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Abstract

Extending the folding method of ADE Dynkin diagrams of Lie algebras to BPS quivers of 4d N = 2
supersymmetric gauge theory with ADE type gauge invariance, we study the BPS spectra for gauge sym-
metries with non-simply laced Lie algebras. Focussing on the 4d N = 2 SO7 and SP4 models, we derive 
the BPS states of the strong chambers of these theories. We find that for both gauge groups Gnsl = SO7
and SP4 � SO (5), the number of BPS states of the strongly coupled chamber is 2 dimGnsl versus 
2 dimGsl − 2rankGsl for the cousin gauge symmetries Gsl = SO8 and SU4 � SO (6). The relationship 
between the Gsl and Gnsl types of BPS quiver mutations is derived. Other features are also studied.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

BPS quiver theory has been proposed few years ago in refs. [1,2] in order to build the com-
plete set of BPS spectra in 4d N = 2 supersymmetric QFT. This approach has been successfully 
applied to ADE type gauge symmetries [3–10] and to Gaiotto type theories describing the low 
energy limit of M5-branes wrapped on a punctured Riemann surface [11–14]; see also [15–31]
for previous works and [32–37] for other approaches to the N = 2 BPS spectra. A tentative 
for the generalisation of the BPS quiver construction beyond ADE type groups has been done 
in [38]; there, BPS quivers with superpotentials have been obtained for a subset of N = 2 QFTs
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based on non-simply laced Lie algebras of type BCFG. Aspects of this generalisation constitute 
the main objective of the work developed in this paper; with focus on two selected N = 2 su-
persymmetric gauge theories in order to illustrate explicitly our approach on simple models of 
non-simply laced type gauge symmetries namely SO (7,R) and SP (4,R).

To introduce our approach, it is interesting to begin by recalling some basic features behind 
the set up of the BPS quiver theory with underlying gauge symmetry G of simply laced type. 
First, the idea of a quiver QG to encode BPS states is remarkable and a great observation; its 
power follows from the link with the geometric engineering method of supersymmetric QFT 
embedded in type II string theory on local fibered manifolds with ADE singularities [39–41]; 
see also [42–44] for hyperbolic singularities. For the class of N = 2 supersymmetric pure gauge 
theories, the BPS quiver QG is formally similar to the usual Dynkin diagram DG of the Lie 
algebra of the gauge group G [45]; roughly speaking, QG is somehow a kind of duplication 
of nodes corresponding Dynkin graph. The ADE-type diagram DG and the corresponding BPS 
quiver QG share together several basic features; some of them like outer-automorphisms and 
Coxeter symmetries will be exploited in present study. For example, the QG quiver can be defined 
in terms of a 2r × 2r matrix AG

IJ in the same manner as for the DG diagram encoding the 
r × r Cartan matrix KG

ij [3]. Moreover, like for the ADE type Cartan matrix �ai.�aj that describes 

intersections of a given simple roots system {�ai}1≤i≤r of G, the BPS matrix AG
IJ describes as 

well intersections of a given system of basis vectors {�υI }1≤I≤2r defining the electric–magnetic 
charges of elementary monopoles and dyons. Thus, the 2r electric–magnetic vectors �υI play a 
similar role as the simple roots �ai ; and so can be thought of as a vector basis giving the positive 
integral charges �υ+ = ∑

nI �υI of BPS particles of the supersymmetric pure gauge theory with 
symmetry G. The electric–magnetic intersection matrix AG encodes therefore the data on the 
protected massive and charged BPS/anti-BPS states of the Hilbert space of the N = 2 QFT4; 
the correspondence �ai ↔ �υI allows to induce other relationships; in particular the two following 
ones are useful for present study: (1) the structure of the set {�υ+} of the BPS states may be 
put into correspondence with the way we construct the set {�a+} of positive roots of the Lie 
algebra of G; the same property holds for the anti-BPS states {�υ− = −�υ+} and the negative roots 
{�a− = −�a+} of G. This similarity gives a link between the electric–magnetic lattice �2r of BPS 
and anti-BPS states and the root lattice �r of the Lie algebra of G. (2) The set of mutations 
μ : QG → Q̃G that transform a given quiver QG into mutated ones Q̃G has also an homologue 
in the theory of Lie algebra of the gauge symmetry; it is given by the set of all possible ways in 
choosing a {�ai} basis of simple roots for describing the full root system of G and so for indexing 
the diagram DG. Therefore, quiver mutations relating distinct quivers QG and Q̃G, describing 
quantum mechanical dualities [46], may be put into a correspondence with Weyl symmetry group 
of Lie algebra roots.

In this paper, we contribute to the study of BPS quiver theory of 4d N = 2 supersymmetric 
QFT with BCFG type gauge symmetries and quiver QBCFG obtained by taking advantage of 
the QADE ↔ DADE correspondence; and by using a known link between DADE and DBCFG

Dynkin diagrams (DD). To be explicit, we focus in study on the construction of the set of 
BPS/anti-BPS states of the strong chamber of two 4d N = 2 supersymmetric pure gauge mod-
els; the first N = 2 model has an SO (7,R) gauge symmetry group; and the second concerns the 
supersymmetric model with symplectic SP (4,R) gauge symmetry. Our approach is based on ex-
tending the usual folding method linking DADE and DBCFG to the BPS quivers. This extension, 
which is worked out explicitly in this study, allows us to relate the quivers QADE of the BPS 
theory with ADE type to BPS quivers QBCFG associated with BCFG type gauge symmetries. 
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Among our results, we derive the BPS/anti-BPS states of the strong chambers QSO7
stg and QSP4

stg

of pure SO (7,R) and SP (4,R) gauge theories by using particular quiver mutation subgroups 
H

SO7
stg and HSP4

stg that have interpretation in terms of alignments of central charges of elementary 

monopoles and dyons. These HSO7
stg and HSP4

stg are subsets of the usual Coxeter groups GSO7
stg and 

GSP4
stg generated by fundamental mutations tSO7

i and tSP4
i satisfying the typical 

(
ti tj

)mG
ij = IG

id

with mG
ij standing for the Coxeter matrix whose structure is as described in appendix I. We give 

also the relationship between the obtained strong chamber QSO7
stg (resp. QSP4

stg ) of the SO (7,R)

(resp. SP (4,R)) model with the chamber QSO8
stg (resp. QSU4

stg ) of N = 2 supersymmetric models 
with SO (8,R) (resp. SU (4)) gauge symmetry. We analyse as well the unexpected number NG∗

bps

of BPS states of the strong chambers QG∗
stg for gauge invariance G∗ = SO (7,R), SP (4,R); and 

we give the relation between these NG∗
bps’s with the corresponding NG

bps of the chamber QG
stg for 

gauge symmetries G = SO (8,R), SU (4,R).
The presentation of this paper is as follows: In section 2, we recall useful aspects on BPS 

quivers in N = 2 QFT4 with ADE type gauge symmetry; then we describe some aspects of 
those gauge symmetries with non-simply laced Lie algebras. In section 3, we revisit the BPS 
quiver model with SO (8) gauge symmetry and fix some convention notations. Like the Dynkin 
diagram of SO (8), the BPS quivers of the supersymmetric pure SO (8) gauge theory have Z2

and Z3 outer-automorphism symmetries. In section 4, we develop our proposal based on folding 
quivers of type SO (8); this approach extends the usual folding method of D4 Dynkin diagram 
to get the B3 one. Then, we construct explicitly the strong chamber of BPS states for the SO (7)

symmetry and derive the quiver mutation group HSO7
stg allowing to generate them starting from 

a primitive quiver QSO7
0 . In section 5, we first describe the BPS strong chamber of the N = 2

SU (4) � SO (6) model; then we use our folding quiver method to construct the strong chamber 
of BPS states for the SP (4,R) � SO (5,R) and the quiver mutation group HSP4

stg . In section 6, 
we give the conclusion and make comments. In sections 7 and 8, we give three appendices (I, II, 
III) where some technical details and extra materials are reported.

2. BPS quivers of N = 2 QFT4

In this section, we begin by reviewing some useful tools on ADE type BPS quiver theory 
of [1,2]; especially those aspects concerning the construction of BPS chambers of 4d N = 2
supersymmetric pure gauge theories. Then, we consider the fundamentals of the BPS quivers 
QBCFG for the class of supersymmetric theories with gauge symmetries G based on Lie algebras 
type BCFG having non-simply laced Dynkin diagrams DBCFG.

2.1. Generalities on BPS chambers of ADE type

Here, we introduce the sets QG
weak and QG

stg of BPS quivers obtained by starting form a pri-

mary quiver representative QG
0 and performing appropriate quiver mutations. Particles living at 

nodes of the quivers of these sets form respectively the weak and strong chambers of BPS/anti-
BPS states of the 4d N = 2 supersymmetric gauge theory.
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Fig. 1. The primitive BPS quiver Qsu4
0 of N = 2 supersymmetric model with SU (4) gauge symmetry. Half of nodes 

are occupied by monopoles and the other half by dyons. The number 2 on vertical links means there are two arrows; 
for example the link between (b1, c1) should be thought of as ↓↓. This graph has a Z2 symmetry fixing (b2, c2) and 
exchanging the pairs (b1, c1) and (b3, c3).

2.1.1. BPS chambers
To start, recall that in BPS quiver theory with gauge symmetry group G having finite dimen-

sional Lie algebra g of ADE type, one encounters a set of basic entities used in the building the 
BPS/anti-BPS states. Certain of these basic objects are given by the three following ingredients 
that play an important role in our construction; these are: (i) the primitive quiver QG

0 , (ii) a se-
quence of descendent quivers QG

n with positive integer n obtained by applying successive quiver 
mutations; and (iii) the QG

weak and QG
stg sets of quivers underlying the weak and the strong cham-

bers of BPS states.1 The engineering of these two BPS chambers depends on the ordering of the 
arguments argZi of the central charges Zi = Z (γi) of the elementary BPS particles γi of the 
quiver QG

0 . For concreteness and also to fix some terminology used in this study, let us describe 
rapidly these three ingredients below.

(1) Primitive quiver QADE
0

This is the quiver QG of the N = 2 supersymmetric gauge theory described in introduction 
section with gauge group G in the ADE sector of finite dimensional Lie algebras. Seen that 
we will encounter below various kinds of BPS quivers, we refer now on to this basic object as 
the primitive quiver and denote it like QG

0 ≡ QG. For pure gauge models with a rank r gauge 
symmetry group G, the primitive QG

0 is made of the following components:

• 2r nodes υI ; half of them occupied by the r elementary monopoles {b1, b2, .., br} of the pure 
gauge theory; and the other half by the r elementary dyons {c1, c2, .., cr}; they play a role 
quite similar to the role played by simple roots of Lie algebras. 

• Oriented links (A0)IJ between neighbouring nodes υI and υJ ; their number is given by the 
Dirac pairing υI ◦υJ having integer values. As an illustration and also to fix ideas, see Fig. 1
describing the primitive quiver Qsu4

0 of the N = 2 pure gauge model with SU (4) gauge 
symmetry. It will be used later on.
Moreover, because of orientation of links, the QG

0 has in general oriented cycles that play as 
well an important role in the study of the moduli space of the BPS theory. Examples of these 
cycles are exhibited in Fig. 1 of Qsu4

0 ; explicit representations with bifundamental fields are 
reported in appendix sections 7 and 8; the simplest example is given by the quiver Qsu3

0 of 
Fig. 17 of subsection 8.1. To each cycle of the quiver QG

0 , it is associated a gauge invariant 
monomial in the chiral superpotential WG

0 of the underlying quiver gauge theory. For in-
stance the Qsu4

0 quiver of Fig. 1 has four cycles, each one of length 4; and the corresponding 

1 These BPS chambers are CPT invariant; they contain anti-BPS states as well.
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superpotential Wsu4
0 is given by the sum of four quartic monomials constructed by using the 

prescription of [1]. Illustrating examples of cycles in QG
0 and corresponding superpotentials 

WG
0 are given for the quivers of the Figs. 22, 23, 24 and 25 of subsection 8.3 of appendix III.

(2) Descendent quivers QG
n

Generic BPS states are given by bound states of the r elementary monopoles bi and the r
elementary dyons ci ; they may be also thought of as nodes of some quiver QG

n related to QG
0

by certain transformation known as quiver mutation. These QG
n ’s are therefore new quivers that 

descend from the primitive QG
0 ; they are classified as QG

1 , QG
2 , ... depending on the length of 

the mutation of QG
0 . These new quivers have the same number of nodes as QG

0 ; but occupied by 
new kinds of EM charged particles. So the QG

n quivers have in general different links, different 
cycles and different superpotentials WG

n . Notice that for a given n-th descendent quiver QG
n , the 

corresponding 2r particles b(n)
i , c(n)

i living at the 2r nodes can be constructed by applying the 
quiver mutation method of [1,2]. These particles are BPS bound states of the elementary bi , ci ; 
and their properties are encoded in the ordering and the alignment of the complex central charges 

Xi = Z (bi) , Yi = Z (ci) . (2.1)

Examples of descendent quivers will be explicitly constructed in the following sections; see for 
instance the Figs. 4, 5, 8, 9 and 10. Others are given in appendix sections; for example the graphs 
of Fig. 13 and Fig. 14 of appendix I.

(3) Strong and weak chambers
Given an ordering of the arguments of the 2r basic complex central charges Xi , Yi , the 

primitive QG
0 together with the QG

n descendants, obtained by performing successive mutations, 
constitute a set of quivers that we denote like 

QG =
{
QG

n

}
n≥0

(2.2)

Depending on the ordering of argXi and argYi in the upper half place of the complex central 
charge Z, the cardinality of QG may be finite or infinite. For the case of N = 2 supersymmetric 
pure gauge theory we are interested in here, we distinguish two kinds of QG sets according 
to the regime of the gauge coupling constant of the theory; these sets are: (i) the finite QG

stg

describing the so-called strong chamber of BPS/anti-BPS states (BPS chamber for short); and 
(ii) the infinite set QG

weak giving the weak BPS chamber.
The building of these chambers is one of the main purposes of the BPS quiver theory. The 

general philosophy of the construction of BPS chambers is described in appendix I; examples of 
explicit construction of chambers and their relations with the central charges ordering are given 
in appendix III; in particular the Argyres–Douglas A3 model with quiver given by Fig. 20 and 
chambers as in table (8.29).

2.1.2. Building BPS chambers
From the presentation given in above subsubsection (§ 2.1.1), in particular the point (3) re-

garding the sets QG
weak and QG

stg , it follows that the QG
n quivers of a given chamber QG of 

eq. (2.2) have all of them the same number of nodes (2r nodes for pure gauge models); but 
occupied by different particles having the typical EM charges 

υm,m′ =
∑

mibi + m′ci (2.3)
i



R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642–696 647
with some positive mi, m′
i integers for BPS particles and negative ones for anti-BPS particles. 

The allowed values of the mi, m′
i integers are, generally speaking, obtained by solving constraint 

relations coming from the supersymmetric quantum mechanics underlying the quiver QG
0 [1,2]; 

for a brief description of two methods to construct the allowed bound states (2.3) see subsub-
sections 8.2.2 and 8.2.3 of appendix III; see also the two illustrating examples concerning the 
construction of BPS states in the Argyres–Douglas A2 and A3 theories by using quiver represen-
tation method of subsubsection 8.2.2. In present study, we will use the quiver mutation method 
of subsubsection 8.2.3 to derive directly the mi, m′

i integers; this is achieved by an explicit con-
struction of the mutation operators Mn allowing to build the descendent QG

n ’s from the primitive 
QG

0 as follows

QG
n = Mn · QG

0 , M0 = Iid (2.4)

Therefore, the primitive quiver QG
0 together with the mutation set {Mn;n = 0,1...}, encoding 

the ordering of argXi and argYi , play an important role in BPS quiver theory; the knowledge of 
these objects is capital for building QG.

