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Abstract

The expénsions of the equations of motion of betatron
ogcillations in the Mark V (egpiral sector) F. F. A. G. accel~-
erator in powers of the deviation from a circle and from an
equilibrium orbit are discussed, It is found that in the case
of large machines where k >> 1 and ¥ >>> 1 that compara-
tively simple eguations for the comblned radial and axial wmotlion
are quite accurate, while in the case of amall machines, where
these conditions. do not hold, no such simple squations appear
to exist. Coefficients in these equations are derived, and

their magnitudes estimated and numerical examples glven.

# SBupported by the National Science Foundation

£ On leave from the State University of Iowa,.



== MURA/FTC~3

Introduction

It 1s desirable to expand the equations of motion of betatron
oscillations in the spiral sector (Mark V) FFAG in order to apply
the methods of Moser(l) and S$urrock(2) and to investjigete the
posalbilities of reduéing the troublesomes effects on non-linearities
by judicious choice of the fleld shape.

Laslett(B) has discussed this expansion with emphasias on the
linsar terms and Judd(u) hag discussed the non~linearities for
motion in the median plane. The present report reviews this

work and extends the results to the coupled radial and axial motion.

I. Exasct BEquations of Motion and Development of the Vector Potential

Consideration of the spiral sector accelerator began wilth the

median plane fTield

B,.="bg
“ B, (%) {’*;“‘”’f 1.2)

with

171/:1}4 (e - e

in cylindrical coordinatesa. This specifies the magnetlic fleld

(1.2)

everywhere by Maxwell's Equetions. The esquations of motion of

the betatron oscillations can be derived from the Lagranglan
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The. equations of motion are simpler if & is used as inde=-

pendent variable instead of t.

Thus
J=/£Q’f:]o¢’o/e

o ' . do _ w7

and J“Ld_;‘: +~ Now 1,.___9/_1(\ i’f—f-»f@

It is customary to use the dlmensionless variagbles x and y
defined by

v =y, 1+%)
3 = ﬂ,g (165)

and

0Z=44401’;Cq/(1+—1’)71 T oyt® er[ " Aty A
*'+ Y +_Eo(/+x)/ig+2’ x7 ;}
We use units such that

2e - = B,=/

= [+]

(1.6}
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and since &' = 1,

o7 = (f+x)z,+z,?;‘;’z+ (/""‘)Aﬂ'%%”g%ﬁ' (1.7)

The equations of motion follow from the Euler~Lagrange

(az’ = O
;—;(;g-:

In the case of motion in the median plane (y =

egquations

(L.8)

i
o

0), we have

c’(’ ‘Z’ fort
- |+ % /,

= ""(/7“23 /+ L (-10'9).
d8 'V(/+z)"+2’3) L e [ 7{%@

which can be derived from the Hamiltonian

bra

btz
a —(pon 1-dFn (1%) (ﬁa-z)
g{ (e 71‘ i z/ i+w"(£fvz) [ 'SZ/ ’W‘@:ﬁ}(l.lo)

The first order canonical equations derived from (1.,10)
are the Ridge Runner equations integrated numerically by Illiac.

The vector potential components may be developed in many

formg related to one another by gauge transformatlions. Laslett(s)

has chosgen a form with K?:érﬁ_o and Powellcs) g form with Aﬁ,z Qe
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Following Laslett, we write

< Dz-;—fD ’Z-I—D%-i—])%q

7’ (1.11)
in the medien plane, where, with :; =N 9,
(D= -1+ s g
R A éﬁr"%?)
2 _ £A2adkr3)\_, |
D, = - A=zhes o f K esy( ""‘2‘“‘“)‘“—%
L 3L FPE-7
D<;= {:4ﬁ+7£ /;z+7z[w- Coes £
N _(3ai+4J 3 é,z_7£,m/d
+2?j, — 4+ £°-4 f J
(1.12)

where the coefficient of sh1g in Dh has been corrected from

Laslett's first edition, OFff the median plane we assume the
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form for the vector potential components.

e A, 8,.% "
# ~E§;<4 Cy
EA = 5 X, y” (1.13)
‘Tb Men LY
< = wm, N
P TS Y. VY
MENg Y

By using Maxwell's equations, we find

¢ =D e; —L(D,+aD,)
0,°D, @,z -L(-aD+aD+cD+ D)
8, D, Gr= <L (3D 3D+ 3 2D -2D4D")
007 Pi Gy L (5D - (D 412D P24 DD LY
Xpa :D'/ %: = "'D‘/
X, = =271 +D/ v, = Dlz__ 2/
G EOE) L ()
Vo= T DY) Y=+ (L 4R4 D4+ D"

(L.1ly)
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gnd all other coefficients are zZero. .{9_22 and 90L|. have been

corrected from Laslett’s first edition).

