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Abstract

We present a systematic analysis of the B(∗) → π ` ν weak decay form factors
to order 1/mb in the heavy quark effective theory, including a discussion of
renormalization group effects. These processes are described by a set of ten
universal functions (two at leading order, and eight at order 1/mb), which
are defined in terms of matrix elements of operators in the effective theory.
In the soft pion limit, the effective theory yields normalization conditions
for these functions, which generalize the well-known current algebra relations
derived from the combination of heavy quark and chiral symmetries to next-
to-leading order in 1/mb. In particular, the effects of the nearby B∗-pole are
correctly contained in the form factors of the effective theory. We discuss
the prospects for a model independent determination of |Vub| and the BB∗π
coupling constant from these processes.
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I. INTRODUCTION

Of the three independent mixing angles in the Cabibbo–Kobayashi–Maskawa matrix,
|Vub| is the most poorly determined. Chiral symmetry provides an absolute normalization of
the hadronic form factor in the decay K → π ` ν, allowing a precise and model independent
determination of |Vus| [1]. Heavy quark symmetry provides absolute normalization and
various relations among the form factors in the decays B → D(∗)` ν, allowing a precise and
model independent determination of |Vcb| [2–6]. Neither of these symmetries is as powerful
in heavy-to-light transitions such as b → u ` ν̄. Consequently, the present determination of
|Vub| from the endpoint of the lepton spectrum in semileptonic B decays suffers from large
theoretical uncertainties and strong model dependence [7,8].

It was suggested that the exclusive semileptonic decay mode B → π ` ν could be used for
a more reliable determination of |Vub| [9]. The basis for this hope is the fact that, to leading
order in the heavy quark expansion and over a limited kinematic range, the corresponding
form factors are related to those of D → π ` ν by heavy quark flavor symmetry. The
applicability of this idea depends, besides experimental considerations, on the importance
of symmetry-breaking corrections of order 1/mQ. For the related case of leptonic decays of
heavy mesons, there are indications from lattice gauge theory [10–13] and QCD sum rule
calculations [14–17] that these power corrections can be significant.

Our purpose in this study is to work out the structure of 1/mb corrections for the B(∗) →
π ` ν decay form factors using the heavy quark effective theory. The main points of our
analysis are as follows:

(i) Eight universal functions are needed to describe the 1/mb corrections to these pro-
cesses. They are defined in terms of matrix elements of dimension four operators in
the effective theory.

(ii) The renormalization group improvement of these low-energy parameters is discussed
in detail.

(iii) The behavior of the universal functions in the soft pion limit is derived using standard
current algebra techniques.

(iv) It is shown explicitly that the B∗-pole contribution is correctly contained in the heavy
quark effective theory.

At leading order in the heavy quark expansion, the two form factors which parameterize
B → π ` ν decays have been investigated by several authors [9,18–21]. It is well-known that,
in this limit, the soft-pion behavior is fully determined by the decay constant of the B meson
and the BB∗π coupling constant. Here we generalize these results to next-to-leading order
in 1/mb. In particular, we show that when one uses the physical meson decay constants and
the physical BB∗π coupling constants (as opposed to their asymptotic values in the mb→∞
limit), there are neither 1/mb nor short-distance QCD corrections to the soft pion relations.
We also derive the general structure of the decay form factors at larger pion momenta, where
a chiral expansion is no longer valid.

The paper is organized as follows: The formalism of heavy quark effective theory relevant
to our work is reviewed in Sec. II. In Sec. III, we then construct the heavy quark expansion
for the B(∗) → π ` ν decay form factors to next-to-leading order in 1/mb, including a detailed
analysis of renormalization group effects. In Sec. IV, we derive the normalization conditions
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for the universal functions of the effective theory, which arise in the soft pion limit. We com-
pare our results to the predictions of the so-called heavy meson chiral perturbation theory
[19,20]. Sec. V contains a summary and some concluding remarks concerning the prospects
and possibilities to obtain a model independent measurement of |Vub| and the BB∗π coupling
constant. Technical details related to the renormalization group improvement and the soft
pion limit are described in two appendices.

II. THE 1/mQ EXPANSION

Our goal in this paper is to analyze the dependence of the hadronic form factors describing
B → π ` ν decays on the mass of the b-quark, in the limit where mb � ΛQCD. A convenient
tool to make this dependence explicit is provided by the heavy quark effective theory (HQET)
[22–30]. It is based on the construction of an effective low-energy Lagrangian of QCD, which
is appropriate to describe the soft interactions of a heavy quark with light degrees of freedom.
In the effective theory, a heavy quark bound inside a hadron moving at velocity v is described
by a velocity-dependent field hv, which is related to the conventional quark field in QCD by
[24]

hv(x) = exp(imQ v ·x)
1 + /v

2
Q(x) . (1)

By means of the phase redefinition one removes the large part of the heavy quark momentum
from the new field. When the total momentum is written as P = mQ v+k, the field hv carries
the residual momentum k, which results from soft interactions of the heavy quark with light
degrees of freedom and is typically of order ΛQCD. The operator 1

2
(1 + /v) projects out the

heavy quark (rather than antiquark) components of the spinor. The antiquark components
are integrated out to obtain the effective Lagrangian [22,24,25,28]

Leff = h̄v iv ·Dhv +
1

2mQ

[
Okin + Cmag(µ)Omag

]
+O(1/m2

Q) , (2)

where Dµ = ∂µ − igsTaAµ
a is the gauge-covariant derivative. The operators appearing at

order 1/mQ are

Okin = h̄v (iD)2hv , Omag =
gs
2
h̄v σµνG

µνhv . (3)

Here Gµν is the gluon field strength tensor defined by [iDµ, iDν ] = igsGµν . In the hadron’s
rest frame, it is readily seen that Okin describes the kinetic energy resulting from the residual
motion of the heavy quark, whereas Omag describes the chromo-magnetic coupling of the
heavy quark spin to the gluon field. One can show that, to all orders in perturbation theory,
the kinetic operator Okin is not renormalized [31]. The renormalization factor Cmag(µ) of the
chromo-magnetic operator has been calculated in leading logarithmic approximation and is
given by [28]

Cmag = x−3/β , β = 11− 2

3
nf , (4)
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where x = α(µ)/α(mQ), µ denotes the renormalization scale, and nf is the number of light
quarks with mass below mQ.

Any operator of the full theory that contains one or more heavy quark fields can be
matched onto a short-distance expansion in terms of operators of the effective theory. In
particular, the expansion of the heavy-light vector current reads

q̄ γµQ ∼=
∑
i

Ci(µ)Ji +
1

2mQ

∑
j

Bj(µ)Oj +O(1/m2
Q) , (5)

where the symbol ∼= is used to indicate that this is an equation that holds on the level of
matrix elements. The operators {Ji} form a complete set of local dimension-three current
operators with the same quantum numbers as the vector current in the full theory. In HQET
there are two such operators, namely

J1 = q̄ γµhv , J2 = q̄ vµhv . (6)

Similarly, {Oj} denotes a complete set of local dimension-four operators. It is convenient
to use the background field method, which ensures that there is no mixing between gauge-
invariant and gauge-dependent operators. Moreover, operators that vanish by the equations
of motion are irrelevant. It is thus sufficient to consider gauge-invariant operators that do
not vanish by the equations of motion. A convenient basis of such operators is [29]:

O1 = q̄ γµ i /Dhv , O4 = q̄ (−iv ·←−D) γµhv ,

O2 = q̄ vµ i /Dhv , O5 = q̄ (−iv ·←−D) vµhv ,

O3 = q̄ iDµhv , O6 = q̄ (−i←−Dµ)hv .