For a 4d N = 2 pure gauge theory with a given rank r ADE symmetry with simple roots 
�a1, ..., �ar ; the monopoles and dyons are represented by their electric–magnetic (EM) charges 
respectively given by the 2r-component vectors 

bi =
( �0

�ai

)
, ci =

( �ai

−�ai

)
(2.5)

The link between the nodes of the graph of QG
0 is given by the EM product of these charges 

which is defined in terms of the Dirac pairing bi ◦ cj = −�0i .�aj − �ai.�aj . By using the Cartan 
matrix Kij = �ai .�aj of the Lie algebra of the ADE gauge symmetries, the various pairings of the 
EM charge vectors of monopoles and dyons making QG

0 read as follows

bi ◦ bj = 0 , ci ◦ bj = +Kij

ci ◦ cj = 0 , bi ◦ cj = −Kij
(2.6)

With these bi and ci EM charges; one can define two interesting related objects that char-
acterise the primitive BPS quiver [3]; these are the 4r2-component vector υT

0 = (b, c), com-
bining monopoles and dyons in a huge vector υ0; and the corresponding intersection matrix 
AG

0 = υ0 ◦υT
0 defined by the Dirac pairing of the components of υ0. In other words the primitive 

BPS quiver QG
0 of the N = 2 supersymmetric pure ADE gauge theories can be represented by 

the pair consisting of υ0 and AG
0 that reads in terms of the Cartan matrix of the Lie algebra like 

AG
0 =

(
0 −K

K 0

)
⊗ I2r (2.7)

where I2r is the 2r ×2r identity matrix. With this representation, one can generate the υn vectors 
and the corresponding AG

n = υn ◦ υT
n matrices describing the QG

n quivers by applying mutations 
on υ0 and AG

0 . These mutations are as well represented by some matrices Mn that allow to 
express AG

n matrix in terms of the primitive one like MnAG
0 MT

n ; for explicit details see [3]; see 
also the generalisation of these mutations to non-simply laced symmetries given by our analysis 
of sections 4 and 5.
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2.2. BPS quivers of BCFG type

The above construction done for 4d N = 2 models with ADE-type gauge symmetries can 
be extended to implement matter [1,2,5]; and, more interestingly for the present study, to su-
persymmetric models with pure BCFG-type gauge symmetries. Following [38], the BPS quiver 
description for ADE Lie algebras is also valid for BPS quivers for non-simply laced Lie algebras. 
For a given rank r non-simply laced type gauge symmetry, the primitive BPS quiver QG

0 is also 
made of r elementary monopoles {β1, β2, .., βr} and r elementary dyons {δ1, δ2, .., δr}; but with 
EM charges given by 

βi =
(

0
�αν
i

)
∈ Z

2r , δi =
( �αi

−�αν
i

)
∈ Z

2r (2.8)

where now the r vectors �α1, ..., �αr are the simple roots of the non-simply laced Lie algebra; and 
the �αν

1 , ..., �αν
r stand for the corresponding co-roots �αν

i = 2
�αi .�αi

�αi which, generally speaking, are 
different from �αi . Because of the existence of two different lengths of simple roots in non-simply
laced algebras, a property which is manifested in practice by the fact that Cartan matrix is no 
longer symmetric Kji �= Kij , the intersection matrix AG

0 representing the primitive quiver is no 
longer equal to the one given by (2.7); this matrix reads as follows

βi ◦ βj = 0 , δi ◦ βj = Kij

δi ◦ δj = Kji − Kij , βi ◦ δj = −Kji
(2.9)

it differs from (2.6) by the fact that now the pairing δi ◦ δj is different from zero. Therefore, the 
AG

0 intersection matrix describing the quiver QG
0 in 4d N = 2 theories with non-simply laced 

type gauge symmetries has the following form [38]; see also [47,48]

AG
0 =

(
0r×r −KT

K KT − K

)
⊗ I2r (2.10)

For the example of the symplectic SP (4,R) gauge symmetry, the Cartan matrix K and the anti-
symmetric KT − K are given by

K =
(

2 −1
−2 2

)
, KT − K =

(
0 −1
1 0

)
(2.11)

and then 

ASP4
0 =

⎛
⎜⎜⎝

0 0 −2 2
0 0 1 −2
2 −1 0 −1

−2 2 1 0

⎞
⎟⎟⎠ (2.12)

Because of the non-trivial value of the δi ◦ δj pairing, the topology of the graph of the primitive 
quiver QG

0 of non-simply laced gauge symmetries is different from their ADE analogues since, 
in addition to vertical and horizontal links, we have moreover a diagonal link between the δr

and δr−1 nodes of the graph as shown in Fig. 2 for the illustrating example of 4d N = 2 pure 
SP (4,R) gauge theory. It turns out that this extra diagonal link makes the usual algorithm of 
quiver mutations on QG

0 , with BCFG type gauge symmetry, difficult to apply compared to BPS 
quiver theory with ADE type algebras; this difficulty will be overcome by using the quiver fold-
ing method developed in present study; thanks to outer-automorphisms of BPS quivers of ADE 
type. But before going into details, let us end this general description on building BPS states by 
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Fig. 2. Primitive BPS quiver QSP4
0 of the 4d N = 2 pure gauge model with SP (4,R) gauge invariance. The diagonal 

link is because of the pairing ci ◦ cj which is different from zero. In section 5, we show that this graph is precisely the 
one obtained by folding QSU4

0 of Fig. 1 by its Z2 outer-automorphism.

indicating that QG
n quivers of the N = 2 supersymmetric QFT with gauge symmetry G are in 

practice generated as follows:

a) Strong and weak BPS chambers
First choose the BPS chamber we are interested in; that is either the weak chamber QG

weak or 
the strong QG

stg ; this choice depends on the coupling regime of the gauge theory and is given 
by an ordering of the arguments of the central charges of the elementary BPS particles. In this 
study, we will focus on the strong chamber of N = 2 theories with pure gauge symmetries 
SO (8), SO (7), SU (4) and SP (4). This choice has been motivated by two things: (i) by the 
fact that QG

stg is a priori a finite chamber; and so is a good example to testing the validity of 
our folding quiver proposal based on extending the folding trick of Dynkin diagrams to BPS 
quivers. (ii) Because of constraints coming from the lack of complete results on QG

weak of 
ADE type; the exact content of the weak chambers QG

weak of gauge symmetries with rank 
r ≥ 2 is not known; only partial results have been obtained in this matter [3,1,2,4,38].

b) Gauge invariance and mutation subset HG
stg

Second distinguish what type of gauge symmetry group G one is considering; that is whether 
G having a simply laced DD, or a non-simply laced Dynkin diagrams. For the ADE type 
gauge symmetries, the application of the Mn mutations on the primitive quiver QADE

0 is 
straightforward and leads to the usual BPS quivers QADE

n [3]. There, it was shown that the 
number of BPS states of the strong chambers QADE

stg is equal to 2 (dimG − rankG); this 
number can be derived by performing quiver mutations Mn on QADE

0 ; it happens that a 
particular finite subset HADE

stg of quiver mutation set (HADE
stg ⊂ {Mn}) allows to build the 

BPS states of QADE
stg ; this subset has a group structure and is generated by the two composite 

operators L1 and L2 given by 

L1 =
∏r

i=1
tr+1−i , L2 =

∏r

i=1
t2r+1−i (2.13)

where the 2r reflections t1, ..., t2r are the fundamental mutations of the Coxeter group 
G(ADE)r

stg introduced in appendix I; these two L1 and L2 generators satisfy the property 
(L1)

2 = (L2)
2 = Iid exactly like for (ti)2 = Iid ; and their compositions (L2L1)

m and 
L1 (L2L1)

m play an important role in building the BPS states out of the elementary ones. It 
turns out that the subgroup HADE

stg ⊂ GADE
stg is isomorphic to the dihedral group Dihn0 ; for 

rank r ADE Lie algebras, we have the relationship 
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H
(ADE)r
stg � Dih4(r−1) (2.14)

Notice that the HG
stg can interpreted as describing a particular configuration of the Xi of the 

monopoles and the Yi of dyons. This configuration is given by the alignment of the r central 
charges Xi and the same thing for the r central charges Yi ; see (3.6) to fix ideas. In the case of 
N = 2 theories with non-simply laced BCFG gauge symmetries, the construction of QBCFG

n

quivers of BPS chamber QBCFG
stg needs an extra algorithm; since a naive application of quiver 

mutations leads to infinite QBCFG
stg with exotic BPS states. To overcome this difficulty, we 

take advantage of outer-automorphisms of BPS quivers QADE
n to build the corresponding 

QBCFG
n ones by extending the folding method of Dynkin diagrams of ADE Lie algebras. 

This BPS quiver folding approach is developed in sections 4 and 5 of this paper.

The mutations of BPS quivers of BCFG type and the quiver folding method need a careful 
analysis; we have judged interesting to illustrate the construction on particular models. This is 
done in section 4 for the particular N = 2 model with SO (7,R) gauge symmetry; and in section 5
for the N = 2 theory with SP (4,R) gauge symmetry. But before that, it is interesting to describe 
extra helpful tools on BPS quiver theory with SO (8,R) and SU (4) gauge symmetry groups; this 
is because the DD of the Lie algebra SO (7,R) follows from the DD of SO (8,R) by folding two 
nodes as shown in Fig. 6. The same link exists between SP (4,R) and SU (4) as shown in Fig. 11.

3. BPS strong chamber of N = 2 SO(8, RRR) theory

In this section we review the main lines of the derivation of the (24 + 24) BPS/anti-BPS 
states of the strong chamber QD4

stg of 4d N = 2 supersymmetric pure SO (8,R) gauge theory 

[2,3]. We also describe a remarkable subgroup HSO8
stg � Dih12 of the quiver mutation set GSO8

stg

operating in QD4
stg . The GSO8

stg is given by the Coxeter group of quiver mutations generated by eight 
fundamental reflections; it is succinctly described in appendix I; but for further explicit details 
see also the appendix of [3].

To begin, it is interesting to notice that the numbers NADE
bps of BPS and NADE

anti-bps of anti-BPS 
states in 4d N = 2 pure gauge theories with ADE type gauge symmetry G are known; they are 
given by the formula 

NG
bps + NG

anti-bps = 2 (dimG − rankG) (3.1)

For G = SO (8,R), we then have NSO8
bps + N

SO8
anti-bps = 48 which is equal to 4 × |Dih12|; but 

this number can be also factorised like 6 × 8 which turns out to be the type of factorisation that 
appears in the cousin N = 2 pure SO (7,R) gauge model. There, we find that the number of BPS 
and anti-BPS states obtained, after applying the folding method to the SO (8,R) quivers, is equal 
to NSO7

bps + N
SO7
anti-bps = 6 × 7; see section 4 for the derivation of this number.

The tools given below are therefore to fix ideas and notations; and also for later use when we 
study the BPS states of the N = 2 supersymmetric SO (7,R) gauge theory which hasn’t been 
considered previously. This study is also important for motivating the quiver folding method and 
also for comparison of the BPS states content of the QD4

stg and QB3
stg chambers of the SO (8,R)

and SO (7,R) twin models.
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Fig. 3. The primitive quiver QSO8
0 having 8 nodes describing the 4 monopoles and the 4 dyons. The links are given by 

the intersection matrix A0. The quiver QSO8
0 has two outer-automorphism symmetries: (i) Z2 exchanging (b3, c3) and 

(b4, c4); but fixing the others; and (ii) a Z3 cycle fixing the central (b2, c2) and permuting the three external others.

3.1. Primitive quiver QSO8
0

The primitive quiver QSO8
0 is a basic object in the derivation of BPS states of the strongly 

coupled chamber QD4
stg of the 4d N = 2 pure SO (8) theory; a nice method to get these BPS 

states is to start with QSO8
0 ; and act on it by a particular quiver mutation subgroup HSO8

stg of the 

group GSO8
stg generated by 8 fundamental reflections r1, r2, r3, r4, s1, s2, s3, s4 whose matrix 

representations are reported in appendix I.
Let us describe below the key steps of this construction for the case of 4d N = 2 supersym-

metric pure SO(8) gauge model. There, the QSO8
0 quiver is made of the 4 elementary monopoles 

{b1, b2, b3, b4} and the 4 elementary dyons {c1, c2, c3, c4} as shown by Fig. 3. The electric–
magnetic (EM) charges of the bi monopoles and ci dyons are expressed in terms of the four �a1, 
�a2, �a3, �a4 simple roots of the D4 Lie algebra as well as the corresponding four co-roots �aν

i = 2
�a2
i

�ai

which coincide with �ai ; these EM vector charges are as follows 

bi =
( �0

�ai

)
, ci =

( �ai

−�ai

)
(3.2)

Since the �ai roots of D4 are 4-dim vectors, the above EM charges are 8-dim integral vectors; but 
here they are thought of in terms of eight nodes of the primitive BPS quiver QSO8

0 which encodes 

all data on eq. (3.2). So the QSO8
0 describes the BPS set {bi, ci} which can be roughly imagined 

in terms of a 64-component symplectic vector like 

υT
0 = (b1, b2, b3, b4; c1, c2, c3, c4) (3.3)

The links between the eight bi, ci nodes are given by Dirac pairing eq. (2.9) between the EM 
charge vectors of monopoles and dyons. In this view and like the Dynkin diagram, the primitive 
quiver QSO8

0 may be represented by an intersection matrix ASO8
0 = υ0 ◦ υT

0 like 

ASO8
0 =

(
bi ◦ bj bi ◦ cj

ci ◦ bj ci ◦ cj

)
=

(
0 −K

K 0

)
⊗ I8 (3.4)

with Dirac pairings bi ◦ bj = ci ◦ cj = 0 and ci ◦ bj = −bi ◦ cj = Kij ⊗ I8 where I8 is the 8×8 
identity matrix and where Kij is the usual Cartan matrix �ai.�aj of the so(8) Lie algebra given by 
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KD4 =

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

⎞
⎟⎟⎠ (3.5)

3.2. Quiver mutations and BPS states

To obtain the BPS/anti-BPS states of the strong coupled chamber of the 4d N = 2 SO (8,R)

gauge theory, we follow the approach of [3] by first taking the argument of the complex central 
charges Xi and Yi of the 4 monopoles and the 4 dyons as

argX1 = argX2 = argX3 = argX4
argY1 = argY2 = argY3 = argY4
argYi > argXi

(3.6)

then applying the quiver mutation method of [1–3,5]. This central charge configuration allows 
to get the full content of the strong chamber QD4

stg which is known to have 24 BPS states and 24 
anti-BPS states. The first set of equalities in (3.6) describes the alignment of the central charge 
rays associated with the elementary monopoles and the second set of equalities describes the 
alignment of the central charge rays of dyons; for a physical interpretation of these alignments 
see the description of § 3.2.1 given below. The inequalities give the ordering of the argument of 
the elementary BPS states and fix the BPS chamber. Notice that in the strong chamber we are 
considering, the central charge rays (Yi) associated with elementary dyons are left-most in the 
half upper-plane of the complex central charge Z while the rays Xi of elementary monopoles 
are right-most. In the case of weak chamber, the configuration gets reversed; the Yi rays are 
right-most and the Xi ’s are left-most ones. The terminology left-most and right-most has been 
used in the basic works [1,2]; it is helpful in the study of ordering the arguments of the central 
charges of bound states and in the construction of BPS chambers; for instance if argY > argX, 
then we have the following property 

argY > n argY + m argX > argX (3.7)

for any positive definite integers n and m. As the ordering and alignment of the central charge 
rays in upper half complex plane are important ingredients in using quiver mutation method for 
the construction of BPS chambers, let us describe briefly known results for this matter by de-
scribing the key idea on the SU (N) gauge symmetry. To make the presentation more illustrative, 
we also give the explicit relations for the leading SU (2) and SU (3) gauge groups; and take the 
opportunity to give as well some useful comments.

3.2.1. Ordering of central charges
We begin by recalling results on BPS/anti-BPS states of N = 2 QFT with pure SU (2) gauge 

symmetry as constructed by using the quiver mutation method. In this theory, the BPS states 
are given by bounds of a monopole M and a dyon D; the monopole has an electric–magnetic 
charge b, and the dyon has a charge c. The BPS and anti-BPS states in the Qsu2

weak and Qsu2
stg

chambers of pure SU (2) gauge theory are completely known; and are re-derived in a nice manner 
by using the language of complex central charge Z (b) ≡ X of monopole and the central charge 
Z (c) ≡ Y of the dyon. In this method, these two chambers correspond to the two possible ways 
of ordering the arguments of X and Y in the central charge complex plane Z. For the case argX >

argY , we have the infinite weak chamber Qsu2 ; the list of BPS states contained in this chamber 
weak
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is given by eq. (8.1) reported in appendix III; see also the explicit construction of [5]. This BPS 
spectrum is exactly derived by using quiver mutation method considered in this study. For the 
other case argY > argX, we have the strong coupling chamber Qsu2

stg ; it consists of the elementary 
BPS particles M and D with EM charge b and c and their anti-particles M̄ and D̄ with opposite 
charges.