II. Expansion About a Circle

Laslett and the present writer have carried through the
expansion of the equations of motion in powers of x and y about

the circle x & y & 0. After solving for x" ' and y s one has

Z”f/.ﬁf—x + ,f[;j:— ¢t G- (/{H)&v'w;’?]f =
= feiy- [((£+;)[ﬁ+z)+7f[%iz%§+/ (f:ﬁi/%z)u 5] §z—
- iﬁ(’éﬂ)(ﬁﬂ) + i[—- /_f‘?{:fé"@wzﬁ, £ e —Ef:!)(ﬁw) W-}szj} g,?;_
’ /’+?ffﬂw5f—z'i{(eéw)+ﬂ[é%§“ fmg_,?f%‘g’i_
sy~ [rgsns ) 2%
4_2{{_*;[;&%? 4 It (/Vlijw 5‘“’“?’]
f-gﬁi;[ _f_ﬁé_é)szf_/_ 3f+ﬁ/A/ 'ﬁ"‘)w ”’“ﬂjfd-‘
— WE [homs + oS ]2y
[fﬁ-ff[wc.m‘g‘ — ﬁngj;{:;j .
--{ﬁv"?f[iﬁ"“? kpswg]} & (2.1)
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and ,
g”-—/ﬁ +,-f[é;ms—7£s;w§7j5,
={{(ﬁ+/)+,f QﬁHC’“‘-E‘f Lz é%"’d'”” Mﬂ}@f
%/;éz/%*’")’f'yf[ | i@f&z)w Coo§ i 3k - }Q(é#/_)w Mﬂjﬂ»
—[ﬁ‘(‘fﬂﬂ) ;[ /_gmw Mw%ff
. Th .:+(;é~z)(/k/ A2 S,ng}

+[l+f&€w§f:zé( + {/\/Zz’mg);g —

—f )+ ff s Asiy |2y
%[‘ﬁ-ff[»:‘f-MF *'ﬁs,cwt;]j(ﬂzchf" 4

boONE[Bees o+ s Junh

(2.2)

When y £ 0, (2.1) reduces to

7/’7’-{@4»/) L 7‘f[¢;é Coe 5 - (ﬂfz)ngz:
= ;gwg_gf(z,c,)(ﬁﬂ) H B g 4 X i ﬂf g:
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#zrg/’éw(ﬁﬂ)"" ff[)fﬂ«"’“ § A e Sj
I Zr ““3’72/5"““*5} 3£+z/+ ?zfzw‘-ﬁ} Fﬂ!ﬁ%gfﬂz
Z

(2.3)
wWhere
X = ) - (éf-/)(/m)w
>\l:_ /»(3’7’-%-42:;%3)
2 103 (2.1)
S Bt )= T Er1) (% #2 ) >
3 - e J

which 1s Judd's(u) radial eguation except for the coefficient
of xﬂyaéin E? « The difference arises from our taking the
coefficlent of x" from the differentiation before expansion to
one higher power, since x gatisfies an inhomogeneous differ-
ential equations and therefore x". %i and not As x,

Laslett has developed in a Fourier series a large amplitude
radial motion found with the Illiae, This is the motion at the
fixed point of order three { ¢ = é? 77 ) which lies on the
boundary of the stable region of the phase plane%, It 1s inter-
esting to compare numerically the Illisc and expanded solubtlons
and to compare magnitudes of various terms of the expanded

O o e O o ot G e S wm e oo Gm oo m

#* A Tortheoming report by Laslett and Cole will present Illiac
data snd disecuss stability limits found,
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solution. Thus we calculate x" at several diffsrent values.of

S

k = 160, 1/w = 2302, -F =1/, ¥ = Lo,

- o e s 9T/2
='* torm 0.120 s10°k 0,696-10’6 0..385-10"1L c>.17)+'10"LL
X x’ﬁﬁe;m 1.079-10'5 ;o;1h3;10‘5 _ o.u73w10'5 0.991-10'8

:F sing | o ~0,2500 0 0.2500
x term o.aééji ;5,02138 0.01L.0943 | -0.00100
xZ %srm' -0;01750 0.00713 0000780 -0 72-1074
xBrterm &0;03338 ~1.,28 = 10“& mo‘ooousﬁ —0,61620™7
éum;= X" T oazusnh +662643é | 0.04132 0.211897
Illiac x" 0.25020 ;6,266£7 ; | 0.0l1206 0.25481

Error Oe7% 0.8% 1.8%: 1.1%

The error in calculating x™ from the Tlliac data 1s small
compared to these errors sxcept in the case N6 = IT ., where it

is about 1%.
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The "derivative" terms (xﬂ@ and xx’aj are always small
compared to the linear term. The cubic term can be as large
a8 11% of the linesr term and the quadratic as large as 30%.
Note, however, that the cubic term is twice as 1érge as the
quadratic at Né = 0, where x/w = 0.94. It would appear from
this that the expansion converges slowly for large x/w. How=-
ever, these numbers are somewhat fortuitous, since the largest

part of the quasdratic term is zero at this 6.

