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Abstract

It is shown how the spectrum generating group approach can be used in
relativistic physics to describe hadron masses and transition rates without
using approximation procedures. The electromagnetic potential and field
operators of the model are chosen to depend on a relativistically covariant
intrinsic collective position operator %P» having non-commuting compo-
nents whose commutation relations follow directly from those of the spec-
trum generating group SO(3,2).

Introduction

The spectrum generating group approach is based on that of the collective models. Col-
lective models analyze the structures of physical systems in terms of their fundamental
motions. Complementary to the collective models, atomistic models analyze the struc-
tures of physical systems in terms of their fundamental constituents. The standard models
in various areas of physics have traditionally been chosen to be of the atomistic type even
when collective models have provided simpler phenomenological descriptions of the data.

The standard model for molecules is the (N+M)-body Schrodinger equation for N
electrons and M nuclei with Coulomb forces between these constituents. At low energies,
especially when N+M is large, this equation is not of much practical value. If one looks
at the work of practitioners in molecular physics{'! one sees that low energy spectra and
structures of molecules are analyzed in terms of oscillators and rotators.
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The standard model for nuclei, the microscopic theory of nuclear forces for many
Protons and neutrons, is more complicated than the standard model for molecules and the
nuclear forces are not as universal as the Coulomb force. One resorts to collective models
of oscillators and rotators in nuclear physics even more so than in molecular physics. The
original Bohr-Mottelson modell2] (rotations and B- and y-vibrations) and the interacting
boson modell®! [U(6) subgroup chains for vibrational and rotational excitations] are the
most famous examples of collective models.

The standard model for hadrons is quantum chromodynamics (QCD) of quarks
and gluons;[4! in it hadrons are understood to be color singlet states of quarks with the
forces between the quarks arising from the exchange of gluons. QCD has theoretical
beauty and, like the standard models for molecules and nuclei, it is in principle solvable
but predictions of experimental results have only come from its approximations which
involve arbitrary assumptions: perturbative QCD has had impressive successes for hard
Processes (third jet in ete~ annihilation, cross section for jet production within a factor of
three) but its results are uncertain due to renormalization scheme dependence and the
Presence of twists at today's energies; lattice QCD provides a computational scheme for,
€.8., the hadron spectrum but the results are only qualitative or semi-quantitative (and de-
Pendent upon the quark masses). It therefore seems reasonable to also attempt to describe
hadrons using collective models. In analogy to the collective models for molecules and
Nuclei we analyze low lying spectra and structures of (towers of) hadrons in terms of
Intrinsic collective oscillators and rotators except that for hadrons the oscillators and
Totators must be relativistically covariant .

Non-relativistic collective models

We first illustrate the spectrum generating group approach of the collective models in a
Non-relativistic setting with the description of a molecule in mind. The quantum
Mechanical symmetry group of center of mass (c.m.) motion is then the extended Galilei
8roup G whose generators are the total angular momenta J;, Galilean boosts K;, total
Womenta P;, total energy H, and total mass M. Its intrinsic energy and spin invariants are

UEH—-—I-—P2 and §?
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where S = J — Q x P is the spin angular momentum and Q = K/M is the c.m. position.

The molecule is considered to be an extended object with intrinsic collective
motions that form a group——the spectrum generating group (SGG). For the SGG we
consider the group SO(3,1) generated by the $; and intrinsic position operators &; with the
commutation relations

(858 =igpS,  [Sp€l =igude, (&l = —iguSi

(Other possible SGGs are SO(4) for which [§;.§;] = ig;;, Sy and E(3) for which
[€i,€;] = 0, or even larger groups.)

The description of the mass, intrinsic energy, and spin spectrum of the molecule i$
obtained by choosing constraints that relate the mass, intrinsic energy, and spin operators
to the generators of SO(3,1) and by choosing an irreducible representation of SO(3,1).
For the mass we choose the constraint M = m (i.e., we choose M to have a trivial
spectrum). For the spin we have already chosen the S; to be generators of the maximal
compact subgroup K=SO(3) of SO(3,1). For the intrinsic energy we choose the rigid
rotator constraint

Ll R N SN P
U=578% (e, H=57P?+5758% n

with the moment of inertia I and total mass M (= m) as system parameters.

