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Abstract

We provide a detailed analysis of flux backgrounds of string and M-theory that preserve minimal

supersymmetry in terms of (exceptional) generalised geometry. The geometry in each case is

conveniently described in terms of generalised G-structures, where the integrability conditions

are equivalent to the Killing spinor equations. Interestingly, there seems to be a common

structure among theG-structures, in that they are described by an involutive complex subbundle

of the generalised tangent bundle, and a vanishing moment map. We call these structures

‘Exceptional Complex Structures’ (ECS) because of their similarity to (generalised) complex

structures. In analysing the integrability conditions we find interesting links to ‘Geometric

Invariant Theory’ (GIT) which may have important consequences for unsolved problems in

conventional geometry. The moment map picture also provides a systematic way of studying

the moduli. We use the relation between symplectic quotients and complexified quotients to

analyse the moduli, giving exact results in a broad range of cases.

We start with backgrounds of heterotic string theory with a 4-dimension external Minkowski

space. We show how the Hull-Strominger system can be reinterpreted as an integrable SU(3)×
Spin(6 + n) ⊂ O(6, 6 + n) structure. We provide expressions for the superpotential and the

Kähler potential in this new language and analyse the moment map involved in the integrability

conditions. This moment map interpretation of the Hull-Strominger system is an important step

in applying GIT to prove the existence of solutions, given certain constraints. This extension

of Yau’s theorem to particular non-Kähler manifolds has been of interest to mathematicians for

some time and our work may indicate possible new approaches to solving it. We also analyse

the moduli of the Hull-Strominger system and recover the results of others.

The next chapter focuses on M-theory backgrounds with a 5-dimensional external space.

While it does not describe the full geometry, we focus on the SU∗(6) ⊂ E6(6) × R+ structure

present in the supergravity solution. We find the most generic local form for exceptional complex

structures in this case, classifying them as either ‘type 0’ or ‘type 3’. This classification is only

pointwise, as there can be type-changing solutions. Using the general form, we are able to

find the moduli of all constant-type exceptional complex structures, as well as all those that

satisfy a ‘generalised ∂∂̄-lemma’. Interestingly, these results hold for AdS solutions. We analyse

these and show that they are always of constant type 3. Hence, we are able to reinterpret the

spectrum of a given CFT4 that is dual to some AdS5 × M6 in terms of cohomology groups

related to some integrable distribution ∆ ⊂ TC.

We then look at backgrounds of M-theory and type IIB with a 4-dimensional Minkowski

external space. We are able to reinterpret both G2 backgrounds and GMPT backgrounds in

terms of integrable SU(7) ⊂ E7(7) × R+ structures. We are also able to give an expression for
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the superpotential and the Kähler potential for generic backgrounds using this new language.

Once again, we study the implications of the moment map picture and find interesting links

with GIT. We highlight how this may be used to find a form of stability for G2 structures.

Again, we provide a method of systematically finding the moduli of these flux backgrounds and

apply it to the G2 and the GMPT cases. For G2 we recover the known results, while for GMPT

we are able to find the exact moduli, extending work that has been done in the past.

Finally, we analyse the exceptional complex structures via Hitchin functionals. The Kähler

potentials in each case provide a natural candidate for the extension of Hitchin functionals

to exceptional geometry. Following the work of Pestun and Witten [3], we find the second

variation of the Kähler potentials under complexified generalised diffeomorphisms and quantise

that quadratic action for SU∗(6) and SU(7) structures. We suggest possible applications as

1-loop corrections to certain terms in the effective M-theory action in 5 and 4 dimensions

respectively.
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Chapter 1

Introduction

In this introductory chapter, we will give a brief historical survey of theoretical physics through

the 20th century to provide motivation for the rest of the thesis. We will introduce string

theory and see why it has been such an active area of research for over 50 years. We will

describe some of the key properties of string theory, including the troublesome requirement of

10 dimensions. Removing these unobserved dimensions to retrieve something more physical is

the main motivation behind studying Minkowski backgrounds of string theory - the main focus

of this thesis.

1.1 String Theory and Supergravity

Physics in the 20th saw a rapid progression in our understanding of the fundamental nature of

the universe. This progress was advanced along two crucial, yet so far irreconcilable branches.

On the one hand, Einstein’s theory of general relativity revolutionised the way we view grav-

ity - replacing a static universe with a dynamic spacetime whose curvature creates geodesics

that resemble gravitational attraction. On the other hand, quantum mechanics and quantum

field theory were being developed to explain the curious behaviour of subatomic interactions.

These eventually led to the standard model, a unified description of all forces of nature except

gravity. Both branches have been tested and, time and again, predictions prove to be correct.

However, all attempts to provide a quantum theory of gravity that also produces the gauge

groups and representations of the standard model have, so far, proven fruitless. It is this gap

in understanding that string theory tries to bridge.

Quantum field theory was born early in the development of quantum theory when people

tried to apply the same techniques to electromagnetic radiation that they had used to describe

the atom [4]. The photon is massless and therefore cannot be described by a non-relativistic

approximation like quantum mechanics. QFT was therefore born out of a requirement to merge

quantum mechanics and special relativity. Unfortunately, while these methods seem to work

well for free theories, once they are applied to higher order interactions, most calculations return

an infinite answer. This can be understood as coming from loops arising in the expansion in

the coupling constant. One has to integrate over all momenta running in loops, and these can

often diverge.

While this initially caused much confusion, today we understand this as reflecting the fact

13



that we should think of all theories as effective theories. This means that the theory is only a

valid description of the physics at scales |p| < Λ, above which something new occurs. In this

Wilsonian picture [5–8], Λ is called the cut-off and the coupling constants change as we lower

Λ. In this process, previously vanishing couplings may turn on, so we should include all terms

consistent with the symmetry of the theory in any effective description. Once we have done

this the Lagrangian contains an infinite number of interaction terms and coupling constants.

However, to any particular order in the expansion there are only a finite number of terms that

need to be fixed through experiment. Hence, effective theories are still predictive for any theory

to a given accuracy, at a given energy scale.

Soon, people tried to apply quantum techniques to Einstein’s general relativity [9–14]. In

a quantum description, we restrict ourselves to describing perturbations around some fixed

background. That is, we write

gµν = ĝµν + κhµν (1.1)

where ĝ is fixed and h is the perturbation, or graviton. The coupling constant goes like κ2 ∼ GN ,

Newton’s constant, and hence has mass dimension [κ] = −1. As usual, when one expands the

Einstein-Hilbert action and tries to quantise h, one finds infinities. Hence, we should think of

this as an effective description with a cut-off, and we write all terms that are consistent with

diffeomorphism symmetry. The natural cut-off is the Planck mass Mp =
√
~ c/GN , and the

action becomes

L =

∫
M

d4x
√
−g
(
M2
pR+ c1R

2 + c2R
µνRµν +

c3R
3

M2
p

+ ...+ Lmatter

)
(1.2)

As we mentioned, this theory is valid for small energies and one can expand all scattering

amplitudes in powers of κΛ0 ∼ Λ0/Mp where Λ0 is the energy of the scattering process. However,

as the process reaches energy scales comparable to Mp, we see that this expansion breaks down

and our theory becomes no longer valid1. Unfortunately, the Planck scale is precisely the energy

we would require to probe quantum effects of gravity.

This opened the question of what a theory of quantum gravity would look like. The hope

would be that GR has a UV fixed point2 where the scattering amplitudes are finite, and the

infinite number of couplings, plus any extra fields that disappear in the low energy dynamics,

are controlled by a finite number of parameters. Unfortunately, finding such a theory is a

complicated task. There is common lore that there is no decoupling regime of quantum gravity

[15]. That is, the precise fixed point and its dynamics are heavily dependent on the matter

content of the theory at all energies right up to the UV. Without a guiding principal on what

the matter content should look like, the chances of stumbling across the correct UV theory

1Note that this is an irreconcilable problem. While some theories only have a finite number of divergences
that need to be cancelled by counter terms, the mass dimension of κ in GR means that each loop order produces
new divergences that must be cancelled. All of these counter terms must be fixed by experiment and hence
one would have to do an infinite number experiments to render the theory predictive. One can show that the
non-correctable divergences occur at 2nd loop order [11]. Such theories we call non-renormalisable and cannot
be used as a high energy description of the physics.

2A UV fixed point is a point in theory space at which the couplings are independent of the cut-off Λ. That
is, it is a fixed point of the renormalisation group flow. For it to be a UV fixed point of GR, there must be
some RG flow line going from (a perturbation away from) the UV fixed point, through the point in theory space
corresponding to (1.2).
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seems highly unlikely.

One such guiding principal is supersymmetry. This fermionic symmetry collects bosons and

fermions into multiplets with adjacent spin. The higher the amount of supersymmetry, the more

spins are grouped into each multiplet. Imposing that Lmatter is such that the gravitational action

is supersymmetric produces a theory called supergravity [16]. Not only does supersymmetry

put restrictions on the matter content of the theory, it also gives relations between the coupling

constants. Since bosons and fermions contribute to scattering amplitudes with opposite signs,

it was hoped that these relations would lead to cancellations that would remove the divergences

and hence leave the theory finite, or at least renormalisable. Unfortunately, it is now known

that supergravity in D = 4 dimensions3 with all but the maximal N = 8 supersymmetry is

also divergent4 and there are arguments that even this is divergent at 7-loop order5 [18]. The

problem of a UV complete theory of gravity therefore remained open. Fortunately, at around

the same time, another theory was starting to be studied that seemed to be both UV finite,

and completely determine the matter content and couplings of the theory.

String theory was initially created to try to describe the strong interaction. In the 1960’s

there were an abundance of new particles being discovered with an approximately linear rela-

tionship between their spin and mass squared J = M2α′, α′ being called the Regge slope. An

expression for the scattering amplitude that reproduced the Regge slope and was consistent

with crossing symmetry was suggested by Veneziano in [19]. This model eventually became

known as the dual resonance model and it was shown that it was consistent with the scattering

of relativistic string states [20–24]. Unfortunately, this theory had many properties that made

it unsuitable for describing hadronic physics. The double resonance model slowly faded in pop-

ularity as QCD proved to be more and more successful. However, one property that made it

unusable as a model for hadrons also made it the perfect theory for a description of quantum

gravity - the existence of a massless spin 2 state [25].

The existence of a graviton-like state in the spectrum of string theory was an appealing

property. It was also known for some time that the infinite tower of massive higher spins in

the spectrum meant that the theory was UV finite. At high energies, the higher spin states

become approximately massless. When this occurs, the Coleman-Mandula theorem says that

the S-matrix must be trivial and hence there are no divergences [26]. Given this promising

behaviour, people started to study string theory as a potential ‘theory of everything’.

The key postulate of string theory is that objects in physics are not point-like particles, but

instead extended objects like strings. Typically, string theory is described by an action on the

2 dimensional worldsheet - the generalisation of the worldline of a particle [27, 28]. Borrowing

intuition from the action of a relativistic particle, people initially considered the Nambu-Goto

action of the string which equates the equations of motion with volume minimisation of the

worldsheet. This formulation was not well-suited for quantisation as it contains the square root

of fields. A reformulation of the theory came in [29] and was used by Polyakov to quantise the

string. The action, since called the Polyakov action, is a non-linear σ-model, taking values in

3Here and in the rest of the thesis, we will denote ‘external’ dimensions with D.
4In fact, maximal supergravity in d ≥ 6 is known to be divergent.
5Even if it is not divergent at that order, there are non-perturbative arguments that suggest that this theory

is inconsistent and requires a UV completion of M-theory on a 7-torus. [17]

15



the spacetime and takes the form

S =
T

2

∫
d2σ
√
−hhαβgµν(X)∂αX

µ∂βX
ν (1.3)

Here hαβ is the worldsheet metric and the Xµ are fields that can be thought of as coordinates

on a target space M with metric g. This theory has diffeomorphism invariance and Weyl

invariance which can be used to fix the worldsheet metric to a conformal Minkowski metric

eλσηαβ [30]. Upon doing so, the residual gauge symmetries are a local conformal invariance

and Weyl invariance, which gives the usual description of a string as a quantum CFT. As these

are gauge symmetries, they must be anomaly-free in the quantum theory. Enforcing this has

interesting consequences for the properties of string theory, as we will see.

A natural question arises when considering strings propagating through spacetime relating

to whether the strings are open or closed. Both possibilities are valid and give rise to interesting

consequences of string theory. Closed strings have a spectrum of states of increasing mass and

spin. In the massless spectrum, one has a metric, an antisymmetric rank 2 B-field, and a

scalar dilaton ϕ̂. Both strings therefore describe gravitational interactions, but also prescribe

some other matter content through the massive higher spin states. Since these strings have no

boundary, one does not need to prescribe boundary conditions. Open strings on the other hand

require boundary conditions of the form of Neumann or Dirichlet. These are respectively of the

form

∂σX
I = 0 XJ = cJ (const) (1.4)

It can be shown that Neumann boundary conditions imply that the end of the string moves at the

speed of light. Dirichlet boundary conditions were largely ignored until Polchinski highlighted

their importance in the 1990’s [31]. Having the end-point of a string fixed in certain coordinates

describes a p dimensional space-like surface which was called a Dp-brane. Looking at the

massless spectrum of the open string [32], one finds perturbations along the direction of the brane

which describe massless spin-1 fields on the brane. Hence, open strings describe gauge theories

on the world-volume of the brane6. There are also fluctuations transverse to the direction of the

brane which have been interpreted as fluctuations of the branes themselves. This suggests that

the Dp-branes themselves should be thought of as dynamical objects in string theory. Hence,

the full spectrum of string theory is described by gravitational-like interactions of closed strings,

gauge-boson-like interactions of open strings, along with the higher mass and higher spin states

of the strings and the branes.

This promising progress was hindered by a few key issues. Firstly, unitarity required bosonic

string theory to exist in 26 dimensions [33]. Secondly, all states of the bosonic string have

integer spin and hence only describe bosonic matter in the target space. Finally, the ground

state of the string theory was always tachyonic and there was no consistent way to remove it.

The latter two issues were solved by introducing worldsheet fermions to get a supersymmetric

theory [34, 35]. While this allowed fermionic matter to be described, the ground state was still

tachyonic. However, there was now a consistent way to remove this state through what has

been called the GSO projection [36]. In total, there are five consistent string theories. There

6This is the generalisation of the worldsheet to higher dimensional objects.
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is type I, the two heterotic string theories with SO(32) and E8 × E8 gauge groups respectively,

and the two type II theories - IIA and IIB [37].

Type IIA and type IIB [37] both have N = 2 spacetime supersymmetry7 but differ by the

chirality of the generators. Type IIA is non-chiral so has N = (1, 1) supersymmetry while IIB

is chiral and has N = (2, 0). They are obtained through different choices of GSO projection

on the worldsheet. In the massless spectrum, both theories have the same NSNS sector - the

metric, the B-field and dilaton ϕ̂ - but differ in the RR sector. These contain antisymmetric

tensors Ap+1 of rank (p+1) = 1, 3 for IIA and (p+1) = 0, 2, 4 for IIB. These have field strengths

Fp+2, where F5 is further restricted to be self-dual for IIB. It turns out that the Dp-branes are

electrically charged, and D10−p−4-branes are magnetically charged, under Ap+1. Hence there is

a restriction to the type of branes that can occur in each theory8. The open string spectrum

then gives rise to a gauge theory on the brane much like it did in the bosonic case. The string

itself is electrically charged under the B-field and there is another 5-brane called the NS5 brane

that is magnetically charged.

Type I string theory [36] comes from an orientifold projection of type II in the presence

of 32 D9-branes for anomaly cancellation. The projection preserves only N = 1 spacetimes

supersymmetry, and the 32 D9-branes means that there is an SO(32) gauge symmetry. The

massless spectrum of the closed string gives the metric, the dilaton and the RR 2-form. The

RR 2-form couples electrically to the D1-brane and magnetically to the D5-brane. Hence we

see that only these branes occur in type I string theory.

Finally, the heterotic string [38, 39] combines both the bosonic string and the superstring.

Since the action is a 2-dimensional CFT, the operators factorise into so-called left and right

moving sectors. In the heterotic string, the left moving modes are taken from the bosonic string

and the right moving modes are taken from the superstring. The additional modes from the

left moving sector form gauge potentials for the gauge groups SO(32) or E8 × E8. These are

enforced by the requirement of anomaly cancellation. Since the left and right moving sectors

have to be independent in this theory, this forces the string to be closed and hence there are no

Dp-branes in heterotic string theory.

These 5 seemingly distinct string theories were later shown to be related through a web of

dualities that also relate strong and weak coupling phenomena [40–44]. It was further conjec-

tured that all of these theories were in fact different limits of one overarching 11 dimensional

theory called M-theory [45,46]. This seemed tantalisingly close to a unique fundamental theory

of the universe but there was still one requirement of string theory that had to be solved. While

the superstring had reduced the required number of dimensions down from 26, all 5 string the-

ories still required 10 spacetime dimensions [47]. The question became whether it was possible

to put strings on a background that resembled something more physical.

A background is defined to be a target space geometry on which a quantum theory of strings

7Throughout this thesis, N will denote the number of supersymmetry generators the theory is symmetric
under. The dimension of the generators and their flavour depends on the dimension of the spacetime and the
signature of the metric. In even dimensions with a Lorentzian signature, the fundamental spin representations
are Weyl spinors meaning that we can classify spinors with respect to their chirality (i.e. eigenvalue under some
γd). We therefore write N = (p, q) to denote p even generators, and q odd.

8Note that a Dp-brane has a world-volume of dimension p+ 1. Much like a particle is charged under a vector
field, a p-brane can be charged under a p+ 1-form.
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is well-defined. The key requirement for a well-defined quantum theory of strings is that the

conformal symmetry must not be anomalous. This translates into the requirement that the

β-functions of the couplings, interpreted as target-space fields, must vanish. To make progress,

it is important to work in a regime of string theory in which the string length scale ls is much

less than the typical length scale of the target space geometry defined by the metric l.

ls � l ∼ ∂g

∂x
(1.5)

This defines an energy scale at which our theory is valid, as well as an expansion which is done

in a parameter α′ = l2s . In this limit, the world sheet CFT is weakly coupled and we can use

usual QFT methods to determine the β-functions. At lowest order, we recover the equations of

motion of supergravity. We learn then that, at low energies and weak string coupling9, string

theory backgrounds are simply supergravity backgrounds [48]. This provided the important

link between string theory, and the empirically verified theory of general relativity.

At low energies, the massless modes dominate the dynamics with stringy affects suppressed.

At higher energies, we approach a scale closer to the string length scale ls and hence the extended

nature of the string becomes more important. We would therefore need to add α′ corrections to

these equations which would change the geometry [49,50]. We would also have to be cognisant

of effects arising from winding modes of the string10, or branes wrapping cycles. Once we move

into this regime, the rich structure of string theory comes into the foreground and one can use

strong/weak coupling dualities such as T-duality, and the larger U -duality11. At low energies,

branes also become non-dynamical objects and instead take the form of solitonic solutions of

the supergravity equations [46, 59–64]. Importantly, they can still interact with the massless

modes of the string through gauge fields defined at the end of an open string, and by sourcing

flux.

The class of all solutions to supergravity is quite a large set. However, we can restrict

ourselves to a more refined set depending on the application. Given the unphysical number of

dimensions required in string theory/M-theory, a lot of focus has been put into backgrounds of

the form

M = Mext ×Mint (1.6)

where Mext is some, usually maximally symmetric non-compact, space called the external space

which is somehow deemed the ‘physically observable’ space. Mint is called the internal space

and has properties that affect the physics on the external space. For physical applications,

we would like the external space to resemble a vacuum of our universe, and hence we look for

backgrounds withMext = RD−1,1, with the most physically relevant being of courseD = 4. With

the discovery of the AdS/CFT correspondence [65], a lot of interest has grown in backgrounds

with Mext = AdSD.

9While α′ controls, in a sense, the importance of the extended nature of the string, the string coupling gs
determines the strength of the quantum nature of the string and appears in string-loop expansions. It is in fact
not a free parameter but is determined by the dilaton ϕ̂.

10Winding modes are non-perturbative in α′, but perturbative in the string coupling gs.
11In recent years, people have considered backgrounds that may involve such exotic string states through

double/exceptional field theory and non-geometric backgrounds [51–58]. While this work has interesting links to
the generalised geometry we shall describe later, it will not be the focus of this thesis.
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Different choices of Mint have interesting consequences for the dynamics of the effective

theory on the external space. Choosing a space with isometries can lead to gauged matter

in the effective theory [66]. Conversely, people have tried to break the large gauge groups of

heterotic theories through flux induced potentials to groups that could resemble a GUT theory

in R3,1 [67,68]. The geometry can even give us information on the massless scalar field content

of the effective theory12. One particularly interesting class of backgrounds are those that lead

to a supersymmetric effective theory - so called supersymmetric backgrounds. The archetypal

example of such a compactification is where Mint is a Calabi-Yau manifold [69].

The desire to understand the precise role of supersymmetric backgrounds in physics led

to an interesting interplay between geometry and string theory. While often mathematics is

used to advance our physical understanding of a system, string theory started to guide our

understanding of mathematics. Perhaps the most famous example of this interplay comes from

the mirror symmetry conjecture [70, 71]. This postulates that, for every Calabi-Yau 3-fold X

with Hodge numbers13 h1,1, h1,2, there exists a ‘mirror Calabi-Yau’ X̃ with Hodge numbers

h̃1,1 = h1,2, h̃1,2 = h1,1. This surprising prediction seems unlikely from the point of view of

complex geometry, but arises naturally when examining the 2-dimensional CFT describing the

string on a Calabi-Yau background. Other examples include a conjecture for an extension

to Yau’s theorem [72] to particular non-Kähler manifolds [73, 74] that arose from studying

supersymmetric backgrounds of heterotic strings. The link between string theory and geometry

grew deeper with the discovery of the topological strings [75] which are obtained through a

‘topological twist’ of the full theory. It was found that certain correlation functions defined

new geometric invariants of the target space, called Gromov-Witten invariants [76], which could

be used to distinguish between different symplectic manifolds. Partition functions of other

topological models can be written in terms of holomorphic Ray-Singer torsions which are an

invariant of complex geometry [77]. While much of the focus has been on Calabi-Yau manifolds

and non-kähler analogues, the desire to understand supersymmetric backgrounds of various

dimensions has led to increased interest in extending these results to other geometries, such as

G2 structures in 7 dimensions. In particular, there has been a desire to find an analogue of

Yau’s theorem [78], and to find the associated topological string/M-theory [79].

Supersymmetric backgrounds provide a vital playground for understanding the behaviour

of string theory at low string coupling. Phenomenologically, these provide the most likely can-

didate for a stringy model of the universe that we inhabit14. While the Calabi-Yau manifold

is one particular example of a supersymmetric background, there are more general cases. Un-

fortunately, little is known about generic backgrounds away from the Calabi-Yau case. This

thesis tries to answer questions about generic supersymmetric backgrounds including what is

their precise geometry, and what is the structure of the moduli space. It is important to get a

proper picture of the full landscape of string backgrounds to understand what kind of super-

12The massless scalar fields parameterise the moduli space of possible compactifications.
13The Hodge numbers on a complex manifold are the dimensions of the associated Dolbeault cohomology

group.
14Conversely, using strong/weak dualities of string theory such as the AdS/CFT correspondence, we can gain

insight into the strong coupling regime of certain field theories by studying weakly coupled strings propagating
on some fixed geometry. Supersymmetric backgrounds have been the setting of most tests of the AdS/CFT
correspondence and are where the duality is best understood [80,81].
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symmetric theories can be induced from string theory. In doing so, we may learn something

about string/M-theory itself, and possibly shed some light on the mathematical conjectures

surrounding certain supersymmetric backgrounds.

1.2 Plan of Thesis

This thesis focuses on understanding generic features of supersymmetric flux backgrounds of

string and M-theory with a Minkowski external space. We study the geometry of the internal

space with arbitrary fluxes turned on and determine the properties that lead to supersymme-

try. These problems are most naturally studied within the framework of generalised geometry.

It turns out that supersymmetric backgrounds have a consistent structure within generalised

geometry given by integrable G-structures. These are described in terms of a complex tensor ψ,

and a complex subbundle L ⊂ EC which we call exceptional complex structures. The supersym-

metry conditions are given by involutivity and a moment map. This is true for both heterotic

and maximal strings. Using these we can begin to answer questions about generic points in

the moduli space, including the local dimension and the form of the Kähler potential. This

work may also have interesting implications for geometry. The formulation of supersymmetry

constraints in terms of a moment map gives a possible link with geometric invariant theory.

Using these tools, we may be able to find an analogue of Yau’s theorem for G2 structures and

the Hull-Strominger system. Quantising the Kähler potential a la Pestun and Witten [3] may

also provide information on a geometric subsector of M-theory. This thesis is a structured as

follows.

We begin in chapter 2 with a review of the background material necessary for the thesis.

A lot of the discussion of supersymmetric backgrounds is done in the language of G-structures

and so we review some of the key ideas and constructions in 2.1. We provide the definition of

a G-structure, introduce compatible connections and define integrability. We look at intrinsic

torsion as an obstruction to the integrability of a structure. Finally, we briefly look at how

holonomy and G-structures are related. In section 2.2, we review some of the previous work

done on supersymmetric backgrounds of string theory. In particular, we look at them within

the context of G-structures. We initially look at backgrounds without flux and see how different

G-structures arise for M-theory, type II, and heterotic backgrounds. We then reintroduce flux

and look at some resulting no-go theorems. We look at how flux creates non-zero values for the

intrinsic torsion of the G-structures we found previously, and how this can affect the geometry.

Finally, we briefly review how one builds the effective theory on the lower dimensional space from

the geometric data of the internal space. This is well known for Calabi-Yau compactifications,

but the arguments start to break down once we turn on flux. Section 2.3 is used to give a broad

review of generalised geometry - the mathematical framework used to describe generic flux

backgrounds throughout this thesis. We review the geometries required to describe the NSNS

sector, heterotic backgrounds, and type II/M-theory backgrounds. In particular, we look at the

construction of the generalised tangent bundle, the Dorfman derivative, generalised connections,

and G-structures within this framework. Finally, in 2.4 we look at how generalised geometry

has already been used to answer generic questions of supersymmetric flux backgrounds of string
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theory. In particular, we look at GMPT backgrounds and exceptional Calabi-Yau spaces.

Chapter 3 describes how one can use the language of integrable G-structures in O(6, 6 + n)

geometry to describe generic flux backgrounds of heterotic strings. In section 3.1 we give a brief

introduction to the Hull–Strominger system as well as a review of what is known about the

infinitesimal moduli problem in terms of deformations of a holomorphic Courant algebroid. In

section 3.2 we describe the formulation of heterotic backgrounds in terms of O(6, 6 + n) × R+

generalised geometry. In particular, these are given in terms of a generalised tensor ψ, and

a bundle L−1. We do this first for the case with no gauge bundle in section 3.2.1, then we

reintroduce the gauge bundle in 3.2.2. We also discuss the equivalence between supersymmetry

and integrability for the structures. In section 3.3, we explore involutivity of L−1 and give the

superpotential in terms of ψ. We also show how these are related to the F-term conditions of the

Hull–Strominger system. In section 3.4, we give the Kähler potential on the space of structures

and derive a moment map for the action of generalised diffeomorphisms. We compute both of

these explicitly and show that the moment map reproduces the final supersymmetry conditions,

now with a geometric interpretation. This reinterpretation of the supersymmetry conditions as

the vanishing of some moment map provides some interesting links with geometric invariant

theory which we highlight in section 3.4.3. In section 3.5 we find the infinitesimal moduli and

show that they are related to the previously known D̄ cohomology.

In chapter 4 we extend the ideas explored in the previous chapter to exceptional generalised

geometry. We start with E6(6) × R+ geometry and apply it to N = 1 backgrounds with an

external R4,1. In section 4.1 we review previous work on the generalised structures of N = 1

backgrounds. These are described in terms of exceptional Calabi-Yau spaces. In section 4.2 we

restrict our analysis to a subset of the structures. These define an SU∗(6) structure and have

properties reminiscent of the exceptional complex structures defined in the previous chapter.

While they do not fully define a supersymmetric background we argue that one can still find

interesting information by studying these backgrounds. In particular, in section 4.3 we find an

expression for the generic moduli of these structures provided they satisfy a type of ∂∂̄-lemma.

We argue that one can use this expression to find the number massless hypermultiplets in the

5 dimensional effective theory.

Chapter 5 is the main chapter of this thesis and analyses the generic structure of supersym-

metric backgrounds of type II and M-theory for R3,1 external spaces. We find that the geometry

is entirely described by exceptional complex structures similar to those defined in the previous

chapters. These give simple analogues for the general analysis of SU(7) structures we then give

in section 5.1. Section 5.2 shows explicitly how G2 manifolds and the solutions of GMPT fit into

the general analysis. Section 5.3 first shows how the involutivity and moment map conditions

can be viewed as F - and D-term supersymmetry conditions in a rewriting of the supergravity

as an effective D = 4, N = 1 theory. It then connects our analysis to the Geometrical Invariant

Theory picture and the G2 functional of Hitchin. In particular, we see that Hitchin’s extrem-

isation is equivalent to finding the stationary points of the norm functional, and we go on to

outline the naive connection to stability. Section 5.4 addresses the general moduli problem, and

calculates the moduli of generic “type-0” structures (including G2) and the full set of moduli

of GMPT solutions.
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This work may provide a natural generalisation to Hitchin functionals with applications

to quantum corrections of M-theory effective actions. We explore these ideas in chapter 6.

In section 6.1 we review the work done by Nigel Hitchin on functionals defining integrable

SL(3,C), SU(3, 3), and G2 structures. We then look at how these theories have been quantised

and applied to topological string theory in section 6.2. In section 6.3 we describe how the Kähler

potential is a natural candidate for the Hitchin functional of exceptional complex structures,

and we describe the quantisation procedure. In section 6.4 we briefly describe some possible

physical applications of this quantised theory.

Chapter 7 is reserved for discussion and future directions of work. The appendices contain

additional details which may be useful for the reader but are not important for the main

text. They are arranged as follows. Appendix A lays out the conventions and notation that

we use throughout the thesis. It contains the O(d, d), O(6, 6 + n), and exceptional algebras

for both M-theory and type IIB solutions. We also give an embedding of the O(6, 6) algebra

into the E7(7) × R+ algebra for type IIB. Appendix B discusses some results on curvature in

exceptional generalised geometry. We show that, unlike O(d, d) geometry, there is no obvious

projection of the generalised Riemann curvature to get something tensorial. Appendix C reviews

(generalised) complex structures in terms of moment maps. This is the picture we will extend

to the exceptional case throughout the thesis. Appendix D we provide explicit calculations

of the superpotential, the Kähler potential, and the moment map referenced in chapter 3. In

appendix E we prove the general form of exceptional complex structures in E6(6)×R+ geometry

and in appendix F we provide detailed calculations of the moduli of these exceptional complex

structures in various cases outlined in chapter 4. In appendix G we provide a detailed calculation

of the moduli of the GMPT backgrounds of chapter 5. Appendix H is used to state some

properties of determinants of Laplacians that are need for chapter 6. Finally, in appendices I

and J we derive the metric on the moduli space of exceptional complex structures around the

points corresponding to Calabi-Yau and G2 manifolds respectively. These are needed for some

of the quantisation calculations done in chapter 6.
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Chapter 2

G-Structures, Flux Backgrounds and

Generalised Geometry

In this chapter, we will review some of the technical background required for the rest of the

thesis. A lot of the discussion of supersymmetric backgrounds of string theory will be framed

in the language of G-structures and so we will review those first. Then we will look at some of

the work that has been done in the past on backgrounds both with and without flux. We will

then go onto describe the construction of generalised geometry which will be the language that

most of the thesis is framed within. Finally, we will look at how generalised geometry has been

utilised in the past to describe supersymmetric backgrounds.

2.1 G-Structures

The presence of supersymmetry usually implies the existence of a G-structure on the manifold,

where the G refers to some Lie group. These geometries have been studied by mathematicians,

initially in terms of what they called the local equivalence problem [82]. They provide a fairly

general class of geometries whose structure is rich enough that many complex problems can be

solved. In this section we will provide a brief mathematical review of G-structures and give some

examples, focusing on those of importance for string theory. We will follow [82–85] amongst

others.

2.1.1 Definition of a G-Structure

Let M be a closed n-dimensional manifold and take T →M to be its tangent bundle, T ∗ →M

to be its cotangent bundle. A frame at a point p ∈M is a set of n linearly independent vectors

vi ∈ Tp. We will take the set of frames at a point p ∈M to be the set

Fp = {{v1, ..., vn} a frame at p ∈M} (2.1)

We define the frame bundle F →M to be the disjoint union

F =
⊔
p∈M
{p, Fp} (2.2)
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It is easy to see that F defines a GL(n,R) principal bundle over M . Indeed, GL(n,R) acts on

an element v = {v1, ..., vn} ∈ Fp by left multiplication.

g · v = {gv1, ..., gvn} ∈ Fp (2.3)

Moreover, this is a transitive and free action on the fibre and hence we get a GL(n,R) principal

bundle. We can then define a G-structure on a manifold to be [82,86]

Definition 1. Take G to be a Lie subgroup of GL(n,R). A G-structure is a G principal

subbundle PG →M , PG ⊂ F .

A local frame can be viewed as a local section σ : M → F . Any local frame that is also a section

of PG is said to be compatible with the G-structure. We will sometimes drop the G when the

group is clear by context.

There are many topological obstructions that can exclude the existence of a particular

G-structure on a manifold. Famously, the first Chern class C1(X) of a Kähler manifold is

the obstruction to the existence of an SU(3) structure [72]. In general, however, determining

whether such a reduction of the frame bundle exists can often be a challenging problem to solve.

Fortunately, in many cases, and in particular the cases we will be interested in, a G-structure

is equivalent to the existence of a set of global, non-vanishing tensors that are preserved by the

action of G1.

Example 1. A Riemann structure is an O(n) structure and is defined by a metric g. An O(n)

structure always exists on a manifold.

Example 2. An orientation is an SL(n,R) structure and is defined by a globally non-vanishing

top form τ

Example 3. A complex structure is a GL(n/2,C) structure and is defined by a map J : T → T ,

such that J2 = −1

Example 4. An SL(n/2,C) structure is defined by a complex, separable n
2 -form Ω

Example 5. A symplectic structure is an Sp(n) structure and is defined by a non-degenerate

2-form ω

Example 6. A hermitian structure is a U(n/2) structure and is defined by a complex structure

and symplectic structure ω, J

Example 7. A Calabi-Yau structure is an SU(n/2) structure and is defined by a holomorphic

3-form and a symplectic structure Ω, ω

Example 8. A G2 structure is defined by a positive, stable 3-form φ on a 7-manifold

Example 9. A Spin(7) structure is a defined by a stable 4-form χ on an 8-manifold

Note that examples 7, 8 and 9 are of particular importance in string theory as each of the

groups is a subgroup of SO(n) and hence can define what are called special holonomy groups.

These are the groups of interest for supersymmetric backgrounds as we will see later.

1This action is induced by that of GL(n,R) on tensors.
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2.1.2 Equivalence and Local Flatness

We would like to have a notion when two G-structures are equivalent in some sense. Consider a

diffeomorphism f : M → N . This defines a map df : TM → TN that is a linear isomorphism

on the fibres TpM
∼−→ Tf(p)N . This induces a well defined principal bundle morphism

(df)∗ : FM −→ FN

v 7−→ (df)∗v = {(df)v1, ..., (df)vn}
(2.4)

This leads to the following definitions.

Definition 2. Let M and N be smooth manifolds with G-structures PG → M , QG → N . A

smooth map f : M → N is said to be G-structure preserving if (df)∗(PG) ⊆ QG.

Definition 3. Let PG →M and P ′G →M be two G-structures on a manifold M . We say that

the G-structures are equivalent if there exists a diffeomorphism f : M →M that is G-structure

preserving. That is, if (df)∗(PG) = P ′G.

There is an important concept in the mathematical literature relating to the local equivalence

problem. We would like to know if there is an atlas on our manifold that is compatible with

the G-structure.

Definition 4. A G-structure PG →M is said to be locally flat if in every patch U ⊂M , there

exists a coordinate chart xµ such that the coordinate frame {∂1, ..., ∂n} is a local section of PG.

Often, aG-structures is defined to be integrable if is (equivalent to) a locally flatG-structure [82].

We will take a slightly weaker version of integrability which is sometimes called first-order

integrability. G-structures with this property are such that, at each point p ∈ M , there exists

local coordinates xµ such that the coordinate frame {∂1, ..., ∂n}p∈M is in (PG)p. One can show

that this is equivalent to the existence of a torsion-free compatible connection [87].

Example 10. By the fundamental theorem of Riemannian geometry, every O(n) structure is

first-order integrable. A locally flat O(n) structure is equivalent to a flat metric.

Example 11. By the Newlander-Nirenberg theorem [88], any first-order integrable GL(n/2,C)

structure is locally flat.

2.1.3 Connections, Torsion and Integrability

Given a principal bundle PG →M , we can define the vertical subspace of the tangent space at

a point TpP to be the kernel of the derivative of the projection. That is

Verp(P ) = ker(dπ)p Ver(P ) =
⊔
p∈P

Verp(P ) (2.5)

While the vertical space is well defined, there does not exist a canonical definition of a horizontal

subspace such that

TpP = Verp(P )⊕Horp(P ) ∀ p ∈ P (2.6)
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Any choice of a smooth distribution Hor(P ) such that the fibre at p is compliment to Verp(P )

p ∈ P is called a connection. However, a general choice does not necessarily provide the nice

properties that we usually associate with a connection. Hence, we will refine the definition to

be compatible with the G action on P .

Definition 5. A principal connection on a principal bundle PG → M is a choice of smooth

distribution Hor(P ) such that Horp(P )⊕Verp(P ) = TpP ∀ p ∈ P and Horg·p(P ) = dγp(Horp(P ))

where γp : P → P is the diffeomorphism induced by the right action of G on P .

There is a canonical isomorphism between the vertical space at a point and the Lie algebra

g associated to the structure group of P . One can show that a choice of horizontal subspace

is equivalent to a choice of surjective map ωp : TpP → g such that ωp(Verp) = g. We can then

define the horizontal subspace to be the kernel of this map

Horp(P ) = kerωp (2.7)

We can view ωp as a g-valued 1-form at p and hence we can extend its definition to the whole

of P , which would define the distribution Hor(P ). One can show that Hor(P ) is smooth if and

only if ω is smooth. Moreover, ω defines a principle connection if it is pseudo AdG-invariant.

That is,

γ∗gω = Adg−1 ◦ω (2.8)

where Ad denotes the adjoint action of G on g.

Given a choice of connection, we can define projection maps onto the horizontal and vertical

subspaces, projH/V . Given this, we can define the covariant derivative ∇v along the direction

of some vector v ∈ TxM of some (local) section σ : M → P . The covariant derivative at x ∈M
along v is defined to be

∇vσ = projV (dσ(v)) (2.9)

A choice of connection on P also defines a connection on all associated bundles. Indeed,

take N to be some space with a G-action and define Π : P ×N → P ×GN to be the projection

onto the associated bundle. The horizontal distribution of P ×G N is defined by

Hor(P ×G N) = dΠ(Hor(P )⊕ {0}) (2.10)

In particular, take P = F the frame bundle, and N ' Rn to be the fundamental GL(n,R)

module. The associated bundle in this case is precisely the tangent bundle and hence (2.10)

tells us that every choice of horizontal space on the frame bundle defines a horizontal space

on the tangent bundle. This defines a linear connection on T via (2.9) and the identification

of Verp(T ) ' Tπ(p)M . Conversely, it is possible to show that every linear connection ∇ on T

defines a unique horizontal distribution Hor(T ). There is then a unique principal connection

Hor(F ) on F such that the associated connection is Hor(T ). This shows that there is a bijection

{Principal connections on F} ←→ {Linear connections on T} (2.11)

Of course, choosing the G-space N to be another GL(n,R) module in (2.10) would define the

26



associated connection on all GL(n,R) vector bundles over M .

Suppose we have a restricted G-structure PG ⊂ F . We get the following definition.

Definition 6. A linear connection ∇ on T is said to be compatible with the G-structure if

the corresponding principal connection on F is a principal connection on PG. That is, it is

compatible if Hor(F ) ⊂ TP .

It is always possible to find a compatible connection to a G-structure. Indeed, any principal

connection on PG defines a principal connection on F via Hor(P ) ⊂ TP ⊂ TF . Suppose ∇ is

a G-compatible connection. The induced connection (also denoted by ∇) on other GL(n,R)

vector bundles E → M will have the following property. If E = E1 ⊕ E2, where the Ei are

G-submodules, then ∀ v ∈ TxM we have that

∇vei ∈ Γ(Ei) ∀ ei ∈ Γ(Ei) (2.12)

That is, ∇ respects the G-representation structure. If the G-structure is defined by a set of

invariant tensors τi, then compatibility is equivalent to [85].

∇τi = 0 (2.13)

Given a linear connection on T , we define the torsion to be given by

t(v, w) = ∇vw −∇wv − [v, w] v, w ∈ Γ(T ) (2.14)

If this vanishes for all v, w then we say the connection is torsion-free. In line with the comments

about integrability made in the last section, we have the following definition.

Definition 7. We say a G-structure PG ⊂ F is integrable, or torsion-free, if there exists a

compatible principal connection Hor(P ) ⊂ TP ⊂ TF whose associated linear connection on T

is torsion free.

While the existence of a compatible connection is guaranteed, the existence of a torsion-free

compatible connection depends strongly on the geometry of the G-structure PG and hence is a

much more interesting problem. We will review an obstruction to the existence of an integrable

G-structure called intrinsic torsion.

2.1.4 Intrinsic Torsion of a G-Structure

Suppose we have a G-structure PG ⊂ F with compatible connections ∇,∇′ on T . Recall a

linear connection is an R-linear map obeying the Leibniz property.

∇ : T −→ T ∗ ⊗ T

fv 7−→ df ⊗ v + f∇v
(2.15)
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We can then view the difference ∇−∇′ as a map : T → T ∗ ⊗ T such that

(∇−∇′)(fv) = ∇(fv)−∇′(fv)

= df ⊗ v + +f∇v − df ⊗ v − f∇′v

= f(∇−∇′)v

(2.16)

Hence, the difference between two connections is a tensor Σ ∈ Γ(T ∗ ⊗ EndT ). Since ∇,∇′ are

compatible, we know that they are associated to g-valued 1-forms ω, ω′ on PG. Given a local

frame compatible with the G-structure s : M → PG, we find that

(∇−∇′)s = s∗(ω − ω′) ∈ Γ(T ∗)⊗ g (2.17)

The frame-independent statement of this fact if that Σ ∈ Γ(T ∗ ⊗ adPG).

One can also show the converse. Namely, if ∇ is a connection on T that is compatible with a

G-structure PG, then for any Σ ∈ (T ∗⊗ adPG) the connection ∇′ = ∇+ Σ is also a compatible

connection. Hence, the affine space of G-compatible connections AG is isomorphic to

AG ' Γ(T ∗ ⊗ adPG) (2.18)

We would like to understand whether ∃∇ ∈ AG that is torsion free. Suppose we have a

connection ∇0 with torsion t0, and a connection ∇′ = ∇0 + Σ with torsion t′. Then we find

t′(v, w)− t0(v, w) = ∇′vw −∇′wv − [v, w]− (∇0 vw −∇0wv − [v, w])

= Σ(v) · w − Σ(w) · v
(2.19)

Consider a map

τ : Γ(T ∗ ⊗ adPG) −→ Γ(∧2T ∗ ⊗ T )

τ(Σ)(v, w) 7−→ Σ(v) · w − Σ(w) · v
(2.20)

im τ ⊂ Γ(∧2T ∗⊗T ) denotes the subset of the space of torsions that can be affected by changing

∇. Therefore, the affine space of torsions of G-compatible connections TG is precisely

TG = t0 + im τ (2.21)

The statement that there is a torsion-free connection is equivalent to saying that 0 ∈ TG,

or equivalently, that t0 ∈ im τ . This is perhaps a less appealing definition as it requires the

existence of a reference connection ∇0.

We define the space of intrinsic torsions to be the quotient space

W int := Γ(∧2T ∗ ⊗ T )/ im τ (2.22)

For any given G-structure and compatible connection ∇, the projection of t onto W int is inde-

pendent of the choice of connection by construction. Hence, this is a property of the G-structure

itself, rather than any connection. We call the value a given G-structure takes its intrinsic tor-
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sion. A torsion-free compatible connection exists if and only if the intrinsic torsion of the

G-structure vanishes.

Example 12. W int for an SU(3) structure can be shown to decompose into SU(3) representa-

tions as [89]

W int ∼ (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6)⊕ 2(3⊕ 3) (2.23)

So we can represent the intrinsic torsion for an SU(3) structure with 5 tensors W1, ...,W5.

W1 ∈ 1⊕ 1 is a complex scalar, W2 ∈ 8⊕ 8 is a complex primitive (1,1)-form, W3 ∈ 6⊕ 6 is a

real primitive (2, 1) + (1, 2) form, and W4,W5 are real 1-forms. One can show that these obey

the following

dω =
3

2
im(W̄1Ω) +W4 ∧ ω +W3 dΩ = W1ω ∧ ω +W2 ∧ ω + W̄5 ∧ Ω (2.24)

Hence an SU(3) structure is integrable if and only if dΩ = dω = 0.

Example 13. W int for a G2 structure can be shown to decompose into G2 representations

as [90]

W int ∼ 1⊕ 7⊕ 14⊕ 27 (2.25)

We can therefore represent the intrinsic torsion of a G2 structure with 4 real tensors X1, ..., X4.

X1 is a scalar, X2 is a 1-form, X3 ∈ Ω2
14(M), and X4 ∈ Ω3

27(M). One can show that they satisfy

dφ = X1 ∗ φ+X4 ∧ φ+X3 d ∗ φ =
4

3
X4 ∧ ∗φ+X2 ∧ φ (2.26)

Hence, a G2 structure is integrable if and only if dφ = d ∗ φ = 0.

2.1.5 Relation Between G-Structures and Holonomy

Often, the backgrounds relevant to string theory are said to be ‘special holonomy manifolds’

[91, 92]. These are backgrounds with restricted holonomy Hol(∇) ⊂ SO(d). We have seen

that every G-structure on a manifold has a compatible connection associated to it. One might

expect that the holonomy of these compatible connections would also be restricted in some way.

Here we will briefly describe the relation between G-structures and holonomy. First, we define

holonomy of a connection on a principal bundle.

Definition 8. Let P → M be a principal bundle with fibre G, and D = Hor(P ) ⊂ TP be a

connection on P . We define the holonomy of P at p ∈ P to be Holp(P,D) = {g ∈ G | p ∼ g · p},
where p ∼ q if there exists a horizontal curve γ in P from p to q.

One can show that Holp(P,D) is a subgroup of G and depends on the choice of p only up

to conjugation. Hence, we define Hol(P,D) to be the isomorphism class of Holp(P,D). If we

take P = F the frame bundle of M , then there exists an associated linear connection ∇ on T ,

whose holonomy group is defined in the usual way which we will denote by Hol(∇). Both of

these groups are some subgroup of GL(n,R) and in fact, one can show that

Hol(F,D) = Hol(∇) (2.27)
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We will assume that Hol(∇) is a connected, closed subgroup of GL(n,R) as those will be the

cases of most interest to us.

Consider a point p ∈ F and define the set Q = {q ∈ F | q ∼ p}. One can show that Q ⊂ F

defines a submanifold and that H = Hol(F,D) acts freely on it. Hence, Q → M defines a

principal H bundle. Moreover, one can show that the connection D is compatible with Q, i.e.

D ⊂ TQ. This shows that the existence of a connection ∇ on T with holonomy H implies the

existence of an H structure on M with compatible connection ∇. It is in fact possible to prove

the converse [93]. Hence, there exists a connection ∇ with holonomy group H if and only if

there exists an H-structure PH ⊂ F on M . Hence, the question of existence of holonomy groups

becomes a topological question of the existence of principal subbundles of the frame bundle.

The question of which holonomy groups can appear via torsion free connections is a much

more interesting problem. The problem for a general manifold is quite hard, however a list of

connected, torsion-free, Riemannian holonomy groups that can exist on an open ball of Rn was

originally put forward by Berger [94] and has since been extended [95]. The groups of interest

for supersymmetric backgrounds are examples of what are called special holonomy groups. In

6, 7 and 8 dimensions respectively, these special holonomy groups are

SU(3) G2 Spin(7) (2.28)

While these are important in the study of supersymmetric backgrounds, manifolds with these

holonomy groups do not provide a complete classification, as we will see.

2.2 Flux Backgrounds

Understanding the full landscape of string theory backgrounds has been a central area of research

for a long time. Supersymmetric backgrounds in particular are attractive as an arena to study

string theory for many reasons. Firstly, it has been shown that, at least in the context of M-

theory and type II, if a background satisfies the supersymmetry conditions, and the fluxes satisfy

the Bianchi identities, then the background will satisfy the equations of motion [96,97]. Hence,

we can reduce a system of second order PDEs to a system of first order PDEs. This substantially

simplifies the problem and makes finding solutions much easier. Secondly, if our universe is

supersymmetric then it is likely to be broken to N = 1 at the compactification scale, and

then further broken by some four-dimensional affects, such as gaugino condensation [98–100].

Supersymmetry also restricts the form of the moduli space and ensures it has a Kähler structure.

This simplification allows us to make progress in analysing its structure.

In this section we will review some of the work that has been done on supersymmetric

backgrounds, both with and without flux. We will follow the work of [101] closely, and mostly

look at compactifications down to D = 4 Minkowski. As we will see, most of the discussion of

supersymmetric backgrounds has been done in the language of (non-)integrable G-structures.

We will first review backgrounds in which the flux is turned off and determine the G-structures

implied by supersymmetry. We will then reintroduce the fluxes and see how they affect the

integrability. Finally, we will look at how the properties of the lower dimensional effective
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theory2 are determined by the geometrical data of the internal manifold. For example, we will

see how the massless scalar fields are determined by the moduli of Mint.

2.2.1 Compactifications without Flux

We shall take the following ansatz for the spacetime manifold and metric.

M = Mext ×Mint ds2 = e2∆(y)g̃µνdxµdxν + gmndymdyn (2.29)

where xµ are coordinates on Mext, y
m coordinates on Mint, and where ∆, the warp factor, is

a function on Mint. We also take the configuration to be maximally symmetric on Mext which

implies that the external metric g̃ is AdS or Minkowski3, and that all the background fermions

vanish.

The condition that this background preserves some supersymmetry is the requirement that

the supersymmetric variation of all the fields vanishes. In any background, we assume all the

fermions are turned off. Here we further assume that the fluxes are turned off. By Grassmann

parity, the supersymmetry variations of all the bosonic fields must always involve the background

fermions. Since we have assumed these are zero, the supersymmetry conditions on the bosons

are automatically satisfied.

δε(metric) = 0 δε(flux) = 0 (2.30)

We therefore turn our attention to the variation of the fermion fields. In any supergravity theory

there are gravitino(s) ψ, plus possible dilatinos λ, and gauginos χ. The precise combination of

these depends on whether we are working in heterotic, type II or M-theory backgrounds. We

will address each of these in turn.

M-Theory Backgrounds

For M-theory backgrounds, we only have one gravitino ψ. With all the fluxes turned off, the

only relevant bosonic field is the 11 dimensional metric ĝ and the variation of the fermion is

simply [103–106]

δψ = ∇̂ε (2.31)

where ∇̂ is the Levi-Civita connection on the 11 dimensional space M. Hence, supersymmetry

is equivalent to the existence of a globally defined parallel spinor ε. From the discussion in the

previous section, we see that this implies a restricted holonomy group and hence the geometry

of the spacetime is given by a reduced structure group PG for some G ⊂ Spin(10, 1). We would

like to see what this implies for the internal manifold Mint.

Considering the parts of (2.31) along external and internal directions respectively, we find(
∇̃µ +

1

2
γ̃µγ̃5 ⊗ ��∇∆

)
ε = 0 (2.32)

∇mε = 0 (2.33)

2We will often refer to this simply as the effective theory.
3We will not consider de Sitter vacua here as they do not permit supersymmetric backgrounds. Moreover, it

been suggested that there are no meta-stable non-supersymmetric de Sitter vacua of string theory at all [102]
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where ∇̃ is the Levi-Civita connection of g̃, ∇ is the Levi-Civita connection of g, and γ̃ are

the γ-matrices of g̃ under the decomposition Cliff(10, 1)→ Cliff(3, 1)×Cliff(7). From equation

(2.32) we find that

[∇̃µ, ∇̃ν ]ε = −1

2

(
γ̃µν ⊗ (��∇∆)2

)
ε (2.34)

However, we also have

[∇̃µ, ∇̃µ]ε =
1

4
Rµνρσγ̃

ρσε =
Λ

6
γ̃µνε (2.35)

where Λ is the cosmological constant associated to the maximally symmetric external metric g̃.

We therefore find that
Λ

3
+ (��∇A)2 = 0 (2.36)

Hence (��∇∆)2 is constant. However, on a compact manifold, the only constant value that (��∇∆)2

can take is 0. Hence, the warp factor ∆ is constant and the cosmological constant must vanish.

That is, the external space must be Minkowski. This provides our first no-go theorem.

Given the decomposition of the Clifford algebra, we can decompose ε into internal and

external spinors

ε = η+(x)⊗ ξ(y) + η− ⊗ ξ∗ (2.37)

where η± are chiral spinors on the external space of opposite chirality, and ξ is a complex spinor

on the internal space. Equations (2.32), (2.33) then become

∇̃µη± = 0 ∇mξ = 0 (2.38)

This translates to η± being some constant spinor on R3,1 and ξ being a parallel spinor on Mint.

The constant external spinors η± generate theN = 1 rigid supersymmetry of the effective theory.

The parallel internal spinor tells us we have a reduced holonomy group Hol(∇) ⊂ Spin(7) and

hence an integrable Hol(∇)-structure.

To find the structure group, we need to consider the stabiliser of the internal spinor ξ. This

is the complex combination of two real Spin(7) spinors ξ = ζ1 + iζ2, which are each individually

stabilised by some G2 ⊂ Spin(7) wherever they are non-vanishing. This provides us with two

interesting cases.

ζ1 = ζ2 ←→ G2

ζ1, ζ2 linearly independent ←→ SU(3)
(2.39)

It is worth noting that, unlike in the other cases, the existence of these G-structures alone is

no restriction to Mint. This is because any 7 dimensional spin manifold actually has an SU(2)

structure [107]. However, the requirement that these G-structures are integrable, as is implied

by the compatibility of the Levi-Civita connection, is a restriction. We should also note that

the cases outlined above are not the most general cases for the spinor ξ. We can have more

complicated geometries that are not so easily defined by conventional G-structures [108].

Type II Backgrounds

Here we find that, while some of the details are different, the story is largely the same as

for the M-theory case. Now we have two gravitinos ψi and two dilatinos λi of opposite (the
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same) chirality for type IIA (IIB). The variation of these fields with all the fluxes turned off

are [109–111]

δεψ = ∇̂ε δελ = (��∇ϕ̂)ε (2.40)

where ϕ̂ is the dilaton. Here we have combined the gravitinos and dilatinos into one object

ψ = (ψ1, ψ2), λ = (λ1, λ2). The supersymmetry parameter ε now consists of two chiral spinors

ε = (ε1+, ε
2
∓), where the upper sign corresponds to IIA and the lower to IIB.

We can run through the same argument as before and learn that the vanishing of the first

equation in (2.40) implies that the warp factor must vanish and the external space must be

Minkowski. We decompose the supersymmetry parameters under Cliff(9, 1) → Cliff(3, 1) ×
Cliff(6) as

ε1+ = η1
+(x)⊗ ξ1

+(y) + η1
− ⊗ ξ1

−

ε2∓ = η2
+(x)⊗ ξ2

∓(y) + η2
− ⊗ ξ2

±
(2.41)

where the ξi± are chiral spinors on 6 dimensions, and ξi∗+ = ξi−. From this decomposition, we

learn that the ηi must be constant spinors on R3,1 and the ξi must be parallel spinors on Mint.

The second equation in (2.40) just implies that the dilaton is constant.

The existence of the parallel spinors implies a reduced holonomy group and hence a G-

structure on the manifold. Again, we need to analyse the stabiliser group of the ξi of which

there are two interesting cases.

ξ1 = ξ2 ←→ SU(3)

ξ1, ξ2 linearly independent ←→ SU(2)
(2.42)

Interestingly, in both cases, the external spinors ηi are independent of one another. These

individually generate supersymmetry in the effective theory and hence, when there is no flux,

the background automatically preserves N = 2. We therefore require flux for a genuine N = 1

theory coming from type II.

Heterotic Backgrounds

Heterotic backgrounds have been the focus of many phenomenological efforts in string theory

due to the ease of finding models that produce chiral Fermions and the Standard Model gauge

group [67, 68, 112, 113]. They were first studied in [69] where they gave the supersymmetry

variations of the single gravitino ψ, the dilatino λ, and the gauginos χa. We will work in the

string frame where the warp factor is trivial. For vanishing fluxes, the supersymmetry variations

become

δεψ = ∇̂ε δελ =
√

2(��∇ϕ̂)ε δεχ
a = −1

4
eϕ̂γmnF amnε (2.43)

Here we have required the vanishing of the gauge-invariant and Lorentz-invariant field strength

[114,115]

H = dB +
1

4
α′(ω3(A)− ω3(Θ)) (2.44)
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where A and Θ are the connections on the gauge bundle and tangent bundle on Mint respectively,

and ω3 is the Chern-Simons term of the relevant connection.

Splitting the gravitino variation into internal and external pieces, we once again see that the

external space must be flat4 and that the internal space has a single parallel spinor ξ, where

ε = η+(x)⊗ ξ+(y) + η− ⊗ ξ− (2.45)

Unlike in the previous cases, we only have one internal spinor and hence the geometry of the

internal space is always given by an integrable SU(3) structure.

The vanishing of the dilatino term tells us that the dilaton must be constant. The gaugino

variation can be re-expressed in the following way

0 = δεχ
a ⇔ 0 =

1

2
ξ†γmnF amnξ = ω#yF a (2.46)

where we have used the SU(3) structure of the internal space to write the spinor bilinear in

terms of a symplectic form ω. We therefore require A to be an instanton [116,117] and to satisfy

a constraint coming from the exterior derivative of (2.44) which states

Tr(F ∧ F ) = Tr(R ∧R) (2.47)

where R is the curvature 2-form defined by Θ.

2.2.2 Compactifications with Flux

We have seen that, in many cases, the geometry of fluxless compactifications can be described

in terms of some integrable G-structure. As described in section 2.1, these geometries have nice

properties and are well understood. Despite the attraction of these simple geometries, people

have looked for backgrounds that include non-trivial fluxes. While these break the integrability

of the G-structures, they solve some of the problems that arise in the cases above. For example,

in type II, fluxes were introduced to find genuine N = 1 compactifications, while fluxes in other

circumstances have been used to reduce the typically large number of moduli. We have also seen

that flux is required to support a non-zero cosmological constant and hence find AdS solutions.

The key point in the conventional analysis of backgrounds with flux is that the geometry

must be defined in terms of torsionful connections. That is, the flux generates a non-zero value

of the intrinsic torsion of the G-structure. The precise value of the intrinsic torsion can have

different implications of the geometry of the internal space.

The way fluxes enter the equations of motion and the supersymmetry conditions have led to

many no-go theorems for fluxed compactifications [118–122]. For the moment I will just focus

on the fairly general theorem5 of [121] which states that there cannot be a reduction of type II

or M-theory6 down to Minkowski space where the internal space Mint is compact, non-singular,

and there exists non-trivial n-form flux for n > 1. The statement of this theorem requires only

the equations of motion, not supersymmetry and so is fairly broad. The proof of the statement

4In fact, in [69] they show that the external space must be flat even for non-vanishing flux H
5In fact, arguments that non-zero flux imposes a negative cosmological constant first appeared in [123,124].
6They even show this is true for massive IIA but we won’t be considering that case here.
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runs as follows. Consider the Einstein equations in the full supergravity

RMN = TMN −
1

d− 2
ĝMN T

L
L (2.48)

where d = 10 or 11 is the dimension of the full spacetime, and ĝ is the metric on M. We

take the metric as in (2.30) but assume the external metric to be Minkowski. Considering the

components of the Ricci curvature along external directions, we find

Rµν = −ηµν(∇2A+ 2(∇A)2) = Tµν −
1

d− 2
e2Aηµν T

L
L (2.49)

Contracting with η on both sides we find

− 2e−2A
(
∇2e2A

)
= e2A

(
Tµµ −

4

d− 2
TLL

)
(2.50)

We proceed to show that the right hand side of (2.50) is always non-negative, and is 0 if and

only if the only non-zero flux is a 1-form.

For non-singular geometries, the energy-momentum tensor only gets contributions from n-

form fluxes. They contribute a term of the kind

TMN = FML1...Ln−1FN
L1...Ln−1 − 1

2n
gMNF

2 (2.51)

Hence the contribution to the right hand side of (2.50) is

T̃ = Tµµ −
4

d− 2
TLL = −FµL1...Ln−1F

µL1...Ln−1 +
4

d− 2

(
1− 1

n

)
F 2 (2.52)

We want fluxes that do not break the isometry of the external Minkowski space and hence they

must have entirely internal legs or 4 external legs. If F has only internal legs then the first

term on the right hand side of (2.52) vanishes and F 2 > 0. Hence we get a strictly positive

contribution to T̃ unless n = 1. In that case, the contribution vanishes identically. If F has 4

external legs then one can show that

FµL1...Ln−1F
µL1...Ln−1 =

4

n
F 2 (2.53)

Hence, we get the contribution

T̃ = −F 2 4(d− n− 1)

n(d− 2)
> 0 (2.54)

where we have used the fact that F must have a temporal component and hence F 2 < 0.

Finally, we return to (2.50). We multiply both sides by e2A and integrate over M . Since

we have assumed M is compact with no singularities, the left hand side vanishes. However, the

right hand side is strictly positive for any non-zero n-flux for n > 1. This is a contradiction and

proves the result.

There are ways around the proof. For example, one can add higher derivative corrections to

the equations of motion coming from string theory. If we include these, it has been shown that
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the positivity condition no-longer holds and you can have warped compactifications [125–127].

Another possibility is to add localised sources. These will produce singularities in the geometry

which will contribute when we integrate (2.50) over the manifold. We need∫
Mint

e4A(T̃flux + T̃loc) = 0 (2.55)

and hence the local sources must contribute negatively to the energy-momentum tensor. We

know that branes can be sources for flux, and so we can consider their contribution. For example,

a Dp-brane along spacetime and wrapping an internal p − 3 cycle Σ, we find the contribution

to the energy momentum tensor (in the Einstein frame) is [128]

T̃loc =
7− p

2
Tp δ(Σ) Tp =

(
2π
√
α′
)−(p+1)

e
p−3

4
ϕ̂ > 0 (2.56)

Therefore, for p < 7, the brane also contributes positively7. We also get similar contributions

from other branes [106,120]. To cancel these contributions, we need objects of negative tension.

Fortunately, orientifold planes provide such objects and can be inserted to avoid this no-go

theorem8 [129,130].

While these no-go theorems are important in understanding string-theory compactifications,

we shall not address them in this thesis. Instead, one should consider the type II or M-theory

geometries we describe to either be non-compact, or describe the geometry away from sources.

We now turn to how flux can affect the intrinsic torsion of the G-structures outlined previously.

We will be working with the assumption that Mint = R3,1. Throughout this thesis, we will be

using the democratic formalism for RR fluxes of type II [131]. Since we are also assuming that

the fluxes do not break the isometry of R3,1, we will sometimes write a flux with 4 external legs

as the dual of an entirely internal flux.

M-Theory Backgrounds

M-theory backgrounds with flux have been studied in many contexts [104, 106, 108, 122, 129,

130,132–134]. We will focus on understanding how the introduction of flux affects the intrinsic

torsion of the G-structures outlined previously. The supersymmetry variation of the gravitino

with arbitrary 4-form flux Ĝ is [122]

δεψM =

[
∇̂M −

1

144

(
γ̂M

NPQR − 8δNM γ̂
PQR

)
ĜNPQR

]
ε (2.57)

where the γ̂ are the full 11 dimensional γ-matrices. Taking the ansatz for the for the spinor as

in (2.37), we find that the external spinors η± must be chiral and constant, as before. We then

find the following conditions on the internal spinors [104]

0 =

[(
µie−∆ +

1

2
��∇∆

)
+

1

144
Gmnpqγ

mnpq

]
ξ (2.58)

7We see that p ≥ 7 avoids this issue and hence F-theory is free from this no-go theorem.
8In fact there are further constraints on the number and type of branes and orientifold planes due to the

tadpole cancellation condition [101].
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0 =

[
∇m +

1

144
(Gpqrsγ

pqrs
m − 8Gmnpqγ

npq)

]
ξ (2.59)

Here, we have written the 4-form flux Ĝ as a piece along the external space and a piece along

the internal space.

Ĝ =
3

4!
µεµνρσ(dx)µνρσ +

1

4!
Gmnpq(dy)mnpq (2.60)

This is the most general form of Ĝ that does not break the isometry of the external Minkowski

space.

From analysing equations (2.58), (2.59), [122] were able to show that, provided the 7-

manifold only had a G2 structure and nothing more refined, one could not solve these equations

with non-trivial flux without curving the external space. However, as expressed earlier, any

7-manifold that is spin also has an SU(2) structure. This, in particular, implies the existence

of a G2 3-form φ, along with a vector field v. [104] were then able to use these structures to

put constraints on the intrinsic torsion of the G2 structure arising from the supersymmetry

conditions.

From equation (2.59), we see that the internal Levi-Civita connection is no longer compatible

with the internal spinor ξ. If we assume that the manifold has at least a G2 structure generated

by ξ, then this tells us that the compatible connection has some torsion piece that depends on

the internal 4-form flux G. We can define the G2 3-form by a bilinear in ξ

φabc = −iξ†γabcξ ∗ φabcd = ξ†γabcdξ (2.61)

As we saw in (2.26), the intrinsic torsion of the G2 structure is precisely measured by dφ and

d ∗ φ. The torsion classes take the form

dφ = X1 ∗ φ+X4 ∧ φ+X3 d ∗ φ =
4

3
X4 ∧ ∗φ+X2 ∧ φ (2.62)

Replacing the exterior derivative with the Levi-Civita connection and using (2.59), (2.61) we

can find the values of the Xi in terms of G. This then puts constraints on the possible torsion

classes that can arise. Moreover, one can put constraints on the possible values of G that lead

to a solution of the supersymmetry equations. We will not explicitly give the answer here since

it is messy and not particularly illuminating for the remainder of the thesis. The results are,

however, given in [104].

We note that even with the introduction of the flux, this is not the most general form an

M-theory internal manifold. This is because we have still had to make some assumptions about

the internal spinor, such as it gives a well defined G2 structure. There could be cases in which

the real or imaginary part of ξ degenerate at some points on the manifold. The G2 description

would break down at those points.

Type II Backgrounds

A comprehensive review of flux backgrounds of type II theories with an SU(3) structure is given

in [101]. The supersymmetry variations of the 2 gravitinos and the 2 dilatinos are given in the
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string frame by

δεψM = ∇̂M ε+
1

8
HMNPΓNPPε+

1

16
eϕ̂
∑
n

��FnΓMPnε (2.63)

δελ =

(
�∂ϕ̂+

1

2
��HP

)
ε+

1

8
eϕ̂
∑
n

(−1)n(5− n)��FnPnε (2.64)

where H is the NS 3-form flux, the Fn are RR fluxes, ϕ̂ is the dilaton and the P,Pn are operators

acting on the doublet ε = (ε1, ε2) and depend on whether we are in IIA or IIB. For IIA we have

P = Γ11 Pn = (Γ11)n/2σ1 (2.65)

For IIB we have

P = −σ3 Pn =

σ1 n+1
2 even

iσ2 n+1
2 odd

(2.66)

To ensure we preserve only N = 1 supersymmetry, we need to assume that the external

spinors ηi in (2.41) are proportional to one another. We will consider this case here and examine

more general cases later. We can absorb that proportionality into the definition of the internal

spinor as follows.

ε1 = η+(x)⊗ (a ξ+(y)) + η− ⊗ (ā ξ−)

ε2 = η+(x)⊗ (b ξ∓(y)) + η− ⊗ (b̄ ξ±)
(2.67)

We also are assuming that the internal manifold only has an SU(3) structure and so the internal

spinors are equal. We then split the supersymmetry conditions (2.63), (2.64) into internal and

external pieces. We find that the external spinor has to be constant and we get a complicated

set of conditions on the internal spinor. Much like in the G2 case, we find that the Levi-

Civita connection is no longer compatible with the internal spinor ξ±. Instead, the compatible

connection depends on the fluxes H,Fn which arrange themselves into the torsion classes of the

SU(3) structure.

We define the SU(3) structure through the spinor bilinears

ωmn = ∓2i ξ†±γmnξ± Ωmnp = −2i ξ−γmnpξ+ (2.68)

As we saw in (2.24), the torsion classes of the SU(3) structure are defined by dω and dΩ via

dω =
3

2
im(W̄1Ω) +W4 ∧ ω +W3 dΩ = W1ω ∧ ω +W2 ∧ ω + W̄5 ∧ Ω (2.69)

where the Wi are differential forms falling into irreducible SU(3) representations. The different

values that the Wi take depend on the fluxes and describe different geometries for the internal

space. Moreover, there are strict constraints on the possible values of the flux that give solutions

to the supersymmetry equations and the Bianchi identities.

Solutions to the supersymmetry constraints for various fluxes have been thoroughly studied

[106, 135–141] and a summary of all possible N = 1 Minkowski flux backgrounds with SU(3)
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structure was given in [142, Sec 4]. We won’t give the full summary as it is again complicated

and not that illuminating for the rest of the thesis. However, we will provide some details on

certain cases that can arise. This, of course, depends on whether we are in IIA or IIB. We find

the following possible constraints on the torsion classes

IIA IIB

W1 = W2 = 0, W̄5 = 2W4 W1 = W2 = 0, W̄5 = 2W4

W1 = W3 = W4 = 0 W1 = W2 = W3 = 0

W1 = W2 = W4 = 0

(2.70)

The torsion classes that do not vanish depend on the fluxes. The following table describes the

possible geometries that arise when various torsion classes vanish [101]

Geometry Torsion Classes

Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0

Half Flat imW1 = imW2 = W4 = W5 = 0

Special hermitian W1 = W2 = W4 = W5 = 0

Nearly Kähler W2 = W3 = W4 = W5 = 0

Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

Conformal Calabi-Yau W1 = W2 = W3 = 3W4 − 2W5 = 0

We observe that for type IIA, we either have a complex manifold, or a symplectic manifold. For

type IIB however, the manifold is always complex but there may be a more refined structure

depending on which other torsion classes vanish. We should note that the IIB cases are not

exhaustive as there exist solutions that interpolate between the different cases [143]

Heterotic Backgrounds

Heterotic backgrounds with non-vanishing flux are free from the no-go theorems of type II

and M-theory because of the presence of gauge fields and the higher α′ corrections to the

equations of motion. Therefore, these have been studied greatly over the years [69, 144–150].

The flux compactifications were first studied in [144, 146] and resulted in the Hull-Strominger

system. This is a set of differential conditions on the geometry of the internal manifold that

are equivalent to the supersymmetry constraints. We will leave a more complete review of the

Hull-Strominger system to section 3.1 and will just comment on how the flux affects the torsion

of the G-structure.

