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A dissertation submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Physics

Fall 2003

c© 2003 Ilja Doršner
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ABSTRACT

There is already significant evidence, both experimental and theoretical, that

the Standard Model of elementary particle physics is just another effective physical

theory. Thus, it is crucial (a) to anticipate the experiments in search for signatures

of the physics beyond the Standard Model, and (b) whether some theoretically pre-

ferred structure can reproduce the low-energy signature of the Standard Model. This

work pursues these two directions by investigating various extensions of the Stan-

dard Model. One of them is a simple flavon model that accommodates the observed

hierarchy of the charged fermion masses and mixings. We show that flavor changing

and CP violating signatures of this model are equally near the present experimental

limits. We find that, for a significant range of parameters, µ-e conversion can be

the most sensitive place to look for such signatures.

We then propose two variants of an SO(10) model in five-dimensional frame-

work. The first variant demonstrates that one can embed a four-dimensional flipped

SU(5) model into a five-dimensional SO(10) model. This allows one to maintain

the advantages of flipped SU(5) while avoiding its well-known drawbacks. The sec-

ond variant shows that exact unification of the gauge couplings is possible even

in the higher dimensional setting. This unification yields low-energy values of the

gauge couplings that are in a perfect agreement with experimental values. We show

that the corrections to the usual four-dimensional running, due to the Kaluza-Klein

towers of states, can be unambiguously and systematically evaluated.

We also consider the various main types of models of neutrino masses and

mixings from the point of view of how naturally they give the large mixing angle

xiv



MSW solution to the solar neutrino problem. Special attention is given to one

particular “lopsided” SU(5) model, which is then analyzed in a completely statistical

manner. We suggest that this sort of statistical analysis should be applicable to other

models of neutrino mixing.

xv



Chapter 1

INTRODUCTION

Our current understanding of Nature entails the existence of four fundamental

interactions: electromagnetic, weak, strong, and gravitational interaction. The need

for their full theoretical description has been a driving force behind the development

of the modern physical theories.

The branch of physics that addresses the fundamental building blocks of

Nature and their interactions is elementary particle physics. Its goal is to accurately

depict the physical phenomena involving the fundamental forces to an arbitrarily

high energy scale. Due to the various difficulties, this goal is commonly replaced

with a more modest one of obtaining an effective theoretical description that agrees

with experiments up to a specific energy scale but depicts the physical reality less

accurately.

The effective theory approach is not specific for the elementary particle

physics only and its examples abound in other areas of physics. If one is interested

in macroscopic properties of the solid state system that consists of a large number

of atoms placed at the lattice sites with the lattice spacing a, one can switch from a

discreet to a continuous description of the system as long as the macroscopic prop-

erties pertain to the length scale that is much greater than the intrinsic scale a. One

does not expect an agreement between the theory and the experiment for the length

scale smaller than a as the theoretical description at that scale needs to be modified.

In the formal language of elementary particle physics the scale a is referred to as

the ultraviolet cutoff scale.
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It is possible the cutoff scale of some effective theory is not known a priori

due to the lack of our understanding of the underlying structure of the physical

system. In such a case there is a possibility the effective theory itself contains the

hint of where the cutoff might be. Simply put, the cutoff scale will be the scale

where the theory does not cut it anymore. To show how this works in practice we

turn to the self-energy of the electric field of a point charge within the classical

electrostatic theory described by Coulomb’s Law. Our initial expectation, just on

the grounds of naturalness, is to find the self-energy of the electric field of the electron

to be of the order of its rest mass. However, the self-energy, being proportional to

the integral over the whole space of the square of the electric field, will diverge at

the lower boundary of integration if we treat the electron as truly point-like and

integrate from zero to infinity over the radial distance r. To cure the divergence

we can parameterize our inability to describe the physics at very short distances by

introducing a cutoff rmin to be the fictitious radius of the electron, integrate, and

finally compare the electrostatic energy with the rest energy of electron mec
2. We

thus obtain rmin ∼ 4πε0e
2/(mec

2) ≈ 0.28×10−14 m, which corresponds to the energy

scale1 Λ ≈ 0.71 × 108 eV, as the plausible limit on the applicability of the classical

electrostatics.

Introduction of the cutoff in the previous example does not imply that Cou-

lomb’s Law is completely wrong; it simply emphasizes the fact that Coulomb’s Law

is valid only within a certain energy range in which it properly accounts for all the

relevant degrees of freedom. The theory must be modified at length scales smaller

than rmin. In the electrostatics case, the modification should already take place at

the scale Λ = 2mec
2 ≈ 1.0 × 106 eV to allow the possibility of the electron-positron

1 In the natural system of units, where c = h̄ = 1, we can treat the energy
and the length on an equal footing. One is the inverse of the other, i.e. small
lengths correspond to large energies and vice versa. The conversion factor is
h̄c ≈ 0.19 × 10−6 eVm.
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creation and annihilation. The theory has to be taken from the classical to the

quantum level to accommodate new degrees of freedom. It is generally expected

that the cutoff scale represents the scale where new degrees of freedom enter the

physical picture.

The prime theory of elementary particle physics is the Standard Model (SM).

It is, by far, the most successful theoretical structure that we have. In the case of the

anomalous magnetic moment of the electron the agreement between the experiment

and the prediction of the SM has been verified at the level of one part in 108 (for a

review see [1]). The modern view is that the SM itself represents an effective theory

valid up to certain energy scale. Where that scale is could be revealed through (a)

the careful analysis of the theoretical structure of the SM following the same line of

reasoning as in the case of the self-energy of the electron, and (b) the comparison

against the experimental signatures.

Accepting that the SM is just an effective theory, we are bound to modify

it and go beyond in order to make the theory applicable in a wider energy range,

and to make it more self-consistent, and more predictive. It is, in the end, this

predictability that can help us falsify or confirm the correctness of the theoretical

ideas we build into the various models using the experimental results.

The SM has been around for more than three decades. It has proved itself

against the electroweak precision measurements (for a review see Ref. [2]) and has

resisted any significant modification. To fully appreciate the effectiveness of the SM

we briefly describe its structure in what follows.

1.1 The Standard Model

The Standard Model is a gauge theory that comprises the Glashow, Weinberg,

and Salam theory of electroweak interactions [3, 4, 5] and the theory of strong

interactions [6, 7, 8, 9, 10]. The form of the interactions is governed by the direct

3



product H ≡ SU(3)c ⊗ SU(2)L ⊗ U(1)Y of gauge symmetries.2 In addition, the

model is Lorentz invariant and renormalizable. The strength of each interaction of

the particular group is parameterized by the corresponding gauge coupling constant.

In the case of H, this amounts to specifying three gauge constants g3, g2, and g1.

The carriers of the interactions are spin-1 particles called gauge bosons. They

are always associated with the adjoint representation of the appropriate gauge group.

The dimension of the adjoint representation for the special unitary group SU(N)

is N2 − 1. Thus, there are eight carriers of the strong interactions—gluon fields3

Gi—associated with an 8 of SU(3)c, three W i bosons associated with a 3 of SU(2)L,

and one B boson of U(1)Y . Here we use the group theoretical language and specify

the representation by its dimension. Going one step further we say that, under H,

the gluons transform as (8, 1, 0), W ’s transform as (1, 3, 0), and B transforms as

(1, 1, 0). Note that for the Abelian gauge group U(1) it suffices to specify only one

number, i.e. the gauge quantum number the field carries under the U(1). At this

stage all the gauge bosons are massless.

The fermionic content of the theory is made out of spin-1/2 particles. In

addition to their transformation properties under H we can also distinguish them

by their spin orientation. If the spin of the fermion and its direction of motion are

parallel (anti-parallel) the fermion is right-handed (left-handed). We can always

project out the right-handed and the left-handed part of a Dirac spinor ψ using the

projection operators PR = (1 + γ5)/2 and PL = (1 − γ5)/2 respectively. Namely,

the right-handed (left-handed) four-component spinor is ψR(L) = PR(L)ψ. Using the

subscripts L and R to specify the handedness, the fermions of the Standard Model,

2 It took almost a decade for SU(3)c to be promoted from a global [6, 7] to a local
symmetry [8, 9, 10]. For an extensive list of references on the development of
the Standard Model see Ref. [11]

3 The gauge bosons carry the group index (for gluons i = 1, . . . , 8; for W ’s i =
1, 2, 3; for B i = 1) as well as the Lorentz index µ = 0, 1, 2, 3. We will usually
suppress these indices for brevity.
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usually referred to as the matter fields, and their transformation properties under

H are

LLi ≡ (1, 2,−1)Li ≡




ν

e





Li

, (1.1a)

eRi ≡ (1, 1,−2)Ri, (1.1b)

QLi ≡ (3, 2, 1/3)Li ≡




u

d





Li

, (1.1c)

uRi ≡ (3, 1, 4/3)Ri, (1.1d)

dRi ≡ (3, 1,−2/3)Ri, (1.1e)

where i = 1, 2, 3 represents the generation index. The SU(3)c color index of the

quarks (α = 1, 2, 3) and the SU(2)L index of the doublets (a = 1, 2) are suppressed.

The first two rows in Eqs. (1.1) are the leptons and the last three rows are

the quarks. The fermionic members of one generation make up a family. The

SM contains three of them. The hypercharge—the U(1)Y quantum number—is

normalized so that Q = I3L + Y/2, where Q represents the electric charge operator

and I3L is the isospin, i.e. the eigenvalue of the third generator of the isospin group

SU(2)L. The matter fields are also massless at this point.

The gauge invariant kinetic energy terms for the fermions and the gauge

bosons are

Lfermion = LLii 6DLLi + eRii 6DeRi +QLii 6DQLi + uRii 6DuRi + dRii 6DdRi, (1.2)

and

Lgauge = −1

4
Gi
µνG

µνi − 1

4
W i

µνW
µνi − 1

4
BµνB

µν , (1.3)

respectively. The field strength tensors are

Gi
µν = ∂µG

i
ν − ∂νG

i
µ − g3fijkG

j
µG

k
ν, (1.4a)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g2εijkW

j
µW

k
ν , (1.4b)

Bµν = ∂µBν − ∂νBµ, (1.4c)

5



where fijk and εijk represent totally antisymmetric structure constants of SU(3)

and SU(2) respectively. [The structure constants gijk of the SU(N) group can be

found for any nontrivial d-dimensional representation associated with the generators

X
(d)
i of that group through the commutation relations [X

(d)
i , X

(d)
j ] = igijkX

(d)
k .] The

gauge covariant derivative

Dµ =
(
∂µ + ig3IicG

i
µ + ig2IiLW

i
µ + ig1Y/2Bµ

)
(1.5)

acts in the group space defined by the dimension of the representation of the ap-

propriate matter field, where Iic (IiL) are SU(3)c (SU(2)L) matrices. In the funda-

mental representation of SU(3)c (SU(2)L), Iic = λi/2 (IiL = τ i/2), where λi (τ i)

represent the familiar Gell-Mann (Pauli) matrices. Recall that the dimension of the

fundamental (defining) representation of SU(N) is N . We normalize the generators

of SU(N) so that Tr[X
(N)
i X

(N)
j ] = (1/2)δij for the fundamental representation.

We know from experiments that the matter fields have mass. How do the

masses arise in the SM? We first show that the SU(2)L⊗U(1)Y gauge symmetries of

the SM do not allow the usual bare masses for the matter fields and then introduce

the mechanism that rectifies this shortcoming.

