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Abstract: We investigate, in dark matter and galaxy mocks, the effects of approximating
the galaxy power spectrum-bispectrum estimated covariance as a diagonal matrix, for an
analysis that aligns with the specifications of recent and upcoming galaxy surveys. We find
that, for a joint power spectrum and bispectrum data-vector, with corresponding k-ranges
of 0.02 < k [hMpc−1] < 0.15 and 0.02 < k [hMpc−1] < 0.12 each, the diagonal covariance
approximation recovers ∼ 10% larger error-bars on the parameters {σ8, f, α∥, α⊥} with respect
to the full covariance case, while still underestimating the corresponding true errors on the
recovered parameters by ∼ 10%. This is caused by the diagonal approximations weighting
the elements of the data-vector in a sub-optimal way, resulting in a less efficient estimator,
with poor coverage properties, than the maximum likelihood estimator featuring the full
covariance matrix. We further investigate intermediate approximations to the full covariance
matrix, with up to ∼ 80% of the matrix elements being zero, which could be advantageous
for theoretical and hybrid approaches. We expect these results to be qualitatively insensitive
to variations of the total cosmological volume, depending primarily on the bin size and
shot-noise, thus making them particularly significant for present and future galaxy surveys.
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1 Introduction

The foundation of cosmological parameters inference rests on the fact that the maximum
likelihood estimator (MLE) is the best unbiased estimator in large data sets (e.g., [1] for
a cosmologist-friendly presentation). In most applications, and in particular in large-scale
structure clustering, the likelihood is assumed to be Gaussian.

In this context, while the power spectrum is the primary large-scale structure clustering
statistic, it has been shown that including the redshift space bispectrum significantly enhances
the constraining power of galaxy surveys (e.g., [2–4]), by breaking cosmological parameter
degeneracies and reducing error-bars on key cosmological parameters.

In principle, even if the initial density field were to be Gaussian, the distribution of the
n-point functions, such as the three-point correlation function (3PCF) or the bispectrum
(its counterpart in Fourier space) is not Gaussian. However, these summary statistics are
usually binned (in k or scales): for large survey volumes, each bin is populated by many
data points and, thanks to the central limit theorem, the resulting statistics for the bins
approach Gaussianity. In particular, the joint likelihood of the power spectrum and bispectrum
multipoles is assumed to be a multi-variate Gaussian, and this approximation has been shown
to hold well in practice, in regimes without too strong non-linearities [5–9].

Once a data-vector and a model for the data-vector (also referred to as a signal) are given,
the full covariance matrix is the key ingredient for cosmological inference. The evaluation
of this matrix beyond the purely linear regime is challenging: analytic expressions quickly
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become long and cumbersome to evaluate [9, 10] especially if all real-world effects present
in a real survey need to be taken into account. Alternatively, the covariance matrix can be
evaluated from multiple mock survey realizations (see for example [11–14] for the specific case
involving the redshift space bispectrum multipoles). In this case, the number of realizations
needs to be significantly larger than the number of data-vector elements [15–18]. Here the
challenge lies in the fact that when including bispectrum multipoles the data-vector can easily
reach a length of ∼ 1000 elements, requiring sometimes a prohibitive number of mocks.

All these challenges could be significantly eased if the off-diagonal terms of the covari-
ance could be ignored. Some work in the literature has advocated for this approach. For
instance [19] used a diagonal covariance with diagonal elements estimated from a set of simula-
tions. A different “flavour” of diagonal covariance matrix is the so-called Gaussian covariance
matrix which is not only diagonal but also non-linearities are neglected. Several studies have
been using a Gaussian covariance matrix: either modelling it perturbatively [20, 21] or using
a Gaussian random field template (e.g., [22–24] for the 3-point correlation function, and [25]
for the 2-point correlation function). In these (non-exhaustive) references, the choice of
Gaussian covariance is justified by invoking the linearity of the scales present in the analysis.
In summary, the motivation behind the choice of a diagonal covariance matrix is not only the
simplicity but also that the resulting (forecasted) errors do not seem to be much affected.
It would not be remiss to hope that this could be a sufficiently good approximation in the
quasi-linear regimes, where all these analyses are based.

For present and upcoming galaxy clustering analyses, such as DESI [26], Euclid [27] or
LSST [28], relevant information will be extracted from scales where non-gaussianities are not
negligible. Notable efforts in developing analytical templates for higher-order correlators with
non-Gaussian contributions have been developed by e.g. [9, 29, 30]. It is then worthwhile
and timely to investigate the magnitude of the penalty incurred when using a diagonal
approximation for a bispectrum analysis up to mildly non-linear scales.

In the context of a MLE for cosmological inference, using a diagonal covariance matrix
would imply adopting an estimator that, while being still (asymptotically) unbiased, is not
the best-unbiased estimator — see e.g. [31] for primordial non-Gaussianities studies. In other
words, the weighting given to the data-vector elements is not optimal. In this paper, we
elucidate the importance of including the off-diagonal elements in the covariance matrix for
cosmological inference from the bispectrum summary statistic.

The rest of this paper is organized as follows. In section 2 we present the suites of
simulations we use and the set-up. In section 3 we compare the effects of assuming a diagonal
covariance matrix, and we review a few intermediate alternative approximations in section 4.
In section 5 we offer an analytic description of the effects found on simulations. Finally,
we conclude in section 6.

2 Simulations and set-up

We review the main aspects of our analysis set-up and simulation data, which is very similar
to what we used in [11] — to which we refer the readers for a more detailed description.
The two main simulation sets used in this work are the Quijote suite [32] and the Patchy
galaxy mocks [33]. These are cubic periodic boxes where real-world effects such as window
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function, selection function, or systematic weights, are not included. The volume of the
Quijote realizations is 1 (Gpc h−1)3, whereas the Patchy galaxy mocks have volume 15.6
(Gpc h−1)3 each.

In both cases, the data-vector consists of the power spectrum and bispectrum monopole
and quadrupoles: D = {P0, P2, B0, B200, B020}. We use the bispectrum multipoles expansion
first derived in [34]. Note that we have neglected one bispectrum quadrupole configuration,
B002, as it has been shown that it does not add information to our analysis in the scales
of interest [11, 35]. We discard the isosceles configurations of the form (k1, k1, k2) of the
B020 data-vector, due to them being redundant: B200(k1, k1, k2) = B020(k1, k1, k2) for all
possible k1, k2.

