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Abstract

Extending the folding method of ADE Dynkin diagrams of Lie algebras to BPS quivers of 4d N = 2
supersymmetric gauge theory with ADE type gauge invariance, we study the BPS spectra for gauge sym-
metries with non-simply laced Lie algebras. Focussing on the 4d N' =2 SO7 and S P4 models, we derive
the BPS states of the strong chambers of these theories. We find that for both gauge groups G,5; = SO7
and SP4 =~ SO (5), the number of BPS states of the strongly coupled chamber is 2dim G, versus
2dim G4 — 2rankGy; for the cousin gauge symmetries Gy = SOg and SU4 =~ SO (6). The relationship
between the G; and G, types of BPS quiver mutations is derived. Other features are also studied.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

BPS quiver theory has been proposed few years ago in refs. [1,2] in order to build the com-
plete set of BPS spectra in 4d A/ = 2 supersymmetric QFT. This approach has been successfully
applied to ADE type gauge symmetries [3—10] and to Gaiotto type theories describing the low
energy limit of M5-branes wrapped on a punctured Riemann surface [11-14]; see also [15-31]
for previous works and [32-37] for other approaches to the N' =2 BPS spectra. A tentative
for the generalisation of the BPS quiver construction beyond ADE type groups has been done
in [38]; there, BPS quivers with superpotentials have been obtained for a subset of V"= 2 QFTs
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based on non-simply laced Lie algebras of type BCFG. Aspects of this generalisation constitute
the main objective of the work developed in this paper; with focus on two selected A/ = 2 su-
persymmetric gauge theories in order to illustrate explicitly our approach on simple models of
non-simply laced type gauge symmetries namely SO (7, R) and SP (4, R).

To introduce our approach, it is interesting to begin by recalling some basic features behind
the set up of the BPS quiver theory with underlying gauge symmetry G of simply laced type.
First, the idea of a quiver QG to encode BPS states is remarkable and a great observation; its
power follows from the link with the geometric engineering method of supersymmetric QFT
embedded in type II string theory on local fibered manifolds with ADE singularities [39-41];
see also [42-44] for hyperbolic singularities. For the class of N'= 2 supersymmetric pure gauge
theories, the BPS quiver Q€ is formally similar to the usual Dynkin diagram ®¢ of the Lie
algebra of the gauge group G [45]; roughly speaking, Q€ is somehow a kind of duplication
of nodes corresponding Dynkin graph. The ADE-type diagram ©¢ and the corresponding BPS
quiver Q¢ share together several basic features; some of them like outer-automorphisms and
Coxeter symmetries will be exploited in present study. For example, the Q¢ quiver can be defined
in terms of a 2r x 2r matrix AIGJ in the same manner as for the ®¢ diagram encoding the
r x r Cartan matrix K i(; [3]. Moreover, like for the ADE type Cartan matrix d;.d j that describes

intersections of a given simple roots system {d;};<;<, of G, the BPS matrix A?J describes as
well intersections of a given system of basis vectors {Uy}; ;< defining the electric-magnetic
charges of elementary monopoles and dyons. Thus, the 2r_el_ectric—magnetic vectors Uy play a
similar role as the simple roots a;; and so can be thought of as a vector basis giving the positive
integral charges U4 = Y _n;u; of BPS particles of the supersymmetric pure gauge theory with
symmetry G. The electric-magnetic intersection matrix A encodes therefore the data on the
protected massive and charged BPS/anti-BPS states of the Hilbert space of the N'= 2 QFTy;
the correspondence d; <> U; allows to induce other relationships; in particular the two following
ones are useful for present study: (1) the structure of the set {¥y} of the BPS states may be
put into correspondence with the way we construct the set {a,} of positive roots of the Lie
algebra of G; the same property holds for the anti-BPS states {U_ = — v} and the negative roots
{a_ = —a,} of G. This similarity gives a link between the electric-magnetic lattice I'y, of BPS
and anti-BPS states and the root lattice A, of the Lie algebra of G. (2) The set of mutations
w: Q% — QF that transform a given quiver 06 into mutated ones QF has also an homologue
in the theory of Lie algebra of the gauge symmetry; it is given by the set of all possible ways in
choosing a {d;} basis of simple roots for describing the full root system of G and so for indexing
the diagram D¢ . Therefore, quiver mutations relating distinct quivers Q¢ and 0°, describing
quantum mechanical dualities [46], may be put into a correspondence with Weyl symmetry group
of Lie algebra roots.

In this paper, we contribute to the study of BPS quiver theory of 4d A = 2 supersymmetric
QFT with BCFG type gauge symmetries and quiver Q¢ obtained by taking advantage of
the Q4PE & DAPE correspondence; and by using a known link between D4PF and ©BCFG
Dynkin diagrams (DD). To be explicit, we focus in study on the construction of the set of
BPS/anti-BPS states of the strong chamber of two 4d N = 2 supersymmetric pure gauge mod-
els; the first A/ = 2 model has an SO (7, R) gauge symmetry group; and the second concerns the
supersymmetric model with symplectic SP (4, R) gauge symmetry. Our approach is based on ex-
tending the usual folding method linking ®4PF and DB FY to the BPS quivers. This extension,
which is worked out explicitly in this study, allows us to relate the quivers Q4PF of the BPS
theory with ADE type to BPS quivers QBC¢¥C associated with BCFG type gauge symmetries.
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Among our results, we derive the BPS/anti-BPS states of the strong chambers fo? and DSS,?‘

of pure SO (7, R) and SP (4, R) gauge theories by using particular quiver mutation subgroups

H YSt? and H;s;:,)“ that have interpretation in terms of alignments of central charges of elementary

monopoles and dyons. These Hs‘ig07 and Hss,g4 are subsets of the usual Coxeter groups Qi? and
G

gé,g generated by fundamental mutations t 97 and t Fa satisfying the typical (t, t]) V=17 g

with m standlng for the Coxeter matrix whose structure is as described in appendix I. We give

597 (resp. 23) of the SO (7,R)

¥ (resp. Dwg ) of N = 2 supersymmetric models

also the relationship between the obtained strong chamber Q
(resp. SP (4, R)) model with the chamber Q”g
with SO (8, R) (resp. SU (4)) gauge symmetry. We analyse as well the unexpected number N, g;

of BPS states of the strong chambers Qgg for gauge invariance G* = SO (7,R), SP (4, R); and

we give the relation between these N, G s 8 with the corresponding NC bps _of the chamber Q8
gauge symmetries G = SO (8, R), SU (4 R).

The presentation of this paper is as follows: In section 2, we recall useful aspects on BPS
quivers in AV = 2 QFT,4 with ADE type gauge symmetry; then we describe some aspects of
those gauge symmetries with non-simply laced Lie algebras. In section 3, we revisit the BPS
quiver model with SO (8) gauge symmetry and fix some convention notations. Like the Dynkin
diagram of SO (8), the BPS quivers of the supersymmetric pure SO (8) gauge theory have Z,
and Z3 outer-automorphism symmetries. In section 4, we develop our proposal based on folding
quivers of type SO (8); this approach extends the usual folding method of D4 Dynkin diagram
to get the B3 one. Then, we construct explicitly the strong chamber of BPS states for the SO (7)

symmetry and derive the quiver mutation group H, s, g 01 allowing to generate them starting from

a primitive quiver QO 97 In section 5, we first describe the BPS strong chamber of the A/ =2
SU (4) = SO (6) model; then we use our folding quiver method to construct the strong chamber
of BPS states for the SP (4, R) >~ SO (5, R) and the quiver mutation group H”g4 In section 6,
we give the conclusion and make comments. In sections 7 and 8, we give three appendices (I, II,
III) where some technical details and extra materials are reported.

stg for

2. BPS quivers of V' =2 QFT4

In this section, we begin by reviewing some useful tools on ADE type BPS quiver theory
of [1,2]; especially those aspects concerning the construction of BPS chambers of 4d A/ =2
supersymmetric pure gauge theories. Then, we consider the fundamentals of the BPS quivers
QBCFG for the class of supersymmetric theories with gauge symmetries G based on Lie algebras
type BCFG having non-simply laced Dynkin diagrams D8¢FC

2.1. Generalities on BPS chambers of ADE type

Here, we introduce the sets Dgea  and 0G  of BPS quivers obtained by starting form a pri-

stg
mary quiver representative Qg and performing appropriate quiver mutations. Particles living at
nodes of the quivers of these sets form respectively the weak and strong chambers of BPS/anti-
BPS states of the 4d A/ = 2 supersymmetric gauge theory.
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Fig. 1. The primitive BPS quiver Q‘(Y)u4 of N = 2 supersymmetric model with SU (4) gauge symmetry. Half of nodes
are occupied by monopoles and the other half by dyons. The number 2 on vertical links means there are two arrows;
for example the link between (b1, ¢1) should be thought of as | | . This graph has a Z, symmetry fixing (b7, ¢p) and
exchanging the pairs (b1, c1) and (b3, ¢3).

2.1.1. BPS chambers

To start, recall that in BPS quiver theory with gauge symmetry group G having finite dimen-
sional Lie algebra g of ADE type, one encounters a set of basic entities used in the building the
BPS/anti-BPS states. Certain of these basic objects are given by the three following ingredients
that play an important role in our construction; these are: (i) the primitive quiver Qg , (i) a se-
quence of descendent quivers Q¢ with positive integer n obtained by applying successive quiver

mutations; and (iii) the Qg eak and QSG,g sets of quivers underlying the weak and the strong cham-

bers of BPS states.! The engineering of these two BPS chambers depends on the ordering of the
arguments arg Z; of the central charges Z; = Z (y;) of the elementary BPS particles y; of the
quiver Qg . For concreteness and also to fix some terminology used in this study, let us describe
rapidly these three ingredients below.

(1) Primitive quiver Q(‘;‘DE

This is the quiver Q€ of the A/ = 2 supersymmetric gauge theory described in introduction
section with gauge group G in the ADE sector of finite dimensional Lie algebras. Seen that
we will encounter below various kinds of BPS quivers, we refer now on to this basic object as
the primitive quiver and denote it like Q5 = QY. For pure gauge models with a rank r gauge
symmetry group G, the primitive Qg is made of the following components:

e 2r nodes vy; half of them occupied by the r elementary monopoles {b1, by, .., b} of the pure
gauge theory; and the other half by the r elementary dyons {c1, c2, .., ¢/ }; they play a role
quite similar to the role played by simple roots of Lie algebras.

e Oriented links (Ap);; between neighbouring nodes v; and vy ; their number is given by the
Dirac pairing v; o vy having integer values. As an illustration and also to fix ideas, see Fig. 1
describing the primitive quiver Q‘B”“ of the A/ =2 pure gauge model with SU (4) gauge
symmetry. It will be used later on.

Moreover, because of orientation of links, the Qg has in general oriented cycles that play as
well an important role in the study of the moduli space of the BPS theory. Examples of these
cycles are exhibited in Fig. 1 of Qf)”“; explicit representations with bifundamental fields are
reported in appendix sections 7 and 8; the simplest example is given by the quiver Q(S)M3 of
Fig. 17 of subsection 8.1. To each cycle of the quiver Qg , it is associated a gauge invariant
monomial in the chiral superpotential WOG of the underlying quiver gauge theory. For in-

stance the Qf)"“ quiver of Fig. 1 has four cycles, each one of length 4; and the corresponding

' These BPS chambers are CPT invariant; they contain anti-BPS states as well.
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superpotential Wg "4 is given by the sum of four quartic monomials constructed by using the
prescription of [1]. Illustrating examples of cycles in Qg and corresponding superpotentials
WOG are given for the quivers of the Figs. 22, 23, 24 and 25 of subsection 8.3 of appendix III.

(2) Descendent quivers Q,?

Generic BPS states are given by bound states of the r elementary monopoles b; and the r
elementary dyons c;; they may be also thought of as nodes of some quiver Q,? related to Qg
by certain transformation known as quiver mutation. These Q,?’s are therefore new quivers that
descend from the primitive Qg ; they are classified as Q¥ QZG , ... depending on the length of
the mutation of Qg. These new quivers have the same number of nodes as Qg; but occupied by
new kinds of EM charged particles. So the Q,? quivers have in general different links, different
cycles and different superpotentials Wf . Notice that for a given n-th descendent quiver Q,?, the

corresponding 2r particles bf"), cfn) living at the 2r nodes can be constructed by applying the
quiver mutation method of [1,2]. These particles are BPS bound states of the elementary b;, ¢;;
and their properties are encoded in the ordering and the alignment of the complex central charges

Xi=Z(b) . Yi=Z(ci). 2.1

Examples of descendent quivers will be explicitly constructed in the following sections; see for
instance the Figs. 4, 5, 8, 9 and 10. Others are given in appendix sections; for example the graphs
of Fig. 13 and Fig. 14 of appendix L.

(3) Strong and weak chambers

Given an ordering of the arguments of the 2r basic complex central charges X;, Y;, the
primitive Qg together with the Q¢ descendants, obtained by performing successive mutations,
constitute a set of quivers that we denote like

G G
a%={of} | 22)
Depending on the ordering of arg X; and argY; in the upper half place of the complex central
charge Z, the cardinality of Q¢ may be finite or infinite. For the case of A/ = 2 supersymmetric
pure gauge theory we are interested in here, we distinguish two kinds of Q¢ sets according
to the regime of the gauge coupling constant of the theory; these sets are: (i) the finite Qgg
describing the so-called strong chamber of BPS/anti-BPS states (BPS chamber for short); and
(i7) the infinite set Qg cak 21ving the weak BPS chamber.

The building of these chambers is one of the main purposes of the BPS quiver theory. The
general philosophy of the construction of BPS chambers is described in appendix I; examples of
explicit construction of chambers and their relations with the central charges ordering are given
in appendix III; in particular the Argyres—Douglas A3z model with quiver given by Fig. 20 and
chambers as in table (8.29).

2.1.2. Building BPS chambers

From the presentation given in above subsubsection (§ 2.1.1), in particular the point (3) re-
garding the sets DS ear and Qfg, it follows that the Q¢ quivers of a given chamber Q¢ of
eq. (2.2) have all of them the same number of nodes (2r nodes for pure gauge models); but

occupied by different particles having the typical EM charges

Unom’ = Zmibi +mic; (2.3)
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with some positive m;, m; integers for BPS particles and negative ones for anti-BPS particles.
The allowed values of the m;, m integers are, generally speaking, obtained by solving constraint
relations coming from the supersymmetric quantum mechanics underlying the quiver Qg [1,2];
for a brief description of two methods to construct the allowed bound states (2.3) see subsub-
sections 8.2.2 and 8.2.3 of appendix III; see also the two illustrating examples concerning the
construction of BPS states in the Argyres—Douglas A, and A3 theories by using quiver represen-
tation method of subsubsection 8.2.2. In present study, we will use the quiver mutation method
of subsubsection 8.2.3 to derive directly the m;, m] integers; this is achieved by an explicit con-
struction of the mutation operators M,, allowing to build the descendent Q,(l;’s from the primitive
Qg as follows

06=M,-05 ., Mo=1Iy4 (2.4)

Therefore, the primitive quiver Qg together with the mutation set {M,;n =0, 1...}, encoding
the ordering of arg X; and arg ¥;, play an important role in BPS quiver theory; the knowledge of
these objects is capital for building Q°.

