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Abstract

The paper is devoted to the description of the contraction (or limit transition) method
in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As
opposed to the standard Wigner-Inénii contractions based on insertion of one or several
zero tending parameters in group (algebra) structure the alternative approach, which is
connected with consideration of algebraic structures over Pimenov algebra with commu-
tative nilpotent generators is used. The definitions of orthogonal and unitary Cayley-
Klein groups are given. It is shown that the basic algebraic constructions, characterizing
Cayley-Klein groups can be found using simple transformations from the corresponding
constructions for classical groups. The theorem on the classifications of transitions is
proved, which shows that all Cayley-Klein groups can be obtained not only from simple
classical groups. As a starting point one can choose any pseudogroup as well. As applica-
tions of the developed approach to physics the kinematics groups and contractions of the
Electroweak Model at the level of classical gauge fields are regarded. The interpretations
of kinematics as spaces of constant curvature are given. Two possible contractions of the
Electroweak Model are discussed and are interpreted as zero and infinite energy limits of
the modified Electroweak Model with the contracted gauge group.

1 Introduction

Group-Theoretical Methods are essential part of modern theoretical and mathematical
physics. It is enough to remind that the most advanced theory of fundamental interactions,
namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(1).
All types of classical groups of infinite series: orthogonal, unitary and symplectic as well
as inhomogeneous groups, which are semidirect products of their subgroups, are used
in different areas of physics. Euclidean, Lobachevsky, Galilei, Lorentz, Poincaré, (anti)
de Sitter groups are the bases for space and space-time symmetries. Supergroups and
supersymmetric models in the field theory predict the existence of new supersymmetric
partners of known elementary particles. Quantum deformations of Lie groups and Lie
algebras lead to non-commutative space-time models (or kinematics).
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Contractions of Lie groups is the method for receiving new Lie groups from the initial
ones. In the standard E. Wigner and E. Inénii approach [34] continuous parameter ¢ is
introduced in such a way that in the limit ¢ — 0 group operation is changed but Lie
group structure and its dimension are conserved. It is well known that studying non-
degenerate structures is easier then the degenerate ones. So one represent a general Lic
group as semidirect product of semisimple and solvable groups and reduce the problem
of Lie groups classification to the classifications of semisimple and solvable groups. But,
while the classification of semisimple groups was established long ago there is no hope
to find the classification of solvable groups [12]. In general, a contracted group is a
semidirect product of its subgroups. In particular, a contraction of semisimple groups
gives non-semisimple ones. Therefore, the contraction method is a tool for studying of
non-semisimple groups starting from the well known semisimple (or simple) Lie groups.

The method of contractions (limit transitions) was extended later to other types of
groups and algebras. Graded contractions [43, 44] additionally conserve grading of Lic
algebra. Lie bialgebra contractions (3] conserve both Lie algebra structure and cocominu-
tator. Contractions of Hopf algebras (or quantum groups) are introduced in such a way
[8, 9] that in the limit ¢ — 0 new expressions for coproduct, counit and antipode appcar
which satisfies Hopf algebra axioms. All this gives rise to the following generalization of
the notion of group contraction on contraction of algebraic structures [25].

Definition. Contraction of algebraic structure (M, ) is the map ¢, dependent on
parameter €

et (M, %) = (N, ), (1)
where (N, x') is an algebraic structure of the same type, which is isomorphic (A4, *) when
¢ # 0 and non-isomorphic when ¢ = 0.

There is another approach [23] to the description of non-semisimple Lie groups (al-
gebras) and corresponding quantum groups based on their consideration over Pimeunov
algebra P, () with nilpotent commutative generators. In this approach the motion groups
of constant curvature spaces (or Cayley Klein groups) are realized as matrix groups of
special form over I°,(¢) and can be obtained from the simple classical orthogonal group
by substitution of its matrix elements for Pimenov algebra elements. It turns out that
such substitution coincides with the introduction of Wigner Inénii contraction parameter
¢ [34]. So our approach demonstrates that the existence of the corresponding structures
over algebra P,(¢) is the mathematical base of the contraction method.

It should be noted that both approaches supplement each other and in the final anal-
ysis give the same results. Nilpotent generators are more suitable in the mathematical
consideration of contractions whereas the contraction parameter continuously tending to
zero more corresponds to physical intuition according to which a physical system contin-
uously changes its state and smoothly goes into its limit state.

It is well known in geometry (see, for example, review [58]) that there are 3" different
geometries of dimension n, which admit the motion group of maximal order. R.I. Pimenov
suggested [48, 51] a unified axiomatic description of all 3™ geometries of constant curvature
(or Cayley-Klein geometries) and demonstrated that all these geometries can be locally
simulated in some region of n-dimension spherical space with named coordinates, which
can be real, imaginary and nilpotent ones. According to Erlanger programm by F. Klein
the main content in geometry is its motion group whereas the properties of transforming
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objects are secondary. The motion group of n-dimensional spherical space is isomorphic
to the orthogonal group SO(n + 1). In their turn the groups obtained fromt SO(n 4 1) by
contractions and analytical continuations are isomorphic to the motion groups of Cayley
Klein spaces. This correspondence provides the geometrical interpretation of Cavley-
Klein contraction scheme. By analogy this interpretation is transferred to the contractions
of other algebraic structures.

The method for achieving this goal is the method of transitions, which has clear
geametrical meaning, and is based on the introduction of a set of contraction parameters
J = (J1,---,Jn), each of them taking three values: a real unit, an imaginary unit and a
nilpotent unit.

The method of transitions between groups apart from being of interest for group theory
itself is of interest for theoretical physics too. If there is a group-theoretical description of
a physical system then the contraction of its symmetry group corresponds to some limit
case of the system under consideration. So the reformulation of the system description in
terms of the transition method and the subsequent physical interpretations of contraction
parameters j gives an opportunity to study different limit behaviours of the physical
system. An example of such approach is given for the Electroweak Model of elementary
particle interactions.

It is likely that developed formalism is an essential tool to construct * general theory
of physical systems” according to which ”it is necessary to turn from group-invariant
study of a single physical theory in Klein understanding (i.e. characterized by symmetry
group) to a simultaneous study of a set of limit theories. Then some physical and geo-
metrical properties will be the invariant properties of all set of theories and they should
be considered in the first place. Other properties will be relevant only for the particular
representatives and will be changed under limit transition from one theory to another”
[59].

2 Dual Numbers and Pimenov Algebra

2.1 Dual numbers

Dual numbers were introduced by W.K. Clifford [10] as far back as in the XIX century.
They were used by A.P. Kotel'nikov [39] for constructing his theory of screws in three-
dimensional spaces of Euclid, Lobachevsky and Riemann, by B.A. Rosenfeld (53, 54], for
description of non-Euclidean spaces, by R.I. Pimenov [48, 49, 51] for axiomatic study
of spaces with a constant curvature. Some applications of dual numbers in kinematics
can be found in the work by I.M. Yaglom [57]. The applications of dual numbers in
geometry and in theory of group representations were discussed by V.V. Kisil [36]. Fine
distinctions between the quantum and classical mechanics were investigated with the help
of dual numbers [37, 38]. The theory of dual numbers as number systems is exposed in
monographs by D.N. Zeiliger [60] and A.Sh. Bloch [6]. Nevertheless, it is impossible to
say that dual numbers are well-known, so we start with their description.

Definition. By the associative algebra of rank n over the real numbers field R we
mean n-dimensional vector space over this field, on which the operation of multiplication
is defined, associative a(bc) = (ab)c, distributive in respect to addition (a + b)c = ac+ be
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and related with the multiplication of elements by real numbers as follows (ka)b = k(ab) =
a(kb), where a, b, ¢ are the elements of algebra; k is a real number. If there is such element
e of algebra that for any element a of algebra the relations ae = ea = a are valid, then
the clement e is called a unit.

Definition. Dual numbers a = ageg +aj€;. ap,a; € R are the elements of associative
algebra of rank 2 with the unit and the generators satisfying the following conditions:
Cg = €y, €pC)] = €€y, C% =0.

This associative algebra is commutative and eq is its unit. Therefore, further we shall
write 1 instead of e; and denote generator €; by ¢; (the Greek letter "iota”) and call it &
(purely) dual unit.

For a sum, a product and a quotient of dual numbers a and b we have

a+b=(ap+ uay)+ (bp+ t1by) = ag + by + ¢ 1{a; + by),

ab = (ag + v1a1)(bo + t1b1) = agbo + t1(a1bg + aghy),

a _ ag+ua; _an+ (a] b1>.

P e

Division can not always be carried out. Purely dual numbers a(¢; do not have au inverse
element. Therefore dual numbers do not form a number field. As an algebraic structure
they perforin a ring. Dual numbers are equal a = b, if their real parts are equal a, = by
and their purely dual parts are equal a; = b;. Thus. the equation a;t, = by has the
unique solution a; = by for oy, by # 0. This fact can be written formally as ¢;/4; = 1 and
this is how the last relation has to be interpreted, because division 1/: is not defined.
Functions of dual variable z = zy + 1,x) are defined by their Taylor expansion
Of (wo)
flx) = flzo) + ) ——=, (3)
0.17(]
where all terms with coeflicients /2,43, ... arc omitted. In particular, for dual + we have
sing = sinag + nrycoscy.  sin(ee) = or.

COSX = COSTo — 412y 8inwrg,  cos(r.ry) = L. (1)

According to (3), the difference of two functions of dual variable can be presented as

F@) = hw) = Flan) = hleo) + 0, (M - "”(‘”")) . (5)

dag o1y
therelore, if real parts f(x0) and h(wo) of functions coincide, then functions f(x) and h(x)
also coincide. Using this fact, D.N. Zeiliger shows [60] that in the domain of dual numbers
all identities of algebra and trigonometry, all theorems of differential and integral calenlus

remain valid.  In particular, the derivative of a function of a dual variable over a dual
variable can Le found as

U(r) _0f(r) (a'zf(n-(n) |

dx Oy ord

(6)
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2.2 Pimenov algebra

Let us consider now a more general sitnation, where several nilpotent units are taken as
generators of associative algebra with a unit. (Further on we will use the name nilpotent
unit instead of dual unit). R.]1. Pimenov was the first who introduced [48, 49, 51| several
nilpotent commutative units and used them for the unified axiomatic description of spaces
with constant curvature. Therefore we name such algebra as 2 Pimenov algebra and denote
it as P (1).

