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Abstract

Measurements of correlations in isolated-photon and jet pairs in pp and PbPb colli-
sions at \/syny = 5.02 TeV are reported. Jets are reconstructed with an anti-kt clus-
tering algorithm with a distance parameter of 0.3. For events containing a leading

isolated photon with transverse momentum p) > 40 GeV/c and an associated jet
with p]Te ' > 30 GeV/c, the photon + jet transverse momentum balance in PbPb colli-
sions is studied as a function of collision centrality and pJ. The results are compared

to pp reference data collected at the same collision energy. A significant decrease in

the ratio p]Te t/ py relative to that in the pp reference is observed.
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1 Introduction

Lattice quantum chromodynamics predicts that in relativistic heavy ion collisions, a state of
deconfined quarks and gluons known as the Quark-Gluon Plasma (QGP) can be formed [1].
Parton scatterings with large momentum transfer can be used as tomographic probes of the
QGP medium, since they are created on very short time scales, T ~ 1/pr < 0.1fm/c, and can
potentially lose energy while traversing this medium [2-7].

In lead-lead (PbPb) collisions at the Large Hadron Collider (LHC), a significant transverse mo-
mentum (pr) imbalance is observed in back-to-back jets [8, 9]. This imbalance is interpreted
as resulting from the in-medium parton energy loss, often referred to as “jet-quenching”. In
contrast to what is seen in PbPb collisions, no significant dijet pt imbalance is observed in
proton-lead collisions [10], which confirms that the observed effect in PbPb collisions does not
originate from cold nuclear matter in the initial Pb nucleus.

In the dijet analysis both the leading and the subleading jets are quenched. Transverse momen-
tum asymmetry measurements in the “golden” photon + jet channel have been proposed to be
sensitive to the “absolute” in-medium parton energy [11, 12] since photons are not modified
when passing through the medium. This assumption is verified by studies of the yields of in-
clusive isolated photons in PbPb collisions, which are found to match the expectation based on
pp data scaled by the number of nucleon-nucleon collisions [13]. At leading order (LO), pho-
tons are produced back-to-back with an associated parton (jet) close to the same transverse mo-
mentum. Measurements of this kind were first performed in PbPb collisions at /5 = 2.76 TeV
by the CMS collaboration [14]. The precision of this first measurement was limited by the avail-
able statistics of the photon + jet pairs.

In 2015, 404 ub~! of PbPb data and 25.8 pb™! of pp data at Vo = 5.02 TeV were collected.
With these data, high statistics isolated-photon + jet events became available as a result of
the increased integrated luminosity, and the larger production cross-section at higher colli-
sion energy. The goal of this analysis is to characterize possible modifications of jet properties
as a function of centrality and photon pr using isolated-photon+jet events in PbPb collisions.
The properties of isolated-photon+jet pairs are studied via the azimuthal angular correlation
Ay, = |7t — ¢7|, the transverse momentum ratio xj, = plret/ p1, and the average number of
associated jets per photon, Ry,. The results from the PbPb data are compared to those from pp
collisions at the same nucleon-nucleon center-of-mass energy to extract information about the
modifications due to the presence of the QGP.

2 The CMS detector

Events recorded in pp and PbPb collisions are studied using the CMS detector [15]. The
central tracking system is comprised of silicon pixel and strip detectors that allow for the
reconstruction of charged-particle trajectories in the pseudorapidity range |n| < 2.5, where
n = —Inftan(6/2)] and 6 is the polar angle relative to the counterclockwise beam direction.
It provides an impact parameter resolution of ~ 15 um and a pt resolution of about 1.5% for
100 GeV/c particles. Photon candidates used in this analysis are reconstructed using the en-
ergy deposited in the barrel region of the PboWOy crystal electromagnetic calorimeter (ECAL),
which covers a pseudorapidity range of || < 1.479, and has a finely segmented granularity
of Ay x A¢ = 0.0174 x 0.0174. The brass/scintillator hadron calorimeter (HCAL) barrel region
covers || < 1.74, and has a segmentation of Ay x A¢ = 0.087 x 0.087. Endcap regions of the
HCAL and ECAL extend the |17| coverage out to about 3. The calorimeters and tracking sys-
tems are located within the 3.8 T magnetic field of the super-conducting solenoid. In addition
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to the barrel and endcap calorimeters, CMS includes hadron forward (HF) steel/quartz-fibre
Cherenkov calorimeters, which cover the forward rapidity of 2.9 < |y| < 5.2 and are used to
determine the degree of overlap (“centrality”) of the two colliding Pb nuclei [8] in PbPb colli-
sions. An efficient muon system, not used in this analysis, is deployed for the reconstruction
and identification of muons up to || = 2.4.

