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Abstract

The paper is devoted to the description of the contraction (or limit transition) method
in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As
opposed to the standard Wigner-Iiionii contractions based on insertion of one or several
zero tending parameters in group (algebra) structure the alternative approach, which is
connected with consideration of algebraic structures over Pimenov algebra with commu-
tative nilpotent generators is used. The definitions of orthogonal and unitary Cayleye
Klein groups are given. It is shown that the basic algebraic constructions, characterizing
Cayley—Klein groups can be found using simple transformations from the corresponding
constructions for classical groups. The theorem on the classifications of transitions is
proved, which shows that all Cayley—Klein groups can be obtained not only from simple
classical groups. As a starting point one can choose any pseudogroup as well. As applica—
tions of the developed approach to physics the kinematics groups and contractions of the
Electroweak Model at the level of classical gauge fields are regarded. The interpretations
of kinematics as spaces of constant curvature are given. Two possible contractions of the
Electroweak Model are discussed and are interpreted as zero and infinite energy limits of
the modified Electroweak Model with the contracted gauge group.

1 Introduction

Group-Theoretical Methods are essential part of modern theoretical and mathematical
physics. It is enough to remind that the most advanced theory of fundamental interactions,
namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(l).
All types of classical groups of infinite series: orthogonal, unitary and symplectic as well
as inhomogeneous groups, which are semidirect products of their subgroups, are used
in different areas of physics. Euclidean, Lobachevsky, Galilei, Lorentz, Poincare, (anti)
de Sitter groups are the bases for space and space—time symmetries. Supergroups and
supersymmetric models in the field theory predict the existence of new supersymmetric
partners of known elementary particles. Quantum deformations of Lie groups and Lie
algebras lead to non-commutative space—time models (or kinematics).
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Contractions of Lie groups is the method for receiving new Lie groups from the initial
ones. In the standard E. Wigner and E. Inenu approach [34] continuous parameter E is
introduced in such a way that in the limit 6 —> 0 group operation is changed but. Lie
group structure and its dimension are conserved. It is well known that studying non—
degenerate structures is easier then the degenerate ones. So one represent a general Lie
group as semidirect product of semisimple and solvable groups and reduce the problem
of Lie groups classification to the classifications of semisimple and solvable groups. But,
while the classification of semisimple groups was established long ago there is no hepc
to find the classification of solvable groups [42). In general, a contracted group is a
semidirect product of its subgroups. In particular. a contraction of semisimple groups
gives non—semisimple ones. Therefore, the contraction method is a tool for studying of
non—semisimple groups starting from the well known semisimple (or simple) Lie groups.

The method of contractions (limit transitions) was extended later to other types of
groups and algebras. Graded contractions [43. 44) additionally conserve grading of Lie
algebra. Lie bialgebra contractions [3) conserve both Lie algebra structure and cocomr‘nu—
tater. Contractions of Hopf algebras (or quantum groups) are introduced in such a way
[8, 9] that in the limit 6 —> 0 new expressions for coproduct, ceunit and antipede appear
which satisfies Hopf algebra axioms. All this gives rise to the following generalization of
the notion of group contraction on contraction of algebraic structures [25].

Definition. Contraction of algebraic structure (film) is the map (a dependent on
parameter E

WE(A’13*)—>(N‘*I)= (l)

where (N, *’) is an algebraic structure of the same. type, which is isomorphic (1W, 1:) when
C 7E 0 and non—isomorphic when t = 0.

There is another approach [23] to the description of non—semisimple Lie groups (al-
gebras) and corresponding quantum groups based on their consideration over Pimenov
algebra Pn(i.) with nilpotent commutative generators. In this approach the motion groups
of constant curvature spaces (or Cayley Klein groups) are realized as matrix groups of
special form over Pn(t) and can be obtained from the simple classical orthogonal group
by substitution of its matrix elements for Pimenov algebra elements. It turns out that
such substitution coincides with the introduction of Wigner Inonii contraction parameter
6 [34). So our approach demonstrates that the existence of the corresponding structures
ever algebra Pn(r) is the mathematical base of the contraction method.

It should be noted that both approaches supplement each other and in the final anal—
ysis give the same results. Nilpotent generators are more suitable in the mathematical
consideration of contractions whereas the contraction parameter continuously tending to
zero more corresponds to physical intuition according to which a physical system contin-
uously changes its state and smoothly goes into its limit state.

It is well known in geometry (see. for example, review [58]) that there are 3“ different
geometries of dimension n. which admit the motion group of maximal order. R.l. Pimenov
suggested [48, 51) a unified axiomatic description of all 3” geometries of constant curvature
(or CayleyeKlein geometries) and demonstrated that all these geometries can be locally
simulated in some region of n—dirnension spherical space with named coordinates, which
can be real, imaginary and nilpotent ones. According to Erlanger programm by F. Klein
the main content in geometry is its motion group whereas the properties of transforming
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The method for achieving this goal is the method of transitions, which has clear
geometrical meaning, and is based on the introduction of a set of contraction parameters
j 2: (j1,...,j,,), each of them taking three values: a real unit, an imaginary unit and a
nilpotent unit.

The method of transitions between groups apart from being of interest for group theory
itself is of interest for theoretical physics too. If there is a group—theoretical description of
a physical system then the contraction of its symmetry group corresponds to some limit
case of the system under consideration. So the reformulation of the system description in
terms of the transition method and the subsequent physical interpretations of contraction
parameters j gives an opportunity to study different limit behaviours of the physical
system. An example of such approach is given for the Electroweak Model of elementary
particle interactions.

It is likely that developed formalism is an essential tool to construct ”general theory
of physical systems” according to which ”it is necessary to turn from group—invariant
study of a single physical theory in Kleir. unit-era: ..iiu:iir'.-:.; lit-1 FlZ-L'il'.5'il'_"t!:=1'3;='.'I-"t'.l by symmetry
group) to a simultaneous study of a set --*‘ limit riieezui iv: The: snug.- phrsical and geo—
metrical properties will be the invariant ;_'=rr=;':er='ia :~ "Jl all 5e? rnz' {Lit-raw and they should
be considered in the first place. Other i'iJ'-;1;-i-i".i.-_-s Will in" 1'el+-'-.'a:t uzilj.‘ in the particular
representatives and will be changed under limit transition from one theory to another”{59].

2 Dual Numbers and Pimenov Algebra
2.1 Dual numbers

Dual numbers were introduced by W.K. Clifford [10] as far back as in the XIX century.
They were used by AP. Kotel‘nikov [39] for constructing his theory of screws in three—
dimensional spaces of Euclid, Lobachevsky and Riemann, by BA. Rosenfeld [53, 54], for
description of non—Euclidean spaces, by RI. Pimenov [48, 49, 51] for axiomatic study
of Spaces with a constant curvature. Some applications of dual numbers in kinematics
can be found in the work by LM- Yaglom [57]. The applications of dual numbers in
geometry and it: [hr-erg." of grain: l't.'}'.i!'+'1.‘-it"fiiEliiifl'iltw' mirr- discussed by V.V. Kisil [36]. Fine
riist int-1mm: lJE‘il‘IEEI] tire quantum air-:1 r-lassir-al nit-i-izanics were investigated with the help
ui iiiu-il numbers lijT. iii. The ll"i.E_-'L'rl'_"-.' uni rim-IL unruly-«rs as number systems is exposed in
monographs by D.N. Zeiliger [60] and A811. Bloch [6]. Nevertheless, it is impossible to
say that dual numbers are well-known, so we start with their description.

Definition. By the associative algebra of rank n over the real numbers field R we
mean n—dimensional vector space over this field, on which the Operation of multiplication
is defined, associative a(bc) = (ab)c, distributive in respect to addition (a. + (3)0 2 ac + be
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and related with the multiplication of elements by real numbers as follows (ka)b = Mata) =
a(kb), where a, b, c are the elements of algebra; k is a real number. If there is such element
6 of algebra that for any element a of algebra the relations as 2 ea = a are valid, then
the element 6 is called a unit.

Definition. Dual numbers a. : (1060 + 0181, (lo, (11 E R are the elements of associative
algebra of rank 2 with the unit and the generators satisfying the following conditions:
(3% : 80, (3081 = 6180, (312 = 0.

This associative algebra is commutative and 60 is its unit. Therefore, further we shall
write 1 instead of 60 and denote generator 6,] by 1,1 (the Greek letter "'iOta”) and call it a
(purely) dual unit.

For a sum, a product and a quotient of dual numbers a and b we have

a + b = (a0 +(,1G»1)+(bo+ L151) = (10+ be + Ufa] + ()1):

(lb = ((10 + L1a1)(b0 + I1b1) : (tuba + {1((11b0 + Gobl),

a _ a0 +£1.31] _ an (1.1 b]
b _ b0+z.,b1 _ b0 ”1 b0 “02%

Division can not always be carried out. Purely dual numbers am do not have an inverse
element. Therefore dual numbers do not form a number field. As an algebraic structure
they perform a ring. Dual numbers are equal a = b, if their real parts are equal (10 z: [)0
and their purely dual parts are equal a, :2 b1. Thus. the equation (1131 = bu] has the
unique solution (11 2 b1 for (11, b1 7E 0. This fact can be written formally as i 1/;,] = 1 and
this is how the last relation has to be interpreted, because division 1 / L1 is not defined.

Functions of dual variable .. = :50 + $131 are defined by their Taylor expansion

alpha)
fit”) 2 fffiel + 115131 '0 (3)

.r(,

where all terms with coefficients I? z? . . . are omitted. In particular, for dual .r we have

sin .r.‘ : sinrru + (pr, cos :13”. sin(t|.r1) : um]

cosxr = cos 1:0 — LII} I sine-0, cos(i,..r1) = l. (*1)
According to (3), the difference of two functions of dual variable can be presented as

f(.’r) — h(;r;) = f(:ifn) — }£(.L‘0) + (1:131 M — M . (5)33:0 darn

therefole, if real parts f(:r{,) and (1(130) of functions coincide, then functions f(L) and h,(;r;)
also coincide. Using this fact, Dh. Zeiliger shows [60] that in the domain of dual numbers
all identities of algebra and trigonometry, all theorems of differential and integral calculus
remain valid. In particular, the derivative of a function of a dual variable over a dual
val iahle can be found as

(ifffi) _ aff-Te) , 821((3‘0)
{if}: — _——0;L‘[] + £11,] —'—0r(2) . (6)



2.2 Pimenov algebra
L111 us 13111111111141 111111' 11 1111_1r1'_-' gent-1‘11. 1111:1111 111:1. ‘1 ssh-r111 1111p::11*--~:r_1 111111: 1'11'~-'|:;'-.l-;1:11 11:11:
g1.':111'.=1r.111's.1'11'111-25111-211111'11 1111:13111‘11 11:11.1: it 11:11:. :l:'.11'r11r.:'-1 1111 11-111 1:}.1 ;;11:;_.. 1,1,1. -,.
11311-2? 1115112111“: 111' 11111-11 111111“ :1. 11.! P11111j=1111r 2111.1: 7111: 111111 1.11-11- :11?:'11.:11:1'111'1 121-. 11.1. 7'11 111111-3111
1111;111:1311 11111111111111.111-‘17- 111111.11 F:1'11'l USE-‘1': 1111:111 11:11‘ 1111:- 21111111:-::: 11211111111711; - 1:11.111"; -1'11.'-:_ ,1; 3,119,131;
11'11‘. 11 13111115111111 1‘111‘1'1-11111'1“. Then-11111.:- 11'1'- 11:11-.-:- 1.11111 11111111.:1r11 :15 911111111111: 11.21.:1111'11. .1111'1 111-111111-
'1 F15 _ “:11.