(7)

For simplicity, we consider here the limit where the light quark is massless. Otherwise one
would have to include two additional operators O7 = mq J1 and O8 = mq J2. It is convenient
to work with a regularization scheme with anticommuting γ5. This has the advantage that,
to all orders in 1/mQ, the operator product expansion of the axial vector current can be
simply obtained from (5) by replacing q̄ → −q̄ γ5 in the HQET operators. The Wilson
coefficients remain unchanged. The reason is that in any diagram the γ5 from the current
can be moved outside next to the light quark spinor. For mq = 0, this operation always
leads to a minus sign. Hence it is sufficient to consider the case of the vector current.

A “hidden” symmetry of the effective theory, namely its invariance under reparameteri-
zations of the heavy quark velocity and residual momentum which leave the total momentum
unchanged [31], determines three of the coefficients Bi(µ). It implies that, to all orders in
perturbation theory [32],

B1(µ) = C1(µ) ,

B2(µ) =
1

2
B3(µ) = C2(µ) . (8)

The remaining coefficients in (5) can be obtained from the solution of the renormalization
group equation that determines the scale dependence of the renormalized current operators in
HQET. For our purposes, it will be sufficient to know these coefficients in leading logarithmic
approximation. They are [4,29,33]

4
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C1(µ) = x2/β , C2(µ) = 0 ,

B4(µ) =
34

27
x2/β − 4

27
x−1/β − 10

9
+

16

3β
x2/β lnx ,

B5(µ) = −28

27
x2/β +

88

27
x−1/β − 20

9
,

B6(µ) = −2x2/β − 4

3
x−1/β +

10

3
, (9)

where again x = α(µ)/α(mQ).
After the effective Lagrangian and currents have been constructed, one proceeds to pa-

rameterize the relevant hadronic matrix elements of the HQET operators in terms of univer-
sal, mQ-independent form factors. In the effective theory, hadrons containing a heavy quark
can be represented by covariant tensor wave functions, which are determined completely
by their transformation properties under the Lorentz group and heavy quark symmetry. In
particular, the ground-state pseudoscalar and vector mesons are described by [26,34]

M(v) =
1 + /v

2

{−γ5 ; pseudoscalar meson,
/ε ; vector meson.

(10)

Here εµ is the polarization vector of the vector meson. Any matrix element of an operator
of the effective theory can be written as a trace over such wave functions, whose structure
is determined by symmetry and by the Feynman rules of the effective theory.

We will now develop this formalism for B → π transitions. Matrix elements of the
leading-order currents Ji in (6) can be written as (see, e.g., Ref. [35])

〈π(p)| q̄ Γhv |M(v)〉 = −Tr
{

Π(v, p) ΓM(v)
}
, (11)

where Γ is an arbitrary Dirac matrix. Note that we use a mass independent normalization
of meson states to 2v0 (instead of 2p0), as this is more convenient when dealing with heavy
quark systems. The Feynman rules of HQET imply that there cannot appear any γ-matrices
on the right-hand side of Γ. The matrix Π(v, p) must transform as a pseudoscalar, but is
otherwise a general function of v and p. Using the fact thatM(v) /v = −M(v), we can write
down the most general decomposition

Π(v, p) = γ5

[
A(v · p, µ) + /̂pB(v · p, µ)

]
. (12)

We find it convenient to introduce the dimensionless variable

p̂µ =
pµ

v · p , v · p̂ = 1 , (13)

so that the scalar functions A(v · p, µ) and B(v · p, µ) have the same dimension. These
universal form factors depend on the kinematic variable v · p. They also depend on the
scale µ at which the HQET operators are renormalized, but not on the heavy quark mass
mQ. These functions are the analogs of the celebrated Isgur-Wise function, which describes
heavy-to-heavy meson transitions at leading order in HQET [5].

Let us now turn to the study of the leading power corrections proportional to 1/mQ,
which arise from the corrections both to the currents and to the effective Lagrangian of

5
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HQET. We first consider the dimension-four operators in the expansion of the currents (5).
Matrix elements of the operators O1, O2, and O3, which contain a covariant derivative acting
on the heavy quark field, have the generic structure

〈π(p)| q̄ Γ iDµhv |M(v)〉 = −Tr
{[

(F1 v
µ + F2 p̂

µ + F3 γ
µ) γ5

+(F4 v
µ + F5 p̂

µ + F6 γ
µ) γ5 /̂p

]
ΓM(v)

}
. (14)

The functions Fi(v · p, µ) are new low-energy parameters. They, again, depend only on
the kinematic variable v · p and the renormalization scale (although we do not display this
dependence for simplicity), but not on the heavy quark mass. Not all of these functions are
independent. The equation of motion, iv ·Dhv = 0, implies

F1 + F2 − F3 = 0 ,

F4 + F5 − F6 = 0 . (15)

We may furthermore use the structure of the field redefinition (1) to derive that

〈π(p)| i∂µ(q̄ Γhv) |M(v)〉 = (Λ̄ vµ − pµ) 〈π(p)| q̄ Γhv |M(v)〉 , (16)

where Λ̄ = mM − mQ denotes the finite mass difference between a heavy meson and the
heavy quark that it contains, in the infinite quark mass limit [27,29]. This parameter sets
the canonical scale for power corrections in HQET. Substituting Γ = γµ Γ′ into the above
relation, and using the equation of motion for the light quark field, i /Dq = 0, we find

F2 − F4 + 2F6 = −v · pA− Λ̄B ,

F1 − 4F3 + 2F4 + p̂2 F5 = Λ̄A+ (2Λ̄ − v · p p̂2)B . (17)

We shall use the relations (15) and (17) to eliminate F1, F2, F3, and F4 in favor of F5 and
F6. Matrix elements of the operators O4, O5, and O6 in (7) can be evaluated along the same
lines, using

q̄ (−i←−Dµ) Γhv = q̄ Γ (iDµ)hv − i∂µ(q̄ Γhv) (18)

together with (16).
Next we investigate the effects of 1/mQ corrections to the effective Lagrangian of HQET.

The operators Okin and Omag in (3) can be inserted into matrix elements of the leading-
order currents Ji. The corresponding corrections can be described in terms of six additional
functions Gi(v · p, µ), which parameterize the matrix elements of the time-ordered products

〈π(p)| i
∫

dy T
{
q̄ Γhv(0), Okin(y)

}
|M(v)〉 = −Tr

{
γ5 (G1 + /̂pG2) ΓM(v)

}
,

(19)

〈π(p)| i
∫

dy T
{
q̄ Γhv(0), Omag(y)

}
|M(v)〉

= −Tr
{[

(iG3 p̂αγβ +G4 σαβ) γ5 + (iG5 p̂αγβ +G6 σαβ) γ5 /̂p
]
Γ

1 + /v

2
σαβM(v)

}
.

Using the above definitions and relations, it is a matter of patience to compute the matrix
elements relevant to B(∗) → π ` ν to order 1/mb. We will discuss these matrix elements in
the following section.

6

*Work supported by DOE Contract DE-AC03-76SF00515.