ITTI. The Equilibrium Orbit

The equilibrium (closed) orbit is that solution of (2,3)
which has period 2 /N in 6., Iaslett(3) has found the Fourier
coefficients by direct substitution of the Fourler Series and
solution of the resulting algebraic esgquations. Judd(u) hasg
obtalned more accurate results by an iteration procedure.
Bibecé) has discussed the problem in terms of a variable &
which is similar to the F‘ used by Cole and Kerst(7)'in dis-
cussing the Mark I equilibrium orbit,

We expand the solubtion in powers of ?f » Which gives
equations similar to Judd's, but having different forecing
terms in each order, We assume

vee)= 2 L %8 (3.1)

M=o
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with
% (6+ f.\_/”‘)= %, (6) -
Then, substituting in (2,3),
2" (fr)x, = ?"/j (Brr1) (#r2) ‘_fa?f_
— Rlr)Er2D) 5 _ 2hed o
2 b i xtZ

A solution of the x equation which has period 2 T/N
i o
is X5 E 0.

The_an

# (Rr) 7 = 55 .
M T . 2! 3
X () ¥ = Efrc«mp(ﬁumgwi_cﬁ%@z}z

%% (%) % = E;{-ﬁ«g%@::)mﬂ%”{’%ﬁ
FEstg %= (fr))(BeR) 4% —

" (B s #sig) gt L)l o
— (3hr) T *
<

P — . / 4%
%, #(Rr) 2y = [ covg e thensiny | 57w 4 X (3s~§}v %~

"/};*”)fz"'*)(%-z-/-i;%)- B (b )(#r2) 20 (3.3

-—n_a-—n
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' 3
"(Q-—frt?a"’fﬂ")‘:@“?)?{%,— - (Alco-sg,zu /\g.c;w5>£f/._

- (3'£+‘/)(2176/§‘ %/’7’/%7 -a—f’-/j— cos ¥ ~ fmg)ﬁ;g”‘

We define

el
= Tt - (MN) )
and find
Lo
’y% ‘Qﬁm‘" %2‘3”“3‘-?‘- bz gz
’ * S (3.5)
X = Gz A -
4 IS mB’ + 3’%5.}-&33 b -
= =7Cosq g + 233 o
etc,
where

/ “Hor
a,, = 2“;"_7{/\_/__?;}:_’)_/_@2#@-}: 4../...; [Zﬁw){ﬁqbz v-(gﬁ+3)/\£)

g/\} 2 (h) (ﬁnJ__(’g }- _[(ﬁﬂ (fé+2J-¢(-’zﬁ.+5)U
{3,6)
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and

(o_ = - %0

2= Tt (P ) b ks
- TR JE T fwhE

\ 2
S FE { (2+) = (208 + 29N # '%éi:-?/\/‘f}

i

i

by, = (l— &,)(ﬁﬂ)a;v T ((‘@_HX‘&H) ‘54—2 A3a
FI Fl F'| 2. F‘L -
— b AN 3444 Mo R(A) (Bea)
:;wF'z_ I ;‘b QF"B ‘] ‘JF” GF 3
g B+ +IN? |+ Lo [ h(hn) = (7ﬁ+1‘?”£+fé)N""
[ bw 'r_ E L J IGFB,: q«;:l ) N:,
- _4 '
QBB = :"«f;;_ n ( QIV7‘+(£+J)/ ﬁﬂ) 75.;1) 23 2%+3
& F R S1wh >

il

- W}ﬁ'za é-— (f+ )(34+5) + (Jafﬁmf)Nz}

‘053 = ('ﬁ;\f ;.:,1 Ozﬂ)(ﬁ'ﬂ)) F::- _2%; . 3 /\/
_ 3%+4 > M £(£+J/7ﬁ+)
5'5’3 [ ~7 é/F‘3 z.]

e L (3 Teheais)e T
2 7 fw,‘[ﬁw N (b >
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where all terms which contribute more than 0.1% of the leading

term are included

2 2 3
7{7_@’ A (-;7‘- E.f,w_?/)siwf—f- J%%’c»-sg%-
fﬁzk%2§+ "sz‘,'s—‘ng')z'

* 76“33%33'1'— ﬁ535—w33+~'

(3.8)

The results agree with those of Judd, except in the highest
order where different terms are included, due to the 8ifferent
approximaetion used.

