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Abstract

The physical parameter quantifying particle events’ production and thereby the performance of
a collider is the luminosity. High luminosities are reached by increasing the beam brightness,
i.e. the intensity on a specific phase space volume (emittance). In this respect, the luminosity
of hadron and lepton rings is limited by a combination of collective effects causing particle losses
and emittance growth. In particular, Intra-beam scattering (IBS) impacts beam quality, through
emittance growth. Several IBS theoretical models and their approximations exist, all assuming
Gaussian beams. This thesis elaborates the optimization of the lattice design for a lepton ring
and the study of the bunch characteristics evolution for a hadron ring, under the influence of IBS.
Taking into account IBS, based on analytical results and numerical simulations, the optics design
optimization is presented for the damping rings (DRs) of the Compact Linear Collider (CLIC).
Specifically, aiming to reduce the betatron emittance of the DRs, dipoles whose magnetic field
varies longitudinally are used together with high-field SC wigglers. Based on measurements and
Monte-Carlo simulations, the interplay between IBS and radiation effects is also studied for the
Large Hadron Collider (LHC), in view of understanding the bunch parameters evolution that
determine the delivered luminosity. For the LHC bunch profiles which are observed to be non-
Gaussian along the LHC energy cycle, appropriate fitting functions are used in order to describe
accurately the distributions. In addition, the impact of the non-Gaussian distributions on the
estimation of the beam size and thus, of the luminosity is studied. The importance to develop
analytical formulas and simulation tools that calculate IBS for any distribution is underlined.



Περίληψη

Η φυσική παράμετρος που ποσοτικοποιεί την παραγωγή των γεγονότων σωματιδίων και συνεπώς την

απόδοση ενός επιταχυντή είναι η φωτεινότητα. Υψηλές φωτεινότητες επιτυγχάνονται αυξάνοντας τον

πληθυσμό σωματιδίων σε συγκεκριμένο όγκο του φασικού χώρου (εκπεμπτικότητα - emittance) της
δέσμης. Η φωτεινότητα των επιταχυντικων δακτυλίων λεπτονίων και αδρονίων περιορίζεται από ένα

συνδυασμό φαινομένων που προκαλούν απώλειες σωματιδίων και αύξηση της emittance. Συγκεκρι-
μένα, η ενδο-δεσμική σκέδαση (intra-beam scattering - IBS) επηρεάζει την ποιότητα της δέσμης,
μέσω της αύξησης της emittance. Τα υπάρχοντα θεωρητικά μοντέλα της IBS και οι προσεγγίσεις
τους, θεωρούν πως οι δέσμες είναι και παραμένουν Γκαουσιανές. Η παρούσα διατριβή παρουσιάζει το

σχεδιασμό και τη βελτιστοποίηση της οπτικής του μαγνητικού πλέγματος για ένα δακτύλιο λεπτο-

νίων και τη μελέτη της εξέλιξης των χαρακτηριστικών της δέσμης για ένα δακτύλιο αδρονίων, υπό

την επίδραση της IBS. Λαμβάνοντας υπόψη την IBS, βάσει αναλυτικών αποτελεσμάτων και αριθμη-
τικών προσομοιώσεων, μελετήθηκε η βελτιστοποίηση του σχεδιασμού της οπτικής για τους δακτυ-

λίους απόσβεσης (Damping Ring - DR) του Γραμμικόυ Συμπαγή Συγκρουστήρα (Compact Linear
Collider - CLIC). Συγκεκριμένα, με στόχο τη μείωση της emittance των DRs, χρησιμοποιούνται
δίπολα των οποίων το μαγνητικό πεδίο μεταβάλλεται διαμήκως, σε συνδυασμό με υπεραγώγιμους

συστρεφόμενους μαγνήτες απόσβεσης υψηλού πεδίου. Επίσης, βάσει μετρήσεων και προσομοιώσε-

ων Monte-Carlo, μελετάται η αλληλεπίδραση μεταξύ της IBS και φαινομένων ακτινοβολίας για τον
Μεγάλο Επιταχυντή Αδρονίων (Large Hadron Collider - LHC), ώστε να κατανοηθεί η εξέλιξη των
παραμέτρων της δέσμης που καθορίζουν την παραγόμενη φωτεινότητα. Για τις κατανομές των δεσμών

σωματιδίων του LHC, οι οποίες παρατηρούνται να είναι μη Γκαουσιανές κατά τον κύκλο ενέργειας
του LHC, χρησιμοποιούνται κατάλληλες συναρτήσεις κατανομών για την ακριβή περιγραφή τους. Ε-
πιπλέον, ερευνώνται οι επιπτώσεις των μη Γκαουσιανών κατανομών στην εκτίμηση του μεγέθους της

δέσμης και συνεπώς της φωτεινότητας. Τέλος, υπογραμμίζεται η σημασία της ανάπτυξης αναλυτικών

τύπων και εργαλείων προσομοίωσης που υπολογίζουν την IBS για οποιαδήποτε κατανομή.
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Chapter 1

Introduction

1.1 Physics potential of circular and linear colliders

The Standard Model provides a unified picture of the fundamental Universe constituents and
their interactions. Numerous experimental results have corroborated its predictions. A scalar,
spin-0, with a mass of ∼125 GeV particle, which is the consequence of the Higgs mechanism after
the spontaneous symmetry breaking, was discovered by the ATLAS [1] and CMS [2] experiments
of the LHC in 2012. In addition, the first observations of the very rare decay of the Bs meson
into two muons (B0

s → µ+µ−) which is a major test of super-symmetry, was recorded by the
LHC. Some other worth-mentioning achievements are the creation of a quark-gluon plasma and
the discovery of the ξb(3P) bottomonium state and the massive 125 GeV boson which has been
confirmed to be the long-sought Higgs boson [1, 2].

Several upgrade options that aim to extend the LHC discovery potential are currently being
studied. For the High-Luminosity LHC (HL-LHC) [3], that is the major LHC upgrade to start
around 2020, the luminosity is increased by at least a factor of 10 compared to the nominal
LHC design value (from 300 to 3000 fb-1). In order to achieve that, the bunch intensity needs
to be increased and the transverse beam size at the collision points has to be lowered. The
extreme beam parameters enhance strong intensity effects that can be mitigated by considering
alternative design options. In view of reaching the beam parameters for the HL-LHC, the LHC
Injectors Upgrade (LIU) [4] is also one of the projects being implemented.

While the Long-Shutdown 2 (LS2) is ongoing, the debate on what will be the next machine
at the energy frontier has started. The proposals for the alternatives are being discussed and
the related studies are progressing. The main protagonists of this debate are a new generation
of circular colliders much larger than the LHC and long linear colliders accelerating leptons.

The Future Circular Collider (FCC) study develops options for potential high-energy frontier
circular colliders at CERN for the post-LHC era. The main FCC design scenario is a hadron
collider with a centre-of-mass energy of the order of 100 TeV in a new 80-100 km circumference
tunnel. The corresponding hadron injector chain takes into account the existing CERN acceler-
ator infrastructure and the long-term accelerator operation plans. The conceptual design study
also includes a lepton collider with a centre-of-mass energy of the order of 90 to 365 GeV and its
detectors, as a potential intermediate step towards realization of the hadron facility.

After the discovery of a Higgs-like boson, the particle physics community expressed a con-
sensus that the results of the LHC will need to be complemented by experiments at a lepton
collider at the TeV energy range. In a lepton collider the center-of-mass energy and initial-state
polarizations are precisely known and can be adjusted, and backgrounds are many orders of mag-
nitude lower than the QCD backgrounds that challenge hadron collider environments. Collisions
between e+/e− beams at the TeV scale are conceivable only by means of Linear Colliders (LC),
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which do not bend the beam and so, the massive energy losses and beam degradation caused by
synchrotron radiation are avoided. The limitations emerging from crossing beams, like the beam-
beam effect, are more relaxed compared to a circular accelerator. Even if each pair of bunches
collides only once, the small beam sizes provided in a LC result in high luminosities [5] (see
Fig. 1.1). The exact requirements of such experiments are expected to be defined from the LHC
results of Run 2 (2015-2018), when substantial integrated luminosity will have been accumulated
at full LHC energy [6].

Figure 1.1: Target luminosities as a function of center-of-mass energy for future circular (FCC-ee, CEPC)
and linear (ILC, CLIC) e+/e− colliders [5].

The two options for a future e+e− LC developed are the International Linear Collider (ILC)
that uses superconducting Radio-Frequency (RF) cavities and the Compact Linear Collider
(CLIC) that uses a separate drive beam to provide the accelerating power to normal conducting
(or copper) RF cavities. The ILC technology provides an option for a Higgs and top factory to be
constructed on a relatively short timescale. It aims at colliding beam energy of 500 GeV, upgrade-
able to 1 TeV [7]. CLIC aims to extend the energy range of linear colliders into the multi-TeV
region by introducing for the first time a technology of Two-Beam Acceleration (TBA), provid-
ing colliding beams up to 3 TeV. At different energy stages of CLIC, precision measurements of
various observables of the Standard Model Higgs boson can be carried out.

Luminosity

The performance of a collider is determined by the luminosity [8] which is given by:

L =
nbfrevN1(t)N2(t)

2πσx(t)σy(t)
H(σs(t), β

∗)Fgeom(σs(t), β
∗) , (1.1)

where nb is the number of colliding bunches, frev is the revolution period, N1,2 is the number of
particles per bunch for each beam, σx,y are the horizontal and vertical rms beam sizes, σs is the
rms bunch length and β∗ is the beta function at the collision point when assuming round optics.
Due to the crossing angle at collision φ and the fact that the beta function varies rapidly around
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the interaction point (IP), a geometric factor Fgeom(σs(t), β
∗), and the hourglass effect reduction

factor H(σs(t), β
∗) are considered. The luminosity of two colliding Gaussian bunches is given for

the convoluted transverse beam sizes being:

σx(t) =
√
σx1(t)2 + σx2(t)2 and σy(t) =

√
σy1(t)2 + σy2(t)2 , (1.2)

where the subscripts 1 and 2 correspond to the two colliding bunches. In order to achieve the high
luminosity, very small transverse beam sizes or emittances and a large number of high intensity
bunches are required.

1.2 LHC overview

The European Organization for Nuclear Research (CERN) is an international laboratory that
operates a series of accelerators for nuclear and particle physics research, including the Large
Hadron Collider (LHC), as well as a range of lower energy particle accelerators. A highlight of
the experiment’s results using data acquired during the LHC Run 1 is the discovery of a new
boson compatible with the Higgs mechanism [1,2].

LHC layout and performance

In the Large Hadron Collider (LHC), proton beams are accelerated to a high energy and are then
brought in collision to probe into the heart of matter. The top energy is gradually built up in a
chain of accelerators of equal importance. Each machine boosts the energy of the particles beam,
before injecting it into the next machine in a sequence. A full scheme of the CERN accelerator
chain is shown in Fig. 1.2.

The proton source consists of hydrogen gas that is injected in a plasma chamber, where the
atoms are ionized by strong electromagnetic fields and are then extracted at 100 KeV towards
LINAC 2. The LINAC 2 is a linear accelerator in which protons are captured in bunches,
accelerated to the energy of 50 MeV and sent to the first circular accelerator in the chain.
The Proton Synchrotron Booster (PSB) accelerates the protons from 50 MeV/c to 1.4 GeV/c for
injection into the Proton Synchrotron (PS), where the protons are accelerated up to a momentum
of 26 GeV/c. Then, the beam is extracted towards the Super Proton Synchrotron (SPS) that
accelerates the proton beams up to 450 GeV/c (the injection energy of the LHC). The injectors,
apart from accelerating the LHC beam, provide beams for fixed target experiments that operate
at different energies.

The heavy ions that are produced from a different source, are first accelerated in the Linear
Accelerator 3 (LINAC 3) to an energy of 4.2 MeV/u. Then, the ions are transferred to the Low-
Energy Ion Ring (LEIR), where the energy gain goes up to 72 MeV/u for injection into the PS.
After the PS, the ions follow the same path as the protons.

Finally, the injected beams of 450 GeV/c are brought up by design report to 7 TeV/c in the
LHC, making it the worlds highest energy particle accelerator. The LHC with a circumference
of 27 km long, lays at about 100 m underground. Two counter rotating beams circulate in two
separated rings designed to be filled with protons (p) or ions (Pb). The beams collide in four
Interaction Points (IP 1, 2, 5, 8), distributed around the ring, where the detectors of ATLAS,
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Figure 1.2: Schematic layout of the CERN accelerator chain.

ALICE, CMS and LHCb experiments are respectively installed. In the beginning of the LHC
Run 1 (2010-2013), the proton beam energy at collisions was 3.5 TeV and in 2012, the top energy
reached was 4 TeV until the Long Shutdown 1. For the restart in 2015, the top energy was set
to 6.5 TeV. The length of the acceleration ramp is about twenty minutes to arrive from 450 GeV
at 6.5 TeV.

In 2016, the number of collisions recorded by ATLAS and CMS during the proton run from
April to the end of October was 60% higher than anticipated. Overall, all of the LHC experiments
observed more than 6.5 × 1015 collisions, at an energy of 13 TeV. That equates to more data
than had been collected in the previous three years combined. As can be seen in Fig. 1.3, the
integrated luminosity received by ATLAS and CMS reached the 40 fb−1, compared with the
25 fb−1 originally planned. The 2016 integrated luminosity far surpassed expectations and is
double than the one achieved at a lower energy in 2012. Another milestone achieved in November
2017, when peak luminosity of 2.05 × 1034 cm−2s−1 was reached, more than twice the design
luminosity. The 2018 run produced 65 inverse femtobarns of data.

Table 1.1 shows the beam parameters at collision for the nominal and the HL-LHC cases [9].
In providing beams to the LHC, the injectors make use of a beam production scheme called Batch
Compression Merging and Splitting (BCMS) [10, 11] which offers significantly lower transverse
beam size with respect to the nominal production scheme. The nominal BCMS parameters
that are shown in the table, have already been reached in the LHC (Run 2) 1. Despite some

1For the BCMS scheme, emittances down to 1.7 µm have already been achieved at LHC injection, this might
be used to mitigate excessive emittance blow-up in the LHC during injection and ramp.



1.2. LHC OVERVIEW 5

Figure 1.3: The integrated luminosity delivered to the ATLAS and CMS experiments during different
LHC runs.

blow-up in the LHC during the ramp, it is observed that the BCMS beam gives an increase in
peak luminosity of around 20%. The BCMS parameters for the HL-LHC are only considered for
injection and as a backup parameter set in case one encounters larger than expected emittance
growth in the HL-LHC during injection, ramp and squeeze.

LHC cycle

The intrabeam scattering (IBS) effect is one of the main mechanisms that determine the emittance
evolution of the beams during injection energy (i.e. 450 GeV), during the energy ramp and the
first part of the collision energy (i.e. 6.5 TeV) of the LHC. During collisions, apart from the IBS
and Synchrotron Radiation (SR) which are the dominant effects for the emittance evolution, a
combination of other diffusion mechanisms, like the beam-beam effect, electron-cloud, noise (due
to the power converters, the transverse damper, the crab cavities in the case of the HL-LHC,
etc.), non-linearities, etc., cause emittance blow up and/or particle losses [12].

The main mechanism of the bunch intensity reduction during collisions is the luminosity
burn-off that describes the bunch current decay due to the collisions themselves. The burn-off
decay time is given by:

τnuc =
Nb0

kL0σtot
(1.3)

where Nb0 is the initial bunch intensity, L0 the initial luminosity, k the number of interaction
points and σtot the proton-proton total cross section that is energy depended. Due to the very
small beta functions at the interaction points, only the inelastic part of the proton-proton colli-
sions is expected to contribute to the burn-off losses, while the elastic part is causing transverse
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Table 1.1: Nominal and HL-LHC main parameters (2017).

Description [units]
Nom. LHC

Nom. BCMS HL-LHC
HL-LHC

(design report) BCMS
Beam energy in collision [TeV] 7 7 7 7
Particles per bunch, Nb [1011] 1.15 2.2 2.2 2.2
Number of collisions in IP1 and IP5 2808 2592 2736 2592
Ntot [1014] 3.2 5.73 6.00 5.70
Beam current [A] 0.58 1.04 1.09 1.03
Crossing angle in IP1 and IP5 [µrad] 512 512 590 590
Min. normalized LR BB∗ separation [σ] 9.4 12.5 12.5 12.5
Min. β∗ [m] 0.55 0.20 0.15 0.15
εn [µm] 3.75 2.5 2.5 2.5
εl [eVs] 2.5 2.5 2.5 2.5
r.m.s. energy spread [10−4] 1.13 1.20 1.13 1.13
r.m.s. bunch length [cm] 7.55 7.55 7.55 7.55
IBS horizontal [h] 105 18.8 18.5 18.5
IBS longitudinal [h] 63 25.0 20.4 20.4
Peak lumi. without CC∗∗ [1034cm−2s−1] 1.00 6.32 7.18 6.80
Virtual lumi. with CC [1034cm−2s−1] 1.18 1.29 19.54 18.52
Nb at injection [1011] 1.2 2.3 2.3 2.3
εn at SPS extraction [µm] 3.4 1.7 2.0 < 2.0

∗ LR BB= Longe-Range Beam-Beam
∗∗ CC= Crab Cavities

emittance blow up [6]. The bunch current evolution is then given by:

Nb =
Nb0

1 + t/τnuc
. (1.4)

Figure 1.4 presents the evolution of the bunch current, for all the colliding and non-colliding

Figure 1.4: Bunch current evolution, for colliding and non-colliding bunches, during injection energy (i.e.
450 GeV) and during collision energy (i.e. 6.5 TeV) of the LHC.

bunches, during a typical LHC energy cycle. The time stamps that correspond to the injection
of the bunches, the start of the energy ramp and the start of the collisions process are noted.



1.3. CLIC OVERVIEW 7

1.3 CLIC overview

Following preliminary physics studies based on an electron-positron collider in the multi-TeV
energy range [13], the CLIC study is focused on the design of a linear collider with a center-
of-mass collision energy of E = 3 TeV. Superconducting technology cannot achieve the very
high acceleration gradient of 100 MV/m, thus would require a much longer linear accelerator.
Since the goal of the CLIC collider is a high luminosity at a high energy at the lowest possible
construction cost and power, the two beam acceleration scheme was proposed. Following the
2012 CLIC Conceptual Design Report [6], the main beam and linac parameters for a luminosity
of L = 2× 1034 cm−2s−1 at E=3 TeV, are summarized in Table 1.2.

Table 1.2: CLIC main parameters for 500 GeV and 3 TeV.

Description [units] 500 GeV 3 TeV
Total (peak 1%) luminosity 2.3 (1.4)×1034 5.9 (2.0)×1034

Total site length [km] 13.0 48.4
Loaded accel. gradient [MV/m] 80 100
Main Linac RF frequency [GHz] 12
Beam power/beam [MW] 4.9 14
Bunch charge [109 e+/e− ] 6.8 3.72
Bunch separation [ns] 0.5
Bunch length [µm] 72 44
Beam pulse duration [ns] 177 156
Repetition rate [Hz] 50
Hor./vert. norm. emitt. [10−6/10−9 m] 2.4/25 0.66/20
Hor./vert. IP beam size [nm] 202/2.3 40/1
Beamstrahlung photons/electron 1.3 2.2
Hadronic events/crossing at IP 0.3 3.2
Coherent pairs at IP 200 6.8×108

Figure 1.5 illustrates the layout of the CLIC accelerator complex at 3 TeV [6]. The main com-
ponents of the complex are the particle sources, the damping rings which are used for producing
small beam sizes, the main linacs which accelerate the beams to full energy, the beam delivery
system including the final focus, the post-collision diagnostic lines and the dumps. The Main
Beam is generated and pre-accelerated in the injector linacs. Then, it enters the Damping Rings
complex for reducing the beam emittances down to 500 nm and 5 nm, normalized to the beam
energy, in the horizontal and vertical plane respectively. After being accelerated in a booster
linac, the beams are transported through the main tunnel to the turnarounds and later, they
are accelerated with a gradient of 100 MV/m. The Drive Beam pulses are generated in the two
Main Linacs and are compressed in the Delay Loops and Combiner Rings (CR1 and CR2). Af-
terwards, they are transported through the Main Linac tunnel to 24 individual turnarounds. For
the final RF power generation, each Drive Beam segment is directed by pulsed Power Extraction
and Transfer Structures (PETS) into the accelerating structures of the Main Beams. The beams
collide after a long Beam Delivery Section (BDS), including collimation and final focus, at the
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Figure 1.5: The CLIC layout at 3 TeV [6].

interaction point (IP).
For an optimal exploitation of its physics potential, CLIC is foreseen to be operated in a

staged approach with three centre-of-mass energy stages (ranging from a few hundred GeV up to
3 TeV). The first stage will focus on precision Standard Model physics, in particular Higgs and
top-quark measurements. The goals of subsequent stages are the measurements of rare Higgs
processes, precision measurements (i. e. states previously discovered at the LHC or at the CLIC
itself) and exploration of new states for new physics processes. The studies for the proposed
lower energy stages and the updated baseline staging scenario for CLIC is presented in [14].

CLIC Damping Rings

The CLIC Damping Rings (DRs) baseline design aims to reach ultra-low emittance with high
bunch charge necessary for the luminosity requirements of the collider, providing the final stage
of damping. The DRs requirements are driven by the main parameters of the collider, which are
summarized in Table 1.3 [15]. The DRs have to accommodate a 2.86 GeV beam and should damp
it down to normalized horizontal and vertical emittances of 500 nm-rad and 5 nm-rad respectively.
The longitudinal normalized emittance should be kept below 6 keV·m. The requirements for
ultra-low emittances in all three planes give rise to a series of collective effects, with intrabeam
scattering (IBS) being the dominant one. That makes the lattice design of the main DRs very
challenging in terms of beam dynamics and technology.

The current CLIC DR layout is presented in Fig. 1.6 has a racetrack with two arcs and two
long straight sections (LSS). The arcs are composed by theoretical minimum emittance (TME)
cells and the LSS by FODO cells filled with damping wigglers. Space is also reserved for RF
cavities, injection and extraction equipment [16]. The lattice functions between the arcs and the
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straight sections are matched from the dispersion suppressors and beta matching sections.

Table 1.3: The required injection and extraction parameters of the DR complex.

Parameters
Injected Extracted

e− e+ e−/e+

Bunch Population [109] 4.4 4.6 4.1
Bunch spacing [ns] 0.5/1 0.5/1 0.5
Bunches/train 312/156 312/156 312
Number of trains 2 2 1
Repetition rate [Hz] 50 50 50
Norm. horiz. emittance [nm·rad] 100 × 103 7× 106 500
Norm. vert. emittance [nm·rad] 100 × 103 7× 106 5
Norm. long. emittance [keV·m] 2.86 2288 6

Figure 1.6: The CLIC Damping Ring layout [6].

1.4 Scope of the thesis

One of the statistical processes causing a spreading of particles in phase space or a continuous
increase of beam emittance, with a direct impact on the luminosity, is the small angle multiple
Coulomb scattering, called Intrabeam scattering (IBS). The IBS plays an important role in
high intensity hadron [17] and ion [18] circular machines and, in e+/e− damping rings, high
intensity/low energy light sources [19]. The luminosity performance of hadron machines is limited
by the IBS effect causing emittance growth. For lepton machines such as future linear collider
Damping Rings, new generation light sources, the IBS effect can also be predominant.
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Several analytical models that describe the IBS effect exist, all assuming Gaussian beam
distributions. In the case of non-Gaussian beam distributions, on the other hand, no analytical
models exist. Taking into account IBS and radiation effects but also other diffusive mechanisms,
there is no evidence that the distribution remains Gaussian. The way IBS and radiation effects act
depends on the shape of the distributions. In view of quantifying the impact of the distribution’s
shape on the beam parameters and consequently on the luminosity, it is important to study the
interplay between these effects for any distribution.

This PhD thesis elaborates the bunch characteristics evolution for lepton and hadron machines
under the influence of the intrabeam scattering (IBS) effect. The first part of this thesis concerns
the design of the optics and optimization of the performance of the CLIC main damping rings
(DRs). The DR lattice design is driven by the emittance requirements, imposed by the luminosity
goal of the linear collider, which for ultra-low values give rise to collective effects, with IBS being
the dominant one. An alternative design is proposed, which aims to mitigate the IBS effect for
a compact ring, using longitudinally variable bends and high field insertion devices which are
formed by a sequence of short dipole fields of alternating polarity, called wigglers. The second
part of this thesis is dedicated to the studies of LHC bunch profiles and their impact on the
evolution of the bunch characteristics and the luminosity. The performance of a high-energy
hadron collider such as the LHC is heavily based on the preservation of the injected emittances,
under the influence of several degrading mechanisms, such as the effect of IBS. In order to
understand the evolution of the bunch characteristics that determine the delivered luminosity, it
is important to study the interplay between IBS and radiation effects during the full LHC energy
cycle.

Chapter 2 is devoted to the theoretical principles of beam dynamics in accelerators, focusing
on the linear single particle motion under the influence of electromagnetic forces. The basic
equations describing the transverse and longitudinal motion in an accelerator are defined. The
synchrotron radiation (SR) theory and its damping mechanism which, together with the quantum
excitation (QE), leads to the equilibrium beam properties, is explained. Concerning the lepton
rings, the lattices giving low emittances and the insertion devices that determine the beam
damping are discussed. Finally, a brief description of the main collective effects is given.

In Chapter 3, the theories of intrabeam scattering (IBS), that is one of the main effects
leading to an increase of beam emittances in ultra low emittance lepton machines and high
intensity hadron machines, are described. The expressions of the final state emittances, taking
into account IBS, SR damping and QE are given. The IBS theoretical model of Bjorken-Mitingwa,
which is implemented in the Methodical Accelerator Design code MAD-X [20] is described. In
addition, the Monte-Carlo multiparticle code (called SIRE) used for tracking particle distributions
under the effects of IBS, SR and QE, is presented.

A low emittance lattice design capable of providing the lowest possible emittance in a compact
cell, is the theoretical minimum emittance (TME) cell. The detailed study for reducing further
the emittance of a TME cell by using longitudinally variable bends is presented in Chapter 4.
The emittance reductions achieved using the variable bend profiles instead of a uniform dipole
(of the same bending angle) are presented.