For a 4d N/ = 2 pure gauge theory with a given rank r ADE symmetry with simple roots
di, ..., dr; the monopoles and dyons are represented by their electric-magnetic (EM) charges
respectively given by the 2r-component vectors

-

0 a
b,’ = <al ) s C;p = (—Zi,’ > (2.5)

The link between the nodes of the graph of Qg is given by the EM product of these charges
which is defined in terms of the Dirac pairing b; o ¢; = —0;.a j —a;.dj. By using the Cartan
matrix K;; = d;.a; of the Lie algebra of the ADE gauge symmetries, the various pairings of the
EM charge vectors of monopoles and dyons making Qg read as follows

b,’OijO s CiObj=+Kij

CiOCjZO , biOCjZ_Kij (2.6)

With these b; and ¢; EM charges; one can define two interesting related objects that char-
acterise the primitive BPS quiver [3]; these are the 4r2-component vector UOT = (b, c), com-
bining monopoles and dyons in a huge vector vp; and the corresponding intersection matrix
Ag =vpo UOT defined by the Dirac pairing of the components of vy. In other words the primitive
BPS quiver Qg of the A/ =2 supersymmetric pure ADE gauge theories can be represented by
the pair consisting of vy and Ag that reads in terms of the Cartan matrix of the Lie algebra like

0 —-K
Afj:(K 0)@@ @.7)

where I, is the 2r x 2r identity matrix. With this representation, one can generate the v, vectors
and the corresponding AY = v, o vl matrices describing the Qf quivers by applying mutations
on vy and Ag . These mutations are as well represented by some matrices M,, that allow to
express A,? matrix in terms of the primitive one like M, Ag M Z ; for explicit details see [3]; see
also the generalisation of these mutations to non-simply laced symmetries given by our analysis
of sections 4 and 5.
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2.2. BPS quivers of BCFG type

The above construction done for 4d A/ = 2 models with ADE-type gauge symmetries can
be extended to implement matter [1,2,5]; and, more interestingly for the present study, to su-
persymmetric models with pure BCFG-type gauge symmetries. Following [38], the BPS quiver
description for ADE Lie algebras is also valid for BPS quivers for non-simply laced Lie algebras.
For a given rank r non-simply laced type gauge symmetry, the primitive BPS quiver Qg is also
made of r elementary monopoles {81, B2, .., B} and r elementary dyons {51, 2, .., &, }; but with
EM charges given by

ﬁi=<&iv)eZ’ , 8 = _5’[’!} ez’ (2.8)
where now the r vectors a7, ..., &, are the simple roots of the non-simply laced Lie algebra; and
the ay, ..., &, stand for the corresponding co-roots a; = W%&T&i which, generally speaking, are
different from @; . Because of the existence of two different lengths of simple roots in non-simply
laced algebras, a property which is manifested in practice by the fact that Cartan matrix is no
longer symmetric K j; # K;;, the intersection matrix Ag representing the primitive quiver is no
longer equal to the one given by (2.7); this matrix reads as follows

BioBj=0 : dioBj=Kij 2.9)
SiOBjZKji_Kij s ,BiO(Sj:—Kji ’

it differs from (2.6) by the fact that now the pairing §; o §; is different from zero. Therefore, the
.Ag intersection matrix describing the quiver Qg in 4d A/ = 2 theories with non-simply laced
type gauge symmetries has the following form [38]; see also [47,48]

0 —KT
A = ( o K) ® b (2.10)

For the example of the symplectic SP (4, R) gauge symmetry, the Cartan matrix K and the anti-
symmetric KT — K are given by

(2 -1 r . (0-1
K_<_2 2) ., K —K_(l 0) @2.11)

and then
0 o -2 2
SPy 0 0 1 -2
Ao 2 1 0 -1 (2.12)
-2 2 1 0

Because of the non-trivial value of the §; o §; pairing, the topology of the graph of the primitive
quiver Qg of non-simply laced gauge symmetries is different from their ADE analogues since,
in addition to vertical and horizontal links, we have moreover a diagonal link between the &,
and §,_ nodes of the graph as shown in Fig. 2 for the illustrating example of 4d ' = 2 pure
SP (4, R) gauge theory. It turns out that this extra diagonal link makes the usual algorithm of
quiver mutations on QOG , with BCFG type gauge symmetry, difficult to apply compared to BPS
quiver theory with ADE type algebras; this difficulty will be overcome by using the quiver fold-
ing method developed in present study; thanks to outer-automorphisms of BPS quivers of ADE
type. But before going into details, let us end this general description on building BPS states by
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3, B,

A CP

Fig. 2. Primitive BPS quiver Qg P4 of the 4d N =2 pure gauge model with SP (4, R) gauge invariance. The diagonal
link is because of the pairing ¢; o ¢; which is different from zero. In section 5, we show that this graph is precisely the

one obtained by folding Qg U of Fig. 1 by its Zy outer-automorphism.

indicating that Q¥ quivers of the A/ = 2 supersymmetric QFT with gauge symmetry G are in
practice generated as follows:

a)

b)

Strong and weak BPS chambers

First choose the BPS chamber we are interested in; that is either the weak chamber ng

the strong Qgg; this choice depends on the coupling regime of the gauge theory and is given
by an ordering of the arguments of the central charges of the elementary BPS particles. In this
study, we will focus on the strong chamber of N/ = 2 theories with pure gauge symmetries
SO (8), SO (7), SU (4) and SP (4). This choice has been motivated by two things: (i) by the
fact that QSGI ¢ 18 a priori a finite chamber; and so is a good example to testing the validity of
our folding quiver proposal based on extending the folding trick of Dynkin diagrams to BPS
quivers. (if) Because of constraints coming from the lack of complete results on ng i of

ADE type; the exact content of the weak chambers ng ¢ Of gauge symmetries with rank

r > 2 is not known; only partial results have been obtained in this matter [3,1,2,4,38].
Gauge invariance and mutation subset Hgg
Second distinguish what type of gauge symmetry group G one is considering; that is whether

G having a simply laced DD, or a non-simply laced Dynkin diagrams. For the ADE type
gauge symmetries, the application of the M, mutations on the primitive quiver QQDE is
straightforward and leads to the usual BPS quivers Q,’:‘D E [3]. There, it was shown that the

number of BPS states of the strong chambers QADE jg equal to 2 (dim G — rankG); this

Stg
number can be derived by performing quiver mutations M, on Q()‘D E. it happens that a
particular finite subset Hs“}[f E of quiver mutation set (H;,‘gD E ' {M,}) allows to build the

BPS states of Q?I? E; this subset has a group structure and is generated by the two composite

operators L and L, given by

kOI'

r r
Li=[]_twii  La=][_ tr1 (2.13)

where the 2r reflections f1, ..., f5, are the fundamental mutations of the Coxeter group
(ADE),

gstg

(L1)? = (L)% = Iy exactly like for (t)? = I;g; and their compositions (LpL1)™ and

Ly (LpL1)™ play an important role in building the BPS states out of the elementary ones. It

turns out that the subgroup Hft‘é? Ec g;}g £ is isomorphic to the dihedral group Dih,,; for

rank » ADE Lie algebras, we have the relationship

introduced in appendix I; these two L and L, generators satisfy the property
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7 ADE),

stg Dihg—1) (2.14)

Notice that the Hs?g can interpreted as describing a particular configuration of the X; of the
monopoles and the Y; of dyons. This configuration is given by the alignment of the » central
charges X; and the same thing for the r central charges Y;; see (3.6) to fix ideas. In the case of
N =2 theories with non-simply laced BCFG gauge symmetries, the construction of Q,f CFG
quivers of BPS chamber £ f;gF G needs an extra algorithm; since a naive application of quiver

mutations leads to infinite QﬁgF G with exotic BPS states. To overcome this difficulty, we

take advantage of outer-automorphisms of BPS quivers Q,‘:‘D E to build the corresponding
QBCFG ones by extending the folding method of Dynkin diagrams of ADE Lie algebras.
This BPS quiver folding approach is developed in sections 4 and 5 of this paper.

The mutations of BPS quivers of BCFG type and the quiver folding method need a careful
analysis; we have judged interesting to illustrate the construction on particular models. This is
done in section 4 for the particular A" = 2 model with SO (7, R) gauge symmetry; and in section 5
for the N = 2 theory with SP (4, R) gauge symmetry. But before that, it is interesting to describe
extra helpful tools on BPS quiver theory with SO (8, R) and SU (4) gauge symmetry groups; this
is because the DD of the Lie algebra SO (7, R) follows from the DD of SO (8, R) by folding two
nodes as shown in Fig. 6. The same link exists between SP (4, R) and SU (4) as shown in Fig. 11.

3. BPS strong chamber of ' =2 SO (8, R) theory

In this section we review the main lines of the derivation of the (24 + 24) BPS/anti-BPS
states of the strong chamber DSD,“g of 4d N = 2 supersymmetric pure SO (8, R) gauge theory

[2,3]. We also describe a remarkable subgroup Hft;,)g >~ Dihy; of the quiver mutation set Q‘f,gg
Dy

operating in Q.. The gf,fg’s is given by the Coxeter group of quiver mutations generated by eight
fundamental reflections; it is succinctly described in appendix I; but for further explicit details
see also the appendix of [3].

To begin, it is interesting to notice that the numbers N g}fs) E of BPS and N aA,fiips of anti-BPS
states in 4d A/ = 2 pure gauge theories with ADE type gauge symmetry G are known; they are
given by the formula

NGy + NG yi-yps =2(dim G — rankG) 3.1
For G = SO (8, R), we then have Njo® + Nyt =48 which is equal to 4 x [Dihyy; but

this number can be also factorised like 6 x 8 which turns out to be the type of factorisation that
appears in the cousin A = 2 pure SO (7, R) gauge model. There, we find that the number of BPS
and anti-BPS states obtained, after applying the folding method to the SO (8, R) quivers, is equal
to N I;S 127 + Nj nOtZ—b ps = 6 x 7; see section 4 for the derivation of this number.

The tools given below are therefore to fix ideas and notations; and also for later use when we
study the BPS states of the A = 2 supersymmetric SO (7, R) gauge theory which hasn’t been
considered previously. This study is also important for motivating the quiver folding method and
also for comparison of the BPS states content of the Qﬁ; and ng, chambers of the SO (8, R)
and SO (7, R) twin models.
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Fig. 3. The primitive quiver Qg Os having 8 nodes describing the 4 monopoles and the 4 dyons. The links are given by

the intersection matrix .A¢. The quiver Qg s has two outer-automorphism symmetries: (i) Zp exchanging (b3, c3) and
(by, c4); but fixing the others; and (ii) a Z3 cycle fixing the central (b,, ¢p) and permuting the three external others.

3.1. Primitive quiver ngg

The primitive quiver Qg % is a basic object in the derivation of BPS states of the strongly

32, of the 4d N =2 pure SO (8) theory; a nice method to get these BPS

states is to start with Qg 8. and act on it by a particular quiver mutation subgroup H;jgg of the

coupled chamber £

group gftgs generated by 8 fundamental reflections ry, r2, 73, 74, S1, 52, §3, S4 wWhose matrix
representations are reported in appendix L.

Let us describe below the key steps of this construction for the case of 4d N = 2 supersym-
metric pure SO (8) gauge model. There, the Q(S) Os quiver is made of the 4 elementary monopoles
{b1, b2, b3, bs} and the 4 elementary dyons {ci, c2, ¢3, c4} as shown by Fig. 3. The electric—
magnetic (EM) charges of the b; monopoles and ¢; dyons are expressed in terms of the four aj,
dz, a3, s simple roots of the D4 Lie algebra as well as the corresponding four co-roots a) = a%ﬁi

which coincide with g;; these EM vector charges are as follows

-

0 dj
b,’ = <al) s ¢ = (—&,-) (3.2)

Since the a; roots of D4 are 4-dim vectors, the above EM charges are 8-dim integral vectors; but
here they are thought of in terms of eight nodes of the primitive BPS quiver Qg 9 which encodes

all data on eq. (3.2). So the Qg 9 describes the BPS set {b;, c;} which can be roughly imagined
in terms of a 64-component symplectic vector like

vl = (b1, b2, b3, b c1, c2, ¢3, ca) (3.3)

The links between the eight b;, ¢; nodes are given by Dirac pairing eq. (2.9) between the EM
charge vectors of monopoles and dyons. In this view and like the Dynkin diagram, the primitive
quiver Qg Os may be represented by an intersection matrix Ag Os — Vg o UOT like

sos _ [ biobj bijoc;\ (0 —K
AO _<C,'Obj Ciocj “\K 0 ®18 (34)
with Dirac pairings b; ob; =c; oc; =0and ¢; o b; = —b; o c; = K;; ® Ig where Ig is the 8x8
identity matrix and where K;; is the usual Cartan matrix d;.d; of the so(8) Lie algebra given by
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2 -1 0 O
-1 2 -1 -1
o -1 2 0
0 -1 0 2

Kp, = (3.5)

3.2. Quiver mutations and BPS states

To obtain the BPS/anti-BPS states of the strong coupled chamber of the 4d /' =2 SO (8, R)
gauge theory, we follow the approach of [3] by first taking the argument of the complex central
charges X; and Y; of the 4 monopoles and the 4 dyons as

arg X1 =arg Xp = arg X3 = arg X4
argY) =argYr =argYz =argYy (3.6)
argY; > arg X;

then applying the quiver mutation method of [1-3,5]. This central charge configuration allows
to get the full content of the strong chamber Qg; which is known to have 24 BPS states and 24
anti-BPS states. The first set of equalities in (3.6) describes the alignment of the central charge
rays associated with the elementary monopoles and the second set of equalities describes the
alignment of the central charge rays of dyons; for a physical interpretation of these alignments
see the description of § 3.2.1 given below. The inequalities give the ordering of the argument of
the elementary BPS states and fix the BPS chamber. Notice that in the strong chamber we are
considering, the central charge rays (Y;) associated with elementary dyons are left-most in the
half upper-plane of the complex central charge Z while the rays X; of elementary monopoles
are right-most. In the case of weak chamber, the configuration gets reversed; the Y; rays are
right-most and the X;’s are left-most ones. The terminology left-most and right-most has been
used in the basic works [1,2]; it is helpful in the study of ordering the arguments of the central
charges of bound states and in the construction of BPS chambers; for instance if argY > arg X,
then we have the following property

argY >nargY + marg X > arg X 3.7

for any positive definite integers n and m. As the ordering and alignment of the central charge
rays in upper half complex plane are important ingredients in using quiver mutation method for
the construction of BPS chambers, let us describe briefly known results for this matter by de-
scribing the key idea on the SU (N) gauge symmetry. To make the presentation more illustrative,
we also give the explicit relations for the leading SU (2) and SU (3) gauge groups; and take the
opportunity to give as well some useful comments.

3.2.1. Ordering of central charges

We begin by recalling results on BPS/anti-BPS states of A/ = 2 QFT with pure SU (2) gauge
symmetry as constructed by using the quiver mutation method. In this theory, the BPS states
are given by bounds of a monopole 2t and a dyon ©; the monopole has an electric—magnetic
charge b, and the dyon has a charge c. The BPS and anti-BPS states in the 9,2, and 9,7
chambers of pure SU (2) gauge theory are completely known; and are re-derived in a nice manner
by using the language of complex central charge Z (b) = X of monopole and the central charge
Z (c) =Y of the dyon. In this method, these two chambers correspond to the two possible ways
of ordering the arguments of X and Y in the central charge complex plane Z. For the case arg X >

arg Y, we have the infinite weak chamber Qi)“eza &> the list of BPS states contained in this chamber
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is given by eq. (8.1) reported in appendix III; see also the explicit construction of [5]. This BPS
spectrum is exactly derived by using quiver mutation method considered in this study. For the
other case arg Y > arg X, we have the strong coupling chamber 9’ g ; it consists of the elementary
BPS particles 9t and © with EM charge b and ¢ and their anti-particles 9t and © with opposite
charges.

