’ size via the introduction of a Fayet-Iliopoulos term [34]. This

modification to the theory smooths out the moduli space singularities, and it has

been seen explicitly that the metric takes Eguchi-Hanson form in the case of a single

U(1) instanton [35]. The ADHM procedure applied to a noncommutative system

returns the expected results: namely, solutions are self-dual and maintain integer

charge [36].

The dynamics of commutative dyonic instantons with gauge group SU(2) have

been studied for a single instanton and two well-separated instantons [37], and more

recently an extensive analysis of the dynamics has been studied for two instantons

with arbitrary separation [38]. A free single instanton may evolve into a configura-

tion where its size ρ can vanish, resulting in the small instanton. The introduction

of a potential term guarantees that this singular point can not be reached for an

instanton that starts with a non-zero angular momentum and a bounded, non-zero,

size. Specifically, it will remain in a stable orbit with conserved angular momentum.

In the case of multiple instantons, however, this may not hold: the instantons may

6
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trade angular momentum with each other, allowing one instanton to grow in size at

the expense of its counterpart, approaching the zero-size singularity in finite time.

This was shown in [38]. The zero-size singularity still exists, therefore, for more

than a single dyonic instanton; we must consider a noncommutative deformation to

the space in order to conclusively remove the singularity.

The outline of this thesis is as follows. In Chapter 2, we will review the construc-

tion of instanton solutions as solutions to the self-dual Yang-Mills field equations.

A consideration of solitonic solutions, via the Bogomolny argument, leads one natu-

rally to an algebraic formulation of instantons for a given topological charge, k. The

results extend to noncommutative spaces; we summarise the connection between

noncommutative function space and the quantum mechanical analogue. Having

constructed solutions, we consider the parameter space of the charge k instantons

as furnishing a moduli space of allowed configurations, and may derive an algebraic

formalism for determining the metric on this moduli space. This allows us to anal-

yse the dynamics of two instantons via the Manton approximation [33]. Finally,

we consider the effect of introducing a non-zero electric charge, or potential, on the

moduli space in a similar manner.

In Chapter 3, we proceed to explicitly derive the solutions for 2 U(2) instan-

tons in both the commutative and noncommutative frameworks. The presence of

noncommutativity perturbs the known solutions in a non-trivial manner, and by

finding an expedient parametrisation for this perturbation we may calculate the

metric of the noncommutative 2-instanton system. Due to the induced complexity

of solutions, it is not an easy task to find a description of the full, 16-dimensional

moduli space. However, we may make use of some global symmetries of the system

to consider a geodesic submanifold of this space. With this reduction, explicit re-

sults may be obtained. We consider the results and, as expected, we find that the

7
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manifold generated is in fact smooth and singularity-free, unlike in the commuta-

tive case. This is indicative of the results gained in [35] where the single instanton

moduli space was seen to correspond to the Eguchi-Hanson metric, which contains

no orbifold singularities.

In Chapter 4, we use the results gained to consider dynamics, and in particu-

lar scattering, of the two noncommutative instantons. The presence of a non-zero

Fayet-Iliopoulos term in the overarching field theory has profound consequences for

the results gained: most strikingly, right-angled scattering (a distinguishing feature

of most soliton dynamics) is no longer the natural behaviour, even for a vanishing

Higgs field. In fact, a wide range of behaviours are present, of which scattering at

π/2 is only one possible outcome. We use a variety of consistency checks to ensure

the validity of these results, and via identification with other soliton solutions find

agreement with the expected behaviours. Finally, we consider the association be-

tween Yang-Mills instantons and the lower-dimensional non-Abelian vortices, where

the presence of noncommutativity represents a non-trivial gauge coupling to the

U(1) gauge field in a U(N) vortex theory.

In Chapter 5, we extend the analysis of the previous chapter to dyonic instantons.

The results obtained herein suggest that one may consider the noncommutativity

to function as an ersatz effective potential on the moduli space of commutative in-

stantons. The dynamics of two commutative instantons admits orbiting solutions,

where the attractive force of the potential is balanced by the natural repulsive force

of the instantons. In the noncommutative picture, we find an analogous result, with

some interesting modifications: previously stable orbiting configurations can become

unstable in finite time, demonstrating scattering not seen in the commutative case,

with varying noncommutative strength. We then briefly consider the possible vor-

tex behaviour that would arise from a dimensional reduction of a noncommutative

8
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dyonic instanton configuration.

In Chapter 6, we present some partial results encompassing many aspects of

the instanton theory. We suggest a means by which the maximally non-Abelian

vortex behaviour could be reproduced via a dimensional reduction of dyonic non-

commutative instantons. We then examine some adjustments that will occur in the

index calculation of BPS states in the corresponding N = 4 SQM. Using an index

scaling argument, one can see that the zeroes of the potential correspond to the

bound states of the D0 quantum mechanical system and include a class of zeroes

not present in the single instanton cases previously studied [24]. Finally, we suggest

a feasible method for generating solutions to the U(3) instanton ADHM data via

recourse to the well-established U(2) results. Finally, in Chapter 7, we summarise

our results and outline future directions.

9



2

The construction of instantons

In this section, we review instantons in (4 + 1)-dimensional Yang-Mills theory. This

will encompass both ‘free’, 1/2-BPS, instantons in pure Yang-Mills theory and their

dyonic 1/4-BPS counterparts. We outline the ADHM construction for such a field

theory, which reduces the problem of finding self-dual solutions to the Yang-Mills

field equations to a set of algebraic equations on allowed configurations. The free

parameters in the solved ADHM data can be seen to correspond to a set of collective

coordinates on a moduli space of instanton solutions. We proceed to consider this

moduli space and observe that the geodesic approximation provides a means of

analysis of slow-moving instantons. We finally consider the key differences between

the commutative and noncommutative formulations.

2.1 Instantons in 5d Yang-Mills

We first review the underlying string theoretical interpretation of Yang-Mills theory.

The low-energy dynamics of a stack of N coincident D4-branes may be identified

with an SU(N) super-Yang-Mills field theory [7]. Such a system preserves one

10



2.1. Instantons in 5d Yang-Mills 11

half of the supercharges, and is thus described by an N = 2 SUSY theory in five

dimensions. Open strings stretched between the D4-branes give rise to a U(N)

world-volume gauge symmetry, with associated gauge field Aµ, µ = 0, 1, . . . , 4. The

theory also contains five adjoint scalars XI , I = 5, 6, . . . , 9, describing the branes’

relative positions in the transverse directions. By factoring out the centre of mass

from the theory we obtain 5-dimensional super-Yang-Mills.

For the purposes of considering instantons, we henceforth consider only the

bosonic sector of the theory, with (for convenience) gauge coupling set to one. This

analysis works, however, for the more general fermionic set-up. The associated

action is

S = −
∫

d5xTr

(
1

4
FµνF

µν +
1

2
DµX

IDµXI +
1

4
[XI , XJ ]2

)
, (2.1)

where the covariant derivative is given in standard form

DµX
I = ∂µX

I − i[Aµ, XI ]

and the field strength is

Fµν = ∂[µAν] − i[Aµ, Aν ].

While the construction of instantons is valid for all choices of gauge group U(N),

the calculational complexity vastly increases with larger gauge groups. We consider

only a stack of two D4-branes, so that the gauge group is U(2). As well as the

world-volume and transverse indices outlined above, we will also use the indices i, j

to denote the purely spatial directions of the 5d theory.

We may choose to set just one of the transverse scalar fields, X5 ≡ φ, to be

non-zero. The induced Higgs VEV, 〈φ〉, will then correspond to the separation of

11



2.1. Instantons in 5d Yang-Mills 12

the branes in the X5 direction. This is equivalent to any other choice of transverse

brane separation up to some SO(5) rotation of the XI , and in choosing a particular

direction we break the R-symmetry of the full Yang-Mills theory. However, this

does not affect the validity of the analysis (and, in fact, will be crucial in certain

identifications with lower-dimensional solitonic theories). The energy of the system

is

E =

∫
d4xTr

(
1

2
Fi0Fi0 +

1

4
FijFij +

1

2
D0φD0φ+

1

2
DiφDiφ

)
. (2.2)

In order to obtain solitonic solutions, we seek to find minimum energy solutions

to the bosonic Yang-Mills theory. The requirement for finite energy solutions is

tantamount to requiring that the gauge field strength Fij vanishes at spatial infinity.

This can be guaranteed by demanding that the gauge field becomes pure gauge: that

is

Ai = −∂ig∞(g∞)−1

as |x| → ∞. The map g∞ : S3
∞ → SU(2) defines a winding number from the sphere

at infinity to the gauge group, the degree of which is given by the second Chern

number c2 ∈ Z. We define, for identification, the following quantities:

k ≡ − 1

8π2

∫
d4xεijklTr(FijFkl),

QE ≡
∫

d4xTr(DiφFi0).

(2.3)

These are to be interpreted as the topological charge and electric charge, respectively,

of the theory. The topological charge is equivalent to the winding number, and so

for a given k ∈ Z we may consider the family of all instantons with winding k. The

electric charge arises as the Noether charge associated to the maximally unbroken

U(1) of the SU(2) global gauge symmetry of the Yang-Mills Lagrangian. Such

12
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solutions may smoothly deform into one another due to the presence of the map

g, but must remain in this k-sector of the theory. Hence, in the instanton picture,

each successive value of k decouples from all others and this will allow us to consider

evolution and scattering of k-instanton solutions for a particular k. We also note

that a consideration of negative k is equivalent to that of positive k from the point

of view of the field theory energy: the instanton solutions for a given k > 0 also

provide the k < 0, which we denote as anti-instantons. The correspondence between

the two types will be solidified shortly.

Employing the standard Bogomolny argument [10] to bound the energy, we find

E =

∫
d4xTr

(
1

4
(Fij ± ?Fij)2 ∓ 1

2
Fij ? Fij

+
1

2
(Fi0 ±Diφ)2 ∓ Fi0Diφ+

1

2
(D0φ)2

)
,

(2.4)

where ?Fij ≡ 1
2
εijklFijkl is the Hodge dual of the field strength. The choices of sign

in this expression are correlated within each line, but independent between the two

lines. Then the energy is bounded by

E ≥ 2π2|k|+ |QE|,

and this Bogomolny bound is saturated when

Fij = ± ? Fij,

Fi0 = ±Diφ,

D0φ = 0,

(2.5)

where, again, the choices of sign are independent. These are the BPS equations

13



2.2. Noncommutative R4 14

for dyonic U(2) instantons. The first equation requires that the field strength be

(anti-)self-dual, and the second and third are satisfied when the fields are static

and A0 = ±φ. Since each k-sector decouples from all others, and the anti-self-dual

solution (corresponding to anti-instanton) data is in some sense contained within

the self-dual data, we need only consider the self-dual case, solutions of which we

henceforth refer to as instantons. If we consider a non-zero scalar field φ, it will still

be necessary to satisfy the background field equations for the Yang-Mills theory;

namely

D2φ = 0, (2.6)

and this requirement will be important in the consideration of dyonic instantons.

The Bogomolny equations, while simpler than those of the full Yang-Mills theory,

do not trivially admit analytic solutions. Fortunately, the ADHM construction

[17] relates these differential constraints on the gauge field into purely algebraic

ones. This will allow us to explicitly construct classes of self-dual instantons whose

induced gauge field automatically satisfies the Bogomolny equations (2.5). Before

we can apply the ADHM construction, however, it is necessary to consider the

noncommutative analogue.

2.2 Noncommutative R4

As described above, the study of instantons allows us to find non-trivial solutions

to the Yang-Mills field equations in (static) Euclidean R4 that would otherwise be

occluded. In the previous section, the spatial R4 (consisting of xi, i = 1, . . . , 4)

admits trivial commutation relations between each direction. For reasons that shall

become apparent, we may introduce an underlying noncommutative geometry to

14



2.2. Noncommutative R4 15

the theory by making some, or all, of these commutation relations non-zero. This

is equivalent to choosing a preferred complex structure on the space. We stipulate

the following generic commutation relations:

[xi, xj] = iθij (2.7)

where θij is a real, antisymmetric matrix. Without loss of generality, we may break

the underlying SO(4) symmetry of the space of express θ in a simpler form [35]

(θij) =



0 −θ1 0 0

θ1 0 0 0

0 0 0 −θ2

0 0 θ2 0


(2.8)

for θ1 and θ2 real. Classically, if both of the θi are non-zero then we may scale the

two coordinate directions corresponding to, say, θ1 such that the noncommutativity

parameters have equal magnitude. The condition that θij is self- or anti-self-dual is

equivalent to requiring that θ1 − θ2 = 0 or θ1 + θ2 = 0, respectively. It transpires

that the choice of duality in the background R4 will affect our ability to obtain

consistent self- or anti-self-dual solutions in the Yang-Mills theory; in particular, to

obtain self-dual YM solutions one must consider an anti-self-dual background, and

vice versa [36]. We will return to this point in due course. As befits our earlier

choice, we consider only the anti-self-dual background case, and so define

θ1 = ζ = −θ2

for ζ > 0.

15



2.2. Noncommutative R4 16

From the perspective of the Yang-Mills field theory, the introduction of a non-

commutative background induces a deformation in the notion of multiplication: one

now must consider functions multiplied using the Moyal-? product. For functions

f(x) and g(x) valued in R4
NC , we have [39]

f ? g(x) = exp

(
i

2
θij∂i∂

′
j

)
f(x)g(x′)

∣∣∣∣
x′=x

. (2.9)

This gives an expansion in powers of θ:

f ? g(x) = f(x)g(x) +
i

2
θij∂if(x)∂jg(x) +O(θ2).

In this noncommutative framework, the gauge field Ai transforms as

Ai 7→ g−1 ? Ai ? g + g−1 ? ∂ig,

where g takes values in U(N). The field strength is correspondingly adjusted as

Fij = ∂[iAj] − i[Ai, Aj]?,

where we denote the commutator with ? to emphasise the non-standard multiplica-

tion therein.

From the point of view of finding solutions to the Bogomolny equations (2.5),

working in the noncommutative framework allows for a greater range of instanton

configurations, circumventing Derrick’s theorem [40] due to the additional length

scale [ζ] = length2. However, with the above formalism, one would have to calculate

such solutions to all orders in ζ. With the exception of in the simplest cases, such

an approach is severely non-trivial and prevents any meaningful analysis. We may

16



2.2. Noncommutative R4 17

proceed due to an isomorphism between the algebra of functions with the ?-product

and the algebra of operators on some Hilbert space, as demonstrated in [41]. This

identification will allow us to utilise the ADHM procedure in the noncommutative

framework.

2.2.1 Noncommutativity in General Spacetimes

We briefly set aside discussion of the ADHM construction for instantons to describe

the correspondence between function space under the Moyal ?-product and opera-

tors on a Hilbert space. To illustrate the procedure we consider, for simplicity, a

noncommutative theory in R2, giving a single non-trivial spatial commutation rela-

tion [x1, x2] = iθ12. Then for a generic function on this space, we have the associated

Fourier transform

f̃(α1, α2) =

∫
d2x ei(α1x1+α2x2)f(x1, x2),

where αi are the conjugate momenta to xi. We may then define an operator

Ôf (x̂1, x̂2) on the Hilbert space of functions of the analogous quantum system:

Ôf (x̂1, x̂2) =
1

(2π)2

∫
d2αU(α1, α2)f̃(α1, α2) (2.10)

where U(α1, α2) = exp(−i(α1x̂1 + α2x̂2)). Using Baker-Campbell-Hausdorff, we see

that

U(α1, α2)U(β1, β2) = U(α1β1 + α2β2)e−
i
2
θ12(α1β2−α2β1).

This map defines the correspondence between function multiplication on a noncom-

mutative space and quantum mechanical commutation relations. We now seek an

17



2.2. Noncommutative R4 18

expression for ÔfÔg:

ÔfÔg =
1

(2π)4

∫
d2α d2β U(α1, α2)U(β1, β2)f̃(α1, α2)g̃(β1, β2)

=
1

(2π)4

∫
d2α d2β U(α1 + β1, α2 + β2)e−

i
2
θ12(α1β2−α2β1)f̃(α1, α2)g̃(β1, β2).

Under a suitable change of variables

αi →
1

2
γi + δi, βi →

1

2
γi − δi,

the integration measure is unchanged and the integral becomes

ÔfÔg =
1

(2π)4

∫
d2γ d2δ U(γ1, γ2)e

i
2
θ12(γ1δ2−γ2δ1)

· f̃
(γ1

2
+ δ1,

γ2

2
+ δ2

)
g̃
(γ1

2
− δ1,

γ2

2
− δ2

)
.

At this point, we note that the Fourier transform of the Moyal ?-product (2.9) in

two spatial dimensions can be put into the form

f̃ ? g(γ1, γ2) =

∫
d2δ e

i
2
θ12(γ1δ2−γ2δ1)f̃

(γ1

2
+ δ1,

γ2

2
+ δ2

)
g̃
(γ1

2
− δ1,

γ2

2
− δ2

)
,

and so

ÔfÔg =
1

(2π)2

∫
d2γ U(γ1, γ2)f̃ ? g(γ1, γ2)

=Ôf?g.

This identification will hold provided the original ?-product, f ?g, has a well-defined

series expansion. If the expansion of the exponent in (2.9) is not convergent, then

18



2.2. Noncommutative R4 19

the above considerations break down and the associated quantum operators on the

Hilbert space will not necessarily be valid.

To demonstrate the subtlety of the procedure, we turn to the simplest ‘alternate’

parametrisation of R2; namely, polar R2 = span{r, φ}. If we begin with the functions

f = r, g = φ and attempt to promote them to quantum operators using the method

above, then by series expansion in ζ we see that

[r, φ]? ≡ r ? φ− φ ? r = −iζ
r

∞∑
n=0

(4n)!

(2n+ 1)

(
ζ

4r2

)2n

, (2.11)

which is clearly not convergent. This starting point, however, was used in [42] in

order to examine the BTZ black hole in polar coordinates, and the relation obtained

was

[r̂, φ̂] = −iζr̂−1,

which has a worrisome singularity at the origin. In order to have a consistent

description of noncommutative polar R2, one can instead promote the function space

(r2, φ) to operators. This gives a terminating series expansion of r ? φ, yielding the

well-defined commutation relation [r̂2, φ̂] = 2iζ. Hence any attempt to use polar

noncommutativity has no valid quantum operator r̂. This simple example outlines

the importance of rigorously verifying the validity of the starting conditions, and

could have utility in deriving other, more complicated, noncommutative spaces.

Given the interest in using noncommutative space to generate ‘quantum’ gravity

theories via the Seiberg-Witten map [43], it would be a key consideration were one

to take, say, Schwarzchild or AdS space as the starting point for a noncommutative

theory.

These caveats aside, we may derive spatial commutation relations of functions

19



2.2. Noncommutative R4 20

on R2
NC as operator relations on a Hilbert space of operators, and vice versa. In

the following work, we simply use the standard ‘rectangular’ R2 in each factor of

R4 = R2
NC × R2

NC and therefore regularity is guaranteed. Hence, this correspon-

dence provides a consistent definition of the ADHM operators in noncommutative

scenarios.