Definition. Pimenov algebra Pn(1) is an associativealgebra with a unit and n nilpo—
tent generators 11,12,...,1n with pr0perties: 1,1,1? = 1,011. 7é 0, k yé p, 1E. : 0, 39,1: 2
1, 2, . . . ,n.

Any element of Pn(1) is a linear combination of monomials 11:111., . . .11“, 191 < 132 <
. .. <: k}, which together with a unit element. make a basis in algebra as in a linear space
of dimension 2": n n

CL = (10 + Z Z 111;, krék1H-Lkr- (7)
T211613, 5151.2]

This notation becomes unique, if we put an additional requirement 1;] < 192 < . . . < k, or
condition of symmetry of coefficients at, ”1,, in respect to indices k1, . . . 113,. Two elements

1 III I‘ll- 11:LTI'JII')I".E P lr' II lIII:“||'I;‘-"rllll' hill ll- [zlf'lll I'I .-'lql-l.-'lrI'I-I"": 'I“: +11I'1 (“Ir-fl"; 'I'Ilfiiil' 1'1". 'F'r' 1'. 5-1". [I'I'HLHI ' r"-'l. ' .n. ~_a:.,l La 1|; ‘2' .' - 11-” -.u ... _ —— a -. .'.._J... -., I..-_ 1].. ':._.1.. ""II‘. 1.-....... -._ .II I 1-. - 'lr' 1.1... .. .-
. ll 1~-- :I- l- n.1-I.- 1-:- E . r---'-|..--a. . I l—I-lu-r—I.-_..I --l- 5.- --..i- -- ---pl--.—_1:111 = "11.11 '1 1 .131 = "1:1 .,1'..'.- 51:": 1.1 1.-;=_- 1.11.1111 1'1 1.11:1;1 .11111.11r'1.‘:-. 11111111111'1111111'14 11: ' 1.] --'---lT,- 1-11 ... 1'.- . _4.. .__. ._ -_ F - .__ :'.:1_. _|,_,.,...',,1.. .: ,_,._.| _._,-_1_ _-,1‘11.'lllt_'.l.LLE 1.11. {1121111711111 P3111.) '_':-1 PIfi‘HI'fih'Jfl 11- 1111‘ 5,11..-',-1h11.1_;.1|_1 1:. I .-1-,_'.,1'1-.-:1-. ;|_=1_1_ 12 2111111.. 1‘1'1_::.' I L;
I II I - — — I:I " r _ - II'I — - I 1'1' ' a‘.‘.' I . ‘H I- l- — '.'r_5111111112 11111113212. 11111.11JEL'111 1.111t 11;..- .5. —. _|, r- _ l, ;', , , , . “I 1'1 11 11,. - . 1.11 ._1_., 1-. .— ..

as 111." 111.1 5:111:11 expressions arr.- 1'11711 111311111111.
Here it is 11r--r1rnr11‘i.-;-11:' 1.11 17111111111117- P 11:11:11111': algebra a with Grassmann algebra.

F2,,(e), i.e. ass1.'11:'-i:-.1.1'11'1:: sigehrs with :1 11:15.1 . 21'1'11-1r13 a set of nilpotent generators e1, 62, . . . , 62,1,
0 exhibits the 1:11'111:11=1‘1.11'-15 :13— 5111111 1111'1:111111'.111=.'511' 1,16,, = —e,,ek 7£ 0, p 74 is, p.16 2 1, . . . ,271.
Any element f of Grassmann algebra F2n(€) can be expressed 15] as

271 2n

ffél = ffol '1' Z Z fin 11,611 - ~611- (8)
r=l k1, ,kr:l

The representation is unique, if one requires k1 < k2 < . . . < k} or puts on condition of
skew~symmetry fk, a in reSpect to indices k1, . . . , A}. If in the expansion (8) only the
terms with an even r differ from zero, then the element f is called even in respect to the
set. of canonical generators 6k, if in the expansion (8) only the terms with an odd r differ
from zero, then f is called an odd element. As a linear space, Grassmann algebra splits
into even F3” and odd 1"?“ subspaces: F2n(€) = Pg“ + T‘én, where F3” is not only subspace,
but also a subalgebra.

Let 11s consider nonzero products 6211:4621“ k = 1,2,. . . , n of the generators of Grass-
mann algebra P2,,(e). It is easy to see that these products possess the same properties as
generators 1;, = 621,462,“ k. = 1,2,. . . , n. Thus Pimenov algebra P,,(t) is a subalgebra of
the even part T3,, of Grassmann algebra P211116)- It is worth mentioning that even products
of Grassmannian anticommuting generators are also called para—Grassniannian variables.
The latter are employed for classical and quantum descriptions of massive and massless
particlies with an integer spin [11, 14, 15] and in theory of strings [61].
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3 Cayley—Klein Orthogonal Groups and Algebras

3.1 Three fundamental geometries on a line

Let us introduce elliptic geometry on a line. Let us consider a circle S} = {$52 + 3:”{2 = 1}
on the Euclid plane R2. The rotations :t" : g(<,9*);r*, i.e.

’ . 1 A 1' .$5, = :55 cos 9* ~ 1151 sin 50*,
:e = :17; sm 99* + If cos 90*

of group 30(2) bring the circle into itself. Let us identify diametrically the opposite
points of the circle and introduce an internal coordinate w" = 31/113. Then the following
transformations correspond to the rotations (9) in R2 for 50‘ E (—Tr/Q, 7r/2):

: 'UJl‘ — 0f

1 + Ufa“
4:w (1" = tan 90*, a” E R. (10)

These transformations make a group of translations (motions) G 1 of an elliptic line with
the rule of composition

,. (1" + (1" rcr = ——1;. (11)
1 — (1*(11

Let us consider the representation of the group 80(2) in the space of differentiable
functions on R2, defined by the left shifts

T(9(<e*))f(:r*) = f(9“(99‘)$")- C12)
The generator of the representation

Xiflf) 2__ lie-=0: {13)

corresponding to the transformation (9), can be easily found:

1‘ ('3$ t * tX (a: ,331)=3: ——:r —.
0 103:5 003:; (14)

For the representation of group G] by the left shifts in space of differentiable functions on
elliptic line the generator Z*, corresponding to the transformation (10), can be written as

x 4: n: aZ (w ) = (1 +w 6%. (15)

It is worth mentioning that matrix generator

*_ 0 —1
Y"(10) (16)

corresponds to rotations 9(99“) 6 80(2).
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The transformation of Euclidean plane R2, consisting of multiplication of Cartesiancoordinate ml by parameter j], namely

$2 R2 ——> R2<jl)

@«Ta -‘= $01 (1517i = j1$11 (17)
where jl = 1, 1.1,1', brings R2 into plane R201); the geometry of the latter is defined bymetrics $201) 2 :53 + jfazf. It is easy to see that R201 : 2') is Minkowski plane andRgt'jl 2 L1) is Galilean plane.

Our main idea is that the transformation of geometries (17") induces the transformationof the corresponding motion groups and their algebras. Let us show how to derive thesetransformations.
[11-1" 1i1'_-ii11i1'11'.111 11f 1:11.113“ r1.11.11.:.1_1:1.'-1 11': 1:11 'ii1'1'1'.'1.11 :'..-!:1 11 1'13 1.4 -l1'--'1-:'111_ 1 '1 I111 1'1-.1=1

' I I 1 D - I I _.' I I. . - - - -- -- ' r--- l- -. - I - . . .
_'1' 1 ”it'll-i. '1':- Illiiil Hiltllff Hill” :THHH-iUTlLi-ai EUR | I . ' r'ii'lzr :T.I|.l J'-1 . .1' _ l.'.".. 1'|__f;_i*.'."~ -l'_'-:' .l '_-.-_-_I.=1.__--'_- .I

' l ' '_ ' - . , :.:...' .' . ,. ..;....11.1'-1'--11'1hn: 1.111T111._-r11l1'111-.' '— ,1 ..' 1!:1: 1-'_.H':1'1:.a:1-: 1:111.1 .1111 H11 1:1..1111 1.111.1'1- 1-.......... 1112111.1113'l1"-1-. 1:1.‘111'1r1.'1'1'11'.~: 11nd 111.1 1.111;]. The 1.21:__~.=I-1:'1'11-."1! 111111::'j111--- .11'11 1:}1-:;.1T1'-1i 111' 13.1 .111;_.
1.1'1rzl11'1l1. whim-1:1 asterisk Khan-£1111; 111- 1.'r1.-'11'111:=.111.1.--1 111'-

- ' ' ' ' ' 5.‘ _.: _.' .. .;.'.."'._‘__'.1'-'."‘- F-lt‘l.ltll'l"il‘lj'1' Fir Tilt} ITiFl'ITt‘Ei TT'FITiEili..-J'111£'L?'1I".1'Il E' ill." fliill :21'1L..‘1-'!1_'31'_' -11'-1__ 11111;:- 1
r _ I1. r.

. .s121'-1'-_1'_11i 1"1'11'11'1L11.'.1'.1 l1": :1 ', 11:1- 1.111 1!:1 :'-11'.'11'-'111.~' 11'. the 11111111" {1.1”}: "
I . . ‘ x. r . a. '330 : 5110 (01‘3J1‘10 _ 15131511131991

.173 = 550% sinjlcp + $1 cosyp'p,

1'1."11i'.'i'1 snake _g_.11..11_1['1 31:1'1j2:_1-J. .—‘1_1“1.'1::-r1'.'J'i.:1u 111 111 11-.1:11-__ — 1. H111 — 1 ' 33.11;_ _ _ 11 . . -.
H111 lr1'11'111f1.1r1:1:-=1.1E11111? 1'_1fl-___T,r1.'1111'1 51-311121] 11'1 'i'i:':|1'l1:-1.11'. 11':111;1l’1_1r111-:.'51.1.1114 .'-.11-l 11.1' 1 .1 r1111" 1111111111 .5'1!'_.l';-’: 1"1 a113- L1'_1r1-'1;L:1'. 1'r111'1rzl'1-1'11.1-:11.11.5. if 1"1'1 i11 111:1}1';'_'1r1'!11':-1:. 1'15. 111111;- 111.1
21:; .:1 spatial .'_'111:_1r1'_lin111r1- Th1: 111.111.1121: 1.11' .l-1i'111111'1_1:1_ *i'-1'_-,1;- 1.:' Th1: ;1'._'::_;-.2 ;::-;'.-1'.'.1'.::_1..'111- __ .1
i-1,f:=1f—:.-'2.:r1f1'111111:.11'121'i1111— R

liar.- rorntir‘ris :.i.-:'1': ].':rc:11:11'1.'12 the 1".1'1'!1 511IH1- 1 L '1; —'— -'E'..1--' : l i 11'- ib: 1. :11 5-;.|;,;-_.
Rgi .11.}. rln- i1l1.'11tifi1111t11'.1:'1 1.15 ri1111r11'11'i1'1-11L1' 1.1111'11111111' _:1-.'1.-1:-'.'~' gnu-11 11.11- ;1111111' .~1"-1_1_;.-_- . 1 {.111-
J; _. '11 1.111] 1.111 1-17111111-1'1111'1 1:1:'1111j11.11'.1-:1;. 1.11'1111- 1111-h1'1'1'.‘ 1."11'1:1-.. 1'.1'1'1.~'.~.1.1;-':-'. 11.511192. 11-1 1'1-11:1‘-'5'1, : l. _1'J — HI. $1.1: 11 2 11.1 Ill-1' i:1!1.;'1::.'.i1-121.'.11'1'.ir.1-.11' 11:: 'l'11'11111'.‘l1.'- 11'1. 1!'11'-':--"1111.'
1111:1c1s11'1'111'11'1' 1.11 1.111: r1111".- 1.':11.-" —. 1111' 51.1%111111111'11311'1: !.IJ': 1111131 1-:1111-.'1'-1.91:11_ '1':: 1: : 1'11'"
111'- :1'11 1hr.- l'r11'11111l1‘1 i1:1r Lra:1.=1l:?11'.1'.1n.~. 111:; 1'1 15:11:

, w—a 1=————. a=_—tan" ER, 191+ji2ura' 31 J“; ( )

11111.11: male: 1:.1'111111- {21111;}. the group of motions of the elliptic line 51 (1) for 11 = 1,
the. 11:.-11':1|11.1hr.' 22:11? 51111.1 1 [1..-r _.11 = 1,1. and the hyperbolic line 31(2') for j] = 2'.