We consider k-ranges of 0.02 < kP [hMpc−1] < 0.15 and 0.02 < kB [hMpc−1] < 0.12,
with the superscripts P and B indicating power spectrum and bispectrum respectively.
Following ref. [14] the k-vectors are binned with ∆k = 1.1kf ≈ 0.0069 h Mpc−1 (with kf =
2π/Lbox the fundamental frequency) for Quijote, while for Patchy the binning is such
that ∆k = 0.01 h Mpc−1.

We model the power spectrum up to two loops in renormalized perturbation theory
(RPT) [36, 37], whereas for the bispectrum the recently presented phenomenological model
GEO-FPT1 [11] is employed. The full parameter space is given by {σ8, f, α∥, α⊥, b1, b2, AP ,

σP , AB, σB}. These are, respectively, the amplitude of dark matter fluctuations smoothed
by a top-hat filter of 8 Mpch−1, σ8, the logarithmic growth rate, f , the dilation parameters
along and across the line-of-sight, α∥ and α⊥ [38–41]; the linear and non-linear galaxy
bias parameters b1, b2, where the local Lagrangian bias expansion is assumed [42–44];2
the phenomenological amplitude parameters that regulate the deviations from shot-noise
(AP , AB [19, 41]), and the Fingers-of-God damping factors σP , σB [45], considered independent
for the power spectrum and bispectrum. The subset {σ8, f, α∥, α⊥} holds more relevance for
cosmology and is the focus of this work, while the rest are treated as nuisance parameters.

We use 8000 realizations of the fiducial set of Quijote dark matter simulations at
redshift z = 0.5 to estimate the full covariance matrix. This large number of realizations
ensures a reliable estimate of the covariance, for a fairly large number of elements in our
data-vector (∼ 1200). Then, we also consider 2000 (of these 8000) simulations to be analyzed
individually, thus obtaining 2000 sets of (single realization) best-fit parameters. We compare
the distribution of these best-fit parameters with the MCMC posteriors derived by fitting
the averaged data vector of the same 2000 simulations.

Likewise, for the Patchy mocks we employ the available 2000 realizations at redshift
z = 0.53; we fit cosmological parameters from them individually, and from their mean power
spectrum and bispectrum signal (to reduce cosmic variance). In this case, the full covariance
matrix is estimated from 2000 realizations, as this is the maximum available number.

The full power spectrum and bispectrum covariance matrix can be schematically rep-
resented in blocks as shown in figure 1. In all cases, at the likelihood evaluation level, we
correct for the inverse covariance matrix estimation bias using the Sellentin and Heaven

1https://github.com/serginovell/geo-fpt.
2This expansion fully determines the tidal bias and non-linear bias, respectively bs2 , b3nl, from the linear

bias parameter b1.
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Figure 1. Schematic representation of the full power spectrum-bispectrum covariance matrix. Here
P0 denotes the power spectrum monopole portion of the data-vector, P2 being the power spectrum
quadrupole portion. Similarly, B0 and B2 indicate the bispectrum monopole and quadrupole portions
of the data-vector respectively. In the full approximation the matrix is dense in the sense that all
elements of all blocks are non-zero even though many are small. In the diagonal approximation the
off-diagonal blocks are all zero and the blocks on the diagonal, e.g., the P0 − P0, B0 − B0 and B2 − B2
blocks, are diagonal matrices. Intermediate approximations discussed in section 4 populate the off-
diagonal block and the off-diagonal elements of the diagonal blocks according to some case-specific rules.
The blue, yellow, and orange sub-matrices will be referred to as PP , PB, and BB blocks, respectively.

prescription [15]. To estimate the magnitude of this effect it is useful to report that the
length of the data-vector is 1160 for Quijote and 441 for Patchy; given the available
number of simulations, the corresponding Hartlap correction factor is respectively H = 0.85
for Quijote, and H = 0.78 for Patchy.3

3 Diagonal approximation: effects in simulations

In order to quantify the effect of assuming a diagonal covariance matrix, we compare the cos-
mological constraints for an analysis involving the power spectrum and bispectrum monopole
and quadrupoles, using both the full covariance matrix and the diagonal approximation. In
this approximation, all off-diagonal correlations for the power spectrum, the bispectrum, and
the cross power-spectrum bispectrum are set to zero (see figure 1).

In what follows we compute constraints (i.e., recovered values and estimated errors)
for the key cosmological parameters under different approximations and conditions. For
both dark matter N-body (Quijote) and galaxy (Patchy) simulations we compute the
four cases that are specified in table 1.

3While the correction is performed using the Sellentin-Heavens prescription, the Hartlap factor (see equation
17 of [16]) H = (n − m − 2)/(n − 1) where n is the number of simulations and m the size of the data-vector,
only indicates an order of magnitude of the noise introduced when inverting the covariance.
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Posterior of the mean data
vector

Distribution of individual
best-fits

Full Covariance
Matrix

Posteriors, recovered via MCMC
using full covariance matrix, from
the mean of the data vectors of
2000 simulations

Distribution of best fit param-
eters, recovered via MCMC us-
ing full covariance matrix, for the
2000 individual simulations

Diagonal Covari-
ance Matrix

Posteriors, recovered via MCMC
using diagonal covariance matrix,
from the mean of the data vectors
of 2000 simulations

Distribution of best fit parame-
ters, recovered via MCMC using
diagonal covariance matrix, for
the 2000 individual simulations

Table 1. The four methods of inference we perform on both Patchy and Quijote simulations.
For respectively the full covariance and diagonal approximation, we perform both the standard
MCMC sampling for the parameters of interest, and the distribution of best-fit parameters obtained
individually in each of the 2000 simulations.

Any non-optimal weighting is expected to produce uncertainties on the inferred parameters
that are larger than those achievable with an optimal weighting. Moreover, the inferred
posterior provided by the MCMC might not yield error-bars that have the correct coverage
properties [46].4 On the other hand, the scatter among individual simulations’ best-fit
parameters is expected to have better coverage properties for a large enough number of
simulations.

Throughout the following subsections, the diagonal covariance approximation is confirmed
to underestimate the errors of the recovered cosmological parameters for analysis set-ups
similar to the one in section 2. Section 4 tackles the intermediate case where not enough
simulations are available in order to estimate or calibrate the full covariance matrix. There,
other sparse matrix approximations to the full covariance matrix are then offered, along with
their potential for reducing the number of required simulations for covariance estimation.