Interpreting the spatial dimensions as in R4 or C2, then, the ADHM procedure

can be seen to follow in precisely the same manner as the commutative analogue

but for the fact that the underlying gauge group of the gauge field is U(2), rather

than SU(2) (in fact, the term A4
i 12 can be considered in the commutative case, but

decouples from the theory and therefore has no impact on the analysis). This stems

from the fact that the ‘simpler’ gauge group SU(2) is not closed under the Moyal

?-product multiplication [44]. Explicitly, we have

Ai = Aai
σa

2
+ A4

i

12

2
,

where σa provide the normal Pauli matrix representation of SU(2). This isomor-

phism validates the use of the ADHM toolbox, to which we now turn, in a noncom-

mutative framework.

As a final point, note that one need not necessarily consider a ‘full’ noncom-

mutative R4. The canonical form (2.8) can effectively be seen to split into two

non-interacting R2
NC pieces. In considerations of the reduction from instantons to

monopoles or vortices, one must consider a compactification of one or two (respec-

tively) of the spatial directions, usually along with a requirement of circle invari-

ance. It is, therefore, possible to consider a semi-noncommutative space whose

commutation relations comprise only [x1, x2] = iθ1 and compactify in the x3 − x4

directions. This is anticipated to yield other, lower dimensional, noncommutative

20



2.3. The ADHM construction 21

solitons. Conversely, one may compactify in the noncommutative directions. When

considering the monopole reduction, it appears that the solitonic solutions obtained

become extended objects in the resultant D-brane geometry [24]. One finds that

under a suitable compactification, a form of S-duality exists in 5d which allows

for an identification between the (instanton) Kaluza-Klein tower and a tower of

monopoles. This was demonstrated in [45] via identification with the standard BPS

SU(2) monopoles. However, it is not clear how to make an appropriate identification

in a general instantonic configuration, and indeed what the corresponding duality

is. Such considerations would be of great interest in generating consistent monopole

configurations from noncommutative instanton solutions.

2.3 The ADHM construction

The ADHM construction allows for a class of algebraic constraints to be explicitly

formulated for a given instanton number k and gauge group U(N) [17]. Formally,

the ADHM data ∆ is a (2k+N)×2k complex-valued matrix restricted by unitarity

and symmetry considerations, whose free parameters form a moduli space of allowed

U(N) k-instanton configurations. In practice, and given our restriction to U(2), we

may use the fact that in even gauge groups the ADHM data may be represented in

block quaternion form [14]. We may use a basis of quaternions q = qiei where

ea = iσa, a = 1, 2, 3,

e4 = 12,

and σa are the generators of SU(2). Of course, the resulting ADHM constraints are

equivalent were we to parametrise ∆ with entries in C.
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2.3. The ADHM construction 22

To construct a charge k U(2) instanton solution, then, we consider a (k+ 1)× k

quaternion-valued matrix ∆ which must satisfy

∆†∆ = 12 ⊗ f−1(x), (2.12)

where f−1(x) is a Hermitian, invertible k × k matrix. ∆ may be put into so-called

‘canonical form’ [46]:

∆(x) = a− bx

for x ≡ xiei being the spatial directions of the underlying R4 and a, b being x-

independent quaternion-valued block matrices

a =

L

M

,
 0

12k

. (2.13)

In these conventions, L is a quaternionic row vector and M a k×k quaternion-valued

matrix. The ADHM constraints (2.12) then become

L†L+M †M + |x|212k − (M †bx+ x̄b†M) = 12 ⊗ f−1(x).

The ADHM constraint first requires us to demand the reality of the terms linear in

x. Using the quaternion block form of M , this implies that

−
(
(Mi)

T ēix+Mix̄ei
)
,

is real, and hence M = MT ; that is, M is symmetric. This, in turn, forces the

reality of f−1(x). Then the constraints reduce, in the commutative case, to a simple
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x-independent constraint

a†a = 12 ⊗ µ (2.14)

for µ real, x-independent and invertible. Note, for future reference, that this result

only holds in the case where |x|2 = x̄x ∝ 12. In the noncommutative case this will

be non-trivially modified.

Having found solutions to (2.14), we then seek to find a set of normalised quater-

nionic vectors in the null space of ∆ [38],

∆†U = 0, U †U = 12. (2.15)

The gauge field may then be constructed from U via

Ai = iU †∂iU. (2.16)

With this definition of Ai, the associated field strength will naturally satisfy the

self-duality condition in (2.5). It is instructive to demonstrate this fact explicitly,

as the calculation bears many of the hallmarks of any calculation involving ∆ and

U . We make use of the following identities:

U †∂iU = −(∂iU
†)U,

(∂i∆
†)U = −∆†∂iU,

(2.17)

which may be derived from (2.15) straightforwardly, as well as the completeness

relation

UU † + ∆f∆† = 14 (2.18)
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and the derivative of ∆

∂i∆ = −b∂ix = −bσi. (2.19)

Then, expanding F :

Fij = ∂[iAj] − i[Ai, Aj]

= i(∂[iU
†∂j]U) + i(U †∂[iU)(U †∂j]U).

Application of (2.17) to the second term yields

Fij = i(∂[iU
†∂j] − ∂[iU

†UU †∂j]U),

and replacing the UU † expressions using the completeness relation (2.18) and moving

the derivatives onto ∆ using (2.17) gives

Fij = i(∂[iU
†∂j]U − ∂[iU

†(14 −∆f∆†)∂j]U)

= iU †∂[i∆f∂j]∆
†U.

All that remains is to differentiate ∆ using (2.19) and note that f ∝ 12 commutes

with the σi to obtain

Fij = iU †bσ[ifσ̄j]b
†U

= iU †bf(σiσ̄j − σjσ̄i)b†U.

Then self-duality follows from the self-duality of σiσ̄j − σjσ̄i, as can be readily

established using the properties of the Pauli matrices.

It will be crucial to note that the ADHM data ∆ is defined only up to some
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gauge transformation of the form [6]

U → QU,

for Q suitably defined. There exist, therefore, equivalent instanton solutions for any

given explicit solution of the ADHM data, and such redundancies must be removed

before considering the moduli space. Explicitly, we may seek transformations of the

form

∆→ Q∆R−1 =

q 0

0 R

∆R−1, (2.20)

where R mixes the quaternion entries in M and q ∈ U(2). Due to this redun-

dancy, while initially the ADHM data for k U(2) instantons contains 2k(k + 1) free

quaternionic parameters, the combination of the ADHM constraints and the redun-

dancies remove 8k2 parameters. This leaves 8k free parameters, in agreement with

the general 4kN result for N charge k instantons.

The extension to noncommutativity is relatively straightforward. The key change

is that the expression |x|2 in the ADHM constraints is no longer proportional to 12.

If we write the quaternion representation of the spatial components in complex

matrix form:

x = xiqi =

 x4 + ix3 x2 + ix1

−x2 + ix1 x4 − ix3

 =

 z2 z1

−z̄1 z̄2



25



2.3. The ADHM construction 26

then by expanding and using the commutation relations (2.7), it can be seen that

|x|2 = x̄x =

z̄2 −z1

z̄1 z2


 z2 z1

−z̄1 z̄2


=

z̄2z2 + z1z̄1 0

0 z̄1z1 + z2z̄2


= (z̄1z1 + z̄2z2)12 +

−2ζ 0

0 2ζ

.
(2.21)

This additional piece not proportional to 12 must be absorbed into the solution of

the ADHM data. This complication notwithstanding, it is still possible to solve

the relevant constraints. Another subtlety of the noncommutative instanton con-

struction is that for given choices of duality, the completeness relation (2.18) may

fail to hold [36]. Viewing the complex coordinates zi and z̄i as creation and an-

nihilation operators, we may generate a Fock space, H, of a pair of simple har-

monic oscillators. A generic state in H may be written as |n1, n2〉, such that

zi|n1, n2〉 =
√
ζ
√
δijnj + 1|n1 + δi1, n2 + δi2〉. We write P ≡ ∆f∆† as the Her-

mitian projector on H, which is a map from the (N + 2k) dimensional ADHM data

to a subset thereof via P : HN+2k → PHN+2k ⊂ HN+2k. Since P is clearly Hermi-

tian, all eigenvalues of P are either zero or one. Denoting the corresponding zero

and one eigenstates by |Ψp〉 and |Φr〉, we have

P |Ψp〉 = 0, |Ψp〉 ∈ HN+2k, 〈Ψp|Ψq〉 = δpq,

P |Φr〉 = |Φr〉, |Φr〉 ∈ HN+2k, 〈Φr|Φs〉 = δrs.

Due to the completeness of eigenstates, we may write a generic state in the Hilbert
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space as

1 =
∑
p

|Ψp〉〈Ψp|+
∑
r

|Φr〉〈Φr|

=
∑
p

|Ψp〉〈Ψp|+ ∆f∆†,

where we have used the fact that all non-zero eigenvalues of P are equal to one. The

completeness relation will only hold if we may write

{|Ψp〉} = {Upu|su〉} (2.22)

for |su〉 arbitrary states in H. If this is true, then it follows naturally that∑
|Ψp〉〈Ψp| = UU †, and so the completeness relation is guaranteed.

The above considerations follow automatically in the commutative case, as may

be readily verified. However, in the noncommutative case, while a non-zero state

of the form of (2.22) will be a normalised zero-mode of P , it is no longer true that

all zero-modes may be written in this form. If there are zero-modes that cannot

be expressed in this way, then the completeness relation is not satisfied and the

(A)SD construction of instantons via the ADHM data breaks down. This subtlety

means that if we wish to obtain self-dual instantons, we must consider an anti-

self-dual background, and vice versa. If one starts with a self-dual background

then, while solutions to the self-dual ADHM constraints may be found, one cannot

obtain a normalisable U that satisfies the completeness relation. Conversely, if one

constructs a normalisable U , the self-dual ADHM constraints will not necessarily

admit non-trivial solutions.
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2.4. The pure instanton moduli space 28

2.4 The pure instanton moduli space

We now turn our attention to the moduli space acquired from a solution of the

ADHM data. Initially, we focus our attention on instanton solutions in the absence

of a potential term (that is, with 〈φ〉 = 0); we shall visit the construction of dyonic

instantons shortly. The remainder of this section holds for both commutative and

noncommutative instantons, up to suitable notational definitions (the discussion of

which we postpone until Chapter 3).

The moduli space,Mk, of instantons describes the space of all distinct instantons

solutions of instanton number k. Due to topological considerations, the full moduli

space M is expected to comprise disconnected moduli spaces for every possible

instanton number, i.e., M = M1 ⊕ M2 ⊕ . . . , so that it is sensible to consider

only one particular instanton charge and be confident in the validity of results thus

gained. By ‘distinct’, we emphasise that the gauge transformation in (2.20) does

not necessarily generate new solutions to any given set of ADHM data, and it will

be necessary to quotient out such redundant transformations before considering

geodesics on the moduli space. We shall denote the quotiented moduli space of

k-instantons by M̂k; for reasons of convention, we shall maintain the global gauge

transformations corresponding to the overall U(2) gauge symmetry. The coordinates

in M̂k are furnished by the free variables in the ADHM data and provide an 8k-

dimensional parameter space of all possible unique instanton solutions of charge k.

Varying the parameters of ∆ is equivalent to smoothly varying the position in M̂k,

and under certain conditions one can regard this as representing geodesic motion on

the moduli space. We may obtain an induced metric for the moduli space using the

ADHM data as follows. The topic (for the commutative case) is addressed in more

detail in [38], with only the most salient points addressed here.
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Prior to quotienting, the moduli space admits a natural inner product:

g(δrAiδ
′
rAi) =

∫
d4xTr(δrAiδ

′
rAi). (2.23)

Here the index r enumerates the 8k parameters in ∆ or, equivalently, the coordi-

nate directions on M̂k. The δr, then, represent tangent vectors along coordinate

directions in the moduli space. In order for the δr to truly correspond to coordinate

motion on the moduli space, it will be necessary to remove any tangent vectors

in a direction orthogonal to the moduli space. This can be achieved by demand-

ing that all tangent vectors to the space are orthogonal to local (redundant) gauge

transformations:

DiδrAi = 0.

Variations satisfying the Bogomolny equations (2.5) (which, in absence of a Higgs

field φ simply reduce to requiring self-duality) and this gauge-fixing condition will

be referred to as zero modes. Labelling the free ADHM parameters (moduli space

coordinates) as zr for r = 1, 2, . . . , 8k, then the zero modes may be written as

δrAi = ∂rAi −Diεr (2.24)

and εr must be chosen such that

Di(δrAi) = 0. (2.25)

Once we have a class of εr for every tangent vector δrAi of the moduli space, we

may then consider the g arising from (2.23) as the metric on the moduli space.

In order to consider scattering, it is necessary to reintroduce some time depen-
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dence into the system. These ‘dynamic’ solutions will not, generically, lie in M̂k

and hence will not describe instanton configurations, but for sufficiently small ve-

locities will lie close to the instantonic minimum energy solutions and so represent

a good approximation to the movement and interaction of instantons [33]. The con-

sideration of small velocities also makes the calculation tractable, as it allows us to

consider only the linearised version of the resulting field equations rather than the

full dynamic theory. The self-dual field equations become

Di(δrAj)−Dj(δrAi) = εijklDk(δrAl). (2.26)

When introducing time-dependence, we only consider geodesic motion on the mod-

uli space of ADHM data and hence allow the instantons to vary in time only in

the moduli space parameters zr → zr(t), so that for a solution to the Yang-Mills

equations we have Ai(z(t); x). Then we require

DiFi0 = Di(DiA0 − żr∂rAi) = 0.

This may be solved by choosing A0 = żrεr for εr restricted as in (2.25). Then

Fi0 = −żrδrAi,

where the zero modes are defined as in (2.24). We obtain an effective action for

motion on the moduli space

S =
1

2

∫
d5xTr(Fi0Fi0) =

1

2

∫
dtgrsż

rżs, (2.27)
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with associated metric

grs =

∫
d4xTr(δrAiδsAi). (2.28)

This linearised approximation will only hold when the magnitude of żr is small;

that is, where the velocity of the instantons is small. The linearisation of the field

theory, under the small velocity stipulation, allows us to generate the metric deter-

mining instanton dynamics which, at every point on a given geodesic, approximate

a ‘snapshot’ of a truly dynamical Yang-Mills solution.

2.5 Dyonic instantons

We now consider the effect of introducing a non-zero electric charge, QE, on the

metric of M̂k. While turning on the scalar φ will not change the structure of

the metric, the electric charge will vary across the space. This is equivalent to

considering an induced potential on the space.

As in Section 2.4, we introduce time-dependence into the collective coordinates

zr of M̂k. Denoting the scalar field as φ, this perturbs the Gauss’ law constraint as

DiFi0 + [D0φ, φ] = 0. (2.29)

Note that this perturbed constraint is no longer satisfied by the ansatz A0 = żrεr.

Therefore we perturb A0 away from the free case via

A0 = φ+ żrεr

and obtain

Fi0 = −(żrδrAi −Diφ). (2.30)
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Since φ must satisfy the background field equation (2.6), it is straightforward to

see that the perturbation term vanishes in DiFi0 and we satisfy the vanishing of

this quantity as in the free case. The commutator term in (2.29), however, is non-

zero. To surmount this problem, we may first note that Diφ ipso facto satisfies the

conditions for a zero mode: it solves the linearised self-dual equations (2.26) and

the background field equation (2.6) by construction. This allows us to express it in

the basis of zero modes of M̂k,

Diφ = |q|KrδrAi, (2.31)

for some vector Kr. This additional term may be absorbed into Fi0 via an appro-

priate coordinate transformation, so that

Fi0 = −(żr − |q|Kr)δrAi ≡ −ẏrδrAi,

yr = zr − |q|Krt.

With this transformation, the effective action is simply

S =
1

2

∫
dtgrsẏ

rẏs − |q|2grsKrKs, (2.32)

where we have neglected terms O(ż2|q|2). This action, then, forms a good approx-

imation to the low-energy dynamics of dyonic instantons when both the velocity,

ż, and the strength of the potential, |q|, are much less than unity. This second

requirement has a reasonable interpretation: just as in the considerations of low

velocity we expect the results to be good approximations of motion on M̂k provided

we deviate only slightly from the moduli space, so too must we ensure that our
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potential is sufficiently ‘shallow’ compared to the energy gradient away from the

moduli space that the resulting field configurations are only slightly higher energy

than the minimum energy, instanton, configurations.

We now have all the information required to calculate the metric of dyonic com-

mutative and noncommutative U(2) instantons for any given topological charge k.

In principle, we may find and classify Killing vectors of the derived metric, identify

conserved quantities and ascertain geodesic motion. In practice, however, the com-

plexity and scale of the data makes it hard to proceed with such analysis without

resorting to explicit parametrisations of the zero modes. Fortunately, we are able to

calculate the metric without explicit recourse to the somewhat abstract zero mode

procedure described above, via the ADHM construction.

2.6 A derivation of the moduli space

We may now consider generating the moduli space metric for instantons with a

given gauge group U(N) and topological charge k. The general method described

above is, unfortunately, intractable in all but the simplest cases. However, given

a parametrisation of the ADHM data for an instanton configuration, we may alge-

braically derive the metric on the moduli space via a method developed by Osborn

[46].

We first recall that the gauge field, Ai, is constructed from the ADHM data as

Ai = iU †∂iU, where ∆†U = 0, U †U = 1.

It is possible to calculate the derivative of U with respect to a coordinate of the
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moduli space, zr, using the ADHM relations in Section 2.3:

∂rAi = −iU †∂r∆f ēib†U + iU †beif∂r∆
†U +Di(iU

†∂rU). (2.33)

It is clear from this expression that the final term is some gauge transformation of the

data. However, it is not guaranteed at this stage that the remaining terms satisfy the

conditions for a zero-mode. We thus seek to perform appropriate transformations on

∆ so that all the gauge transformation components are collected into one term, and

then the remainder can be viewed as a bona fide zero-mode on the moduli space.

This is equivalent to projecting out the gauge data onto some gauge-fixed subspace

of the moduli space. Recall that the ADHM data is invariant under a transformation

∆ 7→ Q∆R U 7→ QU.

We have a different ∆ at each point in the moduli space, and may then consider the

gauge transformation Q as being dependent on the collective coordinate position in

M̂k; explicitly

∆(zr(t)) 7→ exp(tδrQ)∆ exp(tδrR).

By construction, such a parametrisation leaves Ai invariant but we may now write

its zr derivative (2.33) as

∂rAi = iU †Crf ēib
†U + iU †beifC

†
rU +Di(iU

†∂rU + iU †δrQU) (2.34)

where, for economy of notation, we have defined

Cr ≡ ∂r∆ + δrQ∆ + ∆δrR. (2.35)
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This freedom inherited from the redundancy of the ADHM data allows us to ‘tune’

δrQ and δrR until the only components of ∂rAi that correspond to gauge trans-

formations reside in the final term. To achieve this, we must apply the zero-mode

conditions on the tangent vectors of first two terms of Ai:

δrAi = −iU †Crf ēib†U + iU †beifC
†
rU. (2.36)

We may solve (2.36) in terms of a constraint on Cr: the requirement for a zero-mode

is that (see [46] or [38] for a proof) Cr must be independent of x and the combination

∆†Cr be symmetric. Expressing this in terms of the ADHM data, we require

a†Cr = (a†Cr)
T,

b†Cr = (b†Cr)
T.

(2.37)

All that remains is to fix the forms of δrQ and δrR such that this condition is

satisfied. Henceforth, we restrict ourselves to the case of N = 2 and k = 2, but this

procedure applies to any choice of gauge group and topological charge.