For N = 2 supersymmetric QFTs with rank r ADE gauge group, the construction of the 
BPS chambers extends the one done for the SU (2) gauge theory; but it is somehow subtle due 
extra arbitrariness. While the lattice �ADE of the EM charges γ of the BPS states has rank 2r , 
the moduli space of the supersymmetry pure gauge theory has only r + 1 physical parameters 
that can be varied. These physical moduli are given by r moduli u1, ..., ur , parameterising the 
Coulomb branch, and the gauge coupling constant. By thinking of the lattice �ADE in terms of 
its 2r generators denoted like γ ±

i , and using the homomorphism

Z : �ADE → C

γ ±
i → Z

(
γ ±
i

) (3.8)

one ends with 2r complex central charges Z
(
γ ±
i

)
for the elementary BPS states teaching us 

that an arbitrary configuration of the 2r central charges (Xi, Yi) for the nodes (bi, ci) of the 
quiver QADE cannot be chosen arbitrarily. To apply the mutation method we need to find a 
basis which has central charges lying in a upper half plane with a certain choice of the ordering 
of the arguments of Xi and Yi of the elementary monopoles and dyons. This question has been 
explicitly addressed in [1] by using results on generalised N = 2 supersymmetric Seiberg–Witten 
(SW) gauge theory. There, the nodes (bi, ci) of the BPS quiver have been identified with basic 
cycles γ ±

i in SW geometry. To fix ideas let us focus on N = 2 supersymmetry SW theory with 
pure SU (N) gauge symmetry; the Coulomb branch of this theory has N − 1 parameters u =
(u2, ..., uN) given by the Casimirs of SU (N) determining the VEVs of the Cartan elements. 
These parameters appear as coefficients in the defining equation of the SW complex curve

y2 = P 2
suN

− �2N , PsuN
= xN −

N∑
k=2

ukx
N−k (3.9)

where � stands for the strong coupling scale. This equation has 2N complex roots x±
k which are 

functions of the Coulomb branch parameters x±
k (u,�) and which we denote like e±

i for conve-
nience; these roots are used in the building symplectic homology cycles γ in the SW geometry 
that are interpreted in terms of EM charges of the BPS states. On the other hand, by using the 
SP (2N − 2,Z) duality of SW gauge theory one may select a symplectic homology basis of cy-
cles like γ ±

i = e±
i − e∓

i+1 and which can be precisely identified with the bi, ci electric–magnetic 
charges of the 2 (N − 1) nodes the BPS quiver QsuN

0 . In this SW formulation, BPS particles are 
represented by vanishing cycles γ on the SW curve and their central charges Zu (γ ) are given by 
the periods 

Zu (γ ) =
∫
γ

λ (u) (3.10)

with 1-form λ (u) given by the expression x
2πiy

P ′
suN

dx. By specifying the analysis to the SU (3)

particular gauge symmetry, one can explicitly study the properties of the chambers of BPS states 
including the passage from of the weak chamber towards the strong one. In this simple example, 
the SW curve reduces to y2 = (

x3 − ux − v
)2 − �6 with u and v standing for the two Coulomb 
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branch moduli. The weak coupling chamber Qsu3
weak corresponds to taking the limit u → −∞

with v = Imu = 0, and the strong chamber Qsu3
stg to the limit u → 0. The complex curve y2 =

P 2
su3

− �6 has six complex roots e±
1 , e±

2 , e±
3 , and the SP (4,Z) homology cycle is generated by 

the symplectic basis 

γ −
i ∼ e−

i − e+
i+1 , γ +

i ∼ e+
i − e−

i+1 (3.11)

with index i = 1, 2. These dual 2 + 2 symplectic cycles are in one to one with the EM charges 
(b1, b2) of the elementary monopoles and the EM charges (c1, c2) of the elementary dyons. They 
correspond also to the nodes of the BPS quiver Qsu3

0 of the supersymmetric pure SU (3) gauge 
theory. We have 

bi ↔ γ −
i , ci ↔ γ +

i (3.12)

In the limit of zero coupling constant, the central charges Xi of the monopoles bi approach the 
π -separation between BPS and anti-BPS states in the Z complex plane, argXi → π . However, 
the central charges Yi of the dyons ci have arguments that tend towards zero, argYi → 0. In this 
weak gauge coupling limit, we have the alignments

argXi ≡ argX → π , argYi ≡ argY → 0 (3.13)

and then the ordering property argX > argY . As we tune the Coulomb branch parameters from 
the weak chamber u = −∞ towards the strong chamber u = 0, the arguments of the central 
charges of the monopoles {b1, b2} and the dyons {c1, c2} approach increasingly and cross each 
other at strong coupling limit leading to the reverse ordering 

argYi > argXi , argY > argX (3.14)

Notice that at the limit u = 0, both the SU (2) proper sub-symmetries of SU (3) gauge group are 
strongly coupled in same manner as in the supersymmetric SU (2) pure gauge theory introduced 
in the beginning of this paragraph. Notice also that at the origin u = v = 0 of the Coulomb branch 
of the SU (3) theory, the term P 2

su3
= (

x3 − ux − v
)2

in the SW curve reduced to the monomial 
x6 and so the roots xk solving the SW equation in the x-plane are given by the six complex 
numbers e

2ikπ
6 � showing that the six BPS states in the chamber Qsu3

stg have as Z6 symmetry 
property. The construction of the BPS chambers for the supersymmetric pure SU (N) gauge 
theory extends straightforwardly for N = 2 supersymmetric pure Dr and Er gauge theories.

After this digression, we now turn back to our main purpose namely the building of BPS/anti-
BPS states of the strong chamber QD4

stg .

3.2.2. Cyclic chain of BPS quivers
We start from the primitive QSO8

0 , represented by the intersection matrix ASO8
0 given by (3.4); 

then successive quiver mutations of QSO8
0 allow to generate new quivers; say the quiver QSO8

1

after first mutation M1, then the quiver QSO8
2 after two mutations M ′

1M1 = M2 and so on. 
Because of the fact that the BPS strong chamber QD4

stg is finite, there should exist an integer 

n0 such that Mn0 = Iid ; which means that QSO8
n0 is precisely the starting QSO8

0 ; the integer n0

corresponds to a cycle in the mutation set HSO8
stg and turns out to be equal to 12 in present case. 

The closed chain of quivers 

Q
SO8 → Q

SO8 → Q
SO8 → ... → Q

SO8 → Q
SO8 (3.15)
0 1 2 11 0
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can be made more explicit by working with ASO8
n intersection matrices representing the QSO8

n

quivers. Indeed, the intersection matrix ASO8
1 , associated with the QSO8

1 quiver, is obtained by 
performing a transformation2 type ASO8

1 = M1ASO8
0 MT

1 with mutation matrix as follows 

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.16)

This mutation M1 plays an important role in this construction; for convenience we refer to it 
as L1; it will be interpreted as one of the two mutation generators of HSO8

stg . To make a precise 

idea on this particular mutation subset HSO8
stg which has a group structure, let us first derive the 

expression of the second generator L2 and turn to give a comment.
The ASO8

2 matrix, associated with the QSO8
2 quiver, is obtained in an analogous manner to 

ASO8
1 ; but now by operating L2 on ASO8

1 ; that is by performing a transformation type ASO8
2 =

L2ASO8
1 LT

2 where L2 is the second generator of HSO8
stg ; it is given by eq. (3.17).

L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 1 1 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.17)

By substituting ASO8
1 = L1ASO8

0 LT
1 , we obtain the direct relation of ASO8

2 with the primitive 
quiver namely A2 = M2A0M

T
2 with M2 = L2L1. By repeating the mutation n times, we obtain 

the 48 BPS states of the strong chamber of the N = 2 pure SO (8) gauge theory. The ASO8
n

intersection matrix of the n-th QSO8
n quivers is given by 

ASO8
n = MnASO8

0 MT
n (3.18)

with 

M2k = (L2L1)
k , M2k+1 = L1M2k (3.19)

3.2.3. Mutation group HSO8
stg and QD4

stg

First notice that the two above L1 and L2 matrices generating HSO8
stg are in fact composite 

operators of four successive fundamental reflections of GSO8
stg generated by 8 fundamental reflec-

2 This transformation follows from the transformation of (3.3), the EM charge vector of BPS states of the quiver 
Q

SO(8); and the expression of the intersection matrix ASO(8) = υ0 ◦ υT .
0 0 0
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Fig. 4. The quiver QSO8
1 having 8 nodes describing 8 new BPS states. Like QSO(8)

0 , the quiver QSO(8)
1 has also the 

same two outer-automorphism symmetries: (i) a Z2 symmetry exchanging 3rd and 4-th nodes; but fixing the others; and 
(ii) a Z3 automorphism fixing the central node; but permuting the three external others.

tions denoted as r1, r2, r3, r4 and s1, s2, s3, s4; see also eq. (2.13). The use of composites L1 and 
L2 corresponds to performing four simultaneous reflections as follows 

L1 = r4r3r2r1 , L2 = s4s3s2s1 (3.20)

The explicit expressions of the fundamental reflections and examples of induced quivers are 
reported in appendix I. The second feature is that the Mn mutation matrices involved in (3.19)
obey the following cyclic relations,

M12 = Iid , M6 = −Iid

Mn+12 = Mn , Mn+6 = −Mn
(3.21)

To get the BPS states of the strong chamber, it is enough to compute the expressions of the 
mutation matrices (3.19); the rows of these matrices give the EM charges of the BPS states of the 
Q

D4
stg strong chamber. Let us show how this works in practice by computing the leading Mn’s; 

for n = 1 we have M1 = L1; acting by this matrix on the vector υ0 with BPS states as in (3.3), 
we obtain a new vector υ1 = M1υ0 with BPS states as follows⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
c1
c2
c3
c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 + c2
b2 + c1 + c3 + c4

b3 + c2
b4 + c2
−c1
−c2
−c3
−c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.22)

The BPS states obtained by mutation can be then read directly on the rows of the M1 mutation 
matrix; we have

−c1, −c2, b1 + c2, b4 + c2
−c3, −c4, b3 + c2, b2 + c1 + c3 + c4

(3.23)

The corresponding BPS quiver is given by Fig. 4. Observe that the M1 mutation has generated 
new eight BPS states; two for each reflection of (3.20). By computing the M2 = L2L1 mutation 
matrix, we have
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Fig. 5. The quiver QSO8
2 having 8 nodes describing 8 new BPS states. Like QSO(8)

0 and QSO8
1 , the quiver QSO(8)

2 has 
also the same two outer-automorphism symmetries.

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 −1 0 0
0 −1 0 0 −1 0 −1 −1
0 0 −1 0 0 −1 0 0
0 0 0 −1 0 −1 0 0
0 1 0 0 0 0 1 1
1 0 1 1 0 2 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.24)

leading to the following set BPS and anti-BPS states 

−b1 − c2 , b2 + c3 + c4 , −b2 − c1 − c3 − c4
−b3 − c2 , b2 + c1 + c4 , b1 + b3 + b4 + 2c2
−b4 − c2 , b2 + c1 + c3

(3.25)

They are located at the eight nodes of the BPS quiver QSO8
2 of Fig. 5. Doing the same thing for 

the mutation matrices M3 = L1M2 and M4 = (M2)
2 as well as for M5 = L1M4; we obtain the 

remaining BPS states of the strong chamber; the other quivers do not bring anything new because 
of the properties (3.21). Therefore the BPS states of the strong coupling chamber of SO(8) are 
given by the following set having 8 × 6 = 48 BPS states with EM charges

±b1 ± (b1 + c2) ± (b1 + b4 + c2)

±b2 ± (b3 + c2) ± (b1 + b3 + c2)

±b3 ± (b4 + c2) ± (b2 + c3 + c4)

±b4 ± (b2 + c1) ± (b3 + b4 + c2)

±c1 ± (b2 + c3) ± (b1 + b3 + b4 + c2)

±c2 ± (b2 + c4) ± (b1 + b3 + b4 + 2c2)

±c3 ± (b2 + c1 + c4) ± (2b2 + c1 + c3 + c4)

±c4 ± (b2 + c1 + c3) ± (b2 + c1 + c3 + c4)

(3.26)

In the basis vectors (3.2), these BPS states are read directly from the row of the following set of 
matrices 

H
SO8
stg = { ±Iid , ±M1, ±M2, ±M3, ±M4, ±M5

}
(3.27)
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Fig. 6. Z2 folding simply laced Dynkin diagram of SO (8) down to non-simply laced Dynkin diagram of SO (7).

This HSO8
stg set forms a finite discrete subgroup of the Coxeter group GSO8

stg ; the cardinality of 
this subgroup is equal to 12; a careful inspection of this finite discrete symmetry shows that is 
isomorphic to the dihedral Dih12 group realised by 8×8 matrices type (3.24) with two generators 
L1 and L2 given by the particular mutations L1 = M1 and L2 = −M5 in the closed chain (3.15).

4. BPS spectra of strong chamber of SO (7)

In this section, we study the BPS states of the strong chamber of the N = 2 QFT4 with SO (7)

gauge symmetry. Our method is based on extending the usual Dynkin diagram folding D4 → B3
of Fig. 6 to the corresponding BPS quivers of N = 2 gauge theories. For the case of pure gauge 
models we are considering here, the quiver folding F bps

D4→B3
map the QD4

stg chamber of SO (8)

model to the QB3
stg chamber of SO (7) model

F
bps
D4→B3

: QD4
stg → Q

B3
stg (4.1)

This particular construction of BPS states of the supersymmetric pure SO (7) gauge model may 
be also viewed as an illustration of general method for constructing BPS states for the family of 
N = 2 QFT4 with SO (2n + 1) gauge symmetry. After building the BPS states of the chamber 
Q

B3
stg , we derive the relationship between the mutation subgroup HSO8

stg and its homologue HSO7
stg ; 

and comment on the link between 48 BPS states of QD4
stg and the obtained 42 ones of QB3

stg

interpreted as 7
8 × 48.

4.1. BPS strong chamber of N = 2 SO(7) theory

Here, we use the BPS strong chamber QD4
stg of the supersymmetric pure SO(8) theory to 

study the BPS states of the strongly coupled chamber of the 4d N = 2 pure SO(7) gauge theory 
by using a folding quiver method; thanks to the Z2 automorphism of the BPS quiver QSO8

0
inherited from the Z2 automorphism of the DD of the Lie algebra of the SO(8) gauge symmetry 
as exhibited by Fig. 6.

To start, recall that the Dynkin diagram of the B3 Lie algebra can be obtained by folding two 
nodes of the D4 Dynkin as shown in Fig. 6. To derive the F bps

D4→B3
of (4.1), it is interesting to 

first derive the explicit expression of the folding operator fD4→B3 mapping D4 diagram to the B3
one; then turn after to extend this construction to the case of BPS quivers of the corresponding 
4d N = 2 gauge theories. 

4.1.1. Building the folding operator fD4→B3

We begin by noticing that Dynkin diagrams Dg of finite dimensional Lie algebras g are char-
acterised by intersection of simple roots �ai precisely given by their Cartan matrices Kg = �ai.�αν

j . 
Therefore, to describe the folding of the D4 Dynkin diagram down to the B3 Dynkin one, we 
start from the four �a1, �a2, �a3, �a4 simple roots of the D4 Lie algebra with intersection matrix as in 
(3.5); and look for the appropriate manner to reach the simple roots of B3. To have more insight 
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into the fD4→B3 folding operator, we also use the canonical basis {�e1, �e2, �e3, �e4} of the real 4-dim 
space R4 in terms of which the four simple roots of D4 decompose as follows [45]

�a1 = �e1 − �e2 , �a2 = �e2 − �e3 , �a3 = �e3 − �e4 , �a4 = �e3 + �e4 (4.2)

having norms �ai.�ai = 2 and intersections as in (3.5). To get the structure of the folding mapping 
between the Dynkin diagrams DD4 and DB3 ; we have to find the way to map the 4×4 Cartan 
matrix KD4 to the 3×3 Cartan matrix KB3 ; that is working out the appropriate rectangular 3 × 4
matrix f such that 

KB3 .f = f.KD4 (4.3)

Multiplying this constraint relation from the right side first by fT , we can bring it to the form 
KB3X = f.KD4 fT with 3×3 matrix X = (

ffT
)

and detX �= 0; then by X−1, we end with follow-
ing relation between the two Cartan matrices 

KB3 = f.KD4 .f̃ (4.4)

where we have set f̃ = f
T (

ffT
)−1

. Notice that f and f̃ are related by the property f.f̃ = I3×3; 
notice also that f̃ is not uniquely defined since for any non-zero rectangular 4×3 matrix h with 
det(fh) �= 0, the expression h (fh)−1 is also a candidate for f̃; this feature was expected since 
folding is a projection; this arbitrariness doesn’t affect the result. The mapping f is explicitly 
obtained by working out the link between the four �a1, �a2, �a3, �a4 simple roots of D4 and the three 
simple roots of B3 that we denote as �α1, �α2, �α3. Recall that for the B3 Lie algebra, we have two 
kinds of simple roots; the �α1, �α2 having a norm equal to 2, and the �α3 having norm equal to one. 
In terms of these �αi ’s, the Cartan matrix K (B3)ij is then non-symmetric as shown on the general 
expression 2

�αj .�αj
�αi.�αj ; its entries are as follows

K (B3) =
⎛
⎝ 2 −1 0

−1 2 −2
0 −1 2

⎞
⎠ (4.5)

Using the first three canonical basis vectors �e1, �e2, �e3, generating a hyperplane P3 in R4 , the 
simple �αi ’s can be expressed like �α1 = �e1 − �e2, �α2 = �e2 − �e3 and �α3 = �e3; the three �αi ’s are 
related to the four previous �ai ’s by restrictions to P3; the folding mapping fD4→B3 between the 
two sets of simple roots is a projection that read explicitly as follows 

�α1 = �a1 , �α2 = �a2 , �α3 = 1

2
(�a3 + �a4) (4.6)

From these relations we learn the matrix f describing the folding fD4→B3 ; by help of the expres-

sion f̃ = f
T
. 
(
ffT

)−1
satisfying the remarkable f.f̃ = I3×3, we have 

f =
⎛
⎝1 0 0 0

0 1 0 0
0 0 1

2
1
2

⎞
⎠ , f̃ =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎠ (4.7)

As a check of validity of these expressions, substitute (4.7) into (4.4) with Cartan matrix KD4 as 
in (3.5), we have 
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Fig. 7. The primitive BPS quivers QSO7
0 ; in addition to usual vertical and horizontal links of ADE type gauge symmetries, 

we also have a diagonal link; this property is related to the fact that Cartan matrix of so(7) is non-symmetric; it is also 
related to the existence of two kinds of simple root lengths.