For N = 2 supersymmetric QFTs with rank r ADE gauge group, the construction of the
BPS chambers extends the one done for the SU (2) gauge theory; but it is somehow subtle due
extra arbitrariness. While the lattice I' 4 pg of the EM charges y of the BPS states has rank 2r,
the moduli space of the supersymmetry pure gauge theory has only r + 1 physical parameters
that can be varied. These physical moduli are given by r moduli u1, ..., u,, parameterising the
Coulomb branch, and the gauge coupling constant. By thinking of the lattice 'y pg in terms of
its 2r generators denoted like yl.i, and using the homomorphism

A FADE —- C
i - Z(Vii)

one ends with 2r complex central charges Z (yii) for the elementary BPS states teaching us
that an arbitrary configuration of the 2r central charges (X;, Y;) for the nodes (b;, ¢;) of the
quiver Q4PE cannot be chosen arbitrarily. To apply the mutation method we need to find a
basis which has central charges lying in a upper half plane with a certain choice of the ordering
of the arguments of X; and Y; of the elementary monopoles and dyons. This question has been
explicitly addressed in [ 1] by using results on generalised N = 2 supersymmetric Seiberg—Witten
(SW) gauge theory. There, the nodes (b;, ¢;) of the BPS quiver have been identified with basic
cycles yl.i in SW geometry. To fix ideas let us focus on N/ = 2 supersymmetry SW theory with
pure SU (N) gauge symmetry; the Coulomb branch of this theory has N — 1 parameters u =
(u2, ...,uy) given by the Casimirs of SU (N) determining the VEVs of the Cartan elements.
These parameters appear as coefficients in the defining equation of the SW complex curve

(3.8)

2=ph AN Py =xV Zukx (3.9)

where A stands for the strong coupling scale. This equation has 2N complex roots xkjE which are
functions of the Coulomb branch parameters xki (u, A) and which we denote like el.jE for conve-
nience; these roots are used in the building symplectic homology cycles y in the SW geometry
that are interpreted in terms of EM charges of the BPS states. On the other hand, by using the
SP (2N — 2, Z) duality of SW gauge theory one may select a symplectic homology basis of cy-
cles like y,.i = el.jE - eifrl and which can be precisely identified with the b;, ¢; electric-magnetic
charges of the 2 (N — 1) nodes the BPS quiver Qg”N . In this SW formulation, BPS particles are
represented by vanishing cycles y on the SW curve and their central charges Z, (y) are given by
the periods

Zy () Zf?»(u) (3.10)

14

with 1-form A (1) given by the expression 2m P, Ndx By specifying the analysis to the SU (3)
particular gauge symmetry, one can explicitly study the properties of the chambers of BPS states
including the passage from of the weak chamber towards the strong one. In this simple example,

the SW curve reduces to y? = (x3 —ux — v)2 — A® with u and v standing for the two Coulomb



654 R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642-696

branch moduli. The weak coupling chamber Qf;‘;a « corresponds to taking the limit u — —o0

with v = Imu = 0, and the strong chamber Qy/; to the limit « — 0. The complex curve y? =
PSZM ;= A% has six complex roots ef, e?, e?, and the SP (4, Z) homology cycle is generated by
the symplectic basis

— e+ o
Vi ~e T ) Vi ~e —€i4y (3.11

with index i = 1, 2. These dual 2 4+ 2 symplectic cycles are in one to one with the EM charges
(b1, by) of the elementary monopoles and the EM charges (cy, ¢z) of the elementary dyons. They
correspond also to the nodes of the BPS quiver QB”S of the supersymmetric pure SU (3) gauge
theory. We have

bi < vy , ci < yl.+ (3.12)

In the limit of zero coupling constant, the central charges X; of the monopoles b; approach the
m-separation between BPS and anti-BPS states in the Z complex plane, arg X; — 7. However,
the central charges Y; of the dyons ¢; have arguments that tend towards zero, arg ¥; — 0. In this
weak gauge coupling limit, we have the alignments

argX; =argX > 7w , argY; =argy — 0 (3.13)

and then the ordering property arg X > arg Y. As we tune the Coulomb branch parameters from
the weak chamber u = —oo towards the strong chamber u = 0, the arguments of the central
charges of the monopoles {b;, b»} and the dyons {c1, c2} approach increasingly and cross each
other at strong coupling limit leading to the reverse ordering

argy; > arg X; , argY > arg X (3.14)

Notice that at the limit u = 0, both the SU (2) proper sub-symmetries of SU (3) gauge group are
strongly coupled in same manner as in the supersymmetric SU (2) pure gauge theory introduced
in the beginning of this paragraph. Notice also that at the origin # = v = 0 of the Coulomb branch

of the SU (3) theory, the term P = (x3 —ux — v)2 in the SW curve reduced to the monomial

su3
x% and so the roots x; solving the SW equation in the x-plane are given by the six complex

2ikm . . .
numbers e ¢ A showing that the six BPS states in the chamber Qi,”; have as Zg symmetry

property. The construction of the BPS chambers for the supersymmetric pure SU (N) gauge

theory extends straightforwardly for N'= 2 supersymmetric pure D, and E, gauge theories.
After this digression, we now turn back to our main purpose namely the building of BPS/anti-

BPS states of the strong chamber QSD,;.

3.2.2. Cyclic chain of BPS quivers

We start from the primitive Qg 08, represented by the intersection matrix .Ag s given by (3.4);

. . . S0 . . e
then successive quiver mutations of Q 8 allow to generate new quivers; say the quiver 0] 8

after first mutation M, then the quiver Qg Os

Because of the fact that the BPS strong chamber £

ng such that M,,;, = I;4; which means that Q,‘foo 8

corresponds to a cycle in the mutation set Hggog and turns out to be equal to 12 in present case.
The closed chain of quivers

after two mutations M’lM 1 = M, and so on.
Dy
stg
is precisely the starting Qg 08; the integer ng

is finite, there should exist an integer

SOg

Qo

— Q}gox — ang R QISIO8 — Q(S)O8 (3.15)
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can be made more explicit by working with ASOS intersection matrices representing the Q;EO8
quivers. Indeed, the intersection matrix Afog, associated with the Qfog quiver, is obtained by
performing a transformation” type Afog =M 1.Ag % M T with mutation matrix as follows
1 000 O 1 0 0
01 0 0 1 0 1 1
001 0 O 1 0 0
0001 O 1 0 0
Mi=fo o000 -1 0 0o o (3.16)
0000 O -1 0 0
0 00 0 O 0O -1 0
0 00 0 O 0 0o -1

This mutation M plays an important role in this construction; for convenience we refer to it

as Ly; it will be interpreted as one of the two mutation generators of HSSOS. To make a precise

tg
idea on this particular mutation subset Hsgg which has a group structure, let us first derive the

expression of the second generator L, and turn to give a comment.
The Ag Os matrix, associated with the Qg Os quiver, is obtained in an analogous manner to
Af08; but now by operating L, on Afog; that is by performing a transformation type Ag Os —

LgAngLZT where L is the second generator of HSSOS' it is given by eq. (3.17).

tg
1 0 0 0 0000
0O =1 0 0 000 0
0 0 -1 0 000 0
0 0 0 —-1000 0
L=l 1 0 0 100 0 G.17)
I 0 1 1 0100
O 1 0 0 0010
O 1 0 0 000 1

By substituting Afos = Ll.Ag OngT, we obtain the direct relation of Ag % with the primitive
quiver namely Ay = M AoM 2T with M, = L, L. By repeating the mutation n times, we obtain
the 48 BPS states of the strong chamber of the A/ = 2 pure SO (8) gauge theory. The A,‘on

intersection matrix of the n-th Q,‘EOS quivers is given by

ASOs = M, A M T (3.18)
with

My=(LoLD)* . Moy =LiMy (3.19)

3.2.3. Mutation group HSSths and QSD/‘g

First notice that the two above L and L, matrices generating Hsstgg

operators of four successive fundamental reflections of gf,?s generated by 8 fundamental reflec-

are in fact composite

2 This transformation follows from the transformation of (3.3), the EM charge vector of BPS states of the quiver

QSO(S); and the expression of the intersection matrix A30(8) =gy o UOT.
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—cy

b, +c +¢,+¢,

-

b +c,

b, +c,

Fig. 4. The quiver Qfos having 8 nodes describing 8 new BPS states. Like ng(g)’ the quiver Q‘fo(g) has also the

same two outer-automorphism symmetries: (i) a Z, symmetry exchanging 3rd and 4-th nodes; but fixing the others; and
(if) a Z3 automorphism fixing the central node; but permuting the three external others.

tions denoted as r1, 12, r3, 4 and s1, 52, 53, S4; see also eq. (2.13). The use of composites L and
L, corresponds to performing four simultaneous reflections as follows

Ly =ryr3rr s Lo = 54535281 (3.20)

The explicit expressions of the fundamental reflections and examples of induced quivers are
reported in appendix 1. The second feature is that the M, mutation matrices involved in (3.19)
obey the following cyclic relations,

My, =1Iq , Mg =—lig
Mn+12 :Mn s Mn+6 Z_Mn

To get the BPS states of the strong chamber, it is enough to compute the expressions of the
mutation matrices (3.19); the rows of these matrices give the EM charges of the BPS states of the
Qﬁ“g strong chamber. Let us show how this works in practice by computing the leading M,’s;
for n =1 we have M| = L1; acting by this matrix on the vector vp with BPS states as in (3.3),

we obtain a new vector v; = M v with BPS states as follows

(3.21)

1 000 O 1 0 o0 by b+

01 0 0 1 0 1 1 by by +c1+c3+cy

0010 O 1 0 O b3 b3+

0001 O 1 0 o ba by+c

0000 -1 0 0 O a | —C1 (3.22)
0000 O -1 0 O 2 -

0000 O O -1 0 c3 —c3

0000 O 0 0 -1 c4 —c4

The BPS states obtained by mutation can be then read directly on the rows of the M| mutation
matrix; we have

—c1, —¢, bitc, bt
—c3, —¢4, b3+, brteatata
The corresponding BPS quiver is given by Fig. 4. Observe that the M; mutation has generated

new eight BPS states; two for each reflection of (3.20). By computing the M> = L, L| mutation
matrix, we have

(3.23)
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[
b, +c, +c,
—b—c,
7 by +c +c,
-G
b +b, +b, +2c)
—b,—¢c,

SO(8)

Fig. 5. The quiver Qi Os having 8 nodes describing 8 new BPS states. Like Q)

also the same two outer-automorphism symmetries.

-1 0 0 0 0 -1 0 0
0 -1 0 0 -1 0 -1 -1
0 0 -1 0 0 -1 0 0
0 0 0 -1 0 -1 0 0
M2=10% 1 0 0o 0 0 1 1
1 0 1 1 0 2 0 0
o 1 0 O 1 0 0 1
o 1L 0 O 1 0 1 0

leading to the following set BPS and anti-BPS states

—b1—c2 , bot+cztcey , —by—c1—c3—c4
—b3—c2 , by+ci+cs , bi+b3+bsi+2c;
—bs—cry , by+ci+cs

657

and Qfos, the quiver ng(g) has

(3.24)

(3.25)

They are located at the eight nodes of the BPS quiver Qg % of Fig. 5. Doing the same thing for
the mutation matrices M3 = L1 M, and M4 = (M2)2 as well as for M5 = L{My; we obtain the
remaining BPS states of the strong chamber; the other quivers do not bring anything new because
of the properties (3.21). Therefore the BPS states of the strong coupling chamber of SO (8) are

given by the following set having 8 x 6 =48 BPS states with EM charges

+by + (b1 + ) + (b1 + b1+ c2)

+b; + (b3 + ¢2) + (b1 + b3+ ¢2)

+b3 + (bg +c2) +(by+c3+ca)

+by + (b +¢1) + (b3 4+ bs+ ¢2)

+c; + (b +¢3) + (b1 + b3+ bg+c2)
*e £ (b2 +c4) £ (b1 + b3+ ba+2c2)
+c3 + by +c1+ca) +(2by+c1+c3+ca)
+cy + (b +c1+c3) +(by+c1+c3+ca)

(3.26)

In the basis vectors (3.2), these BPS states are read directly from the row of the following set of

matrices

Hyyg® = { i, =My, £M>, M5, +Ma, £Ms )

(3.27)
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D, : 7, B,

Fig. 6. Z; folding simply laced Dynkin diagram of SO (8) down to non-simply laced Dynkin diagram of SO (7).

This H3% 505

stg Set forms a finite discrete subgroup of the Coxeter group Gg;,"; the cardinality of
this subgroup is equal to 12; a careful inspection of this finite discrete symmetry shows that is
isomorphic to the dihedral Dih, group realised by 8 x 8 matrices type (3.24) with two generators

L1 and L; given by the particular mutations L1 = M| and Ly = —M 5 in the closed chain (3.15).
4. BPS spectra of strong chamber of SO (7)

In this section, we study the BPS states of the strong chamber of the N" = 2 QFT4 with SO (7)
gauge symmetry. Our method is based on extending the usual Dynkin diagram folding D4y — B3
of Fig. 6 to the corresponding BPS quivers of N =2 gauge theories. For the case of pure gauge

models we are considering here, the quiver folding F bD[Z; p, map the Qﬁ; chamber of SO (8)

model to the Q?g chamber of SO (7) model

bps . D4 B3
FD4—>B3 : Qslg - Qstg

4.1
This particular construction of BPS states of the supersymmetric pure SO (7) gauge model may
be also viewed as an illustration of general method for constructing BPS states for the family of
N =2 QFT4 with SO (2n + 1) gauge symmetry. After building the BPS states of the chamber

Qg}, we derive the relationship between the mutation subgroup Hggg and its homologue HSS,gO7;
Dy

st¢ and the obtained 42 ones of Q¥

and comment on the link between 48 BPS states of ;

interpreted as % x 48.
4.1. BPS strong chamber of N' =2 SO(7) theory

Here, we use the BPS strong chamber Qs[;:, of the supersymmetric pure SO(8) theory to
study the BPS states of the strongly coupled chamber of the 4d N = 2 pure SO(7) gauge theory
by using a folding quiver method; thanks to the Z, automorphism of the BPS quiver QSOS
inherited from the Z; automorphism of the DD of the Lie algebra of the SO(8) gauge symmetry
as exhibited by Fig. 6.

To start, recall that the Dynkin diagram of the B3 Lie algebra can be obtained by folding two
nodes of the D4 Dynkin as shown in Fig. 6. To derive the F lgf; B of (4.1), it is interesting to
first derive the explicit expression of the folding operator fp,_, p, mapping D4 diagram to the B3
one; then turn after to extend this construction to the case of BPS quivers of the corresponding
4d N = 2 gauge theories.

4.1.1. Building the folding operator fp,— p,

We begin by noticing that Dynkin diagrams D, of finite dimensional Lie algebras g are char-
acterised by intersection of simple roots d; precisely given by their Cartan matrices K, = a; .&}?.
Therefore, to describe the folding of the D4 Dynkin diagram down to the B3z Dynkin one, we
start from the four d,, d», a3, a4 simple roots of the D4 Lie algebra with intersection matrix as in

(3.5); and look for the appropriate manner to reach the simple roots of B3. To have more insight
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into the fp,_, p, folding operator, we also use the canonical basis (€1, €2, €3, €4} of the real 4-dim
space R* in terms of which the four simple roots of D4 decompose as follows [45]

di=é —é , Gr=é—¢é , d3=¢e3—¢é4 , d4=¢3+¢4 4.2)
having norms a;.d; = 2 and intersections as in (3.5). To get the structure of the folding mapping
between the Dynkin diagrams Dp, and Dg,; we have to find the way to map the 4 x4 Cartan
matrix K p, to the 3x3 Cartan matrix K p,; that is working out the appropriate rectangular 3 x 4
matrix f such that

Kp, f=tKp, (4.3)

Multiplying this constraint relation from the right side first by £/, we can bring it to the form
Kp, X = f.KD4fT with 3 x3 matrix X = (ffT) and det X # 0; then by X!, we end with follow-
ing relation between the two Cartan matrices

Kp,=f.Kp, f 4.4

where we have set f= fT (ffT)_l. Notice that f and f are related by the property £.f = Iy3:

notice also that f is not uniquely defined since for any non-zero rectangular 4 x 3 matrix h with
det(fh) # 0, the expression h(fh)_l is also a candidate for f'; this feature was expected since
folding is a projection; this arbitrariness doesn’t affect the result. The mapping f is explicitly
obtained by working out the link between the four a1, dz, as, d4 simple roots of D4 and the three
simple roots of B3 that we denote as @, &, &3. Recall that for the B3 Lie algebra, we have two
kinds of simple roots; the &, @ having a norm equal to 2, and the &3 having norm equal to one.
In terms of these @;’s, the Cartan matrix K (B3); ; is then non-symmetric as shown on the general

expression 3%511‘ .j; its entries are as follows
J

2 -1 0
KB)=|-1 2 =2 (4.5)
0 -1 2

Using the first three canonical basis vectors el, ez, e3, generatmg a hyperplane P3 in R4, the
simple @;’s can be expressed like ) = €; — e, ap = €2 — e3 and @3 = ¢€3; the three @;’s are
related to the four previous a;’s by restrictions to P3; the folding mapping fp,—, g, between the
two sets of simple roots is a projection that read explicitly as follows

. .. I
a) =ay , ) =a , 0t3=§(a3+a4) 4.6)

From these relations we learn the matrix f describing the folding fp,_. p,; by help of the expres-

sionf=f". (ffT) ! satisfying the remarkable f.f = I3,.3, we have

100 0 I P

t=(o 1 0 0| . = @)
0o 1] 00 1
2 2 00 1

As a check of validity of these expressions, substitute (4.7) into (4.4) with Cartan matrix K p, as
in (3.5), we have
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By

Fig. 7. The primitive BPS quivers Qg 07 ; in addition to usual vertical and horizontal links of ADE type gauge symmetries,
we also have a diagonal link; this property is related to the fact that Cartan matrix of so(7) is non-symmetric; it is also
related to the existence of two kinds of simple root lengths.