Fourier series for the closed orbit have been obtained
from Illiac data by Laslett. We compare below values of X
and 43 n cg&lculated from the development above with those of

Laslett for two cases, characteristic of large and small machines.
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Large Machine

k = 160, 1/w = 2302, -f = 1/, ¥ = L0,

faleulation Illiaﬁ

=230 =216
- 86 - 78
=1612 =1651
-6 - 13 A1l x 1077
« 80 - 73
= Qa7 - 1
-5 -l

Small Machins
k = 0.8, 1/w = 23,0, ?f =2 1/L. N =5,

Caloulation_ Illiae

<1773 =I73.9

= 3.2 - /0.8
~1049.8 -1052.8

- k.7 - 6.9 All x 107P
- 31.5 = 30,0

- 0.3 - 0.3

- 1.1 = 1.3
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The agreement between leading terms 1s quite good., In
the large machine case, the difference in fé/ could be rednced
by 1ncluding :¢5i terms which are gbout 1% of-the total and
in the dorrect direction.

Numeric%lly, In both cases the closed orblt is dominated
by the foreing term ( # sin‘j } and the linear term. The qua=
dratic terms-(x2 and x’a) contributé an amount only 6% of the
leading term, whlle the contribution of “the cubic terms is
very small in this approximation, |

The terms calculated agree numerically wlth those of

Ribe(6),

IV Expansion About the €losed Orbit

If one expmds directly the differential equations (2.1)
and (2.2) about the closed orbit by substituting

¥ = X +U | (ha1)

where x is the closed orbit given by (3.8), spurious first
derivative terms are introduced, as found by Judd(h) in ths
radial motion. This difficulty may be avolded by expanding
the Lagrangisn or Hamiltonlan, rather than the equations of

motlion. The Lagrangian has the slight advantage that the
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vector potential does not occur under the square root sign.

We sxpend the Lagrangian (1.7)

’

_ T rn 2, 400,02 A+ AJ
ol = cf(zgz/;,;) 9)- 1/(z+z) ¥ fy + (HDA, v J'(u.a)
in a Taylor's series about x = xés x? = Xgo ¥ 2 0, y' = 0y
using—(h.l); The term independent of the variables gives no
contribution to the squations of mofjion. The terms linear in

u and u'! cancel;, since to this order

_— 9024 :a_g / Fre
3 £/u+ WJMf

whers means that the term is evaluated at the celosed orbit.
Then EE? _ Eff

an = Px

é(af d /oL

delZu/ T de\ 2

and

cé(fEEQQ B 53? =0

gince the equilibrium orblt satigfiea the equatlions of motion,
'All terms of the form yo vy xP %19 vgnish when m+n is

odd because of syme try about the plape of the equilibrium orbit.
The Lagrangian expanded through terms of fourth order is

then
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L= FUnh gun's Lo Loyt acyy Hiay't
Flouied by L bwPn’ v Ly w4 £boty ™y
thoulte dbuy T f b u s byt
hoawt s Lo wty Legyttdo,y il quiyy
—/--é ¢, szg/f .é/-a7q5a,/7l- %chuzu’z.,l. .é.g aa,"z-/-
Lo, uy e fouly E Rt

4
) / 3} !/ .
torbedd T l—é;‘?/# i o

(L.3)

Define

Lo = Vleg) g™ ()

Then the coefficients of the Lagrangian (li.3) are

) 72
(-Q "“";;s,/" 3-5' +Q[6/a+;282025+;@:v’o$52+‘//9€'o%f_7+

/ Lf 2
(14728, * 63,5 +126, %]
S R
1 Sxdx’ /3
2
2% ) . (%
QS a_);fﬂ- Lf
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2] /
%y %?*) (4%)[o4,02 0,5+ 24 R & (2K 5 + 2, )
= 2 *

R 1 VT

% 9;3;
= 2% | L
QG 55{1/ Lg
- 93
Jpl = 33%(} 3% (H%)+3£aezo+é 9;‘,2;57&/&9 ZJ-,L(#JI)@g + 294 757
3
!31;‘ 3}"{/ = = 2945'_4_%)_
e ,
.= o] = [}z(w{?) % 17
= 2 (/+z’)
AP A [:?x (H5)")
3
by = ia‘ja 28, -*—v'*@ux +26,,% =’+f (28,798, )1 (2K + % 2)
b, = )= aX, ¥t 4Xo0 %
4 ’;’ w3y
Y - (1%
7 '9xaé,f” L3
3
PSS —
9)(’95) Ls
2
l’q m:l_ rr"’gX/ %+ ?X/%
%f "y f’*f’*‘” %) [24 8
C\ % Gxa|T T KT #ifes, +290,, 4 J+(#%)[24 8, ]
_ Y
T S| = =-z(fﬂ_s) 4 /s’;éj?/a%)
[
. oY g
=9 -
C"/ %THI /i
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‘é{/‘ LQXH_WL ‘/)(11-%5

24,
% = Qx-;ajfa :] = ;‘Xl + 6 5*’2‘5

— % (1) 3y
= |~ _ﬁ?d+ﬁ%;§J
?

