a set of three~dimensional equations for the
transition operators are obtained. Taking into
account the decompositilon of quasipotential
1/'” on the sum of palr lnteraction, three,~
foury= «se = forces terms ( followlng from
spectral representation (3) ) these equations
can be reconstructed to Faddeev form.
Therefore the general representations for some
distributions obtalned in our approach depend
crucially an the properties of constituent

wave function and their scattering amplitudes
/558/

Note that there are also the equatlons
and normalization conditions for the wave
functions entering in (10) /1,
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INVESTIGATION OF THE SOLUTIONS OF QUASIPOTENTIAL
EQUATIONS
V.Sh.Gogokhia, D.P.Mavlo, A,T.Filippov
JINRy Dubna

Quasipotential equations (QE) 1/ 4n
quantum field theory are a convenient method
for investigating relativistic bound state
problems 7243/ « In connection with possible
applications of QE to the quark models it is
necessary to note that there are many forms
of QE and therefore it is not clear a priori
which form is preferable on general grounds.

On the other hand this fact is an advantage
when it comes to possible applications /2’3’4/.
Different physical problems may require diffe-
rent forms of QE.

Let us consider QE for the scattering
amplitude of the equal mass (m) scalar
particles ( quarks):

T(p5)=VIF-prI+ S &9 (K‘r-; ?;3 \/[(:2 q);]zT@ #) (D
)

where V=1 corresponis to the ordinary
Logunov~Tavkhelidze guasipotential equation
(LTQE), V=2 =~ to the modifiled LTQE ( MLTQE).
Let Vo(p,p) be the S—wave quasipotential,
corresponding ln the coordinate representaw
tion to the quasipotential of the form V(7)=-§7]
Then eq. (1) can be reduced to the differential
boundary value problem of the second order in

momentum representation 2/ H

10XV ey f19=0, ViEey=(asxy Hxeey

0~ X5 fe)~ const, o)
where X=pm’, Azng"(i-E‘)!z;" EZ=_sz—z)
xe X =10, Ee8=r01].

We have lmrestigated in detail the case V=1,2.
Let us recall now one of the Sturm-Liouville
theorems:

THEOREM: If the non-negative function



V(%,E) 48 incremented in its domain X €& X
E &€& then positive eigenvalues A will
always decrease and negative ones increase.
To apply this theorem to our boundary value
problem (2)-(3) it is necessary to find such

)
functions Ve (%E) and vy (x,E) s which
satisfy the inequality
Y - v
V£ ZV‘(V;,E)=(1+XZ) %Y Ye) (4)

and which, when inserted instead of \/?Qiy
mke eq. (2) solvable in terms of known
special functions. Then, using the mentloned
theorem, we can derive exact upper and lower
spectral bounds for the original problem (2)-
(3):

l R 1 I}exacé‘ ’ A l (5)

For the LTQE we use the followling approximati-

ons:

Sooey=+x) (X+E) (6)

, (x2+E)7 x<1 (72)
Ve =

X3 . X 21 (1)

The elgenvalue problem (2)-(3) with potential
(6) has the following selutlon ( upper spectral
(_ )1-20( @ T4 (24)
[ [a+4) 247
_ Fladsze;257) ( £ )Zo(—i (8
T B 245 =) \E-1
where o =45 +( [A2(-E)?

condition):

~4, 7%

For the function (7) the corresponding (lower)
44 L22) Ji22,)

2 EATES] Ji(225) ~

_ A A EF(1+a,-a" 1 2a+5;-E2) +dd. (9)
T3 B@ESE(a,-a%z2a+k;-E2)+C.C.

b (A3 -1 )%

spectral condition is

where (L =414 +

A(Cl)= !"(%)F(’/z -2a)

M3y -a) ’
) (% -24)
Bla)= ==
@) Mh-a)l 3 -a)

Cil9

For the MLTQE we choose the following

approximations:
VEx,e) = (L+X) 2 (x+E)? (10)
Ve FTET xet (1e)
> ) -
XY , X214 (11vb)

These as well as (6)-(7) accomodate properly
the analytic and asymptotic properties of the

original potentials., The eigenvalue problem

(2)~(3) with potential (10) has the solution:

1-€7% (12)
£ J , h=1,2,3,..

Ape(E)=F(1-€)

) )
Taking into account, that Vo (x.£)=V " (x.E)
for X€[0,1), we obtain the solution of eigen-
value problem (2)-(3) with function (11) from
the spectral condition (9) with the help of the
substitutions:
i
143 ACER)
Zz t—=
Ji(22,)

Consider now the limlit of strongly bounded

= R) C’fgk (33

states ( £=1). The analytic results for eigen-
2
values Rn,/u(i) ( V=1,2; 4 =>, <, exact)

are:

And)=432; 2% )=

2(2) (14)
ﬂzx n(t)=9n? -1,
where M= 132,343... and <, 1is the n~th
root of the Bessel function j;t (Z)
Numerically: A3 = 1.155, 29 = 5,759,

2(2)

2(2)
H1> = 1,632, ﬁz > = 11,162, These results
satisfy the main restriction (5).

In the weak-binding limit ( €20 ) we

obtained from (8), (9), (13) the following
behaviour of the energy eigenvalues:

h/u(}l —eXP{—_h—?y H(v}+ O(V-_/;} 7(15)



where KU=K% =1.65, K¥=0.77, K%=0 and p=
=><  N=4,23...

Therefore, using the main inequality (5),
we proved, that the behaviour of the exact
energy eligenvalues in this limit must be of the
type (15)

- N7 K )L (1)
En,u.m*exi’{'m s +Ke + O y"J( ’

with KY< K& <KY . In connection with this

formula we point out that the original eigen—

value problem (2)-{3) cannot be solved in terms

of known specilal functlions even if the E 1s

small, and it 1s the Sturm-Liouville upper

and lower spectral bounds technique which

renders the problem solvable. The spectral bounds

oconsidered make it possible to prove, that:

1) there exists the limit peint of the spectrum
En(a) for E—~0 ; 2) the dependence E}ﬁ:{x‘(l)

is nenanaglytic, namely of the type (16);

3) there are mo energy elgenvalues ir the inter-

val 0<€2°2% ., Wote, here that boundary

value problem (2)-~(3) for V=1 bas been

solved formerly ’2/ by the { asymptotic)

comparison equation method ( CEM) /5/ with the

following result for eigemvalues ( O<E£°<1 ):

\EHEEA 208

= @an
B(%,«I/z) F(/i/z.d/v;s/e/?l‘gz)

which for £—~0 reads
FONTT)),

Then, the Stume-Liouville upper and lower

k.= exp«[—\',___« Y- 1¥(4)-

spectral bounds method as well as CEM may be of
great use for solving the broad olass of linear
differential boundary value problems often met
with in different branches of theoretiocal
rhysics.

In conclusion we note that in the nonrela-
tivistic limit the quasipotential V(7/=-97 "
correspends to the potential \f(7}="3'7—2
in the Schroadinger radial equation, but in our
case there is no problem of cellapse imto

scattering centre,

€120

2,

33

4.
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