Definition. Pimenov algebra P, (¢) is an associative algebra with a unit and n nilpo-
tent generators t1,1y,...,t, with properties: telp = Lt # 0, k #p, 2 =0, pk =
1,2,...,n.

Any element of P,(¢) is a linear combination of monomials bhylhy - - by k1 < Ky <
... < kr, which together with a unit element make a basis in algebra as in a linear space
of dimension 2™ . . )

a=ag+z Z Ok, krlky - - - Lk (7)

r=1ky,.. kr=1

This notation becomes unique, if we put an additional requirement k; < ko < ... < k; or
condition of symmetry of coefficients Qk, ..k, 10 respect to indices ki, ...k,. Two elements
a,b of algebra P,(t) coincide, if their coefficients in the expansion (7) are equal, ie,
ag = by, @g,. .k = bi,..k. Asin the case of dual numbers, this definition of equality of the
elements of algebra Pp(v) is expressed in the possibility of cancellation of equal (with the
same index) nilpotent units tx/ty =1, k= 1,2,...,n (but not ix/tm OF tm/tx. k # m,
as far as such expressions are not defined).

Here it is appropriate to compare Pimenov algebra P, (1) with Grassmann algebra
T5.(€), i.e. associative algebra with a unit, where a set of nilpotent generators 1, e, . . . s €9ms
0 exhibits the properties of anticommutativity exe, = —€,6x #0, p# k, p,k=1,...,2n.
Any element f of Grassmann algebra I'z,(€) can be expressed [5] as

2n 2n
FEO=FO+3 > ferk€r--- € (8)

r=1ky, ,kr=1

The representation is unique, if one requires k; < ko < ... < k. or puts on condition of
skew-symmetry fi, . in respect to indices ki,..., k.. If in the expansion (8) only the
terms with an even r differ from zero, then the element f is called even in respect to the
set of canonical generators ¢, if in the expansion (8) only the terms with an odd r differ
from zero, then f is called an odd element. As a linear space, Grassmann algebra splits
into even I'), and odd I'y, subspaces: T'y,(e) = I'9, + T, where '}, is not only subspace,
but also a subalgebra.

Let us consider nonzero products €zx_1€2k, £ = 1,2,....n of the generators of Grass-
mann algebra I'y,(€). It is easy to see that these products possess the same propertics as
generators ix = €g_1€2¢, kK = 1,2,...,n. Thus Pimenov algebra P,(.) is a subalgebra of
the even part I'), of Grassmann algebra 'y, (€). It is worth mentioning that even products
of Grassmannian anticommuting generators are also called para-Grassmannian variables.
The latter are employed for classical and quantum descriptions of massive and massless

particlies with an integer spin [11, 14, 15] and in theory of strings [61].
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3 Cayley—Klein Orthogonal Groups and Algebras

3.1 Three fundamental geometries on a line

Let us introduce elliptic geometry on a line. Let us consider a circle S} = {z§* + z;? = 1}
on the Euclid plane R,. The rotations z'* = g(¢*)z", i.e.

5 = zhcos et — rising’, (9)
23 = z}sing* + zf cos p*

of group SO(2) bring the circle into itself. Let us identify diametrically the opposite
points of the circle and introduce an internal coordinate w* = z}/xj. Then the following
transformations correspond to the rotations (9) in Ry for ¢* € (=7/2.7/2):

’ w* —a*
1+ wa*’

w* a* =tang*, a" €R. (10)

These transformations make a group of translations (motions) G, of an elliptic line with
the rule of composition
o a'+al )
a’t = —-. 11
1—a*a} (1)
Let us consider the representation of the group SO(2) in the space of differentiable
functions on Ry, defined by the left shifts

T(g(#"))f(z") = flg7" (0")z"). (12)
The generator of the representation

X*f(a") =

g =0; {13)

corresponding to the transformation (9), can be easily found:

. 0

X' (z5,2}) = 27— — zp—.
( 0 1) ]31‘6 001:;

(14)

For the representation of group G; by the left shifts in space of differentiable functions on
clliptic line the generator Z*, corresponding to the transformation (10), can be written as

* * - 8
Z'(w)=1+w 2)W (15)

It is worth mentioning that matrix generator

. (0 -1
r=(17) &

corresponds to rotations g(¢*) € SO(2).
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The transformation of Euclidean plane R, consisting of multiplication of Cartesian
coordinate z; by parameter j;, namely

#: Ry — Ry(j1)

$Ty = To, T} = jiz), (17)
where j; = 1,.,4, brings R, into plane R;(7,); the geometry of the latter is defined by
metrics %(j1) = x + j222. It is easy to see that Ry(j, = 1) is Minkowski plane and
Rs(j) = 1,) is Galilean plane.

Our main idea is that the transformation of geometries (17) induces the transformation
of the corresponding motion groups and their algebras. Let us show how to derive these
transformations.

The definition of angle measure in Euclidean plane 1?; is determined by the ratio
7§ [zf, which under the transformation (17) turns into 7,7, /24, i.e. angles are transformed
according to the rule ¢g* = ji. The asterisk marks the initial quantities (coordinates,
angles, generators and so on). The transformed quantities are denoted by the same
symbols without asterisk. Changing the coordinates in (9) according to (17) and the
angles according to the derived transformation rule and multiplying both sides of the
second equation by ji ™, we get the rotations in the plane Ro(j):

T = T COS f1p — L1Jy sin jrp,
’ 1oi . (18)

Ty = Zo3; SIN 1y + z, cos Jy¢p,

which make group S0(2:7,). According to (1), cosyp = 1, singe = L1, therefore
the transformations of group SO(2:¢;) are Galilean transformations and the elements
of group SO(2;i) are Lorentz transformations, if 7y is interpreted as time, and

as a spatial coordinate. The domain of definition ®(j;) of the group parameter ¢ is
(1) = (-=/2,7/2), ®(;) = (i) = R.

The rotations (18) preserve the circle S;(j;) = {22 + j2&2 = 1} (Fig. 1) in the plane
Ry(jy1). the identification of diametrically opposite points gives the upper semicircle (for
ji = 1) and the connected component of the sphere (circle), passing throngh the point
(zo = 1, 2y = 0). for j; = (.. The internal coordinate on the circle w* is transformed
according to the rule gw* = jijw. Substituting in (10) and canceling j; out of both sides
we get the formula for translations on & line:

o w—a

1
=———, a=—tanjp € R, 19
1+]12’UJ0. n ne ( )

which make group G,(5;), i.e. the group of motions of the elliptic line Si(1) for 5, =1,
the parabolic line Sy(i;) for j; = 41, and the hyperbolic line S, () for j, = 4.

In the space of differentiable functions on R (j;) the generator X (z) of the representa-
tion of group SO(2; ji) is defined by the relation (13), where all quantities are taken with-
out asterisks. Under the transformation (17) derivative d/dyp* turns Ji(d/dyp), thercfore.
to obtain derivative d/de the generator X* must be multiplied by ji, L.e. the generators
X*(#z) and X(z) are interrclated by the transformation

d 0
- * N _ 2.~ .
X(z) = 1 X (¢z") TS 920 Ioazl (20)
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Figure 1: The circles of unit radius on the planes Ry(j;)

The generator Z is transformed according to the same rule:
4 * :2,..2 9
Z(w) =2 (¢w’) = (1 + jw’) 5 - (21)

The transformation rule for the matrix generator of the rotation Y is as follows:

—3 —42
Y=.M‘H)=jl(j?l 7 ) - (? ) ) (22)

Expressions (18)-(22) describe Cayley Klein space and group in the traditional way
with the help of real coordinates, generators and so on. Sucli approach was used in
[23]. There is another way of describing Cayley Klein spaces with the help of the named
(i.c. having onc of names: real, nilpotent, imaginary) coordinates of the form jyz,
when under transformation (17) and the substitution é¢* = ji¢ in (9) both sides of the
second cequation are not multiplied by 77!, Then the rotations on the plane Ry( J1) with
coordinates xy, jyz; arc written in the form

‘T:) — COSj]QP _Silljl“t:\ Lo (23)
) sinig  cosiip )\ o )
These rotations form group SO(2; j,), whose matrix generator is as follows
s 0 -5
Y=5Y"=| | » 24
W ( 0 ) (24)

The symbol Y* instead of Y*(—) in (22) means that the generator Y* (16) is not trans-
formed. It is the the second approach that we shall use in this book. One of its advantages
is that for 7; = ¢; the rotation matrix (23) from group SO(2; )

1 —p -
( uy 1 ) ’ (25)

depend on group paramecter ¢, whereas for j; — 0 it is equal to the unit matrix.
The group of motions G,(j;) of one-dimensional Cayley-Klein space S;(j,) is closely
connected with rotation group SO(2; 71) in space Ry(j;). Therefore, under Caylev-Klein
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space we shall further mean both S,(j;) and Ra(j1), and under their groups of motion
both G1(j1) and SO(2; j;). We shall follow the same rule in the case of higher dimensions.

We have studied comprehensively the simplest case of groups SO(2; jy). G;(j;) becanse
here the main ideas of methods of transitions reveal themseclves in the most ¢lear way,
not aggravated with mathematical calculations. These ideas are as follows: (&) to define
the transformation (17) from Euclidean space to arbitrary Cayley—Klein space; (b) to
find the rules of transformations of motion generators ete. of the group; (¢} using the
approach exposed in (b), to derive motion.generators etc. of Cayley-Klein group from
the corresponding quantities of classical orthogonal group. The method of transitions, in
spite of its simplicity, enables us to describe all Cayley-Klein groups, being aware of only
classical orthogonal ones.

3.2 Nine Cayley—Klein groups
Mapping
¢ : Rs — Ras(j)
$Tp = To, T} =N1T1,  GTy = Ji1jaTa, (26)
where 7 = (j1,42), j1 = 1,11,4, jo = 1, ¢s,1, turns three-dimensional Euclidean space into
spaces R3(j), on the spheres (or connected components of spheres) of which
S2(7) = {a§ + 4zt + jissal = 1} (27)

nine geometries of Cayley-Klein planes are realized. The interrelation of the geometries
and values of parameters j is clear from Fig. 2.