. Qﬂﬂ =N 7 — z
8 &&ﬁ‘} L5 h___?__*)

‘7 3‘9)(/3! = —__:?_:V,SX (1 ) .0'5‘ ( /%ZS)

= 2L . L
Cro 3,2"',)5%/ - Q[_}@;7_+491L23J+ (/*ZS‘)IJZQ #—%Z/
. 2K | - -y
i) AW ol O
c,= 2 ) —d e 7% o 308) % (haS)
L‘ % ax,ﬂr)ﬁﬂr)“ Lo3 F C}Lll QXQX’JJJ'/ i Ls-_‘) 5

Using the Euler—La Grange equations, ;—él’lﬁ derives the two

gecond order differentlal equations
" ; Lo u'*LLc a’+c?zcz¢/+J-C} g’j-f-
U [ca3+é5m+é,%+2 JU AT > 2

+3”[/’J;/7{'C/2M;"/+ &y ’uaqg .
= —quu ‘4 (a/-a;’/)ﬁ_,. 2__(:[4__%:7%,__ E.L(-é)j/_/,é:/),u/:
by bl )y £y 1) 43
W 3
Flh=bogy'+ 4 (e ) £ (agegl)u's
— L c?" utzg,t/ - (Cg L0 /)’btufz.{- J—(C,a'cg-’)ud' .3_+

* (¢~ CS')“‘;;/* —L(C//‘OM)&;’*‘ ug

(406)
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and
! ER
Y [aﬁ- b, by + L c4ét/2.}_ éc,, U pLCrtt’ £ Cry af’)-f-

_,,»M’f[éa,g@ G, w4+ uottfj =
= —aly'+ (y~4d )y + (é;r!;/)ag ¥ (/95-43&7)%27&

~ by’ — (b ak)uy |

R T

+ (CrCy) uuy - i/_c,,/(u;c/’)w(_cw“%f) iy -

/ z 7
—~ L (,,,?cM +c,2)u’é

(4.7)
These equations are of the form
;i“ﬂ_}_égu - F"[q)u’)JJyﬂ,e)
-'08
gufl”f'}faéf{ - G-(%uﬂg,yﬁ@) (4.8}
and have “solutions ”

ﬁ{'”:‘. #‘F_;G

_f: - P
& J (49)

LG-gF

A
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We expand these quantities, keeping terms through third

order, and derive the differential equations_:.é
" / / YA -
a, u ' 4 a, ul. (a,~al)u = 5[(!:, b )—ad)(a,-al )+
.
+ ;_&%7(52/.,42/)]1,{ +
F z
+ éf‘ (4+8') +24/d, - 3235’(4-?‘] u'

4y
B
L], * ( / 2
t 4L b]y 5[4 %{73’ 7
' . ‘b‘{v /
+ [b-b, o (ay-al)]yy’ 4
/
+ gf GG = 5= 47) -3y (@4 ) 4 2,04 -5)+
+C,,m[-czg/)- Q%é&(c{,mg;}?j u? 4
- Nt /
n (;Lg(mé;w;?%‘f‘ 3(;4\( 5445;%; bg:igr) +3Q/¢a;+§irﬁbaﬂ{"£4"bz)‘ @CE‘Z}“%I’
/ ! /
" i.[f-cgf'w‘ii [by- 5{1( by, t bg (a,-q;f))m'} .-J__,n[b, —Ld, +%57 (qf-z!ﬂ{—clg%’m
- 2dg(a -] )+ E{L@ [*2 by EJ—# by (b - yafy ac, (a, "agfﬂ f Cu't
'+i[(-=ch- 'wd (bpbi-2b,8" !
2] T f(’f’uf'ig{fj)m’l* B"f_ﬁ'if (- L?“.a/“"”cf(“:“‘%./))]“ oy 4y -47) +
+ A C'j"aj:l "f‘*i‘(& El:»? (1)4,‘4*1)2'/) "c;}!’g é’gliﬁcm qu" ;O“QCMQB/]\} uqifz"
4 et v & Dlhs 4] b)) wg*y
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b leema=dlh-b))4 o//ém - )i Pl by )~bet by 1,7)%,4(«4@)} 't
+ £ ~
[(c” 6/4’ "/(bf‘}’ "Lz%é) d(a- 2)"‘4 D’ (4 ‘/’?/)"4 S (% -4
+Rb,b 26, ‘] (‘L% ks
o fro bl e A o