The magnetic design according to the characteristics of a dipole with the optimal longitudinal
field variation in terms of emittance reduction, is shown in Chapter 5. The numerical results
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obtained when implementing the designed magnet in the CLIC DR lattice are used for the
optimization of the arc TME cells. The optimization of the CLIC DR FODO cell using high field
wigglers, is also discussed. Finally, the new performance parameters for the alternative CLIC
DR design are presented. Chapter 6 presents the benchmarking of the Bjorken-Mtingwa (B-M)
IBS theoretical model with the IBS Monte-Carlo tracking code called SIRE (Software for IBS
and Radiation Effects) for the CLIC DRs.

For the LHC luminosity studies, a model including the effects of intrabeam scattering (IBS),
synchrotron radiation, elastic scattering and luminosity burn-off is used [21]. A comparison of
the bunch characteristics evolution as predicted by this model with the measured ones revealed
an extra (on top of the model) transverse emittance blow up in the measured data. One of the
attempts to explain this blow up concerns the bunch profiles that appear to have non-Gaussian
shapes. The aim of the studies presented in Chapter 7 and in Chapter 8, is to quantify the impact
of the distribution’s shape on the emittance and luminosity estimations.

In Chapter 9, the simulations performed using SIRE for the LHC are discussed. The bench-
marking of the code with the analytical IBS formulas gave encouraging results with respect to
the idea of employing a novel distribution function to study the IBS for various machine param-
eters, including the HL-LHC upgrade. In the end, the comparison of experimental data with
simulations and theoretical models, is presented.

Finally, the last chapter is devoted to the conclusions of this thesis.



Chapter 2

Introduction to beam dynamics

2.1 Linear single particle beam dynamics

The interaction of charged particles with electromagnetic fields determines their motion in accel-
erators. Detailed knowledge of this interaction in the six-dimensional phase space is necessary for
predicting the beam behavior and understanding how to meet the design goals of an accelerator.
The interplay between particles and fields is called beam dynamics. This section is meant to give
an overview of the basic equations governing the motion of the particles in an accelerator.

In an accelerator the charged particles are guided and accelerated by means of electromagnetic
fields, based on the relativistic form of the Lorentz equation:

~F = γq( ~E + c~β × ~B) , (2.1)

where ~F is the force acting on a particle of electric charge q moving at a relativistic velocity
of ~u = c~β, due to the electromagnetic fields and ~E and ~B. The Lorentz factor is defined as
γ = 1/

√
1− u2/c2, with c being the speed of light. The electric field is supplied using the Radio

Frequency (RF) cavities, that provide the energy for the particles acceleration and compensate
for the energy loss. The magnetic fields are responsible of the bending and the focusing of the
particles around the design trajectory for the nominal momentum particles.

Figure 2.1: The trajectory coordinates are given with respect to the Frenet-Serret frame, which rotates
with the ideal particle around the accelerator [22].

The Frenet-Serret coordinate system is used to determine the kinematic properties of a particle
moving along a continuous, differentiable curve in the three-dimensional Euclidean space. This
system is used to describe the motion of the particles in the vicinity of the ideal orbit. The
designed orbit is the blue colored circle in Fig.2.1, while a particle’s trajectory around this orbit
is drawn with a dashed black line. The longitudinal direction along the circumeference of the ring
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is denoted by s. The horizontal and the vertical planes denoted by x and y respectively, compose
the transverse plane. The θ and ρ correspond to the bending angle and radius respectively.

In general, only transverse field components are considered. This means that the magnetic
field vector ~B is perpendicular to the velocity vector. The transverse components of the particles
velocities for relativistic beams are small compared to the particle velocity uz (ux � uz, uy � uz,
us ≈ uz). Under these assumptions, from the equilibrium of the centrifugal force and the Lorentz
force, the bending radius of a charged particle passing through the vertical homogeneous field B
generated by a dipole magnet, is given by [23]:

1

ρx
[m−1] = 0.2998

|B[T]|
βE[GeV]

. (2.2)

The magnetic rigidity of the beam, that depends only on the beam energy, is defined as:

(Bρx) =
βE[GeV ]

0.2998
, (2.3)

The deflection angle in a magnetic field is:

θ =

∫
ds

ρx
, (2.4)

The Lorentz forces are applied not only to guide particles along a specific path but also to focus
the beam within a narrow vicinity of the ideal path. In order to that, the focusing forces are
applied at exact points so that to achieve specific beam properties along the accelerator. The
focusing is provided by the quadrupole magnets, whose field is zero on the s axis and increases
linearly with distance as:

By = gx, Bx = gy, where g =
∂Bx
∂y

=
∂By
∂x

. (2.5)

The focusing strength is given by:

k[m−1] = 0.2998
g[T/m]

βE[GeV]
. (2.6)

For a positively charged particle, the quadrupole with ∂By/∂x will provide horizontal focusing
and vertical defocusing that correspond to k > 0 and k < 0 respectively. This will be reversed, if
the current direction or the particle charge is reversed. The sign and the value of the deflection
that a particle undergoes in the quadrupoles varies with its momentum and its transverse offset
with respect to the magnet’s center. Hence, particles in a bunch see different focusing strengths,
leading to chromatic effects. In order to correct them, sextupole and octupole magnets are used.

2.2 Transverse motion

In particle beam dynamics, the equation of motion in periodic lattices is described by Hill’s
equations [23, 24] that are basically the ones of a harmonic oscillator with periodic coefficients.
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These equations for the linear motion of particles in a circular machine (i.e. considering only
dipole and quadrupole magnets) are given by:

d2x

ds2
−K1(s)x =

1

ρx(s)

δp

p0
, (2.7)

d2y

ds2
−K1(s)y = 0 . (2.8)

The coefficient K1 is the general focusing strength, which can be expressed, including the weak
focusing from the dipole and the strong focusing from quadrupole magnets, in the general form:

K1(s) =
1

ρ2
x,y(s)

− 1

Bρx

∂By(s)

∂x
, (2.9)

where ρx(s) is the bending radius of the element at position s. K1(s) and ρx(s) are periodic
functions of s, with a period at least equal to the circumference of the closed orbit of the machine.
δp/p0 is the relative momentum deviation of an off-momentum particle with momentum p0 ± δp
from the design (reference) momentum p0.

According to Floquet’s theorem [24], the solutions to the homogeneous Hill’s equations can
be written in the form:

z(s) = Aw(s) cos (φz(s) + φ0) , (2.10)

where w(s) = w(s + C) and φz(s) = φz(s + C) are periodic functions with the same period C,
and z = x or y. The phase φ0 is determined by the initial conditions. Substituting Eq. (2.10) to
Eq. (2.7) and (2.8), the betatron phase advance φz(s) and the betatron or twiss (Courant-Snyder
parameters) functions αz(s), βz(s) and γz(s) can be defined, describing the motion of the particle
with the maximum amplitude in the beam. The twiss functions are also periodic functions, with
a period equal to the circumference of the machine C, and are related to each other and the
betatron phase advance φz(s) by:

αx,y(s) ≡ −
1

2
β′x,y(s) ,

γx,y(s) ≡
1 + α2

x,y(s)

βx,y(s)
,

φx,y(s) ≡
∫ ds

βx,y(s)
.

(2.11)

The horizontal and vertical tunes of a machine of circumference C, that practically give the
number of betatron oscillations executed by particles traveling once around the ring, are then
defined by:

Qx,y =
1

2π

∫ C

0

ds

βx,y(s)
. (2.12)

Matrix formulation for linear elements

Since the solution of Eqs. (2.7), (2.8) is not trivial if the whole accelerator is considered, it
is rather easy if K1 is considered to be a piece-wise constant. The homogeneous equations (for
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Figure 2.2: Emittance ellipses change due to different δp/p0 [22].

δp/p0 = 0) can then be expressed in matrix formulation (only for linear elements as drifts, dipoles
and quadrupoles) as: (

z(s)

z′(s)

)
= M(s|s0)

(
z(s0)

z′(s0)

)
, (2.13)

where z refers to the horizontal x or vertical y plane.
The transfer matrices for a constant focusing function K are:

M(s|s0) =



(
cos(
√
Klq)

1√
K

sin(
√
Klq)

−
√
K sin(

√
Klq) cos(

√
Klq)

)
K>0: focusing quad,(

1 s

0 1

)
K=0: drift space,(

cosh(
√
|K|lq) 1√

|K|
sinh(

√
|K|lq)√

|K| sinh(
√
|K|lq) cosh(

√
|K|lq)

)
K<0: defocusing quad.

(2.14)

In thin-lens approximation, where the quadrupole length lq −→ 0, the transfer matrix for a
quadrupole reduces to:

Mquad =

(
1 0

−1/f 1

)
, (2.15)

where the focal length is given by f = limlq→0
1
Klq

.
In a similar way, the transfer matrix of a sector dipole, for which the particle trajectories

enter and exit with perpendicular entrance and exit angles to the edge of the dipole field, is given
by:

Mdip =

(
cos θ ρx sin θ

− 1
ρx

sin θ cos θ

)
small-angle−−−−−−−−−→

approximation
Mdip =

(
1 ld
0 1

)
, (2.16)

where θ = ld/ρx is the bending angle of the dipole, ld is the dipole length and ρx is the bending
radius.

One of the most important perturbations originates from the fact that the particle beams
have a finite spread of energies about the nominal energy. The deflection of a particle with an
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energy different than the nominal one in any magnetic or electric field will deviate from that for
a particle with the nominal energy and will start oscillating around a chromatic closed orbit, as
shown in Figure 2.2. For an off-momentum particle, the solution of the in-homogeneous Eq. (2.7)
can be expressed as a linear superposition of the particular solution and the solution of the
homogeneous equation (for δp/p0 = 0):

x = xβ(s) +D(s) (δp/p0) , (2.17)

where D(s) (δp/p0) is the off-momentum closed orbit and D(s) is the dispersion function that
determines the offset of the reference trajectory from the ideal path for particles with a relative
energy deviation from the ideal momentum. The solution can then be expressed as:(

D(s)

D′(s)

)
= M(s|s0)

(
D(s0)

D′(s0)

)
+

(
d

d′

)
, (2.18)

where d and d′ is the dispersive part of the matrices.
The dispersive part of the matrices can be written in the form:

(
d

d′

)
=




1

ρxK

(
1− cos(

√
Klq)

)
1

ρx
√
K

sin(
√
Klq)

 K>0: focusing quad,


1

ρx|K|

(
−1 + cosh(

√
|K|lq)

)
1

ρx
√
|K|

sinh(
√
|K|lq)

 K<0: defocusing quad,

(
ρx(1− cos θ)

sin θ

)
sector dipole.

(2.19)

In the small angle approximation the general transfer matrix with dispersion for a sector dipole
is:

M =

 1 ld
ldθ

2
0 1 θ

0 0 1

 . (2.20)

The transfer matrix for any intervals, made up of sub-intervals, is the product of the transfer
matrices of the sub-intervals:

M(s2|s0) = M(s2|s1)M(s1|s0) . (2.21)

Using these matrices, the linear motion of particles can be tracked through the elements of the
accelerator.

Emittance and rms beam size

The motion of the particles in phase space follow the Liouville theorem [24], which states that
under the influence of conservative forces the particle density in phase space stays constant. The
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motion of an on-momentum particle at any point of the lattice is described by the solution of
Eq. (2.7), which by using the Floquet solutions of Eq. (2.10), can be written in the form [23]:

x(s) =
√
εx
√
βx(s) cos(φx(s) + φ0),

x′(s) = −
√
εx√
βx(s)

[sin(φx(s) + φ0) + ax(s) cos(φx(s) + φ0)] .
(2.22)

The position x(s), x′(s) satisfy the equation of an ellipse that depends on the optics parameters,
as:

Ax = γxx
2 + 2αxxx

′ + βxx
′2 . (2.23)

This expression is the Courant-Snyder invariant, describing an ellipse with area πεx, with εx
being the geometrical emittance. Practically, the beam emittance describes the region in phase
space, that is always constant for a specific energy, occupied by the beam particles. In the case
of acceleration, the quantity that is kept constant is called the normalized emittance and it is
defined as βγεx. Since the emittance depends on the twiss parameters around the ring, its shape
changes at different positions. The geometrical meaning of the emittance is shown in Figure 2.3
(left). According to the particle distribution (e.g. homogeneous, Gaussian, etc.), the beam or

Figure 2.3: Left: The single particle emittance defined by the twiss parameters at a certain position in
the lattice [25]. Right: Statistical beam emittance depending on the beam distribution [26].

statistical emittance is defined by a contour confining some fraction of particles, as: εx = 〈Ax〉.
It is shown in the right part of Figure 2.3.

In the non-zero momentum deviation case, with ηx and η′x being the dispersion function and
its derivative, there is another invariant of the lattice, called the dispersion invariant that is
defined as:

Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x , (2.24)

The beam size is determined by the beam emittance εx, the values of the betatron and the
dispersion functions (βx, ηx) and the energy spread σp0 at a specific point along the accelerator.
So, it is a quantity that varies along the lattice [24]. The beam size is given by the standard
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deviation of the distribution of the beam particles. In the case of a Gaussian beam distribution,
the beam size is defined as:

σx(s) =
√
εxβx(s) + η2

x(s)σ2
p0 . (2.25)

Similar expressions as the ones described above, are valid for the vertical plane too. If the
three planes are fully uncoupled, three independent two-dimensional beam emittances (and sizes)
can be defined.

Dynamic aperture

The dynamic aperture (DA) is the stability region of phase space in an accelerator. Practically,
the DA gives the maximum phase-space amplitude within which particles do not get lost as a
consequence of single-particle effects [27]. The DA has to be at least equal or larger than the
minimum beam transverse acceptance Rmin, that is defined in terms of a maximum emittance
εmax (given by particles with the maximum betatron action in the beam) and of a maximum
relative momentum deviation (δp/p0)max [28] as:

Rmin =
√

2βεmax + η(δp/p0)max . (2.26)

The basic method for computing DA involves the use of a tracking code. A model of the ring
is built within the code that includes an integration routine for each magnetic element. The
particle is tracked many turns and stability is determined.

Chromaticity

When passing through a quadrupole, particles in a beam having different momenta experience
different focusing. Since the focusing strength depends on the energy of the particles, higher
energy particles are focused less and lower energy particles are focused more than the ideal
energy particles. The effect of different betatron oscillations or tunes due to different momentum
deviations is called chromaticity and is defined as:

ξx,y =
∂Qx,y
∂δ

. (2.27)

The chromaticity caused only by the linear elements of the lattice, is called the natural chro-
maticity and is defined as [23]:

ξx =
∂Qx
∂δ

= − 1

4π

∫ s0+C
s0

βx(s)K1(s)ds ,

ξy =
∂Qy
∂δ

=
1

4π

∫ s0+C
s0

βy(s)K1(s)ds .

(2.28)

Correction of the chromaticities can be accomplished by installing sextupole magnets 1 into the
storage ring at locations where the dispersion is not zero. The dispersion makes higher energy
particles gather more outside of the ideal orbit and lower energy particles more on the inside. If
the natural chromaticity is large, the sextupole strengths needed for the chromaticity correction
are strong, introducing strong non-linearities and reducing the dynamic aperture.

1Sextupoles can be considered as quadrupoles with varying focal strength across the horizontal aperture.
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Momentum compaction factor

Off-momentum particles on the dispersion orbit, travel in a different path length than on-
momentum particles. The change of the path length with respect to the momentum spread
is called momentum compaction factor [23]:

αp =
∆C/C

δp/p0
. (2.29)

The change in circumference for a particle with momentum p0 + δp is:

∆C =

∮
D
δp

p0
dθ =

∮
D
δp

p0

ds

ρx
, (2.30)

and thus, the momentum compaction factor can be written as:

αp =
1

C

∮
D(s)

ρx(s)
ds =

〈
D(s)

ρx(s)

〉
. (2.31)

Practically, the momentum compaction factor increases only in curved sections where ρx 6= 0.
Depending on the dispersion function being positive or negative, the path length is longer or
shorter for higher energy particles (δp > 0) respectively.

The revolution frequency of a reference particle, is defined as:

f =
u

2πρx
=
βc

C
. (2.32)

So, the change in the frequency for an off-momentum particle can then be written as:

δf

f
=

(
1

γ2
− αp

)
δp

p0
, (2.33)

where the factor (1/γ2 − αp) ≡ η is called the slippage factor. There is an energy for which the
velocity variation is compensated by the trajectory variation and corresponds to η = 0, i.e. the
momentum compaction vanishes, that is:

γt =
1
√
αp

, (2.34)

is called the transition energy and plays an important role in phase focusing. At γ = γt the
revolution period is independent of the particle’s momentum and all particles around the accel-
erator will travel with equal revolution frequencies. Below the transition energy (η < 0), a higher
momentum particle will have shorter revolution period than the reference one, and will arrive at
a fixed location earlier than the reference particle. Above transition energy (η > 0) the opposite
is true.

2.3 Longitudinal motion

As discussed in the begging of this chapter, the position of a particle is described using a Cartesian
coordinate system that moves with a reference particle. This particle has the design energy and
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passes through the center of all the magnets, following the closed trajectory, with an angular
revolution frequency of ω0 = 2π/T0, for T0 being revolution period. The focusing and the
acceleration in the longitudinal plane are obtained by the longitudinal component of the electric
field in the RF cavities that is:

Ez = Ez0 sin(ωRFt+ φs) , (2.35)

where Ez0 is the amplitude of the field, φs is the phase of the synchronous particle and ωRF

is the angular frequency of the RF system. The reference particle should be synchronized with
the RF voltage (that is why it is often called the synchronous particle). So, the RF phase angle
φ = ωRFt should be the same every time the reference particle crosses an RF cavity. In order
to achieve this synchronization, the RF frequency must be an integer multiple of the revolution
frequency: ωRF = hω0, where h is an integer called the harmonic number.

In the RF cavity, under the influence of an electric field having a RF voltage with amplitude
V0, a synchronous particle gains in each turn an amount of energy that is:

∆Es = eV0 sin(φs) , (2.36)

The phase of the RF voltage determines the particle’s relative longitudinal position. The
phase of an arbitrary non-synchronous particle is the deviation from the phase of the synchronous
particle: φ = φs±δφ. Similarly, the energy gain of a particle with a phase φ is ∆Ep = eV0 sin(φ).
The energy gain per turn with respect to the energy gain of the synchronous particle is:

(∆E)turn = ∆Ep −∆Es = eV0(sinφ− sinφs) . (2.37)

Taking into account the slow change of energy with respect to the revolution frequency, the
equation of motion for the energy difference is:

d

dt

(
∆E

ω0

)
=

1

2π
eV0(sinφ− sinφs) , (2.38)

or by using the fractional off-momentum deviation:

δp

p0
=

ω0

β2E0

∆E

ω0
, (2.39)

Eq. (2.38) can be written as:

d

dt

(
δp

p0

)
=

ω0

2πβ2E0
eV0 (sinφ− sinφs) . (2.40)

where E0 is the energy of the synchronous particle and β the relativistic normalized velocity.
The time evolution of the phase angle variable is:

dφ

dt
= −h(ω − ω0) = −h∆ω . (2.41)

Replacing the slippage factor from Eq. (2.33) and then using Eq. (2.39), the phase equation
becomes:

dφ

dt
= hω0η

δp

p0
=
hω2

0η

β2E0

(
∆E

ω0

)
. (2.42)
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Combining the energy and phase equations (2.38) and (2.42), the time evolution of the phase
coordinate can be written as a second order differential equation:

d2

dt2
(φ− φs) =

hω2
0eV0η0 cosφs
2πβ2E0

(φ− φs) . (2.43)

This equation for the small angle oscillations corresponds to the equation of the harmonic oscil-
lator, having an angular frequency:

ωs = ω0

√
heV0|η0 cosφs|

2πβ2E0
, (2.44)

while the synchrotron tune that is defined as the number of synchrotron oscillations per revolu-
tion, is:

Qs =
ωs
ω0

=

√
heV0|η0 cosφs|

2πβ2E0
. (2.45)

In order for the oscillating system to be stable, the expression under the square root in Eq. (2.44)
must be positive. Except for η0cosφs all the parameters are positive, so, the stability condition
of the synchrotron motion is given by:

η0 cosφs < 0 . (2.46)

The stability criterion makes it clear that below transition energy (η0 < 0) the synchronous phase
angle should be 0 < φs < π/2 and above transition (η0 > 0) it should be π/2 < φs < π.

Figure 2.4: Trajectories of particles in the longitudinal phase space. The separatrix defines the limit of
stabl e motion.

In the longitudinal phase space, the particle trajectory has two different types of fixed points,
when the derivative of the coordinates with respect to time is zero (dφ/dt = 0 and dE/dt = 0).
Its motion is described by distorted circles in the vicinity of φs that is a stable fixed point.
For phases beyond π − φs, which is an unstable fixed point, the motion is unbounded as shown
in Figure 2.4 (unstable region). The region of stable motion that describes closed trajectories
around a stable fixed point is also illustrated. Acceleration of bunched beams is only possible for
particles inside this region, which is called an RF bucket. The limit of this region is determined
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by a curve passing through π−φs, known as the separatrix. The height of the separatrix is called
momentum acceptance and is defined by:(

δp

p0

)
max

= ∓

√
eV0

πhαpE0
(2 cosφs + (2φs − π) sinφs) , (2.47)

where αp is the momentum compaction factor.
In order to avoid particle losses, the particles of a bunch are often not distributed over the

full RF bucket but are restricted to a certain fraction of the phase space. The phase-space area
filled by a bunch is called the longitudinal beam emittance and is defined as:

εl =

∮
∆E

hω0
dφ , (2.48)

2.4 Synchrotron radiation and damping

The electromagnetic radiation emitted when charged particles are accelerated radially is called
synchrotron radiation (SR). Practically, it is the consequence of the finite value of the speed of
light. Electric fields extend infinitely into space from charged particles in uniform motion. When
these particles are accelerated and their velocity approaches the velocity of light, parts of these
fields cannot catch up with the particle anymore, giving rise to SR. The angular distribution of

Figure 2.5: The angular distribution of synchrotron radiation (lab frame) [29].

SR is sharply peaked in the direction of the electron velocity vector within an angular width of
1/γ, as can be seen in Fig. 2.5.

The radiation power of an accelerated particle having a momentum p = m0u, is given by
Larmor’s formula [30]:

Ps =
e2

6πε0m2
0c

3

(
dp

dt

)2

, (2.49)

with e and m0 being the particle charge and rest mass respectively, c the speed of light and ε0

the permitivity of free space. It is clear from this formula that the electromagnetic energy is
emitted only when dp/dt 6= 0, i.e. the momentum of the particle changes and that is a result
of an applied force. The closer is a particle’s velocity to the speed of light the stronger is the
effect of radiation, the opposite happens for non-relativistic particles. The radiation power for
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relativistic particles is given by:

Ps =
e2c

6πε0(m0c2)2

[(
dp

dτ

)2

− 1

c2

(
dE

dτ

)2
]
. (2.50)

In the case of linear acceleration this reduces to:

Ps =
e2c

6πε0(m0c2)2

(
dp

γdτ

)2

=
e2c

6πε0(m0c2)2

(
dp

dt

)2

. (2.51)

Then the power radiated from linearly accelerated particles, using dp/dt = dE/dx, becomes:

Ps =
e2c

6πε0(m0c2)2

(
dE

dx

)2

. (2.52)

For particles traveling in a circular path, the general radiation formula is given by:

Ps =
e2c

6πε0(m0c2)2

(
dp

dτ

)2

=
e2cγ2

6πε0(m0c2)2

(
dp

dt

)2

. (2.53)

Comparing Eq. (2.53) with Eq. (2.52) shows that the radiation from circular motion is at least
a factor of γ2 larger than that from longitudinal acceleration. The change of momentum in a
circular path through an angle dθ is dp = pdθ. If ρ is the bending radius, it is dp

dt = pω = puρ .
Considering the fact that E = pc for extremely relativistic particles, that are the ones that radiate
more, results in what is called synchrotron radiation and is given by Liénard’s formula:

Ps =
e2c

6πε0

1

(m0c2)4

E4

ρ2
, (2.54)

So, the SR power is proportional to the fourth power of the energy E and inversely proportional
to the fourth power of m0. In order to understand the dependence of the SR power on the rest
mass, the radiated power from an electron is compared to that from a proton of the same energy,
as:

Ps,e
Ps,p

' 1013 . (2.55)

Clearly, SR plays a dominant role in the case of electrons and positrons, however for protons it
becomes important only for energies higher than 1 TeV [30].

In circular accelerators, the energy loss per revolution period from a particle with energy E
is given by:

U0 =

∮
Pdt =

Cγ
2π
E4

∮
1

ρ2
ds , (2.56)

where Cγ = 4π
3

r0
(mc2)3

; that is 8.846 × 10−5 m/GeV3 for electrons and 7.783 × 10−18 m/GeV3

for protons. Due to the fact that the radiation power is proportional to E4/ρ2, the higher the
particle energy is the more energy the particle looses.
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SR damping mechanism

The reduction of the particles momenta due to SR happens in all planes. A RF field is used
to compensate the energy loss but this is done only in the longitudinal plane. This leads to
steady reduction of the transverse betatron oscillation or to what is called synchrotron damping.
A schematic representation of the effect is shown in Figure 2.6. The initial momentum p0 is
reduced down to p1 because of the SR emission and afterwards, due to the energy kick from the
RF cavity, the new momentum is p2.

Figure 2.6: The damping mechanism due to synchrotron radiation [26].

The oscillation amplitudes in the transverse and longitudinal plane are damped like: Ai =

Ai0e
−αit, where i = x, y, s and αi are the damping increments which are equivalent to the

damping term of the harmonic oscillation with a frictional force. Taking into account the different,
dispersive, orbit of off-momentum particles, the damping increments can be written in the form:

αs,y,x =
U0

2ET0
Js,y,x , (2.57)

with Jx, Jy, Js being the damping constants: Js = 2 +D, Jy = 1, Jx = 1−D, and

D =

∮ [ η
ρx

(
2k + 1

ρ2x

)]
∮
ds
ρ2x

,

where η is the dispersion function, ρx the radius of curvature and k the quadrupole focusing
strength. The corresponding damping times defined as 1/αi, for T0 being the revolution period,
are given by:

τx,y,s =
2E0T0

Jx,y,sU0
. (2.58)

According to the Robinson Theorem, the sum of the three damping constants is invariant [23]:
Jx+Jy+Js = 4. The beam parameters in a circular accelerator are modified due to synchrotron
radiation, and they can be expressed through the radiation integrals which are [27]:

I1 =

∮
ηx
ρx
ds, I2 =

∮
1

ρ2
x

ds, I3 =

∮
1

|ρ3
x|
ds,
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I4 =

∮
ηx
ρx

(
1

ρ2
x

− 2K1

)
ds =

∮
(1− 2n)ηx

ρ3
x

ds, I5 =

∮
Hx
|ρ3
x|
ds . (2.59)

The damping partition numbers are defined through the radiation integrals as:

Jx = 1− I4

I2
, Jy = 1, Js = 2 +

I4

I2
. (2.60)

Due to the quantum nature of synchrotron radiation, the emission of photons is discrete
and random, and the quantum process causes diffusion and excitation. The beam eventually
reaches an equilibrium distribution that is determined by a balance between radiation damping
and quantum excitation [27].