As noted, a heterotic background preserving N = 1 supersymmetry always has an SU(3)

structure. This simple structure implies the existence of a symplectic form ω and a complex

3-form Ω which we can build out of spinor bilinears as in (2.68). The supersymmetry conditions

imply the following for the differential forms

d(e−2ϕ̂Ω) = 0 i(∂ − ∂̄)ω = H (2.71)
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These equations describe the torsion classes of the SU(3) structure. Comparing with (2.24) we

see that

W1 = W2 = 0 W5 = 2dφ (2.72)

In particular, we see that we always have a complex structure J , and hence the Dolbeault

differentials ∂, ∂̄ are well-defined. The torsion classes W3,W4 will depend on H through the

equation

dω = J ·H (2.73)

2.2.3 The Effective Theory

An important aspect of compactifications of string theory is understanding the effective theory

in the lower dimensional space. This arises by doing a Kaluza-Klein-like reduction of all the

fields on the full space M to the external R3,1 and truncating9 to the massless modes. In the

cases where the compactifications are described by integrable G-structures, the effective theory

is well understood and can be described in terms of the moduli space of the G-structure.

The massless scalar fields in the effective theory should parameterise some space, often called

the scalar manifold or moduli space. If all the scalar fields are constant on R3,1 then this should

constitute a vacuum of the effective theory. Hence, the scalar manifold should be the moduli

space of supersymmetric backgrounds of the theory. In the cases that the fluxes are turned off

we know that the geometry can be described in terms of an integrable G-structure. Hence, the

scalar manifold is related to the geometric moduli space of the G-structure. On the other hand,

the massless fields of the effective theory should lift to fields of the full supergravity theory in

10 or 11 dimensions and can be written as perturbations around some fixed background. In

practice, this means we can expand the fields on the whole space into internal and external

pieces, where the internal pieces label the geometric moduli.

In the case of G2 manifolds for M-theory backgrounds, the geometric moduli space is lo-

cally diffeomorphic to H3(M) [151]. Given a harmonic basis ρi of H3(M) we can expand the

perturbations of the metric and 3-form A as10

A(x, y) = αi(x)ρi(y) δφ(x, y) = βi(x)ρi(y) (2.74)

Since the G2 3-form φ determines the internal metric, the second term induces the metric

perturbation. The functions αi, βi form the scalar fields in the effective theory. We know this

theory is supersymmetric and so they should combine into the complex scalars ξi of the chiral

fields. From supersymmetry arguments, we know that the kinetic term should be∫
R3,1

Kijdξ
i ∧ ∗dξ̄i (2.75)

where Kij is the Kähler metric on the scalar manifold. It is possible to show [152,153] that this

9In general this will not be a consistent truncation. More accurately, we want to find the effective theory by
integrating out the massive modes.

10There can be other terms in the expansion of the metric and A, however these would not be scalars from the
point of view of R3,1
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Kähler metric has Kähler potential given by

K ∼ ln

∫
M
ψ ∧ ∗ψ̄ ψ ∈ H3(M)C (2.76)

In the case of Calabi-Yau compactification of type II (or heterotic), the geometric moduli

is locally split into Kähler and complex moduli [154]. This means that we can expand the

perturbations of the supergravity fields in terms of a harmonic basis ωa of H1,1(M) - the Kähler

moduli - and a harmonic basis χk of H2,1(M). We will also use a real harmonic basis µK of

H3(M). The NS sector decomposes as

δgmn = iz̄k(x)
(

(χ̄k)mp̄q̄Ωp̄q̄n
|Ω|2

)
δgmn̄ = iva(x)(ωa)mn̄(y)

ϕ̂(x, y) = ϕ̂(x) B(x, y) = ba(x)ωa(y)
(2.77)

where we have used complex coordinates on the Calabi-Yau manifold. The RR sector in IIA

decomposes as11

C1(x, y) = 0 C3(x, y) = ξK(x)µK(y) (2.78)

and the RR sector in IIB decomposes as

C0(x, y) = C0(x) C2(x, y) = ca(x)ωa(y) C4(x, y) = ρa(x)(∗ωa)(y) (2.79)

Since Calabi-Yau compactifications define N = 2 supersymmetry, these scalars will align into

hypermultiplets, vector multiplets, and tensor multiplets. The scalars in the vector multiplets

are given by

IIA: ta = ba + iva IIB: zk (2.80)

The kinetic term in the action for these fields takes the exact same form as in (2.75) except

that the Kähler potential in each case is given by [154–158]

KIIA ∼ ln

∫
M
ω ∧ ω ∧ ω KIIB ∼ ln

∫
M

Ω ∧ Ω̄ (2.81)

The scalars in the hypermultiplet have a similar kinetic term where the metric is hyper-Kähler

and was found in [159].

As we have seen, to break the supersymmetry further one needs to include fluxes. Introduc-

ing fluxes has the benefit of inducing a superpotential [157, 158] and hence a potential for the

moduli. Ensuring that this potential is minimised in the vacuum can fix some of the typically

large number of moduli. Unfortunately, once we turn on fluxes for the gauge potentials, their

expansion in terms of harmonic forms breaks down entirely. In fact, identifying the correct

geometric moduli has been an extremely difficult problem in general. For small flux, one can

try to argue that the moduli will be those of a Calabi-Yau, except some will attain a mass. This

process is called moduli stabilisation but breaks down for larger fluxes [160,161].

It is clear that understanding the geometric moduli space of supersymmetric backgrounds

is key to understanding the dynamics of the effective theory on R3,1. However, it has been an

11C1 does not provide any scalar fields in R3,1 since there are no harmonic 1-forms on a Calabi-Yau. It will
contribute vector fields to the action but we will not discuss those here.
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open problem for some time to know exactly what this is. The work in this thesis makes a

significant step in solving that problem.

2.3 Generalised Geometry

Having a clear understanding of the geometry of the internal manifold of compactifications has

been vital to the study of the effective physics of string theory in lower dimensions. Unfor-

tunately, conventional G-structures give a far from complete picture. As we have seen, the

introduction of flux breaks the integrability of the G-structure, and classifying the possible

torsion classes can be an involved process. Moreover, as we have suggested above, the G-

structures may not even be globally well-defined if the internal spinors degenerate at certain

points on the manifold. On top of this, understanding the moduli space, the Kähler potential,

and superpotential is a largely unknown problem except for some specific cases. Conventional

geometry seems limited in attaining a complete picture of the geometry and moduli space of

string backgrounds.

Fortunately, the last 20 years have seen the development of a new geometric formalism that

is ideally suited to the full degrees of freedom of supergravity. This formalism, called generalised

geometry, works by considering objects defined not on the tangent bundle T → M , but on a

Leibniz algebroid E → M , that has some local decomposition into vectors and differential

forms. There is some enlarged structure group GL(d,R)12 ⊂ G ⊂ GL(rkE,R) and the local

decomposition of E is determined by the group G. We shall call these structures G-generalised

geometry, or just G-geometry.

All G-generalised geometries are examples of transitive, local, locally split, closed-form

Leibniz algebroids. These were studied and classified by Baraglia in [162]. However, their

first appearance was in [163] for O(d, d) geometry, and developed in the work of Hitchin and

Gualtieri [164, 165]. Other examples involving exceptional groups were later discovered [166],

as well as others suitable for different aspects of string theory [167,168]. In this section we will

review the mathematical background of generalised geometries relevant in string theory.

2.3.1 O(d, d) Geometry

The first instance of generalised geometry was that defined in [164,165]. There, they considered

the bundle

E = T ⊕ T ∗ (2.82)

E is often called the generalised tangent bundle and it has a natural O(d, d) structure on it,

where d is the dimension of the manifold, given by the inner product

η(x+ ξ, y + η) =
1

2
(ξ(y) + η(x)) (2.83)

12Here, as in the rest of the thesis, d will correspond to the dimension of Mint.
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If we take a frame êi of T , with dual frame ei, then we can express the inner product with the

matrix

η(·, ·) =

(
0 I
I 0

)
(2.84)

which is clearly preserved by O(d, d). The algebra of symmetries of this structure have an

expression in terms of natural geometric bundles. This bundle is called the adjoint bundle13

ad F̃ = (T ⊗ T ∗)⊕ ∧2T ∗ ⊕ ∧2T (2.85)

This has a natural action on E given in appendix A.2

This bundle has a natural antisymmetric bracket J·, ·K that acts on sections of E that gives

the structure (E, η, J·, ·K, a) the structure of a Courant algebroid [163,169,170]. Here a : E → T

is the natural projection and is called the anchor map. The Courant bracket is given by14

Jx+ ξ, y + ηK = [x, y] + Lxη − Lyξ −
1

2
d(xyη − yyξ) (2.86)

This is not a Lie bracket since it fails the Jacobi identity. One can check that

Jac(X,Y, Z) = JX,Y KZK + cyclic perms

=
1

3
d (η(JX,Y K, Z) + cyclic perms)

(2.87)

One can define a derivative operator, called the Dorfman derivative15 which acts as

LXY = Lxy + Lxη − yydξ (2.88)

Then we have

JX,Y K =
1

2
(LXY − LYX) dη(X,Y ) =

1

2
(LXY + LYX) (2.89)

The collection (E, η, L, a) is a Leibniz algebroid [171–173] and turns out to be useful in the

study of string theory backgrounds.

Symmetries and H-Twists

The Dorfman derivative is clearly covariant under usual diffeomorphisms of the manifold. More-

over, we can also consider transformations by 2-forms B given by

eB(x+ ξ) = x+ ξ + xyB (2.90)

13This is indeed the adjoint bundle defined by taking the O(d, d) frame bundle F̃ , and the Lie algebra o(d, d)
and defining ad F̃ = (F̃ × o(d, d))/O(d, d)

14Here, and in the rest of the thesis, y denotes the interior product of a multivector and form. The conventions
we use are given in appendix A.1.

15This is sometimes called the generalised Lie derivative as it plays an analogous role to the Lie derivative in
conventional differential geometry.
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Putting this into the derivative, we find that

LeBXeBY = eBLXY + yy(xydB) (2.91)

If B ∈ Ω2
cl(M) is closed, then B is a symmetry of the Dorfman derivative. We call the symmetry

group the set of generalised diffeomorphisms and it is given by the semi-direct product

GDiff = Diff n Ω2
cl(M) ∼ Diff n Ω2

ex(M) (2.92)

The second term is taken in a local patch. We see from (2.88) that this is precisely the set

of transformations generated by LX . The statement that these are symmetries of the Leibniz

structure is precisely the statement that LX acts as a derivation on itself.

Notice, however, that if we choose any closed16 3-form H ∈ Ω3(M) then we can define

another differential operator via

LHXY = Lxy + Lxη − yydξ + yy(xyH) (2.93)

We call this the H-twisted Dorfman derivative and it has the same symmetries as the untwisted

case. We also see from (2.91) that

LH(eBX)(e
BY ) = LH+dB

X Y (2.94)

Hence, by reparameterising the sections X,Y ∈ Γ(E), we can move between different represen-

tatives of the cohomology class of H. Inequivalent twists are labelled by H3(M).

In a local patch Ui ⊂ M , we can always find some Bi ∈ Ω2(Ui) such that H = dBi. Hence,

on this local patch we can calculate the twisted Dorfman derivative via the untwisted

LHXY = LeBiXeBiY (2.95)

However, this is just a local expression. We know that on an overlap Ui ∩ Uj , the potentials

Bi, Bj are related by an exact form Bj = Bi + dΛji. For the sections to be globally well-defined

we require

X = eBi(xi + ξi) = eBj (xj + ξj) on Ui ∩ Uj (2.96)

where the xi ∈ Γ(Ui, T ), ξi ∈ Ω1(Ui) are local vector fields and 1-forms. For this to be true, we

require patching of the 1-forms and vector fields to mix into one another. That is, we require

xi = xj (2.97)

ξi = ξj + xjydΛji (2.98)

This implies that the Xi = xi + ξi are in fact local sections of a twisted bundle EH which is

16Closure is required to ensure this still satisfies the axioms of a Leibniz algebroid. Namely we need [LHX , L
H
Y ] =

LH
LH

X
Y
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defined to be an extension of the tangent bundle by the cotangent bundle.

T ∗ −→ EH −→ T (2.99)

This provides an alternative description of twists by a 3-form H. One can either consider the

untwisted bundle with a twisted Dorfman derivative, or consider the usual Dorfman derivative

acting on a twisted bundle. The gauge potential H = dB defines an isomorphism between the

Leibniz algebroids

(EH , L) ←→ (E,LH) (2.100)

In this thesis we will use these pictures interchangeably as they are equivalent. Because of this,

we will drop the H subscript in future discussions.

In fact, the patching has to obey particular compatibility conditions on triple intersections

implying the bundle EH is ‘twisted by a gerbe’, and B the properties of a connective structure

on a gerbe [174]

Λji + Λik + Λkj = dΛkji on Ui ∩ Uj ∩ Uk (2.101)

Generalised Spinors

Sections of E, along with the inner product on E, define a Clifford algebra Cliff(E) defined by

X ·X = η(X,X) (2.102)

This has a natural representation representation on the exterior algebra ∧•T ∗ given by

��XΦ = ����(x+ ξ)Φ = xyΦ + ξ ∧ Φ (2.103)

where x+ ξ ∈ E, Φ ∈ ∧•T ∗. We use the slashed notation to denote the Clifford action to mimic

the usual notation of contraction with γ-matrices. It is easy to check that the Clifford condition

(2.102) is met. One can also check that if A ∈ gl(d,R) then the induced Clifford action is

��AΦ = A · Φ +
1

2
(TrA)Φ (2.104)

where · denotes the usual adjoint action of gl(d) on polyforms. This implies that the spinor

bundle S is actually isomorphic to ∧•T ∗ ⊗ (detT )1/2 as a representation of Spin(d, d). To

account for this detT ∗ factor, we often include an R+ factor in the structure group. Physically

this relates to the trombone symmetry of supergravity backgrounds. We can then embed the

physical GL(d,R) subgroup such that the spinor bundle takes the form

S = ∧•T ∗ = ∧evT ∗ ⊕ ∧oddT ∗ = S+ ⊕ S− (2.105)

On the right hand side we have decomposed S into irreducible Spin(d, d) representations. We

call sections of S± chiral spinors of positive/negative chirality respectively.

There is a natural O(d, d)-invariant pairing on spinors that takes values in detT ∗, called the
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Mukai pairing. It is given by

(Φ,Ψ) =
∑
n

(−1)bn/2cΦd−n ∧Ψn (2.106)

Generalised Metrics

A generalised metric is a reduction of the structure group to its maximally compact subgroup

O(d, d)→ O(d)×O(d)17. This is equivalent to defining a splitting of E into C+⊕C− such that

the inner product η is positive/negative definite on C± respectively, and they are orthogonal.

This defines a conventional metric on E via

G(V,W ) = η(V,W )C+ − η(V,W )C− (2.107)

The subscript denotes the restriction of those vectors to the relevant subspaces.

Any conventional metric g defines a generalised metric on the untwisted space via

C± = {v ± g(v, ·) | v ∈ T} ⇒ G =

(
g 0

0 g−1

)
(2.108)

To generalise this to include the H twist we need to multiply C± by eB. Then we find that the

metric is given by

G = eB

(
g 0

0 g−1

)
e−B =

(
g −Bg−1B −Bg−1

g−1B g−1

)
(2.109)

In fact, it is possible to show that any generalised metric takes this form, and hence uniquely

defines a B and a metric via the formula above.

Generalised Complex Structures

Generalised complex structures are the analogue of complex structures in O(d, d) geometry

[164,165]. It is defined by a complex structure on E that preserves the O(d, d) structure. That

is

J : E −→ E J 2 = −1 η(JX,J Y ) = η(X,Y ) (2.110)

This defines a reduction of the structure group O(d, d) → U(d2 ,
d
2). We can decompose the

complexified generalised tangent bundle into eigenspaces of J

EC = L1 ⊕ L−1 (2.111)

where Ln is the ni-eigenbundle of J . Clearly L−1 = L1 and L1∩L−1 = {0}. One can also show

that

η(L1, L1) = 0 (2.112)

17We can choose generalised metrics of different signature by taking O(p, q)×O(q, p).
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These conditions are equivalent to J and so we get the alternative definition of generalised

complex structure.

Definition 9. A generalised complex structure is a U(d2 ,
d
2) structure and is defined by a sub-

bundle L ⊂ EC satisfying the following.

i) L is maximally isotropic - dimC L = d, and (L,L) = 0

ii) L has real index 0 - L ∩ L = {0}

An object satisfying only (i) is called a Dirac structure [163]

Given a generalised complex structure, we can define a unique line bundle U ⊂ SC that

satisfies

��L1Φ = 0 ∀Φ ∈ Γ(U) (2.113)

given any non-vanishing local section Φ ∈ Γ(U), we have
(
Φ, Φ̄

)
6= 0. Φ is called the pure

spinor18 associated to the generalised complex structure. We can also decompose SC into

eigenbundles of J and we find

SC =
3∑

n=−3

Sn U = S3 (2.114)

Definition 10. A generalised complex structure is integrable if L1 is involutive under the

Courant bracket19

JL1, L1K ⊆ L1 (2.115)

A generalised complex structure is integrable if and only if any section Φ ∈ Γ(U) satisfies

dΦ = ��XΦ some X ∈ Γ(E) (2.116)

Moreover, if the generalised complex structure is integrable then one can show that the exterior

derivative splits into generalised Dolbeault operators d = ∂ + ∂̄ satisfying

∂ : Sn −→ Sn+1 ∂̄ : Sn −→ Sn−1 (2.117)

Example 14. A complex structure J defines a generalised complex structure

JJ =

(
J 0

0 −J†

)
L1 = T 1,0 ⊕ T ∗0,1 U = ∧0,3T ∗ (2.118)

This is integrable if and only if the complex structure is integrable.

Example 15. A symplectic structure ω defines a generalised complex structure

Jω =

(
0 ω−1

−ω 0

)
L1 = eiωTC U =

〈
e−iω1

〉
(2.119)

18Note that given any line bundle U ⊂ SC, we can find a subbundle of L ⊂ EC from (2.113). A section Φ ∈ Γ(U)
is said to be a pure spinor if the subbundle L is a Dirac structure.

19The isotropy condition means we can equally define integrability as involutivity under the Dorfman derivative.
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Generalised Calabi-Yau Structures

We can define a refined structure if the pure spinor bundle U is trivial.

Definition 11. A generalised Calabi-Yau structure [164] is an SU(d2 ,
d
2) structure and is defined

by a global non-vanishing pure spinor Φ ∈ Γ(SC) satisfying

(
Φ, Φ̄

)
6= 0 (2.120)

The generalised Calabi-Yau structure is integrable if dΦ = 0.

2.3.2 O(6, 6 + n) Geometry

We can define a slight generalisation of the generalised geometry above to involve the geometry

of gauge connections on some principle bundle PG → M . These are precisely the degrees of

freedom relevant for Heterotic string theory and the geometry was first defined in [167]. We will

also restrict ourselves to the case that dimM = 6 as that will be the case of interest in chapter

3. The structure defined by T ⊕T ∗ is often called an exact Courant algebroid [175] because the

sequence (2.99) is an exact sequence on fibres. The isomorphism classes of such algebroids are

labelled by H3(M) [176]. The geometry relevant for heterotic strings is a non-exact Courant

algebroid and is defined by the following set of extensions20

T ∗ −→ E −→ E′

adPG −→ E′ −→ T
(2.121)

This has a natural inner product of signature O(6, 6+n) where n = dimG, and we have assumed

G is compact. It is given by

η(v + Σ + λ,w + Λ + σ) =
1

2
(λ(y) + σ(x)) + Tr(ΣΛ) (2.122)

As before, there is an isomorphism between E and an untwisted bundle T ∗⊕adPG⊕T given

by a choice of gauge connections. These gauge connections are A ∈ Γ(T ∗⊗ adPG), B ∈ Ω2(M)

and give globally well-defined field strengths

F = dA+A ∧A H = dB + ω3(A) (2.123)

ω3(A) is the Chern-Simons term for the connection A. We can define a twisted Dorfman

derivative via

LH+F
V W = Lvw

+ Lvσ − wydλ+ wy(vyH) + 2 Tr(ΛdAΣ)− 2 Tr(Λ(vyF )) + 2 Tr(Σ(wyF ))

+ [Σ,Λ] + vydAΛ− wydAΣ− vy(wyF )

(2.124)

20There have been other Courant algebroids used for studying heterotic strings which have been called holo-
morphic string algebroids [74,177–179]. These are very closely related to the bundle defined in this section, being
locally equivalent to T 1,0⊕adPG⊕T ∗1,0. These algebroids can be used to describe supersymmetric backgrounds
and have a very close relation to the exceptional complex structures we define later in chapter 3. The generalised
geometry defined here, however, can be applied to non-supersymmetric backgrounds as well.
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where dAΛ = dΛ + [A,Λ]. As before, we can equivalently work in either the twisted bundle, or

the twisted derivative picture.

2.3.3 Ed(d) × R+ Geometry

We have seen that the NS sector and the gauge sector can be unified into one geometric for-

malism, a statement that will be made more clear in the following sections. In this section we

will review generalised geometry which incorporates all the degrees of freedom of supergravity.

The structure group is Ed(d) × R+ for M-theory, and Ed+1(d+1) × R+ for type II. This was first

developed [166] and later studied in [180–182].

The generalised tangent bundle

The relevant vector bundle for generalised geometry is the generalised tangent bundle

E '

{
T ⊕ ∧2T ∗ ⊕ ∧5T ∗ ⊕ (T ∗ ⊗ ∧7T ∗) M-theory (2.125a)

T ⊕ (S ⊗ T ∗)⊕ ∧3T ∗ ⊕ (S ⊗ ∧5T ∗)⊕ (T ∗ ⊗ ∧6T ∗) Type IIB (2.125b)

where S ' 2 of SL(2,R). Note that some of the terms above will vanish for D ≥ 5. While

everything we say in this chapter applies to both M-theory and type IIB compactifications, we

will mostly focus on M-theory for ease. We should note that (2.125a), (2.125b) are only isomor-

phisms and are not unique. This is because E is defined as an extension of the tangent bundle by

the bundle of differential forms. More precisely, we define E (for M-theory compactifications21)

via
∧2T ∗ −→ E′′ −→ T

∧5T ∗ −→ E′ −→ E′′

T ∗ ⊗ ∧7T ∗ −→ E −→ E′
(2.126)

This means that for local patches Ui,Uj ⊂M with Ui ∩ Uj 6= ∅, and for local sections

vi + ωi + σi + τi ∈ Γ(Ui, E) (2.127)

the patching is given by

vj = vi (2.128)

ωj = ωi + viydΛji (2.129)

σj = σi + ωi ∧ dΛji +
1

2
viydΛji ∧ dΛji + viydΛ̃ji (2.130)

τj = τi + +jdΛji ∧ σi − jdΛ̃ji ∧ ωi + jdΛji ∧ viydΛ̃ji +
1

2
jdΛji ∧ dΛji ∧ ωi

+
1

6
jdΛji ∧ viydΛji ∧ dΛji

(2.131)

where Λji, Λ̃ji are local two and five-forms respectively on Ui ∩ Uj . We can write this in a

more compact form by saying Vj = edΛji+dΛ̃ji ·Vi where we using the exponentiated form of the

21From here we will assume that the precise form of the expressions given will only apply to M-theory unless
otherwise specified
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adjoint action outlined in appendix A.4 We call secions of E generalised vectors.

We note that the Λji define what is called a connective structure on a gerbe [174], mean-

ing that there successive gauge transformations that obey various compatibility conditions on

overlapping patches. Namely

Λji + Λik + Λkj = dΛkji on Ui ∩ Uj ∩ Uk (2.132)

Λkji + Λlkj + Λilk + Λjil = dΛlkji on Ui ∩ Uj ∩ Uk ∩ Ul (2.133)

The five-forms Λ̃ji obey a similar set of compatibility conditions on up to 7-fold overlaps. The

conditions are complicated by the fact that they depend on the Λ patching as well. We will not

give the precise patching here as it is not important for the following.

Defining an isomorphism as in (2.125a), or equivalently a splitting of the extension (2.126), is

equivalent to choosing a three and six-form gauge potential A, Ã which are patched on overlaps

via

Aj = Ai + dΛji (2.134)

Ãj = Ãi + dΛ̃ji −
1

2
dΛji ∧Ai (2.135)

Then, given a section of the direct sum bundle V̂ ∈ Γ(T ⊕ ∧2T ∗ ⊕ ∧5T ∗ ⊕ (T ∗ ⊗ ∧7T ∗)), we

can define a section of E, with the correct patching, by

V = eA+Ã · V̂ ∈ Γ(E) (2.136)

The precise form of the gauge potentials means that we can define the following global objects

F = dA F̃ = dÃ− 1

2
A ∧ F (2.137)

Note that the second term is a seven-form and physically corresponds to the dual of an external

4-form flux. While this trivially vanishes for d = 6, the gauge potential Ã is still present.

Different values of F and F̃ define different isomorphism classes of E and hence we often say

that the generalised tangent bundle is twisted by the flux.

A priori, this bundle has structure group GL(rkE,R). However, for supergravity applica-

tions, we would like the structure group to be Ed(d) ×R+. To do so we need to introduce some

invariant tensors. These depend on the dimension d of the internal space. For d = 6 there is a

cubic invariant, and for d = 7 one needs a symplectic and quartic invariant.

E6(6) : c : S3E −→ detT ∗ (2.138)

E7(7) : s : ∧2E −→ detT ∗ q : S4E −→ (detT ∗)2 (2.139)

These are explicitly given in A.4. With this, we get the required structure group and E trans-

forms in the fundamental representation. All of the relevant representations are summarised

in table 2.1. The generalised tangent bundle is always chosen to have weight 1 under the R+.
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The R+ factor is very important here since E does not form a representation of Ed(d) alone22.

The importance of the R+ factor, known as the trombone symmetry, was first noticed in [181]

where they explain that physically it is related to the warp factor of the compactification.

The Dorfman Derivative

An important object within the framework of generalised geometry is the Dorfman derivative.

This is an R-bilinear map

L·· : Γ(E)× Γ(E) −→ Γ(E) (2.140)

such that for all V,W ∈ Γ(E), f ∈ C∞(M), the following hold

LU (LVW ) = LLUVW + LV (LUW ) (2.141)

LV (fW ) = a(V )(f)W + fLVW (2.142)

where a : E −→ T is called the anchor map. (2.141) says that the Dorfman derivative is a

derivation on itself, and (2.142) says that LV is a covariant differential operator on E for all

V ∈ Γ(E). E endowed with such an operator is called a Leibniz algebroid.

The form of the Dorfman derivative was first found in [180]. In a local patch Ui ⊂ M we

can write the Dorfman derivative as

LViV
′
i = Lviv′i + (Lviω′i − v′iydωi) + (Lviσ′i − v′iydσi − ω′i ∧ dωi)

+ (Lviτ ′i − jσ′i ∧ dωi − jω′i ∧ dσi)
(2.143)

where Vi = vi+ωi+σi+τi ∈ Γ(Ui, E), and similarly for V ′. for this to be well-defined we need it

to be consistent with the patching (2.128) - (2.131). A simple calculation shows that this works

because of the closure of dΛji, dΛ̃ji. From (2.143) we can see that the action of the Dorfman

derivative is generated by the Lie derivative along v, and the action of exact differential forms

dω,dσ. These are precisely the diffeomorphism and A, Ã gauge degrees of freedom of the M-

theory backgrounds. Because of this, we say that the Dorfman derivative generates the gauge

transformations of the supergravity background. We will give an example of this when we talk

about the generalised metric.

Without choosing an isomorphism (2.125a), we cannot define a global expression for the

Dorfman derivative as there is no global notion of a two-form or five-form. However, once we

choose the isomorphism, or equivalently the gauge potentials A, Ã with field strength F, F̃ , we

can define a global expression in terms of the untwisted generalised vectors. To do this we define

the twisted Dorfman derivative

LF
V̂
V̂ ′ =e−A−ÃL

eA+ÃV̂
eA+ÃV̂ ′ (2.144)

=Lvv′ + (Lvω′ − v′y(dω − vyF ))

+ (Lvσ′ − v′y(dσ − vyF̃ + ω ∧ F )− ω′ ∧ (dω − vyF ))

+ (Lvτ ′ − jσ′ ∧ (dω − vyF )− jω′ ∧ (dσ − vyF̃ + ω ∧ F ))

(2.145)

22It is (T ⊕∧2T ∗ ⊕∧5T ∗ ⊕ (T ∗ ⊗∧7T ∗))⊗ (detT ∗)−1/(9−d) that forms the Ed(d) representation [162].
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where V̂ = v+ω+σ+ τ ∈ Γ(T ⊕∧2T ∗⊕∧5T ∗⊕ (T ∗⊗∧7T ∗)) is a global section, and similarly

for V̂ ′. Here we see that the Dorfman derivative is twisted by the flux while the generalised

tangent bundle remains untwisted. This is an equivalent formulation of generalised geometry

and we will often take this approach.

Finally, we observe that the Dorfman derivative is not antisymmetric. We can define an

antisymmetric bracket, often called the Courant bracket23, as the antisymmetric part of the

Dorfman derivative

JV, V ′K =
1

2

(
LV V

′ − LV ′V
)

(2.146)

= [v, v′] + (vydω′ − v′ydω +
1

2
d(vyω′ − v′yω))

+ (vydσ′ − v′ydσ +
1

2
d(vyσ′ − v′yσ) +

1

2
(ω ∧ dω′ − ω′ ∧ dω))

+ (Lvτ ′ − Lv′τ − jσ′ ∧ dω + jσ ∧ dω′ − jω′ ∧ dσ + jω ∧ dσ′)

(2.147)

As with the Dorfman derivative, this is a local expression. To give a global expression we can

define a twisted Courant bracket J·, ·KF by using LF . One should note that this does not define a

Lie bracket as it does not satisfy the Jacobi identity, as we shall see below once we have defined

a few more objects.

Generalised Tensors

We are now in a position to start defining objects analogous to those defined in conventional

generalised geometry. We naturally define generalised covectors as sections of the following

bundle whose fibres transform in the antifundamental

E∗ ' T ∗ ⊕ ∧2T ⊕ ∧5T ⊕ (T ⊗ ∧7T ) (2.148)

Generalised tensors are given by sections of some T ⊂ E⊗r ⊗ E∗⊗s for some r and s. The

fibres of T must transform in some representation of Ed(d) × R+. As before we can view these

bundles as twisted by the flux, or we can keep them untwisted and take the twisted Dorfman

derivative. We have listed some of the important tensor bundles and their representations in

the table below. Note that the subscript denotes the R+ weight. We will go through each in

turn.

G E ad F̃ N K

O(6, 6) 12 66 1 220
E7(7) × R+ 561 10 + 1330 1332 912−1

E6(6) × R+ 271 10 + 780 27′2 351′−1

Table 2.1: The Ed(d)×R+ representations that certain tensor bundles transform in. We include
the corresponding O(6, 6) representations for reference.

23This name is just because it mimics the Courant bracket of O(d, d) geometry. The structure it defines does
not give a Courant algebroid.
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The Adjoint Bundle

Formally we can define the adjoint bundle as an associated bundle. Let F̃ → M be the gen-

eralised frame bundle which is an Ed(d) × R+ principle bundle [181, 182]. Analogously to con-

ventional geometry, the frame bundle (at a point p ∈ M) is defined to be the set of frames of

E that are also compatible with the invariant tensors (2.138), (2.139). Let ed ⊕ R be the split

form of the Lie algebra of the structure group. Let Ad denote the adjoint action of E6(6) ×R+.

Then the adjoint bundle is defined to be

ad F̃ := (F̃ × e6 ⊕ R)/Ad (2.149)

This is a vector bundle with fibres that transform as ed⊕R. As with E, we can decompose this

into natural geometric bundles and is given by

ad F̃ ' R⊕ (T ⊗ T ∗)⊕ ∧3T ∗ ⊕ ∧6T ∗ ⊕ ∧3T ⊕ ∧6T (2.150)

Given that the fibres are isomorphic to the Lie algebra of the structure group, and section

R ∈ Γ(ad F̃ ) has a natural action on E which is given in appendix A.4.

An alternative description of the adjoint bundle is as a particular subbundle of E ⊗ E∗. In

fact, there is a unique Ed(d)×R+ covariant projection onto the adjoint bundle which we express

the following way

×ad : E × E∗ −→ ad F̃ (2.151)

It is given explicitly in appendix A.4. With this, one can actually show that the Dorfman

derivative (2.143) can be written in the more covariant form

LV V
′ = 〈V,d〉V ′ − (d×ad V ) · V ′ (2.152)

Here 〈·, ·〉 denotes the natural pairing of E and E∗, and we are viewing d ∈ T ∗ a∗
↪−−→ E∗. Finally,

· denotes the adjoint action of ad F̃ on E as described above. This expression then naturally

generalises to give an action of the Dorfman derivative on any generalised tensor

LV α = 〈V,d〉α− (d×ad V ) · α (2.153)

The expression for the Dorfman derivative acting on R ∈ Γ(ad F̃ ) is given in A.4.

N ⊂ S2E

There is a particular subbundle of the symmetric product of E which is important in exceptional

generalised geometry. We denote it by N and it falls into a particular Ed(d) representation as

shown in table 2.1. It is given by

N ' T ∗ ⊕ ∧4T ∗ ⊕ (T ∗ ⊗ ∧6T ∗)⊕ (∧3T ∗ ⊗ ∧7T ∗)⊕ (∧6T ∗ ⊗ ∧7T ∗) (2.154)
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Again there are unique covariant maps

×N : E × E −→ N (2.155)

×E : N × E∗ −→ E (2.156)

These are defined in appendix A.4. These bundles are important in the structure of the Dorfman

derivative and Courant bracket. One can show that the following identities hold.

1

2
(LV V

′ + LV ′V ) = d×E (V ×N V ′) (2.157)

Jac(V1, V2, V3) = d×E (JV1, V2K×N V3 + (cyclic perms.)) (2.158)

where Jac(V1, V2, V3) = JJV1, V2K, V3K + (cyclic perms.) is the Jacobiator.

In fact, the bundle N also appears in an interesting context with exceptional field theory as

noticed in [181]. In this formalism, one not only enlarges the tangent bundle to encompass the

symmetries of supergravity, but one also enlarges the spacetime to try to capture the U-duality

structure of string theory. One can then define the Dorfman derivative much like in (2.153),

however now d is now replaced with the exterior derivative on the fully enlarged space d̃. In

doing so a number of problems arise. Firstly, the derivative no longer satisfies the Leibniz

property (2.141), and secondly, the supergravity action is no longer invariant under the action

generated. These are clearly not desired properties of an operator generating gauge symmetries

of an action.

These issues are remedied by dictating that these formulae only hold once you have chosen a

physical space M ⊂ M̃ . This is called a section and is roughly equivalent to choosing the anchor

map a : E → T . However, one cannot choose any submanifold to get a well-defined Dorfman

derivative L. It turns out that the physical space must have a tangent bundle T which satisfies

T ×N T = 024. In fact, there is a slightly stronger constraint, aptly named the strong constraint,

that says that if d is the derivative operator along the physical space then the operator

d×N∗ d ≡ 0

on any generalised tensor. There are many choices of spaces that satisfy this strong constraint

and they are related to each other via U-dualities. We note here that since the anchor map a

is part of the definition of our structure, we already have a well-defined spacetime and we are

only trying to study the symmetries of supergravity and not the dualities of string theory.

The Torsion Bundle

Another important bundle is the space of generalised torsions. This will be relevant when we

introduce generalised connections in the next section. For now we will just state the properties

of the bundle without motivation.

The torsion bundle K ⊂ E∗⊗ad F̃ has the following expression in terms of natural geometric

24It is easy to check using A.4 that T does in fact satisfy this in our formalism
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bundles

K '∧7T ∗ ⊕ ∧4T ∗ ⊕ (∧2T ∗ ⊗ T )⊕ S2T ⊕ (T ∗ ⊗ ∧3T )⊕ (∧4T ⊗ T )

⊕ (S2T ∗ ⊗ ∧7T )⊕ (∧2T ⊗ ∧6T )⊕ (∧4T ⊗ ∧7T )⊕ (∧7T )2
(2.159)

This transforms in the representation given in table 2.1. While this will become more important

later, we note now that the flux F + F̃ ∈ Ω4(M) ⊕ Ω7(M) ⊂ Γ(K). Hence we can view the

flux as an element of the torsion bundle. Then, combined with the map K ×E → ad F̃ , we can

write the twisted Dorfman derivative (2.145) in a more covariant way

LF
V̂
V̂ ′ =

〈
V̂ , d

〉
V̂ ′ − (d×ad V̂ − F (V̂ )) · V̂ ′ (2.160)

where F (V̂ ) = vyF − ω ∧ F + vyF̃ ∈ Γ(ad F̃ ). This again naturally generalises to give an

expression for the Dorfman derivative on any generalised tensor.

2.3.4 Generalised Connections, Torsion and Integrability

An important object in any geometric theory is the connection. We can define a generalised

connection for any G-geometry [167,180–186] in complete analogy. A generalised connection D

is defined to be an R-linear map

D : Γ(T ) −→ Γ(E∗ ⊗ T ) (2.161)

such that

D(fα) = df ⊗X + fDα (2.162)

for all f ∈ C∞(M), α ∈ Γ(T ) where T is some generalised tensor bundle. We have again used

the identification df ∈ Ω1(M)
a∗
↪−−→ Γ(E∗).

Torsion

The torsion of a generalised connection is some tensor T ∈ Γ(E∗ ⊗ ad F̃ ) which is defined by25

T (V ) · α := LDV α− LV α (2.163)

where LDV is the Dorfman derivative (2.153), except with every instance of d replaced with D.

That is

LDV α = 〈V,D〉α− (D ×ad V ) · α (2.164)

Note that T (V ) ∈ Γ(ad F̃ ) and so T (V ) ·α denotes the adjoint action of T (V ) on the generalised

tensor α. One may think that the generalised torsion can fill out the whole of E∗ ⊗ ad F̃ .

However, due to the precise form of the Dorfman derivative, we find that the torsion can only

live in K ⊕E∗ ⊂ E∗⊗ ad F̃ . This highlights the importance of the bundle K defined in section

2.3.3.

25One can show that t(v) · a := L∇v a − Lva gives an equivalent definition of the torsion of a conventional
connection ∇
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G-structures and Integrability

Much like in conventional geometry, one can define a G-structure to be a principle subbundle of

the frame bundle PG ⊂ F̃ with fibre G ⊂ G. Often, the existence of a G-structure is equivalent

to the existence of some globally non-vanishing generalised tensors that are preserved by G.

We already saw some examples of generalised G-structures in section 2.3.1. As in conventional

geometry, we define a G-structure to be integrable if there exists a torsion free compatible

generalised connection. That is, if the generalised tensors αi define the G-structure, then it is

integrable if there exists a connection D such that

Dαi = 0 ∀ i LDV = LV (2.165)

While a compatible connection always exists, the existence of a torsion free compatible connec-

tion depends on a geometric property of the G-structure called the intrinsic torsion. We will

define this now and show that for a torsion free compatible connection to exist, the intrinsic

torsion must vanish. We will follow section 2.1.4 and [187, section 5.1] closely.

Note that compatible (but not necessarily torsion free) connections will not, in general,

be unique. Given any two compatible connections D,D′, their difference will be a tensor

D′ −D = Σ ∈ Γ(E∗ ⊗ adPG) ⊆ Γ(E∗ ⊗ ad F̃ ), where adPG → M is the adjoint bundle of P .

That is, it is a vector bundle with fibres g, the Lie algebra of G. This has a natural action

on generalised tensors, inherited from ad F̃ , and will annihilate the αi. This gives the space of

G-compatible connections an affine structure with space isomorphic to Γ(E∗ ⊗ adPG).

Given two generalised connections D,D′, we can find their respective torsions T, T ′ via

(5.11). Moreover, the difference in torsion is given by

T ′(V )− T (V ) = LD
′

V − LDV (2.166)

=
〈
V,D′ −D

〉
−
(
(D′ −D)×ad V

)
(2.167)

This clearly only depends linearly on Σ = D′−D and hence we can define a vector bundle map

τ : E∗ ⊗ adPG −→ W ' K ⊕ E∗

Σ 7−→ T ′ − T
(2.168)

We can think of the image of τ as the part of the torsion we can change by changing the

compatible connection. We will define WG = im τ . Note that, in general, τ is not surjective and

so there exists a subspace of the torsion which cannot be affected by changing the compatible

connection. This space is called the intrinsic torsion space and we shall denote it by WG
int '

W/WG. The precise embedding of W/WG ↪→ W can be given by decomposing W,WG into

irreducible G representations.

Given a compatible connection D with torsion T , we can consider the projection onto WG
int,

called the intrinsic torsion T int ∈ Γ(WG
int). As explained, this part of the torsion is unchanged

by changing D → D′ = D+ Σ. Hence, one can find a Σ such that the torsion T ′ of D′ vanishes

if and only if the intrinsic torsion T int vanishes.
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Generalised Metrics and Generalised Levi-Civita Connections

A generalised metric is defined to be a reduction of the structure group to its maximally compact

subgroup, which we denote with Hd. It turns out that such a structure is always integrable, but

the torsion free compatible connection is not unique. We call any such connection a generalised

Levi-Civita Connection. This is the generalisation of the fundamental theorem of Riemannian

geometry. We will outline a proof here. The aim is to show that the intrinsic torsion for Hd

structures always vanishes. We will focus on the case of d = 7 for simplicity, but similar proofs

hold for all geometries.

As mentioned above, the generalised metric defines an H7 = SU(8) structure26. With such

a structure we can decompose all of the relevant bundles into SU(8) representations

E∗ ⊗ adPSU(8) ∼ 28⊕ 36⊕ 420⊕ 1280⊕ c.c. (2.169)

W ∼ 28⊕ 36⊕ 420⊕ c.c. (2.170)

Here ∼ denotes the decomposition of the fibres into subrepresentations. We can see that all of

the SU(8) representations that appear in W appear in E∗⊗ adPSU(8). Hence, in this particular

case, the map τ defined in (2.168) is surjective. This is shown more explicitly in [181]. This

means that WG = W and hence WG
int = 0, i.e. the intrinsic torsion of any SU(8)-compatible

connection vanishes. Hence, there always exists a Σ ∈ Γ(E∗ ⊗ adPSU(8)) such that D + Σ is

torsion free. This proves the first statement that the generalised Levi-Civita connection always

exists. We can also see from (2.169) that the kernel of τ on each fibre is 2× 1280 dimensional.

Hence, if D is a torsion free compatible connection, then so is D + Σ if Σp ∈ 1280 ⊕ c.c. at

each point p ∈ M . Hence, the space of generalised Levi-Civita connections is an affine space

isomorphic to Γ(1280 ⊕ c.c.). This proves the second statement that such a connection is not

unique.

A natural question to ask here is if we can define a notion of generalised curvature within

generalised geometry. The natural candidate for the generalised Riemann curvature R would

be

R(X,Y ) · Z := [DX , DY ]Z −DJX,Y KZ (2.171)

where X,Y, Z ∈ Γ(E) and DX = 〈X,D〉. In fact, (2.171) is not a generalised tensor as it is not

C∞(M)-linear. Indeed, if we take X ′ = fX, Y ′ = gY , Z ′ = hZ for some f, g, h ∈ C∞(M) then

we find

R(X ′, Y ′) · Z ′ = fghR(X,Y )Z +
1

2
hD(fdg−gdf)×E(X×NY )Z (2.172)

While there has been some work defining a tensorial Riemann tensor for O(d, d)×R+ generalised

geometry [188–190], there does not exist such an object in exceptional generalised geometry.

We will go into more detail in appendix B.

26In fact the maximally compact subgroup is SU(8)/Z2. However, as we note later, we always assume we can
take the double-cover.
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2.4 Generalised Geometry and Supersymmetric Backgrounds

Generalised geometries have found particular use in describing backgrounds of supergravity.

This may seem unsurprising since the geometry and topology of both the manifold, and the

gauge field structure, is built into the definition of the generalised tangent bundle. Hence,

defining objects on E as opposed to T naturally includes the flux degrees of freedom of any

background. We recall from section 2.2 that it was precisely these degrees of freedom that have

been so hard to characterise through conventional geometric techniques. In this section we will

review some of the key ways these generalised structures have been employed to study generic

aspects of flux backgrounds.

2.4.1 Applications of O(d, d) Generalised Geometry

The O(d, d) group had been an important object in the study of string theory for some time. The

discrete group O(d, d,Z) is the T-duality group of string theory on a d dimensional torus [191,

192]. It was also known that the NS sector of string theory compactified on such a torus has the

continuous group as a global symmetry and the metric and B-field transform as the generalised

metric (2.109) [192–195]. Moreover, it was shown that the moduli of toroidal compactifications

of string theory parameterise the coset O(d, d)/O(d) × O(d) [196]. With these observations,

people used O(d, d) transformations to try to find new backgrounds of string theory [197–199].

The generalised geometry of Hitchin and Gualtieri gives a way of manifestly realising these

symmetries through the background geometry. Originally with applications to mirror symmetry

in mind, supersymmetric backgrounds of type II with an SU(3) structure were described in terms

of pure spinors in [142]. They were able to rewrite the supersymmetry conditions on the internal

spinors as differential constraints on the generalised spinors. To do so they used the Clifford

map between polyforms and spinor bilinears, and then employed the constraints coming from

the Killing spinor equations. In their work, they noticed that one pure spinor is always left

unaffected by the RR fluxes. However, the NS flux H enters with a non-canonical action.

In [156] they noticed that an SU(3)× SU(3) structure defined by 2 pure generalised spinors

is precisely the algebraic data defined by 2 non-vanishing internal spinors27. These encompass

the cases in which the internal manifold has an SU(3) structure, an SU(2) structure, and inter-

mediate cases that cannot be described by conventional G-structures28. In [202], the authors

were once again able to find the differential constraints on 2 generalised spinors to define an

N = 1 background. They found that

(d +H∧)(e2∆−ϕ̂Φ1) = 0 (d +H∧)(e2∆−ϕ̂Φ2) = d∆ ∧ Φ̄2 + F (2.173)

where ∆ is the warp factor and ϕ̂ is the dilaton. The Φi are even/odd polyforms depending on

whether we are in type IIA or IIB. F is shorthand for the formal sum of fluxes, rescaled using the

norm of the internal spinors. We see that Φ1 defines a (twisted) generalised Calabi-Yau manifold,

and Φ2 depends on all the fluxes. These backgrounds have been called GMPT backgrounds after

27See [200,201] for a similar investigation of G2 ×G2 structures for compactifications on 7-manifolds.
28These are cases where the internal spinors become parallel at certain points. When this occurs, the SU(2)

structure degenerates into an SU(3) structure.
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the authors. The equations (2.173) were reformulated in [203] to make the generalised complex

geometry of the background more manifest. We will look at these backgrounds in more detail in

section 5.2. The description of supersymmetric backgrounds in terms of 2 pure spinors provides

the background with a non-integrable SU(3)× SU(3) structure29. Specifically, the integrability

is broken by the RR fluxes.

In [183] they showed that any non-supersymmetric background could be described in terms

of an integrable O(1, 9)×O(9, 1) structure. They noted that one can describe the fields of the

NS sector by a generalised metric provided one introduces an R+ factor into the structure group

to properly describe the dilaton. A generalised metric is then equivalent to a choice of g,B, ϕ̂.

That is

{g,B, ϕ̂}p∈M ∈
O(10, 10)× R+

O(1, 9)×O(9, 1)
(2.174)

They introduced a generalised connection for O(d, d) generalised geometry, originally defined

in [204], and found the conditions required for the generalised metric to be integrable. They

found that one can rewrite type II supergravity in a manifestly O(1, 9)×O(9, 1) covariant form

using a generalised Levi-Civita connection, i.e. a torsion free generalised connection that is

compatible with the generalised metric. As we have seen, these connections always exist but

are not unique. Despite this ambiguity, one can find certain projections that are unique. One

can then use these projections to write the supersymmetry variations and the equations of

motion. The equations of motion are given in terms of the generalised Ricci curvature and

scalar, and the Bianchi identity.

RAB +
1

16
ϕ̂−1 (F,ΓABF ) = 0 R = 0 ΓADAF = 0 (2.175)

Note that, in the absence of RR fluxes, the equations of motion are given by the vanishing of

the generalised Ricci curvature.

These calculations show that generic supergravity backgrounds always have an integrable

O(1, 9)×O(9, 1) structure on the generalised tangent bundle. Moving to supersymmetric back-

grounds, one must work with a further reduced structure group, but the integrability is broken

by the presence of RR fluxes. This is unsurprising given that only the B field is built into the

structure of the geometry while the RR fluxes must be accounted for separately. As was noted

in [205,206], they behave as generalised spinors.

2.4.2 Applications of O(6, 6 + n) Generalised Geometry

It has been shown that O(6, 6 + n) is a symmetry of heterotic string theory reduced on a 6

dimensional torus [192, 196]. However, there has not been as much interest in how O(6, 6 + n)

generalised geometry can be applied to these backgrounds. Much of the mathematical literature

has been interested in the holomorphic Courant (or string) algebroids [74,177–179,207]. Despite

this, the generalised metric was defined in [186]. A generalised metric is a reduction of the

structure group O(6, 6 + n) → O(6) × O(6 + n). This is equivalent to a choice of subbundle

29Integrability would be if both pure spinors are d+H∧ closed. This would correspond to N = 2 backgrounds.
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C+ ⊂ E of rank 6 such that the restriction of the inner product η to C+ is positive definite30.

We denote by C− the orthogonal compliment of C+ under η.

A choice of metric is equivalent to a choice of bosonic fields

{g,B,A}p∈M ∈
O(6, 6 + n)

O(6)×O(6 + n)
(2.176)

They show that one can always introduce a generalised connection that is compatible with this

reduced structure and that is torsion-free. They go on to show that the equations of motion for

the heterotic background are given by the vanishing of the generalised Ricci tensor

RAB = 0 (2.177)

This mirrors what we saw above with the NS sector of type II. In their work they do not fix

the dilaton factor by considering an R+ term in the structure group. Instead, they relate the

choice of generalised Levi-Civita connection to the choice of dilaton in the physical theory.

2.4.3 Applications of Ed(d) × R+ Generalised Geometry

Exceptional generalised geometry is the natural framework in which to study backgrounds of

supergravity and string theory. We will see that all fluxes can be dealt with in a uniform way,

and that arbitrary supersymmetric backgrounds will be described by integrable G-structures.

For ease, we will again focus on the application to M-theory backgrounds. However, everything

has an analogous story in type II backgrounds.

It has long been known [208–210] that the bosonic fields of supergravity backgrounds reduced

on d dimensions form an element of the coset

{∆, g, A, Ã}p∈M ∈
Ed(d) × R+

Hd
(2.178)

Also, ∆ is the warp factor, g is the metric, and A, Ã are the gauge potentials of the flux. We

denote by Hd the maximally compact subgroup of Ed(d) × R+. (2.178) says that there is some

Hd ⊂ Ed(d) × R+ which preserves the bosonic fields. In other words, a choice of bosonic fields

reduces the structure group

Ed(d) × R+ −→ Hd (2.179)

In fact, in order to describe fermions in this generalised setting, one must work with the double

cover H̃d of the maximally compact subgroup [182]. We will always assume that we are working

on a manifold in which there is a well defined lift of the structure group Hd → H̃d
31.

We can describe this Hd structure conveniently through a generalised metric

G : S2E −→ R (2.180)

30The conventions here are slightly different to the conventions of [186] as their negative definite space would
be rank 6. We use these conventions to match the conventions used in chapter 3. They also talk about when
a particular C+ is admissible. In our framework, with a prescribed inner product η on the space, all C+ as
described will be admissible.

31This is the analogue of a spin manifold in conventional geometry. There are some subtleties as to when this
lift exists, as outlined in [166].
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To find G, we must define what is called a conformal split frame of E. Given any frame {êa}
of T with {ea} the dual frame, and any choice of bosonic fields ∆, A, Ã we define the conformal

split frame by

Êa = e∆eA+Ãêa Eab = e∆eA+Ãeab

Eabcde = e∆eA+Ãeabcde Ea,a1...a7 = e∆eA+Ãea,a1,,,a7

(2.181)

where eab = ea ∧ eb, eabcde = ea ∧ ...∧ ee and ea,a1...a7 = ea ⊗ ea1 ∧ ...∧ ea7 . If we further impose

that the êa are orthonormal with respect to the conventional metric g then we can define the

map G by

G(V, V ) = vava +
1

2
ωabω

ab +
1

5!
σabcdeσ

abcde +
1

7!
τa,a1...a7τ

a,a1...a7 (2.182)

where these are the components of the generalised vectors in the conformal split frame (2.181),

and where we have raised and lowered indices with the metric δab (in this frame). One can show

that this map is invariant under Hd transformations and hence the bosonic fields, {∆, g, A, Ã},
define an Hd structure as claimed above.

The action of the infinitesimal gauge transformations are generated by the Dorfman deriva-

tive [181,211]. That is, given a generalised metric G, if we take a small diffeomorphism generated

by a vector v ∈ Γ(T ), and do a gauge transformation of the gauge potentials A′ = A + dω,

Ã′ = Ã+ dσ − 1
2dω ∧A, then the gauge transformed G is given by

G′ = G+ LVG (2.183)

where V = eA+Ã(v+ω+σ+ τ). We call the combined action of diffeomorphisms and form field

gauge transformations generalised diffeomorphisms.

As we saw for O(d, d) and O(6, 6 +n) geometries, an important object for the application of

Ed(d)×R+ geometries is the generalised Levi-Civita connections. These were defined in [181,183]

to be torsion free generalised connections that are compatible with the generalised metric. We

already saw in section 2.3.4 that these objects always exist but are not unique. Moreover, the

naive definition of the Riemann curvature is not tensorial. Despite this, it was shown in [181]

that the generalised Ricci tensor RMN = RPMPN is tensorial. Moreover, it is independent

of the choice of generalised Levi-Civita connection. It also has the property that the bosonic

supergravity action and equations of motion on the internal space are given by

S =

∫
M
R volG RMN = 0 (2.184)

respectively. Here volG is the Ed(d) invariant volume form given in the conformal split frame

by e(9−d)∆√g. Hence we see that, much like in the previous sections, the equations of motion

imply generalised Ricci flatness of the generalised Levi-Civita connections. However, unlike for

O(d, d) geometries, the presence of RR fluxes does not break the Ricci flatness. This is because

these fluxes are built into the structure of the generalised tangent bundle.
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Supersymmetric Backgrounds

As we saw in section 2.2, geometries with N linearly independent solutions to the internal

Killing spinor equations will preserve N supersymmetries in the effective theory32. The key

observation in exceptional geometries is that the internal spinors transform in the fundamental

representation of Hd. This allows us to define a clear reduction of the structure group for any

required supersymmetry. This is in contrast to conventional geometry or O(d, d) geometry in

which assumptions had to be made about the form of the internal spinors to properly define a

reduction.

This observation was first made in [180] in which they analysed M-theory backgrounds with

a 4 dimensional Minkowski space preserving N = 1 supersymmetry. Since the (double cover of

the) maximally compact subgroup in this case is SU(8), the existence of a globally non-vanishing

section of a bundle transforming in the 8 reduces the structure group SU(8) → SU(7). It was

shown in [184] that the non-vanishing spinor satisfies the Killing spinor equation if and only if

there exists a torsion free connection compatible with the reduced structure. This was shown

using the reformulation of the Killing spinor equations in manifestly H̃d covariant way found

in [181, 182]. It was also shown that these backgrounds are automatically generalised Ricci

flat and hence solve the equations of motion. This provides a simple proof of the statement

that the Killing spinor equations imply the equations of motion. In [180] it was also shown

that an alternative description of such an SU(7) structure is given by a non-vanishing tensor ψ

transforming in the 912 of E7(7). They were able to use this to find a description of the effective

superpotential on R3,1 in an E7(7) covariant form in terms of ψ.

Supersymmetric backgrounds preserving 8 supercharges in R3,1, R4,1 and R5,1 were analysed

in [187]. For R3,1, we get an N = 2 solution and hence we require two linearly independent

solutions of the Killing spinor equation. This implies the existence of an SU(6) structure on

the internal space33. They found a description of these backgrounds in terms of a triplet of

adjoint-valued tensors and a non-vanishing generalised vector. They also found the differential

conditions that these backgrounds must satisfy for the existence of a torsion free connection,

given in terms of vanishing moment maps for the action of generalised diffeomorphisms on the

space of structures. Using the results of [184] again one can show that this is equivalent to the

Killing spinor equations. In analogy with fluxless compactifications preserving 8 supercharges,

they labelled these backgrounds exceptional Calabi-Yau spaces. We will review these in more

detail in section 4.1 for the R4,1 case.

The correspondence between integrable G-structures and supersymmetric backgrounds was

originally proved for backgrounds preserving minimal supersymmetry34, and was extended to

all supersymmetric backgrounds in [185]. There, they showed that a background preserving any

supersymmetry defines an integrable GN ,d structure. The precise group depends on the amount

of preserved supersymmetry and the dimension of the internal space. The groups are listed in

the table below.

They found this by analysing the algebra of Killing vectors and Killing spinors. They showed

32We will ignore accidental additional supersymmetries, like is the case for Calabi-Yau compactifications.
33For compactifications down to R4,1 the structure group is USp(6), and to R5,1 it is SU(2)×USp(4).
34In fact, D = 4 N = 2 backgrounds were also shown to be integrable SU(6) structures.
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d H̃d GN ,d ⊂ H̃d

7 SU(8) SU(8−N )
6 USp(8) USp(8− 2N )
5 SU(4)× SU(4) SU(4− 2N+)× SU(4− 2N−)
4 USp(4) USp(4− 2N )

Table 2.2: The G-structures in Ed(d) × R+ geometry that describe a background preserving N
supersymmetries.

that the closure of the algebra is equivalent to the vanishing of the intrinsic torsion of a con-

nection compatible with the G-structures listed above. This work shows that the geometry

of supergravity backgrounds have a simple mathematical formulation which can be exploited

to understand deep questions about such backgrounds, particularly about the moduli space of

these geometries.

We also mention that a lot of work has been done on understanding the generalised geometry

of supersymmetric backgrounds with an AdS external space. It was shown in [212] that such

backgrounds are described by manifolds with G-structures of weak generalised holonomy, where

the groups are the same as listed above. Weak holonomy is characterised by the existence of a

compatible connection with non-vanishing singlet intrinsic torsion only. These were originally

looked at in [213] where the authors found the AdS analogue of the exceptional Calabi-Yau

spaces defined previously. They called these backgrounds exceptional Sasaki-Einstein spaces.

They were defined by the same tensors as in the Minkowski space, just with different integrability

conditions that depend on the cosmological constant. The AdS5 geometries were further studied

in [214] and related to particular CFTs through the AdS/CFT correspondence. in particular,

they matched the marginal deformations of the CFT to deformations of the USp(6) structures

on the gravity side. Similar results for N = 2 SCFT3 were analysed in [215].
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Chapter 3

Generalised Geometry for Heterotic

Backgrounds

In this chapter, we analyse how O(6, 6 + n)×R+ generalised geometry can be used to describe

and study Heterotic string backgrounds preserving minimal supersymmetry. These have been

studied in great detail in the past due to their ability to reproduce the gauge groups of the

standard model with relative ease [67, 68, 112, 113, 216–220]. We will find that all of these

backgrounds can be described uniformly through SU(3) × Spin(6 + n) structures. These will

have properties that are reminiscent of complex and generalised complex structures. Using

these similarities, we will be able to provide direct links to geometric invariant theory [221]

and we will be able to recover the results on moduli as found in [178, 179, 207]. The work in

this chapter follows the work of [2] very closely. This chapter is structured as follows. First,

we review the Hull-Strominger system, providing the equations for the F-terms and the D-

terms, as well as summarising some of the previous results on moduli. We then introduce the

generalised structures for supersymmetric heterotic backgrounds. This is done in terms of some

holomorphic object ψ transforming in the 2201, and some subbundle L1 of the generalised

tangent bundle. Next we show that the F-terms are (almost) given by involutivity of L1 under

the Dorfman derivative. We also provide an expression for the super potential in terms of the

holomorphic object ψ. Next we show that the D-terms are given by the vanishing of a moment

map. Taken together, the involutivity and the moment map imply that the SU(3)×Spin(6 +n)

structure is integrable. Next, we look at how the moment map provides a possible GIT picture

of the moduli space and we outline how this may lead to a generalisation of Yau’s theorem for

non-Kähler manifolds. Finally, we study the moduli of these SU(3)× Spin(6 + n) structures.

3.1 Review of the Hull-Strominger System

We begin with a review of the Hull–Strominger system [144,146]. This is a set of equations de-

scribing the geometry of general N = 1 backgrounds of the heterotic string on a ten-dimensional

manifold M that is a product of a six-dimensional manifold X with four-dimensional Minkowski

space M = R3,1 ×X, with trivial warp factor in the string frame.

The condition of N = 1 supersymmetry implies the existence of a global nowhere-vanishing
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spinor ε on X. This defines an SU(3) structure on X which can be equivalently described in

terms of a complex three-form Ω (with a compatible almost complex structure I) and a real

two-form ω satisfying

Ω ∧ ω = 0, 1
8 i Ω ∧ Ω̄ = 1

6ω ∧ ω ∧ ω. (3.1)

As usual, the forms are defined as bilinears in the spinor ε

Ωmnp = εTγmnpε, ωmn = −i ε†γmnε. (3.2)

The supersymmetry conditions in the form of the Killing spinor equations imply that this SU(3)

structure is not integrable but instead satisfies

d(e−2ϕΩ) = 0, d(e−2ϕω ∧ ω) = 0, (3.3)

where ϕ is the dilaton. These conditions are known as “conformally holomorphic” and “con-

formally balanced” respectively. Note that the first condition implies that X has an integrable

complex structure whose canonical bundle is holomorphically trivial.

Heterotic compactifications come with a connection A on a vector bundle V → X whose field

strength F is valued in End(V ), and a connection Θ on the tangent bundle T whose curvature

R is valued in End(T ). Supersymmetry implies that both connections are instantons [222,223]

F0,2 = 0, ω]yF = 0, and R0,2 = 0, ω]yR = 0, (3.4)

where ω] is ω with its indices raised using the metric on X and a subscript indicates the (0, 2)-

form part of the curvature with respect to the complex structure defined by the SU(3) structure.

In other words, V and T must be holomorphic vector bundles with connections that solve the

hermitian Yang–Mills equations with zero slope. A theorem due to Donaldson–Uhlenbeck–Yau

then guarantees a unique solution provided V and T are polystable [224,225].

The final supersymmetry condition is the anomaly cancellation condition. This couples the

intrinsic torsion of the SU(3) structure with the B field and the connections. It is given by

i(∂ − ∂̄)ω = H := dB + 1
4α
′ (ω3(A)− ω3(Θ)) , (3.5)

where ω3 is the Chern–Simons three-form for the relevant connection, for example

ω3(A) = Tr(A ∧ dA+ 2
3A ∧A ∧A). (3.6)

This implies a non-trivial Bianchi identity for the NSNS three-form flux H

dH = 1
4α
′(TrF ∧ F − TrR ∧R). (3.7)

For convenience, in what follows we will drop explicit reference to α′, absorbing it into the

definition of B and ω. Moreover we will mostly ignore the tangent bundle connection Θ with the

understanding that it can be reintroduced afterwards by taking V to be a G = Ggauge×GL(6,R)

vector bundle, where Ggauge is the gauge group for A, together with a suitable definition of the

65



trace, as, for example, in [186].

It is useful to group these equations into so-called F-terms and D-terms. As was discussed

in [207], the F-term conditions correspond to

d(e−2ϕΩ) = 0, i(∂ − ∂̄)ω = H, F0,2 = 0. (3.8)

The remainder are the D-terms

d(e−2ϕω ∧ ω) = 0, ω]yF = 0. (3.9)

One can view the F-terms as determining a holomorphic structure on a certain bundle

Q [178]. The remaining D-term conditions – a conformally balanced metric and polystability of

V – must then be imposed. More precisely one requires the bundle Q to be holomorphic, where

Q is defined via a series of extensions as

T ∗1,0 −→ Q −→ A,
(adPG)C −→ A −→ T 1,0.

(3.10)

where adPG is a vector bundle with fibre g, the Lie algebra of the gauge group. This is an

example of a holomorphic Courant algebroid [74,177]. Equivalently there exists a holomorphic

differential D̄ such that

D̄ : Ω(p,q)(X,Q)→ Ω(p,q+1)(X,Q), D̄2 = 0. (3.11)

The condition D̄2 = 0 is equivalent to the integrability of the conventional complex structure,

the holomorphicity of the gauge bundle and the Bianchi identities for F , R and H.

The moduli of the background appear in the massless spectrum of the four-dimensional

theory and so a full knowledge of the moduli space is important for both phenomenology and

more formal questions. Once one moves away from Calabi–Yau type solutions and allows non-

zero fluxes, the moduli are much more difficult to understand. Fortunately, identifying the

holomorphic structure D̄ streamlines the analysis of the moduli space for heterotic compact-

ifications [178, 179, 207, 226]. The moduli can be thought of as deformations of D̄ that still

satisfy D̄2 = 0 and the D-term conditions. Given some mild assumptions on the bundle V ,

it is known [178] that the hermitian Yang–Mills equations do not impose any extra conditions

on the infinitesimal moduli of the system (and that the same result holds for T ). It is also

known that while deformations of the hermitian structure preserving the conformally balanced

condition (3.3) may a priori be infinite dimensional, once you impose the anomaly cancellation

condition you are reduced to a finite number of moduli. Up to (0, 2) variations of the NSNS two-

form B, the infinitesimal moduli of the Hull–Strominger system are then given by deformations

of the holomorphic structure on Q. That is they are counted by the cohomology

H0,1
D̄

(X,Q). (3.12)

We should note that these actually include non-physical moduli which correspond to deforma-
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tions of the connection Θ that do not change the physical fields, such as the metric.1 These

appear in this construction as one treats Θ as an independent field (and part of the gauge

connection), whereas in reality it is determined by the other fields of the background. To find

the physical moduli, one must remove this over counting – this has yet to be understood.

The story outlined above is valid for infinitesimal deformations. Using holomorphicity, one

can also study finite deformations [179]. These are known to obey the Maurer–Cartan equation

for an L3 algebra (an L∞ algebra up to degree 3). The deformations can be packaged into

y ∈ Ω(0,1)(X,Q), b ∈ Ω(0,2)(X), (3.13)

where y encodes deformations of the holomorphic structure – deformations of the complex

structure, complexified hermitian structure and gauge connection – and b encodes the (0, 2)

deformations of the B field. Note that the b modulus vanishes if h0,2 = 0 [227] – we will make

no such assumption here and so shall keep explicit reference to it. To linear order the moduli

are determined by the set of equations

D̄y − 1
2∂b = 0, (3.14)

∂̄b = 0, (3.15)

∂(e−2ϕıµΩ) = 0, (3.16)

where µ ∈ Ω(0,1)(X,T 1,0) is a complex structure deformation. These are the equations we will

recover in section 5.4.

3.2 Generalised Structures for N = 1 Heterotic Backgrounds

Generalised geometry provides a useful framework for studying generic supersymmetric back-

grounds of maximal supergravities in terms of integrable generalised G-structures. In particular,

it gives a geometric interpretation of generic properties of type II and M-theory backgrounds,

such as the superpotential and Kähler potential for N = 1 solutions with four external dimen-

sions, as well as tools to tackle questions about the moduli space [1]. Heterotic (and type I)

theories can also be formulated in terms of generalised geometry, as we will now summarise

briefly. We will then discuss how generalised geometry can be used to characterise N = 1

heterotic backgrounds.

Ignoring the gauge bundle for now, the bosonic field content of the heterotic theory is the

same as the NSNS sector of type II supergravity. Hence the relevant generalised geometry is

that of O(6, 6) × R+ generalised geometry on a generalised tangent bundle E defined as an

extension of T by T ∗ [164,165]

T ∗ −→ E −→ T, (3.17)

where E admits an O(6, 6) × R+ structure. As usual, there is a natural differential operator

known as the generalised Lie (or Dorfman) derivative on E. An (off-shell) configuration of the

1These are counted by H
(0,1)

∇̄ (X,EndT ), where ∇̄ is the antiholomorphic part of the covariant derivative
defined by Θ.
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bosonic fields defines a generalised metric that reduces the structure group of E to SO(6) ×
SO(6) ' SU(4)× SU(4).

We can reintroduce the gauge connection and obtain full heterotic backgrounds as follows.

Combining the connection Θ with the gauge connection A to give a single connection on the

principal bundle PG, where G = Ggauge×GL(6,R), the generalised tangent bundle E is defined

as the extension
T ∗ −→ E′ −→ E,

adPG −→ E −→ T,
(3.18)

where adPG is the vector bundle with fibre g, the Lie algebra of the extended gauge group G.

This structure with its Dorfman derivative is known as a transitive Courant algebroid [228] –

it has been used to describe heterotic supergravity in [167,186] (see also [55] in the double field

theory context). We reviewed some of the key points in section 2.3.2. In particular, given a

generalised vector V ∈ Γ(E), there is a Dorfman derivative LV defined by (A.26). Locally we

have a (non-canonical) isomorphism

E ' T ⊕ adPG ⊕ T ∗. (3.19)

This has a natural O(6, 6 + n) structure on it defined by the inner product

η(v + Λ + λ,w + Σ + σ) = 1
2 ıvσ + 1

2 ıwλ+ Tr(ΛΣ), (3.20)

where n is the dimension of g. While we will not give the exact form of the adjoint bundle ad F̃

whose fibres are the Lie algebra O(6, 6 + n), we note that

T ∗ ⊗ g ⊆ ad F̃ ' ∧2E. (3.21)

An (off-shell) configuration of the bosonic fields, that is a metric g, two-form B and one-form

gauge field A, again define a generalised metric that in this case reduces the structure group

to SO(6) × SO(6 + n) [186]. Further requiring the fields to give a solution preserving N = 1

supersymmetry is equivalent to a further reduction to an integrable SU(3)×SO(6+n) structure.

As in previous work on N = 1 structures [1], we will find it useful to also consider a weaker

R+ × U(3) × SO(6 + n) structure. We will see how these are defined in terms of generalised

structures in section 3.2.2 and how to define the conditions for integrability.

Note that in the formalism where one includes the Θ connection by extending the gauge

bundle V to be a Ggauge × GL(6,R) bundle, there are non-physical degrees of freedom, since

the connection Θ on the tangent space connection is thought of as independent of the metric

and B. One can remove these by setting the value of Θ by hand. As was discussed in [167],

one can get around this issue by identifying an O(6) subbundle of the GL(6,R) bundle, then

identifying it with one of the O(6) structures defined on the T ⊕ T ∗ part of the generalised

tangent bundle. This gives a structure group O(6) × Ggauge × O(6). The trade off is that the

generalised connections relevant for this construction will not be torsion free, but instead appear

with a particular non-vanishing intrinsic torsion. We will not take this approach in this chapter.
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3.2.1 R+ ×U(3)× SU(4) and SU(3)× SU(4) Structures

Let us start by considering the simple case where we ignore the gauge bundle, applicable to

both the heterotic and type II theories. As discussed in [179, Appendix C], the existence of a

nowhere-vanishing spinor that can parameterise N = 1 supersymmetry transformations in four

dimensions requires a reduction of the structure group from that defined by the generalised

metric, namely SU(4) × SU(4), to SU(3) × SU(4) ⊂ O(6, 6) × R+. Following [1], it will be

useful for us to also define a slightly weaker R+×U(3)× SU(4) structure. These will play roles

analogous to SL(3,C) structures and GL(3,C) structures in conventional geometry.