The bare mass m of the fermionic field ψ comes from the Lagrangian term

mψψ = m(ψPLψ + ψPRψ) = mψRψL +mψLψR, (1.6)

which suggests that the fermions get their mass through the mating of the left-

and the right-handed fields. The mass of the charged leptons thus comes from

the mating of LLi fields with eRi fields. The trouble is that their product in the

group space is not H invariant due to the chiral nature of the SM, i.e. the left- and

the right-handed fields transform differently under H. More specifically, the product

behaves as a singlet, i.e. gauge invariant, under SU(3)c but a doublet under SU(2)L.
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Moreover, the hypercharges of the fields add to −1§ instead of zero. Any attempt to

provide the mass for the up (down) quarks fails for the same reason. The product of

the QLi with the uRi (dRi) yields the singlet of SU(3)c, the doublet of SU(2)L, and

the hypercharges of the fields add to nonzero value 1 (−1). To summarize, the bare

mass of the leptons and the quarks, though allowed by the color group, is explicitly

forbidden by SU(2)L ⊗ U(1)Y gauge symmetry.

It is not only the matter fields that need to get mass. The gauge bosons of

the weak interactions also have to be massive since the weak force is a short range

one. The Higgs mechanism [12, 13, 14, 15, 16, 17] solves both of these problems. It

bypasses the violation of the gauge invariance by replacing the bare mass in Eq. (1.6)

with a complex spin-0∗∗ Higgs field H that transforms nontrivially under H. The

gauge properties of H are always chosen to yield a gauge singlet when contracted

with the left-right field combination. In the SM case it obviously has to be a singlet

under SU(3)c, a doublet under SU(2)Y , and its hypercharge must be 1 (−1) when

coupled with the leptons and the down (up) quarks. This last requirement would call

for two distinct Higgs fields if it was not for one special property of the fundamental

representation of SU(2). Namely, the 2 and the 2 are related to each other via a

similarity transformation. In our notation

H ≡ (1, 2, 1) ≡




H+

H0



 ≡ 1√
2




H1 − iH2

H3 − iH4



 , (1.7)

where the superscript indicates the electric charge of the Higgs fields. The last form

in Eq. (1.7) is written in terms of the Hermitian fields Hi = H†
i observing that one

complex scalar doublet has four degrees of freedom.

§ Note that the hypercharge of LLi is 1 (see Eq. (1.1a)). In general, if the field ψ
is associated with the representation of dimension d, then its conjugate belongs
to the conjugate representation d ≡ d∗. In the case of the U(1) symmetry this
amounts to a change of sign of the U(1) quantum number.

∗∗ This field carries no Lorentz indices and has the same dimensions as the mass.
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The fermion masses arise from the gauge invariant Yukawa terms

LYukawa = −λuijεabQ
a

LiH
†buRj − λdijQ

a

LiH
adRj − λlijL

a

LiH
aeRj + H.c., (1.8)

after H obtains a constant value. This happens only under the suitable circum-

stances which we investigate shortly. Here, i, j = 1, 2, 3 are the family indices,

a, b = 1, 2 are SU(2)L indices, and εab is a totally antisymmetric tensor. The matri-

ces λu,d,l are dimensionless and completely arbitrary. Their entries are referred to

as the Yukawa couplings.

The gauge boson masses come from the Higgs field Lagrangian

LHiggs = (DµH)†DµH − V (H), (1.9)

where the gauge covariant derivative DµH =
(
∂µ + ig2IiLW

i
µ + ig1Y/2Bµ

)
H acts

on H and V (H) is the Higgs potential. The form of the potential, restricted by

SU(2)L ⊗ U(1)Y invariance, is

V (H) = λ(H†H)2 − µ2(H†H), (1.10)

where the choice λ, µ2 > 0 makes H take on a nonzero vacuum expectation value

(VEV). This simply means that the nonzero value of the field H minimizes the

potential V (H). If the VEV is chosen to be

〈0|H|0〉 ≡ 〈H〉 =
1√
2




0

v



 , (1.11)

where v2 = µ2/λ yields the minimum of V (H), the generators I1L, I2L, and I3L−Y/2
are spontaneously broken, i.e. the vacuum state is not invariant under the gauge

transformations generated by these generators. However, the linear combination

I3L+Y/2 annihilates the vacuum since the vacuum carries no charge (see Eq. (1.7))

leaving residual U(1)em gauge symmetry behind. This residual gauge symmetry has

made its debut in the Maxwell’s equations of the classical electrodynamics. The
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gauge boson of the unbroken U(1)em is the familiar massless photon. The process

of the spontaneous symmetry breaking can be schematically shown as SU(3)c ⊗
SU(2)L ⊗ U(1)Y → SU(3)c ⊗ U(1)em.

If SU(2)L ⊗ U(1)Y were a global symmetry we would expect to see three

massless Nambu-Goldstone bosons [18, 19, 20, 21, 22] upon the symmetry breaking.

This is not the case for the local (gauge) symmetry where these would-be massless

fields get absorbed (eaten) by the gauge bosons associated with the generators of the

broken symmetries that require these fields to become massive.4 To see this process

clearly we can use the freedom to rotate the Higgs field in the SU(2)L⊗U(1)Y space

to absorb the three degrees of freedom visible in Eq. (1.7). This defines a so-called

unitary gauge where the Higgs field takes the following form

H =
1√
2




0

v + h



 . (1.12)

The field h represents the fluctuations around the minimum and it is the actual

physical Higgs scalar. At the same time the potential, in the unitary gauge, reads

V (h) = −µ4

4λ
+ µ2h2 + λ

√

µ2

λ
h3 +

λ

4
h4, (1.13)

yielding the Higgs scalar mass

mh =
√

2µ2 =
√

2λv. (1.14)

The physical gauge bosons and their masses follow from the first term of Eq. (1.9).

The heavy bosons of weak interactions are

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ), (1.15a)

Z0
µ = − sin θWBµ + cos θWW

3
µ , (1.15b)

4 Massless vector field, such as a photon, has two transverse degrees of freedom
while massive field has an extra (longitudinal) degree of freedom. Therefore,
massless gauge boson has to gain one degree of freedom to become massive.
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where θW is the electroweak mixing angle defined by tan θW ≡ g1/g2. Their masses

are

mW =
g2

2
v, (1.16)

and

mZ =

√

g2
1 + g2

2

2
v =

mW

cos θW
. (1.17)

Finally, the linear combination orthogonal to Z0
µ is the massless photon field

Aµ = cos θWBµ + sin θWW
3
µ . (1.18)

The fermion masses emerge upon the diagonalization of the couplings in

Eq. (1.8) which prior to that reads

LYukawa = − λuij√
2
uLiuRj(v+ h)− λdij√

2
dLidRj(v+ h)− λlij√

2
eLieRj(v+ h) + H.c.. (1.19)

The Dirac mass matrices U = λuv/
√

2, D = λdv/
√

2, and L = λlv/
√

2 are in general

completely arbitrary and must be diagonalized by bi-unitary transformations. For

example, the redefinition of the matter fields in the flavor space uLi → (Uu)ijuLj and

uRi → (Vu)ijuRj, where the unitary matrices Uu and Vu are chosen to diagonalize U

(U †
uUVu = Udiag), specifies the mass basis for the up quarks. The same procedure

can be repeated for the down quarks (U †
dDVd = Ddiag) and the charged leptons

(U †
l LVl = Ldiag) yielding the familiar up quark mass eigenstates (u, c, t), the down

quarks mass eigenstates (d, s, b), and the charged leptons mass eigenstates (e, µ, τ).

The only place where the change of the basis leaves a trace, generating the changing

of the flavor, is in the Lagrangian term that describes the charged-current processes.

Its form (see Eq. (1.2)), in terms of the gauge boson mass eigenstates, is

Lcc = −g2

(

W+
µ J

µ
W +W−

µ J
µ†
W

)

, (1.20)

where the charged current reads

Jµ†W =
1√
2

(νLiγ
µeLi + uLjγ

µdLj) . (1.21)
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If we now redefine the matter fields as suggested above

uLjγ
µdLj → uLiγ

µU †
uijUdjkdLk ≡ uLγ

µVCKMdL, (1.22)

we generate Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix VCKM ≡ U †
uUd [23,

24]. The CKM matrix parameterizes the strength of the flavor changing as well as

the amount of CP violation in the SM. The elements of the CKM matrix are labeled

Vij, where i = u, c, t and j = d, s, b.

Since the neutrinos have no mass in the SM we are free to rotate them to

match the change in the definition of eLi fields in Eq. (1.21). This implies there is no

analogue of the CKM matrix in the leptonic sector of the theory. Anticipating the

extensions of the SM that accommodate experimentally observed neutrino masses

we are led to introduce Pontecorvo-Maki-Nakagawa-Sakata mixing matrix UPMNS =

U †
l Uν [25, 26, 27] where Uν is the unitary matrix that diagonalizes the neutrino mass

matrix Mν . We will see later that the matrix Mν is always symmetric which makes

it qualitatively different from U , D, and L. The elements of the PMNS matrix are

labeled Uij, where i = e, µ, τ and j = 1, 2, 3. The reason behind this notation is

that the neutrino mass eigenvalues are labeled m1, m2, and m3.

One of the successes of the SM is the explanation of the Fermi theory of beta

decay on a more fundamental level. If we contract the two terms of Eq. (1.20) to

obtain the tree level description of the four-fermion interaction, and integrate out

the W boson, we obtain

Leffective =
g2
2

2m2
W

(eLiγ
µνLi + dLjγ

µuLj)(νLiγµeLi + uLjγµdLj). (1.23)

Comparison with Fermi’s four-fermion point interaction Lagrangian yields

GF√
2
' g2

2

8m2
W

=
1

2v2
, (1.24)

where GF represents the Fermi constant. Since the value of GF can be extracted

from the experiments on the muon lifetime (GF = 1.16637(1) × 10−5 GeV−2 [28])
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we can determine the value of SU(2)L ⊗ U(1)Y breaking scale v ' 246GeV. The

Fermi theory is yet another example of an effective theory with a known cutoff. It

is applicable in the regime of the length scales much larger than the length scales

of the weak interactions (as determined by the electroweak breaking scale). Only

when we resolve the gauge boson degrees of freedom we have to switch to the more

fundamental description of Eq. (1.20).

An unexpected prediction of the SM is the conservation of B and L numbers.

Namely, if we assign a baryon number B to all the quarks (1/3 (−1/3) for the

quark (antiquark)) and a lepton number L to all the leptons (−1 (1) for the lepton

(antilepton)) it turns out that all the processes with ∆B 6= 0 and ∆L 6= 0 are

forbidden by the SM Lagrangian. This comes from an accidental symmetry of the

SM. But it is this very accident that ensures the stability of the proton and thus

the stability of our Universe.

We end this brief review of the SM by quoting some numerical values of

the SM parameters.5 The electroweak angle is determined from the measured mass

of mZ (mZ = 91.1876 ± 0.0021GeV) and the fine structure constant α(mZ) ≡
e(mZ)2/(4π) (α(mZ)−1 = 128.92 ± 0.03). [The electric charge of the positron is

identified with e = g1g2/
√

g2
1 + g2

2 = g2 sin θW .] One obtains sin2 θW = 0.23105 ∓
00008 [29]. The strong coupling constant is α3(mZ) = 0.118 ± 0.003 and mW =

80.423 ± 0.039GeV.

1.2 Open questions of the Standard Model

If the SM is truly an effective theory it has its own physical cutoff Λ. This

cutoff, as we have seen in the Introduction, represents the energy scale where new

degrees of freedom enter the physical picture. In our case the next obvious scale

after the electroweak breaking scale v is given by the reduced Planck mass MPl =

5 The quoted values are from Ref. [28] unless specified otherwise.
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(8πGNewton)
−1/2 = 2.4 × 1018 GeV where the gravitational degrees of freedom start

to compete with the SM ones. The disparity between the two scales is the very

essence of the infamous hierarchy problem [30, 31, 32, 33].

