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Abstract
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation
functionals for density functional theory. So far, most of those machine learned functionals are
trained for systems with an integer number of particles. As such, they are unable to reproduce
some crucial and fundamental aspects, such as the explicit dependency of the functionals on the
particle number or the infamous derivative discontinuity at integer particle numbers. Here we
propose a solution to these problems by training a neural network as the universal functional of
density-functional theory that (a) depends explicitly on the number of particles with a piece-wise
linearity between the integer numbers and (b) reproduces the derivative discontinuity of the
exchange-correlation energy. This is achieved by using an ensemble formalism, a training set
containing fractional densities, and an explicitly discontinuous formulation.

1. Introduction

In their now famous paper, Hohenberg and Kohn proved that the electron density ρ(r) suffices to compute
all observables of a system of interacting electrons [1]. Due to a remarkable balance of computational cost
and numerical precision, first principles modeling of electronic systems based on this density functional
theory (DFT) is nowadays a daily practice, with great impact in material science, quantum chemistry or
condensed matter [2]. The success of DFT is to a large extent based on the Kohn–Sham formulation, that
utilizes a system of non-interacting electrons that has the same density as the interacting one [3]. The main
ingredient of this formulation is Exc[ρ], the universal exchange-correlation (xc) functional, whose functional
derivative provides an effective external potential for the non-interacting particles. Yet, while the
Hohenberg-Kohn theorem proves the uniqueness of such a functional, it does not give any indication
regarding its specific form. To circumvent this issue, a very large number of approximate functionals were
developed in the last decades [4, 5], often combining empirical knowledge, exact mathematical conditions,
and a great deal of ingenuity.

Inspired by the success of machine learning (ML) in various technological applications, including
image and speech recognition [6], the last couple of years have seen the development of several
neural-network-based approximations to Exc[ρ]. Indeed, machine-learning offers a new generation of
accurate, highly non-local, xc functionals [7]. While those functionals are designed to perform tasks of
different degree of complexity, all share the aim of learning one of the maps of DFT, namely, the
Hohenberg-Kohn map between the external potential v(r) and the density ρ(r) [8–13], or the Kohn–Sham
map between the density ρ(r) and the xc functional Exc[ρ(r)] and its functional derivative
vxc[ρ(r)] = δExc[ρ(r)]/δρ(r) [14–16].
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The functionals delivered by machine-learning DFT (ML-DFT) are in general non-local, in the sense that
they use multiple density points as input, and can be efficiently trained with data from reference methods.
Yet, since ML-DFT functionals are mostly trained in Hilbert spaces with an integer number of particles, they
are still unable to reproduce some critical and fundamental aspects of DFT. For instance, it is known that any
satisfactory definition of the energy functional must depend explicitly on the particle number [17–19].
Furthermore, the derivative of the xc functional in terms of the number of particles exhibits a discontinuity
that plays a crucial role in the description of electronic bandgaps [20–23], charge-transfer excitations [24, 25],
molecular dissociation [26–29], or even Mott insulators [30], to name but a few examples.

Systems with non-integer (fractional) number of electrons (N+ ϵ) are defined as statistical mixtures of
systems with integer number of particles [21, 31]. As such, the density ρN+ϵ(r) and total energy E(N+ ϵ) are
piecewise linear functions of ϵ, namely:

ρN+ϵ(r) = (1− ϵ)ρN(r)+ ϵρN+1(r), (1a)

E(N+ ϵ) = (1− ϵ)E(N)+ ϵE(N+ 1) (1b)

with 0⩽ ϵ⩽ 1. At integer N (i.e. when ϵ= 0), the derivatives of the density and the energy exhibit a
discontinuity, and the xc potential vxc(r) jumps by a finite value [32]. The difference in the slope on the
left/right side of the total energy at integer values is equal to the fundamental gap [21]:

I−A=
∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
, (2)

where I is the ionization energy and A the electron affinity. Yet, in practice, standard approximations to the
xc functionals that depend explicitly on the electronic density, such as the local-density (LDA) and
generalized-gradient (GGA) approximations, are continuously differentiable functions of N and lack
therefore a derivative discontinuity. Meta-GGAs can exhibit a discontinuity due to their dependence on the
kinetic-energy density, but it is usually too small or even negative [33]. Due to their dependence on the
Kohn–Sham orbitals, orbital functionals are discontinuous [34], but this comes at the price of a much higher
computational effort.