Each structure is defined by a generalised tensor that is invariant under the reduced structure

group2

SU(3)× SU(4) structure : ψ ∈ Γ(detT ∗ ⊗ ∧3EC),

R+ ×U(3)× SU(4) structure : J ∈ Γ(ad F̃ ).
(3.22)

They are stabilised by the same SU(3) × SU(4), but J is also invariant under a C∗ action. As

discussed in detail in [1], one should think of this as generalising the relation between an SL(3,C)

structure Ω and a GL(3,C) structure I. The differential conditions which ensure supersymmetry

of the on-shell solution are then equivalent to the integrability of this structure, in line with the

general discussion of [184]. In the next section we will see how we can reformulate the conditions

for integrability of the R+ × U(3) × SU(4) structure, and in the following section consider the

extra conditions that make the SU(3)× SU(4) structure integrable.

Let us begin by defining the structure J . At a point on the manifold, the generalised metric

defines an SU(4)×SU(4) subgroup of O(6, 6)×R+, with the invariant spinor reducing this further

to SU(3) × SU(4). There is a U(1) ⊂ SU(4) that commutes with the SU(3). The commutant

of this U(1) inside O(6, 6)× R+ is an R+ ×U(3)× SU(4), where the U(1) is generated at each

point of the internal manifold by a section J ∈ Γ(ad F̃ ).3 This leads us to define

Definition 12. A generalised R+ × U(3) × SU(4) structure is a section J ∈ Γ(ad F̃ ) that

generates this U(1) subgroup at each point.

By construction, J defines a generic reduction of the structure group of the generalised tangent

bundle E to R+ × U(3) × SU(4).4 Different choices of J are related by local O(6, 6) × R+

transformations, giving an orbit of structures within the 66 representation space.

Decomposing O(6, 6) using explicit SU(4)× SU(4) indices, we have

66 = (15,1)⊕ (1,15)⊕ (6,6) 3 (µαβ, µ
α̇
β̇, µ

αβα̇β̇), (3.23)

where the nowhere-vanishing spinor ε is invariant under an SU(3) subgroup of the first SU(4)

factor. Using this, we can write J as

Jαβ = 4 εαε̄β − (ε̄ε)δαβ, J α̇β̇ = Jαβα̇β̇ = 0, (3.24)

2Note that, as we will argue below, the particular determinant weight of the ψ structure is required to make
ψ a holomorphic function on the space of SU(3)× SU(4) structures.

3As in the type II and M-theory case [1], one can also define J at each point on the manifold as being conjugate
to a certain element of su(4)× su(4) that commutes with the desired su(3)× su(4).

4Note that the standard generalised complex structure [164, 165] is also defined by choosing the generator of
a U(1) subgroup but in that case the commutant would be U(3, 3).
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where we have normalised ε̄ε = 1. Decomposing further under the SU(3) × U(1) subgroup of

the first SU(4) factor, we have

66 = (8,1)0 ⊕ (3,1)−2 ⊕ (3,1)2 ⊕ (1,1)0 ⊕ (1,15)0 ⊕ (3,6)1 ⊕ (3,6)−1, (3.25)

where a non-bold subscript denotes the U(1) charge. J lies in the singlet (1,1)0 representation.

From the expression (3.24) and the parameterisation of the generalised metric in terms of a

conventional metric g and two-form field B, one finds that J generically takes the form

J = 1
2 e−B · (I − ω + ω]), (3.26)

where I is the almost complex structure on TC defined by the three-form Ω, and ω is the

compatible fundamental two-form. The B field acts by the exponentiated adjoint action, which

is nilpotent at degree three. In analogy with a conventional complex structure, we can use J

to decompose the generalised tangent space into eigenspaces. Under SU(3)×U(1)× SU(4), the

adjoint action of J on the complexification of E splits as

EC = L1 ⊕ L−1 ⊕ L0,

12C = (3,1)1 ⊕ (3,1)−1 ⊕ (1,6)0.
(3.27)

Given the form (3.26), it is then easy to see that L−1 takes the generic form

L−1 = e−B−iω · T 0,1 = {v̄ + ıv̄(B + iω) | v̄ ∈ Γ(T 0,1)}, (3.28)

where as above T 0,1 ⊂ TC is the −i eigenbundle for the action of the almost complex structure

I.5 As with a conventional almost complex structure, we have an alternative definition purely

in terms of the subbundle L−1:

Definition 13. An R+ ×U(3)× SU(4) structure is a subbundle L−1 ⊂ EC such that

i) dimC L−1 = 3,

ii) η(L−1, L−1) = 0,

iii) L−1 ∩ L̄−1 = {0},

iv) The map h : L−1 ×L−1 → C, defined by h(V,W ) = η(V, W̄ ), is a definite hermitian inner

product.

Note that we could equally well define the structure in terms of L1.

Turning to the SU(3)× SU(4) structure ψ, we note that the bundle

K = detT ∗ ⊗ ∧3E, (3.29)

transforms in the 2201 representation of O(6, 6)×R+ (where the bold subscript denotes the R+

weight [183]). Decomposing first under SU(4) × SU(4) and then under SU(3) × U(1) × SU(4),

5We will denote (0, 1)-vectors with a bar. Unbarred objects will denote either generic vectors or (1, 0)-vectors
depending on context. The complex conjugate of a vector or one-form will be indicated with a superscript ∗.
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we have

220 = (10,1)⊕ (10,1)⊕ (1,10)⊕ (1,10)⊕ (15,6)⊕ (6,15)

= (1,1)3 ⊕ (6,1)−1 ⊕ (3,1)1 ⊕ (1,1)−3 ⊕ (6,1)1 ⊕ (3̄,1)−1 ⊕ . . . .
(3.30)

where the subscripts now denote the U(1) charge. In particular, we see that the SU(3)× SU(4)

singlet in the decomposition implies that each choice of J defines a unique line bundle UJ ⊂ KC,

satisfying

V • ψ = 0 ∀ V ∈ Γ(L−1), η(ψ, ψ̄) 6= 0, (3.31)

where ψ is a local section of UJ , η is the pairing on sections of K induced from the symmetric

pairing η on E, and the product V • ψ is the projection map E ⊗ K → H, where H is the

generalised tensor bundle transforming in the 4951 representation of O(6, 6)×R+. Equivalently,

a local section ψ is defined by Jψ = −3iψ under the adjoint action of J .6 Mirroring the definition

of a nowhere-vanishing three-form for an almost complex structure, we then have

Definition 14. Given a choice of J with trivial line bundle UJ , a generalised SU(3) × SU(4)

structure is a global nowhere-vanishing section ψ ∈ Γ(UJ).

Note that two different choices of ψ that are related by multiplication by a nowhere-vanishing

complex function define the same structure J . Decomposing with explicit SU(4)×SU(4) indices

we have

220 = (10,1)⊕ (10,1)⊕ (15,6)⊕ (6,15)⊕ (1,10)⊕ (1,10)

3 (καβ, καβ, κ
α
β
α̇β̇, κα̇β̇

αβ, κα̇β̇, κα̇β̇).
(3.32)

In terms of the spinor ε we then have

ψαβ =
√
g e−2ϕ εαεβ, (3.33)

with all the other components vanishing. Recall that ψ is defined up to a complex function.

We fixed the normalisation ε̄ε = 1, so that the phase of ε encodes the phase freedom in ψ,

while the overall scale of ψ is parameterised by the dilaton e−2ϕ, in line with the fact that the

combination
√
g e−2ϕ is the O(6, 6) invariant volume defined by the generalised metric [183].

Again we can use the generalised metric to translate this into a tensor expression follow-

ing [179]. As we have mentioned a generalised metric gives a reduction of the structure group of

E to SO(6)+×SO(6)− ' SU(4)+×SU(4)−. The O(6, 6)×R+ generalised tangent bundle E then

decomposes under SO(6)+×SO(6)− as E = C+⊕C−, giving a corresponding decomposition of

∧3E as

∧3E = ∧3C+ ⊕ (∧2C+ ⊗ C−)⊕ (C+ ⊗ ∧2C−)⊕ ∧3C−, (3.34)

as in (3.32), where the ∧3C± spaces decompose into complex self-dual and anti-self-dual com-

ponents transforming in the 10 and 10 representations. Note that, in terms of the splitting

6This corresponds to taking ψ ∈ (1,1)−3. We make this choice to match with the usual conventions of Ω
being the holomorphic object on the space of structures.
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defined by the generalised metric we have

(C+)C = L1 ⊕ L−1, (C−)C = L0. (3.35)

Let Ê+
a = êa + ea − ıêaB be an explicit basis for C+, where êa is an orthonormal basis for T

defined by the metric g, and ea is the dual basis. The expression (3.33) defines the tensor

ψ =
√
g e−2ϕ 1

3!(ε
Tγabcε) Ê+

a ∧ Ê+
b ∧ Ê

+
c

= e−2ϕ e−B−iω · Ω,
(3.36)

where the exponential e−B−iω acts via the adjoint action and in going to the second line we use

the isomorphism ∧3T ⊗ ∧6T ∗ ' ∧3T ∗. This expression ensures ψ is stabilised by the correct

SU(3) × SU(4) subgroup. We note that given an N = 2 structure encoded by a pair of pure

spinors Φ±, one can construct ψ as

ψMNP = (Φ̄+,Γ
MNPΦ−), (3.37)

where ΓM are the O(6, 6) gamma matrices and (·, ·) is the Mukai pairing.

3.2.2 R+ ×U(3)× Spin(6 + n) and SU(3)× Spin(6 + n) Structures

It is straightforward to extend this story to include the gauge bundle. Since many of the results

are analogous to the previous section, we will sketch the key points. As noted in (3.19), the

generalised tangent bundle is locally given by

E ' T ⊕ adPG ⊕ T ∗, (3.38)

where adPG is the adjoint bundle with fibres given by the Lie algebra g of the gauge group G.

Sections of E thus encode diffeomorphisms and gauge transformations of both the gauge field A

and the two-form B. Again, there are two generalised structures each defined by a generalised

tensor that is invariant under the reduced structure group

SU(3)× Spin(6 + n) structure : ψ ∈ Γ(detT ∗ ⊗ ∧3EC),

R+ ×U(3)× Spin(6 + n) structure : J ∈ Γ(ad F̃ ).
(3.39)

These are stabilised by the same SU(3)×Spin(6 +n), but J is also invariant under a C∗ action.

We begin with the weaker R+ × U(3) × Spin(6 + n) structure defined by J . Mirroring the

discussion in the previous subsection, one finds that J generically takes the form

J = 1
2 e−Be−A · (I − ω + ω]), (3.40)

where now we include a twisting by the one-form gauge field A. Again, we can use J to decom-

pose the generalised tangent space E into eigenspaces. Noting that the fibres of E transform in

the (12 +n) representation of O(6, 6 + n) and decomposing under U(1)× SU(3)× Spin(6 + n)
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we find that

EC = L1 ⊕ L−1 ⊕ L0,

12 + n = (3,1)1 + (3,1)−1 + (1,6 + n)0,
(3.41)

where (6 + n) is the fundamental representation of Spin(6 + n). Identifying L−1 as the sub-

bundle transforming as (3,1)−1, given the form of J in (3.40), one can check that L−1 takes

the generic form

L−1 = e−B−iωe−AT 0,1 = {v̄ + ıv̄A+ ıv̄(B + iω)− Tr(ıv̄AA) | v̄ ∈ Γ(T 0,1)}, (3.42)

where T 0,1 ⊂ TC is the −i eigenbundle for the almost complex structure I. As before, one can

use L−1, subject to some algebraic conditions, as a definition of the R+ × U(3) × Spin(6 + n)

structure.

As in the case without the gauge bundle, an SU(3)× Spin(6 + n) structure ψ is a nowhere-

vanishing section of

ψ ∈ Γ(detT ∗ ⊗ ∧3EC). (3.43)

Again, ψ is not a generic element but needs to lie in a particular orbit of Spin(6, 6+n) so that its

stabiliser is SU(3)×Spin(6 +n). Using a generalised metric, we can write E = C+⊕C−, where

C+ is a six-dimensional subbundle on which η is positive definite, defined in (3.20). Letting Ê+
m

be a basis for C+, we can write

ψ =
√
ge−2ϕ 1

3!(ε
Tγmnpε)Ê+

m ∧ Ê+
n ∧ Ê+

p

= e−2ϕe−B−iωe−A · Ω.
(3.44)

This expression guarantees that ψ is stabilised by the correct SU(3)× Spin(6 + n) group.

3.2.3 Supersymmetry and Intrinsic Torsion

The existence of the ψ structure is just the algebraic part of the supersymmetry conditions for

an N = 1 background (namely the requirement that one has a non-vanishing spinor). There

are also differential conditions given by the Killing spinor equations, which can be translated

into the F- and D-term conditions in (3.8) and (3.9) respectively. As we will discuss, these are

equivalent to the structure being torsion-free or “integrable” [167, 184, 186]. As in [1], it will

be useful to consider the intrinsic torsion for both J and ψ as one can view an integrable ψ in

terms of an integrable J together with a further differential condition in the form of a moment

map for generalised diffeomorphisms.

We call a structure torsion-free or integrable if there exists a generalised connection that is

compatible with the structure and is torsion-free. For example, a torsion-free SU(3)×Spin(6+n)

structure is equivalent to the existence of ψ and a connection D such that

Dψ = 0, LDV − LV = T (V ) = 0, (3.45)

where LV is the Dorfman derivative defined in (A.26) with the gauge sector turned off, LDV is
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the Dorfman derivative with ∂ replaced by D, and the generalised torsion is a map T : Γ(E)→
Γ(ad F̃ ). The obstruction to the existence of such a torsion-free connection is a non-vanishing

intrinsic torsion.

Starting with the simpler case where we ignore the gauge bundle, following the standard

analysis [181, 183–185,187], we find that the intrinsic torsion for ψ and J live in subbundles of

∧3E ⊕ E∗ transforming as 220⊕ 12 and decomposing under the structure group via

W int
SU(3)×SU(4) :(3,6)−2 ⊕ (3,6)2 ⊕ (1,1)−3 ⊕ (1,1)3

⊕ (3,1)1 ⊕ (3,1)−1 ⊕ (1,6)0,
(3.46)

W int
R+×U(3)×SU(4) :(3,6)−2 ⊕ (3,6)2 ⊕ (1,1)−3 ⊕ (1,1)3, (3.47)

where the subscript denotes the U(1) charge under J .

When we include the gauge bundle the representations in which the intrinsic torsion for each

structure lives are given by

W int
SU(3)×Spin(6+n) :(3,6 + n)−2 ⊕ (3,6 + n)2 ⊕ (1,1)−3 ⊕ (1,1)3

⊕ (3,1)1 ⊕ (3,1)−1 ⊕ (1,6 + n)0,
(3.48)

W int
R+×U(3)×Spin(6+n) :(3,6 + n)−2 ⊕ (3,6 + n)2 ⊕ (1,1)−3 ⊕ (1,1)3, (3.49)

where a subscript denotes the U(1) charge with respect to J and (6 + n) is the fundamental

representation of Spin(6 + n).

Since N = 1 supersymmetry in four dimensions follows from integrability of the SU(3) ×
SU(4) structure, and integrability is equivalent to the vanishing of the intrinsic torsion of the

structure, we need some natural differential conditions which enforce the vanishing of the above

components of the intrinsic torsion. These differential conditions should then be thought of as

the supersymmetry conditions for the background, but now with a geometric interpretation.

The form of these conditions will be the subject of the next two sections.

3.3 Involutivity, the Superpotential and F-Terms

In this section we will consider the integrability of the weaker R+ × U(3) × SU(4) and R+ ×
U(3)× Spin(6 + n) structures, defined by J , and the show how these conditions can be defined

as an involutivity condition of a subbundle or equally as coming from varying a superpotential.

This matches an earlier observation, in the case of pure O(d, d) generalised geometry, relating

supersymmetry of the underlying sigma model to integrability of a subbundle [229]. We will

also briefly discuss the connection to the holomorphic Courant algebroid [74, 177, 178] given

in (3.10). We will turn to the extra conditions that one must impose on ψ to guarantee an

honest N = 1 background in the next section.

3.3.1 Involutivity Conditions

As with conventional complex structures and the N = 1 structures defined in [1], it turns out

that integrability of the J structure is equivalent to involutivity of a subbundle of the generalised
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tangent bundle. For the R+ ×U(3)× SU(3) structure we define

Definition 15. A torsion-free R+×U(3)×SU(4) structure J is one for which L−1 is involutive

under the Dorfman derivative

LVW ∈ Γ(L−1) ∀ V,W ∈ Γ(L−1). (3.50)

Note that one can replace the Dorfman derivative with the Courant bracket in this condition:

the difference between the two is a term of the form d(η(V,W )), but η(V,W ) vanishes for

V,W ∈ Γ(L−1) from definition 13. We also note that since L̄−1 ' L1, involutivity of L−1 is

equivalent to involutivity of L1.

It is straightforward to see that involutivity of L−1 is equivalent to vanishing intrinsic torsion

for the R+×U(3)×SU(4) structure. Recall first that we can always find a generalised connection

D that is compatible with the structure, so that DJ = 0, but this is not necessarily torsion-

free. Now consider the definition (3.45) of the torsion of a connection where we restrict to

V,W ∈ Γ(L−1)

LVW = LDVW − T (V ) ·W. (3.51)

Compatibility of the connection guarantees LDVW ∈ Γ(L−1), so involutivity reduces to checking

that T (V ) ·W lies only in L−1. Note also that since the left-hand side does not depend on the

choice of connection and LDVW lies in Γ(L−1) for any choice of D, only the intrinsic torsion

can contribute to the components of T (V ) ·W that lie outside of L−1. The intrinsic torsion

representations that appear in T (V ) ·W ∈ Γ(E) are

(3,6)2 ⊗ (3,1)−1 ⊗ (3,1)−1 ⊃ (1,6)0,

(1,1)3 ⊗ (3,1)−1 ⊗ (3,1)−1 ⊃ (3,1)1.
(3.52)

A non-zero (3,6)2 component of the intrinsic torsion would generate a (1,6)0 ' L0 term in

LVW , while a non-zero (1,1)3 component would generate a (3,1)1 ' L1 part. Requiring both of

these to be absent so that LVW ∈ Γ(L−1) sets both of these components of the intrinsic torsion

to zero. Complex conjugation then implies that the whole of the intrinsic torsion vanishes. This

shows that the R+ × U(3)× SU(4) structure defined by J , or equivalently L−1, is integrable if

and only if L−1 is involutive with respect to the Dorfman derivative.

The discussion up to this point has been rather abstract. One might wonder how inte-

grability for J translates into concrete equations for the SU(3) structure that underlies the

Hull–Strominger system discussed in section 3.1. Given that we have an explicit description

of the subbundle L−1, given in (3.28), we can check how involutivity constrains the SU(3)

structure. Taking any v, w ∈ Γ(T ) one finds

Le−B−iωv(e
−B−iωw) = e−B−iωLH+i dω

v w = e−B−iω
(
[v, w]− ıvıw(H + i dω)

)
, (3.53)

where H = dB and we have used the expression for the Dorfman derivative in (A.26) after

setting the gauge field to zero. If in particular we choose the vectors to be v̄, w̄ ∈ Γ(T 0,1) so

that e−B−iωv̄ ∈ Γ(L−1), then for L−1 to be involutive (so that the right-hand side lies only in

L−1), we require that [v̄, w̄]− ıv̄ıw̄(H + i dω) is a section of Γ(T 0,1) alone. Splitting into vector
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and one-form equations, this gives the conditions

[v̄, w̄] ∈ Γ(T 0,1), ıv̄ıw̄(H + i dω) = 0, (3.54)

which must hold for all choices of v̄, w̄ ∈ Γ(T 0,1). The first of these is simply the requirement

that the almost complex structure I is integrable, so that it is an honest complex structure.

This also implies that the corresponding complex three-form Ω satisfies dΩ = ā ∧ Ω for some

ā ∈ Ω0,1(X). The second condition can be understood by decomposing according to complex

type as H = H3,0 +H2,1 +H1,2 +H0,3 and ω = ω1,1. Since v̄ and w̄ are (0, 1)-vectors, the second

of the conditions gives H0,3 = 0 and H1,2 + i ∂̄ω = 0. As both H and ω are real, these imply

H3,0 = H0,3 = 0 and H2,1 +H1,2 + i(∂̄ − ∂)ω = 0. Putting this together, we have

L−1 is involutive ⇔
[v̄, w̄] ∈ Γ(T 0,1)

H = i(∂ − ∂̄)ω
(3.55)

Note that these are (almost) the equations coming from the F-term conditions (3.8) with the

gauge bundle turned off. The F-term equations are slightly stronger since they imply that Ω

is conformally holomorphic, fixing ā in terms of the dilaton ϕ, whereas the above conditions

leave ā undetermined. We will come back to this point when we discuss the superpotential

in section 3.3.2. Note also that these are the same set of conditions as the integrability of a

“half generalised complex structure” [230], which appear from a worldsheet analysis of (2, 0)

non-linear sigma model geometry.

The involutivity condition naturally extends to the R+×U(3)×Spin(6 +n) case. Given the

explicit description of L−1 in (3.42) and the expression for the Dorfman derivative in (A.26), we

can relate integrability for the R+×U(3)× Spin(6 + n) structure, in the form of involutivity of

L−1, to the data of the Hull–Strominger system, namely the SU(3) structure and the connection

on V . Taking generic vectors v, w ∈ Γ(T ) one now finds

Le−B−iωe−Av(e
−B−iωe−Aw) = e−B−iωe−A

(
[v, w]− ıvıw(H + i dω)− ıvıwF

)
, (3.56)

where

H = dB + ω3(A), ω3(A) = Tr(A ∧ dA+ 2
3A ∧A ∧A), (3.57)

F = dA+A ∧A, dH = Tr(F ∧ F ). (3.58)

As before, specialising to v̄, w̄ ∈ Γ(T 0,1) so that e−B−iωe−Av̄ ∈ Γ(L−1), for involutivity of L−1

we require that the expression in the parentheses in (3.56) lies only in Γ(T 0,1). This implies

L−1 is involutive ⇔

[v̄, w̄] ∈ Γ(T 0,1)

H = i(∂ − ∂̄)ω

F0,2 = 0

(3.59)

As before, we have an integrable complex structure on the manifold, implying dΩ = ā ∧ Ω

for some ā ∈ Ω0,1(X), and the three-form flux H is fixed by dI of the hermitian form ω. In
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addition, the (0, 2) component of the curvature F must vanish, implying that the gauge bundle

is holomorphic. Again, these are the F-term equations (3.8), up to the conformal holomorphicity

condition for Ω.

In order to describe the heterotic theory, as mentioned, we can include the tangent bundle

connection within the gauge sector, as discussed in [74,167,186]. This has the effect of redefining

H to be its full heterotic form and adds a holomorphicity condition for the tangent bundle

connection so that

H = dB + ω3(A)− ω3(Θ), R0,2 = 0, (3.60)

where Θ is the ∇− connection and R is the corresponding curvature two-form.

It is interesting to compare how the involutivity condition on L−1 defines the holomorphic

structure of the geometry to the holomorphic Courant algebroid Q given in (3.10) and used in

the papers [74,177]. Defining the perpendicular subbundle L⊥−1, such that, on a patch Ui,

V ∈ Γ(L⊥−1) ⇔ η(V,W ) = 0 ∀W ∈ Γ(L−1), (3.61)

we have

L⊥−1/L−1 ' e−B−iωe−A ·
(
T 1,0 ⊕ T 0,1 ⊕ T ∗1,0 ⊕ (adPG)C

)
/e−B−iωe−A · T 0,1,

' e−B−iωe−A ·
(
T 1,0 ⊕ T ∗1,0 ⊕ (adPG)C

)
,

' T 1,0 ⊕ T ∗1,0 ⊕ (adPG)C ' Q.

(3.62)

Hence we see that L−1 indeed determines Q and furthermore the involutivity of L−1 implies

that Q is holomorphic.7 As a bundle, all Q are isomorphic to T 1,0⊕T ∗1,0⊕ (adPG)C. However

the corresponding holomorphic Courant algebroids (or more precisely “Bott–Chern algebroids”

in the language of [74]) are distinguished by the choice of ω and A, such that inequivalent

algebroids are distinguished by the Aeppli class defined in [74].

3.3.2 The Superpotential

It is known that the F-term conditions in (3.8) can be derived starting from a heterotic super-

potential [207,231–233]

W =

∫
X

e−2ϕΩ ∧ (H + i dω), (3.63)

and requiring W = δW = 0 under variations of the structures Ω, ω and fields B and ϕ [207,

233]. Building on work on flux superpotentials [234, 235] and their description in generalised

geometry [180], we conjectured in [1] that the superpotential is given by the singlet part of the

intrinsic torsion of the ψ structure and explicitly showed this was true for the examples of G2

in M-theory and generic N = 1 backgrounds of type II theories. Here we will show that the

singlet torsion does indeed give the superpotential in the case of heterotic backgrounds and

that it is a holomorphic function of ψ. We also discuss how the superpotential conditions imply

involutivity of L−1. Not only does this provide a covariant expression for the superpotential for

7Note that it is the adjoint bundle for the complexified group, GC, that appears here. If L−1 is involutive, so
that we have F0,2 = 0, the transition functions that define (adPG)C can be taken to be holomorphic, so that Q
is also holomorphic.
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generic heterotic backgrounds, it also provides further justification for the claim made in [1].

Given that an infinitesimal change in ψ can be parameterised by an element of the O(6, 6 +

n)×R+ Lie algebra and ψ transforms in the (1,1)−3, the variations of the SU(3)× Spin(6 +n)

structure ψ transform as (1,1)−3, (3,1)−1 and (3,6 + n)−2. Thus δW/δψ = 0 constrains

the dual (1,1)3, (3,1)1 and (3,6 + n)2 components of the intrinsic torsion. Note that this

means the vanishing of the variation of W implies W = 0, as W is the singlet component of

the intrinsic torsion. We also note that the superpotential condition is slightly stronger than

involutivity of L−1, which constrained only the (1,1)3 and (3,6 + n)2 components, leaving

(3,1)1 undetermined. The involutivity condition implies there is an integrable complex structure

and hence dΩ = ā ∧ Ω. The extra superpotential constraint is precisely what is needed to fix

the (0, 1)-form ā.

As for E7(7)×R+ backgrounds with N = 1 supersymmetry, one can rephrase involutivity as

a holomorphic condition on ψ itself. Let V ∈ Γ(L−1) and D be a compatible connection, such

that Dψ = 0. From the definition of the torsion of D in (3.45), we have

LV ψ = −T (V ) · ψ for V ∈ Γ(L−1). (3.64)

Naively one would expect LDV ψ to appear on the right-hand side. This would contain terms of

the form DV ψ, (D ×ad V ) · ψ and (D · V )ψ (where the final term appears as ψ has a non-zero

weight under the R+ action). However, using the fact that ψ is a singlet and that it has weight

one under R+, one finds that the terms which involve D acting on V cancel identically, leaving

only DV ψ which vanishes due to the compatibility of the connection. The remaining torsion

term is linear in V and, since LV ψ is independent of D, only the intrinsic torsion can appear in

T (V ) · ψ. Using the U(1)× SU(3)× SU(4) decomposition, one can check that the (3,6 + n)2,

(1,1)3 and (3,1)1 parts of the intrinsic torsion (3.46) appear, which are the same components

that appear in δW/δψ. This gives us an alternative description of the involutivity condition as

involutive L−1 ⇔ LV ψ = U(V )ψ ∀ V ∈ Γ(L−1), (3.65)

where U ∈ Γ(L∗−1) is the (3,1)1 component of the SU(3)× SU(4) intrinsic torsion, and U(V ) =

UMV
M is a pairing between sections of E∗ and E so that U(V ) is a scalar function. If we

further require that U vanishes, we have

δW
δψ

= 0 ⇔ LV ψ = 0 ∀ V ∈ Γ(L−1), (3.66)

so that we have an alternative description of the superpotential condition (recall that δW/δψ = 0

implies W = 0). As discussed in [1], we expect that one can take a given ψ that satisfies the

involutivity condition and rescale it by an appropriate complex function so that the stronger

superpotential condition is satisfied. Note that these expressions show that involutivity and

the superpotential itself are holomorphic in ψ. Since L−1 is fixed by V • ψ = 0 (see (3.31)),

L−1 depends holomorphically on ψ. The conditions that LV ψ = U(V )ψ and LV ψ = 0 for all

V ∈ Γ(L−1) are then also holomorphic in ψ (since ψ̄ does not appear).

Our conjecture that the superpotential is given by the singlet of the intrinsic torsion can be
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translated to the statement that

W =

∫
X
W ∼

∫
X
η(ψ, T ), (3.67)

where T is the intrinsic torsion of the structure. The pairing of T with ψ projects onto the

(1,1)3 component. Note also that ψ is weight one and T is weight zero under the R+ action,

so that their pairing is a weight-one scalar. A weight-one scalar is a section of detT ∗ and so

gives a volume form that can be integrated over the manifold. From the previous discussion,

the (1,1)3 component of the torsion can be obtained from ψ alone, and so the superpotential

itself is a holomorphic function of ψ.

There are alternative ways to writeW to make the dependence on ψ more obvious. One can

always find a torsion-free connection D that is compatible with the generalised metric structure

discussed in section 3.2.2. Using this one can write the integrand of the superpotential as

W ∼ Tr(J,D ×ad ψ), (3.68)

where J is the R+ × U(3) × Spin(6 + n) structure defined in section 3.2.2.8 Note that since

neither J nor the generalised connection are weighted under R+, the right-hand side of (3.68)

is a section of detT ∗ and hence we can integrate it over the manifold to give

W ∼
∫
X

Tr(J,D ×ad ψ). (3.69)

This expression is the easiest to use for direct calculations. Naively it does not appear to be

holomorphic in ψ as J is a function of ψ and ψ̄. However, we can rewrite it as

W ∼
∫
X

η(ψ̄, (D ×ad ψ) · ψ)

η(ψ̄, ψ)
, (3.70)

where, as in [1], the weight of ψ is such that the dependence on ψ̄ drops out. That is, under

an infinitesimal antiholomorphic variation of ψ̄, only the terms that are proportional to ψ̄

contribute to the variation of η(ψ̄, (D ×ad ψ) · ψ), while the other components are projected

out. This leaves a trivial scaling transformation ψ̄ → ec̄ψ̄, under which our expression is clearly

invariant thanks to η(ψ̄, ψ) in the denominator. Hence W does not vary under deformations of

ψ̄ and so it is indeed holomorphic in ψ, as we claimed.

As we show in appendix D, using the explicit expressions for J and ψ in terms of the

underlying SU(3) structure, the superpotential reduces to

W ∼
∫
X

e−2ϕΩ ∧ (H + i dω). (3.71)

This is precisely the form of the superpotential in (3.63) and used in [207, 232, 233]. Hence

8As for the case of E7(7) ×R+ generalised geometry [1], it is easy to see that this expression does not depend
on the choice of connection (such torsion-free compatible connections are not unique). In particular, there are
no singlets in the undetermined parts of D when one decomposes under the N = 1 structure group. This means
that any expression that is an SU(3)×O(6+n) singlet, is linear in D and involves only SU(3)×O(6+n) invariant
tensors, will depend only on the singlet part of the SU(3)×O(6 + n) intrinsic torsion.
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our expression (3.69) is the covariant form of the superpotential for a generic four-dimensional

N = 1 heterotic background determined by ψ.

Having seen how the F-term conditions of the Hull–Strominger system can be understood

as involutivity for a subbundle defined by a generalised structure or the vanishing of the su-

perpotential, in the next section we will discuss how the remaining D-term equations can be

imposed by requiring the vanishing of a moment map for generalised diffeomorphisms. This mo-

ment map will be defined using ψ, and its vanishing will be equivalent to the vanishing of the

remaining components of the intrinsic torsion for the SU(3)×Spin(6 +n) structure, confirming

the claim that a four-dimensional N = 1 heterotic background is equivalent to an integrable

SU(3)× Spin(6 + n) structure.

3.4 The Kähler Potential, Moment Map and D-Terms

As we have seen, integrability of the U(3) × Spin(6 + n) × R+ structure – in the form of

involutivity of L−1 – gives a subset of the supersymmetry conditions required of an N = 1,

D = 4 heterotic background. As we have mentioned, the remaining conditions come from

the vanishing of a moment map for the action of diffeomorphisms and gauge transformations

(generalised diffeomorphisms). Much of what follows is analogous to the story for E7(7) × R+

backgrounds. For this reason, we shall be brief and refer the interested reader to the longer

discussion in [1].

3.4.1 The Kähler Potential

We know that the moduli space of a generic four-dimensional N = 1 theory admits a Kähler

metric which will be related to the Kähler potential on the space of SU(3)×Spin(6+n) structures.

Here we will give an expression for this potential in terms of the object ψ.

At each point p ∈ X, ψ is stabilised by some SU(3) × Spin(6 + n) ⊂ O(6, 6 + n) × R+

subgroup. Hence at each point, ψ is an element of the coset

ψ|p ∈ C =
O(6, 6 + n)× R+

SU(3)× Spin(6 + n)
. (3.72)

An SU(3)× Spin(6 + n) structure is then a section of the fibre bundle

C −→ C −→ X. (3.73)

Hence we can define the space of SU(3)× Spin(6 + n) structures to be the set of sections of C:

Z ' Γ(C). (3.74)

There is a natural Kähler structure on this space, determined by supersymmetry. First, note

that the homogeneous space O(6, 6 + n)/U(3) × Spin(6 + n) admits a pseudo-Kähler struc-

ture [236]. The space C can be viewed as a complex line bundle over this homogeneous space

with the zero section removed. This reflects the fact that we only have an R+ action, and hence

we have a cone over a Kähler base. This complex cone over a Kähler base has a natural Kähler
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structure which then induces one on the space of sections. In this case, the Kähler potential K
on Z is given by

K =

∫
X
η(ψ, ψ̄)

1
2 , (3.75)

where ψ is viewed as a complex coordinate on the space of structures. Note that the weight of

ψ ensures that η(ψ, ψ̄)1/2 is a top-form and hence can be integrated. Different choices of weight

would correspond to different Kähler metrics, with the weight we have chosen corresponding to

the metric picked out by supersymmetry (as we saw with holomorphy of the superpotential).

As was shown in [179], the object ψ does indeed give a complex coordinate on Z. The

particular form of ψ and its R+ weight turns out to be very natural. Consider the anchor map

π : E → T, (3.76)

which simply projects on the vector component of a generalised vector. This induces a map

π : ∧3E → ∧3T which, together with ∧3T ⊗ ∧6T ∗ ' ∧3T ∗, gives

π(ψ) ∼ e−2ϕ Ω. (3.77)

Thus, via the anchor map, the object ψ defines an ordinary complex three-form π(ψ) on the

manifold. This three-form is Ω up to a dilaton factor, and is precisely the form that is holomor-

phic (closed under ∂̄) in the Hull–Strominger system (3.3). Note that, so long as we consider

only deformations fixing the cohomology of the H flux, we are fixing the underlying Courant

algebroid and thus the anchor map π. The induced map is therefore complex linear and has

no moduli dependence. This means that if ψ is holomorphic on the coset C then so is the

three-form e−2ϕ Ω.

We can define a non-holomorphic coordinate on Z as

χ = η(ψ, ψ̄)−1/4ψ. (3.78)

This is a complex section of ∧3E ⊗ (detT ∗)1/2 ∼ 2201/2 and gives the Kähler potential (3.75)

as

K =

∫
X
η(χ, χ̄). (3.79)

We will see that this non-holomorphic parameterisation is useful for writing the symplectic

structure on Z. The symplectic structure on Z is given by $ = i ∂′∂̄′K, where δ = ∂′ + ∂̄′ is

the functional derivative on Z. Contracting two vectors α, β ∈ Γ(TZ) into $, one has

ıβıα$ =
i

2

∫
X
η(ψ, ψ̄)−1/2

(
η(ıαδψ, ıβδψ̄)− η(ıβδψ, ıαδψ̄)

− 1
2η(ψ, ψ̄)−1η(ıαδψ, ψ̄)η(ψ, ıβδψ̄) + 1

2η(ψ, ψ̄)−1η(ıβδψ, ψ̄)η(ψ, ıαδψ̄)
)
.

(3.80)

Rewriting this in terms of χ gives

ıβıα$ =
i

2

∫
X

(η(ıαδχ, ıβδχ̄)− η(ıβδχ, ıαδχ̄)) . (3.81)
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While we leave the full calculation to appendix D, one can show that the Kähler potential

takes the form

K =

∫
X

i e−2ϕΩ ∧ Ω̄. (3.82)

In fact, it takes this form up to an overall constant which can be removed by rescaling ψ. With

this rescaling χ is given by

χ =
1

3!
g1/4e−ϕΩmnpÊ+

mnp, (3.83)

where Ê+
mnp = Ê+

m∧ Ê+
n ∧ Ê+

p , and the Ê+
m are defined as in (3.44). We will see later that, while

(3.82) appears to only depend on the complex structure parameters (which vary Ω), it does in

fact capture all possible deformations of the structure.

3.4.2 The Moment Map

One can then restrict to the subspace of ψ structures for which L−1 is involutive, that is

Ẑ = {ψ ∈ Z | J is integrable}. (3.84)

As we showed in (3.65) in the discussion of the superpotential, this condition is holomorphic

in ψ. Hence Ẑ inherits its Kähler metric Z, which is defined by the same Kähler potential.

Following the discussion in [1], one can then define a moment map for the action of generalised

diffeomorphisms on Ẑ as follows. Infinitesimally, generalised diffeomorphisms are generated by

the Dorfman derivative along a generalised vector V ∈ Γ(E). A generalised diffeomorphism

defines a deformation of χ as

ıρV δχ = LV χ, (3.85)

where ρV ∈ Γ(T Ẑ) is the induced vector field. The corresponding moment map is defined by

ıρV ıα$ = ıαδµ(V ), (3.86)

from which we deduce

µ(V ) = − i

2

∫
X
η(ψ, ψ̄)−1/2η(LV ψ, ψ̄) = − i

2

∫
X
η(LV χ, χ̄), (3.87)

where µ : Ẑ → gdiff∗ is the moment map. We will use the form of the moment map in terms of

both ψ and χ in the following, so we give them both above.

How does the moment map constrain the structure? In other words, which components of

the intrinsic torsion can appear in µ? Recall that we can always find a compatible connection

(Dψ = Dχ = 0) that is not necessarily torsion free. Using this we can rewrite the moment map

as

µ(V ) = − i

2

∫
X
η(LDV χ, χ̄) +

i

2

∫
X
η(T int(V ) · χ, χ̄). (3.88)

The first term vanishes by the compatibility of D. Assuming that the associated weaker R+ ×
U(3) × Spin(6 + n) structure is integrable, and hence its intrinsic torsion (3.49) vanishes, the

final term is zero for all V ∈ Γ(E) if and only if the (3,1)1 + (3,1)−1 + (1,6 + n)0 part of the
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intrinsic torsion in (3.48) vanishes.9 That is, imposing that the moment map vanishes, µ = 0,

gives the final condition for the SU(3)× Spin(6 + n) structure to be integrable. We then have

Definition 16. A torsion-free generalised SU(3) × Spin(6 + n) structure is one where the

associated subbundle L−1 is involutive and the moment map (3.87) vanishes.

We now check that the vanishing of the moment map imposes the remaining equations of the

Hull–Strominger system that do not appear in the involutivity conditions found in the previous

section. Taking a generic generalised vector V = e−Be−A(v+λ+ Λ) where v ∈ Γ(T ), λ ∈ Γ(T ∗)

and Λ ∈ Γ(adPG), a long calculation in appendix D shows that

µ(V ) = 1
2

∫
X
ıv(2∂ϕ− 2∂̄ϕ+ ā− a)e−2ϕΩ ∧ Ω̄− 4 e−2ϕ Tr(ΛF ) ∧ ω ∧ ω

+ 2λ ∧ d(e−2ϕω ∧ ω),

(3.89)

where we have used the fact that the complex structure is integrable (which comes from invo-

lutivity) and so dΩ = ā∧Ω for some ā ∈ Ω0,1(X). It is clear that imposing the vanishing of the

moment map for all V = e−Be−A(v + λ+ Λ) gives

ā = 2∂̄ϕ, F ∧ ω ∧ ω = 0, d(e−2ϕω ∧ ω) = 0, (3.90)

which are equivalent to

d(e−2ϕΩ) = 0, ω]yF = 0, d(e−2ϕω ∧ ω) = 0. (3.91)

These are precisely the missing supersymmetry equations. Hence the Hull–Strominger system

is equivalent to an integrable SU(3)× Spin(6 + n) structure.

Physically, SU(3) × Spin(6 + n) structures that are related by diffeomorphisms and gauge

transformations (GDiff) give equivalent backgrounds, so the moduli space of structures Mψ

should be viewed as the space of torsion-free SU(3) × Spin(6 + n) structures quotiented by

the action of these transformations. Since Ẑ admits both a symplectic structure and a Kähler

structure, there are two ways to view this quotient, namely as a symplectic quotient by GDiff

or as a standard quotient by the complexified group GDiffC:

Mψ = {ψ ∈ Ẑ | µ = 0}/GDiff ≡ Ẑ//GDiff ' Ẑ/GDiffC. (3.92)

How is Mψ related to the moduli space of D = 4, N = 1 heterotic backgrounds? First note

that even withinMψ, different choices of ψ can lead to the same background, that is, the same

set of physical fields.10 Instead, it is the generalised metric that determines the physical fields,

so we should take the moduli space of the background to be choices of ψ ∈ Mψ that lead to

different generalised metrics. Said differently, while deformations of ψ at a point take values in

O(6, 6+n)×R+/(SU(3)×O(6+n)), only those that are also in O(6, 6+n)×R+/(O(6)×O(6+n)

change the physical fields. Fortunately, it is easy to take this into account. First note that

9Checking that µ(V ) = 0 for all V is equivalent to showing µ itself vanishes.
10Without the gauge sector, this is the statement that there is a family of ψ’s that give the same O(6)×O(6)

structure.
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constant shifts of the dilaton can be absorbed in the definition of the four-dimensional metric

(recall that we are working in string frame). Second, note that a deformation of ψ that lives

in (Spin(6) × Spin(6 + n)/(SU(3) × Spin(6 + n)) would correspond to a change of the Killing

spinor ε that leaves the physical background unchanged. Such deformations are possible only if

there is a second Killing spinor to rotate into, and so the background would secretly preserve

N = 2 supersymmetry. Notice however that changes of ε by a constant phase do not lead

to extra Killing spinors and such a phase can be absorbed into the four-dimensional spinors

appearing in the split of the ten-dimensional spinor. This constant phase corresponds to the

U(1) generated by J . Putting this together, assuming we do have an honest N = 1 background,

the unphysical deformations of ψ come from constant shifts of the dilaton and constant phase

rotations. Given the form of ψ in (3.44), a constant shift of the dilaton by ϕ→ ϕ− c/2 simply

rescales by the exponentiated R+ action of c on a weight-one object. The physical moduli space

M of the background is then

Moduli space of N = 1 background, M =Mψ//U(1) 'Mψ/C∗, (3.93)

where λ ∈ C∗ acts as ψ → λψ. Note that this implies the Kähler potential scales as K → |λ|K.

The Kähler potential K̃ on the physical moduli space is then

K̃ = −3 logK. (3.94)

We can compare this expression with those found in the literature. The generic form of the

Kähler potential, given an arbitrary (conventional) SU(3) structure, in the heterotic theory was

given in [232] following [231,237,238] and for generic heterotic vacua in [233,239] (matching the

original expressions in the case of Calabi–Yau compactifications [154,240,241]). One finds

K̃ = − logV − log(S + S̄)− log

∫
X

i Ψ ∧ Ψ̄, (3.95)

where V is the volume calculated from ω, reS ∝ e−2ϕV and Ψ ∝ e−2ϕΩ. Using the SU(3)

structure relations and that the dilaton is independent of the internal manifold, one can rewrite

the above expression as

K̃ = − logV − log(e−2ϕV)− log e−4ϕV

= − log(e−6ϕV3)

= −3 log

∫
X

i e−2ϕΩ ∧ Ω̄.

(3.96)

This matches both the form of K that we give above and confirms the coefficient of −3 in moving

from the Kähler potential K on the moduli space of SU(3)×Spin(6+n) structure to the Kähler

potential K̃ on the physical moduli space, as mentioned around (5.43).

When one has an honest Calabi–Yau background, the Kähler potential can be separated into

terms that give the metric for complex structure, Kähler and bundle moduli, plus a universal

term for the dilaton. On a general N = 1 background, such a split is not possible and one

simply has (3.75). This also explains another possible point of confusion. Looking at (3.82),
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one might be tempted to think that it depends only on complex structure parameters (which

vary Ω). However, this is an artifact of expressing the general form of the Kähler potential (3.75)

at a chosen point on the parameter space. Variations of the Kähler potential should be written

in terms of variations of the full structure ψ, and not simply Ω, and then one will capture all

of the possible deformations. Put another way, in writing (3.75) we have not picked out the

holomorphic parameterisation of ψ.11

3.4.3 Extremisation of the Kähler Potential and GIT

As we have seen, the Hull–Strominger system is equivalent to the existence of an involutive

subbundle and the vanishing of a moment map for generalised diffeomorphisms. However, as

for the E7(7)×R+ backgrounds discussed in [1], the vanishing of the moment map is equivalent to

extremising the Kähler potential over complexified generalised diffeomorphisms simply because

Ẑ is Kähler [243]. This reformulation allows us to make a direct connection to the work of [74].

If we take I to be the complex structure on Ẑ, then the action of complexified generalised

diffeomorphisms are generated by ρV ∈ Γ(T Ẑ) and IρW ∈ Γ(T Ẑ). Since ψ is a holomorphic

coordinate on the space of structures, we have

LIρV ψ = ıIρV ∂
′ψ = i ıρV ∂

′ψ = iLV ψ, (3.97)

where L is the Lie derivative on Ẑ, and we have split the exterior (functional) derivative into

holomorphic and antiholomorphic parts δ = ∂′ + ∂̄′. Varying the Kähler potential along the

orbit of an imaginary GDiff, we have

LIρV K =
1

2

∫
X
η(ψ, ψ̄)−1/2

[
η(ıIρV δψ, ψ̄) + η(ψ, ıIρV δψ̄)

]
=

i

2

∫
X
η(ψ, ψ̄)−1/2

[
η(LV ψ, ψ̄)− η(ψ,LV ψ̄)

]
= i

∫
X
η(ψ, ψ̄)−1/2η(LV ψ, ψ̄)

= −2µ(V ).

(3.98)

Thus we can think of the D-terms as coming from the vanishing of a moment map, or, since K
is invariant under the real group GDiff, the extremisation of the Kähler potential with respect

to GDiffC.

In the work of [74], the Hull–Strominger system is viewed as extremising a “dilaton func-

tional” over variations of the holomorphic Courant algebroid (3.10) with fixed Aeppli class. We

note first that the dilaton functional is precisely the Kähler potential defined above. Moreover,

as discussed around (3.62), the involutive bundle L−1 defines the holomorphic Courant alge-

broid Q with a hermitian metric (ω,A)12 defining a given Aeppli class. The authors of [74]

11Note that even in the Calabi–Yau case, the Kähler potential is naively independent of the gauge field moduli.
However, the holomorphic Kähler moduli are shifted relative to the naive ones, and once these are picked out the
dependence on the gauge moduli becomes explicit [242].

12This is labelled (ω, θh) in the language of [74].
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show that the variations within a fixed Aeppli class are given by13

δω = 2 Tr(θF ) + ∂ξ∗ + ∂̄ξ, δA0,1 = −∂̄Aθ. (3.99)

Examining equations (3.138)–(3.141), one sees that these are precisely the transformations

generated by e−B−iωe−A(−iξ + iξ∗ + θ) ∈ gdiffC. Hence, extremising the dilaton functional

follows directly from our picture of extremising the Kähler potential over complex generalised

diffeomorphisms. Interestingly, we have a larger set of variations which are not included in those

considered in [74], namely variations parameterised by some complex vector field v ∈ Γ(TC) '
diffC. As shown in (3.89), it is these variations that ensure e−2ϕΩ is a holomorphic section

(closed under ∂̄). As shown in [74], provided such a section exists the variational problem of

the dilaton functional is equivalent to the Hull–Strominger system. In our formulation however,

the existence of a holomorphic volume form becomes part of the variational problem and does

not need to be implemented by hand.

The present work also answers a question posed in [74], namely whether there exists a

moment map interpretation of the Hull–Strominger system. Furthermore, this interpretation

provides a fascinating link with geometric invariant theory (GIT).14 As in many other classic

problems (including the hermitian Yang–Mills equations [224,225,244,245] and the equations of

Kähler–Einstein geometry [246–248]), we can view the space of integrable SU(3)× Spin(6 + n)

structures as a quotient by a complexified group of some infinite-dimensional space of structures.

Geometric invariant theory then tells us that we should identify

Ẑ//GDiff ' Ẑps/GDiffC, (3.100)

where Ẑps is the subspace of Ẑ of “polystable points”. This arises as it is not guaranteed that all

GDiffC orbits will intersect with the surface µ−1(0). If an orbit does not intersect this surface,

we call the points along it unstable and these are not included in Ẑps. By understanding which

points are polystable, one would be able to relate the existence of solutions to a differential

equation, namely µ = 0, to the algebraic data of the complex orbits. In (3.92) we skipped over

this subtlety of having to restrict to a subspace of Ẑ as it turns out that it is not be relevant

for the infinitesimal moduli problem in section 5.4.

The standard procedure for identifying which points in Ẑ are polystable runs as follows.

One considers U(1) ⊂ GDiff actions generated by some ρV ∈ Γ(T Ẑ). Under complexification

we get some C∗ ⊂ GDiffC action, ψ → ψ(ν), ν ∈ C∗, and we consider the limit ν → 0. If there

is a limiting point in Ẑ/C∗ (for example if the latter space was compact, which however is not

that case here) then in the limit the C∗ action should coincide with the rescaling action

lim
ν→0

ψ(ν) = νw(ψ,V )ψ0 (3.101)

for some ψ0 ∈ Ẑ. Here w(ψ, V ) ∈ Z is called the weight, and is quantised because we have a

13This is given by δω = i c(h−1δh, Fh) + ∂ξ0,1 + ∂ξ0,1 in the language of [74].
14See [221] and references therein for a review of GIT.
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U(1) action. In this limit we also find that

lim
ν→0
K(ν) = |ν|w(ψ,V )K0. (3.102)

By considering all possible U(1) ⊂ GDiff subgroups, or one-parameter-subgroups, one then

defines
if w(ψ, V ) < 0 for all 1-PS then ψ is stable,

if w(ψ, V ) ≤ 0 for all 1-PS then ψ is semistable,

if w(ψ, V ) > 0 for some 1-PS then ψ is unstable.

(3.103)

The usual argument for the correspondence (3.100) relies on the “norm functional” (in this

case the Kähler potential) being convex over the action of GDiffC. This then ensures that

there is a unique minimum of the functional, i.e. a point where µ = 0, within the complex

orbit of the stable points. However, as is pointed out in [74], there are concave orbits given

by primitive deformations of ω. Therefore, there may be multiple points along a given GDiffC

orbit for which µ = 0 and so the correspondence (3.100) may be more subtle. Despite this,

understanding polystability should give us conditions for the existence of solutions to the Hull–

Strominger system, if not uniqueness.

It is interesting to consider this constraint for U(1) subgroups of the gauge group G, gener-

ated by some θ ∈ Γ(adPG).15 First note that we can express the weight as follows

w(ψ, V )K0 = LIρV K0 = −2µ0(V ), (3.104)

where µ0(V ) is the moment map evaluated on ψ0. Hence we can define ψ to be semistable if

µ0(V ) ≥ 0. In order to lift the generator of the U(1) action into a generalised vector we take,

as usual, V = e−Be−Aθ = e−Aθ, then from (3.89), we have

µ(θ) ∼
∫
X

e−2ϕ Tr(θF ) ∧ ω ∧ ω. (3.105)

For ϕ = 0, this is precisely the expression for the weight for the GIT problem associated to

the hermitian Yang–Mills equations. The requirement that (in an appropriate limit) (3.105) is

greater than or equal to zero for all possible θ has been shown to be equivalent to the slope

stability of the gauge bundle P → M . (See, for example, [249] for a review.) More generally,

for conformally balanced hermitian metrics, in our case when d(e−2ϕω ∧ ω) = 0, a theorem

of Buchdahl and Li–Yau [73, 250] states that solutions of the hermitian Yang–Mills equations

require slope stability with respect to e−2ϕω ∧ω, precisely the combination that appears in our

weight expression. Note that here the balanced condition actually comes from extremising the

Kähler potential under the action of complex one-form gauge transformations of B, so it would

be a consequence of our more general stability condition.

This, of course, requires further investigation. For the moment, we content ourselves with

pointing out that gauge conditions resembling slope stability appear naturally in the GIT pic-

ture, and that by understanding the constraints coming from all possible U(1) subgroups, one

might be able to characterise polystability for the full Hull–Strominger system. Note for exam-

15Note that here θ is an honest gauge parameter and not a section of the generalised tangent space.
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ple, we could consider circle actions on the manifold generated by some vector field ξ ∈ Γ(T ).

One might expect those coming from Hamiltonian symplectomorphisms to be related to the

picture of Calabi–Yau stability developed in [246,247].

3.5 Moduli of Heterotic Backgrounds

We will now analyse the massless moduli of a generic heterotic background in terms of some

cohomological structure. We have seen that the conditions for a D = 4, N = 1 Minkowski

background can be rephrased in terms of integrable SU(3)×Spin(6+n) structures. By using this

language we will be able to give a new interpretation to previous results found on infinitesimal

moduli [178,179]. We will follow the methods of [1] closely.

As discussed around (3.93), the physical moduli space is given by

M =Mψ/C∗ Mψ = {ψ | J is integrable}//GDiff ' Ẑ/GDiffC. (3.106)

Writing the moduli space in this way greatly simplifies the deformation theory. First, relating

the symplectic quotient to a complex quotient means that we do not need to solve the moment

map condition. Instead, we need only consider deformations of ψ that preserve the involutivity

of L−1, up the action of complexified generalised diffeomorphisms. Second, those elements of

GDiffC that preserve J simply rescale ψ by a function. The moment map fixes this factor, up

to an overall constant C∗ rescaling. Thus we can actually identify the moduli space simply as

a quotient of the space of integrable J structures

M = {J | J is integrable}/GDiffC (3.107)

Hence, to understand the local structure of the physical moduli space, we need to consider only

deformations of L−1 up to complex generalised diffeomorphisms.

Infinitesimally this can be reinterpreted as the cohomology of the following complex

Γ(EC)
d1−−→ Γ(C)

d2−−→ Γ(W int
R+×U(3)×Spin(6+n)), (3.108)

where C is a vector subbundle of ad F̃C such that Ξ·L−1 * L−1 for all non-zero sections Ξ ∈ Γ(C).

We consider deformed bundles

L′−1 := (1− Ξ) · L−1 Ξ ∈ Γ(C), (3.109)

such that the new L′−1 is involutive with respect to the Dorfman derivative to linear order

in Ξ. Since L′−1 is involutive if and only if the intrinsic torsion of the corresponding R+ ×
U(3) × Spin(6 + n) structure vanishes, this defines a linear map, denoted by d2 above. The

deformation is integrable if and only if Ξ ∈ ker d2. There is also a notion of trivial deformations

given by the action of complex generalised diffeomorphisms acting on L−1. Infinitesimally this

is just the Dorfman derivative along a complexified generalised vector. That is, a deformation
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L′−1 = (1 + Ξ) · L−1 is trivial if there is some V ∈ Γ(EC) such that

L′−1 = (1 + LV )L−1. (3.110)

Again we can define a linear map d1 such that a deformation generated by Ξ ∈ Γ(C) is trivial if

and only if Ξ ∈ im d1. It is simple to show using (A.30) that any trivial deformation is integrable

and hence d2 ◦ d1 = 0. This means (3.108) is a complex whose cohomology counts the physical

moduli.

We will now find explicit expressions for the maps d1 and d2 using the parametrisation of

L−1 given in (3.42), and show that we recover the cohomology of [178,179]. Note that the choice

of C is not unique for a given L−1 and different choices change the form of the linear maps. A

canonical choice comes from thinking of the fibres of C as quotient spaces (o6,6+n⊕R)/p, where

p is the parabolic subalgebra preserving L−1. Since we are only interested in the cohomology,

which is independent of the exact choice of C, we will choose convenient a representative.

Recall the form of L−1

L−1 = e−B−iωe−AT 0,1. (3.111)

We take C to be

C ' e−B−iωe−A ·
[
(T 1,0 ⊗ T ∗0,1)⊕ ∧1,1T ∗C ⊕ ∧0,2T ∗ ⊕ (T ∗0,1 ⊗ adPG)

]
. (3.112)

We note that these bundles should be taken to be complexified as above, which we assume from

this point forward. For any non-zero section Ξ of this bundle we see that

Ξ: L−1 → e−B−iωe−A(T 1,0 ⊕ T ∗ ⊕ adPG) ' EC/L−1,

Ξ = e−B−iωe−A · (−µ+ x+ b+ α) ∈ Γ(C),
(3.113)

where µ ∈ Γ(T 1,0 ⊗ T ∗0,1), x ∈ Γ(T ∗1,1), b ∈ Γ(T ∗0,2), and α ∈ Γ(T ∗0,1 ⊗ adPG) – these are

what one might call complex structure, hermitian, and bundle moduli. (Again note that we are

taking all of the bundles above to be complexified.) This shows that (3.112) is a good choice of

C. We can then define our deformed bundle

L′−1 = (1− Ξ)L−1. (3.114)

To linear order in the deformation, we can rewrite this in a more convenient form as

L′−1 = e−Θ(1 + µ)T 0,1, (3.115)

where Θ = B+ iω+x+ b+ Tr(A∧α) +A+α.16 It is worth stressing that by deforming within

the space of structures we are including deformations that do not change the generalised

metric, that is do not change the physical supergravity fields. In terms of the ψ structure, the

additional degrees of freedom parameterise Spin(6)/SU(3) and transform in the 3 of SU(3) –

these correspond to deforming the putative Killing spinor, while keeping the supergravity fields

16Here we note that to linear order 1 + x + b + α = eb+xeα and then used the Baker–Campbell–Hausdorff
formula together with (A.23).
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fixed. If there are any such integrable deformations they would imply that the background

actually defined an N = 2 rather than N = 1 solution. We will return to this point below.

We now want to examine the conditions on Ξ (or equivalently Θ) for L′−1 to be involutive,

that is, for the deformation to be integrable. From (3.114), two general sections V,W ∈ Γ(L′−1)

can be parametrised by Θ, µ and two vectors v̄, w̄ ∈ Γ(T 0,1). The Dorfman derivative of W

along V can then be written in terms of a twisted derivative as

Le−Θ(1+µ)v̄

(
e−Θ(1 + µ)w̄

)
= e−ΘLH̃+F̃

v̄+µ·v̄(w̄ + µ · w̄), (3.116)

where H̃ and F̃ are given to first order in the deformation by

H̃ = dB + ω3(A+ α) + i dω + dx+ db+ d Tr(A ∧ α)

= 2i ∂ω + 2 Tr(α ∧ F ) + dx+ db,
(3.117)

F̃ = d(A+ α) + (A+ α) ∧ (A+ α)

= F + dAα,
(3.118)

where dA = d + [A, ·]. Involutivity of L′−1 is then equivalent to

LH̃+F̃
v̄+µ·v̄(w̄ + µ · w̄) = ū+ µ · ū, (3.119)

for some ū ∈ Γ(T 0,1). Using the expression for the twisted Dorfman derivative from (A.26), to

first-order in the deformation we have

LH̃+F̃
v̄+µ·v̄(w̄ + µ · w̄) =[v̄, w̄] + [µ · v̄, w̄] + [v̄, µ · w̄]

− ıv̄ıw̄
(
2 Tr(α ∧ F ) + dx+ db

)
− 2i ıµ·v̄ıw̄∂ω − 2i ıv̄ıµ·w̄∂ω

− ıv̄ıw̄∂̄Aα− ıµ·v̄ıw̄F − ıv̄ıµ·w̄F

≡ū+ µ · ū.

(3.120)

Decomposing according to complex type, we require

[v̄, w̄] + [µ · v̄, w̄]0,1 + [v̄, µ · w̄]0,1 = ū (3.121)

[µ · v̄, w̄]1,0 + [v̄, µ · w̄]1,0 = µ · ū, (3.122)

ıv̄ıw̄∂̄Aα+ ıµ·v̄ıw̄F − ıµ·w̄ıv̄F = 0, (3.123)

ıv̄ıw̄
(
2 Tr(α ∧ F ) + ∂̄x+ ∂b

)
+ 2i ıµ·v̄ıw̄∂ω + 2i ıv̄ıµ·w̄∂ω = 0, (3.124)

ıv̄ıw̄∂̄b = 0. (3.125)

Let us consider each of these conditions in turn. As we are working to first order in the

deformations, dotting (3.121) with µ and substituting into (3.122) gives

µ · [v̄, w̄] = [µ · v̄, w̄]1,0 + [v̄, µ · w̄]1,0. (3.126)

Expanding out in components and using a torsion-free compatible GL(3,C) connection,17 one

17This exists as the undeformed solution admits an honest complex structure, I.

90



can show this condition is equivalent to ıw̄ıv̄∂̄µ = 0, where µ is treated as a (0, 1)-form with a

holomorphic vector index. As this must vanish for all v̄ and w̄, we find

∂̄µ = 0. (3.127)

This is the expected condition on first-order deformations of a complex structure.

The third condition (3.123) can be rewritten using ıv̄ıw̄ıµF = ıµ·v̄ıw̄F − ıµ·w̄ıv̄F , where

ıµF = ea ∧ ıµaF , to give

∂̄Aα+ ıµF = 0. (3.128)

The fourth condition (3.124) can be rewritten using ıv̄ıµ·w̄∂ω − ıw̄ıµ·v̄∂ω = −ıw̄ıv̄ıµ∂ω to give

2 Tr(α ∧ F ) + ∂̄x+ ∂b+ 2i ıµ∂ω = 0. (3.129)

The final condition (3.125) is simply

∂̄b = 0. (3.130)

Taken together, the conditions are

∂̄µ = 0, (3.131)

∂̄b = 0, (3.132)

∂̄x+ 2i ıµ∂ω + 2 Tr(α ∧ F ) + ∂b = 0, (3.133)

∂̄Aα+ ıµF = 0. (3.134)

These equations give the map d2 on the different components of Ξ. It is comforting to note

that these equations agree with those that have appeared before in work on heterotic moduli.

To be precise, our equations match those in [178,179], which we reproduce in (3.14) and (3.15),

after noting that xhere = 2xthere, µhere = −µthere and bhere = Bthere.
18 The only equation we

are missing is (3.16) which is equivalent to the deformed complex three-form being conformally

holomorphic. However, as we saw in section 3.4.2, this condition is imposed by the moment

map, not involutivity. (Alternatively, one can see it as the extra condition that is imposed by

the superpotential.) The particular missing equation is associated to the moment map condition

that fixes ψ (up to an overall constant) as a section of UJ once J is determined. Since we have

shown that we can describe the moduli space in terms of deformations of J alone it does not

appear. Note however, even if we had been using ψ to parameterise the moduli space, we would

still not have had to impose this relation. The point is that, as we have argued, at the level

of the cohomology imposing moment map conditions is equivalent to quotienting by complex

generalised diffeomorphisms. In other words, there will be representatives in the cohomology

class for which this missing condition is satisfied and hence we do not need to impose it as an

extra condition here. (This was actually the reason we could parameterise the moduli space

using J alone.) This illustrates the usefulness of this approach as it reduces the complexity

of the equations governing the moduli. As a separate point, note also that the integrability

18The factor of two in x is down to a choice of conventions. The minus sign that appears in µ is due to our µ
deforming T 0,1 while the µ in [178,179] is a deformation of T ∗1,0.
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conditions above are holomorphic in the complex parameters Ξ, as we would expect from our

general discussion around (3.65).

We now examine the conditions for a deformation to be trivial. This will tell us what an

“exact” deformation is and thus give the resulting cohomology that counts the inequivalent,

non-trivial deformations. A deformation is to be regarded as trivial if the resulting L′−1 is

related to the undeformed subbundle by the action of the Dorfman derivative. In other words,

if L′−1 is simply a GDiffC rotation of L−1, the deformation is trivial. Let V be a section of L−1

and W be a section of EC such that

V = e−B−iωe−Av̄,

W = e−B−iωe−A(w + w̄ + ξ + ξ̄ + θ) = e−B−iωe−AW ′,
(3.135)

where w is a (1, 0)-vector, v̄ and w̄ are (0, 1)-vectors, ξ and ξ̄ are (1, 0)- and (0, 1)-forms, and

θ is a complex gauge parameter. Note that w and w̄ (and ξ and ξ̄) are independent degrees of

freedom and not related by complex conjugation, w̄ 6= w∗. Peeling off the twisting by −B − iω

and −A, the action of GDiffC by W on a section of L−1 is

(1 + LH+i dω+F
W ′ )v̄ = v̄ + [w + w̄, v̄]− ıv̄d(ξ + ξ̄)− ıw+w̄ıv̄(H + i dω)

+ 2 Tr(θ ıv̄F )− ıv̄dAθ − ıw+w̄ıv̄F

= v̄′ − ıv̄′ ∂̄w − ıv̄′ ∂̄ξ − ıv̄′∂ξ̄ − ıv̄′ ∂̄ξ̄ − 2i ıwıv̄′∂ω

+ 2 Tr(θ ıv̄′F )− ıv̄′ ∂̄Aθ − ıwıv̄′F,

(3.136)

where v̄′ = v̄+ [w̄, v̄] + [w, v̄]0,1 is a trivial rotation of v̄ and we are working to first order in the

components of W .

We want to compare this with the expression for a linear deformation of L−1. Using the

O(6, 6 + n) algebra [167] given in (A.23) and the Baker–Campbell–Hausdorff formula, L′−1 can

be rewritten as

L′−1 = e−B−iω−x−b−Tr(A∧α)e−A−α(1 + µ)v̄

= e−B−iωe−A(v̄ + µ · v̄ + ıv̄x+ ıv̄b+ ıv̄α).
(3.137)

Comparing (3.136) with the components in the parenthesis in (3.137), one sees that a deforma-

tion of L′−1 is actually the action of GDiffC, and so trivial, if

µ = −∂̄w, (3.138)

x = −∂̄ξ − ∂ξ̄ + 2i ıw∂ω + 2 Tr(θ F ), (3.139)

b = −∂̄ξ̄, (3.140)

α = −∂̄Aθ + ıwF. (3.141)

Combined, these derivatives form the operator d1. One can check that these satisfy (3.131)–

(3.134) (so that exact deformations are automatically closed) provided {∂, ∂̄} = 0, ∂̄2 = ∂̄2
A = 0,

implying the original solution has a complex structure and a holomorphic gauge bundle, and

F and H satisfy the appropriate Bianchi identities. These will each hold as we are assuming
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we are deforming around an N = 1 solution. Combining (3.138)–(3.141) with (3.131)–(3.134),

we recover precisely the cohomology of [178] up to the b term which is not present in their

analysis. This is included in the linear terms in the same calculation in [179] and is related to

deformations of B0,2.

It is worth analysing this b modulus further. As we mentioned above, our parameterisation

of the deformation includes not only deformations of the physical fields preserving N = 1

supersymmetry but also potential deformations of the Killing spinors, with the same background

geometry. The latter type of deformations correspond to the background admitting additional

supersymmetries. Specifically one can show that a particular combination of b and µ will leave

the generalised metric invariant and hence correspond to such additional supersymmetries.

From the form of the equations (3.132) and (3.139) we see that if h0,2 vanishes then there

are no moduli for deformations of b and hence all the deformations correspond to physical

deformations of the background – in other words this is sufficient for the background not to

admit additional supersymmetries. A counter example is the solution on K3 × T2 with trivial

gauge group. In this case h0,2 6= 0 and the b modulus survives. The additional degree of

freedom corresponds to rotating the choice of N = 1 subalgebra picked out by ψ within the

N = 2 supersymmetry algebra.
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Chapter 4

Generalised Geometry for 5

Dimensional External Spaces

In this chapter, we will look at backgrounds of M-theory which have a 5 dimensional Minkowski

external space. These were originally studied in the context of generalised geometry in [187] and

were shown to have a USp(6) ⊂ E6(6)×R+ structure defined via a so-called V and H structure.

Here we will restrict our analysis to only the H-structure. We will find that this can also be

described in terms of an exceptional complex structure in E6(6) × R+. That is, there is an

involutive bundle and a moment map structure which define an integrable H-structure. Using

these structures, we will be able to draw some interesting conclusions about such backgrounds.

We will be able to fully classify the possible exceptional complex structures which will put

restrictions on the geometry of the internal space. We will also be able to analyse the moduli

space in many cases and determine the exact moduli of all backgrounds satisfying a particular

generalised ∂∂̄-lemma. These will be related to the number of massless hypermultiplets in the

effective theory. This chapter is structured as follows. First, we review the work of [187] and

recall the definition of H and V structures. Then we restrict to the H-structures and define the

SU∗(6) structure, and the weaker U∗(6)×R+ structure, in terms of a holomorphic object χ, and

a subbundle L1 ⊂ EC respectively. We show that integrability of these structures is given by

involutivity of L1 and the vanishing of a moment map. Next, we classify the possible forms of L1

and then use this classification to determine the moduli of these structures in all backgrounds

of constant type. Finally, we finish with some possible applications to AdS5 backgrounds, and

finding the spectrum of the associated CFT4.

4.1 Review of Exceptional Calabi-Yau Structures

We will be interested in backgrounds with an external R4,1 that preserve minimal supersym-

metry. Recall in section 2.4.3 we stated that the geometry of backgrounds preserving minimal

supersymmetry (8 supercharges) with a R4,1 external space was given by an integrable USp(6)

structure [184]. This is because the supersymmetry parameter transforms in the fundamental

of the (double cover) of the maximally compact subgroup USp(8) [182,187]. More generally, the

existence of N globally linearly independent spinors defines a USp(8−2N ) structure. Moreover,
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as was shown in [185, 187], these spinors satisfy the Killing spinor equations if and only if the

USp(8 − 2N ) structure is integrable1. In this chapter, we will be interested in the geometric

structures associated to the existence of a torsion free USp(6) structure. These were extensively

studied in [187] and we will briefly review their work here.

As with conventional geometry, it is more convenient to define G-structures in terms of

generalised tensors, rather than spinorial objects. We would also like to find a condition for

integrability in terms of some differential conditions on those generalised tensors. This would be

the equivalent of the closure conditions of ω and Ω for an SU(3) structure. In [187] they showed

that a USp(6) structure is defined by the combination of what they call an H-structure and a

V-structure, satisfying some compatibility conditions and differential conditions. In the effective

5 dimensional theory, the H-structure will be related to the scalars in the hypermultiplets, while

the V-structure will be related to the scalars in the vector multiplets, hence the nomenclature2.