3.1 Parameter constraints: MCMC and scatter

Given 2000 independent realizations of both the Quijote dark matter N-body simulations
and the Patchy galaxy mocks (presented in section 2), we proceed to compare the recovered
parameters {σ8, f, α∥, α⊥} and their estimated uncertainties with two different methods. In
particular, we contrast the constraints obtained via the traditional approach of MCMC
sampling of the posterior distributions (credible intervals), with the scatter of maximum
likelihood values for each realization (confidence intervals). If the statistical approximations
adopted — mainly the Gaussian likelihood and optionally the diagonal covariance — are
correct, then the MCMC posteriors would have correct coverage properties and thus the
two approaches would yield comparable error-bars.

4The statistical concept of coverage refers to the probability that a confidence interval correctly contains
the true values of the parameters being estimated. These confidence intervals do not necessarily coincide
with the error-bars derived via MCMC — the credible intervals —, which represent the probability range of
parameters based on prior beliefs and observed data.
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Figure 2 shows that in both sets of simulations, the diagonal covariance MCMC fails
to capture the information that is obtained with the scatter of maximum likelihood values,
especially for the dilation parameters α∥, α⊥. The diagonal approximation produces a) a
larger scatter hence larger actual uncertainties; and b) an incorrect posterior estimate via the
MCMC, which produces an underestimate of the actual errors (i.e., the diagonal approximation
yields credible intervals that are smaller than the corresponding confidence intervals and
thus have no coverage). This behavior is not unexpected at all: the diagonal covariance
approximation makes the adopted estimator and likelihood suboptimal as anticipated above
and discussed also in [18, 46].

In the Quijote simulations, the scatter of maximum likelihood values in the diagonal
approximation is noticeably larger than the MCMC posteriors, while in the Patchy mocks
the effect is milder, mostly affecting the tails of the distribution. This may be caused by the
combination of the difference in tracer type, shot-noise and bin-size; in particular, Quijote
has negligible shot-noise and a smaller bin size, as specified in section 2 and in [11]. For
simplicity, in what follows we focus on the Patchy mocks.5

3.2 Full and diagonal covariance: effects on α∥ and α⊥

Motivated by the fact that the effect of the diagonal approximation seems to propagate
mainly to the dilation parameters, in the main text we only show and discuss the results
for {α∥, α⊥}. The σ8 and f cases are displayed in appendix A.6

Figure 3 presents the relationship between the recovered error-bars, obtained via MCMC,
using a diagonal (σdiag) and full (σfull) covariance, for the dilation parameters. The identity
line is also shown for guidance. As expected from figure 2 the diagonal approximation yields
larger error-bars (σdiag ∼ 1.2σfull). In addition, a weak correlation is observed between the
derived errors from the full covariance and from the diagonal part only.

An alternative perspective on the impact of the diagonal covariance matrix approximation
can be gained as follows. Let us consider the statistic z, defined as [47],

zθj
≡

θj − µθj

σ(θj) , (3.1)

where θj denotes one of the parameters of interest, i.e. θj ∈ {σ8, f, α∥, α⊥}. For each i-
realization of the 2000 simulations, θi

j denotes the best-fitting parameter value recovered
via MCMC and σ(θi

j) is its error estimated from the MCMC posterior; µθj
denotes the

mean across all simulations of the recovered parameter θi
j . We expand on the features of

the z statistic in appendix C.
5We have checked that the results presented hereafter are qualitatively equivalent in both Quijote and

Patchy simulation sets, with a small difference in magnitude. We choose to present the results from the
Patchy mocks for two reasons: firstly, their closer resemblance to galaxy data compared to the Quijote
simulations; and secondly, as demonstrated in figure 2, the Patchy simulations exhibit superior performance
under the diagonal approximation. This implies that, should the diagonal approximation prove unsuitable for
Patchy, its performance in the Quijote simulations would be equally, if not more, limited.

6This difference between the two sets of parameters could be due to there being more proportion of
information content for α∥, α⊥ in smaller scales (where the diagonal approximation performs the worst) than
for f, σ8.
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Figure 2. Estimated posteriors for the main cosmological parameters with the data-vector P0 +
P2 + B0 + B200 + B020 from 2000 Quijote fiducial dark matter simulations (upper row) and the
2000 Patchy galaxy FastMocks (lower row). In the left plots, the full covariance (estimated from
the simulations) is employed, while in the right plots, the diagonal approximation is used. The
orange contours are credible intervals estimated from the posteriors sampled via MCMC, using the
mean of the 2000 simulations as a data-vector. The green contours are obtained from the scatter of
the maximum likelihood parameters for each of the 2000 simulations individually, hence represent
confidence intervals. The distribution inferred from the scatter of the maximum likelihood values is
smoothed via a kernel density estimator to provide smooth confidence contours to compare with those
inferred from the MCMC. The power spectrum is modeled at 2L-RPT and for the bispectrum we
employ the GEO-FPT model presented in [11]. The axes size for each set of simulations is kept fixed
to facilitate visual comparison of the posteriors between the two covariance approaches. Using the
diagonal approximation produces a) larger scatter hence larger actual uncertainties, and b) causes the
MCMC approach to underestimate the (actual) errors.
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0.9 1.0 1.1
σdiag/〈σdiag〉
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α⊥

Figure 3. Scatter of the marginalized 1σ regions for α∥ (left) and α⊥ (right) from 2000 Patchy
mocks. On the x-axis we show the MCMC-recovered 1σ region using the diagonal covariance, σdiag,
on the y-axis the corresponding 1σ region, using the full covariance matrix, σfull. Both are normalized
by the mean 1σ region with the diagonal covariance matrix, ⟨σdiag⟩ for easy visualization. Each point
corresponds to one of the 2000 Patchy realizations. The identity line y = x is over-plotted, together
with the best-fit regression line to the scatter of points. The recovered error-bars from MCMCs are
larger when using a diagonal covariance matrix (σdiag ∼ 1.2σfull).