Rotation angle ¢,, in the coordinate plane {z,,z,}, r < s, 7,5 = 0,1, 2, is determined
by the ratio /. and under the mapping (26) is transformed as @}, — (. s), where

max ik

Gky= [l 4 (kk) =1 (28)

=min(i,k)+1

Therefore for one-parametric rotations in the plane {z,,z,} of space R3(j) the following
relations are valid

(0,7)zl. = z,.(0,7) cos (¢rs(7, 8)) — z5(0, s) sin (@r4(7, 5))

(0,8)z, = z.(0, ) sin(wrs(r, 5)) + z5(0, 5) cos(p,(r, 5)). (29)

The rest of the coordinates is not changed z;, = x,, p # 7, 5.
It is easy to find the matrix generators of the rotations (29)

0 -5 O 00 0
Yo=hYa=|7 0 0 [, Yu=50Y,=|0 0 —j |,

0 0 0 0 72 0
0 0 —juj
Yo=hpYp=] 0 0 O . (30)
Jij2 00
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Spherical Euclid Lobachevsky
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| | At
anti de Sitter Minkowski de Sitter

Figure 2: Cayley-Klein planes. The fibers are shown by thick lines and the light cone
in (1 + 1) kinematics are shown by dashed lines. Internal coordinates take values r =
x1/%0, T2 = T2/To
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They make a basis of Lie algebra so(3; j). The rule of transformations for the generators
of representation of group SO(3; 7) in the space of differentiable functions on Rs(y) by left
shifts coincides with the rule of transformations for parameters p,; and can be written as
follows [18. 20]:

Xos(z) = (r,8) X7, (02%), (31)
and the generators themselves as
, 0 0
_ 2 — :
Xrs(x) = (r,5) iy (32)

Knowing the generators, one can evaluate their commutators. But we shall derive
the commutators from the commutation relations of algebra so(3). Let us introduce new
notations for the generators X3, = H*, X, = P*, Xi, = K*. As it is well-known, the
commutators of Lic algebra so(3) can be written as follows:

[H*.P|=K*, [P"K'|=H", [H'.KY=-P" (33)

Generators of algebra so(3) are transformed according to the rule H = HH P =
NpP K = 5K ie H*=ji'H, P* = j'j;'P, K* = j;'K. Substituting these
expressions in (33) and multiplying each commutator by a factor, equal to the denomina-
tor on the left side of each equation, i.e. the first — by J3ja, the sccond — by j j3, and
the third — by jij,, we get commutators of algebra Lie for group SO(3; ):

[H,P) = jiK, [P.K]=j3H. [H,K]=-P. (34)

Cayley-Klein spaces S,(j) (or spaces of constant curvature) for j, = 1,1, 14, Jo = oyt
can serve as models of kinematics, i.e. space time geometries. In this case internal
coardinate t = x;/zo can be interpreted as the temporal axis, and internal coordinate
T = Ip/T¢ as the spatial one. Then H is the generator of the temporal shift, P is
the generator of the spatial shift, and K is the generator of Galilean transformation for
J2 = iy or Lorentz transformation for j, = i. The semispherical group SO(3;1,12) (or
Newton group) is isomorphic to the cylindrical group, which describes movement of a
point on a cylindrical surface. This group is interpreted as the E(2)-like little group for
massless particles [35].

The final relations should not involve division by a nilpotent number. This requirement
suggests the way of finding the rule of transformations for algebraic constructions. Let
an algebraic quantity Q* = Q"(A], ..., AL) be expressed in terms of quartities Ay AL
with a known rule of transformation under mapping . for example, 4; = J;4;,... 4, =
Je A, where coefficients Ji, ..., Ji are some products of parameters J- Substituting 4j =
Ji Ay, .. A; = J; ' Ag in the relation for Q*, we get the formula Q (I Ay, . TN A).
involving, in general, indeterminate expressions, when parameters j are equal to the
nilpotent units. For this reason the last formula should be multiplied by such minimal
coefficient J that the final formula would not involve indeterminate expressions:

Q=JQ(J A, .., JAL). (35)
Then (35) is the rule of transformation for quantity @ under mapping .
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Such method, stemmed out directly from the definition of coincidence of elements of
Pimenov algebra P,(:) turns out to be very useful and further will be widely employed.
The rule of transformation (35) for algebraic quantity Q. derived from the requirement of
absence of indeterminate expressions for nilpotent values of parameters j, is automatically
satisfied for imaginary values of these parameters.

Let us exemplify this rule by Casimir operator. The only Casimir operator for algebra
s0(3) is

Cy(H*,..)=H?+P? 4+ K2 (36)
Substituting H* = j71H, P* = j7i5'P, K* = j7'K in (36), we get
Gy H...) =T *H* + ji")5 " P* + 53 ° K. (37)

The most singular factor for j, = ¢; and j, = ¢ is coefficient (j;j2)~2 of the term P2.
Multiplying both sides of the equation (37) by (jij2)?, we get rid of the indeterminate
expressions and derive the rule of transformation and Casimir operator for algebra so(3; 5):

Ca(§: H....) = j155C5 (5, ' H, ...) = 3 H? + P* + jiK*. (38
As it is known, Casimir operator for two dimensional Galilean algebra so(3;:),u;) is
Cat1,t2) = P? (see, for example, [10]), for Poincaré algebra so(3;t1,7) is C(i1,4) =
P? — H?, for algebra s0(3;7;1) = s0(2, 1) is Ca(i.1) = H? + P? — K? (see [45]). All these
Casimir operators can be obtained from (38) for the corresponding values of parameters
7.

Nl

The matrix generators (30) make the basis of fundamental representation of Lie algebra
50(3; 7) of group SO(3: 7). Using exponential mapping one can put in correspondence to
the genceral element

0 =5 —hjare
Y(r;j) =nYo +mYe+mYe=| 5 0 —Jjars (39)
Jujare Jara 0
of algebra. s0(3; j) the finite rotation g(r: j) = exp Y (r; j):

. ..sinr B 1 —cosr
g9(r;j) = Ecos(r) + Y(rij)——+7Y /(FJ)T,
2.9 o -
) 1273 —NJprars J1J2TTs
Y'(r;j) = | —jugsrars  isird —Jijarire
J1J2Tirs  —jijarira 72
r? = gt + g + fars, (40)

acting on vector (o, j171, j1j222)" € Ra(j) with the named components.

The disadvantage of the general paramctrization (39), (40) is the complexity of the
composition rule for parameters r under group multiplication. F.I. Fedorov [12] has pro-
posed parametrization of rotation group SO(3) for which the group composition law is es-
pecially simple. It turns out that it is possible to construct analogues of such paramnetriza-
tion for all groups SO(3;j) [21]. The matrix of the finite rotations of group SO(3;4) can
be written as follows

Ao lrel) o el +e0)
9(c:) = 1—c(j) =1+2 1+ ¢(j)
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0 —jfes jijse

ci=| & 0 —ji
—Cy C1 0
(4) = 736 + jiiic + jic, (41)

and parameters c¢” correspond to matrix g(c”; 7) = g(c;7)g(c’; 7). These parameters can
be expressed in terms of ¢ and ¢’ as follows

o c+c'+c,c;

1—(c, c); (42)

Here the scalar product of vectors ¢ and ¢’ is given by (41), and the vector product is
given by

[e,¢]; = (s7le, ¢'l, [e, €]s, F3le, ), (43)
where [c, ¢/];, are components of usual vector product in Ra.

E.P. Wigner and E. Inénii [34] have introduced the operation of contraction (limit
transition) of groups, algebras and their representations. Under this operation the gener-
ators of the initial group (algebra) undergo transformation, depending on a parameter ¢,
so that for € # 0 this transformation is non-singular and for € — 0 it becomes singular. If
the limits of the transformed generators exist for ¢ — 0, then they are the generators of a
new {contracted) group (algebra), non isomorphic to the initial one. It is worth mention-
ing that the transformation (31) of the generators of algebra so(3) for the nilpotent values
of parameters j is Wigner-Inonii contraction. Really, X7 (¢z*) is the singularly trans-
formed generator of initial algebra so(3). the product (r, s) plays the role of parameter ¢,
tending to zero, and the resulted generators X, (x) are the generators of the contracted
algebra so(3; 7).

Comparing the rule of transformation for generators (31) and the expression (39) for
a general element of algebra so(3), we find that for the imaginary values of parameters
J some of the real group parameters ry become imaginary, i.e. they are analytically
continued from the field of real numbers to the field of complex numbers. In this case
orthogonal group SO(3) is transformed into pseudoorthogonal group SO(p, q), p+q = 3.
When parameters j take nilpotent values, real group parameters r; become elements of
Pimenov algebra P (1) of the special form and we get the contraction of group SO(3). Thus,
from the point of view of the group transformation under mapping ¢, both operations —
analytical continuation of groups and contraction of groups different at first sight - have
the same nature: the continuation of real group parameters to the complex numbers field
or to Pimenov algebra P(v).

3.3 Extension to higher dimensions

Cayley—klein geometries of the dimension n are realized on spheres

$.00) = {(&,2) = 22 + 3(0, k)% = 1) (1)

k=1

in the spaces Rn41(j) resulting from Euclidean space R, under mapping

¢ : Rny1 = Rogi(7)
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oxy =1zg. ozp=(0,k)ze, k=1,2.....m, (15)
where j = (j1,--..Jn) Jk = Lk, 4, & = 1,2,...,n. If all parameters are equal to one
Jk = 1, then ¢ is identical mapping, if all or some parameters are imaginary j, = ¢ and
the other are equal to 1, then we obtain pseudoeuclidean spaces of different signature.
The space Rn41(7) is called non-fiber, if no of the parameters ji,...,j, take nilpotent
value.

Definition. The space R,11(7) is called (ki, ks, . ... kp)-fiber space, if 1 < k; < k; <
. < ky <nand jy =k, -, Ik, = e, and other ji = 1,1.

These fiberings are trivial [7] and can be characterized by a set of consequently nested
projections pry, pra, . .., pry, where for pr; the base is the subspace, spanncd over the basis
vector {Zo.Z1,...,Tk,—1}, and the fiber is the subspace, spanned over {zk,, Tk, 41, -Tn};
for pro the base is the subspace {Zx,,Zk 1. ..., Tro—1}, and the fiber is the subspace
{Zky, Ty 415 - - -, To } and so on.