KB3 =
⎛
⎝1 0 0 0

0 1 0 0
0 0 1

2
1
2

⎞
⎠

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎠ (4.8)

leading exactly to the KB3 expression given by (4.5).

4.1.2. Primitive QSO7
0 as folded QSO8

0
To build the full set of BPS states of the 4d N = 2 pure SO(7) gauge theory, we proceed as in 

the case of the SO(8) model; this method requires the knowledge of the primitive quiver QSO7
0

and the two generators of the mutation group HSO7
stg . While QSO7

0 is obtained in same manner 

as in SO (8) gauge theory, the set HSO7
stg generating the other QSO7

n ’s is unknown and has to be 
determined; this will be done by extending the folding method the Dynkin diagram of D4 into 
the B3 one. As we will show in a moment, the HSO7

stg is intimately related to HSO8
stg ; it has two 

generators L1, L2 related to the L1, L2 generators of HSO8
stg like 

L1 = FL1F̃ , L2 = FL2F̃ (4.9)

where F and F̃ are extensions of the folding operators f, f̃ of eqs. (4.4)–(4.7); the exact relations 
will be given later on; see eqs. (4.15) to fix ideas.

• Folding operator F

We start from the primitive quiver QSO7
0 made of the EM charges of the three monopoles 

β1, β2, β3 and three dyons δ1, δ2, δ3; these charge-vectors read in terms of the three simple roots 
�αi and co-roots �αν

i = 2
�α2
i

�αi as follows 

βi =
( �0

�αν
i

)
, δi =

( �αi

−�αν
i

)
(4.10)

with intersection matrix ASO7
0 = υ

SO7
0 ◦ (υ

SO7
0 )T , representing the primitive QSO7

0 quiver given 
by Fig. 7, like 

ASO7
0 =

(
βi ◦ βj βi ◦ δj

δi ◦ βj δi ◦ δj

)
=

(
0 −KT

B3

KB3 KT
B3

− KB3

)
⊗ I6 (4.11)

where KB3 is as in (4.5). In our approach, we think of this intersection ASO7
0 matrix as equal to 

the intersection matrix obtained by folding the ASO8
0 matrix of the QSO8

0 quiver (3.4). In other 
words, we have
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υ
SO7
0 = F.υ

SO8
0 , ASO7

0 = FASO8
0 FT (4.12)

where the folding rectangular 6×8 matrix F and its transpose are as follows 

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 − 1

2 − 1
2 0 0 1

2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, F T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 − 1

2
0 0 1 0 0 − 1

2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
0 0 0 0 0 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.13)

For later use we also need F̃ = F
T (

FF T
)−1

obeying the property3 FF̃ = I and which is given 
by 

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

2 0 0 0
0 0 1

2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1

2 0 0 1
0 0 1

2 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.14)

In terms of the matrices f and f̃ of eqs. (4.7), used in the folding of Dynkin diagram D4 to the 
Dynkin diagram of B3, the above F and F̃ read as follows

F =
(

f̃T 0

f − f̃
T

f

)
, F̃ =

(
fT 0

f̃ − fT f̃

)
(4.15)

With these tools at hand, we can now build mutated BPS quivers QSO7
n by applying mutations 

to the primitive quiver QSO7
0 by following the same method done for the BPS strong chamber 

of the SO (8) gauge theory. Let us study how this works by constructing the two leading quivers 
Q

SO7
1 and QSO7

2 characterised by the intersection matrices ASO7
1 and ASO7

2 respectively.

• Building Q
SO7
1

By using the intersection matrix ASO7
1 that represents the QSO7

1 quiver, the mutation mapping 
Q

SO7
0 into QSO7

1 reads as 

ASO7
1 = N1ASO7

0 NT
1 (4.16)

where N1 is a particular mutation matrix belonging to HSO7
stg and whose explicit expression is not 

yet known; its form is obtained by applying the folding method to both sides of above relation. By 

3 Notice that F̃ is not uniquely defined since, like for folding Dynkin diagrams, for any non-zero H with non-singular

(FH )−1, the expressions H (FH )−1 are candidates for F̃ .
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substituting ASO7
0 by eq. (4.12) and the ASO7

1 by its folded expression descending from SO (8)

theory namely ASO7
1 = FASO8

1 F T , we can rewrite (4.16) into the form

FASO8
1 F T = (N1F )ASO8

0 (N1F )T (4.17)

Then by using the mutation eq. (3.18), in particular ASO8
1 = M1ASO8

0 MT
1 , we obtain the relation 

N1F = FM1 from which we determine N1 = FM1F̃ . Substituting M1 = L1, we learn that N1

is also equal to L1 = FL1F̃ as anticipated by eq. (4.9); it is one of the two generators of HSO7
stg

with matrix representation

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 1 1 0 2
0 0 1 0 2 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 −1 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.18)

from which we can learn directly the 6 BPS states making the QSO7
1 quiver; these states will be 

written down later on.

• Building Q
SO7
2

Doing the same thing for the intersection matrix ASO7
2 that represent the QSO7

2 quiver, the 
mutation mapping QSO7

0 into QSO7
2 reads as 

ASO7
2 = N2ASO7

0 NT
2 (4.19)

where N2 is a mutation matrix belonging to HSO7
stg ; straightforward calculations show that N2 is 

given by the product of two matrices like L2L1 with L1 as in (4.18) and L2 precisely the second 
generator of HSO7

stg which is related to the L2 generator of HSO8
stg like L2 = FL2F̃ and whose 

expression reads as follows

L2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.20)

From this matrix we can also learn directly the 6 BPS states making the QSO7
2 quiver; they will 

be given in the next subsection.

4.2. Building the BPS strong chamber QB3
stg

In subsection 4.1, we showed that the strong chamber QD4
stg of the 4d N = 2 supersymmetric 

pure SO (8) gauge theory has 48 BPS states as listed on eq. (3.26). Here, we derive the BPS 
states content of the strong chamber QB3

stg of the 4d N = 2 pure SO (8) theory by using folding 

method. We show that the number of BPS states NB3
bps of the strong chamber of the SO (7) gauge 

theory is given by 
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7

8
N

D4
bps = 42 �= 36 (4.21)

it is different from the expected 36 BPS states following from the heuristic extension of the 
ADE-type relation (3.1).

To that purpose, we first describe the finite mutation group HSO7
stg of the strong chamber; then 

we turn to construct the BPS state content of QB3
stg.

4.2.1. Mutation group HSO7
stg

This is a finite discrete group having two generators L1 and L2 with 6×6 matrix representation 
given by eqs. (4.18)–(4.20). These generators have been induced from their homologue L1 and 
L2 generating particular mutations of primitive QSO8

0 quiver of the strong chamber of 4d N = 2

pure SO (8) gauge theory. Recall that L1 and L2 generate HSO8
stg and are realised in terms of 8×8 

matrices as in eqs. (3.16)–(3.17). The relations (4.9) and the 6×6 matrix representation of L1 and 
L2 as well as the 8×8 matrix representation of L1 and L2 let understand that HSO7

stg and HSO8
stg

are intimately related; they are two different representations of same group which turns out to be 
nothing but the dihedral group Dih12. The link between the L1, L2 of the SO (7) theory and the 
L1, L2 involved in SO (8) model is given by the transformation 

Li = FLiF̃ (4.22)

with F standing for the extended folding matrix (4.15) and F̃ is such that FF̃ = I6×6. This link 
teaches us two useful information: (i) it tells us that L1, L2 are the generators of HSO7

stg ; any 
element of this mutation symmetry is given by products of L1 and L2. (ii) It tells us also that the 
relationships (4.9) between the Li ’s and the Li ’s are in fact particular relations valid for all Mn

mutations of the HSO8
stg given by (3.27). In other words, the Nn mutations of HSO7

stg are related 

to the twelve Mn’s of HSO8
stg in the same manner as the Li’s are related to the Li’s; so we have 

Nn = FMnF̃ with

N2k+1 = L1N2k , N2k = (L2L1)
k (4.23)

satisfying the properties 

N12 = Iid , N6 = −Iid

Nn+12 = Nn , Nn+6 = −Nn
(4.24)

Therefore the finite discrete group HSO7
stg is given by the set

H
SO7
stg = { ±Iid , ±N1, ±N2, ±N3, ±N4, ±N5

} � Dih12 (4.25)

From this description, we learn that HSO7
stg and HSO8

stg are just two different matrix representations 
of the dihedral Dih12.

4.2.2. BPS states of QB3
stg

The full set of BPS states of the strong chamber of the 4d supersymmetric pure SO(7) gauge 
theory is determined by quiver mutation method permitting to generate all possible quivers by 
starting from the primitive quiver QSO7

0 and acting on it by mutations of HSO7
stg . In this way one 

obtains several BPS quivers QSO7
n from which we read the BPS states. Because of the properties 
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Fig. 8. The BPS quiver QSO7
1 obtained by mutation of primitive QSO7

0 by acting by L1.

(3.21), the following six leading quivers are enough to get the full list of the BPS states of the 
strong chamber of the 4d supersymmetric pure SO(7) gauge theory 

Q
SO7
0 , Q

SO7
1 , Q

SO7
2 , Q

SO7
3 , Q

SO7
4 , Q

SO7
5 (4.26)

Let us describe the BPS states of these quivers with some details. From the primitive quiver 
Q

SO7
0 , we have six BPS states; these are the three monopoles β1, β2, β3, and three dyons δ1, δ2, δ3

with electric–magnetic charges as in (4.10). The quiver QSO7
1 gives six new BPS states and are 

as follows

−δ1 , β1 + δ2 , −β3 − δ3 − δ2
−δ2 , β3 + 2δ2 , β2 + β3 + δ1 + 2δ3

(4.27)

They are located at the nodes of the graph of QSO7
1 of Fig. 8. They are obtained by acting on 

υT
0 = (β1, β2, β3; δ1, δ2, δ3) by the mutation transformation L1 like⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 1 1 0 2
0 0 1 0 2 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 −1 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

β1
β2
β3
δ1
δ2
δ3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

β1 + δ2
β2 + β3 + δ1 + 2δ3

β3 + 2δ2
−δ1
−δ2

−β3 − δ2 − δ3

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.28)

they can be also read directly on the rows of the L1 matrix generator. Notice that from the view 
of the full GSO7

stg mutation group, the L1 is a composite transformation with three fundamental 
reflections like L1 = r3r2r1 with

r1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, r2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.29)

and

r3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 0 0 2
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.30)
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Each ri reflection generates a BPS quiver with two new BPS states; the simultaneous reflections 
generated by L1 = r3r2r1 on QSO7

0 give the quiver QSO7
1 having 3 ×2 = 6 BPS states. Using this 

way of doing, we find that the BPS states coming from QSO7
n quivers can be read from the rows 

of the mutation group elements Nn given by eqs. (4.24). For example, the BPS states resulting 
from QSO7

2 are read on the mutation matrix N2 = L2L1; we have

N2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 −1 0
0 −1 −1 −1 0 −2
0 0 −1 0 −2 0
0 1 1 0 0 2
1 0 1 0 2 0
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.31)

it generates the following six new BPS states from the primitive ones

−β1 − δ2 β2 + β3 + 2δ3
−β2 − β3 − δ1 − 2δ3 β1 + β3 + 2δ2
−β3 − 2δ2 β2 + β3 + δ1 + δ2 + δ3

(4.32)

Similarly, the remaining BPS states come from the QSO7
3 , QSO7

4 and QSO7
5 quivers; they are read 

on the rows of the matrix mutations N3 = L1L2L1, N4 = (L2L1)
2 and N5 = L (L2L1)

2. The 
resulting full set of BPS states of the strong coupling chamber of the SO(7) gauge theory reads 
therefore as follows

±β1 ±(β2 + δ1) ±(2β2 + β3 + δ1 + 2δ3)

±β2 ±(β3 + δ2) ±(β2 + β3 + δ1 + δ2 + δ3)

±β3 ±(β3 + 2δ2) ±(2β1 + β3 + 2δ2)

±δ1 ±(β1 + β3 + δ2) ±(β2 + β3 + 2δ3)

±δ2 ±(β2 + β3 + δ3) ±(β2 + β3 + δ1 + 2δ3)

±δ3 ± (β3 + δ2 + δ3) ±(β1 + β2 + β3 + δ2 + δ3)

±(β1 + δ2) ±(β1 + β3 + 2δ2) ±(β1 + β2 + β3 + δ1 + δ2 + δ3)

(4.33)

There are 6 × 7 = 42 BPS states in QB3
stg versus the 6 × 8 = 48 BPS states in QD4

stg ; the folding 
has projected out 1

6 BPS states.

5. BPS strong chamber of N = 2 SP (4,RRR) theory

In this section, we build the BPS spectrum of the chamber of the 4d N = 2 supersymmet-
ric SP (4,R) gauge theory. To that purpose, we use the folding quiver method relating BPS 
quivers QSU4

n of the N = 2 SU (4) gauge model to BPS quiver homologue QSP4
n of the su-

persymmetric SP (4,R) theory. This construction extends the usual folding method linking the 
Dynkin diagrams DA3 and DC2 of the simply laced A3 and the non-simply laced C2 Lie algebras 
respectively [45,49,50].

5.1. BPS chamber QA3
stg

Here we review the main lines of the derivation of the BPS states of the strong chamber QA3
stg

of the 4d N = 2 supersymmetric pure SU (4) gauge theory; and describe the mutation set GSU4
stg
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generated by 3+3 reflections r1, r2, r3, s1, s2, s3; especially its subgroup HSU4
stg generated by 

L1 = r3r2r1 and L2 = s3s2s1 [3]. These tools are needed for determining the BPS states of the 
strong chamber QC2

stg of the 4d N = 2 supersymmetric pure SP (4,R) gauge theory.

5.1.1. BPS quivers QSU4
0 and QSU4

1

In the 4d N = 2 SU (4) gauge theory, the primitive quiver QSU4
0 of the strongly coupled 

chamber QA3
stg is made of the 3 elementary monopoles {b1, b2, b3} and the 3 elementary dyons 

{c1, c2, c3} as depicted in Fig. 1. The electric–magnetic charges of the bi monopoles and the ci

dyons are expressed in terms of the three �a1, �a2, �a3 simple roots of the A3 Lie algebra as follows 

bi =
( �0

�ai

)
, ci =

( �ai

−�ai

)
(5.1)

These EM charge vectors are thought of in terms of 6 nodes of the primitive BPS quiver QSU4
0

whose properties may be represented by the EM charge vector υT
0 = (b1, b2, b3; c1, c2, c3) and, 

using Dirac pairing, by the intersection matrix4

ASU4
0 =

(
0 −K

K 0

)
⊗ I6 (5.2)

with Kij is the usual 3×3 Cartan matrix �ai.�aj of the A3 Lie algebra given by 

KA3 =
⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠ (5.3)

Substituting, we have

ASU4
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2
2 −1 0 0 0 0

−1 2 −1 0 0 0
0 −1 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.4)

Under simultaneous reflection L1 = r3r2r1 of the EM charges of the three dyons, the primitive 
BPS quiver QSU4

0 gets mapped to the mutated quiver QSU4
1 whose new BPS states have the 

EM charge vector υT
1 = (c2 + b1, c1 + c3 + b2, c2 + b3;−c1,−c2,−c3). The intersection matrix 

ASU4
1 associated with QSU4

1 is equal to M1ASU4
0 MT

1 where the transformation M1 is a 6×6 
mutation matrix given by 

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.5)

4 In what follows we shall hide the factor ⊗I6.
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Fig. 9. The mutated quiver QSU4
1 having 6 nodes describing BPS states and a Z2 outer-automorphism symmetry fixing 

the two central nodes and exchanging the external ones.

where, for convenience, we have set M1 = L1. This matrix L1 is one of two matrix generators 
of HSU4

stg . Notice that the primitive quiver QSU4
0 has 6 BPS states; by performing the mutation by 

L1, we obtain 6 new BPS states making QSU4
1 given by Fig. 9 having a Z2 outer-automorphism 

symmetry inherited from the Dynkin diagram of SU (4); these BPS states are as follows 

Q
SU4
0 :

b1 , c1
b2 , c2
b3 , c3

; Q
SU4
1 :

c2 + b1 , −c1
c1 + c3 + b2 , −c2
c2 + b3 , −c3

(5.6)

The remaining BPS states of QA3
stg are derived in a similar manner as in the case of SO (8)

model described in section 3; they are obtained by acting on QSU4
1 by the generator L2 and re-

peating the mutations of HSU4
stg until reaching QSU4

0 ; some steps of this construction are described 
in what follows.