3:1 the 11111111311 of 1_'li'rf1'-11'1:-'111t11:1.L1Je functions 011 R301) the generator X($) of the representa—
ti111; 1.1.l' 1';1,1'1'.1L1r1 .9'131‘1'22‘11; 1 112' defined by the relation (13), where all quantities are taken with—
out .1111.1¥11111.;11 i'nricr th1_- traits-51111113L11'1I1 (17) derivative (Ll/dip" turns jf1(d/drp), therefore.
to 031111'111 1i1'ri1'.--t11.'1'.- 11'111'; 1111.: 1.113111351111311“ X“ must be multiplied by jl, i.e. the generators
X*(-.‘.1.r.1 11111;! X11: '1'] 111T- intern-1.111113} hf: the transformation

a. 8
X(~'E) : l1(¢x*) : 3123316—3;0 — I05;- (20)
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Figure 1: The circles of unit radius on the planes R2(j1)

The generator Z is transformed according to the same rule:

8
Z(w)=j1Z*(¢w*)=(1 + ji102)—-8w

The transformation rule for the matrix generator of the rotation Y is as follows:

Y: "Y*(—>)=j 0 ‘jl = 0 fig (22). .11 1 3-1—1 0 1 0 '

Expressions (18) (22) describe Gayle}r Klein space and group in the traditional way
with the help of real coordinates, generators and so 011. Such approach was used in
[23). There is another way of describing Cayley Klein spaces with the help of the named
(ie. having one of names: real: nilpotent. imaginary) coordinates of the form jlxl,
when under transformation (17) and the substitution 093* — jlnp in (9) both sides of the
second equation are not multiplied by jf 1. Then the rotations on the plane R201) with
coordinates 3C0, jlml are written in the form

IE] _ 6053-159 — 3111.719? 550 (23)' [‘1’I ‘ n- .. .n u 0 /. - " .31.1.1 smjw, cos/199 31M

These rotations form group 80(2; j. ), whose matrix generator is as follows

- - 0 —j1Y = 7 Y“ = . . 2'1
1 ( .71 0 > ( )

The symbol 3” instead of Y"(—>) in (22) means that the generator Y“ (16) is not trans—
formed. It is the the second approach that we shall use in this book. One of its advantages
is that for j] : L1 the rotation matrix (23) from group 80(2; t1)

1 —£1L;7 r
( i199 1): (20)

depend on group parameter up, whereas for j] —+ 0 it is equal to the unit matrix.
The group of motions G 1(j 1) of one-dimensional CayleyHKlein space Sl(j1) is closely

connected with rotation group S()(2;j1) in space R201). Therefore, under Cayley—Klein
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spite of its simplicity, enables us to describe all Cayleyi Klein groups being aware of only
classical orthogonal ones.

3.2 Nine Cayley—Klein groups
Map-ping

(£5555 = $0: 95119; = 313311 @513; = $332332, (26)
where j = (jl, jg.)I jl = 1, r1, 3', jg : 1, (223', turns three—dimensional Euclidean space into
spaces R3(j), on the spheres (or connected components of spheres) of which

82(2) = {2:3 + Jim? +jij§x3 = 1} (2?)
nine geometries of Cayley—Klein planes are realized. The interrelation of the geometries
and values of parameters 3' is clear from Fig. 2.

Rotation angle to” in the coordinate plane {xfl 3:3}, 7* < 31 r, 3 = 0, 112: is determined
by the ratio ass/L. and under the mapping (26) is transformed as 99:5 —> 991,30", 3), where

maxik

(at): H .7}, (k,k)=1. (28)
£=1nin(i,k)+l

Therefore for one-parametric rotations in the plane {In :55} of space R3(j) the following
relations are valid

(0, i")9:fr = 33,.(0, 7") cos (90,3(T, 3)) — 1:3(0, 3) sin (991—5-(7‘: 3)) ,

(O, 3):i:"S = :rr(0, r) sin(cprs(r, 3)) + 333(0, 3) cos(cp,.3(r, 3)) (29)
The rest of the coordinates is not changed as; = mp, p 75 r, 3.

It is easy to find the matrix generators of the rotations (29)

0 —31 0 0 0 0
Y01 =11Yrfi : jl 0 'l ~ 1/12 2351/13-- 0 0 —.72

0 0 l 0 jg U

0 0 *1172
Y02 =j1f2Kfi = 0 0 0 - (30)

3135 0 0
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Figure 2: Cayleyl- Klein planes. The fibers are shown by thick lines and the light cone
in (1 + 1) kinematics are shown by dashed lines. Internal coordinates take values r1 2
331/330: T2 = $2/l'0
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Tbs-7' make 5-1 F,.'.':filS of Lie algebra 80(3; 3') The rule of transformations for the generatorsail l'E‘pl'EfiFtfiilFiEinfill of group 50(3; j ) in the space of differentiable functions on R30) by leftsizfis Ci_l'i1'll'.'ll'lt'.‘:.~' with the rule of transformations for parameters can, and can be written as
r-tilllm's i5. 3th:

Xmm = (a smear). (31)
and the generators themselves as

. 8 ('9e-(CC) : (739)27351: ‘ 33E:- (32)

Knowing the generators, one can evaluate their commutators. But we shall derive
the commutators from the commutation relations of algebra 50(3). Let us introduce new
notations for the generators X31 : H‘, 5‘2 = P“, X32 : K“. As it is well—known, the
commutators of Lie algebra 30(3) can be written as follows:

[H*, P] = K“, [13: K“) = H*, [H*, 14*] : —P*. (33)
Generators of algebra 30(3) are transformed according to the rule H z j] H*,P =
jln", K = 332.8”, i.e. H“ = iH, P“ = jfljg—FP, K“ : j2—1K. Substituting these
expressions in (33) and multiplying each commutator by a factor, equal to the denomina—
tor on the left side of each equation, i.e. the first — by jfjg, the second —— by mg, and
the third — by j1j2, we get commutators of algebra Lie for group 30(3, 3):

[H.P]=.2'?K. [P.KJ=.2‘§H.. [H.KJ=—P. (34)
Cayley Klein spaces 82(3) (or Spaces of constant curvature) for jl = 1, a], i, jg 2 L2, 21

can serve as models of kinematics, i.e. space *time geometries. In this case internal
coordinate t = :rl/xo can be interpreted as the temporal axis, and internal coordinate
"r = reg/:50 as the spatial one. Then H is the generator of the temporal shift, P is
the generator of the spatial shift, and K is the generator of Galilean transformation for
3'2 : (,2 or Lorentz transformation for jg : i. The semispherical group SO(3;1,52) (or
Newton group) is isomorphic to the cylindrical group, which describes movement of a
point on a cylindrical surface. This group is interpreted as the E(2)—like little group for
massless particles [35].

The final relations should not involve division by a nilpotent number. This requirement
suggests the way of finding the rule of transformations for algebraic constructions Let
r:11 ;=:.igel':rair: LELZt-‘Jitii'n' Fij‘ — Q'Ll] ..... 311;; he. F‘I‘v-TI'Ji'!,":.‘:H'-_'r.l 31'] terms sf gags-”1553]” ,3: _ .1.-
t=.'i1ii a irritant;- ruin Hf Trunsfrirniaiiz-Lun I:I:‘§!'1' ::;..!'!.iniiig r.:'. for e:«:a-';I11g.ni.-.-. .‘l' = .F-_J.i .--'i. -
.,.-";_..-l,‘_, when; m-r-ffirir-L-nlb .F,. ..F,-_ n51- :-.-‘JEIJI‘ prujiciuu is of pai:';'=.'.'iir_'r«:11:a :irziml. :r $111; .11 T
..F1 331-5. . . . ”“1; = .J'Jlsli. in lllf' I'I. ifir'li'll .1',_J" get Ila furinula {2}" .F"‘_'-l_ . . .. F. E. 1..
int-.ilving, in general, half-Ir'rrninai'r- rec;-r-.'-s:-.:3...-11.~'. whit-1'; ,zs:-'-_r:-'1.mr.~!~rs ,n -f"'_':"i' -:-r;u'a. " 4
nilpotent units. For this reason the last formula should be multiplied by such minimal
coefficient J that the final formula would not involve indeterminate expressions:

Q = .]Q*(J,“A1,...,J;1Ak). (:55)
Then (35) is the rule of transformation for quantity Q under mapping 6)
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Such method1 stemmed out directly from the definition of coincidence of elements of
Pimenov algebra Pn(t) turns out to be very useful and further will be widely employed.
The rule of transformation (35) for algebraic quantity Q‘ derived from the requirement of
absence of indeterminate expressions for nilpotent values of paran'ieters j‘ is automatically
satisfied for imaginary values of these parameters.

Let us exemplify this rule by Casimir operator. The only Casimir operator for algebra
30(3) is

C;(H*, . . .) = H“2 + I“2 + A”. (36)
Substituting H* = jl, P* : jfljg‘lP, K" 2 312—1i in (36), we get.

CSUIIHa - - .) = 3.72112 + 1:21:21”)? + EX? (37)
The most singular factor for j] = t] and jg : L2 is coefficient (mg-2 of the term P2.
Multiplying both sides of the equation (37) by (j1j2)2, we get rid of the indeterminate
expressions and derive the rule of transformation and Casimir operator for algebra 50(3; j):

02(j:H—.---) =jtj§C§<jf1HWJ =j§H2 + P2 +31n- (38)
As it is known, Casimir operator for two dimensional Galilean algebra 50(3;t1. 12.) is
Cg(i.1,tg) = P2 (see, for example: [40]): for Poincare algebra 30(3;t1,i) is 001,2) =
P2 — HQ1 for algebra 30(3; i; 1) : 30(2, 1) is 02(1); 1) = H2 + P2 — K2 (see [15]). All these
Casimir operators can be obtained from (38) for the corresponding values of parameters
3.

The matrix generators (30) make the basis of fundamental representation of Lie algebra
50(3; 3) of group 50(3: 3). Using exponential mapping one can put in correspondence to
the general element

0 ‘31 m —31J2T'2
Vinyl) 2 T1Y01 + T2Ye2 + 733/12 : j1?‘1 0 *jg?’3 (39)

3112M he; 0
of algebra 30(3; j) the finite rotation g(r; j) = exp Y(r;.j):

, , . sin?" , , 1— COST9(m) = ECOSU‘HHI‘U) +1"(r,J)-—2—,r r
,-2 2 - -2 . , ,J2T3 —31]2?2F3 JIJ2F1T3

_’ ' , . . ,' .' .Y (1‘33) = —]19§7‘2?‘3 Jifi'r'g “312327'1’F2
JIJ2TiT'3 —i2?‘1?”2 jib"?