2 -1 0 0
-1 2 -1 -1
o -1 2 0
0 -1 0 2

Kp, = (4.8)

S O =
S = O
D= o O
= O O
OO O =
(el =)
—_—_- O O

leading exactly to the K g, expression given by (4.5).

4.1.2. Primitive Q377 as folded Q3%

To build the full set of BPS states of the 4d A/ = 2 pure SO(7) gauge theory, we proceed as in
the case of the SO(8) model; this method requires the knowledge of the primitive quiver Q(S) 01
and the two generators of the mutation group Hf,?. While Qg 97 is obtained in same manner
as in SO (8) gauge theory, the set H;j? generating the other Q,fO”s is unknown and has to be
determined; this will be done by extending the folding method the Dynkin diagram of D4 into

the B3 one. As we will show in a moment, the Hf;? is intimately related to Hsstgs; it has two
generators L1, £, related to the Ly, L, generators of Hs‘jgg like
Li=FLF |, Ly=FL)F (4.9)

where F and F are extensions of the folding operators f, fof eqs. (4.4)—(4.7); the exact relations
will be given later on; see egs. (4.15) to fix ideas.

o Folding operator F
We start from the primitive quiver Qg 9 made of the EM charges of the three monopoles
B1, B2, B3 and three dyons 81, 82, §3; these charge-vectors read in terms of the three simple roots

a; and co-roots & = &%62,- as follows
i

0 a;

o . . 4SO N N
with intersection matrix .AO = v, 7o (v, nr

by Fig. 7, like

. . 08 0 —KT
.ASO7= BioBj Piod; — B3 ® 1 4.11
0 SioB; 8i0d; Kp, KL —Kp, 6 (411)

. L. SO . .
, Tepresenting the primitive Q 7 quiver given

where K, is as in (4.5). In our approach, we think of this intersection .Ag 97 matrix as equal to

the intersection matrix obtained by folding the Ag %8 matrix of the Qg Os quiver (3.4). In other
words, we have
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w7 =Fu® . AT =FAJ®FT (4.12)

where the folding rectangular 6 x 8 matrix F and its transpose are as follows

1 0000 O
10 0 0 000 O 01000 0
01 0 0 000 0 00100—%

p_|00 1 1 0000 pr_[0 0 100 —;
00 0 0 1 00 0 ’ 00010 0
00 0 0 01 0 0 0000 T1 0

1 1 1 1 1
00 —3 —3 00 5 3 ooooo?
00000 1

4.13)

For later use we also need F = F ! (F F T)_1 obeying the property” F F = I and which is given
by

1 00 000
010000
00%000

- 00 L o0oo00o0

F=160010 o0 @.14)
000010
00 1 00 1
00 5 001

In terms of the matrices f and f of egs. (4.7), used in the folding of Dynkin diagram Dy to the
Dynkin diagram of B3, the above F and F read as follows

F= oo F= o0 4.15
= f—ET f ’ = f_fo ()

With these tools at hand, we can now build mutated BPS quivers Q507 by applying mutations
to the primitive quiver Qg 01 by following the same method done for the BPS strong chamber

of the SO (8) gauge theory. Let us study how this works by constructing the two leading quivers

Qf07 and Qg 97 characterised by the intersection matrices Af07 and A‘; 97 respectively.

o Building leo7
By using the intersection matrix Af07 that represents the QISO7 quiver, the mutation mapping
Q307 into Qf07 reads as

AJOT = Ny ASOTNT (4.16)

where N is a particular mutation matrix belonging to HSS,? and whose explicit expression is not

yet known; its form is obtained by applying the folding method to both sides of above relation. By

3 Notice that F is not uniquely defined since, like for folding Dynkin diagrams, for any non-zero H with non-singular
(FH)*l , the expressions H (FH)*' are candidates for F.
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substituting Ag Or by eq. (4.12) and the Af07 by its folded expression descending from SO (8)

theory namely Af07 =F .A]SO8 FT, we can rewrite (4.16) into the form
FASPFT = (N F) A% (N, F)T 4.17)

Then by using the mutation eq. (3.18), in particular .AISO8 =M 1Ag %8 pr lT, we obtain the relation
N1 F = F M from which we determine N1 = FM F. Substituting M| = L1, we learn that N

is also equal to £1 = FL; F as anticipated by eq. (4.9); it is one of the two generators of Hg?
with matrix representation
1 0 0 O 1 0
01 1 1 0 2
0 0 1 0o 2 0
Li=fo 0 0 -1 0 o0 (4.18)
00 0 O -1 0
00 -1 0 -1 -1

from which we can learn directly the 6 BPS states making the Q‘f07 quiver; these states will be
written down later on.

o Building Q§07

Doing the same thing for the intersection matrix Ag 97 that represent the Qg 01 quiver, the

mutation mapping Qg % into Qg 97 reads as

A0 = N A3V NT (4.19)

where N is a mutation matrix belonging to Hs‘f?; straightforward calculations show that N is
given by the product of two matrices like £, £ with £ as in (4.18) and £, precisely the second

generator of HXSO7 which is related to the L, generator of H, 505 Jike Lry=F Lzﬁ and whose

tg stg
expression reads as follows

-1 0 0 0 0 O

0 -1 0 0 00

0 0 -1 000

L=l 1 0o 100 (420)

1 0 1 0 10

0 1 1 0 0 1

From this matrix we can also learn directly the 6 BPS states making the Qg Or quiver; they will

be given in the next subsection.

B3

4.2. Building the BPS strong chamber Q,

In subsection 4.1, we showed that the strong chamber Qg“g of the 4d A/ = 2 supersymmetric
pure SO (8) gauge theory has 48 BPS states as listed on eq. (3.26). Here, we derive the BPS
states content of the strong chamber Qf&, of the 4d A/ = 2 pure SO (8) theory by using folding
method. We show that the number of BPS states N ,f[iv of the strong chamber of the SO (7) gauge
theory is given by
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ZND4

g Nips =42 736 4.21)

it is different from the expected 36 BPS states following from the heuristic extension of the
ADE-type relation (3.1).

To that purpose, we first describe the finite mutation group Hf,? of the strong chamber; then
B3

we turn to construct the BPS state content of Q.

4.2.1. Mutation group Hg?

This is a finite discrete group having two generators £ and £, with 6 x 6 matrix representation
given by eqs. (4.18)—(4.20). These generators have been induced from their homologue L; and

L, generating particular mutations of primitive Qg Os quiver of the strong chamber of 4d N =2
pure SO (8) gauge theory. Recall that L and L, generate Hf,g8 and are realised in terms of 8 x 8
matrices as in eqs. (3.16)—(3.17). The relations (4.9) and the 6 x 6 matrix representation of £; and
L, as well as the 8 x8 matrix representation of L1 and L, let understand that Hﬁ;,h and HSS,gg
are intimately related; they are two different representations of same group which turns out to be
nothing but the dihedral group Dihj;. The link between the £, £, of the SO (7) theory and the
L1, L, involved in SO (8) model is given by the transformation

Li=FL;F (4.22)

with F standing for the extended folding matrix (4.15) and F is such that FF = Isx6. This link
teaches us two useful information: (i) it tells us that £, £, are the generators of HSS[?; any
element of this mutation symmetry is given by products of £; and £;. (ii) It tells us also that the

relationships (4.9) between the L;’s and the £;’s are in fact particular relations valid for all M,

mutations of the ILIXS,gO8 given by (3.27). In other words, the N, mutations of Hﬁ? are related

to the twelve M,,’s of H SS,gog in the same manner as the £;’s are related to the L;’s; so we have
N, = FM,F with

Nogi1=L1Nx . Ny=(LLy)f (4.23)
satisfying the properties

Ni =1y , Ng =—liy

4.24

Nn+12=Nn P Nn+6 =_Nn ( )
Therefore the finite discrete group H;i? is given by the set

H3?" ={%l4. £N1, £N3, £N3, £N4, £Ns |~ Dihy (4.25)

From this description, we learn that H;jg07 and Hs‘jgg are just two different matrix representations
of the dihedral Dih ;.

4.2.2. BPS states of Qg?g

The full set of BPS states of the strong chamber of the 4d supersymmetric pure SO(7) gauge
theory is determined by quiver mutation method permitting to generate all possible quivers by
starting from the primitive quiver Qg 97 and acting on it by mutations of HSS,?. In this way one
obtains several BPS quivers Q;f 97 from which we read the BPS states. Because of the properties
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_51 ﬁ2+ﬂ3+é‘l+253 _ﬁ;_51_53

B+, -5, B +28,

Fig. 8. The BPS quiver QISO7 obtained by mutation of primitive Qg 07 by acting by L.

(3.21), the following six leading quivers are enough to get the full list of the BPS states of the
strong chamber of the 4d supersymmetric pure SO(7) gauge theory

SO7 SO7 SO7 SO7 SO7 S0O7

Qp " Q17 Q7" 0377, Oy, 05 (4.26)

Let us describe the BPS states of these quivers with some details. From the primitive quiver
Qg 07, we have six BPS states; these are the three monopoles 81, B2, 3, and three dyons 81, &2, 63

with electric—-magnetic charges as in (4.10). The quiver Qf07 gives six new BPS states and are
as follows

=8 , Bi1+6 , —B3—8—050m

4.27
=8 , B3+28 . B+Bi+81+28 (4.27)
They are located at the nodes of the graph of QIS 97 of Fi 2. 8. They are obtained by acting on

UOT = (B1, B2, B3; 81, 82, 83) by the mutation transformation £; like

1 0 0 O 1 0 Bi B1+ 682

o1 1 1 0 2 B> B2+ B3+ 81 + 283

00 1 0 2 0 Bs | _ B3 + 28,

00 0 -1 0 0 s |~ -8 (428)
00 0 0 -1 0 8 -8

00 —1 0 -1 —1)\8 —B3— 8 — 83

they can be also read directly on the rows of the £ matrix generator. Notice that from the view

of the full QSS,gO7 mutation group, the £; is a composite transformation with three fundamental

reflections like £ = r3ror; with
100 0 00 1000 1 0
010 1 00 0100 0 0
001 0 00 0010 2 0
n=1o00 -100]  2=looo1 0 o (4.29)
000 0 1 0 0000 —1 0
000 0 01 0000 —1 1
and
10 0 00 0
01 1 00 2
00 1 00 0
=100 0 10 o (4.30)
00 0 01 0
00 -1 00 —1
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Each r; reflection generates a BPS quiver with two new BPS states; the simultaneous reflections
generated by £ = r3rar; on Q(S) 01 give the quiver Q‘fo7 having 3 x 2 = 6 BPS states. Using this
way of doing, we find that the BPS states coming from Q,§07 quivers can be read from the rows
of the mutation group elements N, given by eqs. (4.24). For example, the BPS states resulting

from Qg 97 are read on the mutation matrix N 2 =LoL; we have
-1 0 0 0O -1 0
o -1 -1 -1 0 =2
0 o -1 0 -2 0
M=lo 1 1 0o o 2 “.31)
1 0 1 0 2 0
0 1 1 1 1 1
it generates the following six new BPS states from the primitive ones
—B1— & B2+ B3 + 283
—B2— B3 — 381 —233 Bi + B3 + 252 (4.32)
—B3 =28, B2+ B3+ 81+ 82+ 83

Similarly, the remaining BPS states come from the Q§O7, Q§07 and Q§O7 quivers; they are read

on the rows of the matrix mutations N3 = £1£2L1, N4 = (£2£1)? and N5 = £ (L£2£1)%. The
resulting full set of BPS states of the strong coupling chamber of the SO (7) gauge theory reads
therefore as follows

+81 +(B2 +81) (282 + B3 + 01 +283)

18 +(B3 +82) (B2 + B3+ 81 + 62 +63)

+83 £(B3 +262) (281 + B3 +282)

+6; £(B1+ B3 +82) £(B2 + B3 +283) (4.33)
+6 (B2 + B3+ 33) +(B2 + B3 + 1 +283)

+483 + (B3 + 82+ 83) *(B1+ B2+ B3+ 52+ 33)

+(B1+8) B +B3+28)  E(B1+ B+ B3+ 81+ +83)

B3
stg

versus the 6 x 8 = 48 BPS states in Q% the folding

Stg>

There are 6 x 7 = 42 BPS states in
has projected out % BPS states.

5. BPS strong chamber of A" =2 SP (4, R) theory

In this section, we build the BPS spectrum of the chamber of the 4d N = 2 supersymmet-
ric SP (4, R) gauge theory. To that purpose, we use the folding quiver method relating BPS
quivers Q3% of the N =2 SU (4) gauge model to BPS quiver homologue 03P of the su-
persymmetric SP (4, R) theory. This construction extends the usual folding method linking the
Dynkin diagrams Dy, and Dc, of the simply laced A3 and the non-simply laced C; Lie algebras
respectively [45,49,50].

5.1. BPS chamber th;

A3z
stg

of the 4d N = 2 supersymmetric pure SU (4) gauge theory; and describe the mutation set Qf,g“

Here we review the main lines of the derivation of the BPS states of the strong chamber 9
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generated by 34-3 reflections ry, o, r3, 51, $2, §3; especially its subgroup Hf,i,j“ generated by

L{ =r3rpr; and Ly = 535251 [3]. These tools are needed for determining the BPS states of the
C

srg Of the 4d N =2 supersymmetric pure SP (4, R) gauge theory.

strong chamber 9

5.1.1. BPS quivers Q(S)U4 and qu“
In the 4d ' =2 SU(4) gauge theory, the primitive quiver Qg

chamber QSA,Z, is made of the 3 elementary monopoles {1, b2, b3} and the 3 elementary dyons
{c1, c2, c3} as depicted in Fig. 1. The electric—-magnetic charges of the b; monopoles and the c;
dyons are expressed in terms of the three dy, do, a3 simple roots of the A3 Lie algebra as follows

Y4 of the strongly coupled

-

0 di
bi = (@) s Ci = (_ai) .1

These EM charge vectors are thought of in terms of 6 nodes of the primitive BPS quiver Qg Us

whose properties may be represented by the EM charge vector UOT = (b1, by, b3; c1, 3, c3) and,
using Dirac pairing, by the intersection matrix*

SU. 0 —-K
Ay 4:<K 0 >®16 (5.2)
with K;; is the usual 3 x3 Cartan matrix d;.d; of the A3 Lie algebra given by
2 -1 0
Ko=[-1 2 -1 (5.3)
0o -1 2

Substituting, we have

0 0 0o -2 1 0
0 0 0 1 -2 1

SUy _ 0 0 0 0 1 -2

Ay = 2 -1 0 0 0 0 5.4)
-1 2 -1 0 0 0

o -1 2 0 0 O

Under simultaneous reflection L = r3rary of the EM charges of the three dyons, the primitive
BPS quiver ng gets mapped to the mutated quiver QfU“ whose new BPS states have the
EM charge vector vlT = (c2 + b1, c1 +c3+ by, c2 4+ b3; —c1, —cp, —c3). The intersection matrix
Afu“ associated with QISU4 is equal to M 1A3U4M 1T where the transformation M7 is a 6x6
mutation matrix given by

100 0 1 0
010 1 0 1
001 0 1 0

Li=lg 00 -1 0 o (5-3)
000 0 —1 0
000 0 0 -1

4 In what follows we shall hide the factor ®le.
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-c, b, +c¢ +c, —c,

T

2 2
l‘l‘l——‘l

b +c, —iCly by +c,

Fig. 9. The mutated quiver QfU4 having 6 nodes describing BPS states and a Z, outer-automorphism symmetry fixing
the two central nodes and exchanging the external ones.

where, for convenience, we have set M| = L. This matrix L; is one of two matrix generators

of Hf,g“. Notice that the primitive quiver Qg U4 has 6 BPS states; by performing the mutation by

L1, we obtain 6 new BPS states making Q‘fU“ given by Fig. 9 having a Z, outer-automorphism
symmetry inherited from the Dynkin diagram of SU (4); these BPS states are as follows

by, ci c2+bi , —c1
0 b e Qe+, —o (5.6)
b3, c3 2+ b3 , —C3
A3
stg
model described in section 3; they are obtained by acting on QfU“ by the generator L, and re-

SUy
Hvtg

The remaining BPS states of £, are derived in a similar manner as in the case of SO (8)

peating the mutations of until reaching Qg U4; some steps of this construction are described

in what follows.