Figure 1 shows the weight diagram and K-type of an irreducible rcprcsentationm
(kg=0,c) of SO(3,1) and the corresponding rigid rotator intrinsic energy diagram. Each
dot in the weight diagram stands for an irreducible representation space of the SO(2)
group generated by S; spanned by a single vector |j j3) (j = eigenvalue of s?,
j3 = eigenvalue of S3). Each dot in the K-type stands for an irreducible representatio
space RY of the maximal compact subgroup K=SO(3) of SO(3,1) spanned by the vectors
[j j3) with js € {j,j=1,..., ~j}, whose vectors describe (for fixed c.m. momentum p;)
the physical states of an excited spin (rotational) level of the molecule. Each level of the
rigid rotator intrinsic energy diagram stands for an eigenvalue E§“‘ =j(j+1)/(21) of the
rigid rotator intrinsic energy operator (1) which describes the intrinsic energy of th¢
corresponding excited spin level of the molecule. The direct sum of the spaces R® , with
ko specifying the lowest j, gives the irreducible representation space
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Figure 1. {a) Weight diagram of an irreducible representation (ky=0,c) of SO(3,1); (b)
K‘typc of the representation; (c) Corresponding rigid rotator intrinsic energy diagram.,

Hk=0,c) = e R?

=0,T,...

of $O(3,1) whose vectors describe all physical states of the molecule. (When c.m. mo-
Wentum varies the space of physical states becomes the direct product Ho,b®H(k0=0,c)
Where Horb is the orbital space spanned by the eigenvectors |p;) of P;.)

The compact generators S; of SO(3,1) transform only within each subspace R®
While the non-compact generators &; change the value of the spin quantum number j
(by + 1 or 0) to transform between these subspaces as shown by arrows in Figure 1.
il‘he Qi, and powers of them, can therefore be used to describe transitions between the
Ntringic energy levels of the molecule as indicated in the energy diagram, e.g., to describe
the Physical process in which an excited state M* of the molecule decays into a lower
®lergy state M with the emission of a photon: M* — M +v. (The dipole moment
OPerator is related to the intrinsic position operator by d = e£.) The description of the
Motion of the molecule and of the rates of emitted radiation depends upon what operator is
Chosen a5 the interaction Hamiltonian. Later we will choose a Hamiltonian to describe
Tadiative decays of nucleons in a relativistic setting.
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Relativistic Collective Model for Hadrons

For hadrons we go to a relativistic setting. The symmetry group of ¢.m. motion is then
the Poincaré group P with generators J pv» Py Its mass and spin invariants are

M=@PH"2 and W=-§,0 =125, 50,

where I, = ewpcﬁp\%" is the spin tensor operator, = 1/2ehvPoB J oo is the Pauli-
Lubanski vector operator, and ﬁ, =P ,M1is the c.m. momentum direction operator.

A tower of hadrons is considered to be a relativistic extended object with intrinsic
collective motions and a corresponding SGG. For the SGG we consider the group
S0O(3,2) with generators Suvs I‘u. The generators of the collective motions are the fol-

lowing relativistically covariant, "boosted" versions of the S;;, S;, I';, I'g, respectively:

i

BuPEVSpo (BPEPSp 2L Sij, BoPEOSpe L2 0),
L=-spbr  ( Gzxs &zt 0,
- R =BT, (RS, - fLo),
Por ( Boredesr, ),

where g,P =n,P - ﬁuﬁp projects onto the hyperplane perpendicular to @P. (ﬁp is as
sumed to commute with S, and I';.) The commutation relations of the (dimensionless)
intrinsic positions ep and momenta &u (and of the §,P¥,°S, and f’pI‘ P} follow directly
from the commutation relations of SO(3,2):

[gu:’gv] =-i gppgvcspc’ [%wﬁv] =i gupgvcspo’ [gwav] = gp.vﬁpr o
That the ,P§,°Sq, ﬁu, and %u satisfy
Pug g 05 oo = @n’g‘# =Pey, =0

means that there are no collective motions along the direction of ¢.m. momentum (e.g., °
ghosts). The properties of these intrinsic collective variables differ from the properties of
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intrinsic variables of more conventional models and, in particular, from those of the
intrinsic positions and momenta of the canonical (3+1)-dimensional oscillator!®! which
have the following commutation relations:

[gp,»gv} = 0’ [%p,,&vil = O& [guaﬁv] =—i T‘p,v- (3)

