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It is shown how the spectrum generating group approach can be used in 

relativistic physics to describe hadron masses and transition rates without 

using approximation procedures. The electromagnetic potential and field 

operators of the model are chosen to depend on a relativistically covariant 

intrinsic collective position operator ~1~ having non-commuting compo- 

nents whose commutation relations follow directly from those of the spec- 

trum generating group SO(3,2). 

Introduction 

The spectrum generating group approach is based on that of the collective models. Col- 

lective models analyze the structures of physical systems in terms of their fundamental 

motions. Complementary to the collective models, atomistic models analyze the struc- 

tures of physical systems in terms of their fundamental constituents. The standard models 

in various areas of physics have traditionally been chosen to be of the atomistic type even 

when collective models have provided simpler phenomenological descriptions of the data. 

The standard model for molecules is the (N+M)-body Schr/Sdinger equation for N 

electrons and M nuclei with Coulomb forces between these constituents. At low energies, 

especially when N+M is large, this equation is not of much practical value. If one looks 

at the work of practitioners in molecular physics[ I] one sees that low energy spectra and 

structures of molecules are analyzed in terms of oscillators and rotators. 

* Also at Institute of Theoretical Physics, Warsaw University and CINVESTAV del IPN, Mexico. 
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The standard model for nuclei, the microscopic theory of nuclear forces for many 

protons and neutrons, is more complicated than the standard model for molecules and the 

nuclear forces are not as universal as the Coulomb force. One resorts to collective models 

of osciUators and rotators in nuclear physics even more so than in molecular physics. The 

original Bohr-Mottelson model[ 2] (rotations and 9- and T-vibrations) and the interacting 

boson model [3] [U(6) subgroup chains for vibrational and rotational excitations] are the 

most famous examples of collective models. 

The standard model for hadrons is quantum chromodynamics (QCD) of quarks 

and gluons;[ 41 in it hadrons are understood to be color singlet states of quarks with the 

forces between the quarks arising from the exchange of gluons. QCD has theoretical 

beauty and, like the standard models for molecules and nuclei, it is in principle solvable 

but predictions of experimental results have only come from its approximations which 

involve arbitrary assumptions: perturbative QCD has had impressive successes for hard 

processes (third jet in e+e - annihilation, cross section for jet production within a factor of 

three) but its results are uncertain due to renormalization scheme dependence and the 

presence of twists at today's energies; lattice QCD provides a computational scheme for, 

e.g., the hadron spectrum but the results are only qualitative or semi-quantitative (and de- 

Pendent upon the quark masses). It therefore seems reasonable to also attempt to describe 

hadrons using collective models. In analogy to the collective models for molecules and 

nuclei we analyze low lying spectra and structures of (towers of) hadrons in terms of 

intrinsic collective oscillators and rotators except that for hadrons the oscillators and 

rotators must be relativisticaUy covariant. 

Non.relativistic collective models 

We ira-st illustrate the spectrum generating group approach of the collective models in a 

nOn-relativistic setting with the description of a molecule in mind. The quantum 

Uaechanical symmetry group of center of mass (c.m.) motion is then the extended Galilei 

group G ex whose generators are the total angular momenta Ji, Galilean boosts Ki, total 

raornenta Pi, total energy H, and total mass M. Its intrinsic energy and spin invariants are 

U - H -  1 .~p2 and S 2 
2M 
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where S =- J - Q x P is the spin angular momentum and Q = FAM is the c.m. position. 

The molecule is considered to be an extended object with intrinsic collective 

motions that form a group---the spectrum generating group (SGG). For the SGG we 

consider the group SO(3,I) generated by the Si and intrinsic position operators ~i with the 

commutation relations 

[Si,Sj] = ieukS k , [Si,~j] = ieijk~k, [~i,~j] = --ieijkSk • 

(Other possible SGGs are SO(4) for which [~i,~j] = ieijkSk and E(3) for which 

[~i,~j] = 0, or even larger groups.) 

The description of the mass, intrinsic energy, and spin spectrum of the molecule is 

obtained by choosing constraints that relate the mass, intrinsic energy, and spin operators 

to the generators of SO(3,1) and by choosing an irreducible representation of SO(3,1). 