The H-structure is defined by a triplet of weighted adjoint valued tensors Jα ∈ Γ((detT ∗)1/2⊗
ad F̃ ), α = 1, 2, 3. These have to form a highest weight su(2) algebra of e6. In particular we

require

[Jα, Jβ] = 2κεαβγJγ Tr(JαJβ) = −κ2δαβ (4.1)

Where κ is some section of (detT ∗)1/2. Alone, these tensors define an SU∗(6) structure, where

SU∗(6) is a particular non-compact real form of SL(6,C)3 [252, 253]. This G-structure is inte-

grable if and only if the following generalised 1-forms vanish.

µα(V ) := −1

2
εαβγ

∫
M

Tr(JβLV Jγ)
!≡ 0 (4.2)

The maps, µα can be viewed as moment maps for the action of generalised diffeomorphisms on

the hyper-kähler moduli space of H-structures MH . We will expand a little more in the next

section on how this works.

The V-structure is defined by a single generalised vector K ∈ Γ(E) that satisfies

c(K,K,K) = κ2 (4.3)

This describes an F4(4) structure which is integrable if

LKK = 0 (4.4)

Again, this can be interpreted as the vanishing of a different moment map for the action of

generalised diffeomorphisms on the Kähler moduli space of V-structures MV .

Finally, the USp(6) structure is defined by an H-structure and a V-structure obeying an

1It was later shown in [212] that for compactifications down to AdS spaces, the generalised geometry is
described by the same G-structures, now satisfying a property called weak generalised holonomy. They define
this to be a G-structure where the intrinsic torsion lies in a singlet representation of the group G. The value it
takes depends on the value of the cosmological constant.

2In fact, in [187], they introduce these structures for compactifications down to 4, 5, and 6 dimensional
Minkowski space preserving 8 supercharges. The H and V-structures for compactifications down to 4 dimensions
were first introduced in [251].

3It can be identified as the following subgroup of SL(6,C). If J is an antisymmetric 6 × 6 matrix such that
J2 = −Id, then U ∈ SU∗(6) with U∗ its complex conjugate if and only if UJ = JU∗.
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additional compatibility condition and integrability condition. These are

J+ ·K = 0 LKJα = 0 (4.5)

where J± = J1 ± iJ2. The additional compatibility condition ensures that the stabiliser group

of the two structures is F4(4)∩SU∗(6) = USp(6), and the extra differential condition is required

to ensure the intrinsic torsion completely vanishes. These completely describe the geometry of

N = 1 backgrounds with R4,1 external space.

4.2 SU∗(6) and R+ ×U∗(6) Structures

It turns out that we can reinterpret the H-structure in a way that is similar to exceptional

complex structures of heterotic backgrounds described in chapter 3. In particular, we will find

that we can define an involutive subbundle of the generalised tangent bundle. While this does

not describe the full geometry of the supersymmetric background, we will be able to find useful

information from the analysis of this subsector. In this section, we will give a definition of

exceptional complex structures of E6(6) × R+ geometry and see how we can reinterpret the

SU∗(6) structures as such an object. To do so, we will break the explicit SU(2) symmetry of

the H-structure. We will return to this point later in the chapter.

First we note that to define an SU∗(6) structure, it is sufficient to just define J+. Indeed we

can then obtain the full Jα via

J− = J̄+ J3 = (−8 Tr(J+J−))−1/2 i [J+, J−]

In fact, it turns out that χ := κJ+ ∈ Γ(detT ∗⊗ ad F̃ ) is a holomorphic coordinate on the space

of SU∗(6) structures4. This will be useful later when understanding the Kähler structure on

MH . From these tensors we can define two reductions of the structure group

SU∗(6) structure : χ = κJ+ ∈ Γ(detT ∗ ⊗ ad F̃ )

R+ ×U∗(6) structure : J̃ ∈ Γ(ad F̃ )
(4.6)

where J̃ = κ−1J3 is the unweighted J3. Note that since J̃ is unweighted, it is left invariant by

the R+ ⊂ E6(6) × R+. The additional U(1) symmetry comes from the action generated by J̃

itself. Hence J̃ does define a R+ ×U∗(6) structure as claimed. Alternatively, we can define the

R+ ×U∗(6) structure more directly from the supersymmetry.

Definition 17. Supersymmetry selects a USp(6) ⊂ USp(8) structure, and hence a well defined

SU(2) commutant within USp(8). An R+ × U∗(6) structure is given by any J̃ ∈ Γ(ad F̃ ) that

generates some U(1) ⊂ SU(2) commutant.

Given a J̃ , one can use it to decompose the generalised tangent bundle into eigenbundles.

4This was first noticed by Danial Waldram and Edward Tasker.
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We find that

EC = L1 ⊕ L−1 ⊕ L0

27→ 61 ⊕ 6−1 ⊕ 150

(4.7)

In the second line we have expressed this decomposition in terms of U∗(6) representations. Here

the subscripts denote the charge under the U(1) ⊂ U∗(6) generated by the J̃ . Much like for

conventional almost complex structures and almost generalised complex structures, we have a

definition of U∗(6) structures purely in terms of L1.

Definition 18. An R+ ×U∗(6) structure is defined by a subbundle L1 ⊂ EC such that

i) dimC L1 = 6

ii) L1 ×N L1 = 0

iii) L1 ∩ L̄1 = {0} L1 ∩ L0 = {0}

iv) The map ζ : L1 × (L−1)∗ :→ R defined by

ζ(V,Z) = Tr
(
(V ×ad Z)(V̄ ×ad Z̄)

)
(4.8)

is negative ∀V ∈ L1, Z ∈ (L−1)∗

We call such structures almost exceptional complex structures. Any bundle obeying the first

two conditions is called an almost exceptional Dirac structure [165].

Note that we could equally well define the structure in terms of L−1. While the third and fourth

conditions appear to depend on the full decomposition (4.7), one can define L0 by L1 via the

following. Let A = {Z ∈ E∗ | 〈V,Z〉 = 0 ∀V ∈ L1 ⊕ L−1} ⊂ E∗, where 〈·, ·〉 is the natural

pairing between E and E∗. That is, A is the null space of L1 ⊕ L−1. Then we define

L0 = (L1 ×ad A) · L−1 (4.9)

Once we have found L0 such that (iii) holds, we have a well-defined splitting of the dual space

E∗ into (L±1)∗ and (L0)∗.

We can decompose the weighted adjoint bundle into eigenbundles of J̃ . We find

78⊕ 1→ 1+2 ⊕ 1−2 ⊕ 20+1 ⊕ 20−1 ⊕ adPR+×U∗(6) (4.10)

The singlets imply that an R+ × U∗(6) structure defines a line bundle UJ̃ ⊂ (detT ∗) ⊗ ad F̃ .

One can show that it is defined by

V • χ = 0 ∀V ∈ Γ(L1), Tr(χχ̄) 6= 0 (4.11)

where χ is a local section of UJ̃ . The product V • χ is defined by the projection E ⊗ (detT ∗)⊗
ad F̃ → C where C is the generalised tensor bundle transforming in the 3514 of E6(6) × R+5.

5Note that this is R4 in the tensor hierarchy of E6(6) [254]
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One can equally define a local section χ by the condition J̃ ·χ = [J̃ , χ] = 2iχ. We can then give

the definition

Definition 19. Given an almost exceptional complex structure J̃ with trivial line bundle UJ̃ ,

an SU∗(6) structure is a global non-vanishing section of UJ̃ .

We expect that all SU∗(6) structures will arise in this way and any two will be related by some

E6(6) × R+ transformation. Note that any two SU∗(6) structures χ, χ′ which define the same

R+ ×U∗(6) structure will be related by some non-vanishing function f

χ′ = fχ (4.12)

Much like for complex structures and generalised complex structures, suitable values for χ will

not fill out the whole of 78⊕ 1. Instead, they will exist in some particular E6(6) × R+ orbit.

It is important to reiterate that since SU∗(6) 6⊂ USp(8), a choice of χ does not define a

generalised metric and hence does not fully define a supergravity background. Despite this,

we can still find some useful information about the hypermultiplets in the effective theory by

studying such structures.

4.2.1 Involutivity, Moment Maps, and Integrability

We will now look at the conditions imposed on χ by integrability. Recall from section 4.1 that

the integrability of the SU∗(6) structure is a subset of the supersymmetry conditions. This was

given as the vanishing of a triplet of moment maps for the action of generalised diffeomorphisms

on the space of H-structures. We will see that we will be able to recast this as an involutivity

condition on L1, which gives the integrability of the exceptional complex structure, along with

the vanishing of just a single moment map. In taking this description for integrable H-structures,

one loses the explicit hyper-Kähler structure that is guaranteed by supersymmetry. Instead, we

break the structure to just a Kähler structure. We will explore the implications of this hidden

SU(2) symmetry later in this chapter.

The intrinsic torsion for the generalised structures lies in a subbundle of the torsion bundle

K ∼ 351−1. Decomposing into U∗(6) structures we find that they transform as [187]

W
SU∗(6)
int : 152 ⊕ 15−2 ⊕ 150 ⊕ 61 ⊕ 6−1 (4.13)

W
R+×U∗(6)
int : 152 ⊕ 15−2 (4.14)

where again the subscripts denote the U(1) charge. We saw earlier that the integrability of a

complex structure can be described in terms of involutivity of eigenbundles. Again we find that

we can define

Definition 20. An integrable R+ × U∗(6) structure, or exceptional complex structure, is an

almost exceptional complex structure that is involutive under the Dorfman derivative. That is

LVW ∈ Γ(L1) ∀V,W ∈ Γ(L1) (4.15)
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In analogy with generalised complex geometry, an involutive structure that does not satisfy

L1 ∩ L−1 = {0} is called an exceptional Dirac structure.

In general, LVW 6= JV,W K. However, given the definition of an exceptional complex struc-

ture and (2.157), we find that the two agree on Γ(L1). Hence, it is equivalent to determine

integrability with respect to the Courant bracket.

To see that this definition is correct, one can introduce a compatible connection D that is

not necessarily torsion free. Using (5.11) we find

LVW = LDVW − T (V ) ·W (4.16)

Because of the compatibility of D, the first term must be a section of L1. Moreover, since the

left hand side does not depend on the choice compatible connection, the projection of LVW

onto L0 ⊕ L−1 can only depend on the intrinsic torsion T int. Given (4.14) we can see that

T int(V ) ·W ∈ Γ(L0) (4.17)

Hence, for LVW to be a section of L1 for all V,W ∈ Γ(L1), we need that T int|15−2 = 0. The

complex conjugate of this condition then sets the whole of T int = 0. Hence we see that definition

20 is correct.

From (4.13) we can see that the integrability conditions for R+ × U∗(6) structures is a

subset of the conditions for an integrable SU∗(6) structure. This makes sense as the R+×U∗(6)

structure is a strictly weaker structure. Given χ defining an R+ × U∗(6) structure that is

integrable, we want to know what additional conditions are required so that the SU∗(6) structure

is integrable. Let’s consider just the map µ3 from (4.2). In [187], they show that this is equal

to

µ3(V ) ∝
∫
M

Tr(κJ3T
int(V )) +

1

2

∫
M
T int(J3 · V ) · κ2 (4.18)

From this we can see that µ3 ≡ 0 if and only if the singlet part of T int(V ) is 0 for all V ∈ Γ(E).

From the decomposition of E given in (4.7), we see that this is equivalent to the 150⊕61⊕6−1

part of T int vanishing. This is precisely the remaining part of the intrinsic torsion of the SU∗(6)

structure given in (4.13). This motivates the following definition.

Definition 21. An integrable SU∗(6) structure χ, or equivalently J+, is an SU∗(6) structure

with an integrable U∗(6) structure, along with the vanishing of the moment map µ3.

As we mentioned, µ3 is a moment map for the action of generalised diffeomorphisms on the

space of SU∗(6) structures. Indeed, following [187], the space of H-structures AH has a Kähler

structure6 with Kähler potential given by

K =

∫
M

(Tr(χχ̄))1/2 (4.19)

Here χ is a holomorphic coordinate on AH . Splitting the functional derivative into holomorphic

and antiholomorphic parts δ = ∂′ + ∂̄′, and using $ = i∂′∂̄′K we can find the Kähler form on

6In fact, it is a hyper-kähler structure picked out by supersymmetry but we shall focus on just one of the
Kähler structures for now, returning to the full structure later.
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the space as

ıβıα$ =

∫
M

i

(Tr(χχ̄))1/2

[
−1

4

Tr(ıαδχχ̄) Tr(χδıβχ̄)

Tr(χχ̄)
+

1

4

Tr(ıβδχχ̄) Tr(χδıαχ̄)

Tr(χχ̄)

+
1

2
Tr(ıαδχıβδχ̄)− 1

2
Tr(ıβδχıαδχ̄)

] (4.20)

Using the non-holomorphic coordinate J+, this takes the much simpler form

ıβıα$ =
i

2

∫
M

[Tr(ıαδJ+ıβδJ−)− Tr(ıβδJ+ıαδJ−)] (4.21)

Here α, β ∈ Γ(TAH). Taking β = ρV to be the vector generated by an infinitesimal generalised

diffeomorphism, i.e. ıρV δJ+ = LV J+, then we see that

ıρV ıα$ =
i

2

∫
M

[Tr(ıαδJ+ıρV δJ−)− Tr(ıρV δJ+ıαδJ−)] (4.22)

=
i

2

∫
M

[Tr(ıαδJ+LV J−)− Tr(LV J+ıαδJ−)] (4.23)

= − i

2

∫
M

[Tr(J−LV ıαδJ+) + Tr(ıαδJ−LV J+)] (4.24)

= −ıαδ
(

i

2

∫
M

Tr(J−LV J+)

)
(4.25)

= −ıαδµ3(V ) (4.26)

Hence we see that, up to an overall sign which doesn’t matter, µ3 is precisely the moment map

defined.

4.2.2 Example - Calabi-Yau Manifolds

We know that Calabi-Yau three-folds provide a supersymmetric background when all the fluxes

vanish. We should then be able to embed some of the data of the Calabi-Yau into the formalism

of exceptional complex structures. It turns out that exceptional complex structures describe the

conventional complex structure of the Calabi-Yau. That is, embedding the Calabi-Yau structure

into the language of exceptional complex structures takes the following pattern of inclusions.

USp(6) ⊂ SU∗(6) ⊂ R+ ×U∗(6)

∪ ∪ ∪
SU(3) ⊂ SL(3,C) ⊂ GL(3,C)

(4.27)

From [187] we find that the relevant structures are

SU∗(6) structure : χ = 1
2κ

2(−Ω + Ω#) (4.28)

R+ ×U∗(6) structure :

{
J̃ = 1

2(I − vol− vol#)

L1 = ei vol · (T 1,0 ⊕ ∧0,2T ∗)
(4.29)
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Here, Ω is the SL(3,C) structure and I is the associated GL(3,C) structure. That is, I is the

conventional complex structure of the Calabi-Yau. vol = i
8Ω∧ Ω̄ is the volume form picked out

by the SL(3,C) structure, and the musical isomorphisms are defined by the SU(3) metric of the

Calabi-Yau, g. κ2 is some section of the bundle detT ∗. It is a simple check using the formulae

for the adjoint action in appendix A that L1 is the +i eigenbundle of J̃ , and χ lives in the −2i

eigenbundle of J̃ .

Now we look at what the integrability conditions given by definitions 20 and 21 imply for

the GL(3,C) and SL(3,C) structures. First, let’s consider the integrability of the R+ × U∗(6)

structure. Taking V = ei vol(v + ω), V ′ = ei vol(v′ + ω′) ∈ Γ(L1), we have

LV V
′ = Lei vol(v+ω)e

i vol(v′ + ω′)

= ei volLv+ω(v′ + ω′)

= ei vol
[
Lvv′ + (Lvω′ − v′ydω)− ω′ ∧ dω

] (4.30)

For this to be a section of L1 also, we require that Lvv′ ∈ Γ(T 1,0) for any v, v′ ∈ Γ(T 1,0). This

is precisely the statement that the GL(3,C) structure is integrable. If this is the case then the

exterior derivative decomposes into the Dolbeault operators d = ∂+∂̄. With this, we see that the

last term vanishes, and the middle term in the parentheses is equal to vy∂ω′−v′y∂ω ∈ Γ(∧0,2T ∗).

Hence we see that

R+ ×U∗(6) structure integrable ⇔ GL(3,C) structure integrable (4.31)

Now let’s consider the vanishing of the moment map µ3. Using the algebra in appendix A,

one can show that

µ3(V ) =
i

8

∫
M
−1

2
LV κ

2 +
1

2
κ2
[
−Ω̄#yLvΩ + Ω#yLvΩ̄− (Ω# ∧ Ω̄#)ydσ

]
(4.32)

This first term vanishes since LV κ
2 is a total derivative7. The final term gives

− 1

2

∫
M
κ2 vol#ydσ ∝

∫
M

vol#yκ2dσ ∝
∫
M

d(vol#yκ2) ∧ σ !
= 0 ∀σ ∈ Γ(∧5T ∗) (4.33)

This is true if and only if κ2 = c vol for some constant c ∈ R, which we can set to 1 without

loss of generality. This just says that the volume form picked out by the SU∗(6) structure is the

same as that picked out by the SL(3,C) structure. With this, the rest of (4.32) is proportional

to ∫
M

(
LvΩ ∧ Ω̄− Ω ∧ LvΩ̄) =

∫
M

(vydΩ ∧ Ω̄ + d(vyΩ) ∧ Ω̄− Ω ∧ vydΩ̄− Ω ∧ d(vyΩ̄)

= 2

∫
M
vy(ā− a) Ω ∧ Ω̄

(4.34)

In moving to the second line we have used integration by parts to put the derivatives on the

Ω, Ω̄, and have used the integrability of I to write dΩ = ā ∧ Ω for some ā ∈ Γ(T ∗0,1). This

7Here we use the fact that
∫
M

d(...) = 0 which means we are taking M to be compact without boundary, or
that the fields die off sufficiently quickly at infinity.
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vanishes for all v ∈ Γ(T ) if and only if ā = 0, or equivalently, if dΩ = 0. Therefore, we have

SU∗(6) structure integrable ⇔ SL(3,C) structure integrable (4.35)

4.2.3 A Closer Analysis of Exceptional Complex Structures

In this section we will examine what definition 20 implies for the structure of L1. We will find

that the isotropy and reality conditions place strong restrictions on the possible form of the

ECS in terms of natural bundles. First, we define a notion of type similar to that of generalised

complex structures defined in [165], and also defined in exceptional geometry in [1]. We make

this definition only for compactifications of of M-theory.

Definition 22. The type of an almost exceptional complex structure L1 ⊂ EC is the (complex)

codimension of its image under the anchor map. That is, if a : E → T is the anchor map, then

typeL1 = codimC a(L1) = 6− dimC a(L1) (4.36)

We will find that the only allowed types of an ECS are 0 and 3.

We would like to classify the possible forms of L1 based on the criteria set out in definition

20. We will only state the results here and leave the proofs for appendix E. Let us first focus

on condition (ii), the isotropy condition that states

L1 ×N L1 = 0 (4.37)

If we write Vi = vi + ωi + σi ∈ L1, then using the formula for the projection onto N around

(A.56) we find that the elements of L1 must satisfy

v1yω2 + v2yω1 = 0 (4.38)

jω1 ∧ ω2 + jω2 ∧ ω1 = 0 (4.39)

ω1 ∧ ω2 − v1yσ2 − v2yσ3 = 0 (4.40)

Careful consideration of these equations shows that any exceptional Dirac structure must be of

the following form.

Proposition 1. Any isotropic subbundle L ⊂ EC has the form

eα+β · (∆⊕ S2 ⊕ S5) (4.41)

where α ∈ Ω3(M) and β ∈ Ω6(M) are arbitrary but fixed, and where ∆ ⊂ T , S2 ⊂ ∧2T ∗,

S5 ⊂ ∧5T ∗ satisfy the following. For all v ∈ ∆, ω, ω′ ∈ S2 and σ ∈ S5 we have

vyω = 0 vyσ = 0

ω ∧ ω′ = 0 jω ∧ σ = 0
(4.42)

We now turn our attention to conditions (i) and (iii) in definition 20. One finds that imposing

dimC L1 = 6 restricts us to type 0, 3 and 6. Then imposing L1 ∩ L0 = {0} excludes the type 6
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case. We can therefore summarise the general form of an ECS in proposition 2. First, we will

introduce some notation which will be useful both here and later when we discuss the moduli

of these structures.

Let ∆ ⊂ T be some subbundle. We define by Fkp (∆) ⊂ ∧kT ∗ to be the bundle of differential

k-forms φ satisfying

φ(x1, ..., xp, v1, ..., vk−p) = 0 ∀x1, ..., xp ∈ Γ(T ), v1, ..., vk−p ∈ Γ(∆) (4.43)

Note that this defines a filtration of the fibres of ∧kT ∗ with

0 = Fkk (∆) ⊆ Fkk−1(∆) ⊆ ... ⊆ Fk0 (∆) ⊆ Fk−1(∆) := ∧kT ∗ (4.44)

where we have defined Fk−1(∆) = ∧kT ∗ for ease later. We can now summarise the results stated

above as follows.

Proposition 2. An exceptional complex structure can only be of type 0 or type 3, and their

general form is given by

type 0: eα+β · TC
type 3: eα+β · (∆⊕F2

1 (∆))
(4.45)

where ∆ ⊂ TC is rank 3.

α, β,∆ are not generic and are constrained by condition (iv) of definition 20. In principle,

one could find the non-linear conditions imposed by (iv), however we will not do that here.

Instead, we note that one can show that the following choice of isotropic bundle satisfies (i)-(iii)

of the definition of ECS.

L1 = ei vol · TC (4.46)

where vol is any non-zero volume form. However, this defines an SL(6,R)× R+ structure, and

one finds that ζ(V,Z) > 0. One can also show that if we choose some real ρ ∈ Ω3(M) then

L1 = eiρ · TC ⇒ ζ(eiρ · v, eiρ · (vol#yν)) ∝ |ν(v)|2 Tr(K2
ρ) (4.47)

where Kρ : T → T is the map introduced by Hitchin in [255]. The statement that ζ < 0 is

equivalent to the statement that Tr(K2
ρ) < 0, and hence ρ = re Ω for some SL(3,C) structure

Ω.

We will now turn to the conditions for integrability of the U∗(6) × R+ structure. Recall

from (4.15) that an ECS is integrable if and only if it is involutive with respect to the Dorfman

derivative. We will write L1 = eα+β · (v+ω) ∈ Γ(L1), and similarly for V ′, where v ∈ Γ(∆) and

ω ∈ Γ(F2
1 ). Note that in the case that ∆ = TC, F2

1 (∆) = 0 and hence this expression covers

both type 0 and type 3. Involutivity then becomes

LV V
′ = eα+β ·

(
[v, v′] + (Lvω′ − v′ydω + v′y(vydα))− ω′ ∧ dω

)
∈ Γ(L1) (4.48)

For this to be true we require [∆,∆] ⊆ ∆. In the type 0 case this is trivial, but in the type 3 case
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this implies the existence of a 3d foliation. The 2-form piece implies that for all v, v′ ∈ Γ(∆)

vydω′ − v′ydω + v′y(vydα) ∈ Γ(Fk1 ) (4.49)

A short calculation shows that, provided ∆ is integrable in the sense of Frobenius, the de Rham

differential restricts to d : Γ(Fkp )→ Γ(Fk+1
p ). Hence, Γ(F?p ) defines a filtration of the de Rham

complex. It is then clear that for all v ∈ Γ(∆), ω′ ∈ Γ(F2
1 ) we have vydω′ ∈ Γ(F2

1 ). We further

require that v′y(vydα) ∈ Γ(F2
1 ) which we can restate as

vy(v′y(v′′ydα)) = 0 ∀ v, v′, v′′ ∈ Γ(∆) (4.50)

Finally, we need the 5-form term to vanish in (4.48). Since ω′ ∈ Γ(F2
1 ) and dω ∈ Γ(F3

1 ), you

can show that ω′ ∧ dω ∈ Γ(F5
3 ). This space trivially vanishes because ∆ is of rank (at least) 3.

Therefore, the final term vanishes trivially. We can summarise the results as follows.

Proposition 3. An integrable ECS is of the form L1 = eα+β · (∆⊕F2
1 (∆)) where

[∆,∆] ⊆ ∆ vy(v′y(v′′ydα)) = 0 ∀ v, v′, v′′ ∈ Γ(∆) (4.51)

In the case that the ECS is of type 0, the second condition just implies dα = 0. This is just the

statement that the (complex) flux vanishes. This may not be the case for type 3 solutions.

4.3 Moduli of H-structures

As previously mentioned, an SU∗(6) structure does not define a generalised metric and hence

does not define a supergravity background. However, much like the moduli space of a Calabi-

Yau locally splitting into Kähler and complex moduli, the moduli space of a USp(6) structure

splits locally into H-structure and V-structure moduli. Therefore, by studying the moduli of the

H-structure, we will be able to retrieve some information about the spectrum of the effective

theory on R4,1. The moduli spaceMH was described in [187] in terms of a hyper-Kähler quotient

of the space of SU∗(6) structure by generalised diffeomorphisms. In the analysis above, we have

broken the SU(2) symmetry of the structure and in doing so, we will be able to make explicit

statements about the moduli of the structure in terms of natural cohomology groups. This

comes at the cost of losing the explicit hyper-Kähler construction, with only one of the Kähler

structures manifest. In trying to reinstate the SU(2) symmetry, we will find some interesting

structure of the cohomology arising.

The moduli space of SU∗(6) structures is defined to be the space of SU∗(6) structures that

are integrable, up to diffeomorphisms and form field gauge transformations. That is, the moduli

space is given by

MH = {χ ∈ AH |L1 involutive, µ3 = 0}/GDiff =: ÂH//GDiff (4.52)

The second inequality arises because µ3 is precisely the moment map for the action of GDiff on

AH . Hence,MH is precisely the Kähler quotient of ÂH := {χ ∈ AH |L1 involutive}. From this

description, we are able to exploit a general result about group actions that preserve a Kähler
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structure. That is, the space can be viewed as either a Kähler quotient, or a quotient by the

complexified group GDiffC
8 (see for example [256]). We can therefore write the moduli space

of H-structures in the convenient form9

MH = ÂH/GDiffC (4.53)

We can make a further simplification by considering SU∗(6) structures up to overall scaling

MH/C∗. Physically, this is motivated by the fact that rescaling χ by an overall constant can

be viewed as rescaling the internal Killing spinors by an overall constant. This can then be

absorbed into the definition of the external components of the decomposition of the Killing

spinors. With this in mind, the scale of χ is unphysical in a full supergravity background and

won’t appear as moduli in the effective theory on R4,1. Given this simplification, we find

MH/C∗ = {L1 |L1 involutive}/GDiffC =: ẐR+×U∗(6)/GDiffC (4.54)

where ẐR+×U∗(6) is the space of involutive R+ ×U∗(6) structures. This holds because a choice

of L1 determines χ up to some scaling, as is described around (4.10). This problem is now

completely analogous to the problem of finding moduli of conventional complex structures [257].

We will follow their work very closely.

4.3.1 Deformation Theory and Moduli of SU∗(6) Structures

At a point p ∈M , the space of almost exceptional complex structures is given by the coset

QR+×U∗(6) = E6(6) · J̃0 = E6(6)/U
∗(6) = E6,C/P (4.55)

where J̃0 is some fixed exceptional complex structure and P is the parabolic subgroup that

stabilises L1

P = StabL1 = GL(6,C) nC21 (4.56)

By considering all possible p ∈M we find that J̃ must be a section of the bundle

QR+×U∗(6) −→ QR+×U∗(6) −→M (4.57)

Infinitesimally, the deformations are given by sections of the bundle

e6,C/p −→ QR+×U∗(6) −→M (4.58)

8One has to be careful in defining this complexified group since the natural complexification is not well defined.
What we mean by GDiffC is the group generated by ρV , IρV ∈ Γ(TAH), where I is the complex structure on
AH .

9In fact, as is described in chapters 3 and 5, one really needs to consider the space Âps
H of ‘polystable’ points

in ÂH . This has interesting links to geometric invariant theory of which we go into more detail in those chapters.
Here, we are just interested in the infinitesimal structure of the moduli space for which this technicality is not
important. Hence, we will ignore this detail in this section.
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In practice, we choose an embedding e6,C/p ↪→ e6,C. Then, given some sectionA ∈ Γ(QR+×U∗(6)),

we can define the deformed L1 bundle L′1 by

L′1 = (1 + εA) · L1 (4.59)

for some small parameter ε << 1 and we view A as a map : L1 → EC/L1. Through the

embedding e6,C/p ↪→ e6,C, we get an embedding EC/L1 ↪→ EC.

By assumption, the original bundle L1 is involutive and hence the intrinsic torsion vanishes.

For a generic deformation A, L′1 will have some non-zero intrinsic torsion that appears as

an obstruction to the involutivity of the bundle with respect to the Dorfman derivative. By

expanding the involutivity condition to first order in ε, we find a map

d2 : Γ(QR+×U∗(6)) −→ Γ(W
R+×U∗(6)
int ) (4.60)

The integrable deformations are determined by the kernel of this map. That is, L′1 is integrable

if and only if A ∈ ker d2.

We also have a notion of trivial deformation given by complexified generalised diffeomor-

phisms. To linear order, these are given by the action of the Dorfman derivative along some

complexified vector V ∈ Γ(EC). That is, L′1 is said to be a trivial deformation if

L′1 = (1 + εLV )L1 some V ∈ Γ(EC) (4.61)

This defines a second map

d1 : Γ(EC) −→ Γ(QR+×U∗(6)) (4.62)

where a deformation A is trivial if an only if A ∈ im d1. It is an easy check that any trivial

deformation is involutive to linear order in ε. Indeed,

LW+εLVW (W ′ + εLVW
′) = LWW

′ + ε(LLVWW
′ + LWLVW

′) +O(ε2)

= (1 + εLV )LWW
′ +O(ε2)

(4.63)

This implies that d2 ◦ d1 = 0, and hence we have a three-term complex

Γ(EC)
d1−−−−−→ Γ(QR+×U∗(6))

d2−−−−−→ Γ(W
R+×U∗(6)
int ) (4.64)

where the cohomology of (4.64) counts the moduli of the SU∗(6) structure. In the rest of this

section we will provide different ways of analysing this cohomology for different cases.

4.3.2 Type 0 Structures

A generic10 R+ ×U∗(6) structure is of type 0 and these are of the form

L1 = eα+β · TC α ∈ Ω3(M)C, β ∈ Ω6(M)C (4.65)

10Generic in the sense that any the space of L1 with non-surjective projection onto T are measure 0 in the
Grassmannian of all L1.
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The algebraic conditions arising from definition 20 put algebraic conditions on α, β. In the case

that β = 0, α = iρ for some ρ ∈ Ω3(M)R, these conditions ensure that ρ defines an SL(3,C)

structure as in [255]. It is easy to see from (2.145) that this is an integrable R+×U∗(6) structure

if dα = 0.

To find the moduli of this structure we can choose the following embeddings.

EC/L1 = ∧2T ∗ ⊕ ∧5T ∗ (4.66)

QR+×U∗(6) = ∧3T ∗ ⊕ ∧6T ∗ (4.67)

Then a generic deformation of L1 of the form (4.65) will be

L′1 = (1 + ε(a+ b))L1 = eα+β+ε(a+b̃)TC (4.68)

where the formula on the right hand side is to be taken to first order in a, b, and where b̃ =

b− 1
2a ∧ α. From this it is clear that

L′1 integrable ⇔ da = db = 0 (4.69)

Of course the condition on b is trivial. We then want to consider when a deformation is trivial.

That is, when we can write it in the form

L′1 = (1 + εLV )L1 some V ∈ EC (4.70)

Writing V = eα+β(V + ω + σ), we find that the trivial L′1 can be written as

L′1 = eα+β−dω−dσ̃TC (4.71)

where σ̃ = σ + 1
2α ∧ ω. Hence, the deformation is trivial if and only if a, b are exact. From this

it is clear to see that the moduli are counted by the de Rham cohomology groups

H = H3 ⊕H6 (4.72)

4.3.3 Type 3 Structures

As we have seen, the only possibility other than type 0 is type 3. In this case we have

L1 = eα+β · (∆⊕F2
1 (∆)) (4.73)

For convenience, we will define a dual filtration of multivectors Fkp(∆) ⊂ ∧kT given by ξyφ = 0

for all ξ ∈ Fkp(∆), and for all φ ∈ Fkp (∆). It is possible to show that one can choose the following

for the quotient spaces.

EC/L1 =
(
T/F1

0

)
⊕
(
∧2T ∗/F2

1

)
⊕ ∧5T ∗ (4.74)

QR+×U∗(6) =
[(
T/F1

0

)
⊗
(
T ∗/F1

0

)]
⊕
(
∧3T/F3

2

)
⊕
(
∧3T ∗/F3

1

)
⊕ ∧6T ∗ (4.75)
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While these spaces may seem confusing at first, things are made easier by choosing some space

Σ ⊂ TC that is complement to ∆. In the case that ∆ ∼ T 1,0, there is a canonical choice of

Σ. However, when ∆ ∩ ∆̄ 6= 0, there may not be a well-defined choice. We expect that, since

a(E) = T , a unique choice should be selected by L0 somehow but we have not checked this.

Alternatively, we will always assume that these ECS are part of a supergravity background and

hence there will be a metric. We can always choose Σ = ∆⊥ with respect to this metric. In

any case, to calculate the following one may need to make such a choice. In that case, these

quotients simplify to

EC/L1 = Σ⊕ (Σ∗ ⊗∆∗)⊕ ∧2∆∗ ⊕ ∧5T ∗ (4.76)

QR+×U∗(6) = [Σ⊗∆∗]⊕ ∧3Σ⊕ ∧3∆∗ ⊕ (∧2∆∗ ⊗ Σ∗)⊕ ∧6T ∗ (4.77)

The final result should be independent of this choice of embedding and so we will work with

the general form (4.74), (4.75).

An important consideration to make in the type 3 case is the possibility of non-trivial flux.

As we saw in proposition 3, the complex flux locally defined by dα does not need to vanish.

This means that the physical flux F = dA, does not need to vanish either. Moreover, while it is

locally expressed as dA, the gauge potential A may not be globally defined and hence F may be

in a non-trivial cohomology class. In fact, as we shall see in the AdS case later, the cohomology

class of F represents something physical, such as the number of M5 branes wrapping a cycle.

This becomes an issue if we try to calculate the integrable deformations of a bundle L1 twisted

by the local gauge potentials A, since all of the deformation parameters will not be globally

well-defined, as they will also be twisted by A. Instead, we shall assume that we are working

with the flux-twisted Dorfman derivative11. This has the trade off of having the moduli counted

by the cohomology of a ‘flux-twisted’ differential. To find such a differential that squares to 0, it

will be convenient to work with the complex-flux twisted Dorfman derivative LFC
V and consider

deformations of the untwisted bundle L̃1 = ∆⊕F2
1 (∆). This has the same quotient bundles as

(4.74), (4.75).

Let’s consider a general deformation element R = r + X + θ + µ ∈ Γ(QR+×U∗(6)) where

r ∈ Γ
[(
T/F1

0

)
⊗
(
T ∗/F1

0

)]
, X ∈ Γ(∧3T/F3

2), etc. Then we consider the deformed bundle

L̃′1 = (1 +R)L̃1 = eθ+µ(1 + r +X) · (∆ + F2
1 (∆)) (4.78)

We then consider the conditions for L̃′1 to be involutive under LFC
V . We will leave the detailed

calculation to the appendix and for now just note that the moduli are controlled by two coho-

mology groups related to ∆. Firstly, since ∆ is involutive with respect to the Lie bracket, this

defines a Lie algebroid and has an associated differential

d∆ : ∧p
(
T ∗/F1

1

)
−→ ∧p+1

(
T ∗/F1

1

)
d2

∆ = 0 (4.79)

If we take i : ∆ ↪→ T to be the natural inclusion, then i∗ : T ∗ → (T ∗/F1
1 ). We can define the

11The equivalence between the twisted Dorfman derivative and twisted generalised tangent bundle pictures
was highlighted in chapter 2.3
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differential above via i∗ ◦ d = d∆ ◦ i∗, where we take the natural extension of i∗ to ∧pT ∗. This

will define cohomology groups which we will denote by Hp
∆.

The second cohomology group of interest is defined in terms of the filtration Fpk (∆). Recall

that d : Fpk (∆) → Fp+1
k (∆) if ∆ is an integrable distribution. Hence, the de Rham differential

descends to the following complex.

(
∧1T ∗/F1

k

) d−→
(
∧2T ∗/F2

k

) d−→ ...
d−→
(
∧6T ∗/F6

k

)
(4.80)

We then denote the cohomology groups associated to this complex as Hp
Fk . We note that neither

of these cohomologies are the basic cohomology of foliated spaces defined in e.g. [258].

After a lengthy calculation, one finds that the moduli are counted by the cohomology of a

differential that we will label d∆,F which creates the following complex

Γ
((
T/F1

0

)
⊕
(
∧2T ∗/F2

1

)
⊕ ∧5T ∗

)
d∆,F−−−−−−−→Γ

((
∧3T/F3

2

)
⊕
[(
T/F1

0

)
⊗
(
T ∗/F1

0

)]
⊕
(
∧3T ∗/F3

1

)
⊕ ∧6T ∗

)
d∆,F−−−−−−−→Γ

([(
∧3T/F3

2

)
⊗
(
T ∗/F1

0

)]
⊕
[(
T/F1

0

)
⊗ ∧2

(
T ∗/F1

0

)]
⊕
(
∧4T ∗/F4

1

)) (4.81)

If we take R = X + r+ θ+µ ∈ Γ(QR+×U∗(6)), and V = v+ω+σ ∈ Γ(EC/L1), then the closure

conditions are12

0 = d∆X (4.82)

0 = d∆r − jXyj2FC (4.83)

0 = dθ − r · FC (4.84)

and the exactness conditions are

r = d∆v (4.85)

θ = dω − vyFC (4.86)

µ = dσ + ω ∧ FC (4.87)

We are implicitly taking projections onto relevant quotient spaces where needed above. It is

an easy check to see that d2
∆,F = 0. If FC happens to be exact then one can show, assum-

ing constraints on α that are slightly stronger than those implied by involutivity13, that the

cohomology is counted by

H0
∆(M,∧3T/F3

2)⊕H1
∆(M,T/F1

0)⊕H3
F1

(M)⊕H6
d(M) (4.88)

4.3.4 A Generic Result on the Moduli

The moduli found in the previous sections determine the moduli of all structures of constant

type. However, there are cases where the type changes over the manifold. As we will see later

12The definition of jXyj2FC can be found in appendix A
13This extra condition is detailed in appendix F.
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around (4.103), a change of type 0 → type 3 can be interpreted as the 3-form twist α becoming

singular. In the case that we transition from type 0 → real type 3, this may indicate the

presence of a brane and hence understanding these type changing solutions may indicate how

to incorporate branes into the generalised picture. We would therefore like a general result on

the moduli that does not appeal to the specific type of the structure.

Being able to analyse the cohomology requires a good choice of embeddings e6,C/p ↪→ e6,C

and EC/L1 ↪→ EC. While the final result will not depend on this choice, certain embeddings

will simplify the problem greatly. One particularly convenient choice is picked out by the U∗(6)

structure itself. Decomposing under this group we find

EC = X1 ⊕ X−1 ⊕ ∧2X∗ (4.89)

ad F̃C = adPR+×U∗(6) ⊕ ∧3X∗−1 ⊕ ∧6X∗−2 ⊕ ∧3X∗1 ⊕ ∧6X∗+2 (4.90)

W
R+×U∗(6)
int = ∧4X∗−2 ⊕ ∧4X∗2 (4.91)

where X is a bundle that transforms in the 6 of SU∗(6). A natural choice of embeddings is then

EC/L1 = ∧2X∗ ⊕ ∧5X∗−1 QR+×U∗(6) = ∧3X∗−1 ⊕ ∧6X∗−2 (4.92)

Since L1 defines an integrable structure, by assumption, there exists a torsion free connection D

that is compatible with the exceptional complex structure J̃ . From (5.11) we know that we can

replace the definitions of d1,d2 in terms of the Dorfman derivative with definitions involving LDV .

This means that we can write the maps d1, d2 in terms of the connection D. Moreover, viewing

D : Γ(T )→ Γ(E∗⊗T ), we can decompose E∗ into U∗(6) representations. The compatibility of

D implies that it is consistent to define a decomposition of D as

D = D1 +D−1 +D0 (4.93)

where Dn = πnD where πn is the projection of E∗ to the subspace with J̃ charge n.

With these decompositions, we find that the complex (4.64) can be written

Γ(∧2X∗) Γ(∧3X∗−1) Γ(∧4X∗−2)

Γ(∧5X∗−1) Γ(∧6X∗−2)

D−1 D−1

D−1

D0 D0 (4.94)

Note that the involutivity of L1 implies that D2
−1 = 0. In fact, L1 defines a Lie algebroid and

D−1 is the associated differential

D−1 : ∧pX∗q −→ ∧p+1X∗q−1 (4.95)

In full generality, not much can be said about the cohomology of (4.94) without more knowledge

of the maps D−1, D0. However, if we make the following assumption, we can give a generic result

about the moduli of the SU∗(6) structures.
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Definition 23. D0, D−1 are said to satisfy the generalised ∂∂̄-lemma if they satisfy the following

imD0 ∩ kerD−1 ⊆ imD−1D0 (4.96)

We show in appendix E that provided the generalised ∂∂̄-lemma holds, and D0 is a cochain

homomorphism, then the cohomology H of the complex (4.64) is given by the cohomology of

D−1. More precisely we have

H = H3
D− ⊕H

6
D− (4.97)

We will see later that while these are the geometric moduli, not all of them may be physical.

Example - Calabi-Yau

We return to the explicit example of compactification on a Calabi-Yau. Following the method

set out above, we decompose EC, ad F̃C into eigenspaces of J̃ . This is outlined in appendix E

but for now, we just note that there is an isomorphism between this complex and the following,

using the holomorphic three-form Ω.

Ω2(M)C Ω3(M)C Ω4(M)C

Ω5(M)C Ω6(M)C

∂ ∂

∂

D0 D0 (4.98)

where D0 = Ω#y∂̄ + Ω̄#y∂. One can show that this satisfies the generalised ∂∂̄-lemma and

hence the moduli are counted by

H3
∂ ⊕H6

∂ (4.99)

We can see some of the known moduli of Calabi-Yau manifolds in there. For example, H1,2
∂ are

the complex structure moduli.

4.3.5 Reintroducing the SU(2) Symmetry

We return now to the question of the broken SU(2) symmetry of the SU∗(6) structure. Recall

that we could define an SU∗(6) structure as a triplet of weighted adjoint elements Jα that

form a highest weight su(2) algebra under the adjoint bracket. We then formed a R+ × U∗(6)

structure by considering just the unweighted J3. However, we could equally have chosen any of

the Jα, or indeed any u(1) ⊂ su(2). This means that in any supergravity background we have

a SU(2)/U(1) ' CP1 of equivalent R+ ×U∗(6) structures which are given by

J̃u = uαJ̃α |u|2 = 1 (4.100)

where the J̃α are the unweighted Jα. Moreover, an integrable SU∗(6) structure implies there

exists a torsion free connection which is compatible with all the Jα. Any such a connection

will also be compatible with the J̃u and hence all R+ ×U∗(6) structures will be integrable in a

supergravity background.
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We can equivalently think of this in terms of involutive bundles

J̃u ⇔ Lu = viLi (4.101)

where the i = ±, and the vi ∈ CP1 are functions on the uα. For all possible u, the Lu define a Lie

algebroid and hence have an associated differential Du which will count the moduli. Moreover,

since they are physically counting the moduli of the same structure, the cohomology groups

should be isomorphic. We therefore see that we have a set of quasi-isomorphic derivations

labelled by CP1.

Example - Calabi-Yau

For a Calabi-Yau manifold, the triplet of unweighted adjoint tensors are given by

J̃1 = −ρ+ ρ# J̃2 = −ρ̂+ ρ̂# J̃3 =
1

2
(I − vol− vol#) (4.102)

where ρ, ρ̂ are the real and imaginary parts of Ω respectively. One finds that for J̃u, we have

Lu =

e
i
2

(
u1+iu2

1+u3 Ω+u1−iu2

1−u3 Ω̄
)
TC u3 6= ±1

L±1 u3 = ±1
(4.103)

Hence, at all points except the north and south pole of the CP1, the R+ ×U∗(6) structure is of

type 0. At the north and south pole the structure is of type 3. Moreover, each bundle has an

associated differential and we find that

Du ∼


d u3 6= ±1

∂ u3 = 1

∂̄ u3 = −1

(4.104)

These differentials do not seem isomorphic. However, we saw that the moduli for the Calabi-Yau

defined by L1 were given by the Dolbeault cohomology groups H3
∂ ⊕ H6

∂ , whereas the type 0

moduli were counted by the de Rham cohomology groups H3 ⊕H6. The statement that these

are isomorphic is equivalent to Hodge’s Theorem on Calabi-Yau manifolds.

4.4 Applications to AdS5 ×M6 Backgrounds

In the case of E6(6) × R+ geometry, we find that supersymmetric AdS solutions also have an

involutive bundle structure. As was discussed briefly in chapter 2, AdS solutions are charac-

terised in generalised geometry through weak holonomy [212]. Specifically, these solutions have

a USp(6) structure which has a non-zero intrinsic torsion that is constrained to live in a singlet

representation of W int. As was shown in [213], this singlet lies only in the µ3 moment map

given in (4.2). We can therefore characterise AdS5 solutions as those with an SU∗(6) structure

satisfying

L1 involutive, µ3(V ) = 3m

∫
M
c(V,K,K) (4.105)
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where m is the inverse AdS radius, and K is a suitable F4(4) structure satisfying other compat-

ibility and integrability conditions. Given this, we can apply some of the tools we have found

above to analysing CFTs through the AdS/CFT correspondence.

The general local geometry of AdS5 backgrounds was analysed in [259] in terms of a local

SU(2) structure. This means that there are local 1-forms ζ1, ζ2 such that the metric looks like

ds2(M6) = ds2
SU(2) + ζ2

1 + ζ2
2 (4.106)

There is also a complex 2-form Ω and a real fundamental 2-form ω which capture the geometry

of ds2
SU(2). These, and other useful objects, can be defined in terms of spinor bilinears14.

sin θ = ε̄+ε− Y = ω − sin θ ζ1 ∧ ζ2 = −iε̄+γ(2)ε
+

ζ̃1 = cos θ ζ1 = ε̄+γ(1)ε
+ Y ′ = ζ1 ∧ ζ2 − sin θω = iε̄+γ(2)ε

−

ζ̃2 = cos θ ζ2 = iε̄+γ(1)ε
− X = −Ω ∧ (sin θ ζ1 − iζ2) = ε+Tγ(3)ε

+

Ω̃ = cos θΩ = ε−Tγ(2)ε
+ V = cos θ ω ∧ ζ2 = ε̄+γ(3)ε

−

(4.107)

Here the γ are the gamma matrices for Cliff(6) in an orthonormal frame for M . There are some

other useful spinor bilinear identities we can define

ε̄+ε+ = ε̄−ε− = 1 ε+Tε− = 0

i ∗X = ε−Tγ(3)ε
+ −ζ̃1 ∧ Y = iε̄+γ(3)ε

+

1
3!Y ∧ Y ∧ Y = iε̄+γ(6)ε

+ Z = ∗ζ̃1 = iε̄+γ(5)ε
−

(4.108)

The Killing spinor equations put constraints on these tensors. In [259] it was shown that the

set of necessary and sufficient local conditions are (for m 6= 0)

d(e3∆ sin θ) = 2me2∆ζ̃1 d(e4∆Ω̃) = 3me3∆X

d(e5∆ζ̃2) = ∗F + 4me4∆Y d(e3∆V ) = e3∆ sin θF + 2me2∆ ∗ Y ′
(4.109)

One can also deduce the following important relations

d(e3∆X) = 0 d(e∆Y ′) = −ξyF d(e∆Z) = e∆Y ′ ∧ F (4.110)

where ξ is a Killing vector, which can be shown using the Killing spinor equations, given by

ξ = e∆ζ̃#
2 (4.111)

These results were translated into E6(6) × R+ geometry in [213]. They found that the

appropriate SU∗(6) and F4(4) structures are given by

J3 = −1

2
κYR +

1

2
κ(ζ̃1 ∧ Y − ζ̃#

1 ∧ Y
#)− 1

2
κ(

1

3!
Y ∧ Y ∧ Y +

1

3!
Y # ∧ Y # ∧ Y #) (4.112)

J+ =
1

2
κ
(

Ω̃R − i ∗X + i ∗X#
)

(4.113)

K = ξ − e∆Y ′ + e∆Z (4.114)

14Note that we use slightly different notation to [259], instead following the notation of [213].
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where κ2 = e3∆ vol6 and the subscript R denotes raising one index to creating a GL(6) adjoint

element. For us, we will only be interested in the U∗(6) × R+ defined by the unweighted J3,

which we have labelled J̃ . We can find the decomposition of the generalised tangent bundle

under J̃ and we find

L1 = e−i cos θ ζ1∧ω−i sin θ vol6 ·
[
∆⊕F2

1 (∆)
]

(4.115)

∆ = T 1,0M4 ⊕ C(sin θ ζ#
2 − iζ#

1 ) (4.116)

Here, T 1,0M4 is the complex structure on the 4-dimensional subspace of T orthogonal to ζ1, ζ2,

defined by Ω. In their formulation, they have untwisted by the physical flux FR, which will be

in some non-trivial cohomology class counting the number of M5 branes wrapping the internal

cycles. We can combine this with the complex twist given above to form the complex flux FC

which is relevant for the deformation problem.

This bundle is globally type 3, even away from the locus sin θ = 0. This means that we can

use some of the tools of the previous section to understand the moduli of of these backgrounds,

and therefore the spectrum of the associated CFT. Understanding the moduli of the SU∗(6)

structure should be all that is needed to understand the spectrum of the associated CFT since it

was argued in [214] that there are no exactly marginal deformations coming from deformations

of the F4(4) structure K. This matches the field theory result that there are no exactly marginal

deformations of just the Kähler potential. The difficulty in applying the results of the previous

section directly to this case is that the moduli calculated there were for integrable SU∗(6)

structures, whereas these are not since the µ3 moment map does not vanish. Fortunately, as

is argued in [260], the spectrum only depends on the holomorphic object χ, which defines the

SU∗(6) structure, and not at all on K. Hence the moduli are exactly counted by the cohomology

of d∆,F , with FC in a non-trivial cohomology class, as laid out in section 4.3.3.

We have therefore shown that calculating the entire spectrum of any given CFT4 dual

to some AdS5 × M6 is equivalent to calculating particular cohomology groups associated to

a distribution ∆. Calculating the spectrum is a challenging problem related to calculating

certain homology groups in some a priori non-commutative chiral ring. These would be some

7-dimensional analogue of the cyclic homologies in Calabi-Yau algebras [261]. Instead, we have

shown that these are equivalent to certain cohomologies in a smooth commutative geometry,

graded by the action of Lξ15. This is the M-theory analogue of the work done in the type IIB

case, where the cyclic homologies have been related to the Kohn-Rossi cohomology groups of

the associated Sasaki-Einstein manifold in [262], and extended to non-Sasaki-Einstein solutions

in [260].

Looking at (4.116), we see that away from sin θ = 0, the distribution ∆ defines a complex

structure. However, on that locus, the complex structure degenerates and we find ∆∩∆̄ 6= 0. We

could therefore call ∆ an ‘almost everywhere complex structure’. There is not much literature

on calculating the graded cohomology groups for these distributions. However, one may hope

that standard techniques could be applied, and the exact dimensions could be calculated for

the simple cases of the Maldacena-Nunez solutions [121].

15This is the geometric equivalent of the R-charge

114



Chapter 5

Generalised Geometry for 4

Dimensional External Spaces

In this chapter we will analyse properties of generic 4 dimensional Minkowski compactifications

in terms of integrable SU(7) structures. We will start by defining these structures in terms

of a holomorphic object ψ transforming in the 9123 of E7(7) × R+. We will also introduce

a slightly weaker U(7) × R+ structure in terms of a subbundle L3 ⊂ EC. This bundle has

properties reminiscent of complex and generalised complex structures and so we have called

it an exceptional complex structure. Next, we show that supersymmetry is equivalent to the

involutivity of L3 plus the vanishing of a moment map. Taken together, these imply that the

SU(7) structure is integrable. We are able to give an expression for the superpotential and the

Kähler potential of the effective theory in terms of the holomorphic object ψ. The moment

map interpretation also provides possible links to geometric invariant theory which we briefly

discuss next. Finally, we discuss the moduli of SU(7) structures, recovering the results of G2

manifolds, and finding the exact set of moduli for GMPT backgrounds.

5.1 Generalised N = 1 Structures

Our goal is to analyse generic Minkowski N = 1, D = 4 flux compactifications of M-theory

and type II supergravity. In this section, we will show that they define two closely related

generalised G-structures, analogous to the GL(3,C) and SL(3,C) structures in conventional ge-

ometry. Remarkably, we will find that the supersymmetry conditions can be rephrased similarly

as an involution condition and the vanishing of a moment map. Conventional G2 structures are

of course a special case, corresponding to a compactification of M-theory with vanishing flux,

as are the general type II solutions of GMPT [101] and both will provide useful examples of

generalised N = 1 structures in the following sections.

Generic N = 1, D = 4 Minkowski flux compactifications of M-theory have been analysed

using conventional geometrical techniques several years ago [104–106, 108]. The metric takes a

warped form

ds2 = e2∆ds2(R3,1) + ds2(M), (5.1)

where M is the compactification manifold, the internal four-form flux is non-trivial and the
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eleven-dimensional Killing spinors take the form

ε = η+ ⊗ e∆/2ζc + η− ⊗ e∆/2ζ, (5.2)

where η± are chiral spinors of Spin(3, 1) and ζ is a complex Spin(7) spinor. Supersymmetry

implies ζ̄ζ is constant and there is vanishing four-form flux on the non-compact Minkowski space.

In the G2 case ζ is real. The analogous type II backgrounds were analysed by GMPT [101]. In

this case the two type II Killing spinors take the form

ε1 = η+ ⊗ ζ+
1 + η− ⊗ ζ−1 ,

ε2 = η+ ⊗ ζ∓2 + η− ⊗ ζ±2 ,
(5.3)

where ζ±i are chiral Spin(6) spinors, and the upper and lower choices of sign refer to type IIA

and IIB respectively. One can again construct a constant-norm, eight-component spinor

ζ = e∆/2e−ϕ̂/6

(
ζ+

1

ζ−2

)
, (5.4)

where ϕ̂ is the dilaton. Note that in both the M-theory and type II compactifications, although

ζ is nowhere vanishing, the individual Spin(7) components (the real and imaginary parts of

ζ) or Spin(6) components (the ζ±i ) may vanish, and hence do not define conventional (global)

G-structures.

However, these backgrounds do make sense globally as generalisedG-structures [180,184]. To

specify the background one needs the bosonic fields on M together with the Killing spinor ζ. In

exceptional generalised geometry the bosonic fields define a generalised metric G. For example

in M-theory G is equivalent to the set {∆, g, A, Ã} where g is the seven-dimensional metric, A

is the three-form potential on M and Ã is the six-form potential encoding the dual of the four-

form field strength on the Minkowski space. Geometrically G defines an SU(8)/Z2 ⊂ E7(7)×R+

generalised structure. The spinor ζ then transforms as the 8 representation of the double cover,

SU(8). The stabiliser of such a nowhere-vanishing constant-norm element is SU(7).1 In this

way, we see that a supersymmetric N = 1 background defines a generalised SU(7) structure.

The differential conditions on the Killing spinor are then equivalent to the vanishing of the

generalised intrinsic torsion of the SU(7) structure [184].

5.1.1 SU(7) and R+ ×U(7) Structures

Rather than defining the SU(7) structure using the pair (G, ζ) one can also define it directly in

terms of generalised tensors. In fact there will be two kinds of structure in E7(7)×R+ that will

interest us [180]:

J : stabilised by G = C∗ × SU(7) = R+ ×U(7),

ψ : stabilised by G = SU(7).
(5.5)

We will refer to J as an exceptional complex structure and ψ as a generalised SU(7) struc-

ture. They are stabilised by the same SU(7), but J is also invariant under an extra C∗ action.

1This is analogous to a nowhere-vanishing Spin(6) ' SU(4) spinor being stabilised by SU(3).
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This is directly analogous to the relation between an almost complex structure I in six dimen-

sions (a GL(3,C) structure) and a complex three-form Ω (an SL(3,C) structure), or an almost

generalised complex structure J and an almost generalised Calabi–Yau structure Φ.

To see how these structures are defined, for definiteness consider the M-theory case. Recall

that the generalised tangent space is given by

E ' T ⊕ ∧2T ∗ ⊕ ∧5T ∗ ⊕ (T ∗ ⊗ ∧7T ∗),

V = v + ω + σ + τ,
(5.6)

where V ∈ Γ(E) and E transforms in the 561 of E7(7)×R+. Here the bold subscript denotes the

R+ weight, normalised so that the determinant bundle detT ∗ has weight 2. We will occasionally

denote the components of a generalised vector explicitly as VM , where M = 1, . . . 56. One can

then define [187] two E7(7)-invariant maps

s : ∧2E → detT ∗, q : S4E → (detT ∗)2, (5.7)

namely the symplectic invariant s and symmetric quartic invariant q. We will also need the

adjoint bundle

ad F̃ ' R⊕ (T ⊗ T ∗)⊕ ∧3T ⊕ ∧3T ∗ ⊕ ∧6T ⊕ ∧6T ∗, (5.8)

transforming in Lie algebra representation 1330⊕ 10, as well as a bundle K, given for example

in [181], which contains the torsion of a generalised connection and transforms in the 912−1

representation. We also recall that the generalised Lie derivative [180,181], or Dorfman bracket,

generates infinitesimal diffeomorphisms and gauge transformations and takes the form

LV α = Lvα− (dω + dσ) · α, (5.9)

when acting on a arbitrary generalised tensor α, where L is the conventional Lie derivative, dω

and dσ are regarded as sections of ad F̃ and · denotes the adjoint action. In the following it will

also be useful to use the “twisted” generalised Lie derivative defined for A ∈ Γ(∧3T ∗M) and

Ã ∈ Γ(∧6T ∗M) via (see for example [187, Appendix D])

LF+F̃
V α := e−A−ÃL

eA+Ã·V

(
eA+Ã · α

)
= Lvα−

(
dω − ıvF + dσ − ıvF̃ + ω ∧ F

)
· α,

(5.10)

where F = dA and F̃ = dÃ − 1
2A ∧ F . Given a generalised connection D we can define the

generalised torsion T : Γ(E)→ Γ(ad F̃ ) via [183]

LV α = LDV α− T (V ) · α, (5.11)

where

LDV α = DV α− (D ×ad V ) · α, (5.12)

where ×ad is a projection ×ad : E∗ ⊗E → ad F̃ and DV = VMDM is the generalised derivative

along V . One finds that this definition implies the torsion actually lies in K ⊕E∗ ⊂ E∗⊗ ad F̃ .
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Let us turn first to defining the structure J . Recall that, at a point on the manifold, the

generalised metric defines an SU(8)/Z2 subgroup of E7(7)×R+, and the spinor ζ defines an SU(7)

subgroup of SU(8). There is a U(1) ⊂ SU(8)/Z2 that commutes with this SU(7) subgroup. It

is generated by an element of the SU(8) Lie algebra conjugate to the diagonal matrix

α = (−1/2,−1/2, . . . , 7/2) ∈ SU(8) ⊂ E7(7) ⊕ R. (5.13)

The normalisation is chosen so that exp(iθJ) with 0 ≤ θ < 2π generates a U(1) subgroup

of SU(8)/Z2. Note that the commutant of this U(1) is an R+ × U(7) subgroup of E7(7) × R+.

Globally the U(1) at each point will be generated by a section of the adjoint bundle J ∈ Γ(ad F̃ )

that is conjugate to α at each point. This leads us to the definition:

Definition 24. A generalised R+×U(7) structure or almost exceptional complex structure is a

section J ∈ Γ(ad F̃ ) that is conjugate at each point p ∈M to the element α ∈ SU(8) ⊂ E7(7)⊕R
given in (5.13).

Since the maximal compact subgroup SU(8)/Z2 ⊂ E7(7) and the maximal torus of SU(8) are

each unique up to conjugation, every reduction of the structure group of E to R+×U(7) should

be included in the definition. Furthermore all such structures will be related by local E7(7)×R+

transformations. Hence, as discussed in [180], the choice of J does not fill out all of the 133

representation space but instead lies within a particular orbit. Concretely, decomposing E7(7)

using explicit SU(8) indices (see [180] or [182]) we have

133 = 63⊕ 70 3 (µαβ, µαβγδ), (5.14)

and we can write J using the spinor ζ as

Jαβ = 4ζαζ̄β − 1
2(ζ̄ζ)δαβ, Jαβγδ = 0, (5.15)

where we have normalised ζ̄ζ = 1. For completeness, we note that further decomposing under

SU(7)×U(1) we have

133 = 10 ⊕ 480 ⊕ (7−4 ⊕ 74)⊕ (352 ⊕ 35−2) (5.16)

where now the subscripts denote the U(1) charge, and J lies in the singlet 10 representation.

Given J , in analogy with a conventional almost complex structure, we can use it to decom-

pose the complexified generalised tangent space. Under the adjoint action of J on sections of

the generalised tangent bundle, decomposing under SU(7)×U(1), we find

EC = L3 ⊕ L−1 ⊕ L1 ⊕ L−3,

56C = 73 + 21−1 + 211 + 7−3.
(5.17)

Thus we get four rather than two subbundles, with L−3 ' L̄3 and L−1 ' L̄1. As we will see,

L3 will play the analogue of the role of T 1,0 in conventional complex geometry. As such, this

leads to the alternative definition
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Definition 25. An almost exceptional complex structure is a subbundle L3 ⊂ EC such that

i) dimC L3 = 7,

ii) L3 ×N L3 = 0,

iii) L3 ∩ L̄3 = {0},

iv) The map h : L3 × L3 → (detT ∗)C defined by h(V,W ) = i s(V, W̄ ) is a definite hermitian

inner product valued in detT ∗,

where ×N : E ×E → N , with N the generalised tensor bundle transforming in the 1332 repre-

sentation, is an E7(7)×R+ covariant map given in appendix A. In analogy with the generalised

complex structure case we call a subbundle L3 satisfying the first two conditions a (complex)

exceptional polarisation.

Note that the (complex) stabiliser groups in E7,C of all exceptional polarisations are isomorphic.

However the corresponding real stabiliser groups in E7(7) × R+ can differ. In particular, only

almost exceptional complex structures are stabilised by a subgroup U(7)× R+ ⊂ E7(7) × R+.

We now turn to the SU(7) structure ψ. Decomposing the 912 representation under SU(7)×
U(1) ⊂ SU(8)/Z2 ⊂ E7(7), we find

912 = 36⊕ 420⊕ c.c,

= 17 ⊕ 73 ⊕ 28−1 ⊕ 21−1 ⊕ 35−5 ⊕ 1403 ⊕ 224−1 ⊕ c.c.
(5.18)

where the subscript denotes the U(1) charge. Consider the generalised tensor bundle transform-

ing in the 9123 representation of E7(7) ×R+ (where the bold subscript denotes the R+ weight;

the reason for this particular choice will be discussed below)

K̃ = (detT ∗)2 ⊗K ' R⊕ ∧3T ∗ ⊕ (T ∗ ⊗ ∧5T ∗)⊕ (S2T ∗ ⊗ ∧7T ∗)

⊕ (∧3T ∗ ⊗ ∧6T ∗)⊕ (∧3T ⊗ (∧7T ∗)3)⊕ . . . ,
(5.19)

where K ⊂ E∗⊗ad F̃ is the torsion bundle [181]. The SU(7) singlet in the decomposition (5.18)

implies that each almost exceptional complex structure J defines a unique line bundle UJ ⊂ K̃C,

satisfying

V • ψ = 0 ∀ V ∈ Γ(L3), s(ψ, ψ̄) 6= 0, (5.20)

where ψ is a local section of UJ , the product V •ψ is defined by the projection map E⊗ K̃ → C

where C is the generalised tensor bundle transforming in the 86454 representation2 of E7(7)×R+,

and s is the symplectic invariant on the 912 bundle K̃ ⊂ E⊗E⊗E induced from the symplectic

invariant on the 56 bundle E. One can equivalently define a local section ψ by the condition

Jψ = 7iψ under the adjoint action of J . In complete analogy with the almost complex and

almost generalised complex cases we are then led to define

Definition 26. Given an almost exceptional complex structure J with trivial line bundle UJ ,

a generalised SU(7) structure is a global nowhere-vanishing section ψ ∈ Γ(UJ).

2Note that this representation is just the next step in the tensor hierarchy [263,264] above 912.
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Again we expect all generalised geometries with SU(7) structure group will arise this way, and

furthermore any two such structures will be related by a local E7(7) × R+ transformation. In

particular, any two generalised SU(7) structures with the same almost exceptional complex

structure J will be related by a nowhere vanishing complex function f

ψ′ = fψ. (5.21)

Again [180], ψ parameterises a particular orbit in the 912 representation rather than filling

out the whole representation space. One could always write down the (non-linear) conditions

on ψ (and J for that matter) which define the relevant orbits, but we have not attempted to

do so. This would give conditions that are the analogue of stability for a three-form Ω and

non-degeneracy for a two-form ω. Instead, we can always write ψ concretely using the spinor

ζ and generalised metric G. Under the decomposition in (5.18) we can write a section of K̃ in

explicit SU(8) indices [180,182] as

κ = (καβ, καβγδ, κ̄αβ, κ̄αβγ
δ) ∈ Γ(K̃C). (5.22)

The SU(7) structure can then be written as

ψαβ = λ(volG)3/2ζαζβ, ψ̄αβ = ψαβγδ = ψ̄αβγ
δ = 0, (5.23)

where volG = e2∆√g is the E7(7)-invariant volume defined by the generalised metric [182, 183]

and λ is a non-zero complex number.

Recall that, since SU(7) ⊂ SU(8), the generalised structure ψ also defines a generalised

metric and so completely specifies the supergravity background. This is analogous to a G2

structure in conventional geometry, where the invariant three-form ϕ defines a metric. In this

way, our construction gives what one might call a “generalised G2 structure”. However this

obscures the fact that the stabiliser group is actually SU(7) and not G2 or G2 × G2 as might

be expected, so we do not follow this convention. Later we will see that for the example of a

conventional G2 structure, the invariant three-form ϕ does indeed define both ψ and J .

5.1.2 Supersymmetry and Integrability

We now turn to the conditions imposed on the generalised structures ψ and J by supersymmetry.

As shown in [184, 185, 265], the vanishing of the generalised intrinsic torsion for the SU(7)

structure is equivalent to N = 1 supersymmetry for the Minkowski space solution. In what

follows it will be useful to consider the intrinsic torsion for both ψ and J as the conditions for

a torsion-free J are a subset of those for ψ. This will allow us to see that integrability for ψ

follows from integrability for J , phrased in terms of an involution condition plus the vanishing

of a moment map for generalised diffeomorphisms, that is the group of diffeomorphisms and

form-field gauge transformations.

Following the analysis in [184, 185, 265], it is easy to show that intrinsic torsion for each
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generalised structure lies in a sub-bundle of 912 torsion bundle K transforming as

W int
SU(7) : 1−7 ⊕ 7̄−3 ⊕ 21−1 ⊕ 35−5 ⊕ c.c. (5.24)

W int
R+×U(7) : 1−7 ⊕ 35−5 ⊕ c.c. (5.25)

where again, the subscript denotes that U(1) charge under the action of J . We saw earlier how

integrability of a complex structure can be recast as involutivity of eigenspaces of the complex

structure under the Lie bracket. It is thus natural to define:

Definition 27. A torsion-free R+ × U(7) structure J or exceptional complex structure is one

satisfying involutivity of L3 under the generalised Lie derivative

LVW ∈ Γ(L3), V,W ∈ Γ(L3). (5.26)

Again in analogy with the generalised geometry case, we call the weaker case of an involutive

exceptional polarisation, an exceptional Dirac structure.

In general LVW 6= −LWV , however the definition of an exceptional polarisation implies

LVW = JV,W K V,W ∈ Γ(L3), (5.27)

where JV,W K = 1
2 (LVW − LWV ) is the antisymmetric Courant bracket, and in fact the invo-

lution condition could be equally well defined using the Courant bracket as the generalised Lie

derivative.

To prove that involutivity is equivalent to vanishing intrinsic torsion of the R+ × U(7)

structure, we first recall that we can always find a generalised connection D that is compatible

with the R+ × U(7) structure, so that DJ = 0, but it will not necessarily be torsion free.

Consider the definition of the torsion (5.11) with V,W = α ∈ Γ(L3). Compatibility of the

connection with J ensures LDVW ∈ Γ(L3), so involutivity amounts to checking that T (V ) ·W
is in L3 only. Since the left-hand side of (5.11) does not depend on the choice of compatible

connection, only the intrinsic torsion contributes to the components of T (V ) · W not in L3.

Explicitly, the intrinsic torsion representations contribute to T (V ) ·W ∈ Γ(E) as

1−7 ⊗ 73 ⊗ 73 ⊃ 21−1,

35−5 ⊗ 73 ⊗ 73 ⊃ 211.
(5.28)

In other words, a non-zero 1−7 component of the torsion would generate a 21−1 = L−1 term in

LVW . Requiring LVW ∩L−1 = {0} ∀V,W ∈ Γ(L3) thus sets the 1−7 component of the torsion

to zero. In a similar way, one sees that the 35−5 component is set to zero by LVW ∩L1 = {0}.
One has LVW ∩ L−3 = {0} identically just by counting the U(1) charges.

We now need to consider the remaining conditions that imply we have a torsion-free SU(7)

structure and hence an N = 1, D = 4 background. Comparing the representations that appear

in the intrinsic torsion for the R+ × U(7) and SU(7) structures (5.24) and (5.25), we see there

must then be an additional condition that sets the 7 and 21 components of the SU(7) intrinsic

torsion to zero. As we will now show these appear as the vanishing of a moment map µ for the
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action of generalised diffeomorphisms on the space of ψ structures.

One first notes that the space of SU(7) structures on M admits a natural pseudo-Kähler

metric. This is a consequence of viewing the theory as a rewriting of the ten- or eleven-

dimensional theory so that only four supercharges are manifest (the analogous situation for

N = 2 theories was described in [156, 187, 251, 266]). In analogy to [267], the local SO(9, 1)

or SO(10, 1) Lorentz symmetry is broken and the four-dimensional scalar degrees of freedom,

that is the space of generalised SU(7) structures, can be packaged into N = 1, D = 4 chiral

multiplets [180]. As such they must admit a Kähler metric, albeit infinite-dimensional. The

explicit construction is as follows. At a point p ∈ M , a choice of ψ is equivalent to picking a

point in the coset

ψ|p ∈ QSU(7) =
E7(7) × R+

SU(7)
, (5.29)

so that an SU(7) structure on M corresponds to a section of the fibre bundle

QSU(7) → QSU(7) →M. (5.30)

We can then identify

space of SU(7) structures, Z ' Γ(QSU(7)). (5.31)

The key point is that the space QSU(7) admits a homogeneous pseudo-Kähler metric of signature

(70, 16), picked out by supersymmetry. One first notes that the related space E7(7)/U(7) admits

a homogeneous pseudo-Kähler metric by a classic result of Borel [236, Proposition 2]. The metric

is unique up to an overall scale [268]. The space QSU(7) can be viewed as a complex line bundle

over E7(7)/U(7), with the zero section removed, since we only have an R+ action. There is then a

natural one-parameter family of conical, homogeneous Kähler metrics on QSU(7), distinguished

by the relative size of the U(1) circle relative to the E7(7)/U(7) base. The infinite-dimensional

space of structures Z then inherits a pseudo-Kähler structure from the pseudo-Kähler structure

on QSU(7). Our choice of R+ weight for ψ picks out a particular Kähler metric within the

one-parameter family with the explicit Kähler potential given by

K =

∫
M

(
i s(ψ, ψ̄)

)1/3
, (5.32)

where ψ can be viewed as a complex coordinate on the space of structures, or more precisely

as a holomorphic embedding ψ : Z ↪→ Γ(K̃C). Given the R+ weight of the K̃ bundle, we need

to take the 1/3-power so that the integrand in (5.32) is a section of detT ∗ and hence can be

integrated over M . A different choice of weight would have led to a different power in K and

hence a different Kähler metric.