Note that in canonical form, b has very simple structure:

b =

 0

12k

.
Then the generic form of the transformations is restricted by the requirement that

QbR = b and δb = 0, allowing us to determine δrQ entirely in terms of δrR. The

resulting constraint on δrR is as follows:

a†δa− (a†δa)T = a†bδRb†a− b†aδRa†b+ µ−1δR + δRµ−1, (2.38)
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where µ−1 ≡ a†a. This is now a purely algebraic constraint on allowed zero-modes.

To proceed, we now need an explicit form for the inner product of two such zero

modes. This problem is overcome by exploiting an identity due to Corrigan et. al.

[47]: if we have zero modes in the form (2.36), then

Tr(δrAiδsAi) = −1

2
∂2Tr

(
C†r(1 + P )Csf

)
, (2.39)

where P is the projection operator on the space of ADHM data, P = UU † =

14−∆f∆†. A proof of this identity may be found in [48]. This identity removes the

difficulty of integrating the zero-modes to find the inner product, turning the integral

into a trivial evaluation of the fields at the boundary. Due to the normalisation of

the ADHM nullspace vector U , this is straightforward to evaluate (even in the

noncommutative case), and we obtain

grs =

∫
d4xTr(δrAiδsAi)

= 2π2Tr
(
C†rP∞Cs + C†rCs

)
where P∞ is the projector at spatial infinity. Expanding in terms of ∂ra and δrR

provides the final result for the metric:

grs = 2π2Tr
(
∂ra
†(1 + P∞)∂sa−

(
a†∂ra− (a†∂ra)T

)
δsR
)
. (2.40)

With this expression, one need only solve the ADHM data in order to obtain the

metric of the moduli space.
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2.7. The ADHM construction for dyonic instantons 37

2.7 The ADHM construction for dyonic instan-

tons

In Section 2.5 we saw that it is possible to introduce a potential into the effective

action for instantons via a consideration of zero-modes. As above, we may turn the

zero-mode considerations into something entirely dependent on the ADHM data.

Recall that the effect of turning on a scalar, Φ, corresponding to some Higgs

VEV gave consistent zero-modes on the moduli space of instantons provided the

background field equation of Yang-Mills, D2Φ = 0 , is satisfied. The method by

which we may achieve this from the ADHM perspective is to introduce an ansatz

for Φ [48]; namely,

Φ = iU †AU, A =

q 0

0 P

, (2.41)

where U is the null vector obtained in the ADHM construction, q is a pure quaternion

and P is a k × k real antisymmetric matrix. The VEV of the field Φ is determined

by iq.

Now we must consider the constraint that arises from the background field equa-

tion. Using the identities (2.17)-(2.19), and after a rafale of lengthy but uncompli-

cated manipulation (see the Appendix for details), we obtain

D2Φ = −4iU †{bfb†, A}U + 4iU †bfTr2(∆†A∆)fb†U. (2.42)

The trace in the second term is a quaternion trace: for a generic quaternion q = qiei,

we have Tr2q = 2<(q). Since A is in block diagonal form, the first term reduces to

−4iU †{f, P}U . For the second term, we may use the form of ∆ in (2.13), defining
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M ′ ≡M − 1kx, to rewrite the trace as

Tr2(L†qL) + 1
2
Tr2

(
[M ′†, P ]M ′ −M ′†[M ′, P ] + {P, f−1} − {P, L†L}

)
.

In the commutators, since x appears only linearly and multiplied by 1k, the x-

dependence vanishes. Collecting all of this together, (2.42) becomes

D2Φ = −4i
(
U †{f, P − 1

2
Tr2(P )}U

+ U †bf
(
Tr2(L†qL)− [Mi, [Mi, P ]]− {P, LT

i Li}
)
fb†U

)
,

where the i, j indices denote the quaternion indices, and not the matrix components.

Finally, since P is real, Tr2(P ) = 2P so the first term vanishes. All that remains is

the required constraint on P :

Tr2(L†qL)− [Mi, [Mi, P ]]− {P, LT
i Li} = 0. (2.43)

In this manner, one may find a scalar field Φ by solving the constraint on P in terms

of the ADHM data for a given instanton configuration.

There is, however, a different way to ascertain the potential on the moduli space,

detailed in [24] for the single instanton case (we will study this in somewhat more

detail in Chapter 5). Consider the VEV as given in the ansatz (2.41):

q = diag(v1, v2, . . . , vN)

for a U(N) theory. Assuming that the ansatz is consistent, the potential can be
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written in an alternative form to that above:

V ∼ Tr(p†|q|2p− p†q†pP ),

where for convenience we have denoted by p the collection of ‘quaternion’ entries

in ∆. Transforming to Calabi form, with L ≡
∑
xi where the xi are the relative

positions of the instantons, we find that

V ∼
∑

xiv
2
i −

1

L

(∑
xivi

)2

=
1

L

∑
i<j

xixj(vi − vj)2

= CAB2(vA − vN)2(vB − vN),

where CAB is the Calabi metric on the space. Here, we see that every Killing

direction, ϕA, is identified with a factor 2(vA − vN). This is equivalent to the term

gained by an F-string connecting two D4-branes. This allows us to express each

Killing vector G as

G =
N−1∑
A

2(vA − vN)
∂

∂ϕ
.

In our case, where we have only two D-branes, if we have a non-zero VEV (equiv-

alently separated branes), the potential receives non-trivial contributions from the

Killing vectors corresponding to global rotations of the data and, around the zeros

of the potential, these are the maximal contributions. In practice, this allows us to

consider the potential as arising from the overall gauge rotation of the data via

V =
1

2
grsG

rGs =
1

2
gΘΘv

2, (2.44)
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where grs is the instanton moduli space metric and Θ in our case will represent the

sum of the gauge angles of the instantons. It can be seen that, using this formalism

in the commutative SU(2) case, one recovers the same result as the above considera-

tions. The two formulations each possess their own merits: in the calculation of the

noncommutative instanton, it proves fruitful to use the Killing vector identification.

In classifying the zeroes of the potential (a calculation necessary to the determina-

tion of the index of BPS spectra in the quantum theory), it is instead more useful

to consider the general form provided by the constraint (2.43).

This ends the required preliminaries; we now turn our attention to finding an

explicit solution for the ADHM data and metric of two noncommutative U(2) instan-

tons. Such a solution can be obtained, and we shall be able to consider scattering

of instantons in this space.
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Noncommutative U(2) instantons

In this section, we turn our attention to finding explicit solutions to the noncom-

mutative ADHM constraints for two U(2) instantons. This will allow us to generate

the moduli space metric, consider scattering, and analyse the symmetries of the

data. While to consider geodesics on the moduli space of the full data (comprising

16 free parameters, 4 of which are trivial centre of mass coordinates and will not

be considered) is computationally expensive, we may use the symmetries inherent

in the metric to consider geodesic submanifolds of the space M̂2. Finally, we may

solve the constraints on allowed scalar fields Φ to find the analogous dyonic result.

3.1 The commutative k = 2 data

We first record, for comparison, the commutative k = 2 data presented in [38].

We consider centred instantons so that the 4 geometrically trivial centre of mass

coordinates need not be considered. The blocks of ∆ are written explicitly in terms
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of quaternions as

L =

(
v1 v2

)
,

M =

τ σ

σ −τ

,
which satisfy the symmetry requirements of the ADHM constraints

∆†∆ = f−1(x)⊗ 12. (3.1)

The remainder of the ADHM constraints, namely a†a = µ−112, split into two parts.

The diagonal elements yield |va|2 + |τ |2 + |σ|2 + |x|2, where we define |q|2 ≡ q̄q = q2
i 12

and the index a ranges over 1, 2. These are, therefore, trivially satisfied in the

commutative case. The off-diagonal constraints in (3.1) give us

v̄1v2 + τ̄σ − σ̄τ = 0

and its conjugate. These constraints may be combined as v̄1v2 − v̄2v1 = 2(σ̄τ − τ̄σ)

and solved, in general, by [46]

σ =
τ

4|τ |2
(v̄2v1 − v̄1v2) + λτ (3.2)

for λ ∈ R arbitrary. The parameter λ encodes the O(2) symmetry arising from the

matrix R in the ADHM redundancies (2.20), corresponding to local gauge transfor-

mations of the instantons: it will play an important role in determining the sym-

metries of the moduli space metric. For calculational ease, we may choose to break

this symmetry to a discrete subgroup thereof by setting λ = 0. Heuristically, then,
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our ADHM data contains only three independent quaternion terms and some centre

of mass coordinates (suppressed inside τ), which furnishes the full 16-dimensional

space, up to some concrete identification of gauge parameters which we consider

shortly.

The metric for such data has already been calculated in [38] and we will not

revisit it in detail here. The salient points of the analysis are that the metric splits

into two parts: a ‘flat’ and an ‘interacting’ part:

ds2

8π2
= Tr

(
ds2

flat + ds2
int

)
= Tr

((
dv2

1 + dv2
2 + dτ 2 + dσ2

)
− dk2

NA

)
,

(3.3)

where

dk = v̄1dv2 − v̄2dv1 + 2(τ̄dσ − σ̄dτ),

NA = |v1|2 + |v2|2 + 4
(
|τ |2 + |σ|2

)
and dq2 ≡ dq · dq = 1

2
Tr(dq̄dq). This may be further simplified by explicitly writing

σ = σ(v1, v2, τ) and application of a series of quaternion trace identities. Unfortu-

nately, the noncommutative case is not so clear.

With this commutative data, one may consider scattering. Unlike in the single

instanton case (where geodesic motion can avoid the singularity at zero-size by start-

ing with non-zero angular momentum) the interactions between the two instantons

can, and do, allow one instanton to shrink to zero-size in finite time [37]. In the

single instanton case, the singularity can be smoothed out by considering noncom-

mutativity on the space, and the resulting moduli space is Eguchi-Hanson [35]. We

wish to achieve the same smoothing in the two instanton case.

43



3.2. The noncommutative deformation 44

3.2 The noncommutative deformation

Given the above, it is natural to wonder if one could deform the commutative data to

encompass the effect of the noncommutativity. This is reinforced by various expected

limits of the noncommutative metric: the singularity at v1, v2, τ → 0 should be

resolved; it should reduce smoothly to the singular, commutative, metric as we

reduce the noncommutativity parameter to zero; and in the limit of large separation

(that is, in the zero interaction limit) the metric should reduce to the direct product

of two distinct single noncommutative instanton Eguchi-Hanson metrics. Given

these considerations, we deform the commutative data as follows.

To temporarily avoid confusion with the ‘vanilla’ data above, we begin by writing

the unconstrained ADHM data in the form

L =

(
w1 w2

)

M =

t s

s −t

.
Recall that with a noncommutative R4, the diagonal terms will no longer be auto-

matically proportional to the identity, but instead receive a term from x̄x:

x̄x = |x|212 +

−2ζ 0

0 2ζ

.
The off-diagonal terms in the ADHM constraint, having no x-dependence, remain

the same. Hence we may still express s in a similar form to the expression for σ in

(3.2):

s =
t

4t†t

(
w†2w1 − w†1w2

)
. (3.4)
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We use the † notation to reinforce that the entries in ∆ need no longer be quater-

nionic.

The solution of these new constraints now results in a choice of how to perturb the

quaternion parts of ∆comm. The most expedient choice is to retain the quaternionic

nature of t, which we will return to labelling as τ , and absorb the noncommutativity

into the wa as follows:

wa = vaMa,

Ma =
1√
|va|2

√|va|2 + αζ 0

0
√
|va|2 − αζ

, (3.5)

where α = α(τ, v1, v2) is some function of the commutative parameters to be de-

termined. One notes that the expression for s is also no longer quaternionic, due

to its form in (3.4). The constraint on α is given by requiring that the non-identity

proportional parts of the nonquaternionic data,

(
w†awa + s†s

)
−

2ζ 0

0 −2ζ

 ∝ 12 (3.6)

for a = 1, 2 and the solution, while non-trivial (a derivation is given in the Ap-

pendix), is given by

α =
32|τ |2|v1|2|v2|2

16|τ |2|v1|2|v2|2 + |v̄2v1 − v̄1v2|2(|v1|2 + |v2|2)
. (3.7)

It is perhaps clear at this stage why the calculation of the noncommutative metric is

so much more computationally expensive than that of the commutative case. Even

something as simple as the ‘flat’ dw2
a is a non-trivial multi-term expansion of all
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of the moduli space parameters due to the renegade additional factors arising from

x. In practice, however, we can avoid some of the complications inherent in the

noncommutative metric by treating α as a parameter in its own right, and deriving

a geodesic equation for α. The α geodesic equation contains no actual dynamical

content, but represents a partial reparametrisation of the moduli space parameters

that we remove after the metric calculation by demanding satisfaction of the dα

equation at all times. From a simulational perspective, we will allow the instanton

solutions to undergo “geodesic motion” and only consider the results gained to be

valid if the constraint on α is maintained under this geodesic flow.

Even with this simplification, calculating the metric for noncommutative instan-

tons is not easy. Consider first the ‘flat’ term dw2
1. The derivative is given by

dw1 = dv1M1 + v1
v̄1 · dv1

|v1|2
(M−1

1 −M1).

Even in the free sector of the metric, we obtain additional terms proportional to Ma.

These will have minimal impact for small noncommutativity or large instantons, but

in the regime where ζ ∼ |va| the additional noncommutative effects will be dominant.

This complexity of the deformation, even for the ‘free’ metric terms, prevents us in

all but the most simple cases from using the properties of quaternion products

ēiej = −ējei + 2δij,

eiqēi = 2Tr(q)12,

eiqei = ēiqēi = −2q̄

and quaternion trace identities. In particular, a key result during the calculation

of the commutative metric relied on the tracelessness of pure quaternions and the
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identity

Tr(pq̄r̄s) = Tr(<(pq̄)<(r̄s)−=(qp̄)=(r̄s))

= 2piqirjsj − 2(εijkl − δikδjl − δilδjk)piqjrksl.

A possible avenue of exploration in order to utilise such identities may be to con-

sider the commutation relations between the quaternions and the noncommutative

deformations Ma. Note that

[Ma, eβ] = iPaεβγeγ for β, γ = 1, 2,

[Ma, ei] = 0 else,

where

Pa =
√
|va|2 + αζ −

√
|va|2 − αζ.

We may write these commutation relations schematically as

[Ma, ei] = iPaεijej, (3.8)

where it is understood that, in this notation, ε3i = ε4i = δ3i = δ4i = 0. Then we

may use (3.8) to collect together the factors of Ma in the derived s. The result is

s = σM1M2 +
τ

4|τ |2
(v̄2v1)i

|v1||v2|
(i(|v2|P2M1 + |v1|P1M2)εij − 2P1P2δij)ej.

While this does make clearer the additional factors introduced into s as a result

of the noncommutativity, the sheer level of maladdress inherent in this expression

prevents it from providing a clear path to an explicit form for the metric without
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choosing a definite parametrisation.

Before we select a relevant parametrisation for the metric, we first consider the

metric derivation presented in [38]. We may write the metric in terms of the ADHM

data as

grs = 2π2Tr
(
∂ra
†(1 + P∞)∂sa−

(
a†∂ra− (a†∂ra)T

)
δsR
)
, (3.9)

where P∞ is the projector at infinity, given in our case by diag(1, 0, 0), and the

variation δR, where R is the gauge transformation in (2.20), is determined by the

symmetry of the theory and the constraint

a†δa− (a†δa)T = a†bδRb†a− b†aδRa†b+ µ−1δR + δRµ−1. (3.10)

We now consider the deformation of each term under the introduction of noncom-

mutativity. The redundancy (2.20) now requires q ∈ U(2), rather than SU(2). The

‘flat’ terms possess no redundancy under the SU(2) piece, as in the commutative

case, but there is an isometry corresponding to the additional U(1) factor that needs

to be gauged away. Generically, we have a transformation

wa → wae
iξ , dwa → (dwa + idξwa)e

iξ,

for ξ ∈ R. In computing dw†adwa, we must identify the conjugate momentum, pξ,

associated to this isometry and set it to zero. For arbitrary data wa, after completing

the square we obtain

dw2
a = dw̄adwa + |wa|2

(
dξ +

κ

2|wa|2

)2

− κ2

4|wa|2
, (3.11)

where κ = dw̄awa − w̄adwa. The second term is equivalent to |wa|2p2
ξ , and so must

48



3.2. The noncommutative deformation 49

vanish. The additional U(1) factor has nevertheless induced an additional factor in

the flat instanton pieces. We note, at this stage, that in the limit of large separation,

only the flat part of the metric contributes and s vanishes. We then find that an

explicit parameterisation of the wa,

wa =

√ρ2
i + αζua1 −

√
ρ2
i − αζūa2√

ρ2
i + αζua2

√
ρ2
i − αζūa1

,
for ua1 = cos θae

i(ψa+φa) and u2a = sin θae
i(ψa−φa), results in two copies of the Eguchi-

Hanson metric using the result in (3.11), as expected. In the commutative case, the

expression κ vanishes in the final metric due to the vanishing of the deformation

and the presence of the trace in the metric calculation.

In the ‘interacting’ part, the redundancy symmetries in (2.20) to be parametrised

by δR now lie in U(2) rather than O(2), as explained in [46]. The constraint (3.10)

is then modified accordingly. In the commutative case, the multiplicative factors

around δR were proportional to the identity, and therefore δR ∝ a†δa − (a†δa)T

naturally followed. In the noncommutative case, this no longer occurs. A solution is

still obtainable, however: one may use the explicit wa and τ dependence of the data

a and b to (anti-)commute them through δR and explicitly multiply by the inverse

of the matrix multiplicative factor. For the sake of completeness, symbolically we

have

δR =
(
w†1dw2 − w†2dw1 + 2(τ̄ds− s†dτ)

)(
w†1w1 + w†2w2 + 4(τ̄ τ + s†s)

)−1

,
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and so the interacting part of the metric follows trivially, and is given by:

−Tr

((
w†1dw2 − w†2dw1 + 2(τ̄ds− s†dτ)

)2(
w†1w1 + w†2w2 + 4(τ̄ τ + s†s)

)−1
)
.

It is possible, at this point, to expand s in terms of wa and τ and calculate the

inverse but the resulting expression is not illuminating. Instead, we now exploit the

symmetries of the metric to obtain tractable results.

3.3 Complex restriction of the moduli space

As we have seen, the noncommutative framework causes a number of complications

in determining a useful form of the metric. Taking a generic parametrisation of

w1, w2 and τ via, for example, Euler angles or complex matrices would be the

easiest way to generate a full metric for the instantons, but this has proven to be

computationally expensive. We may, instead, consider whether any valid geodesic

submanifolds of the data exist that admit a sensible parametrisation and tractable

metric calculation. Such a submanifold can be generated by certain fixed points of

a symmetry of the metric. Consider the unexpanded form of ds2:

ds2 = Tr
(

dw†1dw1 + dw†2dw2 + dτ̄dτ + ds†ds−N−1
A dk2

)
, (3.12)

where NA is the multiplicative factor defined in [38]. The key symmetry that we

wish to consider is conjugation of the data by a unit quaternion, p:

w1 → pw1p̄, w2 → pw2p̄, τ → pτ p̄.
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The imposition of invariance under such an SO(2) symmetry has the effect of fixing

a plane in the R4 instanton world-volume, and the resulting data can be viewed

as living on the transverse directions to this plane. In the commutative picture,

the invariance of the metric under such a transformation was guaranteed as the

corresponding transformation rule for σ, that is σ → pσp̄, is naturally respected. It

is not as simple in the noncommutative case, due to the commutation relations (3.8).