To give a full flavor of the hierarchy problem let us consider the one-loop

quantum corrections to the µ2 parameter of the Higgs potential. These corrections

stem from the fermion-fermion-Higgs couplings (see Eq. (1.8)) of the general form

λψψψH, where λψ represents the Yukawa coupling of the Dirac fermion ψ. Assuming

that the Higgs field H is just an ordinary complex scalar field the contribution of

the fermion ψ reads (for a relevant Feynman diagram see Fig. 1.1 (a))

H H
λψ
~

ψ
~
L(R)

H H

ψ

ψ

λψλψ

(a)

(b)

Figure 1.1: Feynman diagram of the one-loop correction to the Higgs potential
parameter µ2 via (a) the fermion loop; (b) the scalar loop(s).

∆µ2 =
|λψ|2
16π2

[

2Λ2 − 6m2
ψ ln

Λ2

m2
ψ

+ · · ·
]

, (1.25)

where the ellipses represent finite terms that do not depend explicitly on Λ. The

value that we prefer from the point of view of the electroweak symmetry breaking

is µ2 ∼ (100 GeV)2 (assuming λ ∼ O(1)). But if the scale Λ was associated with

the natural cutoff—the Planck scale—the quadratically divergent loop correction

would drive µ2 to the value that is 30 orders of magnitude away from the preferred

value. Even without any correction we would expect the natural value of µ2 to be
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of the order of the Planck mass since there is no symmetry that prevents the Higgs

mass term in the Higgs potential. It is possible that some miraculous accidental

cancellation takes place between the Higgs bare mass and the quantum corrections

to explain µ2 of the order of the weak scale but this is considered highly unnatural.

The hierarchy problem becomes even more obvious if we note that all the quarks

and the leptons and all the heavy gauge bosons get their masses through the Higgs

mechanism. Any shift in the Higgs mass will manifest itself in the shift of all other

masses. If the shift was infinite the theory would not be plausible anymore. The

three main directions in elementary particle physics that address the stability of the

Higgs mass under the quantum corrections and the disparity between the Planck

and the weak scale are supersymmetry (see a review [34]), dynamical electroweak

symmetry breaking (see a review [35]), and the theories with large extra spatial

dimensions [36, 37, 38, 39]. We will describe the first of these ideas in some detail

in Section 1.3.

Another shortcoming of the SM is the existence of a large number of free input

parameters. There are three gauge groups with three distinct gauge couplings. There

are nine seemingly unrelated masses of the quarks and charged leptons randomly

spread over the energy range spanning six orders of magnitude. There are four

parameters of the CKM mixing matrix (three angles and a phase) that come out of

the diagonalization of the mass matrices. There are also two parameters of the Higgs

potential that have to be fine-tuned to give the electroweak symmetry breaking. In

addition to these, there is one more parameter of the SM: the θ parameter of QCD

(for a review see [40]). Its existence is connected to the CP violating term of the

SM Lagrangian and its smallness is what constitutes the strong CP problem. All in

all, there are nineteen apparently unrelated parameters that one has to deal with.

[Admittedly, the SM works well but only after we replace its parameters with the

experimentally determined values.] What one would hope is to have an underlying
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principle that connects these seemingly unrelated parameters of the SM.

The shortcomings do not end here. There is also the question of the mys-

terious hypercharge assignment of the quarks and the leptons that gives both the

neutrality of the ordinary matter (Qe = −Qproton) and the charge quantization.

Moreover, the same hypercharge assignment is the backbone of the proof of the

renormalizability of the SM that hinges on the fact that the triangular anomaly

cancellation takes place. The condition for anomaly cancellation is that the sums

of Y and Y 3 over the members of one family, taking the hypercharge of the right-

handed field with an extra (−) sign, vanish. Looking back at Eqs. (1.1) we have

tr[Y ] = 2(−1)3 + (2)3 + 6

(
1

3

)3

+ 3

(

−4

3

)3

+ 3

(
2

3

)3

= 0, (1.26a)

tr[Y 3] = 2(−1) + (2) + 6

(
1

3

)

+ 3

(

−4

3

)

+ 3

(
2

3

)

= 0, (1.26b)

which represents a truly miraculous cancellation in view of the fact that it comes

about through the conspiring of unrelated multiplets of the quarks and the leptons.

The set of the theories that justifies the anomaly cancellation, relates the gauge

couplings of otherwise unrelated gauge groups, and along the way arranges many

other pieces of the puzzle goes under the generic name of Grand Unified Theories

(GUTs). We will formally introduce the GUTs in Section 1.4.

All unresolved issues that we have mentioned so far are related to the purely

theoretical considerations of the self-consistency of the SM. Their explanation is

motivated in part by the quest for the naturalness of the theory, the aesthetics, and,

in some instances, the experimental hints. There is, however, one pressing issue—

the issue of the neutrino mass—that is raised by the experimental observations

only. It stems from the fact that the SM fails to accommodate the neutrino mass

contrary to an overwhelming body of experimental evidence (for a review see [41]).

With the neutrino mass in place the palette of the SM would have to accept at
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least seven more parameters (three neutrino masses, and four parameters of the

PMNS matrix) and the energy range would have to stretch additional six orders of

magnitude to accept the neutrino mass of the order of 1/20 eV as suggested by the

Super-Kamiokande experiment [42]. The smallness of the neutrino mass suggests

that the entries of the matrix Mν are much smaller than the entries of U , D, and

L. This is another qualitative difference between Mν and U , D, and L. Postponing

any further discussion on neutrino mass until the Section 1.4 we now turn to the

description of some of the most interesting extensions of the SM.

1.3 Supersymmetry

Supersymmetry (SUSY) is a symmetry that turns fermions into bosons, and

vice versa. It is conceptually completely different from the familiar gauge symme-

tries. The generators responsible for the mutation of the bosons into the fermions are

spin-1/2 fermionic operators. This makes SUSY a spacetime symmetry as oppose to

the usual gauge symmetry that simply commutes with the Lorentz transformations

and thus operates in its own gauge-space. Moreover, the fermionic operators anti-

commute and so will the SUSY generators, in sharp contrast to the gauge symmetry

generators that always satisfy commutation relations. This drastic departure from

the usual gauge symmetries is worthwhile since SUSY ameliorates the hierarchy

problem by stabilizing the Higgs mass against the radiative corrections as we soon

demonstrate.

The most obvious change SUSY brings along is the doubling of the number of

the degrees of freedom of the SM. For every boson (fermion) of the SM it introduces

its SUSY partner—a fermion (boson). [We will use ∼ over the particle’s SM symbol

to explicitly mark its SUSY partner.] The doubling procedure is very special. It

assigns the same gauge transformation properties and the gauge interactions to

the SUSY particle its SM counterpart has by making them both share the same

supermultiplet. The supermultiplets of the matter (gauge) fields and their partners
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are called the chiral (vector) supermultiplets. In addition, the Higgs field itself

forms a chiral supermultiplet with its SUSY partner—the Higgsino. [The name of

the spin-1/2 superpartner of the SM boson is obtained by appending “-ino” to the

boson name.] The chiral nature of the SM requires two different supermultiplets for

the left- and the right-handed parts of the Dirac fermion. It is thus more convenient

to part with the usual Dirac four-component notation and treat the left- and the

right-handed parts as being two different two-component Weyl spinors.6 [The change

in the notation will also make our discussion on the GUTs much more transparent.]

In the Weyl notation the Dirac fermion ψ reads

ψ =




ψL

ψR



 . (1.27)

It is also more convenient to deal with the left-handed Weyl fields only, which is

achieved by Hermitian conjugation of all the right-handed fields. [For example,

the left-handed field form of ψR is ψ†
R.] In terms of the new notation the chiral

supermultiplets are

Li ≡ (1, 2,−1)i, (1.28a)

ēi ≡ (1, 1, 2)i, (1.28b)

Qi ≡ (3, 2, 1/3)i, (1.28c)

ūi ≡ (3, 1,−4/3)i, (1.28d)

d̄i ≡ (3, 1, 2/3)i, (1.28e)

where the bar over u, d, and e reminds us that we deal with the left-handed fields

only. It is understood that each Weyl fermion in Eqs. (1.28) is accompanied with

the complex scalar (ēi ≡
(

e†Ri, ẽ
∗
Ri

)

). [The name of the spin-0 superpartner of the

SM fermion is obtained by adding “s-” on the fermion name. For example, the

superpartner of the electron is selectron.]

6 For the alternative approach see Ref. [43].
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The doubling will now generate a new contribution to ∆µ2 at the one-loop

level coming from the scalar superpartners ψ̃∗
L and ψ̃∗

R of the Dirac fermion ψ (see

Fig. 1.1 (b) for the relevant Feynman diagram). The contribution reads

∆µ2 =
λψ̃

16π2

[

−2Λ2 + 2m2
ψ̃

ln
Λ2

m2
ψ̃

+ · · ·
]

, (1.29)

where mψ̃ represents the scalar mass. SUSY not only ensures that |λψ|2 = λψ̃ so

that the quadratic divergences in Eqs. (1.25) and (1.29) cancel against each other

but forces the cancellation to take place for all the fields and to all orders. Moreover,

by imposing the same gauge transformations for the SM fields and their partners,

unbroken SUSY predicts mψ = mψ̃.

The situation with the Higgs sector is a little different from the SM case. As

we have already seen, the anomaly cancellation represents an external consistency

condition imposed on the SM structure. In the case of SUSY it requires the existence

of two Higgs supermultiplets Hu ≡ (1, 2, 1) and Hd ≡ (1, 2,−1) instead of one.

If only one of them were present the contribution from the Higgs superpartner—

Higgsino—would spoil the neat cancellation exhibited in Eq. (1.26). The situation

is much better if there are two superpartners with the opposite hypercharges. It is

only then that their contributions towards Y and Y 3 traces cancel. The subscripts

u and d serve the bookkeeping purpose: Hu, with the VEV 〈Hu〉 =
(

0
vu

)
, gives the

mass to the up quarks; Hd, with the VEV 〈Hd〉 =
(
vd

0

)
, gives the mass to the down

quarks and the charged leptons. The ratio tan β = vu/vd plays an important role in

the phenomenological considerations. The VEVs themselves are directly related to

the electroweak breaking scale via v = 2
√

v2
u + v2

d.

The gauge sector of the SM is promoted into the set of vector supermultiplets

comprising the usual gauge bosons and their fermionic superpartners—gauginos.

These vector supermultiplets and the chiral supermultiplets mentioned above specify

the particle content of the Minimal Supersymmetric Standard Model (MSSM).
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The most obvious problem with any supersymmetric theory, including the

MSSM, is the mass degeneracy of the fields with the opposite statistics that inhabit

the same supermultiplet. This degeneracy has to be lifted since we have not detected

any bosonic particle with the mass corresponding to the mass of any of the matter

fields of the SM. The lifting has to be done with two objectives in mind. First, we

do not want to spoil the cancellation of the quadratic divergences that represented

the strongest motivation for SUSY. Second, we need to keep the mass gap between

the matter fields and their superpartners of the order of the electroweak breaking

scale v. The first objective is accomplished if we break the SUSY via the “soft”

breaking terms (for a detail classification see [44]). These terms have one thing in

common: the couplings that multiply them have the mass dimension greater than

or equal to one. The importance of the second objective is obvious. If violated,

the second term in Eq. (1.25), proportional to the (mass)2, would again drive the

µ2 parameter away from the preferred value. The second objective represents the

so-called naturalness constraint on the superparticle masses. The justification for

the presence of the soft terms in the Lagrangian and the exact scheme of the SUSY

breaking represent the most active areas of the modern research on supersymmetric

theories.

