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Abstract: The construction of exactly solvable refractive indices allowing guided TE modes in optical
waveguides is investigated within the formalism of Darboux—-Crum transformations. We apply the
finite-difference algorithm for higher-order supersymmetric quantum mechanics to obtain complex-
valued refractive indices admitting all-real eigenvalues in their point spectrum. The new refractive
indices are such that their imaginary part gives zero if it is integrated over the entire domain of
definition. This property, called condition of zero total area, ensures the conservation of optical power
so the refractive index shows balanced gain and loss. Consequently, the complex-valued refractive
indices reported in this work include but are not limited to the parity-time invariant case.

Keywords: optical waveguides; Darboux method; supersymmetric quantum mechanics; PT symmetry;
non-Hermitian systems

1. Introduction

Optical waveguides with arbitrarily shaped index profiles have been the subject of
intensive research over recent decades. The accelerated development of fiber optics tech-
nologies and optical communications has prompted new ways of visualizing the interaction
of light with matter. In addition, advances in material and optical technologies open wider
possibilities to design index profiles on demand, so more sophisticated waveguiding-based
optical devices may be achieved in a short time.

The behavior of light beams in spatially inhomogeneous media of refractive index # is
formally studied through the wave equation derived from the Maxwell equations [1-4]. As
the pulse spread at the receiving end of a waveguide can be reduced for refractive indices
of quadratic (parabolic) profile, it is expected that shaping the profile more freely we might
be able to reduce further this undesired phenomenon [1]. Such expectation motivates
the investigation of arbitrarily shaped index profiles addressed to optical waveguiding.
Nevertheless, analytical solutions of the equation that rules the propagation of light in
this kind of media exist only for limited refractive index profiles. The WKB, Rayleigh-Ritz,
power-series expansion, finite element or perturbation methods are then applied to obtain
some approximated solutions [1-4], even numerical integration is usable. In this respect,
the transformation introduced by Darboux in 1882 to study Sturm-Liouville problems
deserves special attention.

The Darboux method permits the intertwining of two differential equations in such
a form that their solutions are connected through a simple differential relationship; fur-
ther improvements are due to Crum [5,6]. In the 1970s, such a method received a lot of
interest in soliton theory since it is linked to the Backlund transformation, used to study
the soliton-like solutions of diverse nonlinear differential equations [6]. The Darboux
approach attracted renewed attention in the 1980s, after the inauguration of supersym-
metric quantum mechanics by Witten [7], because it is also in the core of the factorization
method introduced by Dirac ‘as a little stratagem to solve the spectral problem for the
one-dimensional quantum oscillator” [5]. Diverse supersymmetric formulations were
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immediately addressed to the spectral design of exactly solvable models in quantum
mechanics [8-12].

Supersymmetric quantum mechanics (Susy-QM) is presently a very robust formula-
tion embracing a very wide set of applications [5,13,14], including optics [15-25], where
supersymmetry may be interpreted as describing two light beams of different colors
that form a standing periodic interference pattern along the waveguide axis [15]. In the
Helmbholtz regime, the supersymmetric partners can be constructed to display parabolic [16]
or sech-like index profile [17-20]. They also show identical coefficients of transmission
and reflection for any angle of incidence [5,18,19,21,22], which may render them perfectly
indistinguishable to an external observer [23]. The impressing breakthrough of supersym-
metry in optics is that superpartner configurations are experimentally realized in coupled
optical networks, where the light dynamics is directly observed [24] and the conditions for
degeneracy breaking can be studied [25]. The theoretical modeling of diverse refractive
indices using the powerful Darboux—Crum (supersymmetric) formulation [5,8-12,19,26] is
therefore interesting by itself.

The Darboux-deformation of Hermitian systems is just one of the options permitted by
the method. Indeed, non-Hermitian structures may be also developed [27-31], where some
initial insights connecting supersymmetry with parity-time (PT) symmetry [32] shown
additional applications of the supersymmetric approach. In this context, important theoret-
ical achievements within the PT-symmetric formulation [33] envisioned the observation
of parity-time symmetry in optical laboratories [34], so the practical implementation of
Susy-QM could also be achieved in optics. Moreover, as the reality of the spectrum is not
granted a priori for non-Hermitian models, the demonstration that PT symmetry implies
real spectrum [35] stimulated the systematic search of PT-symmetric systems in quantum
mechanics [36]. Nevertheless, further improvements shown that PT-symmetry is not a
necessary condition for the spectrum reality [37,38], a fact confirmed in diverse supersym-
metric models of non-Hermiticity [39-44], where the imaginary part of a wide class of
complex-valued potentials lead to balanced gain and loss probability without the necessity
of PT symmetry. The latter property opens new possibilities in optical design, where the
gain-loss manipulation includes but is not limited to PT symmetry [45].