III. MATRIX ELEMENTS

The matrix element of the flavor-changing vector current responsible for the decay B →
π ` ν can be parameterized in terms of two invariant form factors, which are conveniently
defined as

√
mB 〈π(p)| q̄ γµQ |B(v)〉 = f+(q2)

[
(mB v + p)µ − m2

B −m2
π

q2
qµ
]

+ f0(q2)
m2
B −m2

π

q2
qµ , (20)

where q = mB v − p. The prefactor
√
mB appears since we use a somewhat unconventional

normalization of states. In practice, only f+(q2) is measurable in B → π ` ν decays into the
light leptons e or µ, since the contribution of f0(q2) to the decay rate is suppressed by a
factor m2

`/m
2
B. However, both form factors are important in B → π τ ν decays.

As we have seen above, in the context of HQET it is more natural to work with the
velocity of the heavy meson, and to consider the form factors as functions of the kinematic
variable

v · p =
m2
B +m2

π − q2

2mB
. (21)

Accordingly, we define

〈π(p)| q̄ γµQ |B(v)〉 = 2
[
f1(v · p) vµ + f2(v · p) p̂µ

]
. (22)

The two sets of form factors are related by

f+(q2) =
√
mB

{
f2(v · p)
v · p +

f1(v · p)
mB

}
,

f0(q
2) =

2
√
mB

m2
B

m2
B −m2

π

{[
f1(v · p) + f2(v · p)

]
− v · p
mB

[
f1(v · p) + p̂2 f2(v · p)

]}
. (23)

The fact that in the mb → ∞ limit the functions f1,2(v · p) become independent of mb

(modulo logarithms) implies the well-known scaling relations [9]

f+ ∼
√
mB , f0 ∼ 1/

√
mB , (24)

which are valid as long as v · p does not scale with mB.
By evaluating the traces and using the definitions of the previous section, we find, to

next-to-leading order in 1/mb, the following expressions:

f1 = C1A+ C2 (A+B)

+
1

2mb

{
C1

[
− (Λ̄− 2v · p)A+ v · p p̂2 B + 4F6 +G1

]
+ C2

[
(Λ̄ + v · p)A+ (3Λ̄− v · p p̂2)B + 4F6 +G1 +G2

]
−B4 (Λ̄− v · p)A−B5 (Λ̄− v · p) (A+B)−B6

[
(Λ̄− v · p)A− 2F6

]
7
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+ C1Cmag

[
− 2G3 + 6G4 + 2p̂2 G5

]
+ C2Cmag

[
6G4 − 2(1− p̂2)G5 + 6G6

]}
,

(25)

f2 = C1B +
1

2mb

{
C1

[
− v · pA− Λ̄B − 4F6 +G2

]
− 2C2

[
v · pA+ Λ̄B + 2F6

]
−B4 (Λ̄− v · p)B −B6

[
(Λ̄− v · p)B + 2F6

]
+ C1Cmag

[
2G3 − 2G5 + 6G6

]}
.

For simplicity, we have omitted the dependence of the universal functions on v · p and µ,
and the dependence of the Wilson coefficients on µ.

From the fact that the physical form factors must be independent of the renormalization
scale, one can deduce the µ-dependence of the universal functions of HQET, since it has to
cancel against that of the Wilson coefficients. For the leading-order functions A(v ·p, µ) and
B(v · p, µ), it follows that

Aren(v · p) ≡
[
αs(µ)

]2/β
A(v · p, µ) ,

Bren(v · p) ≡
[
αs(µ)

]2/β
B(v · p, µ) (26)

must be µ-independent (in leading logarithmic approximation). It is then convenient to
define two related functions

Â(v · p) ≡
[
αs(mQ)

]−2/β
Aren(v · p) = x2/β A(v · p, µ) ,

B̂(v · p) ≡
[
αs(mQ)

]−2/β
Bren(v · p) = x2/βB(v · p, µ) , (27)

which are clearly also µ-independent. These functions are no longer universal since they
contain a logarithmic dependence on the heavy quark mass. At tree-level, however, they
agree with the original functions A and B.

In order to find the corresponding relations for the subleading universal functions Fi
and Gi, the expressions (25) for f1 and f2 are not sufficient. We have thus worked out the
heavy quark expansion for B∗ → π ` ν decays, although these processes have little (if any)
phenomenological relevance. We define hadronic form factors hi by

〈π(p)| q̄ γµQ |B∗(v)〉 = 2i εµαβγ εα p̂β vγ h1(v · p) ,
(28)

〈π(p)| q̄ γµγ5 Q |B∗(v)〉 = 2
[
h2(v · p) εµ − h3(v · p) ε·p̂ vµ − h4(v · p) ε·p̂ p̂µ

]
.

By studying these form factors at order 1/mb, one can derive enough relations to fully
determine the µ-dependence of the universal functions. We discuss this somewhat technical
issue in appendix A. There we define a set of renormalization-group invariant functions
F̂i(v · p) and Ĝi(v · p), which are µ-independent and coincide with Fi and Gi at tree-level.
In terms of these functions, the form factor relations take a much simpler form. Instead of
(25), we find

8
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f1 = Â+
1

2mb

[
− (Λ̄− 2v · p) Â+ v · p p̂2 B̂ + 4F̂6 + Ĝ1 − 2Ĝ3 + 6Ĝ4 + 2p̂2 Ĝ5

]
,

f2 = B̂ +
1

2mb

[
− v · p Â− Λ̄ B̂ − 4F̂6 + Ĝ2 + 2Ĝ3 − 2Ĝ5 + 6Ĝ6

]
, (29)

and the B∗ → π decay form factors are given by

h1 = B̂ +
1

2mb

[
v · p Â+ Λ̄B̂ + 2F̂6 + Ĝ2 − 2Ĝ6

]
,

h2 = (Â+ B̂) +
1

2mb

[
1

3
(Λ̄− v · p) Â +

1

3
(Λ̄− v · p p̂2) B̂ − 2

3
(1− p̂2) F̂5

+ Ĝ1 + Ĝ2 − 2Ĝ4 − 2Ĝ6

]
,

h3 = B̂ +
1

2mb

[
− v · p Â − Λ̄ B̂ − 2F̂5 + Ĝ2 − 2Ĝ3 − 2Ĝ6

]
,

h4 =
1

2mb

[
2F̂5 + 2Ĝ5

]
. (30)

Note that F̂6 appears only in the vector form factors f1, f2, and h1, whereas F̂5 appears only
in the axial form factors h2, h3, and h4.

Most relevant, of course, are the form factors f+ and f0 that are usually used to describe
B → π ` ν decays. From (23), we obtain at next-to-leading order in 1/mb:

f+ =

√
mB

v · p

{
B̂ +

1

2mb

[
v · p Â − Λ̄ B̂ − 4F̂6 + Ĝ2 + 2Ĝ3 − 2Ĝ5 + 6Ĝ6

]}
,

(31)

f0 =
2
√
mB

{
(Â+ B̂) +

1

2mb

[
− (Λ̄ + v · p) Â− (Λ̄ + v · p p̂2) B̂

+ Ĝ1 + Ĝ2 + 6Ĝ4 − 2(1− p̂2)Ĝ5 + 6Ĝ6

]}
.

These relations show how, in a rather complicated way, the 1/mb corrections to f+ and f0

are related to matrix elements of operators in HQET. To gain more insight into the structure
of the corrections, it is instructive to consider the soft pion limit v ·p→ 0 and p2 = m2

π → 0,
in which current algebra can be used to derive normalization conditions on the universal
functions. This is the subject of the following section.