Besides the stabilization of the Higgs mass against the radiative corrections,

SUSY makes two more improvements over the SM. One of them, which we find

extremely significant, is on the unification of the gauge coupling constants. The

running of the gauge coupling constants at the one-loop level, from one energy scale

to the other, is given by
2π

αi(µ)
=

2π

αi(µ′)
+ bi ln

µ′

µ
, (1.30)

where µ and µ′ are the energy scales in question, and, as before, αi = g2
i /(4π).

Within the SM framework the beta coefficients bi for the SU(N) group read

bSM
i = −11

3
C2(SU(N)) +

2

3
Tf(d) +

1

3
Tb(d), (1.31)
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where C2 is the quadratic Casimir (gilmgjlm = C2δij), and Tf(b)(d) is the Dynkin

index for the fermions (bosons) in the d-dimensional representation (Tr[X
(d)
i X

(d)
j ] =

T (d)δij). On the other hand, the beta coefficients within SUSY simplify to

bSUSY
i = −3C2(SU(N)) + T (d), (1.32)

due to the fact that the chiral supermultiplets always have the same number of

fermions and bosons (Tf(d) = Tb(d)) and the gauginos always live in the adjoint

representation with the gauge bosons (C2(SU(N)) = Tf(N
2 − 1)). The beta coeffi-

cient of the U(1)Y gauge group is

b1 =
3

5

∑

i

(
Y

2

)2

i

, (1.33)

where the index i runs over all the particles. It is now easy to run the gauge couplings

in both the SM and the MSSM from the scale at which they are well known such as

the MZ scale to much higher scale where we suspect the more fundamental theory

resides. It turns out that the gauge couplings almost meet but only in the case of

MSSM (see Fig. 1.2). The scale where they meet lies below the Planck scale and

it is usually referred to as the GUT scale (MGUT ∼ 2 × 1016 GeV) since it is only

within the Grand Unified Theories that we expect solid interpretation of the gauge

unification. The fact that the MSSM steers the couplings in the “right” direction is

one more motivation to take SUSY seriously.

The other significant improvement of MSSM is on the justification of the

electroweak symmetry breaking. As we have already seen, the presence of the spin-0

Higgs field in the SM is somewhat ad hoc. On the other hand, SUSY treats the Higgs

field on an equal footing with the other matter fields placing it into just another chiral

supermultiplet. This makes its appearance somewhat less special than it is in the

SM. More importantly, the analysis of the renormalization group equations (RGEs)

has shown that the running of the masses of the MSSM fields can drive the Higgs

mass term towards the negative values. This makes the electroweak breaking an
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Figure 1.2: The two-loop running of the gauge couplings within the MSSM taking
all superpartners to be degenerate atmt. The relevant beta coefficients
are summarized in Ref. [45].

ubiquitous process within the MSSM rather than an artificially introduced apparatus

as it was in the SM.

For the sake of completeness of our exposition we proceed with the specifi-

cation of the formalism of N = 1 supersymmetry (for more details see Ref. [46]).

The same formalism and notation will be used in the rest of this work. As the

generic symbol for the chiral (vector) supermultiplet it is common to use Φ (V ).

Since the vector superfield belongs to the adjoint of the appropriate gauge group

it obviously carries the group index a which we suppress. One then defines the

chiral superfield Wα = −1
4
DDDαV , where the differential operators Dα and Dα̇

act in the superspace spanned by the variables (x, θ, θ), and α and α̇ are the Weyl

spinor indices in van der Waerden notation. In terms of these supermultiplets the

most general supersymmetric renormalizable Lagrangian can then be written in the
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following form [46]:

L =
1

16kg2
Tr
[

W αWα

∣
∣
θθ

+ H.c.
]

+ Φ†
ie
V Φi

∣
∣
θθθθ

+
[( 1

2
mijΦiΦj +

1

6
gijkΦiΦjΦk

︸ ︷︷ ︸

W (Φ)

)∣
∣
θθ

+ H.c.
]

.
(1.34)

Here, |θθ =
∫

d2θ = −1
4

∫
d2θαθβεαβ is the shorthand for the integration over the

Grassmann variables θ, and V = V aXa, where Tr[XaXa] = kδab in the adjoint. The

holomorphic function W (Φ) is the superpotential. It contains all the information on

the Yukawa couplings of the theory. Applying this formalism to the particle content

of the MSSM we obtain the following form of the Lagrangian:

L =
1

16kg2
Tr
[

W α
i W

i
α

∣
∣
θθ

+ H.c.
]

+
[

L†eVLL + l̄†eVll +Q†eVQQ + ū†eVuū+ d̄†eVd d̄+H†
ue
VHuHu +H†

de
VHdHd

]∣
∣
∣
θθθθ

+
[(
µHuHd + λuijQiūjHu + λdijQid̄jHd + λlijLi l̄jHd

)∣
∣
θθ

+ H.c.
]

.

(1.35)

In addition, there are the soft breaking terms which lift the SUSY degeneracy that

we omit for simplicity.

As we have seen, SUSY has been tailored to make the theory stable under the

radiative corrections ensuring its validity until we reach certain high energy scale

where some more fundamental theory awaits. The new theory might show up at the

GUT scale, as suggested by the MSSM running, introducing various relationships

between the SM parameters valid only at that particular scale. In order to judge

the credibility of the predictions and relationships of the new theory we need to

propagate the values of the parameters that we observe at the weak scale up to

the scale of the new theory. This we do in the case of the quark and the charged

lepton masses, and the mixing angles, assuming the new theory emerges at the

GUT scale. The results are summarized in Table 1.1. There are some quantitative
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Table 1.1: The values of the quark and the charged lepton masses and the CKM
angles Vcb, Vus, and Vub at the mt scale, compared to the experimental
values extrapolated to the GUT scale (MGUT = 2.37 × 1016 GeV). Ex-
trapolation is done taking all SUSY particles to be degenerate at mt

and assuming tanβ = 3. Masses are given in units of GeV.

m(mt) m(MGUT)

mu 0.00127 0.000570
mc 0.601 0.269
mt 165 112
md 0.00288 0.000862
ms 0.0501 0.0150
mb 2.78 0.957
me 0.000502 0.000334
mµ 0.104 0.0690
mτ 1.75 1.16
|Vus| 0.22 0.22
|Vcb| 0.041 0.036
|Vub| 0.0036 0.0032

relations that appear to hold at the GUT scale such as mb(MGUT) ' mτ (MGUT),

ms(MGUT) ' mµ(MGUT)/3, and md(MGUT) ' 3me(MGUT) that the new theory

should try to account for. [This particular set of relations is referred to as the

Georgi-Jarlskog [56] relations. The factors 1/3 and 3 are thus the Georgi-Jarlskog

factors.] Bearing this in mind, we now turn our attention to the class of theories that

are perfectly suited for explaining the quark and the lepton masses and mixings, as

well as the gauge coupling unification.

1.4 Grand Unified Theories

The Grand Unified Theory aims at the unification of the quarks and the lep-

tons under the group transformations of a certain unifying group F (for a review

on group theory see [48]). The group F obviously contains the group H (F ⊃ H)

and its gauging usually aids the understanding of the unification of the fundamental
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interactions already embedded in H. The symmetry of the group F must be bro-

ken to yield the phenomenology in accord with the low-energy observations. The

breaking F → H is usually assumed to happen at some very high energy scale. We

then identify the breaking scale with the GUT scale where the couplings merge. We

mostly review the supersymmetric form of GUTs (SUSY GUTs) unless explicitly

stated otherwise.

It should be stressed from the onset that the group F does not have to be a

single unifying group. It can also be a direct product of the groups. In that case the

gauge coupling unification is not a prediction of the theory but rather an external

aesthetic requirement. We will see examples of both cases in what follows.

1.4.1 Pati-Salam Model

The very first model of the quark-lepton unification is the model of Pati and

Salam [49, 50, 51]. The model is based on the group F ≡ SU(4)c⊗SU(2)L⊗SU(2)R

with all the members of one family being placed in two multiplets: FLi ≡ (4, 2, 1)Li

and FRi ≡ (4, 1, 2)Ri. More explicitly, we have

FL,Ri =




u1 u2 u3 ν

d1 d2 d3 e





L,Ri

, (1.36)

where we show the SU(3)c color indices only. [Note that FLi and FRi are the con-

jugates of each other under the left-right discrete symmetry (L↔ R).] The SU(4)c

acts horizontally treating “lepton number as the fourth color” while both SU(2)L

and SU(2)R act vertically on their respective multiplets. The charge operator in

Pati-Salam model (PS) is given by a simple formula

Q = I3L + I3R +
B − L

2
, (1.37)

which is to be compared with the SM one: Q = I3L+Y/2. The hypercharge is clearly

given by Y/2 = I3R+(B−L)/2, where B−L represents the generator of SU(4)c . [In

24



the fundamental representation of SU(4)c we have B−L = diag(1/3, 1/3, 1/3,−1).]

This time all the generators that enter the hypercharge definition originate from

the non-Abelian groups. One of the properties of the non-Abelian groups is the

quantization of the eigenvalues of their generators due to the nontrivial commuta-

tion relations that define the group algebra. Thus, Pati-Salam model justifies the

peculiarity of the hypercharge assignment of the SM in a very natural way. This, in

turn, ensures the neutrality of the ordinary matter and the anomaly cancellation.

[Note that the right-handed neutrino makes no contribution to the anomaly.] The

PS model introduces one right-handed neutrino for each family opening the possi-

bility of generation of the experimentally observed neutrino mass. In addition to

all that, the model promotes B − L to a local symmetry. This turns out to be very

important for the explanation of baryogenesis via leptogenesis [52]. The idea here is

that the spontaneous violation of the local B − L symmetry at some high temper-

ature creates a lepton asymmetry. This then is converted to the observed baryon

excess at lower temperatures by electroweak sphalerons [54, 55]. [It is the decay of

the heavy right-handed neutrinos that can start the leptogenesis (for a review see

[53]).]

All in all, the Pati-Salam model introduces a number of qualitatively new

features with respect to the SM. These are:

• Unification of all the quarks and the leptons of one family within two multi-

plets.

• Introduction of the right-handed neutrinos.

• Justification of the hypercharge assignment and neutrality of the ordinary

matter.

• Promotion of B − L into a local symmetry.
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Of course, one still needs to break the Pati-Salam model down to the SM.

This is accomplished with the field (4, 1, 2) that gets very large VEV in the right-

handed neutrino direction. [To avoid SUSY breaking one actually needs the VEV for

(4, 1, 2), too.] This breaking however is not relevant for the quark and the charged

lepton masses. They originate, together with the electroweak breaking, from the

usual Higgs mechanism with “bi-doublet” of Higgs fields (Hu and Hd) transforming

as (1, 2, 2)H under the PS group. To see the pattern of the masses and the mixings

in the minimal PS model we switch again to the description in terms of the left-

handed Weyl spinors: (4, 2, 1)L → (4, 2, 1); (4, 1, 2)R → (4, 1, 2). The Yukawa

term responsible for the mass, in group theoretical language, reads

LYukawa = λij(4, 2, 1)i(4, 1, 2)j(1, 2, 2)H (1.38)

where, as before, λ represents arbitrary dimensionless matrix in the flavor space.

After the Higgses in the bi-doublet get their VEVs we are left with the following

prediction of the minimal supersymmetric Pati-Salam model: U = N ∝ D = L,

where N represents the Dirac mass matrix of neutrinos. This prediction is in gross

disagreement with the experimental data. Moreover, it leads to the trivial CKM

mixing matrix. [Note that the same bi-unitary transformations diagonalize U and

D.] However, the most important thing is that we finally have the tool to relate

mass matrices to one another. To create more realistic mass and mixing patterns

one needs to extend the Higgs sector. For example, one can reproduce the Georgi-

Jarlskog relations by introducing the Higgs in the adjoint of SU(4)c with the VEV

pointing in the B − L direction.