t &) b bl )r 20 (hp-by) | uly ™
LLbh- brca, oL [2by by o, 5yt [Tl
+ Z( % 2, fﬂ z; @bc?’(‘? Jﬂb sz_(@;/ ﬂf’,ﬂ} éé’(l_;_,l())

and
gy oy g = [t b)) g
#) bkt ey ad) = -] oy 4
'iL"fé-f-o{‘?é‘f“L["éa/qé é(af 52/) L“?%/é A
+g{“3[-—zm“ég”~;_7+°£ j‘“‘g‘i “”"5Z( /3j?5;’7"
+ J-Zf 56,8, ~ 34, (4-4")+ ?wdf&’?%
" —ALZ( 0= Cy Z!}Ezqu(g ') +og (@ ) [-24 [k, ff(@-@!ﬂ—
- CI3(41—““$/} “3 7
+ { Cs-Cy +-L [b (o) +byy (by=bo )45 (24 "45’/)’% bomba)?
z(ar‘i V]-da Lo bt @"'ﬂ‘jﬂ"’:jf(&ﬂ;g} wy
+
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/
+ 'Iig—cnj + al} [‘2[3457{— cgaé{— L{, (éf"% )-20/4(':1/-4;27—'
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where
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.(dlg Qééy"/' Az J’l

Qj‘{é
;.:: A - @, é‘& .74. 43 AJ/
T Az 9y
. _ g, Co t2bybha+t G5C 2.
Js = R ; 7 F&/ _ g2c4
1 STy
-‘ J7‘ = 4‘402 ‘rlrgé_zbf £ e - 3 c/zz—
| ) (h.12)
. Ay Cy bbb b 445G 212
;Jb. ¥ -,_E 7 ‘/éf 27703 ‘/__ ;c//C/'z,.
Q544
d A Gy — A:? U + 40y
¢ =
N JL’SQQ

It may be noted that a3 and 8y are always different from
zero, since f!xJ <& 1 and|x;}<¢ 1, so that the denominators
offer no difficulty.

Eéuations (010} and (4.11) are obviously much too complex
to be useful. In the next section we estimate the sizes of

the terms and find that most are negligibly small.

Vo Approximate Expanded Equations

To estimate the sizes of the terms oceurring in (L.10)
and (holll, we must estimate the sizes of the vector potential

components. We see from (101h) that the Opn? Ky and Ymn depend
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on the Dn of (1.12)}, which are the form

D, = AE)+ B (Ew)eng+ Clw) sis

(5.1)

g0 that

D ¢ Al VERTE

and

IZD,Y,II $ N IDy| (5.3)

From Section III, we see thaf the c¢losed orbit is of

order of magnitude

el ~ L

N'.'L

/ - (5.1

We carry through the estimates fop three different sets

of paremets

A, k A150, 1/w v 2,103, -F =1/, ¥ ~ Lo
B, k™ 100, 1/w ~ 105 , £ =1/, ¥ ~ o,
Go ™ 1, 1w ~M20 % s 1/, ¥ ~ 5
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A is an example of a proposed full scale machine design,
while B is a full scale machine with more conservative parame-
terg. ©C is an example of a model sized machine.

We give orders of magnitude below

By D, | Dy Dh,
A 1 3-307 107 10°
B 1 _102-102 #;1Oh 107
G 1 2.5 20 780 i
.910_ 920 930 Quo _“902 912 922 ggh -
al 1 |3102f10° o [3.107 8ly08

3‘1@5 510

Bl 1 {102 |u-1oMio7 102 f105 108 luo?
c¢{ 1 13 20 80 3.5 |60 500 |80
12 *2 Fop Ty Yo Y; Yoz i3
al o | 1ot |i/3eidt o 1% | Le10® | 1/3010M 0100
31 20103 |10 6+:10° |1.6010% | 24107 fe10

B{ Lo 6+10”

-

¢l © 25 6 5 20 100 6 1150
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7,102 | 6167 | 1 7.10° | 6-10% |1
2.5:102| 6163 |1 | 2.5:10% | 6183 |12
10 0,06 | 1 | 10 | 54107% |1
1Q§ i 2!10“2 2;10'2 1 106 11072 |1 | 61073 1.0
3,105 | 2:207° |20107° |1 |2i108 1072 |1 | 642073 | ho
150 0.2 | 0,06 l1 | 150 | 0O.1:}1 0,06 | 5
1 %2 3 W s %6 n
2109 | 10 {24109 |3 | 80 | 2010 | he1072
B ,2}108 10 | 2+10% |3 80 210" L1072
2103 | 10 {2203 |3 | 10 | 50.] 0.3
g g | €10 11 %2 %13 ‘1
10 | 69073 2009 |1 |1 |2e1dt | 2,102
10 | 107 fieao® [y Ja | ot | 2102