Since the simulations are effectively independent and identically distributed realizations
of the underlying fiducial cosmology, if the errors are correctly estimated, the distribution
of the 2000 values of zθj

, by the central limit theorem, should converge to a normal with
variance 1, N (0, 1). Consequently, σz (the standard deviation of the z statistic across the
2000 realizations) should converge to 1. Some (small) mis-match is expected, for at least two
reasons. The estimated covariance, which enters in the denominator of equation (3.1) has
an associated error, which means that the true covariance could have been different than
that adopted [16, 48]. The likelihood is non-Gaussian so matching the rms with the 1-σ of
a Gaussian distribution may not be exact. We return to the first effect below; nevertheless
relative statements can still be made.

Figure 4 shows the distribution of zα∥ (left panel) and zα⊥ (right panel) for the full
(orange) and diagonal (blue) covariance matrix cases. The deviations from N (0, 1) for zθ offer
a metric to assess the accuracy in the estimation of the errors. From the definition of zθ in
equation (3.1), if the error-bars on the cosmological parameters are consistently underestimated
(resp. overestimated), then σz > 1 (resp. σz < 1) — with σz being the standard deviation
for the distribution of zθ. For example, for the two dilation parameters we find that for
the full covariance σz = 0.924 while for the diagonal approximation σz = 1.17 (1.13) for
α∥(α⊥). Hence the true errors appear to be over-estimated by about ∼ 8% when employing
the full covariance; when employing the diagonal matrix they appear under-estimated by
17%(13%) for α∥(α⊥).
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zα‖

0.0

0.1

0.2

0.3

0.4

0.5 α‖ diag: σz =1.166

α‖ full: σz =0.924

N (0, 1)

−4 −2 0 2 4
zα⊥

α⊥ diag: σz =1.131

α⊥ full: σz =0.924

Figure 4. Histogram of the z values for the full and diagonal covariance matrix cases, for the
parameters α∥ (left panel) and α⊥ (right panel). The standard deviation of z (σz) is shown for
each case. The solid line, the standard normal distribution N (0, 1), corresponds to the theoretical
shape of z where the errors σ(θ) are perfectly estimated. The diagonal approximation (blue) tends
to underestimate the error-bars in the cosmological parameters, while the full covariance (orange)
instead tends to overestimate them.

This figure confirms the findings of figure 2: the cosmological inference results obtained
from running an MCMC assuming a diagonal covariance will underestimate the error-bars,
and the constraints will also be sub-optimal. Nevertheless, we find no evidence of a systematic
shift in the central values of the recovered parameters: the recovered best fit parameters
are unbiased. This again boils down to the diagonal approximation not being a maximum
likelihood estimator — the estimator is unbiased but sub-optimal. The inference using the
full covariance matrix as estimated from the 2000 simulations and the Sellentin and Heavens
correction [15] appears to be, according to the zθ metric, slightly conservative.

We repeated the same procedure also for the Quijote set (H = 0.85) and for the power
spectrum part of the signal, P02, in the Patchy set (the reduced size of the data vector
yields H = 0.99). In these cases we find σz = 1 (Patchy, P02 only) and σz = 0.97 (Quijote,
P02 + B02) for the α parameters, i.e. the errors are correctly estimated at better than 3%.
As expected, the parameters which have markedly non-Gaussian posterior tails (i.e. f, σ8
from the power spectrum alone), do not perform as well. For comparison diagonal covariance
matrices mis-estimate the error by ∼ 20%. We tentatively conclude that the appearance of σz

slightly above unity (∼ 8%) for the full covariance case in figure 4 is correlated to the noise
in the estimation of the covariance matrix, which is driven by the number of simulations
and the size of the data vector as quantified by the Hartlap factor.

We will not dwell more on this except for drawing the following conclusion: while the full
covariance matrix estimated from the available number of simulations is not the ground truth,
it is good enough to be treated as our baseline for comparison for various approximations.
The diagonal approximation underestimates the uncertainties by ∼ 15%.
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4 Intermediate approximations

The diagonal approximation for the power spectrum and bispectrum covariance matrix may
therefore be a good approximation for Fisher-matrix-based error forecasts, but not accurate
enough for precision cosmology from ongoing surveys. We may however investigate whether
there are sparse matrix approximations to the full covariance that may potentially require
fewer simulations to estimate [49–54] and perform effectively as well as the full covariance.7
We reiterate that the full covariance matrix estimated from simulations is not the ground
truth but it is the best estimate we have which therefore we use as our baseline. There is
significant literature associated with modeling with random matrices the properties of noisy
estimates of covariance matrices. We will only refer to this tangentially here.

In what follows, we explore a small set of possible approximations, leaving out of the scope
of this work valuable contributions that go towards the same direction, such as data-vector
compression [55–57], covariance matrix shrinkage [58–60] or resampling [61, 62].

We refer to PP , PB, and BB, respectively, as the blue, yellow, and orange sub-matrices
of the full matrix shown in figure 1. We consider the following approximations, all of them
being positive-definite, having the full power spectrum auto-covariance PP and of course
all the diagonal terms:

• “Auto”: include the full PP and BB boxes, setting to zero the PB cross-covariance.

• “Common-k”: include the full PP box, and in PB, BB only the terms which correspond
to configurations that have a k-vector in common.

• “τ -threshold”: beyond the full PP box, only include the terms that are higher than a
certain threshold τ in the reduced covariance matrix.

• “(τ)Common-k”: apply the τ threshold, as stated above, to the “Common-k” case.

Several additional approximations were initially considered, including the modifications to
the “Common-k” approach restricting the BB box to only include the off-diagonal terms
corresponding to the same triangle (k1, k2, k3), and also the case with all coefficients for PP

and PB and with a diagonal BB box. These approximations yielded matrices that were
not positive-definite and hence were discarded. Thresholds over ∼ 0.04 in the τ -threshold
approximation are also not positive definite for our present analysis. We adopt a threshold of
3%: the resulting matrix offers a balance between being as sparse as possible while maintaining
similarity with the full covariance matrix. Note that there may be a connection between this
value and the findings of [63], where a level of noise of ∼ 2% is reported in the covariance
matrices of the Patchy simulations.