IV. SOFT PION RELATIONS

In this section we shall derive the normalization conditions for the universal functions of
HQET, which arise in the soft pion limit p→ 0. Our goal is to reduce, as much as possible,
the number of independent parameters upon which our predictions depend. The soft pion
relations are derived by using the PCAC relation for the pion field. To be specific, let us
consider the decay M0 → π+`−ν (where M0 = B̄0 or B̄0∗). Then

π+(x) =
1

fπm2
π

∂µAµ(x) , (32)

9
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where Aµ = d̄ γµγ5 u is the axial vector current, and fπ ' 132 MeV is the pion decay
constant. The LSZ reduction formalism can be employed to write

〈π(p)|O(0) |M(v)〉 = lim
p2→m2

π

1

fπ

m2
π − p2

m2
π

i
∫

dx eip·x 〈 0 |T {O(0), ∂µAµ(x)} |M(v)〉 , (33)

where O may be any operator that couples M to π. The right-hand side can be rewritten
using

i
∫

dx eip·x T {O(0), ∂µAµ(x)} = pµ
∫

dx eip·x T {Aµ(x), O(0)} − i [Q5, O(0)] . (34)

Here Q5 denotes the axial charge, i.e., the spatial integral of the zero component of Aµ:
Q5 =

∫
d3x d†γ5 u. Therefore,

[Q5, O(0)] = O′(0) , (35)

where the operator O′ is obtained from O by replacing ū by d̄(−γ5), i.e., if O = ū γµ b then
O′ = d̄ γµγ5 b, etc. The soft pion relation is obtained by analytically continuing (33) to
p→ 0. In this limit the first term on the right-hand side of (34) is saturated by intermediate
states degenerate with the ground-state. They lead to poles proportional to 1/v · p, which
cancel the factor pµ in front of the integral. In the case of B → π transitions, the relevant
intermediate state will be theB∗ meson, which to leading order in HQET is in fact degenerate
with the B meson. We obtain

lim
p→0
〈π(p)|O(0) |M(v)〉

=
1

fπ

{
− i 〈 0 |O′(0) |M(v)〉+ lim

p→0

∫
dx eip·x 〈 0 |T {O(0), p · A(x)} |M(v)〉

}
. (36)

In what follows we shall refer to the first and second terms on the right-hand side as the
commutator and the pole contribution, respectively.

A. Soft pion relations for Â(v · p) and B̂(v · p)

Let us now evaluate this relation for the matrix elements arising at leading order in the
1/mQ expansion, where the effective current operators have the generic form O = q̄ Γhv.
Both the commutator and the pole contribution involve a current-induced transition of a
heavy meson into the vacuum. At leading order in HQET, the corresponding matrix elements
can be written as [14]

〈 0 | q̄ Γ′ hv |M(v)〉 =
iF (µ)

2
Tr{Γ′M(v)} , (37)

where Γ′ = −γ5 Γ in the commutator term, and Γ′ = Γ in the pole term. The prefactor
is chosen such that the universal low-energy parameter F (µ), which is independent of the
heavy quark mass, corresponds to the asymptotic value of the scaled meson decay constant:
F ∼ fM

√
mM (modulo logarithms).

10
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To compute the pole term, we further need the coupling of two heavy mesons to the axial
vector current, as shown in Fig. 1. We define

〈M ′(v, p)| p · A |M(v, 0)〉 = g(v · p) Tr
{
γ5 /pM′

(v)M(v)
}
, (38)

where M ′ is off-shell by the pion momentum p. The form factor g(v · p) is real and regular
as v · p→ 0. We define

lim
p→0

g(v · p) = g(0) ≡ g . (39)

Note that g is renormalization-group invariant. We can now write the pole contribution as

∑
M ′
〈 0 | q̄ Γhv |M ′(v)〉 i

2v · (−p) 〈M
′(v)| p · A |M(v)〉

=
F (µ) g(v · p)

4v · p
∑
M ′

Tr{ΓM′(v)}Tr
{
γ5 /pM′

(v)M(v)
}
, (40)

where we have used that in the effective theory the intermediate meson propagator is simply
given by i/v · k, where k stands for the residual momentum. (Recall that we use a mass
independent normalization of states.) To proceed further, we need a relation that allows
us to combine the two traces appearing on the right-hand side into a single trace. This is
accomplished by the identity∑

M ′=P,V

Tr{XM′(v)}Tr
{
γ5 /pM′

(v)M(v)
}

= −2 Tr
{
γ5 ( /p− v · p)XM(v)

}
, (41)

which is valid for any Dirac matrix X, and for a pseudoscalar or vector meson M(v). The
sum extends over the ground-state pseudoscalar and vector mesons M ′(v) degenerate with
M(v), and summation over polarizations is understood if M ′ is a vector meson.

Putting together the various pieces and using (11), we obtain the soft pion relation

lim
p→0

Tr
{
γ5

[
A(v · p, µ) + /̂pB(v · p, µ)

]
ΓM(v)

}
=
F (µ)

2fπ

[
Tr{γ5 ΓM(v)}+ lim

p→0
g(v · p) Tr

{
γ5 ( /̂p− 1) ΓM(v)

}]
, (42)

from which we read off the values of the form factors A and B in the soft pion limit:

A(0, µ) =
F (µ)

2fπ
(1− g) , B(0, µ) =

F (µ)

2fπ
g . (43)

These relations are preserved by renormalization. In fact, one can define a scale-independent
quantity F̂ = x2/β F (µ), which agrees with F at tree-level [14]. As mentioned above, the
coupling constant g is not renormalized. From (27), it then follows that

Â(0) =
F̂

2fπ
(1− g) , B̂(0) =

F̂

2fπ
g , (44)

which are the desired normalization conditions for the universal functions in the soft pion
limit.
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B. Soft pion relations for F̂i(v · p)

Let us next consider the soft pion relations for the subleading form factors Fi defined
in (14). The only difference from the previous derivation is that now the current contains
a covariant derivative. Hence we need the corresponding matrix elements for the case of
meson-to-vacuum transitions. They are [14]

〈 0 | q̄ Γ′ iDµhv |M(v)〉 = − iF (µ)

2

Λ̄

3
Tr
{

(vµ + γµ) Γ′M(v)
}
. (45)

Using again the trace relation (41), we obtain for the pole term:

∑
M ′
〈 0 | q̄ Γ iDµhv |M ′(v)〉 i

2v · (−p) 〈M
′(v)| p · A |M(v)〉

=
F (µ) Λ̄

6

g(v · p)
v · p Tr

{
γ5 ( /p− v · p) (vµ + γµ) ΓM(v)

}
. (46)

The commutator term is simply given by (45) with Γ′ = −γ5 Γ. Combining the two, we
obtain from a comparison with (14):

F1(0, µ) = −F (µ)

2fπ

Λ̄

3
(1− g) , F4(0, µ) = −F (µ)

2fπ

Λ̄

3
g ,

F2(0, µ) = −F (µ)

2fπ

2Λ̄

3
g , F5(0, µ) = 0 ,

F3(0, µ) = −F (µ)

2fπ

Λ̄

3
(1 + g) , F6(0, µ) = −F (µ)

2fπ

Λ̄

3
g .