2.5 Equilibrium beam properties

For Gaussian equilibrium distributions with parameters defined by the damping times and the
respective diffusion coefficients [24], the emittance evolution with time is given by:

εx(t) = εx,inje
−2t/τx , εy(t) = εy,inje

−2t/τy , σ2
p(t) = σp,inje

−2t/τp , (2.61)

where the index “inj” refers to the injected beam emittances and energy spread and τx, τy, τp are
the horizontal, vertical and longitudinal damping times respectively.

Horizontal and vertical emittance

The relativistic particles that pass through bending magnets emit synchrotron radiation, a pro-
cess that leads to quantum excitation and damping. The quantum excitation of the oscillation
amplitude is compensated by damping and an equilibrium is reached when these effects are of
equal strength. The equilibrium horizontal beam emittance is defined as [23]:

εx0 = Cqγ
2

〈
Hx/|ρ3

x|
〉

Jx 〈1/ρ2
x〉

= Cqγ
2 I5

I2 − I4
. (2.62)

It scales as the square of the beam energy γ and it depends on the bending radius ρx and the
dispersion invariant Hx, defined in Eq. (2.24). It can be adjusted by appropriate choice of the
optics functions along the bending magnets. For electrons it is Cq = 55

32
√

3
~c
mc2

= 3.8319×10−13 m
and for protons it is Cq = 0.0021× 10−13 m.

Similarly to the horizontal emittance, the contribution of vertical dispersion to vertical emit-
tance is [23]:

εy0 = Cqγ
2

〈
Hy/|ρ3

y|
〉

Jy
〈
1/ρ2

y

〉 . (2.63)

In order to minimize this effect, correction of the equilibrium orbit and the perturbation to the
dispersion function is needed.

In the absence of vertical dispersion or coupling, Hy = 0 and the vertical emittance is defined
only by the opening angle of synchrotron radiation. The synchrotron radiation photons are
emitted with an rms angle of 1/γ, relative to the particle trajectory, affecting both the longitudinal
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and transverse momenta of the particle, defining a lower (the so-called quantum) limit of vertical
emittance:

εy0,min =
13

55

Cq
Jy

∮ βy
|ρy |3ds∮

1
ρ2y
ds

. (2.64)

However, this is negligible and the vertical emittance is mainly defined by vertical dispersion,
due to alignment errors and by betatron coupling, if we do not take into account any current
depended or collective effects. The contribution of vertical dispersion to vertical emittance is:

εy0,d ≈ Js 〈Hy〉σ2
p0 , (2.65)

while the contribution of weak coupling to vertical emittance is:

εy0,k = kεx0 , (2.66)

where σp0 is the rms relative momentum deviation and k the coupling factor.
In the presence of both vertical dispersion and betatron coupling, the vertical emittance is

the sum of the above expressions:

εy0 = εy0,min + εy0,d + εy0,k . (2.67)

The index 0 in all the equilibrium properties expressions, refers to the absence of any current
depended effects, thus to the case of nearly zero current.

Energy spread, bunch length and longitudinal emittance

The statistical emission of photons causes a change of particle energy, leading to an energy spread
within the beam. The interplay between the quantized emission of photons and the SR damping
which reduces the synchrotron oscillation amplitude, determine the beam energy spread. As the
emission of photons is a statistical process and the RF cavity recovers only the average energy
loss, there is a subsequent rms equilibrium energy spread in the beam [23]:

σ2
p0 =

(
δE

E

)2

= Cqγ
2

〈
|1/ρ3

x|
〉

Js 〈1/ρ2
x〉

= Cqγ
2 I3

2I2 + I4
, (2.68)

For separated function magnets, it depends only on the particle energy and the bending radius,
where for combined function magnets the partition number Js can be modified accordingly to
vary the energy spread.

A spread of particle energy can also be translated as a spread in the longitudinal phase. For
circular electron accelerators the bunches are small compared to the bucket area and the small
amplitude approximation is valid. In these terms, the rms relative energy spread σp and rms
bunch length σs [m] are related through:

σs0 = σp0C

√
αpE

2πh(eV 2
0 − U2

0 )1/2
, (2.69)

where αp is the momentum compaction factor, C the ring circumference, V0 the amplitude of the
RF voltage, h the harmonic number and U0 the energy loss per turn.

The zero current equilibrium longitudinal emittance is defined as the product of the equilib-
rium energy spread and bunch length:

εl = σp0σs0 . (2.70)
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Figure 2.7: The two basic layouts for low emittance lattices. Left: the achromat condition. Right: the
symmetry condition [31].

2.6 Low emittance lattices

The lattice design of modern e+/e− rings, such as light sources or damping rings is focused on
the minimization of the emittance. As mentioned earlier (see paragraph 2.5), the equilibrium
beam emittance depends on the mean value of the dispersion invariant Hx(s) in the dipoles.
In order to minimize the emittance, the minimization of 〈Hx〉 is necessary. Knowing the twiss
parameters at the entrance of the dipole, the Hx function can be determined at any point within
a bending magnet, using Eq. (2.24). Assuming a lattice where the optics functions are the same
in all dipoles, the average value in the ring is:

〈Hx〉 =
1

Ld

∫ Ld

0
Hx(s)ds , (2.71)

where Ld the length of the dipole magnet with constant bending radius ρx.
The two basic layouts used to minimize the 〈Hx〉 are shown in Fig. 2.7. The one (left) imposes

an achromat condition of vanishing dispersion, i.e. ηx = η′x = 0 in the entrance (or exit) of the
bending magnet and the other one (right) imposes a symmetry condition, i.e. both beta (βx) and
dispersion (ηx) functions have a minimum at the center of the bending magnets (αx = η′x = 0).
The first layout is mainly used in light sources, where many dispersion free regions are required
for the insertion of the synchrotron radiation beam lines. The second layout provides emittance
minimization in a more compact ring and that is why it is used in DR. For Flattice being the
scaling factor that depends on the lattice design, the equilibrium emittance can be written in the
form:

εx0 = FlatticeCqγ
2θ3. (2.72)

An example of a low emittance lattice that is the most common one in high brilliance light
sources is the Double Bend Achromat (DBA) or basic Chasman-Green cell which consists of two
dipoles and either a focusing quad (basic scheme) or a triplet (extended scheme) between them.
Applying the achromat condition, with βx0 =

√
12/5L and αx0 =

√
15 at the entrance of the

dipole, the minimum emittance for the DBA cell is given for a scaling factor that is:

FDBA =
1

4
√

15Jx
. (2.73)
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The Theoretical Minimum Emittance cell

The emittance can be further minimized, if the achromat condition is not necessary for the
lattice design. The optimal configuration to achieve the absolute theoretical minimum emittance
(TME) is the TME cell [32]. It consists of one dipole and of two quadrupole families, resulting
in a structure that is more compact than the DBA one. The theoretical minimum emittance can
be achieved if the symmetry condition, shown in Fig. 2.7 (right), is satisfied. The scaling factor
for the theoretical minimum emittance is equal to:

FTME =
1

12
√

15Jx
, (2.74)

with ηxc = θL
24 and βxc = L

2
√

15
at the center of the dipole. The minimum emittance in this case

is a factor of 3 smaller than in the DBA lattice.
Due to the compactness and the very small emittance the TME cells reach, they are preferred

for the Damping Rings lattice design. The performance of these cells was precedently studied for
the case of uniform dipoles [33]. In this thesis, a further minimization of the TME cell emittance
when using longitudinally variable bends instead of uniform dipoles is discussed in detail. In
order to have a global understanding of all cell properties, analytical solutions for a TME cell
with a variable bend are described in Chapter 4.

In general, tuning the low emittance lattices to the minimum emittance is difficult. That
is because of the high chromaticities due to the strong quadrupole strengths needed for the
low dispersion and beta functions, which can lead to a strongly nonlinear motion and a limited
dynamic aperture (DA). Therefore, the main challenges of the design is to build a compact lattice,
attaining a sufficiently low emittance and an adequately large DA.

2.7 Insertion devices

In addition to the SR that is unavoidably emitted in the bending magnets of a synchrotron,
dedicated insertion devices are used to generate brighter SR beams for light sources or fast
damping for cases as linear collider damping rings. These devices are formed by a sequence of
short dipole fields of alternating polarity and they are installed along the particles beam path.
The undulators and wigglers are two types of insertion devices that have different bending field
strengths, i.e. they produce different radiation characteristics. The weaker beam bending of
an undulator, generates constructive coherent radiation with very high intensity that is useful
for the light sources experiments. A strong field wiggler, that gives a spectrum similar to that
of a bending magnet, results in fast damping times that are important for the damping ring
performance.

After passing through an insertion device, the beam should return to its nominal orbit,
otherwise, a closed orbit distortion occurs around the machine. As the insertion devices do
not contribute to the bending of the beam, long straight sections must be provided within the
accelerator to accommodate them. The presence of insertion devices may induce perturbations
due to the magnetic field of the device, which results in linear optics distortion, tune shifts,
resonance excitation and reduction of dynamic aperture. In addition, the radiation emitted by
the beam in the insertion device changes the emittance and energy spread of the beam [34].
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Wigglers

The insertion of damping wigglers along the particle beam path gives rise to fast damping and
quantum excitation, resulting in different equilibrium states and damping times. For short wiggler
poles, the magnetic field can be expressed as:

By(x, y = 0, z) = B0 sin
2πz

λp
, (2.75)

where B0 the wiggler peak field and λp the wiggler period. With (Bρx) being the magnetic
rigidity and Bw the wiggler field, the wiggler radius is defined by:

ρw =
(Bρx)

Bw
or ρw[m] =

0.0017γ

Bw[T ]
. (2.76)

The damping wigglers need to be placed in a dispersion free region, as the existence of
dispersion in a wiggler region can lead to emittance blow up. For the CLIC DRs case, it is
possible to place the wiggler magnets at the dispersion free long straight sections (LSS) which
have a FODO structure. The FODO cells have been used as the building blocks of high energy
colliders and storage rings due to their simplicity.

2.8 Collective effects

Due to their charges, beam particles interact with each other within the beam they belong to,
with particles of the beam they collide with and with their environment. In a very general
sense, the collective effects can be summarized in three categories: beam-self, beam-beam, and
beam-environment. One of the most studied beam-self collective effects is generated by the space
charge force, which refers to the force acting on one particle by the self field produced by the
particle distribution. The other main beam-self processes called intrabeam scattering (discussed
in Chapter 3) and Touschek effect, are a result of the compression of a large number of charged
particles into a small volume which increases the probability for collisions of particles within the
same beam. The main beam-beam effect in circular colliders is caused because the particles in
one beam feel the electric and magnet forces of the particles in the other beam when passing
through each other at certain interaction points. Another beam-beam effect is the electron-
proton instability that is generated when the protons beam interacts with ambient electrons in
the vacuum chamber, if electrons live until the beam returns on the next pass, the electron cloud
grows until it causes an instability in the proton beam or drive a slow process of emittance growth.
Since particles travel in the accelerator environment with beam pipes, magnets, etc, they induce
fields (called wakefields) in the accelerator structures which can act back on a trailing particle 2.
Such effects belong to the beam-environment category of the collective effects. A successful
accelerator design necessitates the full understanding of all collective effects and instabilities,
since they have a significant contribution to beam dynamics.

2In practice, in can be very difficult to calculate the wakefield for real accelerator beams and vacuum chamber
geometries. It is often easier to work with the Fourier transform of the wakefield, namely the impedance.



Chapter 3

Intrabeam Scattering

One of the statistical processes causing a spreading of particles in phase space or a continuous
increase of beam emittance is the small angle multiple Coulomb scattering effect between charged
particles within accelerator beams, called Intrabeam scattering (IBS). In cases where this diffu-
sion is due to the particle density, the emittance growth may decrease significantly because the
scattering occurrence drops to lower and lower values as the particle density decreases. IBS plays
an important role in e+/e− damping rings, high intensity/low energy light sources [19] and high
intensity hadron [17] and ion [18] circular machines. The scattering results are different when
operating below or above transition. Below transition, the small-angle scattering is analogous
to collisions of particles in a gas that lead to an equilibrium beam distribution. Above transi-
tion, this is no longer valid and both the transverse emittances and energy spread can all grow
indefinitely. In this section, the standard IBS theories are summarized.

Closely related to IBS is the Touschek effect [35] that describes the elastic Coulomb collisions
of particles in high intensity bunches, which results in particles being ejected from the beam. The
probability for elastic collisions between particles is further enhanced considering that particles
perform transverse betatron as well as longitudinal synchrotron oscillations. The colliding par-
ticles exchange momentum, leading to a change in their oscillation amplitudes. In each degree
of freedom there are specific acceptance limits, if the particles amplitudes exceeds them they
can get lost, leading to a reduction of the beam lifetime. In many high brightness synchrotron
radiation light sources the beam current is limited by the Touschek lifetime.

3.1 Theories of Intrabeam Scattering

The IBS theory for accelerators was firstly introduced by Piwinski [36] and extended by Mar-
tini [37], establishing a formulation called the standard Piwinski (P) method. Later, Bjorken
and Mtingwa (BM) [38] used a different approach to describe the effect, taking into account the
strong focusing effect. The Modified Piwinski (MP) method [39] that includes the strong focusing
effect, was developed by Bane. Some approximations of these theories are the high energy one by
Bane (Bane) [39] and the completely integrated modified Piwinski (CIMP) [40]. These approxi-
mations are valid under certain conditions. A different approach that was developed for hadron
beams and that is based on a Boltzmann type integro-differential equation, includes betatron
coupling [41].

The horizontal (x), vertical (y) and longitudinal (p) growth rates for the aforementioned
theories are defined as:

1

Tp
=

1

σp

dσp
dt

,
1

Tx
=

1

ε
1/2
x

dε
1/2
x

dt
,

1

Ty
=

1

ε
1/2
y

dε
1/2
y

dt
, (3.1)
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with
1

Ti
= 〈fi〉 , (3.2)

where the functions fi are integrals that have a complicated dependence on the beam properties,
due to the coupling of the three planes through dispersion 1. Some of these properties are the
bunch charge and energy, the beam optics and the equilibrium rms horizontal, vertical emittances
and the energy spread. The growth rates are determined by the average of the fi functions along
the ring and have a 1/γ4 dependence. This means that IBS effects diminish with increasing beam
energy.

In all IBS theories, the growth rates depend on the 6-dimensional invariant phase space
volume of a bunched beam that is given by:

A =
cNr2

0

64π2β3γ4εxεyσsσp
, (3.3)

where r0 is the classical particle radius, with r0 = 2.82× 10−15 m for electrons or positrons and
1.53× 10−18 m for protons. c is the speed of light, N the number of particles per bunch, β the
particle velocity divided by c, γ the Lorentz energy factor and σs the rms bunch length. The
dependence of the density factor A on N and on 1/γ4 makes it clear that IBS is stronger for high
particle densities and that it is greatly reduced for high beam energies.

The Coulomb log factor

For scattering calculations like IBS, a logarithmic Coulomb factor is used to include the contribu-
tion of events having a very large and very small impact parameter. The typical way of computing
a log factor overemphasizes the importance of the very small impact parameter events for which
the tails of the steady-state bunch distributions are non-Gaussian. In the high energy approxi-
mation by Bane [19], in order to describe the size of the core of the bunch, the Coulomb log factor
is calculated as was first proposed by Raubenheimer [42], i.e. based on a boundary between the
contribution to the core and the tails.

In B-M, Bane and CIMP methods, the Coulomb factor is defined as the ratio of the maximum
rmax to the minimum rmin impact parameter in the collision of two particles in the bunch, that is
(log) ≡ ln(rmax/rmin). For typical flat beams, the rmax is taken to be equal to the vertical beam
size σy, while rmin is taken to be rmin = r0βx/(γ

2εx). Then, the Coulomb factor can be written
as:

(log) = ln

(
γ2εx

√
βyεy

r0βx

)
. (3.4)

Piwinski always seems to underestimate the IBS effect with respect to the other theoretical
models. What diversifies Piwinski’ s method, is the different definition of the Coulomb factor. In
the Piwinski formalism, the maximum impact parameter which is typically taken as the vertical
beam size appears. In the high energy limit, with d being the maximum impact parameter, the

1The dispersion couples the betatron and synchrotron oscillations, i.e. the particle’s momentum change in a
non zero dispersion region leads to a change in the betatron oscillations
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Coulomb (log) for Piwinski can be written as [43]:

(log) = ln

(
dσ2

H

4r0α2

)
, (3.5)

where a = σH
γ

√
βx
εx
. Comparing the (log) factors of Eq. (3.4) and (3.5), then d = 4σy. If the

parameter d is chosen such that we have an effective Coulomb log factor which is the same as
the one of Eq. (3.4), then Piwinski agrees with the other models.

3.2 Equilibrium emittances due to IBS

In the presence of IBS, the performance of the beam can be described via an invariant that
depends on the sum of the emittance mean values in all planes. Piwinski showed that this
emittance dependent invariant [36] is:

εl

(
1

γ2
−
〈
η2
x

β2
x

〉
−

〈
η2
y

β2
y

〉)
+

〈
εx
βx

〉
+

〈
εy
βy

〉
= const , (3.6)

where εl is the longitudinal emittance. Equation (3.6) shows that, below transition (γ2 < γ2
tr

= 1/αp ≈ 1/
〈
η2
xβ

2
x

〉
) the sum of the three (positive) invariants is limited, and an equilibrium

can exist. Above transition, εs, εx and εy can grow simultaneously and an equilibrium does
not exist. Although electron rings run normally above transition, where IBS leads to continuous
emittance growth and equilibrium does not exist, synchrotron radiation damping counteracts the
IBS growth, leading to new steady-state emittances.

The emittance growths for electron accelerators are in most cases negligible compared to
radiation damping. However, they become significant in proton and ion storage rings where high
particle densities and long storage times are required. The steady state properties, for which
dεx
dt =

dεy
dt =

dσ2
p

dt = 0, are expressed using the growth rates as:

εx,y =
εx0,y0

1− τx,y/Tx,y
and σ2

p =
σ2
p0

1− τp/TP
, (3.7)

where εx0, εy0, σp0 are the zero-current (without the effect of IBS) equilibrium horizontal and
vertical emittances and rms energy spread. τx, τy and τp are the synchrotron radiation damp-
ing times. Equations 3.7 can be written in a differential form, describing the evolution of the
horizontal, vertical emittance and energy spread with time:

dεx,y
dt

= − 2

τx,y
(εx,y − εx0,y0) +

2εx,y
Tx,y(εx, εy, σp)

,

dσp
dt

= − 1

τp
(σp − σp0) +

σp
Tp(εx, εy, σp)

. (3.8)
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3.3 IBS in MAD-X

The general formalism of Bjorken-Mtingwa (B-M) following the approach of Conte and Mar-
tini [37], but including the effect of vertical dispersion was implemented in the Methodical Accel-
erator Design code MAD-X since 2006 [44]. This implementation included several bug fixes, the
modified routine was crosschecked with the Mathematica implementation of the B-M formalism
for the CLIC DR and the SLS lattices [45] and the correct implementation was then available
in MAD-X [20]. The B-M formalism takes into account the variation of the lattice parameters
(beta and dispersion functions) around the machine and consequently, the knowledge of the op-
tical functions along the machine is required. IBS calculates the values at the center of each
element by performing a linear interpolation between the last values of the previous element and
the last values of the current element.

The Bjorken-Mtingwa formalism

Bjorken and Mtingwa [38] describe the IBS effect based on the relativistic "Golden Rule" for the
transition rate due to a 2-body scattering process. For i = p, x, y being the index that respectively
corresponds to the longitudinal and transverse planes, the growth times for the relative energy
spread and the transverse emittances are:

1

Ti
= 4πA(log)

〈∫ ∞
0

dλ
λ1/2

[det(L+ λI)]1/2

{
TrL(i)Tr

(
1

L+ λI

)
− 3TrL(i)

(
1

L+ λI

)}〉
,

(3.9)
with A being the density factor given in Eq. 3.3 and (log) being the Coulomb factor given in
Eq. 3.4. The auxiliary matrices are given in Appendix A.

3.4 The multi-particle tracking codes

The existing analytical formulas for modelling the IBS effect are based on Gaussian beam dis-
tributions. In the case of non-Gaussian beam distributions no theoretical models exist. The
stationary solution of the Fokker-Planck equation is a particle distribution that is Gaussian in
the phase space. However, taking into account the effects of IBS, radiation damping and quantum
excitation [46], there is no evidence that the distribution remains Gaussian. Therefore, it is im-
portant to develop analytical formulas and simulation tools that calculate the interplay between
these effects for any distribution. To this end, two multi-particle Monte Carlo codes capable of
such calculations have been developed; the Software for IBS and Radiation Effects (SIRE) [47],
and the IBStrack [48] implemented also in the collective effects simulation tool CMAD [49, 50].
Both algorithms are inspired by MOCAC (MOnte CArlo Code), a Monte-Carlo code developed
by Zenkevich et al [51,52], which calculates the IBS effect for arbitrary distributions. SIRE and
IBStrack include also Radiation Damping (RD) and Quantum Excitation (QE). SIRE uses only
the optics functions around the ring, calculating only the pure IBS effect without taking into
account coupling or non-linear effects. However, IBStrack uses the element-by-element composed
one turn map, taking into account the phase advance between the elements and so, non-linear
effects and coupling can also be included in the calculations.
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The performance of hadron machines is limited by the IBS effect causing emittance blow up.
For lepton machines such as future linear collider Damping Rings, new generation light sources
and B-factories, the IBS effect can also be predominant. It is thus important to study the IBS
theories in the presence of synchrotron radiation and quantum excitation and benchmark the
existing theoretical models and tracking codes with experimental data. In this way, the codes
limitations can be identified so that to apply the necessary improvements in order to get better
predictions for the operation of a machine..

For the Relativistic Heavy Ion Collider (RHIC), the IBS growth rates were calculated and
benchmarked with experimental data using the distribution function evolution (based on the
Fokker-Planck equations), extending the usual approach of employing a conventional Gaussian-
like distribution [53]. Furthermore, the intrabeam scattering growth rates were calculated for
a bi-gaussian distribution, which was interesting for studying the possibility of using electron
cooling in RHIC [54]. Later, a model that is suitable for IBS calculations for arbitrary distribution
functions and its comparison to experimental data was presented in [55]. The IBS effect was also
studied for high-brightness electron linac beams which appear to be non-Gaussian, especially in
the longitudinal plane [56].

The IBS theoretical models have been studied in detail and benchmarked with experimental
data [17,18] for hadron beams over the years. A benchmarking of the IBS theoretical models with
Monte-Carlo codes is presented in [57] for lepton rings and in [58] for the LHC. A comparison of
the LHC data with simulations performed with SIRE is discussed in [59].

SIRE

The SIRE [47,60] code uses the classical Rutherford cross section which is closer to the Piwinski
formalism, for the IBS calculations. It needs as an input the Twiss functions at different locations
of the lattice in order to determine the trajectories of the particles in phase space. This is done
in terms of the two Courant-Snyder and longitudinal invariants, and the 3 phases (betatron and
synchrotron), instead of using the 6 coordinates for position and momentum. The 3 invariants
are conserved between points around the lattice and can only be changed by the effects of IBS,
SR and QE, while the phases are chosen randomly at each given point of the lattice. The time
steps for which the IBS and radiation effects are called should be specified such that they are
larger than the revolution time and smaller than the damping/growth times. Dividing the total
time by the time steps shows how frequently the IBS, SR and QE routines are called. Currently,
the output file giving the evolution of the emittance in all planes presents the values computed
for the specified time steps.

The algorithm SIRE uses to calculate IBS is similar to the one implemented in MOCAC,
where the beam is represented by a large number of macro-particles occupying points in the
6-dimensional phase space. The default distribution defined in SIRE by using a random number
generator, is the Gaussian and is given in action angle variables. So, in order to get a Gaussian
distribution in terms of beam size, the histogram of the macroparticles action angle variables
should form an exponential (based on 2.25), as given in Fig. 3.1. In order to apply a different
distribution, someone should either make SIRE generate the proper random deviates or provide
as an input file the action angle variables of all macroparticles for the desired distribution. After
specifying the total beam population and the number of macro-particles, the initial distribution
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Figure 3.1: The default distribution defined in SIRE by using a random number generator is the Gaussian
and is given in action angle variables. In this case, the histogram of the macroparticles action angle
variables is described by the exponential function (left), the corresponding distribution in terms of beam
size is a Gaussian (right).

of the macro-particles can be tracked. The particle distribution in all planes can be saved as
often as requested during the simulation time.

The steps followed for the IBS effect simulation can be summarized as:
– For each lattice point defined in the Twiss file, the 3 phases of each macro-particle are

randomly chosen and position and momentum of the macro-particles are calculated.
– The beam is geometrically divided into a number of cells that is specified for each plane. The

macro-particles are assigned to each cell according to their geometrical position (Fig. 3.2).
– Based on the classical Rutherford cross section, intra-beam collisions between pairs of

macro-particles are calculated in each cell. The momentum of particles is changed because
of scattering. According to the available computational time, the number of macro-particles
and cells, i.e. the number of collisions each macro-particle experiences, is chosen. The
scattering angles for each collision are determined [61].

– The beam distribution is then updated based on the new invariants of the macro-particles.
– The simulation proceeds to the next lattice point and continues until the end time is reached.

Figure 3.2: The beam is geometrically divided into a number of cells that is specified for each plane.
The macro-particles (black dots) are assigned to the constructed cells (green cubes) according to their
geometrical position.