In the present work we generate graded refractive indices with both real- and complex-
valued profiles. Our interest is addressed to the study of guided TE modes propagating
in media with balanced gain-and-loss refractive index. Taking into account the limited
set of analytical solutions in optical waveguiding, the method presented here represents
a very efficient resource of theoretical models on the matter. The approach is based on
the finite-difference algorithm for higher-order supersymmetry introduced in [19], which
summarizes the fundamental ingredients of supersymmetric quantum mechanics of any
order [5]. It is a generalization of the supersymmetric formulation introduced by Mielnik in
1984 [8], which coincides with the Darboux transformation connecting two exactly solvable
potentials in quantum mechanics.

The organization of the paper is as follows. In Section 2 we briefly revisit the mathe-
matical structure underlying the propagation of light in graded-index waveguides. The
well-known identification of the Helmholtz equation with the Schrodinger eigenvalue
problem is the point of departure to apply the supersymmetric finite-difference algorithm.
In Section 2.1 we provide general formulae to add guided TE modes one at a time in
the dynamics of a given waveguide. Then, in Section 2.2, a new mechanism to produce
complex-valued refractive indices with all-real eigenvalues is discussed. The achievement
of this method is that the imaginary part of the new refractive index is such that its inte-
gration over the entire domain of definition is equal to zero, preserving in this form the
total optical power of the system. Such property permits the acquisition of PT symmetry
as a particular case. We also discuss briefly the bi-orthogonal structure that is necessary
to properly normalize the guided TE modes of the new system. In Section 3 we present
immediate applications. We show that the method produces a wide variety of exactly
solvable refractive indices in both the real- and complex-valued configurations. The former
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case permits the manipulation of the index profile to better-fit it with (possible) experimen-
tal observations. The second case leads to PT-symmetric as well as to non-PT-symmetric
refractive indices, both configurations admitting all-real propagation constants in the point
spectrum. Some conclusions are given in Section 4. For the sake of completeness, we briefly
revisit the generalities of the supersymmetric finite-difference algorithm in Appendix A.

2. Mathematical Physics of Graded-Index Waveguides
The Helmholtz equation

02 02
@d)y(x,z) + ﬁcby(x,z) + kg (x) @y (x,z) = 0 1)

is useful to study TE modes propagating through inhomogeneous dielectric materials with
negligible magnetic polarizability and dispersion. Here ko(= w/c) = 27mA ! stands for
the wavenumber in vacuum, and the refractive index 7 is assumed to depend only on
the x-coordinate. Hence, dDy(x, z) represents an electric wave polarized in the y-direction,
which propagates along the positive z-direction.

On the other hand, the paraxial Helmholtz equation

1 @ i
W, a2 + g B0 2) + nl) = meJBy(2) = 0 @

results within the paraxial regime for weakly guiding media (|n — n.| < 1), after using the
ansatz ®,(x,z) = Ey(x,z) exp(ikon.z). The number n, > 0 defines a reference refractive in-
dex. As n(x) is independent of the z-coordinate, let us assume E, (x,z) = E(x) exp(—ikoez),
where ¢ defines the spectrum propagation constants [46], then (2) is reduced to the eigen-
value problem

1 d?
[ n(x) 4+ n.|E(x) = €E(x), E(x):=Ey(x,2)| _, (3)

B 2k%n* ax?

Comparing Equation (3) with the eigenvalue equation for one-dimensional stationary
systems in quantum mechanics

h? a2
—ﬂ@JFV(x) P(x) = EP(x), 4)
we obtain the identification [47]
2, mwo V(%) £
k§ <— o [—n(x) + ny]ne «— o My - (5)

Then, the TE modes E, (x,z) = E(x) exp(—ikoez) may be associated with the solutions
¥(x,t) = Pp(x) exp(—iEt/h) of the related Schrodinger equation, where z «— tv/wh/m.
The link between (3) and (4) is even more clear after introducing the changes x —

x/ (kov/2) and x — x+/h/(2mw), which gives
d2
dy?

2
(00 + e |EGO = en B, | =15+ V00|90 = Epl0, - ©
with hiwV = V and hwé = €.

In the sequel we take full advantage of the above mathematical relationship, providing
solutions to the Helmholtz Equation (3) from the space state of the quantum mechanical
problem (4). Our aim is to design refractive indices n(x) on demand, locating propagation
constants at concrete positions of the point spectrum, and producing balanced gain-and-loss.
Keeping this in mind we will apply the Darboux method [6], as it has been developed in
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supersymmetric quantum mechanics [5], to deform the eigenfunctions of a given refractive
index into the eigenfunctions of another one. The approach is useful to add/eliminate
a concrete number of eigenvalues to/from the point spectrum of #n(x), at the price of
transforming n(x) and E(x) into new functions. Changing the point spectrum of n(x)
by only one eigenvalue ¢ corresponds to the first-order Susy (Darboux) transformation.
If the modification involves k > 2 eigenvalues, then one works with the kth-order Susy
transformation, which may be performed iterating k-times the Darboux transformation
or deforming n(x) in a single step (Darboux—Crum) [5]. The Darboux method has been
elegantly summarized in the finite-difference algorithm for higher-order supersymmetry
introduced in [19], which is briefly revisited in Appendix A for completeness.