(47)

Note that the relations (15) and (17), which are consequences of the equations of motion,
are satisfied by these expressions. Using the results of appendix A, we find that radiative
corrections can again be incorporated in a straightforward manner. The two independent
renormalized form factors satisfy

F̂5(0) = 0 , F̂6(0) = − F̂

2fπ

Λ̄

3
g . (48)

C. Soft pion relations for Ĝi(v · p)

Here one encounters the complication that the soft pion relation involves the time-ordered
product of three operators: the original heavy-light current, the axial vector current that
interpolates the pion field, and one of the operators Okin and Omag which appear at order
1/mQ in the effective Lagrangian of HQET. Consequently, there are both single and double
pole contributions in addition to the commutator term, and the derivations become more
cumbersome. We shall only give the final expressions here and refer the interested reader to
appendix B, where we give details of the calculation.
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The 1/mQ insertions from corrections to the effective Lagrangian correct both the meson
decay constants and the MM ′π coupling constant, as shown in Fig. 2a. The corrections to
the decay constant were treated in Ref. [14]. They can be parameterized in terms of two
renormalized parameters Ĝ1 and Ĝ2, which describe the effects of the kinetic and chromo-
magnetic operator, respectively. To order 1/mQ (and in leading logarithmic approximation),
the physical decay constants are

fP
√
mP = F̂

{
1 +

1

mQ

(
Ĝ1 + 6Ĝ2 −

Λ̄

2

)}
,

fV
√
mV = F̂

{
1 +

1

mQ

(
Ĝ1 − 2Ĝ2 +

Λ̄

6

)}
. (49)

Similarly, at next-to-leading order in 1/mQ the coupling of two heavy mesons to the pion
receives corrections. Instead of the universal coupling constant g in (39) we write

gPV π = gV Pπ = g +
1

2mQ
(g1 + 4ĝ2) ,

gV V π = g +
1

2mQ
(g1 − 4ĝ2) , (50)

where P and V stand for a pseudoscalar or vector meson, respectively. The coupling of two
pseudoscalar mesons to the pion vanishes by parity invariance of the strong interactions.
For the precise definition of the parameters Gi and gi and their renormalization the reader
is encouraged to consult appendix B.

In terms of these parameters, we find the following soft pion relations for the renormalized
form factors Ĝi:

Ĝ1(0) =
F̂

2fπ

[
2(1− g) Ĝ1 − g1

]
,

Ĝ2(0) =
F̂

2fπ

[
2g Ĝ1 + g1

]
,

Ĝ4(0) =
F̂

2fπ

[
2(1− g) Ĝ2 − 2ĝ2

]
,

Ĝ5(0) = 0 ,

Ĝ6(0) =
F̂

2fπ

[
2g Ĝ2 + 2ĝ2

]
, (51)

as well as

lim
p→0

Ĝ3(v · p) = − F̂

2fπ

[
(m2

V −m2
P )

g

2v · p + 8g Ĝ2 + 4ĝ2

]
. (52)

It might seem surprising that Ĝ3 develops a pole as v ·p→ 0, with a residue proportional to
the mass splitting between vector and pseudoscalar mesons. However, as we shall see below,
this is exactly what is required to recover the correct pole contributions predicted by chiral
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symmetry. The singular behavior of Ĝ3 results from the diagrams depicted in Fig. 2b. For
later purposes, we define a regular function Ĝreg

3 (v · p) by

Ĝreg
3 (v · p) ≡ Ĝ3(v · p) +

F̂ g

4fπ

(m2
V −m2

P )

v · p ,

Ĝreg
3 (0) = − F̂

2fπ

[
8g Ĝ2 + 4ĝ2

]
. (53)

D. Meson form factors in the chiral limit

The soft pion relations derived above will become more transparent when we consider
the physical meson form factors fi and hi defined in (22) and (28). We start by considering
the sum f1 + f2. In the soft pion limit, we obtain

f1(0) + f2(0) =
F̂

2fπ

{
1 +

1

mb

(
Ĝ1 + 6Ĝ2 −

Λ̄

2

)}
=
fB
√
mB

2fπ
, (54)

where we have used (49) to write the result in terms of the physical decay constant fB.
Next, consider the form factor f2. We find

lim
p→0

f2(v · p) =
F̂

2fπ

{
1 +

1

mb

(
Ĝ1 − 2Ĝ2 +

Λ̄

6

)}{
g +

1

2mb
(g1 + 4ĝ2)

}(
1− ∆B

v · p

)
, (55)

where

∆B =
m2
B∗ −m2

B

2mb
≈ mB∗ −mB , (56)

and we have factorized various terms in an educated way, so that it is immediate to identify
the decay constant of the B∗ meson and the BB∗π coupling constant. In fact, using (49)
and (50) we can rewrite the result as

lim
p→0

f2(v · p) =
fB∗
√
mB∗

2fπ
gBB∗π

v · p
(v · p+ ∆B)

. (57)

The resummation of the B∗-pole term, which is allowed to the order we are working, has
removed the spurious singularity at v · p = 0, and we have recovered the physical pole
position at v · p = −∆B, corresponding to q2 = m2

B∗. This becomes apparent when we use
(23) to convert to the conventional form factors f+(q2) and f0(q2). In the soft pion limit,
they become

lim
q2→m2

B

f+(q2) =
mB

2

fB∗

fπ

gBB∗π
(v · p+ ∆B)

=
fB∗

fπ

gBB∗π
[1− q2/m2

B∗]
,

f0(m2
B) =

fB
fπ

, (58)

where we have used that mB∗/mB = 1 +O(1/m2
b). These are the well-known results for the

meson form factors in the chiral limit. They have been previously derived in the mb → ∞
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limit by combining HQET with chiral perturbation theory [19,20], or by using current algebra
in connection with the fact that the B and B∗ mesons are degenerate to leading order in
1/mb [21]. The same relations have also been obtained without a heavy quark expansion,
by assuming nearest pole dominance [18,36]. We emphasize, however, that here we have not
only recovered these results from a rigorous expansion in QCD, but we have proven them
to hold even at next-to-leading order in 1/mb, and including short-distance corrections. We
find that there are no such corrections to the soft pion relations once one uses the physical
values of the meson decay constants and of the BB∗π coupling constant, as compared to
their values in the mb→∞ limit.

In a similar manner, one can derive the soft pion limit for the B∗ → π decay form factors
hi defined in (28). We obtain

h1(0) =
fB∗
√
mB∗

2fπ
gB∗B∗π ,

h2(0) =
fB∗
√
mB∗

2fπ
,

h3(0) =
fB
√
mB

2fπ
gB∗Bπ

v · p
(v · p−∆B)

,

h4(0) = 0 . (59)

Again, at leading order in 1/mb these relations could also be derived using heavy meson
chiral perturbation theory.

V. SUMMARY AND CONCLUSIONS

We have presented a systematic analysis of the B(∗) → π ` ν decay form factors to
order 1/mb in the heavy quark expansion, including a detailed treatment of short-distance
corrections. Similar analyses have been carried out in the past for the semileptonic decays
B → D(∗)` ν [27] and Λb→ Λc ` ν [37], and for heavy meson decay constants [14]. As in these
cases, the analysis of the form factors in the context of a heavy quark expansion provides
the theoretical framework for a comprehensive investigation of the hadronic physics encoded
in the universal functions of HQET, using nonperturbative techniques such as lattice gauge
theory or QCD sum rules. For the decays between two heavy mesons, this strategy has been
very successful and has led to much insight into the properties of these nonperturbative
objects. In particular, analytic (two-loop) predictions have been obtained for the leading
and subleading Isgur-Wise functions using QCD sum rules [38,39], and first results for the
leading-order Isgur-Wise function are available from lattice gauge theory [40,41]. Previous
predictions for the B → π ` ν form factors, on the other hand, were obtained using quark
models [42,43], or QCD sum rules in the full theory [44–49]. The next step should be a
more detailed analysis in the context of the heavy quark expansion. Recently, calculations
incorporating ingredients of heavy quark symmetry were performed in the mb → ∞ limit
[50–52]. One of the purposes of our paper is to allow an extension of this type of calculations
to order 1/mb.