From the mathematical point of view the fibering in the space R,41(j) is trivial,
ie. its global and local structures are the same. From the physical point of view the
fibering gives an opportunity to model quantities of different physical dimensions. For
example, in Galilean space, which is realized on the sphere S4(ty, to, 1, 1), there are time
t =z, [t] = sec and space R3 = {2, 3,4}, [x] = sm, k = 2, 3,4 variables.

Definition. Group SO(n + 1;j) consists of all the transformations of the space
R, (j) with unit determinant, keeping invariant the quadratic form (44).

The totality of all possible values of parameters j gives 3" different Cayley Klein spaces
R, .;(J) and geometries S, (7). It is customary to identify the spaces (and their group of
motions), if their metrics have the same signature, i.e., for example, space Rj(1, ) with
metric 2+ 1] —z% and space Rg(7, 1) with metric 23 — 22 +23. But we have fixed Cartesian
coordinate axes in R,,41(j) ascribing to thein fixed numbers, and for this reason in our case
spaces R3(1,7) and Rs(i,7) (and, correspondingly groups SO(3;1,7) and SO(3;1%,7)} arc
different. Groups SO(3;1,7) = SO(2,1) and SO(3;i,1) = SO(1,2) are also considered to
be different. This was made for convenience of applications of method being developed.

Really, the application of some mathematical formalism in a concrete science means
first of all substantial interpretation of base mathematical constructions. For example,
if we interpret in space Ry4(i,1,1) with metric z3 — z? — 22 — 22 the first Cartesian
coordinate zo as the time axis and the other z,,2;, 73 as the space axes, then we get
relativistic kinematic (space-time model). In this example the substantial interpretation
of coordinates is the numbers of Cartesian coordinate axes: axis number one, axis number
two etc.

The rotations in the two-dimensional plane {z,,z,}, the rule of transformation for
representation generators and the generators themselves are given, correspondingly, by
(29), (31), (32), where r,s = 0,1,...,n, r < s. For the non-zero elements of the matrix
generators of rotations the following relations are valid: (Y;5)sr = — (Yrs)rs = (7, 8). The
commutation relations for Lie algebra so(n + 1; ) can be most simply derived from the
commutators of algebra so(n + 1). as it has been done in section 3.2. The non-zero
commutators are

2
(11,81)°Xs)s5, T1 =72, 81 < 82,
¥ — 2
[XTISI'XT2S2.| - (1"2,32) XTI"'2? T < T9, 8§ = 89, (46)
—Xris2s 7 < Ty =8 < Ss.
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Algebra so(n + 1) has [(n + 1)/2] independent Casimir operators, where [z] is the
integer part of a number T. As it is known [4], for even n = 2k Casimir operators are
given by

C;p(X:s) = Z X;azX(:gaa X¢:2p01 ! (47)

a,...,ap=0
where p = 1,2,... k. For odd n = 2k + 1 the operator

C::(X:s) = z €ajaa. 'a"X‘:l“2X;iﬂ4 X (48)

AnQn41)?
a1,.,an=0

where €5, o, is a completely antisymmetric unit tensor, must be added to the operators
(47).

Casimir operators C3, can be defined in another way [13] as a sum of principal mi-
nors of order 2p for antisymmetric matrix A, composed of generators X le. (A)ys =
X7 (A)sr = —X,. To obtain Casimir operators of algebra so(n + 1; j) we use the method
of section 3.2. We find X}, = (r,5)7'X,, from (31) and substitute in (47). The most
singular coefficient (0,n)% is that of the term Xg,Xno... X, in (47). To eliminate it
in the minimal manner we multiply C';,, by (0,n)%. Thus, the rule of transformation for

Casimir operators C’g,, is
Copls Xrs) = (0.0)C3,((r, 8) ™' X,.), (49)

and Casimir operators themselves turn out to be

n

é?p(]) = Z (0 77 2p H(’u Sv ] a|az Yag,,alv (50)

ai,...,azp=0

where 7, = min(ay, @v+1), S» = Max(ay,ay41), v = 1,2,...,2p — 1, 5, = min(ay, ayp),
82p = max(ay, agp). )

For operators Cy, and C., the expression without singular terms can be obtained, mul-
tiplying them by factor g, equal to the least common denominator of coefficients of terms,
arising after the substitution of generators X for X*. This least common denominator
can be found by induction [19]. We restrict ourselves with the final expressions for the
rule of transformations for these Casimir operators:

n—p+1
C2p ]ers) = (H ]12,:n.712lmm+1 H ]2’)) Czp Krs(T, 5) )7
m=1 l=p
p=12,...,k,
e )
. (7 m 7 4 -
Cr’; (]1 er) = J(n+])/2 H Jm]nl—m+1 Cn (XYS(T’ S) ) (51)
m=1

Operator Cy,(j) (or C'(5)) commutes with all generators X, of algebra so(n + 1;5).
Really, evaluating zero commutator [Cy, X/,], we get the same terms with the opposite
signs. Under the transformations (31), (49) both terms are multiplied by the same com-
bination of parameters, which is a product of even powers of paramcters. Thercfore, both
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terms either change their sign, or vanish. or do not change their sign, but in all cases
their sum is equal to zero. Moreover, operators Coy(j) for p = 1,2,...,k are linearly
independent because they consist of the different powers of generators X,,.

The next question to be cleared up is as follows: do [(n+1)/2] Casimir operators (51)
exhaust all the invariant operators of algebra so(n + 1;5)? The answer is given by the
following theorem.

Theorem. For any set of values of parameters j the number of invariant operators of
algebra so(n + 1;7) is [(n + 1)/2].

The proof is given in [23]. Thus, all invariant operators of algebra so(n + 1;j) are
polynomial and are given by (51).

4 Cayley—Klein Unitary Groups and Algebras

4.1 Definitions, generators, commutators

Special unitary groups SU(n + 1:j) are connected with complex Cayley Klein spaces
C..41(7) which come out from (n+1)-dimensional complex space C,,;; under the mapping

o: Chur = Chpa(9)

¢z =25, odzp = (0,k)z, k=1,2,...,n, (52)
where z3, z; € Cpy1, 20, 2k € Crya(f) are complex Cartesian coordinates; j = (ji, ... . jn),
each of paramcters ji takes three values: ji = 1,14, 7. Quadratic form (2*, 2%) = 37 _o |25 |?

of the space C,4; turns into quadratic form
n
) 5
(z,2) = |zo|* + D (0, k)* |24 ? (63)
k=1

of the space Cp41(j) under the mapping (52). Here |z| = (2% + »2)/2 is absolute valuc
(modulus) of complex number 2z = x + jyi, and 2 is complex vector: z = (20,210 -+, 2n).
Definition of complex fiber space is similar to the real fiber space in section 3.3.
Definition. Group SU(n + 1; ) consists of all transformations of space C,.+1(j) with
unit determinant, keeping invariant the quadratic form (53).
In the (ky, kg, . . ., k,)-fiber space C,+(j) we have p+1 quadratic forms, which remains
invariant under transformations of group SU(n + 1; 7). Under transformations of group
SU(n + 1; j), which do not affect coordinates zy, 21, ..., 2z, _1, the form

kep1—1

(Z,Z)_H_l: Z (k$=a)zlza|21 (54)

a=ks

where s = 0,1,...,p, ko = 0, remains invariant. For s = p the summation over a goes up
to n.

The mapping (52) induces the transition of classical group SU (n 4+ 1) into group
SU(n+1;j), correspondingly, of algebra su(n+1) into algebra su(n+1; 7). All (n+1)2-1
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generators of algebra su(n + 1) are Hermitian matrices. However, because the commu-
tators for Hermitian generators are not symmetric, usually one prefers matrix generators
AL, kym=0,1,2,... n of general linear algebra 9lnsa(R), such that (4], Jem = 1 and
all other matrix elements vanish. (The asterisk means that A* is a generator of a classical
algebra.) The commutators of generators A* satisfy the following relations

[Akm: Apg] = Omp ALy ~ OkgApr, (35)

where 0, is Kronecker symbol. Independent Hermitian generators of algebra su(n + 1)
are given by the equations

3 1
Qo= 5(AL + A3), Li = S (45 — AL),

* i * *
P = §(Ak-1.k—1 - Akk)1 (56)

wherer=0,1,....n—1, s=r+1r+2,...,n, k=1,2,...,n.
Matrix generators A* are transformed under the mapping (52) as follows:

A'rs(j) = (Tx S)A;w Akk(]) = A/‘ck (57)
The commutators of generators A(j) can be easily found [31]:
[Akma qu] = (k~ m)(p7 Q) ((smpAkq(ks Q)_l - ékpApm(myp)_l) . (58)

Hermitian generators (56) are transformed in the same way under transition from alge-
bra su(n + 1) to algebra su(n + 1; 7). This enables to find matrix generators of algebra
su(n +1;5) for the case, when group SU(n + 1;j) acts in the space Cp11(j) with named
coordinates

Qrs(j) = (Tw 8)Qrs  Les(h) = (r S)L:s: Pi(j) = P (59)
We do not cite the commutation relations for these generators because they are cumber-
some. They can be found, using (58).

Let us cite one more realization of generators for unitary group. If group GL,4; acts
via left translations in the space of analytic functions on C,., then the generators of its
algebra are X7, = 2*%07, where 0 = E;L.,,. Hermitian generators of algebra su(n + 1) can
be expressed in terms of X, using (56), in which A* must be changed for X*. Under the
mapping 9 they are transformed according to the rule

Zap = (a,b) Z5y(2"), (60)

where Zg, = Qrs, Lrs, Px = Pri. Generators X, are transformed in a similar way, and
this gives us
Xk = 260k, Xor = 2,05, Xrs = (1,5)%2,0;, (61)
where k=1,2,...,n,7,s=0,1,...,n, 7 <s.
The matrix generators (59) make a basis of Lie algebra su(n + 1;j). To the general
element of the algebra

n{n+1)/2 n
Z(u,v,w;j) = > (wQe(d) + veLe(h) + > wibi, (62)
t=1 k=1
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where index ¢ is connected with the indices 7, s, 7 < s. by relation

r(r—1 .
t=s+r(n—1)—(f), (63)
and the group parameters uq, v;, wy are real, corresponds a finite group transformation of
group SU(n + 1;5)

W, v, w; ) = exp{Z(u, v, w; j)}. (64)
According to Cayley—Hamilton theorem, matrix W can be algebraically expressed in terms
of matrices Z™, m = 0,1,2,...,n, but one can to derive it explicitly only for groups

SU(2; j1) and SU(3; j1, 32), which will be discussed in the next sections.