In analogy to the N = 2 case described in [156, 187, 251, 266], the existence of the Kähler

structure follows from supersymmetry. As we mentioned above, one can consider rewriting

the ten- or eleven-dimensional theory so that only four supercharges are manifest. Similar

to [267], the local SO(9, 1) or SO(10, 1) Lorentz symmetry is broken and the internal degrees of

freedom can be packaged into N = 1, D = 4 chiral multiplets [180] coupled to four-dimensional

supergravity. Note that there are an infinite number of fields as no Kaluza–Klein truncation
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is performed: one keeps all modes on the internal space. The scalar degrees of freedom should

hence parameterise an infinite-dimensional Kähler space, but from our discussion, this is just

the space of generalised SU(7) structures.3 In this context, the particular weight of ψ, and

hence Kähler metric, is fixed by the four-dimensional supersymmetry. In particular, as we will

see in section 5.3.1, the power of 1/3 is required for the D = 4, N = 1 superpotential on the

space of chiral fields parameterising Z to be a holomorphic function of ψ.

We can write the symplectic structure corresponding to (5.32) very explicitly as follows.

Using $ = i ∂′∂̄′K, we have, contracting two vectors α, β ∈ Γ(TZ) into the symplectic form,

ıβıα$ = i

∫
M

1

3

1(
i s(ψ, ψ̄)

)2/3(i s(ıαδψ, ıβδψ̄)− i s(ıβδψ, ıαδψ̄)

− 2

3

i s(ıαδψ, ψ̄) i s(ψ, ıβδψ̄)

i s(ψ, ψ̄)
+

2

3

i s(ıβδψ, ψ̄) i s(ψ, ıαδψ̄)

i s(ψ, ψ̄)

)
.

(5.33)

Note that if we define a new non-holomorphic parameterisation

φ =
(
is(ψ, ψ̄)

)−1/3
ψ, (5.34)

which transforms in the 9121 representation, the symplectic structure takes the simple form

ıβıα$ = −1

3

∫
M

(
s(ıαδφ, ıβδφ̄)− s(ıβδφ, ıαδφ̄)

)
, (5.35)

that is, it is just the pull-back $ = 1
3φ
∗s of the symplectic form on the space of φ.

One can also restrict to the subspace of structures that define an (integrable) exceptional

complex structure, so that L3 is involutive,

Ẑ = {ψ ∈ Z | J is integrable}. (5.36)

As we will show in section 5.3.1, the integrability condition is holomorphic as a function of ψ

and so Ẑ inherits a Kähler metric from the one on Z, with the same Kähler potential.

Finally we can turn to the remaining integrability conditions for the SU(7) structure. As

in our previous examples, the Kähler structure on Ẑ is invariant under generalised diffeomor-

phisms. Infinitesimally these are generated by the generalised Lie derivative, and parameterised

by generalised vectors V ∈ Γ(E). As deformations in the space of structures, this defines a

vector field ρV ∈ Γ(T Ẑ)

ıρV δφ = LV φ, (5.37)

3As we discuss below, the chiral multiplet space is strictly a C∗ quotient of the space of structures.
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where for convenience we are using the non-holomorphic structure φ. We then have

ıρV ıα$ =
i

3

∫
M

(
i s(ıαδφ, LV φ̄)− i s(LV φ, ıαδφ̄)

)
= − i

3

∫
M

(
i s(LV ıαδφ, φ̄) + i s(LV φ, ıαδφ̄)

)
= ıαδ

(
1
3

∫
M
s(LV φ, φ̄)

)
= ıαδµ(V ),

(5.38)

where we have used compactness to integrate by parts and have defined

µ(V ) = 1
3

∫
M
s(LV φ, φ̄)

= 1
3

∫
M
s(LV ψ, ψ̄)(i s(ψ, ψ̄))−2/3,

(5.39)

where in going to the second line we use
∫
M LV (· · · ) = 0. This gives a moment map µ : Ẑ →

gdiff∗, where, as before, gdiff∗ is the dual of the Lie algebra of generalised diffeomorphisms.

We now want to prove that integrability of ψ is equivalent to the vanishing of the moment

map (5.39). Let D be a (torsionful) generalised connection compatible with the SU(7) structure,

that is Dψ = 0 (and hence Dφ = 0). Using the definition of torsion (5.11), we have

µ(V ) = 1
3

∫
M
s((LDV φ, φ̄)− s(T (V )φ, φ̄)

= 1
3

∫
M
s(DV φ, φ̄)− s((D ×ad V )φ, φ̄)− s(T (V )φ, φ̄)

= −1
3

∫
M
s(T (V )φ, φ̄),

(5.40)

where in moving to the last line we integrate the middle term by parts and use Dφ = Dφ̄ = 0.

Since the definition of µ is independent of any choice of connection, only the SU(7) intrinsic

torsion can contribute in the last expression. Given that the generalised vector V ∈ Γ(E)

transforms in the 7 + 21 + c.c. representation, and φ is an SU(7) singlet, only the 7 + 21 + c.c.

representations of the SU(7) intrinsic torsion can appear4 in µ. However, from (5.25) and (5.24),

we see these are precisely the additional components that must be set to zero for an exceptional

complex structure to be an integrable SU(7) structure. Thus we have shown that the following

definition is consistent:

Definition 28. A torsion-free generalised SU(7) structure is one where L3 is involutive and the

moment map (5.39) vanishes.

Since two SU(7) structures that are related by diffeomorphisms and gauge transformations

give physically equivalent backgrounds, the moduli space of SU(7) structures is naturally a

symplectic quotient by generalised diffeomorphisms GDiff, or equivalently a quotient by the

4Note that there could in principle be a further kernel in the map from the intrinsic torsion to µ so that only
one of the 7 and 21 representations appeared. However it is easy to show that both representations are in fact
present.
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complexified group GDiffC:

Mψ = Ẑ//GDiff ' Ẑ/GDiffC. (5.41)

Recall that the moduli space of G2 holonomy manifolds in M-theory is associated with N =

1, D = 4 chiral superfields [269–272]. For a generic N = 1, D = 4 background, supersymmetry

implies that the moduli space of integrable (torsion-free) generalised SU(7) structures should

again define fields in chiral multiplets. However, note that not all deformations of ψ deform

the physical fields on the internal space. In particular, only those within the coset E7(7) ×
R+/(SU(8)/Z2) are physical (deformations that change the generalised metric). First note

that, from the warped product form (5.1), shifts of the warp factor ∆ → ∆ + c for some

constant c can be absorbed in the four-dimensional metric. Second note that any modulus that

lies in SU(8)/SU(7) would correspond to a change of Killing spinor ζ for the same physical

background. However this just implies that the background admits a second Killing spinor and

so really preserves N = 2 supersymmetry. The exception to this is the change of ζ by a constant

phase, that is by the U(1) generated by J , since this too can always be reabsorbed into the

four-dimensional spinors in the ansatzë (5.2) and (5.3). Thus for honest N = 1 backgrounds we

only need to consider the action of this U(1) and the shift in ∆. As we note from the form of ψ

in (5.23), shifting ∆ simply rescales ψ, in fact via the R+ action. Put together we see that the

physical moduli space is given by

Moduli space of N = 1 background =Mψ//U(1) 'Mψ/C∗,

where the C∗ action acts as

ψ → λ3ψ, (5.42)

where we have normalised the C∗ action to match the R+ action on ψ which implies K → |λ|2K.

Under the symplectic quotient, the physical moduli space has a Kähler potential K̃ given by

K̃ = −3 logK. (5.43)

This is the Kähler potential that determines the metric on the moduli space of the supergravity

background. For example, in the G2 case that we will discuss in section 5.2.1, this reduces to

the known result that the Kähler potential K̃ = −3 log
∫
M vol describes the coupling of moduli

in the four-dimensional effective theory, where vol is determined by the G2 structure [270–272].

Note that, strictly, one should check that the kinetic terms and potentials in the D = 4

effective theory are given by K̃ (specifically checking that the coefficient of −3 is correct). One

check is to compare with the G2 holonomy case, as we do in the next section. Alternatively, we

can note that the quotient is simply the standard relation between the Kähler geometry in su-

perconformal supergravity [273–275], using a compensator field, and the standard supergravity

formalism where a gauge for the compensator is chosen. This fixes the C∗ scaling of K and the

factor of −3 comes from the standard normalisation of the gravitational coupling constant (as

reviewed for example in [276]).
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5.2 Examples of Integrable Generalised SU(7) Structures

We now present two classic examples of N = 1, D = 4 backgrounds and describe how they

can be understood as integrable generalised SU(7) structures. We discuss G2 backgrounds in

M-theory and N = 1 GMPT backgrounds in type II theories. In both of these cases, we will see

that involutivity of the L3 subbundle reproduces a subset of the known differential conditions

these backgrounds must satisfy. The final differential conditions come from the vanishing of

the moment map. In particular, this gives a completely new way of viewing G2 manifolds that,

intriguingly, closely mirrors the discussion of complex structures.

5.2.1 G2 Structures in M-theory

Recall that a G2 structure is defined by a nowhere-vanishing three-form ϕ ∈ Γ(∧3T ∗M), which

can be written in a local frame as

ϕ = e246 − e235 − e145 − e136 + e127 + e347 + e567. (5.44)

This defines a metric g = ea ⊗ ea and an orientation vol = e1...7 = ?1. The Hodge dual of ϕ is

? ϕ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457, (5.45)

so that ϕ ∧ ?ϕ = 7 vol. The structure is integrable, that is we have a G2 holonomy manifold, if

and only if

dϕ = d ? ϕ = 0. (5.46)

Compactifying M-theory on a G2 holonomy manifold with ∆ = 0 gives a N = 1, D = 4

background. One can also include non-trivial three-form potential A such that dA = 0.

We would like to first identify how a G2 structure defines a generalised SU(7) structure.

Before doing so it is useful to define the notion of “type” for almost exceptional complex

structures in M-theory in an analogous way to the type of generalised complex structures given

in [165]:

Definition 29. The type of an almost exceptional complex structure L3 ⊆ EC is the (complex)

codimension of its projection onto the tangent bundle TC. That is, if π : E → T is the anchor

map then

typeL3 := codimC π(L3) = 7− dimC π(L3). (5.47)

A generic5 seven-dimensional subspace of a fibre of E will have a surjective projection onto

the tangent space T , and hence a generic exceptional complex structure is type-0. We can

always write such a space as

L3 = eα+βTC for α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C). (5.48)

This identically satisfies the first two conditions for an almost exceptional complex structure,

and one gets simple constraints on the polyform α+β from L3 ∩ L̄3 = {0} and the requirement

5Generic in the sense that the set of all seven-dimensional subspaces not of this type is measure zero in the
Grassmannian.
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that i s(V, W̄ ) for V,W ∈ Γ(L3) defines a definite hermitian inner product. Note that TC

is the simplest example of an exceptional Dirac structure (following the definition given in

section 5.1.2), but is not an exceptional complex structure since, for example, TC ∩ TC 6= 0.

In terms of the Killing spinor ζ, viewed as a complexified Spin(7) spinor, the requirement that

the structure is type-0 is that the scalar ζTζ is nowhere vanishing.6 This is precisely the case

discussed in [108] where the real and imaginary parts of ζ have different normalisations (and/or

are non-orthogonal). The analyses in [104] and [106], on the other hand, fix equal norms and

orthogonal real spinors and so define a structure that is strictly not type-0.

A G2 structure, embedded in generalised geometry, defines the simplest example of a type-0

almost exceptional complex structure. Taking α = iϕ and β = 0, we have

L3 = eiϕTC, (5.49)

so that a section of L3 takes the form (using the “j-notation” of [181])

Γ(L3) 3 v + i ıvϕ− 1
2ϕ ∧ ıvϕ−

1
6 i jϕ ∧ ϕ ∧ ıvϕ

= v + i ıvϕ− ?ıvϕ− i v[ ⊗ vol,
(5.50)

for some v ∈ Γ(TC). The condition on i s(V, W̄ ) for V,W ∈ Γ(L3) is equivalent to the weighted

metric

g̃(v, w) = ıvϕ ∧ ıwϕ ∧ ϕ (5.51)

being positive definite for v, w ∈ Γ(T ). However, this is just the condition that ϕ is a (positive)

stable form in the sense of Hitchin [255]. (It also implies L3 ∩ L̄3 = {0}.) The R+ × U(7)

structure J is given by

J = ϕ] − ϕ, (5.52)

where ϕ] is obtained from ϕ by raising its indices using the inverse metric g−1 defined by ϕ.

One can check that this satisfies JL3 = 3iL3 using the action of the 133 on the 56 given in

appendix A.

We now turn to the integrability condition on J . Involutivity of L3 is simple to show using

the properties of the generalised Lie derivative. Writing generic sections of L3 as V = eiϕv and

W = eiϕw, given two vectors v, w ∈ Γ(TC), we then have

LVW = Leiϕv(e
iϕw) = eiϕL

i dϕ+ 1
2
ϕ∧dϕ

v w = eiϕ
(
[v, w] + ıwıv(i dϕ+ 1

2ϕ ∧ dϕ)
)
, (5.53)

where we have used the twisted generalised Lie derivative (5.10). The second term must vanish

for the right-hand side to be a section of L3 only. As this is defined for arbitrary v and w, the

bundle L3 is involutive on L3 if and only if we have a closed G2 structure

involutivity of L3 : dϕ = 0. (5.54)

6Note that this condition involves ζTζ and not ζ̄ζ, which is what defines the SU(7) structure (see below
(5.2)). Given that ψ is of the form (5.23), this condition amounts to requiring that the 1 ∈ R component of ψ is
non-vanishing.
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This condition is weaker than a torsion-free G2 structure (which requires d ? ϕ = 0 as well).

A theorem due to Bryant states that, like symplectic structures, all closed G2 structures are

equivalent, taking a standard form in a local patch [277].

Now we examine the moment map for this example. To do so, we first need to define the

SU(7) structure ψ. Recall that ψ is a section of

K̃ ' R⊕ ∧3T ∗ ⊕ (T ∗ ⊗ ∧5T ∗)⊕ (S2T ∗ ⊗ ∧7T ∗)

⊕ (∧3T ∗ ⊗ ∧6T ∗)⊕ (∧3T ⊗ (∧7T ∗)3)⊕ . . . ,
(5.55)

and also that V • ψ = 0 for all V ∈ Γ(L3). Since R is the lowest degree term in K̃, we note

that, taking 1 ∈ Γ(K̃), we must have v • 1 = 0 for any vector v ∈ Γ(TC) viewed as a section of

Γ(EC). Since L3 = eiϕTC we see this means we can construct ψ as

ψ = eiϕ · 1, (5.56)

where the exponential acts on 1 ∈ R via the adjoint action. The components of ψ have the form

ψ ∼ (1, ϕ, jϕ ∧ ϕ, g̃, . . .). (5.57)

Recall that s(ψ, ψ̄) ∈ Γ((detT ∗)3), so it has 3 × 7 = 21 indices. Given that ϕ ∈ Γ(∧3T ∗), it

hence must be degree 7 in ϕ, meaning the Kähler potential (5.32) is degree 7/3. This is precisely

the same scaling as the G2 Hitchin functional [151, 278] so that, up to an overall constant, we

must have

K =

∫
M

(
i s(ψ, ψ̄)

)1/3 ∝ ∫
M
ϕ ∧ ?ϕ. (5.58)

One can check this is indeed the case by an explicit calculation. Using the the twisted generalised

Lie derivative and invariance of the symplectic form under a complexified E7(7) transformation,

we can then calculate the moment map (5.39)

µ(V ) = 1
3

∫
M
s
(
LV (eiϕ · 1), e−iϕ · 1

)
(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(eiϕL

i dϕ+ 1
2
ϕ∧dϕ

e−iϕV
1, e−iϕ · 1)(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(L

i dϕ+ 1
2
ϕ∧dϕ

e−iϕV
1, e−2iϕ · 1)(i s(ψ, ψ̄))−2/3.

(5.59)

As e−iϕ has no kernel, we can relabel e−iϕV → V to give

µ(eiϕV ) = 1
3

∫
M
s(L

i dϕ+ 1
2
ϕ∧dϕ

V 1, e−2iϕ · 1)(i s(ψ, ψ̄))−2/3. (5.60)

Given V = v + ω + σ + τ and dϕ = 0

L
i dϕ+ 1

2
ϕ∧dϕ

V 1 = LV 1 = −(dω + dσ) · 1 = −dω − jdσ. (5.61)

128



For general γmnp ∈ Γ(∧3T ∗) and πm,n1...n5 ∈ Γ(T ∗ ⊗ ∧5T ∗) we have

s(γ + π,e−2iϕ · 1)(i s(ψ, ψ̄))−2/3
m1...m7

= const× γ[m1m2m3
(?ϕ)m4m5m6m7] + const× gnpπn,p[m1m2m3m4

ϕm5m6m7],
(5.62)

where, rather than evaluate the expression directly, we have used the facts that it must be linear

in γ and π and a top form, and that the only G2-invariant tensors are ϕ, ?ϕ, the metric g and

its inverse. However for π = jdσ the second term vanishes. We thus have7

µ(eiϕV ) ∝
∫
M

dω ∧ ?ϕ

∝
∫
M
ω ∧ d ? ϕ,

(5.63)

where we have assumed that M is compact to integrate by parts.

vanishing of moment map: d ? ϕ = 0, (5.64)

so that the G2 structure must be torsion free.

We can extend this example to include fluxes by including them in the complexified trans-

formation as

L3 = eÃ+AeiϕT = eÃ−
1
2 iA∧ϕ+A+iϕT, (5.65)

where A and Ã are three- and six-form potentials. The real E7(7) transformation by A + Ã

amounts to turning on four-form and seven-form fluxes, given by

F = dA, F̃ = dÃ− 1
2A ∧ F. (5.66)

The involutivity condition is now

[v, w] + ıwıv(F + i dϕ+ F̃ + 1
2ϕ ∧ dϕ− iF ∧ ϕ) ∈ Γ(TM), (5.67)

which holds if and only if

dϕ = F = F̃ = 0. (5.68)

In other words, involutivity of L3 forces the G2 structure to be closed and the fluxes to vanish.

Note that one could include a warp factor by including e∆ in the definition of L3 – one would

then find that involutivity also forces the warp factor to be constant. Since all the fluxes vanish,

the twisted generalised Lie derivative is equal to the ordinary Lie derivative and the analysis

of the µ = 0 condition is exactly as before, that is, it simply implies d ? ϕ = 0, and the G2

structure is integrable. We have thus reproduced the standard conditions for a supersymmetric

compactification of M-theory on a G2 manifold. For the SU(7) structure there is strictly one

extra degree of freedom, since we can always rescale ψ by a complex constant. As we discussed

7Note that an analogous argument gives the same expression for the variation of the Kähler potential for
δϕ = dω. (This gives a reason for why the coefficient of the first term in (5.62) cannot vanish; one knows the
generic variation of the Hitchin function is non-zero.) As we will discuss in section 5.3.2, this reflects the fact
that the vanishing of the moment map is the same as the extremisation of the Kähler potential.
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at the end of section 5.1.2, this rescaling is not physical.

Recall that SU(7) structures are equivalent if they differ by generalised diffeomorphisms.

The gauge symmetries will simply shift

A→ A+ dω, Ã→ Ã+ dσ, (5.69)

thus the physical gauge degrees of freedom parameterise the de Rham cohomology classes

H3
d(M,R) and H6

d(M,R). The conventional diffeomorphisms on the other hand simply relate

diffeomorphic G2 structures. Locally the moduli space of integrable G2 structures is diffeomor-

phic to a open set of H3
d(M,R) (see for example [85]). Furthermore H6

d(M,R) = 0. As we will

show in section 5.4, all deformations of the SU(7) structure either deform the G2 structure ϕ,

deform A in H3
d(M) or correspond to rescaling ψ. Thus, dropping the non-physical rescaling,

the physical moduli space is

Mψ/C∗ ' H3
d(M,C) (locally), (5.70)

with the Kähler metric given by (5.43), as in [270–272]. We will comment more on a formal

way to treat this moduli problem in section 5.4.

In summary, we have shown that by embedding the problem in E7(7) × R+ generalised

geometry, the G2 manifold has an intriguing reinterpretation, as a sort of generalised complex

structure. There is an involutive complex subbundle whenever dϕ = 0, and the final condition

d ? ϕ = 0 comes from a moment map.

5.2.2 GMPT Structures in Type II

The GMPT solutions give N = 1 compactifications of type II supergravities and were first

analysed in [202] and further studied in [203]. While the solutions are not completely general,8

they do cover a large class of compactifications in which the internal manifold has an SU(3)

structure, an SU(2) structure, or an intermediate case where the two SU(3) structures can

degenerate. The key observation of [202] was that these three cases are examples of SU(3) ×
SU(3) structures on the generalised tangent bundle EO(6,6) = T ⊕ T ∗ and can all be described

as generalised Calabi–Yau manifolds admitting two pure spinors [164, 165]. We begin with a

brief review of the key aspects of the GMPT solutions before embedding them into the SU(7)

structures we have described above. We will use this formulation of the solutions to find their

moduli in section 5.4.4.

The GMPT solutions admit two non-vanishing, compatible pure spinors {Φ+,Φ−} with

associated generalised complex structures {J+,J−} satisfying

(Φ+,��V Φ−) = (Φ+,��V Φ̄−) = 0 ∀ V ∈ EO(6,6) ⇔ [J+,J−] = 0, (5.71)

where [·, ·] is the usual commutator and the slash denotes the Clifford action, as it will for the

remainder of this section. This is a special case of the generalised Kähler structures defined

8The construction requires that the two internal spinors {η1, η2} in (5.3) are nowhere vanishing. An example
that falls outside of this classification is an NS5-brane wrapping a Calabi–Yau. As shown in [187], this class of
solution can be embedded within exceptional generalised geometry.

130



in [279] and gives an SU(3)×SU(3) structure. The two pure spinors are constructed as bilinears

of the Killing spinors {ζ±1 , ζ
±
2 } given in (5.3). The Killing spinor equations in terms of Φ± were

first given in [202]. Here it will be useful to use an equivalent form derived by Tomasiello [203]

dΦ± = 0, F = −8 dJ±(e−3∆ im Φ∓), (5.72)

d(e−∆ re Φ∓) = 0, (5.73)

where dJ = [d,J ], the upper/lower sign is for type IIA/B, ∆ is the warp factor in the string

frame and F is the Ramond–Ramond flux. It is easy to show that, if one assumes the generalised

∂∂̄-lemma (G.5) [280], then (5.72) implies that F is in the trivial cohomology class. The spinors

are normalised so that

(Φ+, Φ̄+) = (Φ−, Φ̄−) = 1
8e6∆−2ϕ̂ vol, (5.74)

where (·, ·) is the Mukai pairing (A.21), ϕ̂ is the dilaton and vol is the volume form defined by

the string-frame metric. Note that in [203] the twisted differential dH = d−H∧ is used. Here

we will use the convention that the B-field is included in the definition of the spinors and RR

flux (that is they are twisted by e−B relative to those in [203]) and hence the usual differential

d appears.

We now show how to embed these solutions into the framework of generalised SU(7) struc-

tures. We start by defining L3 as9

L3 = eC+8 i e−3∆ im Φ∓(L
J±
1 ⊕ UJ±). (5.75)

Here the upper/lower signs correspond to type IIA/B respectively, L
J±
1 ⊂ EO(6,6)C ' (T ⊕T ∗)C

is the +i-eigenspace of J±, UJ± is the pure spinor line bundle defined by J± and C is the

(global) polyform potential for the RR flux F . Note that in writing (5.75), we are implicitly

using an embedding of the O(6, 6) structures into the E7(7) generalised tangent bundle and

adjoint bundle: this is given in appendix A.6 for type IIB.10 We will focus on type IIB for

definiteness but analogous results hold in IIA with the appropriate embedding. It is relatively

straightforward to check that L3 satisfies the necessary and sufficient conditions to define an

almost exceptional complex structure.

Now we turn to the involutivity condition. We will show first that the untwisted bundle

L
J−
1 ⊕UJ− is involutive if and only if J− is integrable. One can check that i s(V, W̄ ) is not positive

definite, thus it defines only an exceptional Dirac structure, but not an exceptional complex

structure. We find that the modified bundle L3 is involutive provided an extra condition on the

twisting factor C + 8 i e−3∆ im Φ− is satisfied. Let

V = W + αΦ− ∈ Γ(L
J−
1 ⊕ UJ−), (5.76)

9Such a procedure for going from generalised to exceptional complex structures was originally formulated in
an E6(6) context by two of the current authors (AA and DW) with Michela Petrini and Edward Tasker [260].

10The powers of ∆ in the normalisation (5.74) imply that Φ± are sections of a weight-three bundle under the
R+ action. The adjoint bundle is weight-zero, hence the e−3∆ factor in (5.75).
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where W ∈ Γ(L
J−
1 ) and α ∈ C∞(M,C), and similarly for V ′. Requiring

LV V
′ = LW+αΦ−(W ′ + α′Φ) ∈ Γ(L

J−
1 ⊕ UJ−), (5.77)

implies first that

LWW
′ ∈ LJ−1 , ∀W,W ′ ∈ LJ−1 , (5.78)

that is, the generalised complex structure J− associated to Φ− must be integrable. From (C.32)

and ��WΦ− = ��W ′Φ− = 0 we then immediately have

LW (α′Φ−) = (Lvα′)Φ− + α′LWΦ− =
〈
W, dα′ + 2A

〉
Φ− ∈ UJ− ,

LαΦ−W
′ = −d(αΦ−) ·W ′ = −

〈
W ′, dα+ 2A

〉
Φ− ∈ UJ− ,

(5.79)

as required (in the second line d(αΦ−) acts via the E7(7) adjoint action). For the final term we

have

LαΦ−(α′Φ−) = −d(αΦ−) · (α′Φ−) = −α′[(��dα+��A)Φ−] · Φ− = 0 (5.80)

identically, as can be seen simply by counting the J− charge. Hence we see

involutive L
J−
1 ⊕ UJ− ⇔ integrable J−. (5.81)

We now define

Σ = C + 8 i e−3∆ im Φ+, (5.82)

so that eΣV ∈ Γ(L3) if V ∈ Γ(L
J−
1 ⊕ UJ−). We then have11

LeΣV (eΣV ′) = eΣLdΣ
V V ′ = eΣ

[
LV V

′ − (��WdΣ) · V ′
]
, (5.83)

where LdΣ is the twisted generalised Lie derivative (for type IIB, see [187]) and (��WdΣ) acts on

V ′ via the E7(7) × R+ adjoint action. To be involutive we need the term in brackets to be an

element of L
J−
1 ⊕UJ− . Since the first term is differential and the second algebraic in V and V ′

this can only be true if each term is separately a section of L
J−
1 ⊕UJ− . We have already analysed

the first term. For the second term it means ��WdΣ ∈ Γ(ad F̃ ) must stabilise L
J−
1 ⊕ UJ− . For

the W component we have

− (��WdΣ) ·W ′ = ��W
′
��WdΣ. (5.84)

If we will split the spinor bundle S− into its J− ni-eigenspaces, Sn, where n = −3,−1, 1, 3, and

denote by a subscript n the projection of a polyform to Sn, this implies

��W
′
��WdΣ ∈ S3 ⇔ (dΣ)−1 = (dΣ)−3 = 0. (5.85)

Combining these conditions with their complex conjugates we find

F = −8 dJ−(e−3∆ im Φ+). (5.86)

11Note that the generalised Lie derivative is antisymmetric when L3 is involutive, so checking involutivity
with the generalised Lie derivative is equivalent to checking it with the Courant bracket. The condition that
L3 ×N L3 = 0 ensures this.
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Moreover, just counting the J− charges, we see that this condition is enough to imply (��WdΣ) ·
Φ− = 0. Taken together, we see that the first two equations in (5.72) are necessary and sufficient

conditions for involutivity of L3:

involutivity of L3 : dΦ− = ��AΦ−, F = −8 dJ−(e−3∆ im Φ+). (5.87)

As expected, involutivity does not provide a full solution to the supersymmetry equations.

Instead we find that it implies essentially the first two (5.72) of the three conditions found

in [203]. From section 5.1.2 we know that these equations only imply the vanishing of part of

the intrinsic torsion, and that the vanishing of the rest of the intrinsic torsion, here given by

the final equation d(e−∆ re Φ+) = 0, is implied by the vanishing of the moment map (5.39). In

other words we have

vanishing of moment map : A = 0, d(e−∆ re Φ+) = 0, (5.88)

that is, the generalised complex structure J− is promoted to a generalised Calabi–Yau structure,

and in addition the third condition of [203] is satisfied. Since the full set of equations (5.72)

and (5.73) are equivalent to supersymmetry, the proof in [184, 185] that supersymmetry is

equivalent to vanishing intrinsic torsion is sufficient for these last conditions to to indeed be

equivalent to the vanishing of the the moment map. Thus, rather than give all the details, let

us simply sketch below how the relevant conditions arise.

Since it defines an exceptional polarisation, the L
J−
1 ⊕UJ− subbundle will have an associated

singlet in the K̃C bundle, just as for an almost exceptional complex structure. Given the

decomposition under O(6, 6)× SL(2,R) ⊂ E7(7)

912 = (352′,1) + (220,2) + (12,2) + (32,3), (5.89)

the only SU(3, 3) ⊂ O(6, 6) singlet appears in the 32 representation, given by, up to detT ∗

factors, Φ− itself. In fact, the R+ weight of K̃ is such that singlet is simply Φ− ∈ Γ(K̃C). It

has the property that V •Φ− = 0 for all V ∈ Γ(L
J−
1 ⊕UJ−). Given the twisting of L3 it is then

easy to see that the corresponding SU(7) structure is simply

ψ = eΣ · Φ− = eC+8 i e−3∆ im Φ+ · Φ−, (5.90)

where, since Φ− is already naturally the section of a weight-three bundle under the R+ action,

we do not expect any additional powers of e∆. Turning to the moment map, we can repeat the

same steps in the analysis for G2 structures in section 5.2.1 to derive

µ(eΣV ) = 1
3

∫
M
s(LdΣ

V Φ−, e
−ΣeΣ̄ · Φ̄−)(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(LdΣ

V Φ−, e
−2i im Σ · Φ̄−)(i s(ψ, ψ̄))−2/3,

(5.91)

where in the second line we have use the property that we can always choose a gauge for C such
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that Σ and Σ̄ commute. We also have

LdΣ
V Φ− = LV Φ− − (��V dΣ) · Φ− = LV Φ− = LZΦ− − (dΛ− + dΛ̃) · Φ−, (5.92)

where we have used the fact, derived from the involutivity condition, that dΣ stabilises L
J−
1 ⊕

UJ− and hence the singlet Φ− ∈ Γ(K̃), and in the last expression have split V = Z+Λ++(Λ̃+τ)

using the decomposition (A.85). One can argue that the terms that survive in the moment map

are of the form

µ(V ) ∼ const

∫
(LZΦ−, Φ̄−) + const

∫
(dΛ−, e

−∆ re Φ+). (5.93)

This form follows from keeping track of the U(1) ⊂ SL(2,R) charge in the O(6, 6)× SL(2,R) ⊂
E7(7) decomposition, noting the R+ weight to get the correct e∆ factor, and recalling the alge-

braic relations between J± and Φ±. In particular, the U(1) charge implies that the second term

arises from the third-order term in im Φ+ exponential. As was first noticed in [164], one can

determine the real part of a pure spinor from the imaginary part12 as a third-order expression

in im Φ+, hence the appearance of re Φ+. The first term vanishes if and only if A = 0, while,

integrating by parts on the second term gives d(e−∆ re Φ+) = 0, the final condition in (5.73).

Calabi–Yau as N = 1

It is straightforward to describe the usual Calabi–Yau compactifications in our formalism. While

these actually give N = 2 compactifications, we can still write them in our N = 1 language.

In this case, the internal spinors are equal, ζ1 = ζ2, and can be used to construct a complex

three-form Ω and a real two-form ω. Given vanishing flux one finds that the dilaton and warp

factor must be constant. The Killing spinor equations then imply

dΩ = 0, dω = 0. (5.94)

These objects can be embedded as generalised complex structures as

Φ− = 1
8e3∆−ϕ̂Ω, L

J−
1 = T 0,1 ⊕ T ∗1,0, (5.95)

Φ+ = 1
8e3∆−ϕ̂eiω, L

J+

1 = Ty(1− iω). (5.96)

where these are chosen such that they have the correct normalisation according to (5.72) and

(5.73).

Focusing on type IIB, we take

L3 = ei e−ϕ̂(ω− 1
6
ω∧ω∧ω)(T 0,1 ⊕ T ∗1,0 ⊕ C e3∆−ϕΩ). (5.97)

Integrability of L3 then implies

dΩ = A ∧ Ω, dIω = dI ϕ̂ ∧ ω, (5.98)

12In fact, in [164] they show that im Φ can be obtained from re Φ. However the converse statement is also true.
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where I is the (integrable) complex structure associated to Ω and dI = [d, I]. Clearly these

are not the full set of integrability conditions for Calabi–Yau. Imposing the vanishing of the

moment map, we find that A = d∆ = dϕ̂ = 0 and hence the above become

dΩ = 0, dIω = 0 ⇔ dω = 0. (5.99)

Finally note that we could have instead taken the pure spinors to be

Φ− = 1
8eiαe3∆−ϕ̂Ω, Φ+ = 1

8eiβe3∆−ϕ̂eiω, (5.100)

where α, β are two real constants. This would not change the normalisation condition or the

generalised metric, but would affect what we mean by the real and imaginary parts of Φ± and

hence would rearrange which terms appear in the involutivity and moment map conditions.

This amounts to choosing which N = 1 ⊂ N = 2 we want to make manifest.

5.3 The Superpotential, the Kähler Potential and Extremisa-

tion

As we discussed in section 5.1.2, the existence of the Kähler metric on the space Z of generalised

SU(7) structures is really just a reflection of fact that one can rewrite the full ten- or eleven-

dimensional supergravity in D = 4, N = 1 language, in line with the N = 2 discussion

of [156,187,251,266]. The internal degrees of freedom parameterised by ψ lie in chiral multiplets

and hence parameterise a Kähler manifold. By including the unphysical constant overall scaling

and phase of ψ we are in the superconformal formulation of the supergravity. The D-term (or

more strictly the Killing prepotential P) is just the moment map µ for the action of the GDiff

gauge symmetry, with V ∈ Γ(E) giving a parameterisation of gdiff:

Kähler potential : K =

∫
M

(
i s(ψ, ψ̄)

)1/3
,

D-term : P = 1
3

∫
M
s(LV ψ, ψ̄)(i s(ψ, ψ̄))−2/3.

(5.101)

To complete the description of the chiral multiplet sector we need the generic superpotential

W in terms of ψ. This was first discussed in [180]. The D = 4, N = 1 supersymmetry

conditions are the vanishing of the D-term, namely P = 0, and the superpotential conditions

δW/δψ = W = 0. In terms of our previous discussion this means that the superpotential

conditions should imply the involutivity of L3. A missing ingredient thus far in our discussion

is to show that involutivity is a holomorphic condition in terms ψ. In this section, we will

extend the analysis of [180] to give the expression for W for a generic N = 1 background. We

will see that it is indeed a holomorphic function of ψ and furthermore show that, in the special

cases of a G2 structure and GMPT, it matches the standard expressions in the literature.

Recall also that the moment map picture implies that formally the moduli space of inte-

grable SU(7) structures can be viewed as as a quotient by the complexification GDiffC of the

generalised diffeomorphism group. As for the complex and generalised complex structure cases,
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the complexification does not really exist as a group, and instead what is really meant is mod-

ding out by the complexification of the orbits generated by the action of GDiff. The other focus

of this section is to investigate this action and show that it gives a (generalised) reinterpretation

of Hitchin’s picture of integrable G2 structures as extremising a particular functional. We will

also comment very briefly on how this might suggest notions of stability for G2 manifolds and

their generalisations.

5.3.1 The Superpotential

In this section we will derive a general form for the superpotential W, building on work on

superpotentials in the presence of flux first proposed in [234,235], and the generalised geometry

expressions given in [3]. A natural conjecture is that W is given by the singlet part of the

intrinsic torsion for the SU(7) structure integrated over the internal manifold. As we will see,

one can pick out this singlet by a projection that is holomorphic in terms of ψ, meaning that

the superpotential is a holomorphic function of ψ, justifying ψ as the holomorphic coordinate

on Z.

As mentioned above we expect the supersymmetry conditions δW/δψ = W = 0 to imply

the involution condition on L3. We note that the variations of the SU(7) structure ψ transform

as 17, 73 and 355, and so δW/δψ = 0 will constrain the dual 1−7, 7−3 and 35−5 components

of the intrinsic torsion. This means δW/δψ = 0 implies W = 0 (as W itself is the singlet) and

furthermore is a slightly stronger condition than L3 being involutive, which only constrained

the 1−7 and 35−5 components.

Before turning to the superpotential itself, it is useful to show that one can rephrase involu-

tivity as a holomorphic condition on ψ. Suppose V ∈ Γ(L3) and D is a compatible generalised

connection, that is Dψ = 0. From the definition (5.11) we find

LV ψ = −T (V ) · ψ for V ∈ Γ(L3). (5.102)

Note that this expression is linear in V . For any other R+ weight we would have gotten an

additional factor of the form (D ·V )ψ where D ·V = DMV
M , and hence a non-linear expression.

Since LV ψ is independent of D, only the intrinsic torsion contributes to T (V ) · ψ. From the

U(1) × SU(7) representations it is easy to check that the 1−7, 7−3, and 35−5 components

of the intrinsic torsion (5.24) appear, precisely the components in δW/δψ. This gives us an

alternative formulation of the involutivity condition13 (i.e. the vanishing of the 1−7 and 35−5

components)14:

involutive L3 ⇔ LV ψ = A(V )ψ ∀ V ∈ L3, (5.103)

where A ∈ Γ(L∗3) is the 7−3 component of the SU(7) intrinsic torsion, and A(V ) = AMV
M is

just the natural pairing between sections of E∗ and E. We also see that we expect

δW
δψ

= 0 ⇔ LV ψ = 0 ∀ V ∈ L3. (5.104)

13Note that in the conventional and generalised complex structure cases we could equally well have formulated
the conditions (C.5) and (C.32) as LV Ω = (ıVA)Ω and LV Φ = 2 〈V,A〉Φ for all V ∈ Γ(L1).

14Note that relations of this form were first noted in the context of integrable structures in E6(6) generalised
geometry by Edward Tasker (private communication).
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In analogy with the complex structure and generalised complex structure cases, we expect that

we can always take a ψ satisfying the involutive condition and rescale by a complex function

ψ′ = fψ so that the stronger superpotential condition is satisfied.

Crucially both of these conditions are linear in V and so can be viewed as a holomorphic

expressions in ψ. (Note from (5.20) that L3 is fixed by V • ψ = 0 and so also only depends

holomorphically on ψ.) If we had chosen a structure ψ′ with a different R+-weight we would

have had an additional (D ·V )ψ′ term. For the involutivity condition we could still have phrased

the condition in the holomorphic form LV ψ
′ ∝ ψ′, however the δW/δψ′ = 0 condition would not

be holomorphic because it would have to be written as LV [(is(ψ′, ψ̄′)pψ′] = 0 for some suitable

power p. Thus we anticipate that the superpotential W is a holomorphic function only if we

take ψ transforming in 9123.

Returning to the definition of the superpotential, why is it natural to conjecture that it is

the singlet torsion 1−7? Consider the AdS case for a moment. We know from [184] that the

cosmological constant appears as a singlet of the intrinsic torsion when decomposed under SU(8)

and this descends to the singlet for the SU(7) structure (since there is only one singlet). The

supersymmetry conditions for an AdS background include the vanishing of derivatives of the

superpotential (the F-terms) but the superpotential itself does not vanish. Instead, requiring

the superpotential to vanish is the final condition for a Minkowski solution. Thus it is reasonable

that the superpotential itself is simply the singlet of the torsion.

To see this more concretely, we conjecture

W :=

∫
M
W ∼

∫
M

i s(ψ, T ), (5.105)

where T is the intrinsic torsion of the structure. The symplectic product with ψ projects onto

the singlet component (specifically the 1−7 component). We also note that ψ is weight-3 and

T is weight-(−1) with respect to the R+ action. This means i s(ψ, T ) is weight-2 and hence

is a volume form which can be integrated over the manifold. From (5.102) we know that the

1−7 component of the torsion is a holomorphic function of ψ, and hence the superpotential is

holomorphic.

We can make the ψ dependence more manifest as follows. It was shown in [180], using the

Killing spinor equations, that W can be written as15

(D ×ad ψ) · ψ ∼Wψ, (5.106)

where D is now a torsion-free SU(8) connection (not SU(7)), ×ad is a projection to the adjoint

representation 133, so that D×adψ transforms in the 1332 representation, and W is the desired

singlet component of the intrinsic torsion of the structure defined by ψ. Clearly we can project

onto W by calculating
s(ψ̄, (D ×ad ψ) · ψ)

s(ψ̄, ψ)
∼W. (5.107)

At first sight, this appears to depend on ψ̄ and so will not be holomorphic on Z. However, this

15Technically, in [180] a specific choice of the connection D was taken. We show that the operator appearing
here is independent of this choice at the end of this section.
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apparent dependence factors out. Consider an infinitesimal variation of the structure

δψ ∼ c ψ + a · ψ + ã · ψ,

δψ̄ ∼ c̄ ψ̄ + ā · ψ̄ + ¯̃a · ψ̄,
(5.108)

where we are acting with the Lie algebra E7(7)⊕R. Decomposing under SU(7) as in (5.16), c is

a complex singlet coming from 10 and the R action, while a and ã transform in 7−4 and 35−2

representations respectively. Of the antiholomorphic parameters (c̄, ā, ¯̃a), only c̄ can appear in

the relevant projection

s(δψ̄, (D ×ad ψ) · ψ) ∼W s(δψ̄, ψ) = c̄W s(ψ̄, ψ) (5.109)

as the parts involving ā and ¯̃a are non-singlet and thus projected out. Thus we are left with

only a C∗ scaling of ψ̄ by the antiholomorphic factor ec̄. However this scaling clearly factors

out of (5.107) and hence W is indeed a holomorphic function of ψ.

In conclusion, the general expression for the superpotential of a generic D = 4, N = 1

background up to an overall constant is

W =

∫
M
W ∼

∫
M

s(ψ̄, (D ×ad ψ) · ψ)

s(ψ̄, ψ)
∼
∫
M

Tr (J, (D ×ad ψ)) . (5.110)

We have included an alternative expression in a slightly simpler form that has the benefit of

being easier to calculate explicitly. However, it is less obvious to see that it does not depend on

antiholomorphic variations of the structure.

For completeness we should check that our expressions for W are well defined, in the sense

that they do not depend on the parts of the torsion-free SU(8) connection D which are not

determined by the generalised metric G. These undetermined components form the 1280+1280

parts of the connection, and they do appear in the unprojected operator D ×ad ψ, which thus

depends on the choice of the connection D. To see that they do not appear in our expressions for

the superpotential above, note that J , ψ and the operators Tr(J(D×adψ)) and s(ψ̄, (D×adψ)·ψ)

are all SU(7) singlets. This means that only SU(7) singlet parts of the connection can appear

in them. A routine decomposition reveals that there are no singlets in the SU(7) decomposition

of the 1280 + 1280 representation of SU(8), and thus these parts of the connection cannot

appear in our expressions. As such, these operators represent a complex SU(7) singlet part of

the intrinsic torsion, as claimed.

G2 in M-theory

In the G2 case, it is straightforward to calculate the superpotential directly and compare with

the existing literature. As discussed in section 5.2.1, the SU(7) structure corresponding to a G2

structure with flux has the form

ψ = eÃ+Aeiϕ · 1 = eÃ−
1
2 iA∧ϕ+A+iϕ · 1 = eγ · 1,

L3 = eÃ−
1
2 iA∧ϕ+A+iϕ · T = eγ · TC,

(5.111)
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where we have defined γ = Ã− 1
2 iA∧ϕ+A+iϕ as a sum of six- and three-forms. The Dorfman

derivative of ψ along V = eγv ∈ Γ(L3) satisfies

LV ψ = Leγ ·v(e
γ · 1) = eγv

Γ1 = eγ · (Lv1− ıvΓ · 1) = −eγ · ıvΓ · 1, (5.112)

where the complex flux

Γ = F + i dϕ+ F̃ + 1
2ϕ ∧ dϕ− iF ∧ ϕ ∈ Γ(∧4T ∗ ⊕ ∧7T ∗) (5.113)

can be viewed as a section of the torsion bundle K. Using the various actions of γ as an adjoint

element, we also have

T (V ) · ψ = T (eγv) · eγ · 1 = eγ · (e−γ · T )(v) · 1 = eγ · ıv(e−γ · T ) · 1. (5.114)

Finally we note that

s(ψ, T ) = s(eγ · 1, T ) = s(1, e−γ · T ) ∼ (e−γ · T )(7), (5.115)

where (e−γ · T )(7) is the seven-form component of (e−γ · T ). However, using (5.102) and com-

paring (5.112) and (5.114), we see that (e−γ · T )(7) = Γ(7) and hence

W ∝
∫
M

i s(ψ, T ) ∝
∫
M

(
F̃ + 1

2ϕ ∧ dϕ− iF ∧ ϕ
)
. (5.116)

The superpotential is simply the integral of the seven-form component of the complex flux.

We can compare this expression to those that have already appeared the literature. Beasley

and Witten considered the M-theory superpotential on manifolds of G2 holonomy [272] – this

means we should assume dϕ = 0 to match their results. In addition, they take
∫
M F̃ =

−1
2

∫
M A ∧ F .16 Using these assumptions, the above superpotential can be rewritten as

W ∝
∫
M

(
1
2A+ iϕ

)
∧ F, (5.117)

which matches that given in [272]. More generally, the M-theory superpotential on manifolds

with G2 structure with flux has been discussed in a number of places [103, 132, 152, 282]. Fol-

lowing [282], we define

P0 =

∫
M

(F̃ + 1
2A ∧ F ) ∈ (2π)2 Z, (5.118)

which allows us to rewrite our superpotential as

W ∝ P0 +

∫
M

(
−
(

1
2A+ iϕ

)
∧ F + 1

2ϕ ∧ dϕ
)

∝ P0 − 1
2

∫
M

(A+ iϕ) ∧ d(A+ iϕ).

(5.119)

16As discussed by Beasley and Witten, this comes about as the Page charge (the integral of 1
(2π)2

dÃ) is

quantised. Since 1
(2π)2

1
2

∫
M
A ∧ F is only defined modulo an integer [281], one can take

∫
M

(F̃ + 1
2
A ∧ F ) = 0

without introducing extra ambiguities.
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This matches the expression found in [282] up to an overall multiplicative constant.

Let us make one further comment. Recall that involutivity for a G2 structure implied

dϕ = dA = dÃ = 0 and so dγ = 0. From (5.112) this means LV ψ = 0 for all V ∈ Γ(L3) –

in other words δW/dψ = 0. This is a result of our choice of normalisation of ψ. If we had

scaled by a complex function f so that ψ′ = eγ · f , we would have had an additional one-form

contribution to the intrinsic torsion T and LV ψ would not vanish, consistent with the comments

below (5.104).

GMPT

We can repeat the same analysis to give the superpotential in the GMPT case. The SU(7)

structure has the form given in (5.90) and (5.75)

ψ = eΣ · Φ−, L3 = eΣ(L
J−
1 ⊕ UJ−), (5.120)

where Σ = C + 8 i e−3∆ im Φ+. Using (5.92), we then have

LV ψ = eΣ ·
[
LZ+αΦ−Φ− − (��ZdΣ) · Φ−

)
= eΣ ·

[
��ZdΦ− − α(dΦ−) · Φ− − (��ZdΣ) · Φ−

]
,

(5.121)

where we take Z ∈ Γ(L
J−
1 ) so that V = eΣ(Z + αΦ−) ∈ Γ(L3) and have used the algebraic

property (Z + αΦ−) • Φ− = 0. As in (5.114) we have for the torsion

T (V ) · ψ = eΣ ·
(
e−Σ · T

)
(Z + αΦ−) · Φ−. (5.122)

Finally we have

s(ψ, T ) = s(eΣ ·Ψ, T ) = s(Ψ−, e
−Σ · T ) ∼

(
Φ−, (e

−Σ · T )−
)
, (5.123)

where in the last expression we have the Mukai pairing of Φ− and the odd-polyform component

(e−Σ · T )− of the torsion. However, using (5.102) and comparing (5.121) and (5.122), we see

that (e−Σ · T )− = dΣ and hence

W ∝
∫
M

i s(ψ, T ) ∝
∫
M

(
Φ−, F + 8 i d(e−3∆ im Φ+)

)
. (5.124)

Taking into account the normalisations (5.74), we see that this is in precise agreement with the

O(6, 6) generalised geometry expressions given in [156,283–285].

5.3.2 The Kähler Potential, the Moment Map and Extremisation

Almost twenty years ago Hitchin [151] gave an intriguing reformulation of integrable G2 struc-

tures as corresponding to stationary points of a suitable functional on the space of closed

structures, that is those satisfying dϕ = 0, taking the variation within the cohomology class of

ϕ. In this section we will show that the Kähler potential K gives a natural generalised geometry

extension of Hitchin’s functional for SU(7) structures. In particular, we show that the moment
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map conditions µ = 0 can be rephrased as stationary points of K when varying over the space

of complexified generalised diffeomorphisms GDiffC. In the case of G2 structures we show that

this is identical to Hitchin’s variational problem.

We start by recalling that an infinitesimal generalised diffeomorphism defines a vector field

ρV ∈ Γ(TZ) on the space Z of generalised SU(7) structures given by17

LρV ψ = ıρV δψ = LV ψ. (5.125)

The symplectic form $ on Z given in (5.33) is invariant under the action of GDiff, that is

LρV$ = 0, and µ in (5.39) is the corresponding moment map defined by ıρV$ = −δµ(V ). Note

that it is straightforward to check that ıρW δµ(V ) = µ(JV,W K), where JV,W K is the Courant

bracket, and hence the moment map is equivariant. We also immediately note LρV ψ = LV ψ is

holomorphic in ψ hence the GDiff action also preserves the complex structure on Z.

It is a standard result from the supergravity literature that the moment map (or D-term)

can be solved in terms of the Kähler potential [243]. Explicitly, if ρV generates the symmetry,

one has, by definition,

δµ(V ) = −ıρV$ = −ıρV
(

1
2δδ
IK
)

= −1
2LρV (IδK) + 1

2δ (ıρV IδK) , (5.126)

where δI = [I, δ] and I is the complex structure on Z. But we have LρV I = 0, so, assuming

we choose the Kähler potential such that it is also invariant, that is LρV K = 0, the first term

vanishes. Using ıIρV δK = −ıρV IδK, one then has (up to closed terms which are fixed to vanish

by the requirement of equivariance)

µ(V ) = −1
2 ıIρV δK = −1

2LIρV K. (5.127)

To check this relation explicitly in our case, we first calculate IρV . Since ψ is holomorphic,

splitting the exterior (functional) derivative on Z into holomorphic and antiholomorphic parts

δ = ∂′ + ∂̄′, we have

LIρV ψ = ıIρV ∂
′ψ = iıρV ∂

′ψ = iLρV ψ = iLV ψ. (5.128)

We then have

LIρV K =

∫
M

1
3

(
i s(ψ, ψ̄)

)−2/3 (
i s(ıIρV δψ, ψ̄) + i s(ψ, ıIρV δψ̄)

)
= −

∫
M

1
3

(
i s(ψ, ψ̄)

)−2/3 (
s(LV ψ, ψ̄)− s(ψ,LV ψ̄)

)
= −

∫
M

2
3

(
s(ψ, ψ̄)

)−2/3
s(LV ψ, ψ̄)

= −2µ(V ),

(5.129)

where we used an integration by parts and compactness to reach the final line. This is in

complete agreement with (5.127). For completeness, using the non-holomorphic structure φ, we

17Note that here LρV is the Lie derivative along ρV in the space of structures Z, whereas LV is the generalised
Lie derivative on the manifold M .
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can also check the invariance of K:

LρV K = i

∫
M
s(ıρV δφ, φ̄) + s(φ, ıρV δφ̄) = i

∫
M
s(LV φ, φ̄) + s(φ,LV φ̄)

= i

∫
M
LV s(φ, φ̄) = 0,

(5.130)

where the action of LV on a top-form reduces to the Lie derivative, which then vanishes due to

compactness of M .

The relation (5.127) is striking because it shows that the zeros of the moment map can be

equally well thought of as critical points of K

µ = 0 ⇔ critical point of K under GDiffC action. (5.131)

The group GDiff does not really complexify, so what is really meant here is motion on the orbits

generated by ρV and IρV . Since K is invariant under the former, the extremisation is really

over iGDiff generate by IρV . For the set of critical points to form a nice moduli space after

quotienting by GDiff, as in the symplectic quotient, strictly one needs to show that a critical

point of the Kähler potential is non-degenerate transverse to the orbit of GDiff [151]. It is a

general result that the Hessian for the imaginary transformations is given by

LIρV LIρWK = −2LIρV µ(W ) = −2 ıIρV δµ(W ) = 2 ıIρV ıρW$ = 2 g̃(ρV , ρW ), (5.132)

where g̃ is the pseudo-Kähler metric on Z. Because the metric is pseudo-Kähler, it is possible

that g̃(ρV , ρW ) could vanish for all ρW and this not imply that ρV = 0. Since we want to mod

out by real generalised diffeomorphisms, the non-degeneracy condition we require is that, at the

extremum,

g̃(ρV , ρW ) = 0 ∀W ∈ Γ(E) → ∃ U ∈ Γ(E) : iLV ψ = LUψ. (5.133)

In other words, any degeneracy in the direction of an imaginary GDiff transformation is always

equivalent to a real GDiff transformation. One can rephrase this condition in terms of the oper-

ators discussed in section 5.4.5. However, at this point, we do not understand them well enough

to check if the non-degeneracy is generically true. That said, from a physical perspective, since

the equations of motion of supergravity are elliptic and supersymmetry implies the equations

of motion, we would expect there to be a sensible finite-dimensional moduli space.

The extremisation of K is a generalised geometry extension of Hitchin’s extremisation of

a G2 functional [151] as we will now see. We saw in section 5.2.1 that for G2 structures, the

Kähler potential is proportional to the G2 Hitchin functional V (ϕ)

K(ψ) ∝ V (ϕ) =

∫
M
ϕ ∧ ?ϕ for ψ = eÃ+Aeiϕ · 1. (5.134)

Furthermore, under an imaginary GDiff transformation it is straightforward to calculate

ıIρV δψ = iLV ψ = iLvψ − i(dω + dσ) · ψ,= −d(ıvϕ) · ψ − i
(
dω′ + dσ′

)
· ψ. (5.135)
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where ω′ = ω − ıvA and σ′ = σ − ıvÃ− 1
2A ∧ ıvA+ 1

2ϕ ∧ ıvϕ and we have used the involutivity

conditions dϕ = dA = dÃ = 0. We see that, up to real generalised diffeomorphisms, an

imaginary GDiff is equivalent to an imaginary gauge transformation. Exponentiating, again up

to real gauge transformations, we get

ψ 7→ ψ′ = eÃ+Aeidσ′ei(ϕ+dω′) · 1 = eÃ+Aei(ϕ+dω′) · (1 + const× jdσ′ + . . . ), (5.136)

where jdσ′ denotes dσm,n1...n5 ∈ Γ(T ∗ ⊗ ∧5T ∗) and the dots denote higher-order terms in dσ′.

In particular, we see the G2 three-form is shifted within its cohomology class. We now want

to extremise K with respect to the σ′ and ω′ variations. First note that it is independent of A

and Ã since it is a E7(7) ×R+-invariant. Next, we first show that dσ′ = 0 is an extremum with

respect to the σ′ variations. Writing the modified G2 structure as ϕ′ = ϕ + dω′, linearising in

π = jdσ′ we then have, using the same arguments that led to (5.62),

δK =

∫
M
κ where κm1...m7 = const× g′npπn,p[m1...m4

ϕ′m5m6m7]. (5.137)

However, the antisymmetry of dσ′ implies κ vanishes and hence δK = 0. This means we are

back to extremising K(ψ′) in (5.134) with ϕ replaced with ϕ′ = ϕ+ dω′. But this is exactly the

extremisation introduced by Hitchin [151]. For a variation δϕ′ = dω′ it gives

δV (ϕ′) ∝
∫
M
δϕ′ ∧ ?ϕ′ =

∫
M

dω′ ∧ ?ϕ′. (5.138)

Integrating by parts shows that V has a critical point for d ? ϕ′ = 0, recovering the condition

from the vanishing of the moment map as we expected.

5.3.3 Moduli Spaces, GIT and Stability

The fact that the moduli space can be viewed either as a symplectic quotient or a quotient by

the complexified group is a general result for group actions that preserve a Kähler structure

(see for example the discussion in [256]). For the case in hand, we have

Mψ = Ẑ//GDiff ' Ẑps/GDiffC. (5.139)

There is a subtlety we have glossed over previously which is that for the complex quotient one

needs to consider not the full space of structures but a subset Ẑps ⊂ Ẑ of “polystable” points.

The equivalence of quotients in (5.139) is the Kempf–Ness theorem. This is part of “Geometric

Invariant Theory” or GIT, as reviewed for example in [221]. The point is that not all complex

orbits will intersect the space of zeros of the moment map µ−1(0). If ψ lies on an orbit that

fails to meet µ−1(0) it is called unstable and is excluded from Ẑps. Our setup is typical of a

number of classic geometric problems: one has an infinite-dimensional Kähler manifold with

a group action such that the vanishing of a moment map corresponds to the solution of a

differential equation. For example, it appears in Atiyah and Bott’s work on flat connections

on Riemann surfaces [286], in the “hermitian Yang–Mills” equations of Donaldson–Uhlenbeck–

Yau [224, 225, 245], Fine’s formulation of the Calabi conjecture [287], and the equations of
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Figure 5.1: Stability for a 1-PS orbit of ψ.

Kähler–Einstein geometry [246, 247, 288]. Famously, in each case, developing the correct GIT

notion of stability allows one to translate the question of existence of solutions to the differential

equation into algebraic conditions arising from the analysis of the complex orbits.

In this section, we will sketch how our description of integrable SU(7) structures might

translate into the GIT picture, and discuss the form of the moduli space. In general, stability

can be understood in the following way. Consider a U(1) subgroup of the group action. For us

this is some U(1) ⊂ GDiff generated by some vector field ρV ∈ Γ(T Ẑ). Under complexification

this gives a C∗ action on the space of involutive structures Ẑ. Starting at some point ψ ∈ Ẑ
the C∗ action generates an orbit of structures ψ(ν) parameterised by ν ∈ C∗. If the space of

structures were compact up to overall scalings of the SU(7) structure of the form ψ → λ3ψ

with λ ∈ C∗, then in the limit ν → 0, the two C∗ actions must coincide, giving a fixed line of

structures (see figure 5.1)

lim
ν→0

ψ(ν) = ν3w(ψ)ψ0 ⇒ lim
ν→0
K = |ν|2w(ψ)K0, where w(ψ) ∈ Z, (5.140)

where the weight w(ψ) depends on the orbit (and hence the original structure ψ) and is neces-

sarily quantised since we have a U(1) ⊂ C∗ action.18 Considering all such U(1) subgroups, or

“one-parameter subgroups” (1-PS), one then defines19

if w(ψ) < 0 for all 1-PS then ψ is stable,

if w(ψ) ≤ 0 for all 1-PS then ψ is semistable,

if w(ψ) > 0 for some 1-PS then ψ is unstable.

(5.141)

The beautiful observation is then that if the function K is convex with respect to varying |ν|,
and is stable in both directions (that is for 1-PS generated by ρV and the inverse 1-PS generated

by −ρV ), then it must have a (unique) minimum. But we have already seen from (5.127) that

18We have normalised the U(1) charges relative to the R+ action, hence the factor of three in (5.140).
19More generally one can define stability for the action of the whole of the complexified group (in our case

GDiffC) but the Hilbert–Mumford criterion implies that stability for all the 1-PS is an equivalent condition.
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a minimum of K is equivalent to the vanishing of the moment map µ(V ) = 0 for this particular

V . Since stability is for all 1-PS it implies there is a unique minimum where µ(V ) = 0 for all

V . Hence if ψ is stable20 then there is a unique solution of the moment map in the orbit of ψ

generated by GDiffC. In the language of GIT we are identifying

norm functional = Kähler potential K (5.142)

which as we saw above is the E7(7) × R+ extension of Hitchin’s G2-functional.

In the Kähler–Einstein context, Yau [72] originally introduced the notion of a functional

that is the integral of the square of the scalar curvature, and in the moment map picture is

the integral of the square of the moment map. Critical points of the Yau functional are called

“extremal metrics”. In our context, the N = 1, D = 4 supergravity picture gives a simple

interpretation of the analogous object. Recall that the potential of the supergravity is given by

V = eK
(
ĝij̄DiWDj̄W̄ − 3WW̄

)
+ 1

2(re τ)abPaPb, (5.143)

where ĝij̄ is the Kähler metric on the space of chiral fields Φi, DiW = ∂iW− (∂iK)W, and re τab

is an invariant metric on the Lie algebra of the moment map symmetry. If we consider SU(7)

structures that are involutive (or strictly the slightly stronger condition that the superpotential

is extremised (5.104)) the term in parentheses vanishes. The metric on the Lie algebra is fixed

by the generalised metric GMN (see for example [58]) and we are left with

V ∼
∫
M

vol−1
G GMNPNPM ∼

∫
M

volGR, (5.144)

where volG is the E7(7)-invariant volume form defined by the generalised metric. (Note that the

factor of vol−1
G in the first term comes from the fact that P ∈ Γ(detT ∗⊗E∗).) We see that the

potential is the square of the moment map. Furthermore, from the reformulation of supergravity

in terms of E7(7) × R+ generalised geometry [181, 182], the potential is the supergravity action

on M which is just the integral of the generalised Ricci scalar R as we write in the second term.

Thus we have

Yau functional ∼
∫
M

volGR. (5.145)

We see that extremising the Yau functional corresponds to generalised Ricci-flat solutions, that

is generic solutions of the supergravity equations.

Central to the equivalence of stability and the vanishing of the moment map is the condition

that the norm functional is convex. This is usually a consequence of the general result (5.132)

that the second derivative is given by the Kähler metric

LIρV LIρV K = 2 g̃(ρV , ρV ). (5.146)

A positive-definite metric then implies convexity. As we have already mentioned, a key difference

for SU(7) structures is that we have a pseudo-Kähler metric and so we can no longer guarantee

20The actual condition is the slightly more subtle notion of “polystability” which includes equivalence classes
of semistable orbits, at the boundary between stable and unstable orbits.
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that the norm functional is convex under the action of iGDiff. Thus a stable orbit may have

more than one solution of the moment map, and unstable orbits may still include solutions,

implying stability is only a sufficient condition for the existence of solutions. This problem is

closely related to the degeneracy question, mentioned above, as to whether critical points of K
form a nice moduli space.

The pseudo-Kähler structure raises other potential subtleties with the description of the

moduli space of integrable SU(7) structures as we have presented it. First, the holomorphic

involutivity condition might define a null subspace within the space of structures Z, meaning

there is no guarantee that the subspace Ẑ inherits a Kähler metric (since the pullback of the

metric can be degenerate). Secondly, if the group action defining the moment map is null, there

is similarly no guarantee that there is a Kähler metric on the symplectic quotient. Although

we have not checked directly, physically we might expect that neither problem arises, the point

being that supersymmetry implies that there must be a Kähler metric on the final moduli space,

since it is a space of chiral superfields. Furthermore, unless the background secretly admits more

supersymmetries, this metric must be positive definite (since it gives the kinetic terms of the

four-dimensional fields). If there are extra supersymmetries these appear as deformations which

change the SU(7) structure but not the generalised metric, and hence are unphysical.

This makes one wonder if there could be a more standard GIT picture underlying the

conditions. Recall that at a point p ∈ M the tangent space TQSU(7) to the E7(7) × R+/SU(7)

coset space (5.29) decomposes under SU(7)×U(1) as

TQSU(7) : (10 ⊕ 10)⊕ (7−4 ⊕ 74)⊕ (352 ⊕ 35−2), (5.147)

where the first two terms are generated by the action of J and the R+ scaling. The complex

structure on TQSU(7) pairs the representations in parentheses, with a positive definite metric

on 352 ⊕ 352 and a negative definite metric on the remaining directions giving a signature

(70, 16), which is then inherited by the full space of structures Z. Focusing on the G2 case,

or perhaps more generally the type-0 case, we will now discuss how the negative deformations

can potentially be removed. First one considers the space of exceptional complex structures

J (rather than Z), which removes the two singlet components in (5.147). Then one takes the

symplectic quotient by the normal subgroup of gauge transformations generated by five-forms

which removes the remaining 7⊕ 7 components.

An exceptional complex structure J determines ψ up to rescaling by a function ψ → fψ.

Thus we can define the space of exceptional complex structures as a symplectic quotient

X̂ , space of exceptional complex structures = Ẑ//H. (5.148)

The Lie algebra of H is given by h ' C∞(M) and α ∈ h acts via ρα(ψ) = iαψ, giving the

moment map

µH(α) =

∫
M
α
(
i s(ψ, ψ̄)

)1/3
, (5.149)

and in the quotient we set µH = vol0 for some fixed reference volume form. Since the action

preserves the Kähler structure on Ẑ there is then also a Kähler metric on X̂ though now based
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on the coset space E7(7)/U(7) with signature (70, 14). The corresponding Kähler potential is

given by choosing an arbitrary section ψ ∈ Γ(UJ) and calculating

K̃ =

∫
M

log
(
is(ψ, ψ̄)/ vol30

)
vol0 . (5.150)

The action of GDiff descends to X̂ (strictly we need to restrict to the subgroup GDiff0 ⊂ GDiff

that preserves vol0, that is in the Lie algebra LV vol0 = 0, but we will ignore this subtlety).

Hence one can define a corresponding moment map µ̃ on X̂ given by

µ̃(V ) =

∫
M

s(LV ψ, ψ̄)

i s(ψ, ψ̄)
vol0, (5.151)

and define the quotient moduli space

Mphys = X̂//GDiff. (5.152)

We claim that this is isomorphic the physical moduli spaceMψ/C∗, where the C∗ action is the

constant rescaling ψ → λ3ψ. The point is that the vanishing of the moment map µ̃(V ) = 0 on

X̂ implies the vanishing of the moment map µ(V ) = 0 on Ẑ except for those transformations

that preserve J , that is LV J = 0. However, such transformations simply rescale ψ. The effect

is that for each J satisfying µ̃ = 0 the additional conditions from µ = 0 simply fix the particular

section ψ ∈ Γ(UJ). Up to an overall C∗ rescaling ψ → λ3ψ, we expect one such solution for

each J , and henceMJ is isomorphic to the physical moduli spaceMψ/C∗. (This is completely

analogous to the SL(3,C) structure case.)

If we focus on G2 structures, fixing an integrable J , the compatible ψ can be written as

ψ = eÃ+Aeiϕ · f, (5.153)

for some function f and with dϕ = dA = dÃ = 0. We note that the group Gσ ⊂ GDiff

of five-form gauge transformations forms a normal subgroup. Thus we can do the symplectic

reduction by stages, first reducing by Gσ and then by the quotient group GDiff ′ = GDiff/Gσ.

As we saw in section 5.3.2, the form of ψ we have written already satisfies µ(σ) = 0 for all

five-forms σ. Hence the symplectic quotient just identifies Ã ∼ Ã+ dσ. Taking H6
d(M,R) = 0,

we have Ã ∼ 0. By moving to the quotient space

X̂σ = X̂//Gσ, (5.154)

we have effectively removed 14 of the allowed deformations. Direct calculation in the G2 case

implies that this removes precisely the negative directions in the metric, so that the Kähler

metric on X̂σ is positive definite. Thus we have a conventional picture of stability with

Mphys ' X̂σ//GDiff ′ ' X̂ ps
σ /GDiff ′C. (5.155)

This suggests that, at least formally, the space of integrable G2 structures, complexified by

including the closed three-form potential A, can be viewed as a GIT quotient of the space of
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closed G2 structures. The E7(7) extension of Hitchin’s G2 functional K plays the role of the

norm functional.

A choice of 1-PS in this case should be a diffeomorphism corresponding to circle actions on

M since the gauge transformations in GDiff are always non-compact. If the diffeomorphism is

generated by ξ ∈ Γ(T ), fixed points of the 1-PS amount to solutions to

LξJ = 0 where J = eA
(
ϕ] − ϕ

)
, (5.156)

where we have allowed for a non-trivial three-form potential. The value of the moment map at

the fixed point, suitably normalised, should give an integer invariant. This will be the analogue

of the Futaki invariant in Kähler–Einstein geometry [289]. Furthermore, these should be ob-

structions to the existence of solutions to the moment map. The simplest solution to (5.156),

is to take Lξϕ = LξA = 0. In this case, the SU(7) structure ψ ∈ Γ(UJ) can only depend on

the circle action through the function f . One would expect that the integer invariants would

thus encode the topology of the line bundle UJ , since the moment map is independent of the

choice of section. The obstruction is thus that the bundle must be trivial, as we expect for

the existence of a globally defined ψ. More interestingly however, the 1-PS motion may lead

to other types of solution to (5.156), most notably exceptional complex structures with type-

changes, perhaps associated to circle actions with fixed points. These are structures J which

are no longer type-0 in the whole of M . This is possible since although the C∗ action generated

by ξ preserves the cohomology class of ϕ and A, the forms themselves may vanish or become

singular at points in M . The moment map evaluated on such solutions should again give some

integral invariant of the closed G2 structure. Naively, understanding such configurations would

be key to formulating any notion of stability.

5.4 Moduli of N = 1 Backgrounds

The generalised SU(7) structure we have described characterises genericN = 1 flux backgrounds

with a four-dimensional Minkowski factor. A natural question to ask is what is the moduli space

of these backgrounds? If the background is to be used for phenomenology, this will tell us about

the massless chiral superfields in the four-dimensional effective theory (ignoring extra M-theory

or stringy massless excitations localised at singularities, since we are in the supergravity limit).

Although the answer is well-known for G2 compactifications, very little is known about generic

supersymmetric flux compactifications. In this section we will use the generalised geometrical

description to show how the moduli are related to particular cohomologies. For G2 this repro-

duces the well-known result that the number of chiral fields is counted by the third de Rham

cohomology H3
d(M,C). The analysis trivially extends to generic type-0 SU(7) structures giving

the local moduli space as H3
d(M,C)⊕H6

d(M,C). Remarkably it also gives a complete description

of the moduli for the GMPT solutions, completing an analysis first considered in [203].