3 Event Selection

Collision events containing high-pr photon candidates are selected online by the CMS trigger
system consisting of the Level-1 (L1) and High Level Trigger (HLT). First, events are selected
using an inclusive single-photon-candidate L1 trigger with a transverse momentum threshold
of 20 (21) GeV/c during the pp (PbPb) data-taking period. Then, photon candidates are re-
constructed in the HLT using a clustering algorithm (identical to that used for offline analysis)
applied to energy deposits in the ECAL. Events containing a reconstructed photon candidate
with pl > 40 GeV/c are used for further analysis. For minimum-bias PbPb events, the HLT
selection efficiency is found to be greater than 98% for events containing a photon with pJ > 40
GeV/cand || < 1.44.

In order to select a pure sample of inelastic hadronic pp and PbPb collisions for analysis, further
offline selections are applied to the triggered event sample [8, 16]. Notable among these, a
reconstructed event vertex and at least 3 (1) calorimeter towers in the HF on both sides of
the interaction point with energy > 3 GeV are required in the PbPb (pp) analysis. Events
containing HCAL noise [17] are rejected, to remove possible contamination of the jet sample.

For the analysis of PbPb collisions, the centrality is determined by the total energy from both HF
calorimeters. This total energy is used to divide the event sample into centrality bins marked
in percentiles of the total inelastic cross section. The most central 30% of the events (i.e., those
with smallest impact parameter) are denoted as 0-30%.

4 Photon Reconstruction

Photon candidates are reconstructed from clusters of energy deposited in the ECAL. The al-
gorithms used for the analysis in pp collisions are detailed in Ref. [18], while the optimized
clustering algorithm used in high multiplicity PbPb collisions can be found in Ref. [13]. The
selected photon candidates used in this analysis are restricted to be in the barrel region of the
ECAL by requiring a pseudorapidity limit of |7| < 1.44, and are also required to have a trans-
verse momentum of p] > 40 GeV/c.

In order to remove electron contamination, photon candidates matched with a track within a
search window of |77 — k| < 0.02 and |¢” — ¢pK| < 0.15 are discarded [13]. Anoma-
lous signals caused by the interaction of heavily-ionising particles directly with the silicon
avalanche photodiodes used for the ECAL barrel readout are removed, again using the pre-
scription of Ref. [13]. The energy of the reconstructed photons is corrected to account for the
effects of the material in front of the ECAL, as well as energy leakage. For the analysis of the
PbPb data, an additional correction is applied to account for energy contamination from the
PbPb underlying event (UE). The size of the combined energy correction for isolated photons
varies from 0 to 10%, depending on the centrality of the collision and the photon p}. The cor-
rections are obtained from simulated photon events in PYTHIA embedded into simulated soft
background from HYDJET [19, 20].

Since the dominant background for the photon candidates originate from jet fragmentation



with its associated hadrons, a first rejection of neutral mesons mimicking a high-pr photon
in the ECAL is done using the ratio of hadronic to electromagnetic energy, H/E. The H/E
ratio is defined as the fraction of hadronic energy to the electromagnetic energy inside a cone
of AR = /(An)?>+ (A¢$)? = 0.15 around the photon candidate which is computed from the
energy deposition in ECAL and HCAL [21]. Photon candidates with H/E < 0.1 are selected
for this analysis.

A simulated photon candidate is considered isolated if the sum of the transverse momentum of
generated particles in a cone of radius AR = 0.4 around the candidate is less than 5 GeV/c. A
reconstructed photon candidate is considered isolated if the detector activity in a cone of radius
AR = 0.4 with respect to the centroid of the cluster, not counting the activity of the cluster and
corrected for the underlying event, is less than 1 GeV/c.