4.2 Unitary group SU(2;j1)

The group SU(2;7,) is the simplest one from unitary Cayley—Klein groups. Definition.
The set of all transformations of the space Cy(7;), leaving invariant the quadratic form
|z0|? + 52|21]%, make up the special unitary Cayley-Klein group SU(2;j1).

The group SU(2; j1) acts on the space Cy(y)

() = ( jfi; ) - ( 33 7 ) ( I ) = u(j1)2(51),

detu(jr) = laf* + 3187 = 1. u(ii)u’() = 1. (65)

Here the bar notes complex conjugation. Constructing generators of algebra su(2;7;)
according to (59), we get

S, _t{1 0 _tf0 5 _L1f0 -5 ;
P1—2(0 _1>= QOI—Q(jl 0)-, Lm—2<jl N (66)

and find commutation relations
(P, Qo) = Loty  [Low, Pl = Qo1, [Qor, Lot] = jiP1. (67)

The generators (66) for j; = 1 up to factors coincide with Pauli matrices. It is also worth
mentioning that if under contraction j; = ¢ the dimension (number of linearly indepen-
dent generators) of general linear group GL(2; j;) (or its algebra) diminishes, because the
generator Ap(¢1) vanishes, then for special unitary groups (algebras) in complex Cayley
Klein spaces the dimension of the groups (algebras) for any (including nilpotent) values
of parameters remains unchanged.

One-dimensional subgroup, corresponding to the generators (66), are as follows:

1. L. 1=
) ) cosijir  isinijyr
T, 71) = exprQ = o2t 2:
gu(rs ) pQm(j) ( isinijir cosijr ) ’

1, a1
— . CoS 5718 —Sin;ji$
ga(si1) = expsLoy(s1) = ( 2J1 3 ) ‘

sinijis  cosijis
eiw/? 0
9s(w) = expwh = ( 0 emiw/2 | (68)
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and to general element Z = rQq; + sLo; + whP, of algebra su(2; ;) we, using exponential
mapping, put in correspondence the matrix of finite transformation of group SU(2; J1),
which can be easily found

g wig) =expz = Sz Fiising —giising )
]lésln% cos% — i%sing
V() =+ 3C7, (=s+ir (69)

In Buler parametrization [56] transformations from group SU(2;7,) can be written as

9, 0,w; 51) = g3(v: 1)1 (6; 51) gs(w; j1) =

iute 2 0 —E2 . L L
= €7 cosiy €eF dsingig (70)
ez isinj § e cos g
where group parameters (Euler angles) are in the bounds
(0: 7‘_)! ]l =1
0<p<2m, -2r<w<2r, HecO()= (0,00), J1=1¢ (71)

(—00,0), 71 =1

Let us note, that for j; = 1 matrices (i, 0, w: j;) coincide with matrices (1.1.3-4), ch. I1I
in [56], for j, = 7 they coincide with the matrices ( 1.3.4-5), ch. VI in [56], and for j, = o,
they describe Euclidean group SU(2;1,) in Euler parametrization.

5 Classification of Transitions between Cayley—Klein
Spaces and Groups

In the previous sections we have found orthogonal and unitary groups in Cayley -Klein
spaces and shown that their generators, Casimir operators and other algebraic construc-
tions can be obtained by transformation of the corresponding constructions for classical
groups. Such approach is natural and is justified by the fact that classical groups and
their characteristic algebraical constructions are well studicd. But is such approach the
only one? Is it possible to take one of the groups in Cayley-Klein space as the initial one?
The positive answer to this question is given by the following theorem on the structure
of transitions between groups.

Let us define (formally) the transition from the space C,.;(j) and the generators
Zu(2; j) of unitary group SU(n+1; ;) to the space C,41(5’) and the generators Zon(2'5 5")
via transformations, which can be obtained from the transformations (52) and (60), sub-
stituting in the latter the parameters j; for jij; :

¢ : Coni(j) = Cona(5)

I3
7 7 / 7 -1
'z =2y, ¢z = 2, H]m]m, k=1,2,....n,

m=]
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max(a,b)

Za(@:) = II 500 Za('z 7). (72)

{=1+min(a.b)

The inverse transitions can be obtained from (72) by the change of the dashed paramcters
j' for the undashed parameters j and vice versa. Applying (72) to the quadratic form
(53) and the generators (61), we obtain

n k
(=".2) = lzol* + > lzl® T m

k=1 m=1
Xix = 240, Xow = 204, Xpw = ( [ 3170 (73)
1=14+r

i.c. quadratic form in space C,.,(j’) and generators of group SU(n + 1; j').

However, the constructed transitions do not make sense for all groups and spaces,
because for the nilpotent values of parameters j the expressions tf ', tp, - 1,;] for k # m are
not defined. We have defined in section 2 only the expressions ¢ - L,:l =1, k=12....n
So if for some k we put ji = t, then the transformations (72) will be defined and give us
(73) only in the case when the dashed parameter with the same number is equal to the
same nilpotent number, i.c. ji = 4.

The transitions from space R,,+1(7) to space Rp4+1(j), and from groups SO(n + 1. ),
Sp(n: 7) to groups SO(n+1;7"), Sp(n; j') as well, can be. correspondingly, obtained from
the transition (45), (31) by the same substitution of parameters jy for jij, ' Similarly
can be justified the permissibility of these relations. Let us introduce the notations:
G(j) = SO(n + 1;)), SU(n +1;3), Sp(n: j). R(j) = Rasi(7). Coui(f), Ra(i) » Rul))
and denote the transformation of group generators by the symbol ®G(j5) = G(j). Easy
analysis of the transformations (72) and their inverse transformations from the point of
view of adinissibility of the transitions [24] implies the following theoren.

Transitions classification theorem. I. Let G(j) be a group in non-fiber space R(})
and G(j") be a group in arbitrary space R(j’), then G(j’) = $G(j). If R(5') is a non-fiber
space, then ¥ is one-to-one mapping, and G(j) = ¥V1G(5").

IL. Let G(j) be a group in (ky, ks, ..., k,)-fiber space R(j) and G(j') be a group in

(M, ma, ..., my)-fiber space R(j), then G(j') = ¥G(j), if the st of integers (k... .. k)
is involved in the set of numbers (m....,m,). The inverse transition G(j) = & 'G(j) is
valid if and only if p=q, ky =my.... k, =m,.

It follows from the theorem that the group G(j) for any set of values of the parameters
J can be obtained not only from a classical group, but from a group in an arbitrary non-
fiber Cayley Klein space, i.e. from pseudoorthogonal, pseudounitary or pseudosymplectic
groups. It is naturally that the transitions between other algebraic constructions, in
particular between Casimir operators, are described by this theorem as well.

6 Kinematics as Spaces of Constant Curvature

Possible kinematic groups, i.c. groups of motion for four-dimensional models of space-
time (kincmatics), satisfying natural physical postulates: 1) space is isotropic; 2) spatial

69



property of being even inversion of time are automorphisms of kinematic groups; 3) boosts
(rotations in spatial-temporal plane) make a non-compact subgroups are described by
H. Bacry and J.-M. Levy-Leblond [1]. In [2] H. Bacry and J. Nuyts rejected postulates 2)
and 3) and obtained a more wider set of groups with spatial isotropy. Now we shall bring
the geometric interpretation of kinematics [22, 33].

All kinematic groups are 10-dimensional; for this reason kinematics from the geomet-
rical point of view, should be among four-dimensional maximally homogeneois spaces —
spaces of constant curvature, which groups of motions are of dimension 10. These spaces
are realized on the connected components of the sphere

Sa(9) ={x5+ 3_(0,k)2f = 1}. (74)
k=1

Let us introduce internal (Beltramian) coordinates & = zx/zo, k = 1, 2,3,4 on S4(j5).
The generators (32) of group SO(4; j) can be expressed in terms of the internal coordinates
£ via formulas

4
Xos(§) = =01 — (0,8)°6, > &Ok, Ok = /0K,
k=1

Xrs(u) = &8, + (r, .5')2530,., r<s, rs=123,14 (75)

and satisfy the commutation relations (46). The generator Xo,(u) has a meaning of
generator for translation along the s-th Beltrami axis, and X,.,(u) is generator of rotation
in two-dimensional plane {¢,, &}

Physical postulates 1)-3) can be expressed in terms of parameters 5. Postulate 1) means
that under the transformations (45) three Beltrami coordinates should be multiplied by
the same quantity and interpreted as a temporal axis of kinematics. It is possible in two
cases:

A) for j3 = jy = 1, when coordinates &, &, & are multiplied by the product j,j, and
called spatial and £ is multiplied by j, and called temporal;

B) for j, = ja = 1, when the spatial coordinates & = 1, k = 1,2, 3 are multiplied by
J1, and temporal coordinate & =t is multiplied by the product j,js.

Postulate 3) imposes restrictions on the character of rotations in two-dimensional
planes, spanned over temporal and spatial axes of kinematics. requiring these rotations to
be Lorentzian and Galilean. In terms of parameters j this gives jo = 1o, in the case A)
and jy = 4,1 in the case B). The requirements of postulate 2) can be taken into account
by the definition of space with the constant curvature as a connected component of the
sphere (74).

In the case A) the kinematic generators H, P = (P, P, P3) (spatial-temporal trans-
lations), J = (Ji1, J2, J3) (rotations), K = (K}, Ky, K3) (boosts) are expressed in terms
of generators (75) in accordance with above mentioned interpretation by the relations
H=—Xo1, Pr = —Xoxt+1, Ke = ~X1p11, /1 = Xay, Jo = —Xog, J3 = KXoz, k=1,2,3,
and satisfy the commutation relations

[H,J]=0, [H,K]=P, [HP]=—j’K

[P,P] =323, [K,K]|=j21, [P, K| =—j26uH. (76)
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Here [X,Y] = Z means (X, Y]] = exmZm, where ey, is the antisymmetric unit tensor.
The spaces of constant curvature S;(j1,J2,1,1) = Si(j1.72), 1 = 1, 01,2, Jo = 12,1 are
shown at Fig. 2 (see section 3.2), where the spatial axis r should be imagined as a three-
dimensional space. Semispherical group SO(5; 1, t2) and semihyperbolic group SO(5; 1, t2)
correspond to Newton groups Ni (sometimes the latter are called Hooke groups). The
interpretation of other groups is well-known.