The description of the mass and spin spectrum of a hadron tower is obtained by
Choosing constraints that relate the mass and spin operators to the intrinsic collective
Variables and by choosing an irreducible representation of SO(3,2). For the spin we
always choose the spin tensor constraint

z;.w = g;xpgvcs po

The spin tensor Z,,, is then a relativistically covariant version of the generators S;; of the

$O(3) subgroup of SO(3,2) and in the c.m. rest frame Py, ., = (1,0,0,0) the spin ¥,
Which equals J? due to %; ZL 1/2¢, T, = J; and & L8 0, also equals §2 = 1/25;;81

due to 3, LeL S, and Z; L2 0:

JRIest (i Lest g2

For the mass we allow more flexibility in the choice of the constraint. A simple constraint
Which gives a reasonable fit to the masses of the mesons of the p/a-tower is the rotating-
Vibrator constraint

1
MZ=mj + -i—;?’prp +A2 7 T B (4)

Where m2, 1/0¢’ (the Regge slope), and A2 are system parameters.
‘ Figure 2 shows an assignment of mesons of the p/a-tower to the K-type of the
reducible representation D(U;,=2,5=1) of SO(3,2)." Each dot stands for an irreducible

*

All I=1, CP=+ mesons listed in the Meson Summary Tablcr"] are assigned except for p(1250)

Which ;
hich i5 o longer established and ap(980) which cannot be accommodated by D(p,=2,5=1) but can be
Zlccomm()dated by any D(pin>2,5=1). The D(ip;,.8) denote the unitary irreducible representations of
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Figure 2. Mesons of the p/a-tower assigned to the K-type of the irreducible repre-
sentation D(l;,=2,5=1) of SO(3,2).

representation space R®P of the maximal compact subgroup K=SO(3)xSO(2) of
SO(3,2) whose vectors describe (for fixed c.m. momentum direction 6u’ subject t©
ﬁuﬁ“ = 1 for positive mass particles) the physical states of a p or an a meson with vibréd”
tional quantum number J (i = eigenvalue of ﬁPI‘P) and spin (rotational) quantum nu®”

S0(3,2) for which the spectrum of I is bounded from below, where 1 is the minimum value of Iy
and s(s+1) is the eigenvalue of S2 for vectors for which I'q has eigenvalue [, ; such repre:sematicms

exist for ;. > s+1/2 when s e {0,1/2) and for p;, 2 s+1 when s € (1,3/2,2,5/2,...} 18]
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ber j (j(j+1) = eigenvalue of 1/2£,,Z*). The direct sum of the spaces R gives the
irreducible representation space

A ey = (1.0
Hlpmin=2,5=1) = o%:ig_z ®R

of 8O(3,2) whose vectors describe all physical states of the p/a-tower. (When the c.m.

momentum direction varies the space of physical states becomes the direct product

H,.®H (Mymin=2,5=1) where Hq, is the orbital space spanned by the eigenvectors B} of
u) For D(lp;,=2,5=1) the vibrating-rotator constraint (4) yields the mass formula

m?(j,j) = m§ + é—- B+ A2jG +1)

and a least squares fit to the masses of the mesons of the p/a-tower, assigned as shown in
Figure 2, yields the following values for the parameters:

(mf+-1)=-051Gev)y, —=106(GeV),, A2=0.02 (GeV)
o o

The small value of A2 means that the masses are described almost as well without the spin
trm 22j(j +1). With these values of the parameters and the spectrum of (u,j) shown in
igure 2, M2 has a positive definite spectrum; there are no negative mass states (no
tachyong),
The operators %, and iﬁprp transform only within each subspace R since they
Commute with f’pf ? and W. The operators &u and ?tu, however, do not commute with
p[P or ﬁ/; they change the vibrational quantum number W (by * 1) and spin quantum
Mmber j (by £ 1 or 0) and transform between the subspaces R The %l and %w and
Powers of them, can therefore be used to describe transitions between the vibrational and
*Pin levels of the hadron tower in complete analogy to the description of transitions
Ctween spin levels of the molecule. In the relativistic setting, like in the non-relativistic

“lting, the description of decay rates will depend upon the choice of an interaction
Amiltonian,
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Radiative Decays

We now consider the radiative decays of nucleon resonances N* into the proton or
neutron. The decay rate for the process N* — N + vis usually expressed in terms of two
independent (after using symmetry) photoelectric amplitudes AN":[°]

2k2 my e .
= (1ANSZ + 18012
e e (172 Y

where j; € {1/2,3/2}is the helicity of the decaying state N*, j is the spin quantum number
of N*, my« and my are the masses of N* and N, and k=[(m2N* - mZN)/(ZmN*)] is the
photon energy. Experimental values of the photoelectric amplitudes are obtained from
partial wave analysis of single pion photoproduction, Ny — N* — Nr.