Depending on the elapsed time, the synchrotron radiation damping (RD) acts on the invari-
ants of the macro-particles as an exponential decrement. The routine introduced for this reason
is called after the calculation of the IBS effect for each iteration. Using small iteration time
steps dt (which are much smaller than the damping times and for which the emittances change
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adiabatically), the evolution of the transverse emittance and energy spread due to the effects of
IBS and SR can be obtained by solving the coupled differential equations:

dεx,y
dt

=
−2(εx,y − εx,y0)

τx,y
+

2εx,y
Tx,y

,

dσp
dt

=
−(σp − σp0)

τp
+
σp
Tp

,

(3.10)

with εx,y0 and σp0 being the zero current (without the effect of IBS) equilibrium transverse
emittances and energy spread, respectively. The τx,y, τp are the synchrotron radiation damping
times and the Tx,y, Tp the IBS growth times. The QE is then implemented, by adding to the 6
coordinates of each macro-particle a random Gaussian contribution.

A lattice compression technique named “lattice recurrences”, has been implemented to speed
up the calculations [47]. Since the increase of the invariants due to IBS is linear to the first order
in the traveling time along an element, elements of the full lattice with optics functions differing
less than a specified precision value are considered equal. For such a group of elements, the IBS
effect is evaluated only for one of these elements, resulting in a smaller computational time.

Convergence studies

For a specified set of input beam parameters, various scans should be performed for different com-
binations of number of macro-particles and cells in order to find the optimal values which provide
a fast tracking and at the same time, guarantee that the scattering process leads to accurate re-
sults. In these terms, in order to avoid having a very small number of macro-particles per cell,
the total number of cells is calculated based on the optimal minimum number of macro-particles
per cell. For nx, ny, nz being the number of cells in the horizontal, vertical and longitudinal
plane, respectively, it is assumed that in the transverse plane there is a correlation between the
number of cells ratio and the beam sizes ratio, meaning that nx/ny=σx/σy. Therefore, for nmp
being the total number of macro-particles, the number of macro-particles per cell is:

nmp/cell =
nmp

nxnynz
=

nmp

n2
x(
σy
σx

)nz
. (3.11)

A scanning of the total number of cells is performed for an example set of beam parameters
to be used as an input for tracking. Based on Eq. (3.11), by keeping the total number of macro-
particles constant, the different combinations of cell numbers determines the number of macro-
particles per cell. Figure 3.3 (left) shows the dependence of the emittance variation (ratio of
final versus initial value) in the horizontal (blue) and longitudinal (green) plane on the number
of macro-particles per cell, for a specified time duration. The value of the number of macro-
particles per cell after which the variation of the emittances in both planes remains constant is
chosen as the optimal minimum value. After specifying this value, a scanning is performed for a
fixed number of macro-particles, in order to choose the number of cells to be used, firstly in the
longitudinal plane.

Then, the number of cells in the horizontal plane can be calculated using Eq. (3.11), when
knowing the ratio of the beam sizes in the transverse plane 2. In Fig. 3.3, the dependence of

2Here it is assumed that the ratio of the transverse beam sizes is initially σx/σy = 1.
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Figure 3.3: The dependence of the horizontal (blue) and longitudinal (green) emittance variation on the
number of macro-particles per cell (left), on the number of cells in the longitudinal plane (center) and in
the horizontal plane (right), for a specific time period.

the emittances variation is plotted versus the number of cells in the longitudinal (center) and
horizontal (right) plane, for a specific time duration. It can be noticed that the variation of the
emittances remains constant after a certain number of cells in the longitudinal and horizontal
plane that is, for the example set of beam parameters, 350 and 13 cells, respectively. Finally, the
number of cells in the vertical plane can be calculated by ny = nx/(σx/σy).



Chapter 4

Reduction of the TME cell emittance
using longitudinally variable bends

One of the main challenges of linear collider DRs and light sources is the generation of ultra-low
emittance in all planes in order to achieve high brightness beams. The main design task is to build
a compact ring, attaining a sufficiently low emittance and an adequately large dynamic aperture
(DA). The DR lattice design is driven by the emittance requirements which for ultra-low values
give rise to collective effects, with intra-beam scattering (IBS) being the dominant one. Aiming
to mitigate the IBS effect for a compact ring, the design of the lattice should be revised. The
TME cells can provide very small emittances, as well as high compactness. The emittance of
a TME cell can be further reduced if instead of uniform dipoles, longitudinally variable bends
are used. In this chapter, the studies for minimizing the emittance of a TME cell using variable
bends, are presented. The optimal magnetic field evolution of these bends, in order to have a low
equilibrium betatron emittance, is found for each dipole profile studied. The resulted emittance
is compared to the one of a uniform dipole having the same bending angle and length.

4.1 Analytical solutions for minimizing the emittance of a TME
cell

The optimal magnetic structure to achieve the absolute theoretical minimum emittance (TME)
is the TME cell [62, 63]. Due to their compactness and the very small emittance these cells
reach, they are preferred for some ring designs. The performance of these cells was previously
studied analytically for the case of uniform dipoles [33]. In what follows, a further minimization
of the TME cell emittance when using longitudinally variable bends instead of uniform dipoles
is described in detail. In order to have a global understanding of all cell properties, analytical
solutions for a TME cell with a variable bend are developed.

The equilibrium horizontal emittance in a storage ring is given by:

εx =
Cqγ

2

Jx

〈 H
|ρ|3
〉

〈 1

ρ2
〉

=
Cqγ

2

Jx

1

C

C∫
0

H
|ρ|3

ds

1

C

C∫
0

1

ρ2
ds

, (4.1)

where C is the circumference of the ring, γ is the Lorentz factor, Jx is the damping partition
number and Cq = 3.84×10−13 m (for electrons). The lattice function H known as the dispersion
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invariant, depends on the optics parameters, the dispersion function and its derivative:

H(s) = γ(s)η(s)2 + 2α(s)η(s)η(s)′ + β(s)η(s)′
2
. (4.2)

In the case of uniform dipoles, having a constant bending radius ρ, the minimum emittance value
is obtained through the minimization of the 〈H〉. However, in the case of longitudinally variable
bends, for a varying ρ along the length of the magnet, the aim is to minimize

〈
H/ρ3

〉
/
〈
1/ρ2

〉
.

The TME cell

A schematic layout of the TME cell is displayed in Fig. 4.1. It consists of one dipole D of length L
and of two quadrupole families Q1, Q2 with focal lengths f1 and f2 respectively. The focal lengths
of the quadrupoles are denoted by f1[m] = 1/(k1lq1) and f2[m] = 1/(k2lq2), where k1, k2 are the
quadrupole strengths and lq1 , lq2 their lengths. The drifts between the elements are denoted by
s1, s2 and s3.

Figure 4.1: Schematic layout of a TME cell

For simplicity, the center of consecutive dipoles is considered as the entrance and exit of
the TME cell, the index “cd” (center of dipole) represents the initial point. Then, the optics
parameters, the dispersion function and its derivative from the center to the edge can be written
as:

β (s) = βcd − 2αcds+ γcds
2, α (s) = αcd − γcds, γ (s) = γcd,

η (s) = ηcd + η′cds+ θ̃ (s) , η′ (s) = η′cd + θ (s) .
(4.3)

The expressions in Eq. (4.3) are used to calculate the dispersion invariant H(s) (Eq. (4.2)).
It should be mentioned that the focusing of the dipole is negligible for dipoles having a small
bending angle.

The theoretical minimum emittance can be achieved if the symmetry condition, for which
both beta (βx) and dispersion (ηx) functions have a minimum at the center of the bending
magnets (αcd = η′cd = 0), is satisfied (Fig. 4.2) [62,63]. For isomagnetic TME cells the dispersion
and beta functions at the center of the dipole are respectively equal to ηcd = θL

24 and βcd = L
2
√

15
,

where θ is the bending angle and L the length of the dipole. These functions are different for
a non-uniform dipole since its bending angle and bending radius vary along the electron beam
path in the magnet. The bending angle and its integral are given by:

θ =

s∫
0

1

ρ(s)
ds , θ̃ =

s∫
0

 s∫
0

1

ρ(s)
ds

 ds . (4.4)
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Figure 4.2: Symmetry condition for the TME.

The beta and dispersion functions at the dipole center (βcd and ηcd) impose two independent
optics constraints, therefore, at least two quadrupole families are needed for the constraints to
be met. Using the thin-lens approximation and for given βcd and ηcd at the center of the dipole,
the analytical expressions for the quadrupole focal lengths can be derived:

f1 =
s2g1

g1 − ηss + s2θ
(4.5)

f2 =
s2ηss
g1 − ηss

(4.6)

where:
g1 = ηcd + s1θ + θ̃ . (4.7)

The dispersion ηss at the center of the cell, between two mirror symmetric quadrupoles, de-
pends on the drift lengths, the optics functions at the dipole center and the bending characteristics
and it is given by:

ηss =

−2g1s3

s2

1±

√
1 +

4g1s3

s2
2

β2
cdθ − (L/2 + s1) g2

β2
cdθ

2 + g2
2

, (4.8)

where:
g2 = ηcd −

L

2
θ + θ̃ . (4.9)

In the limit of s2 → 0, meaning that Q1 and Q2 are merged into one quadrupole, both f1

and f2 vanish, giving infinite focusing strengths. When s3 → 0, the two quadrupoles that belong
to the Q2 family of the TME cell are merged into one and f2 vanishes. Drift space lengths that
result in very low focal length values and, therefore, in extremely strong quadrupoles must be
avoided. In this respect, two consecutive quadrupoles cannot be merged into one. The fact that
in the limit of s1 → 0 both f1 and f2 have fixed non-zero values, implies that it is possible to
place the quadrupole with focal length f1 exactly next to the dipole, with no drift space between
them. Based on Eq. (4.5) and Eq. (4.5), the full expressions of the quadrupole focal lengths, f1

and f2, at the limits where the drifts s1, s2 and s3 are zeroed are:

• lims1→0 f1 =
s2(ηcd + θ̃)

ηcd + θ̃ − ηss1 + s2θ
and lims1→0 f2 =

s2ηss1

ηcd + θ̃ − ηss1
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• lims2→0 f1 = 0 and lims2→0 f2 = 0

• lims3→0 f1 =
s2g1

g1 + s2θ
and lims3→0 f2 = 0

where:

ηss1 =

−2(ηcd + θ̃)s3

s2

1±

√
1 +

4(ηcd + θ̃)s3

s2
2

β2
cdθ − g2L/2

β2
cdθ

2 + g2
2

and for g1 and g2 given by Eq. (4.7) and Eq. (4.9), respectively

Analytical parametrization of a non-uniform dipole profile

Longitudinally variable dipoles, whose magnetic field varies along their length, can provide lower
horizontal emittances than a uniform dipole of the same bending angle [64, 65]. In the case of
a TME cell for which the symmetry condition is applied, the evolution of H(s) along a uniform
dipole is shown in Fig. 4.3. This evolution guides the bending radius choice for achieving an
emittance reduction by using a variable bend. In fact, the variable bend should be designed such
that the minimum bending radius is at the dipole’s center and then it should decrease towards
the edge of the dipole [66–72].

Figure 4.3: The evolution of the dispersion invariant along the uniform dipole.

For the present work, two different bending radii functions are used to describe the field
evolution. It is assumed that these functions can be either constants or linearly dependent on
the distance s. For simplicity, half of the dipole (from 0 to L/2) is considered since the rest is
symmetric. In this respect, the first part of the half dipole starts at the dipole center (s = 0)
having a length L1 and the second one with a length L2 follows until the end of the dipole, with
bending radii functions ρ1(s) and ρ2(s) respectively.

The maximum magnetic field is at the center of the dipole, where the bending radius is
minimum. The minimum magnetic field and maximum bending radius is at the edges of the
magnet. The field evolution along the magnet can be well described by using only two parameters;
the lengths and the bending radii ratio [69,70,72], that are defined as:

λ =
L1

L2
and ρ̃ =

ρ1

ρ2
. (4.10)
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The lower λ is, the shorter is the high field region compared to the low field one. The lower
ρ̃ is, the higher is the field at the dipole center compared to the one at the edges. Generally,
ρ̃ < 1 because ρ2 needs to be larger than ρ1 and λ > 0.

Splitting the half dipole in two parts with different bending radii requires the study of the
dispersion invariants for each part separately. In this respect, the dispersion invariant given in
Eq. (4.2) should be calculated for both parts; that is H1(s) and H2(s) with:

H1,2(s) = γ1,2η1,2
2 + 2α1,2η1,2η

′
1,2 + β1,2η

′
1,2

2
. (4.11)

After implementing the symmetry condition in Eq. (4.3), the optics functions for the first and
the second part of the half dipole are given by Eq. (4.12) and Eq. (4.13) respectively, for
βL1 , αL1 , γL1 , ηL1 and η′L1

corresponding to the optics functions at the point where s = L1.

β1 = βcd + γcds
2, α1 = −γcds, γ1 = γcd, η1 = ηcd + θ̃1, η

′
1 = θ1 (αcd = 0, η′cd = 0) (4.12)

β2 = βL1 − 2(s− L1)αL1 + (s− L1)2γL1 , α2 = αL1 − (s− L1)γL1 , γ2 = γL1 ,

η2 = ηL1 + θ̃2 + (s− L1)η′L1
, η′2 = θ2 + η′L1

,
(4.13)

where the bending angles and their integrals, using Eq. (4.4), are expressed as:

θ1 =

s∫
0

1

ρ1(s)
ds, θ2 =

s∫
L1

1

ρ2(s)
ds, θ̃1 =

s∫
0

θ1ds, θ̃2 =

s∫
L1

θ2ds , (4.14)

The bending angle of the half dipole is then given by:

θ = θ1(s=L1) + θ2(s=L1+L2) =

L1∫
0

1

ρ1(s)
ds+

L1+L2∫
L1

1

ρ2(s)
ds . (4.15)

Inserting the partial dispersion invariants into Eq. (4.1), the emittance is found to be:

εx = G

 1

L1

L1∫
0

H1

|ρ1(s)|3
ds+

1

L2

L1+L2∫
L1

H2

|ρ2(s)|3
ds

 , (4.16)

where:

G =
Cqγ

2

Jx

 1

L1

L1∫
0

1

ρ1(s)2
ds+

1

L2

L1+L2∫
L1

1

ρ2(s)2
ds


−1

The final form of Eq. (4.16) can be expressed as:

εx = G
I7 + I8λ+ (I1 + I2λ)β2

cd + ηcd (I5 + I6λ+ (I3 + I4λ)ηcd)

L1βcd
, (4.17)

with the integrals I1 − I8 given in Appendix B.
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In order to find the absolute minimum emittance, the partial derivatives of the emittance
with respect to the beta and dispersion functions should be zeroed. As a result, the βTME and
ηTME values that achieve the TME at the center of the dipole are found to be:

βTME =

√
−(I5 + I6λ)2 + 4(I7 + I8λ)(I3 + I4λ)

2
√

(I1 + I2λ)(I3 + I4λ)
and ηTME = − I5 + I6λ

2(I3 + I4λ)
. (4.18)

By inserting Eq. (4.18) into Eq. (4.17) the expression for the TME is given by:

εTME = G

√
I1 + I2λ

√
−(I5 + I6λ)2 + 4(I7 + I8λ)(I3 + I4λ)

L1

√
I3 + I4λ

. (4.19)

The emittance detuning factor εr that describes the deviation of the emittance εx from its
theoretical minimum εTME can be calculated using Eq. (4.20).

εr =
εx

εTME
=

√
I3 + I4λ

(
I7 + I8λ+ (I1 + I2λ)β2

cd + (I3 + I4λ) η2
cd − (I5 + I6λ) ηcd

)
βcd
√
I1 + I2λ

√
−(I5 + I6λ)2 + 4(I7 + I8λ)(I3 + I4λ)

(4.20)

Solving Eq. (4.20) with respect to βcd, the solutions, that are functions of εr and ηcd, are:

βcd1,2 =

εr

√
4 (I7 + I8λ)− (I5 + I6λ)2

I3 + I4λ

2
√
I1 + I2λ

±

√
4
(
(I7 + I8λ) (ε2

r − 1) + (I3 + I4λ) η2
cd − (I5 + I6λ) ηcd

)
− (I5 + I6λ)2

I3 + I4λ
ε2
r

2
√
I1 + I2λ

,

(4.21)

with the integrals I1 − I8 given in Appendix B. Applying the requirement of βcd to be a real-
positive number, the quadratic dependence of the argument in the square root on the dispersion
at the center of the dipole must have an upper and a lower limit, i.e. ηmin < ηcd < ηmax, given
by:

ηcdmin,max = −
(I5 + I6λ)±

√
((I5 + I6λ)2 − 4(I3 + I4λ)(I7 + I8λ))(1− ε2

r)

2(I3 + I4λ)
. (4.22)

The βcd has two solutions for a fixed ηcd. The solutions of βcd and ηcd, that depend on the
detuning factor εr, determine the limits of εx.

The horizontal and vertical phase advances of the cell can be found using the trace of the cell
transfer matrix. The horizontal phase advance, using Eq. (4.9), is given by:

cosµx =
g2

2 − β2
cdθ

2

g2
2 + β2

cdθ
2
. (4.23)

For a uniform dipole, the horizontal phase advance in order to reach the absolute minimum
emittance is independent of any cell or dipole characteristics and has the unique value µx =

284.5◦ [31]. However, in the case of the non-uniform dipoles, the horizontal phase advance for
reaching the TME condition is based on θ and θ̃ and thus, it depends on ρ̃ and λ.
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The vertical phase advance can be expressed as:

cosµy =1 + (L+ 2(s13 + s12))(
1

f1
+

1

f2
) +

(L+ 2s1)s23

f2
1

+
(L+ 2(s1 + s12))s3

f2
2

+
(L+ 2s1)s2

2s3

f2
1 f

2
2

+ 2
(L+ s1 + s12)s23 + s12s3

f1f2
+

(L+ 2s1)(s2
2 + 2s2s3)

f2
1 f2

+ 2
(L+ 2s1 + s12)s2s3

f1f2
2

,

(4.24)

where s12 = s1 + s2, s13 = s1 + s3 and s23 = s2 + s3. If the cell is tuned to the absolute minimum
emittance conditions, for s1 → 0 or s2 → 0 or s3 → 0 and based on the results presented earlier,
the cosµy goes to infinity and so, the vertical motion is unstable. Unlike the horizontal phase
advance, the vertical one depends both on the optics functions at the dipole center and on the
cell geometry.

4.2 Dipole profiles

Based on studies of preceding works for the longitudinally variable bends [64–69], two dipole
profiles are presented where the bending radius forms a step and a trapezium shape. The step
profile shown in Fig. 4.4 (left) consists of two different constant field segments, having the mini-
mum bending radius at the dipole center. The evolution of ρ for the step profile is given by:

ρ(s) =

{
ρ1, 0 < s < L1

ρ2, L1 < s < L1 + L2 = L/2

The trapezium profile is shown in Figure 4.4 (right), where again the strongest constant field
segment is localized at the center of the dipole. The evolution of the bending radius from the
dipole center until its edge is expressed as:

ρ(s) =

{
ρ1, 0 < s < L1

ρ1 + (L1 − s)(ρ1 − ρ2)/L2, L1 < s < L1 + L2 = L/2

Figure 4.4: The evolution of the beding radius along the step (left) and the trapezium (right) dipole
profile.

The theoretical minimum emittance, as calculated using Eq. (4.19) for each dipole profile,
depends on ρ̃, λ and θ. The emittance reduction factor that describes the reduction of the
minimum emittance for a non-uniform dipole with respect to a uniform one with the same
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bending angle, is defined as:
FTME =

εTMEuni

εTMEvar

, (4.25)

where εTMEuni and εTMEvar are the TMEs for a uniform dipole and a variable bend respectively.
The FTME depends only on ρ̃ and λ. For both dipole cases, the full expression of the FTME is
given in Appendix C.

The relation between the reduction and the detuning factor

In practice, the TME cells are detuned to reach larger emittances so that the cell characteristics
are more relaxed. Moving away from the TME, the resulted emittances are εvar and εuni for the
non-uniform and for the iso-magnetic dipoles, respectively. In order to compare the emittances
of a uniform and of a non-uniform bending magnet, their ratio (using Eqs. (4.20) and (4.25)) is
defined as:

εvar
εuni

=
εrvarεTMEvar

εruniεTMEuni

=
εrvar
εruni

1

FTME
, (4.26)

where εrvar and εruni are the detuning factors for the non-uniform and for the uniform dipole
respectively. In order to get an emittance reduction, it should always be

εvar
εuni

< 1. Thus, using

Eq. (4.26), the restriction of:
εrvar
εruni

< FTME (4.27)

is established. The smaller is the ratio of the detuning factors compared to the FTME (that
is fixed in accordance to the chosen dipole characteristics), the lower is the final emittance the
variable bend gives. Practically this means that even if the detuning of a TME cell with a variable
bend is larger than in the case of using a uniform dipole, emittance reductions are possible if
Eq. (4.27) is satisfied.

Parameterization of the emittance reduction factor FTME with ρ and λ

The characteristics of a realistic dipole profile are driven by the constraint of how sharply and
quickly the transition from the high to the low field can be established. Regarding the fact that
the fringe field of the first dipole part should not significantly affect the field of the second one
and that a sharp field drop off is technologically questionable, the minimum difference between
the highest and the lowest field and the corresponding lengths difference is assumed to be 4%.
So, the range of the following plots is regulated by the restriction of λ, ρ̃ > 0.04. Based on the
optimal variable bend characteristics, the design of a magnet that can give the final specifications
of the dipole to be fabricated is under study [73,74].

In Figure 4.5, the reduction factor FTME is parametrized with ρ̃ and λ, for the step (left)
and the trapezium (right) profile. The areas where FTME is high are blue-colored, while red-
colored are the areas where the reduction is smaller. The black contour lines show different
values of the horizontal phase advance. For a uniform dipole, there is a unique horizontal phase
advance independent of any cell or dipole characteristics in order to reach the absolute minimum
emittance case, which is given by µx = 284.5◦ [31]. However, in the case of the non-uniform
dipoles, the horizontal phase advance for reaching the TME condition depends on ρ̃ and λ. The
highest reductions correspond to high phase advances µx > 310◦. Still, remarkable emittance



46 CHAPTER 4. REDUCTION OF THE TME CELL EMITTANCE USING
LONGITUDINALLY VARIABLE BENDS

Figure 4.5: The parametrization of the reduction factor FTME with the bending radii ratio ρ̃ and the
lengths ratio λ for the step (left) and the trapezium (right) profile, for the TME case. The black contour
lines correspond to different values of horizontal phase advances.

reductions are reached even for lower phase advances which correspond to smaller chromaticities,
that is one of the main goals for the optimization of low emittance cells.

For both profiles, in the limits where ρ̃, λ → 1 (i.e. ρ2 = ρ1 and λ2 = λ1) there is no
emittance reduction. Actually this was expected because ρ̃ → 1 means that the bending radius
is constant and so, the variable bend becomes practically a uniform dipole. In the limits where
λ→ 0 and ρ̃→ 0 (i.e. L2 >> L1 and ρ2 >> ρ1) the reductions obtained are practically infinite.
The highest possible reductions are found to be around 13 and 34 for the step and the trapezium
profile, respectively, for λ, ρ̃ > 0.04. These reductions are localized where both λ and ρ̃ are low,
demanding a sharp transition from the high to the low field region. The issue of concern for the
design of a variable bend is how small can ρ̃ be in order to get a realistic difference between the
maximum and the minimum magnetic field along a specific dipole length that has a fixed bending
angle. The magnetic design of a longitudinally variable bend will determine the final limitations
of the dipole’s characteristics.

The resulted emittance reduction factor FTME when fixing the dipole charac-
teristics

In order to facilitate the comparison between the step and the trapezium profile, the number of
dipoles Nd, their length L and the minimum bending radius ρ1 values are kept the same. As
a numerical example, the minimum ρ1 value is set to 4.1 m, i.e. B = 2.3 T at an energy of
2.86 GeV for the CLIC DRs. Also, examples for dipole lengths and angles different than the ones
of the CLIC DR design are presented. Using Eq. (4.15), the bending angles for the step and the
trapezium profile respectively, are found to be:

θstep =
L(λ+ ρ̃)

ρ1(1 + λ)
and θtrapezium =

L(λ(−1 + ρ̃) + ρ̃ ln ρ̃)

ρ1(−1 + ρ̃)(1 + λ)
. (4.28)

Solving Eq. (4.28) with respect to bending radii ratio ρ̃, for a fixed minimum bending radius
value ρ1, it is found that ρ̃ depends on the bending angle, the dipole length and the lengths ratio
(i.e. θ, L and λ). Thereby, the reduction factor becomes a function of θ (or the total number
of dipoles Nd), L and λ. Even if by increasing length or the number of dipoles the reduction
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factors achieved get higher, a compromise between how long and how many are the dipoles used
is required. In addition, as will be mentioned in the next section, the fabrication of a variable
bend sets a lower limit on λ [74] and so, an upper limit on the reduction factor values that can
be achieved.

Figure 4.6: The parametrization of the FTME with ρ̃ and λ, when fixing Nd and L, for the step (left)
and the trapezium (right) profile.

Figure 4.7: The variation of the bending radius along the dipole length for different (Nd, L) pairs,
resulting in the highest emittance reduction (where λ = 0.04) for each case, for the case of the
trapezium profile.

After imposing the θ, L and ρ1 values in Eq. (4.28), a relationship between ρ̃ and λ is obtained
and can be inserted in Eq. (4.25) for obtaining the respective emittance reduction factors. In this
way, the maximum emittance reductions for fixed dipole characteristics are found. Figure 4.6
shows the parameterization of the FTME with ρ̃ and λ, for both dipole profiles and again with the
restriction of λ, ρ̃ > 0.04, for three different cases of (Nd, L) pairs: (100, 0.7 m), (100, 0.58 m) and
(90, 0.58 m). The case of (100, 0.58 m) corresponds to the exact bend characteristics of the CLIC
DR. For the dipole constraints applied in each case, the trapezium gives always higher reductions
than the step profile. Obviously, the more and the longer the dipoles are, the higher emittance
reductions are achieved. The maximum reductions in all cases are localized where both λ and ρ̃
are low. Large λ values are not of interest since the FTME gets very small. The ρ̃ values that
result in the highest emittance reductions are lower for the trapezium case. The variation of the
bending radius along the dipole length that results in the highest emittance reduction for each
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case of (Nd, L) pair, is plotted in Fig. 4.7 for the case of the trapezium profile. As was expected
from Fig. 4.6, the maximum emittance reductions (where λ = 0.04) correspond to different ρ̃
values for each pair of (Nd, L) and thus, for a fixed minimum bending radius (ρ1=4.1 m), their
maximum bending radii differ.