A quantitative metric to estimate the “closeness” of each approximation to the reference
(full covariance matrix) is the ratio of the eigenvalues. This is reminiscent of the figure-of-merit
for the cosmological parameters which is given by the square root of the determinant of
the Fisher matrix for the parameters — the determinant is of course the product of the
matrix eigenvalues. The analogy arises because the (inverse) Fisher matrix is related to

7Note that in the last reference, [54], which holds special interest given its formulation in terms of cosmology,
the focus is on the sparsity of the precision matrix, the inverse of the covariance matrix.
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Figure 5. Reduced covariance matrices for each of the intermediate approximations to the covariance
matrix. We show as well the sparsity of the matrix, represented by the percentage of coefficients that
are set to zero in each case. While the Common-k approximation is the one that is closest to the full
case while not underestimating the errors (see figure 6), it still only has half of its coefficients set to
zero. The figure has an apparent curvature, caused by removing the duplicate isosceles configurations
in the bispectrum data-vector, as explained in section 2.
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the cosmological parameters errors while the covariance matrix is related to the data-vector
errors. The eigenvalues of the inverse covariance matrix can be seen to represent the signal
or information content of the data-vector. By ordering the eigenvalues in decreasing order it
is easier to visualize where most of the information content is localized. As expected, the
first eigenvalues are those that directly involve the power spectrum. Moreover, to compress
the “distance” of an approximation to the full matrix case we also report the logarithm
of the ratio of the product of the eigenvalues and the Kullback-Leiber (KL) divergence
(or relative entropy, or information gain) between the two distributions that the matrices
represent [64, 65]. Assuming that the distributions are multivariate Gaussians, for our case
(where the two have the same mean) this quantity reads as [66]

DKL(Cfull||C) = 1
2

(
tr(CfullC

−1) − n + ln
( det C

det Cfull

))
, (4.1)

with n the dimension of the data-vector.8 Figure 6 shows the ratios of the (sorted in decreasing
order) eigenvalues of the inverse covariance matrix C−1 with respect to the full covariance
case C−1

full for each of the approximations, including the diagonal case. The legend reports
the Kullback-Leibler distance, which is complemented by table 2 with other indicators of
distance towards the full covariance matrix. All this serves as figures of merit, to assess and
rank-order both the closeness to the full covariance matrix and also the expected discrepancy
in the recovered error-bars.

The diagonal approximation consistently underestimates the eigenvalues of the inverse
matrix. This underestimation is indicative that there is less information that can be captured,
which propagates in the error-bars in the parameters, as observed in section 3 and further
discussed below in section 5. Additionally, its deviation from the full covariance case — as
quantified by means of the Kullback-Leibler divergence (equation (4.1)) — is significantly
higher than all remaining approximations.

The “Auto” approximation, by setting to zero the PB boxes, only changes the first ∼ 25
eigenvalues, which are those that change most drastically when including the PB boxes. This
indicates that the PB cross-correlation is important and should not be neglected. Moreover,
this approximation does not yield a sparse matrix (only 11% of the terms are zero) or a
matrix that offers any speed-up or computational advantage compared to the full.

The “Common-k” approximation has all eigenvalues much closer to the full covariance case
while having ∼ 50% of the terms being zero. Therefore, this or a similar approach (together
with suitable sparse matrix covariance methods such as [50, 51]) may be advantageous if it
can ease the requirements on the number of simulations needed to estimate the covariance.

The 0.03-threshold features a consistent overestimate of the largest eigenvalues of C−1,
especially for the values concerning the power spectrum. Thus, this approximation on its
own artificially increases, for some eigenvalues, the information content of the data-vector.

Finally, the (0.03)Common-k approach is a combination of 0.03-threshold and Common-k,
which yields a covariance matrix whose eigenvalues are closer to the full case than the 0.03-

8The KL divergence is not symmetric and here we have explicitly expressed the expected excess surprise
from using the distribution given by Capprox as a model when the actual distribution is that of Cfull. If the
two distributions are multi-variate Gaussians, as we assume here, and have the same mean (as is the case here,
to the best of our knowledge) the KL divergence assumes this simplified form.
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Figure 6. Ratios of the sorted (decreasing order) eigenvalues of the inverse covariance matrix C−1

by the inverse full covariance matrix C−1
full for all the approximations considered. The eigenvalues

of the inverse covariance act as a proxy for the information contained in their direction: the bigger
the eigenvalue the more information it potentially contains. The product of the eigenvalues, the
determinant, is informative of the size of the recovered error-bars in the derived parameters, so a
consistent ratio under unity (as is the case for the diagonal and “Common-k” approaches) typically
results in larger error-bars. The Kullback-Leibler divergence — defined in equation (4.1) — of each
case with respect to the full covariance estimator is shown in the legend.

Approximation DKL ln
(

det C−1

det C−1
full

) (
det C−1

det C−1
full

)1/n

Diagonal 58.87 −117.73 0.77
Auto 9.17 −18.32 0.96
Common-k 15.92 −23.33 0.95
0.03-threshold 27.82 4.49 1.01
(0.03)Common-k 24.20 −21.66 0.95

Table 2. Different metrics assessing the distance of the proposed approximations to the full covariance
matrix. The Kullback-Leibler distance, DKL, is as defined in equation (4.1), with one of its components,
the logarithm of the ratio of determinants, shown in the second column. The last column quantifies
the geometric mean of the ordered ratios of eigenvalues, which is the nth root of the ratio of the
determinants, with n being the dimension of the data-vector. The diagonal covariance matrix performs
significantly worse than the other approximations, while we do not see a gain in the Auto approximation

— given that it does not reduce significantly the number of non-zero elements of the covariance matrix
(see figure 5). Among the remaining approximations, the 0.03-threshold approach seems to artificially
obtain more information, as also seen in figure 6, while we find the Common-k and (0.03)Common-k
approximations to strike a good balance between closeness to the full covariance and proportion of
zero elements (see figure 5).
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Figure 7. Analogous to figure 3, but for the (0.03)Common-k vs the full cases. Compared to figure 3
the points are scattered closer to the equality marked by the y = x line indicating that the τCommon-k
approximation, in the idealized case of periodic box and with the value of τ suitably chosen according
to the Patchy mocks, yields error-bars only marginally larger than the full covariance matrix There
is no appreciable difference of central values for α∥, and only in α⊥ case there is a small mis-estimate
σ0.03C−k ∼ 1.05σfull.

threshold case, while having significantly more sparsity in the matrix (84% of the elements
are zero, in the case presented in figure 5). Using this approximation in practice would
consist of first estimating the Common-k terms — be it fully estimated from simulations
or via theoretical model calibrated to simulations e.g., à la [9, 67] — to then establish an
appropriate threshold for the set-up at hand, keeping in mind that the threshold should
maintain the resulting matrix to be positive-definite. Provided that the choice of threshold
is conservative, most of the removed coefficients are likely to be noise or noise-dominated,
making it a valid approximation of the covariance matrix as a sparse matrix.