In order to apply the same analysis, we may only consider conjugation symmetries

whose direction commutes with the direction of the noncommutativity. Clearly,

then, this symmetry is valid only for p = e3 in the noncommutative picture; the

choice of noncommutativity has removed some of the underlying symmetries of the

space, as would be anticipated. Our valid geodesic submanifold, then, is composed

of τ, v1, v2 ∈ Span{e3, 12}. Note that this complexification is in agreement with the

arguments put forward in [26], where the e3-e4 plane is chosen in order to break the

correct subgroup of the ADHM symmetries (we will examine this in more detail in

Section 4.4).

We thus consider an explicit complex parametrisation of the form

va = ρa(cos θa12 + sin θae3),

τ = ω(cosχ12 + sinχe3).

Here, as in [38], we will interpret ρa as the size of the a-th instanton and θa as its

internal gauge orientation in the U(1) subgroup of the overall SU(2). The parameters

in τ will play a part in determining the separation and angle of incidence of the

instantons from the origin (the parameters arising from τ have a less straightforward

interpretation, related to the instanton separation, which we discuss shortly). Due
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to the commuting nature of the deformation in this submanifold, then, we obtain

s = sM1M2 = M1M2s,

and in this parametrisation s and the noncommutative deformation function α take

on a simpler form:

s =
sinφ

2ω

√
ρ2

1ρ
2
2 + α2ζ2e3 +

αζ(ρ2
1 + ρ2

2) sinφ

2ω
√
ρ2

1ρ
2
2 + α2ζ2

12,

α =
8ω2

4ω2 + sinφ(ρ2
1 + ρ2

2)
,

(3.13)

where we now define φ ≡ θ1− θ2 to be the relative gauge angle on the moduli space.

We also define Θ ≡ θ1 + θ2, corresponding to the total gauge angle.

It is now possible to calculate the metric on this 6-dimensional submanifold.

Defining, for convenience, the following quantities:

ρ2
i± ≡ ρ2

i ± αζ,

Pi ≡ ρ4
i − α2ζ2,

Ω± ≡ ρ2
1ρ

2
2 ± α2ζ2,

N± ≡ 4ω2 + ρ2
1 + ρ2

2 ± 2αζ +
1

ω2
ρ2

1±ρ
2
2± sin2 φ,
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we find the flat part to be

ds2
flat =

1

P1

(
ρ4

1 +
ρ2

1Ω− sin2 φ

4ω2

)
dρ2

1 +
1

P2

(
ρ4

2 +
ρ2

2Ω− sin2 φ

4ω2

)
dρ2

2

+ (dω2 + ω2dχ2)

(
1 +

Ω+ sin2 φ

4ω4

)
+

1

4
(ρ2

1 + ρ2
2 −

1

2
α2ζ2)(dΘ2 + dφ2)

+
1

2
(ρ2

1 − ρ2
2)dΘdφ+

Ω+ cos2 φ

4ω2
dφ2 − Ω+ sin 2φ

4ω4
ωdωdφ

+
ρ1ρ2 sin2 φ

2ω4

(
ω2dρ1dρ2 − ωdω(ρ1dρ2 + ρ2dρ1)

)
+
ρ1ρ2 sin 2φ

4ω2
(ρ2dρ1 − ρ1dρ2)dφ

+ αdαζ2

(
ρ1dρ1

P1

(
(ρ2

1 − ρ2
2) sin2 φ

4ω2
− 1

)
+
ρ2dρ2

P2

(
(ρ2

2 − ρ2
1) sin2 φ

4ω2
− 1

)
− 1

4ω2
(2ωdω sin2 φ− ω2 sin 2φdφ)

)
+

dα2ζ2 sin2 φ

16ω2P1P2

(
Ω−(ρ2

1 + ρ2
2)− 2α2ζ2(ρ4

1 − 2α2ζ2 + ρ4
2) + 4ζ2ω2Ω−(ρ2

1 + ρ2
2)
)

and the interacting part, similarly, is

ds2
int =

(cosφ(ρ1−dρ2− − ρ2−dρ1−)− 2ρ1−ρ2− sinφ(dΘ− 2dχ))2

8ρ1−ρ2−N−

+
(cosφ(ρ1+dρ2+ − ρ2+dρ1+)− 2ρ1+ρ2+ sinφ(dΘ− 2dχ))2

8ρ1+ρ2+N+

.

The form of the metric is perhaps not particularly simple, but one can verify the

anticipated properties. In the limit of ζ → 0, we see that Ω± → ρ2
1ρ

2
2, Pi → ρ4

i ,

ρ2
i± → ρ2

i and so N± → NA, where NA is the multiplicative factor defined in [38].

With the vanishing of the final three lines in dsflat, it is then easy to see that one

recovers the commutative metric of two instantons in this limit.

We may also verify the expected result at the large separation limit: as ω becomes

large, the interacting term is subleading and α → 2 ⇒ dα → 0. Ignoring the flat
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space dω2 + ω2dχ2 term, we obtain

ds2
sep =

dρ2
1

1− 4ζ2/ρ4
1

+

(
1− 4ζ2

ρ4
1

)
ρ2

1dθ2
1 +

dρ2
2

1− 4ζ2/ρ4
2

+

(
1− 4ζ2

ρ4
2

)
ρ2

2dθ2
2. (3.14)

This is two copies of the Eguchi-Hanson metric restricted to the complex subspace,

which was demonstrated to be the metric of a single instanton in U(N) gauge groups

[24, 26].

Finally, before examining the symmetries of the metric in more detail, we note

that the noncommutative metric still permits the Killing vectors ∂Θ and ∂χ. The

second vector corresponds to the overall SO(2) symmetry of the flat (ω, χ) space

geometry which, under the addition of a VEV, will remain unbroken. The vector

∂Θ, as justified in [24], will contribute to the potential as

V =
1

2
grsG

rGs =
v2

2
gΘΘ, (3.15)

where v is the strength of the potential. Hence, for later reference, we may read off

the potential term for the complexified noncommutative metric:

V =
1

2
v2gΘΘ

=
1

4
v2

(
ρ2

1 + ρ2
2 −

1

2
α2ζ2 − 4ω2

+
2ω2(ρ2

1 + ρ2
2 + 4ω2 − 2αζ)

N−
+

2ω2(ρ2
1 + ρ2

2 + 4ω2 + 2αζ)

N+

)
.

(3.16)

In the limit as ζ → 0, this agrees with the 2-instanton commutative complexified

potential given in [38], and in the single instanton limit we obtain agreement with

the complexified version of the U(1) potential obtained in [24]. We may similarly

derive the angular momentum, L, of the instantons, given by gΘiż
i, which we expect
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to be conserved in any subsequent geodesic motion:

L =
2

v2
V Θ̇ +

1

4
(ρ2

1 − ρ2
2)φ̇+ sin2 φ

(
ρ2

1+ρ
2
2+

N+

+
ρ2

1−ρ
2
2−

N−

)
χ̇

+
1

4
sin(2φ)

((
ρ2

2+

N+

+
ρ2

2−

N−

)
ρ1ρ̇1 +

(
ρ2

1+

N+

+
ρ2

1−

N−

)
ρ2ρ̇2

)
.

(3.17)

We will explicitly verify in the following chapter that this is a conserved quantity.

3.4 Symmetries of the noncommutative metric

Before taking refuge in the cote of numerical simulation, we conclude this chapter

with a brief analysis of the symmetries of the noncommutative moduli space. The

solution for s in the ADHM constraints allowed some freedom over a choice of

constant τ term; explicitly we found

s =
τ

4|τ |2
(w†2w1 − w†1w2) + λτ, (3.18)

for λ ∈ C. A particular choice of λ breaks the O(2) gauge symmetry, represented

by the ADHM transformation ∆ → Q∆R−1, down to a discrete subgroup. These

discrete symmetries are quotiented when considering the moduli space metric: the

fixed points of these symmetries will, upon quotienting, give rise to orbifold sin-

gularities in the moduli space. Indeed, in the commutative case, it can be seen

that the zero-size singularity corresponds to such fixed points. We must consider

the nature of such symmetries to ensure that the noncommutative moduli space is

singularity-free, and the resulting manifold smooth.

Having absorbed the U(1) factor into the derivation of the noncommutative

moduli space metric derivation, the residual symmetries generated by R may be
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considered as reflections or rotations of the ADHM data. We therefore have the

following ADHM-invariant transformations of the data:

w̃1 = w1 cos θ ∓ w2 sin θ,

w̃2 = w1 sin θ ± w2 cos θ,

τ̃ = (cos2 θ − sin2 θ)τ ∓ 2 cos θ sin θs,

s̃ = ±(cos2 θ − sin2 θ)s+ 2 cos θ sin θτ.

(3.19)

Such transformations clearly leave the expression w̃†2w̃1 − w̃†1w̃2 invariant. However,

to leave λ = 0 invariant we must have either cos2 θ − sin2 θ = 0 or cos θ sin θ =

0. Hence, the remaining discrete symmetries of R are described as rotations or

reflections of ∆ with θ = nπ/4, n = 0, 1, . . . , 7, namely the elements of the dihedral

group D4.

Now we consider each group of transformations in turn, and its action on the

ADHM data.

• cos θ = ±1, sin θ = 0. These transformations preserve τ and s, and preserve

or negate the signs of w1 and w2. The fixed point of the non-trivial symmetry

occurs when wi = −wi, that is when wi = 0. This is the conical singular-

ity encountered in the commutative case. Note that in the noncommutative

picture, for generic ζ 6= 0 this fixed point no longer lies on the moduli space

of instantons, as the noncommutative parameter bounds the instanton size

from below as |wi| ≥
√
αζ1. The action of this symmetry, therefore, does not

give rise to a singularity under quotienting in the noncommutative picture, as

anticipated.

1Note that as ω → 0, α → 0 and it would appear that the instantons may attain zero-size. In
this limit, however, s is the dominant term describing in the metric and the instanton sizes are
more correctly described by |w1 ± w2|2/2, which remain bounded.
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• cos θ = 0, sin θ = ±1. Such transformations again preserve τ , swap the roles

of w1 and w2 (potentially with a sign change), and may negate s. This corre-

sponds to the indistinguishability of the two instantons on the moduli space.

We may reinterpret this as a simple invariance under the relabelling of instan-

tons 1↔ 2, and obtain the previous case. The fixed points of these symmetries

are, for this reason, the same zero-size instanton points as above, and may be

safely discounted for the same reasons.

• cos θ = ± 1√
2
, sin θ = ± 1√

2
. This is equivalent to swapping τ and s, and

redefining the wi as some linear combination of each other. The only fixed

point of this symmetry is the ‘trivial’ fixed point, w1 = w2 = τ = s = 0. As

we will see in Section 4.1, this fixed point has a geometric interpretation on the

moduli space, and the ‘singularity’ obtained has no effect on the smoothness

of the underlying metric.

We may now justify the claim that noncommutativity ‘smooths out’ the mod-

uli space: the orbifold singularities present as a result of quotienting global gauge

transformations of the ADHM data no longer appear in the noncommutative moduli

space due to the new, ζ-dependent, form of the wi. This is exactly what one expects

[49]. From the D4-D0 perspective, a commutative solution describes D0s dissolved

in D4s; the “small instanton” singularities arise from the transition between the

(dissolved) Higgs branch, describing Yang-Mills theory, and (separated) Coulomb

branches of the D-brane theory. In the noncommutative framework, the Coulomb

branch is frozen out of the world-volume field theory, and the ζ 6= 0 theory allows

one to describe both dissolved and separated D0 branes without passing through

the small instanton singularity.

Finally, we note that the form of the metric gained above appears to have a sin-

57



3.4. Symmetries of the noncommutative metric 58

gularity as ω → 0. This is a particular concern, as we expected that the introduction

of noncommutativity would remove all metric singularities. However, we now need

to consider the interpretation of the parameter ω. We may note that s is inversely

proportional to ω: thus the consideration of ω → 0 is equivalent to the considera-

tion of |s| → ∞. This, coupled with the symmetries presented above, show that the

parameters of τ and s in conjunction describe the separation and orientation of the

instantons, and so the points ω → 0 and ω →∞ are equivalent: both are attained

when the instantons are located at spatial infinity. The potential singularity of the

metric at this point, therefore, is not a feature of the moduli space. This could also

be demonstrated via a reparametrisation

ω → 1√
2

(
ω +

sinφ

2ω

√
ρ2

1ρ
2
2 + α2ζ2 +

α2ζ2(ρ1 + ρ2)2

ρ1ρ2 + α2ζ2

)
, (3.20)

that is, |τ | → (|τ |+ |s|)/
√

2, which would resolve the worrisome 1/ω dependence of

the metric.

This concludes the derivation and analysis of the noncommutative instanton

moduli space. Via a deformation of the ADHM data, solutions to the noncommuta-

tive instanton field theory can be generated, and shown to behave as expected. While

it has not been possible to find a concise, explicit form for the full 16-dimensional

metric for 2 instantons, nevertheless a geodesic submanifold of the metric still exists

and one may reliably consider the evolution and behaviour of instantons on this

reduced, 6-dimensional, space. The zero-size singularity is no longer a feature of

this moduli space, achieving correspondence with the overarching D-brane picture.

We may now turn to more interesting aspects of this instanton solution: evolution

and scattering.
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Noncommutative instanton

dynamics

In this chapter, we examine the geodesic motion of two noncommutative instantons

on the moduli space M̂2. While the metric, and induced geodesic equations, on the

complexified moduli space obtained in the previous chapter do not admit analytic

solutions in all but the simplest considerations, a numerical approach may be taken

to simulate scattering, orbiting and general behaviour of the two instantons. We

first consider the case where 〈φ〉 = 0 before looking at the dyonic extension to the

moduli space in Chapter 5. The noncommutative framework admits some surprising

results, particularly with regard to stable configurations of the instantons. Finally,

we briefly discuss our results in the context of the non-Abelian vortex picture and

find agreement with the results described in [50].
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4.1 Instanton scattering

In order to consider the effect of scattering, we first turn to the common observation

of soliton dynamics [38, 14]: two solitons colliding head-on at small velocities often

results in right-angled scattering. We first note that in the metric presented in

the previous section, the magnitude of τ , ω, admits a natural interpretation as

the instanton separation. However, it is not unique in this respect. In particular,

the gauge transformations that leave ADHM data ∆ invariant admit an equivalent

ADHM solution of the form

∆′ =


1√
2
(w1 + w2) 1√

2
(w1 − w2)

s τ

τ −s

. (4.1)

Hence, we may state that s has equal claim to describing the separation of the in-

stantons. This statement is further supported by the structure of s. For large τ , the

magnitude of s is small and so in this regime the separation is adequately described

by the parameter ω. Conversely, for small τ it is the s term that will dominate. In

the case where the two parameters are of similar size, neither interpretation truly

holds. More formally, the separation of the instantons is given by the eigenvalues of

the lower block, M , of ∆:

λ± = ±
√
τ 2 + s2. (4.2)

Note that the terms in the square root are not equivalent to q†q. We interpret these

eigenvalues as follows. For τ large, the eigenvalues are approximately ±τ and so we

identify the configuration as that of two instantons whose centres are at ±|τ |. As τ

reduces, the size of s is less suppressed, until we approach the point where τ and s are

of equal magnitude. At this point, we note that the separation (4.2) vanishes since
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τ and s are related by an imaginary phase in the commutative case. Passing beyond

this point, as we reduce τ further then s becomes the dominant parameter controlling

separation. Right-angled scattering arises due to this interchange between τ and s,

coupled with the imaginary multiplicative factor which causes a phase difference of

π/2 between the τ -dominated and s-dominated regimes of parameter space. In the

noncommutative picture, this is not as clear. The presence of the parameter α in

the expression for s makes the zero-eigenvalue requirement more complicated, and

the results are dependent on the magnitude of ζ. In the complexified moduli space,

the vanishing of the eigenvalues (4.2) for non-zero ζ now requires the satisfaction of

4 sin2 φ(ρ2
1ρ

2
2 − α2ζ2) = ω4,

which has a larger class of solutions than its commutative counterpart, and hence

the relationship between s and τ which causes zero separation need not result in

π/2 scattering. Additionally, we see that a zero-separation solution does not require

vanishing instanton sizes, which justifies once more the removal of the zero-size

singularity.

The scattering scenario is shown in Figure 4.1. Using the complexified metric

derived previously, we identify ρi with the size of the i-th instanton. The angle χ

defines the angle of incidence of scattering relative to the axis (so that an angle

of χ = 0 represents head-on scattering) and ω the initial separation1. Due to

the discontinuous jump that occurs at zero separation (representing the symmetry

between w1 and w2), a näıve numerical simulation breaks down at the point of

1This interpretation of the parameters as describing two separate particles holds when the
instantons are not overlapping: that is, when their separation ω is greater than their sizes ρa.
When this requirement does not hold, the instantons are better interpreted as a single charge
2 object around the origin, and in the limit of the zero separation the configuration is axially
symmetric and annular. This is a justifiable interpretation, due to the additional symmetries
between τ and s possessed in the coincident limit.
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collision. We thus follow [38] and reparametrise the variables in τ as ω =
√
x2 + b2

and χ = arctan(b/x). Then we may interpret x as the initial separation along the

axis and b as an impact parameter. A head-on collision will occur when the impact

parameter goes to 0 but can be approximately observed for sufficiently small, non-

zero, b. All simulations were run using Mathematica 9.0 [51]; a representative sample

of the code is presented in Appendix B.

Figure 4.1: The relevant parameter set-up for scattering simulations. The general sepa-
ration of the instantons is described by 1/

√
2(|τ |+ |s|), and this is what the “x” and “y”

axes describe. In subsequent plots, where it is helpful, we plot the sizes of the instantons
at regular t-intervals to demonstrate size evolution and instanton speed.

4.2 Head-on Collisions

We first consider the results of such a ‘head-on’ collision in both the commutative

(ζ = 0) and noncommutative (ζ = 0.1) systems, as shown in Figure 4.2. The

presence of right-angled scattering is perhaps heartening, as this agrees with the

expected soliton behaviours. The key point, however, lies in the size plots. While
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Head-on scattering for ζ = 0. Head-on scattering for ζ = 0.1.

Size evolution of the commutative scattering
setup.

Size evolution of the noncommutative scat-
tering setup.

Figure 4.2: A comparison of commutative (left) ζ = 0 and noncommutative (right)
ζ = 0.1 instanton scattering for given initial conditions φ = π/2 (corresponding to the
instantons having opposite orientations), b = 0.001, x = 30 and ρ1 = ρ2 = 1. The second
row of plots demonstrates the evolution of the instanton sizes. Right-angled scattering
is still a valid behaviour in the noncommutative case for small impact parameter. We
note that, as anticipated, the instanton sizes do not vanish at the point of collision, thus
avoiding the moduli space singularity attained in the commutative case.

in the commutative framework the instanton sizes reach the zero-size singularity,

no such problem exists in the noncommutative analogue. This is as expected, since

one anticipated that the noncommutativity would smooth out the singular point

encountered in the commutative picture. It can be verified that the minimum of
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the size is attained just after collision, and with the parameters evaluated, this

minimum is precisely
√
αζ. This agrees with our expectations: the noncommutative

deformation to the metric took the form ρ2
i ρ

2
j − α2ζ2 for i = 1, 2 and j = 1, 2 so

the singularities at ρi = 0 are replaced by a circle around the ρi parameter spaces

of size
√
αζ. This trend is shown in Figure 4.3.

Figure 4.3: Minimum instanton size achieved via head-on scattering with varying ζ. The
dependence of ρmin on ζ is given by

√
αζ, where α is evaluated at the point of collision.