4
on | $.2090) D;(2080) Q(2200) G,(2190)
| BiA710) 133(1;720) E 5(1680)
H
sp 811(1‘535) R,(1520)
(939)
n %1.
’
12 312 512 2

Figure 3.  Some nucleon resonances assigned to the K-type of the irreducible rep™®
sentation D(U,;,=3/2,5=1/2) of SO(3,2). Arrows indicate for which of these resonanc®
experimental values of the photoelectric amplitudes are known.
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Figure 3 shows an assignment of some of the nucleon resonances to the K-type of
the irreducible representation D(ppin=3/2,5=1/2) of SO(3,2). Arrows indicate for which
of these resonances experimental values for the photoelectric amplitudes are known;!”]
these values are listed in Column 4 of Table L.

In order to describe these radiative decays we must choose an interaction Hamil-
tonian that couples the photon observables to the intrinsic collective observables gl and ’7?:}1
of the nucleon-tower. We obtain one in the following way: Starting with the free
Hamiltonian

i 1
Hprep = P(P,PH — mf ~ a—;ﬁprp —AP5T, I,

— Table I
Resonance  Target j;  Experimental SO(3,2) QCDinspired  Relativistic
photoelectric collective  quark model oscillating
— amplitudes model quark mode}
8,,(1535) p 12 73 + 14 106 147
— n_1/2 - 76+32 - 59 ~ 119
Dy3(1520) p 12 - 22%10 - 26 - 23 34
p 31 167 £ 10 167 128 109
n 12 - 65%13 - 66 - 45 - 31
—_— n_32 -144+14 -138 -122 - 109
P a710) p 12 5+16 17 - 47
— n 12 - 5423 - 1 - 21
Pi3(1720) p 12 52+39 59 ~133
p 32 - 35+24 - 28 46
n 12 - 2426 - 10 57
— n_32 - 43+94 5 - 10
Fi5(1680) p 12 - 17%10 2 0 - 10
p 372 127+12 99 91 59
n 12 31+16 - 16 26 35
~— n 32 - 30+14 - 26 - 25 0
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which is related to the constraint (4) with ¢ a Lagrange multiplier of constrained Hamil-
tonian mechanics,!1%11] we make the minimal coupling substitutions

PIJL — Pu_eAkll’
iiu - ﬁu—egup-ﬁAp

and the Pauli coupling! ! substitution

Z'_w = zpv - Yva

where A, and F,), are the electromagnetic potential and electromagnetic field operators and
e and y are coupling constants. We also postulate that A, and F,,,, act in both the photon
and hadron spaces such that, for the emission of one photon with momentum k,, and
helicity A, taking their photon space matrix elements leaves the following operators that
act only in the hadron space:

(ko A, 10) = (ko)) exp(iBkof?),

(koM Fyy [0) =ik, (ksA] A, 10) — ik, (koA A, [0)
= ik g (koN) ~ kB (kosM)] expliBk,EP),

where Eﬁ(ko,A.) is the photon polarization and J is a system parameter; unlike the conven-
tional case, A, and F,,, then depend on non-commuting intrinsic position operators 89 that
act in the hadron space. These substitutions give, to first order in A, and F,, (sufficient
when considering one photon processes), the interaction Hamiltonian

1

11
Hip=—@(e{P,A"} +e oM A -2 7 (B B ),

On c.m. rest frame states H;,, may be written as

Hip, = - ¢le{Pp,Ap} +el—,-hle-I‘ -~ YA%(B-S + S-B)]
o
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where S; = 1/2€;3Sj and B, = 1/2¢;3Fy;; the first term is an electrostatic coupling which
becomes zero in the gauge A, = 0, the second term is an electric dipole coupling (with
zero electric dipole moment due to Zitterbewegung of the expectation values of I, but
non-zero dipole transition moments), and the third term is a magnetic moment coupling.