In the case of B) the temporal and spatial axes of kinematics are expressed in another
way in terms of Beltramian coordinates of space with the constant curvature; correspond-
ingly, the geometrical generators X (£) obtain another kinematic interpretation: H = Xoq,
P = — X, K = Xklh J = X23, Jo = = X3, J3 = X129 and satisfy the commutation
relations

J.3)=7J, [J,P]=P. [JK]=K,
[H7 J] =0, {H7 K] = —prs [H, P] = JllzKa
[P,P] =723, [K.K|=j4, [P,K|=0uH. (77)

The value of parameter j; = i, as it can be readily understood, does not lead to new
kinematics, because SO(5;71,1.1,7) for 71 = 1,.1.% is, correspondingly, de Sitter group,
Poincaré group and anti-de Sitter group.

Kinematic Carroll group [19] of motions of the flat Carroll space, first described
in physical terms by J.-M. Levy-Leblond [40] corresponds to the values of paramecters
j1 = t1, j4 = t4. Comparing the commutators (77) with the commutators in the paper
[1] by H. Bacry and J.-M. Levy-Leblond, we find that group SO(5;1,1,1,14) coincides
with kinematic group I1S0O(4), and group SO(5;1, 1. 1,¢4) is "para-Poincaré” group F’. As
paramneter j; determines the sign of the space curvature (curvature is positive for j, = 1,
zero for j; = ; and negative for j; = i) we conclude that group SO(5;1,1,1.t4) (or
IS0O(4)) is the group of motions of Carroll kinematics with a positive curvature, group
SO(5;1,1,1,44) (or P') is the group of motions of Carroll kinematics with a negative
curvature. Such interpretation of kinematic groups 1SO(4) and P’, as far as it can be
seen, was not recognized by the authors of [1], and this fact, by the way, is reflected in
the names and notations of these groups. Further Carroll kinematics will be denoted as
C4(j1), and their kinematic groups as G(j;) = SO(5; j1, 1,1, ta).

H. Bacry and J.-M. Levy-Leblond [1] have described 11 kinematical groups. Nine of
them have obtained geometrical interpretation as spaces of constant curvature. The rest
two kinematics — ”para-Galilean” and static — can not be identified with any of the
spaces of constant curvature. For example, kinematic "para-Galilean” group is obtained
from Galilean group SO(5;¢1,t2) by substitution P — K, K — P, i.e. under the new
interpretation of generators , in which the generators of spatial translations of Galilean
kinematics are claimed to be the generators of boosts of "para-Galilean” kinematics,
and the generators of Galilean boosts — to be the generators of spatial ”para-Galilean”
translations.

7 Standard Electroweak Model

The standard Electroweak Model (Weinberg-Glashow-Salam theory) is a gauge theory
based on the group SU(2) x U(1) and gives a good description of electroweak processes
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(46, 47, 55]. Mathematically this theory is very complicated with nonlinear dynamics of
the involved fields.

The Electroweak Model involve particles with integer spins: photon, responsible for
electromagnetic interactions, neutral Z° and charged W* bosons, which are week inter-
action carriers. For each subgroup SU(2) and U(1) of the gauge group its own coupling
constants g and g’ are introduced. Complex space C, of the fundamental representation
é1
®2
fields A, (z) for the group SU(2) take their values in Lie algebra su(2)

of the group SU(2) is interpreted as the space of matter fields ¢ = ) € C,. Gauge

Aue) = —ig Y TuAk (), (718)

k=1

where matrices Tk, connected with Pauli matrices 7% by the following relations

1, 1(01 1, 1(0 —i
T“T‘E(l 0)’ T2_2T_2(i 0)’

_1s_1(10

submit commutation relations [Tk,T,] = icxrT; and represent the algebra su(2) with
structure constants Cryr = €xpr. The gauge fields (78) are as follows in the matrix form:

‘ A A
ae) =i (g BT, (50)
1

For the group U(1) with generator ¥ = 11 the gauge field takes the form

_ .9 (B, 0
B,(z) = g ( 0 B, ) (81)
and has stress tensor By, = d,B, — 0, B,,. For the field A,(z) its stress tensor is given by
F(2) = Fu(z) + [Au(z), Au(2)] (82)

and has the components

3
Fl=FL +g(A2A - BA) =F. +9 3 crmArAT,

it

k,m=1
F, =F2 +g(AA, — ALA) =F2 +g¢ Z EnmALAL,
kym=1
3
F =FhL+9(AAL—A2A)=F3,+g 3 eumALAT, (83)
k,m=1
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where F¥, = 8,A5 — 8, AL is the stress tensor for Abel group. Boson sector of Electroweak
Model is characterized by Lagrangian

Lg=Ls+ L¢, (84)
which comprises two parts: the gauge fields Lagrangian

1 1

2 2 _
Ls= ;qur(FIW) - Z(BHV) -
1 1
= —lEL? + (FLY + (R - 3(Bu Y, (85)
and the matter fields Lagrangian
1
Lo = 5(D,8)' Dyt = V() (56)
The potential is taken in the special form
A 2
— t \2
V(g) =7 (s'6-")", (87)
where A, v are constants. Covariant derivative
3
D¢ = 8,0 — ig (Z TkAﬁ) ¢ —ig'YB,¢ (88)
k=1

for the matter fields ¢, ¢, is given by
1 ? 'y
Dy¢r = Outy — 5(91431 +9'Bu)br - Eg(At —iA2),

Dy = Bua + 5(04% - g B,)gs — (AL +iA2)6:. (89)

Space-time variables are numbered by Greek indexes p,v,...=0,1,2,3.
To obtain vector boson masses the special mechanism of spontaneous symmetry break-
ing (or Higgs mechanism) is used. One of Lagrangian Lp ground states

vac 0
é =(v), Ak=B,=0 (90)
is taken as vacuum of the model, and then small field excitations
$1(z), ¢o(z) =v+x(z), Ai(z), Bu(z) (91)
with respect to this vacuum are regarded. Matrix Q = Y + T3 = (1) 8 ) . which

annihilates the ground state Q¢"® = 0, is the generator of electromagnetic subgroup
U(1)em- New gauge fields are introduced

1 1 ;42 _ 1 3y
E (AF F ZA“), Zy = —?]-2_}_—9,2- (QA,, —9g Bu),

rt __
Wk =
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Ay = —s (443 + gB, )s (92)
\/52+—r2 "
where W * are complex fields W =W}, and Z,, A, are real fields.
Boeon Lagrangian (84) can be rewrltten in the form

Lp =LY + L% (93)
As usual, the second order terms
1 1 1
Lg>=§( x)* —Em z wB + 55 2,2, ~
_Z]:I"/]:pv - W+ W_ + mWW’+W’ (94)

where 2, = 8,7, — 0.2, Fu = 0,4, — 0,A,, W5, = 8,W= — §,W3, describe
the spectrum of boson partlcles and higher- order terms L are mterpreted as their
mteractums So, Lagrangian (94) describes charged W-bosons with identical mass My =
39v, massless photon A,, m4 = 0, neutral Z-boson with mass m, — $VoT+ g7 and
Higes boson x, my = V2 v. W- and Z-bosons were observed expenmentalh and have
masses my = 80 GeV, m; = 91 GeV. Higgs boson with the mass of 125 GeV was detected
at LHC in 2012.

Besides gauge bosons, there are fermions in the Electroweak Model. The fermion
sector is represented by leptons and quarks. Leptons are fermions, which do not interact
strongly. There are three types of charged leptons in Nature: electron e, muon p=, 7-
muon 7~ and three types of neutrinos v, v, v, as well as the corresponding antiparticles.
Neutrino masses, if they exist, are extremely small, therefore in the Electroweak Model
neutrinos are considered as massless particles. Neutrinos are fermions of left chirality, i.e.
their spin projection is opposite to the direction of movement. The name "left fermion”
, is used in this case. Pairs (or generations) of leptons (ve,e™), (v, u”), (v, 77) have
identical properties with respect to all interactions. Therefore it is sufficient to discuss
only one generation, for example, (v,,e™).

The lepton Lagrangian is taken in the form

Ly = L}i7,D, Ly + elit, D, e, — h.Jel (¢ L)) + (Lig)e,], (95)

where L, = ( : is SU(2)-doublet (vector in the space C,), e, is SU(2)-singlet (scalar

with respect of SU(2)), h. is a constant. All fields e,, e;, v are in their turn two-component
Lorentz spinors. Here 7, are Pauli matrixes, 7o = 75 = 1, 7% = —7%. The above mentioned
division of the fields on doublets and singlets is based on the experimental fact that only
the left components of an electron and a neutrino interact with W#*-boson fields, but the
right components do not interacted with W=*-boson.

The covariant derivatives of the lepton fields D,L; in (95) are given by the formula
(88) for Y = —3 with L, instead of ¢, and D,e, = (8, +1g'B,)e,. For the new ficlds (92)
these derivatives are as follows

D.e. = O,e. +ig'Aye, cosb, — ig' Z,e,.sin b,
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D,=8,~ L% (Wit + WiT.) -

—ico-: 52 (T — Qsin®8,) - ie4,Q, (96)

where Ty = T; £ Ty, and e is electron charge

0 3
O:Y+T3|Y=—%:(g _1). e:L_

e g : 9 -
=—— cosb, =———, sinf,=——. 97
g sin @, Vgt + g7 v g= + g~ (o7)

Then lepton Lagrangian (95) can be rewritten in the form

Ly = elif 0,00+ V]iT, 0,0 + elir, e, + Wi Zu+
w

2cosf

9 ts - - gcos 20w ;.
+$eh”’u v — ee;rTuA,,e, + ma}‘rpZMeH—

+iu,T FWhe — ¢ cosOuelr, A e, + ¢ sinbelr,Z,e.—
V2 “

—heleldber + el goc, + eldly + vl dre). (98)

The first three terms are kinetic terms of the left electron, the left neutrino and the right
electron. The last four terms with the multiplier h, are mass terms of the electron. The
rest of the terms describe the clectron and neutrino interactions with the gauge bosons
Ay, 2, WE.