The fraction of prompt photons within the collection of candidates (the photon purity) is ex-
tracted using a two-component fit of the shape of the electromagnetic shower, discussed in
Sec. 6 and further detailed in Ref. [14].

5 Jet Reconstruction

Offline jet reconstruction is performed using the CMS “particle-flow” algorithm [22, 23]. By
combining information from all sub-detector systems, the particle-flow algorithm identifies
stable particles in an event, classifying them as electrons, muons, photons, charged and neu-
tral hadrons. To form jets, those particle-flow objects are clustered using the anti-kt sequential
recombination algorithm provided in the FASTJET framework [24, 25]. A small jet radius pa-
rameter of R = 0.3 is used to minimize the effects of heavy ion background fluctuations in this
analysis.

In order to subtract the UE background in PbPb collisions, the iterative algorithm in Ref. [26],
using the same implementation as in the PbPb analysis of Ref. [8], is employed. In pp collisions,
jets are reconstructed without UE subtraction. The jet energies are corrected to the energies of
final-state particle jets using a factorized multi-step approach [27]. The jet energy corrections
are derived using simulated PYTHIA events, as well as dijet and photon + jet collision events in
pp collisions. Jets with || < 1.6 and corrected pr > 30 GeV/c are selected for final analysis.

6 Analysis

To form photon + jet pairs, the highest pr isolated photon candidate passing the selection crite-
ria and within || < 1.44 in each event is associated with all jets in || < 1.6 in the same event.
The combinatorial background in PbPb collisions, including misidentified jets which arise from
the UE fluctuation, as well as jets from multiple hard parton-parton scatterings in the same col-
lisions, need to be subtracted in order to study the energy loss effects on the jets produced in
the same scattering as the photon. It is estimated by correlating each leading isolated photon
candidate to jets found in a different event selected randomly from a set of minimum bias PbPb
data in the same centrality class [14].

The background contribution from decay-photon + jet pairs is subtracted from the photon +
jet pair sample using a data-driven method. The purity of the photon sample is determined
using a template fitting method in the shower shape variable ¢;,,, defined as a modified second
moment of the electromagnetic energy cluster distribution around its mean # position:
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where E; and 7; are the energy and pseudorapidity of the i crystal within the 5 x 5 electro-
magnetic cluster. E5.5 and 75«5 are the total energy and mean # of the 5 x 5 crystals.

An example of the template fitting method is shown in Fig. 1. The yields and kinematic char-
acteristics of the decay-photon + jet background are estimated by analyzing events with a
larger photon shower width (0.011 < 03, < 0.017), which are dominated by background pho-
tons from neutral-hadron decays, while the shape of the signal distribution is obtained from
PYTHIA+HYDJET simulations in each centrality class. The estimated background contribution
fraction (1 — photon purity) is then subtracted from the yield for the signal events, which have
a smaller photon shower width (03, < 0.010).
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Figure 1: The shower shape variable (0y;) of photons from mid-central (30-50%) PbPb col-
lisions. The black points are PbPb data, the red histogram is the signal template from
PYTHIA+HYDJET, and the green histogram is the background template from a non-isolated
data sideband. The purity is defined as the fraction of isolated photons in the signal region
oyy < 0.01 used in the isolated-photon + jet analysis.

In order to compare PbPb collisions with the pp reference, the jet energy in pp events is smeared
to match the jet energy resolution in each of the PbPb centrality classes. The jet energy reso-
lution is calculated from Gaussian fits to the ratio of reconstructed jet pt to generated jet pr in
PYTHIA+HYDJET for PbPb and PYTHIA for pp, and the difference in resolution between pp and
PbPb is used to smear the pp data.

The systematic uncertainties are estimated for each observable using similar procedure as de-
scribed in Ref. [14]. The total uncertainties are calculated by summing in quadrature of the
uncertainties from various sources: (a) photon purity (b) photon energy scale (c) electron con-
tamination (d) photon isolation criteria (e) jet energy resolution and (f) jet energy scale. A sum-
mary of the average systematic uncertainties for o(A¢y, ), which is the width of an exponential
fit to the A¢y, distribution, Rj,, and (x},) in PbPb collisions is shown in Table 1.