In addition to the discontinuity, a universally useful approximation for the xc functional must be
‘N-electron self-interaction-free’ for all positive integer N [35], meaning that the total energy of a system
with N+ ϵ electrons in the range (N, N+ 1) should exhibit a linear variation with respect to ϵ. For attractive
interactions the energy is a convex function with straight lines joining subsets of ground-state energies [36].
Yet, approximate functionals deviate from such a correct behavior. It has been shown that semi-local density
functionals are in general convex with perhaps small concave pieces [37]. Even the Hartree Fock theory leads
to piecewise concave curves between integers [37]. We note that the relatively well-defined curvature of the
curves is ultimately the reason for the success of the Slater half-occupation scheme [38] or the LDA-1/2
method [39]. In fact, these schemes use the derivative at the midpoint (i.e. at N − 0.5), that can be shown to
be equal to the slope of the straight line between E(N− 1) and E(N) if the curvature is constant, irrespective
of its sign [40]. We also note that the role of the basis set in the shape of the predicted energy curves has been
recently studied in great detail: For certain atomic systems with diffuse anion states, standard DFT (and
Hartree–Fock as well) calculations can predict better the behaviour of the energy as a function of N—and
more specifically the sign of the eigenvalues of the highest and lowest occupied molecular orbitals—when
highly diffuse basis sets are employed [41, 42].

The centrality of these pressing issues in DFT can be further highlighted by the fact that a rigorous
description of the delocalization error can be related with the energy curve of the xc functionals lying below
the straight energy lines [37, 43].

In this work, we propose a way to train a neural network as the ensemble universal functional of a system
of fractional electron numbers that describes correctly the derivative discontinuity and the piecewise linear
behavior. The ML functionals we present contain explicitly the physics of the derivative discontinuity of DFT,
are highly non-local, and are trained for systems with fractional densities. For this reason, our functionals
can potentially address the well known delocalization and static correlation errors of DFT [44–46]
simultaneously.

2. Results and discussion

Inspired by the neural network topology proposed in [14], our neural network takes an electronic density as
an input and returns the corresponding xc energy, whose functional derivative can in turn be used to solve
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Figure 1. Comparison of the total energy for a certain external potential (top) as well as its derivative with respect to the particle
number (bottom) for two different models: model A has been trained with integer densities only. Model B has been trained with
fractional densities, the exact∆xc-shift, and employs the AF (see text).

the Kohn–Sham equations. The network is a sliding window convolution (SWC) network. For a 1D system of
discrete spatial points {r1, . . . , rW}, a window with a certain ‘kernel size’ κ scans each data point ρσ(rj) and its
κ− 1 nearest neighbors ησ(rj,κ) = {ρσ(rj−(κ−1)/2), . . . ,ρσ(rj+(κ−1)/2)} with σ =↑,↓ to calculate a local
energy ϵθloc

[
η↑(rj,κ),η↓(rj,κ)

]
. The total xc energy is calculated by summing over the local energies:

Exc [ρ↑,ρ↓] =
∑
j

ρ(rj)ϵ
θ
loc

[
η↑(rj,κ),η↓(rj,κ)

]
. (3)

Here, θ denotes the trainable parameters. The input channels can be the total electronic density ρ= ρ↑ + ρ↓
or the spin densities ρ↑ and ρ↓. The corresponding xc potentials can be computed using automatic
differentiation, as shown in [14]. The parameters of the neural network are updated according to the loss
function:

L(θ;α,β) = αMSE(v↑xc[ρ↑,ρ↓],v
↓
xc[ρ↑,ρ↓])+βMSE(Exc[ρ↑,ρ↓]) , (4)

where α and β are fixed weights that can be adjusted to expedite convergence, and MSE is the mean
squared error. A more detailed description of our networks can be found in the section 4. We improve
the performance of this architecture by (a) training our neural network with non-integer densities,
(b) introducing the jump of the xc potential at integer numbers into the loss function, and (c) adding an
explicit discontinuity at integer electron numbers. In the following we discuss the details of these new
approaches.

As we will also discuss in great detail in the section 4, we have chosen for this work a 1D model system
that mimics 3D reality closely enough to render great physical insight. This model is well known in the
literature as a quite useful theoretical laboratory for studying strong correlation, developing xc density
functionals for DFT or studying the emission of even harmonics [47–50].