5.1.2. BPS states of chamber QA3
stg

The set of BPS states of the strong chamber QA3
stg of the 4d N = 2 supersymmetric SU (4)

gauge theory has 24 = 2 ×12 BPS states; they include the ones given by (5.6), and are as follows

±b1 ±c1 ±(b1 + c2) ±(b2 + c1)

±b2 ±c2 ±(b2 + c1 + c3) ±(b2 + c3)

±b3 ±c3 ±(b3 + c2) ±(b1 + b3 + c2)

(5.7)

A way to obtain this set is to start from the primitive quiver QSU4
0 of Fig. 1, and apply mutations. 

As done in section 3, it turns out that the subset HSU4
stg of the quiver mutations set GSU4

stg is enough 

to generate the spectrum (5.7). It happens also that HSU4
stg is nothing but the 6×6 matrix repre-

sentation of the dihedral group Dih8 with two non-commuting matrix generators L1 and L2; the 
first L1 is as in (5.5) and the second is as follows 

L2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.8)

These matrix generators obey the property (L2L1)
4 = I6×6; using the same notations as in sec-

tion 3 by setting M2k = (L2L1)
k and M2k+1 = L1M2k , the mutations of HSU4

stg are given by 

H
SU4
stg = {

Iid , M1, M2, M3, M4, M5, M6, M7
}

(5.9)
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Fig. 10. The quiver QSU4
2 having 6 nodes describing BPS states and a Z2 outer-automorphism symmetry fixing the two 

central nodes and exchanging the external ones.

with the “cyclic” property

M4+n = M4Mn (5.10)

These seven Mn mutations allow to build the corresponding mutated quivers QSU4
n from which 

we read the 24 BPS states of the strong chamber of this theory. Let us briefly describe the deriva-
tion of these states; the primitive quiver QSU4

0 has 6 BPS states; by performing the mutation by 
L1, we obtain 6 new BPS states making QSU4

1 ; they are as in eqs. (5.6). The quiver QSU4
2 is 

obtained by applying the M2 mutation on the primitive quiver QSU4
0 ; and the quiver QSU4

3 is 
obtained by applying the M3 mutation on the primitive QSU4

0 and so on. Similar calculations as 

done for QSU4
1 give the other remaining BPS quivers; they lead to the following 24 BPS states

Q
SU4
2 :

−c2 − b1 , c3 + b2
−c1 − c3 − b2 , c2 + b1 + b3
−c2 − b3 , c1 + b2

; Q
SU4
3 :

b3 , −c3 − b2
b2 , −c2 − b1 − b3
b1 , −c1 − b2

Q
SU4
4 :

−b3 , −c3
−b2 , −c2
−b1 , −c1

; Q
SU4
5 :

−c2 − b3 , c3
−c1 − c3 − b2 , c2
−c2 − b1 , c1

Q
SU4
6 :

c2 + b3 , −c1 − b2
c1 + c3 + b2 , −c2 − b1 − b3
c2 + b1 , −c3 − b2

; Q
SU4
7 :

−b1 , c1 + b2
−b2 , c2 + b1 + b3
−b3 , c3 + b2

(5.11)

The graph representing the quiver QSU4
2 is given by Fig. 10; it has a Z2 outer-automorphism 

symmetry. 

5.2. BPS chamber QC2
stg

In this subsection, we construct the BPS states of the strong chamber QC2
stg of the supersym-

metric pure SP(4, R) gauge theory by extending the idea of folding method for building the 
Dynkin diagram of the non-simply laced Lie algebras C2 out of the DD of A3. This extension 
is because BPS quivers of N = 2 supersymmetric pure SU (4) gauge theory has a Z2 outer-
automorphism symmetry. Recall that the non-simply laced Dynkin diagram of C2 symplectic 
Lie algebra can be obtained by folding two nodes of the simply laced A3 Dynkin diagram as 
shown in Fig. 11. To that purpose, we begin by constructing the folding operator fA →C which 
3 2
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Fig. 11. Folding simply laced Dynkin diagram of SU (4) down to non-simply laced Dynkin diagram of SP (4).

maps A3 Dynkin diagram to the C2 Dynkin one; then we extend this construction the case of 
BPS quivers of the corresponding 4d N = 2 pure SP(4, R) gauge theory.

5.2.1. Folding operator fA3→C2

To describe the folding of the A3 Dynkin diagram down to the C2 one, we start from the three 
�a1, �a2, �a3 simple roots of the A3 Lie algebra; and look for reaching the two �α1, �α2 simple roots 
of the C2 Lie algebra. In terms of the canonical basis {�e1, �e2, �e3} of the real 3-dim space R4, the 
three simple roots of A3 decompose as

�a1 = �e1 − �e2 , �a2 = �e2 − �e3 , �a3 = �e3 − �e4 (5.12)

with �ai.�ai = 2 and intersections given by the Cartan matrix KA3 (5.3). The simple roots of C2

of the Lie algebra are realised in quite similar manner like �α1 = �e′
1 − �e′

2, �α2 = 2�e′
2 with Cartan 

matrix KC3 = 2
�α2
j

�αi.�αj given by 

KC2 =
(

2 −1
−2 2

)
(5.13)

But here we will use the realisation following from the folding of the A3 Dynkin diagram namely
[49,50],

�α1 = 1

2
(�a1 + �a3) , �α2 = �a2 (5.14)

Applying the same method as done in subsection 4.2.1, the folding operator fA3→C2 (for short f), 
mapping the Dynkin diagram DA3 to the DC2 one, may be defined as a link between the two 
Cartan matrices as follows 

KC2 = f.KA3 .f̃ (5.15)

where f̃ is such that f.f̃ = I3×3; it is related to the transpose of the folding matrix like 

f̃ = f
T
. 
(
ffT

)−1
; see eqs. (4.4) for the derivation of this relation. Straightforward calculations 

lead to the following rectangular matrices 

f =
(

1
2 0 1

2
0 1 0

)
, f̃ =

⎛
⎝1 0

0 1
1 0

⎞
⎠ (5.16)

By substituting KA3 by its expression (5.3) and using above relations, we have

KC2 =
(

1
2 0 1

2
0 1 0

)⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠

⎛
⎝1 0

0 1
1 0

⎞
⎠ (5.17)

which is precisely the Cartan matrix KC given by eq. (5.13).
2
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5.2.2. Folding quiver map and HSP4
stg symmetry

To build the set of BPS states of the 4d N = 2 supersymmetric pure SP(4, R) gauge theory, 
we extend the folding method between the Dynkin diagrams DA3 and DC2 to the corresponding 
BPS quivers; thanks to the Z2 outer-automorphism of the primitive QSU4

0 which is inherited from 
the Dynkin diagram of A3 Lie algebra. First, we construct the folding quiver mapping F ; then 
we use it to build the BPS quivers of the QC2

stg strong chamber as well the HSP4
stg mutation subset.

• Folding quiver operator
To construct the folding quiver operator F mapping the primitive quiver QSU4

0 of Fig. 1 into 
the primitive QSP4

0 of Fig. 2, we consider their respective matrix representatives ASU4
0 of eq. (5.2)

and ASP4
0 given by 

ASP4
0 =

(
0 −KT

C2

KC2 KT
C2

− KC2

)
⊗ I4 (5.18)

In the folding BPS quiver approach, the intersection matrix ASP4
0 is identified with intersection 

matrix FASU4
0 F T following from the folding of primitive quiver QSU4

0 of the N = 2 SU(4)

theory. Put differently, we require the identification

ASP4
0 = FASU4

0 F T (5.19)

The rectangular 4×6 matrix F encodes the folding operator of QSU4
0 down to QSP4

0 ; it is obtained 
by solving the constraint relation (5.19). These F and F T folding quiver operators as well as their 
partner F̃ = F T . 

(
FF T

)−1
obeying the property FF̃ = I4×4 are related to those f and f̃ used in 

linking Dynkin DA3 and DC2 diagrams as follows 

F =
(

f̃T 0

f − f̃
T

f

)
, F̃ =

(
fT 0

f̃ − fT f̃

)
(5.20)

Their explicit forms are given by

F =

⎛
⎜⎜⎝

1 0 1 0 0 0
0 1 0 0 0 0

− 1
2 0 − 1

2
1
2 0 1

2
0 0 0 0 1 0

⎞
⎟⎟⎠ , F T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 − 1
2 0

0 1 0 0
1 0 − 1

2 0
0 0 1

2 0
0 0 0 1
0 0 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.21)

and

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0
0 1 0 0
1
2 0 0 0
1
2 0 1 0
0 0 0 1
1
2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.22)

To test the validity of these relations, we substitute the above quantities back into ASP4
0 =

FASU4F T of eq. (5.19), we obtain the following intersection matrix of the primitive QSP4 quiver
0 0
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ASP4
0 =

⎛
⎜⎜⎝

1 0 1 0 0 0
0 1 0 0 0 0

− 1
2 0 − 1

2
1
2 0 1

2
0 0 0 0 1 0

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2
2 −1 0 0 0 0

−1 2 −1 0 0 0
0 −1 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 − 1
2 0

0 1 0 0
1 0 − 1

2 0
0 0 1

2 0
0 0 0 1
0 0 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

which coincides exactly with the ASP4
0 given by eq. (2.12).

• The mutation subgroup H
SP4
stg

The set HSP4
stg is a particular subgroup of the set of mutations of the BPS quivers of the strong 

chamber GSP4
stg described in appendix I. It has two non-commuting generators L1, L2 related to 

the L1, L2 generators of HSU4
stg like

L1 = FL1F̃ , L2 = FL2F̃ (5.23)

where F and F̃ are as in eqs. (5.20)–(5.21). Substituting L1 and L2 by their expressions 
(5.5)–(5.8), the above relations give

L1 =

⎛
⎜⎜⎝

1 0 0 2
1 1 2 0

−1 0 −1 −1
0 0 0 −1

⎞
⎟⎟⎠ , L2 =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
1 1 1 0
1 0 0 1

⎞
⎟⎟⎠ (5.24)

obeying the property L2
1 = L2

2 = I4×4. Using the same notations as in section 4 by setting 
N2k = (L2L1)

k and N2k+1 = L1N2k , the mutations Nn of the set HSP4
stg are related to those 

transformations of the QA3
stg strong chamber like Nn = FMnF̃ ; so we have 

H
SP(4)
strong = {

Iid , N1, N2, N3, N4, N5, N6, N7
}

(5.25)

with the remarkable properties N4 = −Iid and Nn+4 = −Nn. These Nn mutations allow to 
build the corresponding mutated quivers QSU4

n from which we read the 24 BPS states of the 
strong chamber of this theory.

5.2.3. BPS spectrum of QC2
stg

The obtained 20 BPS states of the strong chamber QC2
stg of the 4d N = 2 pure SP(4, R) gauge 

theory are collected in the following table

±β1 ± (β1 + 2δ2) ±(β1 + β2 + 2δ1)

±δ1 ± (β1 + δ2) ± (β1 + β2 + δ1 + δ2)

±β2 ± (β1 + δ1 + δ2)

±δ2 ± (β1 + β2 + δ1)

(5.26)

They are derived by applying the mutation operators on the primitive quiver QSP4
0 ; by following 

the same method as in unfolded SU(4) theory; we find
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Fig. 12. The quiver Q
SP4
1 having 4 nodes describing BPS states.

Q
SP4
1 :

{
β1 + 2δ2 , −β1 − δ1 − δ2
β1 + β2 + 2δ1 , −δ2

Q
SP4
2 :

{ −β1 − 2δ2 , β1 + β2 + δ1 + δ2
−β1 − β2 − 2δ1 , β1 + δ2

Q
SP4
3 :

{
β1 , −β1 − β2 − δ1
β2 , −β1 − δ2

Q
SP4
4 :

{ −β1 , −δ1
−β2 , −δ2

(5.27)

The graph of QSP4
1 is given by Fig. 12. 

In the end, we notice that the mutation groups HSU4
stg and HSP4

stg are two different representa-
tions of the dihedral Dih8 group. Notice also that the 20 BPS states are precisely given by the 
number

2 × dimSP (4) (5.28)

which is equal to 5
6N

SU4
bps . By using the group homomorphisms SP (4) � SO (5) and SU (4) �

SO (6); it follows that the number of BPS and anti-BPS states of the QB2
stg chamber is 5

6 of 

the QD3
stg chamber where D3 refers to so (6). This property can be compared with the number 

2 × dimSO (7) obtained in section 4 where the number of the BPS states of QB3
stg chamber is 7

8

time the number of BPS states of the QD4
stg chamber. With these two results it seems natural to 

conjecture that the number NSO2r−1
bps BPS states of the strong QBr−1

stg chamber is 2r−1
2r

times the 

number NSO2r

bps of BPS states of the QDr
stg chamber; in other words we have the following relation 

between the two numbers of BPS states 

N
SO2r−1
bps = 2r − 1

2r
N

SO2r

bps (5.29)

for finite dimensional Lie algebra Br series with rank r ≥ 3.

6. Conclusion

In this paper, we have developed the basis of a method to study the BPS states of 4d N = 2
supersymmetric gauge theories with non-simply laced type gauge invariance. To obtain the set 
of these BPS states for non-simply laced type gauge symmetries, we have taken advantage of 
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three helpful things: (i) known results on BPS spectra of 4d N = 2 QFT with ADE type gauge 
symmetries; (ii) the folding link between ADE and BCFG Dynkin diagrams; and (iii) outer-
automorphisms of the BPS quivers QG

n of ADE type; these outer-automorphisms are inherited 
from the corresponding ADE Dynkin diagrams. To illustrate the approach, we have considered 
in present study the explicit construction of the BPS states of the strong chamber of two par-
ticular N = 2 models namely the supersymmetric pure SO (7,R) and SP (4,R) gauge theories. 
To derive the BPS spectra of these typical models, we have developed a quiver folding method
extending the usual folding of simply laced Dynkin diagrams to obtain non-simply laced Dynkin 
graphs. This quiver folding approach has taught us an interesting feature which, to our knowl-
edge, was unknown before; the particular quiver mutation sets HSO7

stg given by eq. (4.25) and 

H
SO8
strg of eq. (3.27) respectively generating BPS states in the strong chambers QSO7

stg and QSO8
stg

are in fact intimately related quiver mutation symmetry groups; they are just two different rep-
resentations of the dihedral group Dih12. The same result has been found to be valid for the 
mutation sets HSP4

stg given by eq. (5.25) and HSU4
stg of eq. (5.9) generating BPS states in the cor-

responding chambers QSP4
stg and QSU4

stg ; here also the two mutation groups HSP4
stg and HSU4

stg are 
two different representations of the dihedral group Dih8; we suspect that this feature is a general 
property that holds for mutation sets HSO2n−1

stg and HSO2n
stg as well as for those N = 2 supersym-

metric theories with exceptional F4 and G2 gauge symmetries. Recall that the Dynkin diagram 
of SO (7,R) can be obtained by folding the Dynkin diagram of SO (8,R) as in Fig. 6; and the 
Dynkin diagram of SP (4,R) is obtained by folding the Dynkin diagram of SU (4) like in Fig. 11. 
Using these graph relationships, and knowing the BPS spectra of the strong chamber of N = 2
pure SO (8,R) and SU (4) gauge models, we have derived those BPS spectra of the correspond-
ing SO (7,R) and SP (4,R) models by help of the quiver folding method; we have found that for 
the non-simply laced SO (7,R) and SP (4,R) gauge symmetries, the number of BPS states of the 
strong chamber is not given by the ADE-type formula 2(dimG − rankG); but just by 2dimG; 
we suspect that this feature holds for all supersymmetric models with BCFG gauge invariance 
as shown on eq. (5.29) for the SO(2n + 1, R) series; but a refined analysis is still needed be-
fore a final answer. The next step in this study aims to extend the construction done for N = 2
pure SO (7,R) and SP (4,R) gauge models to the general supersymmetric gauge theories; in 
particular to the study of 4d N = 2 theories with non-simply laced exceptional F4 and G2 gauge 
symmetries; and also to the building of the weak coupling chambers. Progress in these directions 
will be reported in a future occasion.

7. Appendices

In this section, we give three appendices where we report some technical details, first on the 
set of quiver mutations and second on the derivation of the folding operator both for Dynkin 
diagrams and BPS quivers.