The theoretical expressions for the photoelectric amplitudes can be derived from
H; , in much the same way as in atomic or nuclear physics; the result of a lengthy
calculation is

j n ’ s Y ..
AN phase (W=312 =172 j5=j3-111_; L j j3)

‘\]21( my My«

Where (u,j) are the vibrational and spin quantum numbers of the decaying state N* and
=120 1 — J») is a spherical component of the 3-vector operator

T, = a exp(iBkS%) T, + bki {exp(iBk§%),S, 3}

With a = pe/(a'my) and b = —~@yA2. The matrix elements {(u'=3/2 j’=1/2 j4=j3—1} J_;
I j J3) are calculated from group theory; they depend on the parameters a, b, 8, and also
On phase factors [since the physical state vectors are related to the basis vectors [y j j3) of
the space H(pmm=3f2,s=1{2) only up to arbitrary phases] which are chosen to give the
best fit to the data. A least squares fit using experimentally determined values for the
Masses and with the further restriction byoion/Pneutron = Eproton/Eneutron = 1.5 yields the
following values for the parameters:

Uroton = =198, borion = 0.77 (GeV) L, Biroon = 152 (GeV)! =03 fm,
Aeuron= 077, breuron= —0.50 (GeV)™L,  Breutron= 0-32 (GeV)~! = 0.06 fm.

The Predictions calculated using these values are listed in Column 5 of Table I. For com-
Parison, the predictions of a QCD inspired non-relativistic potential modell'2] and of a
rf"latiVistic oscillating quark model based on the commutation relations of Eq.(3)(®] are
listed in columns 6 and 7, respectively.
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Supergroups

Physical systems with more complicated spectra can be understood as more complicated
extended objects having more complicated intrinsic collective motions and larger SGGs.
Supergroups can also be used as SGGs with the difference that they would describe
spectra containing both integer and half-odd integer spins. The simplest such supergroup
is Osp(1,2) generated by the S; of SO(3) and by a two-component spinor operator ¥
satisfying

[SiXal = —1/2(0)apXp,  {XowXp) = —(0i02)pS;

where ¢, i€ {1,2,3}, are the Pauli matrices. Unlike the &; of SO(3,1), the x, of
Osp(1,2) transform between irreducible representation spaces RY of SO(3) with j values
differing by 1/2.

The supergroup Osp(1,4) contains SO(3,2) as its even subgroup and has, for
s e {1/2,1,3/2,2,...}, irreducible representations that reduce into the representations
D(Hpin=s+1,9)®D (Lpin=s+3/2,5+1/2) of SO(3,2).'31* There exists some evidence
that D(U,,1,=3/2,5=1/2)®D(U ;,=2,5=1), along with the constraint

M=+ 1 5 105.08)

where the (55 are "boosted" versions of the fermionic generators (a Majorana spinor oper
ator) of Osp(1,4), describes nucleons and p/a mesons with a single slope 1/a for their
Regge trajectories.'4} Evidence for supermultiplets also appears in atomic and in nuclear
physics.[15]

Conclusion
The specific models considered above have served their purpose to illustrate the conceP”

tual simplicity of the spectrum generating group approach and to show that it can be used
in relativistic physics to describe hadron masses and transition rates without usin®

These representations are also irreducible representations of the supergroup SU(2,2/1).
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approximation procedures. Theoretical assumptions underlying the choices of these
models have been kept to a minimum. Different choices which rely, perhaps, on further
or different theoretical assumptions may give better descriptions of the data.

One feature that connects ocur SQ(3,2) relativistic collective models with atomistic
models is that the invariant s that characterizes the representations D(i,;n,8) can be
interpreted to be the total intrinsic spin of the hadron tower's fundamental constituents—
e.g., of its quarks. With this interpretation our choices s=1 for the p/a mesons and s=1/2
for the nucleons are consistent with those of the standard non-relativistic quark model.[”]
In the non-relativistic limit c—e and p;;(c)—e= one has the group contractions
PxU(1)»G® and SO(3,2)—SO(3)®HO(3) and one may obtain from the operators Eu
and £, with the commutation relations of Eq.(2) operators €§°°> and f{=) with the
commutation relations of the 3-dimensional oscillator group HO(3):[1€!

Bl =0, REAI=0, ESAO] =151

In the limit, s(s+1) is the eigenvalue of the quarks' total intrinsic spin operator
(8 ~ £ x #C))2 where § is the spin angular momentum operator of the hadron tower
and é(“’) x () is the operator for the orbital angular momentum of the quarks around
ach other.
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