7-2 = fir? + firs-3 +2153 (40)
acting on vector (3:03 jlflljlIg)’: E R3(j) with the named components

The disadvantage of the general parametrization (39), (40) is the complexity of the
composition rule for parameters r under group multiplication. F.I. Fedorov [12] has pro
posed parametrization of rotation group S0(3) for which the group composition law is es-
pecially simple. It turns out that. it is possible to construct analogues of such parametriza-
tion for all groups SO(3;j) [21]. The matrix of the finite rotations of group SO(3;j) can
be written as follows

r. 1 +60) (2*: :1. +c*2(j)C;' 2—:1+2."'—_l
9( J) 1—012) 1+c2(2)
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-2 -2 -2.0 ‘cs 113262
0*(3') = 03 0 “3301

—C2 C1 0

(22(1) = 13c? + jfjécé + jfcfi, (41)
and parameters c” correspond to matrix ,g(c”; j) = g(c; j)g(c’; 3'). These parameters can
be expressed in terms of c and c’ as follows

If : C + C, + [C3 Crij. (£12)
1 — (c, 0’),-

Here the scalar product of vectors C and c’ is given by (41), and the vector product is
given by

[C, C’lj : (jfici Gill: [(3, C129 jglcv (313): (43)
where [c, c"],tc are components of usual vector product in R3.

EP. Wigner and E. Inonii [34] have introduced the operation of contraction (limit
transition) of groups, algebras and their representations. Under this operation the gener-
ators of the initial group (algebra) undergo transformation, depending on a parameter 6,
so that for e 7é 0 this transformation is non-singular and for e —> 0 it becomes singular. If
the limits of the transformed generators exist for c ——> 0, then they are the generators of a
new (contracted) group (algebra), non isomorphic to the initial one. It is worth mention-
ing that the transformation (31) of the generators of algebra 30(3) for the nilpotent values
of parameters 3' is W'igner—lnonii contraction. Really, X:S(qba:*) is the singularly trans—
formed generator of initial algebra 30(3). the product (7", 5) plays the role of parameter e,
tending to zero, and the resulted generators Xr,(x) are the generators of the contracted
algebra 50(3;j).

Comparing the rule of transformation for generators (31) and the expression (39) for
a general element of algebra 50(3), we find that for the imaginary values of parameters
3' some of the real group parameters rk become imaginary, i.e. they are analytically
continued from the field of real numbers to the field of complex numbers. In this case
orthogonal group 50(3) is transformed into pseudoorthogonal group S0(p, q), p + q : 3,
When parameters j take nilpotent values, real group parameters rk become elements of
Pimenov algebra P(z.) of the special form and we get the contraction of group 30(3). Thus,
from the point of View of the group transformation under mapping 0, both operations
analytical continuation of groups and contraction of groups different at first sight have
the same nature: the continuation of real group parameters to the complex numbers field
or to Pimenov algebra P(L).

3.3 Extension to higher dimensions
Cayleyeeklein geometries of the dimension n are realized on spheres

sue) = {a as) = 2:3 + in). mi = 1} (M)
k=l

in the spaces Rn+1(j ) resulting from Euclidean space Rn“ under mapping

¢3R~n+1—> Rn+1fjl
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(’9c = :60, (1556; = (0, (6)1}, k = 1.2.. .. ,n, (’15)
where j = (_j1,...,jn.)s j}: = Lani, k : 1,2,...,n. If all parameters are equal to one
j), = 1, then (i) is identical mapping, if all or some parameters are imaginary jg, = '2'. and
the other are equal to 1, then we obtain pseudoeuclidean spaces of different signature.
The space R,,+1(j) is called non-fiber, if no of the parameters 3'1,” .,j,, take nilpotent
value.

Definition. The space Rn+1(j) is called ((61, k2, . . . , lad-fiber space, if 1 g k1 < #62 <
< A3,, 3 n and jig, = Lk,,...,jkp = tkp and other ji, =1,il.
These fiberings are trivial [7] and can be characterized by a set of consequently nested

projections pm, pm, . . . ,prp, where for pm the base is the subspace, spanned over the basis
vector {$0. :51, . . . , :rk,_1}, and the fiber is the subspace, spanned over (55),, , “1+1, . . ..r,,}:_
for pm the base is the subspace {:rk,,:i:k,+1, 311.24}, and the fiber is the subspace
{atk,,;rk1+1, . . . ,rrn} and so on.

From the mathematical point of view the fibering in the space Rn+1(j) is trivial,
i.e. its global and local structures are the same. From the physical point of view the
fibering gives an opportunity to model quantities of different physical dimensions. For
example, in Galilean space, which is realized on the sphere S4(t1, L2, 1, 1), there are time
t = $1, [t] 2 sec and space R3 = {332,333,:r4}, [risk] 2 sm, 1: = 2, 3,4 variables.

Definition. Group 80(n + 1; j) consists of all the transformations of the space
R,,+1(j) with unit determinant, keeping invariant the quadratic form (44).

The totality of all possible values of parameters j gives 3" different Cayley Klein spaces
R7,“ (3') and geometries 871(3). It is customary to identify the spaces (and their group of
motions), if their metrics have the same signature, i.e., for example, space R3(1, 27) with
metric 3:3 +33% —:r.‘22 and space R3(i, 3') with metric 1r3~zr112+27§ But we have fixed Cartesian
coordinate axes in R,+1(j) ascribing to them fixed numbers, and for this reason in our case
spaces R3(1, i) and R3(z’,‘i) (and, correspondingly groups 30(3; 1, 7.) and 30(3,i,i)] are
different. Groups 80(3, 1, ’2) E 30(2, 1) and 30(3; 2', 1) E 80(1, 2) are also considered to
be different. This was made for convenience of applications of method being developed.

Really, the application of some mathematical formalism in a concrete science means
first of all substantial interpretation of base mathematical constructions. For example,
if we interpret in space R.1(i,1,1) with metric $3 — x? — mg — 35% the first Cartesian
coordinate 2:0 as the time axis and the other 351,332,233 as the space axes, then we get
relativistic kinematic (space-time model). In this example the substantial interpretation
of coordinates is the numbers of Cartesian coordinate axes: axis number one, axis number
two etc.

The rotations in the two—dimensional plane {ashes}, the rule of transformation for
representation generators and the generators themselves are given, correspondingly; by
(29), (31), (32), where r, s = 0, 1, . . . ,n, 'r < s. For the non—zero elements of the matrix
generators of rotations the following relations are valid: (1%)” : — (Yrs),.s = (r, 3). The
commutation relations for Lie algebra 30(7), + 1; j) can be most simply derived from the
commutators of algebra 30(n + 1). as it has been done in section 3.2. The nondzero
commutators are

'2
(T1181) X3132: T1: T21 31‘< 82:

' 2r252. - (T2332) az, T1 < 7‘2, $1 = 32, (46)
—X1-,52, T] <T2=Sl <82.
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Algebra so(n + 1) has [(71 + 1)/2] independent Casimir ope1ators, where [3:] is the
integer part of a number at. As it is known4[4] for even 71 ——2k Casimil operators are
given by

'n.

C;p(X:S) = Z X3102Xg2a3 ' ' X;2pa11 (47)
01,..,ap:0

where p = 1,2,... ,kt. For odd n = 2k + l the Operator
Ti

0::(X:S) = Z Elflla?» fl-n X31a2X53a4 ' ' ' aan+11 (’18)
a] , 10-11.:0

where 6a,, an is a completely antisymmetric unit tensor, must be added to the operators
(4?).

Casimir operators 0;, can be defined in another way [13] as a sum of principal mi—
nors of order 2p for antisymmetric matrix A, composed of generators s, i.e. (A)TS
Xi}, (14)” = —X;S. To obtain Casimir operators of algebra 30(71. + 1; 3) we use the method
of section 3.2. 'We find X; = (r,3)‘1XT3 from (31) and substitute in (47). The most
singular coefficient (0,n)‘2p is that of the term Xeao . . .Xno in (47). To eliminate it
in the minimal manner we multiply ”5",, by (0, r021”. Thus, the rule of transformation for
Casimir operators (72,, is

Cape; X”) = (0, nrpéaur, aria—.3), (49)
and Casimir operators themselves turn out to be

71 2p

02P(.j) : Z (01 n’)2p 11(73): 81))—1*Xra|(12 ' ' ' Xagpa] 1 (50)
(11.. ,a2p:0 1;:1

where 7“,, = min(a,,,av+1), 31, = max(a,,,av+1), v = 1,2,..-,2p — 1, r2}, : Il‘liIlWiaa-zp),
52,, = max(a1, (12p). /

For Operators 02],, and Ci, the expression without singular terms can be obtained, mul—
tiplying them by factor q, equal to the least common denominator of coefficients of terms,
arising after the substitution of generators X for X*. This least common denominator
can be found by induction [19]. We restrict ourselves with the final expressions for the
rule of transformations for these Casimir operators:

Tl—P‘l’l

02p(j; Xr3)—_ (111 jTQrInjfia+l H j21))2p(*)(f‘5(7'15)_1)3
"i=1 i:p

p=l,2,...,k,

(- +1)/2 (Tl—W 1
0:1(j1XT-9) : j(;1+])/2 H 3.33.: m+l Cn*(XT5(T7 8)— ) (51)

771:]

Operator 0210(3) (or C’(j)) commutes with all generators X” of algebra 50(11. + 1; j)
Really, evaluating zero commutator [0530, Xfis], we get the same terms with the opposite
signs. Under the transformations (31), (49) both terms are multiplied by the same corn-
bination of parameters, which is a product of even powers of parameters. Therefore, both

64



terms either change their Sign, or vanish. or do not change their sign, but in all cases
their sum is equal to zero. Moreoven operators 021,0) for p = 1: 2, . . .,k are linearly
independent because they consist of the different powers of generators X”.

The next question to be cleared up is as follows: do [(n + 1) /2] Casimir operators (51)
exhaust all the invariant operators of algebra 50(7). + 1; j)? The answer is given by the
following theorem.

Theorem. For any set of values of parameters 3' the number of invariant operators of
algebra 30(n + 1;j) is [(n +1)/2].

The proof is given in [23]. Thus. all invariant operators of algebra 500.7? + 1;j) are
polynomial and are given by (51).

4 Cayley—Klein Unitary Groups and Algebras

4.1 Definitions, generators, commutators
Special unitary groups SU(n —I— 1:_ j) are connected with complex Cayley Klein spaces
Cn+1(]) which come out from (11+ 1)-dimensional complex space CM] under the mapping

(DI Cn—g—l “'7" Cn+1(j)

(15:5: 36: c525,: = (0. kk, k =1,2,...,n, (52)

where 25, 2,: E Cu“, 20, zi. E Cn+1(j) are complex Cartesian coordinates; j : (jl, . . . .31”),
each of parameters jk takes three values: jk = 1:14“?- Quadratic form (2*, :s‘) : 221:0 lzglg
of the space Cn+1 turns into quadratic form

2 + Z“): l"12%|? (53)..be

1/2of the Space Cn+1(j) under the mapping (52). Here :k| = (33% + yg) is absolute value
(modulus) of complex number 2;. 2 33k + jyt. and z is complex vector: z 2 (20, .21, . . . , 2,”)

Definition of complex fiber space is similar to the real fiber space in section 3.3.
Definition. Group 8U (a + 1; 3') consists of all transformations of Space Cn+1Ul with

unit determinant, keeping invariant the quadratic form (53).
In the (A11, k2. . . . , I‘m-fiber space Cu“ (j) we have p+1 quadratic forms, which remains

invariant under transformations of group SU (n + 1;.3'). Under transformations of group
SU(n + 1;.9'). which do not affect coordinates :50, :51, . . . , Ski—1: the form

k,+1—1
(ZtZ)-9+1 : Z “CMQVIZGIQ, (5’1)

a:ks

where s = 0, 1, . . . , p, k0 = 0, remains invariant. For 5 = p the summation over 0. goes up
to n.