For the mass we choose the constraint M = m (i.e., we choose M to have a trivial 

spectrum). For the spin we have already chosen the S i to be generators of the maximal 

compact subgroup K=SO(3) of SO(3,1). For the intrinsic energy we choose the rigid 

rotator constraint 

1 2 I s 2  ) U =~TS 2 (i.e., H = ~ P  + (1) 

with the moment of inertia I and total mass M (= m) as system parameters. 

Figure 1 shows the weight diagram and K-type of an irreducible representation [5] 

(k0=0,c) of SO(3,1) and the corresponding rigid rotator intrinsic energy diagram. Each 

dot in the weight diagram stands for an irreducible representation space of the SO(2) 

group generated by S 3 spanned by a single vector Ij J3) (J = eigenvalue of S 2, 

J3 = eigenvalue of $3). Each dot in the K-type stands for an irreducible representatiO~ 

space a (j) of the maximal compact subgroup K=SO(3) of SO(3,1) spanned by the vectors 

[J J3) with J3 e {j, j -1  ..... -j}, whose vectors describe (for fixed c.m. momentum Pi) 

the physical states of an excited spin (rotational) level of the molecule. Each level of the 

rigid rotator intrinsic energy diagram stands for an eigenvalue Eint = j(j+l)/(2I) of the 

rigid rotator intrinsic energy operator (1) which describes the intrinsic energy of the 

corresponding excited spin level of the molecule. The direct sum of the spaces a (j), witla 

k0 specifying the lowest j, gives the irreducible representation space 



211 

3 

2 

1 

0 

• , • * ~ .  • 3 

i 
, , . 2 

J 
• Q ° I 

O 

-3 -2 -1 0 1 2 3 

J3 
(a) 

Q 

Q 

int 
Ej  

(b) (c) 

T 

l~igure I. (a) Weight diagram of an irreducible representation (k0=O,c) of SO(3,1); (b) 

K-type of the representation; (c) Corresponding rigid rotator intrinsic energy diagram. 

H(ko=0,c) = E • R 
j=O,1 .... 

of SO(3,1) whose vectors describe all physical states of the molecule. (When c.m. mo- 

mentum varies the space of physical states becomes the direct product aorb®a(k0=O,c) 

Where Morb is the orbital space spanned by the eigenvectors lPi} of Pi.) 

The compact generators S i of SO(3,1) transform only within each subspace R (j) 

While the non-compact generators {i change the value of the spin quantum number j 

(by _+ 1 or 0) to transform between these subspaces as shown by arrows in Figure 1. 

The ~i, and powers of them, can therefore be used to describe transitions between the 

intrinsic energy levels of the molecule as indicated in the energy diagram, e.g., to describe 

the physical process in which an excited state M* of the molecule decays into a lower 

energy state M with the emission of a photon: M* ~ M + T. (The dipole moment 

OPerator is related to the intrinsic position operator by d = e~.) The description of the 

r~°tion of the molecule and of the rates of emitted radiation depends upon what operator is 

chosen as the interaction Hamiltonian. Later we will choose a Hamiltonian to describe 

radiative decays of nucleons in a relativistic setting. 



212 

Relativistic Collective Model for Hadrons 

For hadrons we go to a relativistic setting. The symmetry group of c.m. motion is then 

the Poincar6 group P with generators J~tv, Prt. Its mass and spin invariants are 

M --- (P~tP~t) in  and ~¢ - - f f~v~  = 1/2Z~tvZ2 v, 

where Z~v - e~tvpo~P0¢° is the spin tensor operator, ~v ~t - 1/2e~tvPa~vJpa is the Pauli- 

Lubanski vector operator, and ~v -= Pv M-1 is the c.m. momentum direction operator. 