2.1. Adding Propagation Constants under Prescription

We are interested in generating refractive indices 7 (x) with exact solutions to the parax-
ial Helmholtz Equation (3). An elegant way to achieve this is offered by the finite-difference
algorithm for higher-order supersymmetry [19] revisited in Appendix A. The keystone is to
have at hand at least one exactly solvable refractive index 1 (x), the point spectrum of which
is inherited to another refractive index 11 (x; €), defined by the Darboux transformation

11 4 V2
(—n1(x;€) +m1,) == = —ng(x) + 1o + ——Bi (x;€), )
no,« kono’*

’

where f'(x) = % f (x), the superpotential B1(x; €) is solution of the nonlinear Riccati equation

1 / 2
— ——B5(x;€) + X;€) = ng«|—No(x) +ngs« — €|, 8
koﬁﬁl( )+ Bi(x;€) = nox[—no(x) + 1o — €] ®)
and the factorization constant € is to be determined (see Appendix A for details).
To simplify notation, without loss of generality, hereafter we make ny , = 19, := ny,
withk=1,2,...
The refractive index (7) defines a new paraxial Helmholtz equation

1 a2
Tk, de e T Ey(xe) = eEgy(xie), 9)

the solutions of which are constructed from the eigenfunctions E ) (x) of 19(x) as follows

Ny Eq)(x:€) = E{g)(x) + B1(x, €) E() (%), (10)
where ;) obeys normalization.

The point spectrum of 17 (x) will be exactly the same as the one of ny(x), or it may
include the factorization constant € as an additional eigenvalue. In the latter case, the
corresponding eigenfunction is written as follows

Ef\f) (x;€) = ./\/’(1\14) exp [/ B1(x; e)dx} : (11)

The procedure described above can be iterated at will, see Appendix A. After k steps
one obtains a refractive index 7, (x;€) that admits k additional eigenvalues in its point
spectrum with respect to the point spectrum of 1y (x).

Clearly, the profile of ny(x; €) may be manipulated to obtain a concrete number of
guided TE modes under prescription. For instance, suppose that rp(x) in (7) admits only
N guided modes, the finite-difference algorithm provides n;(x; €) with exactly the same
propagation constants as 19 (x) plus an additional one, located at € in the point spectrum
of n1(x; €) but absent in the spectrum of n¢(x).
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Depending on the prescription, the propagation constants of the guided modes may
be added one at a time, iterating the finite-difference algorithm as necessary, or using a
single transformation if just one additional propagation constant is required. Conventional
supersymmetric approaches include the new eigenvalue below the lowest eigenvalue of
the previous spectrum. The latter obeys the fact that the oscillation theorem prohibits
constructing regular superpotentials By if the factorization constant € is above the lowest
propagation constant of n;_q. Thus, viable factorization constants € are at most equal
to the lowest propagation constant of n;_1. In contraposition, a mechanism producing
complex-valued refractive indices as Darboux-deformed versions of real-valued ones can
be managed by following the method introduced in [39]. The novelty is that the eigenvalues
of the new refractive indices will be all-real. Moreover, the additional eigenvalue € can
be incorporated at any position of the spectrum [41]. The formulae (7)—(11) still apply for
complex-valued refractive indices, and are particularly important to generate balanced
gain-and-loss.

2.2. Balanced Gain-and-Loss Waveguides

Conventional supersymmetric approaches assume that the solution of the Riccati
Equation (8) is real-valued. However, complex-valued solutions are feasible even for
real-valued refractive indices 1y (x) and real factorization energies €. Indeed, the real and
imaginary parts of Equation (8) give rise to the nonlinear differential equation

1 A2

——, AER, 12
2k3n, a3(x;€) (12)

[ L no(x) + ns | a(x;€) = ea(x;e) —

B 2k3 ., dx2

which is named after Ermakov [48]. Please note that (12) coincides with the paraxial
Helmbholtz Equation (3) when A = 0. Then, the solutions may be expressed as the nonlinear
superposition [39]

} 1/2, (13)

a(x;e) = {au%l);l(x;e) + buya (% €)upya(x€) + cu%l);z(x; €)
where 1)1 and 1), are two-linearly independent solutions of (3) for ¢ = e. The a-
function is real-valued and free of zeros in Dom n if the set {a,b,c} is composited by
positive numbers fulfilling

b — 4ac = —4A% /W3, (14)

where Wo = W (u (1)1, (1)) = const is the Wronskian of u1),; and u1).
Using (13), the complex-valued superpotential acquires a simple form

1d A v'(x;€) —i2A
B1(x;e) = —Ealnv(x,e) +lv(x;e) = —{ 20(5;6) }, (15)
where
v(x;e) = au%l);l(x;e) + bu 1y (x5 €)up)a(x;€) + cu%l);z(x; €). (16)
Then, the Darboux transformation (7) gives the complex-valued refractive index
V2 d [0 (x;€) —i2A
ni(x;e) = np(x) + ko, dx { 20(50) } (17)

On the other hand, it may be shown that the imaginary part of n11 satisfies the condition
of zero total area [49]:

+o00

VA1 =0, (18)

/lenl<x;e>dx= " kon o(x;€)
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so the total optical power is conserved. Equation (18) implies a balanced interplay between
gain and loss that does not depend on any symmetry of either Im 1 (x;€) or Reny(x;¢€).