Figure 4.4: Commutative and noncommutative scattering for b = 0.25. Scattering
occurs in the noncommutative case, but at a modified angle to that of the commutative
instantons.

The above demonstrates that the ‘attractiveness’ of the noncommutative bound
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state displays a large sensitivity to the value of the impact parameter, b. As one

varies the impact away from head-on, we obtain scattering, although the presence

of ζ 6= 0 deforms the scattering solutions away from the commutative scattering

angle. This behaviour under introduction of noncommutativity appears to be a

generic feature of all soliton systems which arise from reductions of noncommuta-

tive instantons: in considerations of non-Abelian vortices (where a Fayet-Iliopoulos

parameter serves to couple the Abelian U(1) non-trivially to the rest of the gauge

group), this attractive behaviour is also manifest [50]. It is natural to ask whether

such an attractive force on the moduli space could be interpreted as an induced

potential on the space, even for the free instanton moduli space. This is a question

that we will revisit in due course.

Given the modifications to the scattering behaviour under the introduction of a

non-zero ζ, it is instructive to examine the scattering angles obtained. The results

are shown in Figure 4.5 for equal size instantons (since this provides right-angled

scattering in the commutative case) and ζ = 0.1. We note that as we vary the

impact parameter, the scattering angle varies accordingly from standard scattering

to a scattering angle greater than π. This demonstrates that, far from being the

standard result, right-angled scattering is one possible outcome from the collisions

of noncommutative instantons.

The presence of a ‘maximal’ scattering angle raises more questions about the

behaviour of the instantons. From Figure 4.5 one can see that there appears to

be a “critical” tuning between b and ζ which maximises the final scattering an-

gle. Such a tuning exists for all possible values of b within the interaction region

(or equivalently, ζ within the Manton approximation), as can be seen in Figure

4.6. These configurations correspond to an intermediate state between scattering

regimes, where the instantons retain enough repulsive force to temporarily overcome
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Figure 4.5: Scattering with varying b and ζ = 0.1. A ‘critical’ point in configuration
space exists at b ∼ 0.21, where the instantons temporarily orbit before scattering. This is
shown more clearly in the second plot, where we have zoomed in around the critical point.

the attractive ζ force, generating an unstable, short-lived, orbit around the centre.

An example of such behaviour is shown in Figure 4.7, where the transition between

the two scattering regimes is clear.

Figure 4.6: Contour plot of final scattering angle with varying ζ and b. The region
bounded by the contour χscat = π contains configurations with the unstable orbit charac-
teristics, demonstrated in Figure 4.7.

These results are perhaps surprising: right-angled scattering does appear, but is

not the most general result for close to head-on collisions between two noncommu-
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Figure 4.7: Collisions for a range of b and ζ = 0.1. The configuration that maximises
the scattering angle (the right figure) corresponds to a “slingshot”, where the instantons
orbit each other before returning whence they came. In the right-hand plot (where the
size of one instanton has been suppressed for clarity), the right instanton approaches from
above the x-axis with stable size and speed and leaves more slowly, but with an increasing
size.

tative instantons. In fact, it naturally arises from a consideration of the symmetries

of the ADHM data and the expression for the separation (4.2). The more involved

form of s, coupled with the presence of the parameter α in the data, allows for

a greater range of initial data causing the τ -s identification change. As a result,

one can obtain scattering in a range of scenarios and scattering angles, of which

right-angled is but one aspect.

4.3 Validity of Simulations

Before proceeding further, it is natural to wonder whether the above results represent

a sensible conclusion. The behaviour of the noncommutative instantons is markedly

different from that of their commutative counterparts, and the interpretation of such

67



4.3. Validity of Simulations 68

results is not clear. It may be helpful, therefore, to examine expected features of

the numerical results and ensure that the obtained behaviour is valid.

In the ‘free’ instanton picture, one does not anticipate the velocity of motion on

the moduli space to affect the scattering behaviour. This is due to the fact that

the evolution of our instantons is not true dynamical motion, per se, but geodesic

motion through allowed instanton configurations on M̂2. Increasing the velocity on

the moduli space, from this point of view, is equivalent to increasing the time-step in

the numerical simulations. Hence, provided the velocity is within the ranges allowed

by the Manton approximation, one expects that the geodesic motion obtained will be

unchanged if one varies v. As Figure 4.8 demonstrates, the atypical noncommutative

scattering behaviour is independent of the chosen velocity, up to slight fluctuations

as one moves away from the valid range of the Manton approximation.

Figure 4.8: Scattering behaviour with varying ‘velocity’ (v = 0.03-0.27). The results
gained are identical over the range of allowed velocities, up to small numerical differences,
resulting from numerical error in the geodesic approximation.

We may also verify that the angular momentum (3.17) is conserved: the period

of greatest volatility is around the point of collision. In this regime, the difference

between initial angular momentum and that of the scattering configuration varies
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only slightly, and well within expected numerical error. The “change” in angular

momentum is shown in Figure 4.9.

Figure 4.9: The variation in angular momentum of the system around the point of
collision for a configuration of instantons with total starting angular momentum 1. The
difference between the initial angular momentum and that of the evolved configuration
never exceeds O(10−5), well within numerical error. Outside of the scattering region, the
difference drops to O(10−8).

Finally, a diagnostic test of the solution method for the geodesic equations is

in order. To this end, we may calculate the residuals of each geodesic equation at

every timestep in the process of numerically solving the equations, and compare

the results with those obtained in the commutative set-up (and indeed, for later

comparison, with those obtained in the vortex picture). The numerics in the com-

mutative and vortex simulations are valid up to errors ∼ O(10−4) as checked in [38]

and [50] respectively: as Figure 4.10 indicates, the errors in the numerical analysis

of the noncommutative instantons is comparable in order to the previous results. It

transpires that the critical scattering case is the most susceptible to numerical er-

rors of the three possible scattering outcomes: the scattering configurations exhibit

numerical error O(10−5) or smaller in all cases.

69



4.4. The connection to vortices 70

(a) Residuals for commutative head-on scattering.

(b) Residuals for noncommutative critical scattering.

Figure 4.10: Log-plotted residuals of the commutative head-on and critical scattering
situations. The maximum numerical error (attained shortly before collision) is O(10−4).

4.4 The connection to vortices

The results gained for instantons have wider reach to other solitonic systems. The

(4 + 1)-dimensional Yang-Mills theory can be dimensionally reduced in a number

of ways to obtain other lower-dimensional theories. Accordingly, instantons (as

solutions to bosonic Yang-Mills theory) can be dimensionally reduced to produce
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monopole and vortex solutions.

The vortex picture is an interesting one: the vortices are static solutions to a

(2+1)-dimensional maximally supersymmetric N = 4 field theory. To guarantee the

existence of vortex solutions, the bosonic Lagrangian of such a theory can be adapted

to contain a Fayet-Iliopoulos parameter, which modifies the D-term constraints and

ensures symmetry breaking of the vacuum. The introduction of such a term in a

U(N) vortex theory mediates the coupling between the SU(N) gauge symmetry and

the remnant U(1) symmetry, in a similar vein to the instanton picture (see [26] for a

fuller description) and hence the vortex solutions obtained can be considered to be

non-Abelian [52]. The equivalence between the instanton and vortex deformations

is not quite straightforward, however.

To make clear the connection, we must consider the symmetries of the instanton

data [26]. The full symmetry group of the ADHM data for U(N) instantons is

Ginst = SO(5)× U(N)× SU(2)× U(1),

where the SO(5) rotates the transverse scalars XI , the U(N) is the overall flavour

symmetry (corresponding to the ADHM redundancies) and the SU(2)×U(1) symme-

try is the unbroken parts of the world-volume SO(4) symmetry after the introduction

of noncommutativity. The vortex theory arises via a symmetry breaking of a sub-

group of Ginst that leaves the matter content and SUSY structure equivalent to that

of the vortices. To achieve this, we weakly gauge a U(1) factor inside SO(5). We

can interpret this in a more concrete sense via the ADHM data and corresponding

moduli space. The U(1) gauge field is tantamount to a circle action on the moduli

space, which will have a corresponding triholomorphic Killing vector k̂. Gauging by

this S1 action leads to a potential term in the instanton Lagrangian, with mass term

71



4.4. The connection to vortices 72

proportional to k̂2. Now, considering the fixed points of the circle action (equiva-

lently, all points in the moduli space for which k̂ = 0) gives us exactly the vortex

moduli space. To ensure isometry between the two sets of theories, one must relate

the instanton noncommutative parameter, ζ, to the gauge coupling of the vortex

theory; namely,

ζ =
π

2e2
. (4.3)

There are a number of open questions in this analysis, most of which are un-

fortunately beyond the scope of this work. The FI parameter in the vortex theory

already guarantees the existence and smoothness of vortex solutions, unlike in the

overarching instanton theory. Due to the identification between ζ and the gauge

coupling of the vortex U(1), descending to a theory of vortices from noncommuta-

tive instantons may, rather than resolving the moduli space, lead to singularities

not present in the original theory [26]. More work on this aspect of the analysis,

including classifying such potential singularities, would be helpful.

The scope of vortex solutions, a priori, appears to be larger than those con-

figurations that would arise from the instanton reduction. The instantons, when

dimensionally reduced, provide a ‘critically coupled’ non-abelian vortex theory and

in fact, one can see from (4.3) that in the commutative limit the U(1) part of U(N)

is frozen out of the theory. However, the theory of vortices may also admit its own

FI parameter as well as the U(1) gauge coupling. It would appear that, as ζ is in

some sense determined by the coupling e, that the instanton theory says nothing

about the noncommutative structure of the vortex theory. It seems incongruous to

assert that the vortices have additional freedom not possessed by the instantons,

but a clear justification of the converse would be preferred. As it stands, we may

only consider equivalence of our solutions to this critically coupled theory.
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A point that naturally stems from the above discussion is related to dyonic in-

stantons. If we choose a potential for the dyonic instantons in a direction orthogonal

to the U(1) ⊂ SO(5), then we should anticipate some form of ‘dyonic’ vortices to

appear. The nature of such a theory is not clear, but work is being done to include

a Higgs field to the vortex picture (e.g. [53]). The key stumbling block of such an

identification stems from the nature of the potential term in the instanton theory.

Symmetry requirements, and the satisfaction of the BPS equations and correspond-

ing ADHM constraints, forced us to select a particular form for the potential term.

Such restrictions do not exist in the vortex theory, and so there is no guarantee that

a dyonic vortex theory would become an allowable dyonic instanton theory under a

dimensional ‘lift’. The converse, however, should be true: a dyonic instanton should

find a natural, lower-dimensional analogue in the vortex picture. The behaviour and

properties of such solutions would be vastly illuminating.

We postpone discussion of such issues except for the dyonic question, which we

revisit briefly in Chapter 6. The aim here is to ensure that our solutions to the non-

commutative ADHM equations agree, upon reduction, with the known behaviours

of non-abelian vortices [54]. We note that, in the ‘free’ instanton case, we have no

real restriction on the choice of U(1) ⊂ SO(5) to gauge. We may also note that when

complexifying the moduli space of instantons, we required the data to be unchanged

under conjugation by the unit quaternion e3. The data we have obtained, then, is

fixed under the circle action generated by e3 and hence viable as a starting point

for the comparison with vortices.

Figure 4.11 shows the results of this vortex limit. We reproduce the results

gained in [54] from the instanton data and observe the expected behaviour: the non-

abelianisation is shown in the different behaviours with varying gauge orientation

φ ≡ θ1− θ2. Of course, this is just one aspect of non-Abelian vortex scattering, but
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(a) Vortex scattering for φ = π/2, b =
0.5, 0.75, . . . .

(b) Vortex scattering for b = 1, φ =
0, π/8, . . . .

Figure 4.11: Vortices from a reduction of the instanton moduli space.

nonetheless it is encouraging to see the scattering behaviour exactly reproduced in

the context of instantons.

We have now seen the qualitative differences between commutative and noncom-

mutative scattering of 2 instantons in U(2). While, in the absence of a Higgs field,

the commutative head-on configuration follows the expected soliton result (right-

angled scattering), this is not the standard behaviour for ζ 6= 0. Depending on the

strength of the noncommutativity, one may obtain a large variety of scattering an-

gles not present in the commutative case. The instanton minimum size is bounded

below by the magnitude of the noncommutativity parameter, as one would have

anticipated. One may obtain other, more interesting, scattering results not present

in the commutative case. For a given noncommutative strength, the instantons may

display unstable orbiting behaviour, where their latent repulsive force is temporarily

balanced by the attractive ζ effect. Via a parameter search, such configurations may

be seen to exist for any value of ζ within the Manton approximation.
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Such surprising results should be (and were) treated with caution. We analysed

the validity of the results, via recourse to known geodesic symmetries and conserved

quantities, and found agreement in all cases. The numerics were subjected to similar

analysis, and found to be valid to a level of numerical error comparable to that of

the commutative results. Finally, we utilised the correspondence between dimen-

sionally reduced instantons and vortices to verify that the expected behaviour was

reproduced.

Having seen the effect that a non-zero ζ has on ‘free’ instanton scattering, it

is now time to turn on a potential strength and discuss the nature of the scatter-

ing behaviour therein. We shall see that the noncommutativity has a pronounced

and non-trivial impact on the stability and general properties of dyonic instanton

scattering behaviour.
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Dyonic Noncommutative

Instantons

In this chapter, we consider the effect on the dynamics of noncommutative instantons

under the addition of a potential term. The ADHM construction in Chapter 3

demonstrated that the potential term does not remain unchanged after we consider a

noncommutative space. We would expect, then, that the dynamics of such instanton

solutions should change accordingly.

We first recall the form of the potential term (3.16) for two noncommutative

U(2) instantons:

V =
1

4
v2

(
ρ2

1 + ρ2
2 −

1

2
α2ζ2 − 4ω2

+
2ω2(ρ2

1 + ρ2
2 + 4ω2 − 2αζ)

N−
+

2ω2(ρ2
1 + ρ2

2 + 4ω2 + 2αζ)

N+

)
,

(5.1)

where N± ≡ 4ω2 + ρ2
1 + ρ2

2 ± 2αζ + 1
ω2ρ

2
1±ρ

2
2± sin2 φ and ρi± ≡

√
ρ2
i ± αζ. Consider

first the extremal limit as noncommutativity becomes comparable to instanton size,

that is αζ ∼ ρ2, N+ → 4ω2 + 4ρ2 + 2ρ2/ω2 and N− → 4ω2. Then as ω → 0, we
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see that the terms containing N± become negligible and the effect of the potential

term on the full dynamics is dominated by the ρ2
a and α2ζ2 terms. Since the instan-

ton sizes are bounded below by the noncommutativity parameter in any geodesic

motion (as we demonstrated in Figure 4.3), the contribution from the ζ2 term will

also be subdominant. Conversely, as previously mentioned (and studied in [38]),

the commutative limit gives a similar picture: both N± terms are subleading in the

scattering limit. Hence any substantive effects of the introduction of noncommuta-

tivity are not to be found in straightforward scattering. Nevertheless, the difference

between dyonic instantons and their regular counterparts may be seen in some as-

pects of scattering in a neighbourhood around ω = 0, and we may consider those.

Moreover, dyonic instantons may exhibit a feature not present in the free case: it

is possible to ‘tune’ the latent repulsive force of the instantons and the attractive

potential force to obtain stable orbiting solutions. We shall examine whether such

solutions are an option in the noncommutative framework.

5.1 The attractiveness of noncommutativity

Before moving on to consider dyonic noncommutative instantons, we may analyse

the effect of noncommutativity on the free instanton picture. We noted that the

presence of non-zero ζ seems to introduce an attractive effect to the normal instanton

scattering that, for sufficiently high ζ, overrides the normal repulsion of the two

instantons. Then, before we concern ourselves with an additional potential force,

we should investigate whether we may view the noncommutative effect as a genuine

attractive effect. If so, then we would expect the transition to dyonic instantons

to be unremarkable: the same scattering solutions will exist, but each solution will

correspond to a two-parameter space spanned by the strength of the potential, v,
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and the noncommutativity.

The clearest possible test of this is the following. We set our instantons at a finite

distance apart such that in the commutative v = 0 case the repulsive behaviour is

manifest. Sending the two initially at right angles to the line of separation, we

would expect a deviation away from π/2 for a small time, until the instantons are

suitably far away that interaction effects cease to dominate. We may then repeat

this for some appreciably large value of ζ. The results are shown in Figure 5.1 for

unit-size instantons and initial separation 0.9. Crucially, the separation is chosen

such that the extent of the instantons initially overlap, and so interaction effects are

the dominant initial contribution to the instanton dynamics.

Figure 5.1: A demonstration of the attractive effect of noncommutativity: overlapping
instantons with initial motion at an angle π/2 to the x-axis. On the left, for ζ = 0.05.
repulsive behaviour dominates short-scale interactions; on the right, for ζ = 0.3, attractive
behaviour is the key feature.

On the left hand side, with ζ = 0.05, we observe the expected behaviour from the

commutative case. The instantons temporarily repel, before maintaining a steady

course. On the right hand side, for ζ = 0.3, a very different picture emerges.

Far from repelling, the short-distance behaviour is attractive, before the instantons

separate too far for interaction effects to dominate. If the noncommutativity is
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strong enough, then the tendency is for the instantons to come together rather

than pull apart. Figure 5.2 shows the changing angle of exit with varying ζ for some

values of the separation, where the crossover point between repulsion and interaction

becomes clear.

Figure 5.2: The attractive/repulsive interface for noncommutative instantons. For χ −
π/2 < 0, repulsion occurs. For suitably small initial separation, one can instead obtain
χ− π/2 > 0 (attraction).

Figure 5.2 also shows the sensitivity of such behaviour to the initial separation.

We plot the value of the final scattering angle χ − π/2 against ζ for a variety of

impact parameters. When the plots remain below the x-axis, the instantons are

scattering repulsively; when they cross the axis, this demonstrates the transition to

attractive scattering. For large initial separation, the generic instanton repulsion

is the only notable effect on the dynamics due to the subleading nature of the ζ

modifications to the metric, and the crossover between repulsion and attraction is

not evinced. Note that the trajectories of the plots suggests that the case b = 1.1

will eventually cross the transition point. However, the value of ζ at which it does so

is outside the valid parameter regime for the geodesic approximation and therefore
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cannot be considered to be a feature of the system. Nevertheless, it can be seen that

the introduction of a noncommutative parameter to the moduli space can cause an

attractive, rather than repulsive, effect.

The above strongly suggests that, for instantons initially positioned close to-

gether, the noncommutative effect is dominant and attractive. We now see the

important effects of a noncommutative parameter on instanton scattering. Far from

a simple modification to scattering angle, we may observe very different behaviours.

For an initially small impact parameter, we may recover the standard results of

soliton scattering. However, for off-centre scattering configurations, the presence of

ζ can effect an attractive force between the two instantons, greatly modifying their

scattering behaviour. We now turn on an actual potential force in the metric, and

consider the twin effects of the two attractions.

5.2 The dyonic picture

Now we introduce a non-zero potential strength, v. The results of Section 5.1 were

suggestive of a potential-like force on the moduli space arising from the noncommu-

tativity. A potential of the form [37, 38] is also useful, however, as it may allow us

to examine whether the slow-roll instability as ρ→∞ exists in the noncommutative

case. It may also shed some light on the BPS spectra, via an analysis of the zeroes

of the potential [24].