A tower of hadrons is considered to be a relativistic extended object with intrinsic 

collective motions and a corresponding SGG. For the SGG we consider the group 

SO(3,2) with generators S~tv, F~. The generators of the collective motions are the fol- 

lowing relativistically covariant, "boosted" versions of the Sij, S0i, F i, F 0, respectively: 

~lxP~vaSpo (~iP~jOSpo rest Sij, ~oP~iOSpo re s,t, 0), 

~g ___ _S/.tp~P ( ~. rest.. S0i, ~0 0), 

- -  ~ ~ ~tPFp ( - -  ~i ~ Fi, - -  ~0 rest: 0), 

i pp' ( i prv ro ), 

where ~gP = rl~tP - ~t~SP projects onto the hyperplane perpendicular to ~'p. (~p is as- 

sumed to commute with Sgv and F~t.) The commutation relations of the (dimensionlesS) 

intrinsic positions ~# and momenta ~1~ (and of the ~,~PrgvaSr, a and ~pFP) follow directly 

from the commutation relations of SO(3,2): 

[~t,~v] : - i  ~tP~vaSpa, [~t,~v] : - i  ~tP~vaSpa, [~t,~v] = - i  ~l~v~pF p. (.2) 

That the ~tP~vaSpa, ~t, and ~tl~ satisfy 

  apz,,°spo: = o 

means that there are no collective motions along the direction of c.m. momentum (e.g., ~o 

ghosts). The properties of these intrinsic collective variables differ from the properties of 
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intrinsic variables of more conventional models and, in particular, from those of the 

intrinsic positions and momenta of the canonical (3+l)-dimensional oscillator[ 6] which 

have the following commutation relations: 

[~t,~v] = 0, [~t,ftv] = 0, [~g,~v] = - i  rlgv. (3) 

The description of the mass and spin spectrum of a hadron tower is obtained by 

choosing constraints that relate the mass and spin operators to the intrinsic collective 

variables and by choosing an irreducible representation of SO(3,2). For the spin we 

always choose the spin tensor constraint 

E~v =~P~v°Spm 

The spin tensor Zgv is then a relativistically covariant version of the generators Sij of the 

SO(3) subgroup of SO(3,2) and in the c.m. rest frame 13~trest = (1,0,0,0) the spin ,~r, 

Which equals j2 due to ~v i .rest 1/2eijkJjk_ Ji and ~v 0 res! 0, also equals S 2 -= 1]2SijS ij 

dll~ tO Y~ij rest Si j and Z0i rest 0: 

j2 ,e~t,~r r~:s,t,,, SL 

l%r the mass we allow more flexibility in the choice of the constraint. A simple constraint 

Which gives a reasonable fit to the masses of the mesons of the p/a-tower is the rotating- 

Vibrator constraint 

M 2 = rr~ + ~-7~prP + K2 1 ~" Z~tv Z~tv (4) 

Where rn~ 1/og (the Regge slope), and t2 are system parameters. 

Figure 2 shows an assignment of mesons of the p/a-tower to the K-type of the 

irreducible representation D(~z~.~=2,s=l) of SO(3,2).* ]Each dot stands for an irreducible 

All I=l, CP=+ mesons listed in the Meson Summary Table [7] are assigned except for p(1250) 

~Vhich is no longer established and a0(980) which cannot be accommodated by D(IXmin=2,s=l) but can be 

acconarnodated by any D(I.tmin>2,s=l ). The D(gmin,s ) denote the unitary irreducible representations of 



214 

g 

7 

6 

• • • • • 

p (2150) p3(2250) p5(2350) 
• • • • • 

p (1600) P3(1690) 
Q • • 

a~(1270) a2(1320 ) 
• Q 

p (770) 
O 

a6(2450) 
e 

v 

1 2 3 4 5 6 

J 

Figure 2. Mesons of  the p/a-tower assigned to the K-type of the irreducible repre" 

sentation D(IXm~n=2,s= 1) of  SO(3,2). 

representation space R (~t'j) of the maximal compact subgroup K=SO(3)xSO(2) of 
* • A SO(3,2) whose vectors describe (for fixed c.m. momentum du'ectxon P~t, subject to 

I~l ~ = 1 for positive mass particles) the physical states of a p or an a meson with vibra" 

tional quantum number t.t (It = eigenvalue of  ~,flW) and spin (rotational) quantum nu~" 