Chapter 5

Alternative CLIC DR design using
longitudinally variable bends and high

field wigglers

In this Chapter, a numerical application of the analytical solutions shown in Chapter 4, is pre-
sented for the CLIC DR [16] TME cell. The DR lattice design is driven by the emittance
requirements which for ultra-low values give rise to collective effects [16], with intra-beam scat-
tering (IBS) being the dominant one. An alternative design is proposed, which aims to mitigate
the IBS effect for a compact ring, using in the arc cells the designed variable bend presented
earlier and an optimized high-field wiggler in the FODO cells. The optimization steps followed,
as well as the final parameters for the improved design are discussed.

The magnet design of a variable bend according to the characteristics of a dipole with the
optimal field variation, is described. The technological limitations of the magnet design are used
as constraints in order to study the impact of a variable bend on the optics functions of the cell
and on the properties of the ring. Extending the analytical approach for the TME cells with
uniform dipoles [33], the parametrization of the quadrupole strengths and optics functions with
respect to the drift lengths and the emittance is derived for a non-uniform dipole.

Based on the analytical thin-lens solutions and the numerical simulations performed with
MAD-X [20], appropriate initial conditions are chosen for matching the CLIC DRs lattice through
numerical optics codes. The optimization strategy followed to reduce the circumference of the
DRs design, when using longitudinally variable bends at the arcs and high field wigglers at the
long straight sections of their layout, is explained. Finally, the parameters of the new alternative
design are compared with respect to the ones of the previous design.

5.1 Longitudinally variable field dipole design for the CLIC
Damping Rings

The analytical results showed that the trapezium dipole profile can reach very low emittances,
compared to a uniform dipole of the same bending angle. Therefore, the fabrication of a variable
dipole having a bending radius that forms a trapezium shape is of interest. According to the
optimal characteristics of a trapezium bending profile to be used for the CLIC Damping Rings,
the magnetic design of a longitudinally variable dipole based on permanent magnets was studied
and the prototype will be fabricated by CIEMAT [73,74]. The main challenges of this design are
the bending radius variation which should change linearly along the magnet and the high field
region length that is very short. The longitudinal gradient with a trapezoid decay is solved by
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Figure 5.1: Magnet design based on the characteristics of the variable bends for the CLIC DRs [73,74].

splitting the magnet in three differentiated field regions combined with an innovative variable gap
solution, as presented in Fig. 5.1. The low field block is made of SmCo materials. The medium

Figure 5.2: The field variation along a dipole having a peak field of 2.3 T; the designed trapezium profile
(red colored), the resulted from analytical calculations profile (black colored) and the field profile that is
simulated in MAD-X (blue colored).

field has the same configuration as the high field section, using NdFeB blocks. The requested peak
field was limited to 1.77 T as a reasonable value for a non-superconducting magnet, requiring to
deal with iron saturation that is partially overcome using a Fe-Co material and suppressing the
hyperbolic profile in the high field region pole tip which is the most saturated section.

The higher is the magnetic field at the center of a variable bend, the higher emittance re-
duction factors can be reached. The use of permanent magnets could allow having a higher field
than in the case of a normal conducting magnet which can reach around 1.8 T. The 3D simu-
lations performed showed that the peak field could be increased above 2 T, resulting in higher
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emittance reduction factors compared to the case of 1.77 T. In Fig. 5.2, a 2.3 T designed trapez-
ium profile is shown in red. The field decay successfully matches the desired from the analytical
results hyperbolic field profile (black colored). For the designed trapezium profile, the λ and ρ̃
values achieved are respectively 0.036 and 0.295, corresponding to an emittance reduction factor
FTME = 7.1 1. For the beam optics simulations performed with the MAD-X code, the field
of the designed trapezium profile is being approximated by a sequence of dipoles with step-like
field (blue colored). Furthermore, since a transverse gradient of -11 T/m was requested 2, the
designed magnet provides at the same time dipolar and quadrupolar fields, having pole tips with
a hyperbolic profile to produce the gradient.

5.2 Numerical application for a variable bend TME cell

According to the design of a variable bend, the maximum dipole field is set to be 2.3 T (minimum
bending radius ρ1 = 4.1 m), for dipoles having a length of L = 0.58 m. The maximum pole tip
field of the quadrupoles and the sextupoles is Bmax

q = 1.1 T and Bmax
s = 0.8 T respectively.

By fixing those parameters the free parameters left are the drift space lengths s1, s2, s3 and
the emittance. The stability criterion and the feasibility constraints that are applied to chose
appropriately the cell characteristics, are given in this section. Most of the times it is preferable
to detune the cell from the TME to larger emittances, so that to get more relaxed solutions for
the cell’s characteristics. A careful detuning of the TME cell that obeys the restriction given by
Eq. (4.27), is necessary.

Stability and feasibility constraints

The criterion, for both horizontal and vertical planes, that ensures the optics stability and that
is used for restricting the cell characteristics is given by:

|cosϕx,y| < 1 . (5.1)

The pole tip field value of both quadrupoles and sextupoles has a limit and the radius of the
magnet aperture has a minimum value. The feasibility of the quadrupoles is ensured if the
quadrupole strength k is kept below a maximum value given by:

k =
1

flq
=≤ 1

(Bρ)

Bmax
q

Rmin
, (5.2)

where Bρ is the magnetic rigidity and Bmax
q is the quadrupole pole tip field. The quantity

Rmin =
√
βεmax + (( δpp0 )maxD)2 is the minimum required aperture radius for a Gaussian beam

distribution, where εmax is the emittance and (δp/p0)max the momentum deviation that corre-
sponds to the point where the particles displacement is maximum. As the sextupoles are set
to cancel the chromaticity induced by the quadrupoles, their strength can be calculated by the

1The technological restrictions do not allow ρ̃ to go down to 0.263 that is the optimal value for a λ = 0.036,
giving a FTME = 8.3.

2For a combined function dipole that has a small defocussing gradient, the IBS effect is reduced through the
increase of the vertical beam size at the center of the bend [75].
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condition: ξx,y = − 1
4π

∮
βx,y[Kx,y(s)− S(s)D(s)]ds = 0, where Kx,y correspond to the focusing

and defocusing quadrupole strengths. For Bmax
s being the pole tip field of the sextupoles, their

feasibility is ensured if the strength S is lower than a maximum value that is:

S ≤ 2Bmax
s

R2
min

1

(Bρ)
. (5.3)

Parameterization with the drift lengths

Aiming to solutions with low chromaticities and small quadrupole strengths, while keeping the
cell compact, a scanning of drift space lengths combinations was performed. The dependence
of different cell characteristics on the drift space lengths require their parametrization with s1,
s2, s3. Since low chromaticity solutions are of interest, the parametrization of the horizontal
ξx and vertical ξy chromaticities with the drift lengths is studied and is presented in Fig. 5.3.
The chromaticities were calculated for all combinations of drift lengths when s1[m] ∈ (0.2, 2),

Figure 5.3: The horizontal (left) and vertical (right) chromaticitiesare parametrized with s1, s2, s3 for
the TME, for the trapezium dipole profile.

Figure 5.4: Parameterization of the horizontal (left) and vertical (right) chromaticities with s1, s2 for
the TME, for the trapezium dipole profile.

s2[m] ∈ (0.2, 2) and s3[m] ∈ (0.2, 1). Two regions can be distinguished; one for s1 < 0.5 m and
another for s1 > 0.5 m, having respectively low and high negative chromaticities. The horizontal
chromaticity depends strongly on s2. The chosen drift lengths should comply with the fact that
for the TME, the lowest negative chromaticities in both planes are found where s1 < 0.5 m and
s2 > 0.5 m. The absolute minimum emittances exist only for chromaticities that are ξx < −2
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and ξy < −1. Detuning factors that give emittances larger than the TME can provide solutions
with lower negative chromaticities. Although a careful choice of s1 and s2 is essential, the system
is less dependent to s3. It should be also stressed that only a small fraction of the (s1, s2)
combinations satisfy the feasibility requirements. The parametrization of the chromaticities with
the drift space lengths, taking into account the feasibility constraints, assists in choosing the
optimal values that are found to be: s1 = 0.28 m, s2 = 0.18 m and s3 = 0.18 m.

Parameterization with the emittance

After having fixed the drift lengths, the parametrization with the emittance detuning factor
provides important information about some cell properties. The emittance value that was so far
determined by the reduction factor FTME , is increased with this detuning. The actual emittance
reduction that depends on the relation between the detuning and the reduction factor can be
found using Eq. (4.26). The plots in Fig. 5.5 give parameterizations with respect to the detuning
factor, considering always the stability criterion.

Figure 5.5: Parameterization of the beta and dispersion functions at the dipole center βcd, ηcd (left) and
of the focal lengths, for f1 > 0, f2 < 0 (center) and for f1 < 0, f2 > 0 (right), with the detuning factor.
The black squares indicate stability and the magenta ones feasibility-low chromaticities solutions.

The elliptical curves in Fig. 5.5 (left) represent the pairs of the beta and dispersion functions
at the dipole center that result in the same emittance. Similarly, the parametrization of the focal
lengths with the emittance detuning factor is given in Fig. 5.5 (center) for f1 > 0 and f2 < 0,
where the pairs of (f1, f2) lie again on constant emittance curves. Solutions with f1 < 0 and
f2 > 0 which correspond to the modified TME cell [76], also exist and they are presented in
Fig. 5.5 (right), with a focus on the stability and feasibility solutions. The TME (εr = 1) is
achieved for a unique pair of beta and dispersion functions that is (ηcd, βcd)=(1.093 × 10−4 m,
0.065 m) and only for one pair of focal lengths which is (f1, f2)=(0.261 m, −0.139 m). The
small focal length values indicate that in order to tune the cell to the TME strong quadrupole
strengths are needed. For the chosen drift lengths, there are no solutions that assure stability
and low chromaticities for the absolute TME (εr = 1). Solutions that assure lattice stability
(black points) and for chromaticities ξx, ξy > −2.5 (magenta points) arise when moving away
from the TME to larger detuning factors, i.e. εr > 1. Solutions with both focal lengths positive
are unstable as they always provide defocussing in the vertical plane. Even if the chosen cell
characteristics result in a confined εr region, the low emittances reached for a very compact cell
counteract the fact that it is numerically challenging to tune the cell.
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(a) (b) (c)

Figure 5.6: Parameterization of the detuning factor (a) and the chromaticities ξx (b) and ξy (c) with the
horizontal µx and vertical µy phase advances, for f1 > 0, f2 < 0, for the trapezium dipole profile.

Figure 5.6 shows the parametrization of the detuning factor εr (a) and of the horizontal ξx
(b) and vertical ξy (c) chromaticity with the horizontal µx and vertical µy phase advances, for
the case of f1 > 0, f2 < 0 solutions which appear only when µx > 0.5 · 2π. Towards high vertical
phase advances, the chromaticities for both planes have high negative values (ξx, ξy < −3). Large
horizontal phase advances correspond to minimum dispersion and beta functions at the center
of the dipole that require strong focusing and to that end, result in high chromaticities. It can
be noticed that for µy < 0.5 · 2π, there are low negative chromaticities even for small detuning
factors corresponding to emittances close to the minimum one. There is only one phase advance
pair that gives the theoretical minimum emittance for the chosen dipole characteristics and that
is µxTME ' 0.62 · 2π.

(a) (b) (c)

Figure 5.7: Parameterization of the detuning factor (a) and the chromaticities ξx (b) and ξy (c) with the
horizontal µx and vertical µy phase advances, for modified TME cell where f1 < 0, f2 > 0, for the
trapezium dipole profile.

Solutions for f1 < 0, f2 > 0, corresponding to the modified TME cell [76], also satisfy the
stability criteria for the chosen cell characteristics and are presented in Fig. 5.7. These solutions
appear always for µx < 0.5 · 2π. The quadrupole strengths for the modified TME cell are lower
compared to the normal TME cell, as presented in Fig. 5.5 (right). Knowing the FTME for
the designed variable bend, the restriction described in Eq. (4.27) sets an upper limit to the
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detuning of the cell. Since the modified TME cell requires a large detuning in order to get
low horizontal chromaticities, the final emittance reductions reached are not sufficient. In this
respect, the normal TME cell (having f1 > 0, f2 < 0 solutions) will be further used for the
following numerical application to the CLIC DR optics design.

5.3 Alternative CLIC DR design

The DR lattice [16] has a racetrack shape with arc sections composed by the most compact
low emittance cells, the TME cells. The two long straight sections (LSS) are composed by RF
cavities, injection and extraction equipment and FODO cells filled with damping wigglers that
are necessary for reaching low emittances within a fast damping time. The super-conducting
magnet wigglers used in the current design have a Bw = 2.5 T peak field and λw = 5 cm period.

The DR lattice design is driven by the emittance requirements which for ultra-low values
give rise to collective effects [16], with intrabeam scattering (IBS) being the dominant one. An
alternative design which aims to mitigate the IBS effect for a compact ring, using in the arc
cells the designed variable bend presented earlier and an optimized high-field wiggler in the
FODO cells, is proposed. The optimization steps followed, as well as the final parameters for the
improved designs are discussed in this section.

Optimization of the arc TME cell

For the beam optics simulations performed with the MAD-X code [20], the field variation of the
designed trapezium profile is being approximated by a sequence of dipoles with varying field, as
illustrated in Fig. 5.2. The dipole length is L = 0.58 m and the maximum dipole field is 2.3 T.
For a combined function dipole, i.e. having a small defocussing gradient (see section 5.1), the
IBS effect is reduced through the increase of the vertical beam size at the center of the bend.
Basically, instead of having a low β at the center of the dipole in both planes, the optics matching
imposes βy to be maximum there. Therefore, there is a reduction of IBS growth rates. After
fixing the characteristics of the dipole, the drift space lengths are chosen in accordance with the
results presented in Section 5.2.

Keeping in mind that a TME cell with a combined function dipole reduces the IBS effect [75],
assists in choosing the proper phase advances, that guarantee low chromaticities and small
quadrupole strengths. The parametrization with the emittance has shown that the quadrupole
strengths for which f1 > 0 and f2 < 0 (Fig. 5.6), can only be found for µx > 0.5 · 2π. A good
compromise for the horizontal phase advance is to be around 0.51 · 2π and for the vertical phase
advances to be always below 0.5 · 2π. After a detailed scanning of the cell characteristics, the
horizontal and vertical phases advances of the TME cell are respectively chosen to be around
0.51 · 2π and 0.11 · 2π.

When the uniform dipoles of the current design are replaced by variable bends, the resulted
emittance is lower than the required one. In this case, the subtraction of some TME cells from
the existing arc is possible. Actually, the number of dipoles (i.e. total number of TME cells) can
be reduced to such an extent that the required emittance is still achieved, thereby resulting in a
shorter ring. In this respect, it was possible to reduce the number of dipoles down to Nd = 90

for the case of the designed trapezium profile with a 2.3 T maximum field.
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Optimization of the FODO cell

Figure 5.8: The dependence of the steady state emittances (εxIBS and εyIBS) and their ratio with the
corresponding equilibrium emittances (εx0 and εy0) on the wiggler peak field Bw, for the trapezium
dipole profile.

The damping wigglers are necessary for achieving low emittances within a fast damping time.
Each FODO structure of the LSS accommodates two wigglers. The use of super-conducting
technology is mandatory in order to have a high wiggler field and a relatively short period for
obtaining low emittances and fast damping time. It was shown that by targeting higher wiggler
fields not only the emittance but also the IBS effect can be reduced [57,77]. Taking into account
the optimization of the arc cells and the fact that the emittance with IBS is significantly lowered
after increasing the wiggler’s peak field, the FODO cells per LSS can be reduced from 13 down
to 10. The plots in Fig. 5.8 show the MAD-X results of the parametrization of the steady state
transverse emittances including the IBS effect with the wiggler peak field Bw, starting from the
2.5 T that is the field of the previous wiggler design, for the 10 FODO cells. Clearly, the wiggler
field increase corresponds to a significant reduction of the IBS effect. Regarding the fact that
the required output emittance is 500 nm-rad, a new working point for the damping wigglers that
complies with the technological restrictions is proposed to be at 3.5 T and with a 49 mm period
length. This design necessitates a different wire technology, using Nb3Sn material [78].

Layout and optical functions

The layout of the ring is shown in Fig. 5.9. The final lattice, with a smaller number of dipoles
and wigglers than the ones of the existing design, is produced. In Fig. 5.10 (left), the matched
optics, i.e. horizontal dispersion, horizontal and vertical beta functions, are plotted for one arc
TME cell. On the top part of the figure, a schematic layout of the cell is presented, showing
the two doublets of quadrupoles and the sextupoles that are placed between the two mirror
symmetric defocusing quadrupoles and between the dipole and the focusing quadrupoles. In
Fig. 5.10 (right), the matched optics of the dispersion suppressor-beta matching section followed
by the wiggler FODO cell, are presented.

Dynamic aperture

The on- and off-momentum dynamic aperture (DA) of the ring was estimated for particles tracked
with the PTC module of MAD-X [20]. Fig. 5.11 shows the maximum initial positions of particles
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Figure 5.9: Schematic layout of the CLIC DR.

Figure 5.10: Optical functions of the TME cell (left) and of the dispersion suppressor-beta matching
section followed by the FODO cell (right), when using in the arcs the trapezium dipole profiles.

that survived over 1000 turns, normalized to the horizontal and vertical beam sizes, at the
point of calculation (σx = 273.0 µm and σy = 40.2 µm). This simulation includes the effect
of chromaticity sextupoles and magnets fringe fields but no other additional imperfection such
as misalignments or magnet errors. The results for δp = 0 are shown in blue, for δp = 0.5%

in red and for δp = −0.5% in yellow. The dynamic aperture achieved is remarkable (almost
14 mm in the horizontal plane and 5 mm in the vertical plane), allowing very comfortable on-axis
injection. A working point optimization, with simulations including misalignments, coupling and
their correction, the non-linear effect of wigglers and space charge tune-shift, was further studied
to fully quantify the non-linear performance of the new design [79], which was found robust and
adequate.
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Figure 5.11: The on-momentum (δp = 0) dynamic aperture of the DR for the trapezium dipole profile.

5.4 CLIC DR design parameters for the original and the improved
design

The parameters of the original design and the alternative one are displayed in Table 5.1. It can be
noticed that both lattices reach the target emittances including IBS, as calculated by the Bjorken-
Mtingwa formalism through MAD-X [20]. The case of the low energy CLIC for Nb = 5.7 × 109

and VRF = 6.5MV [80] (see Appendix D) was also studied for the new design and as was expected
due to the larger bunch population that renders IBS stronger, the final emittances are increased
up to 472 nm and 4.6 nm in the horizontal and the vertical plane, respectively. One of the main
advantages of the alternative design is that the damping ring becomes around 13 % shorter. Also,
the fact that the damping times are significantly reduced is beneficial for all collective effects,
including IBS.
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Table 5.1: Parameters for the original and the improved CLIC DRs design, for the case of Nb = 4.1× 109

Parameters, Symbol [Unit]
Original design Alternative design

uniform uniform trapezium

Energy, E [GeV] 2.86 2.86
Bunch population, Nb [109] 4.07 4.07
Circumference, C [m] 427.5 373.7
Basic cell type in the arc/LSS TME/FODO TME/FODO
Number of arc cells/wigglers, Nd/Nw 100/52 90/40
RF Voltage, VRF [MV] 4.50 6.50
Harmonic number, h 2850 2493
RF Stationary phase [o] 62.3 58.9 63.0
Momentum compaction, αc [10−4] 1.3 1.3 0.88
Damping times, (τx, τy, τl) [ms] (1.98, 2.05, 1.04) (1.24, 1.28, 0.33) (1.19, 1.23, 0.31)
Energy loss/turn, U [MeV] 4.0 5.6 5.8
Quadrupole gradient strengths, (k1, k2) [T/m] (26, -53) (66, -98) (67, -98)
Phase advances per arc cell, (µx, µy) [360o] 0.408/0.050 0.510/0.110
Horizontal and vertical tune, (Qx, Qy) (48.35, 10.40) (51.16, 14.56) (51.18, 14.55)
Horizontal and vertical chromaticity, (ξx, ξy) (-113, -82) (-57, -70) (-67, -75)
TME cell length, Lcell [m] 2.44 2.62
Dipole field, (Bmin, Bmax) [T] (0.97, 0.97) (0.97, 0.97) (0.62, 2.32)
Lengths and bending radii ratio, (λ, ρ̃) (1, 1) (1, 1) (0.04, 0.26)
Normalized gradient in dipole [m−2 or T/m] -1.1 or -10.5 -1.1 or -10.5
Wiggler peak field, Bw [T] 2.5 3.5
Wiggler length, Lw [m] 2 2
Wiggler period, λw [cm] 5.0 4.9

without IBS
Normalized horiz. emittance, γεx [nm-rad] 312.2 574.1 350.3
Normalized vert. emittance, γεy [nm-rad] 3.3 3.3
Energy spread (rms), σδ [%] 0.11 0.15
Bunch length (rms), σs [mm] 1.4 1.6
Longitudinal emittance, εl [keVm] 4.4 5.8

with IBS
Normalized horiz. emittance, γεx [nm-rad] 478.9 648.7 434.7
Normalized vert. emittance, γεy [nm-rad] 5.0 4.5 4.2
Energy spread (rms), σδ [%] 0.11 0.15
Bunch length (rms), σs [mm] 1.5 1.6
Longitudinal emittance, εl [keVm] 4.7 5.8
IBS factors hor./ver./long. 1.53/1.52/1.08 1.13/1.35/1.01 1.24/1.26/1.02



Chapter 6

IBS Simulations for the CLIC DRs

Lepton machines, such as future linear collider damping rings and new generation light sources,
operate in regimes where the IBS effect can be predominant. Therefore, it is important to
understand the parameters the IBS effect depends on. In this chapter, the IBS results from
MAD-X (B-M analytical formalism) and SIRE are presented for the alternative CLIC DR design
which was discussed in Chapter 5. A benchmarking of the IBS theoretical models with Monte-
Carlo codes was presented in [57] for lepton rings. Also, a validation of the SIRE IBS routine
has been performed on the CLIC DR lattice design [47].

6.1 The IBS growth rates along the CLIC DR

As was explained in Chapter 3, the IBS growth rates for all theories and approximations have
a complicated dependence on the beam properties, the beam optics and the equilibrium rms
transverse emittances and energy spread. The basic performance parameters of the alternative
CLIC DR design are summarized in Table 5.1. The variation of the beta and the dispersion
functions that determine the IBS growth rates are plotted in Fig. 6.1 for the CLIC DR, for the
horizontal (black) and vertical (red) plane.

Figure 6.1: The beta (left) and dispersion (right) functions, in the horizontal (black) and vertical (red)
plane, along the CLIC DR.

The IBS growth rates were calculated for the full optics of the CLIC DR, using the IBS
module of the Methodical Accelerator Design code (MAD-X) [45] which is based on the Bjorken-
Mtingwa formalism (see 3.3). For the IBS growth rate calculations, it is important that the IBS
kicks are distributed over an adequate amount of points across the ring, such that the variation of
the optics is taken into account. The starting emittance values are the zero current equilibrium
ones. The steady state emittances, at least for the cases under study, do not depend on the
starting point. Figure 6.2 shows the IBS growth rates in the longitudinal (green), the horizontal



6.2. BENCHMARKING OF THE B-M IBS THEORETICAL MODEL WITH SIRE 61

(blue) and the vertical (magenta) plane. The left axis corresponds to the vertical (Ty) and the
right axis to the longitudinal (Tl) and horizontal (Tx) IBS growth rates. In the long straight
sections which are dispersion free regions, the Tx is very small, meaning that the IBS effect in
the horizontal plane is minor. On the other hand, in the arcs which are dispersive regions, due
to the fact that the dispersion couples the horizontal and longitudinal planes, part of the IBS
growth is transferred from the longitudinal to the horizontal plane and so, Tx is larger.

Figure 6.2: The IBS growth rates in all three planes, along the CLIC DR.

6.2 Benchmarking of the B-M IBS theoretical model with SIRE

Figure 6.3: One turn comparison between the tracking code SIRE and the B-M theoretical model for
the CLIC DR, showing the growth of the horizontal (left), vertical (center) emittance and energy spread
(right).

It is important to benchmark the existing IBS theoretical models, in the presence of syn-
chrotron radiation and quantum excitation, with the tracking codes and identify their limitations.
In this section, the theoretical model of Bjorken-Mtingwa (B-M) is compared to the simulations
performed with SIRE for the CLIC DR. Figure 6.3 shows the growth of the horizontal (left) and
vertical (center) emittances and energy spread (right) in one turn, as calculated by B-M (red)
and SIRE (blue). Due to the fact that in SIRE the generation of the distribution is based on a
random number generator, the tracking simulations were performed several times, resulting in
the two standard deviation error-bars that are plotted in light blue.
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Taking into account the results presented in Fig. 6.2, the fact that the dispersion plays a very
important role in the redistribution of the phase space due to the IBS effect is nicely demonstrated
in Figure 6.3. In agreement with what was discussed earlier, the one turn growth shows that the
IBS effect in the horizontal plane is minor at the dispersion free regions (long straight sections)
and becomes significant at the dispersive regions (arcs). Since the vertical dispersion is very
small (Fig 6.1 (right)) and the betatron coupling is considered to be zero, the vertical plane is
uncoupled from the other two. It can be noticed that the trend of the emittance evolution is
the same for the B-M theoretical model and for SIRE. The SIRE simulation algorithm uses the
Rutherford cross-section to calculate the scattering probability in a solid angle, while the B-M
analytical formalism, which always overestimates (compared to other theories) the IBS effect,
uses a different approach.

Figure 6.4: The emittance growth in the horizontal (left) and vertical (right) plane until convergence
(steady states), as calculated by SIRE, for the CLIC DR.

Figure 6.5: The variation of the distributions in the horizontal (left), vertical (center) and longitudinal
(right) plane till the equilibrium emittance is reached, as calculated using SIRE.

Table 6.1: Initial and final (at equilibrium) fit results for the horizontal, vertical and longitudinal bunch
profiles shown in Fig. 6.5, for the CLIC DRs.