5.1.2. BPS states of chamber Q;Z,
The set of BPS states of the strong chamber D?,i, of the 4d N =2 supersymmetric SU (4)

gauge theory has 24 = 2 x 12 BPS states; they include the ones given by (5.6), and are as follows

+b; Fc1 (b1 + ) £y +c1)
by Fcp Ebo+ci+c3) Ebr+c3) (5.7)
+bs *cz E(b3+c2) £(b1 + b3 +c2)

A way to obtain this set is to start from the primitive quiver Q(S) s of Fi g. 1, and apply mutations.

SUy
Hstg
to generate the spectrum (5.7). It happens also that Hsé;g“ is nothing but the 6 x6 matrix repre-
sentation of the dihedral group Dihg with two non-commuting matrix generators L and L;; the

first L1 is as in (5.5) and the second is as follows

-1 0 0 0 0 O

As done in section 3, it turns out that the subset of the quiver mutations set gf,g“ is enough

0 -1 0 00 0
0 0 -1 00 0

La=1o 1 0 10 0 >-8)
1 0 1 010
0 1 0 00 1

These matrix generators obey the property (LyL1)* = Isxe; using the same notations as in sec-
tion 3 by setting Mo, = (L2L1)k and M1 = L1 M5y, the mutations of Hss,i,]“ are given by

Hyt'={lLa. M\, My, M3, Mi Ms, Ms, My} (5.9)
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b, +c;
2
-b

e = €3 b, +

-b, —¢, — ¢ b, + ¢,

SU, I T
bS

o l

+c, -b,—c,

Fig. 10. The quiver Q‘Z9 Ua having 6 nodes describing BPS states and a Z, outer-automorphism symmetry fixing the two
central nodes and exchanging the external ones.

with the “cyclic” property
Myrn=MsM, (5.10)

These seven M, mutations allow to build the corresponding mutated quivers Q;fU4 from which
we read the 24 BPS states of the strong chamber of this theory. Let us briefly describe the deriva-

tion of these states; the primitive quiver QgU“ has 6 BPS states; by performing the mutation by

L1, we obtain 6 new BPS states making QfU“; they are as in eqs. (5.6). The quiver QgU“ is

obtained by applying the M» mutation on the primitive quiver Qg U4; and the quiver QgU“ is
obtained by applying the M3 mutation on the primitive Qg Y4 and so on. Similar calculations as

done for QfU“ give the other remaining BPS quivers; they lead to the following 24 BPS states

w, 27 by , 3+ by s by , —c3—Db
03" —ci—c3—by, cr+ by +bs ;o 03y, —ca—bi—b3
—cy —bs , c1+Dby by , —c—Db
b3 , —c3 —c— b3 , €3
0% —b , —o ; 0% —ci—a3—-b ,
b1, —c —cy — by , 1
su. 2 + b3 , —c1—b U -by , a+b
Q¢ ticitez+by . —c2—bi—b3 ; Q77%: =by , c2+bi+b3
¢+ by , —c3—b b3 , c3+b

(5.11)

The graph representing the quiver qu“

symmetry.

is given by Fig. 10; it has a Z, outer-automorphism

5.2. BPS chamber Q%

stg
In this subsection, we construct the BPS states of the strong chamber Qsctzg of the supersym-
metric pure SP(4, R) gauge theory by extending the idea of folding method for building the
Dynkin diagram of the non-simply laced Lie algebras C» out of the DD of A3. This extension
is because BPS quivers of N = 2 supersymmetric pure SU (4) gauge theory has a Z, outer-
automorphism symmetry. Recall that the non-simply laced Dynkin diagram of C, symplectic
Lie algebra can be obtained by folding two nodes of the simply laced A3 Dynkin diagram as
shown in Fig. 11. To that purpose, we begin by constructing the folding operator f4,_, c, which
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4, z, C,

Fig. 11. Folding simply laced Dynkin diagram of SU (4) down to non-simply laced Dynkin diagram of SP (4).

maps A3z Dynkin diagram to the C> Dynkin one; then we extend this construction the case of
BPS quivers of the corresponding 4d N = 2 pure SP(4, R) gauge theory.

5.2.1. Folding operator f5,_,c,

To describe the folding of the A3 Dynkin diagram down to the C; one, we start from the three
ai, day, az simple roots of the A3 Lie algebra; and look for reaching the two &y, &, simple roots
of the C, Lie algebra. In terms of the canonical basis {¢, €2, €3} of the real 3-dim space R4, the
three simple roots of A3 decompose as

>

dj=¢é —e , dy=ér—eé , a3=e3—¢é4 (5.12)

with @;.a; = 2 and intersections given by the Cartan matrix K As (5.3). The simple roots of C;
of the Lie algebra are realised in quite similar manner like a1 = €| — &), s = 2¢), with Cartan

matrix K¢, = 5a;.0; given by
3= 3
J

Kc, = (_22 _21> (5.13)

But here we will use the realisation following from the folding of the A3 Dynkin diagram namely
[49,50],

- -

I
=3 (a1 +a3z) , ay=ap (5.14)

Applying the same method as done in subsection 4.2.1, the folding operator f4,_. ¢, (for short f),
mapping the Dynkin diagram Dy, to the D¢, one, may be defined as a link between the two
Cartan matrices as follows

Koy =f.Ka, f (5.15)

where f is such that £.f = I3x3; it is related to the transpose of the folding matrix like

~ T —
f=f .(ffT) l; see eqs. (4.4) for the derivation of this relation. Straightforward calculations
lead to the following rectangular matrices

1 1

L o 1
=2 2
f(()10) ’

By substituting K 4, by its expression (5.3) and using above relations, we have

-1
I

1 0
0 1 (5.16)
1 0

Lo (2 1O 10
KC2=<(2) 1 (2)) -1 2 =10 1 (5.17)
0 -1 2 1 0

which is precisely the Cartan matrix K¢, given by eq. (5.13).
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5.2.2. Folding quiver map and HSS,?‘ symmetry

To build the set of BPS states of the 4d N = 2 supersymmetric pure SP(4, R) gauge theory,
we extend the folding method between the Dynkin diagrams D4, and D¢, to the corresponding

BPS quivers; thanks to the Z outer-automorphism of the primitive Qg Y4 which is inherited from
the Dynkin diagram of A3 Lie algebra. First, we construct the folding quiver mapping F'; then

we use it to build the BPS quivers of the Q% strong chamber as well the H, SS

4 .
sig 1g Mmutation subset.

e Folding quiver operator
To construct the folding quiver operator F' mapping the primitive quiver Qg Y4 of Fi g. | into
the primitive Q(S) P of Fi g. 2, we consider their respective matrix representatives Ag Us of eq.(5.2)

and A(S) P+ given by
0 -KL
ASP4:( C )®1 5.18
0 KC2 ng _ KCZ 4 ( )

In the folding BPS quiver approach, the intersection matrix Ag P4 is identified with intersection

matrix F Ag Us FT following from the folding of primitive quiver QSU“ of the N =2 SU4)
theory. Put differently, we require the identification

AP = FASVFT (5.19)

The rectangular 4 x 6 matrix F encodes the folding operator of Q(S) Y4 down to Qg P4 jtis obtained
by solving the constraint relation (5.19). These F and F folding quiver operators as well as their

partner F=FT. (F F T)f1 obeying the property F F = L4 are related to those f and f used in
linking Dynkin D4, and D¢, diagrams as follows

F = o F = o0 5.20
“\e—f ¢ ’ =\F—e § (5.20)

Their explicit forms are given by

10 -3 0
1 0 1 00 0 01 0 0
0 1 0 000 r |1 0 =1 o0
F=| ", Lo . ,  FT= 2 (5.21)
-0 -1 1o} 00 % 0
0 0 010 00 0 1
00 % 0
and
1000
01 00
. |[J 000
F=|1 (5.22)
o1o0
0 001
1
o1o0
SPy

To test the validity of these relations, we substitute the above quantities back into Aj"* =
FAgU“F T of eq. (5.19), we obtain the following intersection matrix of the primitive Qg Py quiver
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1 0 1 0 0O
0 1 0 0 0O
A = 1 11 1
0 -2 0 =3 7 0 3
0 0 0 0 1 0

0 0 0 -2 1 0 10 -3 0

0 0 O 1 -2 1 01 0 O

o o 0o 0o 1 —2ff1 0 —5 0

2 -1 0 0 0 o0 ]Joo L o

-1 2 -1 0 0 O 0 0 0 1

O -1 2 0 0 O 0 0 % 0

which coincides exactly with the .Ag Fa given by eq. (2.12).

o The mutation subgroup Hg?‘

The set Hf,? is a particular subgroup of the set of mutations of the BPS quivers of the strong
chamber QSS,?‘ described in appendix L. It has two non-commuting generators £, £, related to
the Ly, L, generators of Hsstg“ like

Li=FLiF , Ly=FLF (5.23)

where F and F are as in eqs. (5.20)—(5.21). Substituting L; and L, by their expressions
(5.5)—(5.8), the above relations give

1 0 O 2 -1 0 0 0
1 1 2 0 0O -1 0 0
Li=l_1 0 1 41 b=l 1 1o (5:24)
0o 0 0 -1 1 0 0 1
obeying the property E% = E% = I4x4. Using the same notations as in section 4 by setting
Nok = (L2£)* and N 2k+1 = L1 N2k, the mutations N, of the set Hﬁg“ are related to those
transformations of the th‘; strong chamber like N, = FM nﬁ' ; so we have
4
Hss;ftj(n; = { Iidv Nl’ NZv N39 N4’ N57 N6, N7 } (525)
with the remarkable properties Ny = —I;; and N, 4+4 = —N,. These N, mutations allow to

build the corresponding mutated quivers Q,fU“ from which we read the 24 BPS states of the
strong chamber of this theory.

5.2.3. BPS spectrum of Q%

The obtained 20 BPS states of the strong chamber Qsc,i, of the 4d N =2 pure SP(4, R) gauge
theory are collected in the following table

181 + (81 +287) £(B1 + B2 +281)

+6 £ (B1 +d2) £ (B1+ B2+ 81 +62) (5.26)
+62 +(B1+ 81 +d2) '
+4; £(B1+B2+61)

They are derived by applying the mutation operators on the primitive quiver Qg Ps, by following
the same method as in unfolded SU(4) theory; we find
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-, -6,-6, B+ B, +26,

|

B+ 28, -4,

Fig. 12. The quiver Q‘IS‘P4 having 4 nodes describing BPS states.

03P . B1+ 28, , —B1—81 =82
L Bi+B2+281, =6

05" . —pB1 — 268 s Bi+Br+61+6
2 T -Bi—PB2—281, B+

(5.27)
0SP B1, —B1—B2—0d1
3 ’ ﬁ2 ) _ﬁl - 82

sy ) =B, =&

oz —B2, =8

The graph of pr“ is given by Fig. 12.

In the end, we notice that the mutation groups Hﬁg“ and Hﬁg“ are two different representa-
tions of the dihedral Dihg group. Notice also that the 20 BPS states are precisely given by the

number

2 xdimSP (4) (5.28)

which is equal to %NbSpU“. By using the group homomorphisms SP (4) ~ SO (5) and SU (4) >~

N

SO (6); it follows that the number of BPS and anti-BPS states of the DSBé chamber is % of

the QSD,Z chamber where D3 refers to so (6). This property can be compared with the number
2 x dim SO (7) obtained in section 4 where the number of the BPS states of Qf& chamber is %
time the number of BPS states of the QxD,“g chamber. With these two results it seems natural to
conjecture that the number N 5122’*1 BPS states of the strong Qﬁ'g' o

number N, fp(zz’ of BPS states of the ?,; chamber; in other words we have the following relation

between the two numbers of BPS states

chamber is times the

NSOu-1 _ 2r=1_ 5o,
bps - o bps

(5.29)
for finite dimensional Lie algebra B, series with rank r > 3.
6. Conclusion

In this paper, we have developed the basis of a method to study the BPS states of 4d A/ =2

supersymmetric gauge theories with non-simply laced type gauge invariance. To obtain the set
of these BPS states for non-simply laced type gauge symmetries, we have taken advantage of
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three helpful things: (i) known results on BPS spectra of 4d A/ =2 QFT with ADE type gauge
symmetries; (ii) the folding link between ADE and BCFG Dynkin diagrams; and (iii) outer-
automorphisms of the BPS quivers QY of ADE type; these outer-automorphisms are inherited
from the corresponding ADE Dynkin diagrams. To illustrate the approach, we have considered
in present study the explicit construction of the BPS states of the strong chamber of two par-
ticular A" = 2 models namely the supersymmetric pure SO (7, R) and SP (4, R) gauge theories.
To derive the BPS spectra of these typical models, we have developed a quiver folding method
extending the usual folding of simply laced Dynkin diagrams to obtain non-simply laced Dynkin
graphs. This quiver folding approach has taught us an interesting feature which, to our knowl-
edge, was unknown before; the particular quiver mutation sets HSSI? given by eq. (4.25) and

HYS,,OgS of eq. (3.27) respectively generating BPS states in the strong chambers Qfg and thgg
are in fact intimately related quiver mutation symmetry groups; they are just two different rep-
resentations of the dihedral group Dih1>. The same result has been found to be valid for the

mutation sets H> given by eq. (5.25) and H, SUs of eq. (5.9) generating BPS states in the cor-

stg stg
responding chambers Q3% and Q3U*; here also the two mutation groups HSSP4 and H3Y* are

St stg > t st

two different representatiog;ls of the d}i;hedral group Dihg; we suspect that this feiture isa gineral
property that holds for mutation sets Hsstgz”_] and Hs‘zgoz” as well as for those N' =2 supersym-
metric theories with exceptional F4 and G, gauge symmetries. Recall that the Dynkin diagram
of SO (7, R) can be obtained by folding the Dynkin diagram of SO (8, R) as in Fig. 6; and the
Dynkin diagram of SP (4, R) is obtained by folding the Dynkin diagram of SU (4) like in Fig. 11.
Using these graph relationships, and knowing the BPS spectra of the strong chamber of N =2
pure SO (8, R) and SU (4) gauge models, we have derived those BPS spectra of the correspond-
ing SO (7, R) and SP (4, R) models by help of the quiver folding method; we have found that for
the non-simply laced SO (7, R) and SP (4, R) gauge symmetries, the number of BPS states of the
strong chamber is not given by the ADE-type formula 2(dim G — rankG); but just by 2dim G;
we suspect that this feature holds for all supersymmetric models with BCFG gauge invariance
as shown on eq. (5.29) for the SO(2n + 1, R) series; but a refined analysis is still needed be-
fore a final answer. The next step in this study aims to extend the construction done for N' =2
pure SO (7, R) and SP (4, R) gauge models to the general supersymmetric gauge theories; in
particular to the study of 4d A = 2 theories with non-simply laced exceptional F4 and G, gauge
symmetries; and also to the building of the weak coupling chambers. Progress in these directions
will be reported in a future occasion.

7. Appendices

In this section, we give three appendices where we report some technical details, first on the
set of quiver mutations and second on the derivation of the folding operator both for Dynkin
diagrams and BPS quivers.

7.1. Appendix I: mutation set of strong chamber

In this section, we first describe aspects of the quiver mutations for the strong chamber of
the BPS quiver theory with underlying gauge symmetries given by SU (4) and SP (4, R); then
we make comments on the extension to those with SO (8) and SO (7) gauge symmetries. Recall
that the Dynkin diagrams of the Lie algebra of SP (4, R) and SO (7) are respectively obtained by
folding the Dynkin diagrams of SU (4) and SO (8).
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7.1.1. Quiver mutation set QSS,Z“

The set of quiver mutations of the strong chamber of 4d N = 2 supersymmetric pure SU (4)
gauge model is a group generated by 6 fundamental reflections; say three 1| =r|, tr =12, 13 =13
generators for the dyons in the primitive quiver; and three #4 = 51, 5 = 57, 6 = 53 for monopoles
partner. These reflections can be realised by 6 x 6 matrices as follows

100 0 00 1000 1 0
010 1 00 0100 0 0
001 0 00 0010 1 0
sug sug
""=lo 00 -1 00 2 =10 001 0 0 7.1)
000 0 10 0000 —1 0
000 0 01 0000 0 1
and
1 0000 O 100000
01000 1 0 10000
00100 0 ~ 0 01000
Su4 Su4
=lo00 10 0 =l o 001 0 0 (7.2)
000O0T1 0 1 00010
00000 —1 0 0000 1
as well as
1 0 00 0 0 10 0 00 0
0 -1 0 0 0 0 01 0 00 0
0 0 1 00 0 00 -1 00 0
N7 N7
2210 1 01 00 % T1o0 0 100 (7.3)
0 0 001 0 00 1 01 0
01 00 0 1 00 0 0 0 1

SUy

The set of mutations Gy,

has a Coxeter group structure generated by the generators #; satisfying

SUy SU,

SUy
the following relations (ti t j)mif =1I;,;* where m ij stand for the elements of an integral 6x6

symmetric matrix M5Y4 known as the Coxeter matrix which is given by

1 2 2 2 3 2
21 2 3 2 3
2 21 2 3 2
SUs4 __
M 123 21 2 2 (7.4)
323 21 2
2 3 2 2 21

For the particular case m;; = 2, the condition (tl- t j)2 = I;q leads as well to t;1; =¢;1;. To generate

the BPS states of the strong chamber of 4d A/ = 2 supersymmetric pure SU (4) gauge theory, we

have used the particular subgroup Hsslg“ (2.14) of the Coxeter sttg“; this subgroup is generated

by the two composite mutations L1 = r3rory and Ly = s3s251 acting as depicted by Figs. 13—14.