SO(3,2) for which the spectrum of F 0 is bounded from below, where I.train is the minimum value of 1~0 

and s(s+l) is the eigenvalue of S 2 for vectors for which F 0 has eigenvalue la~ain; such representations 

exist for lawa n _> s+I/2 when s e {0,1/2} and for groin > s+l when s e {1,3/2,2,5/2,..}. [8] 



ber j [j(j+l) = eigenvalue of 1/2Y.~tvY-,~v]. 

irreducible representation space 
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The direct sum of the spaces a (~t'j) gives the 

H%~mi~=2's=l) = (~t,j) of~Fig.2 (~ a(~'J) 

of SO(3,2) whose vectors describe all physical states of the p/a-tower. (When the c.m. 

momentum direction varies the space of physical states becomes the direct product 

bloeo®H(I.tmin=2,s=l) where Nor b is the orbital space spanned by the eigenvectors II~) of 

~t.) For D(laram=2,s=l) the vibrating-rotator constraint (4) yields the mass formula 

m2(~,j) = m~ + 1 ~t + ~2j(j +1) 

and a least squares fit to the masses of the mesons of the p/a-tower, assigned as shown in 

l~igure 2, yields the following values for the parameters: 

(rn~ + ~)-7) = - 0.51 (GeV) z, 1 =  1.06 (GeV) e, ~2= 0.02 (GeV) 2. 

The small value of ~2 means that the masses are described almost as well without the spin 

term ~2j(j +1). With these values of the parameters and the spectrum of (It,j) shown in 

~igure 2, M 2 has a positive definite spectrum; there are no negative mass states (no 
tachyons). 

The operators Y-~v and ~pl'3O transform only within each subspace R (~'j) since they 

COrnrnute with ~'pFO and ~ .  The operators ~t and ~g, however, do not commute with 

~p£P or ~¢; they change the vibrational quantum number ~t (by + 1) and spin quantum 

aUrnber j (by + 1 or 0) and transform between the subspaces a (~'j). The ~ and ~t,  and 

POWers of them, can therefore be used to describe transitions between the vibrational and 

spin levels of the hadron tower in complete analogy to the description of transitions 

betWeen spin levels of the molecule. In the relativistic setting, like in the non-relativistic 

setting, the description of decay rates will depend upon the choice of an interaction 
rtanailtonian. 
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Radiative Decays 

We now consider the radiative decays of nucleon resonances N* into the proton or 

neutron. The decay rate for the process N* --) N + ",/is usually expressed in terms of two 

independent (after using symmetry) photoelectric amplitudes AjN*:[ 91 

F = 2k2 mN ( lANai 2 + IA~/~I 2 ) 
x(2j+l) mN* 

where J3 e { 1/2,3/2}is the helicity of the decaying state N*, j is the spin quantum number 

of N*, mN, and m N are the masses of N* and N, and k=[(m2N , - m2N)/(2mN,)] is the 

photon energy. Experimental values of the photoelectric amplitudes are obtained from 

partial wave analysis of single pion photoproduction, N 7 ---> N* ---> N~. 

g 
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Figure 3. Some nucleon resonances assigned to the K-type of the irreducible repre" 

sentation D(i.tmi~=3/2,s=l/2 ) of S0(3,2). Arrows indicate for which of these resonanCeS 

experimental values of the photoelectric amplitudes are known. 
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Figure 3 shows an assignment of  some of  the nucleon resonances to the K-type of  

the irreducible representation D(~tmin=3/2,s=l/2) of  SO(3,2). Arrows indicate for which 

of  these resonances experimental values for the photoelectric amplitudes are known;[ 7] 

these values are listed in Column 4 of  Table I. 