We repeat the tests carried out in section 3 for the “Common-k” and “(0.03)Common-k”
approximations for 1000 Patchy realizations, finding a remarkable agreement with the full
covariance matrix in both cases (see figure 7, where we report the correlation of errors between
the full and “(0.03)Common-k” covariances). Both approaches result in the rms of the zθ

statistic defined in equation (3.1) being equal or below 1 (∼ 1–0.93, comparable with the
full case of figures 4 and 11) for the parameters θ = {σ8, f, α∥, α⊥}, which is a signal that
neither approximation underestimates the error-bars on the key cosmological parameters.
We finally show the MCMC constraints and coverage properties for the “Common-k” and
“(0.03)Common-k” approximations in figure 8.

This figure indicates that the “Common-k” or the “τCommon-k” approximations (for a
suitable choice of τ and in particular one that leaves the matrix positive definite) are useful
approximations that, in a cosmological parameter inference setting, could provide results
virtually indistinguishable from using the full covariance matrix.
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Figure 8. Analogous to figure 2, but focusing on the performance of respectively the “Common-k”
and “(0.03)Common-k” approximations, compared to the full covariance case. Contrasting with the
behaviour of the diagonal approximation displayed in figure 2, the proposed approximations do not
exhibit a significant increase in errors with respect to the full covariance, while maintaining good
coverage properties.

5 Understanding and modeling the effect of the off-diagonal terms

Before we conclude, we attempt to provide an analytic description of the effects illustrated
above. Although the content of this section is well-known standard material, having it
here helps the reader to put it in context and to better understand the results of the other
sections of this paper.

A covariance matrix can always be decomposed in the sum of a (block) diagonal part
D and an off-diagonal part ϵ so that

C = D + ϵ (5.1)

For example, C could be the full power spectrum plus bispectrum multipoles covariance
matrix. See for example [9] for an analytic expression for the covariance terms and schematic
decomposition in blocks. The effect of the off-diagonal terms within the power spectrum
block of the covariance has been extensively explored in the literature and does not concern
us here. We focus on the off-diagonal pure bispectrum terms and power spectrum-bispectrum
terms; the power spectrum contribution can thus be considered as a block in a block
diagonal-dominated matrix.

The magnitude of the ϵij terms compared to the diagonal contribution to the covariance of
the bispectrum has been studied in appendix A of [11]. There it is shown that rij = ϵij/

√
DiDj

when averaged over off-diagonal blocks involving the bispectrum, takes values up to 0.01,
but when not averaged it is as high as 0.6.
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If it could be assumed that C was diagonal-dominant (that is ϵij ≪
√
DiDj), then a

possible approximation for the inverse of C could be [68, 69]

C−1 ≃ D−1 − D−1ϵD−1 ≡ D−1 − M ≡ C−1 (5.2)

where the last equalities define the matrices M and C−1. For the covariance matrix involving
the bispectrum we find that for the Patchy mocks the median residual between C−1 and
C−1 is -0.62, which we illustrate in figure 12 in appendix B. Hence, the diagonal-dominant
approximation is completely invalid for the data-vector of interest, which already signals
the importance of the off-diagonal terms of the covariance matrix. We, therefore, define the
off-diagonal contribution to the covariance as the matrix O fulfilling C−1 ≡ D−1 − O.

Note that equation (5.2) is more general than stated above since D does not need to
be diagonal for the approximation to be valid provided that the matrix ϵ is a perturbation
to the matrix D. For example, the matrix D could be the thresholded covariance matrix,
and ϵ = C − D.9

The effect of the off-diagonal components on the χ2 and on the response of the χ2 to a
change of parameters can be modeled as follows. Let us define the vector u = d − t where d
denotes the data (measurements) vector and t the theoretical model. Then

χ2
Diag =

∑
i

u2
iD−1

ii =
∑

i

u2
i

Dii
(5.3)

χ2
ND = −

∑
i,j

uiOijuj (5.4)

and of course χ2 = χ2
Diag + χ2

ND. Equation (5.4) (and the following equations involving O),
if rij ≪ 1 for i ≠ j, could be approximated by substituting M for O. In the applications
considered here, this approximation is not sufficient.

For the Patchy analysis from section 3, we find the typical contribution of the off-
diagonal part of the covariance to χ2 (evaluated at the best-fit cosmological parameters) to
be of |χ2

ND| ∼ 0.04χ2. This is a small proportion, but it should be noted that the importance
and role of the off-diagonal terms in the covariance do not necessarily correspond to their
effect on the χ2, but rather to its response, ∆χ2.

The response of the likelihood and the χ2 to a change in cosmological parameters from,
say, the best-fit values, that induces a change ∆t on the theory model from the best-fit
theory model, can be written as:

∆χ2
Diag = −2

∑
i

uiD−1
ii ∆ti = −2

∑
i

ui∆ti

Dii
(5.5)

∆χ2
ND = −2

∑
i,j

uiOij∆tj (5.6)

where again ∆χ2 = ∆χ2
Diag + ∆χ2

ND. Figure 3 shows that there is a weak correlation between
∆χ2

Diag and ∆χ2, and that ∆χ2
ND is not negligible compared to ∆χ2

Diag.
9We have checked that for the thresholds considered in this specific application this approximation is not

good enough.
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For an idealized case where d is noiseless and t is a perfect description of d, for example
when doing Fisher matrices forecasts, u = d − t = 0: the size of the errors can be estimated
from the second derivative of the log-likelihood (see below). In any practical realization u ̸= 0.

Note that in the case of the bispectrum covariance, the relative importance of (∆)χ2
ND

and (∆)χ2
Diag to (∆)χ2 do not depend on the survey volume used to rescale the covariance.