The mapping (52) induces the transition of classical group SU(n + 1) into group
SU(n—l— 1; j), correspondingly, of algebra su(n+1) into algebra su(n+1; j). All (n+1)2—1
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[Altmi q) : 6171131421; .— 6kq’m? (55)

where 6m? is Kronecker symbol. Independent Hermitian generators of algebra 511(1'1 + 1)
are given by the equations

1
Qrs : :(A'; + 14:“) Lats : 504;. _' 14:3)!

4-: 2’ at :1:
Pk = §(Ak—l,k—1 — 1:1): (56)

wherer=0,1,...,n—1,s=r+1,r+2,...,n,k=1,2,...,n
Matrix generators A“ are transformed under the mapping (52) as follows:

A130) = (T: 8)A:S. A1119) = A11- (57)
The commutators of generators A(j) can be easily found [31]:

[Akmi A1711) = (k, m)(p, ‘1) (57111914119106, (3—1 _ 6kpApmr(mnp)—1) - (58)

Hermitian generators (56) are transformed in the same way under transition from alge—
bra su(n + 1) to algebra 311(71. + 1; 3'). This enables to find matrix generators of algebra
511(71 + 1; j) for the case, when group SU(n + 1,3) acts in the space Cn+1(j) with named
coordinates

C2150)"; (T 8W”: L130) = (T:8)L:sa P10) = P125 (59)
We do not cite the commutation relations for these generators because they are cumber—
some. They can be found, using (58).

Let us cite one more realization of generators for unitary group. If group GLnH acts
via left translations in the space of analytic functions on Cu“, then the generators of its
algebra are n—— 2H3 where 3; 282—6m. He1mitian genelators of algeb1a su(n + 1)(can
be expressed 111 terms of X55 using (56) in which A“ must be changed for X*. UII(1( r the
mapping 1,11 they are transformed according to the rule

Zab = (a. 3)) MIL/2"). (60)
where Zab = Q”, Lm Pk: Pick. Generators X“ab a1e transfonned in a similai way, and
this gives us

X111: = 21151:, Xsr = zrasa e = (7” 8)2Zs 87-, (61)
where k:1,2,...,n,r,s=0,1,...,n,r< s.

The matrix generators (59) make a basis of Lie algebra 511(71 + 1; j). To the general
element of the algebra

n.('n+l)/2 n

2(11: V1 Wij) = 2 (11162113 )+ “1L )1”) ‘1‘ 2113111311: (62)
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where index t is connected with the indices r, s, r < s, by relation

L4), .
_|

t: s + 7‘(n -— 1) — (63)

and the group parameters 111,1)“q are real, corresponds a finite group transformation of
group SU(n +1;j)

W(u.v.w;j) = exp{2(u.v.W;J-)}- 6.64)
According to Cayley—Hamilton theorem, matrix LV can be algebraically expressed in terms
of matrices 2"”, m = 0,1,2,.. .,71, but one can to derive it explicitly only for groups
SU(2;j1) and SU(3;j1,j2), which will be discussed in the next sections.

4.2 Unitary group SUQUU
The group S U (2; jl) is the simplest one from unitary Cayley—Klein groups. Definition.
The set of all transformations of the space C2(j1), leaving invariant the quadratic form
|20l2 + jflzl 2, make up the special unitary Cayleye—Klein group SU(2; jl).

The group SU(2,j1) acts on the space C2(j)

fl, . _ z’ _ a 3'5 2 _ . a ‘.
e (.71) — ( 3-1:: ) — ( #3,); :3, )(j121)— ”(30.4.21):

detu(j1)=|c‘zl.2 +jlgljj'l2 =1, u(j1)fl-T(j1)=1: (65)
Here the bar notes complex conjugation. Constructing generators of algebra su(2;j1)
according to (59), we get

._i10 _£0j1 _10—ji .

and find commutation relations

[1013l = L015 [L011 P1] = Q01: [@011 L01] = j12P1- (67)

The generators (66) for jl = 1 up to factors coincide with Pauli matrices. It is also worth
mentioning that if under contraction 3‘1 2 (,1 the dimension (number of linearly indepen-
dent generators) of general linear group GL(2; j1) (or its algebra) diminishes, because the
generator A01(r1) vanishes, then for special unitary groups (algebras) in complex Cayley
Klein spaces the dimension of the groups (algebras) for any (including nilpotent) values
of parameters remains unchanged.

One—dimensional subgroup, corresponding to the generators (66), are as follows:
1 . . . 1 .

.. . cos —31r 3 sm -j1?"
91(7331) : 9X9 TQmUi) = - - 21 - 12- , -tsm 5311‘ cos 5317

1 - . l .
- COS— 3 ‘Sln — 5

92(S:]1) : (3X1) 3L01(]1) = ( 2-?1 231 ) _
sin éjls cos éjls
(aim/2 0

93(w) = exp EUR 2 0 €_,w/2 , (68)
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and to general element Z = r6201 + sLm + wP1 of algebra 311(2; jl) we, using exponentialmapping, put in correspondence the matrix of finite transformation of group SU (2; 3'1),which can be easily found

lSln§ cosi — 3:511]?

“201) =w2+112l€lgi C=S+ér. (69)
In Euler parametrization [56] transformations from group SU (2; 3'1) can be written as

9(90: 9:0133'1) = 93(30?j1)91(93j1l93(w§11) 2
iii}: - 0 4:2 . . . g_ 8 2 COS]]§ 8 2 38111315

—(i3’L‘€-- .9 new. .9 )3 (70)e 2 ZSIH]1§ £3 2 COS]]§

where group parameters (Euler angles) are in the bounds

(017T)? J1 : 1
Ogco<27rg ——27r§w§27r, 969(j)= (0100), 312:, (71)

(—0010)! 31:?"

Let us note: that for jl = 1 matrices 9&0, f9:w;j1) coincide with matrices (1 1.341), ch. IIIin [56]: for jl = 1' they coincide with the matrices (1.3.4—5), ch. VI in [56], and for jl = Li
they describe Euclidean group SU(2; (1) in Euler parametrization.

5 Classification of Transitions between Cayley—Klein
Spaces and Groups

In the previous sections we have found i'ill!‘ ".--_’t'_iLri.l :-.r.ii min-1:7.- .1-ii'=_'i11ps in CayleyeKlein
spaces and shown that their generators, {'enrinm gig-snaps? -;ll.tl in li-'I‘ algebraic construc—
tions can be obtained by transformation .il rfzw -‘.~"'11'!'t"1'-?:H.ri_-1-111; iI.'-.|[l;'~l1‘llCtHS for classical
groups. A zipprr_i;ii.'ii natural and is justified by the fact that classical groups and
their r'lnririirierisiii: .-'il;rr-lirsical constructions are well studied. But is such approach the

-: 5117-. oii-ri'." Is it. 5:--'is.~;iliir- m rake one of the groups in Cayley—cin Space as the initial one?
The positive answer to this question is given by the following theorem on the structure
of transitions between groups.

Let us define Iifoi'iiiziiiyi the 'i]'.'-'lIlr'~Elll',If! from the space Cn+1(j) and the generators
Zabi's. y : of iirtimr'; grriugi Ef'i'ri l: .r' | r.u.;- iiie space Cn+1(j’) and the generators Zai,(z’;j’)
via -'l"-'_-Ll.i-‘:'l-L}Ii:l-:il'.LJl'iEi. wizii'ia ear. l-r- I'il'll'i'.‘.lli|_'l'_l from the transformations (52) and (60), sub—. . . . - ;-. - -—1.stltn! :iig ill lllt‘ latter the l-|i-Li'i'l.Illr"li."E".".-u .5; in? cjk .

$5, 1 Cn+iUl ‘—> (Smelt?!)

k
I I I r 43—] __ .¢z0=zfl,¢zk=zkfljmjm, k—1,2,...irt,

171:]
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max(a,b)

Zara’s? = ( H firearms). (72)
l:l+min(a,b)

The inverse transitions can be obtained from (72) by the change of the dashed parameters
3" for the undashed parameters j and vice versa. Applying (72) to the quadratic Form
(53) and the generators (61): we obtain

7:. k

(352’) = lZEil“) + Z Iii-l2 H 9‘23
kzl 7n: 1

X“. = 2:50;: X3? = :40; ans = ( j’f)z;0:, (7:3)
i=1+r

i.e. quadratic form in space C'n+1(j’) and generators of group SU(77 + 1;.j’).
However, the constructed transitions do not make sense for all groups and spaces,

because for the nilpotent values of parameters j the expressions Lg], rm - Lg] for k 7E m are
not defined. we have defined in section 2 only the expressions tk - 5;] = 1, k = 1. 2, . . . , it.
So if for some I: we put jk = tic, then the transformations (72) will be defined and give us
(73) only in the case when the dashed parameter with the same number is equal to the
same nilpotcnt number, i.e. j; : rt.

The transitions from space RM 1(j) to space Rn_+1(j”), and from groups 80(71 + 11]),
Sp(n;j) to groups SO(n + 1;j’), Sp(n;_j’) as well, can be. correspondingly; obtained from
the transition (45), (31) by the same substitution of parameters jk for .jjrjk’l. Similally
can be justified the permissibility of these relations. Let us introduce the notations:
GU) : SO(TL+1;_)), SU(7?‘+1§j): SPUMJ'): RU) : Rn+l(j)f Ctr—MU): RHU) x RHU)
and denote the transformation of group generators by the symbol (DC-9(3) : C(j’). Easy
analysis of the transformations (72) and their inverse transformations from the point of
View of admissibility of the transitions [21] implies the following theorem.

Transitions classification theorem. 1. Let G(j) be a group in non—fiber space R0)
and C(j’) be a group in arbitrary space RU”)= then C(j’) = LIJGU). If R(j’) is a non-fiber
space, then L1! is one—to—one mapping: and C(j) = 11146 ( j’).

11. Let GU) be a group in (in, kg, . . . , kp)—fibei' space R(j) and C(j’) be. a group in
(mh mgT . . . ,mq)-fiber space R(j’)‘ then C(j’) 2 920(3), if the set of integers (kt ..... M)
is involved in the set of numbers (m1, . . . 1mq). The inverse transition 0(3) 2 (IV'G'U’) is
valid if and only if p = q, in = “'11,. flaky, 2 mp.

It follows from the theorem that the group C(j) for any set of values of the parameters
7' can be obtained not only from a classical group, but from a group in an arbitrary non-
fiber Cayley Klein space, i.e. from pseudoorthogonal, pseudounitary or pseudosymplectic
groups. It is naturally that the transitions between other algebraic. constructions, in
particular between Casimir operators, are described by this theorem as well.

6 Kinematics as Spaces 0f Constant Curvature
Possible kinematic groups, i.e. groups of motion for four—(‘liniensional models of space—
tnne (kinematics), satisfying natural physical postulates: 1) space is isotropic; ‘2) spatial
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> =1x1+ gm. 112:1 = 1} (74)
Let us introduce internal (Beltramian) coordinates €11——- zinc/:10, k—— 1. 2 3. 4 on 840 ).
The generators (32) of group 30(4; j) can be expressed 1n terms of the internal coordinates
5 via formulas

X045) = —31 — (015)261 2611511 8!: = 5/861“1:1
e(’U.) = {331103112156}... I- < s: 133 =1,2,3,i (115)

and satisfy the commutation relations (46). The generator X0411) has a meaning of
generator for translation along the s-th Beltrami axis: and X1411.) is generator of rotation
in twodimensional plane {n £5}.