The results are shown in Figure 5.3. This demonstrates quite different charac-

teristics: for relatively low potential strength, the instantons can attract and form a

stable orbit (of which we will see more shortly), with the potential force and repulsive

force balanced. Even if one breaks the Manton approximation by allowing |v|2 > 1,

the ‘instanton’ solutions attract so strongly that the configuration resembles that of
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a head-on collision. There is no configuration that envinces attractive behaviour of

the form seen in the pure (that is, static with QE = 0) noncommutative instanton

case.

(a) Orbiting from perpendicular instan-
tons, for v = 0.07.

(b) Beyond Manton scattering: poten-
tial strength v = 10. Objects scatter as
if propelled inwards to begin with.

Figure 5.3: The attraction options for commutative dyonic ‘instantons’. The instantons
either attract and reside in a fixed orbit, or attract with such force that scattering occurs.
No intermediate behaviour is demonstrated.

This is interesting, but perhaps not surprising. The dynamics of noncommuta-

tive instantons are resulting from purely geodesic motion: that is, any scattering

effect arises due to the geometry of the moduli space. Since the key feature of the

noncommutative moduli space is that the singularity at zero is smoothed out, stable

valid geodesics exist that may pass arbitrarily near the origin, and so the instantons

are more likely to stably orbit at small separation. This justifies the appearance

of the ‘slingshot’ dynamics. In the dyonic commutative picture, the singularity at

zero-separation remains, and the instantons are unable to replicate this behaviour.

Any deviation from the geodesic motion effected by the potential or a velocity will

not overcome the singularity at the origin.
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This aside, we consider the available solutions under the influence of both ζ and v.

In the search for interesting results, we ignore some regions of the parameter space:

the addition of an attractive potential term is not going to change the scattering

behaviour for small impact parameter. Rather, we will focus on the regions of

parameter space where scattering did occur in the free noncommutative picture and

analyse any changes that arise in those situations. In the following, we consider a

range of initial impact parameters, 0.32 ≤ b ≤ 0.52, and stipulate that the combined

‘strength’ of the noncommutativity and potential are fixed. Figure 5.4 shows the

results for different partitions of ζ + v = 0.15, where this partition and strength are

chosen in order to demonstrate the salient qualitative behaviours.

In the first case, we consider pure noncommutativity. This is a familiar result:

we have a modified scattering picture. As we dial down ζ and dial up v, we see very

different behaviours. While ζ dominates, the pure noncommutative picture is still

approximately valid; as the effect of the potential dominates, then scattering is guar-

anteed, albeit with the expected changes to the final scattering angle. Somewhere

around the midpoint of this transition (demonstrated in Figure 5.4 for ζ = 0.05 and

v = 0.1), the behaviour becomes more interesting. A zoomed out version of this

plot is shown in Figure 5.5, and shows the presence of unstable orbits even without

the initial conditions chosen by [38].

One final point to make with regards to these results is that the qualitative dif-

ference between configurations with similar initial conditions can be considerable.

The moduli space is incredibly sensitive to any adjustments to impact parameter

and potential strength, in particular. This is not surprising: given the respective

instabilities inherent in both the dyonic commutative and free noncommutative in-

stanton configurations, a combination thereof allows for a greater range of unstable

dynamical systems in the ζ-v parameter space. It is possible that even more exotic
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Figure 5.4: Dyonic noncommutative scattering for ζ + v = 0.15. The free noncommuta-
tive result ζ = 0.15 is shown in the top left, followed by ζ = 0.1, v = 0.05; ζ = 0.05, v = 0.1
and v = 0.15 (commutative dyonic) respectively.

behaviour can be demonstrated for careful tunings of the initial instanton configu-

rations, but given the computational expense in undertaking a complete parameter

search for the dyonic noncommutative instantons, we leave this consideration for

further work.
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Figure 5.5: A zoomed out plot of the ζ = 0.05, v = 0.1 configuration in Figure 5.4, and
one particular unstable orbit from the initial plot with size oscillation shown.

5.3 Dyonic Orbits

Despite the observed instability of certain scattering scenarios as in Section 5.2,

and the atypical behaviour of some ‘non-scattering’ situations as in Section 5.1, we

may examine whether the stable orbits known to exist in the commutative picture

remain in the noncommutative analogue. Such orbits existed at a point of equilib-

rium between the attractive and repulsive forces of the potential and the instanton

effect, respectively. Given our previous considerations, it is not clear whether such

a situation may be replicated for noncommutative instantons.

One key point in the search for such systems is that of longevity: the presence of

a non-zero ζ has introduced the possibility of attraction and scattering for previously

normal scattering scenarios, if ζ is large enough. This option is still possible if we

start with a stable orbit and turn on noncommutativity, but the time taken to

demonstrate the behaviour may be much longer. With this in mind, all numerical

simulations run to investigate the possibility of orbits have been run for around 5

times longer than those in [38] to rule out eventual scattering. We again consider
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the interplay between the noncommutative parameter ζ and the strength of the

potential v.

The first question is whether näıvely adding a non-zero ζ to previously known

stable orbits affects the qualitative results. We take the stable orbit previously

determined and turn on some amount of noncommutativity. The differences are

shown in Figure 5.6 and Figure 5.7, where we record the evolution of the trajectories

of the instantons and their sizes. In the commutative case, the instantons oscillate

in a regular fashion, trading size as they sweep out an annulus in the moduli space.

The maximum (minimum) combined size ρ1 + ρ2 is reached on the outer (inner)

edge of the annulus, as one would expect from the ‘free’ scattering data. This orbit

is stable, and exhibits no interesting features beyond those shown in Figure 5.6.

Figure 5.6: A commutative dyonic orbit. The sizes and separation are bounded above
and below, due to the annulus swept out in the τ plane. The right-hand plot charts the
sizes ρ1 (blue) and ρ2 (red) of each instanton as they orbit.

The noncommutative equivalent is less aesthetically pleasing, though it still ex-

hibits a stable configuration. The instantons begin as in the commutative case (as

can be seen most clearly in the size plots) before starting to trade sizes in an ir-

regular fashion. This results in a more irregular orbit, but it remains stable for an
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Figure 5.7: The same initial conditions as in Figure 5.6 with ζ = 0.1. Again we also
monitor the size evolution of the instantons. The separation and size behaviour is more
chaotic.

indefinite period of time. The minimum distance between the two instantons is also

reduced: this agrees with the results gained from the free case, where the removal of

the singularity in the moduli space allows for the instantons to comfortably reside

in more tightly bound configurations.

The difference in allowed sizes is worthy of discussion. Whereas in the free in-

stanton case, the introduction of noncommutativity placed a lower bound on the

instanton size (as anticipated in the avoidance of the zero-size singularity), we see

that in the dyonic case the noncommutativity reduces the lower bound of the in-

stanton size in stable orbits. This is demonstrated by Figure 5.8, where we see that

the sizes of the noncommutative instantons diverges from that of the commutative

case as they orbit. This, too, is the expected result: in the commutative theory the

potential is introduced ‘by hand’ to prevent the zero-size singularity, and so ζ need

not play the role of stabiliser. Instead, for stable orbits where no scattering, and

hence zero separation, occurs, the presence of the attractive ζ-force allows tighter

orbits, which cause the bound on minimum size to be reduced. One may consider
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taking this to its logical conlcusion: for sufficiently strong noncommutativity (po-

tentially outside the Manton limit), the bound on instanton size could hit zero, but

this would occur in configurations where the attractive effect causes scattering of

the instantons. Hence the already established ‘free’ size constraint would take effect

in this limit, and the zero-size singularity will not play a part.

Figure 5.8: The difference in average size, ρ̃ = (ρ1 + ρ2)/2, in the commutative and
noncommutative orbiting configurations. Due to the greater range of allowed separation
in the noncommutative picture, the sizes correspondingly oscillate over a greater range of
sizes until stabilising.

Of course, this behaviour should not be assumed to be a generic feature of

noncommutatively deformed orbits. As in Section 5.2, we may choose to maintain

the combined effect of noncommutativity and potential, and consider the interplay

between the two parameters. Figure 5.9 demonstrates the two possible options for

instability.

These results underline the variety of dynamical outcomes that may occur due

to the presence of the additional parameter ζ. It would be overweening to suggest

that the set of results above is exhaustive: it is feasible to imagine some carefully
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(a) Long-lived unstable orbit for
ζ = 0.1, v = 0.2.

(b) Short-lived unstable orbit for
ζ = 0.15, v = 0.15.

Figure 5.9: Unstable orbit evolution. Depending on the initial conditions, the config-
uration can degenerate from a ‘stable’ orbit to a scattering scenario in vastly different
timescales.

tuned system that undergoes orbit, scattering and reorbit. However, the vastness

of the parameter space, coupled with the computational intensity of the numerical

simulations, makes a full characterisation of the space unwieldy.

This concludes our discussion of dyonic noncommutative instantons. We have

seen that we may view the noncommutative effect as an attractive force on the

moduli space, and the addition of a potential creates a number of interesting possible

scenarios for interaction. In the commutative case, the scattering behaviour was

modified only slightly in the final scattering angle χfinal by the addition of a potential.

With the inclusion of noncommutativity, as in the ‘free’ noncommutative instanton

case we may have a modifed scattering picture, which persists regardless of the

strength of the potential. This may also occur in the previously stable orbiting

configurations, where the effect of non-zero ζ can cause instability in the orbiting

behaviour.
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Partial Results and Future

Directions

In this chapter, we present a set of partial results to open questions on the study

of instantons. There are many such interesting directions that could be taken in

extending the work done here: we highlight those that should be tractable while

possessing merit in terms of the present research in the field.

6.1 Non-Abelian vortices from dyonic instantons

We previously examined the reduction of the instanton moduli space to the (2 + 1)-

dimensional non-Abelian vortex theory in Section 4.4, where the noncommutative

parameter in the instanton picture translates into a gauge coupling between the

U(1) and SU(2) gauge groups. We observed that there appeared to be dynamical

vortex configurations that could not be reproduced in the instanton model: the

solution of the vortex equations allows an additional Fayet-Iliopoulos parameter

that finds no apparent analogue in the higher dimensional theory. Moreover, there
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is no straightforward correspondence between a potential in the vortex theory (where

there are no symmetry constraints or ansatz of the form (2.41)) and the ‘canonical’

potential term. However, one would anticipate that a Higgs field can be chosen

in the vortex theory that would correspond to the dimensional reduction of our

potential term V in the instanton theory. We may then consider the behaviours we

would expect in the vortex theory from such a reduction.

Work on dyonic non-Abelian vortices [53] demonstrated that a vortex theory

with some non-zero Higgs field 〈φ〉 = diag(m1, . . . ,mN) modified the Bogomolny

equations and gave a stricter Bogomolny bound on minimum energy states:

Evortex ≥ |2π2kv2|+
∣∣∣∑Qimi

∣∣∣.
Contrast this with the result for dyonic instantons:

Einstanton ≥ |2π2k|+ |QE|.

It seems feasible that the two theories may be equivalent under dimensional reduc-

tion, with some identification of the electric charge, QE, in the instanton theory with

the additional mass term,
∑
miQi, in the vortex theory. We leave this identification

for future work.

In [53, 54], a number of dynamical vortex considerations were considered explic-

itly: while we lack the tools to do the same here, we nevertheless consider the näıve

reduction of the dyonic instanton to the 2+1-dimensional theory. The results gained

thus far are interesting and hint at a deeper relationship between the dyonic instan-

tons and vortices. Figure 6.1 shows the typical scattering characteristics, plotted

in the same manner as Figure 4.11. We note that there is a general trend towards
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attraction: the behaviour is suggestive of (though not as strong as) the results in

[54] when the vortices are subject to a maximised non-Abelian effect. This is a

curious result since, as already mentioned in Section 4.4, the vortices possess addi-

tional degrees of freedom in the parameter space that the instanton picture seems

to neglect.

(a) Dyonic vortex scattering for φ =
π/2, b = 0.5, 0.75, . . . .

(b) Dyonic vortex scattering for b = 1,
φ = 0, π/8, . . . .

Figure 6.1: ‘Dyonic’ vortices from a reduction of the instanton moduli space. We note
the attractive behaviour, reminiscent of the behaviour of maximally non-Abelian dyonic
vortices.

It would be interesting to examine the parameter space of the reduced instanton

moduli space more closely, particularly with regards to the induced charge arising

from the potential term. It is possible that there exists, within the bounds of the

Manton approximation, a configuration that produces the maximally non-Abelian

behaviour known to occur in [54]. It is especially interesting that the dyonic potential

in the instanton theory seems to result in a modification to the non-Abelian effect,

rather than a potential in the vortex theory. This strange result merits further

study.
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6.2 Index Counting From Dyonic Instantons

In this section, we discuss the index counting mechanism that connects the instan-

ton picture to that of string theory and, eventually, M-theory. It is very much

unclear what the full picture is in this case, but we present the results gained so

far. The index counting mechanism, as we shall see, allows one to count the dif-

ference of fermionic and bosonic BPS states in the SYM quantum mechanics via

the zeroes of the dyonic instanton potential. Due to the difficulty of producing a

full parametrisation of the instanton moduli space, we may not systematically de-

scribe and categorise the space of zeroes possessed by the U(2) noncommutative

2-instanton potential. We may, however, make some general comments as to the

form of some of the zeroes of the potential. In particular, we shall see that, unlike in

the commutative case, a class of such zeroes follow a broadly similar form to that of

[24]. We first describe the SUSY QM on which the index is defined, and henceforth

follow the conventions of [20].

The Lagrangian of a SUSY QM system with 8 supercharges is given as follows:

L =
1

2

(
gmnż

mżn + igmnψ̄
mγ0Dtψ

n +
1

6
Rmnpqψ̄

mψnψ̄pψq

− gmnGm
I G

n
I − i∇mGinψ̄

m(ΩIψ)n
)
,

(6.1)

where ψm is a two-component Majorana spinor, γ0 = σ2, γ1 = iσ1, γ2 = −iσ3, and

ψ̄ = ψTγ0. The Ω are defined as Ω4 = δmn γ
1
αβ, Ω5 = δmn γ

2
αβ and Ωs = iJ

(s)m
n δαβ for

s = 1, 2, 3. The manifold on which the theory is defined must be hyperKähler, so

that there exist three covariantly constant complex structures J (s) satisfying

J (s)J (t) = −δst + εstuJ (u),
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and the Killing vector field G should be triholomorphic:

LGg = 0, LgJ (s) = 0.

Defining ϕ ≡ (ψm1 − iψm2 )/
√

2 and Q ≡ (Q1− iQ2)/
√

2, where Qα are the associated

supercharges, then we may define Z2 gradings on this theory:

τ± ≡
∏

(
√
ieEmϕ

m ±
√
−ieEmϕ∗m), (6.2)

where eEm is the vielbein of the manifold. These operators are only non-zero in the

event that a scalar field is turned on in the theory (which without loss of generality

we may choose to be G5), and they, along with the corresponding Dirac operators

D± ≡ iQ ± Q†, define Witten indices I± counting the number of BPS states for a

given central charge. This index is, a priori, non-trivial to calculate from the field

theory, but given the non-zero scalar field we may use properties of the index to

relate this calculation to a tractable one.

Provided care is taken when choosing the definition of the Hilbert space, Dirac

operators D± and involutions τ±, we may utilise a scaling argument to restrict

the points of contribution to the index. Consider a space L± as the restriction of

the space to eigenvalues ±1 of D, and Hilbert spaces E1 and E2 as the spaces of

sections of line bundles with finite graph and L2 norms, respectively. Then it can

be shown that, including a deformation of the metric, that the Dirac operators D±

are Fredholm on the appropriate spaces and there exist a continuous family of such

operators related by quasiisometries acting on D± [20]. Then the index calculation

is unchanged by such deformations. In practial terms, such quasiisometries and

metric scalings allow us to scale the potential term, arising from G5 6= 0, such that
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the contributions to the index are localised around the zeroes of V (for details, and

a proof of this scaling argument, one may consult [23, 20, 24]).

This result allows an entry point into the index calculation of the QM theory via

the theory of instantons. We note that, by construction, the instanton moduli space

manifold is automatically hyperKähler, and the potential naturally triholomorphic

on the space. Then we may scale the potential (arising from non-zero 〈φ〉 = X5)

such that the index calculation is localised around its zeroes. This has utility in

computing the index of complicated SUSY quantum mechanical systems, where the

index calculation from the field theory side is non-trivial. This method was used

in [24] to calculate the index of the single noncommutative U(N) instanton, and

agreement was found between that calculation and the corresponding field theory

index.

In practical terms, it is not straightforward to extend this to the 2-instanton

case. The problems discovered in Section 3.2 mean that it is not easy to examine a

fully-parametrised potential term in the 16-dimensional moduli space. However, it

is straightforward to see that the method of calculating the potential in [38] remains

valid in the noncommutative case, albeit with the caveats previously discussed when

deriving the noncommutative metric. Explicitly, the potential term takes the form

V ∼ v2
(
w†1w1 + w†2w2 − (w†1w1 + w†2w2 + 4(τ̄ τ + s†s))−1|w†2q̂w1 − w†1q̂w2|2

)
, (6.3)

where the quaternion q has magnitude |q| ≡ v. We now wish to analyse any possible

zeroes in both the commutative and noncommutative cases.

The first, simplest, option is when w†1w1 = w†2w2 = 0. This yields a set of

zeroes over the 4-dimensional τ space. While, initially, it may appear that the

index calculation would be ill-defined, we note that the quasiisometries allow us
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to reduce the τ plane to a point, and therefore the calculation is regular. In the

commutative case, this corresponds to |v1|2 = |v2|2 = 0 which has a single zero,

namely the zero-size singularity, which is known in the field theory to correspond to

a non-renormalisable field theory. In the noncommutative case, we recall that the

additional U(1) symmetry means that the expression w†iwi produces terms of the

form

ρ2
i −

α2ζ2

ρ2
i

cos2 θi,

where θi is the parameter corresponding to the e3 direction. For generic non-zero

ζ, and up to scalings of τ , we have two zeroes for each instanton vi: the north and

south poles of the circle ρ2
i = αζ 1. Hence, in the noncommutative case, we obtain

4 zeroes in this sector. This is not surprising: the single instanton calculation in

[24] found 2 zeroes in a similar vein. The system under consideration here is one in

which both instantons vanish independently, and so one would expect to obtain the

equivalent solution for two well-separated instantons.

The second option is one in which the two terms are of equal magnitude: explic-

itly,

w†1w1 + w†2w2 =
(
w†1w1 + w†2w2 + 4(τ̄ τ + s†s))−1|w†2q̂w1 − w†1q̂w2|2

)
. (6.4)

This option is not present in the single instanton case. The general solution to this

requirement is not clear, but we may see that one class of zeroes occur due to the

possibility of bound 2-instanton states in a small-separation regime. In this regime,

we see that the second term in the potential simplifies considerably. It can be seen

1We note, as in Section 3.4, that näıvely it may be possible for α→ 0 when τ → 0, giving the
zero corresponding to the zero-size singularity. However, we note as before that in this limit, the
system is more adequately parametrised by τ → 1√

2
(τ + σ), and α remains non-vanishing
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quickly that zeroes of the potential in this regime are given by

w2 = q̂w1.