7 Results

7.1 Photon + jet azimuthal correlation

Possible medium modification of the back-to-back photon and recoiling jet aligment can be
studied by comparing the relative azimuthal angle (A¢y,) distributions in pp and PbPb colli-
sions. The shape of the A¢y,, distribution in PbPb collisions is studied in bins of leading photon
pt and two event centrality intervals, and it is shown in Fig. 2. Within the quoted statistical
uncertainty, the results in pp and PbPb collisions are consistent with each other.



7.1 Photon + jet azimuthal correlation

(x19) (x9) (x59) o (Adyy)
Systematic Uncertainty | pl > 60 GeV/c | 0-30% | 30-100% | p1 > 60 GeV/c
Photon Purity 29% | 3.3% 1.9% 1.6%
Photon Energy Scale 0.7% 0.6% 0.5% 2.4%
Electron Contamination <0.5% | <0.5% <0.5% 0.9%
Photon Isolation 0.9% 0.7% 0.6% 3.6%
Jet Energy Resolution 2.6% 3.8% 2.1% 2.4%
Jet Energy Scale 3.8% | 3.3% 3.6% 4.8%
Ryy Ry, | Ry

Systematic Uncertainty | pt > 60 GeV | 0-30% | 30-100%

Photon Purity 1.3% 3.3% 2.5%

Photon Energy Scale 0.6% | <0.5% 0.8%

Electron Contamination 0.6% | <0.5% 0.6%

Photon Isolation 0.7% 1.7% 0.8%

Jet Energy Resolution 4.8% 7.7% 4.9%

Jet Energy Scale 5.6% 8.4% 6.1%

Table 1: Summary of the average systematic uncertainties. Columns which do not specify the
py cut have a cut of pJ > 40. Columns which do not specify the centrality bin are centrality-

inclusive.
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Figure 2: Azimuthal correlation of photons and jets in each p] bin (from left to right) for
central PbPb (top) and peripheral PbPb (bottom) after mixed event background subtraction.
The correlation is shown on a logarithmic scale and its range is restricted to A¢y, > <. The
PbPb data is compared to smeared pp data. The lines through the points represent the statistical

uncertainty while the shaded boxes represent the systematic uncertainty.
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7.2 Photon + jet transverse momentum imbalance

The asymmetry ratio xj, = p]TQt/ p1 is used to quantify the photon + jet transverse momen-

tum imbalance. In addition to the photon and jet selections used in the A¢y, study, a strict
App, > %7{ selection is applied to suppress contribution from background jets as well as
photon+2-jets events. Figure 3 shows the normalized xj, distributions for different centrality
and p] regions in pp and PbPb collisions. The pp data is smeared to account for the jet res-
olution difference in pp and PbPb collisions when compared with PbPb data. A significant
modification with respect to the smeared pp reference is observed in 0-30% PbPb collisions.
The mean of the xj, as a function of photon pr is shown in Fig. 4. In the region pJ < 60 GeV/c,
the (xj,) in smeared pp and PbPb collisions are consistent within the quoted uncertainty.
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Figure 3: Distribution of xj, = p)*'/pl in each p] bin (from left to right) for central PbPb (top)
and peripheral PbPb (bottom). The PbPb data are compared to smeared pp data. The lines
through the points represent the statistical uncertainty while the shaded boxes represent the
systematic uncertainty.
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Figure 4: Average jet over photon transverse momentum ratio ({xj,)) of the recoiled jets in
(left) smeared pp and central PbPb, and (right) smeared pp and peripheral PbPb. The pp results
are smeared by the relative jet energy resolution in order to account for the underlying event
fluctuations when compared to PbPb data. The lines through the points represent the statistical
uncertainty while the shaded boxes represent the systematic uncertainty.
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7.3 Average Number of Associated Jets per Photon