Physical postulates 1) 3) can be expressed in terms of parameters 3'. Postulate 1) means
that under the transformations (45) three Beltrami coordinates should be multiplied by
the same quantity and interpreted as a temporal axis of kinematics. It is possible in two
cases:

A) for jg = 3'1 : 1, when coordinates £2,§3. {4 are multiplied by the product jljg and
called spatial and E1 is multiplied by jl and called temporal;

B) for jg = jg = 1, when the spatial coordinates £1; 2 1'1. 1: = 1, 2, 3 are multiplied by
3'1, and temporal coordinate £4 = t is multiplied by the product j1j4.

Postulate 3) imposes restrictions on the character of rotations in two—dimensional
planes: spanned over temporal and spatial axes of kinematics. requiring these rotations to
be Lorentzian and Galilean. In terms of parameters 3' this gives jg = 12.? in the case A)
and fl = 1,4,1' in the case B). The requirements of postulate 2) can be taken into account
by the definition of space with the constant curvature as a connected component of the
sphere (74).

In the case A) the kinematic generators H P : (131,172,133) (spatial-temporal trans-
lations), J = (J1, J2, J3) (rotations), K: (K1,K2,K3) (boosts) are expressed in terms
of generators (75) in accordance with above mentioned interpretation by the relations
H = *X01I Pk = —X0,k+11 K1; = *X1,k+1IJ1= X341 J2 = —X241 J3 2 X231 k = 1:13,
and satisfy the commutation relations

[H,J]=0, [H,K]=P, [H,P]= _i
[PIPl_— .71n [K Kl =322w] [PkIKzl = —j225s (76)
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Here (X, Y] = Z means [Xgm YE] = eknm, where skim is the antisymmetric unit tensor.
The spaces of constant curvature S4(j1,jg,1,1) ‘_—‘ S4(jl,j2),j1 = 1,r.1,z', jg = 3,2,1 are
shown at Fig. 2 (see section 3.2), where the spatial axis 7‘ should be imagined as a three-
dimensional space. Semispherical group 80(5; 1, L2) and semihyperbolic group 80(5; 7', L2)
correspond to Newton groups Ni (sometimes the latter are called Hooke groups). The
interpretation of other groups is well-known.

In the case of B) the temporal and spatial axes of kinematics are expressed in another
way in terms of Beltramian coordinates of space with the constant curvature; correspond-
ingly, the geometrical generators X (g) obtain another kinematic interpretation: H = X04,
Pk = -—XU;,, Ki, 2 XM, J1 = X23, J2 = —X13, J3 = X12 and satisfy the commutation
relations

[J,J] = J, [J,P] = P, [J,K] = K,

lHq :01 ]H,K] I _j§Pa lHrPl ZjiZK:

lPi Pl : 312‘]: lKrKl :jEJ1 [Pkg Kl] = (SkiH- (77)

The value of parameter 3'4 2 i, as it can be readily understood, does not lead to new
kinematics, because SO(5;j1, 1, 1,1) for jl = 1, £1.43 is, correspondingly, de Sitter group,
Poincaré group and anti—de Sitter group.

Kinematic Carroll group [19] of motions of the flat Carroll space, first described
in physical terms by J .—M. Levy—Leblond [40] corresponds to the values of parameters
jl = L], 3'4 : L4. Comparing the commutators (77) with the commutators in the paper
[1] by H. Bacry and J.—M. Levy-Leblond, we find that group SO(5;1,1,1,r1) coincides
with kinematic group [50(4), and group 30(5; "i, 1, 1, (,4) is ”para—Poincare” group P’. As
parameter jl determines the sign of the space curvature (curvature is positive for jl : 1,
zero for jl = 1,1 and negative for j] = 2') we conclude that group SO(5;1, 1, 1.1.4) (or
180(4)) is the group of motions of Carroll kinematics with a positive curvature, group
SO(5;1,1, 1,114) (or P’) is the group of motions of Carroll kinematics with a negative
curvature. Such interpretation of kinematic groups 180(4) and P’, as far as it can be
seen, was not recognized by the authors of [1], and this fact, by the way, is reflected in
the names and notations of these groups. Further Carroll kinematics will be denoted as
C401), and their kinematic groups as G(j1)= 80(5;j1,1,1,t4).

H. Bacry and J .—M. Levy-Leblond [1] have described 11 kinematical groups. Nine of
them have obtained geometrical interpretation as spaces of constant curvature. The rest
two kinematics — ”para-Galilean” and static — can not be identified with any of the
spaces of constant curvature. For example, kinematic ”para—Galilean” group is obtained
from Galilean group 80(5, L1, (,2) by substitution P ——> K, K —> P, i.e. under the new
interpretation of generators , in which the generators of spatial translations of Galilean
kinematics are claimed to be the generators of boosts of ”para—Galilean” kinematics,
and the generators of Galilean boosts — to be the generators of spatial "para-Galilean”
translations.

7 Standard Electroweak Model

The standard Electroweak Model (Weinberg—Glashow—Salam theory) is a gauge theory
based on the group SU (2) X U (1) and gives a good description of electroweak processes
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[46, 47, 55]. Mathematically this theory is very complicated with nonlinear dynamics of
the involved fields.

The Electroweak Model involve particles with integer spins: photon, responsible for
electromagnetic interactions, neutral Z0 and charged Wi bosons, which are week inter-
action carriers. For each subgroup SU (2) and U (1) of the gauge group its own coupling
constants g and g’ are introduced. Complex space C2 of the fundamental representation

9151
G52

fields A#(.’L‘) for the group SU(2) take their values in Lie algebra 521(2)

of the group SU(2) is interpreted as the space of matter fields ct = < ) E Cg. Gauge

3

AM) = —‘i9 2 Twin), (78)
5:21

where matrices Th, connected with Pauli matrices T“ by the following relations

11101 _12__10—z'
T1‘ET‘§(10)’T2_2T_2(2° 0)’

13_1 10
T3_§T_2(0—1)’ (79)

submit commutation relations [Tt] = ickm‘fl. and represent the algebra 371(2) with
structure constants 0k 2 sky. The gauge fields (78) are as follows in the matrix form:

.9 A“ A1 — 6A3 )A (3:) = —?.— ( It. u r . (80)’” 2 A; + mi —Afl

For the group U(1) with generator Y = -;-1 the gauge field takes the form

__.9_’ B,“ oB#($)— 7.2( 0 B1“)

and has stress tensor BM 2 5)v — 31,8“. For the field Ap(33) its stress tensor is given by

FIJI/(53) = ”FM/(I) 'l‘ [Aulmla AU(I)l (82)

and has the components

3
Ft, = 121., + MAE/13 — AiAE) = 32:, + 9 Z clkmAfiAr.

3
F; = F31, + 9(A2Ai — ALAS) = f3” + 9 Z EgtfiAL”,

F3 = $3,, + “AL/112, — AEAL) = fill, + 9 Z 63kmAfiAT: (83)pt;
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where .7::1, = 6,1245 — (2,141: is the stress tensor for Abel group. Boson sector of Electroweak
Model is characterized by Lagrangian

LB :LA+L¢, (8/1)

which comprises two parts: the gauge fields Lagrangian

2 2
LA = 55 NEW) 1(BPW)

1 . 1
: —Zl(Ffiu)2 + (Fit/)2 + (PSI/)2] _ Z(B,uv)21 (85)

and the matter fields Lagrangian

1
La = §(Dp¢)l¢5 — V(¢)- (86)

The potential is taken in the special form

A . 2_ _ T _ . ,2V015) — 4 (a (b L ) i (87)
where A. v are constants. Covariant derivative

3
Dim? : 6q - fig (2 1124:) Q5 — ig’YBflcfi (88)

k=1

for the matter fields Q51, qfig is given by

D —a —3(A3+'B) 39141—21231¢] — ql 2 g All 9 ,U. $1 I 2( p Z p)¢21

z' , z .M2 = area-.2 + 5m: — .9 am — 3%; + min] (89)
Space-time variables are numbered by Greek indexes [1, V, . . . = O, l, 2, 3.

To obtain vector boson masses the special mechanism of spontaneous symmetryr break-
ing (or Higgs mechanism) is used. One of Lagrangian L3 ground states

’UOLC 0

(lb =(U), A:=BH:0 (90)

is taken as vacuum of the model, and then small field excitations

Q5] (Lt), ¢2(z) = ”U + x(:r), 143(33): B“(a:) (91)

with respect to this vacuum are regarded. Matrix Q = Y + T3 = (i) 8 ) , which
annihilates the ground state qWC 2 0. is the generator of electromagnetic subgroup
U(1)5111. New gauge fields are introduced

Wf = i (A; apt/12), Z,u = 1«2 » nAi‘g'BH)’
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_ 1 r 3 .Au — W (9 AII + 93p) (92)
where W'i are complex fields W_ _I/1/+, and Z“ A are real fields

Boson Lagrangian (84) can be rewritten in the form

_ (2) ' I:LB — LB + LE. (93)

As usual, the second order terms

LB — Em“) — ‘TII-XX — —Z,,,,Z,,V+ —mZZ,,Z —2 14 2
1]: +12 - r+ ~—

III'I'IIH'I— 3”. = 6.1.3,, — EI,.IIIIJ',_._ 1.7-1,“ : I:.IIJ_._I. — _.I, .1”. 11'4" = I-II.-.III;-: — -’I.II,..III‘I'. .-I.-.I-I-II§}I.--
III-.I _d.g_'.I-'.d.I.II'T.:III I.'III I_I1_I.|I':II'_111 [III-.1". II.“II;'rd.' and |IIHI“I£I'-I.II'III'II' ‘I'II'II'II'I-d L’I'If IIIIIII'III'r-Ir-L -'I.d LII-1!
E:'.II:II':II"I.II.II'1r'I. SI'I. LII'IgI'aI'IgIIIII III I: I'II;I:d=_':'I|'IF.:'d I-I;I;II'I.2I;=I:I III—III”'Ir.I"'I.II'.rI 'I"IIIII I. 'II:-' _‘.I-'.1 II.-I: III ld .'III =
_I'ff- . .'IIII_.I:':I'II_=II._Id IIIIIJTIIII IIIIII. I-II _- I.Ii. :IeII7:.-I__- ELI—I_II_.:IIII'-.".III1II 1:;I.I:II. I.'I_;; —- .-;I_ If? — :-II.II
I'iiéfifi IIIIIHI'II': ..'I,- '11-, T ‘II-“'II.-"II. II- I'II'III Iii—III IrdI I.- Ir'I I.'.‘IIIIII: III“ .'I'r'I'I IIITI:_'.'. L'IIIIIIZ '..I'III'I--' "III”I'II I'..':"-'I-_I
masses mw = 80 GeV, mg: 91 GeV. Higgs boson with the mass of125 GeV VIas detected
at LHC in 2012.

Besides gauge bosons, there are fermions in the Electroweak Model. The fermion
sector is represented by leptons and quarks. Leptons are fermions, which do not interact
strongly. There are three types of charged leptons in Nature: electron e‘, muon If, ’r—
muon r‘ and three types of neutrinos 1/6,, 24,, 1/,, as well as the corresponding antiparticles.
Neutrino masses, if they exist, are extremely small, therefore in the Electroweak Model
neutrinos are considered as massless particles. Neutrinos are fermions of left chirality, i.e.
their spin projection is Opposite to the direction of movement. The name ”left fermion”
, is used in this case. Pairs (or generations) of leptons (V€,€_), (I/mii“), (VT,T_) have
identical properties with respect to all interactions. Therefore it is sufficient to discuss
only one generation, for example, (1/6, e").