2.1. Fractional particle numbers
In general, neural networks do not extrapolate well outside the distribution of the samples used for their
training. Consequently, we can not expect that machines trained solely for integer densities (as usually done)
will exhibit the correct linear behaviour of the energy. To illustrate this behavior we plot, in figure 1, the total
energy calculated with a neural network trained solely with integer densities (model A in the figure) as a
function of the number of particles for the system described in the section 4. Besides the fact that model A is
far from linear, we can also note that the sign of the curvature is not constant, with both concave and convex
parts. This is somehow to be expected, as the network, in contrast to the usual xc functionals, only
incorporates physical knowledge through the training examples with integer densities. As such, we can easily
see that approaches such as LDA-1/2 are bound to fail in this case.

As a first strategy to solve this problem, we decided to include samples calculated within ensemble-DFT
at fractional densities in our training. To obtain this data we created a set of total energies and electronic
densities for a series of 1-dimensional exact calculations. We then constructed ensemble densities and
inverted the ensemble Kohn–Sham equations, in order to compute the exact xc energy and potential for these
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Figure 2. Comparison of the mean absolute error (MAE) of the total energy for four different models (averaged over 100 external
potentials). ‘Spin’ denotes models including spin densities. The models ‘FDs’ (blue and red) include fractional densities
ϵ= (0.05,0.2,0.5,0.8,0.95) in the training. The other models (yellow and green) include only integer densities in the training.

Figure 3. Comparison of the mean squared error (MSE) and its variances for different models (spin-restricted and
spin-unrestricted) trained with different numbers of fractional densities. The values corresponding to the number of FDs
represent the following fractional densities (ϵ-values) in detail: 0≡ no fractionals, 1≡ (0.5), 3≡ (0.2,0.5,0.8) and
5≡ (0.05,0.2,0.5,0.8,0.95). The errors are averaged over 100 external potentials. For more information see section 4.

systems. We used an inversion algorithm based on [51] that we extended for both spin-DFT [52] and to
ensemble systems. As a result, we created exact training and testing data with particle numbers between 1
and 3 electrons, that we used to train our models. As explained in the Method sections, we use Young
diagrams to compute the exact spin densities (i.e. with the correct spin symmetries).

In figure 2 we compare the mean absolute error (MAE) of the total energy for functionals trained with
fractional densities (blue and red) and functionals trained only for systems with integer densities (yellow and
green) (averaged over a test set of 100 external potentials). As we can see, the models trained at integer
densities yields an excellent prediction for the total energy at those integers, but exhibits a considerably larger
error at fractional numbers. Remarkably, by simply adding fractional densities to the training set, the error
decreases by more than one order of magnitude, and the MAE over the entire [1,3]-range remains below
2× 10−3 a.u. In addition to that, we study the effect of increasing the number of trained fractional densities
in (N,N+ 1) on the mean squared error (MSE), averaged additionally over the densities, illustrated in
figure 3. As expected, the error decreases when adding more fractional densities to the training set. The choice
of training with spin does not seem to have any visible benefits in general compared to the training based on
spin-restricted calculations. As such, we decided to use the spin-restricted formalism in the following.

While this strategy resolved, to a large extent, the many-electron self-interaction error, a problem still
remains in the vicinity of the integer particle numbers. In fact, our network is fully differentiable, and does
not (in fact can not) exhibit a true derivative discontinuity (in a mathematical sense) as a function of N.

2.2. Jump in the xc potential
We can easily relate the discontinuity of the total energy at integer particle numbers with an uniform shift in
the potential. Indeed, the exact uniform shift∆N

xc of vxc at integer particle number N obeys the relation [53]:

∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
= εNs +∆N

xc , (5)
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Figure 4. Integration of the non-differentiable auxiliary function u
[
ρ↑,ρ↓

]
as a third channel to the basic SWC unit. The input

data contains two channels for both spin-densities ρ↑ and ρ↓ respectively.

where εNs is the Kohn–Sham gap, i.e. the difference between the lowest unoccupied (LUMO) and the highest
occupied (HOMO) molecular orbital energies. Noticeably, E(N) and E(N± 1), as well as the eigenvalues
corresponding to the LUMO and HOMO can be computed while creating the training sets.