This construction extends straightforwardly to the Coxeter group gfl?‘ of the strong chamber

4d N = 2 supersymmetric pure SO (8) gauge theory. There, we have 8 reflections realised by
SO,

8
8 8 matrices obeying (ti t j)m"f' = 15103 where now the mfjog ’s are the entries of 8§ x8 Coxeter
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¢ b, C3

—c, b, +c¢, c

zT QjUA T T L, E/A I
b, [ b, b, (2] b,
-c, by, +c, +c4 —cy =Ly b, +¢, 4

Pl | AN

) b, +c, b +c, —c

Fig. 13. BPS quiver QfU“ of the 4d N' = 2 pure gauge model with SU (4) gauge invariance after performing three

. . SU.
successive fundamental reflections L =r3rpry on Q 4

-c, b, +c¢ +cy -, by +c, +e, —c,

ol 1 o KT
L4 SN

by +c, by = £y

b, +c¢,

b, + ¢, -b, —¢,—c; b, + ¢,

el 1 o T 1T
I Sy S

-b, —c, b, + by +c, -b,—c, —b, —c,

b, Jrc2

Fig. 14. BPS quiver Q; Ua of the 4d N' = 2 pure gauge model with SU (4) gauge invariance after performing three

. . SU.
successive fundamental reflections Ly = 535251 on Q] 4

matrix M3 The analogue of the subgroup Hs is given by H, ,g ; it has two generators given

by Lfos = ryqr3rpri; and Lg Os _ s4535251. For completeness, the explicit expressions of these 8
fundamental reflections are given in eqs. (7.9)—(7.11). Notice by the way that SU (4) >~ SO (6);

and so the above results can be straightforwardly generalised to the full series of SO (2n) gauge
symmetries.

7.1.2. Mutatlon group Q”g

The set QA ig of mutations of the strong chamber of 4d ' = 2 supersymmetric pure SP (4, R)
gauge model is a group generated by 4 reflections: #; = r1, t, = r» generators for the dyons in the
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primitive quiver; and f3 = 51, t4 = 57 for corresponding monopoles. These reflections are realised
by 4 x4 matrices like

1 0 0 0 100 2
1 1 2 0 010 0
spa _ spa __
1 1 0 -1 0 Tl 001 -1 (7.5)
0 0 0 1 00 0 —1
and
100 0 1 0 0 0
0 1 00 , 0 -1 0 0
sp4 __ sp4 __
STl o010 % T lo 1 1 0 (7.6)
1 0 0 1 0 0 1

SPy

* has a Coxeter group structure with generators ¢; satisfying (ti tj)m"/' =

The set of mutation sttg

1574 where the mfjp“ integers are the entries of the Coxeter matrix

MSP = (7.7)

(NS S S
NS RE i S ]
—_— NN

1
2
2
4

These reflections are related to the QSS,(;“ ones by using Folding matrices F and F obeying F F=

I; these matrices have been explicitly constructed in section 5 of present study; we have:
sps SUq_SUL\ g
rp=F (’" 13 ) F
r;p “ = F r;”“F
spa SU4 Su4\ o
s;" =F (sl 53 )F

SP4 g SUA T
sy —Fs2 F

(7.8)

To generate BPS states in the strong chamber of 4d A/ = 2 supersymmetric pure SP (4, R) gauge
theory, we have used the two composite mutation operators £1 = rpr; and Lo = s351.

7.1.3. Quiver mutation set st,gs

The set of mutations of the strong chamber of 4d A/ = 2 supersymmetric pure SO (8) gauge
model is a group generated by 8 fundamental reflections; say four #y =ry, th =2, t3 =13,
t4 = r4 generators for the dyons in the primitive quiver; and four #5 = s1, t6 = 52, t7 = 53, I3 = 54
for monopoles. These reflections can be realised by 8 x 8 matrices as follows:

1000 0 000 10000 1 00
0100 1 000 01000 0 00
0010 0 000 00100 1 00
ws |00 01 0 000 s OO0 10 1 00
"Tloooo 1000 > Tloooo0o1 0 00
0000 0 100 00000 —1 00
0000 0 010 00000 O 1 0
0000 0 001 00000 0 01

(7.9)
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100000 O O 1 00000O0GO0 O
010000 1 0 0100000 1
001000 0 O 0010000 O

sos_[00 0 100 0 0 sos_[0 00 1000 0

3" loooo 10 0 of > ™ Tloooo100 0
0000O0T1 0 O 000O0O0T1O0 O
000000 —10 00000O0O0T O
000000 O 1 0000O0O0O0 —1

(7.10)
-1 000000 O 1 0 0000 OO
0 1 000O0GO0O 0 -1 00 0O0O0 O
0 01 00O0O0O 0 0 1 00O0TO0O

sos_| 0 0010000 sos_ |0 0 010000

' "lo ooo1o0o0o0f 2 T]lo 1 001000
1 00007100 0 0 000100
0 000O0O0T1O0 01 000GO0T1 0
0 00 0O0O0O0 I 0 1 000O0O0 1

(7.11)
10 0 0000 O 100 0 0000
01 0 00O0O0O 010 0 0O0UO0O0
00 -1 00000 001 0 0O0O0O

sos_ |00 0 10000 o5 _ |0 00 =1 00 00

3" loo o o1 o000 ° % Tlooo o 1000
00 1 00100 000 1 0100
00 0 00O0T10 000 0 0O0T10
00 0 00 O0O0 1 000 O 0O O 1

(7.12)
SO,

% has a Coxeter group structure, with generators satisfying the

S0g
following features (ti t j)m"f = I{ZOS where mfjog is the elements of the Coxeter 8 x 8 matrix

The set of quiver mutation Gy,

1 22223 22
21 22 32 33
22122322

SO 22212322

MZ=15 32212 2 2 (7.13)
32332122
23222212
232222 21

To generate BPS states in the strong chamber of the supersymmetric pure SO (8) gauge theory,
. . SOg SOg
we have used the two composite mutation operators L} ° = rqr3rary, Ly ° = s4535251 generat-

ing a subgroup Hsstgg ~ Dih, of the Coxeter gf,gg.
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7.1.4. Quiver mutation group QSS,(;

The group Qf,g] of quiver mutations on the strong chamber of 4d A/ = 2 supersymmetric

pure SO (7) gauge model is a group generated by 6 fundamental reflections namely #; = ry,
t) =rp, t3 = r3 for dyons in the primitive quiver; and 74 = 51, 5 = 57, t¢ = 53 for corresponding
monopoles. These reflections are realised by 6 x6 matrices like

1 00 0 0O 1 00 0 1 O
01 0 1 0O 01 0 0 O O
O 01 0 00 o010 2 0
s07 __ s07 _
" Tlo 00 -1 00 2 FTlooo01 0 o0 (7.14)
0O 0 0 O 1 0 0O 0 0 0 -1 0
0O 0 0 0 01 0 0 0 0 -1 1
and
1 0 0 0 0 O -1 0 0 0 0 O
0 1 1 0 0 2 0O 1 0 0 0 O
0O 0 1 0 0 O O 01 0 0O
s07 __ s07 _
Tloo 0o 10 o0 =l o 00100 T
o0 0 o1 O 1 0 0 0 1 O
00 -1 0 0 -1 0O 0 0 0 0 1
as well as
1 0 0 0 0 O 1 0 0 0 0 O
0O -1 0 0 0 O o1 0 0 0 0
O 0 1 0 0 O 0O 0 -1 0 0 O
507_ 507_
22710 1 0100 % T1o0 0 1.0 0 (7.16)
0O 0O O 01 0 00 1 01 0
0O 1 0 0 0 1 00 1 0 01
The set of quiver mutation QSS,? has a Coxeter group structure with group law (#¢;)" = 1]’
where mf]m ’s are entries of the Coxeter 6x 6 matrix
1 2 2 2 3 2
21 2 3 2 4
2 21 2 4 2
s07 _
M = 2 3 21 2 2 (7.17)
32 4 2 1 2
2 4 2 2 21
The analogue of egs. (7.8) read in present case as follows
r‘lm7 = Frfogﬁ , s‘1m7 = F.siog.f'
s’ = Fry®F . 57 = Fs5,®F (7.18)
" = F(r,r™)F , 537 =F (sj”g.sgog)F

BPS states in the strong chamber of the A = 2 supersymmetric pure SO (7) gauge theory have
been obtained by using the two composite mutation operators £| = r3rary, £ = s3s25] generat-

ing the subgroup Hg,? as shown in section 4 of this paper.
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Fig. 15. Folding simply laced Dynkin diagrams.

7.2. Appendix II: folding operators

In this section, we first derive the folding operator mapping ADE type Dynkin diagrams of
finite dimensional Lie algebras into BCFG type descendent. Then we extend the construction to
describe BPS quivers of BCFG type by folding BPS quivers of ADE type.

7.2.1. Folding ADE Dynkin diagrams

Every non-laced Dynkin diagram of finite dimensional Lie algebra type BCFG can be ob-
tained by folding simply laced diagrams of ADE type as shown in Fig. 15. Indeed certain simply
laced ADE Dynkin diagrams admit outer-automorphisms; for example the Z; type automor-
phisms of Ay, and D, lead respectively the C, and B, series. Notice that the Dynkin diagram
of D4 has Z, and Z3 outer-automorphisms; folding by Z3; automorphism leads to the Dynkin
diagram of the G, Lie algebra.

Using the fact that each Dynkin diagram D is the graphic representation of the Cartan ma-
trix K¢ describing the intersection of the simple roots of the Lie algebra of G, it is natural to
define the folding map between simply laced diagrams and non-simply laced ones in terms of the
corresponding intersection matrices. To that purpose, let D¢ be the Dynkin diagram of a given
simply laced Lie algebra of a gauge symmetry G with Cartan matrix K¢; and let Dg+ be the
Dynkin diagram of the corresponding non-simply laced Lie algebra of G* with Cartan matrix
Kg+. Thinking by the folding Dg/Dg+ as a mapping f: Dg — Dg=, one can check that the
corresponding Cartan matrices are related as

Kg-f=f.Kg (7.19)

From this relation, we learn that by considering a f such that f.f = I, we obtain

Kg=tKgf (7.20)

As noticed in sections 4 of this paper, the “adjoint” operator fis not uniquely defined; but can be
chosen like £/ (ffT)il.

7.2.2. Folding BPS quivers

The derivation of folding in BPS quiver theory, for gauge symmetries with BCFG type, is
quite similar to the folding of Dynkin diagrams of finite dimensional Lie algebras; thanks to
outer-automorphisms of BPS quivers and to the intersection matrix which are expressed in terms
of the Cartan Matrix. These properties allow to extend the folding method of Dynkin diagrams of
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Lie algebras to BPS quivers of 4d N = 2 supersymmetric gauge theory. In this case, the folding
operator F mapping the set QF to QF” respectively characterised by the intersection matrices
AS and AC" given by eq. (2.7) and (2.10)

¢_ (0 —Kg ¢ _( O —KL,
A _<KG 0 ) ’ A _<KG* KL —Kg (7.21)

is expressed in terms of f and f of Dynkin diagrams as follows

r .0 (7.22)
“\e—F ¢ '

By using eqs. (7.20), (7.21), (7.22), a straightforward calculation leads to the relation
AG* — F.AGFT (7.23)

leading in turns to N, = FM, F giving the relationship between N, mutations of type BCFG
to M, mutations of type ADE. This link implies that quiver mutation groups H;,?;‘ and Hgg of
the strong chambers are homomorphic.

8. Appendix III: BPS quivers of A" =2 QFT,

In this appendix, we collect helpful tools behind the quiver mutation method for building the
BPS spectra of 4d N = 2 supersymmetric gauge theories with ADE gauge symmetry groups.
This quiver mutation method augmented by quiver folding ideas of Dynkin diagrams of ADE
Lie algebras has been used in this paper for approaching the construction of BPS spectra of
N =2 QFTs with non-simply laced gauge symmetries. More details on the basis underlying the
mutation method and explicit illustrations can be found in the defining works of refs. [1,2]; see
also [3.4] for discrete group theoretical interpretations. Here, we focus on those aspects relevant
for our study.

The organisation of this appendix is as follows: First, we introduce the BPS quivers Q¢ en-
coding the data on BPS states of supersymmetric pure gauge theories with gauge group G. Then,
we show through simple examples how to build BPS bound states by using the so-called stable
quiver representations encoding the solutions of F- and D-term equations of the supersymmetric
quantum mechanics underlying BPS quiver theory. After that, we describe succinctly the quiver
mutation method for building chambers of BPS/anti-BPS states; this is a powerful method that
has been used in this paper; it knows about non-degenerate superpotential W¢; and allows to
overcome the problem of solving the non-trivial representation theory problem. We end this ap-
pendix by studying superpotentials W5, W5Us and WS97, WP that are associated with the
quivers considered in this study; the general structure of this kind of superpotentials has been
obtained by Cecotti and Del Zotto in [38].

8.1. From BPS states to BPS quivers

Given a N = 2 supersymmetric QFTy4 like the ones studied in this paper with pure ADE
type gauge symmetry G, one has in general a great number of BPS/anti-BPS states living in
the BPS chambers of this theory. It is a very remarkable observation that all these states can
be generated by starting from a simple quiver Q((); . A direct way to introduce the idea behind
the link between the BPS states of A/ = 2 gauge theory and the primitive quiver Qg is through
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Fig. 16. The BPS and anti-BPS states of infinite weak chamber of the pure N’ =2 SU (2) gauge theory. Blue dots
correspond to the EM charges of the BPS/anti-BPS states. Notice that the strong chamber is finite; it has four states,
amonopole; a dyon and their antiparticles. BPS states live in upper half-plane given by the gray region. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

c 2-1) ¢,

b @ (0,1 b,
SU(2) BPS quiver SU(3) BPS quiver

Fig. 17. On left, the BPS quiver Qyy, of pure N’ =2 SU(2) gauge theory. The electric-magnetic product b o ¢ =
—c o b= —2.On right, the BPS quiver Q5 pure N =2 SU (3) gauge theory; this quiver has two oriented cycles; the
chiral superfields Ay, Ap, By, By, 12, d>/]2 and their superpotential will be discussed later.

illustrating examples like the SU (2) and SU (3) models without matter; other useful examples are
given by the Argyres—Douglas A-models whose general aspects will be described latter. Once we
learn how the machinery works on these models, one can then extend the construction to A = 2
supersymmetric theories with bigger gauge symmetries.

8.1.1. The Qy"* and Q" examples

The simplest example of BPS quiver theory is certainly the A/ = 2 pure gauge model with
SU (2) gauge group which, in language of quivers, is described with a Qf)”z having two nodes.
In this theory, the BPS/anti-BPS states sit in two chambers: weak Q"2 . and strong 23;2. While

wea stg

Di'f; is finite with cardinality equals to 4, the number of BPS and anti-BPS particles contained

in 9’2 is infinite. The electric-magnetic (EM) charges of the BPS (resp. anti-BPS) states of

weak
weak chamber are well known; they read in the {e, g} basis as follows

yﬁ’f = 2ne+g
yib = 2e (8.1)
bps

Vn— =2+ De—g

these sequences include the purely electrical charged W*-boson with charge +2¢. The EM
charges of BPS and anti-BPS states form a 2-dim lattice I',, as in Fig. 16 with generators (b, ¢)
given by the EM charge b = Oe + g of the monopole 9 and the charge ¢ = 2e¢ — g of the dyon
D. The BPS quiver Q;*? encoding data on BPS states in Fig. 16 is given by the left diagram of
Fig. 17 with two nodes b and ¢ linked by two arrows. Each node of the pure SU (2) BPS quiver
represents therefore a basis vector of the BPS spectrum; and the double arrow encodes the Dirac
pairing b o ¢ = —2.