The lepton Lagrangian is taken in the form

LL—— LiirpLI + e: 17' D e, — h [e:(oILI) + (LIgb)e,.], (95)

where L; = ( VI ) is SU(2)-doublet (vector in the space C2), e, is SU(2)—singlet (scalar
61

with respect of SU(2)), he is a constant. All fields er, 6;, u; are in their turn two—component
Lorentz spinors. Here ”r,1 are Pauli matrixes, To 2 f0 = 1, fl, = —7‘k. The above mentioned
division of the fields on doublets and singlets is based on the experimental fact that only
the left components of an electron and a neutrino interact with l/Vi—boson fields, but the
right components do not interacted with lid-boson.

The covariant derivatives of the lepton fields DpLI in (95) are given by the formula
(88) for Y = —% with L; instead of a5, and Due, = (8,, + ig’Bfle,” For the new fields (92)
these derivatives are as fo1lows

. I . ,0 .Dpe, 2 age, + 29 Ape, cos 6,“ - 'Ig Z,,e,. s1n19w,
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D... = a. — 5% (VI/gin + WET.) —
. g . . .—Zeos 6w Zflu (T3 — Qsm2 6w) — 18}p,

where Ti 2 T1 :l: 123}, and e is electron charge

0 0

6' I:."I fl"I a—-
g: ,—1 C0861“ 1': ‘—- r1. Elihu“ T: (9()

SlIl (9,,” er" 2— e r..;-'- + r."-
Then lepton Lagrangian (95) can be rewritten in the form

.9 T-
V! T‘LZJLl/g—i'

2 cos 19wLL : eiéfitaeei + Vifieau-Vi + Biz-Waiter +

9 cos 26", T ~9 T- 7- T~+—erW Vg—GBTA€g+——€.TZ‘€;+in p. In in 200819“, 1;: .U\/§
+iz/IfiJ/Vjeg — 9’ cos Qwelrp/lfler + 9’ sin Qwelrper—
fl

—hll+ll+>ll+lr Ir98e[er(bgeg €£¢2Cr (.rgbll/g 2/1 oler]. K )

The first three terms are kinetic terms of the left electron, the left neutrino and the right
electron. The last four terms with the multiplier he are mass terms of the electron. The
rest of the terms describe the electron and neutrino interactions with the gauge bosons
AWZ,“ ME.

The next two lepton generations are introduced in the same way. They are left SU (2)—
doublets

VIP” 1/1" I 1

1 : 1 : _”_ 99
( “ )r ( T )1. 2 ( )

in, r... 12—1. (100)
and right SU (2)—singlets

The complete lepton Lagrangian is given by the sum

LL 2 LL? + LL41 + LLJ: (101)

where each summand has the structure (98) with its own constants he, h“, hf.
Quarks are strong interacting fermions. Six types of quarks are known. From the

viewpoint of electroweak interactions all known quarks are divided into three generations:
(u,d), ((1,5) and (t,b). Electroweak interactions of all quark generations are identical,
therefore we discuss quarks of the first generation in the beginning. The quark Lagrangian
is given by

[.0 = QliqflQg + uiirpdr—
swam) + (Qleldrl — finial-(5962:) + (Qléhrl, (102)
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The left fields of the next quark generations

(:1 111 11111
are described by SU(2)—doublets, and the right fields are SU (2)—singlets

Cr, t,, Y : —° 5..., 1),, Y = ——. (104)

The covariant derivatives are given by the formulae

D1Q1= (511 —iQZ:i114: _19%B)Q11

2
D1104" : (an — EQIEBp) an Duff—‘— (811+ 3.9—%BHM“ (105)

where a. = 11,6,1 and f = (1,3,1), but Q1 now denote the left3fields of all three quark
generations. The complete quark Lagrangian is the sum

LQ = Low) + Lem-«1,11 + 1162.11.11)- (106)
where each term has the structure (102) with its own constants hm hd, he, 11,, 11,, 111,.

Lagrangian of the Standard Electroweak Model is the sum

L 2 LB + L1, + LQ, (10?)

0f boson LB (84), (93), lepton L1. (98), (101) and quark LQ (102), (106) Lagrangians.

8 The Electroweak Model with Contracted Gauge
Group

As far as all three lepton and quark generations behave in the same way, we shall further
consider only the first generations. Contracted gauge group SU(2; j) x U (1) acts in
the boson, lepton and quark sectors. The contracted group SU (2; j ) is obtained by the
consistent rescaling of the fundamental representation of the group SU(2) and the space
C2 [28,29]: - . -

2/11): ( 3:221 ) = ( 35 if ) (3:21 )=1u(1)ze').
detU-(j)=10112 +1215? =11 11101150) = 11 (108)
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where contraction parameter 3' —> 0 or is equal to the nilpotent unit 3' = 1,. The hermitian
form zlz(j) = j2|21l2 + |z2lZ. remains invariant under this rescaling. The actions of the
unitary group U (1) and the electromagnetic subgroup U(1)em in the fiber space (32(1)
With the base {22} and the fiber {31} are given by the same matrices as in the space C2

The space C20 ) of the fundamental representation of SU (2 j) group can be obtained
from C2 substituting zl byj3:1. The substitution :1 —> 321 induces the substitution of the
Lie algebra generators

Tl -—> jTl, T2 —‘5 jTg, 213—) T3. (109)

As far as the gauge fields take their values in Lie algebra, we can substitute the gauge
fields instead of transforming the generators (109), namely:

A; —> i, xii—+2114?“ Ai —> Aft: B“ —+ B”. (110)

Indeed, due to commutativity and associativity of multiplication by j we have

anew 3 {Atom + Ait21+ Aifa}
: {0143113 +(‘ZA)T2+A3T3}. (111)

For the gauge fields (92) the substitutions (110) are as follows:

111'; —> jIf, Z,“ —> Z“: 142 s14“. (112)

1/ u .The left lepton L1 = ( e! ) and quark Q; = ( dz ) fields are SU(2)—doublets, so their1 1
components are transformed in the similar way as the components of the vector :5. namely:

1/; —-}> jI/g, 61 —> 63, ”U: —> jug- (f; ——> (if. (113)

The right lepton and quark fields are SU (2)—singlets and therefore are not changed.
After the transformations (112); (113) and spontaneous symn'ietry breaking (.90) the

boson Lagrangian (84)—(86) can be represented in the form [27, 29]:

LB<1— Li'it 1+L11’1 1=
1 2 1 2X1 1 1= 5 (61x1 — 2W IZw/Ziw t 2mFZ Z — 35”“

+32 {—Ewl-JZWJr—v + THH’’H/+IV—}+ if? (j): (114)

where as usual the second order terms describe the boson particles content of the model.
Higher order terms

2
in - .QZD’Z g 2 I /\L‘X=——Z —)1 __ 2__,-1r; (J) 20089v i #)2 X ’3i + 8cosZ 922 (Z11) X 4A 'l‘

+jQ{-219 (W: 11/]: — WJWJ) (It, sin 6w + 2,“, cos 9w) + 9W1? W17X‘
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gs [Ag (WWW; — Wm?) —- Au (WEI/W; - Wis/Will -
gymsgw [z (w;w-— MUM/J) — Zg(WJsW1? - Wgsll’fill +

+9?2 [(WJ‘W; — 1&3;i + WJWJXQ] — 8; {[(i + (W3)? (Ag)?-
—2 (WJWJ + Wit—WC) Ali/=11, + [(WJY + (I if)? (1402}—

—9; cos 0W “(w/3f + (WI)? (2,,)2 — 2 (Wj + u;w;) zn+
+ [(w:)2 + (wgfl m2} — swalJWig—Auzu + WJWJAsZs—

—% (WjW; + WNW/3;) (/21n + An)}} (115)
are regarded as their interactions. The lepton Lagrangian (98) in terms of electron and
neutrino fields takes the form [30]

W = szwa + was — mggs + W
cos 26w ,. h

————-———g2€6 eITpZ eg— eelrpAge; — 9’ cos QwelrflApeflLcos

+g’ sin Qweirpzper + jfli/Jéfpauz/g + ufrpi/fi9
2 cos 6w

+% [Vgrf'plrl/Jez + effing-w] } = L“) +j2LL‘f. (116)

The quark Lagrangian (102) in terms of u— and d-quarks fields can be written as

LQ (j) = ngflapd + dirgflafldr — mfldld + mgr) — gasp/sug—
g 1 2 _ _ 1

_cos 9w (E * 3 81112 61“) lpd — 59’ Cos 9dTpApdr+

1 .+§gfsin dlfilzfld, + ]2{u1337118 u + ’11.Impala,—

2(g — — Sin219w) ulmZ’uu+—mu(u1u + alugl+ 303610

2% A W+d J W;+—3U1.Tp U +—cigarU711 + Ty Lil-i—

2 ’ l A 2 t9 TpZ —+59 cos 9911.e “a? — fig sin wulr u, __

= Log + J'QLQJ, (117)
where me = hey/fl and mu = hu’U/fi, md = haw/fl represent electron and quark
masses.
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The complete Lagrangian of the modified model is the sum

LU) =LaUl+LQUl+LtUl = Lb+j2Lf (118)
The boson Lagrangian LB(3') was discussed in [27, 29], where it was shown that masses
of all particles involved in the Electroweak Model remain the same under the contraction
j2 —+ 0 in both formulations: the standard one [27] and without Higgs boson [29]. In
this limit the contribution nf of neutrino, 1V—boson and u—quark fields as well as their
interactions with the other fields to the Lagrangian (118) become vanishingly small in
comparison with the contribution Lb of electron, d—quark and the remaining boson fields
So Lagrangian (118) describes a very rare interaction of neutrino fields with the matter.
which consists of quarks and leptons in the Standard Electroweak Model. On the other
hand, the contribution of the neutrino part j‘ZLf to the complete Lagrangian is risen
when the parameter 3'2 is increased, which corresponds to the experimental facts. It
follows from this that the contraction parameter is connected with neutrino energ I and
this dependence can be obtained from the experimental data.

9 Description of Physical Systems and Group Con—
tractions

The standard way of describing a physical system in the field theory is its decomposition
on independent more or less simple subsystems, which can be exactly described, and then
introducing interactions between them. In Lagrangian formalism this implies that some
terms describe independent subsystems (free fields) and the rest of the terms correspond
to interactions between the fields. ‘When the subsystems do not interact with each other
the composed system is a formal unification of the subsystems and symmetry group of
the whole system is the direct product G : G1 >< G2, where G1 and G2 are symmetry
groups of the subsystems. The Electroweak Model gives a nice example of such approach
Indeed, there are free boson, lepton and quark fields in Lagrangian and the terms which
describe interactions between these fields.

The operation of group contraction transforms a simple or semisirnple group G to
a non—semisimple one with the structure of a semidirect product G = AEGl, where
A is Abel and G1 C G is an untouched subgroup. At the same time the fundamental
representation space of the group G is fibered under the contraction in such a way that the
subgroup G1 acts in the fiber. The gauge theory with a contracted gauge group describes
a physical system, which is divided on two subsystems Sb and Sf. One subsystem Sb
includes all fields from the base and the other subsystem Sf is built from fiber fields. 8;,
forms a closed system since according to semi—Riemannian geometry [50, 26] the properties
of the base do not depend on the points of the fiber, which physically means that the
fields from the fiber do not interact with the fields from the base. 011 the contrary the
properties of the fiber depend on the points of the base, therefore the subsystem Sb exerts
influence upon Sf. More precisely, the fields from the base are outer (or background)
fields for the subsystem Sf and specify outer conditions in every fiber.