Our second strategy consists of computing, in our learning process, both ρN+ϵ, and the exact shift
vxc(N+)− vxc(N−). The corresponding mean squared error is then used to extend the loss function in
equation (4)

L→L+λMSE(vxc(N+ ϵ)− vxc(N)) , (6)

where λ is an additional hyperparameter.
We expect that this extended loss function can help the functional to learn the correct shift in the

derivative. Training our basic SWC network with only this loss function failed for any learning rate tested.
This can be understood from the fact that our network is still fully differentiable, and can not be forced to
learn a discontinuous function. It is clear that to resolve this issue we have to allow explicitly for a
discontinuous behaviour in the neural network topology.

2.3. Incorporating the discontinuity
An intuitive way to introduce a discontinuity in the derivatives of the neural network is to use
non-differentiable activation functions (e.g. the rectified linear unit [54]). But there is no obvious reason why
a non-differentiability at integer particle numbers will appear—and these networks will most likely become
non-differentiable with respect to the density ρ. To overcome this problem we take an alternative route: We
define an ‘auxiliary function’ (AF), which we force to be non-differentiable at all integer particle numbers:

u [ρ↑,ρ↓] = a+
|sin(πñ)|
ñ+ b

∑
j

uθ
′

loc

[
η↑(rj,κ),η↓(rj,κ)

]
,

where ñ=
´
(ρ↑ + ρ↓)dr is the (fractional) number of particles and a and b are arbitrary positive constants.

Notice that the non-differentiability of the AF comes from the non-differentiability of the function | sin(πñ)|.
The local functions uθ

′

loc are obtained by using another SWC neural network. We then replace the functional
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Figure 5. Comparison of the derivatives of the energy with respect to the particle number N for three different models evaluated
at a randomly chosen external potential: the first model uses only fractional densities, the second incorporates the exact xc shift in
the loss function, and the third one uses a non-differentiable AF, in addition to the exact xc shift and the fractional densities.

Table 1.Mean and median percentage errors gapE between the estimated and the actual gap for each model presented in this section
(see equation (17)). The corresponding figure for each model is indicated in the last column.

FDs AF ∆xc gapEmean gapEmedian Figure

0 — — 57.43% 55.61% Figures 1 and 6(A)
5 — — 57.46% 53.32% Figure 5
5 √ — 14.35% 9.69% Figure 5
5 √ √ 7.24% 3.18% Figures 1, 5 and 6(B)

Figure 6. Comparison between the predicted jump of the xc potential at N= 2 for Model A and Model B (as explained in the
main text). The results correspond to the same external potential used in figure 1.

Exc [ρ↑,ρ↓] in equation (3) by E ′
xc[ρ↑,ρ↓]≡ Exc [ρ↑,ρ↓,u [ρ↑,ρ↓]], where the additional channel has been

appended to the spin channels. Here each point carries the (same) information of the value of the
non-differentiable AF as illustrated in figure 4. As we show below, this procedure ensures that the machine
can learn the non-differentiable function in an efficient manner.

To study the performance of our approach, figure 5 presents the predicted derivative of the total energy
for three different training models: (1) a model trained only with fractional densities, (2) a model using the
AF in the network architecture and trained with fractional densities, and (3) a model using the AF, the shift
in the loss function and fractional densities. As expected, the first model does not predict the correct
derivative discontinuity, despite yielding very good errors at fractional particle numbers. While the second
model already demonstrates major improvements, especially at N = 2, our most important finding is that the
third model does exhibit a remarkable agreement with the exact results. Note that the results shown here
correspond to a certain, randomly picked external potential, but it can be seen as representative for a large
number of systems as we shall see by analyzing the test set errors presented in table 1. We also trained models
without an AF, but with the∆xc-shift. Those models failed to converge in general, which shows the crucial
role of our AF.

In figure 1 the energy as a function of the particle number is displayed for two models: (A) a model
trained with integer densities only and (B) a model using fractional densities, the shift in the loss function
and the AF. The situation is clearly much better for model B, as the energy is very close to linear between
integers and shows a cusp at N = 2. As shown in figure 6, this model is also able to reproduce the correct
jump in the xc potential: here we display the xc potentials and densities for a randomly selected external
potential at 2 and 2.01 electrons. On the left panel of figure 6 we can see that the xc potential of the basic

6



Mach. Learn.: Sci. Technol. 3 (2022) 015011 J Gedeon et al

Figure 7. Comparison of the exact total energy and the total energy predicted by our best model (FDs, AF and xc jump
incorporated) for the Helium atom as a function of charge.