7.1. Appendix I: mutation set of strong chamber

In this section, we first describe aspects of the quiver mutations for the strong chamber of 
the BPS quiver theory with underlying gauge symmetries given by SU (4) and SP (4,R); then 
we make comments on the extension to those with SO (8) and SO (7) gauge symmetries. Recall 
that the Dynkin diagrams of the Lie algebra of SP (4,R) and SO (7) are respectively obtained by 
folding the Dynkin diagrams of SU (4) and SO (8).
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7.1.1. Quiver mutation set GSU4
stg

The set of quiver mutations of the strong chamber of 4d N = 2 supersymmetric pure SU (4)

gauge model is a group generated by 6 fundamental reflections; say three t1 = r1, t2 = r2, t3 = r3
generators for the dyons in the primitive quiver; and three t4 = s1, t5 = s2, t6 = s3 for monopoles 
partner. These reflections can be realised by 6×6 matrices as follows 

r
su4
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, r
su4
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.1)

and 

r
su4
3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, s
su4
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.2)

as well as

s
su4
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, s
su4
3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.3)

The set of mutations GSU4
stg has a Coxeter group structure generated by the generators ti satisfying 

the following relations 
(
ti tj

)m
SU4
ij = I

SU4
id where mSU4

ij stand for the elements of an integral 6×6 

symmetric matrix MSU4 known as the Coxeter matrix which is given by

MSU4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 3 2
2 1 2 3 2 3
2 2 1 2 3 2
2 3 2 1 2 2
3 2 3 2 1 2
2 3 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.4)

For the particular case mij = 2, the condition 
(
ti tj

)2 = Iid leads as well to ti tj = tj ti . To generate 
the BPS states of the strong chamber of 4d N = 2 supersymmetric pure SU (4) gauge theory, we 
have used the particular subgroup HSU4

stg (2.14) of the Coxeter GSU4
stg ; this subgroup is generated 

by the two composite mutations L1 = r3r2r1 and L2 = s3s2s1 acting as depicted by Figs. 13–14. 
This construction extends straightforwardly to the Coxeter group GSO8

stg of the strong chamber 
4d N = 2 supersymmetric pure SO (8) gauge theory. There, we have 8 reflections realised by 

8×8 matrices obeying 
(
ti tj

)m
SO8
ij = I

SO8 where now the mSO8 ’s are the entries of 8×8 Coxeter 
id ij
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Fig. 13. BPS quiver QSU4
1 of the 4d N = 2 pure gauge model with SU (4) gauge invariance after performing three 

successive fundamental reflections L1 = r3r2r1 on QSU4
0 .

Fig. 14. BPS quiver QSU4
2 of the 4d N = 2 pure gauge model with SU (4) gauge invariance after performing three 

successive fundamental reflections L2 = s3s2s1 on QSU4
1 .

matrix MSO8 . The analogue of the subgroup HSU4
stg is given by HSO8

stg ; it has two generators given 

by LSO8
1 = r4r3r2r1 and LSO8

2 = s4s3s2s1. For completeness, the explicit expressions of these 8 
fundamental reflections are given in eqs. (7.9)–(7.11). Notice by the way that SU (4) � SO (6); 
and so the above results can be straightforwardly generalised to the full series of SO (2n) gauge 
symmetries. 

7.1.2. Mutation group GSP4
stg

The set GSP4
stg of mutations of the strong chamber of 4d N = 2 supersymmetric pure SP (4,R)

gauge model is a group generated by 4 reflections: t1 = r1, t2 = r2 generators for the dyons in the 
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primitive quiver; and t3 = s1, t4 = s2 for corresponding monopoles. These reflections are realised 
by 4×4 matrices like

r
sp4
1 =

⎛
⎜⎜⎝

1 0 0 0
1 1 2 0

−1 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , r

sp4
2 =

⎛
⎜⎜⎝

1 0 0 2
0 1 0 0
0 0 1 −1
0 0 0 −1

⎞
⎟⎟⎠ (7.5)

and 

s
sp4
1 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

⎞
⎟⎟⎠ , s

sp4
2 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎠ (7.6)

The set of mutation GSP4
stg has a Coxeter group structure with generators ti satisfying 

(
ti tj

)m
SP4
ij =

ISP4 where the mSP4
ij integers are the entries of the Coxeter matrix 

MSP4 =

⎛
⎜⎜⎝

1 2 2 4
2 1 4 2
2 4 1 2
4 2 2 1

⎞
⎟⎟⎠ (7.7)

These reflections are related to the GSU4
stg ones by using Folding matrices F and F̃ obeying FF̃ =

I ; these matrices have been explicitly constructed in section 5 of present study; we have: 

r
sp4
1 = F

(
r
su4
1 r

su4
3

)
F̃

r
sp4
2 = F r

su4
2 F̃

s
sp4
1 = F

(
s
su4
1 s

su4
3

)
F̃

s
sp4
2 = F s

su4
2 F̃

(7.8)

To generate BPS states in the strong chamber of 4d N = 2 supersymmetric pure SP (4,R) gauge 
theory, we have used the two composite mutation operators L1 = r2r1 and L2 = s2s1.

7.1.3. Quiver mutation set GSO8
stg

The set of mutations of the strong chamber of 4d N = 2 supersymmetric pure SO (8) gauge 
model is a group generated by 8 fundamental reflections; say four t1 = r1, t2 = r2, t3 = r3, 
t4 = r4 generators for the dyons in the primitive quiver; and four t5 = s1, t6 = s2, t7 = s3, t8 = s4
for monopoles. These reflections can be realised by 8×8 matrices as follows:

r
so8
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r
so8
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.9)
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r
so8
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r
so8
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.10)

s
so8
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s
so8
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.11)

s
so8
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s
so8
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.12)

The set of quiver mutation GSO8
stg has a Coxeter group structure, with generators satisfying the 

following features 
(
ti tj

)m
SO8
ij = I

SO8
id where mSO8

ij is the elements of the Coxeter 8×8 matrix

MSO8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 2 3 2 2
2 1 2 2 3 2 3 3
2 2 1 2 2 3 2 2
2 2 2 1 2 3 2 2
2 3 2 2 1 2 2 2
3 2 3 3 2 1 2 2
2 3 2 2 2 2 1 2
2 3 2 2 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.13)

To generate BPS states in the strong chamber of the supersymmetric pure SO (8) gauge theory, 
we have used the two composite mutation operators LSO8

1 = r4r3r2r1, LSO8
2 = s4s3s2s1 generat-

ing a subgroup HSO8
stg � Dih12 of the Coxeter GSO8

stg .
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7.1.4. Quiver mutation group GS07
stg

The group GS07
stg of quiver mutations on the strong chamber of 4d N = 2 supersymmetric 

pure SO (7) gauge model is a group generated by 6 fundamental reflections namely t1 = r1, 
t2 = r2, t3 = r3 for dyons in the primitive quiver; and t4 = s1, t5 = s2, t6 = s3 for corresponding 
monopoles. These reflections are realised by 6×6 matrices like

r
so7
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, r
so7
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.14)

and 

r
so7
3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 0 0 2
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, s
so7
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.15)

as well as

s
so7
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, s
so7
3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.16)

The set of quiver mutation GSO7
stg has a Coxeter group structure with group law 

(
ti tj

)m
so7
ij = I

so7
id

where mso7
ij ’s are entries of the Coxeter 6×6 matrix 

Mso7 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 3 2
2 1 2 3 2 4
2 2 1 2 4 2
2 3 2 1 2 2
3 2 4 2 1 2
2 4 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.17)

The analogue of eqs. (7.8) read in present case as follows

r
so7
1 = F r

so8
1 F̃ , s

so7
1 = F .s

so8
1 .F̃

r
so7
2 = F r

so8
2 F̃ , s

so7
2 = F .s

so8
2 .F̃

r
so7
3 = F

(
r
so8
4 r

so8
3

)
F̃ , s

so7
3 = F

(
s
so8
4 .s

so8
3

)
F̃

(7.18)

BPS states in the strong chamber of the N = 2 supersymmetric pure SO (7) gauge theory have 
been obtained by using the two composite mutation operators L1 = r3r2r1, L2 = s3s2s1 generat-
ing the subgroup Hso7

stg as shown in section 4 of this paper.
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Fig. 15. Folding simply laced Dynkin diagrams.

7.2. Appendix II: folding operators

In this section, we first derive the folding operator mapping ADE type Dynkin diagrams of 
finite dimensional Lie algebras into BCFG type descendent. Then we extend the construction to 
describe BPS quivers of BCFG type by folding BPS quivers of ADE type.

7.2.1. Folding ADE Dynkin diagrams
Every non-laced Dynkin diagram of finite dimensional Lie algebra type BCFG can be ob-

tained by folding simply laced diagrams of ADE type as shown in Fig. 15. Indeed certain simply 
laced ADE Dynkin diagrams admit outer-automorphisms; for example the Z2 type automor-
phisms of A2r and Dr lead respectively the Cr and Br series. Notice that the Dynkin diagram 
of D4 has Z2 and Z3 outer-automorphisms; folding by Z3 automorphism leads to the Dynkin 
diagram of the G2 Lie algebra.

Using the fact that each Dynkin diagram DG is the graphic representation of the Cartan ma-
trix KG describing the intersection of the simple roots of the Lie algebra of G, it is natural to 
define the folding map between simply laced diagrams and non-simply laced ones in terms of the 
corresponding intersection matrices. To that purpose, let DG be the Dynkin diagram of a given 
simply laced Lie algebra of a gauge symmetry G with Cartan matrix KG; and let DG∗ be the 
Dynkin diagram of the corresponding non-simply laced Lie algebra of G∗ with Cartan matrix 
KG∗ . Thinking by the folding DG/DG∗ as a mapping f : DG → DG∗ , one can check that the 
corresponding Cartan matrices are related as

KG∗ .f = f.KG (7.19)

From this relation, we learn that by considering a f̃ such that f.f̃ = I , we obtain

K
Ĝ

= f.KG.f̃ (7.20)

As noticed in sections 4 of this paper, the “adjoint” operator f̃ is not uniquely defined; but can be 
chosen like fT

(
ffT

)−1
.

7.2.2. Folding BPS quivers
The derivation of folding in BPS quiver theory, for gauge symmetries with BCFG type, is 

quite similar to the folding of Dynkin diagrams of finite dimensional Lie algebras; thanks to 
outer-automorphisms of BPS quivers and to the intersection matrix which are expressed in terms 
of the Cartan Matrix. These properties allow to extend the folding method of Dynkin diagrams of 
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Lie algebras to BPS quivers of 4d N = 2 supersymmetric gauge theory. In this case, the folding 
operator F mapping the set QG to QG∗

respectively characterised by the intersection matrices 
AG and AG∗

given by eq. (2.7) and (2.10)

AG =
(

0 −KG

KG 0

)
, AG∗ =

(
0 −KT

G∗
KG∗ KT

G∗ − KG∗

)
(7.21)

is expressed in terms of f and f̃ of Dynkin diagrams as follows 

F =
(

f̃T 0

f − f̃
T

f

)
(7.22)

By using eqs. (7.20), (7.21), (7.22), a straightforward calculation leads to the relation 

AG∗ = FAGF T (7.23)

leading in turns to Nn = FMnF̃ giving the relationship between Nn mutations of type BCFG 
to Mn mutations of type ADE. This link implies that quiver mutation groups HG∗

stg and HG
stg of 

the strong chambers are homomorphic.

8. Appendix III: BPS quivers of N = 2 QFT4

In this appendix, we collect helpful tools behind the quiver mutation method for building the 
BPS spectra of 4d N = 2 supersymmetric gauge theories with ADE gauge symmetry groups. 
This quiver mutation method augmented by quiver folding ideas of Dynkin diagrams of ADE 
Lie algebras has been used in this paper for approaching the construction of BPS spectra of 
N = 2 QFTs with non-simply laced gauge symmetries. More details on the basis underlying the 
mutation method and explicit illustrations can be found in the defining works of refs. [1,2]; see 
also [3,4] for discrete group theoretical interpretations. Here, we focus on those aspects relevant 
for our study.

The organisation of this appendix is as follows: First, we introduce the BPS quivers QG en-
coding the data on BPS states of supersymmetric pure gauge theories with gauge group G. Then, 
we show through simple examples how to build BPS bound states by using the so-called stable 
quiver representations encoding the solutions of F- and D-term equations of the supersymmetric 
quantum mechanics underlying BPS quiver theory. After that, we describe succinctly the quiver 
mutation method for building chambers of BPS/anti-BPS states; this is a powerful method that 
has been used in this paper; it knows about non-degenerate superpotential WG; and allows to 
overcome the problem of solving the non-trivial representation theory problem. We end this ap-
pendix by studying superpotentials WSO8 , WSU4 and WSO7 , WSP4 that are associated with the 
quivers considered in this study; the general structure of this kind of superpotentials has been 
obtained by Cecotti and Del Zotto in [38].

8.1. From BPS states to BPS quivers

Given a N = 2 supersymmetric QFT4 like the ones studied in this paper with pure ADE 
type gauge symmetry G, one has in general a great number of BPS/anti-BPS states living in 
the BPS chambers of this theory. It is a very remarkable observation that all these states can 
be generated by starting from a simple quiver QG

0 . A direct way to introduce the idea behind 
the link between the BPS states of N = 2 gauge theory and the primitive quiver QG is through 
0
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Fig. 16. The BPS and anti-BPS states of infinite weak chamber of the pure N = 2 SU (2) gauge theory. Blue dots 
correspond to the EM charges of the BPS/anti-BPS states. Notice that the strong chamber is finite; it has four states, 
a monopole; a dyon and their antiparticles. BPS states live in upper half-plane given by the gray region. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. On left, the BPS quiver Qsu2 of pure N = 2 SU (2) gauge theory. The electric–magnetic product b ◦ c =
−c ◦ b = −2. On right, the BPS quiver Qsu3 pure N = 2 SU (3) gauge theory; this quiver has two oriented cycles; the 
chiral superfields A1, A2, B1, B2, �12, �′

12 and their superpotential will be discussed later.

illustrating examples like the SU (2) and SU (3) models without matter; other useful examples are 
given by the Argyres–Douglas A-models whose general aspects will be described latter. Once we 
learn how the machinery works on these models, one can then extend the construction to N = 2
supersymmetric theories with bigger gauge symmetries.

8.1.1. The Qsu2
0 and Qsu3

0 examples
The simplest example of BPS quiver theory is certainly the N = 2 pure gauge model with 

SU (2) gauge group which, in language of quivers, is described with a Qsu2
0 having two nodes. 

In this theory, the BPS/anti-BPS states sit in two chambers: weak Qsu2
weak and strong Qsu2

stg . While 
Q

su2
stg is finite with cardinality equals to 4, the number of BPS and anti-BPS particles contained 

in Qsu2
weak is infinite. The electric–magnetic (EM) charges of the BPS (resp. anti-BPS) states of 

weak chamber are well known; they read in the {e, g} basis as follows

γ
bps
n,+ = 2ne + g

γ
bps

1,0 = 2e

γ
bps
n,− = 2 (n + 1) e − g

(8.1)

these sequences include the purely electrical charged W±-boson with charge ±2e. The EM 
charges of BPS and anti-BPS states form a 2-dim lattice �su2 as in Fig. 16 with generators (b, c)

given by the EM charge b = 0e + g of the monopole M and the charge c = 2e − g of the dyon 
D. The BPS quiver Qsu2

0 encoding data on BPS states in Fig. 16 is given by the left diagram of 
Fig. 17 with two nodes b and c linked by two arrows. Each node of the pure SU (2) BPS quiver 
represents therefore a basis vector of the BPS spectrum; and the double arrow encodes the Dirac 
pairing b ◦ c = −2.
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Fig. 18. Cones of BPS and anti-BPS states represented by rays in the in central charge complex plane. The arguments of 
the complex charges are ordered like in eq. (8.4). Left most Z1 and right most Zn are central charges of nodes of a BPS 
quiver.

From this example, one can easily extend the construction to gauge symmetry groups G of 
type ADE; the primitive QG

0 quivers extending Qsu2
0 can be straightforwardly drawn just by 

linking copies of SU (2) as in the building of higher rank Dynkin diagrams. A simple example 
of this extension is given by Qsu3

0 , the right diagram of Fig. 17 describing the BPS quiver of 
the pure SU (3) gauge model; it has four nodes {b1, c1, b2, c2} associated with four elementary 
BPS states. The construction of BPS quivers for the family of pure SU (r + 1) theory is therefore 
direct; it is just a linear replication of the BPS quiver for pure SU (2). In this case we have 2r

elementary BPS states with EM charges {bi, ci}1≤i≤r . Similar BPS quivers can be drawn for the 
Dr and Er series; they are obtained by mimicking the corresponding Dynkin diagrams with each 
node replaced by two nodes as in the examples given by Fig. 17. Notice moreover, that this BPS 
quiver description applies as well for more general supersymmetric theories; in particular in the 
presence of matter and flavor symmetries.

8.1.2. EM lattice �2r and central charge plane
A nice way to deal with the EM charges γ of the BPS states of a N = 2 QFT4 with symmetry 

group G is to use the complex central charge Zu at a given point u in the Coulomb branch U of 
the gauge theory. This is obtained by mapping EM charge vectors γ of generic BPS states into 
complex numbers Zu (γ ) thought in terms of rays in the complex plane of the central charge 

Zu : �2r → C

γ → Z (γ )
(8.2)

the amplitudes |Zu (γ )| describe the masses Mγ of BPS particle. Notice that the BPS quiver 
QG

0 whose nodes were associated with the lattice basis γ ±
i = (bi, ci) of the elementary BPS 

particles can be also interpreted in terms of the central charges Zu

(
γ ±
i

)
of elementary monopoles 

and dyons. BPS bound states with EM charge γ given by positive integral linear combinations 
n+

i γ −
i + n−

i γ +
i have complex charges given by the sums 

Zu (γ ) =
∑

n+
i Zu

(
γ −
i

) + n−
i Zu

(
γ +
i

)
(8.3)

They are represented by rays in the upper half plane of the complex charge as in Fig. 18. Given 
that Zu (γ )’s are complex functions, we then have two kinds of real degrees: the masses Mγ of 
the BPS particles; and the phases argZ (γ ) playing an important role in ordering the BPS particle 
rays in the upper half plane of the central charge. In Fig. 18, we exhibit an ordering of the BPS 
particle rays by using the arguments of the complex central charges 

π + ϕ0 > argZ1 > argZ2 > ... > argZn > ϕ0 (8.4)
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where ϕ0 stands for some origin of phases. The above cone (8.4) lives in the upper half plane; 
the central charge Z1 has the largest phase and is the left-most; the Zn has the smallest phase, 
it is right-most. If taking ϕ0 = 0, one has the usual canonical complex plane frame represented 
in green shaded line. In this graphic representation, the BPS states are located in the upper half 
plane ]0,π[.

