
a set of three-dimensional equations for the 
transition operators are obtained. Taking into 
account the decomposition of quasipotential 
"\T* on the sum of pair interaction, three,-
four,- ... - forces terras ( following from 
spectral representation (3) ) these equations 
can be reconstructed to Faddeev form. 
Therefore the general representations for some 
distributions obtained in our approach depend 
crucially an the properties of constituent 
wave function and their scattering amplitudes 
/ W 

Note that there are also the equations 
and normalization conditions for the wave 
functions entering in (10) / ? / 
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INVESTIGATION OF THE SOLUTIONS OF QUASIPOTENTIAL 
EQUATIONS 

Y.Sh.Gogokhia. D.P.Mavlo, A.T.Fillppov 
JINR, Dubna 

Quasipotential equations (QE) ̂  in 
quantum field theory are a convenient method 
for investigating relativistio bound state 
problems Z 2 * ^ . i n connection with possible 
applications of QE to the quark models it is 
necessary to note that there are many forms 
of QE and therefore it is not clear a priori 
which form is preferable on general grounds. 
On the other hand this fact is an advantage 
when it comes to possible applications / 2>3,4/ # 

Different physical problems may require diffe­
rent forms of QE* 

Let us consider QE for the scattering 
amplitude of the equal mass (m) scalar 
particles ( quarks): 

(i) 

where V - = x corresponds to the ordinary 
Logunov-Tavkhelidze quasipotential equation 
(LTQE), V = 2 - to the modified LTQE ( MLTQE). 
Let V>(p,p'J be the S-wave quasipotential, 
corresponding in the coordinate representa­
tion to the quasipotential of the f orm V f z j = - g ? ~ ' 

Then eq. (l) can be reduced to the differential 
boundary value problem of the second order in 
momentum representation /2/ . 

We have investigated in detail the case V=l,2. 
Let us recall now one of the Sturra-Liouville 
theorems: 

THEOREM: If the non-negative function 
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"V(x,E) Is incremented in its domain X 6 X 

E G § then positive eigenvalues 2* will 
always decrease and negative ones increase. 

To apply this theorem to our boundary value 
problem (2)-(3) it is necessary to find such 
functions V<(x>E) and V>VJ(x,£J , which 
satisfy the inequality 

and which, when inserted instead of V((*,£J 
make eq. (2) solvable in terms of known 
special functions. Then, using the mentioned 
theorem, we can derive exact upper and lower 
spectral bounds for the original problem (2)-
(3): 

For the LTQE we use the following approximati-* 
ons: 

T<>K v / , . w H /v/ , r r 2 (6) 

For the MLTQE we choose the following 
appr oximat i ons: 

' ( X ' + E T 1 , X < 4 

(10) 

These as well as (6)-(7) accomodate properly 
the analytic and asymptotic properties of the 
original potentials. The eigenvalue problem 
(2)-(3) with potential (10) has the solution: 

Taking into account, that V > s V>' (X/tJ 
for X e [ o , l ) , we obtain the solution of eigen­
value problem (2)-(3) with function (ll) from 
the spectral condition (9) with the help of the 
substitution: 

£ 
Z 

Consider now the limit of strongly bounded 
states ( £"=!)• The analytic results for eigen-

-v2(W 
values An,jn(i) ( V ~ 1,2; JI = >, < ̂  exact) 

The eigenvalue problem (2)-(3) with potential 
(6) has the following solution ( upper spectral 

where fl ~ 1,2,3,... and cfc?* is the n-th 

root of the Bessel function (z) . 

Numerically: Xi% = 1.155, ~ 5.759, 
/l±f> = 1.632, y\̂ > - 11.162. These results 

satisfy the main restriction (5). 

In the weak-binding limit ( E~*0 ) we 
obtained from (8), (9), (l3) the following 
behaviour of the energy eigenvalues: 
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where K?' = /<? = 1.65, K<"»0.77, K<-0 and/« 

*>,< , n-4,2,3,... 
Therefore, using the main inequality (5), 

we proved, that the behaviour of the exact 
energy eigenvalues in this limit must he of the 
type (15) 

with K< ^ Kex.^ K> • In connection with this 
formula we point out that the original eigen­
value problem (2)-(3) cannot be solved in terms 
of known special functions even if the B is 
small, and it is the Sturm-Llouville upper 
and lower spectral bounds technique which 
renders the problem solvable. The spectral bounds 
considered make it possible to prove, that? 
1) there exists the limit point of the spectrum 

Eh C/U for E-*0 | 2) the dependence E^Lfa) 

is nonanalytic, namely of the type (16); 
3) there are a© energy eigenvalues in the inter-, 
val Q^J? p Note, here that boundary 
value problem (2)-(3) for V ~ 1 has been 
solved formerly by the ( asymptotic) 
comparison equation method ( OEM) / 5 / with the 
following result for eigenvalues ( O^E2^i ): 

\}V„(E)-% = — . (1?) 

which for E"-* 0 reads 

^p{-i~+r(ihimj-^h C18? 

Then, the Sturm-Liouvllle wp^er and lower 
spectral bounds method as well as C M may be of 
great use for solving the broad olass of linear 
differential boundary value problems often met 
with in different branches of theoretical 
physics. 

In conclusion we note that i n the nonrela-
tlvistic limit the quasipotential V(7j = -^^" i 

correspond3 to the potential V(^/™ - ^ ' ^ ~ 2 

in the Schrodinger radial equation, but in our 
ease there is no problem of collapse into 
scattering centre. 
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