In order to describe these radiative decays we must  choose an interaction Hamil- 

ton±an that couples the photon observables to the intrinsic collective observables ~ and ~ t  

of  the nucleon-tower.  We obtain one in the fol lowing way: Starting with the free 

Hamiltonian 

1 1 V = qJ(P~P# - n~ - --7~prP - X 2 ~Y~v~J ~ ), H~ree 

T a b l e  I 

Resonance Target J3 Experimental SO(3,2) QCD inspired Relativistic 

photoelectric collective quark model oscillating 

--..-__ amplitude~ model qu .ark m .os]el 

$11(1535) p 1/2 73 ± 14 106 147 

n 1 / 2  - 76,,,.+ 32 ......... - $9 - 119 

13t3(1520) p 1/2 - 2 2 +  10 - 26 - 23 34 

p 3/2 167 + 10 167 128 109 

n 1/2 - 6 5 ±  13 - 66 - 45 - 31 

~ _  n 3/2 ..-,I~,,,,,+,,,14 ......... - 1 3 5  - 1 2 2  - 109. 

Pu(1710)  p 1/2 5 +  16 17 - 47 

n 1/2 -...............5±23 - l - 21 

P13(1720) p 1/2 52 ± 39 59 - 133 

p 3/2 - 3 5 + 2 4  - 28 46 

n 1/2 - 2 ± 2 6  - 10 57 

n ~/2 - 4~ + 94 $ - 10 

1~5(1680) p 1/2 - 1 7 + 1 0  2 0 - 10 

p 3/2 127 ± 12 99 91 59 

n 1/2 31 :!: 16 - 16 26 35 

~ - _  n 3/2 - ~ 0 ±  ]4 ...... - 2(i - 25 0 
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which is related to the constraint (4) with (p a Lagrange multiplier of constrained Hamil- 

tonian mechanics, [l°J 1] we make the minimal coupling substitutions 

P~t ~ P~t - cAw 

~11 ~ ~11- e ~11 p 1 Ap 

and the Pauli coupling [11] substitution 

Zl~ v --~ Z~v - YF,v 

where A~t and F.v are the electromagnetic potential and electromagnetic field operators and 

e and Y are coupling constants. We also postulate that A~t and F~t v act in both the photon 

and hadron spaces such that, for the emission of one photon with momentum kl~ and 

helicity ~., taking their photon space matrix elements leaves the following operators that 

act only in the hadron space: 

(ka,X[ A~ 10> = ~(ko,~) exp(il3kp~P), 

(ko,Tq F~tv 10> = ikv <k AI A, 10> - ik~t (ko,kl Av 10> 

= i[kv~(ka,~,) - k~t~(ka,~)] exp(il3kp~P), 

where ~(ko,~) is the photon polarization and 13 is a system parameter; unlike the conven- 

tional case, A~t and F~t v then depend on non-commuting intrinsic position operators ~P that 

act in the hadron space. These substitutions give, to first order in A~t and F~v (sufficient 

when considering one photon processes), the interaction Hamiltonian 

Hint = - (p(e{ pwA~t ] + ea.Mll A.,~r~ _y~21  { Zrtv.F,V }). 

On c.m. rest frame states Hin t may be written as 

1 1 A F  Hin t = -  (p[e{P0,A 0} + e ~ '7~  " - T L2(B's  + S.B)] 
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where S i - 1/2eijkSjk and B i - 1/2eijkFjk; the first term is an electrostatic coupling which 

becomes zero in the gauge A 0 = 0, the second term is an electric dipole coupling (with 

zero electric dipole moment  due to Zitterbewegung of  the expectation values of  F, but 

non-zero dipole transition moments), and the third term is a magnetic moment coupling. 

The theoretical expressions for the photoelectric amplitudes can be derived from 

Hint in much the same way as in atomic or nuclear physics; the result of a lengthy 

calculation is 

AjN*(p,j) phase /t; 
~ 2 k  m ~' m 3 (It'=3/2 j '=l /2  j;=j3-1l J-1 lIt j J3> 

N N* 

Where (It,j) are the vibrational and spin quantum numbers of the decaying state N* and 

J-1 = 1/-,]-2 01 - J2) is a spherical component of the 3-vector operator 

Jm = a exp(i[3kS °3) F m + bki {exp(il3kS°3),Sm3} 

With a = q~e/(ct'mN) and b = -q0yk 2. The matrix elements (g '=3/2 j '=1/2 j~=j3-11 J-1 

[~t j J3) are calculated from group theory; they depend on the parameters a, b, [3, and also 

on phase factors [since the physical state vectors are related to the basis vectors [g j J3} of  

the space H(IXmin=3/2,s=l/2) only up to arbitrary phases] which are chosen to give the 

best fit to the data. A least squares fit using experimentally determined values for the 

masses and with the further restriction bproton/bneutro n = gproton/gneutron = 1.5 yields the 

following values for the parameters: 

aproton = --1.98, bproton = 0.77 (GeV) -1, [3proton = 1.52 (GeV) -1 = 0.3 f m ,  

ane~tron= 0.77, bneut~on= -0 .50 (GeV) -1, ~neutron= 0.32 (GeV) -1 = 0.06 fm. 