682 R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642-696

_21

-Z, anti-BPS

Fig. 18. Cones of BPS and anti-BPS states represented by rays in the in central charge complex plane. The arguments of
the complex charges are ordered like in eq. (8.4). Left most Z; and right most Z,, are central charges of nodes of a BPS
quiver.

From this example, one can easily extend the construction to gauge symmetry groups G of
type ADE; the primitive Qf quivers extending Q"> can be straightforwardly drawn just by
linking copies of SU (2) as in the building of higher rank Dynkin diagrams. A simple example
of this extension is given by Qf)'”, the right diagram of Fig. 17 describing the BPS quiver of
the pure SU (3) gauge model; it has four nodes {b1, c1, b2, c2} associated with four elementary
BPS states. The construction of BPS quivers for the family of pure SU (r + 1) theory is therefore
direct; it is just a linear replication of the BPS quiver for pure SU (2). In this case we have 2r
elementary BPS states with EM charges {b;, ¢;};<;<,. Similar BPS quivers can be drawn for the
D, and E, series; they are obtained by mimicking the corresponding Dynkin diagrams with each
node replaced by two nodes as in the examples given by Fig. 17. Notice moreover, that this BPS
quiver description applies as well for more general supersymmetric theories; in particular in the
presence of matter and flavor symmetries.

8.1.2. EM lattice "y, and central charge plane

A nice way to deal with the EM charges y of the BPS states of a V' = 2 QFT4 with symmetry
group G is to use the complex central charge Z, at a given point # in the Coulomb branch I/ of
the gauge theory. This is obtained by mapping EM charge vectors y of generic BPS states into
complex numbers Z, (y) thought in terms of rays in the complex plane of the central charge

Z, :Tp - C
vy — Zy)
the amplitudes |Z, (y)| describe the masses M, of BPS particle. Notice that the BPS quiver
Qg whose nodes were associated with the lattice basis )/ii = (bj, c¢;) of the elementary BPS
particles can be also interpreted in terms of the central charges Z,, (yl.i) of elementary monopoles
and dyons. BPS bound states with EM charge y given by positive integral linear combinations
n;"yl._ +n; yl.+ have complex charges given by the sums

Zi ()= 0 Zu (v, ) + 07 Zu (v) (8.3)

They are represented by rays in the upper half plane of the complex charge as in Fig. 18. Given
that Z,, (y)’s are complex functions, we then have two kinds of real degrees: the masses M,, of
the BPS particles; and the phases arg Z (y) playing an important role in ordering the BPS particle
rays in the upper half plane of the central charge. In Fig. 18, we exhibit an ordering of the BPS
particle rays by using the arguments of the complex central charges

(8.2)

T4@>argZy >argZy > ...>argZ, > ¢o (8.4)
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where ¢q stands for some origin of phases. The above cone (8.4) lives in the upper half plane;
the central charge Z; has the largest phase and is the left-most; the Z, has the smallest phase,
it is right-most. If taking @9 = 0, one has the usual canonical complex plane frame represented
in green shaded line. In this graphic representation, the BPS states are located in the upper half
plane 10, r[.

8.2. From BPS quivers to BPS spectra

In this subsection, we consider the reverse of the idea presented in above previous subsection
by showing how to construct BPS bound states of "= 2 QFTs with ADE gauge symmetries by
starting form quivers Qg .

After introducing the moduli space of supersymmetric ground states of SQM describing BPS
states, we describe briefly the so-called quiver representation method for building BPS spec-
tra. This method, which uses linear algebra requirements, relies on the solving of the F- and
D-term equations of SQM; and so needs the knowledge of the superpotential as well as data
on Fayet—Iliopoulos terms. Notice that though it allows to build the BPS spectra, the use of the
quiver representation method is in practice some how cumbersome; especially that we have a
more powerful one that knows about superpotentials and that leads to the same result. In what
follows, let us describe rapidly the main line of the quiver representation approach; and turn after
to introducing the quiver mutation method.

8.2.1. BPS bound states

BPS quivers O based on arank r gauge symmetry group and having a structure like the ;"2
and QB’” of Fig. 17 encode a basis of 2r elementary BPS states with EM charges {y;}. Starting
with a given Qg , the question is how to get the full set of BPS states from it; this is a hard
question since one needs extra information. To answer this central question, one borrows results
from quiver gauge theories, embedded in compactified type II strings and D-branes wrapping
cycles, dimensionally reduced to supersymmetric quantum mechanics (SQM). To know whether
a bound state ‘\IJ,,) with EM charge y = ) n;y; and central charge Z (y) = > n; Z (y;) with
positive integers n; is indeed a BPS state, we proceed as follows:

(1) we think of the state |\Ily> as a supersymmetric quantum mechanical bound state made of
n; copies of each basis particle y;

(W) =T, [9n)" (8.5)

(2) we deal with the BPS quiver QOG in the same manner as the quiver gauge diagram used in
the geometric engineering of QFTs embedded in type II strings on local Calabi—Yau manifolds
[39—-41]. With this interpretation, a U (n;) gauge group factor is inserted on each i-node of the
quiver; and U (n;) x U (n j) bifundamental fields Bi“j are attributed to arrows pointing from i

node to j one. In other words, the BPS quiver Qg whose nodes and arrows were originally a basis
of hypermultiplets, now encodes the gauge group and bifundamental matter of a supersymmetric
quiver quantum mechanics. Moreover, to ensure that y is the charge of a BPS particle, we look
for supersymmetric ground states described by the usual D- and F-term equations that we briefly
describe in what follows.

e D-term equations
The existence of Fayet-Iliopoulos (FI) terms with coupling constants v; are due to the pres-
ence of a U (1)* abelian factor coming from the diagonal abelian subgroups of the gauge group
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factors U (n;) = U (1) x SU (n;) living at each node the quiver. These 2r coupling constants v;
are related to the complex fields Blflj through the usual D-term equations D; = 0 which read as
follows

2
2
vi= ). |BY - > IBil (8.6)
arrows arrows
starting from i ending at i
These parameters v; are related to the absolute values |Z;| = |Z (y;)| and the shifted arguments

v =arg Z (y;) — arg Z (y) of the central charges like ©¥; x |Z;| where the Z (y;)’s are as before
and Z (y) = >_n; Z (i), the central charge of the composite BPS particle.

e F-term equations

These equations are given by the vanishing of the gradient of the superpotential W = W (B,‘;)

which is built out of concatenations of bifundamental chiral superfields involved in the cycles in
the Qg quiver according to the prescription of ref. [2]. This superpotential yields the F-term
equations

oW

Fy = op =0 8.7)
)

and leads therefore to relations amongst the bifundamental fields Bf.. For the example of QB’”
quiver of the supersymmetric pure SU (3) gauge theory given by the right diagram of Fig. 17,
we have six chiral superfields A1, A>, By, Bo, ®12, d>’12 and two oriented cycles from which we
have the following chiral superpotential [1]

WS = A1 D12 Ar D)y — Bi P12 By d), (8.8)

In this model, there are six F-term equations leading to six constraint relations that can solved
explicitly. With this description, the moduli space M, of supersymmetric ground states with
charge y is simply the solution to the F- and D-terms quotiented by the action of the unitary
gauge groups

My={B;} | Fy=03 D;=0 }/szlu(nn (8.9)

To deal with the space M, an approach has been developed in [1,2] taking advantage of the
complex nature of the formalism by combining the power of complex analyticity of extended su-
persymmetry with quiver representation theory. This is achieved by promoting the unitary gauge
symmetries U (n;) into the complexified groups G! (n;, C); and replacing the D-term equations
D; =0 by stability conditions of quiver representations as described in what follows.

8.2.2. Quiver representation method

In the language of quiver representation theory, the bifundamental fields Bl.“j associated with
the links of the Qg are thought of in terms of complex linear maps Blf’j: C" — C"; and the
problem of determining the ground state of the supersymmetric quantum mechanics is recast
into the study of stable representations R of the complex holomorphic Blf‘j maps obeying (8.7).
The defining eq. (8.9) is reformulated as follows

M)/:{RZ{B;}:C’ZI—)C”]} |F5.=0;Rstable }/l_[i=lGl(n,~,C) (8.10)
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OO

Fig. 19. Quiver of Ap Argyres—Douglas theory.

where quiver representation R is defined by attributing a complex vector space C"i’s for each
node of the quiver, and linear maps Bj;: C" — C" for the arrows. These Bj}’s are subject to
the F-term equations Fl‘; =0 and are given modulo the action of the complexified gauge group
[T;_; GL (n;, C). In this complex holomorphic formulation, the D; = 0 equations are interpreted
in terms of stability conditions of the quiver representation R. By stability of R it is meant that
for all non trivial sub-representation S,

Cni Bij el
f g 8.11)
Ccmi L Ccmj

with associated central charges Z, (ygr) = >_n;Z, (v;) and Z, (y5) =Y _m; Z, (y;) and positive
integers m; < n;, we have

arg Zy (ys) < arg Zy (yr) (8.12)

Any sub-representation S that violates the above condition is a destabilising sub-representation;
it leads to a constraint relation amongst the n; integers. As an illustration, notice that nodes y;
of a quiver Q¢ are always stable representations; in this particular example, the central charge
vector yg is given by ), n,’f yx with n,’f = §;x; and, by using the so-called dimension vector
d = (n1,na, ...,no), can be written like (0, ...,0, 1;,0, ..., 0). This special representation R is
always stable since it has no non-trivial S, and thus no destabilising sub-representations. Each
node of the quiver gives a multiplicity one hypermultiplet BPS state. Below, we give two simple
examples that help to illustrate the idea of the quiver representation method; they concern the A,
and A3 Argyres—Douglas theories [2,51,52].

e Argyres—Douglas A, theory

Consider the primitive quiver of the Argyres—Douglas A, theory having two nodes with cen-
tral charges Z1 and Z; as shown in Fig. 19; and let us work out the conditions for a bound state
y =n1y1+ nay2 made of n particles of type y; and n; particles of type y» to be a BPS state.

To that purpose, we can use quiver representation theory approach or more interestingly the
powerful quiver mutation method. In the case of quiver representation manner, that we want to
illustrate here, we think of the two nodes of the A, quiver in terms of the complex spaces C"!
and C"2 with dimension vector d = (n1, ny) and of the arrow between the two nodes in term of
a linear mapping B : C"! — C"2.

To determine stability of the representation yr = n1y1+ n2y2, we investigate the conditions
following from eq. (8.12) for non-trivial sub-representations S. Let us start with the S associated
with the dimension vector d; = (0, 1) and study the commutativity of the following diagram

cm B cm

Tf Tg (8.13)

00—~
There is no condition on the mapping B for this diagram to commute; and so the S associated
with d; = (0, 1) is always a sub-representation. As a consequence, the stability condition (8.12)
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reads as arg(Z») < arg(n1Z1 + nyZ>). Moreover, seen that the n1 and n, are positive, it follows
that the bound state yr = n1y1+ n2y2 should belong to the chamber arg(Z,) < arg(Z1) since

arg(Zy) <arg(n1Zy +nyZy) < arg(Zy) (8.14)

This relation shows that the ray associated with Z» is right-most in the upper half plane of the
complex central charge Z; is left-most. Next we consider another sub-representation S,; for
instance the one associated with the dimension vector d» = (1,0) as shown in the following
diagram

cm B om

Tf Tg (8.15)

c—0 o

The stability of the yg = n1y1+ n2y»> demands that we should have arg(Z;) < arg(Z,); but
this prediction contradicts (8.14) and the S, with dimension vector d» = (1, 0) is a destabilising
sub-representation of R. To ensure that yg = n1y1+ na)» is indeed a bound state, we must forbid
this sub-representation; this leads to a constraint on integers n and n, as follows

nyp=<np (8.16)

The reason for this condition is that in this situation the diagram (8.15) don’t commute; hence the
linear mapping B should be injective and therefore the above condition of the complex dimen-
sions of the C™ spaces associated with the two nodes of the quiver. To determine the expression
of the integers n| and n,, we continue the process by considering the sub-representation S3
associated with the dimension vector d3 = (1, 1) and diagram

cn B Cn2

Tf Tg (8.17)

c—b o

The stability of our bound state yg = n1y1+ nays requires arg(Z + Z3) < arg(n1Z1 + naZ»)
which we rewrite like

n
arg(Z) + Z») < arg(Z) + n—222> (8.18)
1

However, given that n| < nj as required by (8.16), and seen that arg(Z;) < arg(Z;), we have
arg(Z1 + Zy) > arg(n1Z1 + naZ»), and then should be forbidden. Therefore the only possibility
for the bound state y =n1y;+ noy» to be a BPS state is that the diagram (8.17) is trivial; that is
ny=ny=1.

To conclude, we have the BPS spectra as collected in the following table

chambers BPS particles

arg(Zz) <arg(Zy) | Y1, v2. Y1+ 2 (8.19)
arg(Zy) <arg(Z2) | y1.»2

the BPS particles in the chamber arg(Z,) < arg(Z) of the A> Argyres—Douglas theory consists
of the elementary BPS particles y1, y» representing the nodes of the quiver and the bound state
with charge y; + y». In the BPS chamber arg(Z;) < arg(Z5), the bound state y; + y» is unstable
and decays into y; and y». The moduli space of representations of the charge y = y; 4 y» is given
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3 &y

b1

Fig. 20. Quiver of A3 Argyres—Douglas theory.

by the quotient of a single non-zero complex number B modulo the action of the complexified
gauge group which in this case is given by C*. Then the moduli space M, 1, is just a point;
it has complex dimension § = 0 and so this representation describes a BPS multiplet of spin %
Recall that for y =) n;y;, the complex dimension § of the moduli space M, is given by

§=1—Ap+Y (unj)— Y n} (8.20)
Bll

nodes i

where the integer A r stands for the number of F-term constraints; the space M,, describes a BPS
3+1

multiplet of spin 5.

e Argyres—Douglas Az theory

This is the second example we give for building BPS chambers by using quiver representation
theory. The A3 Argyres—Douglas theory described by the quiver given by Fig. 20. This quiver
has three nodes and a cycle; and therefore a non-trivial superpotential which reads as follows
W =¢3201.