In contraposition to conventional supersymmetric approaches, the factorization energy
€ can be positioned at any place in the point spectrum of n; [41]. Moreover, the missing
state (11), now written as

NO T [
(1)(x;e) = \/Tie) exp {1/\/1)_ (x; e)dx], (19)

is such that its real and imaginary parts are even and odd functions of the position-variable
x, respectively.

We would like to emphasize that the nonlinear superposition (16) marks a distance
with conventional supersymmetric approaches. Indeed, we have already shown [43]
that the superpotential (15) can be also written in the conventional logarithmic form

B(x;€) = — % Inw(x; €), where the coefficients of the linear superposition
N b A
w(x;€) = auq(x,€) + 3 ZWO u)2(x,€) (20)

are ruled by the constraint (14), with 2 and b complex numbers in general. Clearly, such
a concrete combination of coefficients permits n; to satisfy the condition of zero total
area (18), which defines it as a balanced gain-and-loss refractive index.

2.2.1. Bi-Orthogonality

The solutions of the paraxial Helmholtz Equation (9), with n1(x; €) given in (17), are
obtainable from (10), (15) and (19). However, while Ef\f) and all the TE modes E(y) are
normalizable, they form a peculiar set since E?{I) is orthogonal to all the E 1) but these last
are not mutually orthogonal [39] (such property is not a problem in the Hermitian case
since all the new functions satisfy the conventional oscillation theorems). Nevertheless, the
eigenfunctions of n; satisfy some properties of interlacing of zeros that permit the study
of the related systems as if they were Hermitian [49]. In this context, the bi-orthogonal
set formed by the eigenstates E(y) of ny, together with the eigenstates E (1) of the complex-

conjugated refractive index, written nlc, provide an extended space of states where all the
basis elements are bi-orthonormal [39,40,42]. Indeed, the bi-product

(E(l);ml E(l);”) = ,/]R E(Cl),m (x; e)E(l)m(x;e)dx (21)
is equal to zero if n # m, and serves to define the bi-norm ||Ey),, || = ||E(1),.||5 if n =

m [39]. With two possible normalizations at our disposal, E(;)/[|E (|| and E(y)/||Ey)|[5,
it is important to emphasize that the real and imaginary parts of the modes E ;) behave
qualitatively equal in both normalizations [42], although their bi-normalized values are
usually larger than those obtained with the conventional normalization. Nevertheless, the
differences become negligible as the excitation of the TE mode increases, see [42] for details.
Note also that the notions of bi-product and bi-norm introduced above coincide with the
conventional definitions if A = 0.

2.2.2. PT-Symmetric Case

The expression (17) represents a wide family of balanced gain-and-loss refractive
indices. A very interesting subset of such family is integrated by the so-called parity-time
(PT) symmetric refractive indices. Recalling that invariance under parity and time-reversal
transformations requires 7(x) = n¢(—x) in quantum mechanics [35], we realize that the
initial refractive index ny(x) should be parity-invariant ny(x) = no(—x) to facilitate the
construction of PT-symmetric refractive indices 17 (x;€). On the other hand, assuming
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real-valued transformation functions u(1),; and u3),,, we may take b = 0 in (16) to obtain
the quadratic form
vpr(x;€) = au%l) 1(xe) + cu%l);z(x; €). (22)

The straightforward calculation shows that using this function in (17) one obtains a
complex-valued graded index that is PT-symmetric.

Please note that b = 0 implies ac = A>/W in (14). To simplify notation, without loss
of generality, let us make 2 = ¢ = A/|Wp| in (22), where |Wp| stands for the modulus of Wj.
Then (17) yields

1 d?
TlPT(x} E) - TlO(JC) + W@ In [u%l);l (x,'e) + ”%1);2(35? E):|
V2|Wo| d .
— k0|n*0| - [”%1);1("" €) + u%l);z(x;e)} . (23)

Observe that the w-configuration (20) leads to the same result provided a = —iA/W§.