The predictions calculated using these values are listed in Column 5 of Table I. For com- 

Par&on, the predictions of a QCD inspired non-relativistic potential model[ 12] and of a 

relativistic oscillating quark model  based on the commutation relations of Eq.(3) [61 are 

listed in columns 6 and 7, respectively. 
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Supergroups 

Physical systems with more complicated spectra can be understood as more complicated 

extended objects having more complicated intrinsic collective motions and larger SGGs. 

Supergroups can also be used as SGGs with the difference that they would describe 

spectra containing both integer and half-odd integer spins. The simplest such supergroup 

is Osp(1,2) generated by the S i of SO(3) and by a two-component spinor operator ~ 

satisfying 

[Si')~t~] = -l/2(t~i)ct[~Xl~' {Xet'XI~} = -(t~it~2)ct[3Si' 

where cr i, i ~ {1,2,3}, are the Pauli matrices. Unlike the ~i of SO(3,1), the zaof 
Osp(1,2) transform between irreducible representation spaces R (i) of SO(3) with j values 

differing by 1/2. 

The supergroup Osp(1,4) contains SO(3,2) as its even subgroup and has, for 

s ~ {1/2,1,3/2,2 .... }, irreducible representations that reduce into the representations 

D(P.min=s+l,s)~D(P.min=s+3/2,s+l]2) of SO(3,2).[ la]* There exists some evidence 

that D(Ptmin=3/2,s=l/2)~D(IZmin=2,s=l), along with the constraint 

M 2 = r r ~ + l  1 4 

where the ~[~ are "boosted" versions of the fermionic generators (a Majorana spinor oper- 

ator) of Osp(1,4), describes nucleons and p/a mesons with a single slope 1/ct" for their 

Regge trajectories.[ 14] Evidence for supermultiplets also appears in atomic and in nuclear 
physics.J151 

Conclusion 

The specific models considered above have served their purpose to illustrate the concep" 

tual simplicity of the spectrum generating group approach and to show that it can be used 

in relativistic physics to describe hadron masses and transition rates without using 

* These representations are also irreducible representations of the supergroup SU(2,2/1). 
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approximation procedures. Theoretical assumptions underlying the choices of these 

models have been kept to a minimum. Different choices which rely, perhaps, on further 

or different theoretical assumptions may give better descriptions of the data. 

One feature that connects our SO(3,2) relativistic collective models with atornistic 

models is that the invariant s that characterizes the representations D(~min,S) can be 

interpreted to be the total intrinsic spin of the hadron tower's fundamental consti tuents--  

e.g., of its quarks. With this interpretation our choices s=l for the p/a mesons and s=l/2 

for the nucleons are consistent with those of the standard non-relativistic quark model. [7] 

In the non-relativistic limit c---~* and l.tmin(C)-~ c,o one has the group contractions 

PxU(1)--~G ~x and SO(3,2)~SO(3)(9HO(3) and one may obtain f rom the operators ~rt 

and ~g with the commutat ion relations of Eq.(2) operators ~**) and ~**) with the 

Commutation relations of the 3-dimensional oscillator group HO(3): [ls] 

[~(,o) ~(,,o)1 = 0, r~(~') ~(=)1 = 0, [_,, , j ] = i ai j I .  

In the limit, s (s+l)  is the eigenvalue of  the quarks' total intrinsic spin operator 

(S - {A (0.) X ~(**))Z where S is the spin angular momentum operator of the hadron tower 

and ~(*~) x ~(~*) is the operator for the orbital angular momentum of  the quarks around 

each other. 
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