Figure 8. Comparison of the MSEs and variances for models (spin included) based on different numbers of external potentials
contained in the training set.

model A is correct at 2 electrons but barely changes when going from 2 to 2.01. Model B, on the other hand,
shows the correct uniform shift in its xc potential.

Finally, in figure 7 we illustrate the extrapolation potential of our model. To that effect we plot the exact
total energy together with the values stemming from our best model (FDs, AF and xc jump incorporated) for
a 1D Helium atom, with total charge going from+1 (cation), passing by 0 (neutral) to−1 (anion). It is well
known that anions pose a considerable challenge for DFT due to the incorrect asymptotic behavior of most
semi-local (and even hybrid) xc functionals [55]. Furthermore, we did not include any anion on the training
set, so this is a proper extrapolation example. On a positive side, we can see from the figure that our model is
correctly capable of binding the extra electron. However, and due to the well-known poor extrapolation
capabilities of neural networks, the error in the total energy in the interval [2,3] is visibly larger than in the
interval [1,2].

2.4. Dependency on the number of samples per training set
For the sake of completeness, we briefly demonstrate that the testing errors (MSE) decrease when increasing
the number of physical systems in the training set. The results are illustrated in figure 8. Here, we trained
models (spin included) with 8, 16, 51, 201, and 1001 external potentials per training set. Since all models
have been trained with ϵ= (0.05,0.2,0.5,0.8,0.95) fractional densities, one vext per training sets equals 13
physical systems with different number of electrons. As expected, the errors decrease when adding more
samples into the training data.

3. Conclusions

We trained a neural network as an exchange correlation functional that (a) depends explicitly on the number
of particles; (b) yields total energies that are piece-wise linear between the integers and (c) reproduces the
infamous derivative discontinuity of the exchange-correlation energy with remarkable accuracy. To do so we
extended the sliding window convolution algorithm to systems with fractional number of particles, and
developed a non-differentiable auxiliary function that allows the network to learn correctly the derivative
discontinuity. The most efficient way to train a model yielding highly accurate predictions for the energy in
the entire range of particle numbers is by (a) adding multiple fractional densities into the training data, (b)

7



Mach. Learn.: Sci. Technol. 3 (2022) 015011 J Gedeon et al

training for the correct shift in the xc potential at integer particle numbers, and (c) incorporating an
auxiliary function with a discontinuous derivative with respect to the particle number at integers.

Our work pushes forward the on-going research on machine-learning functionals by incorporating the
correct physics into the training process, thereby improving the path towards an exact functional [56]. We
expect the most important finding of our work (namely, the crucial role played by the auxiliary function) to
be easily transferable to 3D machine-learning functionals and therefore to play an important role in future
developments in machine-learning DFT. As an outlook, we think it will be important to incorporate and test
our results for realistic 3D systems or include in the training data diffusive anion states in the sense
of [41, 42]. We also expect that our results can stimulate research on similar problems for ensemble DFT
(understood as mixtures of ground and excites states), orbital free DFT or functional theories of reduced
density matrices [57–62].

4. Methods

In this section we present all methods and computational details necessary to arrive at our results. First we
discuss the generation of the training data and second the details of the network implementation, and the
definition of the mean errors discussed and presented above.

4.1. Exact calculations
To train and test our models we created a set of 1-dimensional exact calculations and Kohn–Sham inversions.
We sampled 1500 external (Coulomb-) potentials and computed the exact electronic ground state densities
as well as the corresponding energies by solving the eigenvalue problem for the electronic Hamiltonian

H=−
N∑
i=1

∇2
i

2
−

K∑
j=1

N∑
i=1

Zj√
1+

∣∣Rj − ri
∣∣2 +

∑
i<j

1√
1+

∣∣ri − rj
∣∣2 , (7)

where K is the total number of nuclei, the variables Rj and Zj denote the position and charge of the jth nuclei
respectively, N ∈ {1,2,3} is the total number of electrons, and ri is the position of the ith electron. We solve
the exact ground-state problem with Octopus [63], using a grid spacing of 0.1 a.u. and a box size of 23
a.u. (leading to a grid with 231 points). To circumvent the integrability problem of the Coulomb interaction
in 1D we used a softened interaction. The total number of nuclei K were set to be 1, 2 or 3, such that their
individual charges satisfy

∑
kZk = 3. Their positions were randomly distributed with |Rk|⩽ 4 a.u.