This gives a group of zeroes parametrised by the free variables in w1 and the direction

quaternion, q̂. In any such theory under consideration, the quaternion q̂ is fixed by

the symmetry requirements of the dyonic potential term and so does not correspond

to an additional class of zeroes. However, again we need consider the symmetries

of the instanton metric: this set of zeroes is equivalent to w1 = w2 up to a global

U(2) rotation of the data, and then from the field theory view this corresponds to a

quasiisometrical deformation of the index. There is then, in both the commutative

and noncommutative cases, only one interesting possibility for zeroes in the small-

separation limit in this sector, which is represented in the instanton system by an

axially symmetric 2-instanton bound state.

This is by no means an exhaustive analysis of the possible zeroes of the potential

in the 2-instanton case: it may be possible to satisfy the vanishing of V for other,

more general, configurations where neither the well-separated or small-separation

limits are attained. However, we simply wish to demonstrate that the well-known

results from the single instanton analysis are recovered in the noncommutative 2-

instanton picture, along with additional interesting contributions to the index that

occur as a result of ‘interacting’ instantons. It would be interesting to extend this

analysis, and complete the index calculation in the manner of [23, 24] as a means

of understanding more about the underlying field theory. We note that, given the

imposition of a U(2) gauge group in our work, all contributions to the index are

weighted by the same factor v ≡ |v2−v1|, so after a complete characterisation of the

class of zeroes of the potential, the index calculation should follow straightforwardly.
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This would not be the case were one to extend the analysis to, say, noncommutative

SU(3) instantons. Finally, it was mentioned in [24] that the single U(N) instanton

index calculation possessed N3 scaling degrees of freedom: this is indicative of the

connection to M-theory, where the same scaling appears to be observed for a stack

of N M5-branes. More work on this calculation would be useful.

6.3 SU(3) Instantons

Finally, we approach the question of a larger gauge group, U(N). The cases where

N is even have long been known to be tractable [55], as one may maintain the

quaternionic nature of the entries in the ADHM matrix ∆. It is less clear, however,

on how to proceed in the case of odd gauge group. A set of solutions for SU(3)

instantons possessing cylindrical symmetry is well-established [56], but a general

solution has been elusive. Such a general solution for gauge group SU(3) would be

illuminating, as it may give an indication on the most general method for generating

such instanton solutions.

Concretely, the SU(3) ADHM data, ∆, is a 7 × 4 matrix of complex entries

satisfying the usual ADHM constraints. We note that the only adjustment to the

dimension of the induced moduli space comes from the upper block, L, and so it is

still possible to view the lower block of ∆ as in quaternionic form. In the spirit of

the U(2) noncommutative deformation we have presented, we seek to introduce a

deformation, P , to the vi such that v†i vj is unchanged for i, j = 1, 2. This would

guarantee satisfaction of the ADHM constraints in the same way as in the SU(2)

case. In particular, this means that

P †P = 12.
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For an indication of how the solution may proceed, we write P as P = (z1, z2) for

zi ∈ C3. Then we require z1 and z2 be orthogonal unit vectors. One may verify

that the parameter space is equivalent to an S3 fibration over S5, and comprises 8

free variables. Given that the moduli space of 2 SU(3) instantons should contain

24 independent variables, it is not unreasonable to aver that such a deformation

could encompass all the additional ADHM parameters arising from a consideration

of gauge group SU(3) rather than SU(2). The calculation of the metric on the

moduli space would follow in a broadly similar manner to that presented here and

in [38], with the notable caveat that the matrix R in the gauge redundancies is now

O(3), rather than O(2) (in the commutative case) or U(2) (in the noncommutative

case) [46].

The key to achieving anything with such an approach would be to find a useful

parametrisation of this data. We may note that there are a number of straightfor-

ward examples of such matrices, corresponding to the three canonical independent

subgroups of SU(2) in SU(3):

Pα =


1 0

0 1

0 0

, Pβ =


0 0

1 0

0 1

, Pγ =


1 0

0 0

0 1

.

Choosing any of these P , along with a general SU(2) gauge transformation, would

give all possible embeddings of the SU(2) instanton data into SU(3). it is unlikely,

however, that this would give the whole story. A general parametrisation, for use in

the ADHM data, is not easily obtainable. If such a parametrisation could be found

that allowed for tractable computations of dwi, the metric and dynamics would be

relatively simple to calculate. It is interesting that the above considerations implic-
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itly transform each ‘instanton’ datum vi by the same matrix. The fact that there

are 8 free parameters, exactly in line with the expectations of an SU(3) solution,

suggests that the relative gauge orientations of the two SU(3) instantons should be

adequately demonstrated in a good parametrisation of the matrix P . Alternatively,

it is possible that, as in the SU(2) case, we are looking only at some relative gauge

angle sums and differences, and that a reparametrisation of the matrix P would

shed some light on this result.

Such a consideration would be valuable in the context of the connection to D-

branes. In the U(2) sector, we are implicitly considering just 2 D-branes and so any

string configurations must stretch between the two, or be localised on one. The lift to

SU(3) would allow for a richer class of possible string configurations, including those

where a bound state passes through a D-brane. In particular, an index calculation

for such a theory could have profound effects on the understanding of the M5-brane.

As a final point, the noncommutative extension of the SU(3) instantons may be

straightforward, for suitable choices of the deformation matrix P . Metrical com-

plexities aside, with an understanding of the noncommutative deformation and the

even to odd gauge group deformation, it may be possible to generalise to arbitrary

SU(N) and U(N) for any gauge group.

In this chapter, we have outlined a number of reasonable extensions to the present

work, for which we may make some meaningful comments. The qualitative difference

under the addition of a potential in the vortex picture appears more pronounced

than that of the pure instanton case, where the changed behaviour is suggestible of

the maximally non-Abelian vortex picture shown in [54]. This is broadly indepen-

dent of the strength of noncommutativity (at least, when considering parameters

within the Manton range), and would benefit from further study. We have outlined

some of the key differences between the index calculations for single and multiple
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instantons, where new zeroes of the Higgs field appear as a result of multi-instanton

bound states. A result of this kidney was expected, but there are still a number of

unanswered questions about the full set of zeroes for 2-instanton systems, and this

remains a potentially fertile area of examination. Finally, we have given some indi-

cation of an avenue of exploration with regards to SU(3) commutative instantons,

whence interesting string theoretical behaviours could spring. There are always

more aspects of the instanton theory that can be considered. The relevance of in-

stantons to a large number of currently relevant topics in mathematics and physics

will always mean that certain aspects of the theory have been neglected. However,

the above considerations suggest that some interesting things can be said about a

number of different aspects of string theory and solitons given the work done here,

and that the research is feasible.
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7

Conclusions and Outlook

In this work, we have examined the construction, properties and behaviour of 2

noncommutative dyonic instantons arising as minimum energy, static solutions to

a U(2) Yang-Mills theory. The ADHM procedure allows us to translate the BPS

equations for such a theory, comprising the requirement of self-duality of the fields,

into a purely algebraic set of constraints on allowed instanton data. The remaining

distinct instanton solutions, taking into account any gauge redundancies, furnish a

16-dimensional ‘moduli space’, upon which we may embed a metric. By definition,

this metric is hyperKähler and admits a triholomorphic Killing vector, which we

identify with a potential term on the moduli space.

The added complexity stemming from considering an underlying noncommuta-

tive R4 means that an illuminating, explicit form for the metric is presently beyond

our reach. However, in the noncommutative picture there still remain valid geodesic

symmetries of the moduli space metric corresponding to non-singular fixed points

of the full metric. This allows (after discounting the 4 centre of mass coordinates in

the 16d space) a consideration of a 6-dimensional submanifold, upon which scatter-

ing and dynamics can be analysed via the Manton approximation of slow-moving

101



Chapter 7. Conclusions and Outlook 102

instantons. The dynamics of noncommutative instantons can behave in a very dif-

ferent way to their commutative counterparts: stable bound states may exist due

to the presence of the non-zero noncommutative parameter ζ as a stabiliser for the

minimum size of the instantons. Consequently, the moduli space is free of the so-

called ‘small instanton’ singularity and in the limit of large separation, one obtains

two copies of the Eguchi-Hanson metric. This is the only available 4-dimensional

hyperKähler manifold admitting a triholomorphic Killing vector, and so the result

here agrees with heuristic arguments about the nature of the 2-instanton noncom-

mutative moduli space as well as the results demonstrated in [35, 24].

The scattering, in general, of noncommutative instantons displays some intrigu-

ing traits beyond that of the stable bound states. Unlike in the commutative case,

where right-angled scattering is the outcome of a head-on collision, this is far from

the only possibility in the presence of noncommutative space. One may, for some

value of ζ, obtain a variety of scattering outcomes, and the angle of scattering for

instantons is no longer fixed by the choice of impact parameter. Indeed, one may

find that for interacting instanton configurations, a transition between two differ-

ent scattering regimes persists as one increases the scattering offset between the

instantons. Of course, in the limit as ζ → 0, the standard commutative scattering

behaviour is reproduced in all cases.

The geodesic submanifold allowed by the introduction of noncommutativity read-

ily lends itself to an identification with vortices: 2+1-dimensional solitons of a U(N)

theory related to instantons via a dimensional reduction in two of the spatial di-

rections. A large body of work has been dedicated to the study of non-Abelian

vortices, and the noncommutativity parameter in the instanton theory descends to

determine the coupling strength between the SU(N) and U(1) factors of the vortex

[27, 28, 26, 50, 52, 25]. Aspects of the analysis of vortex dynamics in [54] can be
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reproduced in the instanton model, as we have shown. However, the full picture of

vortex scattering is unlikely to stem purely from the ‘free’ noncommutative instan-

ton: in particular, the maximally non-Abelian case is beyond the reach of tuning of ζ

in the instanton theory. However, we have also seen that the dimensional reduction

of dyonic noncommutative instantons displays traits indicative of the maximally

non-Abelian results, and more study on this, in conjunction with the works of, e.g.,

[53] on dyonic non-Abelian vortices may allow more concrete statements to be made

about the correspondence.

Links to vortices notwithstanding, the transition to dyonic noncommutative in-

stantons evinces further interesting deviations from the commutative picture. Con-

figurations that resulted in scattering in the commutative case need not remain for

ζ 6= 0; orbiting configurations (where the attractive potential strength balances the

repulsive force of the instantons) need not be stable. Conversely, one can find a

new class of stable orbits for the noncommutative case, where the (admittedly more

chaotic) orbits can reside in a smaller stable orbit. This is not general behaviour:

one may have quasi-stable orbits where the instantons scatter after a finite orbiting

time. This option was not as common in the commutative picture.

Finally, one may use the instanton potential to make some comments about the

BPS index calculation of the underlying N = 4 quantum mechanical theory. One

may use a well-understood scaling argument [20] to deduce that any non-trivial

contributions to the index are localised around the zeroes of the dyonic potential.

While the complexity of the 16-dimensional moduli space (and hence potential)

calculation mean that we have not been able to fully categorise all possible zeroes

of the k = 2 U(2) dyonic potential, it can be seen that alongside zeroes of the

form given in [24] for each individual instanton, there exist zeroes of the potential

corresponding to a charge 2 single instanton bound state which will non-trivially
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affect any index calculation.

There are, of course, a number of open questions that would benefit from greater

analysis. The first, and most important, is the need to find a definite parametrisa-

tion of the full, 16-dimensional, moduli space for the noncommutative instantons.

This would allow a full analysis of the symmetries of the moduli space, and would al-

low us to make a concrete identification between the space and some 16-dimensional

hyperKähler metric. We have demonstrated a few key features that this full moduli

space should possess: it remains to find and verify such properties once a parametri-

sation can be determined. Another question that the full moduli space would be able

to shed light on is the subject of geodesic completeness. In the commutative case,

it is clear that the moduli space is not geodesically complete, as there are instanton

configurations that can reach the singular point at the origin. In the noncommuta-

tive framework, it has been demonstrated [6, 34] that the singularities present for

ζ = 0 are resolved, which is suggestive (but not proof) that the moduli space of

noncommutative instantons are geodesically complete. An explicit, 16-dimensional,

description of the k = 2 U(2) noncommutative instanton moduli space should lend

more evidence to the assertions about completeness. The complexification of the

moduli space also forced us to consider the two instantons where their internal gauge

orientations differed by some U(1) factor in the full U(2). It would be interesting

to observe the allowed dynamics when the instantons possess relative angles val-

ued in the full U(2) theory. Similarly, a full understanding of the metric on this

space would yield a parametrised form of the dyonic potential for two noncommu-

tative instantons: a classification of all possible zeroes of the potential would be

crucial to an understanding of the index calculation, and associated scaling degrees

of freedom, of the SQM theories. Given the relationship between such theories and

M-theory, this would have far-reaching utility in understanding the M5-brane. As
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a final point on the moduli space approximation, it would be useful to compare

the results of the Manton-approximated system against those of the full Yang-Mills

field theory. This is a very computationally intensive aim, due to the complexity

of the noncommutative U(2) SYM theory, and remains out of reach at present. It

would be interesting as to whether designing a module for computing the full metric

in C or Python to deal with quaternions explicitly would be more efficient from a

calculational standpoint: work on this is in progress.

Given the known connections between instantons and other, lower-dimensional

solitonic theories, there are a number of different reductions one should be able to

make given the results presented here aside from the previously considered vortex

theory. A similar story to the vortices emerges in the case of monopoles. In fact,

monopoles also appear on the string theoretical side as bound states between fun-

damental strings and D0-branes [57], so an identification between instantons and

monopoles may be more readily verified on both the soliton and field theory sides.

A configuration of commutative circle-invariant instantons can be seen, under di-

mensional reduction, to correspond to hyperbolic monopoles with certain properties

[30]: whether this connection can be realised in a noncommutative context remains

to be seen. Similarly, it has been seen that well-separated monopoles obey Kepler-

like laws, corresponding to some central force governing their behaviour [58]. It

would not be surprising if this were also true for instantons, and should be a rela-

tively straightforward way to verify whether the instanton-monopole identification

persists with ζ 6= 0.

As a final point, the clearest extension of this work would be to increase the size

of either the gauge group of the number of instantons in the theory. While there

has been a large amount of work done on the properties of commutative SU(2N)

instantons (where the ADHM data naturally admits a parametrisation in terms of
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quaternions), the noncommutative analogue has not been studied for k > 1. In these

theories, it would not be surprising to see a similar noncommutative deformation

to the one presented in this work, and the only barrier to progress would be that

of computational complexity. Instanton theories for odd gauge group are even less

well-understood, due to the awkwardness of parametrising the ADHM data. In

particular, the commutative and noncommutative SU(3) 2-instanton cases would be

interesting, as from the D-brane picture, after Higgsing the D4-branes, these could

represent configurations where the fundamental strings do not begin and end on the

same brane. This could give an eventual insight, via index calculations, into the

strange scaling behaviour of M-theory, where the scaling of allowed states of M2-

branes ending on M5-branes is N3 rather than the expected N2. The ADHM data,

however, is much more complicated and a illustrative parametrisation has thus far

been elusive. A possible avenue of exploration is, in the spirit of the noncommutative

deformation, to find a matrix, containing the additional moduli space parameters,

that deforms the v1 and v2 of the SU(2) instanton configurations without changing

the satisfaction of the ADHM constraints. Such a deformation exists: the next stage

will be to find an expedient parametrisation of the deformation to make clear the

effect of the SU(3) gauge group. Finally, an extension to greater instanton charge

k may allow scattering of, say, two 2-instanton bound states. At first glance, this

would appear to be a reasonable extension, as the data readily admits a quaternionic

parametrisation and the ADHM constraints may still take similar form, albeit with

more quaternion entries. The case of k = 3 would be the obvious starting point in

any such endeavour.
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Appendix A

Supplementary Calculations

A.1 The Dyonic Potential Constraint

We seek to turn the background field equation of Yang-Mills for a scalar field Φ,

D2Φ = 0, into an algebraic constraint in terms of the ADHM data. We use the

ansatz

Φ = iU †AU, A =

q 0

0 P

,
where q is a generic quaternion and P ∈ U(2). Crucially for what follows, A is

x-independent. Using the form of the gauge covariant derivative and the expression

for Ai in terms of the ADHM data, Ai = iU †∂iU , along with the following identities:

∂iU
†U = −U †∂iU

∂i∆
†U = ∆†∂iU

UU † = 1−∆f∆†

∂i∆ = −bei

(A.1.1)
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and their Hermitian conjugates, one obtains

DiΦ = ∂i(iU
†AU)− i[iU †∂iU, iU †AU ]

= i∂iU
†AU + iU †A∂iU − i∂iU †UU †AU − iU †AUU †∂iU

= i∂iU
†AU + iU †A∂iU − i∂iU †(1−∆f∆†)AU − iU †A(1−∆f∆†)∂iU

= −iU †∂i∆f∆†AU − iU †A∆f∂i∆U

= iU †
(
beif∆†A+A∆f ēib

†)U.
In calculating D2Φ = DiDiΦ, we expand each term resulting from the second co-

variant derivative separately for ease of reading. The first term gives

∂i(DiΦ) = i∂iU
†(beif∆†A+A∆f ēib

†)U + U †
(
beif∆†A+A∆f ēib

†)∂iU
− iU †

(
beif ēib

†A+Abeif ēib†
)
U.

The second term, since f commutes with the quaternions, becomes

−4iU †{bfb†, A}. The remaining terms require further expansion:

iU †beif∆†A∂iU + i∂iU
†A∆f ēib

†U + i∂iU
†beif∆†AU + iU †A∆f ēib

†∂iU

= iU †beif ēib
†A+ iU †Abeif ēib†U + i∂iU

†beif∆†AU + iU †A∆f ēib
†∂iU

= 4iU †{bfb†,A}U + i∂iU
†beif∆†AU + iU †A∆f ēib

†∂iU,

and so the first term of this expression and the previously calculated part cancel.

All that remains, then is

∂i(DiΦ) = i∂iU
†beif∆†AU + iU †A∆f ēib

†∂iU. (A.1.2)
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The commutator term of D2Φ is more involved, and we make liberal use of the

identities (A.1.1) throughout.

−i[Ai, DiΦ] =− i[iU †∂iU, iU †(beif∆†A+A∆f ēib
†)U ]

= − i
(
∂iU

†(beif∆†A+A∆f ēib
†)U

+ U †(beif∆†A+A∆f ēib
†)∂iU

− ∂iU †∆f∆†(beif∆†A+A∆f ēib
†)U

− U †(beif∆†A+A∆f ēib
†)∆f∆†∂iU

)
.

We now evaluate the first two lines of this expression:

− i
(
∂iU

†beif∆†AU + ∂iU
†A∆f ēib

†U + U †beif∆†A∂iU + U †A∆f ēib
†∂iU

)
= −i∂iU †beif∆†AU − iU †A∆f ēib

†∂iU − 4iU †{bfb†,A}.

The first two terms cancel with (A.1.2). All that remains to calculate is the final

two lines of the commutator term:

i
(
U †beif∆†beif∆†AU + U †A∆f ēib

†∆f ēib
†U

+ U †bei∆
†A∆ēifb

†U + U †bfei∆
†A∆ēifb

†U
)
.