The main motivation for a study of exclusive heavy-to-light decays is to extract the
element |Vub| of the quark mixing matrix in a reliable, model independent way. The idea is
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to compare the lepton spectra in the decays B → π ` ν and D→ π ` ν, which are related to
each other by heavy quark flavor symmetry [9]. In the limit of vanishing lepton mass, the
differential decay rate is determined by the form factor f+ defined in (20):

dΓ(B → π ` ν)

d(v · p) =
G2
F mB

12π3
|Vub|2

[
(v · p)2 −m2

π

]3/2
| f+ |2 . (60)

Hence, the ratio of the two distributions at the same value of v · p is

dΓ(B → π ` ν)/d(v · p)
dΓ(D → π ` ν)/d(v · p)

∣∣∣∣∣
same v·p

=
∣∣∣∣VubVcd

∣∣∣∣2 (mB

mD

)2 ∣∣∣∣
√
mD fB→π+√
mB fD→π+

∣∣∣∣2 . (61)

In the limit of an exact heavy quark flavor symmetry, the last factor on the right-hand side
equals unity. It is convenient to rewrite this factor as

√
mD fB→π+√
mB fD→π+

≡ v · p + ∆D

v · p+ ∆B
RBD(v · p) , (62)

where ∆B = mB∗ −mB ' 0.05 GeV and ∆D = mD∗ −mD ' 0.14 GeV. This definition of
RBD takes into account the dominant momentum dependence for low momenta, which comes
from the presence of the nearby vector meson pole. The difference in the pole positions for
B → π ` ν and D → π ` ν is formally of order 1/mQ, but is significant for v · p close to its
minimum value mπ. This effect is explicitly taken into account in (62). The remaining,
nontrivial power corrections reside in the quantity RBD. Using (31), we obtain

RBD(v · p) = 1 +
Λ̄

2mc

rc(v · p)−
Λ̄

2mb

rb(v · p) +O(1/m2
Q) , (63)

where the function

rQ(v · p) = 1 +
1

Λ̄ B̂

(
− v · p Â + 4F̂6 − Ĝ2 − 2Ĝreg

3 + 2Ĝ5 − 6Ĝ6

)
(64)

depends logarithmically on mQ through the definition of the renormalized form factors in

appendix A. The function Ĝreg
3 has been defined in (53). The accuracy with which |Vub|

can be determined depends crucially upon how well one will be able to estimate the 1/mQ

corrections in (64). Thus, a detailed investigation of the leading (Â and B̂) and subleading
(F̂6 and Ĝi) universal functions is most desirable. Such an analysis is beyond the scope of
the present paper. We note, however, that for the related case of B → ρ ` ν decays, the form
factor ratio corresponding to (62) has been calculated in the quark model, using a 1/mQ

expansion [53]. The results are encouraging in that the deviations from the flavor symmetry
limit turn out to be small, of order 15%. We expect corrections of similar size for the case
of B → π transitions. In fact, assuming that rQ is of order unity, we expect that the scale
of power corrections is set by

Λ̄

2mc
− Λ̄

2mb
' 11% , (65)

where we have used Λ̄ = 0.5 GeV, mc = 1.5 GeV, and mb = 4.8 GeV for the sake of
argument.
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Are there any indications that this estimate might be too optimistic? We think not. The
reason is that current algebra puts powerful constraints on the form factors in the soft pion
limit. In particular, it fixes the normalization of f+ at zero recoil. Using (58) one obtains

lim
p→0

RBD(v · p) =
gBB∗π
gDD∗π

fB∗
√
mB

fD∗
√
mD

. (66)

While this relation was derived before in the infinite heavy quark mass limit [19–21,51],
we have shown that it is actually valid to next-to-leading order in 1/mQ. It is well-known
that, for pseudoscalar mesons, there are substantial corrections to the asymptotic scaling
law fB

√
mB ≈ fD

√
mD, which enhance the ratio fB/fD. Theoretical predictions typically

fall in the range (fB
√
mB)/(fD

√
mD) ' 1.3−1.5 [10–17]. However, in (66) there appear the

decay constants of vector mesons. Both QCD sum rules and lattice gauge theory predict
that spin symmetry violating corrections decrease the ratio fB∗/fD∗ as compared to fB/fD.
The predictions are fB∗/fD∗ = κ(fB/fD) with κ = 0.79±0.03 from QCD sum rules [14], and
κ = 0.86± 0.06 from lattice gauge theory [11]. The total effect is that the scaling violations
are much smaller for vector meson decay constants. One expects

fB∗
√
mB

fD∗
√
mD
' 1.05− 1.20 , (67)

i.e., a rather moderate correction to the flavor symmetry limit. Although we are not able
to give a similar estimate for the ratio gBB∗π/gDD∗π in (66), we see no reason why it should
deviate from unity by an anomalously large amount. Hence, we believe that the deviations
from the symmetry prediction RBD = 1 are of the naively expected order of magnitude.
We conclude that from a comparison of the lepton spectra in B → π ` ν and D → π ` ν
decays, it should be possible to extract |Vub| in a model independent way with a theoretical
uncertainty of 10 − 20%. This would already be a major improvement over the current,
largely model dependent determination of |Vub| from inclusive decays. To achieve an even
higher precision, it is necessary to study in detail the 1/mQ corrections in (63). It is only at
this level that hadronic uncertainties enter the analysis. In this paper, we have developed
the theoretical framework for such an investigation.

At this point it is necessary to discuss the validity of the various expansions considered
in this paper. The heavy quark expansion is valid as long as, in the rest frame of the initial
heavy meson, the energy of the light degrees of freedom before and after the weak decay is
small compared to (twice) the heavy quark mass.1 Hence, one must require that

Λ̄

2mQ
� 1 ,

v · p
2mQ

� 1 , (68)

where Λ̄ is the effective mass of the light degrees of freedom in the initial heavy meson [29].
The first ratio is of order 5% for Q = b and 15% for Q = c, whereas the second ratio varies
roughly between 0 and 1/4 for mπ ≤ v · p ≤ 1

2
(m2

B +m2
π)/mB. Hence, we expect the heavy

1For a discussion of the factor 2, see Ref. [30].
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quark expansion to hold over essentially the entire kinematic range accessible in semileptonic
decays. This assertion is in fact supported by quark model calculations [54,55].