2.2.3. Recovering the Real-Valued Case

As indicated above, if A = 0 the superpotential (15) is reduced to its Hermitian
configuration, which produces real-valued indices only. Revisiting the constraint (14) we
see that A = 0 implies b?> = 4ac, and thus b = +-2,/ac. We obtain the linear superpositions
Ny = \/ﬁu(l);l =+ ﬁu(l);z, so we arrive at the conventional superpotentials

Br(x;€;+) = —%ln[\/ﬁu(l);l(x;e) + Veupya(x; e)}, (24)

where a2 and ¢ are such that f is free of singularities in Dom 7. Therefore, from (7) one has
the two-parametric family of real-valued graded indices

2 d?
ng(x;€;4) = no(x) + Iq)\/n;dxz In {\/ﬁu(l);l(x;e) + ﬁu(l);z(x;e)} (25)

3. Applications

The method developed in previous sections may be applied to practically any exactly
solvable refractive index n¢(x). The expression ny(x;€), obtained at the kth step, actually
represents a very wide family of new exactly solvable refractive indices with k additional
propagation constants in their point spectrum with respect to n9(x). Even more important
is the fact that 1y (x; €) can be constructed to be a real- or complex-valued function. In any
case, the propagation constants belonging to the point spectrum of ny(x;€) are all-real.
Next, we provide a very useful example of the applicability of our approach. We use the
mathematical solutions associated with np = 0 to produce diverse families of cosh-like
refractive indices admitting the presence of a given number of guided TE modes. The results
include complex-valued refractive indices that are not limited to the parity-invariant case.

From now on, for the sake of simplicity, the expressions of the refractive index profiles
1np(x) and ng(x; €) are considered up to the additive constant 7.

3.1. Adding Guided Modes One at a Time

The fundamental solutions of the paraxial Helmholtz equation for ny = 0 are well
known. For positive factorization constants € = k2 > 0 we write u; = eX(*~%) and
uy = e~ k(x=%) with Wy = —i2k. However, the above expressions yield sinusoidal re-
fractive indices 17 [39], which are out of the scope of the present work. Here we make
k = ix to obtain negative factorization constants € = —«?2, therefore

0(x; %) = ae? ¥ %) e =x0) L p b2 _gge = —A2 /52 (26)
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To simplify notation let us make a = c¢. Then v(x; x) = 2a cosh[2k(x — xo)] + b, with
b? = 44 — A /x2. The superpotential (15) acquires the form

inh[2k (x — x)] — i4 2
Bi(x;x) = — | =20 [2x(x — x0)] lbza , b =4a® - )‘7 (27)
cosh[2k(x — x0)] + o5 K

so the refractive index (17) is in this case

(2x)? (1 + % cosh[2x(x — xo)]) + 1%(27() sinh[2k(x — xo)]
n1(x;x) = 2 : (28)
V2kony (COSh[ZK(X —x0)] + %)

The complex-valued graded refractive index (28) allows the presence of only one
guided TE mode, obtained from (11) in the form

Cosh[zx(x(l_) xO)] N 2% eXP{_ﬁ arctan((% — 1) tanh[;c(x — xo)]) } (29)

M (y.0) —
Eq)(x; K) = \/
Following the indications of the previous section, let us make A = 0 and b = 24 in (27)
and (28) to obtain

_ 2i2
V2kon, cosh?[x(x — xg)]

Br(x;x) = —xtanh[k(x — xg)], nr(x;x) , (30)

which are the well-known expressions for the cosh-like refractive index. The function
nr(x; x) is depicted in Figure 1a for a representative propagation constant ¢, which may be
located at any position 1 = —«? since it is the only one eigenvalue in the point spectrum.

(a) nr(x;x) (b) npr(x;x)
Figure 1. Cosh-like refractive index (30) for x = 2/3 (a). Parity-time symmetric refractive index (31)
for x = 1/2 (b). In both cases xy = 0, kg = 1/+/2n., and the horizontal axis is mounted on 7,. These
graded refractive indices admit the presence of only one guide TE mode of propagation constant
€ = —4/9 and e = —1/4, respectively. In both cases the real part is in blue while the imaginary part
is in red.

Forb = 0and a = % the formulae (27) and (28) give rise to the PT-symmetric
expressions

.\ {xsinh[2x(x—xg)] —ix Loy (26)2 (14 sinh[2x(x—x0)])
ﬁPT(x’ K) - ( cosh[2x(x—xp)] )’ nPT(x’K) T 2kon. cosh?[2ic(x—xg)] (31)
The PT-symmetric refractive index (31) is shown in Figure 1b for a representative
propagation constant €. As in the previous case, this eigenvalue can be positioned at will in
the negative part of the real axis.



Symmetry 2021, 13, 1583

9o0f 16

If we repeat the procedure, assuming now that 11 (x; k1) has been already fixed, the
finite-difference algorithm provides an immediate superpotential (see details in Appendix A):

\ﬁkon* (K% - Kz)
Br(x;r) — Pr(x;x)
where k7 and B1(x; k1) have been fixed in the previous step. Deciding the concrete value of

k, as well as the analytical form of 1 (x; ) in (27), the above equation provides the new
refractive index

Ba(x;%1,6) = —B1(x;%1) + (32)

d

1y (x5 %1, %) = ny(x;%1) — Iﬁﬁé(nmm) T Tdx [,31(

2(xk2 — %)

x; 1) — B1(x;x)

] ;o (33)

where we have used (7) with ny(x) = 0.