1.4.2 SU(5)

The smallest special unitary group that contains the SM group H is SU(5).

This fact prompted Georgi and Glashow [57] to use SU(5) as a basis for the first

true Grand Unified model.
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The generators of SU(5), in the fundamental representation, are 5×5 traceless

Hermitian matrices acting on the five-dimensional vectors ψµ (µ = 1, . . . , 5) we

associate with the 5. The embedding of H into SU(5) is obvious if we perceive

the 3 × 3 upper block matrices and the 2 × 2 lower block matrices of the SU(5)

generators as being the generators, in the fundamental representation, of SU(3)c

and SU(2)L groups respectively. This means that the first three components of

ψµ transform as the triplet of SU(3)c while the last two components transform as

the doublet of SU(2)L. To stress this fact it is customary to separate the index

µ into two indices: α = 1, 2, 3 of SU(3)c and i = 4, 5 of SU(2)L. The U(1)Y

hypercharge generator must commute with all other generators and is chosen to

be Y ≡ diag(−2/3,−2/3,−2/3, 1, 1). If we look back at Eqs. (1.28) we see that

stacking the anti-triplet d̄i and the doublet Li into the five-dimensional vector yields

appropriate representation and hypercharge assignments except for an extra field

conjugation. To fix that we place d̄i and Li into the vector ψµ associated with the

conjugate of the 5—the 5. In the group theoretical language, the decomposition

SU(5) −→ H for the anti-fundamental reads

5i −→ (3, 1, 2/3)i ⊕ (1, 2,−1)i. (1.39)

The next smallest representation of SU(5) is the 10. It is the antisymmetric product

of the 5 with itself leading to the decomposition

10i −→ (3, 2, 1/3)i ⊕ (3, 1,−4/3)i ⊕ (1, 1, 2)i, (1.40)

which is just what we need to house the remaining ten particles of one family

(Qi, ūi, and ēi). Associating the 10 with a ten-dimensional antisymmetric tensor
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ψµν = {ψαβ, ψαi, ψij}, we have

ψµ =














d̄1

d̄2

d̄3

ν

e














, and ψµν =














0 ū3 −ū2 −u1 −d1

−ū3 0 ū1 −u2 −d2

ū2 −ū1 0 −u3 −d3

u1 u2 u3 0 −ē
d1 d2 d3 ē 0














. (1.41)

The fact that the matter fields fit so neatly into two smallest representations of

SU(5) is nothing short of a miracle and serves as one of the main arguments for the

GUTs.

The picture is not so perfect when it comes to the embedding of the Higgs

doublets into SU(5). It turns out that they abhor the unification. Assuming the

MSSM content we need at least the 5H and the 5H to accommodate Hu and Hd

respectively. The problem is that they come with a triplet and an anti-triplet of

“color” Higgses as can be seen from Eq. (1.39). Giving the large mass to these extra-

fields to remove their signature from the low-energy phenomenology while keeping

the doublets light is one of the most difficult tasks for model builders. This is the

infamous “doublet-triplet splitting problem”. We will address its implications and

possible resolutions in great detail in Chapter 4.

The gauge fields, as always, reside in the adjoint representation—the 24.

We can read off their transformation properties under H evaluating the product

5 ⊗ 5 = 24 ⊕ 1 in its decomposed form:

5 ⊗ 5 → (1, 1, 0) ⊕ (8, 1, 0) ⊕ (3, 2,−5/3) ⊕ (3, 2, 5/3) ⊕ (1, 3, 0)
︸ ︷︷ ︸

24

⊕
1

︷ ︸︸ ︷

(1, 1, 0) .

We now see that the gauge fields (Aµ
ν (Aµµ = 0)), using the block matrix notation,
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transform as

Aµν =








3×3
︷︸︸︷

Aαβ

3×2
︷︸︸︷

Aαi

Aiα
︸︷︷︸

2×3

Aij
︸︷︷︸

2×2








=




(8, 1, 0) (3, 2,−5/3)

(3, 2, 5/3) (1, 3, 0)



+ (1, 1, 0). (1.42)

Obviously, the fields (8, 1, 0), (1, 3, 0), and (1,1,0) are the familiar gauge fields of

the group H. On the other hand the fields (3, 2,−5/3) and (3, 2, 5/3) represent

completely novel interaction carriers. For example, the fields (3, 2,−5/3) can turn

the anti-quark field in (3, 1, 2/3) into the lepton field in (1, 2,−1). This sort of

process violates B and L numbers and represents the major prediction of any GUT—

the prediction of the proton decay. The experimental limits on the lifetime of the

proton are so severe that they represent the biggest stumbling block for any realistic

GUT.

The breaking of SU(5) down to SU(3)c ⊗ SU(2)L ⊗ U(1)Y is facilitated by

a Higgs field in an adjoint (φµν (φµµ = 0)). If the large VEV of the Higgs points in

the direction of the hypercharge (〈φµν〉 ≡ diag(−2/3,−2/3,−2/3, 1, 1)) the Higgs

will not commute with the off-diagonal block matrices in Eq. (1.42) leaving the

appropriate gauge bosons massive.

At this point, we observe that the Georgi-Glashow (GG) model has an extra

desirable feature over the PS model. It introduces the notion of the gauge unifica-

tion. Namely, since there is only one group there will be only one gauge coupling

g. It is after the breaking that the familiar low-energy couplings g3, g2, and g1

emerge. The ratio of these gauge couplings is now uniquely determined through the

requirement that the appropriate generators in Eq. (1.5) all be normalized equally.

In other words, we must have g2
3 Tr[I2

3c] = g2
2 Tr[I2

3L] = g2
1 Tr[(Y/2)2] = g2 (1/2) for

the fundamental representation of SU(5). This condition, valid at the GUT scale,

immediately gives g2
3 = g2

2 = (3/5)g2
1 = g2,‡‡ predicting sin2 θW = 3/8.

‡‡ This explains the normalization of b1 beta function in Eq. (1.33).
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The unity of the quarks and the leptons always comes at a cost. We now

have to use multiple stages of symmetry breaking as opposed to the SM case where

there is only need for one. On the other hand, the enlarged symmetry relates the

masses of the matter fields as we could have already witnessed in the PS model. In

the case of SU(5) model the minimal set of Yukawa terms is

LYukawa = λuij 10i10j5H
︸ ︷︷ ︸

U

+λdij 10i5j5H
︸ ︷︷ ︸

D,L

, (1.43)

which, after the Higgses get their VEVs, generates the following Dirac mass matrix

relations: U = UT = λuvu and D = LT = λdvd. More realistic mass and mixing

patterns require larger Higgs sector. For example, we can reproduce the Georgi-

Jarlskog relations that were mentioned a couple of times already with an extra 45H

of Higgs.

It is not difficult to extend the minimal SU(5) model to accept the right-

handed neutrinos ν̄i. They will correspond to the gauge singlet fields—the 1i. Their

existence allows two qualitatively different types of the mass terms: (i) Majorana

mass term, and (ii) Dirac mass term. The latter one is already familiar originating

from λνij5i1j5H , while the former one is allowed only for the particles that are their

own antiparticles. If this indeed is the case for the electrically neutral neutrinos we

can introduce the explicit Majorana mass term (MR)ij1i1j, where (MR)ij = (MR)ji

represents the Majorana mass matrix. Since no symmetry forbidsMR the magnitude

of its elements is expected to be of the order of the cutoff scale of the theory. On

the other hand, the Dirac mass matrix N = λνvu is of the order of the electroweak

scale for O(1) Yukawa couplings. The two terms, shown together as

(ν ν̄)




0 N

NT MR








ν

ν̄



 , (1.44)
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can be brought through the redefinition of the fields into the following approximate

block diagonal form 


−NM−1

R NT 0

0 MR



 . (1.45)

Clearly, the mass eigenstates of the light neutrinos are obtained by diagonalizing

the symmetric matrix Nν = NT
ν = −NM−1

R NT. The form of Nν implies that it is

the largeness of MR that is responsible for the smallness of the observed neutrino

masses. This mechanism is thus referred to as the “see-saw” mechanism [58, 59].

Taking N ∼ 200GeV and MR ∼ MGUT ≈ 2 × 1016 GeV we get the light neutrino

mass of the order of 1/103 eV which is smaller but still very close to the value

1/20 eV deduced from the experiments. The see-saw naturally explains why Mν has

entries that are much smaller than the entries of U , D, and L.

One of the most aesthetically pleasing features of SU(5) is the fact that the

members of one family (including the right-handed neutrino) completely fill three

smallest representations—the 1, the 5, and the 10. Another one is the fact that

SU(5), being the simple group, naturally predicts the gauge coupling unification.

One might hope that it is possible to go a step further and completely unify the

members of the family while preserving the gauge coupling unification. We now

turn our attention to the group that allows us to do just that.

1.4.3 SO(10)

The special orthogonal group SO(10) is a rank-five7 group. We thus expect

both SU(5) (a rank-four) and SU(4) ⊗ SU(2) ⊗ SU(2) (a rank-five) to be possible

candidates for subgroups of SO(10). The exact decomposition turns out to be:

(I) SO(10) → SU(5) ⊗ U(1) and (II) SO(10) → SU(4) ⊗ SU(2) ⊗ SU(2). The

7 The rank of any group F is equal to the total number of its commuting gener-
ators. The rank of any subgroup of F , for obvious reasons, must be equal or
smaller than the rank of F itself.
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choice of the particular symmetry breaking chain has profound consequences for the

mass relations and the low-energy phenomenology. The smallest representations of

SO(10) are the 10 (a fundamental), the 16 (a spinor), and the 45 (an adjoint).

Before discussing any phenomenological signature of SO(10) we show how each one

of these look under the decompositions (I) and (II).

If the sixteen members of one family are to be united within the single mul-

tiplet of SO(10) the family must reside in the 16. Since we already know the

representations that make the family in both the GG and the PS models we can

immediately write the decomposition as

16
(I)−→ 15 ⊕ 5

−3 ⊕ 101, (1.46a)

16
(II)−→ (4, 2, 1) ⊕ (4, 1, 2), (1.46b)

where the superscript represents the U(1) charge. [SO(10) ensures an automatic

anomaly cancellation for every representation. This can help in determining the

U(1) charge since the sums over the charges and their cubes must vanish for every

representation. All one has to decide on is how to fix the overall normalization.]

The 45 decomposes as

45
(I)−→ 240 ⊕ 10

4 ⊕ 10−4 ⊕ 10, (1.47a)

45
(II)−→ (15, 1, 1) ⊕ (1, 3, 1) ⊕ (1, 1, 3) ⊕ (6, 2, 2), (1.47b)

where we use the fact that the adjoint is always a self-conjugate. Namely, in terms

of decomposition (I) we know that the 45 must contain the 24 and the 1. To keep

it real we just account for the difference with the 10 and its conjugate—the 10. As

for the 10, it decomposes as

10
(I)−→ 5−2 ⊕ 5

2
, (1.48a)

10
(II)−→ (1, 2, 2) ⊕ (6, 1, 1), (1.48b)

which makes it a perfect candidate for the familiar Higgs fields of the MSSM.
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We are now ready to construct the minimal SO(10) model. Setting aside

the questions pertaining to the actual breaking down to the SM group we observe

that the families reside in the 16i (i = 1, 2, 3) and the Higgses live in the 10H .

The Yukawa term is simply λij16i16j10H , where λij represents a dimensionless

symmetric matrix in the family space. It falls apart as

λij16i16j10H
(I)−→

λij

(

101
i10

1
j5

−2
H

︸ ︷︷ ︸

U

+ 101
i5

−3
j 5

2
H

︸ ︷︷ ︸

D

+ 5
−3
i 101

j5
2
H

︸ ︷︷ ︸

L

+ 5
−3
i 15

j5
−2
H + 15

i5
−3
j 5−2

H
︸ ︷︷ ︸

N

)

,

which yields the following mass matrix relations: U = N ∝ D = L ∝ λ. Once again

we are led to the trivial form of the CKM matrix.