As we have seen, the moduli space of a D = 4, N = 1 background is given by Mphys =

Mψ/C∗, whereMψ is the space of torsion-free SU(7) structures modulo generalised diffeomor-

phisms. In section 5.3.3 we argued that if the infinite-dimensional GIT picture is valid this is

equivalent to to X̂/GDiffC, where X̂ is the space of exceptional complex structures. If we have
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a solution J , the local moduli space thus corresponds to a finding the integrable deformations

of J modulo complexified generalised diffeomorphisms. As we noted, strictly the GIT picture is

not necessarily equivalent because the the metric on X̂ is not positive definite. However, assum-

ing the critical points of K are non-degenerate transverse to the orbit of GDiff, infinitesimally

this will produce the correct moduli space. A generic deformation then defines an element of

the intrinsic torsion that must vanish for the deformation to be integrable. The complexified

generalised diffeomorphisms will be generated by the Dorfman derivative and are necessarily

integrable. This sets up a problem in cohomology and it is this that we aim to understand

better. We will start with a quick review of the moduli of conventional complex structures as

this will illustrate many of the key ideas that we will use in analysing the deformations of SU(7)

structures.

5.4.1 Review of the Moduli Space of Complex Structures

Let us recall how the moduli space of integrable SL(3,C) structures arises. One starts by consid-

ering deformations of an integrable GL(3,C) structure. Define QGL(3,C) = GL(6,R)/GL(3,C)

as the space of (almost) complex structures at a point p ∈M . This can be viewed as

QGL(3,C) = GL(6,R)/GL(3,C) = GL(6,R) · I0 = GL(6,C)/P, (5.157)

where GL(6,R) · I0 is the orbit of a fixed complex structure I0 under g ∈ GL(6,R), and P is

the parabolic subgroup of GL(6,C) that stabilises L1

P = StabL1 = (GL(3,C)×GL(3,C)) nC9. (5.158)

The orbit picture means that deformations of the complex structure are parameterised by a

choice of element of gl6,C/p at each point in the manifold. In other words, one takes a section

of the vector bundle

gl6,C/p→ QGL(3,C) →M. (5.159)

In practice one can view Q ⊂ ad F̃C by choosing an embedding gl6,C/p ↪→ gl6,C. In particular,

using the real structure one can decompose

gl6,C = gl3,C ⊕ gl3,C ⊕ q⊕ q̄,

p = gl3,C ⊕ gl3,C ⊕ q,
(5.160)

where we identify the (nilpotent) subalgebra q ' Γ(T 1,0
p ⊗T ∗0,1p ). The pair of gl3,C algebras and

q preserve L1 = T 1,0 ⊂ TC. This means a deformation of L1 at a point p ∈ M can formally be

parameterised by ᾱp ∈ q̄ alone, that so one can identify QGL(3,C) ' T 0,1 ⊗ T ∗1,0. The deformed

subbundle is then

L′1 = eᾱL1 = (1 + ᾱ)L1. (5.161)

L′1 can then be used to define L′−1 ⊂ TC via L′−1 = L̄′1 provided L′1 ∩ L′−1 = 0. Note that

nilpotency of q implies exp ᾱ = 1 + ᾱ.
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As before, this new subbundle is integrable if and only if

[L′1, L
′
1] ⊂ L′1. (5.162)

One can check that for an arbitrary deformation parameterised by ᾱ we have

(
e−ᾱ[eᾱV, eᾱW ]

)m
= (1 + ᾱ)pq(V

qdpW
m −W qdpV

m)︸ ︷︷ ︸
∈L1

+V qW r(∂ᾱ+ [ᾱ, ᾱ])mqr︸ ︷︷ ︸
∈L−1

. (5.163)

This gives the well-known result that a complex structure deformation is integrable if and only

if ᾱ satisfies the Maurer–Cartan equation.

∂ᾱ+ [ᾱ, ᾱ] = 0. (5.164)

If one is just interested in the infinitesimal moduli at this point, taking ᾱ = εβ̄, in the limit

ε → 0 the condition is simply ∂β̄ = 0. In general there may be an obstruction to extending

this solution for finite ε, although the Kodaira–Nirenberg–Spencer theorem states there is no

obstruction if the cohomology class H2,0
∂ (M,T 0,1) vanishes. For the moduli space one should

mod out by deformations generated by diffeomorphisms. Infinitesimally, that is of the form

L′1 = (1 + εLv)L1 v ∈ Γ(T ). (5.165)

Writing v = x+ x̄ for a unique x ∈ Γ(T 1,0), one finds

L′1 = (1 + ε∂x̄)L1, (5.166)

where one views ∂x̄ ∈ Γ(QGL(3,C)). A deformation is then trivial if β̄ = ∂x̄ for some x̄ ∈ Γ(T 0,1).

Hence we get the result that the infinitesimal moduli of GL(3,C) structures is given by

H1,0
∂ (M,T 0,1). (5.167)

Finally we note that it is simple to connect this picture to the moduli space of SL(3,C) struc-

tures. An integrable complex structure I defines a line of SL(3,C) structures UI . Up to a

constant C∗ rescaling Ω → λΩ there is a unique integrable structure Ω ∈ Γ(UI) (that is one

satisfying dΩ = 0) for each complex structure I. Hence, we get the standard result that the

moduli space of integrable SL(3,C) structures is just H1,0
∂ (M,T 0,1)⊕C ' H1,2

∂ (M)⊕H0,3
∂ (M).

5.4.2 Moduli Space of SU(7) Structures

Now let us turn to the moduli space Mψ of SU(7) structures ψ. As we have discussed, locally

the physical moduli space Mψ/C∗ can be identified with the space of deformations of J that

remain integrable, modulo complex diffeomorphisms.

First, let us introduce some notation as we did in the previous section. We consider the

space QU(7)×R+ of almost exceptional complex structures at a point p ∈M . This can be viewed
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as

QU(7)×R+ = E7(7)/U(7) = E7(7) · J0 = E7,C/P, (5.168)

where E7(7) · J0 is the orbit of a fixed almost exceptional complex structure J0 under E7(7) at

some fixed point on the manifold, and P is the parabolic subgroup that stabilises L3

P = StabL3 = GL(7,C) nC42. (5.169)

By considering the orbit of J0 at all points on the manifold, we see that infinitesimal deforma-

tions of the structure can be viewed as a sections of the vector bundle

E7,C/p→ QU(7)×R+ →M. (5.170)

Again, in practice we will embed QU(7)×R+ ↪→ad F̃C by choosing an embedding E7,C/p ↪→ E7,C.

Explicitly, we write a generic infinitesimal deformation of L3 as

L3 → L′3 = (1 + εA) · L3, (5.171)

where we view A ∈ Γ(QU(7)×R+) as a map

A : L3 → EC/L3, (5.172)

and then make a choice of embedding EC/L3 ↪→ EC. As the original subbundle L3 is involutive,

the intrinsic torsion vanishes. For a generic deformation A, L′3 will have some non-zero intrinsic

torsion that appears as an obstruction to the involutivity of L′3 with respect to the generalised

Lie derivative (or equivalently the Courant bracket). Expanding to first order in ε we get a

differential map d2

d2 : Γ(QU(7)×R+)→ Γ(W int
U(7)×R+), (5.173)

where sections of W int
U(7)×R+ are the intrinsic torsion for the deformed almost exceptional complex

structure.21 The L′3 subbundle will be involutive if the intrinsic torsion vanishes, and so the

deformed structure will be integrable if and only if A ∈ ker d2.

We also have the notion of a trivial deformation. As we have discussed, this corresponds to

the action of the complexified generalised diffeomorphism group GDiffC. To linear order, such

deformations are given by the action of the Dorfman derivative. That is, we consider L′3 to be

equivalent to L3 if

L′3 = (1 + εLV )L3 for some V ∈ Γ(EC). (5.174)

This defines a second differential map d1

d1 : Γ(EC)→ Γ(QU(7)×R+). (5.175)

A trivial deformation should automatically be torsion free – by the Leibniz property of the

21From the discussion around (5.28), note that here W int
U(7)×R+ is strictly a complex bundle transforming in the

1−7 ⊕ 35−5 representation of U(7)× R+.
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generalised Lie derivative we have

LW+VW (W ′ +V W
′) = LWW

′ + ε
(
LLVWW

′ + LW (LVW
′)
)

+O(ε2)

= (1 + εLV )LWW
′ +O(ε2)

(5.176)

and hence any trivial deformation is indeed integrable. This is precisely the statement that

d2 ◦ d1 = 0 and so we have a three-term complex

Γ(EC) Γ(QU(7)×R+) Γ(W int
U(7)×R+).

d1 d2 (5.177)

Assuming there are no obstructions, the local moduli space of the SU(7) structure is modelled

on the cohomology of this complex.

In the rest of this section we will calculate this cohomology for both the G2, generic type-zero

and GMPT structure examples. In the G2 case we recover the known result that the moduli

are counted by the third de Rham cohomology of the underlying manifold. In the GMPT case,

we find new results – the full set of moduli were previously unknown. We will see that in both

cases the ability to calculate the cohomology of (5.177) relies on finding a nice parameterisation

of the embeddings EC/L3 ↪→ EC and QU(7)×R+ ↪→ ad F̃C. This then leads to a description of

the moduli in terms of cohomologies defined by differentials that are naturally associated to

the problem. For the G2 (and general type-zero) case this is the de Rham differential, while

for the GMPT solutions it is the generalised Dolbeault operator associated to the integrable

generalised complex structure. One may hope that the general case could be solved in terms of

some natural differential associated to the L3 bundle – we make some comments on this at the

end of this section in 5.4.5, noting some of the complications that arise.

5.4.3 Example 1: G2 and Type-0 Geometries

Recall that we can embed G2 structures into the language of exceptional complex structures

via the definition

L3 = eiϕ · TC. (5.178)

The involutivity of this bundle then gives dϕ = 0. A useful parameterisation of the quotient

spaces as subspace of EC and ad F̃C is given by

EC/L3 ' ∧2T ∗C ⊕ ∧5T ∗C ⊕ (T ∗C ⊗ ∧7T ∗C),

QU(7)×R+ ' ∧3T ∗C ⊕ ∧6T ∗C.
(5.179)

It is worth noting that these are not eigenspaces of the exceptional complex structure J and

hence this is a different parameterisation to that given in (5.204) below. They instead come from

the natural deformations of the underlying exceptional Dirac structure defined by T . They are

invariant under the map eiϕ, meaning they can equally well be viewed as defining deformations

of L3. In the same way, we can also identify the space of the intrinsic torsion as

W int
U(7)×R+ ' ∧4T ∗C ⊕ ∧7T ∗C, (5.180)
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that is the space of intrinsic torsion of the Dirac structure.

If we take α ∈ Γ(∧3T ∗C) and β ∈ Γ(∧6T ∗C), the infinitesimal deformation is given by

L′3 =
(
1 + ε(α+ β)

)
· eiϕ · TC = eiϕ+ε(α+β̃) · TC +O(ε2), (5.181)

where β̃ = β − 1
2ϕ ∧ α. Repeating the calculation in (5.53), we can use the twisted Dorfman

derivative and dϕ = 0 to find

involutive L′3 ⇔ dα = dβ = 0. (5.182)

Hence integrable deformations are given by closed three-forms and six-forms. For the trivial

deformations, writing V = v + ω + σ + τ ∈ Γ(EC) we have, since LvT = 0,

L′3 = (1 + εLV ) eiϕ · TC
=
(
1− ε(dω − dσ − eiϕLve−iϕ)

)
· eiϕ · TC

= (1 + ε(dω̃ + dσ̃))L3,

(5.183)

where ω̃ = −ω + i ıvϕ and σ̃ = −σ − 1
2ϕ ∧ ıvϕ. Hence the complex (5.177) becomes

Γ(∧2T ∗C ⊕ ∧5T ∗C) Γ(∧3T ∗C ⊕ ∧6T ∗C) Γ(∧4T ∗C ⊕ ∧7T ∗C).d d (5.184)

where d is the exterior derivative, and the inequivalent deformations are counted by

{α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C) |dα = dβ = 0}
{α = dω̃, β = dσ̃}

= H3
d(M,C)⊕H6

d(M,C). (5.185)

That is, the inequivalent deformations are counted by the third and sixth de Rham cohomologies.

For a G2 manifold, the sixth de Rham cohomology is trivial and hence the cohomology of (5.177)

is counted by H3
d(M,C) alone. The imaginary elements are deformations of the G2 structure

while the real elements shift the gauge potential such that the flux remains zero. This is in

complete agreement with standard analysis of the moduli space of G2 compactifications of

M-theory [270–272].

It is also clear from the way we have written these deformations that they are unobstructed.

The action of complex gauge potentials α + β can be exponentiated for finite ε as in the final

term of (5.181), such that the linearised closure condition is enough to imply the deformation

is integrable. Thus the moduli space looks like H3
d(M,C) in a finite patch. Formally this is the

statement that there is an open subset of the moduli space V ⊆ Mphys containing this excep-

tional complex structure, an open subset U ⊆ H3
d(M,C) containing 0, and a diffeomorphism

V → U .

Finally we note that the G2-structure calculation extends straightforwardly to a generic

type-0 structure. Recall these take the form

L3 = eα+β · TC (5.186)

where α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C) and involutivity implies dα = dβ = 0. By following the same
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analysis as above, one sees that the deformations of this structure will again be given by

H3
d(M,C)⊕H6

d(M,C). (5.187)

This gives the moduli space of the class of supersymmetric backgrounds discussed in [108],

complementary to those analysed in [104, 106]. It would be interesting to analyse further the

conventional geometry of these solutions.

5.4.4 Example 2: GMPT Geometries

As we saw in section 5.2.2, we can write the GMPT solutions as

L3 = eΣ[L
J±
1 ⊕ UJ± ], Σ = C + 8 i e−3A im Φ∓, (5.188)

where the upper/lower signs correspond to type IIA/B respectively and the O(6, 6) bundles are

appropriately embedded into E7(7)×R+. As before, we will work in type IIB for concreteness but

similar results hold for type IIA. We will use the notation set out in section 5.2.2. In particular,

recall that the generalised complex structure J− defines a decomposition of the generalised

spinor bundles into in-eigenspaces S+ = S2 ⊕ S0 ⊕ S−2 and S− = S3 ⊕ S1 ⊕ S−1 ⊕ S−3 where

S3 ' UJ− . We can always choose C such that the twisting Σ lies in S0⊕S2 since any component

in S−2 acts trivially on L3.

We take the parameterisation

EC/L3 = L
J−
−1 ⊕ (S1 ⊕ S−1 ⊕ S−3)⊕ ∧5T ∗C,

QU(7)×R+ = ∧2(L
J−
−1 )∗ ⊕ (S0 ⊕ S−2)⊕ ∧6T ∗C.

(5.189)

As before, these are not eigenspaces of J . Instead the are the spaces of natural deformations of

the underlying exceptional Dirac structure defined by L
J±
1 ⊕UJ− ⊂ EC. Since Σ ∈ Γ(S0 ⊕ S2),

these spaces are invariant under the action of eΣ and hence can be used to describe deformations

of the twisted bundle (5.188). One can similarly identify the intrinsic torsion

W int
U(7)×R+ ' ∧3(L

J−
−1 )∗ ⊕ (S−1 ⊕ S−3) (5.190)

as a subbundle of K.

We leave the details of the calculation to appendix G but to summarise, we note that we

deform the L3 bundle by ε ∈ Γ(∧2(L
J−
−1 )∗), χ = χ0 +χ−2 ∈ Γ(S0⊕S−2) and Θ ∈ Γ(∧6T ∗), then

assuming the ddJ -lemma (G.5) [280], one can show that the integrable moduli are counted by

[ε] ∈ H2
dL

(M), [χ] ∈ H0
∂̄(M)⊕H−2

∂̄
(M), [Θ] ∈ H6

d(M,C). (5.191)

The differentials dL and ∂̄ are operators associated to the generalised complex structure given

by Φ− in the IIB case, and are defined in [165]. The operator dL is the differential associated to

the Lie algebroid structure L
J−
−1 . The operators ∂̄ are not the Dolbeault operators but are the

generalised Dolbeault operators defined on the spinor bundles by the decomposition of d = ∂+∂̄.
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Hence we have

dL : ∧p(LJ−−1 )∗ → ∧p+1(L
J−
−1 )∗, ∂̄ : Sn → Sn−1. (5.192)

We see that the operators in the complex (5.177) are both given by dL + ∂̄ + d acting on the

appropriate bundles. The second cohomology group of dL counts the deformations of the J−
generalised complex structure [165]. The ∂̄ cohomology groups count the deformations of F

and im Φ+. Since M is a generalised Calabi–Yau manifold, the cohomologies of dL and ∂̄ are

actually isomorphic. We see that apart from the top form (which just measures the Wilson line

for the dual NSNS six-form potential B̃), all of the moduli are counted by natural differentials

associated to the integrable SU(3, 3) structure of the GMPT solutions.

This includes and extends the results of [203], where the moduli of Φ+ keeping Φ− fixed

(and vice versa) were examined. It was also suggested that one might be able to find the full

moduli space by varying Φ− and re Φ+ independently while satisfying their closure conditions.

It was hoped that one could then find a solution to the im Φ+ equation by examining critical

points of a modified Hitchin functional by varying over a fixed cohomology class. This allows

an estimate of an upper bound for the number of moduli in this case. In contrast, we are able

to find the exact number of moduli by finding variations of Φ− and im Φ+ such that

dΦ− = 0, F = −8 dJ−(e−3A im Φ+). (5.193)

The final condition d(e−A re Φ+) = 0 is imposed by the vanishing of the moment map. However,

as we have mentioned, imposing this is equivalent to quotienting by GDiffC and hence we get

it without imposing a further differential condition. As we have noted several times, this

construction works only away from sources and hence these deformations do not account for

deformations of branes or orientifolds.

We can see how each of these deformations affects the form of L3:

Φ′− = (1 + �ε)Φ−, (5.194)

F ′ = F + 1
2d
(
re(�εµ+ χ)

)
, (5.195)

im Φ′+ = im Φ+ + 1
8e3A im(�εµ+ χ). (5.196)

Here µ is a polyform in Γ(S2), related to Σ and defined in appendix G.7. As noted by

Hitchin [164], re Φ+ is determined by im Φ+, and hence these deformations determine the full

solution {Φ+,Φ−, F}. Note that a small deformation of a GMPT solution remains within the

GMPT class. GMPT describes all N = 1 solutions for which the two internal spinors are

nowhere vanishing – this is an open condition and hence will not be changed by small deforma-

tions [202,203].

Finally we consider the existence of obstructions to the linear deformations described above.

We begin with the observation that a polyform deformation can be lifted to a finite deformation

simply by promoting it to an exponential. Indeed this is precisely what we have done in the

derivation above. The real question then is whether there are any obstructions to the generalised

complex structure deformation ε ∈ Γ(∧2(L
J−
−1 )∗). A result due to Hitchin [164] states that all

deformations of generalised Calabi–Yau structures are unobstructed. Since we have a global

155



Φ− that satisfies dΦ− = 0, we have a generalised Calabi–Yau structure defined by J−. Taken

together, this would seem to imply that the moduli are unobstructed, much like in the previous

G2 case.

Calabi–Yau as N = 1

As we saw in section 5.2.2, we can embed a Calabi–Yau compactification in type IIB via

L3 = ei e−ϕ(ω−1
6ω∧ω∧ω)[T 0,1 ⊕ T ∗1,0 ⊕ C e3A−ϕΩ]. (5.197)

As is shown in [165], for Φ− ∝ Ω the generalised Dolbeault operator ∂̄ reduces to the usual

Dolbeault operator associated to the complex structure defined by Ω. It is also shown that

H2
dL

(M) = H2
∂̄(M,C)⊕H1

∂̄(M,T 1,0
C )⊕H0

∂̄(M,∧2T 1,0
C ), (5.198)

H0
∂̄(M) =

3⊕
i=0

H i,i

∂̄
(M,C), (5.199)

H−2
∂̄

(M) = H0,2

∂̄
(M,C)⊕H1,3

∂̄
(M,C), (5.200)

where the cohomologies on the left-hand side are with respect to the generalised Dolbeault

operators and those on the right-hand side are with respect to the usual Dolbeault operators.

Using the isomorphism provided by the three-form Ω, we see that the moduli of such a solution

are counted by the Hodge numbers

h2,1 + (h0,0 + h1,1 + h2,2 + h3,3) + h3,3. (5.201)

Note that these are the complex dimensions. Here h2,1 corresponds to the deformations of the

complex structure associated to Ω. The real part of the Dolbeault groups in the parentheses

corresponds to shifts in the RR polyform potential C. The imaginary part corresponds to shifts

in im Φ+, which count deformations of the Kähler potential ω, and the NSNS fields φ and B.

Notice that we have one extra, non-physical modulus here. Finally the real part of the final

H3,3

∂̄
gives deformations of B̃ ∈ Γ(∧6T ∗), the six-form potential dual to B. Again we have an

extra, non-physical modulus given by the imaginary part of H3,3

∂̄
.

The two extra, non-physical moduli correspond to changing the N = 1 ⊂ N = 2 that is

picked out by our formalism. These moduli do not change the SU(8) structure (which gives us

the physical fields in the theory), though they do rotate the SU(7) ⊂ SU(8). Indeed, we note

that choosing an N = 1 ⊂ N = 2 is equivalent to choosing a U(1) ⊂ SU(2). Hence there are

2 real or 1 complex parameters that encode this choice, precisely the counting we have. Note

that these extra moduli appear only for Calabi–Yau compactifications as they are really N = 2

– a generic GMPT solution is a genuine N = 1 solution and hence all the moduli are physical.
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5.4.5 Comments on the Generic Moduli Problem

We would like to calculate the cohomology of the following complex for a generic integrable

L3 ⊂ EC:

Γ(EC)
d1−−→ Γ(QU(7)×R+)

d2−−→ Γ(W int
U(7)×R+). (5.202)

We can use the SU(7) structure to decompose the bundles as J eigenspaces following (5.17),

(5.16) and (5.25)

EC = X3 ⊕ (∧2X∗)1 ⊕ (∧5X∗)−1 ⊕ X∗−3

ad F̃C = adPU(7)×R+ ⊕ (∧3X)2 ⊕ (∧6X)4 ⊕ (∧3X∗)−2 ⊕ (∧6X∗)−4

W int
U(7)×R+ = (∧4X∗)−5 ⊕ (∧7X∗)−7

(5.203)

where X transforms in the 7 of SU(7). A natural parametrisation of embeddings is then

EC/L3 = (∧5X∗)1 ⊕ (∧2X∗)−1 ⊕ X∗−3, QU(7)×R+ = (∧3X∗)−2 ⊕ (∧6X∗)−4. (5.204)

As L3 defines an integrable U(7)× R+ structure, we have a torsion-free compatible connection

D. Since d1 and d2 are defined in terms of the Dorfman derivative LV and D is torsion free, we

can replace all Dorfman derivatives with LDV , as in (5.12). This implies the maps d1 and d2 can

be written in terms of D. Moreover, viewing the derivative as a map D : R → E∗ ⊗ R, for any

given generalised tensor bundle R, we can decompose E∗ and hence D into operators

D = D3 +D−1 +D1 +D−3. (5.205)

The compatibility of the generalised connection ensures that these operators map U(7) repre-

sentations into U(7) representations in a way that will be clear in a moment. We can think of

these operators as the generalisation of the Dolbeault operators to SU(7) structures.

Describing the operators d1, d2 in this parametrisation, one finds that the complex (5.202)

decomposes as

Γ(∧2X∗)+1 Γ(∧3X∗)−2 Γ(∧4X∗)−5

Γ(∧5X∗)−1 Γ(∧6X∗)−4 Γ(∧7X∗)−7

Γ(X∗−3)

D−3 D−3

D−1

D−3

D−1

D−3

D−1D1

(5.206)

Note that the involutivity of L3 implies that (D−3)2 = 0. In fact L3 defines a Lie algebroid and

D−3 is the associated differential

D−3 : ∧pX∗ → ∧p+1X∗, (5.207)
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similarly to the situation for a Dirac structure in [165]. It seems likely that under certain

assumptions – notably some generalised version of the ∂∂̄-lemma – it is possible to write the

cohomology of (5.202) in terms of the cohomology groups H•D−3
(M) of D−3. This would be

in line with the theory of deformations of complex structures [290], generalised complex struc-

tures [165], or more generally Dirac structures [291]. However the existence of the D1 action

between X∗−3 and ∧3X∗−2 makes the analysis considerably more subtle than that for the G2 and

GMPT examples.
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Chapter 6

Quantising the Exceptional Hitchin

Functional

Hitchin functionals were first introduced by Nigel Hitchin in [255] as an interesting way to study

the properties of SL(3,C) structures. They have since been extended to G2 structures [151],

and generalised complex structures [164]. Not only do these have interesting mathematical

applications, but they have been shown to have applications to topological strings, both in the

B-model [3] and in the G2 string [79, 292, 293]. In this chapter, we will review the work done

on Hitchin functionals of various types, as well as their applications to topological strings. We

will then indicate how the Kähler potentials of chapters 4 and 5 define exceptional Hitchin

functionals for the exceptional complex structures in each case. Moreover, we will quantise

these functionals, perturbing around a Calabi-Yau and a G2 manifold respectively. This is

the exceptional geometry analogue of the calculation Pestun and Witten did for generalised

complex structures [3]. The partition function for the SU∗(6) structures may provide a geometric

interpretation for the 1-loop correction to the universal hypermultiplet in 5 dimensions. The

partition function for the SU(7) structures could give an indication of loop corrections to certain

terms in the effective actions of M-theory.

6.1 The Hitchin Functionals

6.1.1 The Hitchin Functional for SL(3,C) Structures

Understanding SL(3,C) structures as the critical points of certain functionals varied over coho-

mology classes was first found in [255], and later studied in [294]. The key point is that, while

the SL(3,C) structure is often described in terms of some holomorphic 3-form, it can in fact be

determined from the real part only. In fact, provided a real 3-form lies in a particular GL(6,R)

orbit of ∧3T ∗, one can find the usual complex structure and holomorphic 3-form describing

the SL(3,C) structure. One can then understand integrability as critical points of a certain

functional H(ρ). We will review the work of [255,294] here.
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SL(3,C) Structures at a Point

We will start by just considering the structures on a real 6 dimensional vector space W before

extending this to 6-manifolds. Given W , there is a natural isomorphism

∧5W ∗ ∼= W ⊗ ∧6W ∗ (6.1)

We are considering the geometry of 3-forms on this space so consider any ρ ∈ ∧3W ∗. Using the

isomorphism above, we can define the following maps

Kρ : W −→W ⊗ ∧6W ∗

w 7−→ (wyρ) ∧ ρ
(6.2)

λ : ∧3W ∗ −→ (∧6W ∗)2

ρ 7−→ 1

6
TrK2

ρ

(6.3)

These satisfy the following properties

TrKρ = 0 K2
ρ = λ(ρ)1 (6.4)

We will be considering the space of 3-forms given by1

U = {ρ ∈ ∧3W ∗ |λ(ρ) < 0} (6.5)

It was shown in [255] that ρ ∈ U if and only if the stabiliser of ρ is SL(3,C) ⊂ GL(6,R).

Hence, ρ should define a complex structure on W and a complex 3-form, Ω. From (6.4) we can

immediately see that we can define a complex structure by

Iρ =
1√
−λ(ρ)

Kρ (6.6)

To uniquely define the complex 3-form, one needs to define an orientation on W . An alternative

characterisation for U is ρ ∈ U if and only if ρ = α + ᾱ where α ∈ ∧3W ∗ ⊗ C, α ∧ ᾱ 6= 0. It

turns out that α is unique up to complex conjugation. We order α, ᾱ so that α ∧ ᾱ is positive

with respect to the orientation picked. We can then define a new ρ̂ ∈ U by ρ̂ = i(ᾱ − α).

This uniquely defines a complex 3-form Ω = ρ+ iρ̂ which is the usual definition of the SL(3,C)

structure. Indeed, one can show that Ω is consistent with the complex structure Iρ in that,

when decomposed into Iρ eigenspaces, Ω ∈ ∧3,0W ∗. Finally, we note that

iΩ ∧ Ω̄ = 2ρ ∧ ρ̂ = 4
√
−λ(ρ) (6.7)

The space U has a Kähler structure on it. Indeed, given some orientation ε ∈ ∧6W ∗, we

1We say an element τ ∈ (∧6W ∗)2 is positive if ∃ s ∈ ∧6W ∗ such that τ = s ⊗ s. We say τ < 0 if −τ is
positive.
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can define a symplectic structure by

ω(α, β)ε = α ∧ β (6.8)

Using the function ϕ(ρ)ε =
√
−λ(ρ) we can define a Hamiltonian function vector field Xϕ which

has the property

Xϕ(ρ) = −ρ̂ (6.9)

Since U ⊂ ∧3W ∗, we can take TρU ∼= ∧3W ∗ and so we can view Xϕ instead as a map Xϕ :

U −→ ∧3W ∗. It is clear from the construction of ρ̂ that ˆ̂ρ = −ρ. Therefore, Xϕ ◦Xϕ(ρ) = −ρ
and so the derivative DXϕ satisfies

(DXϕ)2 = −1 (6.10)

We take this to be the complex structure I on U .

In fact, there is a more intuitive picture of the complex structure on U related to the complex

structure on W . Take ρ ∈ U , which defines a complex structure Iρ on W . Then consider the

tangent space to U at ρ. As mentioned, TρU ∼= ∧3W ∗. We then decompose this into Iρ

eigenspaces. Then the eigenspaces of I are given by

T 1,0
ρ U = ∧3,0W ∗ ⊕ ∧2,1W ∗ T 0,1

ρ U = ∧1,2W ∗ ⊕ ∧0,3W ∗ (6.11)

U therefore has a Kähler structure2 with a Kähler metric of complex signature (4,6)3 defined

by

g(α, β) = ω(Iα, β) (6.12)

Indeed, if θ1, θ2, θ3 is a complex basis for ∧1,0W ∗ then we find that the following must have

opposite signs under the metric g.
θ1 ∧ θ2 ∧ θ3

θ1 ∧ θ2 ∧ θ̄2 + θ1 ∧ θ3 ∧ θ̄3

cyclic perms of 1,2,3




θ1 ∧ θ2 ∧ θ̄3

θ1 ∧ θ2 ∧ θ̄2 − θ1 ∧ θ3 ∧ θ̄3

cyclic perms of 1,2,3

 (6.13)

Hence, we just need to find the sign of Ω = ρ+ iρ̂. In fact

g(Ω, Ω̄)ε = ω(IΩ, Ω̄)ε = iΩ ∧ Ω̄ = 2ϕ(ρ)ε (6.14)

But ϕ is a positive homogeneous function of degree 2 and so the metric is positive on ∧3,0W ∗,

and has complex signature (4,6) overall as stated.

SL(3,C) Structures on 6-Manifolds

We now extend the analysis above to 3-forms on a closed, oriented 6-manifold M . We take a

globally non-vanishing 3-form ρ ∈ Ω3(M). This will define a section λ(ρ) ∈ Γ((∧6T ∗)2) which

we will take to be globally negative. Hence, ρ defines an SL(3,C) structure on M via the

2In fact, U has a special Kähler structure.
3Note that in [255], Hitchin finds the signature to be (1, 9). However, there appears to be a slight flaw in his

argument which we correct here. This calculation does not affect the rest of his paper.
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mechanism above extended pointwise to the whole of M .

We define a functional, which we call the Hitchin functional4

HΩ(ρ) =

∫
M
ϕ(ρ)ε =

∫
M

√
−λ(ρ) (6.15)

The key observation of [255] is that ρ is a critical point of H(ρ) within a given cohomology class

[ρ] ∈ H3(M) if and only if it is the real part of a non-vanishing holomorphic 3-form Ω defining

the SL(3,C) structure. To see this, we note that

δH =

∫
M
δϕε (6.16)

From the symplectic interpretation in the previous section, we know that at a point δϕ(δρ) =

ω(Xϕ, δρ), and that Xϕ = −ρ̂. Hence

δH = −
∫
M
ρ̂ ∧ δρ (6.17)

We are restricting the variational problem to a given cohomology class [ρ] ∈ H3(M) and hence

we can take δρ = db for some b ∈ Ω2(M). Therefore we see that

δH = −
∫
M
ρ̂ ∧ db ≡ 0 ⇔ dρ̂ = 0 (6.18)

Hence, the complex 3-form Ω = ρ+ iρ̂ is closed, i.e. a holomorphic section, if and only if ρ is a

critical point of the functional.

We can go further and show that, provided the ∂∂̄-lemma holds, these critical points are

non-degenerate transverse to the action of (orientation preserving) diffeomorphisms. Hence, on

any ∂∂̄ manifold, there is a diffeomorphism between an open patch [ρ] ∈ U ⊂ H3(M), and

an open patch in the moduli space Ω ∈ V ⊂ MΩ. This is shown by considering the second

variation of the Hitchin functional to get the Hessian and showing that if it is degenerate along

some δρ = db, then one can write db = Lvρ for some vector field v.

While we won’t go through the full argument laid out in [255], we will go through the

derivation of the second variation. This will be important for the quantisation procedures later.

4The subscript Ω is used here to distinguish the Hitchin functional for SL(3,C) structures from the Hitchin
functional of other structures that we will define later. It should not be taken to mean the complex object
associated to ρ. Where the meaning is clear we will drop the subscript.
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The second variation is essentially given by the integral of the metric g(δ1ρ, δ2ρ). We have

δ2H = δ2

(
−
∫
M
ρ̂ ∧ δ1ρ

)
= δ2

(∫
M
Xϕ ∧ δ1ρ

)
=

∫
M
δ2Xϕ ∧ δ1ρ

=

∫
M

(DXϕ)(δ2ρ) ∧ δ1ρ

=

∫
M
Iδ2ρ ∧ δ1ρ

(6.19)

Now let us take the variation δ1ρ = δ2ρ = db, and expand b = b20 + b11 + b02. b is a real 2-form

and so we must have b02 = b̄20, and b11 is a real (1,1)-form. It is possible to show that the terms

involving b02, b20 appear as total derivatives under the integral and hence vanish. We are left

with

δ2HΩ =

∫
M

2i∂b11 ∧ ∂̄b11 (6.20)

This is the action quantised in [3], as we will review later.

6.1.2 The Hitchin Functional for SU(3, 3) Structures

Hitchin later showed in [164] that a completely analogous structure holds for SU(3, 3) structures

in O(6, 6) generalised geometry. We will review this work here and we will find that, once again,

the complex pure spinor Φ ∈ ∧ev/oddT ∗ can be described by the real part only, provided it lies in

the correct open orbit of O(6, 6). One can also then describe the integrability of these structures

in terms of the extremisation of a particular functional over a given cohomology class.

SU(3, 3) Structures at a Point

On the space of generalised spinors S ' ∧ev/oddW ∗ ⊗ (∧6W )1/2, the Mukai pairing is skew-

symmetric and invariant under O(6, 6). Hence there is a moment map

µ : S −→ g∗

µ(ρ)(a) =
1

2
〈σ(a)ρ, ρ〉

(6.21)

Here g = o(6, 6), a ∈ g, and σ : g −→ EndS is the representation of g on spinors. We will use

the inner product Tr(XY ) to identify g∗ ' g, and so µ(ρ) ∈ g. We define an invariant quartic

function by

q : S −→ R

ρ 7−→ Trµ(ρ)2
(6.22)

One can show that µ(ρ)2 = 1
48q(ρ)1 and that, if q(ρ) < 0, then ρ is the real part of a pure

spinor Φ that defines an SU(3, 3) structure, i.e. a generalised Calabi-Yau structure. That is,
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ρ = Φ + Φ̄ where
〈
Φ, Φ̄

〉
6= 0 and Φ is unique up to complex conjugation. We will again focus

on the geometry of the space

U = {ρ ∈ S | q(ρ) < 0} ⊂ S (6.23)

Using the Mukai pairing as the symplectic form, we can find a Kähler geometry on U via

the following. We define a function ϕ =
√
−q(ρ)/3 and take the corresponding Hamiltonian

vector field Xϕ. Then one finds that Xϕ = ρ̂ where 2Φ = ρ + iρ̂. Viewing Xϕ as a function

U −→ S, we can take the derivative DXϕ. Then, the observation that ˆ̂ρ = −ρ implies that

(DXϕ)2 = −1, and hence DXϕ determines a complex structure I on U . This again has a

convenient interpretation when the generalised complex structure defines either a conventional

complex structure (Φ = Ω) or a symplectic structure (Φ = eiω). In each case we find that

T 0,1
ρΩ
U = ∧3,2W ∗ ⊕ ∧3,0W ∗ ⊕ ∧2,1W ∗ ⊕ ∧1,0W ∗ T 0,1

ρω U = eiω ⊕ eiω∧2W ∗ (6.24)

We can define a Kähler metric of complex signature (7, 9) via

g(ρ, σ) = 〈Iρ, σ〉 (6.25)

SU(3, 3) Structures on 6-Manifolds

To lift this problem to SU(3, 3) structures defined on manifolds, we take S ∼= ∧ev/oddT ∗. To

do this, we must lift the structure group to O(6, 6)×R+, the structure group relevant for type

I theories [183]. Then, given some non-vanishing section ρ ∈ Γ(S), we get a global section

q(ρ) ∈ Γ((∧6T ∗)2) which we will assume to be globally negative. We then have a top-form

ϕ(ρ).

We define a functional, which we will call the extended Hitchin functional5

HΦ(ρ) =

∫
M
ϕ(ρ) =

∫
M

√
−(ρ)/3 (6.26)

The first variation can be calculated by using the symplectic interpretation above. At a point

δϕ = 〈Xϕ, δρ〉 = 〈ρ̂, δρ〉. Hence

δH =

∫
M
〈ρ̂, δρ〉 (6.27)

Hitchin was then able to show that a closed, stable form ρ ∈ Ωev/odd(M) extremises the extended

Hitchin functional if and only if ρ + iρ̂ = 2Φ defines an integrable generalised Calabi-Yau

structure. to see this, we take the first variation with δρ = db for some b ∈ Ωodd/ev(M) and find

δH =

∫
M
〈ρ̂, db〉 ≡ 0 ⇔ dρ̂ = 0 (6.28)

Hitchin goes further to say that these extrema are non-degenerate transverse to the orbit

of generalised diffeomorphisms6 provided the generalised ∂∂̄-lemma holds. He then uses this to

5The subscript Φ is used to distinguish the Hitchin functional for SU(3, 3) structures from other Hitchin
functionals defined in this section. It should not be taken to be the complex object associated to ρ. Where the
meaning is clear we will drop the subscript.

6In Hitchin’s language, generalised diffeomorphisms are described by the extension of (orientation preserving)
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understand the local structure of the moduli space in terms of generalised cohomology groups.

We will not go through the full argument but we will provide the second variation, or the

Hessian, as that will be important for understanding the topological B-model later [3]. The

second variation is again given by

δ2H = δ1

(∫
M
〈ρ̂, δ2〉

)
(6.29)

=

∫
M
〈δ1Xϕ, δ2ρ〉 (6.30)

=

∫
M
〈(DXϕ)δ1ρ, δ2ρ〉 (6.31)

=

∫
M
〈Iδ1ρ, δ2ρ〉 (6.32)

If we take the complex structure case, so Φ = Ω, we can take δ1ρ = δ2ρ = db and write

b = b00 + b20 + b11 + b20 + b22, then up to exact terms under the differential, and overall

constants, the second variation is given by

δ2HΦ =

∫
M
b11 ∧ ∂∂̄b11 + b00 ∧ ∂∂̄b22 (6.33)

6.1.3 The Hitchin Functional for G2 Structures

The final functional we will review is that of G2 structures, also discovered and studied by

Hitchin in [151,294]. While the overall picture of G2 is very similar to that of the (generalised)

complex structures above, in that an integrable G2 structure can be described by an extremised

functional over a particular cohomology class, some of the details are different. In particular,

there is no natural Kähler structure on the space of G2 structures. Interestingly, this Kähler

structure is restored when you consider G2 as a subset of SU(7) structures, as outlined in chapter

5.

G2 Structures at a Point

Take W a real 7 dimensional vector space and φ ∈ ∧3W ∗. We get a map

Bφ : S2W −→ ∧7W ∗

(v, w) 7−→ −1

6
(vyφ) ∧ (wyφ) ∧ φ

(6.34)

Alternatively, we can view this as a map Kφ : W −→W ∗ ⊗ ∧7W ∗ and so we have

(detKφ)1/9 ∈ ∧7W ∗ (6.35)

diffeomorphisms by exact 2-forms
Ωexact(M) −→ G −→ Diff0
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which, provided detKφ 6= 0, defines a natural orientation on W . This gives an inner product

on W given by

gφ(v, w) = Bφ(v, w)(detKφ)−1/9 (6.36)

One can show that the stabiliser of φ such that gφ is positive definite is G2 ⊂ GL(7,R) and that

ϕ is in the orbit of the standard G2 form

φ̃ = e123 − e145 − e167 − e246 + e257 − e347 − e356 gφ̃ =
∑
i

ei ⊗ ei (6.37)

We call such 3-forms positive and stable, and we will take the subspace U ⊂ ∧3W ∗ of positive,

stable 3-forms.

Fixing some orientation ε ∈ ∧7W ∗, we can define a positive, homogeneous function of degree

7/3 on U by

ϕ(φ)ε = (detKφ)1/9 (6.38)

Taking ∗φ to be the Hodge operator defined by gφ, one can show that

ϕ(φ)ε =
1

6
φ ∧ ∗φφ δϕε =

7

18
∗φ φ ∧ δφ

This expresses ∗φφ in terms of the derivative of some function. From now on we will refer to

∗φ as ∗, knowing that it depends non-linearly on φ. We can equally define the G2 structure in

terms of the 4-form ∗φ, although we won’t consider that here.

G2 Structures on 7-Manifolds

To consider G2 structures on a 7 dimensional manifold M , we take a global non-vanishing

φ ∈ Ω3(M) which is everywhere positive and stable. (detKφ)1/9 defines a global non-vanishing

section of ∧7T ∗. We can then define a functional, we will call the G2 Hitchin functional, given

by7

Hφ(φ) =

∫
M
ϕ(φ)ε =

∫
M

1

6
φ ∧ ∗φ (6.39)

The first variation is then

δH =

∫
M
δϕε =

∫
M

7

18
∗ φ ∧ δφ (6.40)

Hitchin then found that a closed, positive, stable φ ∈ Ω3(M) defines an integrable8 G2 structure

if and only if φ extremises the G2 Hitchin functional restricted to a given cohomology class

[φ] ∈ H3(M). Indeed, taking the variation δφ = db for some b ∈ Ω2(M) in the first variation

we find

δH ∼
∫
M
∗φ ∧ db ≡ 0 ⇔ d ∗ φ = 0 (6.41)

Hitchin again goes further to say that these critical points are non-degenerate transverse to

7The subscript φ is used to distinguish the G2 Hitchin functional from other Hitchin functionals defined in
this section. It should not be thought of as the variable φ over which the variational problem is taken. Where
the meaning is clear, we will drop the subscript.

8Technically, this is just a torsion-free G2 structure, which does not guarantee local flatness. We will not
consider this subtlety here.
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the orbit of diffeomorphisms. This means that locally there is a diffeomorphism between an

open patch [φ] ∈ U ⊂ H3(M) and an open subset V ⊂Mφ. He showed this by considering the

second variation, or Hessian, which is given by the following expression.

δ2H =

∫
M

4

3
∗ π1(δ1φ) ∧ π1(δ2φ) + ∗π7(δ1φ) ∧ π7(δ2φ)− ∗π27(δ1φ) ∧ π27(δ2φ) (6.42)

where the πn are projections of the space of three forms onto their irreducible G2 subrepresen-

tations, ∧3T ∗ = ∧3
1T
∗ ⊕ ∧3

7T
∗ ⊕ ∧3

27T
∗.

If we take δφ = db and write b = B + vyφ, with B ∈ ∧2
14T
∗, then [292] showed that, up to

total derivative terms, the second variation is given by

δ2Hφ =

∫
M
∗π7(dB) ∧ π7(dB)− ∗π27(dB) ∧ π27(dB) (6.43)

6.2 Quantisation of the Hitchin Functionals

Beyond being interesting mathematically for understanding the moduli space of various G-

structures, Hitchin functionals have found use in understanding the quantum nature of string

theory. It was first hoped that the quantisation of the Hitchin functional for SL(3,C) struc-

tures would match the 1-loop correction to the topological B-model, given the correspondence

between the observables in that model and properties of the complex structure on the target

manifold. However, it was shown in [3] that it was the quantisation of the Hitchin functionals

of SU(3, 3) structures of O(6, 6) geometry that gave the correct 1-loop calculation. The link

between topological strings and generalised complex structures was further examined in [295].

The G2 Hitchin functional was quantised in [292] and compared to the topological G2 string

of [79,293] but was found to not quite agree. We will briefly review their work here.

6.2.1 Quantisation of HΩ and HΦ

We will first review the work of [3]. There, they tried to understand the relation between the

Hitchin functionals, and the topological B-model at 1-loop. The topological B-model [75,77,296]

is given by a twist of the N = 2 σ-model from a 2 dimensional Riemann surface to, in our case, a

Calabi-Yau manifold X. The correlations functions are only dependent on the complex structure

moduli of the target space X. There is another twist of the σ-model that gives the A-model,

whose observables are related to the symplectic structure on X. These two theories are related

by mirror symmetry. Given the geometrical nature of the B-model, and the ability of the Hitchin

functional to classically describe integrable complex structures, it was conjectured in [297–299]

that these two theories should somehow be related.

They performed the quantisation of the Hitchin functional at quadratic order and compared

it to the partition function of the topological B-model. It was found in [77], that the 1-loop

contribution to the B-model partition function can be written in terms of the holomorphic Ray-

Singer torsions [300]. To define these, we consider the ∂̄ complex on the bundles of holomorphic

p-forms Ωp,0(X) and take the alternating product of determinants of Laplacians on the space
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of (p, q)-forms

IRS
∂̄,p(Ω

p,0) =

 3∏
q=0

(
det ′∆pq

)q(−1)q+1

 (6.44)

Here, det′ means the ζ regularised product of non-zero eigenvalues. The Laplacian ∆pq is just

the restriction of ∆∂̄ = 1
2∆d to Ωp,q(X). It is known that, while these do depend on the complex

structure, they do not depend on the Hermitian metric chosen to define ∆. The 1-loop partition

function is then given by

ZB,1−loop =
3∏
p=0

(
IRS
∂̄,p

)p(−1)p

=
I1

I3
0

(6.45)

where for short-hand we have written IRS
∂̄,p

= Ip and used the Hodge duality to get I3−p = Ip.

To compare this to the Hitchin functional, they took the real part of the SL(3,C) structure

on X, ρ0, which they assumed to be closed and a minimum of the Hitchin functional. They

then considered the partition function of the functional over exact variations ρ = ρ0 + db.

ZΩ([ρ0]) =

∫
Db e−HΩ(ρ) (6.46)

The 1-loop contribution to this is given at the quadratic order, and hence the action we want

to quantise is given by (6.20). This has a gauge structure given by the following

δb11 = ∂b01 + ∂̄b10 δb10 = ∂b00 δb01 = ∂̄b00 (6.47)

where the reality conditions enforce b̄10 = b01, b00 a real function.

BV quantisation allows us to take account of the gauge structure9. We start by introducing

new fields for each of the gauge parameters (called ‘ghosts’, and ‘ghosts for ghosts’ in the BV

language). These are the fields bpq with p, q ≤ 1 and with statistics (−1)p+q. We introduce a

nilpotent BRST operator Q which generates the gauge transformations above. We then need to

introduce antifields to each of the fields with opposite statistics. These are conjugate variables

to each of the fields above with respect to the odd-symplectic bracket given by 〈f, g〉 =
∫
f ∧ g.

We can therefore take the conjugate fields to be bpq with p, q ≥ 2 and with statistics (−1)p+q+1.

The BV action is defined to be

S = S0 +
∑
i

〈Φ∗i , QΦi〉

=

∫
M
b11 ∧ ∂∂̄b11 + b22 ∧ (∂b01 + ∂̄b10) + b32 ∧ ∂̄b00 + b23 ∧ ∂b00

(6.48)

To quantise this, we need to gauge fix. This requires picking a gauge-fixing fermion or choosing

a Lagrangian submanifold of the space of fields. We choose the Lagrangian submanifold given

9A review of BV quantisation is given in [301]
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by

b11 = ∂†∂̄†α22 b22 = ∂†α32 + ∂̄†α23

b10 = ∂†α20 + i∂α00 b23 = ∂†α33

b01 = ∂̄†α02 + i∂̄α00 b32 = ∂̄†α33

b33 = 0

(6.49)

After performing the path integral over this Lagrangian submanifold, and careful considera-

tion of the operators that appear in the determinants, [3] showed that at 1-loop, the Hitchin

functional gives

Z1−loop
Ω =

I1

I0
(6.50)

This clearly does not agree with the 1-loop calculation of the B-model (6.45).

This would seem to suggest that the topological B-model is not a theory of simply complex

structures, at least not in the sense of the SL(3,C) Hitchin functional. In [3], they decided to

look at the extended Hitchin functional for SU(3, 3) structures instead. At the classical level,

these functionals describe the same objects. Indeed, [164, Prop 12] shows that on a Calabi-Yau

manifold with b1 = 0, ρ ∈ Ωodd(M) is an extremum of the extended Hitchin functional if and

only if ρ = re Ω ∈ Ω3(M) is the real part of an integrable SL(3,C) structure10. However, the off-

shell degrees of freedom are given by all even polyforms, and hence they will provide additional

contributions to the 1-loop partition function.

The 1-loop contribution is given by the path integral of (6.33) over b11, b22, b00. The integral

over the b11 fields will be the same as for the SL(3,C) case and hence it was just left to consider

the path integral of ∫
M
b00 ∧ ∂∂̄b22 (6.51)

This has a much more complicated gauge structure than previously and hence the BV quantisa-

tion is more involved. However, [3] gives details of the process and finds, after much calculation,

that the 1-loop contribution to the extended Hitchin functional is

Z1−loop
Φ =

I1

I3
0

= Z1−loop
B (6.52)

This tells us that, at least to 1-loop, the B-model is in fact a theory of generalised complex

structures.

6.2.2 Quantisation of Hφ

We will now look at the work of [292]. Here, they aimed to do the analogous thing [3] but to

the Hitchin functional for G2 structures Hφ. Their hope was to compare it to the topological

G2 string defined in an earlier piece of work [79]. While they didn’t find full agreement, we will

outline their calculation here as it will be useful for us when we come to look at the exceptional

Hitchin functionals below.

10In fact, ρ can be an exact B-field transformation of re Ω, however these are trivial deformations from the
point of view of generalised geometry.
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They wanted to calculate the path integral over b ∈ Ω2(M) of

δ2Hφ =

∫
M

4

3
∗ π1(db) ∧ π1(db) + ∗π7(db) ∧ π7(db)− ∗π27(db) ∧ π27(db) (6.53)

The gauge symmetry of this action is diffeomorphisms which act on φ via δφ = d(vyφ) for

some arbitrary vector field v ∈ χ(M). We note that the 2-form b can be decomposed into

G2 representations b7 ∈ Ω2
7(M) and b14 ∈ Ω2

14(M). We can therefore use the diffeomorphism

freedom to fix b7 = 0. This can be done through an algebraic redefinition of variables b→ b−vyφ
and hence will not introduce any determinants into the calculation of the partition function11.

With this we are left with the path integral over b14 = B of the functional (6.43)∫
M
∗π7(dB) ∧ π7(dB)− ∗π27(dB) ∧ π27(dB) =

∫
M

dB ∧ ∗(2π7 − 1)dB (6.54)

The gauge structure of this action is given by

QB = π14(dA) QA = dC QC = 0 (6.55)

We then introduce antifields B̃ ∈ Ω5
14(M), Ã ∈ Ω6(M), C̃ ∈ Ω7(M) with the action

S =

∫
M

dB ∧ ∗(2π7 − 1)dB + B̃ ∧ dA+ Ã ∧ dC (6.56)

The π14 in QB is absorbed into the definition of B̃ as an element of the Ω5
14(M). This gives the

gauge structure for the antifields

QB̃ = 3d ∗ (2π7 − 1)dB QÃ = dB̃ QC̃ = dA (6.57)

We again need to pick a Lagrangian submanifold. The details of choosing such a space are

complicated by the fact that B is not an arbitrary 2-form, but one living in a subrepresentation.

However, they show in [292, App C] that one can choose the following representatives for the

Lagrangian space.

B = d†(2π7 − 1)dβ B̃ = ∗π14(dd†β̃)

A = d†α Ã = d†α̃

C̃ = 0

(6.58)

where β ∈ Ω2
14(M), α, β̃ ∈ Ω2(M), α̃ ∈ Ω7(M).

11A similar argument explains why only b11 contributes to the quantisation of HΩ, and why only b00, b11, b22

contribute to the quantisation of HΦ
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Performing the path integral then gives12

Zφ =

(
det ′

(
∆2

14 −
3

2
π14dd†

))−1/2

|det π14d1||det d0|−1

=
(
det ′∆2

14

)−1/2 | detπ14d1|2
(
det ′∆0

1

)−1/2

=
(
det ′∆2

14

)−1/2 (
det ′∆1

) (
det ′∆0

)−3/2

=
(
det ′∆14

)−1/2 (
det ′∆7

) (
det ′∆1

)−3/2

(6.59)

We have used properties of determinants written in appendix H and in the last line we have

used the fact that the Laplacian operator has the same spectrum on isomorphic G2 represen-

tations. Any G2 manifold has three independent topological invariants defined by products of

determinants of Laplacians. These are given by

I0 =
(
det ′∆7

)−1/2 (
det ′∆1

)7/2
(6.60)

I1 =
(
det ′∆14

)−1/2 (
det ′∆7

)
(6.61)

IRS =
(
det ′∆3

)−1/2 (
det ′∆2

)3/2 (
det ′∆

)−5/2 (
det ′∆0

)7/2
=
(
det ′∆27

)−1/2 (
det ′∆14

)3/2 (
det ′∆7

)−3/2 (
det ′∆1

)3 (6.62)

The final expression is in fact the Ray-Singer, or analytic, torsion of the manifold M [302].

There is one other independent expression we can build out of determinants of Laplacians

that is related to the G2 structure on the manifold. Unlike the expressions above, which are

independent of the G2 metric chosen, the following will depend on the metric and so is not

topological. It is given by the analytic torsion of the following complex that exists on any G2

manifold.

Ď : 0 −→ ∧0
1T
∗ d−−→ ∧1

7T
∗ π7d−−−→ ∧2

7T
∗ π1d−−−→ ∧3

1T
∗ −→ 0

Tor(Ď) =
(
det ′∆7

)−1/2 (
det ′∆1

)3/2 (6.63)

We can then express Zφ in terms of the topological invariants and Tor(Ď). We find

Zφ = I
−3/4
0 I1 Tor(Ď)3/4 (6.64)

Clearly, this is not independent of the choice of G2 metric, unlike the case for HΩ and HΦ. This

may not be so surprising since, unlike for (generalised) complex structures, the existence of a

G2 structure always defines a metric. Hence, any dependence on a G2 structure will naturally

lead to dependence on a metric.

This quantisation of this functional did not match the 1-loop contribution to the topological

G2 string. [292] also looked at a structure defined in O(7, 7) geometry defining a G2×G2 structure

that were defined in [201]. Unfortunately, that did not match the topological string partition

function either. Despite Hφ not providing the geometric interpretation for the topological string

they were hoping for, the work of [292] will be useful in the following sections when we come

12To see why this is the kinetic operator requires understanding how the de Rham operator acts on different
G2 representations. These are outlined explicitly in [277].
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to quantise the exceptional Hitchin functionals, and provide possible loop corrections to some

terms in the effective actions of M-theory.

6.3 The Exceptional Hitchin Functionals

We have already seen a candidate for a Hitchin-like functional for the exceptional complex

structures described in the previous chapters - the Kähler potential. To understand why this is

the natural choice, we need to reframe some of the discussion of the other Hitchin functionals

into complex objects. This only exists for the HΩ and HΦ Hitchin functionals as there is no

natural complex structure on the space of G2 structures. One could view the Hitchin functional

for SU(7) structures as the natural extension of Hφ to a complex parameter space.

For both SL(3,C) and SU(3, 3) structures, the Hitchin functionals were defined in terms of

a real stable (poly)form ρ. This (poly)form defined a positive homogeneous function ϕ(ρ) and

a complex object

ρ+ iρ̂ ρ̂ = ω−1ydϕ (6.65)

where ω is the symplectic structure on the space of ρ given by either the exterior product on

3-forms, or the Mukai pairing on polyforms. The complex object is then the usual definition

of the relevant G-structure. Using this, we can rewrite the Hitchin functionals in the following

way

HΩ =

∫
M

iΩ ∧ Ω̄ ∼ KSL(3,C) HΦ =

∫
M
−i
〈
Φ, Φ̄

〉
∼ KSU(3,3) (6.66)

We see that, in each case, the Hitchin functional is just the Kähler potential on the space of

structures. These are discussed in appendix C. In that appendix, we also saw that integrability

could be rephrased as involutivity and a vanishing moment map. In addition, the vanishing of

the moment map is equivalent to extremising these potentials over complexified (generalised)

diffeomorphisms.

These properties of the conventional Hitchin functionals suggest that the natural choice for

the exceptional Hitchin functionals are the Kähler potentials in each case. For example, the

SU(7) Hitchin functional would be13

Hψ = KSU(7) =

∫
M

(
i s(ψ, ψ̄)

)1/3
(6.67)

In principle, one could determine what this functional is only in terms of reψ and consider

the real problem, however we have not done so here14. We would like to understand what role

Hψ plays in the quantum effective action of M-theory or string theory, if any. This involves

13The subscript ψ is only used to distinguish this Hitchin functional from the other Hitchin functionals de-
scribed. It should not be thought of as the argument ψ over which we take the variational problem. Where the
meaning is clear, we will drop the subscript.

14Following the SU(3, 3) case and following [180], it seems like the Hitchin functional is given by the trace of
the moment map ζ(a) = s(a · λ, λ) which gives

Hψ =

∫
M

q(λ)1/6

Here, λ = reψ, a ∈ Γ(ad F̃ ) and ζ is the moment map induced because s is an E7(7) invariant symplectic
structure. Then varying with respect to λ gives a term which looks like i(ψ̄ − ψ) if we take λ as in [180]
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quantising the quadratic contribution to this functional from a perturbation around some fixed

background

ψ = ψ0 + δψ −→ S0 = δ2H(δψ, δψ̄) (6.68)

The first problem we run into is determining what is the space of variations we should take.

Recall from the other Hitchin functionals, we don’t take an arbitrary variation, but a variation

just within some cohomology class. This made sense when the structure was a polyform, however

ψ has an expansion in terms of natural bundles other than exterior powers of T ∗. Therefore, it

is not clear what the analogue of de Rham cohomology would be. Moreover, the real objects

defined in the previous Hitchin functionals existed in an open orbit of GL(d,R) and hence

an arbitrary exact deformation still defined a suitable G-structure. Here, neither the complex

object ψ, nor its real part reψ, live in an open orbit of Ed(d)×R+ and hence we must be careful

to define appropriate variations.

One option take the same variations that we took for the classic equations of motion. That

is, the vanishing of the moment map for the integrability was equivalent to extremising over

complexified generalised diffeomorphisms. We might therefore expect that the variations we

should take are therefore δψ = LV ψ for some complex V ∈ Γ(EC). However, running the

same argument for SU(3, 3) structures would not give the same quadratic term and hence the

partition function would be different15.

To determine which point of view to take, we look at the example of a compactification of

type IIA on a Calabi-Yau manifold. This is an example of a GMPT background which were

analysed in chapter 5. The SU(7) structure in this case is given by

ψ ∼ e8iρ̂ · Φ+ Φ+ = eiω (6.70)

where ρ̂ = im Ω is the imaginary part of the of the holomorphic 3-form Ω, and ω is the Kähler

form. We can label an arbitrary generalised vector as V = v+ (b0 + b2 + b4 + b6) + e8iρ̂B1e−8iρ̂+

B̃5 + τ ∈ Γ(EC), where the subscript denotes the degree of the differential form, and where

τ ∈ Γ(T ∗ ⊗ ∧6T ∗)16. Then, the generalised diffeomorphism along V gives

ψ′ = (1 + LV )ψ = e8iρ̂+8id(vyρ̂)−d(b0+b2+b4)−dB̃5−32d(vyρ̂∧ρ̂) ·
(

eiω+id(vyω)+dB1 · 1
)

(6.72)

We also have real diffeomorphisms as a gauge symmetry. Examining (6.72) and using the

freedom to change the real parts of v, bn, B1, B̃5, we see that we can give the deformations just

15It is easy to check that generalised diffeomorphisms can only vary ψ within the same type of generalised
complex structure. Hence, the variation around a Calabi-Yau 3-fold would give δρ = db2 + db4 which would give
a 1-loop action of ∫

M

b11 ∧ ∂∂̄b11 (6.69)

The partition function of this, we have seen, is not the same as the 1-loop B-model.
16For type IIA the generalised tangent bundle can be calculated through a dimensional reduction of the M-

theory generalised tangent bundle and gives

E = T ⊕ R⊕∧2T ∗ ⊕∧4T ∗ ⊕∧6T ∗ ⊕ T ∗ ⊕∧5T ∗ ⊕ T ∗ ⊗∧6T ∗ (6.71)
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as

ψ′ = e8iρ̂+id(b0+b2+b4)+idB̃5 ·
(

eiω+idB1 · 1
)

(6.73)

where bn, B1, B̃5 are real forms, and where we have used the freedom in v to set b2 ∈ Ω1,1(M).

We have then made some redefinitions to absorb other terms involving v.

We see that complexified generalised diffeomorphisms recover the perturbations of [3] for

generalised complex structures17

δρ̂ = db0 + db11 + db4 (6.74)

However, we also get more perturbations coming from B (which deforms the Kähler form), and

B̃. Complexified generalised diffeomorphisms therefore seem to give a minimal extension of

the Pestun and Witten model that includes both the NSNS and the RR degrees of freedom of

string theory. More generally, we would find that complexified generalised diffeomorphisms give

variations of both spinors Φ± simultaneously, and hence give variations of the full geometry of

the background. These variations are therefore the natural candidate for the off-shell degrees

of freedom.

To find the quadratic action to quantise, we first need to write δψ = R · ψ, for some

R ∈ Γ(ad F̃ ). The 1-loop contribution is then given by

δ2H =

∫
M
g(R, R̄) (6.75)

where g is the hermitian metric on the cone E7(7) × R+/SU(7), calculated around the point

ψ ∈ Z. While calculating the full NSNS and RR contributions to the partition function on

the Calabi-Yau would be an interesting problem on its own, we will instead focus on two other

cases relating to compactifications of M-theory which have been studied previously in this thesis.

Firstly, we will look at the case of the Hitchin functional for SU∗(6) structures in E6(6) × R+

geometry perturbed around a Calabi-Yau manifold. Then we will look at perturbations of SU(7)

structures around a G2 manifold.

6.3.1 The Hitchin Functional for SU∗(6) Structures

The Hitchin functional for SU∗(6) can be written as

Hχ =

∫
M

(Tr(χχ̄))1/2 (6.76)

We would like to understand the 1-loop partition function when perturbing around a Calabi-

Yau background. For SU∗(6) structures, there is an ambiguity in the choice of χ but we will

choose18

χ = eiρ · 1 (6.77)

17In that paper they perturb ρ = re Ω but it is equivalent to perturb ρ̂ = im Ω.
18It would be an interesting consistency check to see if the partition function calculated for χ = 1

2
(I−vol− vol#

is the same as the one calculated in this section.
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where ρ = re Ω. Taking the set of variations to be given by complexified generalised diffeomor-

phisms, we find

LV χ = LV (eiρ · 1)

= (Lv − dω − dσ) eiρ · 1

= (iLvρ+
1

2
[Lvρ, ρ]) · eiρ · 1− (d + dσ) · eiρ · 1

= (id(vyρ)− 1

2
d(vyρ) ∧ ρ− dω − dσ) · eiρ · 1

= R · χ

(6.78)

In the final line we have expressed the variation in terms of an adjoint action of R ∈ Γ(ad F̃C.

We see that R is given by the action of exact 3-forms and 6-forms.

We also have the gauge symmetry of real generalised diffeomorphisms. Examining the

expression above, we see that we can fix the gauge symmetry by setting reω, reσ, and the

Ω0,2(M) part of imω to 0. With this simplification, we see that we can choose R to be

R = idb+ idc (6.79)

where b ∈ Ω1,1(M)R and c ∈ Ω5(M)R. The quadratic action is then given by the metric on the

cone E6(6) × R+/SU∗(6) which is calculated in detail in appendix I. The final result is

S0 =

∫
M
∂b ∧ ∂̄b+ dc ∧ ∗dc (6.80)

This action is decoupled and hence the partition function factorises into Zb and Zc. The partition

function for b is the same as that for SL(3,C) structures that we reviewed in section 6.2.1. The

partition function for c is that of a free 5-form can be calculated using BV quantisation. One

finds, using the identities of [3], that it is trivial on a Calabi-Yau manifold. Hence, the 1-loop

contribution is

Zχ =
I1

I0
(6.81)

where In is the nth holomorphic Ray-Singer torsion described in section 6.2.1. Despite the need

to introduce a metric to write the action, it turns out to be independent of this choice, and

depends only on the complex structure moduli of the Calabi-Yau.

6.3.2 The Hitchin Functional for SU(7) Structures

As mentioned, the Hitchin functional for SU(7) structures can be written

Hψ =

∫
M

(
i s(ψ, ψ̄)

)1/3
(6.82)

We would like to understand the 1-loop contribution to the path integral when perturbed around

a G2 background. That is, we would like to quantise the quadratic piece of the functional arising

from variations

ψ = eiφ · 1 + δψ (6.83)
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It is important to understand which variations to take. Unlike in the previous Hitchin function-

als, the real part of ψ is not in an open orbit of the 912. Hence, we cannot take an arbitrary

variation and still expect to have an SU(7) structure. Instead, we argued that we should take

variations generated by complexified generalised diffeomorphisms. We write

δψ = LV ψ = R · ψ (6.84)

where in the final equality, we have used the fact that ψ defines an integrable SU(7) structure

to express the Dorfman derivative along some V ∈ Γ(EC) as the adjoint action of some R ∈
Γ(ad F̃C). We find that

LV ψ = LV (eiφ · 1)

= (Lv − dω − dσ)eiφ · 1

= (Lveiφ) · 1− (dω + dσ) · eiφ · 1

= (iLvφ+
1

2
[Lvφ, φ]) · eiφ · 1− (dω + dσ) · eiφ · 1

= (id(vyφ) +
1

2
d(vyφ) ∧ φ− dω − dσ) · eiφ · 1

(6.85)

We can see that R is given in terms of exact 3-forms and 6-forms. However, using the gauge

symmetry of real diffeomorphisms we can make some simplifications. Examining the expression

above we can see that we can use the gauge symmetry to set reω, reσ, and π7(imω) to 0.

Hence, we can choose the variation to be

R = ida+ idb (6.86)

where a ∈ Ω2
14(M)R, b ∈ Ω5(M)R. The quadratic action is then given by the metric on the cone

(E7(7) × R+)/SU(7)

δ2H(δψ, δψ̄) =

∫
M
g(R, R̄) (6.87)

A detailed calculation of this metric is given in appendix J but we shall just give the final result

here.

S0 =

∫
M
π7(da) ∧ ∗π7(da)− π27(da) ∧ ∗π27(da)− db ∧ ∗db (6.88)

We have absorbed real constants into the definition of a and b in the action above.

Fortunately, a and b are decoupled in the action and hence we can find the partition function

relatively easily. We notice that the term involving a is precisely the quadratic term in the G2

Hitchin functional (6.43). We already saw the contribution of this term to the path integral in

(6.59). The term involving b is just the action of a free 5-form on a 7-manifold. The contribution

to the path integral is easily calculated using BV quantisation, and is also given in [292, App

D] to be

Zb = (det ∆1)−1/2IRS (6.89)
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Altogether, the 1-loop contribution to the partition function is then

Zψ = ZaZb

= (det ∆14)−1/2 (det ∆7) (det ∆1)−2 IRS

= I1I
RSI−1

0 Tor(Ď)

(6.90)

Again, we find that the partition function is not independent of the specific G2 structure as it

has a Tor(Ď) term. It would be interesting to see how this explicitly depends on the G2 moduli,

much like is done for the complex moduli of the topological B-model.

6.4 Possible Physical Applications

It has been known for some time that the genus g partition functions of the topological A and B

model provide certain amplitudes in the 4 dimensional effective theory of type IIA and B string

theory compactified on a Calabi-Yau. Indeed, in any Calabi-Yau compactification scheme, there

are 2 universal multiplets - the ‘graviphoton’ multiplet which contains a graviton and a vector

whose field strengths are denoted R, T respectively, and the ‘universal hypermultiplet’ which

has scalars (S,Z). It was shown in [303] that the higher order corrections to the graviphoton

in type IIA (resp. B) are given schematically by

Sgraviphoton = Stree +

∫
M

∞∑
g=1

Fg
(
gR2T 2g−2 + 2g(g − 1)(RT )2T 2g−4

)
(6.91)

where, it turns out, Fg is the genus g partition function of the topological A (resp. B) model,

initially calculated in [77]. They also showed in [303] that the corrections to the universal

hypermultiplet are given by F̃g, the genus g partition function of the topological B (resp. A)

model. The action is given by

Suniversal hyper = Stree +

∫
M

∞∑
g=1

F̃g
(
g(∂∂S)2(∂Z)2g−2 + 2g(g − 1)(∂∂S ∂Z)2(∂Z)2g−4

)
(6.92)

The 1-loop partition function F1 for the B model is precisely what is calculated in [3] from the

Hitchin functional of generalised complex structures, reviewed above. These arguments can be

lifted to the 5 dimensional universal hypermultiplet [304–306].

One may conjecture that the partition function Zχ calculated for the SU∗(6) structures in

6.3.1 gives the 1-loop corrections to the universal hypermultiplet in 5 dimensions. Indeed, we

saw that the partition function is topological in the sense that it is independent of the precise

Calabi-Yau metric used. This would match the analysis in 4 dimensions, as well as the work

of [306] in which they calculate the corrections to the universal hypermultiplet in terms of the

Euler characteristic of the Calabi-Yau. It would be interesting to see if we can match precisely

the corrections they get from our expression for Zχ given in terms of holomorphic Ray-Singer

torsions. Similar arguments were used in [77] to relate the holomorphic Ray-Singer torsions to

the graviphoton corrections.

A more challenging question is the application of the partition function Zψ calculated for
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the SU(7) structures in 6.3.2. In a similar argument, one may guess that the partition function

corresponds to 1-loop corrections to the action of the chiral fields in the 4 dimensional effective

theory. There is not much in the literature to compare this with and so we may leave it as a

prediction. To check, one would need to do the full loop calculation in the supergravity theory.