Another important question is over what range in v · p can one trust the leading term in
the chiral expansion, i.e., the soft pion relations given in (58) and (66). Since the pion is a
pseudo-Goldstone boson associated with the spontaneous breaking of chiral symmetry, we
expect that the scale for the momentum dependence of the universal form factors of HQET
is set by Λχ = 4πfπ, which is the characteristic scale of chiral symmetry breaking. Although
one should not take this naive dimensional argument too seriously, we may argue that the
universal functions are slowly varying in x = v · p/Λχ, and the leading chiral behavior
should be a good approximation until v · p ∼ 1 GeV. Hence, we expect that (58) and (66)
should not only hold near v · p = 0, but actually over a rather wide range in v · p. Recent
QCD sum rule calculations of the q2-dependence of fB→π+ (q2) in the full theory support this
expectation. The authors of Ref. [47] find that the pole formula (58) gives an excellent fit
to their theoretical calculation over the wide range 0 ≤ q2 ≤ 20 GeV2. For the residue
at q2 = 0, they obtain fB→π+ (0) = 0.26 ± 0.03, which is consistent with other sum rule
calculations [44–46,48,49], and with the quark model prediction of Ref. [42].

This result is interesting since, by means of (58), the residue can be translated into a
value for the BB∗π coupling constant, yielding

gBB∗π ' 0.17
(

200 MeV

fB∗

)
. (from Ref. [47]) (69)

This value is significantly smaller than a naive estimate based on PCAC and the non-
relativistic constituent quark model, which gives gBB∗π ' 1 [3,18,56]. However, it has
been pointed out that this number may indeed be too large. From a generalization of the
Nambu–Jona-Lasinio model, the authors of Ref. [57] find gBB∗π ' 0.32. The large spread
in the theoretical predictions for the BB∗π coupling constant poses the question whether
it is possible to obtain experimental information on this coupling. So far, attempts in
this direction have focussed on the decays of charm mesons, assuming heavy quark sym-
metry (i.e., neglecting 1/mc corrections). From the width of the D∗+, one can derive
the rather loose upper bound gDD∗π < 1.7 [19].2 The analysis of radiative D∗ decays in
Refs. [59,60] allows 0 < gDD∗π < 1. Finally, one can combine the measured branching ratio
for D0 → π−e+ν with the assumption of a monopole behavior of the form factor fD→π+ (q2) to
obtain gDD∗π ' (0.40± 0.15)× (200 MeV/fD∗) [61,62]. All these determinations have large
uncertainties, however. The semileptonic decayB → π τ ν, on the other hand, offers a rather
clean measurement of gBB∗π. By measuring the distribution in the decay angle between the
pion and the lepton, it is possible to disentangle the contributions of the form factors f+ and
f0 to the decay rate [36]. By means of (58), such a measurement would determine the ratio
gBB∗π(fB∗/fB) ' 1.1 gBB∗π, where we have used the results of Refs. [11,14] for the ratio of
decay constants. This might be one of the best ways to determine this important coupling
constant experimentally.

2The tighter bound gDD∗π < 0.7 is obtained when one uses the value Γ(D∗+) < 131 keV reported
in Ref. [58].
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APPENDIX A: RADIATIVE CORRECTIONS

The renormalization scale dependence of the universal functions of HQET can be derived
from the requirement that the physical meson form factors defined in (22) and (28) be µ-
independent. Using the explicit expressions for the Wilson coefficients given in (4) and (9),
we find that in leading logarithmic approximation the following combinations of functions
are renormalization-group invariant:

z1(v · p) = F5(v · p, µ) + v · pB(v · p, µ) ,

z2(v · p) = F6(v · p, µ) +
1

3
(Λ̄− v · p)B(v · p, µ) ,

z3(v · p) =
G1(v · p, µ)

A(v · p, µ)
− 16

3β
(Λ̄− v · p) ln[αs(µ)] ,

z4(v · p) =
G2(v · p, µ)

B(v · p, µ)
− 16

3β
(Λ̄− v · p) ln[αs(µ)] ,

z5(v · p) = [αs(µ)]−1/β
{
G3(v · p, µ) −G5(v · p, µ) +G6(v · p, µ) +

8

9
(Λ̄− v · p)B(v · p, µ)

}
,

z6(v · p) = [αs(µ)]−1/β
{
G4(v · p, µ) − 1

3
(1− p̂2)G5(v · p, µ) +G6(v · p, µ)

− 8

27
(Λ̄− v · p)

[
A(v · p, µ) +B(v · p, µ)

]}
,

z7(v · p) = [αs(µ)]−1/β
{
G5(v · p, µ) − 2

3
F5(v · p, µ)− 2

3
v · pB(v · p, µ)

}
,

z8(v · p) = [αs(µ)]−1/β
{
G6(v · p, µ) +

2

3
F6(v · p, µ)− 2

27
(Λ̄− v · p)B(v · p, µ)

}
. (A1)

These renormalized functions are still universal in that they do not depend on the heavy
quark mass. In the next step, we define related renormalized functions F̂i(v ·p) and Ĝi(v ·p)
in analogy to (27), by requiring that they be µ-independent and agree at tree-level with
the original functions Fi and Gi. This necessarily introduces logarithmic dependence on the
heavy quark mass. We obtain, again, in leading logarithmic approximation:
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F̂5(v · p) = F5(v · p, µ) −
(
x2/β − 1

)
v · pB(v · p, µ) ,

F̂6(v · p) = F6(v · p, µ) − 1

3

(
x2/β − 1

)
(Λ̄− v · p)B(v · p, µ) ,

Ĝ1(v · p)
Â(v · p)

=
G1(v · p, µ)

A(v · p, µ)
− 16

3β
(Λ̄− v · p) lnx ,

Ĝ2(v · p)
B̂(v · p)

=
G2(v · p, µ)

B(v · p, µ)
− 16

3β
(Λ̄− v · p) lnx ,

Ĝ3(v · p) = x−1/β G3(v · p, µ) − 32

27

(
x2/β − x−1/β

)
(Λ̄− v · p)B(v · p, µ)

+
2

3

(
1− x−1/β

) [
F5(v · p, µ) + F6(v · p, µ) + 1

3
(Λ̄ + 2v · p)B(v · p, µ)

]
,

Ĝ4(v · p) = x−1/β G4(v · p, µ) +
8

27

(
x2/β − x−1/β

)
(Λ̄− v · p)A(v · p, µ)

+
2

9

(
1− x−1/β

) [
(1− p̂2)F5(v · p, µ) + 3F6(v · p, µ) + (Λ̄− v · p p̂2)B(v · p, µ)

]
,

Ĝ5(v · p) = x−1/β G5(v · p, µ) +
2

3

(
1− x−1/β

)
[F5(v · p, µ) + v · pB(v · p, µ)] ,

Ĝ6(v · p) = x−1/β G6(v · p, µ) +
8

27

(
x2/β − x−1/β

)
(Λ̄− v · p)B(v · p, µ)

− 2

3

(
1− x−1/β

) [
F6(v · p, µ) + 1

3
(Λ̄− v · p)B(v · p, µ)

]
, (A2)

where x = αs(µ)/αs(mQ). Using (27) and (A1), it is readily seen that these functions are
indeed µ-independent. In terms of them, the 1/mQ expansion of any meson form factor
assumes the same form as at tree-level.