The very fact that the right-handed neutrinos are unified with the quarks

and the leptons prevents them from obtaining the simple SU(5)-like Majorana mass

term that generates MR. This is the problem that any realistic SO(10) model has to

address (for a review on SO(10) models see [69]). There are two possible directions

that one might take.

• First approach is to use renormalizable operators such as:

(a) λRij16i16j126H
(I)−→ λRij1

5
i1

5
j〈1−10

H 〉 (1.49)

(b) λNij16i1j16H +Mij1i1j
(I)−→ λNij1

5
i1

0
j〈1

−5
H 〉 +

1

2
Mij1

0
i1

0
j (1.50)

where in the case (a) we introduce the 126H of Higgs while in the case (b) we

introduce, in addition to the 16H of Higgs, some singlets of SO(10). In both

cases we expect the VEVs as well as the entries of M to be at or immediately

below the cutoff scale of the theory. It is clear that the case (a) leads directly

to the standard “see-saw” mechanism while the case (b) generates the “double

see-saw” mechanism since we first have to rotate in the space spanned by the
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right-handed fields only. Namely, to obtain the light eigenstates, we have to

diagonalize the matrix

(
ν ν̄ 10

)








0 N 0

NT 0 M ′

0 M ′T M















ν

ν̄

10







, (1.51)

where we define M ′ = λN〈1−5
H 〉. This can be achieved by two successive

rotations. First, we can rotate in the “23 plane” to eliminate the 13 and

31 elements. Then, we can rotate in the “12 plane” to eliminate the 12

and 21 elements. The outcome is the light mass matrix of the form Mν '
N(M ′M−1M ′T)−1NT.

• Second approach is based on the use of the higher dimension operators. The

philosophy behind this approach is that SO(10) represents just another ef-

fective theory. Introducing the cutoff, say MGUT, then allows us to use the

operator λRij16i16j16H16H/MGUT
(I)−→ λRij1

5
i1

5
j1

−5
H 1

−5
H /MGUT to generate

MR after the 16H gets very large VEV in the right-handed neutrino direc-

tion (〈1−5
H 〉 ∼ MGUT). This again brings us back to the standard “see-saw”

mechanism.

1.4.4 Flipped SU(5)

One of the breaking chains of SO(10) reproduces Georgi-Glashow SU(5)

model with the addition of an extra U(1) symmetry. The electric charge Q is

then the generator of the GG SU(5) only, in accord with our previous discussion.

There is however another avenue that one might take. One can embed the electric

charge in such a manner as to have it come from the linear combination of the

generators operating in both SU(5) and U(1). This is exactly what is done in a

flipped SU(5) [60, 61, 62] as we demonstrate below.
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The flipped SU(5) is best visualized through the following schematics:

SO(10) →
flipped SU(5)

︷ ︸︸ ︷

SU(5) ⊗ U(1)X →

SU(3)c ⊗ SU(2)L ⊗ U(1)Z ⊗ U(1)X
︸ ︷︷ ︸

U(1)Y

→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y .

Clearly, the hypercharge, and thus the electric charge, originates from the linear

combination of the Z and the X generators:

Y

2
= α

Z

2
+ βX, (1.52)

where α and β are the coefficients to be determined. Note that we already know the

values of Z (Z ≡ diag(−2/3,−2/3,−2/3, 1, 1) in the fundamental representation of

SU(5)) while the values of X are fixed by the SO(10) decomposition. With this in

mind, it is now easy to find the values of α and β by imposing the condition that

Eq. (1.52) reproduces the known hypercharges of the matter fields. We observe that

the quarks in (3, 2, 1/3)i must reside in the 101
i since there is not enough room for

them in the 5
−3
i . This gives the first condition: (1/6) = α(1/6) + β(1). On the

other hand, we expect the leptons from (1, 2,−1)i to be in the 5
−3
i since the rest of

the states will be occupied by the anti-triplet of quarks. This in turn provides the

second condition: (−1/2) = α(−1/2) + β(−3). These two conditions provide two

different embedding schemes for the matter fields, as shown by Barr in Ref. [62]:

1. (α, β) = (1, 0), corresponds to the GG SU(5) embedding scheme.

2. (α, β) = (−1
5
, 1

5
), is the flipped SU(5) embedding scheme.

We can now reconstruct the embedding of the rest of the matter fields of one family
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which in the SU(5) language looks like

ψµ =














ū1

ū2

ū3

e

ν














, ψµν =














0 d̄3 −d̄2 −d1 −u1

−d̄3 0 d̄1 −d2 −u2

d̄2 −d̄1 0 −d3 −u3

d1 d2 d3 0 −ν̄
u1 u2 u3 ν̄ 0














, and ψ = ē. (1.53)

Flipped SU(5) has certain appealing features that make it very attractive

from the model building point of view. Since we plan to take advantage of these

features in Chapters 4 and 5, where we describe them in great detail, we postpone

any further discussion on flipped SU(5).

We have seen that GUTs have introduced many qualitatively new notions

into the realm of elementary particle physics. The ideas such as the gauge coupling

unification, and the unification of the matter fields have become a reality. But one

question still remains: Are these ideas enough to account for the mass and the

mixing patterns?

1.5 Flavor Symmetry

The majority of the realistic GUT models in the literature utilizes the gauge

symmetry in conjunction with some form of the flavor symmetry [63, 64, 65], i.e.

the symmetry that acts in the flavor space, to create realistic patterns of the masses

and the mixings. The idea of Abelian flavor symmetry in this context is especially

simple.

It has been observed that all of the interfamily mass ratios and mixing angles

can be written as powers of one or two small parameters. For example, the quark

and the lepton mass ratios and the mixing angles (see Table 1.1.) at the GUT scale
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are

mu : mc : mt ∼ ε8 : ε4 : 1, (1.54a)

md : ms : mb ∼ ε5 : ε2 : 1, (1.54b)

me : mµ : mτ ∼ ε4 : ε2 : 1, (1.54c)

|Vus| ∼ ε, |Vcb| ∼ ε2, |Vub| ∼ ε4, (1.55)

and so on, where ε ∼ λ ∼ 0.22 is the Wolfenstein parameter [100]. This has suggested

to many theorists the idea that there is a weakly broken Abelian symmetry which

distinguishes fermions that are of the same type but of different families. Suppose,

for instance, that there is a U(1)F flavor symmetry, under which the Standard Model

Higgs has charge zero, the fermions ψ̄i and ψj have charges q̄i and qj, and a “flavon”

field S has charge −1. Then a Yukawa operator ψ̄iψjH is forbidden by the flavor

symmetry, but the effective operator ψ̄iψjH(S/MF )(q̄i+qj) is not. Such an effective

operator might arise from integrating out vector-like fermionic fields whose mass is

of order MF , the “flavor scale”. If one assumes that the breaking of U(1)F is weak,

in the sense that 〈S〉/MF = ε� 1, then one has explained the fact that the effective

mass parameter of the term ψ̄iψj is proportional to a power of the small quantity ε.

This is the basic idea of Froggatt and Nielson [63], which has inspired a very large

number of models in the literature.

The use of the flavor symmetry is closely tied to the expectation that the

Yukawa couplings are O(1) parameters. This indeed is the case for the top quark

so we expect its Yukawa operator to be allowed by the flavor symmetry. All other

Yukawa operators will usually be suppressed by the appropriate powers of the pa-

rameter ε. The flavor symmetry alone gives only order of magnitude estimates

instead of the exact predictions for the matrix elements of the mass matrices. But

then again, in conjunction with the GUTs it can be a powerful tool that relates the

mass ratios and the mixing angles as we demonstrate next.
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Concentrating our attention on the first two families of the quark sector we

can posit the following form of the mass matrix [66, 67, 68]

D =




0 ε

ε 1



m. (1.56)

The symmetric form might originate from the GUT with the hierarchical pattern

ensured by an appropriate flavor symmetry. The task of bringing this matrix into the

diagonal form is accomplished with the 2×2 orthogonal rotations (OT
dDOd = Ddiag)

with the rotation angle defined by tan 2θ = 2ε. For small ε, θ ∼= ε, the eigenvalues

are ms
∼= m, and md

∼= −ε2m. [Note that detD = −ε2m2 = mdms.] This finally

establishes the link between the mixing angle θ and the mass ratio, θ ∼=
√

|md/ms|,
we were hinting at. Applying the same idea to the mass matrix U and allowing for

more realistic complex entries the Cabbibo angle turns out to be

θc ∼=
∣
∣
∣
∣

√
md

ms

− eiφ

√
mu

mc

∣
∣
∣
∣
, (1.57)

which is to be compared with the value of |Vus|. The agreement seems excellent for

any value of the phase φ since at the GUT scale
√

md/ms ≈ 0.24, and
√

mu/mc ≈
0.046 (see Table 1.1.).

The synergy between the flavor symmetry and the GUTs can be nicely

demonstrated in the GG SU(5) model. As we have seen in Eq. (1.43), the U mass

matrix comes from the term involving the product of two 10’s while both the D and

the L matrices involve the product of only one 10 with the 5. To use this to our

advantage we can assign the same U(1)F charges to all the 5’s while assigning suc-

cessively greater charges to the 103, 102, and 101. This creates doubly suppressed

hierarchy in the up sector compared to the down and the charged lepton sector as

required by the empirical GUT relations in Eqs. (1.54).

All the mixing angles in the quark sector have turned out to be very small.

This has suggested the idea of relating the small mixing angles of the CKM matrix
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to the small ratios of the entries of the U and D mass matrices of the quarks. As we

have seen, this idea has been implemented by positing the symmetric “texture zero”

form of these matrices. On the other hand, the mixing angles of the PMNS matrix

in the lepton sector have not come out to be as small as was initially expected.

Some of them are actually very close to their maximal value. More specifically,

the measurements of neutrino oscillations (for a theoretical overview see [75]) have

unambiguously shown that |Uµ3| ∼= 0.71 [42], and |Ue2| ∼ 0.5 [70, 71, 72]. Therefore

the question is: How do we accommodate the maximal mixing? [The largeness of

the mixing angles in the lepton sector has raised a number of theoretical puzzles.

For a beautiful account of these puzzles and possible solutions see [74].]

It is very simple to accommodate the maximal mixing using the symmetric

form of the mass matrix. For example, the maximal mixing in a two-state system

is easily implemented with a following “pseudo-Dirac” matrix




ε 1

1 ε



 , (1.58)

where ε� 1. We note that the mixing angle is very close to π/4, while the resulting

masses are both of order one. It is clear from this simple example that the symmetric

form implies the existence of the degenerate mass eigenvalues whenever there is a

maximal mixing in the system. This approach, then, is not appropriate in the

lepton sector where both charged leptons and neutrinos show certain mass hierarchy.

This has suggested a somewhat novel approach based on the idea [73] to use the

antisymmetric form of the mass matrices to explain the unexpected largeness of the

mixing angles and the large hierarchy in the lepton sector. Obviously, the idea of

the antisymmetry in the lepton sector can only be applied to the charged lepton

mass matrix L since we know Mν to be symmetric. We demonstrate the beauty of

this idea in its natural setting of an SU(5) GUT.