At the present stage, we have incorporated two propagation constants, so the point
spectrum of 15 (x; k1, k) is composited by the eigenvalues e; = —«x2 and ¢ = —«x2. However,
some caution is necessary if the first step was addressed to produce ng(x;x;) and we are
looking for a second real-valued refractive index ng (x; k1, x). In such a case the inequality
¢ < €1 must be satisfied to obtain regular functions ng (x; 1, k). Moreover, in such case, it
may be shown [19] that it is better to combine the two different real-valued superpotentials
Br(x;x; ). The case “+” is reported in Equation (30), the case “—" corresponds to the
complementary expression g (x; k; —) = —« coth[x(x — x¢)], see Section 2.2.3. We therefore
arrive at the real-valued graded index

2(k2 — %) (K% esch?[ky (x — x1)] 4 k2 sech?[k(x — xo)])
ngr(x;%61,x) = 5 . (34)
(—xq coth[r1 (x — x1)] + x tanh[x (x — x0)])

The behavior of ng(x;x1,x) is shown in Figure 2 for different spectra {¢, &1} and
constants xy and x7.

8 8
6
4 4
2
‘ \
% -2 -2 2 4 6 6 -4 -2 2 4 6
(@x=x=0 (b) xo # 0, x1 #0

Figure 2. Real-valued refractive index ng (x; x1, k) with symmetric (a) and non-symmetric (b) profile,
see Equation (34). The point spectrum is composited by only two propagation constants {e, e1},
explicitly {—(1.9)2, —4}, {— £, —4}, and {—1, —4} for curves in blue, purple and red, respectively. In
(b) the points (xg, x1) are (0.2, —1), (—1,2), and (2, —0.5), following the color code indicated above.

Remarkably, € and &; characterize the global profile of the function (34). Indeed, for
1 > x and xo = x1 = 0, the refractive index ng (x; 1, k) acquires a bell-shaped form. How-
ever, a valley arises at the top of such curve if ¥ = x1 — ¢, with 0 < ¢ < 1. The dent is more
pronounced as ¢ — 0, separating the initial bell-like curve into a pair of bell-shaped ones.
At the very limit, the new curves have moved in opposite directions toward the domain
edges +oo. Quite interestingly, actual waveguides are manufactured by including such
dent, “sometimes for reducing the internal mechanical stress due to the gradient of dopant
concentration, and sometimes for reducing the multimode dispersion” [1], p. 83. With this
in mind, Figure 3 shows the exploration of the parameters that characterize ng(x;x, ),
addressed to produce different dent configurations in the refractive index. These may be
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completely symmetrical as in Figure 3a or asymmetrical, as shown in Figure 3b. For k1 > «,
local deformations may be produced by tuning the displacement parameters xy and x1, see
Figure 3c.

(@x=x=0 (b) xo =0,x1 #0 (¢) {x1,x};x0 =0,x1 #0

Figure 3. The real-valued refractive index ng(x; 1, k) may be produced with a dent if ¥ = x; — o,
with 0 < ¢ < 1, in Equation (34). This may be symmetrical (a) or asymmetrical (b). Both cases
correspond to the point-spectra {*K%, *Kz}, where x; = 1 and k = 0.55,0.6,0.65,0.7,0.75, top to
bottom curves as they are viewed at x = 0, respectively. In (b), the same curves are evaluated with
x1 = 0,-0.2,-0.4,-0.6, and —0.8. In (c) the spectrum is fixed, with x; = 1 and ¥ = 0.55. The
displacement x; takes the values indicated in (b). The dents in (a,b), as well as the deformations (c),
are deliberately produced in the manufacture of actual refractive indices, see for instance [1].

The ordering problem suffered by the propagation constants in the construction of
ng(x;x1,x) is easily avoided by considering any superpotential (27) with A # 0 in either
of the two steps. For instance, as in the previous example, assume that ng(x; k1) has been
fixed in the first step. To include the second eigenvalue ¢ this time we use the complex-
valued superpotential Bpr(x; x) introduced in (31). The new refractive index (33) is now
complex-valued, given by

22 = &) fxrx1, %)
g2<x; K1, K) ’

le(x; KHK) = (35)

where
F(x;51,%) = —k2 sech? (1 x) + 2% sech? (2kx) + i2x? tanh (2kx) sech (2xx) (36)

and
g(x; %1, k) = —xq tanh(x1x) + k tanh(2xx) — ik sech(2xx). (37)

In (36) and (37) we have omitted the displacement constants xy and x; for the sake of
simplicity.

As ng(x; k1) is parity-invariant ng (x; 1) = ng(—x; k1), the parameters of n(x; k1, x)
in (35) can be managed to obtain a PT-symmetric refractive index npr(x; «1, k). The result
is shown in Figure 4a for the process in which we add first £; and then ¢, with &; > . The
reversed process is shown in Figure 4b. Please note that although the profile of npr(x; x1, k)
changes, the PT symmetry is preserved under the change ¢ <+ ¢. The same expression (35)
gives rise to refractive indices that are not invariant under parity-time transformations, as
exhibited in Figure 5.
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-4 -3
@)e =c¢ (b)ey < ¢

Figure 4. PT-symmetric version of the complex-valued refractive index 17 (x; x1, x) introduced in
Equation (35). In contrast with the real-valued case ng (x; k1, x), the propagation constants can be added
in arbitrary order to the point spectrum {¢, €1 }. Nevertheless, although the PT symmetry is preserved,
the profile of 11 (x; k1, ) is affected by the change &1 <+ ¢. The point spectrum is { —(1.9)2, —4}. In both
cases xg = x1 = 0, with the real and imaginary parts in blue and red, respectively.