We note that the terms in the first line are Hermitian conjugates of each other. The

expression beif∆†beif∆† is anti-Hermitian, so the first line vanishes. Noting that

eiMēi = 2Tr2(M), where Tr2 is a quaternion trace, we arrive at the final result:

D2Φ = −4iU †{bfb†, A}+ 4iU †bfTr2(∆†A∆)fb†U.
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A.2 The Algebraic Constraint on Zero-modes

We state that the expression

δrAi = −U †Crf ēib†U + iU †beifC
†
rU,

for Cr ≡ ∂r∆ + δrQ∆ + ∆δrR, is a zero-mode if Cr is x-independent and ∆†Cr is

Hermitian. We now demonstrate this. Consider the term, comprising part of δrAi,

given by ψi ≡ U †bfei. Treating this as a vector in the fundamental representation,

the covariant derivative is

Diψj = ∂iψj − iAiψj

= U †eibf∆†bfej + U †bf(ēib
†∆ + ∆†bei)fej,

where the identities (A.1.1) have been employed. Then in the expression ∆†b, we

may write explicitly ∆†b ≡ liei where the li are generically complex-valued (in the

commutative case, these would simply be real-valued matrices). Then we have

Diψj = U †bflkf(eiēkej + ēiekej + ēkeiej)

= −U †bflkf(eiējek − 2δjkei − 2δikej).

With Diψj in this form, it is clear that the expression satisfies the zero-mode con-

ditions D[iψj] = 1
2
εijklDkψl and Diψi = 0. Now we consider the full expression for

the putative zero-mode:

Di(δrAj) = −i(DiU
†)Crψj + iψjC

†
r(DiU)− iU †Cr(Diψj) + i(Diψj)C

†
rU

= −iU †bf(ei∆
†Crēj − ejC†r∆ēi)fb†U − iU †Cr(Diψ

†
j) + i(Diψj)C

†
rU,
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where, amongst other things, we treat U as a vector in the fundamental represen-

tation, so that DiU = U †eibf∆†. By the previous consideration, we need not worry

about the final two terms as they already satisfy the zero-mode constraint. The first

term merits more consideration: for it to satisfy the zero-mode conditions we must

have

e[i∆
†Crēj] − e[jC

†
r∆ēi] =

1

2
εijkl(ek∆

†Crēl − elC†r∆ēk)

ei∆
†Crēi − eiC†r∆ēi = 0.

The second requirement automatically holds. The first requirement holds iff the

expression inside the quaternions is Hermitian: explicitly,

(∆†Cr)
† = ∆†Cr.

This requirement may, due to the form of ∆, be broken up into two separate con-

straints:

a†Cr = (a†Cr)
†,

b†Cr = (b†Cr)
†.

This is the form used in our calculations.
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A.3 The Calculation of α

The noncommutative deformation of the SU(2) ADHM data has the form

wi = Mivi,

where

Mi =
1√
|vi|2

√|vi|2 + αζ 0

0
√
|vi|2 − αζ

.
α is, as yet, unconstrained. However, the diagonal ADHM constraints force the e3

part of |wi|2 + |τ |2 + |s|2 to be equal to 2ζ. Hence we may use this constraint to

obtain α in terms of the quaternionic data.

The key calculation is that of |s|2. We have

|s|2 =
1

16|τ |2
|v̄2M2M1v1 − v̄1M1M2v̄2|2.

Because of the quaternionic nature of the vi, and the squaring of s, we may pull

through the Mi deformations through the vi, and any additional terms arising from

the commutator of s with the ei will not contribute. Then we have

|s|2 =
M2

1M
2
2

16|τ |2
|v̄2v1 − v̄1v2|2.

Calculating the deformation term:

M1M2 =
1

|v2
1||v2|2

(|v1|2|v2|2 + α2ζ2
)
12 + αζ(|v1|2|+ v2|2)

1 0

0 −1


.

Since the ADHM constraints are defined up to some overall scalar factor in f−1,
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the additional terms proportional to the identity can be absorbed via a redefinition,

and thus do not merit consideration. The final term is the important one, as this is

constrained by the total noncommutative deformation in x. The s parameter, then,

contributes to the noncommutative part of the ADHM constraints with a factor

|v̄2v1 − v̄1v2|2

16|τ |2
αζ

|v1|2|v2|2
(|v1|2 + |v2|2).

We may insert this into either of the diagonal ADHM constraints, knowing that the

e3 part of |wi|2 is simply αζ for i = 1, 2. The result is

α

(
1 +

(|v1|2 + |v2|2)|v̄2v1 − v̄1v2|2

16|τ |2|v1|2|v2|2

)
= 2.

This equation can be trivially rearranged to give the required expression for α,

namely

α =
32|τ |2|v1|2|v2|2

16|τ |2|v1|2|v2|2 + (|v1|2 + |v2|2)|v̄2v1 − v̄1v2|2
.

This form, while complicated in terms of calculating expressions such as dwi, has the

advantage of being completely general in its derivation. Such a procedure should

apply in the consideration of noncommutative instantons for any gauge group or

instanton charge.
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Appendix B

Mathematica Code

We present, for completeness, the Mathematica [51] code produced to calculate the

metric of two noncommutative instantons, and a minimal working example of the

simulation code.

B.1 Calculation of the metric

The calculation code takes the data for w1, w2 and τ and calculates the corresponding

σ. From this, we derive the flat and interacting parts of the metric, along with the

induced potential term. The geodesic equations are calculated using the normal

geodesic equation, and the result is exported to an external file to avoid problems

with kernel quitting.
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H* Assumptions... *L
$Assumptions = Element@8Α@tD, Ρ1@tD, Ρ2@tD, Θ1@tD, Θ2@tD,

Θ@tD, Φ@tD, Ρ1+@tD, Ρ2+@tD, Ρ1-@tD, Ρ2-@tD, Ω@tD, Χ@tD, Ζ<, RealsD;

H* Declare independent elements of D *L
v1 = 99Ρ1+@tD ã

ä Θ1@tD
, 0=, 90, Ρ1-@tD ã

-ä Θ1@tD==;
v2 = 99Ρ2+@tD ã

ä Θ2@tD
, 0=, 90, Ρ2-@tD ã

-ä Θ2@tD==;
Τ = Ω@tD 99ã

ä Χ@tD
, 0=, 90, ã

-ä Χ@tD==;

H* Induced Σ *L
Σ =

1

4 Ω@tD2

Τ.HConjugateTranspose@v2D.v1 - ConjugateTranspose@v1D.v2L �� FullSimplify;

H* Substitutions for parameters Ρ+, Ρ-, and angle sums *L

Ρsubs = :Ρ1+'@tD ® Ρ1@tD
Ρ1'@tD + Ζ Α'@tD � 2

Ρ1+@tD
, Ρ1-'@tD ® Ρ1@tD

Ρ1'@tD - Ζ Α'@tD � 2
Ρ1-@tD

,

Ρ2+'@tD ® Ρ2@tD
Ρ2'@tD + Ζ Α'@tD � 2

Ρ2+@tD
, Ρ2-'@tD ® Ρ2@tD

Ρ2'@tD - Ζ Α'@tD � 2
Ρ2-@tD

>;

anglesubs = :Θ1@tD ®
1

2

HΘ@tD + Φ@tDL, Θ2@tD ®
1

2

HΘ@tD - Φ@tDL,

Θ1'@tD ®
1

2

HΘ'@tD + Φ'@tDL, Θ2'@tD ®
1

2

HΘ'@tD - Φ'@tDL>;

H* Differentials *L
dv1 = D@v1, tD ��. Join@Ρsubs, anglesubsD �� FullSimplify;

dv1bar = D@ConjugateTranspose@v1D �� Simplify, tD ��.
Join@Ρsubs, anglesubsD �� FullSimplify;

dv2 = D@v2, tD ��. Join@Ρsubs, anglesubsD �� FullSimplify;

dv2bar = D@ConjugateTranspose@v2D �� Simplify, tD ��.
Join@Ρsubs, anglesubsD �� FullSimplify;

dΤ = D@Τ, tD �� FullSimplify;

dΤbar = D@ConjugateTranspose@ΤD �� FullSimplify, tD �� FullSimplify;

dΣ = D@Σ, tD ��. Join@Ρsubs, anglesubsD �� FullSimplify;

dΣbar =

D@ConjugateTranspose@ΣD �� Simplify, tD ��. Join@Ρsubs, anglesubsD �� FullSimplify;

L = ConjugateTranspose@v2D.v1 - ConjugateTranspose@v1D.v2 �� FullSimplify;

H* Parts of the interacting metric expression *L
dk = Simplify@ConjugateTranspose@v1DD.dv2 - Simplify@ConjugateTranspose@v2DD.dv1 +

2 HSimplify@ConjugateTranspose@ΤDD.dΣ - Simplify@ConjugateTranspose@ΣDD.dΤL ��.
anglesubs �� FullSimplify;

NA = Inverse@ConjugateTranspose@v1D.v1 + ConjugateTranspose@v2D.v2 +

4 HConjugateTranspose@ΤD.Τ + ConjugateTranspose@ΣD.ΣLD ��.
anglesubs �� FullSimplify;

H* Explicit substitutions for Ρ+ and Ρ- *L
Ζsubs = 8Ρ1+@tD ® Sqrt@Ρ1@tD^2 + Α@tD ΖD, Ρ1-@tD ® Sqrt@Ρ1@tD^2 - Α@tD ΖD,

Ρ2+@tD ® Sqrt@Ρ2@tD^2 + Α@tD ΖD, Ρ2-@tD ® Sqrt@Ρ2@tD^2 - Α@tD ΖD<;



H* Final form for interacting part *L
dk = dk ��. Ζsubs;

dΘ = -dk.NA ��. Ζsubs �� FullSimplify;

dint = dk.dΘ �� FullSimplify;

H* Final form for flat part *L
flatpart = Simplify@dv1bar.dv1D +

Simplify@dv2bar.dv2D + Simplify@dΤbar.dΤD + Simplify@dΣbar.dΣD;
dflat = ComplexExpand@flatpartD ��. Ζsubs;

H* Full metric *L
metric = 1 � 2 Tr@dflatD + 1 � 2 Tr@dintD;

H* Conversion from the metric form to a matrix *L
metricInMatrixForm@metric_, coords_D := ParallelTable@If@i � j, 1, 1 � 2D * Simplify@

Coefficient@metric, coords@@iDD'@tD * coords@@jDD'@tDDD, 8i, 1, 6<, 8j, 1, 6<D;

coords = 8Ρ1, Ρ2, Θ, Φ, Ω, Χ<;

met = metricInMatrixForm@metric, coordsD;

H* The potential term *L
V = 1 � 2 v2 met@@3, 3DD �� FullSimplify;
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H* Calculating the geodesic equations *L
Options@CalculateEoMsD = 8

ShowTime ® False

<;
CalculateEoMs@g_, V_, coords_, OptionsPattern@DD := Module@8

dim = Length@coordsD,
EoMs, startTime = AbsoluteTime@D, timeRemaining,

Vnot = V �. 8a_@tD ® a<
<, H
EoMs = Table@0, 8i, 1, dim<D;
If@OptionValue@ShowTimeD,
Print@"Time remaining: ", Dynamic@timeRemainingD, " seconds"DD;

Do@H
Do@
EoMs@@iDD += -2 D@g@@i, jDD * coords@@jDD'@tD, tD,
8j, 1, dim<

D;

Do@
Do@
EoMs@@iDD +=

D@g@@j, kDD, coords@@iDD@tDD * coords@@jDD'@tD * coords@@kDD'@tD,
8k, 1, dim<

D,
8j, 1, dim<

D;

EoMs@@iDD += - D@Vnot, coords@@iDDD �. Map@ð ® ð@tD &, coordsD;

timeRemaining = HAbsoluteTime@D - startTimeL � i * Hdim - iL;
L, 8i, 1, dim<D;

EoMs

LD;

EoMs = CalculateEoMs@met, V, coords, ShowTime ® FalseD;

H* Export to file Hfor stabilityL *L
EoMs >> ~/Documents/EoMs.txt;
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B.2 Simulations

The simulation code first imports the previously calculated geodesic equations of

motion (twice, once with explicit t dependence in order to plot residuals). We then

define an evolution function which takes the equations of motion and incorporates

initial conditions on the parameters, along with the coordinate transformation from

(ω, χ) to (x, b), before passing to Mathematica’s NDSolve function. This allows

us to plot trajectories and size evolution of scattering scenarios for any combina-

tion of the (ρ1, ρ2, θ, φ, ω, χ, ζ, v) parameters. We present two examples: “head-

on” collisions for inwards-travelling instantons and small impact parameter, and

“orbiting” configurations, along with their residuals. Of course, a much greater

range of simulations, tests and parameter searches were performed using the sim-

ulational building blocks here. A full version of this notebook may be found at

maths.dur.ac.uk/~kzcg21/documents/MathematicaCode.tar.gz, along with the

text file containing the geodesic equations. In order to optimise the speed of com-

mutative simulations, we calculated two sets of geodesic equations: one for the

commutative (ζ = 0) case, and one for the noncommutative case. The commutative

geodesic equations are, of course, equivalent to the noncommutative counterparts

under the substitution ζ → 0.
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H* Loads required packages for NDSolve *L
Needs@"DifferentialEquations`InterpolatingFunctionAnatomy`"D;

H* Import EoMs *L
EoMs = << ~/Documents/EoMs.txt;

H* Re-import with t dependence for residuals *L
residuals@t_D = << ~/Documents/EoMs.txt;

H* Conditions for NDSolve *L
initialrange = 2600;

EvolveSingleSystem@EoMs_, coords_,

initialConditions_, 8start_, end_<D := Module@
8
system, solutions

<,
system = Join@

Map@EoMs@@ðDD � 0 &, Range@1, Length@EoMsDDD,
Map@ð@@1DD@startD == ð@@2DD &, initialConditionsD

D;
solutions = NDSolve@system, coords, 8t, start, end<,

StepMonitor ¦ HSet@k, tD; steps++L, MaxSteps ® 50000D;
If @Head@solutionsD === NDSolve,

$Failed,

solutions

D
D;

WithImpactParameter @conditions_, impactParameter_D := H
Join@conditions, 8

Ω ® Sqrt@b^2 + x^2D ,

Χ ® ArcTan@b � xD,
Ω' ® Hx * x' + b * b'L � Sqrt@b^2 + x^2D,
Χ' ® Hx * b' - b * x' L � Hb^2 + x^2L

< �. impactParameterD
L

H* Solving for given values of impact parameter,

noncommutativity and potential strength *L
Sols@Ζ0_, impact_, pot_, range_D := EvolveSingleSystemB

EoMs �. 8Ζ ® Ζ0, v ® pot<,
8Ρ1, Ρ2, Θ, Φ, Ω, Χ<,
WithImpactParameterB

8Ρ1 ® 1, Ρ1' ® 0, Ρ2 ® 1, Ρ2' ® 0, Θ ® 0, Θ' ® 0, Φ ® Π � 2, Φ' ® 0<,

:x ® 30, x' ®
-3

100

, b ® impact, b' ® 0>F, 80, range<F@@1DD;



H* Commutative test: Ζ=0 *L
steps = 0;

k = 0;

Print@"Steps: ", Dynamic@stepsDD;
Print@"t=", Dynamic@kDD;
sols = Quiet@Sols@0, 0.01, 0, 2600D, NDSolve::ndsdtcD;
H* Parametric plot of NDSolve results *L
H* If system encounters singularity, guarantee that plotting doesn't crash *L
solrange = InterpolatingFunctionDomain@sols@@1DDD@@1, 2DD@@1, 1DD@@2DD;

dynamics = ParametricPlot@8
8

-Ω@tD Cos@Χ@tDD,
-Ω@tD Sin@Χ@tDD

<,
8

Ω@tD Cos@Χ@tDD,
Ω@tD Sin@Χ@tDD

<
< �. sols, 8t, 0, solrange<,

PlotRange ® 20, PlotStyle ® 8Black<, AxesOrigin ® 8-20, -20<,
Epilog ® Table@8

8Black, Circle@8Ω@tD Cos@Χ@tDD, Ω@tD Sin@Χ@tDD< �. sols, Ρ1@tD �. solsD<,
8Black, Circle@8-Ω@tD Cos@Χ@tDD, -Ω@tD Sin@Χ@tDD< �. sols, Ρ2@tD �. solsD<

<, 8t, 0, solrange, 40<D,
ImageSize ® 200,

TicksStyle ® 14

D;

sizes = Plot@8Ρ1@tD, Ρ2@tD< �. sols, 8t, 0, solrange<,
PlotStyle ® 8Thickness@0.004D, Black<, ImageSize ® 200,

Axes ® 8True, True<, PlotRange ® 880, 1500<, 83, -0.1<<,
Ticks ® 8None, 80, 1, 3<<, AxesLabel ® 8"t", "Ρ"<D;

Rasterize@Show@GraphicsGrid@88dynamics, sizes<<DD, ImageResolution ® 144D
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resbase = Join@sols, 8Ζ ® 0, b ® 0.01, v ® 0<D;
Plot@Evaluate@RealExponent@residuals@tD �. resbaseDD,

8t, 0, 2600<, AxesOrigin ® 80, 0<, ImageSize ® 200,

PlotRange ® 880, 2600<, 80, -25<<, PlotLabel ® "Residuals"D
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H* Orbiting solutions for given Ζ and v *L
SolsOrbit@Ζ0_, pot_, range_D := EvolveSingleSystem@

EoMs �. 8Ζ ® Ζ0, v ® pot<,
8Ρ1, Ρ2, Θ, Φ, Ω, Χ<,
WithImpactParameter@

8Ρ1 ® 1.5, Ρ1' ® 0, Ρ2 ® 1, Ρ2' ® 0, Θ ® 0, Θ' ® 0.3, Φ ® Π � 3, Φ' ® 0<,
8x ® 1, x' ® 0, b ® 0, b' ® 0.098<D, 80, range<D@@1DD;

H* Commutative orbit test *L
steps = 0;

k = 0;

Print@"Steps: ", Dynamic@stepsDD;
Print@"t=", Dynamic@kDD;
orbitsols = Quiet@SolsOrbit@0, 0.3, 5600D, NDSolve::ndsdtcD;
solrange = InterpolatingFunctionDomain@orbitsols@@1DDD@@1, 2DD@@1, 1DD@@2DD;

dynamics = ParametricPlot@8
8

-Ω@tD Cos@Χ@tDD,
-Ω@tD Sin@Χ@tDD

<,
8

Ω@tD Cos@Χ@tDD,
Ω@tD Sin@Χ@tDD

<
< �. orbitsols, 8t, 0, solrange<,

PlotRange ® 2, PlotStyle ® 8Black, Thick<, AxesOrigin ® 8-2, -2<,
Epilog ® Table@8

H*8Black,Circle@8Ω@tDCos@Χ@tDD,Ω@tDSin@Χ@tDD<�.sols,Ρ1@tD�.solsD<,
8Black,Circle@8-Ω@tDCos@Χ@tDD,-Ω@tDSin@Χ@tDD<�.sols,Ρ2@tD�.solsD<*L

<, 8t, 0, solrange, 40<D,
ImageSize ® 200,

TicksStyle ® 14

D;
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sizes = Plot@8Ρ1@tD �. orbitsols, Ρ2@tD �. orbitsols<,
8t, 0, solrange<, PlotStyle ® 8Thickness@0.004D<, ImageSize ® 200,

Axes ® 8True, True<, PlotRange ® 880, solrange<, 83, -0.1<<,
Ticks ® 8None, 80, 1, 3<<, AxesLabel ® 8"t", "Ρ"<D;

Rasterize@Show@GraphicsGrid@88dynamics, sizes<<DD, ImageResolution ® 144D

resbaseorbit = Join@orbitsols, 8Ζ ® 0, v ® 0.3<D;
Plot@Evaluate@RealExponent@residuals@tD �. resbaseorbitDD, 8t, 0, 2600<,
AxesOrigin ® 80, 0<, ImageSize ® 200, PlotRange ® 880, 2600<, 80, -25<<D
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