One may expect a certain amount of cancellation due to supersymmetry and so there may

be a localisation argument that reproduces the path integral calculated. From the geometric

point of view, it seems at least plausible that the 1-loop corrections to the Kähler metric on

the chiral cone come from a suitable path integral of the Kähler potential. Alternatively, there

has been some work on loop corrections of M-theory using the M-theory/F-theory duality and

then compactifying on a Calabi-Yau 4-fold [307–310]. It may be interesting to see if their

work provides an indication of how Zψ precisely plays a role in the quantum corrections to the

effective 4 dimensional theory.
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Chapter 7

Discussion

In this thesis we set out to understand better the geometry of generic supersymmetric flux

background of string theory and M-theory. We focused on Minkowski backgrounds in D =

4, 5 and studied them within the framework of generalised geometry. This is a mathematical

formalism that combines the structure of manifolds with diffeomorphisms, and gauge fields

with gauge transformations, into a Leibniz algebroid. The precise construction of this algebroid

naturally encodes the geometry of the manifold, along with the gerbe structure of the gauge

fields. Moreover, the structure group of the algebroid corresponds with the symmetry group

of the respective reduced supergravity being studied. It has been known for some time that,

when lifted to generalised geometry, the supersymmetric backgrounds of string and M-theory

are described by integrable G-structures. Integrability is, much like in conventional geometry,

defined to be the existence of a torsion-free compatible connection. Using this knowledge, we

set out to build the geometry of Minkowski backgrounds of type II and M-theory in D = 4, 5, as

well as the geometry of Minkowski backgrounds of heterotic theories in D = 4. Moreover, using

the integrable G-structure, we hoped to learn more about the moduli space of these structures.

Interestingly, despite the difference in groups for each of the cases, we found a common

structure within the geometry. We found that the G-structures for all supersymmetric back-

grounds could be described in terms of some global non-vanishing tensor ψ, which defined a

particular subbundle of the generalised tangent bundle. The subbundle defined a strictly weaker

C∗ × G-structure, as it only defined ψ up to some complex scaling. The integrability of the

G-structure was equivalent to the involutivity of this subbundle under the Dorfman derivative,

as well as the vanishing of a particular moment map. This moment map was that associated

to the action of generalised diffeomorphisms on the space of G-structures. We highlighted how

this was analogous to the story of integrable SL(3,C) structures on a 6-manifold. Given the

correspondence, we called these structures exceptional complex structures.

Using the properties of the integrable G-structures, we were able to propose a procedure

for finding the moduli of any given supersymmetric background. The vanishing moment map

provides the moduli space the structure of a Kähler quotient of the space of involutive structures,

by generalised diffeomorphisms. However, the Kähler quotient is equivalent to the quotient by

the complexified group. Moreover, given rescalings of ψ correspond to a non-physical modulus,

we we were able to express the physical moduli space as the space of involutive subbundles

quotiented by the action of complexified generalised diffeomorphisms. The physical moduli space
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should give the space of massless modes in the lower dimensional effective theory defined on the

external Minkowski space. A subtlety arises if the background preserves more supersymmetry,

but we were able to account for this in particular examples. We could therefore express the

physical moduli of a particular background as the cohomology of a complex of deformations of

the involutive bundle.

In the heterotic case, we were able to express the generic subbundle L1 ⊂ T ⊕ adPG⊕T ∗ in

terms of the tensors defining the SU(3) structure of the background. We saw that involutivity

and the vanishing of the moment map recreated precisely the equations of the Hull-Strominger

system. Moreover, we were able to match the complex controlling the deformations of L1, to

the complex describing the moduli of Heterotic backgrounds previously found.

For D = 5 backgrounds of type II and M-theory, the exceptional complex structure described

only part of the full G-structure defining supersymmetry. Despite this, we were able to classify

all the possible exceptional complex structures on compactifications of M-theory. Moreover,

we were able to exploit the additional structure in D = 5 that L1 should be part of a triplet

of equivalent structures, to show that compactifications of M-theory should either be type

0, have a complex structure, or have a 3 dimensional foliation. Moreover, we found the exact

moduli of generic backgrounds satisfying a certain property we called the generalised ∂∂̄-lemma.

These moduli are expressed in terms of ‘natural’ cohomology groups associated to the Lie

algebroid structure of L1. We showed that this reproduced what we expected for Calabi-Yau

compactifications of M-theory.

For D = 4 backgrounds, we studied the cases of G2 manifolds in M-theory, and GMPT

backgrounds in type II. We should that involutivity and the vanishing moment reproduce the

supersymmetry equations in each case as we expected. While we couldn’t find a generic result

for the moduli of generic backgrounds, we were able to find the exact moduli in the two cases

studied. For G2 manifolds this recreated the expected results. The moduli of GMPT back-

grounds were not previously known and we were able to express them in terms of cohomology

groups associated to the generalised complex structure with which they are defined.

We found that there were two additional interesting outcomes from this description of su-

persymmetric backgrounds. The first came from looking at the correspondence between Kähler

quotients and complex quotients more carefully. In fact, to ensure the quotient space has a

nice topology, one needs to restrict themselves to a set of so-called ‘polystable points’ within

the space of G-structures. This idea came from geometric invariant theory which is the study

of group quotients of projective spaces. While this theory mostly applies to finite dimensional

spaces, similar techniques have been used to study infinite dimensional problems, like the exis-

tence of Kähler-Einstein metrics. The possibility of using geometric invariant theory to prove a

generalisation of Yau’s theorem to the Hull-Strominger system have been proposed in multiple

places. Our work on heterotic backgrounds provided a direct interpretation in terms of moment

maps, a key feature of many GIT problems, and hence provided a more direct avenue for study-

ing this problem. Moreover, we were able to show that our moment map theory extends work

done previously by others on the so-called dilaton functional. For the D = 4 backgrounds in

M-theory, we described how GIT may give a way to find a generalisation of Yau’s theorem to G2

manifolds. We noted that the Hilbert-Mumford criterion would not directly apply as the Kähler
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potential is not convex. However, we also showed that a slight adaption to the problem gave a

convex norm functional and hence gave a promising candidate for approaching this problem.

The second interesting feature is the correspondence of the Kähler potentials on the space

of exceptional complex structures, and Hitchin functionals. Hitchin functionals have been stud-

ied in great detail for complex structures, generalised complex structures, and G2 structures.

Moreover, the 1-loop contribution to the path integral of the Hitchin functional of generalised

complex structures have been linked to the topological B-model, and hence can be used to cal-

culate coefficients in the 4d effective action of string theory. We were able to study the 1-loop

contribution to the path integral of the Kähler potential of SU∗(6) structures perturbed around

a Calabi-Yau, and SU(7) structures perturbed around a G2 manifold. This provides a clear

candidate for certain 1-loop corrections to effective actions coming from M-theory.

7.1 Future Directions

There are many possibilities for future research coming from the work in this thesis. An ob-

vious extension is to continue the work on quantising the exceptional Hitchin functionals and

understanding their role in the quantum description of M-theory, if they have any. The rela-

tion between the topological string and the Hitchin functional of SU(3, 3) structures has been

well studied [3, 75, 296–298]. Not only are these theories interesting mathematically, but they

describe a physical subsector of the full string theory, relating to certain graviphoton terms

in the effective field theory in 4 dimensions [77, 303]. These describe strings on backgrounds

with H-flux, and their connection to observables in M-theory have been examined in [311,312].

The exceptional Hitchin functionals provide a candidate theory that includes the RR fluxes as

well, or alternatively a subsector of M-theory. Much work has been done on understanding

the effective action coming from M-theory in lower dimensions [283, 305, 307, 313]. It would be

instructive to see if we could match the calculation of the 1-loop of the exceptional Hitchin

functional to certain coefficients in the effective actions in D = 4, 5. In particular, we expect

the quantisation of the exceptional complex structure in D = 5 to give corrections to the uni-

versal hypermultiplet in the effective theory. If this is true, it would provide evidence that the

analogous structure in 7 dimensions would provide corrections in 4 dimensions, and we may be

able to gain predictions from studying it further. We also have an analogous Hitchin functional

for the heterotic string. If we ignore the gauge bundle, then the quantisation would be very

similar to that of the conventional Hitchin functional, except now including information about

the symplectic structure ω. This would likely give a geometric interpretation of a topological

subsector of heterotic string theory [314]. We would like to see if this quantisation matches the

results of that paper.

Another avenue of future research would be to understand the condition for polystability

of the exceptional complex structures in various settings. We say in chapters 3 and 5 that

understanding the moduli space of supersymmetric backgrounds requires a better understanding

of the complex orbits of the GDiff group on the space of structures. Mathematicians have

been particularly interested in the heterotic case as it provides a natural extension to Yau’s

theorem to a non-Kähler space [74,177]. Similar approaches have been used understand Kähler-
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Einstein equations [248], flat connections on Riemann surfaces [244], and slope-stability of gauge

bundles [73, 245, 250]. Mathematically, converting the infinite dimensional problem to a form

suitable for the techniques of GIT can be quite involved - for the Kähler-Einstein case it involves

taking a particular limit of certain powers of line bundles over the space. However, we can follow

certain ideas to gain intuition for what features may be important in the study of stability. One

object that is often studied is an invariant to the GDiffC flow called the Futaki invariant. This

appears as an obstruction to stability and we can define an analogue for exceptional complex

structures in terms of the complex object ψ. Naively, this Futaki invariant seems to measure the

Chern class of the line bundle that ψ lives in. Non-triviality of this bundle is a clear obstruction

to the existence of an SU(7) structure so it does not seem to tell us anything interesting.

However, there may be cases where the limit of the GDiffC flow may produce a structure of

a different type. In these cases, the Futaki invariant seems to give much more information

on possible obstructions. Therefore, studying and classifying the phenomenon of type change

would be a very important step towards understanding stability.

The work on D = 4 compactifications and SU(7) structures has provided a procedure for

finding the moduli of any given flux background. We were able to use this to find the exact mod-

uli of GMPT backgrounds which describe all type II backgrounds with non-vanishing internal

Killing spinors. These describe very broad classes of backgrounds but they are not exhaustive.

In particular, the NS5 brane solution is not contained within this set of solutions [120, 150].

We could apply the same techniques to find the moduli of these backgrounds. We also found

the moduli of so-called type 0 solutions. We would like to get a better understanding of which

backgrounds these correspond to. They likely describe backgrounds in which the internal Killing

spinor satisfies εT ε 6= 0. Hence they may link to the work of [108]. We could also look at the

moduli of the triple M5-brane intersection in M-theory backgrounds [315]. It is likely that this

falls outside of the type 0 class, but we could still apply the same techniques to find the moduli.

The work of [104] provides even more examples to test this work.

It is worth noting that the majority of this work applies only to smooth backgrounds away

from sources. Hence, the moduli we have found do not include brane moduli. To understand

these better, we would like to understand calibrations in flux backgrounds in more detail [235,

316, 317]. Some work has already been done in this direction [318–321]. The exceptional

geometry of SU(7) structures may provide insight into how to provide a unified description for

supersymmetric flux calibrations. Similar work was done in [322] for AdS5 backgrounds.

Extending the exceptional geometry described in this thesis to AdS backgrounds would also

be of great use to understanding the AdS/CFT correspondence. For AdS5 backgrounds, we

saw that a non-zero cosmological constant does not break the involutivity of the subbundle L1.

Instead, the cosmological constant appears as a non-vanishing moment map. Kähler quotients

with non-vanishing moment maps are well understood and hence we were able to find the

spectrum of some dual CFT4 in terms of cohomology groups associated to some distribution

∆ ⊂ TC
1. It would be interesting to see if these cohomology groups, graded by the R-charge,

could be calculated explicitly for simple cases such as the Maldacena-Nunez solutions [121]. In

1There is on going work on this problem in the IIB case by Anthony Ashmore, Mariana Graña, Michela
Petrini, Edward Tasker, and Daniel Waldram.
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the D = 4 case, the issue is reversed. The cosmological constant does not appear in the moment

map, but instead as an obstruction to the involutivity of the subbundle L3. This breaks the Lie

algebroid structure of the subbundle and hence it is not clear if the moduli will be counted by

some natural cohomology groups. However, there may be enough structure to still find some

information of the moduli and, as a consequence, the conformal manifold of CFT3 which are

not well understood.
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Appendix A

Conventions

A.1 Exterior and Interior Products

We use the following conventions for the exterior and interior products of differential forms and

multivectors. Here u ∈ Γ(∧pT ), v ∈ Γ(∧qT ), λ ∈ Ωp(M), ρ ∈ Ωq(M), and we take p ≥ q

without loss of generality.

(u ∧ v)a1...ap+q =
(p+ q)!

(p!q!
v[a1...apu p+1...ap+q ] (A.1)

(λ ∧ ρ)a1...ap+q =
(p+ q)!

p!q!
λ[a1...apρap+1...ap+q ] (A.2)

(vyλ)a1...ap−q =
1

q!
vb1...bqλb1...bqa1...ap−q (A.3)

(uyρ)a1...ap−q =
1

q!
ua1...ap−qb1...bqρb1...bq (A.4)

(jvyjρ)ab =
1

(q − 1)!
vac1...cq−1ρbc1...cq−1 (A.5)

(jλ ∧ ρ)a,a1...ap+q−1 =
(p+ q − 1)!

(p− 1)!q!
λa[a1...ap−1

ρap...ap+q−1] (A.6)

The following is notation used in chapter 4 which we clarify now. For X ∈ Γ(∧3T ), F ∈ Ω4(M),

we define

(jXyj2F )abc =
1

2
XapqFbcpq (A.7)

The following are important in the projection maps defined in the next sections. We take

τ ∈ Γ(T ∗ ⊗ ∧7T ∗), t ∈ Γ(T ⊗ ∧7T ), σ ∈ Ω5(M), x ∈ Γ(T ).

(jtyjτ)ab =
1

7!
ta,c1...c7τb,c1...c7 (A.8)

(jp+1λ ∧ τ)a1...ap+1,b1...b7 = (p+ 1)λ[a1...apτap+1]b1...b7 (A.9)

(j3σ ∧ σ′)a1a2a3,b1...b7 =
7!

5!2!
σa1a2a3[b1b2σ

′
b3...b7] (A.10)

(vyjτ)a,a1...a6 = vbτa,ba1...a6 (A.11)

205



A.2 O(d, d) Algebra

The generalised tangent bundle and adjoint bundle for O(d, d)× R+ geometry are as follows

E = T ⊕ T ∗ (A.12)

ad F̃ = R⊕ (T ⊗ T ∗)⊕ ∧2T ∗ ⊕ ∧2T (A.13)

We take the following sections of these bundles, where each term matches with the expressions

above in the obvious way.

X = x+ ξ R = l + r +B + β (A.14)

The following gives the adjoint action R ·X = X ′

x′ = lx+ r · x− βyξ (A.15)

ξ′ = lξ + r · ξ + xyB (A.16)

The following gives the Lie algebra bracket [R,R′] = R′′.

l′′ = 0 (A.17)

r′′ = [r, r′]− (jβyjB′ − jβ′yjB) (A.18)

B′′ = r ·B′ − r′ ·B (A.19)

β′′ = r · β′ − r′ · β (A.20)

The Mukai pairing for two pure spinors Φ,Ψ ∈ S is given by

(Φ,Ψ) =
∑
n

(−1)bn/2cΦd−n ∧Ψn (A.21)

A.3 O(6, 6 + n) Algebra

Here we collect a number of useful formula for the 6, 6 + n×R+ generalised geometry relevant

for type I and heterotic backgrounds. A more detailed discussion can be found in [167].

The adjoint action of a two-form B, a two-vector β and a one-form gauge field A on a

generalised vector V = v + λ+ Λ are given by

eBV = v + λ− ıvB + Λ,

eβV = v + λ− βyλ+ Λ,

eAV = v + λ+ 2 Tr(ΛA)− Tr(ıvAA) + Λ− ıvA.

(A.22)

Note that B commutes with itself, while A has a non-trivial commutator with itself

[A,A′] = −2 Tr(A ∧A′). (A.23)
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One can check that the natural inner product

η(v + Λ + λ,w + Σ + σ) = 1
2 ıvσ + 1

2 ıwλ+ Tr(ΛΣ), (A.24)

is preserved by the above action.

The twisted Dorfman derivative is defined by

Le−Be−AV (e−Be−AW ) = e−Be−ALH+F
V W, (A.25)

where for V = v + λ+ Λ and W = w + ρ+ Σ, we have

LH+F
V W = [v, w]

+ Lvρ− ıwdλ− ıvıwH + 2 Tr(Σ dAΛ)− 2 Tr(Σ ıvF ) + 2 Tr(Λ ıwF ) (A.26)

+ [Λ,Σ] + ıvdAΣ− ıwdAΛ− ıvıwF,

where we have defined

dAΛ = dΛ + [A,Λ], (A.27)

F = dA+A ∧A, (A.28)

H = dB + Tr(A ∧ dA+ 2
3A ∧A ∧A). (A.29)

We also have the usual rule for the commutator of two Dorfman derivatives

[LU , LV ]W = LLUVW = LJU,V KW, (A.30)

where J·, ·K is the Courant bracket, the antisymmetrisation of the Dorfman derivative.

A.4 Ed(d) × R+ Algebra for M-theory

The generalised tangent bundle and adjoint bundle for Ed(d) × R+ geometry are as follows

E = T ⊕ ∧2T ∗ ⊕ ∧5T ∗ ⊕ (T ∗ ⊗ ∧7T ∗) (A.31)

ad F̃ = R⊕ (T ⊗ T ∗)⊕ ∧3T ∗ ⊕ ∧6T ∗ ⊕ ∧3T ⊕ ∧6T (A.32)

We take the following sections of these bundles, where each term matches with the expressions

above in the obvious way.

V = v + ω + σ + τ R = l + r + a+ ã+ α+ α̃ (A.33)

The following gives the adjoint action R · V = V ′

v′ = lv + r · v + αyω − α̃yσ (A.34)

ω′ = lω + r · ω + vya+ αyσ + α̃yτ (A.35)

σ′ = lσ + r · σ + vyã+ a ∧ ω + αyτ (A.36)
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τ ′ = lτ + r · τ + ja ∧ σ − jã ∧ ω (A.37)

The following gives the Lie algebra bracket [R,R′] = R′′

l′′ = 1
3(αya′ − α′ya) + 2

3(α̃′yã− α̃yã′) (A.38)

r′′ = [r, r′] + jαyja′ − jα′yja− 1
3I(αya

′ − α′ya)

+ jα̃′yjã− jα̃yjã′ − 2
3I(α̃

′yã− α̃yã′)
(A.39)

a′′ = r · a′ − r′ · a+ α′yã− αyã′ (A.40)

ã′′ = r · ã′ − r′ · ã− a ∧ a′ (A.41)

α′′ = r · α′ − r′ · α+ α̃′ya− α̃ya′ (A.42)

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ (A.43)

Dorfman Derivative

The following is the Dorfman derivative on vectors.

LV V
′ = Lvv′ + (Lvω′ − v′ydω) + (Lvσ′ − v′ydσ − ω′ ∧ dω)

+ (Lvτ ′ − jdω ∧ σ′ − jdσ ∧ ω′)
(A.44)

The following is the Dorfman derivative on adjoint elements.

LVR = Lvl + (Lvr + jαyjdω − 1
3Iαydω − jα̃yjdσ + 2

3Iα̃ydσ)

+ (Lva+ r · dω − αydσ) + (Lvã+ r · dσ + dω ∧ a)

+ (Lvα− α̃ydω) + Lvα̃

(A.45)

To obtain the twisted Dorfman derivative we make the following substitutions.

dω → dω − vyF dσ → dσ − vyF̃ + ω ∧ F (A.46)

Invariant Tensors

The following is the cubic invariant for E6(6)

c(V, V, V ) = −
(
vyω ∧ σ +

1

3!
ω ∧ ω ∧ ω

)
(A.47)

The following is the symplectic invariant for E7(7)

s(V, V ′) = −1

4

(
vyτ ′ − v′yτ + σ ∧ ω′ − σ′ ∧ ω

)
(A.48)

The Killing Form

The Killing form for Ed(d) is

Tr(R,R′) =
1

2

(
1

9− d
Tr rTr r′ + Tr rr′ + αya′ + α′ya− α̃yã′ − α̃′yã

)
(A.49)
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Projections

Let Z = ζ + u+ s+ t ∈ Γ(E∗). Then the projection E × E∗ → ad F̃ is given by

l = −1
3uyω −

2
3syσ − tyτ (A.50)

r = v ⊗ ζ − juyjω + 1
3uyωI− jsyjσ + 2

3syσI− jtyjτ (A.51)

a = ζ ∧ ω + uyσ + syτ (A.52)

ã = ζ ∧ σ + uyτ (A.53)

α = v ∧ u+ syω + tyσ (A.54)

α̃ = −v ∧ s− tyω (A.55)

If Y = λ+ κ+ µ+ ν + π ∈ Γ(N) then the projection E × E → N is given by

λ = vyω′ + v′yω (A.56)

κ = vyσ′ + v′yσ − ω ∧ ω′ (A.57)

µ = (jω ∧ σ′ + jω′ ∧ σ)− 1
4(σ ∧ ω′ + σ′ ∧ ω)

+ (vyjτ ′ + v′yjτ)− 1

4
(vyτ ′ + v′yτ)

(A.58)

ν = j3ω ∧ τ ′ + j3ω′ ∧ τ − j3σ ∧ σ′ (A.59)

π = j6σ′ ∧ τ + j6σ ∧ τ ′ (A.60)

A.5 Ed+1(d+1) × R+ Algebra for Type IIB

The generalised tangent bundle and adjoint bundle for Ed+1(d+1) × R+ geometry in type IIB

are as follows

E = T ⊕ (S ⊗ T ∗)⊕ ∧3T ∗ ⊕ (S ⊗ ∧5T ∗)⊕ (T ∗ ⊗ ∧6T ∗) (A.61)

ad F̃ = R⊕ (T ⊗ T ∗)⊕ (S ⊗ S∗)0 ⊕ (S ⊗ T )⊕ (S ⊗ ∧2T ∗)

⊕ ∧4T ⊕ ∧4T ∗ ⊕ (S ⊗ ∧6T )⊕ (S ⊗ ∧6T ∗)
(A.62)

where S transforms in the doublet of SL(2,R) and the subscript 0 denotes the traceless parts.

We take the following sections of these bundles, where each term matches the expressions above

in the obvious way.

V = v + λi + ρ+ σi + τ R = l + r + a+ βi +Bi + γ + C + α̃i + ãi (A.63)

The following gives the adjoint action R · V = V ′

v′ = lv + r · v + εijβ
iyλj + γyρ+ εijα̃

iσj (A.64)

λ′i = lλi + r · λi + aijλ
j + vyBi + βiyρ− γyσi − α̃iτ (A.65)

ρ′ = lρ+ r · ρ+ vy + Cεijλ
i ∧Bj + εijβ

iyσj + γyτ (A.66)

σ′i = lσi + r · σi + aijσ
j + vyãi + ρ ∧Bi − C ∧ λi + βiyτ (A.67)
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τ ′ = lτ + r · τ − εijjσi ∧Bj − jρ ∧ C + εijjλ
i ∧ ãj (A.68)

The following gives the Lie algebra bracket [R,R′] = R′′

l′′ = +1
4εij(β

iyB′j − β′iyBj) + 1
2(γyC ′ − γ′yC) + 3

4εij(α̃
iyã′j − α̃′iyãj) (A.69)

r′′ = [r, r′] + εij(jβ
iyjB′j − jβ′iyjBj)− 1

4Iεij(β
iyB′j − β′iyBj)

+ (jγyjC ′ − jγ′yjC)− 1
2I(γyC

′ − γ′yC)

+ εij(jα̃
iyã′j − α̃′iyãj)− 3

4I(α̃
iyã′j − α̃′iyãj)

(A.70)

a′′ij = (a · a′ − a′ · a)ij + εjk(β
iyB′k − β′iyBk)− 1

2δ
i
jεkl(β

kyB′l − β′kyBl)

+ εjk(α̃
jyã′k − α̃′jyãk− 1

2δ
i
jεkl(α̃

kyã′l − α̃′kyãl)
(A.71)

β′′i = (r · β′i − r′ · βi) + (a · β′ − a′ · β)i − (γyB′i − γ′yBi)− (α̃iyC ′ − α̃′iyC) (A.72)

B′′i = (r ·B′i − r′ ·Bi) + (a ·B′ − a′ ·B)i + (βiyC ′ − β′iyC)− (γyã′i − γ′yãi) (A.73)

γ′′ = (r · γ′ − r′ · γ) + εijβ
i ∧ β′j + εij(α̃

iyB′j − α̃′iyBj) (A.74)

C ′′ = (r · C ′ − r′ · C)− εijBi ∧B′j + εij(β
iyã′j − β′iyãj) (A.75)

α̃′′i = (r · α̃′ − r′ · α̃)i + (a · α̃′ − a′ · α̃)i − (βi ∧ γ′ − β′i ∧ γ) (A.76)

ã′′i = (r · ã′ − r′ · ã)i + (a · ã′ − a′ · ã)i + (Bi ∧ C ′ −B′i ∧ C) (A.77)

Here εij is the SL(2,R) invariant antisymmetric tensor with ε12 = −1.

The Dorfman Derivative

The following is the Dorfman derivative on vectors

LV V
′ = Lvv′ + (Lvλ′i − v′ydλi) + (Lvρ′ − v′ydρ+ εijdλ

i ∧ λ′j)

+ (Lvσ′i − v′ydσi + dρ ∧ λ′i − dλi ∧ ρ′)

+ (Lvτ ′ − εijjλ′i ∧ dσj + jρ′ ∧ dρ+ εijjσ
′i ∧ dλj)

(A.78)

The following is the Dorfman derivative on adjoint elements

LVR = (Lvl + 1
2γydρ+ 1

4εklβ
kydλl + 3

4εklα̃
kydσl)

+ (Lvr + jγyjdρ− 1
2Iγydρ+ εijjβ

iydλj − 1
4Iεijβ

iydλj

+ εijjα̃
iydσj − 3

4Iεijα̃
iydσj)

+ (Lvaij + εjkβ
iydλk − 1

2δ
i
jεklβ

kydλl + εjkα̃
iydσk − 1

2δ
i
jεklα̃

kydσl)

+ (Lvβi − γydλi − α̃iydρ)

+ (LvBi + r · dλi + aijdλ
j + βiydρ− γydσi)

+ (Lvγ + εijα̃
iydλj)

+ (LvC + r · dρ+ εijdλ
i ∧Bj + εijβ

iydσj)

+ Lvα̃i

+ (Lvãi + r · dσi + aijdσ
j − dλi ∧ C +Bi ∧ dρi)

(A.79)
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To obtain the twisted Dorfman derivative we make the following substitutions.

dλi → dλi − vyF i dρ→ dρ− vyF − εijλi ∧ F j dσi → dσi + λi ∧ F − ρ ∧ F i (A.80)

where

F i = dBi F = dC − 1
2εijF

i ∧Bj (A.81)

Invariant Tensors

The following is the cubic invariant for E6(6)

c(V, V, V ) = −1

2

(
vyρ ∧ ρ+ εijρ ∧ λi ∧ λj − 2εijvyλ

iσj
)

(A.82)

The following is the symplectic invariant for E7(7)

s(V, V ′) = −1

4

(
vyτ ′ − v′yτ + εijλ

i ∧ σ′j − εijλ′i ∧ σj − ρ ∧ ρ′
)

(A.83)

The Killing Form

The Killing form for Ed+1(d+1) is

Tr(R,R′) =
1

2

(
1

8− d
Tr rTr r′ + Tr rr′ + Tr aa′ + γyC ′ + γ′yC

+ εijβ
iyBj + εijβ

′iyBj + εijα̃
iyã′j + εijα̃

′iyãj
) (A.84)

A.6 Embedding of O(6, 6) ⊂ E7(7) × R+ for type IIB

We will follow the conventions and notation of [213] for E7(7)×R+ generalised geometry applied

to type IIB. Recall that the generalised tangent and adjoint spaces and their decompositions

into O(6, 6) generalised bundles take the form

E ' T ⊕ 2T ∗ ⊕ ∧3T ∗ ⊕ 2∧5T ∗ ⊕ (T ∗ ⊗ ∧6T ∗)

' EO(6,6) ⊕ S− ⊕ (∧6T ∗ ⊗ EO(6,6)),

ad F̃ ' 4R⊕ (T ⊗ T ∗)⊕ 2∧2T ∗ ⊕ 2∧2T ⊕ ∧4T ∗ ⊕ 2∧6T ∗ ⊕ 2∧6T

' 4R⊕ ad F̃O(6,6) ⊕ S+ ⊕ (∧6T ⊗ S+)⊕ ∧6T ∗ ⊕ ∧6T.

(A.85)
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We use the following rules for embedding the O(6, 6) structures into the E7(7) × R+ structures

for type IIB.

EO(6,6) → E

v + λ 7→ v − siλ
(A.86)

ad F̃O(6,6) → ad F̃

r + β +B 7→ 1
8 Tr(r) +

(
r − 1

8I Tr(r)
)

+ 1
4 Tr(r)(riεjks

k + siεjkr
k)− siB + riβ,

(A.87)

S+ → ad F̃

Σ 7→ riεjkr
kΣ(0) + riΣ(2) + Σ(4) + siΣ(6),

(A.88)

S− → E

Σ 7→ riΣ(1) + Σ(3) + siΣ(5),
(A.89)

where Σ(k) ∈ Γ(∧kT ∗) are the components of the polyform Λ and ri, si are real constant SL(2,R)

doublets such that εijr
isj = 1.
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Appendix B

A Note on Curvature in Exceptional

Generalised Geometry

In conventional Riemannian geometry (or even the study of manifolds with connection) one

can define a curvature. This is central to many theorems in mathematics and many areas of

physics, including supergravity. Given that the only requirement to define curvature is the

choice of some connection, it seems natural to ask what the generalisation of this to generalised

geometry would be. As we will see however, the naive choice for generalised Riemann curvature

does not work and there does not appear to be a simple way to adapt the formula to fix the

problems that arise.

Recall the formula for the Riemann curvature tensor R ∈ ∧2T ∗ ⊗ adP̃GL(d,R) is given by

R(u, v) = [∇u,∇v]−∇[u,v] ∀u, v ∈ T (B.1)

Hence, given a generalised connection D it seems natural to try to define a generalised Riemann

curvature tensor in any generalised geometry as

R(U, V ) = [DU , DV ]−DJU,V K ∀U, V ∈ E (B.2)

However, as is stated in [181],R as defined is not a tensor. Indeed making the changes U −→ fU ,

V −→ gV and then act on some hX for f, g, h ∈ C∞(M) and X ∈ E we get

R(fU, gV )hX = R(U, V )X − 1

2
hD(gdf−fdg)×E(U×NV )X (B.3)

This result is completely generic and holds in all O(d, d) × R+ and Ed(d) × R+ generalised

geometries.

B.1 Generalised Riemann Tensor in O(d, d) × R+ Generalised

Geometry

It was shown in [189] that one can adapt the definition of Riemann curvature in ordinary

geometry to define a genuine tensor inO(d, d)×R+ generalised geometry. Their work is primarily
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done from the point of view of double field theory and enlarged spacetimes, however their results

are applicable to generalised geometry. We will briefly review now what they did.

They work in some frame of the generalised tangent bundle. Using capital Latin letters to

denote this frame, they take the connection

DMA
N = dMA

N + Γ N
MP AP DMAN = dMAN − Γ P

MN AP (B.4)

Then using (B.2) we find that we get the usual formula for R L
MNK

R L
MNK = 2d[M Γ L

N ]K + 2Γ L
[M |Q Γ Q

|N ]K (B.5)

However, as seen in (B.3) this does not define a tensor. However they noticed that one can

define a generalised tensor as

RMNKL = RMNKL +RKLMN + ΓQMNΓQKL (B.6)

This has a lot of properties one would want from a generalised Riemann curvature. for a start

it is an O(d, d)-tensor and it has the correct transformation properties under a generalised

diffeomorphism. Moreover, under suitable contractions it provides the generalised Ricci ten-

sor and scalar RMN , R that are used in the Lagrangian formulation of the NS-NS sector of

supergravity [182,183,189].

Conversely, this does not immediately have the symmetry properties of the conventional

Riemann curvature. While it is symmetric under the exchange of the first and last pairs of

indices, it is not antisymmetric under swapping the first or last pair. They show in [189] that

these properties can be obtained if we make further assumptions about the connection.

We can find a frame independent definition of the generalised Riemann curvature in terms

of the O(d, d) inner product η. For U, V,W,X ∈ E we have

η(R(U, V )W,X) = η(R(U, V )W,X) + η(R(W,X)U, V )

− 1

4
η(η(U,DV )− η(V,DU), η(W,DX)− η(X,DW ))

(B.7)

In the final term, the first inner product is done between the generalised vector parts, and the

second is done between the generalised covector parts generated by the covariant derivative D.

Note that the inner product on E∗ is generated by 〈·, ·〉 and the identification E∗ ∼= E.

B.2 Generalised Riemann Tensors in Ed(d) × R+ Generalised

Geometry

We notice that the formula (B.7) can be rewritten in a form that also works for Ed(d) generalised

geometry. We use the projections ×N : E × E → N , ×E : E∗ ×N → E and write

R(U, V )W ×N X =R(U, V )W ×N X +R(W,X)U ×N V

− 1

4
(µ(U,DV )− µ(V,DU))×N (µ(W,DX)− µ(X,DW ))

(B.8)
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Here we have defined a map µ : E × E∗ × E → E. If we use the letters M,N,P, ... to denote

generalised tangent bundle indices and A,B,C, ... to denote N -bundle indices, and if ηAMN , ζMN
A

are the projectors ×N , ×E respectively, then we define µ as

µPQMN = ηAMNζ
PQ
A (B.9)

We will use these indices and tensors to show how the formula (B.8) is not tensorial in general.

Firstly we note that we want the projectors ηAMN , ζ
MN
A to be covariant with respect to the

action of the structure group, G. Hence if R ∈ G then we require

−RPMηAPN −R
Q
Nη

A
MQ +RABη

B
MN = 0 RMP ζ

PN
A +RNQζ

MQ
A −RBAζMN

B = 0 (B.10)

where the index structure denotes the representation that R falls into. We also want our

connection to be compatible with the G-structure. This gives the following conditions on the

connection

− ΓQMNη
A
QP − ΓQMP η

A
NQ + ΓAMBη

B
NP = 0 ΓNMQζ

QP
A + ΓPMQζ

NQ
A − ΓBMAη

NP
B = 0 (B.11)

Here we have assumed that we can choose a frame in which η, ζ are locally constant maps and

that the action of the connection can be extended to the N bundle. The form of the maps given

in appendix A supports the first assumption, while the second assumption should be possible

by the fact that N ⊂ S2E which has a natural action of the connection on it.

Working in this frame we can now rescale the vectors U, V,W,X by the functions f, g, h, k

respectively. In doing so we find

[R(U ′, V ′)W ′ ×N X ′]A =fghk[R(U, V )W ×N X]N

+
1

4
hkΓAMB[(fdg − gdf)×E (U ×N V )]M [W ×N X]B

+
1

4
fgΓAMB[(hdk − kdh)×E (W ×N X)]M [U ×N V ]B

(B.12)

It is not clear how one would cancel these additional terms given that they live in the N bundle.

The only case where this works is for O(d, d) generalised geometry in which N ∼ 1 and hence

the ΓAMB = 0.

So we see that for generic generalised geometry we still do not have a good definition of

Riemann curvature. This is interesting since if we would like to perhaps extend generalised

geometry to try to describe either α′ corrections or higher derivative gravity then we would like

to have some kind of Riemann curvature.

We should note that this work does not rule out the possibility of finding some tensor which

behaves like a generalised Riemann tensor, just that the two most obvious candidates for one

do not work in general. It may be possible to define a curvature tensor on a case-by-case basis.

For example, in E6(6) generalised geometry, N ∼= E∗ and so we can think of ηAMN ∼ cMNP .

The symmetry of indices may mean that there is some formula involving generalised vectors

which exactly cancels any non-tensorial terms. Ideally however, one would like a formula that

works in all cases of generalised geometry.
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Appendix C

Integrability and Moment Maps for

(Generalised) Complex Structures

We review two examples of familiar geometric structures that appear when describing supersym-

metric backgrounds: conventional complex structures in six dimensions and their generalised

geometry extensions first introduced by Hitchin and Gualtieri [164, 165]. In each case, invo-

lutivity of an appropriate vector bundle under a bracket is equivalent to the integrability of

the structure.1 We will then also discuss how the extra differential conditions that promote

these structures to integrable SL(3,C) and generalised Calabi–Yau structures come from a mo-

ment map for the action of diffeomorphisms and, in the latter case, gauge symmetries. These

two examples will provide the model for how we analyse generic four-dimensional N = 1 flux

backgrounds.

C.1 Complex Structures

Let M be a six-dimensional manifold with tangent bundle T . Recall that an almost complex

structure on M is a conventional G-structure with G = GL(3,C). It is defined by a nowhere-

vanishing tensor I ∈ Γ(EndT ), with I2 = −I, that allows one to decompose the complexified

tangent bundle into subbundles

T ⊗ C := TC = L1 ⊕ L−1, (C.1)

where sections of L1 have charge +i under the action of I, and L̄1 ' L−1. Typically, L1 is

written T 1,0 but we will use this notation to highlight the similarities to the work in the later

sections. Consider two vectors V,W ∈ Γ(L1). A standard way to define an integrable structure

is to require that the Lie bracket of two (1, 0)-vector fields gives another (1, 0)-vector field. In

other words, L1 is involutive under the Lie bracket

[V,W ] ∈ Γ(L1) ∀ V,W ∈ Γ(L1). (C.2)

1Note that we use “integrable” and “torsion-free” interchangeably. For a conventional G-structure, integrable
is a stronger condition: torsion-free implies the G-structure is flat to first-order, while integrable implies the
G-structure is locally equivalent to the flat model. See [277] for some remarks on this nomenclature.
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Using I to project onto L1 it is then straightforward to show that involutivity of the bracket

is equivalent to the vanishing of the Nijenhuis tensor, or equivalently, in the language of G-

structures, the vanishing of the intrinsic torsion.

Every almost complex structure I defines a unique “canonical” line bundle UI ⊂ ∧3T ∗C
satisfying

ıV Ω = 0 ∀ V ∈ Γ(L−1), Ω ∧ Ω̄ 6= 0, (C.3)

where Ω is a local section of UI . If this bundle is trivial, one can introduce a refinement of

the almost complex structure by considering G = SL(3,C) structures. Each such structure is

defined by a nowhere-vanishing section Ω ∈ Γ(UI) so that any two such structures defining the

same complex structure differ by nowhere-vanishing complex function f

Ω′ = fΩ. (C.4)

Note that, as SL(3,C) ⊂ GL(3,C), given a suitable complex three-form Ω (one stabilised by

SL(3,C)) one can construct an almost complex structure I, as described by Hitchin [255].

It is natural then to ask the question, if we have a torsion-free GL(3,C) structure (a complex

structure), what extra condition do we need to impose to have a torsion-free SL(3,C) structure?

From the intrinsic torsion in each case, it is straightforward to see that the GL(3,C) structure

is torsion-free if

dΩ = A ∧ Ω, (C.5)

for some (0, 1)-form A, while for a torsion-free SL(3,C) structure we should have

dΩ = 0. (C.6)

Thus A encodes the extra intrinsic torsion components of the SL(3,C) structure.

This additional integrability condition can be viewed as the vanishing of a moment map. One

first notes that the space of SL(3,C) structures admits a natural pseudo-Kähler metric [255].

At a point p ∈M , a choice of Ω is equivalent to picking a point in the coset

Ω|p ∈ QSL(3,C) =
GL(6,R)

SL(3,C)
. (C.7)

The choice of SL(3,C) structure on M thus corresponds to a section of the fibre bundle

QSL(3,C) → QSL(3,C) →M, (C.8)

that is, we can identify

space of SL(3,C) structures, SL(3,C) ' Γ(QSL(3,C)). (C.9)

This infinite-dimensional space then inherits a pseudo-Kähler structure from the pseudo-Kähler
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structure2 on the coset space QSL(3,C), with a Kähler potential given by

K = i

∫
M

Ω ∧ Ω̄, (C.10)

where Ω can be viewed as a complex coordinate on the space of structures (or more precisely

as a holomorphic embedding Ω: SL(3,C) ↪→ Γ(∧3T ∗C)). One can also restrict to the subspace

of structures that define an (integrable) complex structure, so that L1 is involutive,

SL(3,C) = {Ω ∈ SL(3,C) | I is integrable}. (C.11)

Given that the integrability condition (C.5) is holomorphic – it is independent of Ω̄ – this space

inherits a pseudo-Kähler metric from SL(3,C) with the same Kähler potential.

Diffeomorphisms act on SL(3,C) since the integrability conditions on I are diffeomorphism

invariant. Infinitesimally they define a vector field ρV ∈ Γ(TSL(3,C)) such that

ıρV δΩ = LV Ω, (C.12)

where δ is the exterior (functional) derivative on SL(3,C) and V ∈ Γ(T ) generates the diffeo-

morphism. Clearly the Kähler potential (C.10) is diffeomorphism invariant. Furthermore, since

LV Ω is independent of Ω̄, we see that diffeomorphisms also preserve the complex structure on

SL(3,C). Together this implies they preserve the Kähler form.3 Explicitly this is given by

$ = i ∂′∂̄′K, (C.13)

where we have decomposed δ = ∂′ + ∂̄′ into holomorphic and antiholomorphic derivatives. For

an arbitrary vector α ∈ Γ(TSL(3,C)) we then have

ıρV ıα$ = −
∫
M

(
ıαδΩ ∧ LV Ω̄− LV Ω ∧ ıαδΩ̄

)
=

∫
M

(
LV ıαδΩ ∧ Ω̄ + LV Ω ∧ ıαδΩ̄

)
=

∫
M
ıα
(
LV δΩ ∧ Ω̄ + LV Ω ∧ δΩ̄

)
= ıαδµ(v),

(C.14)

where

µ(V ) =

∫
M
LV Ω ∧ Ω̄. (C.15)

defines a moment map µ : SL(3,C)→ diff∗, where diff is the Lie algebra of diffeomorphisms. It

is straightforward to check that µ is equivariant.

Given the integrability condition (C.5), we can integrate by parts, to write

µ(V ) =

∫
M

(
−ıV Ω ∧ Ā ∧ Ω̄ + ıV (A ∧ Ω) ∧ Ω̄

)
=

∫
M

(ıVA− ıV Ā) Ω ∧ Ω̄,

(C.16)

2This metric has signature (18, 2) [255].
3Note that there may be further subtleties if the integrability condition defines a null subspace within SL(3,C)

or if the group action defining the moment map is null. We comment on this for the case of SU(7) structures in
section 5.3.3.
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where we have used A ∧ Ω̄ = Ā ∧ Ω = 0. The moment map vanishes for all V ∈ Γ(T ) if and

only if

A = Ā = 0. (C.17)

In other words, we see that the vanishing of the moment map imposes the final condition (C.6)

that promotes a complex structure to a torsion-free SL(3,C) structure.

Since two SL(3,C) structures that are related by a diffeomorphism are equivalent, the moduli

space of SL(3,C) structures is naturally a quotient, defined as

MΩ = {Ω ∈ SL(3,C) | µ = 0}/Diff. (C.18)

As we have seen, the Kähler geometry on the space of structures SL(3,C) is preserved by the

action of the diffeomorphism group, thus we can view the moduli space either as a symplectic

quotient by Diff or as a quotient by the complexified group

MΩ = SL(3,C)//Diff ' SL(3,C)/DiffC. (C.19)

Note that the complexification of the diffeomorphism group DiffC is not really well defined.

What is really meant is the complexification of the orbits, that is, if the vector field ρV ∈
Γ(TSL(3,C)) generates the action of diffeomorphisms on the spaces of structures, we can com-

plexify this to also include the orbits generated by IρV , where I is the complex structure on

SL(3,C). Since Ω is a holomorphic function on SL(3,C) we have

ıIρV δΩ = −ıρV (IδΩ) = i ıρV δΩ = iLV Ω = LIV Ω + 2i(ıVA)Ω, (C.20)

where in the last expression we have used (C.5) and the fact that ıIV Ω = i ıV Ω and ıIVA =

−i ıVA. Thus in (C.19), up to diffeomorphisms, for each fixed complex structure, the action of

DiffC simply rescales Ω until (C.6) is satisfied and the moment map vanishes.

C.2 Generalised Complex Structures

Let us now review the analogous story for the generalised complex structures (GCS) of Hitchin

and Gualtieri [164,165]. We will see again that involutivity and a moment map characterise the

integrable structures and lead to a local description of the moduli space as a Kähler quotient.

Consider a six-dimensional manifold M with a generalised tangent bundle EO(6,6) = T ⊕T ∗.
This admits a natural O(6, 6) structure given by the inner product

〈x+ ξ, y + η〉 = η(x) + ξ(y). (C.21)

As was noted in [183], the relevant structure group for supergravity is actually O(6, 6)×R+ to

account for the dilaton. We take all generalised vectors to be weight zero under the R+ action.

Given a generalised vector V = x + ξ ∈ Γ(E), there is a natural generalised Lie derivative LV

such that, acting on a generalised vector W = y + η,

Lx+ξ (y + η) = [x, y] + Lxη − ıydξ. (C.22)
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This generates conventional diffeomorphisms and one-form gauge transformations, parame-

terised by x and ξ respectively. Its antisymmetrisation JV,W K := 1
2 (LVW − LWV ) is the

Courant bracket. EO(6,6) generates a Clifford algebra Cliff(6, 6) via the inner product above,

which has a natural representation on sections Ψ of the spinor bundle S := ∧•T ∗ via

��VΨ = ıxΨ + ξ ∧Ψ. (C.23)

The slash notation signifies the Clifford action and can be viewed as contraction with the O(6, 6)

gamma matrices ΓM . There is an invariant antisymmetric pairing (Ψ,Σ) on spinors given by

the Mukai pairing (A.21), with the property that

(Ψ,��V Σ) = (−��VΨ,Σ). (C.24)

As a representation of Spin(6, 6) × R+ the spinor bundle is reducible as one can define the

analogue of Majorana–Weyl spinors4

S+ = ∧evenT ∗, S− = ∧oddT ∗. (C.25)

The exterior derivative gives a map d: S± → S∓ such that the action of the generalised Lie

derivative can be written as

LV Ψ = d(��VΨ) +��V dΨ, (C.26)

for any Ψ ∈ Γ(S).

In analogy to a conventional almost complex structure, a generalised almost complex struc-

ture J is a endomorphism J : Γ(EO(6,6))→ Γ(EO(6,6)) such that

J 2 = −I, 〈J V,J V 〉 = 〈V, V 〉 ∀ V ∈ Γ(E). (C.27)

As a generalised tensor, J is nowhere vanishing so defines reduction of the structure group

of EO(6,6) from O(6, 6) × R+ to U(3, 3) × R+. It gives a decomposition of the complexified

generalised tangent bundle

EO(6,6)C = L1 ⊕ L−1, (C.28)

where L±1 has charge ±i under J . Note that L1 is maximally isotropic: 〈L1, L1〉 = 0. This

defines an isomorphism L∗1 ' L̄1 = L−1. A generalised almost complex structure is integrable

if L1 is involutive with respect to the generalised Lie derivative

LVW ∈ Γ(L1) ∀ V,W ∈ Γ(L1), (C.29)

which also implies LVW = JV,W K. Using the notion of generalised intrinsic torsion introduced

in [184], one can show that this involution condition is equivalent to the vanishing of the

generalised intrinsic torsion of the U(3, 3)× R+ structure defined by J .

Each generalised almost complex structure defines a unique pure spinor line bundle UJ ⊂ S
4It was important that we take the structure group to be O(6, 6) × R+, or its double cover Spin(6, 6) × R+,

here since polyforms do not form a representation of Spin(6, 6) alone. It also implies the antisymmetric pairing
gives a top-form rather than a scalar. Without the R+ factor, one would have to take S ' ∧•T ∗ ⊗ (detT )1/2.
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satisfying

��V Φ = 0 ∀ V ∈ Γ(L1), (Φ, Φ̄) 6= 0, (C.30)

where Φ is a local section of UJ and (·, ·) is the Mukai pairing defined in (A.21). If the pure

spinor line bundle is trivial, one can choose a global nowhere-vanishing section. This defines an

SU(3, 3) or generalised Calabi–Yau (GCY) structure [164].5 Two such structures defining the

same GCY structure differ by nowhere vanishing complex function f

Φ′ = fΦ. (C.31)

From the generalised intrinsic torsion it is straightforward to see that the corresponding gener-

alised complex structure is integrable if

dΦ = ��AΦ, (C.32)

where A ∈ Γ(L−1) acts on Φ via the Clifford action. The generalised Calabi–Yau structure is

integrable if

dΦ = 0, (C.33)

and hence A encodes the extra components of the intrinsic torsion of the SU(3, 3) structure.

As in the previous example of a complex structure, one can view the additional integrability

condition as the vanishing of a moment map. One first notes that the space of SU(3, 3) structures

on M admits a natural pseudo-Kähler metric [151, 164] – the construction follows that of the

almost complex structure case. At a point p ∈M , a choice of Φ is equivalent to picking a point

in the coset

Φ|p ∈ QSU(3,3) =
O(6, 6)× R+

SU(3, 3)
, (C.34)

so that an SU(3, 3) structure on M corresponds to a section of the fibre bundle

QSU(3,3) → QSU(3,3) →M. (C.35)

We can then identify

space of SU(3, 3) structures, SU(3, 3) ' Γ(QSU(3,3)). (C.36)

This infinite-dimensional space inherits a pseudo-Kähler structure from the pseudo-Kähler struc-

ture6 on the coset space QSU(3,3), with a Kähler potential given by

K = i

∫
M

(Φ, Φ̄). (C.37)

Again Φ can be viewed as a complex coordinate on the space of structures (or more precisely

as a holomorphic embedding Φ: SU(3, 3) ↪→ Γ(SC)) and one can also restrict to the subspace

5Given a GCY structure, one can recover the generalised almost complex structure by identifying L1 as the
null space of Φ.

6This metric has signature (30, 2) [156,164].
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of structures that define an (integrable) generalised complex structure, so that L1 is involutive,

SU(3, 3) = {Φ ∈ SU(3, 3) | J is integrable}. (C.38)

The condition (C.32) is holomorphic and so SU(3, 3) inherits a pseudo-Kähler metric from

SU(3, 3), with the same Kähler potential.

The group of generalised diffeomorphisms GDiff, that is diffeomorphisms and gauge trans-

formations, acts on SU(3, 3) and preserves the Kähler structure. The action is generated by

vector fields ρV ∈ Γ(TSU(3, 3)) defined via the generalised Lie derivative

ıρV δΦ = LV Φ. (C.39)

Given the Kähler form as defined in (C.13) and an arbitrary vector α ∈ Γ(TSU(3, 3)), one finds

ıρV ıα$ = −
∫
M

(ıαδΦ, LV Φ̄)− (LV Φ, ıαδΦ̄) =

∫
M

(LV ıαδΦ, Φ̄) + (LV Φ, ıαδΦ̄)

= ıαδ

∫
M

(LV Φ, Φ̄) = ıαδµ(V )

(C.40)

where

µ(V ) =

∫
M

(LV Φ, Φ̄), (C.41)

defines a moment map µ : SU(3, 3)→ gdiff∗. Here gdiff is the Lie algebra of generalised diffeo-

morphisms generated by the generalised Lie derivative.

From (C.26), the integrability condition (C.32) and (C.24) we have

µ(V ) =

∫
M

(
��V dΦ +��V Φ, dΦ̄

)
=

∫
M

(��V��AΦ,Φ) + (��V Φ,��̄AΦ̄)

=

∫
M

(��V (��A− ��̄A)Φ, Φ̄) + ((��A− ��̄A)��V Φ, Φ̄) = 2

∫
M
〈V,A− Ā〉(Φ, Φ̄),

(C.42)

where in going to the second line we have used ��AΦ̄ = ��̄AΦ = 0. Thus we see the moment map

vanishes for all V if and only if A = Ā = 0, that is, if the SU(3, 3) structure is integrable.

Again, we consider two SU(3, 3) structures that are related by a generalised diffeomorphism

as equivalent and so the moduli space of SU(3, 3) structures is a symplectic quotient.7 Since

the group action preserves the Kähler structure, we can view also view the moduli space as a

quotient by the complexified group GDiffC

MΦ = SU(3, 3)//GDiff ' SU(3, 3)/GDiffC. (C.43)

As before, if I is the complex structure on SU(3, 3), we have

ıIρV δΦ = −ıρV (IδΦ) = i(ıρV δΦ) = iLV Φ = −LJ V Φ + 2i 〈V,A〉Φ, (C.44)

where in the last expression we have used (C.32) and the fact that J V ◦ Φ = −i ıV Φ and

7As with the previous SL(3,C) structures, this can be more nuanced. We refer the reader to section 5.3.3 for
a discussion of this for SU(7) structures.
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〈J V,A〉 = i 〈V,A〉. Thus, up to generalised diffeomorphisms, for each fixed complex structure,

the action of GDiffC simply rescales Φ until dΦ = 0 and the moment map vanishes.
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Appendix D

Explicit Calculations of the

Heterotic Superpotential, Kähler

Potential and Moment Map

In this appendix, we lay out in detail how one calculates the superpotential, Kähler potential

and the moment map using the explicit form of ψ and J given in the main text.

D.1 The Superpotential

To see that our expression for the superpotential (3.69) matches the conventional expression

given in (3.63), we expand in O(6, 6 + n) indices:

W ∼
∫
X
JABDCψ

CB
A

∼
∫
X
DC(JABψ

CB
A)− ψCBAD[C JAB]

∼
∫
X
ψABCD[AJBC]

∼
∫
X

√
g e−2ϕΩµ̄ν̄ρ̄D[µ̄J ν̄ρ̄],

(D.1)

where we have used the fact that the boundary term vanishes identically, and have raised/lowered

indices with η. To reach the final lines we have used results from the previous section on the

contraction of ψ with a section of ∧3E. Hence all that remains is to determine the form of

D[µ̄J ν̄ρ̄]. Using the components of the connection from [186], we have that

D[µ̄Jν̄ρ̄] = ∇[µ̄Jν̄ρ̄] − 1
3H[µ̄

σ
ν̄|J|σ|ρ̄]

= 1
3(−dω)µ̄ν̄ρ̄ + i

3H[µ̄
σ
ν̄g|σ|ρ̄]

∼ (H + idω)µ̄ν̄ρ̄,

(D.2)
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where we have used gµν̄ = −iωµν̄ for an SU(3) structure. Hence

W ∼
∫
X

√
g e−2ϕΩµ̄ν̄ρ̄(H + i dω)µ̄ν̄ρ̄

∼
∫
X

e−2ϕΩ ∧ (H + i dω).

(D.3)

This is precisely the form of the superpotential in (3.63) and used in [207, 233]. Hence our

expression (3.69) is the covariant form of the superpotential for a generic four-dimensional

N = 1 heterotic background determined by ψ.

D.2 The Kähler Potential

The Kähler potential is

K =

∫
X
η(ψ, ψ̄)1/2, (D.4)

where η is the symmetric pairing on sections of ∧3E. We fix our conventions for this in terms

of η on sections of E by examining how the usual inner product defined by g acts on tri-vectors.

For α, β ∈ Γ(∧3T ), the pairing is

g(α, β) = 1
3!

1
3!α

mnpβqrsg(êmnp, êqrs)

≡ 1
3!α

mnpβqrsg(êm, êq)g(ên, êr)g(êp, ês)

= 1
3!α

mnpβmnp

= αyβ,

(D.5)

where we have used êmnpyeqrs = 3!δq[mδ
r
nδ
s
p]. Similarly we define

η(Ê+
mnp, Ê

+
qrs) = 3!η(Ê+

m, Ê
+
q )η(Ê+

n , Ê
+
r )η(Ê+

p , Ê
+
s )

= 3!δmqδnrδps,
(D.6)

where an antisymmetrisation over mnp is assumed and for simplicity we take êm to be an

orthonormal frame, implying η(Ê+
m, Ê

+
n ) = gmn = δmn. With χ defined as in (3.83)

χ =
1

3!
g1/4e−ϕΩmnpÊ+

mnp, (D.7)

the pairing η(χ, χ̄) is given by

η(χ, χ̄) = 1
3!g

1/2e−2ϕΩmnpΩ̄mnp

= g1/2e−2ϕΩ]yΩ̄

= i e−2ϕΩ ∧ Ω̄,

(D.8)

where we have used the standard SU(3) structure relations

Ω]yΩ̄ = 8, g1/2 = vol =
i

8
Ω ∧ Ω̄. (D.9)
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Integrated over X, this gives the expression for the Kähler potential given in the main text.

D.3 The Moment Map

The expression for the moment map given in the main text is

µ(V ) = − i

2

∫
X
η(LV χ, χ̄). (D.10)

To evaluate this, we need an expression for the Dorfman derivative of χ. For V = e−Be−A(v +

λ+ Λ), where v ∈ Γ(T ), λ ∈ Γ(T ∗) and Λ ∈ Γ(adP ), we have

LV χ = 1
3!Lv(g

1/4e−ϕΩmnp)Ê+
mnp + 1

2g
1/4e−ϕΩmnpLV Ê

+
m ∧ Ê+

np, (D.11)

LV Ê
+
m = e−Be−A (Lv(êm + em)− ıêmdλ− ıvıêmH + 2 Tr(ΛıêmF )− ıêmdAΛ− ıvıêmF ) .

(D.12)

The expression for the moment map is then

µ(V ) = − i
2

∫
X
η
(

1
3!Lv(g

1/4e−ϕΩmnp)Ê+
mnp + 1

2g
1/4e−ϕΩmnpLV Ê

+
m ∧ Ê+

np,
1
3!g

1/4e−ϕΩ̄qrsÊ+
qrs

)
= − i

2

∫
X

1
3!Lv(g

1/4e−ϕΩmnp)g1/4e−ϕΩ̄mnp

− i
2

∫
X

1
2g

1/4e−ϕΩmnp 1
3!g

1/4e−ϕΩ̄qrsη(LV Ê
+
m ∧ Ê+

np, Ê
+
qrs),

(D.13)

where we have used

η(LV Ê
+
m ∧ Ê+

np, Ê
+
qrs) = 3! η(LV Ê

+
m, Ê

+
q )δnrδps, (D.14)

with an assumed antisymmetrisation over mnp and

η(LV Ê
+
m, Ê

+
n ) = η (Lv(êm + em)− ıêmdλ− ıvıêmH + 2 Tr(ΛıêmF )− ıêmdAΛ− ıvıêmF, ên + en)

= 1
2 ıLv êmen + 1

2 ıênLvem −
1
2 ıênıêmdλ− 1

2 ıênıvıêmH + ıên Tr(ΛıêmF ).

(D.15)

Our task is now to find what conditions µ = 0 imposes. To do this, we examine µ(V ) = 0

where V consists of an arbitrary vector, one-form or gauge parameter in turn. First, consider

V = e−Be−Aλ:∫
X
η(LV χ, χ̄) =

∫
X

1
2g

1/4e−ϕΩmnpg1/4e−ϕΩ̄qrs
(
−1

2

)
ıêq ıêmdλ δnrδps

= −1
4

∫
X

e−2ϕΩmnpΩ̄q
npıêq ıêmdλ vol

= 2i

∫
X

e−2ϕdλ ∧ ω ∧ ω

= 2i

∫
X
λ ∧ d(e−2ϕω ∧ ω),

(D.16)
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where we have used the SU(3) structure identity

ΩmnpΩ̄q
np(ıêq ıêmα2) vol = −8iα2 ∧ ω ∧ ω, (D.17)

which holds for an arbitrary two-form α2.

Next, consider V = e−Be−AΛ:∫
X
η(LV χ, χ̄) =

∫
X

1
2g

1/4e−ϕΩmnp 1
3!g

1/4e−ϕΩ̄qrs3!
(
ıêq Tr(ΛıêmF )

)
δnrδps

=

∫
X

1
2 vol e−2ϕΩmnpΩ̄q

npıêq ıêm Tr(ΛF )

=

∫
X

1
2e−2ϕ(−8i) Tr(ΛF ) ∧ ω ∧ ω

= −4i

∫
X

Tr(ΛF ) ∧ e−2ϕω ∧ ω,

(D.18)

where again we have used (D.17).

Finally, consider V = e−Be−Av:∫
X
η(LV χ, χ̄) =

∫
X

1
3!Lv(g

1/4)g1/4e−2ϕ8 · 3! + 1
3!Lv(e

−ϕΩmnp)g1/2e−ϕΩ̄mnp

+

∫
X

1
4g

1/2e−2ϕΩmnpΩ̄q
np

(
ıêqLvem − ıêmLveq − ıêq ıvıêmH

)
.

(D.19)

Now note that the first term is real while
∫
X η(LV χ, χ̄) is imaginary (after an integration by

parts), so it cancels. The remaining terms can be rewritten as∫
X
η(LV χ, χ̄) =

∫
X

1
2

1
3!g

1/2e−2ϕLvΩmnpΩ̄mnp + 1
2

1
3!g

1/2e−2ϕLvΩ̄mnpΩmnp

+

∫
X

1
4g

1/2e−2ϕ
(
2Ω̄yLvΩ− 2ΩyLvΩ̄− ΩmnpΩ̄q

npıêq ıvıêmH
)
,

(D.20)

where we have the SU(3) structure identities Ω]yΩ̄ = 8 and 8 vol = iΩ ∧ Ω̄, and

ΩmnpΩ̄q
np = 8gmq + 8i Imq = 8gmq − 8iωmq, (D.21)

2Ω̄yLvΩ = 1
3LvΩ

mnpΩ̄mnp + ΩmnpΩ̄q
npıêqLvem, (D.22)

2ΩyLvΩ̄ = 1
3LvΩ̄

mnpΩmnp + ΩmnpΩ̄q
npıêmLveq. (D.23)

Again, note that the first two terms of (D.20) combine to give something real, and so they must

cancel. We can then massage the remaining terms to give∫
X
η(LV χ, χ̄) =

∫
X

1
4e−2ϕ

(
2iLvΩ ∧ Ω̄ + 2iLvΩ̄ ∧ Ω− 8iıvH ∧ ω ∧ ω

)
= i1

2

∫
X

e−2ϕ(2ıvā− 2ıva+ 2ıv∂ϕ− 2ıv∂̄ϕ) Ω ∧ Ω̄

+ 2e−2ϕıv∂ϕΩ ∧ Ω̄− 2e−2ϕıv∂̄ϕΩ ∧ Ω̄

= i

∫
X

e−2ϕ(ıvā− ıva+ 2ıv∂ϕ− 2ıv∂̄ϕ) Ω ∧ Ω̄.

(D.24)
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To reach this result, we have integrated by parts and used dΩ = ā ∧ Ω for ā ∈ Ω0,1(X), which

is implied by integrability of the complex structure which in turn comes from involutivity of

L−1. We have also used Ω̄yα3 vol = iα3 ∧ Ω̄ for an arbitrary three-form α3. Summed up, the

three contributions to µ(V ) in (D.16), (D.18) and (D.24) give the expression for the moment

map given in the main text.
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Appendix E

Exceptional Complex Structures in

E6(6) × R+ Geometry

Proposition 1. Any isotropic subbundle L ⊂ EC has the form

eα+β · (∆⊕ S2 ⊕ S5) (E.1)

where α ∈ Ω3(M) andβ ∈ Ω6(M) are arbitrary but fixed, and where ∆ ⊂ T , S2 ⊂ ∧2T ∗,

S5 ⊂ ∧5T ∗ satisfy the following. For all v ∈ ∆, ω, ω′ ∈ S2and σ ∈ S5 we have

vyω = 0 vyσ = 0

ω ∧ ω′ = 0 jω ∧ σ = 0
(E.2)

To prove this, we follow a similar proof for isotropic bundles in O(d, d) geometry laid out in [165].

Proof. The condition for isotropy is V1 ×N V2 = 0 for all V1, V2 ∈ L which translates to

v1yω1 + v2yω1 = 0 (E.3)

jω1 ∧ σ2 + jω2 ∧ σ1 = 0 (E.4)

ω1 ∧ ω2 − v1yσ2 − v2yσ1 = 0 (E.5)

It is a simple check to see that any L of the form (E.1) satisfies these conditions and hence

defines an isotropic bundle. Hence it is left to show that any isotropic bundle takes that form.

Clearly we have ∆ = a(L). Suppose we have some

ω1, ω2 ∈ π∧2
T ∗

(
(∧2T ∗ ⊕ ∧5T ∗) ∩ L

)
(E.6)

where π∧2T ∗ : E → ∧2T ∗, and similarly for πT , π∧5T ∗ . From (E.3) and (E.5) we see that for

any v ∈ ∆

vyωi = 0 ⇒ ωi ∈ F2
1 (∆)

ω1 ∧ ω2 = 0 ⇒ ωi ∈ S2

(E.7)
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Now consider the element

α(v) := π∧2T ∗
(
π−1
T (v) ∩ L

)
∈ ∧2T ∗

π∧2T ∗((∧2T ∗ ⊕ ∧5T ∗) ∩ L)
(E.8)

From (E.3) for V ×N V = 0, we see that we need

vyα(v) ∀ v ∈ ∆ ⇒ α ∈ ∧3T ∗ (WLOG) (E.9)

Then we can write any element λ ∈ π∧2T ∗(L) as

λ = vyα+ ω v ∈ ∆, ω ∈ S2 (E.10)

No we consider any σ ∈ ∧5T ∗ ∩ L. From (E.4) and (E.5) we see that for all v ∈ ∆, ω ∈ S2

we need
vyσ = 0 ⇒ σ ∈ F5

4 (∆)

jω ∧ σ = 0 ⇒ σ ∈ S5

(E.11)

Note that we also need

j(vyα) ∧ σ = 0 ⇔ (vol#yσ)y(vyα) = 0 (E.12)

However, since F5
4 (∆) = 0 if rk ∆ > 1, one can check that

(vol#yσ)y(vyα) ∝ vy(vyα) = 0 (E.13)

Now consider the element

θ(v, ω) := π∧5T ∗
(
(π−1
T (v) + π−1

∧2T ∗
(ω)) ∩ L

)
∈ ∧5T ∗

∧5T ∗ ∩ L
(E.14)

From (E.5) we need

(ω1 + v1yα) ∧ (ω2 + v2yα)− v1yθ(v2, ω2)− v2yθ(v1, ω1) (E.15)

which has the general solution

θ(v, ω) =
1

2
vyα ∧ α+ vyβ + λ ∧ α (E.16)

where β ∈ ∧6T ∗ is arbitrary. It is a simple check to see that this also satisfies (E.4). Checking

the action of eα+β we see that we have

L = eα+β · (∆⊕ S2 ⊕ S5) (E.17)

Proposition 4.

dimC L = 6 ⇔ typeL = 0, 3, 6 (E.18)

Proof. We will consider each typeL = k for k = 0, 1, ..., 6
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k=0

All type 0 bundles are of the form L = eα+β · T which is clearly 6 dimensional

k=1

If we have a type 1 bundle then rk ∆ = 5 and rkF2
1 (∆) = rkF5

4 (∆) = 0. Hence the bundle

looks like eα+β ·∆ again. However, this is just 5 dimensional.

k=2

In this case we have rk∆ = 4, rkF2
1 (∆) = 1, rkF5

4 (∆) = 0 and hence the isotropic bundle is of

the form eα+β · (∆⊕F2
1 (∆)) which is 5 dimensional.

k=3

We have rk ∆ = 3, rkF2
1 = 3, rkF5

4 = 0. Hence we can take L = eα+β cot(∆ ⊕ F2
1 (∆)) which

is 6 dimensional.

k = 4

We have rk ∆ = 2, rkF2
1 (∆) = 6, rkF5

4 (∆) = 0. However, it is not that case that ω ∧ ω′ = 0

for all ω, ω′ ∈ F2
1 (∆). We take any subspace which satisfies this condition which has maximal

rank 3. Hence the isotropic bundle of the form eα+β · (∆⊕ S2) has maximal dimension 5

k = 5

We have rk ∆ = 1, rkF2
1 = 10, rkF5

4 (∆) = 1. Again, we choose a maximal S2 ⊂ F2
1 (∆)

satisfying ω ∧ ω′ = 0. This will have rank 3 and so the isotropic bundle eα+β · (∆ ⊕ S2 ⊕ S5)

has dimension 5.

k = 6 In this case rk ∆ = 0. It will be convenient to parameterise §5 = Γy vol where Γ ⊂ T .

We will also choose a basis ei of T ∗ with dual basis êi of T . The only possible type 6 solutions

are given in the table below.

Γ S2 L dimL

T 0 ∧5T ∗ 6
〈ê1, ..., ê4〉

〈
e5 ∧ e6

〉
S2 ⊕ S5 5

〈ê1, ê2, ê3〉
〈
ei ∧ ej | i, j = 4, 5, 6

〉
s2 ⊕ S5 6

Proposition 5. There are no exceptional complex structures of type 6

Proof. There are two different 6 dimensional isotropic spaces of type 6, which shown in the

table above. We will show that these do not satisfy the remaining conditions in definition 20.

Firstly, let’s consider L1 = ∧5T ∗. Clearly, this does not satisfy condition (iii) as L̄1 = L1.

Therefore, this cannot be an ECS.

Secondly, let’s consider L1 = eα · (S2⊕S5), where S2, S5 are as in the third row of the table

above. We will show that L0 ∩ (L1 ⊕ L−1) 6= 0 and hence this does not satisfy condition (iii).
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To find L0 we need to find the null space

A = {Z ∈ E∗ | 〈V,Z〉 = 0 ∀V ∈ L1 ⊕ L−1} (E.19)

Using the same notation as above, it is easy to see that

T ∗ ⊕
〈
êi ∧ êj | i = 1, 2, 3, j = 4, 5, 6

〉
⊆ A (E.20)

The left hand side of this is 15 dimensional. If L is to define an ECS then A must be 15

dimensional too and hence this must be the whole of A. In particular, this implies that

S5 ⊕ S̄5 = ∧5T ∗L1 ⊕ L−1 (E.21)

Now taking any ν ∈ T ∗, and some eα · ω ∈ L1. Then we have

eαω ×ad ν = eαω ∧ ν (E.22)

However, we have that

(eαω ∧ ν) · L−1 ⊆ ∧5T ∗ ⊂ L1 ⊕ L−1 (E.23)

Hence we see that L0 ∩ (L1 ⊕ L1) 6= 0 and so this cannot be an ECS
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Appendix F

Proof of the Local Structure of

Moduli of SU∗(6) Structures

F.1 Type 3 Moduli

For the type 3 problem we have the subbundle

L1 = eα+β · (∆⊕F2
1 (∆)) (F.1)

where α ∈ Ω3(M)C, β ∈ Ω6(M)C, and ∆ ⊂ T all satisfy

[∆,∆] ⊆ ∆ vy(wy(xydα)) = 0 (F.2)

for all v, w, x ∈ Γ(∆). In what follows, it will be convenient to work with the FC-twisted

Dorfman derivative, where locally FC = dα, and the untwisted bundle L̃1 = ∆ ⊕ F2
1 (∆). This

is because, for type 3 solutions, the physical flux may be in a non-trivial cohomology class and

hence the gauge potential A, which is implicit in the definition of α, may not be global. By

working with LFC
V , we can work only with globally defined objects.