10 | 0.06 |2e103 |3 [1 | ko |- 0.15



P

=30~
4, 4, a, & 4 d
ald | 23070 | 10| 5-307R | 3
1 2-10"%l10 | 10 5-1072 | 3
el1 |t 0.2 10 | 10! 1 3
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We estimate also the following derivatives which appear

in the equatlions of motion.

aéi aé‘ ‘ag aé ?é bﬁ bé
All 6103 0,25 6,103 3 1,201072 0o5
B|l1 | 6+1073 |o.25 6»10?3"3 1,2e10”2 0.5 _
cl1 | 0,06 0,25 0.06] 3 0,12 lo0.5
§ - - . .
b% | bé ,b‘9 | cé cﬁ eg | cér ct cé
al6:1073) 1120103 | 6107 | 3.2072 | 3103 8:10° | 6 | 601072
Blor1072| 11 2010% | 62072 | 3.1072 | 30103 | 8105 | 6 | 61072
0.06 | 1| 25 0.6 0.3 - EQ 250 6 0.6
S T T

Al 6 | 61073 | 201072 | 8105 | 3

Bl 6 ,6-1@’3_ . zolo“? g;105 43

el 6 . 0,06 025 200 | 3
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When we substitute these estimates for case A, the differ=-

ential equations (l.10) and (L .11) have the orders of megnitude
@ sl [710°] 0 = £ [0 0% £ [Ty [257 wu
. - ) s
+§/D06_7;1 +4 2]y ' [50T594°"
FER0t U ST w7
_ ;2
44 Lant]wiu's 4 [7 102 ]wn’+
+ & L2l ]ug e [a.n1] w4+
, A
F L L3003 ]y g L[]y
Lo Laed ]y a5 T Wy
4 14y *+ ] 44

QGJ ’;‘- %27'1 /+ [7'/0i-7;= [/9(_:7(_5) 3 jiﬁvjug 4 quuﬁ /+
%[;zjug /4 4 [2107]9%¢
+ Z/ [/0‘175’34. z’[g./oyjugf%
7 Z}-/oﬂw-éq-g., f[@m-jué;/ié
T Lriet Jusy s [
+ éﬁmﬁu’;w 42003y
A Ler ]y
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If we take [aA'/~ N/ul and [y~ /\//O‘tl which 1s
probably an overestimate, then the only terms containing deriva-
tives which are as 1arge as 17-of the leading term of the some
power are the Li'< and "‘ﬁ * terms of the U equation and
the u’'> and 3/014 terms of the y equation. Closer
examination shows that the two lapge terms in edch of these
coefficlents cancel exactly, sc that the overestimate is gross.
ThHus no "darivative“ term 18 larger than 0. 17 of the leading
term of theé same power.

Though the numbers are changed in case B, the same conclusion
holds as in case A,

In cases A and B, all terms grester than 0,1% of the leading

term of the same power are included In the approximste equations

_k»—.t*

a.u # a’a-a,fu== 'LZ’“/'-“’%J J‘C%v‘ C/a‘g

aai "> “eaf‘f/—— ay&'( féf “‘J * ;ic‘?;, 7 ﬁc/a """f}i

(545)
which may be derived from the Lagranglen
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In case C the situation doss not appear from the same
estimates to be so favorable, (L.10) and (l.11) have the

following orders of magnitude in this case:d
fyuts e D= d[se]wtp A0 LI
1 [159T9% £ [3) ' Le]4y7
i Jewd] w4 £ L]
bh BT ubu't 4 [20] wu'Eg
+ .;Lz J210 sijug 2 [1s0]) ws Y /-%
pE syt LTy
+ L f’h’d“é “ [1a]) u’é%/’
and
Y "y 44;9/-% L)y < [rs7uy # [sTuly + [o4]uy
- +[a] ugr’f-' £[2:10%]y E’LZL [o3]y'%
t 4 [;a/oﬂug% [éojuu’; "
4 [7) 'Lf,y/fs;b L47 uu;«}/%
BTy 4 [ wy A
4 Los] 49 £ L974%"
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The only terms which are less than 1% of the leading
terms of the same power f{using again /ﬁLVAJ/d/UJ andéyv“JA4%V)
are the W W term of the u equation and the w’*4/ and ;%?’zd
terms of the y equation. Closer examination of the w' " term
of the u equation as an examplse shows that there is no cancella~
tion tending to reduce this estimate., There appear to be no
simple approximate equations anai%gous to (5.5) in the case of
small {model-sized} machines,

'Even in the case of large machines {cases A and B), the
validity of the approximate eguations (5.5) ié.open to soms
question because of the unknown influénes of higher terms
(fourth andhigher powers) neglected in our original expansion.
This is clearly closely connected with the slowness of convergence
of ﬂhe vector potential expansion (1.13).