\/2/4' 6
-0.5
(a)e; = ¢ (b)e; < ¢
Figure 5. Same as in Figure 4, with xg = —0.5 and x; = 0. In this case, the complex-valued refractive

index 11 (x; k1, k) is not invariant under PT-transformations.

We have already mentioned that the procedure may be repeated at will. At the kth step,
the method provides a set of superpotentials B that are available for the finite-difference
algorithm, addressed to elaborate the step k + 1. The case considered in this section takes
the null function ny(x) = 0 as the initial refractive index. The propagation constants are
added one at a time to arrive at the point spectrum {ey, €z, ...,¢;_1,€}, which may be
decided under prescription. The refractive indices constructed in this form admit k guided
TE modes, generated from the initial missing state Eé\f) (x; €), via the rule (10). These modes
obey the bi-product introduced in Section 2.2.1, which also defines a proper bi-norm that
coincides with the conventional norm if A = 0.

3.2. Manipulating a Set of Guided Modes at Once

To complete the revision of immediate applications, consider the cosh-like refrac-
tive index

2
no(x,m) = w, m=1,2,... (38)
cosh” (xx)
Potentials V(x) = —ng(x, m) form the subset of transparent Péschl-Teller potentials

in quantum mechanics. The solutions of the Schrodinger equation for the entire family are
well known [18,50,51], including resonances and anti-bound states [52,53]. Our interest
in no(x,m) obeys the fact that this refractive index admits exactly m guided TE modes,
defined by the quadratic rule [18,50,51]

£m,g:—K2(m—£)2, £=0,1,...,m—1, m = fixed. (39)

The finite-difference algorithm will provide k additional eigenvalues at the kth it-
eration, so the spectrum of 1y (x, m; k) is composited by two finite subsets {¢;} U {€,, ¢},
withi =1,2,...,k. As we have shown in the previous section, depending on the 1-step
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superpotentials 1 (x, m; ¢) and the factorization constants ¢, the new eigenvalues ¢; may be
positioned at arbitrary places of the initial spectrum {e,, ;}.
The fundamental basis of solutions is in this case provided by the functions [18,50]

up(x;x) = (coshxx)™ 1 5F (a,b, %; - sinh? kx), (40)
and
us(x;x) = (sinhxx)(cosh kx)" 1o F (a + ILo+1,3- sinh? k), (41)
where
a=mtl VI, _mtl Ve (12)
2 2K 2 2K

To construct the complex-valued superpotential (15), a first function v(x; x) is easily
achieved by noticing that the hypergeometric function »F; is reduced to the identity if
a = 0. From (42) we immediately realize that |¢] = x*(m + 1)? produces such a result.
Remarkably, the latter value is in correspondence with the spectral rule (39) if £ = —1.
Thus, we are in position of adding the eigenvalue ¢ = ¢,, _1 to the initial spectrum {e,, ¢ }.
The resulting refractive index 17 (x, m; x), obtained from Equation (17), may be chosen to
be either real, complex-valued or PT-symmetric.

In Figure 6 we have depicted the case in which n;(x, m;x) exhibits PT symmetry.
In Figure 6a we started with ny(x,1), which admits only one guided TE mode, the one
associated with €1 o. The spectrum of the resulting refractive index n1(x, 1;x) is therefore
integrated by ey = —(2x)% and ¢19 = —«2. Figure 6b considers the initial spectrum

€0 = —(2x)?, €1 = —«2, and includes the missing state ey = —(3x)2. Similarly for
Figure 6¢. The configuration where the new refractive index is not PT-symmetric is shown
in Figure 7.

10

N B o R

(@) {em €10} (b) {em, €20,€21} () {em €30,€31,€32}
Figure 6. Complex-valued cosh-like refractive indices 11 (x, m; x) exhibiting PT symmetry. The point
spectrum is finite, including the eigenvalues indicated in captions. The spectral distribution is given
by ey = —x2(m — €)%, with £ =0,1,...,m —1,and m > 1 denoting the number of eigenvalues in
the initial spectrum. In all cases ¢y is located at —x(m + 1)2.

2 -
10

(a) {EM,E()} (b) {SMI 80781} (C) {SM,EO, S1182}

Figure 7. Same as in Figure 6, with non-PT symmetry.