Hence (relative) results obtained for 1 Gpc3 (which is much smaller than the volume of ongoing
surveys) also hold for stage IV dark energy experiments with volumes ∼ 50 Gpc3. As shown
even visually for example in [9], the matrix elements of D and ϵ and therefore the matrix
elements of D−1 and O both scale with the survey volume coherently, provided everything
else including the choice of binning and the effect of the survey window remain unaltered.
However, different survey volumes or different survey geometries can enable different binning
choices in k-space and thus different correction factors AP and AB (using nomenclature
from [9]) and different scaling in the diagonal with respect to the off-diagonal elements.
The effect of different shot noise levels might also rescale the diagonal and non-diagonal
contributions to (∆)χ2 differently. Moreover, the realization of d (and u) will be more or
less noisy depending on the volume of the realization.

The decomposition in terms of a matrix and a perturbation can help us understand also
the behaviour of the eigenvalues. Let us consider the sum of matrices C = D+O, with their
eigenvalues being respectively: c1 ≥ . . . ≥ cn; D: d1 ≥ . . . ≥ dn; O: o1 ≥ . . . ≥ on.

Weyl’s inequality states that: di + on ≤ ci ≤ di + o1. This inequality is valid for any sum
of symmetric matrices, i.e., holds even if D is not diagonal. If O is a perturbation of D of
order ϵ then |ci − di| ≤ ϵ. In fact, if we identify D with the thresholded matrix T and O with
C − T = ϵ, the thresholded matrix T will have each eigenvalue bounded below (resp. above)
by the sum of the eigenvalue of C and the minimum (resp. maximum) eigenvalue of O. In
this case, the matrix O has approximately random values on the coefficients that are not set
to zero, and then the minimum and maximum eigenvalues will be respectively negative and
positive. Therefore, the matrix T = C + O can have eigenvalues lower than C.

5.1 Relation to Fisher forecasts

We can now see in a transparent way the effect of the off-diagonal covariance terms in a
Fisher-forecast analysis. In this approach to forecasts, the Fisher information matrix F yields
statistical error estimates on the model’s parameters {θα, θβ . . .}. The Greek indices hereafter
will run over the model’s parameters. Given L = − ln L where L denotes the likelihood,
which under the Gaussian approximation L = χ2/2,

Fαβ =
〈

∂2L
∂θα∂θβ

〉
=

∑
ij

∂αtiC−1
ij ∂βtj =

∑
i

∂αtiD−1
ii ∂βti−

∑
ij

∂αtiOij∂βtj ≡F′
αβ −Fαβ (5.7)

where linear dependence of the theory on the parameters is assumed and we have decomposed
the Fisher matrix in a diagonal part D and a purely off-diagonal contribution O. In the above
equation O can be replaced by M only when the off-diagonal contributions to C are small
enough. The marginal error on a given parameter is thus σα = (F−1)1/2

αα .

σ2
α = [(F ′ − F)−1)]αα = [F ′−1]αα + [F ′−1F (F ′′)−1]αα ≡ σ2

Diag,α + ∆σ2
NDα (5.8)
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Figure 9. Fisher forecasts for the parameters of interest {σ8, f, α∥, α⊥} for all the approximations
considered in this work. These are shown, for each of the parameters, as the ratio between forecasted
errors using the covariance approximation over the errors obtained with the full covariance. All but the
“0.03-thresholded” case result in higher values of σ. The diagonal case gives the overall largest errors
(as expected). The “Auto” case is shown for reference as it ignores the PB terms but includes all the
off-diagonal BB terms and thus does not offer any significant advantages or speed up in its evaluation.

where F ′′ = (F ′ − F) (a recursive expression) and ∆σ2
NDα is the correction to the diagonal

errors induced by the off-diagonal terms. If F ′′ is approximated by F ′ one is assuming that the
conditional errors still coincide with the marginalized errors, i.e., ∆σ2

ND = 0 (as it happens
for a diagonal Fisher matrix). The resulting (Fisher) error ellipses will display approximately
correct degeneracies, but the values for the marginalized errors will be underestimated.

In our specific case, we perform Fisher forecasts for the cosmological parameters of interest
with the full matrix and various approximations to it. It is then possible to compare σ2

Diag with
σ2 for the parameters of interest, finding that the Fisher forecasts for the diagonal covariance
matrix are 10–20% larger than those of the full covariance matrix — as illustrated by figure 9.

We find that, for the analysis set-up featuring the Patchy mocks, the median element of
F/F ′ is 0.43, so the approximation F ′′ ≃ F ′ will introduce a sizeable error in the forecasted
marginalized errors.

In a realistic scenario, the vector u is non-zero, and the estimator will only be efficient if
the full covariance is used, which provides the optimal weighting of the data-vector. Ignoring
the off-diagonal terms effectively weights the data-vector in a sub-optimal way, yielding higher
uncertainty on the recovered parameter values. While the case using the full covariance
approximates the Cramer-Rao bound, the case using the diagonal covariance approximation
loses information, resulting in a less efficient maximum likelihood estimator with (possibly
underestimated) bigger error-bars.
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6 Discussion and conclusions

The inclusion of the bispectrum multipoles in cosmological parameters estimations from
the large scale structure improves significantly cosmological constraints (see e.g. [11] for a
quantitative assessment). But this information gain comes at a cost. Besides the additional
effort needed to model the bispectrum signal, in the joint likelihood analysis of the redshift
space multipoles of the power spectrum and bispectrum, the evaluation of the full covariance
matrix can be challenging. The inclusion of the bispectrum multipoles increases dramati-
cally the data-vector size compared to a power spectrum-only analysis. This increases the
requirement on the number of mock simulations needed to evaluate reliably the covariance
matrix from simulations.

All these challenges could be significantly eased if suitable approximations of the co-
variance matrix are found.

We have shown that approximating the full covariance matrix blocks that include the
bispectrum with a purely diagonal matrix means using an unbiased but sub-optimal estimator.
This causes the true errors on the recovered cosmological parameters to be not optimal, and
the inferred error-bars to be underestimated, with the constraints not having “coverage”. The
standard likelihood analysis with the full covariance matrix, if anything, slightly overestimates
the errors estimated from the scatter among recovered parameters from many realizations.
However, this is likely an apparent error overestimation due to the fact that the scatter
among simulations is done with an approximate covariance matrix assuming fully Gaussian
statistics and does not fully propagate the uncertainty in the covariance estimation itself [15];
in fact, the magnitude of the apparent overestimation is correlated with the square-root
of the Hartlap factor.