The next two lepton generations are introduced in the same way. They arc left SU(2)-

doublets |
M vy Y == 99
( Iz >,’ ( T ),‘ 2 (%)

Hry Ty, Y=-1L (100)

The complete lepton Lagrangian is giveu by the sum

and right SU(2)-singlets

Lp=Lpe+Lru+ Ly, (101)

where each summand has the structure (98) with its own constants he, hy, A-.

Quarks are strong interacting fermions. Six types of quarks are known. From the
viewpoint of electroweak interactions all known quarks are divided into three generations:
(u,d), (¢,8) and (t,0). Electroweak interactions of all quark generations are identical,
therefore we discuss quarks of the first gencration in the beginning. The quark Lagrangian
is given by

Lo= Qlti":uDﬂQl + uliT#Dudr_

—hald!(¢'Qu) + (Qld)dr] — hulul (#'Q) + (Q )], (102)
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where the left fields u- and d-quark of the first generation form doublet Q= ( g

dy
relative to the electroweak group SU(2), and the right fields u,, d. are SU(2)-singlats,
@i = €ti.egp = 1,65 = —1 are conjugate representation of the group SU(2), at last |

hy. hy are constant multipliers for mass terms. All fields W, dy, Uy, d. are two-component
Lorentz spinors.

The left fields of the next quark generations

(5) (&) i

are described by SU(2)-doublets, and the right fields are SU(2)-singlets

2 1
Cry tr, Y= 5; Sry b'r: Y = _g- (104)

The covariant derivatives are given by the formulae
. 3 Tk 4k 1
D,Q =108,— zg; §A” —1g aBu Q,

.2 ., 1
Dyar = (ay -9 §Bp) Qr, Dpfr = <8u +1ig gB#) fre (105)

where a = u,c,t and f = d,s,b, but Q, now denote the left fields of all three quark
generations. The complete quark Lagrangian is the sum

Lo = Loa) + Loes) + Lot (106)

where each term has the structure (102) with its own constants h., hy, Ae, hs, he, .
Lagrangian of the Standard Electroweak Model is the sum

L=Lz+L,+ Lo, (107)

of hoson Lg (84), (93), lepton Ly, (98), (101) and quark L, (102), (106) Lagrangians.

8 The Electroweak Model with Contracted Gauge
Group

As far as all three lepton and quark generations behave in the same way, we shall further
consider only the first gencrations. Contracted gauge group SU(2;j) x U(1) acts in
the boson, lepton and quark sectors. The contracted group SU(2; j) is obtained by the
consistent rescaling of the fundamental representation of the group SU(2) and the space

C, [28, 29): y _ _
2() = ( 7 ) - ( 2 ’;j’) ({j; ) = u(j)z())
detu(y) = o + /1B =1, w()u'(s) =1, (108)
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where contraction parameter 7 — 0 or is equal to the nilpotent unit j = ¢. The hermitian
form 2'2(j) = j%|21|? + |2.|?. remains invariant under this rescaling. The actions of the
unitary group U(1) and the electromagnetic subgroup U(1)en, in the fiber space Cy(t)
with the base {2»} and the fiber {z,} are given by the same matrices as in the space Cs.
The space Cz(j) of the fundamental representation of SU(2; j) group can be obtained
from C; substituting z; by jz;. The substitution z; — jz; induces the substitution of the

Lie algebra generators
T =Ty, Tp— T Ta—Ts. (109)

As far as the gauge fields take their values in Lie algebra, we can substitute the gauge
fields instead of transforming the generators (109), namely:

A, = JA,, Al AL AL A, B, B, (110)
Indeed, due to commutativity and associativity of multiplication by j we have

su(2:) 3 {A,GT) + ALUT) + ALT)

= {GANT + (ADT: + A2T;}. (111)
For the gauge ficlds (92) the substitutions (110) are as follows:
Wi = jWE 2,5 2Z,, A, A, (112)
The left lepton L; = ( :ﬁ ) and quark Q; = ( Z‘ ) fields are SU(2)-doublets, so their
1

components are transformed in the similar way as the components of the vector =, namcly:
vy — jI/[, € —r e, u — jll[,. ([1 - dl. (113)

The right lepton and quark fields are SU(2)-singlets and therefore are not changed.
After the transformations (112), (113) and spontancous symmetry breaking (90} the
boson Lagrangian (84)-(86) can be represented in the form [27, 29):

Lp(j) = LY () + LE'(G) =
1

1 1 1 . 1
= 5 (BI‘X)Z _ ETI1§X2 — ZZ",,Z,“, + E'ITZZZZ“Z‘L — Z]:’W]:'w+

. 1 . _ int/
{5 - mt W+ L), (114)
where as usual the second order terms deseribe the boson particles content of the model.
Higher order terms

&
8 cos? By,

intf - am; 92 4 A y
let(]) (211)2 Xz - _X1+

(Zu)2X _/\U)(3+ 1

~ 2cos Ov
+ j2{—21:g (wiw, — WiW) (Fusinfy + 2, cosbiy) + gW Wy x—
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—%e (4. (WiaW: - wWowy) - 4, (Wawr —wiw)] -
—%g cos O [Z, (Wi, W, - WL W)) -2, (Whw, - W W] +
g - —i7+)2 r—2] € +\2 -\? 2
+Z [(m Wy = WiWE) + wiwsx ] —Z{[(Wﬂ) +(wy) ] (A,)2—
~2 (WrW}+ Wyw;) A,A, + [(W,jf)2 + (W;ﬂ (A“)"’} -
_-‘7; costw {[(W)" + (W) | @ =2 (Wpws s wyw;) 2,2,+
+ [(W;“)2 + (W,,‘)z] (ZM)Z} _ egcos ew{W‘fW;A,,Zy +WIWSAZ,—
_% (Wiw; + Wrw)) (4,2, + AUZ“)}} (115)

are regarded as their interactions. The lepton Lagrangian (98) in terms of electron and
neutrino fields takes the form [30]

LL(J) = eziﬂlal-tel + eIiTuaﬂer - me(e:el + elfer)'*‘

gcos20y 4. fo , "
e 7.2, —ee|T,Ae; — g cosOyel T, A e+
2cos49w'”“l 1Ty g wep T Aulr

+¢'sin el Z,e, + jz{uﬁf#aﬂw + Y72+
w

_9
2cosf
+% [1/,17"#11/:61 + e,fi'#"V;w] } =Lry+3°Ly. (116)

The quark Lagrangian (102) in terms of u- and d-quarks fields can be written as

Lo(j) = d'i7,8,d + dlir,8,d, — ma(dld + d'd,) — gd*%“A“d—

1 2 !
B cogew (E T3 sin” '9"'> d'7,2,d - gg' cos B,di 7, A,d,+

1 . . )
+§g’ sinf,d!7,2,d, + ]2{ufzr#3,‘u +uliT,0,u,—

g 1 2. -
—my(ulu + ufu,) + o (5 -3 sin® 0.‘,) ulF, Z,ut

2e .. g - R
+?ufTﬂA,‘u + == [UtT#W:d +di7, W, u] +

V2
2, i 20 t _
+§g cos Opul T, A u, — 39 sin Ouulr,Z,u, =

= Lgp +j2LQJ, (117)

where m, = hev/\/i and m, = hyv/ \/5, mg = hqv/ NG represent electron and quark
masses.
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The complete Lagrangian of the modified model is the suin
L(7) = Ls(j) + Lo(j) + Lo(j) = Ly + 5°Ly. (118)

The boson Lagrangian Lg(j) was discussed in [27, 29], where it was shown that masses
of all particles involved in the Electroweak Model remain the same under the contraction
7% = 0 in both formulations: the standard one [27] and without Higgs boson [29]. In
this limit the contribution j2L; of neutrino, W-boson and u-quark fields as well as their
interactions with the other fields to the Lagrangian (118) become vanishingly small in
comparison with the contribution L, of electron, d-quark and the remaining boson fields.
So Lagrangian (118) describes a very rare interaction of neutrino fields with the matter,
which consists of quarks and leptons in the Standard Electroweak Model. On the other
hand, the contribution of the neutrino part j2L; to the complete Lagrangian is risen
when the parameter j* is increased, which corresponds to the experimental facts. It
follows from this that the contraction parameter is connected with neutrino energy and
this dependence can be obtained from the experimental data.

9 Description of Physical Systems and Group Con-
tractions

The standard way of describing a physical system in the field theory is its decomposition
on independent more or less simple subsystems, which can be exactly described, and then
introducing interactions between them. In Lagrangian formalism this implies that some
terms describe independent subsystems (free fields) and the rest of the terms correspond
to interactions between the fields. When the subsystems do not interact with each other
the composed system is a formal unification of the subsystems and symmetry group of
the whole system is the direct product G = G; x Ga, where G, and G, are symmetry
groups of the subsystems. The Electroweak Model gives a nice example of such approach.
Indeed, there are free boson, lepton and quark fields in Lagrangian and the terms which
describe interactions between these fields.

The operation of group contraction transforms a simple or semisimple group G to
a non-semisimple one with the structure of a semidirect product G = ARG;, where
A is Abel and G; C G is an untouched subgroup. At the same time the fundamental
representation space of the group G is fibered under the contraction in such a way that the
subgroup G| acts in the fiber. The gauge theory with a contracted gauge group describes
a physical system, which is divided on two subsystems S, and S t. One subsystem S,
includes all fields from the base and the other subsystem S; is built from fiber felds. S,
forms a closed system since according to semi-Riemannian geometry [50, 26] the properties
of the base do not depend on the points of the fiber, which physically means that the
fields from the fiber do not interact with the fields from the base. On the contrary the
properties of the fiber depend on the points of the base, therefore the subsystem S, exerts
influence upon Sy. More precisely, the fields from the base are outer (or background)
fields for the subsystem Sy and specify outer conditions in every fiber.

In particular, the simple group SU(2) is contracted to the non-semisimple group
SU(2;¢), which is isomorphic to the Euclid group E(2) = A3 ®S0(1), where Abel sub-
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group A, is generated by the translations [27, 28, 29]. The fields space of the Standard
Electroweak Model is fibered after the contraction in such a w ay that neutrino, W-boson
and u-quark fields are in the fiber, whereas all the other fields are in the base.