8.2. From BPS quivers to BPS spectra

In this subsection, we consider the reverse of the idea presented in above previous subsection 
by showing how to construct BPS bound states of N = 2 QFTs with ADE gauge symmetries by 
starting form quivers QG

0 .
After introducing the moduli space of supersymmetric ground states of SQM describing BPS 

states, we describe briefly the so-called quiver representation method for building BPS spec-
tra. This method, which uses linear algebra requirements, relies on the solving of the F- and 
D-term equations of SQM; and so needs the knowledge of the superpotential as well as data 
on Fayet–Iliopoulos terms. Notice that though it allows to build the BPS spectra, the use of the 
quiver representation method is in practice some how cumbersome; especially that we have a 
more powerful one that knows about superpotentials and that leads to the same result. In what 
follows, let us describe rapidly the main line of the quiver representation approach; and turn after 
to introducing the quiver mutation method.

8.2.1. BPS bound states
BPS quivers QG

0 based on a rank r gauge symmetry group and having a structure like the Qsu2
0

and Qsu3
0 of Fig. 17 encode a basis of 2r elementary BPS states with EM charges {γi}. Starting 

with a given QG
0 , the question is how to get the full set of BPS states from it; this is a hard 

question since one needs extra information. To answer this central question, one borrows results 
from quiver gauge theories, embedded in compactified type II strings and D-branes wrapping 
cycles, dimensionally reduced to supersymmetric quantum mechanics (SQM). To know whether 
a bound state 

∣∣�γ

〉
with EM charge γ = ∑

niγi and central charge Z (γ ) = ∑
niZ (γi) with 

positive integers ni is indeed a BPS state, we proceed as follows:
(1) we think of the state 

∣∣�γ

〉
as a supersymmetric quantum mechanical bound state made of 

ni copies of each basis particle γi∣∣�γ

〉 = ∏
i

∣∣�γi

〉ni (8.5)

(2) we deal with the BPS quiver QG
0 in the same manner as the quiver gauge diagram used in 

the geometric engineering of QFTs embedded in type II strings on local Calabi–Yau manifolds 
[39–41]. With this interpretation, a U (ni) gauge group factor is inserted on each i-node of the 
quiver; and U (ni) × U

(
nj

)
bifundamental fields Ba

ij are attributed to arrows pointing from i

node to j one. In other words, the BPS quiver QG
0 whose nodes and arrows were originally a basis 

of hypermultiplets, now encodes the gauge group and bifundamental matter of a supersymmetric 
quiver quantum mechanics. Moreover, to ensure that γ is the charge of a BPS particle, we look 
for supersymmetric ground states described by the usual D- and F-term equations that we briefly 
describe in what follows.

• D-term equations
The existence of Fayet–Iliopoulos (FI) terms with coupling constants νi are due to the pres-

ence of a U (1)2r abelian factor coming from the diagonal abelian subgroups of the gauge group 
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factors U (ni) = U (1) × SU (ni) living at each node the quiver. These 2r coupling constants νi

are related to the complex fields Ba
ij through the usual D-term equations Di = 0 which read as 

follows

νi =
∑

arrows
starting from i

∣∣∣Ba
ij

∣∣∣2 −
∑

arrows
ending at i

∣∣Ba
ki

∣∣2 (8.6)

These parameters νi are related to the absolute values |Zi | = |Z (γi)| and the shifted arguments 
ϑi = argZ (γi) − argZ (γ ) of the central charges like ϑi × |Zi | where the Z (γi)’s are as before 
and Z (γ ) = ∑

niZ (γi), the central charge of the composite BPS particle.

• F-term equations

These equations are given by the vanishing of the gradient of the superpotential W = W
(
Ba

ij

)
which is built out of concatenations of bifundamental chiral superfields involved in the cycles in 
the QG

0 quiver according to the prescription of ref. [2]. This superpotential yields the F-term 
equations 

Fa
ij = ∂W

∂Ba
ij

= 0 (8.7)

and leads therefore to relations amongst the bifundamental fields Ba
ij . For the example of Qsu3

0
quiver of the supersymmetric pure SU (3) gauge theory given by the right diagram of Fig. 17, 
we have six chiral superfields A1, A2, B1, B2, �12, �′

12 and two oriented cycles from which we 
have the following chiral superpotential [1]

Wsu3 = A1�12A2�
′
12 − B1�12B2�

′
12 (8.8)

In this model, there are six F-term equations leading to six constraint relations that can solved 
explicitly. With this description, the moduli space Mγ of supersymmetric ground states with 
charge γ is simply the solution to the F- and D-terms quotiented by the action of the unitary 
gauge groups

Mγ =
{
Ba

ij | Fa
ij = 0 ; Di = 0

}
/
∏r

i=1
U (ni) (8.9)

To deal with the space Mγ , an approach has been developed in [1,2] taking advantage of the 
complex nature of the formalism by combining the power of complex analyticity of extended su-
persymmetry with quiver representation theory. This is achieved by promoting the unitary gauge 
symmetries U (ni) into the complexified groups Gl (ni,C); and replacing the D-term equations 
Di = 0 by stability conditions of quiver representations as described in what follows.

8.2.2. Quiver representation method
In the language of quiver representation theory, the bifundamental fields Ba

ij associated with 

the links of the QG
0 are thought of in terms of complex linear maps Ba

ij : Cni → C
nj ; and the 

problem of determining the ground state of the supersymmetric quantum mechanics is recast 
into the study of stable representations R of the complex holomorphic Ba

ij maps obeying (8.7). 
The defining eq. (8.9) is reformulated as follows

Mγ =
{
R =

{
Ba

ij :Cni → C
nj

}
| Fa

ij = 0 ; R stable

}
/
∏r

i=1
Gl (ni,C) (8.10)
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Fig. 19. Quiver of A2 Argyres–Douglas theory.

where quiver representation R is defined by attributing a complex vector space Cni ’s for each 
node of the quiver, and linear maps Ba

ij : Cni → C
nj for the arrows. These Ba

ij ’s are subject to 
the F-term equations Fa

ij = 0 and are given modulo the action of the complexified gauge group ∏r
i=1 GL (ni,C). In this complex holomorphic formulation, the Di = 0 equations are interpreted 

in terms of stability conditions of the quiver representation R. By stability of R it is meant that 
for all non trivial sub-representation S, 

C
ni

Bij
C

nj

C
mi

f

bij
C

mj

g (8.11)

with associated central charges Zu (γR) = ∑
niZu (γi) and Zu (γs) = ∑

miZu (γi) and positive 
integers mi ≤ ni , we have 

argZu (γS) < argZu (γR) (8.12)

Any sub-representation S that violates the above condition is a destabilising sub-representation; 
it leads to a constraint relation amongst the ni integers. As an illustration, notice that nodes γi

of a quiver QG are always stable representations; in this particular example, the central charge 
vector γR is given by 

∑
k nR

k γk with nR
k = δik ; and, by using the so-called dimension vector 

d = (n1, n2, ..., n2r ), can be written like (0, ...,0,1i ,0, ...,0). This special representation R is 
always stable since it has no non-trivial S, and thus no destabilising sub-representations. Each 
node of the quiver gives a multiplicity one hypermultiplet BPS state. Below, we give two simple 
examples that help to illustrate the idea of the quiver representation method; they concern the A2
and A3 Argyres–Douglas theories [2,51,52].

• Argyres–Douglas A2 theory
Consider the primitive quiver of the Argyres–Douglas A2 theory having two nodes with cen-

tral charges Z1 and Z2 as shown in Fig. 19; and let us work out the conditions for a bound state 
γ = n1γ1+ n2γ2 made of n1 particles of type γ1 and n2 particles of type γ2 to be a BPS state.

To that purpose, we can use quiver representation theory approach or more interestingly the 
powerful quiver mutation method. In the case of quiver representation manner, that we want to 
illustrate here, we think of the two nodes of the A2 quiver in terms of the complex spaces Cn1

and Cn2 with dimension vector d = (n1, n2) and of the arrow between the two nodes in term of 
a linear mapping B : Cn1 −→ C

n2 .
To determine stability of the representation γR = n1γ1+ n2γ2, we investigate the conditions 

following from eq. (8.12) for non-trivial sub-representations S. Let us start with the S1 associated 
with the dimension vector d1 = (0, 1) and study the commutativity of the following diagram

C
n1 B

C
n2

0 0

f

C

g (8.13)

There is no condition on the mapping B for this diagram to commute; and so the S1 associated 
with d1 = (0, 1) is always a sub-representation. As a consequence, the stability condition (8.12)
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reads as arg(Z2) < arg(n1Z1 + n2Z2). Moreover, seen that the n1 and n2 are positive, it follows 
that the bound state γR = n1γ1+ n2γ2 should belong to the chamber arg(Z2) < arg(Z1) since 

arg(Z2) < arg(n1Z1 + n2Z2) < arg(Z1) (8.14)

This relation shows that the ray associated with Z2 is right-most in the upper half plane of the 
complex central charge Z1 is left-most. Next we consider another sub-representation S2; for 
instance the one associated with the dimension vector d2 = (1, 0) as shown in the following 
diagram

C
n1 B

C
n2

C
0

f

0

g (8.15)

The stability of the γR = n1γ1+ n2γ2 demands that we should have arg(Z1) < arg(Z2); but 
this prediction contradicts (8.14) and the S2 with dimension vector d2 = (1, 0) is a destabilising
sub-representation of R. To ensure that γR = n1γ1+ n2γ2 is indeed a bound state, we must forbid 
this sub-representation; this leads to a constraint on integers n1 and n2 as follows 

n1 ≤ n2 (8.16)

The reason for this condition is that in this situation the diagram (8.15) don’t commute; hence the 
linear mapping B should be injective and therefore the above condition of the complex dimen-
sions of the Cni spaces associated with the two nodes of the quiver. To determine the expression 
of the integers n1 and n2, we continue the process by considering the sub-representation S3
associated with the dimension vector d3 = (1, 1) and diagram 

C
n1 B

C
n2

C

f

b
C

g (8.17)

The stability of our bound state γR = n1γ1+ n2γ2 requires arg(Z1 + Z2) < arg(n1Z1 + n2Z2)

which we rewrite like 

arg(Z1 + Z2) < arg(Z1 + n2

n1
Z2) (8.18)

However, given that n1 ≤ n2 as required by (8.16), and seen that arg(Z2) < arg(Z1), we have 
arg(Z1 + Z2) > arg(n1Z1 + n2Z2), and then should be forbidden. Therefore the only possibility 
for the bound state γ = n1γ1+ n2γ2 to be a BPS state is that the diagram (8.17) is trivial; that is 
n1 = n2 = 1.

To conclude, we have the BPS spectra as collected in the following table 

chambers BPS particles
arg(Z2) < arg(Z1) γ1, γ2, γ1 + γ2
arg(Z1) < arg(Z2) γ1, γ2

(8.19)

the BPS particles in the chamber arg(Z2) < arg(Z1) of the A2 Argyres–Douglas theory consists 
of the elementary BPS particles γ1, γ2 representing the nodes of the quiver and the bound state 
with charge γ1 + γ2. In the BPS chamber arg(Z1) < arg(Z2), the bound state γ1 + γ2 is unstable 
and decays into γ1 and γ2. The moduli space of representations of the charge γ = γ1 +γ2 is given 
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Fig. 20. Quiver of A3 Argyres–Douglas theory.

by the quotient of a single non-zero complex number B modulo the action of the complexified 
gauge group which in this case is given by C∗. Then the moduli space Mγ1+γ2 is just a point; 
it has complex dimension δ = 0 and so this representation describes a BPS multiplet of spin 1

2 . 
Recall that for γ = ∑

niγi , the complex dimension δ of the moduli space Mγ is given by 

δ = 1 − λF +
∑
Ba

ij

(ninj ) −
∑

nodes i

n2
i (8.20)

where the integer λF stands for the number of F-term constraints; the space Mγ describes a BPS 
multiplet of spin δ+1

2 .

• Argyres–Douglas A3 theory
This is the second example we give for building BPS chambers by using quiver representation 

theory. The A3 Argyres–Douglas theory described by the quiver given by Fig. 20. This quiver 
has three nodes and a cycle; and therefore a non-trivial superpotential which reads as follows 
W = φ3φ2φ1.

The three resulting F-term equations are

φ2 ◦ φ1 = 0, φ3 ◦ φ2 = 0, φ1 ◦ φ3 = 0 (8.21)

In addition to the stable node representations R1, R2, R3 respectively associated with the vector 
dimensions d1 = (1, 0, 0), d2 = (0, 1, 0) and d3 = (0, 0, 1), we search for bound states γR =
n1γ1 + n2γ2 + n3γ3 involving n1 particles of type γ1, n2 particles of type γ2 and n3 particles of 
type γ3; that is a dimension vector dR = (n1, n2, n3). These bound states are described by the 
linear mapping φi :Cni −→C

ni+1 mod 3

C
n1

φ1−→C
n2

φ1−→ C
n3

φ3−→ C
n1 (8.22)

To determine stability of γR = n1γ1 + n2γ2 + n3γ3, we study the constraints coming from 
eq. (8.12). Depending on the values of the integers ni ; and using the arguments of the central 
charges Zi of the elementary BPS states, the bound state γR may sit in one of the six following 
chambers

arg(Z1) > arg(Z2) > arg(Z3)

arg(Z1) > arg(Z3) > arg(Z2)

arg(Z2) > arg(Z1) > arg(Z3)

arg(Z2) > arg(Z3) > arg(Z1)
(8.23)

arg(Z3) > arg(Z2) > arg(Z1)

arg(Z3) > arg(Z1) > arg(Z2)

A way to work out the appropriate bound states γR for each of the 6 above chambers is by 
taking advantage of the result obtained for the example of A2 theory since the quiver of A3
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Argyres–Douglas theory may be roughly viewed as the gluing of three copies of A2 quivers. 
This observation allows to consider the stability of those bound states γR of the following form 

γR = niγi + njγj with i �= j (8.24)

These states correspond to representations with vector dimensions as (n1, n2, 0), (n1, 0, n3) and 
(0, n2, n3); hence the analysis reduces to the A2 model of previous example. Indeed consider 
bound states γR3 with dimension vector dR3 = (n1, n2, 0), these states are described by the fol-
lowing linear mappings

C
n1

φ1−→C
n2

φ1−→ 0
0−→C

n1 (8.25)

Repeating the same analysis as in the previous A2 example, it is easy to check that stability 
requires that when arg(Z2) < arg(Z1) regardless arg(Z3), there is a bound states γR3 = γ1 + γ2
arising from the stable representation with dimension vector dR3 = (1, 1, 0). Hence, the BPS 
states of A3 Argyres–Douglas theory contain at least the states collected in the following table

chambers BPS particles
arg(Z2) < arg(Z1) γ1, γ2, γ3, γ1 + γ2
arg(Z1) < arg(Z2) γ1, γ2, γ3

(8.26)

The other remaining BPS states will arise from the ordering of the arguments of Z3 with respect 
to Z1 and to Z2. In this regards, notice that the analysis of those other bound states γR with 
dimension vectors dR1 = (0, n2, n3) and dR2 = (n1, 0, n3) are related to dR3 = (n1, n1, 0) one 
just by changing the indices of the nodes γ1, γ2 and γ3. Then, the representation with dimension 
vector dR2 = (n1, 0, n3) is just the representation with dimension vector dR3 = (n1, n2, 0) by 
replacing γ3 with γ2, γ1 with γ3; and γ2 with γ1; that by performing the cyclic permutation (132). 
Then BPS states of A3 Argyres–Douglas theory living in the argZ1 < argZ3 and argZ3 < argZ1
chambers are as follows

chambers BPS particles
arg(Z1) < arg(Z3) γ1, γ2, γ3, γ1 + γ3
arg(Z3) < arg(Z1) γ1, γ2, γ3

(8.27)

Similarly, the analysis of stability of representation with dimension vector dR1 = (0, n2, n3) is 
equivalent to the analysis of stability of representation with dimension vector dR3 = (n1, n2, 0)

by preforming the cyclic permutation (123), the inverse of the previous (132). Then, BPS states 
of A3 Argyres–Douglas theory which living in the argZ3 < argZ2 and argZ3 < argZ2 chambers 
are 

chambers BPS particles
arg(Z3) < arg(Z2) γ1, γ2, γ3, γ2 + γ3
arg(Z2) < arg(Z3) γ1, γ2, γ3

(8.28)

Combining (8.26), (8.27) and (8.28), we deduce the BPS spectrum of A3 Argyres–Douglas the-
ory as follows 

Chambers BPS states
arg (Z2) < arg (Z1) < arg (Z3) γ1, γ2, γ3, γ1 + γ2, γ1 + γ3

arg (Z3) < arg (Z2) < arg (Z1) γ1, γ2, γ3, γ1 + γ2, γ2 + γ3

arg (Z1) < arg (Z3) < arg (Z2) γ1, γ2, γ3, γ2 + γ3, γ1 + γ3

arg (Z2) < arg (Z3) < arg (Z1) γ1, γ2, γ3, γ1 + γ2

arg (Z1) < arg (Z2) < arg (Z3) γ1, γ2, γ3, γ1 + γ3

arg (Z ) < arg (Z ) < arg (Z ) γ , γ , γ , γ + γ

(8.29)
3 1 2 1 2 3 2 3
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Notice that these BPS states can be derived in a nice way by applying quiver mutation on the A3

quiver depicted in Fig. 20.
Notice also that naive application of quiver representation theory predicts existence of another 

bound state namely the one with charge γ1 + γ2 + γ3; but it is ruled out by the F-term equations.