It appears from the digital computer work that WMmQX/AJQU;
though Vogt-Nilsen (unpublished) has found a case where /1@mmy/=

=/, Then in case A above
o, U~ 0.35

! e
Lbu=~o 128

7
,z’c/ U A 0,043

and i1f a fourth powsr term 1s included with a coefficient
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then -‘L—Eul’l’v.()o/
24 1 ’
go that the fourth power term would be about 3% of the linear
term.
In case B
a, U~ 0,25
L b uto, s
¢, u? 0,03

L
6
Iﬁ;ﬂe’ u? A 0,008 (e,m;,/gff)

so that the quartie term is again about 3% of bthe 1ineaf tern.
One may therefore doubt the validitv of the whole expansion.

(1) (2)

It should be pointed out, however, that Moser and Sturrock

" find that instabilities due to non-linear terms arise only Ffrom
quadratic and cubic terms. It might be supposed the the same
difficulties would enter the determination of the coefflicisnts

8, bi and ¢4, but here the convergence is much more rapid

because[xsl<< 1
Expressions for the coefficients appearing in (5.5} in

terms of the parameters are glven belows:
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(\a,/ = = Eﬁﬂ)-]— i ﬁi—z(i—rz - 7%2+g.£&_3)j+ m-g[_jﬁ- +

* ?m'r_(g—“iv");( S S 3% ‘9% - 7).]‘?' S«w?[_‘,‘f(}éﬂj_f_
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# d""”s?[fw(iw./vz)z (2826647~ #,2/7&,“

a. = o (/%YJ)
[(H.?{)L 2;_!_’:73/
a, = [£+ _,_i._(—i - R Te- 1/+N)_7+

+fa~s§[f+ﬂr—ém, (34> éﬁ;-;-/v__)]?z-
+M§[f7f-7+ma5[mfw Aitry-W U)]—f
oo zg [ 23
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hex Eri— £ ﬁﬂ [é/{-/)(iuzp (h-5) W™ 3%9]7&
+m~;[zf% £ (342 hnt L st}

Yoy (Tot/-A >
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* o2y [ [l thpn S )+
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1

|
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(5.7)

All torms less than 1% of the leading terwm of the same power
of the variables have)been neglected,

The terms linesr in the first derivatives u' and ¥? arise
from the variation of inertia due to the scalloping of the
equilibrium orbit., These terms may be eliminated by ths

substitutions
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(0;1/?3%
T = ﬁé? (508)
Then
" -4‘?3/2:_44# cz,]_._i 4y 21 B B
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whiech 1s negligible.

- . y //z'
% Ke = + ¢ (Xs)

and

Fsiw 5§+ 00X)
so that

ag” = - fs—uu s - .?fzs:,‘f;.,zy + 0CK)
= -.fsm‘g 271~ Co25) £F0OCXs)

This chenges aq to

a4 = a;t£Q = —[ff+r+ L+ (Go-Eidd-2+307) )¢

lf’Nl

+ Ceo [w' gm—( H-/V'?j (w,_ ?f%t—fﬁ"?}

+ &mg[;f(/{,aijj +

emas| A Hizhog W)

boCre 3T [?w/’é%l—/\/ﬂa (3255247 _{fJ)_)
+..

(5.10)



<11 0= MURA/FTC~3

In the same way,

/ ) &
R A A A 4
o
=/ to better than 0,1%
/ /
2, -
6 ( 14z, +2")

s
3
ia

=0 (7{5’)9 which may be neglected.
v. 4 -
Gl xR g% s
. 2
= = Foi 5o £ 7 (lmemas )+ 00%),

which changes ah to

, ' 2 _
Qy = a, + £ a, = %"L f;;é—}(%;“%*}{%“;*i/\/z)+

‘“fa&sg[;f ;u//{/SN?J (3¢=tkea-n= l)]*
7 sgf[—(hg)f]%
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FoeRy Rl sy /\/"j(”‘é_‘-‘i}‘gJ‘;“ AN = Efr:;)_/+

-+ Chii?g

tre

(5.11)

and (5.9) becomes

Prop = LhpTe L05% fopiptaps™
i s _L 3 ‘ =
¥y s by pse foxie Lo0%
' (5.12)

where the coefficients are given by (5.7),(5.10) and (5.11),

As shown above, the quadratic terms in these equations ean
be as large as 50%, while the cuble terms ¢can be as large as
12%. The effect of the closed orbit is largest on the quadratic
term coefficients whers it is of the szame oprder of magnitude
as the original terms, while the closed orbit has only about
5% effect on the linear terms and a negligibls effect on the

cuble terms,
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