With a jet pr threshold of 30 GeV/c, the average energy imbalance of the selected photon + jet
pairs does not constitute a full picture. There are photon + jet pairs that do not contribute to the
(x7,) because the associated jets fall below this threshold. To quantify the effect, the average
number of associated jets per photon passing the analysis selection (R}, ) is shown in Fig. 5. In
the 0-30% central PbPb collisions, the value of Ry, is found to be lower than the smeared pp
data in all leading photon pr bins.
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Figure 5: Average number of associated jets per photon (Rj,) as a function of leading photon
pr in (left) smeared pp and central PbPb, and (right) smeared pp and peripheral PbPb. The
jet energy in the pp data is smeared by the relative jet energy resolution in order to account
for the underlying event fluctuations when compared to PbPb data. The lines through the
points represent the statistical uncertainty while the shaded boxes represent the systematic
uncertainty.
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Figure 6: Ratio of jet yield in PbPb collisions to smeared pp. In the low p] events, the yields
in central PbPb events are smaller than in pp for all plre " bins. As p1 increases, yields at low

p]Te " are greater in PbPb than smeared pp. The lines through the points represent the statistical
uncertainty while the shaded boxes represent the systematic uncertainty.

7.4 Jetyield ratio

In order to illustrate the medium modification of the associated jet pr spectra, the ratio of the
associated jet yields in PbPb and smeared pp events, 154, is shown in Fig. 6. In central PbPb
events, the associated yield is suppressed by a factor of two in low p} bins. As pJ increases, an
excess of jets appears at low p]Te "in central PbPb as the increased phase space at high pJ allows
the quenched jets to remain above the kinematic cuts.

7.5 Centrality Dependence

The centrality dependence of xj, for PbPb collisions with pJ > 60 GeV/c is shown in Fig. 7.
When compared to the smeared pp data, the PbPb collision data exhibit a change in shape,
shifting the distribution towards lower xj, as the collisions become more central.

The following figures are shown as a function of the average number of participants estimated
from a Monte Carlo Glauber model and weighted by the number of collisions to account for
the hard scattering bias within each centrality bin.

To study the centrality evolution of the A¢y, shape in PbPb collisions, the distributions are
titted to an exponential function:

1 dN]fy Ap—mt
— =A+Be ¢ 2)
NM dA‘Ph

where A is constant pedestal and ¢ is the width of the distribution. The fit is restricted to
the exponentially falling region A¢ > 271/3. The results obtained from PbPb collisions and
smeared pp data are consistent with each other as shown in Fig. 8.

Figures 9 and 10 show the results Ry, and (x},) in pp and PbPb collisions as a function of event
centrality. In central collisions, a reduction in Ry, and (xj,) is observed in comparison to the
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Figure 7: Distribution of x5, of photon+jet pairs of pp and PbPb collisions normalized by
the number of photon+jet pairs. The momenta of jets in pp are smeared by the relative jet
energy resolution to be used as the reference of each centrality bin. The lines through the
points represent the statistical uncertainty while the shaded boxes represent the systematic
uncertainty.

pp reference, confirming the observation of away-side jet energy loss.
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Figure 8: Comparison of A¢y, width in pp and PbPb collisions shown for different p]Te " bins

as a function of the average number of participants weighted by the number of collisions. The
momenta of jets in pp are smeared by the relative jet energy resolution to be used as the ref-
erence of each centrality bin. The lines through the points represent the statistical uncertainty
while the shaded boxes represent the systematic uncertainty.
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Figure 9: Comparison of (xj,) in pp and PbPb collisions as a function of the average number
of participants weighted by the number of collisions. The momenta of jets in pp are smeared
by the relative jet energy resolution to be used as the reference of each centrality bin. The lines
through the points represent the statistical uncertainty while the shaded boxes represent the
systematic uncertainty.
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Figure 10: Comparison of Ry, in pp and PbPb collisions as a function of the average number
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by the relative jet energy resolution to be used as the reference of each centrality bin. The lines
through the points represent the statistical uncertainty while the shaded boxes represent the
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8 Summary

Studies of isolated-photon + jet correlations in pp and PbPb at \/syny = 5.02TeV are reported.
The photon + jet transverse momentum ratio, xj, = plre t/ p1, and the fraction of photons with
an associated jet, Rj,, are studied in bins of leading photon pt and PbPb collision centrality.
For all p] bins, (x},) and Ry, in the 0-30% central PbPb collisions are found to be lower than
corresponding pp reference values, indicating that a larger fraction of jets lose energy and fall
below 30 GeV/c in the PbPb system. By comparing the yields of jets in PbPb and pp collisions
triggered by photons above 80 GeV/c, a shift of the jet spectra toward the lower p]Tet direction
is observed.
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