The three resulting F-term equations are

$r00¢1=0, ¢30¢r =0, p10¢3=0 (8.21)

In addition to the stable node representations Ry, R, R3 respectively associated with the vector
dimensions d; = (1,0,0), d» = (0, 1,0) and d3 = (0,0, 1), we search for bound states yg =
n1y1 + n2y» + n3y3 involving ny particles of type y, ny particles of type y» and n3 particles of
type y3; that is a dimension vector dg = (n1, n2,n3). These bound states are described by the
linear mapping ¢; : C" — C"+! mod 3

om 2 one P ons 3, om (8.22)

To determine stability of yp = n1y; + n2ys + n3y3, we study the constraints coming from
eq. (8.12). Depending on the values of the integers n;; and using the arguments of the central
charges Z; of the elementary BPS states, the bound state g may sit in one of the six following
chambers

arg(Zy) > arg(Zy) > arg(Z3)
arg(Zy) > arg(Z3) > arg(Z»)

arg(Z,) > arg(Zy) > arg(Z3)

arg(Z) > arg(Z3) > arg(Z1) (8.23)

arg(Z3) > arg(Z) > arg(Zy)
arg(Z3) > arg(Zy) > arg(Z»)

A way to work out the appropriate bound states yg for each of the 6 above chambers is by
taking advantage of the result obtained for the example of A, theory since the quiver of Az
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Argyres—Douglas theory may be roughly viewed as the gluing of three copies of A, quivers.
This observation allows to consider the stability of those bound states yr of the following form

YR=n;yi+njy; withi#j (8.24)
These states correspond to representations with vector dimensions as (n1, na, 0), (n1, 0, n3) and
(0, np, n3); hence the analysis reduces to the A, model of previous example. Indeed consider

bound states yg, with dimension vector dg, = (n1, n2, 0), these states are described by the fol-
lowing linear mappings

cn om0 % om (8.25)
Repeating the same analysis as in the previous A, example, it is easy to check that stability
requires that when arg(Z,) < arg(Z;) regardless arg(Z3), there is a bound states yg, = y1 + 12
arising from the stable representation with dimension vector dg, = (1, 1, 0). Hence, the BPS
states of A3 Argyres—Douglas theory contain at least the states collected in the following table

chambers BPS particles
arg(Zy) <arg(Zy) | y1,v2, V3. V1 + 72 (8.26)
arg(Zy) <arg(Zz) | 71, 72: 73

The other remaining BPS states will arise from the ordering of the arguments of Z3 with respect
to Z; and to Z». In this regards, notice that the analysis of those other bound states yg with
dimension vectors dg, = (0,n2,n3) and dg, = (11,0, n3) are related to dg, = (n1,n1,0) one
just by changing the indices of the nodes y1, y» and y3. Then, the representation with dimension
vector dg, = (n1,0, n3) is just the representation with dimension vector dg, = (n1, n2, 0) by
replacing y3 with y», y1 with y3; and y, with yy; that by performing the cyclic permutation (132).
Then BPS states of A3z Argyres—Douglas theory living in the arg Z1 < arg Z3 and arg Z3 < arg Z;
chambers are as follows

chambers BPS particles

arg(Zy) <arg(Z3) | v1,v2, 73 V1t v3 (8.27)
arg(Z3) <arg(Zy) | y1,¥2: V3

Similarly, the analysis of stability of representation with dimension vector dg, = (0, n2, n3) is
equivalent to the analysis of stability of representation with dimension vector dg, = (n1,n2,0)
by preforming the cyclic permutation (123), the inverse of the previous (132). Then, BPS states
of Az Argyres—Douglas theory which living in the arg Z3 < arg Z; and arg Z3 < arg Z, chambers
are

chambers BPS particles
arg(Z3) < arg(Z2) | v1,v2,v3, 2+ 73 (8.28)
arg(Zy) <arg(Z3) | v1,72, 13

Combining (8.26), (8.27) and (8.28), we deduce the BPS spectrum of A3 Argyres—Douglas the-
ory as follows

Chambers BPS states
arg (Zy) < arg (Z)) < arg(Z3) Vi, V2, V3, Y1+ v, vi+ V3
arg (Z3) < arg (Zp) <arg(Z1) Vi, V2, V3, Y1+ Ve, 2+ 13
arg (7)) < arg(Z3) < arg(Z») Vi, V2, V3, 2+ V3, i+ Y3 (8.29)
arg (Zp) < arg(Z3) < arg(Zy) Vi, V2, V3, Y1+ W2
arg (Z)) <arg(Z») < arg(Z3) YL V2, V3 Y1t ys
arg (Z3) <arg(Z1) < arg(Zy) YL V2, V3 Y213




R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642-696 689

Notice that these BPS states can be derived in a nice way by applying quiver mutation on the A3
quiver depicted in Fig. 20.

Notice also that naive application of quiver representation theory predicts existence of another
bound state namely the one with charge y; + y» + y3; but it is ruled out by the F-term equations.

8.2.3. Quiver mutation method

In quiver representation description illustrated above on Argyres—Douglas theory, one is re-
stricted into BPS quivers encoding the spectrum of an N = 2 quantum field theory at a specific
point # on the Coulomb branch ¢/. For small deformations of the stability condition in moduli
space, the set of quiver representations are unchanged and the corresponding BPS states are sta-
ble. This property means that quiver representation theory can be viewed as local theory of BPS
particles on a patch in & where (8.12) still holds. However at certain real codimension one loci
in moduli space, one may encounter one of the two following situations:

e A marginal stability wall corresponding to the situation where the central charge Z, (yr)
of some representation R and the central charge Z, (vs) of a sub-representation S become
aligned arg Z, (ys) = arg Z, (yg). On one side of this wall of marginal stability we have
the property arg Z, (S) < arg Z, (R); so the quiver representation R is stable and hence
the corresponding BPS particle exists. On the other side of the wall, we have arg Z, (S) >
arg Z, (R) and then the R is no longer stable. On this side of the wall; the associated particle
yr disappears from the BPS spectrum; it decays into lighter BPS states.

e A wall of second kind [53,2]; it is given by the situation where the central charge of a basis
BPS particle y; of a quiver Q¢ becomes real, Z, (y;) € R. Across this wall, the quiver
description of the BPS spectrum breaks down entirely; on the left the wall we have the BPS
quiver QY describing a set BPS states with EM charges y; and central charges Z (y;) as in
Fig. 18; and on the right of the wall we have another BPS quiver Q¢ describing BPS state
with EM charge y; and central charges Z (y;) as in Fig. 21. The transformation of a quiver
across the wall of the second kind is given by the so-called quiver mutation i describing a
quantum mechanical duality relating the states of two distinct quivers.

a:0%— Q¢ (8.30)

With this mutation, we then dispose of a quiver description at any point in moduli space by
following a path connecting them; this path is given by quiver mutations which, in case of
strong chambers with finite cardinality, have a discrete group structure.

Following [1,2], the same quiver transformation can be performed on different quiver basis
living at a fixed point in moduli space. In this case the mutation it will take us between quiv-
ers that describe the same physics. This local duality is a powerful equivalence; it allows us to
circumvent the computation problem involved in solving stability condition of quiver representa-
tions. Using EM charge bases {y;} for the BPS quiver Q and the {y;} the dual quiver O obtained
by mutating the BPS particle with central charge Z; = Z (y) associated with the node y;. Under
this mutation which rigorously speaking is defined by

Yi= V"
s _ e+ oydyt i yoyr >0 (8.31)
Yk if oy <0
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Fig. 21. BPS and anti-BPS states represented by rays +Z; in the in central charge complex plane. The BPS particle Z,
of Fig. 18 has been mutated into an anti-BPS particle.

the central charge Z (y1) (see Fig. 18) is rotated out of the complex central charge half-plane
of BPS particles as shown by Fig. 21. From the view of the dual Q¢, the mutated particle with
central charge Z (Y1) = —Z (y1) is now interpreted as a BPS particle.

Notice that the building of mutated quivers is nicely done by starting from of primitive quiver
Q¢ and using diagrams to implement the transformations. Given the graph describing a quiver
QG with 2r nodes {y1, ..., ¥2r}, one can construct the dual quiver Q associated with the mutation
of node y;. The nodes of the new BPS quiver Q6 are in one to one with the nodes in QF; the
arrows of Q¢ are constructed from those of Q¢ and the same thing for the superpotential W of
QF which is constructed from the superpotential W of Q. For technical details, we refer to the
illustrative examples of [2].

8.3. Superpotentials

In this subsection, we collect some information on the structure of the superpotential W&
of the BPS quiver theory; in particular the superfield expressions of the W&’s of those models
considered in this paper having G = SO (8, R), SU(4) and SO (7,R), SP(4,R). We also give
the corresponding F-term equations constraining the linear mappings Blf‘j :C" — C™ of the
quiver representations R describing bound states yg = Y n;y; of elementary monopoles and
dyons. First, we give the expressions of the superpotentials Wg % and Wg Y4 of the supersym-

metric SO (8, R) and SU(4) gauge theories; then we turn to their Wg 97 and Wg P+ cousins.

8.3.1. SO (8,R) and SU(4) gauge models

We begin by the study of the superpotential W 8 associated with the primitive quiver Qp
of supersymmetric pure gauge model with SO (8, R) gauge symmetry group; we give its explicit
expression in terms of chiral superfields and draw the main lines of the method to deal with
corresponding F-term equatlons Then, we turn to the study of the superpotential W Ua , here

S0g

also we construct W0 in terms of the superfields and describe relevant solutions of their F-term
equations.

e Supersymmetric SO (8, R) model

The primitive quiver Qg 98 of this theory is given by Fig. 3; it has six cycles as shown in
Fig. 22; the length of each cycle is equal to four. By using the prescription of ref. [2] for building
superpotentials, we learn that the corresponding superpotential WOS % isa quartic chiral function
involving 14 chiral superfields; these are the 4 4 4 superfields A;, B; i =1,2,3,4; and the 343
superfields ¢, ¢;, k=1,2,3.
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Fig. 22. Cycles of the primitive quiver Qg s ; the superfields in the superpotential (8.32) are as represented on the arrows.

The explicit expression of WOS % reads as follows

Wy % = (A9} Ar) — Big} Baghy) +
(A2 Asdy — Bogps B3ghn) + (8.32)
(A203 Asps — Borop} Baohs)

and the F-term equations are given by

$1A201 =0 .,  Bapin =0

Arpidy =0 . Bapids =0 (8.33)
A3z =0,  A19{d1 + A3didn + Aspips =0 '

¢ B2py =0 ,  B1¢{d1 + B3p ¢ + Bagpips =0

and

(A1A2—B1B)¢1 =0 ,  (A1A2—B1By) ¢y =0

(A2A3 — B2B3)¢p =0, (A2A3— B2B3)¢; =0 (8.34)
(A2A4 — B2By) 93 =0, (A2A4— BaBy)¢; =0

These superfield constraint relations are the analogue of eqs. (8.21) describing the conditions
on the linear mappings in the Argyres—Douglas A3 model studied in previous subsection. They
have to be imposed when solving the stability condition (8.12) of quiver representation for the
pure SO (8, R) model. Recall that bound states of elementary monopoles and dyons have the
form yp = Zf;:l n;y; with n; positive integers; for these bound states yg to be BPS, one has to
perform a similar analysis as done for the A, and A3 Argyres—Douglas model of subsection 8.2.
To deal with the moduli space of the F-term eqgs. (8.33)—(8.34) of the SO (8, R) theory, one
can follow the analysis done for A3 Argyres—Douglas model; or more interestingly extend the
approach of [2] explicitly performed for the supersymmetric pure SU (3) model. The latter has a
simple quiver with two cycles and therefore a simple superpotential W(f U like

WU = A1¢F Asgr — B1gt Baghy (8.35)
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Fig. 23. Cycles of the primitive quiver Qg Us

and F-term equations as follows

(A1A2 = B1By)¢y =0 (A1A2 — B1By) 97 =0
A197 1 =0 Bi¢i1 = (8.36)
Ar¢i =0 Bygi o =0

Non-trivial solutions of these equations are given by requiring AjA; = By B; and by choosing
¢1 =0, ¢ #0; or by taking A1A> = By B, and ¢1 # 0, ¢ = 0. The analysis done in [2] for
the group SU (3) can be extended straightforwardly to gauge symmetries of ADE type; in par-
ticular for SO (8, R) and SU (4) we are interested in here. For the example of SO (8, R) theory,
the corresponding F-term eqgs. (8.33)—(8.34) can be non-trivially solved by setting A1A> = B1 B>
and AyAz = B> B3 as well as Ay A4 = B By; and by requiring the vanishing of half of the six
superfields {¢1, &2, 3, 7, 5, ¢>§“}; for instance by taking the three ¢); = 0 and the three oth-
ers ¢ # 0 and vice versa. Clearly the moduli space analysis for higher rank gauge symmetries,
though straightforward, is some how cumbersome; fortunately this kind of calculations can be
overcome by using the quiver mutation approach that knows about the constraint relations com-
ing from the superpotential of the theory; thanks to quantum mechanical dualities behind the
power of mutation method.

o SU(4) gauge model

The analysis done for the supersymmetric models with gauge group SU (3) and SO (8, R) can
be repeated for the SU (4) gauge theory. In this case the primitive BPS quiver QgU“ has 2 + 2
cycles with length 4 and bifundamental superfields as in Fig. 23.

The corresponding superpotential WOS Y4 involves 10 chiral superfields; the 3 4 3 superfields
A;, Bi i =1,2,3; and the 2 + 2 superfields ¢y, ¢,’§, k =1, 2. The chiral WOSU4 is constructed in
same manner as before; it is given by

Wyl = (A1pFArpr — Bid Baghr) +

(8.37)
(A295 A3y — Baops Baga)
The F-term equations following from the superpotential WOS U4 are given by
Apipr =0, A1+ A3didr =0
Bypidr =0 ,  Bi1gpi¢1 + B3ps¢2 =0 (8.38)
Arpidr =0 , Bl =0
and
— — — fo—
(A1A2 Ble) ¢l _O ) (A1A2 B1B2)¢] _0 (839)

(A2A3 — ByB3)¢p =0, (A2A3 — ByB3)¢; =0
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Fig. 24. Cycles of the primitive quiver Qg 07 ; the superfields in the superpotential (8.34) are as represented on the arrows.

Non-trivial solutions of these equations can be also written down; they are directly read from

egs. (8.38)—(8.39); for instance by choosing non vanishing A; and B; satisfying %} = f—;
B3

and %; =7, as well as ¢; = 0 but ¢ # 0. In this pure gauge model, bound states have
YR = Zl-ézl n;y; with n; six positive integers are determined by solving the stability conditions
arg Z, (ys) < arg Z, (yr) for sub-representation S of R by following the same method as done
for the A3 Argyres—Douglas model and the supersymmetric pure SU (3) theory.

8.3.2. SO (7,R) and SP(4, R) models

The structure of the superpotentials WS for non-simply laced gauge symmetry groups type
BCFG have been first obtained by Cecotti and Del Zotto in [38]. Here we restrict our analysis
to the cases of pure SO(7, R) and SP(4, R) gauge theories. First, we give the superpotential
WOS 97 and the corresponding F-term equations; then we turn to WOS P4 and the induced constraint

equations on linear mapping associated with the bifundamentals of the quiver Qg Fa,

e SO(7,R) gauge theory

The primitive quiver Q(S) 97 of the supersymmetric pure SO(7, R) gauge theory is given by
Fig. 7; it has 6 cycles with chiral superfields as shown in Fig. 24.

Contrary to Qg 08, there are different kinds of cycles in Q‘g 07; two cycles of length 3 and the
four others of length 4. By using the prescription of ref. [2] for building superpotentials and the
convention notation of [38], the superpotential of the SO (7, R) theory reads as follows

WSO = A167 Bat — Big} Asdh + Axg” Bt (8.40)
A¢Bon™ + Ang™* + Bun*

It involves twelve chiral superfields related to those of SO (8, R) theory like: («) the usual 4
superfields A; and B; with i = 1,2 as well as the new 2 superfields A, B corresponding to the
folding of the chiral superfields A;, B; withi = 3, 4 of Fig. 22; () the usual 2 superfields ¢1, ¢}
and the 4 new superfields ¢, ¢*, n and n* corresponding to the folding of the chiral superfields
¢2, ¢3 and @3, ¢5 of Fig. 22. The F-term equations following from the superpotential WOS 97 are
as follows

7

¢ B2 =0 , B¢*o—Bigpi¢1 =0
1 A201 =0 , Aigip1+AnT¢ =0 (8.41)
Bn*¢p+¢*n =0 ,  Axp*¢+n'n =0
and
ArBo + An =0
AByp + By =0 (8.42)

(A1By — B1A2) ¢1 =0



694 R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642-696

b, G

Fig. 25. Cycles of the primitive quiver Qg Pa.

as well as
A¢* + Bn* =0
AyBo* + AByn* =0 (8.43)

(A1By — B1A2) 97 =0

Solutions of the above relations can be written down by extending the method used for the
SO (8, R) gauge model; for example eqs. (8.41)—(8.43) may be solved by taking for instance
$p1=¢=n=0and ¢ #0, * #0, n* # 0. The remaining eqgs. (8.43) are ensured by taking

A Bl A * A A2
L= 5=—fad g =(5)"
o SP(4,R) model
Py

The primitive quiver Qg of the supersymmetric pure SP(4, R) gauge theory is given by
Fig. 12; it has 2 4 2 cycles with chiral superfields as shown in Fig. 25.

Following the same method used above, the superpotential of the supersymmetric pure
SP(4, R) theory reads as follows

W(fp“ = A20*B¢ + Bon*Ap + Ane* + Bnn* (8.44)

The F-term equations following from this superpotential are as follows

Bo*¢ =0 ,  Ban*p+¢*n =0

AT =0 . A+ =0 (®4
and

A)Bp+ An =0 Ar¢*B + Bon*A =0 (8.46)

ByAp+Bn =0 , A¢*+ Bn* =0 ’

Here also we can write down the non-trivial solutions of above relations which are similar to
those described in [2] for SU (3) and which have been extended in this subsection to the cases
of SO (8,R), SO(7,R) and SU (4). A class of these solutions is given by taking for instance
¢ =n =0, but ¢* £ 0, n* # 0; and the others constrained relations solved by taking % = —Z—:

2
A _ (0
and B = ( ¢*) .
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