APPENDIX B: SOFT PION RELATIONS FOR Ĝi(v · p)

In this appendix we derive the soft pion relations for the subleading form factorsGi, which
arise from insertions of the 1/mQ corrections in the effective Lagrangian into matrix elements
of the leading-order currents. The corresponding corrections to meson decay constants are
[14]3

〈 0 | i
∫

dy T{q̄ Γhv(0), Okin(y)} |M(v)〉 = iF (µ)G1(µ) Tr{ΓM(v)} ,
(B1)

〈 0 | i
∫

dy T{q̄ Γhv(0), Omag(y)} |M(v)〉 = 2idMF (µ)G2(µ) Tr{ΓM(v)} ,

where dM = 3 for a pseudoscalar meson, and dM = −1 for a vector meson. The corrections
to the coupling of two heavy mesons to the axial vector current can be written as

3The constants Gi(µ) were denoted by Gi(µ) in the original paper.
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〈M ′(v, p)| i
∫

dy T{ p · A(0), Okin(y)} |M(v)〉 = g1 Tr
{
γ5 /pM′

(v)M(v)
}

+ . . . ,

(B2)

〈M ′(v, p)| i
∫

dy T{ p · A(0), Omag(y)} |M(v)〉 = 2(dM + dM ′) g2(µ) Tr
{
γ5 /pM′

(v)M(v)
}

+ . . . ,

where the ellipses denote terms quadratic and higher order in p.
Let us first work out the pole terms arising from an insertion of Okin. According to

Fig. 2a, there are two single pole contributions:

∑
M ′

[
〈 0 | q̄ Γhv |M ′(v)〉 i

2v · (−p) 〈M
′(v)| i

∫
dy T{p · A(0), Okin(y)} |M(v)〉

+ 〈 0 | i
∫

dy T{q̄ Γhv(0), Okin(y)} |M ′(v)〉 i

2v · (−p) 〈M
′(v)| p · A |M(v)〉

]

= − F (µ)

2v · p
[
2g G1(µ) + g1

]
Tr
{
γ5 ( /p− v · p) ΓM(v)

}
+ . . . . (B3)

As shown in Fig. 2b, there are also potential double pole contributions. The first diagram
gives rise to

∑
M ′,M ′′

〈 0 | q̄ Γhv |M ′′(v)〉 〈M ′′(v)|Okin |M ′(v)〉 〈M ′(v)| p · A |M(v)〉
(

i

2v · (−p)

)2

= − λ1

2(v · p)2

∑
M ′
〈 0 | q̄ Γhv |M ′(v)〉 〈M ′(v)| p · A |M(v)〉 . (B4)

Note that only diagonal terms (M ′′ = M ′) contribute to the sum. We have introduced
the mass parameter λ1, which parameterizes the matrix element of the kinetic operator. In
general, one defines

〈M(v)|Okin |M(v)〉 = 2λ1 ,

〈M(v)|Omag |M(v)〉 = 2dM λ2(µ) . (B5)

The same matrix elements also determine the 1/mQ corrections to the physical meson masses:

mM = mQ + Λ̄− 1

2mQ

[
λ1 + dM Cmag(µ)λ2(µ)

]
+ . . . . (B6)

This induces a mass renormalization which modifies the meson propagator, as shown in the
second diagram in Fig. 2b. The corresponding correction is obtained from the expansion

iM

[(M + ε)v + k]2 −M2

M→∞
=

i

2v · k

(
1− ε

v · k + . . .
)
, (B7)

where M = mQ + Λ̄. For the kinetic operator, ε = −λ1/2mQ. (The λ2 term will be
taken into account below.) Combining this with the leading-order pole contribution in (40),
we find that the contribution from mass renormalization exactly cancels the double pole
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contribution (B4). As a result, only the commutator and the single pole terms remain, and
we obtain the soft pion relations

G1(0, µ) =
F (µ)

2fπ

[
2(1− g)G1(µ) − g1

]
,

G2(0, µ) =
F (µ)

2fπ

[
2g G1(µ) + g1

]
. (B8)

Things are slightly more complicated in the case of an insertion of the chromo-magnetic
operator Omag. The single pole contributions are

F (µ)

2v · p
∑
M ′

[
2dM ′ g G2(µ) + (dM + dM ′) g2(µ)

]
Tr{ΓM′(v)}Tr

{
γ5 /pM′

(v)M(v)
}
. (B9)

To recover the trace structures appearing in (19), we need a second trace identity besides
(41). It is∑

M ′
(dM ′ − dM ) Tr{ΓM′(v)}Tr

{
γ5 /pM′

(v)M(v)
}

= −4 Tr
{
iγ5 pαγβ Γ

1 + /v

2
σαβM(v)

}
.

(B10)

This allows us to rewrite our result (B9) as

−F (µ)

v · p
[
g G2(µ) + g2(µ)

]
Tr
{
γ5 σαβ ( /p− v · p) Γ

1 + /v

2
σαβM(v)

}
−2F (µ)

v · p
[
2g G2(µ) + g2(µ)

]
Tr
{
iγ5 pαγβ Γ

1 + /v

2
σαβM(v)

}
, (B11)

where we have used that 1
2
(1 + /v)σαβM(v)σαβ = 2dMM(v) [14]. The double pole con-

tribution can be calculated in complete analogy to the case of the kinetic operator, except
that the contribution from mass renormalization will not cancel the direct double pole term,
since the spin of the pole meson can be different from the spin of the external heavy meson.
In fact, we find

− λ2

2(v · p)2

∑
M ′

(dM ′ − dM ) 〈 0 | q̄ Γhv |M ′(v)〉 〈M ′(v)| p · A |M(v)〉

= iF (µ)λ2(µ)
g(v · p)
(v · p)2

Tr
{
γ5 ipαγβ Γ

1 + /v

2
σαβM(v)

}
. (B12)

The parameter λ2(µ) has been defined in (B5). Collecting the commutator, single and
double pole contributions and comparing the result with (19), we find the following soft
pion relations:

lim
p→0

G3(v · p) =
F (µ)

2fπ

[
− 2λ2(µ)

g(v · p)
v · p − 8g G2(µ) − 4g2(µ)

]
,

G4(0) =
F (µ)

2fπ

[
2(1− g)G2(µ) − 2g2(µ)

]
,

G5(0) = 0 ,

G6(0) =
F (µ)

2fπ

[
2g G2v + 2g2(µ)

]
. (B13)
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To obtain the corresponding relations for the renormalized functions Ĝi(v · p), one first
has to renormalize the low-energy parameters appearing on the right-hand side of the soft
pion relations. It is easy to see that g, g1, and λ1 are not renormalized to all orders in
perturbation theory, whereas the µ-dependence of g2(µ) and λ2(µ) is compensated by the
Wilson coefficient of the chromo-magnetic operator. The renormalization of G1,2 is slightly
more complicated. It is discussed in Ref. [14]. In leading logarithmic approximation, the
renormalized low-energy parameters are given by

ĝ2 = x−3/β ĝ2(µ) , λ̂2 = x−3/β λ2(µ) ,

Ĝ1 = G1(µ) − 8Λ̄

3β
lnx , Ĝ2 = x−3/β

[
G2(µ)− 4Λ̄

27

]
, (B14)

where x = αs(µ)/αs(mQ). By means of (B6), λ̂2 is related to the mass splitting between
vector and pseudoscalar mesons:

λ̂2 =
1

4
(m2

V −m2
P ) . (B15)

The soft pion relations (51) and (52) follow by combining (B8), (B13), (B14), and (A2).
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FIGURES

FIG. 1. Pole diagram contributing to the soft pion relations for the universal form factors.
The axial vector current is shown as the dashed line, whereas the weak current is drawn as a wiggly
line. The black dot represents the strong interaction vertex, the open box the weak interaction
matrix element.

FIG. 2. Single (a) and double (b) pole diagrams contributing to the soft pion relations for
the form factors Gi. The notation is the same as in Fig. 1. In addition, a cross represents a 1/mQ

insertion of Okin or Omag.
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