4.2. Spin densities
As Octopus [63] only provides directly spin-densities and wave-functions for two-particle systems we now
discuss the problem of obtaining the spin densities for the three particle systems.

We start by noticing that solving the eigenvalue problem ĤΦ= EΦ for the Hamiltonian (7) yields all
many-particle solutions, including both fermionic and bosonic states. A spin-adapted fermionic solution of
the formΨ(r1 σ1, . . . , rNσN) can be obtained by projecting any spatial solution Φ on the Young diagrams
belonging to certain spin quantum numbers (S,M), with S being the total spin andM=

∑
iσi [64, 65]. For a

detailed description we refer to [64, 66, 67]. Let us denote a set of f primitive, degenerated, but orthogonal
spin functions as {X(N,S,M; i)}i=1···f. A permutation P acting on a spin function can be expressed as a linear
combination of all primitive spin functions:

PX(N,S,M; i) =

f∑
j=1

X(N,S,M; j)U(P)Sji . (8)

The expansion coefficients U(P)Sji can be calculated using the orthogonality of X(N,S,M; j) [68]. By taking

into account the antisymmetrizationA= 1√
N!

∑
P(−1)PP of the product of the spin and spatial parts

ΦX(N,S,M; i) one obtains a sum of products of spatial and spin functions, as follows:

Ψi =AΦX(N,S,M; i)

=
1√
N!

∑
P

(−1)pPrΦPσX(N,S,M; i)

=
1√
f

f∑
j=1

X(N,S,M; j)ΦS
ji , (9)
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Figure 9. Densities and corresponding xc potentials for a certain external potential for different integer particle numbers.

where Pr and Pσ denote that the permutations operates on spatial and spin coordinates respectively, and

ΦS
ji =

√
f

N!

∑
P

U(P)Sji(−1)pPrΦ(r1, . . . ,rN) . (10)

For the ground state of N = 3 two linear independent spin-eigenfunctions can be chosen:

X(3,1/2,1/2;1) =
1√
6

[
2 ↑↑↓ −(↑↓↑+ ↓↑↑)

]
, (11a)

X(3,1/2,1/2;2) =
1√
2

(
↑↓↑ − ↓↑↑

)
. (11b)

The (normalized) spatial parts in equation (9) and the corresponding spin densities ρ↑(x) and ρ↓(x) can
then be found. For instance,

ρ↑(x) =

¨ [
5|Φ̃1|2 + 9|Φ̃2|2

]
(dx2dx3 + dx1dx3)

+

¨ [
2|Φ̃1|2 + 18|Φ̃2|2

]
dx1dx2 , (12)

with Φ̃1 = 2 ΦS=1/2
11 and Φ̃2 = 2 ΦS=1/2

21 /
√
3.

4.3. Kohn–Sham inversion
For the inversion of the densities we used the optimization algorithm proposed in [51], that casts the inverse
DFT problem of finding the vxc(r) that yields a given density ρ(r) as a constrained optimization problem.
The conjugate gradient method was used to update the xc potentials vσxc(r). A constant weight function w≡ 1
was also used.

The densities of N= 1,2,3 particles were mixed, allowing us to generate a fractional densities for each
external potential. For instance, the set {1,1.5,2,2.5,3} contains additional ϵ= 0.5 fractional densities beside
the integer ones. If the inversion algorithm did not converge to a MSE below 1.5× 10−7 for a given density,
we removed all samples corresponding to that external potential. The computed xc potentials were shifted by
a constant to be in agreement with Koopman’s theorem [69].

In figure 9 we show a few examples of such spin-densities and inverted xc potentials. For the fractional
densities plotted in figure 10 the shift of the xc potential caused by the∆xc jump is clearly visible.

9
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Figure 10. Densities and corresponding xc potentials for a certain external potential for different fractional particle numbers.