4. Discussion of Results and Conclusions

We have provided new exactly solvable models for optical waveguiding. Applying
the supersymmetric finite-difference algorithm [19], we have generated a wide family
of refractive indices whose point spectrum can be designed under prescription. The
family includes refractive indices in both the real- and complex-valued configurations,
the latter admitting all-real eigenvalues (propagation constants) in their point spectrum.
We have shown that the spectral distribution may be organized in arbitrary form if it is
constructed adding one at a time the eigenvalues such that complex-valued superpotentials
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are included. The result is relevant since such a property seems to be unnoticed in optical
supersymmetry until the present work, although we have already reported this possibility
in quantum mechanics [41].

One of the main results presented in this work shows that the index profile strongly
depends on the factorization constants that are incorporated. In particular, adding two of
them, either in a single step or in a twice iterated movement, one may produce a dent over
the top of the profile that is in complete agreement with actual manufacture of refractive
indices [1], see Figure 3. The phenomenon is not exclusive of the real-valued indices
so produced since it is also admissible in the complex-valued case for the real part of
the PT-symmetric refractive indices, see Figure 2. Considering that “in the manufacture
and evaluation of optical fibers, the measurement of the index profile is one of the most
important steps” [1], our results may be useful to analyze the data obtained from such
measurements.

Another of our results shows that refractive indices admitting a given number of
guided TE modes, such as the sech-like ones, can be deformed to admit an additional
guided mode, the propagation of which can be positioned anywhere in the point spectrum
of the initial refractive index. In addition, the new indices are not required to be PT-
symmetric to allow all-real eigenvalues in their point spectrum. The transition from these
results to the time-dependent case is straightforward [54], where PT-symmetric structures
find interesting applications [55,56].

We have addressed the investigation to obtain guided TE modes in the new waveguiding-
structures. This is the reason for which we started from initial refractive indices admitting
no leaky modes. In previous works we have studied such possibility by analyzing the
resonances of the initial structure [16,47,57]. It is viable to construct the supersymmetric
partners using resonances of the initial system [31], a technique implemented also in the
cosh-like case [52,53] and for soliton-like models [58]. However, the transformation of
resonances and/or using resonances is elaborated, so it will be analyzed elsewhere. An
important point to notice is that although generated from transparent refractive indices, the
new structures presented here lack this property as a consequence of the non-Hermiticity
(the clear exception is the real-valued case, since it is well known that supersymmetry
leaves transparency invariant for such systems). Insights on the matter have been presented
by the PT symmetry community and will be considered for future progress of our model.
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Appendix A. Supersymmetric Finite-Difference Algorithm

For the sake of completeness, we briefly revisit the generalities of the finite-difference
algorithm for higher-order supersymmetry, full details can be consulted in [19].
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Using the shortcut notation fi(x;€) := fi(x;€1,€2,- -+, €¢_1,€), with k > 1, the Dar-
boux transformation of an exactly solvable potential V}_ (x; €;_1) produces a new potential
Vk(x; €) in the form

Vi(x;€) = Vi1 (x;661) + 2Bk (x;€), k=1,2,..., (A1)

where By (x; €), usually called the superpotential, is solution of the Riccati equation with
the initial potential V;_4,

— Br(x;€) + Br(x;€) = Vica(x;ex-1) — €, (A2)

and € is a constant to be determined. Although the general solution of (A2) may be found
by quadratures [59], it is profitable to note that the transformation

d
Pr(xie) = — - Inugy(x;e) (A3)
linearizes Equation (A2) by providing the eigenvalue problem
—u(y (v €) + Vicr (G e1)ug (v €) = eugy (x;e), k—1,2,..., (A4)

where f'(x) = 4 f(x). Thus, the superpotential (A3) may be constructed from the eigen-
functions u ) (x; €) of Vi _1(x; €¢_1) that belong to the eigenvalue € (usually called factoriza-
tion constant). Please note that the ‘transformation functions’ u;, are just a mathematical
tool in the Darboux transformation, so they are not required to be square-integrable in
Dom Vj._;.

The finite-difference algorithm [19] states that the solutions of (A2) are the result of a
finite-difference operation performed on Bx_1,

€—1 — €
Br-1(x,€x-1) — Br-1(x;€)

The superpotentials f; constructed at each step automatically solve the Riccati
Equation (A2) and are linked to the eigenvalue problem (A4), which is defined by the
potential of the previous step Vi_; through the new factorization constant €. In turn, the
solutions ;) (x; €) of the new eigenvalue equation

Br(x;€) = —Br_1(x; €k—1) — (A5)

_ l/;(’k)(x; €) + Vi(x;€)ppy(x€) = EYyy(xs€), k=1,2,..., (A6)
are easily obtained as the Darboux-deformation of the previous ones:
Ny (x€) = Py (v ex1) + Bl €)1y (% €x-1), (A7)

where N/’ ;1 stands for normalization.

The breakthrough of the method is the recognition of an additional solution to
Equation (A6), which is not included in the transformation (A7), given by the expression

w%(x,. €) = N(%”(_k%(x;e) = N(J}f) exp {/ Br(x; e)dx]. (A8)

The above function was introduced by Mielnik [8], it is known as missing state and
satisfies (A6). Thus, if (A8) is square-integrable in Dom Vj, then € must be added to the
point spectrum of V.
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