We have quantified these effects on a suite of simulated boxes of dark matter and more
realistic dark matter tracers, although the effects reported are expected to be even larger in
more realistic set-ups such as with survey window and selection functions. The covariance
matrix estimated from simulations is dense: there are many small off-diagonal terms but none
of them is exactly zero. While “thou shall not ignore the bispectrum covariance off-diagonal
terms”, other approximations may be advantageous. In particular, approximations that make
the matrix sparse instead (where many off-diagonal terms are zero instead of being very
small but non-zero) can be particularly interesting. The requirements on the number of
simulations, for example, may be, potentially, relaxed.

Also, analytic expressions (which can be long and cumbersome to evaluate for all terms)
can be evaluated only for the few terms that really matter and more easily calibrated on
simulations (following for example the prescription of [9]). The best approximations for the
block involving the bispectrum we recommend using are either considering to be non-zero
only the terms that have a k mode in common, or applying a suitable thresholding operation
to the matrix. The first approach, “Common-k”, keeps ∼ 45% of the bispectrum auto-
covariance terms, while the second approach, “(τ)Common-k”, keeps between 15 and 20% of
the bispectrum auto-covariance terms, depending on the k-binning. Such approximations
produce results for cosmological inference virtually indistinguishable from, and with the same
coverage properties, as those obtained with the full covariance matrix.
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We envision that these findings will be useful for the joint redshift space power spectrum
and bispectrum analyses from forthcoming surveys, once real-world effects such as window
and selection functions and systematics weights are included in the modeling.
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A MCMC and simulation scatter error for σ8 and f

Figures 10 and 11 are the counterpart of the figures in section 3 for the remaining parameters
of interest, σ8 and f . A qualitatively similar behaviour as for the parameters α∥, α⊥ is
obtained. The only minor differences (appearing in figure 10) are that σ8 features less
correlation between σdiag and σfull and that the diagonal covariance errors on f are closer
to the case with the full covariance — in a factor of ∼ 10%.

B Visualisation of the limitations of the diagonal approximation

In figure 12 we further quantify the error introduced by assuming the covariance matrix to
be diagonally dominant. As said in section 5, in such a case, the inverse covariance matrix
could be approximated as in equation (5.2): C−1 = D−1 −D−1ϵD−1. We show that this would
introduce unacceptable biases to the estimation of the inverse covariance matrix, which would
propagate to the cosmological analysis. Hence, the off-diagonal terms ought not to be ignored.

A complementary way to observe the effect of assuming a diagonal covariance is shown
in the right panel of figure 12. There, the residual between the inverse Fisher matrices when
assuming a diagonal and full covariance are displayed, which are notated respectively as
F and F′ following the conventions of section 5. As in figure 9, we see how using diagonal
covariance results in a forecasted error in the 1D marginalized constraints of {σ8, f, α∥, α⊥}
between 10 and 20% higher than using the baseline full covariance. In this figure we can
additionally see that the cross-correlations between parameters will be affected to a higher
degree in percentage than the auto-correlations.
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Figure 10. Analogous plot to figure 3, for the case of the parameters σ8 and f . Similar results are
achieved, with the slight variation that the errors on f feature a smaller ratio, σdiag ∼ 1.1σfull, and
that σ8 has less correlation between the diagonal and full covariance recovered errors.
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Figure 11. Analogous plot to figure 4, for the parameters σ8 and f . For these parameters, both the
error underestimation (resp. overestimation) for the diagonal (resp. full) covariance is less marked.

C Additional comments on the z statistic

Let us further unpack the z statistic defined in equation (3.1) as

zθj
≡

θj − µθj

σ(θj) . (C.1)

The samples of z can be seen as a 2D array with indices representing the mock realization
(i) and the parameter (j). For each single parameter j and each of the 2000 mock realizations,
we conduct parameter inference for each, deriving a best-fit parameter (θi

j) and an estimate
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Figure 12. Discrepancy in the obtained inverse covariance matrix by assuming that the covariance
matrix is diagonal-dominant, C−1 = D−1 − D−1ϵD−1, and the accurate estimation of C−1. In the
left plot we show the residuals (C−1 − C−1)/C−1, element-wise. The residuals for the inverse Fisher
matrix obtained from the diagonal approximation (F′) and from the full covariance matrix (F) are
shown in the right plot. In both, it is clearly visible how the diagonal-dominant approximation is
invalid for the analysis present in this work, signaling the importance of the off-diagonal terms.

of its error (σi(θj)). It is important to note that using an incorrect covariance in this
inference results in an estimator that is unbiased but not optimal, leading to potentially
inaccurate error estimates.

The average over 2000 realizations of the best fit parameters has a very little error and
can be taken to correspond to the true values µj . So, the scatter of the 2000 best fit values θ

is an estimate of the error which, for a sufficiently large number of realizations, should be
very close to the true error — furthermore, by construction it has good coverage properties.
This approach is a standard rms estimate and does not involve Hartlap or Sellentin-Heavens
corrections as no matrix inversion is needed. For 2000 realizations we expect the error on
the error to be quite small and at all effects it can be taken as the true error.

According to the central limit theorem, the distribution of zθj
should approach a Gaussian

form. The width of this distribution will be unity if σi(θj) accurately estimates the true
error on θj , i.e. if it has equivalent coverage to the scatter of θi

j among the 2000 realizations.
However, the extent to which the central limit theorem is applicable remains uncertain, and
the assumption of a Gaussian likelihood with fixed covariance for bispectrum data is known to
be an approximation and might be slightly sub-optimal. Additionally, the Sellentin-Heavens
correction can further deviate an initially Gaussian likelihood from Gaussianity.

Our findings in section 3 indicate that using a diagonal covariance approximation tends to
underestimate errors by about 15%. Conversely, employing the full covariance estimated from
simulations, while using the Sellentin-Heavens correction and assuming a Gaussian likelihood
for the data vector, may slightly overestimate the Gaussianized errors as determined from
the scatter under the central limit theorem.

However, some mismatch in these estimations is anticipated for at least two reasons:
firstly, the estimated covariance has an associated error, since this estimate might vary if
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different sets of mocks are used. This variance is in part why the Sellentin-Heavens correction
effectively increases the error estimates. Secondly, the likelihood is not perfectly Gaussian,
and matching the rms to a 1σ of a Gaussian distribution may result in a slight discrepancy.
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