Recall that in SU(5) there is a prediction for the relationship between D and

39



L mass matrices: D = LT. Since the physical mixing angles (the angles that enter

CKM and PMNS mixing matrices) are the angles used to redefine the left-handed

fields (see Eq. (1.22)), we can arrange things as follows. We can posit the form of the

matrix L to require large rotations of the left-handed charge leptons via Ul. These

large rotations in Ul are then related by SU(5) to the large rotations in Vd, which

are the rotations of the right-handed down quarks. But these right-handed mixing

angles have nothing to do with the observed CKM angles. On the other hand, the

small CKM angles originating from Ud are related by SU(5) to small mixings of the

right-handed leptons in Vl, which are irrelevant to neutrino oscillation phenomena

since they do not enter PMNS mixing matrix. The models based on this idea are

referred to as “lopsided” [77].

An example of how an SU(5) lopsided model works is provided by the fol-

lowing mass matrices:

D =




0 ε

σ 1



m, and L =




0 σ

ε 1



m. (1.59)

Here, we consider only the last two families of the down quarks and the leptons,

taking ε � 1 and σ ∼ 1. To bring L into the diagonal form we first perform

a rotation from the left with an angle defined by tan θlL = σ. Then, we rotate

from the right with an angle defined by tan θlR = ε/
√

1 + σ2 ∼ ε. This yields

the mass eigenvalues ratio mµ/mτ ≈ εσ which is equal to the mass ratio ms/mb

in the down quark sector. The angles θlL and θlR are equal to the angles θdR and

θdL in the down quark sector repectively due to the SU(5) symmetry. Being the

left-handed mixing angle in the “23 plane”, θlL (θdL) contributes towards the PMNS

(CKM) matrix element Uµ3 (Vcb). Thus, we have Uµ3 ∼ σ ∼
√

σ/ε
√
mµ/mτ and

Vcb ∼ ε ∼
√

ε/σ
√

ms/mb. We can clearly see that the smallness of Vcb is directly

related to the largeness of Uµ3.

We analyze one lopsided model in great detail in Chapter 3 and create another
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one in Chapter 4 to obtain realistic scheme of the masses and the mixings in extra-

dimensional setting.

1.6 Outline

We have discussed the Standard Model structure in great length in this chap-

ter. There is, however, one particular feature of the SM that has not been mentioned

yet—the coupling of the Higgs scalar h to the fermions in the SM is flavor diagonal.

We have taken it for granted since the mass matrices of the quarks and the leptons

were proportional to the appropriate Yukawa coupling matrices (λu,d,l). This does

not have to be the case always, especially if there are more Higgs-type scalars in

the theory as we will see in Chapter 2. The appearance of these extra scalars is

ubiquitous in the models with Abelian flavor symmetry. In these models the small

mixing angles and mass ratios of quarks and leptons are typically given by powers

of small parameters characterizing the spontaneous breaking of flavor symmetry by

the Higgs-type “flavon” fields. The usual assumption that the spontaneous breaking

takes place at some high energy scale makes all the effects of the flavon exchange

virtually unobservable. But, if the scale of the breaking of flavor symmetry is near

the weak scale, flavon exchange can lead to interesting flavor-violating and CP vio-

lating effects. These are studied in Chapter 2. We will put special emphasis on µ-e

conversion since there are a number of experiments aiming at the improvement of

existing limits. Some of them are already taking data (SINDRUM II Collaboration

at PSI [79]), and some are planned to start in near future (MACO at BNL [80] and

NUFACT at CERN [81]). In addition, we will investigate the effect of the flavon

exchange on the processes such as de, and µ→ e+ γ.

Experiments on neutrino oscillations have unambiguously shown that the

only viable solution of the solar neutrino problem is the large mixing angle MSW

solution. On the other hand, the majority of the models on neutrino masses and

mixings that has been published seems to have difficulty in explaining the values of
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the parameters required to produce that solution in a natural way. We investigate in

Chapter 3 how well various neutrino models accommodate the values of the neutrino

masses and mixings that are preferred by the recent global fit analyses. We also

address this question in a statistical manner and propose to treat the entries of the

mass matrices to be the random variables much in the spirit of the work of Hall,

Murayama and Weiner [82] and subsequent analysis of Haba and Murayama [83].

We suggest this approach to be a very good indicator of how natural neutrino mass

model is. Moreover, we claim this analysis to be applicable to a very large class of

models of the neutrino masses and mixings.

The most appealing feature of the flipped SU(5) is the way it allows one to

solve the doublet-triplet splitting problem via the missing partner mechanism [84,

85]. The implementation of this mechanism however prohibits any further embed-

ding of the flipped SU(5) into SO(10). This naturally means an automatic loss

of the gauge coupling unification as the genuine prediction of the flipped SU(5)

model. So the question of whether it is possible to reconcile the gauge symmetry

of flipped SU(5) with the gauge unification becomes extremely important. We will

show in Chapter 4 that embedding a four-dimensional flipped SU(5) model in a

five-dimensional SO(10) model à la Kawamura [86], preserves the best features of

both flipped SU(5) and SO(10). The missing partner mechanism, which naturally

achieves both doublet-triplet splitting and suppression of d = 5 proton decay oper-

ators, will be realized as in flipped SU(5), while the gauge couplings will be unified

as in SO(10). As promised before, we will also discuss in Chapter 4 the nature of

the doublet-triplet problem.

If we believe in the gauge unification we can ask whether the gauge couplings

truly unify at the GUT scale. The answer to this question was positive not so long

ago since the uncertainty in their initial values extracted from the experiments were

large enough to allow the three of them to meet. The situation has changed after
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the electroweak precision measurements and the improvements in measurements of

α3 since the error bars on the experimental values have become sufficiently small to

prevent the exact unification. What we need is to identify the source that modifies

the values of the gauge couplings sufficiently enough to lead to their perfect unifi-

cation. At the same time we have to ensure that this source is not contradicting

the existing experimental limits. This has been achieved in a number of ways. The

most common one is to postulate the existence of the extra-matter fields within the

usual four-dimensional framework. We are going to propose in Chapter 5 an extra-

dimensional SO(10) scheme that modifies the particle spectrum of the MSSM below

MGUT and generates the so-called Kaluza-Klein (KK) grand unification [87, 88]. The

model will also be interesting from the phenomenological point of view. The cutoff

of the model will be closer to MPl than was the case in four-dimensional GUTs. On

the other hand, the mass of the heavy states will be below the usual MGUT and yet

there will be no problems in satisfying the constrains of proton decay experiments.
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Chapter 2

FLAVOR EXCHANGING EFFECTS IN MODELS WITH

ABELIAN FLAVOR SYMMETRY

2.1 Introduction

Flavor symmetry was first proposed to explain the structure of the quark and

lepton mass spectrum and the CKM mixing of the quarks [63, 64]. More recently

these ideas have been extended to account for the observed patterns of neutrino

masses and mixings (see for instance [89, 78, 90, 91, 92]). In the context of SUSY,

flavor symmetry has been invoked to solve the problem of flavor changing neutral

currents, i.e. “the SUSY flavor problem” [93, 94, 95, 96, 97, 98, 99].

A wide assortment of flavor symmetries has been suggested. In particular,

models based on both non-Abelian and Abelian symmetries have been constructed.

One virtue of non-Abelian symmetries is that they can lead to degenerate masses,

which have various theoretical uses. For example, one solution to the SUSY flavor

problem is to posit a near degeneracy of the squark/slepton masses of the first two

families. For another example, large neutrino mixing angles can be obtained by

positing nearly degenerate neutrino masses. However, in this chapter we shall be

interested in Abelian flavor symmetries.

Aside from having the potential to explain the hierarchies observed among

fermion masses and mixing angles, the idea of a weakly broken Abelian flavor sym-

metry à la Froggatt and Nielson [63] can be used to construct models in which

the dangerous flavor-changing effects in supersymmetric models are suppressed by
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“flavor alignment” [93]. The idea here is that in the preferred basis defined by

the Abelian flavor charge assignments the off-diagonal elements of both the fermion

mass matrices and the sfermion mass-squared matrices are suppressed by powers

of the small parameters which characterize flavor breaking (i.e. parameters like ε).

Thus the fermion and sfermion mass matrices are nearly “aligned” by flavor sym-

metry. The angles expressing their misalignment are suppressed by powers of the

small parameters. If this suppression is strong enough it would solve the SUSY

flavor problem.

In this chapter we examine some of the possible consequences for phenomenol-

ogy of the exchange of the “flavon” fields themselves. A point that should be stressed

from the outset is that there do not have to be such consequences at all. The reason

is that the flavor scale MF can be anything from the weak scale up to the Planck

scale. All that matters is that the ratio 〈S〉/MF of the flavon expectation value

(or values) to the flavor scale be somewhat smaller than 1. If the flavor scale is

much larger than the weak scale, then the phenomenological effects of flavon ex-

change will be unobservable. In fact, many papers assume that the flavor scale is

near the Planck scale, which is certainly a reasonable expectation. However, since

we do not know a priori what the flavor scale is, it is interesting to investigate

the phenomenology that would result from its being near the weak scale, and in

particular to ask how low the flavor scale could actually be given present limits on

flavor-changing and CP -violating processes. We would also like to know in which

processes flavon-exchange effects would be likely first to show up.

There are many ways that new flavor physics just above the weak scale could

affect low-energy phenomenology. For instance, if the Abelian flavor group is local,

the exchange of the corresponding gauge bosons could cause flavor-changing neutral

current processes. We will assume that the flavor group is either global, or breaks

to a global symmetry at a sufficiently high scale that such gauge-boson-exchange
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effects can be ignored. We are only interested in this chapter in the exchange of the

flavon fields themselves.

There are many models with Abelian flavor symmetry, and the number of

parameters in such models can be large. What we shall do, therefore, is write down

an effective low-energy theory that has a manageably small number of parameters

and that has some of the typical features of models with Abelian flavor symmetry.

Studying this toy model will give some idea of the likely magnitude of various effects.

We will then look at some variations of the model to see how they would change the

conclusions.

2.2 A simple effective theory of flavon physics

The model we shall study has a single flavon field S that is a singlet under

the SM gauge group H. The effective Yukawa couplings of the quarks and leptons

to S and to the ordinary Standard Model Higgs field H, after integrating out all the

fields whose mass is of order of the flavor scale MF , is assumed to be

LYukawa = −λ̂uijεabQ
a

LiH
†buRj − λ̂dijQ

a

LiH
adRj − λ̂lijL

a

LiH
alRj + H.c., (2.1)

where i, j = 1, 2, 3 are family indices, and a, b = 1, 2 are SU(2)L indices. The λ̂’s

are given by the following expressions:

λ̂u =








hu11ε̂
6 hu12ε̂

4 hu13ε̂
4

hu21ε̂
4 hu22ε̂

2 hu23ε̂
2

hu31ε̂
4 hu32ε̂

2 hu33







, and λ̂d =








hd11ε̂
6 hd12ε̂

6 hd13ε̂
6

hd21ε̂
6 hd22ε̂

4 hd23ε̂
4

hd31ε̂
6 hd32ε̂

4 hd33ε̂
2







. (2.2)

The corresponding matrix for the charged leptons, λ̂l, is assumed to have the same

form as λ̂d with hdij → hlij. In these expressions the hij are all assumed to be of

order unity, and the hierarchy among various masses and mixing angles therefore

comes from the powers of ε̂2, which is defined to be

ε̂2 ≡ S

MF

. (2.3)

46



The particular structure given in Eq. (2.2) is inspired by a model of Babu and

Nandi [101], which has the same powers of ε̂, but where ε̂2 = (H†H)/M2
F rather

than S/MF as here. Thus, their model is not a typical flavon model. However, the

pattern of powers of ε is quite typical of many Abelian flavon models, and gives, as

Babu and Nandi show (see below), an excellent fit to quark and lepton masses and

CKM angles. If we call the vacuum expectation value of the flavon field 〈S〉 ≡ u,

then the small parameter that characterizes flavor changing is ε2 ≡ u/MF .