8.2.3. Quiver mutation method
In quiver representation description illustrated above on Argyres–Douglas theory, one is re-

stricted into BPS quivers encoding the spectrum of an N = 2 quantum field theory at a specific 
point u on the Coulomb branch U . For small deformations of the stability condition in moduli 
space, the set of quiver representations are unchanged and the corresponding BPS states are sta-
ble. This property means that quiver representation theory can be viewed as local theory of BPS 
particles on a patch in U where (8.12) still holds. However at certain real codimension one loci 
in moduli space, one may encounter one of the two following situations:

• A marginal stability wall corresponding to the situation where the central charge Zu (γR)

of some representation R and the central charge Zu (γS) of a sub-representation S become 
aligned argZu (γS) = argZu (γR). On one side of this wall of marginal stability we have 
the property argZu (S) < argZu (R); so the quiver representation R is stable and hence 
the corresponding BPS particle exists. On the other side of the wall, we have argZu (S) >

argZu (R) and then the R is no longer stable. On this side of the wall; the associated particle 
γR disappears from the BPS spectrum; it decays into lighter BPS states.

• A wall of second kind [53,2]; it is given by the situation where the central charge of a basis 
BPS particle γi of a quiver QG becomes real, Zu (γi) ∈ R. Across this wall, the quiver 
description of the BPS spectrum breaks down entirely; on the left the wall we have the BPS 
quiver QG describing a set BPS states with EM charges γi and central charges Z (γi) as in 
Fig. 18; and on the right of the wall we have another BPS quiver Q̃G describing BPS state 
with EM charge γ̃i and central charges Z (γ̃i) as in Fig. 21. The transformation of a quiver 
across the wall of the second kind is given by the so-called quiver mutation μ̃ describing a 
quantum mechanical duality relating the states of two distinct quivers.

μ̃ : QG → Q̃G (8.30)

With this mutation, we then dispose of a quiver description at any point in moduli space by 
following a path connecting them; this path is given by quiver mutations which, in case of 
strong chambers with finite cardinality, have a discrete group structure.

Following [1,2], the same quiver transformation can be performed on different quiver basis 
living at a fixed point in moduli space. In this case the mutation μ̃ will take us between quiv-
ers that describe the same physics. This local duality is a powerful equivalence; it allows us to 
circumvent the computation problem involved in solving stability condition of quiver representa-
tions. Using EM charge bases {γi} for the BPS quiver Q and the {γ̃i} the dual quiver Q̃ obtained 
by mutating the BPS particle with central charge Z1 = Z (γ1) associated with the node γ1. Under 
this mutation which rigorously speaking is defined by

γ̃1 = −γ1

γ̃k =
{

γk + (γk ◦ γ1) γ1 if γk ◦ γ1 > 0
γ if γ ◦ γ ≤ 0

(8.31)

k k 1
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Fig. 21. BPS and anti-BPS states represented by rays ±Z̃i in the in central charge complex plane. The BPS particle Z1
of Fig. 18 has been mutated into an anti-BPS particle.

the central charge Z (γ1) (see Fig. 18) is rotated out of the complex central charge half-plane 
of BPS particles as shown by Fig. 21. From the view of the dual Q̃G, the mutated particle with 
central charge Z̃ (γ̃1) = −Z (γ1) is now interpreted as a BPS particle.

Notice that the building of mutated quivers is nicely done by starting from of primitive quiver 
QG and using diagrams to implement the transformations. Given the graph describing a quiver 
QG with 2r nodes {γ1, ..., γ2r }, one can construct the dual quiver Q̃ associated with the mutation 
of node γ1. The nodes of the new BPS quiver Q̃G are in one to one with the nodes in QG; the 
arrows of Q̃G are constructed from those of QG and the same thing for the superpotential W̃ of 
Q̃G which is constructed from the superpotential W of QG. For technical details, we refer to the 
illustrative examples of [2]. 

8.3. Superpotentials

In this subsection, we collect some information on the structure of the superpotential WG

of the BPS quiver theory; in particular the superfield expressions of the WG’s of those models 
considered in this paper having G = SO (8,R) , SU(4) and SO (7,R) , SP (4, R). We also give 
the corresponding F-term equations constraining the linear mappings Ba

ij : Cni −→ C
nn of the 

quiver representations R describing bound states γR = ∑
niγi of elementary monopoles and 

dyons. First, we give the expressions of the superpotentials WSO8
0 and WSU4

0 of the supersym-

metric SO (8,R) and SU(4) gauge theories; then we turn to their WSO7
0 and WSP4

0 cousins.

8.3.1. SO (8,R) and SU(4) gauge models
We begin by the study of the superpotential WSO8

0 associated with the primitive quiver QSO8
0

of supersymmetric pure gauge model with SO (8,R) gauge symmetry group; we give its explicit 
expression in terms of chiral superfields and draw the main lines of the method to deal with 
corresponding F-term equations. Then, we turn to the study of the superpotential WSU4

0 , here 
also we construct WSU4

0 in terms of the superfields and describe relevant solutions of their F-term 
equations.

• Supersymmetric SO(8,R) model
The primitive quiver QSO8

0 of this theory is given by Fig. 3; it has six cycles as shown in 
Fig. 22; the length of each cycle is equal to four. By using the prescription of ref. [2] for building 
superpotentials, we learn that the corresponding superpotential WSO8

0 is a quartic chiral function 
involving 14 chiral superfields; these are the 4 + 4 superfields Ai , Bi i = 1, 2, 3, 4; and the 3 + 3
superfields φk , φ∗, k = 1, 2, 3.
k
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Fig. 22. Cycles of the primitive quiver QSO8
0 ; the superfields in the superpotential (8.32) are as represented on the arrows.

The explicit expression of WSO8
0 reads as follows

W
SO8
0 = (

A1φ
∗
1A2φ1 − B1φ

∗
1B2φ1

)+(
A2φ

∗
2A3φ2 − B2φ

∗
2B3φ2

)+(
A2φ

∗
3A4φ3 − B2φ

∗
3B4φ3

) (8.32)

and the F-term equations are given by

φ∗
1A2φ1 = 0 , B2φ

∗
2φ2 = 0

A2φ
∗
2φ2 = 0 , B2φ

∗
3φ3 = 0

A2φ
∗
3φ3 = 0 , A1φ

∗
1φ1 + A3φ

∗
2φ2 + A4φ

∗
3φ3 = 0

φ∗
1B2φ1 = 0 , B1φ

∗
1φ1 + B3φ

∗
2φ2 + B4φ

∗
3φ3 = 0

(8.33)

and

(A1A2 − B1B2)φ1 = 0 , (A1A2 − B1B2)φ∗
1 = 0

(A2A3 − B2B3)φ2 = 0 , (A2A3 − B2B3)φ∗
2 = 0

(A2A4 − B2B4)φ3 = 0 , (A2A4 − B2B4)φ∗
3 = 0

(8.34)

These superfield constraint relations are the analogue of eqs. (8.21) describing the conditions 
on the linear mappings in the Argyres–Douglas A3 model studied in previous subsection. They 
have to be imposed when solving the stability condition (8.12) of quiver representation for the 
pure SO (8,R) model. Recall that bound states of elementary monopoles and dyons have the 
form γR = ∑8

i=1 niγi with ni positive integers; for these bound states γR to be BPS, one has to 
perform a similar analysis as done for the A2 and A3 Argyres–Douglas model of subsection 8.2. 
To deal with the moduli space of the F-term eqs. (8.33)–(8.34) of the SO (8,R) theory, one 
can follow the analysis done for A3 Argyres–Douglas model; or more interestingly extend the 
approach of [2] explicitly performed for the supersymmetric pure SU (3) model. The latter has a 
simple quiver with two cycles and therefore a simple superpotential WSU3

0 like

W
SU3 = A1φ

∗A2φ1 − B1φ
∗B2φ1 (8.35)
0 1 1
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Fig. 23. Cycles of the primitive quiver Q
SU4
0 .

and F-term equations as follows

(A1A2 − B1B2)φ1 = 0 , (A1A2 − B1B2)φ∗
1 = 0

A1φ
∗
1φ1 = 0 , B1φ

∗
1φ1 = 0

A2φ
∗
1φ1 = 0 , B2φ

∗
1φ1 = 0

(8.36)

Non-trivial solutions of these equations are given by requiring A1A2 = B1B2 and by choosing 
φ1 = 0, φ∗

1 �= 0; or by taking A1A2 = B1B2 and φ1 �= 0, φ∗
1 = 0. The analysis done in [2] for 

the group SU (3) can be extended straightforwardly to gauge symmetries of ADE type; in par-
ticular for SO (8,R) and SU (4) we are interested in here. For the example of SO (8,R) theory, 
the corresponding F-term eqs. (8.33)–(8.34) can be non-trivially solved by setting A1A2 = B1B2
and A2A3 = B2B3 as well as A2A4 = B2B4; and by requiring the vanishing of half of the six 
superfields 

{
φ1, φ2, φ3, φ∗

1 , φ∗
2 , φ∗

3

}
; for instance by taking the three φi = 0 and the three oth-

ers φ∗
i �= 0 and vice versa. Clearly the moduli space analysis for higher rank gauge symmetries, 

though straightforward, is some how cumbersome; fortunately this kind of calculations can be 
overcome by using the quiver mutation approach that knows about the constraint relations com-
ing from the superpotential of the theory; thanks to quantum mechanical dualities behind the 
power of mutation method.

• SU(4) gauge model
The analysis done for the supersymmetric models with gauge group SU (3) and SO (8,R) can 

be repeated for the SU (4) gauge theory. In this case the primitive BPS quiver QSU4
0 has 2 + 2

cycles with length 4 and bifundamental superfields as in Fig. 23.
The corresponding superpotential WSU4

0 involves 10 chiral superfields; the 3 + 3 superfields 

Ai , Bi i = 1, 2, 3; and the 2 + 2 superfields φk , φ∗
k , k = 1, 2. The chiral WSU4

0 is constructed in 
same manner as before; it is given by 

W
SU4
0 = (

A1φ
∗
1A2φ1 − B1φ

∗
1B2φ1

)+(
A2φ

∗
2A3φ2 − B2φ

∗
2B3φ2

) (8.37)

The F-term equations following from the superpotential WSU4
0 are given by

A2φ
∗
1φ1 = 0 , A1φ

∗
1φ1 + A3φ

∗
2φ2 = 0

B2φ
∗
1φ1 = 0 , B1φ

∗
1φ1 + B3φ

∗
2φ2 = 0

A2φ
∗
2φ2 = 0 , B2φ

∗
2φ2 = 0

(8.38)

and 

(A1A2 − B1B2)φ1 = 0 , (A1A2 − B1B2)φ∗
1 = 0

(A A − B B )φ = 0 , (A A − B B )φ∗ = 0
(8.39)
2 3 2 3 2 2 3 2 3 2



R. Ahl Laamara et al. / Nuclear Physics B 914 (2017) 642–696 693
Fig. 24. Cycles of the primitive quiver QSO7
0 ; the superfields in the superpotential (8.34) are as represented on the arrows.

Non-trivial solutions of these equations can be also written down; they are directly read from 
eqs. (8.38)–(8.39); for instance by choosing non vanishing Ai and Bi satisfying A1

B1
= B2

A2

and A2
B2

= B3
A3

as well as φi = 0 but φ∗
i �= 0. In this pure gauge model, bound states have 

γR = ∑6
i=1 niγi with ni six positive integers are determined by solving the stability conditions 

argZu (γS) < argZu (γR) for sub-representation S of R by following the same method as done 
for the A3 Argyres–Douglas model and the supersymmetric pure SU (3) theory.

8.3.2. SO (7,R) and SP(4, R) models
The structure of the superpotentials WG for non-simply laced gauge symmetry groups type 

BCFG have been first obtained by Cecotti and Del Zotto in [38]. Here we restrict our analysis 
to the cases of pure SO(7, R) and SP(4, R) gauge theories. First, we give the superpotential 
W

SO7
0 and the corresponding F-term equations; then we turn to WSP4

0 and the induced constraint 

equations on linear mapping associated with the bifundamentals of the quiver QSP4
0 .

• SO(7, R) gauge theory
The primitive quiver QSO7

0 of the supersymmetric pure SO(7, R) gauge theory is given by 
Fig. 7; it has 6 cycles with chiral superfields as shown in Fig. 24.

Contrary to QSO8
0 , there are different kinds of cycles in QSO7

0 ; two cycles of length 3 and the 
four others of length 4. By using the prescription of ref. [2] for building superpotentials and the 
convention notation of [38], the superpotential of the SO (7,R) theory reads as follows

W
SO7
0 = A1φ

∗
1B2φ1 − B1φ

∗
1A2φ1 + A2φ

∗Bφ+
AφB2η

∗ + Aηφ∗ + Bηη∗ (8.40)

It involves twelve chiral superfields related to those of SO (8,R) theory like: (α) the usual 4
superfields Ai and Bi with i = 1, 2 as well as the new 2 superfields A, B corresponding to the 
folding of the chiral superfields Ai , Bi with i = 3, 4 of Fig. 22; (β) the usual 2 superfields φ1, φ∗

1
and the 4 new superfields φ, φ∗, η and η∗ corresponding to the folding of the chiral superfields 
φ2, φ3 and φ∗

2 , φ∗
3 of Fig. 22. The F-term equations following from the superpotential WSO7

0 are 
as follows

φ∗
1B2φ1 = 0 , Bφ∗φ − B1φ

∗
1φ1 = 0

φ∗
1A2φ1 = 0 , A1φ

∗
1φ1 + Aη∗φ = 0

B2η
∗φ + φ∗η = 0 , A2φ

∗φ + η∗η = 0
(8.41)

and

A2Bφ + Aη = 0
AB2φ + Bη = 0
(A B − B A )φ = 0

(8.42)

1 2 1 2 1
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Fig. 25. Cycles of the primitive quiver Q
SP4
0 .

as well as

Aφ∗ + Bη∗ = 0
A2Bφ∗ + AB2η

∗ = 0
(A1B2 − B1A2)φ∗

1 = 0
(8.43)

Solutions of the above relations can be written down by extending the method used for the 
SO (8,R) gauge model; for example eqs. (8.41)–(8.43) may be solved by taking for instance 
φ1 = φ = η = 0 and φ∗

1 �= 0, φ∗ �= 0, η∗ �= 0. The remaining eqs. (8.43) are ensured by taking 
A1
A2

= B1
B2

, A
B

= − η∗
φ∗ and A2

B2
= (

A
B

)2
.

• SP(4, R) model
The primitive quiver QSP4

0 of the supersymmetric pure SP(4, R) gauge theory is given by 
Fig. 12; it has 2 + 2 cycles with chiral superfields as shown in Fig. 25.

Following the same method used above, the superpotential of the supersymmetric pure 
SP(4, R) theory reads as follows 

W
SP4
0 = A2φ

∗Bφ + B2η
∗Aφ + Aηφ∗ + Bηη∗ (8.44)

The F-term equations following from this superpotential are as follows

Bφ∗φ = 0 , B2η
∗φ + φ∗η = 0

Aη∗φ = 0 , A2φ
∗φ + η∗η = 0

(8.45)

and

A2Bφ + Aη = 0 , A2φ
∗B + B2η

∗A = 0
B2Aφ + Bη = 0 , Aφ∗ + Bη∗ = 0

(8.46)

Here also we can write down the non-trivial solutions of above relations which are similar to 
those described in [2] for SU (3) and which have been extended in this subsection to the cases 
of SO (8,R), SO (7,R) and SU (4). A class of these solutions is given by taking for instance 
φ = η = 0, but φ∗ �= 0, η∗ �= 0; and the others constrained relations solved by taking A

B
= − η∗

φ∗

and A2
B2

=
(

η∗
φ∗

)2
.
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