Fit Parameters
Horizontal distribution Vertical distribution Longitudinal distribution
Initial F inal Initial F inal Initial F inal

σrms [µm] 119.0± 3 164.0± 3 3.2± 10−3 5.1± 10−3 1515.0± 18 1513.0± 21

RMSE [10−3] 3 6 3 4 3 3

The growth of the emittances until convergence (steady states), using the SIRE code for the
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calculations, is presented in Figure 6.4, for the horizontal (left) and vertical (right) plane. The
growth in the longitudinal plane is less than 1% and thus, it is not shown here. Figure 6.5 shows
the variation of the horizontal (left), vertical (center) and longitudinal (right) distributions till
the equilibrium emittance is reached. The input distributions tracked using SIRE were Gaussian
and they remain Gaussian till convergence. The initial and the final (steady states) distributions
are color-coded with blue and red, respectively. In Table 6.1 the variation of the rms beam sizes
is given for the transverse and longitudinal distributions. The beam sizes are increased by almost
40% and 60% in the horizontal and vertical plane, respectively. In the longitudinal beam size
remains practically the same.



Chapter 7

Bunch profile measurements at the
LHC

7.1 Transverse bunch profile instruments

The beam parameters at the high energy of the LHC require special measurement techniques in
order to get the beam size and so the transverse emittance. The transverse diagnostic instruments
used are the betatron matching monitor [81], the beam gas ionization monitor [82], the beam wire
scanners (WS) [83] and the Beam Synchrotron Radiation Telescope (BSRT) [84]. Compatibly
with high intensity and high energy operation, the BSRT is the only instrument offering non-
invasive, continuous and single bunch measurements of the LHC beams.

Figure 7.1: Sketch of the BSRT Synchrotron light sources [85].

The LHC is equipped with two SR monitors (one per beam) used to characterize the transverse
and longitudinal beam distributions. The light emitted by a superconducting undulator and/or
by a dipole magnet (depending on the beam energy) is sent to the BSRT, as sketched in Fig. 7.1.
It is worth noting that the undulator and the dipole are installed in a dispersion free region. The
visible synchrotron light emitted by the protons in IR4 is imaged on a fast gated CCD (Charge-
Coupled Device) camera, providing a beam 2D image from which the beam size in the transverse
plane can be extracted. Although the BSRT measurements are very precise when averaging over
several acquisitions, their quality is mainly limited by the accuracy of the calibration.

The BSRT is calibrated with respect to the WS during dedicated low beam intensity runs 1,
by assuming Gaussian beam sizes and a Gaussian instrument resolution σLSF for the BSRT [85].
In this respect, the beam size measured by the BSRT is expressed as:

σ2
BSRTmeas = σ2

BSRT + σ2
LSF , (7.1)

Given the optical functions at the location of the SR source, the beam emittance can be calculated
by:

εBSRT = σ2
BSRTγ/β , (7.2)

1The WS can measure the emittance throughout the full LHC machine cycle including the energy ramp,
provided that the total intensity in the machine is limited to ∼240 nominal bunches at 450 GeV and ∼12 nominal
bunches at 6.5 TeV.
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The σLSF factor, the γ Lorentz factor and the β optical function vary according to the energy
(FB or FT) and to the plane (horizontal or vertical) the bunch profile measurement is taken.

Examples of transverse bunch profiles in the LHC (BSRT)

An example of the BSRT profiles observed in the LHC is shown in Fig. 7.2 (left) for a single bunch
at a specific time. The frequency each bunch is seen by the BSRT depends on the total number of
bunches in the machine and on the settings the BSRT experts apply. It can be that at a specific
time slot, that is every almost 1 sec, there are more than one measurements for each bunch, as the
ones shown in Fig. 7.2 (blue, green and red). In this case, during each time slot there is a specific
number of bunches observed, having for each one of them a few measurements (usually 3 to 5)
that can be averaged to obtain a single distribution for the beam size estimation. Sometimes, for
optimizing in case the machine is full or when having bunches of different intensities, only one
measurement of a single bunch per time step is acquired.

Figure 7.2: The BSRT profile measurements (blue, green and red lines) for a single bunch at a specific
time, before applying any noise filter (left), after performing an FFT noise cleaning (center) and when
symmetrically duplicating the left side (right).

In order to eliminate the noise of the BSRT profiles, a Fast Fourier Transform (FFT) is used.
The Fourier Transform of a function of time can be considered as a relative measure of how much
the function oscillates with a specific frequency. Since the frequencies of the original signal appear
as spikes in the Fourier Transform graph, the dominant frequencies within a noisy signal can be
identified. Once these spikes are found, the inverse Fourier Transform for these frequencies can
be performed so that to obtain the original signal without the accumulated noise. By keeping
the dominant frequencies found from the FFT graph, the reconstructed bunch profiles obtained
after performing an inverse FFT, are presented in Fig. 7.2 (center).

Sometimes only the left part of the BSRT profiles should be considered. In such cases, the
left side of the profiles is duplicated and then it is flipped horizontally, such that to be finally
merged with the original left side of the distributions. Figure 7.2 (right) shows the symmetrically
duplicated bunch profiles to be considered for calculating the beam size.
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7.2 Longitudinal bunch profile instruments

Due to the fact that there is no direct method to measure the longitudinal emittance in circular
accelerators, a parameter that is generally used in measurements is the bunch length (Eq. (2.70)).
If all accelerator parameters are known, including the potential-well distortion effect 2, the bunch
length can be used to infer the emittance. The projection of the distribution function on the
phase axis which is known as the bunch profile or line density, gives the bunch length.

The bunch length is operationally measured by the LHC Beam Quality Monitor (BQM) [86]
which uses a wall current monitor pick-up (WCM) [87] to acquire the longitudinal profiles. Addi-
tionally, the longitudinal synchrotron radiation monitor (BSRL) [88] continuously measures the
longitudinal distribution of charges in the beams. It uses the same synchrotron light source as the
BSRT, but it measures the temporal distribution of the incoming light. The transfer functions of
the pickups and cables were measured and are used for deconvolution [89]. The scopes connected
to the WCM pick-ups can acquire longitudinal bunch profiles of both beams during a full LHC
cycle.

Examples of longitudinal bunch profiles in the LHC

During the energy ramp, the bunches in the LHC are blown up longitudinally in order to avoid
instabilities due to the loss of Landau damping [90], and this results in non-Gaussian longitudinal
distributions at the start of collisions [91]. An example showing the evolution of a longitudinal
particle distribution during 11.5 h at collisions (6.5 TeV) in the LHC is presented in Fig. 7.3.
The blue colored profile that corresponds to the start of collisions demonstrates that the bunch
arrives at FT energy with a clearly non-Gaussian shape. Later in time, the interplay between
SR and IBS results in a profile formation that is more Gaussian.

Figure 7.3: The evolution of a longitudinal bunch profile during 11.5 h at collisions (6.5 TeV).

In the case of the LHC, the full width at half maximum (FWHM) of the line density is used
to calculate the longitudinal beam size. While this measurement is precise, the measured bunch
length only accurately represents the r.m.s. width provided that the longitudinal distribution is

2For a stable bunch in the stationary case, the induced voltage distorts the rf potential well with respect to
the ideal case, causing a shift of the stable fixed point and modifying the effective voltage seen by the particles.
The latter leads to a shift in the synchrotron frequency and a change of the bunch length.



7.3. PROBABILITY DISTRIBUTION FUNCTIONS FOR THE LHC BUNCH PROFILES 67

Gaussian. In order to have a complete understanding of the longitudinal emittance, specially for
bunches with non-Gaussian tails, it is more accurate to determine the bunch length using the
standard deviation rather than just the FWHM of the distribution.

7.3 Probability distribution functions for the LHC bunch profiles

In the LHC, the interplay between IBS and a series of other effects, including longitudinal beam
manipulations, non-linearities of the machine or noise, can enhance the tails of the beam distri-
butions which may become non-Gaussian. It is therefore important, in the case of non-Gaussian
profiles, to make use of alternative (not Gaussian) functions to fit appropriately the measured
distribution. As was mentioned earlier in this chapter, both the WS and the BSRT measurements
use the Gaussian function to fit the transverse bunch profiles observed in the LHC. The distri-
bution function used to describe the non-Gaussian longitudinal bunch profiles in the LHC [89]
is the binomial discrete probability distribution. For k successes out of n trials, the binomial
distribution approximates the Gaussian distribution only when n is very large. One of the al-
ternatives used for fitting beam distributions with non-Gaussian tails is the double Gaussian,
that is basically the sum of two normal distributions having different standard deviation values.
Statistically the double Gaussian is a probabilistic model for representing the presence of sub-
populations within an overall population, without requiring that an observed data set should
identify the sub-population to which an individual observation belongs. Practically, a double
Gaussian function can describe non-Gaussian tailed distributions better than a single Gaussian.

Among all the functions mentioned for fitting the particle distributions observed in the LHC
(Gaussian, binomial and double Gaussian), only the q-Gaussian [92] which is described in detail
below, provides the flexibility to accurately describe the core and the tails at the same time.
Fitting a “heavy” or “light” tailed distribution with the q-Gaussian function reveals its prepon-
derance among the other functions. Therefore, for the bunch profiles studied and presented in
this thesis, the q-Gaussian function is used.

The q-Gaussian function

In order to describe more accurately bunch profiles with tails that differ from the ones of a normal
distribution, a generalisation of the Gaussian distribution function, the q-Gaussian [92], can be
employed. This distribution has a probability density function given by:

f(x) =

√
βqG

Cq
eq(−βqGx2) . (7.3)

If the distribution needs to be centered on zero, the location parameter µ should be included in
the density function as:

f(x) =

√
βqG

Cq
eq(−βqG(x− µ)2) . (7.4)

The q-exponential function is given by: The q-exponential function is given by:

eq(x) =

{ exp(x) , if q = 1

(1 + (1− q)x)
1

1−q , if q 6= 1 and (1 + (1− q)x) > 0

0 , if q 6= 1 and (1 + (1− q)x) ≤ 0

. (7.5)
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The parameter q describes the weight of the tails, in the sense that the larger it is, the heavier
the tails become, as presented in Fig. 7.4. In the limit of q → 1, the distribution becomes a
normal distribution. The distribution is characterized as “light” tailed when q < 1 and as “heavy”

Figure 7.4: The q-Gaussian distribution function for different q and βqG values.

tailed when q > 1. The normalization factor Cq differs for specific ranges of the q parameter, it
is written as:

Cq =

{ 2
√
π

(3−q)
√

1−q
Γ
(

1
1−q

)
Γ
(

3−q
2(1−q)

) for −∞ < q < 1

√
π for q = 1
√
π√
q−1

Γ
(

3−q
2(q−1)

)
Γ
(

1
q−1

) for 1 < q < 3

(7.6)

The parameter βqG is a real positive number. As the normal distribution, the q-Gaussian is an
even function taking its maximum at x = 0, where

f(0) =

√
βqG

Cq
. (7.7)

For a certain q value, the higher is the value of βqG, the larger is the maximum of the probability
density function, as can be observed in Fig. 7.4. The standard deviation also differs for specific
ranges of the q parameter, it is:

σ =

{ √
1

βqG(5−3q)
for q < 5/3

∞ for 5/3 ≤ q < 2

undefined for 2 ≤ q < 3

(7.8)

The Box-Muller transform has been generalized to allow random sampling from q-Gaussians [93].
Based on Eq. (7.9), the distribution is equivalent to the Student’s t-distribution with a direct

mapping between q and the degrees of freedom ν, in the heavy tail regime only (since ν+3 > ν+1

and so, q>1). Statistically the q-Gaussian is a scaled reparametrization of the Student’s t-
distribution [94] for which the parameter ν is constrained to be a positive integer related to the
sample size. The advantage of the q-Gaussian function is that, by introducing the parameters q
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and βqG, a generalization of the Student’s t-distribution to negative and or non-integer degrees
of freedom is possible.

q =
ν + 3

ν + 1
with βqG =

1

3− q
(7.9)

7.4 Example of transverse bunch profiles at the LHC FT energy

In a circular collider, a certain crossing angle is required for colliding bunch trains so that to
separate the two beams after collision. The magnitude of this crossing angle is a complicated
function of the bunch charge, the number of long-range beam-beam (LRBB) interactions [95–97],
of the β∗ and of the optics. The LRBB interactions can be a source of emittance growth that may
lead to beam losses in the LHC during physics [98]. For the case of the High Luminosity LHC
upgrade (HL-LHC) with the small β∗ and the high bunch intensities, such effects are enhanced.

During the LHC operation period, apart from the physics fills, there are specific days dedicated
to machine development (MD) studies, which are carefully planned in the LHC operation schedule
to optimize and further study the performance of the machine. One of the 2017 MD studies was
the beam-beam long-range (BBLR) MD [99]. This MD had a primary goal to verify and establish
the minimal crossing angle between beam 1 (B1) and beam 2 (B2) that is important for the
luminosity leveling by crossing angle [100], by collecting observations to optimize the operational
configuration, confirming the asymmetric behavior of B1 and B2 and understanding the critical
BBLR regime.

Figure 7.5: The evolution of the q parameter for a train of BCMS bunches at FT energy (6.5 TeV) versus
time (left).

During the BBLR MD the transverse bunch profiles were acquired for both beams, using the
BSRT [84, 85]. After having put the beam in collision at top energy, the half crossing angle of
IP1 and IP5 was reduced in steps from 150 until 90 µrad within 3 h. The evolution of the q
parameter in time (after adjust) for the acquired profiles is shown for the horizontal plane of B1
in Fig. 7.5. Starting from values of the order of 1.15 the q parameter decreases gradually in time,
i.e. the profiles become more Gaussian. Due to the fact that the number of BBLR experienced
by each bunch is related to the position of each bunch in a train, specific patterns are expected to
be observed along a train of bunches, specially when the crossing angle is significantly reduced.
So, it is important to plot the quantities that are of interest versus the bunch slot number. In
this respect, in Fig. 7.6 the q (left) and βqG (right) parameters of the q-Gaussian fit are plotted
over the bunch slot number and are color-coded with time. In general, all bunches become more
Gaussian, since q decreases as time evolves. The bunches at the center of the train, which have
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Figure 7.6: The evolution of the q (left) and of the βqG (right) parameters for a train of BCMS bunches
at FT energy (6.5 TeV) versus the bunch slot number.

Figure 7.7: The evolution of the horizontal rms beam size (non-calibrated), as calculated by the
Gaussian (left) and the q-Gaussian (right) fits, for a train of BCMS bunches during 3.5 h at FT energy
(6.5 TeV), versus the bunch slot number.

more BBLR encounters than the ones at the edges of the train, correspond to larger βqG values.
Similar plots are shown for the Gaussian and the q-Gaussian rms beam sizes in Fig. 7.7. The beam
size values presented in these plots are the non-calibrated ones 3 because the existing calibration
factors to correct the rms values can be applied only for Gaussian distributions [85], and thus,
their magnitude should not be taken into account. The comparison of the Gaussian and the q-
Gaussian non-calibrated beam sizes shows that the Gaussian fit- which cannot describe well the
observed overpopulated tails, underestimates the real beam size. For both the Gaussian and the
q-Gaussian case there is a clear correlation between the beam size and the BBLRs encountered
by the bunches along the train.

3The BSRT is calibrated with respect to the wire scanners (WS) [83] during dedicated low beam intensity runs.
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Luminosity observations and
estimations

Operating at 6.5 TeV , the LHC surpassed the expectations and delivered an average of 66 fb−1

integrated luminosity to the two high luminosity experiments ATLAS and CMS by the end of
2018 (see Fig. 1.3). Aiming to gain some of the luminosity lost during collisions, the crossing
angle is gradually reduced (anti-leveling process) [101, 102]. In view of increasing the integrated
luminosity, the beams are initially squeezed to a β∗ of 30 cm that is further reduced to 25 cm

after some hours in collisions according to the ATS (Achromatic Telescopic Squeeze) [103] op-
tics scheme. In order to provide a continuous feedback to the machine coordination for further
optimizing the performance, an automated tool for monitoring the main beam parameters and
machine configurations, has been devised and extensively used. Estimates, based both on sim-
ulations and on observed beam parameters, were reported fill-by-fill as well as in overall trends
during the Run 2.

8.1 Emittance observations in the LHC

In Fig. 8.1 the BSRT convoluted (average of two beams) emittances at the start of collisions are
compared to the ones of the emittance scans [104] and to the ones extracted by the luminosity
of the LHC experiments (ATLAS and CMS), for the 2018 BCMS Fills. The pink solid lines
correspond to BSRT calibration Fills and the dashed ones to Technical Stops (TS). Except for
the periods before Fill 6700 and for Fills 7100-7220 having BSRT hardware issues (gray colored
areas), for most of the year the BSRT emittances are underestimated. The agreement of the
emittance scans [105] with the emittances inferred from luminosity is 5−20% and, the emittances
from Wire Scanners (WS) [106] are up to 10−15% lower than the ones extracted from luminosity,
based on the results presented in [107] for a BSRT calibration Fill. Since the BSRT is calibrated
with respect to the WS, the discrepancy between the BSRT and the emittances estimated from
luminosity is something to be expected. In 2017, the emittance estimations coming from the
different methods agree well, within the uncertainties of each measurement, except for specific
periods where the BSRT measurements are diverging [101].

Understanding the discrepancy between different emittance measurements is important since
they play a key role for the luminosity estimations as well as, for the validation of the data
quality. One of the studies to explain these differences, focuses on fitting accurately the beam
distributions. The importance of that was discussed in [108] for the longitudinal distributions,
in order to get a better bunch length estimation. Moreover, the bunch by bunch analysis for
various Fills during Run 2, underlines the seriousness of fitting accurately the transverse bunch
profiles that determine the transverse emittances.
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Figure 8.1: Convoluted (average of the two beams) emittances for the 2018 Fills in the horizontal (top)
and vertical (bottom) plane, from Emittance scans (green), Luminosity (red) and BSRT (blue).

Emittance calibration in the LHC

The divergence from the expected emittance values coming from luminosities was guiding the
BSRT calibration along the LHC Run 2. As was discussed in Chapter 7, the BSRT is calibrated
with respect to the WS during dedicated low beam intensity Fills. Certainly, such a calibration
determines the values of the measured emittances. A BSRT calibration Fill from the LHC Run 2

Table 8.1: Injected emittances of bunch slots during a BSRT calibration Fill, based on Gaussian fitting.

Bunch slots Emittance [µm]
3 and 450 5
891 and 1200 3
1500 and 1785 1.8
2100 and 2450 1.2

is taken as a case study example (Fill 6293 in 2017) in order to understand the impact of fitting
accurately the observed beam profiles on the estimation of the transverse beam size and therefore,
on the emittance. The accuracy of the calibration technique can be improved by using a wide
range of emittances. During the calibration Fill used as example here, 8 bunches per beam of
various emittances were injected (at 450 GeV), they are listed in Table 8.1. The BSRT profiles
of these bunches were fitted using both the Gaussian and the q-Gaussian distribution function.
Figure 8.2 presents the resulted q parameter, that describes the weight of the distribution tails,
of the q-Gaussian fits for the first minutes after these bunches were injected in the LHC. First of
all, the bunches injected with large emittances (i.e. bunch slots 3 and 450) are more Gaussian
(q ≈ 1) compared to the other bunches. This is related to the way these bunches are blown up in
the injectors, so that to have various emittances when injected in the LHC. There are also some
differences between the horizontal (top) and vertical (bottom) plane, with the horizontal bunch
profiles having slightly lighter tails compared to the vertical ones. While the reduction of the
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Figure 8.2: Evolution of the weight of the distribution tails, given by the q parameter, for bunches
which are injected in the LHC having different emittances (see Table 8.1), in the horizontal (top) and in
the vertical (bottom) plane.

q parameter in time is obvious in the horizontal plane, in the vertical plane it remains almost
constant. This means that for the specific calibration Fill at injection energy, as time evolves,
the tails of the horizontal profiles become lighter and the vertical ones do not change.

In Figure 8.3, the rms beam sizes of the 8 bunches are plotted for the cases of fitting the
profiles with the Gaussian (left) and the q-Gaussian (right) function. The rms beam sizes in the
vertical plane are larger compared to the ones in the horizontal plane. The q-Gaussian rms differs
significantly from the Gaussian one for bunches with small beam sizes that are heavy tailed (see
Fig. 8.2). For the bunches having small emittances (i.e. bunches 1500, 1785, 2100 and 2450)
the rms beam size can be underestimated by more than 20% if the Gaussian fitting function is
used. So, the emittance values presented in Table 8.1, which are given for Gaussian profiles, will
differ significantly for the heavy tailed bunches. Since the calibration is based on some emittance
estimations that are inaccurate, this will eventually lead to forthcoming emittance measurements
that are incorrect. Therefore, it is crucial to develop calibration techniques that take into account
the actual shapes of the bunch profiles.

8.2 Observations and modeling of the LHC Luminosity

In the luminosity model [21], that is a numerical model used since 2016 to calculate the machine
luminosity, for the evolution of the emittance, apart from the effects of IBS, SR and elastic scat-
tering, the effects of betatron coupling, noise and burn-off have been also included in 2018 [109].
The comparison of the measurements to the results coming from the luminosity model assists
in understanding the impact of mechanisms which are beyond the existing model, on the emit-
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Figure 8.3: Evolution of rms beam sizes of bunches which are injected in the LHC with different
emittances (see Table 8.1), for the case of fitting the profiles with the Gaussian (left) and the
q-Gaussian (right) function, in the horizontal (top) and in the vertical (bottom) plane.

tance growth and therefore, on the luminosity degradation. In Figure 8.4, the bunch luminosity
(averaged over all the colliding bunches) evolution is plotted for an example Fill of 2018. The
luminosity degradation because of mechanisms that are beyond the model and result in an emit-
tance blow-up, are plotted in light-blue and blue for the old and the updated model, respectively.
The black curve corresponds to the average measured luminosity by the experiments. Although
the updated model gives better emittance and luminosity predictions with respect to the mea-
sured luminosities by the experiments (i.e. ATLAS [1] and CMS [2]), there is still some room for
improvement.

Figure 8.4: Luminosity evolution for an example 2018 Fill that stayed at collisions for 13 h, estimated
using the old (in light-blue) and the updated model (in blue). The average measured luminosity by the
experiments of ATLAS and CMS is plotted in black. The shadowed areas correspond to the one
standard deviation error-bars.



8.3. LUMINOSITY ESTIMATIONS 75

The luminosity model was constructed based on the IBS module of MAD-X [45] which assumes
Gaussian beam distributions. In order to understand the beam size evolution but also, the
remaining discrepancy between the luminosity coming from the model and the measurements,
the actual distribution shapes should be known. In view of quantifying the impact of non-
Gaussian distribution tails on the calculated luminosity, the luminosity formula for q-Gaussian
distribution functions is derived in Section 8.3.

8.3 Luminosity estimations

The performance of a collider is determined by the luminosity which, for two beams colliding
head-on, is given by [8]:

L = 2N1N2Nbfrev

∫ ∫ ∫ ∫
−∞

∞
ρ1x(x)ρ1y(y)ρ1s(s−s0)ρ2x(x)ρ2y(y)ρ2s(s+s0) dxdydsds0 , (8.1)

with N1,2 representing the number of particles per bunch for each beam, Nb the total number of
colliding bunches, frev the revolution frequency and ρ the beam density distribution functions
for each plane and beam.

Based on Eq. (8.1), assuming Gaussian beams that collide head-on, the luminosity is expressed
as [8]:

LG =
N1N2Nbfrev

4πσGx σ
G
y

. (8.2)

In order to achieve high luminosity, high intensity bunches and small beam sizes are required.
The transverse beam sizes of two colliding Gaussian bunches are given by:

σGx =
√
σ2

1x + σ2
2x and σGy =

√
σ2

1y + σ2
2y . (8.3)

Based on the transverse and longitudinal bunch profile measurements, it has been observed
that the particle distributions in the LHC, both at collision and injection energies, appear to
have shapes that differ from the ones of a normal distribution [59,91,110]. At the LHC injection
energy, the emittance evolution is dominated by the IBS effect, both in the horizontal and in the
longitudinal plane, while no effect is expected in the vertical plane [111], as was also shown in
the previous section. From Run 2 data, it is observed that in many cases the transverse bunch
profiles appear to be non-Gaussian during the whole injection plateau [110]. At the LHC collision
energy, the IBS effect is weaker, while synchrotron radiation damping becomes more pronounced.
The bunch profiles at collisions appear to have non-Gaussian tails, as well. In fact, during the
energy ramp, the bunches that are blown up longitudinally in order to avoid instabilities due
to the loss of Landau damping [90], arrive at the start of collisions with a clearly non-Gaussian
shape [91].

By assuming that a particle distribution is Gaussian when this is not the case, not only the
rms beam size may be underestimated or overestimated, but also its impact on performance pa-
rameters, such as the luminosity. Therefore, it is important to use appropriate fitting functions
(or some type of interpolation algorithm) on the beam profile in order to properly address this
discrepancy. A generalized Gaussian function, called the q-Gaussian [92], can be employed for
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fitting more accurately bunch profiles with shapes that differ from the ones of a normal distribu-
tion (see Section 7.3 for the properties of this distribution function). The parameter q describes
the weight of the tails as compared to the core, ranging from light tailed ones for q < 1 (including
the square distribution for q → −∞) and extending to a heavy tailed ones for q < 1, passing
through the Gaussian distributions in the limit of q → 1. This distribution is actually a station-
ary solution of a generalised Fokker-Plank equation which can cover a full spectrum of statistical
behaviour of dynamical systems, from sub to super-diffusion Levy-type processes [112].

Figure 8.5: Parameterization of the luminosity variation, normalised to the corresponding Gaussian
luminosity value LG, with the weight of the transverse distribution tails, given by the parameters qx,y.

In view of quantifying the impact of non-Gaussian distributions, the luminosity is estimated
through Eq. (8.1) by using the specified probability density functions. Assuming that the two
beams are identical and that they collide head-on, the luminosity for q-Gaussian distribution
functions in the transverse plane is given by:

LqG =
N1N2Nbfrev

4πσqGx σqGy
IqGx IqGy , (8.4)

for σqGx,y being the beam sizes (see Section 7.3) in the transverse plane, for both beams. The factors
IqGx,y which depend on the parameter q in the respective planes and the details of the calculation are
presented in Appendix E, together with the validation of the luminosity estimation for q-Gaussian
distributions (shown in Fig. E.1). By comparing this equation to the standard luminosity formula
for Gaussian beams with identical rms sizes, the significance of the tail population contribution
on luminosity can be established and parameterised through q.