The simple and the best known example of fiber space is the non- velativistic space—
time with one-dimensional base, which is interpreted as time, and three-dimensional fiber,
which is interpreted as proper space. It is well known, that in non-relativistic physics the
timnce is absolute and does not depend on the space coordinates, while the space properties
can be changed in time. The simplest demonstration of this fact is Galilei transformation
t' =t, ¥’ = z 4 vt. The space-time of the special relativity is transformed to the non-
relativistic space-time when a dimensional parameter - the velocity of light ¢ - tends
to the infinity and a dimensionless parameter tends to zero =0

10 Rarely Neutrino-Matter Interactions

To discover the connection of gauge group contraction with the limiting case of the Elec-
troweak Model and to establish the physical meaning of the contraction parameter we
consider neutrino elastic scattering on electrons and quarks. The corresponding diagrams
for the neutral and charged currents interactions are represented in Fig. 3 and F ig. 1.

v 14 €

Figure 3: Neutrino elastic scattering on electron

Under substitutions (112), (113) both vertices of diagram in Fig. 3, a) are multiplicd
by j2, as it follows from lepton Lagrangian (116). The propagator of virtual ficlds ¥
according to boson Lagrangian (114) is multiplied by j72. Indecd. a propagator is an
inverse operator toan operator of a free field, but the later for W-ficlds is multiplied by
2
’ So on the whole the probability amplitude for charged weak current interactions is
transformed as My — j2My.. For the diagram in Fig. 3. b) only one vertex is inultipliced
by 72, whereas the second vertex and the propagator of Z virtual field do not change, so the
corresponding amplitude for neutral weak current interactions is transformed in a similar
way Mz — j2M . Cross-scction is proportionate to squared amplitude, so neutrino-
electron scattering cross-scction is proportionate to j%. For low cnergics s < mi, this
crass-section makes a principal contribution to the clectron-neutrino interaction and is as
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follows [46]
4 -
Ove = G%Sf(f) = g_,lf(f) (119)
mw
where Gp = 10_5"_% = 1,17 - 1075 GeV~? is Fermi constant, s is squared energy in
4 -
center-of-mass system, £ = sinf,, f(£) = f(£)/32 is the function of Weinberg angle. The
cross-section in the laboratory system for neutrino energy m. < E, < my is given by
[52]
Ove = G%"meEvg(E) (120)

On the other hand, taking into account that the contraction parameter j is dimensionless,
we can write down

Ove = jdao = (GF'S)(GFf(é)) (121)
and obtain v
7(8) = \/Grsm T (122)

So the contraction parameter is expressed in terms of Fermi constant and the fundamental
parameters of the Electroweak Model.

d

Figure 4: Neutrino elastic scattering on quarks

Neutrino elastic scattering on quarks by means of neutral and charged currents is
pictured in Fig. 4. Cross-sections for neutrino-quarks scattering are obtained in a way
similar to the lepton case and arc as follows [46]

0, = Gpsf(€)), of = Gsh(€). (123)

Nucleons are some composite constructions of quarks, therefore some form-factors appear
in the expressions for neutrino-nucleons scattering cross-sections. The final expression

O = GsF(£) (124)

coincides with (119), ie. this cross-section is transformed as ( 121) with the contraction
parameter (122). At low energies scattering interactions make the leading contribution to
the total neutrino-matter cross-section, therefore it has the same properties (121), (122)
with respect to contraction of the gauge group.
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We have shown that contraction of the gauge group of the Standard Electroweak Model
corresponds to its low-energy limit. The zero tending contraction parameter depends cn
neutrino energy and determines the energy dependence of the neutrino-matter interaction
cross-section.

The limit transition ¢ — oo in special relativity resulted in the notion of group con-
traction [34]. In the Electroweak Model the notion of group contraction is used on the
contrary to explain the experimentally verified fundamental limit process of nature: a
decrease of the neutrinos-matter cross-section when neutrino energy tends to zero.

11 Electroweak Model at Infinite Energy

In the previous section we have shown that contraction of the gauge group of the Standard
Electroweak Model corresponds to its low-energy limit. In this limit the first components
of the lepton and quark doublets become infinitely small in comparison with their second
components. On the contrary, when energy increases the first components of the doublets
become greater then their second ones. In the infinite energy limit the second compo-
nents of the lepton and quark doublets will be infinitely small as compared with their
second components. To describe this limit we introduce instead of (108) new contraction
parameter ¢ and new consistent rescaling of the group SU(2) and the space C, as follows

w0=(4)=(5 7)(4)-somo

detu(c) = |al? + B2 =1, u(e)ul(e) =1, (125)

where ¢ — 0. Both contracted groups SU(2;7) (108) and SU(2;¢) (125) are the same and
are isomorphic to Euclid group E(2), but the space Cy(c) is splited in the limit ¢ — 0 on
the one-dimension base {z,} and the one-dimension fiber {z,}. From the mathematical
point of view it is not important if the first or the second Cartesian axis forms the
base of fibering and in this sence constructions (108) and (125) arc equivalent. But the
doublet components are interpreted as certain physical fields, therefore the fundamental
representations (108) and (125) of the same contracted unitary group lead to different
limit cases of the Electroweak Model, namely, its zero energy and infinite energy limits.

In the second contraction schemne (125) all gauge bosons are transformed according to
the rules (112) with the natural substitution of j by €. Iustead of (113) the lepton and
quark fields are transformed now as follows

e, — €€y, d; — fd[, vy = v — Uy (126)

The next reason for inequality of the first and second doublet components is the special

mechanism of spontaneous symmetry breaking, which is used to generate mass of vector

hosons and other elementary particles of the model. In this mechanism one of Lagrangian

ground states ¢"*¢ = ( 0 ) is taken as vacuum of the model and then small field
v

excitations v+ x(z) with respect to this vacuum are regarded. So Higgs boson field x and

82



the constant v are multiplied by e. As far as masses of all particlies are proportionate to
v we obtain the following transformation rule for contraction (125)

X EX, U—ev, my—emy, (127)

where p = x, W, Z,e,u,d.
After transformations (112), (126)—(127) the boson Lagrangian of the Electroweak
Model can be represented in the form

LB(C) = 423,, - 4.7:5,,+€2L132+€ gW W X+€ LB4,

1 A ?
Lpa=myWiw, - 5m§x - dvx® — Zx‘ + %WI W, x*+

97 (wiwy —wywy)*,

1 1
Lpa=3 0ux)* + ;mzz (2,)* -
2
T gm g 73242
W Mo v o (Z”) X+8cos29W( w) X

—2ig (W:Wy‘ - W‘W*) (}',,., sinfw + 2, cos 9w) -
L [Au (Wit wr —wowi) + - eA (Wi w, —wowi| -

2 nv g

—%g cosbu [Z, (Wa W, ~ W W) - 2, (WiWy - Waw)] -
2

=

() + (2] (a2} - g;c050w {{we)+ o)) -

—2 (WiW + WiW; ) 2,2, + [(W,f)2 + (W;)2] (Z”)2} _

(W) + (W)"| (2 = 2 (W + W ws) Audue

—egcos b [WiW; A,Z, + W)W, AZ,—
1 _ _
5 (WaWs + Ww)) (4,2, + A.,Z#)} . (128)
In terms of electron and neutrino fields the lepton Lagrangian takes the form
Li(e) =Lpo+ Lo = vfif,d,u + elit,d.e, + ¢'sinOyel7,Z, e, —
—g' cosfyelm, ALe. + LulTﬁtZ“l/[ + €28 efi7,8,e1 — me(ele, + ele,)+
2cos b,

gcos26,, ;. ~ ~ o
2cosé clfuZues = celuhyer + % (";‘TMW:el +e T, ’/1)} : (129)
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In terms of u- and d-quarks fields the quark Lagrangian can be written as
Lg(€) = Lop — emy(ulu + ufu,) + € Lg.,,

. . . 1
Loo = dlma,,d, + u;fzr,,a,‘ul + uiz'r,,a,,ur — gg' cos gdeTuA“d,--l-

1 1 2
+3g sin 6. dTT,‘Z d. + u,T“A,‘u,+ g (— — Zsin?6 )'UIT#Z w+

3 cos b, 3

2 2
+§g' cos OWUIT,,A,,ur — gg' siné, ulT,,Z,ﬂLr,
Lgs = dji7,0,d; — ma(d!d; + d}d.) — gd}ﬁ,A“d,—
g 1 2 . .
" cosby (5 3 sin* 9"’) d’T"Z d+ 2 [Uz T WHd + d! W u,] (130)

The complete Lagrangian of the modified model is given by the sum L(e) = Ly(e) +
L (€) + Lg(e) and for the infinite energy (for € = 0) is equal to

L= —ZZ;, - 4}‘3,, + V}iT, 0,0 + ufiT, 0w + eli,d e+

+d}i7,8,dy + uliT,duur + LG (Ay. Z,),

; ~ 1 2
LA, 2,) = I/;T/‘Z‘,l/l + 9. <— — —sin Gw) u,T“Z w+

_9
2cos 8, cos 8, 3

2e 4. . 1
+—3-u,TT,,A#u1 + ¢'sinbyelm,Z,e, — ¢’ cosbyelm,ALe, — gg' cos By, di T, A d+

1 2 2
+§g’ sin Gwd}r,,Z‘,d, + gg’ cos Gu,ul‘r,,A“u, - gg’ sin H,Uui'r,‘Z“ur. (131)

The limit model includes only massless particles: neutral massless Z-bosons Z, and pho-
tons A,, massless right electrons e, and neutrinos v;, and massless left and right quarks
uy, Ur, dr. The electroweak interactions become long-range because they are mediated by
the massless neutral Z-bosons and photons. There are no interactions between particlies
of different kind, for example neutrinos interact only with each other by neutral currents,
Similar higher energies can exist in the early Universe after inflation and reheating on the
first stages of the Hot Big Bang [17, 41]. The electrowcak phase transition and neutrino
decoupling which take place during the first second after the Big Bang [16] are apparently
in correspondence with the infinity energy limit of the Electroweak Model (131). The
mass term of u-quark in the complete Lagrangian is proportional to ¢ whereas the mass
terms of electron and d-quark are multiplied by €2, so u-quark first restores its mass in
the evolution of the Universe.
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