We have the quotient spaces

EC/L̃1 =
(
T/F1

0

)
⊕
(
∧2T ∗/F2

1

)
⊕ ∧5T ∗ (F.3)

QR+×U∗(6) =
[(
T/F1

0

)
⊗
(
T ∗/F1

0

)]
⊕
(
∧3T/F3

2

)
⊕
(
∧3T ∗/F3

1

)
⊕ ∧6T ∗ (F.4)

We shall pick the following elements of the deformation space Q

r ∈ Γ
(
(T/F1

0)⊗ (T ∗/F1
0 )
)

χ ∈ ∧3T/F3
2

θ ∈ ∧3T ∗/F3
1 τ ∈ ∧6T ∗

(F.5)

and write the deformation parameter as R = X+r+θ+τ . Hence the deformed bundle becomes

L̃′1 = (1 +R) · L̃1 = eθ+τ (1 + r +X) · (∆⊕F2
1 (∆)) (F.6)

where we are working to linear order in the deformation parameters only. We take sections
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V ′,W ′ ∈ Γ(L̃′1) which are of the form

V ′ = eθ+τ · (v + r · v +Xyλ+ λ+ r · λ) W ′ = eθ+τ · (w + r · w + xyµ+ µ+ r · µ) (F.7)

where v, w ∈ Γ(∆), λ, µ ∈ Γ(F2
1 ). We will also denote by V̂ = v̂+ λ̂ = (1 + r+X) · (v+λ), and

similarly for Ŵ .

We want to determine when L̃′1 is involutive under LFC
V , to linear order in R. This is the

statement that for all v, w ∈ Γ(∆), λ, µ ∈ Γ(F2
1 ) we have

LFC
V ′W

′ = eθ+τ ·
(
LV̂ Ŵ + ŵ(yv̂y(FC + dθ)) + µ̂ ∧ (v̂y(FC + dθ))

)
(F.8)

= eθ+τ ·
(

[v̂, ŵ]

+ Lv̂µ̂− ŵydλ̂+ ŵy(v̂y(FC + dθ))

− µ̂ ∧ dλ̂+ µ̂ ∧ (v̂y(FC + dθ))
) (F.9)

∈ Γ(L̃′1) (F.10)

Let us consider this term by term. We will use Greek letters α, β, γ, ... for ∆ indices, and Latin

letters a, b, c, ... for the complement1. If we consider the vector piece only then we have, to

linear order in R

(
e−θ−τ · LFC

V ′W
′)|T = [v, w] + [r · v +Xyλ,w] + [v, r · w +Xyµ] (F.11)

= [v, w] +
(
rbβv

β∂bw
α − rbγwγ∂bvα

)
+
(

(Xyν)b∂bw
α − (Xyλ)b∂bv

α
)

+ r · [v, w] +Xy(vydµ− wydλ)

wy(vyd∆r) + (vyd∆X)yµ− (wyd∆X)yλ

(F.12)

!
= z + r · z +Xyζ (F.13)

where z ∈ Γ(∆), ζ ∈ Γ(F2
1 ) are of the form2

z = [v, w] +O(R) ζ = vydµ− wydλ+ wy(vyFC) +O(R) (F.14)

For this to be true to linear order in R we need

wy(vyd∆r) + (vyd∆X)yµ− (wyd∆X)yλ = Xy(wy(vy(FC)))

= wy(vy(jXyj2FC))
(F.15)

This must be true for all v, w, λ, µ and hence we have

d∆X = 0 d∆r − jXyj2FC = 0 (F.16)

1Here we are implicitly using the orthogonal complement under some metric. This is just for ease of the proof
although it is not strictly needed to prove these results.

2The 0th order piece of z, ζ should be given by the Dorfman derivative of the undeformed sections V = v+ λ,
W = w + µ.
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Now let’s consider the 2-form piece. We have(
e−θ−τ · LFC

V ′W
′)|∧2T ∗ = vydµ− wydλ+ wy(vyFC)

+ (r · v +Xyλ)ydµ+ vyd(r · µ)

+ d((r · v +Xyλ)yµ) + d(vy(r · µ))

− (r · w +Xyµ)ydλ− wyd(r · λ)

+ (r · w +Xyµ)y(vyFC) + wy((r · v +Xyλ)yFC)

+ wy(vydθ)

(F.17)

!
= ζ + r · ζ (F.18)

For now, let us set λ, µ = 0. We are left with

wy(vyFC)(r · w)y(vyFC) + wy((r · v)yFC) + wy(vydθ) (F.19)

=wy(vyFC) + r · (wy(vyFC)) + wy(vy(−r · FC + dθ)) (F.20)

!
=ζ + r · ζ (F.21)

For this to be the case, we need dθ − r · FC ∈ Γ(F4
1 ). This is equivalent to the statement that

π1(dθ − r · FC) = 0 πk : ∧nT ∗ −→ ∧nT ∗/Fnk (F.22)

where we have introduced the projection operator πk as defined above for definiteness.

Now let’s set v, µ = 0. We have

− wydλ− (r · w)ydλ− wyd(r · λ) + wy((Xyλ)yFC) (F.23)

=− wydλ− wα(rcα∂cλab − λbc∂arcα − λca∂brcα)

− r · (wydλ)− (wyd∆r) · λ+ wy((Xyλ)yFC)
(F.24)

=− wydλ− wα(rcα∂cλab − λbc∂arcα − λca∂brcα)

− r · (wydλ)− (wy(d∆r − jXyj2FC)) · λ
(F.25)

!
=ζ + r · ζ (F.26)

This is implied by the fact that d∆r − jXyj2FC = 0.

Next, let’s consider when w = λ = 0. We find

vydµ+ (r · v)ydµ+ vyd(r · µ) + d((r · v)yµ) + d(vy(r · µ)) + (Xyµ)y(vyFC) (F.27)

=vydµ+ vα(rcα∂cµab − µbc∂arcα − µca∂brcα)

+ r · (vydµ) + (vyd∆r) · µ+ (Xyµ)y(vyFC)
(F.28)

=vydµ+ vα(rcα∂cµab − µbc∂arcα − µca∂brcα)

+ r · (vydµ) + (vy(d∆r − jXyj2FC)) · µ
(F.29)

!
=ζ + r · ζ (F.30)
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This is again implied by the fact that d∆r − jXyj2FC = 0.

Finally for the 2-forms, we consider the case when v, w = 0. We find that

(Xyλ)ydµ− (Xyµ)ydλ+ d((Xyλ)yµ) (F.31)

= 3(Xyλ)a∂[aµbc] − 3(Xyµ)a∂[aλbc] + 2∂[b|((Xyλ)aµa|c]

− ((d∆X)yλ) · µ
(F.32)

!
= ζ + r · ζ = ζ (F.33)

Note that we can consider (d∆X)yλ as an adjoint element and hence it has a natural action

on µ. Also, the final equality holds to linear order in R since ζ ∼ O(R) in this case. This case

holds because d∆X = 0.

Now we just need to consider the 5-form pieces and show that they vanish. That is, we need(
e−θ−τ · LFC

V ′W
′)|∧5T ∗ = −µ ∧ dλ− (r · µ) ∧ dλ− µ ∧ d(r · λ)

+ µ ∧ (vy(FC + dθ)) + (r · µ) ∧ (vyFC)

+ µ ∧ ((r · v +Xyλ)yFC)

(F.34)

!
= 0 (F.35)

Let us first set v = 0. Then we have

− µ ∧ dλ− (r · µ) ∧ dλ− µ ∧ d(r · λ) + µ ∧ ((Xyλ)yFC) (F.36)

=− (r · µ) ∧ d∆λ− µ ∧ d∆(r · λ) + µ ∧ ((jXyj2FC) · λ) (F.37)

=− (r · µ) ∧ d∆λ− µ ∧ ((d∆r) · λ)− µ ∧ r · d∆λ+ µ ∧ ((jXyj2FC) · λ) (F.38)

=− r · (µ ∧ d∆λ)− µ ∧ ((d∆r − jXyj2FC) · λ) (F.39)

= 0 (F.40)

This holds because any term ∼ µ ∧ dλ = 0 by virtue of the integrability of ∆, and by the fact

that d∆r − jXyj2FC = 0. Now let’s consider instead λ = 0. We have

µ ∧ (vy(FC + dθ)) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (F.41)

= µ ∧ vyπ1(dθ) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (F.42)

= µ ∧ (vy(r · FC)) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (F.43)

= (r · µ) ∧ (vyFC) + µ ∧ r · (vyFC) (F.44)

= r · (µ ∧ (vyFC)) (F.45)

= 0 (F.46)

This vanishes because µ ∧ (vyFC) = 0 by restrictions on FC imposed by integrability of L1.

Hence, we have found the integrability conditions for the deformations, and they are given

by

0 = d∆X (F.47)
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0 = d∆r − jXyj2FC (F.48)

0 = π1(dθ − r · FC) (F.49)

Now we need to consider the exactness conditions. These are given by

L̃′1 = (1 + LFC
V )L̃1 (F.50)

where V = −v−ω−σ ∈ Γ((T/F1
0)⊕ (∧2T ∗/F2

1 )⊕∧5T ∗). The minus signs are for convenience.

Given W = w + µ ∈ Γ(L̃1), we have

(1 + LFC
V )W = w − [v, w]

+ µ− Lvµ+ wydω − wy(vyFC)

+ wydσ + µ ∧ dω + wy(ω ∧ FC)− µ ∧ (vyFC)

(F.51)

= (w − va∂awα) + (d∆v) · w

+ (µ− 3va∂[aµbc] − 2∂[b|(v
aµa|c]) + (d∆v) · µ+ wy(dω − vyFC)

+ wy(dσ + ω ∧ FC) + µ ∧ (dω − vyFC)

(F.52)

= eπ1(dω−vyFC)+(dσ+ω∧FC)(1 + d∆v) · (w̃ + µ̃) (F.53)

where W̃ = w̃ + µ̃ ∈ Γ(L̃1), and we have introduced the projection π1 : ∧nT ∗ → ∧nT ∗/Fn1 for

definiteness. Hence, the exactness conditions are given by

r = d∆v (F.54)

θ = π1(dω − vyFC) (F.55)

τ = dσ + ω ∧ FC (F.56)

This reproduces the results at the end of section 4.3.3.

If we assume the flux is trivial, which is not the case for any AdS solution, then we can

take the complex twist eα+β to be globally well-defined. In this case, then it is possible to show

using the following deformation parameter

R = eα+β(r + jXyjα+X + θ + r · α̂− 1
2jXyjα · α̂+ µ)e−α−β (F.57)

that the cohomology defined by the flux-twisted derivatives above is isomorphic to

H0
∆(M,∧3T/F3

2)⊕H1
∆(M,T/F1

0)⊕H3
F1

(M)⊕H6
d(M) (F.58)

We have had to assume something slightly stronger about the integrability conditions to show

this. Namely that there exists some α̂ ∈ Γ(F3
1 ) such that

dα = dα̂ (F.59)

This is not directly implied by the involutivity conditions (which just states that dα ∈ Γ(F4
1 ))
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but it may be implied by the vanishing of the moment map.

F.2 Generalised ∂∂̄ Moduli

Following the notation from section 4.3.4, the moduli of generic SU∗(6) structures is counted

by the cohomology of the following complex.

Γ(∧2X∗) Γ(∧3X∗−1) Γ(∧4X∗−2)

Γ(∧5X∗−1) Γ(∧6X∗−2)

D−1 D−1

D−1

D0 D0 (F.60)

Here D0 and D−1 are operators coming from any torsion free USp(6) connection3 decomposed

into SU∗(6) representations.

D = D1 +D0 +D−1 (F.61)

In this section, we give give the cohomology of the complex above in terms of the cohomology

of D−1 provided the background satisfies the generalised ∂∂̄-lemma.

Definition 30. D0, D−1 are said to satisfy the generalised ∂∂̄-lemma if the satisfy the following

imD0 ∩ kerD−1 ⊆ imD−1D0 (F.62)

With this we can prove the following result.

Proposition 6. If a background satisfies the generalised ∂∂̄-lemma, and D0 defines a chain

homomorphism D0 : Γ(∧•X∗•) → Γ(∧•−2X∗•), then the cohomology of the complex (F.60) is

given by

H3
D−1
⊕H6

D−1
(F.63)

where Hp
D−1

is the pth cohomology of the differential D−1

Proof. The cohomology of the complex (F.60) is given by4

H =
{A+B ∈ Γ(∧3X∗−1 ⊕ ∧6X∗−2) |D−1A+D0B = 0}

{A = D−1C +D0E, B = 1
2D−1E |C ∈ Γ(∧2X∗0), E ∈ Γ(∧5X∗−1)}

(F.64)

Let us define a new quotient group by

K =
{B ∈ Γ(∧6X∗−2) |D0B = 0}

{B = D−1E |E ∈ Γ(∧5X∗−1), D0E = 0}
(F.65)

and two maps

θ : H3
D−
⊕K −→ H ψ : H −→ H3

D−
⊕K

[A]3 + [B]K 7−→ [A+B]H [A+B]H 7−→ [Ã]3 + [B̃]K
(F.66)

3We will always assume that we are deforming around a full supergravity background
4The factor of 1

2
in the quotient is due to the precise form of the projection D ×ad V in SU∗(6) indices.
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where A, Ã ∈ Γ(∧3X∗−1), B, B̃ ∈ Γ(∧6X6
−2) and where the subscript denotes the cohomology

group that class is a member of. Ã, B̃ are defined from [A+B]H in the following way. We have

0 = D−A+D0B (F.67)

⇒ 0 = D−D0B (F.68)

So, using the generalised ∂∂̄-lemma we can write D0B = D−D0E for some E ∈ Γ(∧5X∗−1). We

then define

Ã = A+D0E B̃ = B + 1
2D−E (F.69)

We need to check that these do define elements of H3
D−

and K respectively, and if the map ψ is

well defined. Firstly, we note that

D−Ã = D−A+D−D0E D0B̃ = D0B + 1
2D0D−E

= D−A+D0B = D0B −D−D0E

= 0 = D0B −D0B

= 0

(F.70)

This shows that [Ã]3 ∈ H3
D−

and [B̃]K ∈ K. Note here we have used the fact that, when

evaluated on Γ(∧5X∗−)

D−D0 + 1
2D0D− = 0 (F.71)

which follows from the complex (F.60). The factor of 1
2 comes from the way the Dorfman

derivative acts. Now suppose that [A = B]H = [A′ + B′]H. Then, there exists c ∈ Γ(∧2X∗0),

e ∈ Γ(∧5X∗−) such that

A′ = D−c+D0e B′ = 1
2D−e (F.72)

From these, we define E′ such that D0B
′ = D−D0E

′. It is a simple check to see that we can

choose E′ = E − e. Then we have

Ã′ = A′ +D0E
′ B̃′ = B′ + 1

2D−E
′

= A+D−c+D0e+D0(E − e) = B + 1
2D−e+ 1

2D−(E − e)
= A+D0E +D−c = B + 1

2D−E

= Ã+D−c = B̃

(F.73)

Hence we see that

[A+B]H = [A′ +B′]H ⇒ [Ã]3 = [Ã′]3 [B̃]K = [B̃′]K (F.74)

Finally, since E as defined above is not unique, we need to check that the map does not depend

on the choice. Indeed, suppose

D0B = D−D0E = D−D0E
′ ⇒ D−D0(E − E′) = 0 (F.75)

Using the generalised ∂∂̄-lemma again, we can write D0(E′ − E) = D−D0F for some F ∈
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Γ(∧4X∗0). Then we have

Ã′ = A+D0E
′ B̃′ = B + 1

2D−E
′

= A+D0E +D0(E′ − E) = B + 1
2D−E + 1

2D−(E − E′)
= A+D0E +D−D0F = B̃ +D−e

= Ã+D−c

(F.76)

where c = D0F ∈ Γ(∧2X ∗0 ), and e = 1
2(E − E′ + D−F ) ∈ Γ(∧5X∗−1) is such that D0e = 0.

Hence we have

D−D0E = D−D0E
′ ⇒ [Ã′]3 = [Ã]3 [B̃′]K = [B̃]K (F.77)

Hence, the map ψ is well defined. It is a simple check to see that θ is also well defined.

Now we show that ψ, θ are inverses of each other. Firstly,

θ ◦ ψ([A+B]H) = θ([Ã]3 + [B̃]K) (F.78)

= [Ã+ B̃]H (F.79)

= [A+D0E +B + 1
2D−E]H (F.80)

= [A+B] (F.81)

Therefore, θ ◦ ψ = IH. Next consider,

ψ ◦ θ([A]3 + [B]K) = ψ([A+B]H) (F.82)

= [Ã]3 + [B̃]K (F.83)

= [A+D0E]3 + [B + 1
2D−E] (F.84)

But since D0B = 0 by assumption, we can choose E = 0. Hence,

ψ ◦ θ([A]3 + [B]K) = [A]3 + [B]K (F.85)

So ψ ◦ θ = IH3⊕K and hence ψ = θ−1. Clearly θ and ψ are homomorphisms. Hence,

H ∼= H3
D− ⊕K (F.86)

Now we want to show that K ∼= H6
D−

. Again, let’s define some maps

η : K −→ H6
D−

ζ : H6
D−

−→ K
[B]K 7−→ [B]6 [B]6 7−→ [B̃]K

(F.87)

where B̃ is defined by the following. For any B ∈ Γ(∧6X∗−2) we have D−B = 0. But we also

assume that D0 is a chain homomorphism, meaning that D−(D0B) = 0. Hence, using the

generalised ∂∂̄-lemma, we can define an E such that

D0B = D−D0E (F.88)
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We therefore define B̃ as

B̃ = B + 1
2D−E ⇒ D0B̃ = D0B + 1

2D0D−E = 0 (F.89)

A similar proof as above shows that these maps are well defined and are inverses of each other.

Hence we have

H ∼= H3
D− ⊕K ∼= H3

D− ⊕H
6
D− (F.90)

F.3 Calabi-Yau Moduli

Here we will show that the Calabi-Yau satisfies the generalised ∂∂̄-lemma and hence we can

calculate its moduli using the formula above. The proof involves using a compact Calabi-Yau

but the result holds more generally as one can calculate the moduli using a type 0 presentation

of the exceptional complex structure instead.

The ECS for a Calabi-Yau is

J̃ =
1

2

(
I − vol− vol#

)
L1 = ei vol · (T 1,0 ⊕ ∧0,2T ∗) (F.91)

Using the adjoint action of J̃ , we can decompose EC and ad F̃C into eigenbundles

E C = L1 ⊕ L0 ⊕ L−1 ad F̃C = adPR+×U∗(6) ⊕ S1 ⊕ S−1 ⊕ S2 ⊕ S−2 (F.92)

The eigenbundles needed for the deformation problem laid out in the previous section are given

explicitly by

∧5X∗−1 = L− =

{
w̄ − iw̄y vol w̄ ∈ T 0,1

ω ω ∈ ∧2,0T ∗

}
(F.93)

∧2X∗0 = L0 =


v − ivy vol v ∈ T 1,0

v̄ + iv̄y vol v̄ ∈ T 0,1

θ θ ∈ ∧1,1T ∗

 (F.94)

∧3X∗−1 = S−1 =


α(2

3 + 1
3I + i vol−i vol#) α ∈ C

r r ∈ T 0,1 ⊗ T ∗1,0

β + i vol#yβ β ∈ ∧2,1T ∗

γ − i vol#yγ γ ∈ ∧3,0T ∗

 (F.95)

∧6X∗−2 = S−2 =
{
λ+ i vol#yλ λ ∈ ∧3,0T ∗

}
(F.96)

Using the holomorphic 3-form Ω of the Calabi-Yau, we can define a chain isomorphism X∗ ' T ∗.
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Indeed, we have

∧5X∗−1 →

{
w̄y vol ∈ ∧3,2T ∗

ω ∧ Ω̄ ∈ ∧2,3T ∗

}
∼ ∧5T ∗ (F.97)

∧2X∗0 →


vyΩ ∈ ∧2,0T ∗

v̄yΩ ∈ ∧0,2T ∗

θ ∈ ∧1,1T ∗

 ∼ ∧2T ∗ (F.98)

∧3X∗−1 →


αΩ ∈ ∧3,0T ∗

r · Ω̄ ∈ ∧1,2T ∗

β ∈ ∧2,1T ∗

(Ω̄#yγ)Ω̄ ∈ ∧0,3T ∗

 ∼ ∧
3T ∗ (F.99)

∧6X∗−2 →
{
λ ∧ Ω̄ ∈ ∧3,3T ∗

}
∼ ∧6T ∗ (F.100)

We can also take the torsion free compatible connection ∇, and lift it to a generalised connection

D as in [181]. With this lift, and with the isomorphism above we find

D− → ∂ D0 → Ω#y∂̄ + Ω̄#y∂ (F.101)

where here ∂, ∂̄ denote the projection of ∇ onto the T ∗1,0, T ∗0,1 piece respectively.

We need to show that these operators satisfy the generalised ∂∂̄-lemma. We just need to

show this for elements in ∧5T∗ and ∧6T ∗ for the proof to hold.

Proof. First take α ∈ ∧2,3T ∗. Then we have

D0α = (Ω#y∂̄)yα+ (Ω̄#y∂)α (F.102)

We can consider only the second term which is just Ω̄#y(∂α). Suppose further that D0α ∈
kerD− ∼ ker ∂. Then each term individually has to be in ker ∂. Since h0,3 = 1, we must have

that, up to ∂ exact terms

Ω̄#y(∂α) = cΩ̄ ⇒ ∂α = c̃ vol (F.103)

for some constants c, c̃. However, vol is not ∂-exact and hence we must have c = c̃ = 0.

Therefore, ∂α = 0 and so [α] ∈ H2,3
∂ = 0. Therefore, α is ∂-exact and so D0α = D0D−a ∼

D−D0a for some a ∈ ∧4T ∗.

Now take β ∈ ∧3,2T ∗. Here we automatically have ∂β = 0 and so [β] ∈ H3,2
∂ = 0. Therefore

β is ∂-exact and so D0β = D0D−b ∼ D−D0b for some b ∈ ∧4T ∗.

Finally, we take γ ∈ ∧3,3T ∗ and write this as γ = c vol +∂ψ for some constant c and some

ψ ∈ ∧2,3T ∗. For any constant, we have D0(c vol) = 0 since D0 is built from the compatible
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connection ∇. Therefore, we have

D0γ = D0∂ψ = D0D−ψ ∼ D−D0ψ (F.104)

This gives the result.

Using the results of the previous section on the moduli of a background satisfying the

generalised ∂∂̄-lemma, we see that the moduli of the Calabi-Yau are given by

H = H3
D− ⊕H

6
D−
∼= H3

∂ ⊕H6
∂ (F.105)

Note that, since Hp
∂
∼= Hp

d for a Calabi-Yau manifold, this agrees with the result obtained for

the moduli of the Calabi-Yau calculated through a type 0 ECS, as discussed in section 4.3.5.
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Appendix G

Detailed calculation of GMPT

moduli

We have the parameterisation

EC/L3 = eΣ
(
[L
J−
−1 ⊕ ŪJ− ]⊕ S1 ⊕ S−1 ⊕ (∧6T ∗ ⊗ [L

J−
1 ⊕ LJ−−1 ])

)
, (G.1)

QR+×U(7) = eΣ
(
∧2(L

J−
1 )∗ ⊕ (S0 ⊕ S−2)⊕ ri∧6T ∗

)
e−Σ, (G.2)

where we have used ∧5T ∗ ' ∧6T ∗⊗T . We take χ = χ0 +χ−2 ∈ Γ(S0⊕S−2), ε ∈ Γ(∧2(L
J−
1 )∗)

and Θ ∈ Γ(∧6T ∗) and consider the following generic deformation

L3 = eΣ[L
J−
1 ⊕ UJ− ] → L′3 = eΣ+�εµ+χ+ri(Θ+ 1

2
(Σ,�εµ−χ))[L

J ε−
1 ⊕ UJ ε− ], (G.3)

where

Σ = C + 8 i e−3A im Φ∓, L
J ε−
1 = (1 + ε)L

J−
1 , UJ ε− = (1 + �ε)UJ− (G.4)

The latter two define a deformed generalised complex structure J ε−. Note that Φε
− = (1 + �ε)Φ−

is indeed the pure spinor associated to L
J ε−
1 . We define µ ∈ Γ(S2) in the following manner.

Firstly, in what follows we will make the same simplification as in [203] and assumed that the

the generalised complex structure J− satisfies the ddJ−-lemma [280]. For us this will mean that

im ∂ ∩ ker ∂̄ = im ∂̄ ∩ ker ∂ = im ∂̄∂, (G.5)

where ∂ and ∂̄ are the generalised Dolbeault operators of J−. With this we have

(dΣ)−1 = 0 ⇒ ∂̄Σ0 = −∂Σ−2

⇒ ∂∂̄Σ0 = 0

⇒ ∂Σ0 = ∂̄∂α1

(G.6)

for some α1 ∈ Γ(S1). We then define

µ = Σ2 + ∂α1. (G.7)
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Note that ∂α1 is not uniquely defined – the ambiguity is some element of Γ(S2) that is closed

under ∂̄. As we will see, this ambiguity can be absorbed in the definition of χ. For definiteness,

one can see that the deformation (G.3) to linear order is given by

eΣ[ε+ (�εµ+ χ) + ri(Θ− (Σ, χ))]e−Σ ∈ Γ(QR+×U(7)). (G.8)

It is important to note that this is a globally well defined section of QR+×7 because F is in a

trivial cohomology class. This is guaranteed by the generalised ∂∂̄-lemma and means that the

gauge potential C is a global polyform.

We now calculate the conditions for integrability of L′3. Following the results of section

5.2.2, we find that we have integrability only if

JL
J ε−
1 , L

J ε−
1 KO(6,6) ⊆ L

J ε−
1 (G.9)

From [165] this implies

dLε = 0, (G.10)

where dL : Γ(∧p(LJ−1 )∗) → Γ(∧p+1(L
J−
1 )∗) is the differential associated to the Lie algebroid

structure L
J−
1 . This means that �ε and ∂̄ commute as operators on S:

∂̄�ε = �ε∂̄. (G.11)

Letting Sn, S
ε
n be the eigenspaces of S with respect to J−,J ε− respectively, we further require

[d(Σ + �εµ+ χ+ riΘ)]Sε−1
= [d(Σ + �εµ+ χ+ riΘ)]Sε−3

= 0, (G.12)

where the notation above means the projection of the polyform onto Sε−1 and Sε−3 respectively.

We will still use subscript indices to denote projection onto Sn. Working to linear order in the

deformation parameters and using the integrability of L3, we find

0 = (1 + �ε+ �̄ε)[d(Σ + �εµ+ χ+ riΘ)]−1 − �ε[dΣ]1 − �̄ε[dΣ]−3

= [d�εµ]−1 + [dχ]−1 − �ε[dΣ]1

= ∂̄�εµ2 + ∂̄χ0 + ∂χ−2 − �ε∂̄Σ2 − �ε∂Σ0

= �ε∂̄Σ2 + �ε∂̄∂α1 − �ε∂̄Σ2 − �ε∂Σ0 + ∂̄χ0 + ∂χ−2

= �ε∂Σ0 − �ε∂Σ0 + ∂̄χ0 + ∂χ−2

= ∂̄χ0 + ∂χ−2.

(G.13)

We also have

0 = (1 + �ε+ �̄ε)[d(Σ + εµ+ χ+ riΘ)]−3 − �ε[dΣ]−1

= [dχ]−3

= ∂̄χ−2.

(G.14)
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Taken together, we see that the integrability conditions are

dLε = 0, ∂̄χ0 + ∂χ−2 = 0, ∂̄χ−2 = 0. (G.15)

We can simplify this further. Using the ddJ−-lemma we see that we can write ∂χ−2 = ∂̄∂η−1

for some η−1 ∈ Γ(S−1). Then, defining χ̃0 = χ0 + ∂η−1, we see that the integrability conditions

become

dLε = 0, ∂̄χ̃0 = 0, ∂̄χ−2 = 0. (G.16)

Note again that ∂η−1 is only defined up to a term that is ∂̄-exact. We will see shortly that

these terms correspond to trivial deformations.

To find the form of trivial deformations we take

V = eΣ(W + cΦ− + U + ν + riσ + τ), (G.17)

where W ∈ Γ(L
J−
1 ), U ∈ Γ(L

J−
−1 ), c ∈ C∞(M), ν = ν1 + ν−1 + ν−3 ∈ Γ(S1 ⊕ S−1 ⊕ S−3),

σ ∈ Γ(∧5T ∗) and τ ∈ Γ(T ∗ ⊗ ∧7T ∗). Then we consider

L′3 = (1 + LV )L3. (G.18)

After a lengthy calculation we find that to linear order in V this deformation is given by

eΣ[dLU + (dLU)µ+ (dν)0 + (dν)−2 + ri(dσ̃ − (Σ, (dν)0 + (dν)−2))]e−Σ. (G.19)

which is a section of Γ(QR+×U(7)). Here σ̃ is a 5-form that depends on σ, ν and U and is of the

form σ̃ = σ + f(ν, U) where f is some function whose form we do not need. A deformation is

trivial if and only if

ε = dLU,

χ0 = ∂̄ν1 + ∂ν−1,

χ−2 = ∂̄ν−1 + ∂ν−3,

Θ = dσ̃.

(G.20)

We can simplify this further using the ddJ−-lemma. Notice that we can write ∂ν−3 = ∂̄∂η−2

for some η−2 ∈ Γ(S−2) and hence χ−2 is trivial if χ−2 = ∂̄(ν−1 +∂η−2) = ∂̄ν̃−1. Moreover, if we

calculate χ̃0 from these we find that χ̃0 = ∂̄ν̃1 for some ν̃1 ∈ Γ(S1). Hence trivial deformations

are given by ∂̄-exact χ̃0 and χ−2.

All of this shows that the inequivalent deformations are controlled by the following disjoint
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complex

(L
J−
1 )∗ ∧2(L

J−
1 )∗ ∧3(L

J−
1 )∗

S1 S0 S−1

S−1 S−2 S−3

∧5T ∗ ∧6T ∗

dL dL

∂̄ ∂̄

∂̄ ∂̄

d

(G.21)

and so the deformations are counted by the cohomology

H2
dL

(M)⊕H0
∂̄(M)⊕H−2

∂̄
(M)⊕H6

d(M,C). (G.22)
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Appendix H

Determinants of Laplacians

In this appendix, we will review some results about Laplace operators detailed in [3], and

[277,292] for G2 manifolds.

Throughout chapter 6 we use the ζ-regularisation method. concretely, take a positive oper-

ator D on a real bosonic space V with inner product 〈·, ·〉. Say the spectrum of the operator D
is

A = {an |n = 1, 2, 3, ...} 0 < a1 < a2 < a3 < ... (H.1)

we define the (ζ regularised) determinant of D to be the zeta regularised product of the spec-

trum. That is ∫
Dφ e〈φ,Dφ〉 := (det ′D)−1/2 det ′D := eζ

′
A(0) (H.2)

where, for large re(s), the ζA function is defined to be

∞∑
n=1

1

asn
(H.3)

and is defined for arbitrary s ∈ C through analytic continuation. ζ ′A denotes the derivative of

ζA with respect to its complex argument, whereas det ′ denotes the ζ regularised determinant.

If the space V is fermionic then we instead get a factor of (det ′D)1/2. Moreover, if the space is

complex then we get an exponent of 1 rather than 1/2.

We can make a slight generalisation of this following [3]. If w : V → W is a linear map

between two real bosonic vector spaces V,W , each with an inner product denoted by 〈·, ·〉, then

we can define the determinant of w via∫
DφDψ e〈φ,wψ〉 = | det ′w|−1/2 |det ′w| =

√
det ′ (w†w) (H.4)

where w† denotes the adjoint operator under the inner product 〈·, ·〉. We can use these properties

to determine identities of Laplacian operators on different manifolds.
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H.1 Riemannian Manifolds

The Laplacian of the de Rham operator is defined to be

∆ = d†d + dd† (H.5)

We will add a subscript to denote the degree of the form that this operator is acting on. So we

write

∆p = d†p+1dp + dp−1d†p (H.6)

Note that, in general, there are 0 modes of dp, d†p, and ∆p and so we assume they are acting on the

quotient spaces Ωp(M)/Hp(M)1 so that we can properly define the ζ-regularised determinant.

The adjoint is defined with respect to the usual inner product on differential forms

〈α, β〉 =

∫
M
α ∧ ∗β (H.7)

where ∗ is the Hodge operator defined with respect to some predefined metric g.

Using the Hodge decomposition theorem, one can write the quotient space Ωp(M)/Hp =

dp−1Ωp−1(M)⊕ d†p+1Ωp+1(M). Then the Laplacian decomposes into

∆p =∗∆p + ∆∗p where ∗∆p = dp−1d†p ∆∗p = d†p+1dp (H.8)

where ∗∆p, ∆∗p is non-zero only on dp−1Ωp−1(M) and d†p+1Ωp+1(M) respectively. From these

definitions we see that

|det ′ dp| =
(
det ′(∗∆p)

)1/2
(H.9)

det ′ ∗∆p = det ′∆∗p−1 (H.10)

det ′∆p = (det ′ ∗∆p)(det ′∆∗p) (H.11)

det ′∆p = det ′∆n−p (H.12)

where the last identity follows from Hodge symmetry induced by ∗, and where n is the dimension

of the manifold.

H.2 Calabi-Yau Manifolds

We will focus on Calabi-Yau 3-folds as those will be the ones of interest to us in this thesis. We

can define a Laplacian with respect to the two Dolbeault operators ∂, ∂̄ by

∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ ∆∂ = ∂∂† + ∂†∂ (H.13)

It turns out that, for a Kähler manifold we have

∆∂̄ = ∆∂ =
1

2
∆d (H.14)

1We may need a slightly different quotient given by Ωp(M)/Ωpclosed or Ωp(M)/Ωpcoclosed if we are talking about
just d or d†.
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Hence, we will freely refer to each of these as ∆ without confusion. Moreover, these map

Ωp.q(M) → Ωp,q(M) so we will again denote the restriction of ∆ to Ωp,q(M) by ∆p,q. Again,

one actually needs to consider the quotient Ωp,q(M)/Hp,q to properly define det ′ .

Many of the same identities hold as above. However, since we have two operators ∂, ∂̄, each

obeying a type of Hodge decomposition theorem, we can refine the Laplacians further. Let us

first define some notation.

∂̄Ωp,q−1 =•Ωp,q ∂Ωp−1,q = Ωp,q•

∂̄†Ωp,q+1 = Ωp,q
• ∂†Ωp+1,q =•Ωp,q

(H.15)

We can then further define

•
Ω =•Ω ∩ Ω• Ω

•
=•Ω ∩ Ω•

•Ω =•Ω ∩•Ω Ω• = Ω• ∩ Ω•
(H.16)

We then have Ωp,q/Hp,q =
•
Ω⊕ •Ω⊕ Ω

•
⊕ Ω• and the Laplacian decomposes as

∆p,q =
•
∆p,q + •∆p,q + ∆p,q •+∆p,q

•
(H.17)

⇒ det ′∆p,q = (det ′
•
∆p,q)(det ′ •∆p,q)(det ′∆p,q

•
)(det ′∆p,q•) (H.18)

Following [3], there are many identities between the different values of the determinants of the

operators defined above. In fact, there are only 3 independent values that these can take. These

are given by

A = det ′∆0,0 = det ′∆0,3 = det ′∆3,0 = det ′∆3,3 (H.19)

AB = det ′∆1,0 = det ′∆2,0 = det ′∆0,1 = det ′∆0,2

= det ′∆3,1 = det ′∆3,2 = det ′∆1,3 = det ′∆2,3

(H.20)

AB2C = det ′∆1,1 = det ′∆1,2 = det ′∆2,1 = det ′∆2,2 (H.21)

One can even express det ′ of each of the suboperators defined in (H.17) as one of A,B,C.

However, we won’t do so here. It follows from using (H.18) and the identities above.

H.3 G2 Manifolds

On a G2 manifold, one can decompose the differential forms into irreducible G2 representations

as follows.

∧0T ∗ = ∧0
1T
∗ (H.22)

∧1T ∗ = ∧1
7T
∗ (H.23)

∧2T ∗ = ∧2
7T
∗ ⊕ ∧2

14T
∗ (H.24)

∧3T ∗ = ∧3
1T
∗ ⊕ ∧3

7T
∗ ⊕ ∧3

27T
∗ (H.25)
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Here, the bold subscript denotes the G2 representation, and they are given more explicitly

in appendix J. We also have the same decompositions for forms of degree 4,5,6,7 by Hodge

symmetry. As is noted in [85], the de Rham Laplacian preserves the G2 representation meaning

we can decompose

∆0 = ∆0,1 (H.26)

∆1 = ∆1,7 (H.27)

∆2 = ∆2,7 + ∆2,14 (H.28)

∆3 = ∆3,1 + ∆3,7 + ∆3,27 (H.29)

The precise decomposition is given in a lot of detail in [277, Tables 1,2,3] Moreover, as is

highlighted in [292], the determinant of the Laplacians is constant on representations meaning

det ′∆0,1 = det ′∆3,1 = det ′∆1 (H.30)

det ′∆1,7 = det ′∆2,7 = det ′∆3,7 = det ′∆7 (H.31)

det ′∆2,14 = det ′∆14 (H.32)

det ′∆3,27 = det ′∆27 (H.33)

and similarly for the Laplacians on forms of degree 4,5,6,7.
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Appendix I

The Metric on the Space of SU∗(6)

Structures

I.1 Metric on TJ̃QU∗(6)×R+

We have a Calabi-Yau manifold (M,ρ, ω), where ρ ∈ Ω3(M)R defines the SL(3,C) structure

and is the real part of the holomorphic 3-form Ω. The imaginary part of Ω is ρ̂ and these satisfy

the following useful identities

ρ#yρ = 4 ρ̂#yρ̂ = 4

jρ#yjρ = 2I jρ̂#yjρ̂ = 2I
ρ ∧ ρ̂ = 4 vol ρ#yρ̂ = 0

jρ#yjρ̂ = −2I jρ̂#yjρ = 2I

ρ#y vol = ρ̂ ρ̂#y vol = −ρ
vol#yρ = −ρ̂# vol#yρ̂ = ρ#

(I.1)

where I is the identity endomorphism on T , and I is the complex structure on T induced by ρ.

The SL(3,C) structure that ρ induces defines a reduction of the exterior algebra into irreducible

representations. In particular we find

∧3T ∗ ' ∧3,0T ∗ ⊕ ∧2,1T ∗ ⊕ ∧1,2T ∗ ⊕ ∧0,3T ∗ (I.2)

∧6T ∗ ' ∧3,3T ∗ (I.3)

We can translate this into the language of exceptional complex structures in E6(6) × R+

geometry via the following assignments

χ = eiρ · 1 J̃ = −1

2
ρ+

1

2
ρ# (I.4)

Using this structure, we can decompose the adjoint bundle into eigenbundles of J̃ . We find

ad F̃C = S−2 ⊕ S−1 ⊕ S1 ⊕ S2 ⊕ adPR+×U∗(6) (I.5)
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where Sn is the ni-eigenbundle. We have

S−2 '
{
α( i

2I − ρ̂+ ρ̂# − i
2 vol− i

2 vol#) |α ∈ C∞(M)
}

(I.6)

S−1 '
{
β(4i

3 + 2i
3 I + ρ+ ρ#) |β ∈ C∞(M)

}
⊕
{
γ(ρ̂+ ρ̂# + 2i vol−2i vol#) | γ ∈ C∞(M)

}
⊕
{

i
2jΩ̄

#yjδ + δ − i vol#yδ | δ ∈ Ω2,1(M)
}

⊕
{

i
2jΩ

#yjε+ ε+ i vol#yε | ε ∈ Ω1,2(M)
}

(I.7)

We can consider the adjoint orbit of J̃ , at one particular point on M . The tangent space at

J̃ will be spanned by the elements

TJ̃QU∗(6)×R+ = [S+2 ⊕ S+1 ⊕ S−1 ⊕ S−2]R (I.8)

where the subscript R means the real part of this vector space. The grading provides a natural

complex structure J on this vector space given by

TJ̃QU∗(6)×R+ = (S+2 ⊕ S+1)︸ ︷︷ ︸
−i

⊕ (S−1 ⊕ S−2)︸ ︷︷ ︸
+i

(I.9)

Note that J has the opposite sign conventions to J̃ . This is to ensure that χ, which is charged

+2i under J̃ , is left invariant by antiholomorphic transformations (i.e. those charged −i under

J ). There is also a natural symplectic structure on the space of adjoint orbits given by the

Kirillov-Kostant-Souriau symplectic form

ωJ̃(X,Y ) = −Tr(J̃ , [X,Y ]) X,Y ∈ TJ̃QU∗(6)×R+ (I.10)

We can use this and the complex structure to find a hermitian metric on TJ̃QU∗(6)×R+ via

g̃(X,Y ) = −Tr(J̃ , [X,J Y ]) (I.11)

We will now calculate this explicitly.

Let a ∈ S−2, b, c, d, e ∈ S−1 represent elements in each of the sets decomposing S−1, S−2 in

(I.6), (I.7). Then we have

g̃(a, ā) = −Tr(J̃ , [a,−iā]) (I.12)

= iαᾱTr(J̃ , [ i
2I − ρ̂+ ρ̂# − i

2 vol− i
2 vol#,− i

2I − ρ̂+ ρ̂# + i
2 vol + i

2 vol#]) (I.13)

= 1
2 iαᾱTr(−ρ+ ρ#, ...+ 4iρ− 4iρ# + ...) (I.14)

= −αᾱ(ρ#yρ+ ρ#yρ) (I.15)

= −8αᾱ (I.16)

g̃(b, b̄) = −Tr(J̃ , [b,−ib̄]) (I.17)
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= iββ̄ Tr(J̃ , [4i
3 + 2i

3 I + ρ+ ρ#,−4i
3 −

2i
3 I + ρ+ ρ#]) (I.18)

= 1
2 iββ̄ Tr(−ρ+ ρ#, ...− 4iρ+ 4iρ# + ...) (I.19)

= 2ββ̄ 1
2(ρ#yρ+ ρ#yρ) (I.20)

= 8ββ̄ (I.21)

g̃(c, c̄) = −Tr(J̃ , [c,−ic̄]) (I.22)

= iγγ̄ Tr(J̃ , [ρ̂+ ρ̂# + 2i vol−2i vol#, ρ̂+ ρ̂# − 2i vol +2i vol#]) (I.23)

= 1
2 iγγ̄ Tr(−ρ+ ρ#, ...− 4iρ+ 4iρ# + ...) (I.24)

= γγ̄(ρ#yρ+ ρ#yρ) (I.25)

= 8γγ̄ (I.26)

g̃(d, d̄) = −Tr(J̃ , [d,−id̄]) (I.27)

= i Tr(J̃ , [ i
2jΩ̄

#yjδ + δ − i vol#yδ,− i
2jΩ

#yjδ̄ + δ̄ + i vol#yδ̄]) (I.28)

= 1
2 i Tr(−ρ+ ρ#, ...+ i

2(jΩ̄#yjδ) · δ̄ + i
2(jΩyjδ̄) · δ

+ 1
2(jΩ̄#yjδ) · (vol#yδ̄) + 1

2(jΩ#yjδ̄) · (vol#yδ) + ...)
(I.29)

= i vol#y(δ ∧ δ̄) (I.30)

g̃(e, ē) = −Tr(J̃ , [e,−iē]) (I.31)

= i Tr(J̃ , [ i
2jΩ

#yjε+ ε+ i vol#yε,− i
2jΩ̄

#yjε̄+ ε̄− i vol#yε̄]) (I.32)

= 1
2 i Tr(−ρ+ ρ#, ...+ i

2(jΩ#yjε) · ε̄+ i
2(jΩ̄#yjε̄) · ε

− 1
2(jΩyjε) · (vol#yε̄)− 1

2(jΩ̄yjε̄) · (vol#yε) + ...)
(I.33)

= −i vol#y(ε ∧ ε̄) (I.34)

It is a simple check to see that this metric has complex signature (14, 7)

I.2 Metric on TχZSU∗(6)

What we would really like to calculate is the metric on TχZSU∗(6)
1. We can find this by first

finding the metric on TχQSU∗(6), and then extending. The space QSU∗(6) is a complex cone

over QU∗(6)×R+ so we need to find the metric on the remaining C∗ part of the adjoint action

generated by J,R+. Schematically, the metric on TχWSU∗(6) is given by

ds2 = dzdz̄ + λds2
X (I.35)

where dz is some holomorphic cone direction given by a combination of J and R+, ds2
X is the

metric g̃ on the base, and λ is some relative constant.

We can write the (complexified) tangent space at a point in terms of an (anti)holomorphic

1This is the metric on the space of global SU∗(6) structures at the point χ ∈ ZSU∗(6) corresponding to the
Calabi-Yau.
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basis

TχQSU∗(6) =

((
−2i

3
1 + J̃

)
⊕ S+1 ⊕ S+2

)
︸ ︷︷ ︸

−i

⊕
((

+
2i

3
1 + J̃

)
⊕ S−1 ⊕ S−2

)
︸ ︷︷ ︸

+i

(I.36)

where 1 is the generator of the R+ action (so 1 ·χ = 3χ). The underbraces provide the complex

structure I on the tangent space. Note that we have an explicit metric on TχQSU∗(6) evaluated

in detT ∗ found in chapter 4. It is given by

G(α, β) =
i

Tr(χχ̄)1/2

(
1

2
Tr (α · χ, (Iβ) · χ̄)− 1

2
Tr ((Iβ) · χ, α · χ̄)

+
1

4

Tr ((Iβ) · χ, χ̄) Tr (χ, α · χ̄)

Tr(χχ̄)
− 1

4

Tr (α · χ, χ̄) Tr (χ, (Iβ) · χ̄)

Tr(χχ̄)

) (I.37)

where α, β are tangent vectors viewed as adjoint elements.

To calculate this metric, we need the following results. If we take z = 2i
3 1 + J̃ to be the

holomorphic cone direction then we have

z · χ = 4iχ z · χ̄ = 0 (I.38)

z̄ · χ = 0 z̄ · χ̄ = −4i (I.39)

We also have

I · χ = I · eiρ · 1 (I.40)

= I ·

(
4∑

n=0

1

n!
(iρ)n

)
(I.41)

=

4∑
n=0

1

n!
I · (iρ)n (I.42)

=
4∑

n=0

−3n

n!
(iρ)n (I.43)

= −3iρ ·

(
3∑

n=0

1

n!
(iρ)n

)
(I.44)

= −3iρ ·

(
4∑

n=0

1

n!
(iρ)n

)
(I.45)

= −3iρ · χ (I.46)

I · χ̄ = 3iρ · χ̄ (I.47)

Note also that since Tr is an E6(6) invariant, we have the following.

Tr(χ, χ̄) = Tr(eiρ, e−iρ) (I.48)

= Tr(1, e−2iρ) (I.49)
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= Tr

(
1,

(−2i)4ρ4

4!

)
(I.50)

=
2

3
Tr(1, ρ4) (I.51)

Tr(ρ · χ, χ̄) = −Tr (χ, ρ · χ̄) (I.52)

= −Tr
(
1, e−iρρe−iρ

)
(I.53)

= −Tr
(
1, (1− iρ− 1

2ρ
2 + i

6ρ
3)ρ(1− iρ− 1

2ρ
2 + i

6ρ
3)
)

(I.54)

= −Tr

(
1,

4i

3
ρ4

)
(I.55)

= −2i Tr(χ, χ̄) (I.56)

Tr(χ, ρ · χ̄) = 2i Tr(χ, χ̄) (I.57)

Tr(ρ · χ, ρ · χ̄) = −Tr(χ, ρ2 · χ̄) (I.58)

= −Tr(1, e−iρρ2e−iρ) (I.59)

= −Tr
(
1, (1− iρ− 1

2ρ
2)ρ2(1− iρ− 1

2ρ
2)
)

(I.60)

= Tr(1, 2ρ4) (I.61)

= 3 Tr(χ, χ̄) (I.62)

We want to calculate G(ρ, ρ). To do this we need to find what Iρ is. We write

ρ =
1

2
(ρ+ ρ#)− 1

2
(−ρ+ ρ#)

=
1

4

(
ρ+ ρ# +

4i

3
+

2i

3
I
)

+
1

4

(
ρ+ ρ# − 4i

3
− 2i

3
I
)

− 1

4

(
−ρ+ ρ# +

2i

3

)
− 1

4

(
−ρ+ ρ# − 2i

3

)
= b(1

4) + b̄(1
4)− z(1

4)− z̄(1
4)

(I.63)

⇒ Iρ = ib(1
4)− ib̄(1

4)− iz(1
4) + iz̄(1

4)

=
i

2

(
4i

3
+

2i

3
I
)
− i

2

(
2i

3

)
= −1

3
(1 + I)

(I.64)

⇒ (Iρ) · χ = −1

3
(1 + I) · χ

= −1

3
(3− 3iρ)χ

= iρ · χ− χ

(I.65)

⇒ (Iρ) · χ̄ = −iρ · χ̄− χ̄ (I.66)

where the numbers in the brackets correspond to the value of the coefficient in from of the
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corresponding term in TχQSU∗(6). Using this, we can now calculate

G(ρ, ρ) =
i

Tr(χχ̄)1/2

(
1

2
Tr (ρ · χ,−iρ · χ̄− χ̄)− 1

2
Tr (iρ · χ− χ, ρ · χ̄)

+
1

4

Tr (iρ · χ− χ, χ̄) Tr (χ, ρ · χ̄)

Tr(χχ̄)
− 1

4

Tr (ρ · χ, χ̄) Tr (χ,−iρ · χ̄− χ̄)

Tr(χχ̄)

) (I.67)

=
1

Tr(χχ̄)1/2

(
Tr(ρ · χ, ρ · χ̄)− i

2
Tr(ρ · χ, χ̄) +

i

2
Tr(χ, ρ · χ̄)

− 1

2

Tr(ρ · χ, χ̄) Tr(χ, ρ · χ̄)

Tr(χχ̄)
− i

4
Tr(χ, ρ · χ̄) +

i

4
Tr(ρ · χ, χ̄)

) (I.68)

=
1

Tr(χχ̄)1/2

(
3 Tr(χχ̄)− 1

2
Tr(χχ̄)− 1

2
Tr(χχ̄)− 2 Tr(χχ̄)

)
(I.69)

= 0 (I.70)

However, we can also express G(ρ, ρ) in another way.

G(ρ, ρ) = G(b(1
4) + b̄(1

4)− z(1
4)− z̄(1

4), b(1
4) + b̄(1

4)− z(1
4)− z̄(1

4)) (I.71)

= 2G(b(1
4), b̄(1

4)) + 2G(z(1
4), z̄(1

4)) (I.72)

= 2λg̃(b(1
4), b̄(1

4)) + 2G(z(1
4), z̄(1

4)) (I.73)

= λ+ 2G(z(1
4), z̄(1

4)) (I.74)

= 0 (I.75)

⇒ λ = −2G(z(1
4), z̄(1

4)) (I.76)

However, we can calculate G(z, z̄) directly. We have

G(z, z̄) =
i

Tr(χχ̄)1/2

(
1

2
Tr (z · χ,−iz̄ · χ̄)− 1

2
Tr (−iz̄ · χ, z · χ̄)

+
1

4

Tr (−iz̄ · χ, χ̄) Tr (χ, z · χ̄)

Tr(χχ̄)
− 1

4

Tr (z · χ, χ̄) Tr (χ,−iz̄ · χ̄)

Tr(χχ̄)

) (I.77)

=
i

Tr(χχ̄)1/2

(
1

2
Tr (4iχ,−4χ̄)− 1

4

Tr (4iχ, χ̄) Tr (χ,−4χ̄)

Tr(χχ̄)

)
(I.78)

=
1

Tr(χχ̄)1/2

(
8 Tr(χχ̄)− 4 Tr(χχ̄)

)
(I.79)

= 4 Tr(χχ̄)1/2 (I.80)

Hence we have

λ = −1

2
Tr(χχ̄)1/2 (I.81)

This gives us the metric on TχQSU∗(6). Of course, what we need is the metric on TχZSU∗(6) but

this is obtained by integrating G over the manifold.

G(α, β) =

∫
M
G(α, β) (I.82)
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I.2.1 More useful Form of the Metric

We can rewrite this metric in a form more suitable to performing path integrals to calculate

1-loop corrections. We have the freedom to rescale χ by some constant. We can therefore choose

χ such that

Tr(χχ̄)1/2 = vol (I.83)

where vol is the volume form defined by ρ. With this choice, we find that we can write the

metric as

G(z, z̄′) =

∫
M
ζζ̄ ′ρ ∧ ρ̂ (I.84)

G(a, ā′) =

∫
M
αᾱ′ρ ∧ ρ̂ (I.85)

G(b, b̄′) = −
∫
M
ββ̄′ρ ∧ ρ̂ (I.86)

G(c, c̄′) = −
∫
M
γγ̄′ρ ∧ ρ̂ (I.87)

G(d, d̄′) = − i

2

∫
M
δ ∧ δ̄′ (I.88)

G(e, ē′) =
i

2

∫
M
ε ∧ ε̄′ (I.89)

where we have added an arbitrary function in the cone direction z = ζ(2i
3 1 + J̃).
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Appendix J

The Metric on the Space of SU(7)

Structures

J.1 Metric on TJQU(7)×R+

We have an almost G2-manifold (M,φ) where φ ∈ ∧3T ∗ and M is a 7-dimensional manifold. φ

is a stable form in the sense of Hitchin [294]. It also satisfies the following

(vyφ) ∧ (wyφ) ∧ φ = 6gφ(v, w)Volφ ∀ v, w ∈ T (J.1)

and hence it defines a canonical metric gφ. There also exists an orthonormal frame e1, ..., e7

such that φ takes the canonical form

φ = e123 − e145 − e167 − e246 + e257 − e347 − e356 (J.2)

With this, one can see that we have the identities

φ#yφ = 7 jφ#yjφ = 3I (J.3)

The group that preserves φ is G2 and hence we can decompose the spaces of differential forms

in G2 irreps. We have

∧1T ∗ ' ∧1
7T
∗ (J.4)

∧2T ∗ ' ∧2
7T
∗ ⊕ ∧2

14T
∗ (J.5)

∧3T ∗ ' ∧3
1T
∗ ⊕ ∧3

7T
∗ ⊕ ∧3

27T
∗ (J.6)

where

∧2
7T
∗ ' {vyφ | v ∈ T} (J.7)

∧2
14T
∗ ' {α | α ∧ ∗φ = 0} (J.8)

∧3
1T
∗ ' 〈φ〉 (J.9)

∧3
7T
∗ ' {vy(∗φ) | v ∈ T} (J.10)
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∧3
27T
∗ ' {β | β ∧ φ = 0 β ∧ ∗φ = 0} (J.11)

and similarly for the others via ∧pT ∗ ' ∧7−pT ∗.

We can translate this structure into the language of exceptional complex structures with

the following definitions

ψ = eiφ · 1 J = −φ+ φ# (J.12)

We can decompose both the complexified generalised tangent bundle and adjoint bundle EC,

ad F̃C into eigenbundles of J . The decomposition works as follows.

EC ' E+3 ⊕ E+1 ⊕ E−1 ⊕ E−3 (J.13)

We find that

E+3 ' eiφ · T (J.14)

E+1 ' E+1,7 ⊕ E+1,14 (J.15)

=

{
v +

1

3
i(vyφ) +

1

6
(vyφ) ∧ φ+

1

6
ijφ ∧ φ ∧ (vyφ) | v ∈ T

}
(J.16)

⊕
{
ω + iω ∧ φ |ω ∈ ∧2

14T
∗} (J.17)

For the adjoint bundle we have

ad F̃C ' S+4 ⊕ S+2 ⊕ S−2 ⊕ S−4 ⊕ ad(PU(7)×R+) (J.18)

where

S−4 '
{

i

4
(jφ#yja− ja#yjφ) + a+

i

4
φ ∧ a− a# +

i

4
φ# ∧ a# | a ∈ ∧3

7T
∗
}

(J.19)

S−2 ' S−2,1 ⊕ S−2,7 ⊕ S−2,27 (J.20)

=

{
k

(
7i

3
+

2i

3
I + φ+ φ#

)
| k ∈ R

}
(J.21)

⊕
{
b+

i

2
φ ∧ b+ b# − i

2
φ# ∧ b# | b ∈ ∧3

7T
∗
}

(J.22)

⊕
{

i

2
(jφ#yjc+ jc#yjφ) + c+ c# | c ∈ ∧3

27T
∗
}

(J.23)

where I = idT .

We can then consider the adjoint orbit of J at a point on the manifold. The tangent space

at the point will be spanned by the elements

TJQU(7)×R+ = [S+4 ⊕ S+2 ⊕ S−2 ⊕ S−4]R (J.24)

where the subscript R means the real part of this space. Note that the grading provides a
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natural complex structure J on this tangent space given by

TJQU(7)×R+ = (S+4 ⊕ S+2)︸ ︷︷ ︸
−i

⊕ (S−2 ⊕ S−2)︸ ︷︷ ︸
+i

(J.25)

Note that J has the opposite sign convention to J . This will ensure later that ψ (which is

charged +7i under J) will not transform under antiholomorphic transformations (those charged

−i under J ).

We also have a natural symplectic structure on the tangent space given by the Kirillov-

Kostant-Souriau symplectic form

ωJ(X,Y ) = −Tr(J, [X,Y ]) X,Y ∈ TJQU(7)×R+ (J.26)

From this we can find the metric on TJQU(7)×R+ via

g̃(X,Y ) = −Tr(J, [X,J Y ]) (J.27)

We will now calculate what this is explicitly.

First we will introduce some notation for the elements of TJQU(7)×R+ . We will write

TJQU(7)×R+ =

〈
u1 = k(φ+ φ#), u2 = k

(
7

3
+

2

3
I
)

v1 = b+ b#, v2 =
1

2
φ ∧ b− 1

2
φ# ∧ b#

w1 = c+ c#, w2 =
1

2
(jφ#yjc+ jc#yjφ)

x1 = a− a#, x2 =
1

4
(jφ#yja− ja#yjφ) +

1

4
φ ∧ a+

1

4
φ# ∧ a#

〉
(J.28)

where we have used the same notation as in (J.19)-(J.23). Note that with this notation we have

J u1 = −u2 J u2 = u1

J v1 = −v2 J v2 = v1

Jw1 = −w2 Jw2 = w1

J x1 = −x2 J x2 = x1

(J.29)

Using the formula for the bracket and trace from [187] we have

g̃(u1, u
′
1) = −Tr(J, [u′1,−u′2]) (J.30)

= Tr(J, 2kk′φ− 2kk′φ#) (J.31)

= −2
1

2
kk′(−2φ#yφ) (J.32)

= 2kk′ 〈φ, φ〉 (J.33)

g̃(u2, u
′
2) = −Tr(J, [u2, u

′
1]) (J.34)

= Tr(J, [u′1, u2]) (J.35)
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= 2kk′ 〈φ, φ〉 (J.36)

g̃(v1, v
′
1) = −Tr(J, [v1,−v′2]) (J.37)

= Tr(J,−1

2
b#y(φ ∧ b′)− 1

2
(φ# ∧ b′#)yb) (J.38)

= −1

2

1

2

(
φ#y(b′#y(φ ∧ b))− ((φ# ∧ b′#)yb)yφ

)
(J.39)

= 2
〈
b, b′
〉

(J.40)

g̃(v2, v
′
2) = −Tr(J, [v2, v

′
1]) (J.41)

= Tr(J, [v′1, v2]) (J.42)

= 2
〈
b, b′
〉

(J.43)

g̃(w1, w
′
1) = −Tr(J, [w1,−w′2]) (J.44)

= Tr(J,−1

2
(jφ#yjc′ + jc′#yjφ) · (c+ c#)) (J.45)

= −1

2

1

2
(φ#y((jφ#yjc′ + jc′#yjφ) · c)− ((jφ#yjc′ + jc′#yjφ) · c#)yφ) (J.46)

= 2
〈
c, c′
〉

(J.47)

g̃(w2, w
′
2) = −Tr(J, [w2, w

′
1]) (J.48)

= Tr(J, [w′1, w2]) (J.49)

= 2
〈
c, c′
〉

(J.50)

g̃(x1, x
′
1) = −Tr(J, [x1,−x′2]) (J.51)

= Tr(J,
1

4
(−(jφ#yja′ − ja′#yjφ) · a+ a#y(φ ∧ a′) (J.52)

+ (jφ#yja′ − ja′#yjφ) · a# + (φ# ∧ a′#)ya)) (J.53)

=
1

2

1

4
(φ#y(−(jφ#yja′ − ja′#yjφ) · a) + φ#y(a#y(φ ∧ a′)) (J.54)

− ((jφ#yja′ − ja′#yjφ) · a#)yφ− ((φ# ∧ a′#)ya)yφ) (J.55)

= −4
〈
a, a′

〉
(J.56)

g̃(x2, x
′
2) = −Tr(J, [x2, x

′
1]) (J.57)

= Tr(J, [x′1, x2]) (J.58)

= −4
〈
a, a′

〉
(J.59)

Here the 〈, 〉 is an inner product on ∧3T ∗ and is given by

〈
η, η′

〉
:=

1

3!
ηabcη′abc η, η′ ∈ ∧3T ∗ (J.60)
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The indices are raised and lowered using the metric gφ defined by φ. One can show that these

elements are orthogonal in the sense that

g̃(µi, νj) ∝ δµνδij (J.61)

where µ, ν = u, v, w, x and i, j = 1, 2.

J.2 Metric on TψZ

Of course what we really need for the calculation is the metric on the space TψZ. However,

using the fact that QSU(7) is a complex cone over QU(7)×R+ , we only need to find the metric

on the remaining C∗ part of the adjoint action generated by J,R+. The metric on TψQSU(7) is

schematically given by

ds2 = dzdz̄ + λ ds2
X (J.62)

where dz is some holomorphic cone direction given by a combination of the J and R+ action.

ds2
X is the metric g̃ generated above and, λ is some relative constant.

First note that the (complexified) tangent space at a point is spanned by the following

adjoint elements.

TψQSU(7) =

((
−7i

3
1 + J

)
⊕ S+2 ⊕ S+4

)
︸ ︷︷ ︸

−i

⊕
((

+
7i

3
1 + J

)
⊕ S−2 ⊕ S−4

)
︸ ︷︷ ︸

+i

(J.63)

where 1 is the generator of the R+ action. The underbraces provide the complex structure I on

the tangent space. We have an explicit metric on TψQSU(7) evaluated in detT ∗ [1]. For vectors

α, β we have

G(α, β) =
i

3

1(
is(ψ, ψ̄)

)2/3(is(α · ψ, (Iβ) · ψ̄)− is((Iβ) · ψ, α · ψ̄)

− 2

3

is(α · ψ, ψ̄) is(ψ, (Iβ) · ψ̄)

is(ψ, ψ̄)
+

2

3

is((Iβ) · ψ, ψ̄) is(ψ, α · ψ̄)

is(ψ, ψ̄)

) (J.64)

where α · ψ means the action of α on ψ, viewing it as a section of the adjoint bundle. (In the

generalising G2 paper we wrote this as ıαδψ.) As before we will introduce notation for some

of the tangent vectors. The tangent space will be spanned by u1, u2, v1, v2, w1, w2, x1, x2, y1, y2,

where everything is as in the previous section and

y1 = J y2 =
7

3
1 ⇒ Iy1 = −y2 (J.65)

To calculate G we will need the following results. By definition of ψ and the R+ action we

have

y1 · ψ = J · ψ = 7iψ y2 · ψ =
7

3
1 · ψ = 7ψ (J.66)

y1 · ψ̄ = J · ψ̄ = −7iψ̄ y2 · ψ̄ =
7

3
1 · ψ̄ = 7ψ̄ (J.67)

263



We also have

I · ψ = I ·

(
7∑

n=0

1

n!
(iφ)n

)
(J.68)

=
7∑

n=0

1

n!
I · (iφ)n (J.69)

=
7∑

n=0

−3n

n!
(iφ)n (J.70)

= −3iφ ·

(
6∑

n=0

1

n!
(iφ)n

)
(J.71)

= −3iφ ·

(
7∑

n=0

1

n!
(iφ)n

)
(J.72)

= −3iφ · ψ (J.73)

I · ψ̄ = 3iφ · ψ̄ (J.74)

Note also that s is E7(7) invariant, and φ commutes with itself. Hence we can see that

s(ψ, ψ̄) = s(eiφ, e−iφ) (J.75)

= s(1, e−2iφ) (J.76)

= s

(
1,

27(−i)7

7!
φ7

)
(J.77)

=
27i

7!
s(1, φ7) (J.78)

s(φ, ·ψ, ψ̄) = −s(ψ, φ · ψ̄) (J.79)

= −s(eiφ, φ · e−iφ) (J.80)

= −s(1, φ · e−2iφ) (J.81)

= −s
(

1,
26(−i)6

6!
φ7

)
(J.82)

=
26

6!
s(1, φ7) (J.83)

= −i
7

2

(
27i

7!
s(1, φ7)

)
(J.84)

= −i
7

2
s(ψ, ψ̄) (J.85)

s(φ · ψ, φ · ψ̄) = −s(ψ, φ2 · e−iφ) (J.86)

= −s(1, φ2e−2iφ) (J.87)

= −s
(

1,
25(−i)5

5!
φ7

)
(J.88)

=
25i

5!
s(1, φ7) (J.89)
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=
7

2

6

2

(
27i

7!
s(1, φ7)

)
(J.90)

=
7

2

6

2
s(ψ, ψ̄) (J.91)

We can now use these to calculate what the metric is. Note that we can calculate the metric

directly in some cases. We have

G(y1, y1) =
i

3

1(
is(ψ, ψ̄)

)2/3(is(y1 · ψ,−y2 · ψ̄)− is(−y2 · ψ, y1 · ψ̄)

− 2

3

is(y1 · ψ, ψ̄) is(ψ,−y2 · ψ̄)

is(ψ, ψ̄)
+

2

3

is(−y2 · ψ, ψ̄) is(ψ, y1 · ψ̄)

is(ψ, ψ̄)

) (J.92)

=
i

3

1(
is(ψ, ψ̄)

)2/3(is(7iψ,−7ψ̄)− is(−7ψ,−7iψ̄)

− 2

3

is(7iψ, ψ̄) is(ψ,−7ψ̄)

is(ψ, ψ̄)
+

2

3

is(−7ψ, ψ̄) is(ψ,−7iψ̄)

is(ψ, ψ̄)

) (J.93)

=
i

3

1(
is(ψ, ψ̄)

)2/3(98s(ψ, ψ̄)− 2

3

98 s(ψ, ψ̄) s(ψ, ψ̄)

s(ψ, ψ̄)

)
(J.94)

=
98

9
(is(ψ, ψ̄))1/3 (J.95)

G(y2, y2) = G(−Iy1,−Iy1) (J.96)

= G(y1, y1) (J.97)

=
98

9
(is(ψ, ψ̄))1/3 (J.98)

Now we need to find the constant λ. To do so we will calculate the following

G(φ, 2φ) = G(φ, (φ+ φ#)− (−φ+ φ#)) (J.99)

= G(φ, u1 − y1) (J.100)

=
i

3

1(
is(ψ, ψ̄)

)2/3(is(φ · ψ, (−u2 + y2) · ψ̄)− is((−u2 + y2) · ψ, φ · ψ̄)

− 2

3

is(φ · ψ, ψ̄) is(ψ, (−u2 + y2) · ψ̄)(
is(ψ, ψ̄)

) +
2

3

is((−u2 + y2) · ψ, ψ̄) is(ψ, φ · ψ̄)(
is(ψ, ψ̄)

) )
(J.101)

But −u2 + y2 = −2
3I and so

G(φ, 2φ) =
i

3

1(
is(ψ, ψ̄)

)2/3(is(φ · ψ,−2

3
I · ψ̄)− is(−2

3
I · ψ, φ · ψ̄)

− 2

3

is(φ · ψ, ψ̄) is(ψ,−2
3I · ψ̄)(

is(ψ, ψ̄)
) +

2

3

is(−2
3I · ψ, ψ̄) is(ψ, φ · ψ̄)(

is(ψ, ψ̄)
) ) (J.102)

265



=
i

3

1(
is(ψ, ψ̄)

)2/3(is(φ · ψ,−2iφ · ψ̄)− is(2iφ · ψ, φ · ψ̄)

− 2

3

is(φ · ψ, ψ̄) is(ψ,−2iφ · ψ̄)(
is(ψ, ψ̄)

) +
2

3

is(2iφ · ψ, ψ̄) is(ψ, φ · ψ̄)(
is(ψ, ψ̄)

) ) (J.103)

=
i

3

1(
is(ψ, ψ̄)

)2/3(4s(φ · ψ, φ · ψ̄)− 8i

3

s(φ · ψ, ψ̄) s(ψ, φ · ψ̄)(
is(ψ, ψ̄)

) )
(J.104)

=
i

3

1(
is(ψ, ψ̄)

)2/3(4
7

2

6

2
s(ψ, ψ̄)− 8i

3

1

is(ψ, ψ̄)

(
−7i

2
s(ψ, ψ̄)

)(
7i

2
s(ψ, ψ̄)

))
(J.105)

=
i

3

1(
is(ψ, ψ̄)

)2/3(42s(ψ, ψ̄)− 98

3
s(ψ, ψ̄)

)
(J.106)

=
1

3

126− 98

3

is(ψ, ψ̄)(
is(ψ, ψ̄)

)2/3 (J.107)

=
28

9

(
is(ψ, ψ̄)

)1/3
(J.108)

But we can also evaluate this via

G(φ, 2φ) =
1

2
G((φ+ φ#)− (−φ+ φ#), (φ+ φ#)− (−φ+ φ#)) (J.109)

=
1

2
G(u1 − y1, u1 − y1) (J.110)

=
1

2
G(u1, u1) +

1

2
G(y1, y1) (J.111)

=
1

2
λg̃ +

49

9

(
is(ψ, ψ̄)

)1/3
(J.112)

= 7λ+
49

9

(
is(ψ, ψ̄)

)1/3
(J.113)

So we have

7λ =
28

9

(
is(ψ, ψ̄)

)1/3 − 49

9

(
is(ψ, ψ̄)

)1/3
(J.114)

= −21

9

(
is(ψ, ψ̄)

)1/3
(J.115)

⇒ λ = −1

3

(
is(ψ, ψ̄)

)1/3
(J.116)

This is the metric on the cone at apoint TψQSU(7). Of course we need the metric on TψZ but

this is obtained by just integrating over the manifold

G(α, β) =

∫
M
G(α, β) (J.117)

J.2.1 More Useful Form of Metric

We can write this in a form which will be more useful for the quantization later. By definition,

for any 3-forms η, η′ ∈ ∧3T ∗ we have

〈
η, η′

〉
Volφ = η ∧ ∗η′ (J.118)

266



So we have

g̃(µi, νi)Volφ =


2ηµ ∧ ∗ην µ = ν = u, v, w i = j

−4ηµ ∧ ∗ην µ = ν = x i = j

0 otherwise

(J.119)

where ηµ, ην are the 3-forms labelling µi, νj respectively. Note also that

(
is(ψ, ψ̄)

)1/3 ∝ Volφ (J.120)

We have the freedom to rescale ψ by some constant and so we can choose it such that

G(ui, u
′
j) = −δij

∫
M
kk′φ ∧ ∗φ (J.121)

G(vi, v
′
j) = −δij

∫
M
b ∧ ∗b′ (J.122)

G(wi, w
′
j) = −δij

∫
M
c ∧ ∗c′ (J.123)

G(xi, x
′
j) = δij2

∫
M
a ∧ ∗a′ (J.124)

G(lyi, l
′yj) = δij21

∫
M
ll′φ ∧ ∗φ (J.125)

I get 7/3 for the ll′ coefficient - which I think is what you get too. Typo? where k, k′, l, l′ ∈
C∞(M) and a, b, c ∈ Γ(∧3T ∗) as defined in (J.19)-(J.23). Any other combination of u, v, w, x, y

will be 0. To get this we choose the scaling

(
is(ψ, ψ̄)

)1/3
=

3

2
Volφ (J.126)
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