This is illustrated in Figure 8.5 where the luminosity variation normalised to the correspond-
ing one for Gaussian beams LG, assuming the same beam parameters, is parameterized with
the parameter q of the q-Gaussian fitting function, characterising the weight of the tails in the
transverse plane assuming head on collisions (i.e. no dependence of the luminosity on the lon-
gitudinal beam size, see Appendix E). As q (and βqG) vary, when keeping the beam sizes in all
planes fixed, the luminosity varies as well with respect to the one estimated for purely Gaussian
beams. Practically, if the tails of a distribution differ by 10% compared to the ones of a Gaussian
distribution, the luminosity value can be overestimated or underestimated by 5%. It is then clear
that, for two beams colliding head-on, the shape of the transverse distributions has a significant
impact to the estimated luminosity, in particular for the LHC experiments which target a ∼ 2 %

accuracy in their estimates [113]. The impact of non-Gaussian distributions on the luminosity
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Figure 8.6: In order to estimate the divergence of the luminosity for non-Gaussian distributions from the
one for Gaussian densities, the Lw < w2 >1/2 (see Eq. 8.5) is plotted versus the weight of the tails q, for
light tailed (left) and the heavy tailed (right) distributions, i.e. q < 1 and q > 1, respectively. The points
corresponding to a parabola and a Gaussian distribution, firstly presented in [114,115], are plotted.

was firstly discussed by Hereward [114]. In particular, the luminosity integrals were calculated
for several distributions as the rectangular and the parabolic which correspond to a q-Gaussian
with q → −∞ and q = 0, respectively. Assuming that the two beams are identical and that they
collide head-on, these distributions were used as examples to estimate the divergence from the
luminosity for Gaussian densities. This divergence is calculated in one plane only as:

Lw < w2 >1/2= σw

∫ ∞
−∞

ρ(w)2dw (8.5)

and it was found that [114,115]:

Lw < w2 >1/2=

{ 0.2887 , for a rectangular distribution

0.2683 , for a parabolic distribution
1

2
√
π

= 0.2821 , for a Gaussian distribution
(8.6)

with w = x, y and for σw being the transverse rms beam size, since these solutions correspond
to the transverse plane. In fact, this approach already identified the existence of a minimum
for a light tailed parabolic distribution, which becomes obvious by employing the q-Gaussian, as
observed in Fig. 8.6, where Lw < w2 >1/2 is plotted versus q for q < 1, i.e. light tails (left),
and q > 1, i.e. heavy tails (right). The results for q-Gaussian distributions (grey curves) are in
perfect agreement with the case studies discussed in [114]. This is also true for a rectangular
distribution which corresponds to a q-Gaussian with q → −∞ and is beyond the range of the
left plot of Fig. 8.6. For heavy tailed distributions, there is no upper limit for the constant of
Eq. (8.6), as already inferred by Hereward [114]. In Fig. 8.6 (right) the case of a heavy tailed
distribution with q = 1.65 is denoted by a red square. The extreme case of q → 5/3 corresponds
to a q-Gaussian whose rms size goes to infinity (i.e. Levy distributions, see Section 7.3).

By keeping the q parameter constant, here q = 1, and varying the beam size, the β parameter
also varies. Figure 8.7 shows the luminosity variation that is parameterized with the variation
of the parameter β (left) and, with the beam size variation (right), in the transverse plane. The
variation of the β parameter together with the beam size variation result always in a Gaussian
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Figure 8.7: Luminosity variation with respect to an initial luminosity value for the specified same beam
parameters, versus the variation of the β parameter (left) and the beam size (right) of the transverse
distributions, keeping the q parameter constant. The variation of the β parameter together with the
beam size variation result always in a Gaussian distribution, i.e. q = 1.

Figure 8.8: The q-Gaussian density distribution function for Gaussian bunch profiles (q = 1), having
different β parameters and beam sizes.

(q = 1) distribution. The blue, black and red points correspond to the bunch profile shapes that
are plotted in Fig. 8.8, which are all Gaussian.

Figure 8.9 shows the luminosity variation with respect to the corresponding Gaussian lu-
minosity value (denoted as LG) for the same beam parameters. The luminosity variation is
parameterized with the parameter q (left) of the q-Gaussian fitting function which characterizes
the weight of a distribution’s tails and with the β parameter (right), in the transverse plane
(since there is no dependence on the longitudinal plane, see 8.4). Basically, this plot is similar
to the one presented in Fig. 8.5 but, for the horizontal and vertical distributions being the same.
The blue, black and red points correspond to a light tailed (q = 0.6), a Gaussian (q = 1) and a
heavy tailed (q = 1.4) distribution, respectively. The bunch profile shapes for these distributions
are plotted in Fig. 8.10, having identical beam sizes (based on Eq. 7.8). Since the beam size is
being kept constant and the q parameter varies, the β parameter of the q-Gaussian (see 7.3) also
varies. As q (and β) increases, for fixed beam sizes in all planes, the luminosity gets higher with
respect to the one for the Gaussian case. Practically, if the tails of a distribution differ by 10%

compared to the ones of a Gaussian distribution, the luminosity value can be overestimated or
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Figure 8.9: Luminosity variation, with respect to the corresponding Gaussian luminosity value (LG) for
the same beam parameters, with the weight of the tails (left) and the β parameter ratio (right) of the
transverse distributions, keeping the beam size constant. The blue, black and red points represent the
result for a light tailed (q < 1), a Gaussian (q = 1) and a heavy tailed (q > 1) distribution, respectively.

Figure 8.10: The q-Gaussian density distribution function for a light tailed (q < 1), a Gaussian (q = 1)
and a heavy tailed (q > 1) bunch profile, having identical beam sizes.

underestimated by around 5% if instead of a proper fitting function, the Gaussian one is used.
It is then clear that, for two beams colliding head-on, the shape of the transverse distributions
determines the estimated luminosity.

Keeping now the β parameter constant, in Figure 8.11 the luminosity variation is parameter-
ized with the parameter q (left) and with the beam size variation- with respect to the Gaussian
value (right), in the transverse plane. The blue, black and red points correspond to a light tailed,
a Gaussian and a heavy tailed distribution, respectively. The bunch profile shapes for these dis-
tributions are plotted in Fig. 8.12, having the same β parameter. As q increases, the luminosity
gets lower with respect to the one for the Gaussian case (LG). If both the tails and the transverse
beam size of a distribution differ by 10% compared to the ones of a Gaussian distribution, the
luminosity value can be overestimated or underestimated by around 10% if the Gaussian fitting
function is used.

The sensitivity of the luminosity on the distribution as generalised by employing the q-
Gaussian function justifies the need of carefully studying the evolution of distributions in hadron
colliders. The extension of this to non-Gaussian distributions as observed in the LHC may shed



80 CHAPTER 8. LUMINOSITY OBSERVATIONS AND ESTIMATIONS

Figure 8.11: Luminosity variation, with respect to the corresponding Gaussian luminosity value (LG) for
the same beam parameters, with the weight of the tails (left) and the beam size ratio (right) of the
transverse distributions, keeping the β parameter constant. The blue, black and red points represent the
result for a light tailed (q < 1), a Gaussian (q = 1) and a heavy tailed (q > 1) distribution, respectively.

Figure 8.12: The q-Gaussian density distribution function for a light tailed (q < 1), a Gaussian (q = 1)
and a heavy tailed (q > 1) bunch profile, all having the same β parameter.

light to the provenance of the remaining discrepancy between the luminosity model (which is
based on IBS calculations assuming Gaussian beam distributions, see Section 8.2) and the mea-
surements.



Chapter 9

IBS Simulations for the LHC

For the LHC luminosity studies, a model including the effects of intrabeam scattering (IBS),
synchrotron radiation (SR), elastic scattering and luminosity burn-off is used [21]. The model
was constructed based on analytical approaches which assume Gaussian beam distributions. A
comparison of the bunch characteristics evolution as predicted by this model with the measured
ones revealed an extra (on top of the model) transverse emittance blow up in the measured
data. One of the attempts to explain this blow up concerns the bunch profiles that appear to
have non-Gaussian shapes both at injection and collision energies, i.e. 450 GeV and 6.5 TeV
respectively. The aim of this study is to quantify the impact of the distribution’s shape on the
emittance and luminosity evolution, extending the usual approach of employing the analytical
formulas for modeling IBS, which are based on 3D Gaussian beam assumptions [38]. For this,
the Monte Carlo multiparticle simulation code for IBS and Radiation Effects (SIRE) [47, 60] is
being used. The comparison of the code results with analytical formulas has been studied for the
nominal collision energy (7 TeV) for various initial parameters cases [58]. Also, a comparison of
LHC data from Run 2 with simulations performed with SIRE is discussed in [59]. In this chapter,
a benchmarking of the Bjorken-Mtingwa (B-M) IBS theoretical model with the SIRE code for
both injection and collision energies is presented for the nominal Batch Compression Merging
and Splitting (BCMS) [10, 11] and the high luminosity (HL-LHC) [3] parameters. For the case
of collision energy, an example showing the comparison between experimental data coming from
Run 2, the SIRE and the B-M analytical formalism [38], is given.

Apart from the IBS and Synchrotron Radiation (SR) which are the dominant effects for the
emittance evolution in the LHC, a combination of other diffusion mechanisms, like the beam-
beam effect, electron-cloud, noise (due to the power converters, the transverse damper, the crab
cavities, etc.), non-linearities, etc., cause emittance growth and/or particle losses [12]. Despite the
fact that these mechanisms are not included in SIRE, it is possible to add empirically (i.e. based
on observations) their contribution. Practically, there is the option of adding or complementing
the variation of the bunch parameters in time. The simulation studies presented here for the
LHC are focused on the 3σ range of the particle distributions and therefore, mechanisms like the
long-range beam-beam effect and electron-cloud which concern the far tail regime are not taken
into account.

Generation of q-Gaussian random deviates

The input distribution to be tracked in SIRE should be given in action angle variables (see Sec-
tion 3.4). In order to obtain these variables by generating random deviates for a q-Gaussian
distribution which successfully describes the bunch profiles in the LHC, the inverse Abel trans-
form [116] is used. Basically, the inverse Abel transform is a process of calculating a set of radial
points from a corresponding set of lateral points. For generating the non-Gaussian distributions
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Figure 9.1: Generated q-Gaussian random deviates to be used as action angle variables, using the Nestor
and Olsen method [117] for the inverse Abel transform, for the cases of q=0.7 (left), q=1.0 (center) and
q=1.3 (right).

Figure 9.2: Generated q-Gaussian distributions corresponding to the cases of q=0.7 (left), q=1.0 (center)
and q=1.3 (right).

to be tracked in SIRE, the Nestor and Olsen method [117] is used for the inverse Abel trans-
form, because of its simple computational implementation. After defining the required beam
parameters and the number of macro-particles, the inverse Abel transform gives the action angle
variables for the requested distribution. Some examples of the generated q-Gaussian random
deviates to be used as action angle variables are shown in Fig. 9.1 as histograms, for the cases
of having q=0.7, q=1.0 and q=1.3. The corresponding distributions (i.e. in terms of beams
sizes) are formed as shown in Fig. 9.2, for the cases of having underpopulated (q=0.7), Gaussian
(q=1.0) and overpopulated (q=1.3) tails.

Reduced lattice

As mentioned earlier, one of the inputs required by SIRE are the optical functions along the ring.
As the LHC is a very long accelerator of about 27 km, with a very large number of elements in
the sequence (more than 11000), SIRE requires an extremely long computational time to track
the distribution for all the elements along the ring. Aiming to reduce the computational time,
a study was first performed in order to identify the optimal minimum number of critical IBS
kicks around the lattice, without affecting the overall effect. The IBS growth rates were firstly
calculated for the full optics of the LHC, using the IBS module of the Methodical Accelerator
Design code (MAD-X) [45] which is based on the Bjorken-Mtingwa formalism. Figure 9.3 shows
the IBS growth rates in the longitudinal (green), the horizontal (blue) and the vertical (magenta)
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Figure 9.3: The IBS growth rates along the LHC in all three planes: longitudinal (green), the horizontal
(blue) and the vertical (magenta). The IBS kicks that are noted with red dashed lines, represent the
positions of the 92 elements that compose the reduced lattice.

plane. Taking into account the strong IBS kicks along the ring, various lattices with a reduced
number of elements, including the case of the smooth lattice approximation, were tested. Then,
using the IBS module of MAD-X, the emittance evolution was calculated for several sets of beam
parameters to assure that the choice of the elements is valid both for regimes that the effect is
weak and strong. Finally, the optimal lattice chosen consists of only 92 elements whose positions
are denoted by red dashed lines in Fig. 9.3.

Figure 9.4: The growth of the horizontal emittance (left) and bunch length (right) due to IBS, as
computed by MAD-X (Bjorken-Mtingwa analytical formalism), in a time period of 30 min at injection,
when considering the full lattice (black solid line), the reduced lattice (red dashed line) and the smooth
lattice approximation- mean optics (magenta dotted line).

Figure 9.4 shows the emittance (left) and the bunch length (right) growth during 30 min
at injection energy, for the nominal BCMS beams, with initial parameters an emittance and a
4σ bunch length that are respectively εx0 = 1.5 [µm.rad] and σs0 = 1 [ns], having a bunch
population that is 1.2× 1011. The black solid line refers to the case of the full lattice, while the
red dashed one to the reduced lattice with the 92 elements. The magenta dotted line corresponds
to the case of the smooth lattice approximation for which a lattice with a unique element, having
the optics that represent in the best possible way the mean optics of the full lattice, is considered.
The agreement of the full and the reduced lattice is very good in all planes. On the other hand,
by using the smooth lattice approximation the IBS effect is slightly underestimated, in particular,
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in the longitudinal plane. In the next, the reduced lattice is used as an input for the SIRE code.
After choosing the optimal number of cells and macro-particles, the computational time in the
case of the reduced lattice is almost 20 times shorter than the one of the full LHC lattice.

9.1 Benchmarking of the B-M IBS theoretical model with SIRE

SIRE has the advantage to accept any type of distribution as an input. If requested, it also
gives as output the distribution at any stage of the tracking. In order to benchmark the code
with the analytical formulation of B-M for the LHC, a Gaussian distribution was tracked for two
sets of bunch parameters which are summarized in Table 9.1 for the injection energy (450 GeV)
and in Table 9.2 for the collision energy (6.5 TeV). The first case corresponds to the nominal
BCMS [10,11] LHC beams, having a significantly lower transverse beam size with respect to the
nominal production scheme. The second case corresponds to the HL-LHC [3, 118] parameters,
for which the bunch population is very high. The input Twiss functions used for the tracking,
are the ones that correspond to the optics of the aforementioned reduced lattice.

Table 9.1: Nominal (BCMS) and HL-LHC parameters, at injection energy (450 GeV).

Parameters Nominal (BCMS) HL-LHC
εx,y [µm.rad] 1.5 2.0
4σ bunch length [ns] 1.0 1.2
Bunch population [1011] 1.2 2.3

Table 9.2: Nominal (BCMS) and HL-LHC parameters, at collision energy (6.5 TeV).

Parameters Nominal (BCMS) HL-LHC
εx,y [µm.rad] 2.5 2.5
4σ bunch length [ns] 1.0 1.2
Bunch population [1011] 1.1 2.2

LHC at injection (450 GeV)

Table 9.3: IBS growths of the transverse emittances and energy spread during 1 h at injection energy
(450 GeV).

IBS growths
Nominal (BCMS) HL-LHC
MADX SIRE MADX SIRE

dεx/εx0 [%] 24.6 24.1 20.1 19.6
dεy/εy0 [%] 0.2 0.4 0.2 0.3
dσl/σl0 [%] 21.4 20.8 16.8 16.2

The horizontal emittance (left), the vertical emittance (center) and energy spread (right)
evolution after 1 h at the injection energy (450 GeV), where the IBS effect is dominant, are
presented in Fig. 9.5 for the nominal BCMS case and in Fig. 9.6 for the HL-LHC parameters.
The red and the blue lines correspond to the analytical calculations of the MAD-X [20] IBS
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Figure 9.5: The growth of the horizontal (left) and vertical (center) emittance and energy spread (right)
due to IBS, in a time period of 1 h at the injection energy of the LHC (450 GeV) for the nominal
parameters, as computed by the SIRE code (blue line) and the Bjorken-Mtingwa analytical formalism in
MAD-X (red line).

Figure 9.6: The growth of the horizontal (left) and vertical (center) emittance and energy spread (right)
due to IBS, in a time period of 1 h at the injection energy of the LHC (450 GeV) for the HL-LHC
parameters, as computed by the SIRE (blue line) and the Bjorken-Mtingwa analytical formalism in
MAD-X (red line).

routine (based on the B-M formalism) and to the SIRE results, respectively. Due to the fact that
in SIRE the generation of the distribution is based on a random number generator, the tracking
simulations were performed several times, resulting in the two standard deviation spread that
is plotted in light blue. Table 9.3 summarizes the IBS growth of the transverse emittances and
energy spread, for the nominal BCMS and HL-LHC parameters, as computed by the SIRE code
and the B-M analytical formalism in MAD-X.

In the horizontal and longitudinal plane the IBS effect is dominant, while in the vertical plane,
it is minor. Even though the SIRE simulation algorithm and the B-M analytical formalism make
use of different approaches to calculate the IBS effect (SIRE uses the classical Rutherford cross
section which is closer to the Piwinski formalism), they seem to agree very well during the 1 h time
at injection energy. In the longitudinal plane, there is a small difference observed for longer time-
spans. Such differences can be explained by the fact that SIRE reshapes the beam distributions
after each collisional process, while the B-M IBS formalism assumes Gaussian beam distributions
throughout the calculation.

The variation of the initially Gaussian particle distributions within 1 h at injection energy
is shown in logarithmic scale in Fig. 9.7 and Fig. 9.8 for the nominal BCMS and the HL-LHC
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Figure 9.7: The initial and final (after 1 h) distributions in the horizontal (left), vertical (center) and
longitudinal (right) plane, for the nominal BCMS bunch parameters at injection energy (450 GeV), are
denoted by blue and red stars, respectively. They are fitted with the Gaussian (dashed line) and the
q-Gaussian (solid line) functions.

Figure 9.8: The initial and final (after 1 h) distributions in the horizontal (left), vertical (center) and
longitudinal (right) plane, for the HL-LHC bunch parameters at injection energy (450 GeV), are
denoted by blue and red stars, respectively. They are fitted with the Gaussian (dashed line) and the
q-Gaussian (solid line) functions.

case, respectively. The initial and final (after 1 h) distributions in the horizontal (left), vertical
(center) and longitudinal (right) plane, are denoted by blue and red stars, respectively. They
are fitted with the Gaussian (dashed line) and the q-Gaussian (solid line) functions. The fitting
results of the initial and final distributions are presented in Table 9.4 for the nominal BCMS case
and in Table 9.5 for the HL-LHC case.

As was expected from the results shown in Fig. 9.5-9.6 concerning the IBS growth, the
horizontal and longitudinal rms beam sizes get larger as time evolves, while the vertical one does
not change. The vertical distributions remain Gaussian since q ≈ 1. For both the nominal and
the HL-LHC case, the q parameter of the horizontal and longitudinal distributions is decreased.
This can be explained by the fact that, due to IBS, the core of the distributions is blown up
in such a way that it covers up the initially Gaussian tails of the input distributions. In the
longitudinal plane the decrease in q is more significant for the HL-LHC case. This indicates that
the stronger IBS is, the more the core is blow up. Since for a light tailed distribution (q < 1)
the Gaussian fit overestimates the rms value, the resulted beam sizes are slightly larger than in
the case of the q-Gaussian fit. Comparing the root mean square error (RMSE) values of the two
fitting functions for the final non-Gaussian bunch profiles shows that the q-Gaussian fit is better.
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Table 9.4: Initial and final (after 1 h) fit results for the horizontal, vertical and longitudinal bunch profiles
shown in Fig. 9.7, for the nominal BCMS parameters case at injection energy (450 GeV).

Fit Parameters Horizontal distribution Vertical distribution Longitudinal distribution
Initial F inal Initial F inal Initial F inal

Gaussian
σrms ± 10−3 0.19 [mm] 0.22 [mm] 0.19 [mm] 0.19 [mm] 0.25 [ns] 0.33 [ns]
RMSE [10−3] 1 14 1 1 1 10
q-Gaussian
σrms ± 10−3 0.19 [mm] 0.21 [mm] 0.19 [mm] 0.19 [mm] 0.25 [ns] 0.32 [ns]

q ± dq 1.024± 0.003 0.893± 0.002 0.970± 0.007 0.967± 0.006 0.992± 0.002 0.941± 0.001
RMSE [10−3] 1 1 1 1 1 6

Table 9.5: Initial and final (after 1 h) fitting results for the horizontal, vertical and longitudinal bunch
profiles shown in Fig. 9.8, for the HL-LHC parameters case at injection energy (450 GeV).

Fit Parameters Horizontal distribution Vertical distribution Longitudinal distribution
Initial F inal Initial F inal Initial F inal

Gaussian
σrms ± 10−3 0.22 [mm] 0.25 [mm] 0.22 [mm] 0.22 [mm] 0.30 [ns] 0.37 [ns]
RMSE [10−3] 1 14 1 1 3 13
q-Gaussian
σrms ± 10−3 0.22 [mm] 0.24 [mm] 0.22 [mm] 0.22 [mm] 0.30 [ns] 0.36 [ns]

q ± dq 0.992± 0.003 0.891± 0.004 0.995± 0.003 0.987± 0.003 1.019± 0.005 0.885± 0.001
RMSE [10−3] 1 1 1 1 3 4

LHC at collision (6.5 TeV)

Since at collision energy IBS becomes weaker and SR starts playing an important role, it is the
interplay between these effects that determines the evolution of the bunch characteristics. In this
respect, for the benchmarking of the B-M IBS theoretical model with SIRE at collision energy,
apart from the IBS, the radiation effects (SR and QE) are also taken into account. It should
be mentioned that for the results presented in the following plots the intensity is assumed to be
constant.

Figure 9.9 shows the horizontal emittance (left), the vertical emittance (center) and energy
spread (right) evolution after 10 h at collision energy for the nominal BCMS case, while Fig. 9.10
shows the evolutions for the HL-LHC parameters. The red and the blue lines correspond to the
analytical calculations of the MAD-X [20] IBS routine (based on the B-M formalism) and to
the SIRE results, respectively. The two standard deviation spread for the simulation results are
plotted in light blue. Table 9.6 summarizes the variation of the transverse emittances and energy
spread during 10 h at the collision energy of the LHC, for the nominal BCMS and HL-LHC
parameters, as computed by the SIRE code and the B-M analytical formalism in MAD-X.

Table 9.6: Variation of the transverse emittances and energy spread during 10 h at collision energy.

IBS growths
Nominal (BCMS) HL-LHC
MADX SIRE MADX SIRE

dεx/εx0 [%] -0.1 -1.4 7.4 5.0
dεy/εy0 [%] -26.2 -26.1 -31.4 -31.2
dσl/σl0 [%] -0.1 -2.6 -12.6 -14.7
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Figure 9.9: The evolution of the horizontal (left) and vertical (center) emittance and energy spread
(right) due to IBS and radiation effects (SR and QE), in a time period of 10 h at the collision energy of
the LHC (6.5 TeV) for the nominal BCMS parameters, as computed by the SIRE code (blue line) and
the Bjorken-Mtingwa analytical formalism in MAD-X (red line).

Figure 9.10: The evolution of the horizontal (left) and vertical (center) emittance and energy spread
(right) due to IBS and radiation effects (SR and QE), in a time period of 10 h at the collision energy of
the LHC (7 TeV) for the HL-LHC parameters, as computed by the SIRE (blue line) and the
Bjorken-Mtingwa analytical formalism in MAD-X (red line).

After a few hours at collisions, the B-M analytical formalism and the simulations start differ-
entiating. In order to understand whether these differences are explained by the fact that SIRE
reshapes the beam distributions after each collisional process and the B-M IBS formalism as-
sumes always Gaussian beam distributions, the bunch parameters given by SIRE at 5 h are used
as input for the IBS and SR calculations in MAD-X (Gaussian bunches). The red dotted lines
in Fig. 9.9 and Fig. 9.10 represent the results of these tests. Even if giving as input to MAD-X
exactly the same bunch parameters as in SIRE, there is clear divergence of the MAD-X results
(red dotted lines) with SIRE right after the 5 h at collisions. This divergence is much larger than
the one observed during the first hours at collisions. After 5 h collisions the beam in SIRE has
been reshaped enough so that IBS and radiation processes act differently as compared to Gaus-
sian MAD-X distributions. Consequently, the differences observed between the B-M analytical
formalism and the simulations are expected because MAD-X assumes always Gaussian distribu-
tion, in contrast to SIRE that takes into account the variation of the bunch shape throughout
the calculation.

Due to the fact that the IBS effect is minor in the vertical plane, the strong SR damping
mechanism leads to a clear reduction of the vertical emittance. However, the variation of the
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horizontal emittance and energy spread is determined by the interplay of IBS growth with SR
damping. For the nominal BCMS parameters, these variations are very small after 10 h at
collision energy (Table 9.6). For the HL-LHC case, having the same initial horizontal emittance
but double bunch population compared to the nominal BCMS parameters (Table 9.2), the IBS
effect prevails over SR in the horizontal plane after almost 3 h (Fig. 9.10 (left)). As can be seen
in Fig. 9.10 (right) this in not the case for the longitudinal plane, for which the initial bunch
length of 1.2 ns compared to the 1 ns in the nominal case, renders IBS weaker than SR and,
results in the decrease of the energy spread.

Figure 9.11: The initial and final (after 10 h) distributions in the horizontal (left), vertical (center) and
longitudinal (right) plane, for the nominal BCMS bunch parameters at collision energy (6.5 TeV), are
denoted by blue and red stars, respectively. They are fitted with the Gaussian (dashed line) and the
q-Gaussian (solid line) functions.

Figure 9.12: The initial and final (after 10 h) distributions in the horizontal (left), vertical (center) and
longitudinal (right) plane, for the HL-LHC bunch parameters at collision energy (7 TeV), are denoted
by blue and red stars, respectively. They are fitted with the Gaussian (dashed line) and the q-Gaussian
(solid line) functions.