4.4. Network implementation
The neural networks were implemented in pytorch [70] using pytorch-lightning [71] to simplify the training
process. As discussed before we used the sliding window convolution as proposed in [14]. We also attempted
to use fully convolutional networks but were not able to achieve the same performance with them. For each
network the number of zero-paddings at the system’s boundaries was set to (κ− 1)/2 (κ is an odd number in
our calculations). For all models presented in this paper, we chose a kernel size of κ= 201, corresponding to
highly nonlocal funtionals (see the exact calculations in the section 4). Each local density was fed into a fully
connected network with SILU [72] activation functions, and the output layer returned the local functions
described in the previous sections. The use of SILU activation functions guaranteed the smoothness of the
exchange correlation potential and its higher order derivatives. All hidden layer sizes were set to 32. Including
the window convolution we used four hidden layers. The additional SWC unit for the AF shared the same
hyperparameters. The network weights were optimized with ADAM while using a cyclic learning rate
scheduler. We used a learning rate of 7× 10−4 with a batch size of 30. The only exceptions were models
trained with the xc-jump in the loss function. In this case each batch contained one density, corresponding to
a random external potential. If the∆xc-shift was incorporated in the loss function, the densities per batch
consisted of all fractional densities of a certain external potential. For these networks we kept the learning
rate used before, but changed the batch size to one. The models were trained for 30000 epochs and the model
with the best validation loss was selected for testing.

4.5. Mean errors
In this section we discuss all the errors discussed in the main body of the paper. For a set ofM external

potentials {v(1)ext , . . . ,v
(M)
ext } the ‘averaged mean squared error’ (MSE) is defined as:

MSE=
1

KM

M∑
m=1

K∑
k=1

[
∆Etot(ñk;v

(m)
ext )

]2
, (13)

and the ‘averaged variance’ (Var) is defined as:

Var2 =
1

KM

M∑
m=1

K∑
k=1

[
∆Etot(ñk;v

(m)
ext )−µ(v(m)

ext )
]2
, (14)

where

∆Etot(ñk;v
(m)
ext ) = EML

tot (ñk;v
(m)
ext )− EExacttot (ñk;v

(m)
ext )

10
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is the difference between the predicted energy and the exact energy and µ(v(m)
ext ) = ∆Etot(v

(m)
ext ) is the mean

value averaged over particle numbers corresponding to the densities belonging to a certain external potential

v(m)
ext . K denotes the number of equally distributed densities (with corresponding particle number ñk) (in the
range [1,3]). The averaged MSEs and variances for a sufficiently large number of external potentials provide
information about the accuracy of the prediction of the total energy for arbitrary fractional densities in
general.

The computation of the derivative of the total energy with respect to the particle number offers the
opportunity to estimate the success of including the AF in the network or the xc jump in the training. To that
aim we have analyzed the gap

∆ϵ(N;v
(m)
ext ) :=

∂ETot(v
(m)
ext )

∂n

∣∣∣∣
n=N+ϵ

− ∂ETot(v
(m)
ext )

∂n

∣∣∣∣
n=N−ϵ

, (15)

where ϵ> 0, by means of the more appropriate numerical derivative

∂ETot
∂n

∣∣∣∣
n=ñ

≈
(
ETot(ñ+∆;v(m)

ext )− ETot(ñ−∆;v(m)
ext )

2∆

)
, (16)

where ñ is a computed fractional particle number in the interval [1,3] and∆ is the corresponding spacing.
Since a non-differentiability at integer particle numbers occur in theory, the numerical derivatives (whose
derivation is based on the assumption of having fully differentiable functions) have been computed
separately on open intervals (N, N+ 1). Using equations (15) and (16) we are able to evaluate the ‘mean
percentage error’ between the estimated and the actual gap, namely:

gapE(N, ϵ)mean

=
1

M

M∑
m=1

∣∣∣∣∆ML
ϵ (N;v(m)

ext )−∆Exact
ϵ (N;v(m)

ext )

∆Exact
ϵ (N;v(m)

ext )

∣∣∣∣ , (17)

where∆Exact
ϵ (N;v(m)

ext ) is just the difference between ionization potential and electron affinity according to
equation (2). We explicitly underscored the denotation of the error by ”mean”, since we will additionally
evaluate gapE(N, ϵ)median, which is the midpoint of the sorted distribution consisting of all the summands in
equation (17). For the evaluation of all the errors described before we chose K = 100 andM= 100. We
estimate the gap errors at N = 2 with ϵ= 5× 10−9, i.e. gapE(N= 2, ϵ= 5× 10−9).
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