In particular, the simple group SU(2) is contracted to the non—semisimple group
SU(2; 1.), which is isomorphic to the Euclid group E(2) = A2®SO(1), where Abel sub-
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group A; is generated by the translations [27, 28, 29). The fields Space of the Standard
Electroweak Model is fibered after the contraction in such a way that neutrino. VII—boson
and iii-quark fields are in the fiber, whereas all the other fields are in the base.

The simple and the best known example of fiber space is the non? relativistic space
time with one—dimensional base. which is interpreted as time, and three-dimensional fiber,
which is interpreted as proper space. It is well known, that in non—relativistic physics the
time is absolute and does not depend on the space coordinates, while the space properties
can be changed in time. The simplest demonstration of this fact is Galilei transformation
t’ : t, :r’ = :5 + at. The spaceetime of the special relativity is transformed to the non-
relativistic space? time when a dimensional parameter the velocity of light c , tends
to the infinity and a dimensionless parameter tends to zero U —> 0.

C

10 Rarely Neutrino-Matter Interactions
To- discover the connection of gauge group contraction with the limiting case of the Elec—
troweak Model and to establish the physical meaning of the contraction parameter we
consider neutrino elastic scattering on electrons and quarks. The corresponding diagrams
for the neutral and charged currents interactions are represented in Fig. 3 and Fig. (’1.

1/ 1/ 8

Figure 3: Neutrino elastic scattering on electron

Under substitutions (112)1 (113) both yertices of diagram in Fig. 3, a) are multiplied
by j2, as it follows from lepton Lagrangian (116). The propagator of virtual fields W
according to boson Lagrangian (114) is multiplied by j‘g. Indeed, a propagator is an
inverse operator toan operator of a free field, but the later for W—fields is multiplied by
-2

3 So on the whole the probability amplitude for charged weak current interactions is
transformed as M W —> j2Mw. For the diagram in Fig. 3, b) only one vertex is multiplied
by j2, whereas the second vertex and the propagator of Z virtual field do not change. so the
corresponding amplitude for neutral weak current interactions is transformed in a similar
way Mz —> jQMg- Cross—section is proportionate to squared amplitude} so neutrino—
electron scattering cross-section is proportionate to 3'". For low energies 3 << ma,- this
cross-section makes a principal contribution to the electron-neutrino interaction and is as
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follows [46]
4 _a“, = Giana) = fiflé), (119)
ID

where CF = 10—57% = 1,17 . 10‘5 GeV‘2 is Fermi constant, 3 is squared energy in
center—of—mass system, g = sin 6,”, f (E) = f (g) /32 is the function of Weinberg angle. The
cross—section in the laboratory system for neutrino energy me << EV << new is given by[52]

are = GimeEumé). (120)
On the other hand, taking into account that the contraction parameter j is dimensionless,
we can write down

age = 3'400 = (GFSXGFflED (121)

9_\/§
mw

and obtain

39(3) = Gps % (1122)
So the contraction parameter is expressed in terms of Fermi constant and the fundamental
parameters of the Electroweak Model.

d

Figure 4: Neutrino elastic scattering on quarks

Neutrino elastic scattering on quarks by means of neutral and charged currents is
pictured in Fig- 4. Cross—sections for neutrindquarks scattering are obtained in a way
similar to the lepton case and are as follows [46]

at?” = Gisfle), of = 02—8 he). (123)
Nucleons are some composite constructions of quarks, therefore some form-factors appear
in the expressions for neutrino—nucleons scattering cross-sections. The final expression

am, = Gisflg) (124)
coincides 1111:"). is. rims ('J'HHF—su-L'l :11. 5-: [i'flllfifhl'filed as (121) With the contraction
parameter -' '1 2'3 .u A: low =:-1'1u:-=r-::irg:s auntie-ring IEiTF'HII'."-_1«.'-['.r-' make the leading contribution to_ i, T713, u'._r','--.'."" -. "'—~2.‘-""" _- : - "-i'.‘ 1-_.. - a“. .the total 11..l. -.LL _____ MIL-1' 1.11,}tahil.._.f_~.1[r].. than _.JI. .. H. has the same propertles (121), (122)
W1tl1 resp-z'rl r.r.:. r-r111:.:.:u'!':rln 41:2 rtn- snug-7* grimy.
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'We have shown that contraction of the gauge group of the Standard Electroweak Model
corresponds to its low—energy limit. The zero tending contraction parameter depends on
neutrino energy and determines the energy dependence of the neutrino—matter interaction
cross—section.

The limit transition c ——> oo in special relativity resulted in the notion of group con—
traction [34]. In the Electroweak Model the notion of group contraction is used on the
contrary to explain the experimentally verified fundamental limit process of nature: a
decrease of the neutrinos—matter cross-section when neutrino energy tends to zero.

11 Electroweak Model at Infinite Energy
In the previous section we have shown that contraction of the gauge group of the Standard
Electroweak Model corresponds to its low-energy limit. In this limit the first components
of the lepton and quark doublets become infinitely small in comparison with their second
components. On the contrary, when energy increases the first components of the doublets
become greater then their second ones. In the infinite energy limit the second compo—
nents of the lepton and quark doublets will be infinitely small as compared with their
second components. To describe this limit we introduce instead of (108) new contraction
parameter c and new consistent rescaling of the group SU (2) and the space G; as follows

5(6) 2 ( :23; > = ( :27; if ) ( :2 > = a(6)z(e),

detu(c) : |o:|2 + (fl/3F =1, a(€)uI(c) :1: (125)

where e —> 0. Both contracted groups SU(2; j) (108) and SU(2; E) (125) are the same and
are isomorphic to Euclid group E(2), but the space Cg(t) is splited in the limit 6. —> 0 on
the one—dimension base {21} and the one-dimension fiber {2:2}. From the mathematical
point of View it is not important if the first or the second Cartesian axis forms the
base of fibering and in this sence constructions (108) and (125) are equivalent. But the
doublet components are interpreted as certain physical fields, therefore the fundamental
representations (108) and (125) of the same contracted unitary group lead to different
limit cases of the Electroweak Model, namely: its zero energy and infinite energy limits

In the second contraction scheme (125) all gauge bosons are transformed according to
the rules (112) with the natural substitution ofj by r. Instead of (113) the lepton and
quark fields are transformed now as follows

e; —> eel, d; —> Edi, 1/; —> mi in —> to. (126)

The next reason for inequality of the first and second doublet components is the special
mechanism of spontaneous symmetry breaking, which is used to generate mass of vector
bosons and other elementary particles of the model. In this mechanism one of Lagrangian

ground states (gym : ( 3 ) is taken as vacuum of the model and then small field

excitations v + x(33) with respect to this vacuum are regarded. So Higgs boson field X and
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the constant 1: are multiplied by 6. As far as masses of all particlies are proportionate to
v we obtain the following transformation rule for contraction (125)

X —> ex, 1) —> 6’0, mp —> emp, (127)

where p = x, W', Z, 8, u, d.
After transformations (112), (126)+(127) the boson Lagrangian of the Electroweak

Model can be represented in the form

1 1 ‘
LB(€) = —ZZ’EU — affix, + 62].;n + E3gWZj—l/VH—X '1' 641-234,

1 A 2
LB,4 = -n2%;W’:W: — fimiXZ — Avx‘r‘ — if + gZWJH/nwL

+97; (WSW; — W;Wj)2,
1 1 .

LBJ = 3 (611302 + 3mg: (az —

_1W+W— meg 2 _93_(Z )2 2_
2 “V “V 2cos6’w # 800826w “ X

—2?Lg (WjW; — W;Wj) (Jaw sin 9W + 2W cos 9W) —

—%e [AH (WLW; — WELT/VJ) + 36A“ (WLW; — W;,1Vj)] —

_29 COS 6w [Zn (WJVLVVF ‘ WJVWJ) _ Z" (will: _ W‘IJVJH —
62 r+ 2 r_ 2 2 —. —_Z { [(m) + (m ) ] (A,,) — 2 (Wilt? + Wp W1, J

[(WJY + (Wu—)2] W2} — gzzcosaw {[(WJY + (WU?) C
_2 (WEI/VJ + Wit—W17) zpzu + “i + (WE)? (Z#)2} _

APE/4V)—

2”)?—

—eg cos 9W [WjWgAUZV + w: WgApzfl—

1 W+W_ /+ _-5 ( p V + My W); ) (Apzu + AVZ#)]. (12-8)
111 terms of electron and neutrino fields the lepton Lagrangian takes the form

LL(€) = Lno + EQLLQ = pfizaaflm + eliruafler + g’sin QweITpZfler—

_ f T g T~ 2 ,_
9 cos QweeAper + 20-0—8 9w Vi TpI/( ‘1‘ 6 {eIzTfil-aflef — me(e:e£ + eger)+

gcos2t9w 1* t~ g t~ + T~ *

2003 9.”, 8‘7“Z“ei _ ee‘T“A“€‘ + E (”I 7'q 8! + 917q V1) . (129)
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In terms of u— and d—quarks fields the quark Lagrangian can be written as

LQ(E) = LQag — emfiuluz + afar) + €2LQ‘2:

. W . lLon : dIZTpapd, + :lz'rpaflug + UIZTpa#UT — Eg’ cos GdTpApdr+

1 1 2
+39 sinélw dTpTMZ d +2fulfil/lung + g (2 — *sing 9w) ulTpa—t

3 cosfiw 3
+2 2+39 cost9w 71:7"TA a, — gr; sinfiwulT#Zflur,

LQ2=dhflQflremJflmawfl¢l—gflfiAmh—
a 9 l_3 )i~ 9(303610 (2 3sin29 dsZpdi+ fl

The complete Lagrangian of the modified model is given by the sum L(e) 2 [13(6) +
LLI(€) + LQ(6) and for the infinite energy (for E = 0) is equal to

[mmfifi¢+@fiflz a] (mm

1 2 1 2 .5 ... . . .LOO—— ‘71—e — git—W + phalanx/g + ulmcipm + elsdflemL

+dlz'TflapdT + iLITTflapuT + LEEWAM. Z“)1

int 9 1-- g 1 2
L30 (All. Zp): 2c0s 6w——-—i/IT#Zni/; + m (_ _ g sin 92”,.) ulTflyZ 114+

26 _ _ 1+E—ulTflApug + g’sln QwelTper — 9' cos QwelTpApe, — 73—9" cos dlTpApdr-l-

1 2 2
+gg’ sin di’i"WZ dT + 39 cost?vim T Alia, — Eg’siauITpur. (131)

The limit model includes only massless particles: neutral massless Z—bosons Zf1 and pho—
tons A“, massless right electrons 61F and neutrinos i4, and massless left and right quarks
in, Mr, (L. The electroweak interactions become long—range because they are mediated by
the massless neutral Z-bosons and photons. There are no interactions between particlies
of different kind, for example neutrinos interact only with each other by neutral currents
Similar higher energies can exist in the early Universe after inflation and reheating on the
first stages of the Hot Big Bang [171 41]. The electrowcak phase transition and neutrino
decoupling which take place during the first second after the Big Bang [16] are apparently
in correspondence with the infinity energy limit of the Electroweak Model (131). The
mass term of u—quark in the complete Lagrangian is proportional to r whereas the mass
terms of electron and d—quark are multiplied by 62, so u-quark first restores its mass in
the evolution of the Universe.
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