The evolution of the initially Gaussian (in all planes) particle distributions within 10 h at
collision energy is shown in logarithmic scale in Fig. 9.11 and Fig. 9.12 for the nominal BCMS and
the HL-LHC case, respectively. The initial and final (after 10 h) distributions in the horizontal
(left), vertical (center) and longitudinal (right) plane, are denoted by blue and red stars, respec-
tively. They are fitted with the Gaussian (dashed line) and the q-Gaussian (solid line) functions.
The fitting results of the initial and final distributions are presented in Table 9.7 for the nominal
BCMS case and in Table 9.8 for the HL-LHC case. The RMSE values of the two fitting functions
show that when the final bunch profiles are strongly non-Gaussian, the q-Gaussian fitting results
should be considered. In this respect, the evolution of the particle distributions in all planes for
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Table 9.7: Initial and final (after 10 h) fit results for the horizontal, vertical and longitudinal bunch
profiles shown in Fig. 9.11, for the nominal BCMS parameters case at collision energy (6.5 TeV).

Fit Parameters Horizontal distribution Vertical distribution Longitudinal distribution
Initial F inal Initial F inal Initial F inal

Gaussian
σrms ± 10−3 0.064 [mm] 0.067 [mm] 0.064 [mm] 0.056 [mm] 0.25 [ns] 0.26 [ns]
RMSE [10−3] 1 25 1 1 1 30
q-Gaussian
σrms ± 10−3 0.064 [mm] 0.064 [mm] 0.064 [mm] 0.055 [mm] 0.25 [ns] 0.24 [ns]

q ± dq 1.004± 0.003 0.856± 0.005 0.982± 0.004 0.971± 0.004 1.007± 0.004 0.830± 0.006
RMSE [10−3] 1 1 1 1 1 1

Table 9.8: Initial and final (after 10 h) fitting results for the horizontal, vertical and longitudinal bunch
profiles shown in Fig. 9.12, for the HL-LHC parameters case at collision energy (7 TeV).

Fit Parameters Horizontal distribution Vertical distribution Longitudinal distribution
Initial F inal Initial F inal Initial F inal

Gaussian
σrms ± 10−3 0.062 [mm] 0.067 [mm] 0.062 [mm] 0.052 [mm] 0.30 [ns] 0.28 [ns]
RMSE [10−3] 1 27 2 2 2 17
q-Gaussian
σrms ± 10−3 0.062 [mm] 0.063 [mm] 0.062 [mm] 0.052 [mm] 0.30 [ns] 0.27 [ns]

q ± dq 1.005± 0.004 0.852± 0.004 0.991± 0.005 0.977± 0.005 0.990± 0.003 0.825± 0.001
RMSE [10−3] 1 1 1 1 1 1

the nominal BCMS and HL-LHC cases is discussed based on the q-Gaussian results.
The horizontal beam sizes do not change after 10 h at collision energy because the blow

up caused by IBS is balanced out by the SR damping. However, there is a transformation
of the horizontal distributions’ shape for which the tails become less populated (q < 1). In the
longitudinal plane both the beam size and the q parameter are reduced, meaning that SR prevails
over IBS and the core is blown up due to IBS- giving underpopulated tails. In the vertical plane,
the dominant SR damping results in a smaller beam size without changing much the formation
of the tails, so the distribution remains Gaussian.

9.2 Comparison with experimental data from Run 2

The longitudinal bunch manipulations performed during the Ramp to avoid instabilities due to
the loss of Landau damping [90], produce bunches that arrive at collision energy with a clearly
non-Gaussian longitudinal shape. By assuming that these profiles are Gaussian may lead in
underestimating or overestimating the actual bunch length. In this respect, these profiles are
fitted using the q-Gaussian function. An example showing the evolution of the q parameter for a
train of longitudinal bunches during 11.5 h at stable beams (6.5 TeV) in the LHC is presented in
Fig. 9.13. It is clear that with such q parameter values, corresponding to non-Gaussian tails, the
rms beam size cannot be accurately estimated by using the Gaussian function. The increase of
the q parameter means that the longitudinal distributions with the underpopulated tails (q < 1)
at the start of stable beams, become more Gaussian (q → 1) as time evolves. This is a general
statement that can be made for the longitudinal distribution observed at the collision energy of
the LHC. The evolution of the longitudinal particle distribution of a single bunch that is picked
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Figure 9.13: The evolution of the q parameter during 11.5 h at stable beams (6.5 TeV), for a train of
bunches in the longitudinal plane.

Figure 9.14: The evolution of a longitudinal bunch profile during 11.5 h at stable beams (6.5 TeV).

out of the train of bunches is shown in Fig. 9.14 for the time period of 11.5 h. The initial
bunch profile (plotted in blue) is fitted with the Gaussian and the q-Gaussian functions that give
different rms beam sizes because of the dependence of the standard deviation on the q parameter
(Eq. (7.8)). The fitting results are used to generate a Gaussian and a q-Gaussian distribution
to be tracked in SIRE in order to compare the experimental observations with the results of the
code.

Table 9.9: Fitting results for the initial (at the start of collisions) and the final (after 11.5 h) longitudinal
bunch distribution shown in Fig. 9.15, as was observed in the LHC and as was calculated by the SIRE
code.

Fit Parameters
Initial (t=0) Final (t=11.5 h)

DATA SIRE DATA SIRE

Gaussian
σrms ± dσrms [ns] 0.299± 0.003 0.297± 0.002 0.233± 0.002 0.237± 0.002

RMSE [10−3] 22 19 18 20

q-Gaussian
σrms ± dσrms [ns] 0.286± 0.004 0.290± 0.001 0.227± 0.002 0.235± 0.001

q ± dq 0.88± 0.03 0.85± 0.01 0.93± 0.03 0.86± 0.01

RMSE [10−3] 10 3 10 4

In Fig. 9.15, the initial (at the start of collisions) and the final (after 11.5 h) longitudinal
bunch profiles, as observed in the LHC (left) and as calculated by the SIRE (right) for an initially
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Figure 9.15: The initial (at the start of collisions) and the final (after 11.5 h) longitudinal bunch profiles
as observed in the LHC (left) and as calculated by the SIRE (right), in logarithmic scale, are denoted by
blue and red stars, respectively. They are fitted with the Gaussian (dashed line) and the q-Gaussian
(solid line) functions.

q-Gaussian simulated profile, are denoted by blue and red stars, respectively. They are plotted in
logarithmic scale and they are fitted with the Gaussian (dashed line) and the q-Gaussian (solid
line) functions. The reduction of the bunch population with time and the extra (on top of IBS)
transverse emittance blow up observed in the machine, are taken into account for the simulation.
The transverse distributions are assumed to be Gaussian, since at collisions the shape of their
tails is not clear due to diffraction. The fitting results are presented in Table 9.9. Even if there
seems to be no change at the tails of the simulated distribution, in reality the profiles become
more Gaussian. Within 11.5 h at stable beams, the rms beam size of the measured bunch profile
and of the corresponding tracked distribution is reduced by 21% and by 19%, respectively. This
shows a very good agreement between the experimental data and the simulations performed with
SIRE.

Figure 9.16: The initial (at the start of collisions) and the final (after 11.5 h) horizontal (left) and
vertical (right) bunch profiles as calculated by the SIRE, in logarithmic scale, are denoted by blue and
red stars, respectively. They are fitted with the Gaussian (dashed line) and the q-Gaussian (solid line)
functions.

Figure 9.16 shows in logarithmic scale the initial (blue stars) and the final (red stars) hori-
zontal (left) and vertical (right) bunch profiles as calculated by SIRE, fitted with the Gaussian
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Table 9.10: Fitting results for the initial (at the start of collisions) and the final (after 11.5 h) transverse
bunch distributions shown in Fig. 9.16, as was calculated using the SIRE code.

Fit Parameters
Horizontal distribution Vertical distribution
Initial F inal Initial F inal

q-Gaussian
σrms ± 10−4 [mm] 0.076 0.076 0.076 0.076

q ± dq 0.990± 0.004 0.893± 0.005 0.992± 0.003 0.983± 0.003

RMSE [10−3] 3 3 3 3

(dashed line) and the q-Gaussian (solid line) functions. As can be seen in Table 9.10, the simu-
lations showed no change in the transverse beam sizes and that is because the extra (on top of
IBS) transverse emittance blow up is included. The effect of IBS together with the extra blow up
assumed, widens the core of the horizontal bunch in such a way that the q parameter is decreased
by around 10% within these 11.5 h. Since IBS is negligible in the vertical plane, the fact that
the vertical bunch profile remains Gaussian indicates that the interplay between the SR damping
and the extra blow up do not change the tails of the distribution.

The 4σ-bunch length evolution when assuming Gaussian (left) and q-Gaussian (right) initial
distributions is shown in Figure 9.17. The blue line corresponds to the SIRE calculations and the
red line to the results given by the IBS module of MAD-X [45] which is based on the analytical
formulation of B-M and always assumes Gaussian distributions. The bunch length evolution,
together with the two standard deviation error-bars, when fitting the data with the Gaussian
and the q-Gaussian functions is represented by a black and a grey line, respectively. The bunch
length values differ for the two distribution functions used due to the fact that, for a light tailed
distribution the rms value is overestimated by fitting a Gaussian. When assuming a Gaussian
distribution, the bunch length evolution calculated by the code is close to the measured data.
For the q-Gaussian case the agreement between data and simulations is excellent. In agreement
with the results presented in the previous section, the divergence between the SIRE and the
MAD-X for longer time-spans is something to be expected since the distribution shape in SIRE
is updated, while in MAD-X it is not.

Figure 9.17: The bunch length (4σ) evolution during several hours in stable beams, as computed by the
SIRE code (blue), the B-M analytical formalism (red) and as measured by the longitudinal profile
monitors when assuming a Gaussian (left) and a q-Gaussian (right) distribution.

At collisions, the divergence between the luminosity model and the measured luminosity by
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the experiments becomes more pronounced as time evolves [109] (see Chapter 8). Actually, the
predicted luminosity by the model is always larger compared to the measured one by the end of
collisions. As calculated by SIRE, the weight of the horizontal bunch profile tails is decreased
in time (see Table 9.10) and as explained in Chapter 8, for lighter tails and a constant beam
size, the luminosity is expected to become lower. It is then clear that by taking into account the
luminosity change due to the variation of the transverse distribution tails, the model predictions
can be significantly improved.



Chapter 10

Conclusions

This thesis elaborated the impact of the Intra Beam Scattering (IBS) effect on the bunch charac-
teristics, for the case of lepton and hadron machines. The first part of this thesis was dedicated
to a e+/e− linear collider that is under study at CERN, the Compact Linear Collider (CLIC),
focusing on the optimization of its Damping Rings (DRs). In the second part, observations of
the Large Hadron Collider (LHC) beam distributions, along with their impact on the evolution
of bunch characteristics and luminosity, are presented. Based on simulations, the evolution of
bunch parameters for the nominal LHC and the High Luminosity LHC (HL-LHC) were studied.
For both the CLIC DRs and the LHC, the important role of the IBS effect that limits the per-
formance of a collider, is discussed. The interplay between IBS and radiation effects is studied,
using the existing IBE theoretical models and a Monte-Carlo multi-particle tracking code, called
SIRE (Software for IBS and Radiation Effects).

The CLIC project aims to explore the Tera scale particle physics regime, for an optimized
3 TeV center of mass energy. Targeting a luminosity of 1034 cm−2s−1, which needs to be produced
already at the extraction of the DRs, high intensity bunches with ultra low emittances are
required. The DRs have to produce the beams with these specifications. One of the main
challenges for the beams with ultra-low emittances and high bunch charge is the strong IBS
effect which limits the performance of the DR. This thesis elaborated the optimization of the
main CLIC DRs, in the strong IBS regime.

In particular, an analytical parametrization of the TME cell has been derived for the case of
using dipoles with longitudinally varying magnetic fields. The emittances reached for longitudi-
nally variable bends are lower compared to the ones in the case of using uniform dipoles. Among
the non-uniform dipoles studied, it is found that the one having a hyperbolic field profile gives the
largest emittance reductions. Based on these analytical calculations, the magnetic design of such
a dipole was studied in CIEMAT. It reaches the 2.3 T (using permanent magnets) at the highest
field region and it gives very good results in terms of emittance reduction. This innovative dipole
design could be applied in any low emittance ring which targets lower emittances.

For the optimization of the DRs Theoretical Minimum Emittance (TME) cells located at the
arcs, based on the analytical studies, the numerical simulation code MAD-X is used in order to
define the appropriate initial conditions for matching the lattice and for finding optimal regions
of operation for the best performance. By replacing the uniform dipoles of the existing DRs arcs
with longitudinally variable bends, emittances much lower than the DR requirements could be
achieved and this allowed to remove some TME cells, resulting in a shorter ring. Moreover, the
high field wigglers used at the FODO cells of the DRs straight sections lowered the number of
cells needed to achieve the required design parameters. The ultimate purpose of using damping
wigglers is to further reduce damping times and thereby maintain low emittances by reducing
the impact of IBS, but also of various collective effects. The use of super-conducting technology
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is mandatory in order to have a high wiggler field and a relatively short period for obtaining low
emittances and fast damping time. By targeting higher wiggler fields not only the emittance but
also the IBS effect are reduced. Overall, the optimization of the TME cells and of the wiggler
FODO cells made it possible to reduce the circumference of the DRs by around 13%. With the
alternative DR design proposed, apart from achieving all target parameters, for a mitigated IBS
effect, it is possible to allow significant margin for the 500 nm target, for an eventual increase
of the required bunch population, as lately proposed due to the CLIC re-baselining [80]. The
benchmarking of the B-M IBS theoretical model with the results obtained from a multi-particle
tracking code called SIRE, was also presented.

IBS plays an important role also for high intensity hadron machines, like the LHC. On top
of IBS, radiation effects and a combination of other diffusion mechanisms (such as the beam-
beam effect, electron-cloud, noise, etc.), an extra transverse emittance blow up which leads to
luminosity degradation, is observed in the LHC. One of the attempts to explain this blow up
concerns the studies of the particle distributions, along the LHC energy cycle, which appear to
have non-Gaussian shapes. Examples of measured LHC bunch profiles in both the transverse
and the longitudinal plane were given. By assuming that a particle distribution is Gaussian
when this is not the case, not only the rms beam size may be underestimated or overestimated,
but also its impact on performance parameters, such as the luminosity. The use of appropriate
fitting functions for the LHC beam profiles is underlined. The q-Gaussian distribution function is
employed in order to describe the actual beam profile shapes observed, both for the light tail and
the heavy tail regime. It is proven that the use of this function allows to obtain more accurate
beam size estimations.

The impact of non-Gaussian distribution shapes on the estimation of the beam size and of the
luminosity is discussed. The luminosity integrals are solved for q-Gaussian density distributions in
the transverse plane. By comparing the resulted luminosity equation with the standard luminosity
formula for Gaussian beams, the significance of the tail population contribution to luminosity
is established. The sensitivity of the luminosity on the distribution as generalised by employing
the q-Gaussian function justifies the need of carefully studying the evolution of distributions
in hadron colliders. One of the next steps is to improve the luminosity model, that is currently
based on Gaussian distributions, by taking into account the actual shape of the bunch profiles. In
this way, it is possible to get more accurate luminosity predictions. Already, for the operational
scenario of the High Luminosity LHC upgrade, a non-Gaussian bunch length estimation is being
considered.

In order to understand the evolution of the bunch characteristics, based on the bunch profile
observations, it is important to study the interplay between IBS and radiation effects during the
full LHC cycle. At the LHC injection energy (450 GeV), in the horizontal and longitudinal plane
the IBS effect is dominant, while in the vertical plane, it is minor. At the LHC collision energy
(6.5 TeV) where IBS becomes weaker and synchrotron radiation starts playing an important role,
it is the interplay between these effects that determines the evolution of the bunch characteristics.
Based on the transverse and longitudinal bunch profile measurements, it has been observed that
the particle distributions in the LHC, both at collision and injection energies, appear to have
shapes that differ from the ones of a normal distribution. In many cases the bunch profiles appear
to be non-Gaussian during the whole injection plateau. At collisions, in many cases the bunch
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profiles appear to have non-Gaussian tails. The bunches that are blown up longitudinally during
the energy ramp arrive at the start of collisions with a non-Gaussian shape. In general, it is
observed that along the LHC energy cycle, in both the longitudinal and the transverse plane, the
particle distributions become more Gaussian in time.

The way IBS and radiation effects act depends on the shape of the profiles. In order to
quantify the impact of the distribution’s shape on the emittance evolution, SIRE is used for
simulations. The benchmarking of the B-M analytical formalism with SIRE showed a very good
agreement for the first couple of hours at injection and collision energies of the LHC, even if
they make use of different approaches to calculate the IBS effect. Due to the fact that in SIRE
the particle distributions are updated, while MAD-X always assumes Gaussian distributions, the
divergence between the two approaches becomes more pronounced as time evolves. The results
obtained from the simulations encourage the idea of using the code to track distributions coming
from experimental data, in order to study the impact of the distribution’s shape on the evolution
of the bunch characteristics. The agreement between data and simulations is excellent, specially
in the case of using the q-Gaussian fitting function for the measured and simulated bunch profiles.
This is a remarkable result, considering that no assumptions are being made in the simulations
apart from using identical initial conditions with respect to the experimental ones. Finally, the
fact that SIRE takes into account the change of the particle distribution showed that it is a very
useful tool for estimating the actual bunch parameters evolution in the machine.
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Appendix A

The Bjorken-Mtingwa formalism
auxiliary matrices

For i = p, x, y being the index that respectively corresponds to the longitudinal and transverse
planes, the auxiliary matrices for the B-M growth times (see Eq. 3.9) are given by:

L = L(p) + L(x) + L(y) , (A.1)

L(p) =
γ2

σ2
p

 0 0 0

0 1 0

0 0 0

 , (A.2)

L(x) =
βx
εx

 1 −γφx 0

−γφx γ2Hx/βx 0

0 0 0

 , (A.3)

L(y) =
βy
εy

 0 0 0

0 γ2Hy/βy −γφy
1 −γφy 1

 , (A.4)

where,

φx,y ≡ η′x,y −
β′x,yηx,y

2βx,y
, (A.5)

and

Hx,y =
1

βx,y

[
η2
x,y +

(
βx,yη

′
x,y −

1

2
β′x,yηx,y

)2
]
. (A.6)



Appendix B

The integrals to calculate the emittance
of a variable bend

The integrals to calculate the emittance given in Eq. (4.17) for a variable bend described by two
different bending radii functions along its length, are:

I1 =

L1∫
0

θ2
1

|ρ1(s)|3
ds 1, I2 =

L1+L2∫
L1

(θ2 + θL1)2

|ρ2(s)|3
ds , I3 =

L1∫
0

1

|ρ1(s)|3
ds , I4 =

L1+L2∫
L1

1

|ρ2(s)|3
ds ,

(B.1)

I5 =

L1∫
0

2
−sθ1 + θ̃1

|ρ1(s)|3
ds, I6 =

L1+L2∫
L1

2
−sθ2 + θ̃2 − L1θL1 + θ̃L1

|ρ2(s)|3
ds , I7 =

L1∫
0

(−sθ1 + θ̃1)2

|ρ1(s)|3
ds and

I8 =

L1+L2∫
L1

(−sθ2 + θ̃2 − L1θL1 + θ̃L1)2

|ρ2(s)|3
ds .

where θL1 = θ(s = L1) and θ̃L1 = θ̃(s = L1).



Appendix C

The emittance reduction factor as a
function of ρ and λ for the step and the

trapezium profile

As discussed in section 4.2, the emittance reduction factors for the step and the trapezium variable
bend profiles depend only on ρ and λ and their full expressions are given by:

F step
TME = 2(λ+ρ̃)3(1+ρ̃2)

√
1 + ρ̃3

λ1ρ̃4 + λ2ρ̃5 + λ3ρ̃7 + λ4ρ̃8 + λ5ρ̃9 + λ6ρ̃10 + λ7(1 + 9ρ̃3 + 18ρ̃6) + λ8(λ9ρ̃11 + λ10ρ̃12 + ρ̃13)
,

where λ1 = 4λ4(5 + 18λ), λ2 = λ2(9 + 45λ+ 64λ2), λ3 = 12λ4(5 + 21λ), λ4 = λ2(31 + 210λ+ 399λ2),
λ5 = λ(27 + 155λ + 240λ2), λ6 = 3(3 + 15λ + 20λ2), λ7 = 4λ6, λ8 = (4 + 15λ + 15λ2), λ9 = 3λ7/(4λ

4)

and λ10 = λ9/λ .

F trapezium
TME =

4
√

2r1(r2λ+ ρ̃ ln ρ̃)3
√
w2/w3

w1
,

where r1 = ρ̃+ 1, r2 = ρ̃− 1 and:

w1 = 2r32(2 + 3r1ρ̃)λ2 − 6r2ρ̃
2(r1r2 − 2ρ̃2 ln ρ̃)λ+ 3(r1r2 − 2ρ̃2 ln ρ̃)ρ̃3 + 6ρ̃5(ln ρ̃)2 ,

w2 = r32(2 + r1ρ̃)w1 ,

w3 = w3aλ+ w3bλ
2 + w3cλ

3 + w3dλ
4 + w3e ,

for w3a = 90r2ρ̃
4(r22(−8 + ρ̃(5 + (−1 + r2)ρ̃)) + 4(−1 + r2)ρ̃ ln ρ̃(−2r2 + ρ̃ ln ρ̃)),

w3b = 15r22 ρ̃
3(r22(20 + 3(2 + r1)r2ρ̃) + 4ρ̃2 ln ρ̃(−2r2 + 3(−1 + r2) ln ρ̃)), w3c = −120r42 ρ̃

2(r1r2 − 2ρ̃2 ln ρ̃),

w3d = 16r62(1+3r1ρ̃) and w3e = 45ρ̃5(r22(−44+ρ̃(−3+(−5+r2)ρ̃))+4 ln ρ̃(4r1r2+6r2ρ̃+(−1+r2)ρ̃2 ln ρ̃)) .



Appendix D

CLIC DRs design parameters for the
case of Nb = 5.7× 109

The design parameters for the alternative design of the CLIC DRs for the case of Nb = 5.7× 109

are given in the following table.

Table D.1: Parameters for the original and the improved CLIC DRs design, for the case of Nb = 5.7×109

Parameters, Symbol [Unit] Alternative design
uniform trapezium

Energy, E [GeV] 2.86
Bunch population, Nb [109] 5.70
Circumference, C [m] 373.7
RF Voltage, VRF [MV] 6.50
Harmonic number, h 2493
Momentum compaction, αc [10−4] 1.3 0.88
Phase advances per arc cell, (µx, µy) [360o] 0.510/0.110
Horizontal and vertical tune, (Qx, Qy) (51.16, 14.56) (51.18, 14.55)
Horizontal and vertical chromaticity, (ξx, ξy) (-57, -70) (-67, -75)

without IBS
Normalized horiz. emittance, γεx [nm-rad] 574.1 350.3
Normalized vert. emittance, γεy [nm-rad] 3.3
Energy spread (rms), σδ [%] 0.15
Bunch length (rms), σs [mm] 1.6
Longitudinal emittance, εl [keVm] 5.8

with IBS
Normalized horiz. emittance, γεx [nm-rad] 682.2 472.8
Normalized vert. emittance, γεy [nm-rad] 5.0 4.6
Energy spread (rms), σδ [%] 0.15
Bunch length (rms), σs [mm] 1.6
Longitudinal emittance, εl [keVm] 5.8
IBS factors hor./ver./long. 1.18/1.51/1.01 1.35/1.39/1.02



Appendix E

Luminosity calculation for q-Gaussian
density distribution functions

Using Eq. (7.3) as the probability density functions, the general luminosity formula in Eq. (8.1) is
solved for q-Gaussian distributions in all planes. For the two beams being identical, integrating
firstly over s and s0:

IqGs =

∫ ∫
−∞

∞
ρ1s(s− s0)ρ2s(s+ s0) dsds0 , (E.1)

and then, integrating over x and y:

IqGxy =

∫ ∫
−∞

∞
ρ1x(x)ρ1y(y)ρ2x(x)ρ2y(y) dxdy =

∫ ∫
−∞

∞
ρx(x)2ρy(y)2 dxdy , (E.2)

keeping in mind that for w = x, y, s it is:

w ∈

[
± 1√

βqG(1− q)

]
, for −∞ < qw < 1

w ∈ (−∞,∞) , for 1 ≤ qw < 3 ,

(E.3)

the solutions of these integrals are found to be:

IqGs = 1 , (E.4)

and

IqGx,y =

{ βqGx,y
C2
qx,y

√
πΓ
(
−3+qx,y
−1+qx,y

)
√
βqGx,y(1− qx,y)Γ

(
3qx,y−7

2(−1+qx,y)

) , for −∞ < qx,y < 1

βqGx,y
C2
qx,y

√
πΓ
(
−qx,y+5

2(−1+qx,y)

)
√
βqGx,y(−1 + qx,y)Γ

(
2

−1+qx,y

) , for 1 ≤ qx,y < 3

, (E.5)

for IqGx IqGy = IqGxy and, for βqGxy and Cqxy being the beta parameters and the normalization factors
in the transverse plane. After some simplifications, using also Eq. (7.6) and Eq. (7.8), it is found
that the luminosity for q-Gaussian distribution functions depends on the IqGx,y (see Eq.(8.4)) which
are defined as:

IqGx,y =

{ (2 + 1/k)2

2
√

3 + 2k

Γ (1 + 2k) Γ (1/2 + k)2

Γ (3/2 + 2k) Γ (k)2 , for −∞ < qx,y < 1

2√
−(3 + 2k)

Γ (−1/2− 2k) Γ (−k)2

Γ (−2k) Γ (−1/2− k)2 , for 1 ≤ qx,y <
5

3

, (E.6)
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for k =
1

1− qx,y
. As for the Gaussian case (Eq. (8.2)), the luminosity for q-Gaussian beams

colliding head-on does not depend on the longitudinal beam size.

Figure E.1: Luminosity variation with respect to the transverse beam size variation, for the q-Gaussian
(LqG) with q = 1 (i.e. normal distribution shape) and the Gaussian case (LG), for the same beam
parameters.

In Fig. E.1, the variation of the luminosity is plotted with respect to the transverse beam size
for the q-Gaussian case (LqG) with q = 1 (i.e. normal distribution shape) and the Gaussian case
(LG). Basically, the transverse beam sizes in Eq. (8.2) and Eq. (8.4) are being varied equivalently
and the resulted luminosity changes are found using these two equations. The excellent agreement
demonstrates that in the limit of q → 1, the luminosity estimation for q-Gaussian distributions
(given in Eq. (8.4)) allows to obtain the exact same result as for Gaussian distributions. By
keeping the q parameter constant (here q = 1) and varying the beam size, the βqG parameter
also varies.
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