The Higgs potential is assumed to have the form

V (H,S) =λ(H†H)2 − µ2(H†H) + λS(S
∗S)2 − µ2

S(S
∗S)

+ λ′(H†HS∗S) − 1

2
(δm2S2 + H.c.).

(2.4)

The last term has been put in to give a soft breaking of the global U(1)F under

which S → eiθS, and thus to give mass to the pseudoscalar part of S. [This global

U(1) may ultimately come from a local flavor symmetry that is broken at a higher

scale.] The parameter δm2 is the only one in the Higgs potential that can have a

phase. However, one can absorb this by a phase rotation of S. Having done so, the

VEV of S is a real quantity. Minimizing this potential gives

S = u+
1√
2
s1 +

i√
2
s2, (2.5a)

H =




0

v + 1√
2
h



 , (2.5b)

where

v2 =
[
2λSµ

2 − λ′(µ2
S + δm2)

]
/
(
4λλS − λ′2

)
, (2.6)

u2 =
[
2λ(µ2

S + δm2) − λ′µ2
]
/
(
4λλS − λ′2

)
, (2.7)

with v ' 174GeV, and 〈s1〉 = 〈s2〉 = 〈h〉 = 0. We have changed the definition of v

compared to the definition of Eq. (1.12) for later convenience. From Eqs. (2.3), and

(2.5), we can write

ε̂2 = ε2
[

1 +
s1 + is2√

2u

]

. (2.8)
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Consequently, the couplings of s1 and s2 to the quarks and leptons are obtained by

taking, in Eq. (2.1),

λ̂fijH = λfij ε̂
2nf

ij

(

v +
h√
2

)

∼= mf
ij

[

1 +
nfij(s1 + is2)√

2u
+

h√
2v

]

, (2.9)

where f = u, d, l, and where nfij is the power of ε̂2 that appears in λ̂fij. It turns out

that for the interesting phenomenology one can ignore the terms higher than linear

in the fields s1 and s2 in Eq. (2.9). Note that the coupling of h to the quarks and

leptons will be made real and diagonal when the mass matrices mf
ij are, but that the

coupling of the flavon fields s1 and s2 will not be made real and diagonal because of

the extra factor of nfij. This is what will give the flavor-changing and CP -violating

effects that we shall be interested in. We see also that s2 couples in the same way to

quarks and leptons as s1 does but with a relative phase of i. This factor of i comes

in squared in s2 exchange and so does not lead to CP -violating effects to the order

we are interested in.

Let us now look at how many parameters the model has. First, there are the

large number of parameters that we have called hfij. Because there are so many, there

is no hope of making any sharp predictions. However, if we confine our ambition

to making order of magnitude estimates of effects, then we can (for the most part)

ignore the hfij, since they are assumed all to be of order unity. This leaves the six

parameters in the Higgs potential (λ, µ2, λS, µ
2
S, λ

′, δm2), and the flavor scale MF .

These parameters can be traded for v, mh, u, ms1 , sinφ, ms2, and MF . The VEV

v is known precisely; the mass of the ordinary Higgs mh is known approximately;

and the parameter MF is determined by the relation ε2 ≡ u/MF . (The value of ε2 is

known approximately from the values of the quark and lepton mass ratios and the

CKM angles.) Consequently, one is left with four free parameters: the masses of the

scalar flavon ms1 and the pseudoscalar flavon ms2 , the VEV u of the flavon (which,

as we have seen, controls the strength of the flavon couplings to matter), and the
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parameter sin φ that describes the mixing between the ordinary Higgs scalar and

the scalar flavon. This mixing is described by the mass matrix

1

2
(h s1 s2)








4λv2 2λ′vu 0

2λ′vu 4λSu
2 0

0 0 2δm2















h

s1

s2







. (2.10)

so that tan 2φ = (λ′vu)/(λsu
2−λv2). We will call the mass eigenstates h′ = cosφh−

sinφ s1, and s′ = sinφh+ cosφ s1, and their masses mh′, and ms′ , respectively.

Turning to the diagonalization of the quark and lepton mass matrices, one

finds the following masses and mixing angles

(mu, mc, mt) ∼=
(
|hu11 − hu12h

u
21/h

u
22|ε6, |hu22|ε2, |hu33|

)
v, (2.11a)

(md, ms, mb) ∼=
(
|hd11|ε6, |hd22|ε4, |hd33|ε2

)
v, (2.11b)

(me, mµ, mτ ) ∼=
(
|hl11|ε6, |hl22|ε4, |hl33|ε2

)
v, (2.11c)

and

|Vus| ∼=
∣
∣
∣
∣

hd12
hd22

− hu12
hu22

∣
∣
∣
∣
ε2, (2.12a)

|Vcb| ∼=
∣
∣
∣
∣

hd23
hd33

− hu23
hu33

∣
∣
∣
∣
ε2, (2.12b)

|Vub| ∼=
∣
∣
∣
∣

hd13
hd33

− hu13
hu33

− hu12h
d
23

hu22h
d
33

+
hu12h

d
23

hu22h
d
33

∣
∣
∣
∣
ε4. (2.12c)

Babu and Nandi [101] showed that this gives a reasonable fit to the data.

They took mu(1 GeV) = 5.1MeV, md(1 GeV) = 8.9MeV, ms(1 GeV) = 175MeV,

mc(mc) = 1.27GeV, mb(mb) = 4.25GeV, mphys
t = 175GeV, mτ = 1.78GeV, mµ =

105.6MeV, and me = 511 keV. Extrapolating, using the 3-loop QCD and one-loop

QED beta functions, with αs(MZ) = 0.118, they obtained the running masses in

GeV evaluated at mt: mt ' 166, mc ' 0.6, mu ' 0.0022, mb ' 2.78, ms ' 0.075,

md ' 0.0038, mτ ' 1.75, mµ ' 0.104, and me ' 0.0005. These are well fitted

by ε2 ' (1/6.5)2 ∼= 0.024, if one takes |hu11 − hu12h
u
21/h

u
22| ' 0.95, |hu22| ' 0.14,
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|hu33| ' 0.96, |hd11| ' 1.65, |hd22| ' 0.77, |hd33| ' 0.68, |hl11| ' 0.21, |hl22| ' 1.06,

and |hl33| ' 0.42. [The numerical values of the running masses at mt of Babu and

Nandi differ from our values, presented in Table 1.1., due to the difference in the

initial conditions. We have used the central values of the quark masses at 2GeV as

given in Ref. [28] while Babu and Nandi used the initial values at 1GeV as given in

Ref. [102].]

Note that with the exception of hu22 and hl11 all these are of order unity. And

as emphasized in [101] the smallness of hu22 actually helps account for the values of

|Vus| and |Vub|. From Eq. (2.12) one sees that with hu22 ' 1/7, these mixings come

out to be |Vus| ∼ 7ε2 ∼ 0.2, and |Vub| ∼ 7ε4 ∼ 3 × 10−3.

As mentioned, in the basis where the mass matrices of the quarks and leptons

are diagonal and real, the couplings of s1 and s2 remain with off-diagonal and com-

plex elements, due to the extra factors of nfij in Eq. (2.9). However, it is interesting

that the flavor-diagonal couplings of s1 are, in fact, real to leading order in the small

parameter ε2. That is, the imaginary part of these diagonal couplings is of order

ε2 ' 0.02 times the real part. This is significant for the lepton and quark electric

dipole moments, as we shall see. The reason that the diagonal couplings of s1 are

real to leading order can be seen by looking at a simple two-by-two example:

Yh =




h11ε

2n11 h12ε
2n12

h21ε
2n21 h22ε

2n22



 , Ys1 =




h11n11ε

2n11 h12n12ε
2n12

h21n21ε
2n21 h22n22ε

2n22




v

u
. (2.13)

In the basis where Yh is diagonal and real, which we shall denote by primes,

(Y ′
h)11

∼=
[

h11ε
2n11 − h12h21

h22
ε2(n12+n21−n22)

]

eiα, (2.14)

(Y ′
s1

)11
∼=

[

h11n11ε
2n11 − h12h21

h22
(n12 + n21 − n22)ε

2(n12+n21−n22)

]

eiα v

u
. (2.15)

The factor of eiα is the phase rotation required to make (Y ′
h)11 real. [In the same

basis, the matrix Y ′
s1

is easily seen to be non-diagonal: |(Y ′
s1

)12| ∼= |h12(n12 −
n22)ε

2n12 |(v/u), and |(Y ′
s1)21| ∼= |h21(n21 − n22)ε

2n21 |(v/u).] In Eq. (2.14) one sees
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two terms in the expression for (Y ′
h)11. There are two cases to consider: either

these two terms are of the same order in ε2, or one is higher order in ε2 than the

other. If they are the same order, then n12 + n21 − n22 = n11, which means that

(Y ′
s1

)11 = n11(Y
′
h)11(v/u), a real quantity, to leading order in ε2. If, on the other

hand, one term in (Y ′
h)11 is of lower order in ε2 than the other and dominates, then

the corresponding term dominates in (Y ′
s1

)11. Consequently, to leading order in ε2,

one has again that (Y ′
s1)11 is just an integer times (Y ′

h)11(v/u) and therefore real.

This conclusion generalizes to more complicated situations. It is true for N -

by-N matrices. It is also true if there are several Abelian flavon fields giving several

ε parameters, as long as contributions to diagonal Yukawa couplings that are of

different orders in the small parameters are not accidentally numerically comparable.

2.3 Flavor-changing and CP-violating processes

We are now ready to discuss various flavor-changing and CP -violating pro-

cesses. The ones that shall be of chief interest are ∆m2
K and εK in the neutral kaon

system, the electric dipole moment of the electron de, the decay µ → e + γ, and

µ-e conversion on nuclei µ + N → e + N . It is straightforward to calculate the

contributions to these effects coming from flavon exchange in our toy model.

The relevant couplings for flavor-changing and CP -violating processes, in the

physical basis of fermions and bosons, can be parameterized as

L = −
√
mimj

v
ψ̄i
(
∆a L
ij PL + ∆aR

ij PR
)
ψjHa + gmW cosϕaW

+W−Ha + · · · , (2.16)

where a = h′, s′, and where indices i and j run over all quarks and charged leptons.

We observe that due to the scalar nature of h′ and s′, to the leading order in ε2,

∆a L
ii ≡ ∆aR∗

ii = ∆aR
ii ≡ ∆a

ii is real for all i’s. [See the discussion after Eq. (2.14).]

Acting on Yukawa coupling matrices with a set of bi-unitary transformations that
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brings fermion mass matrices into diagonal form, and simultaneously diagonalizing

the Higgs sector one finds that

∆h′ L
ee = 4χ2ε2

hl12h
l
21√

2
sin φ

v

u
, (2.17a)

∆h′ R
ee = 4χ2ε2

hl∗12h
l∗
21√

2
sin φ

v

u
, (2.17b)

∆h′ L
eµ = −χεh

l
12√
2

sin φ
v

u
, (2.17c)

∆h′ R
eµ = −χεh

l∗
21√
2

sin φ
v

u
, (2.17d)

and

cosϕh′ = cosφ, cosϕs′ = sin φ, (2.18)

where we have omitted a term in ∆ee which is real and leading order in ε2, and

introduced χ = (|hl11||hl22|)−1/2. The coefficients ∆s′ L,R
ij are obtained from ∆h′ L,R

ij by

making the transformation cosφ→ sin φ, and sinφ→ − cosφ.

The electric dipole moment of the electron (de) comes from the familiar type

of two-loop graph [103] shown in Fig. 2.1. In terms of the original fields s1, s2 and h

γ

γ

e (µ) e

W, t

s1

h

Figure 2.1: A two-loop Feynman diagram for electron electric dipole moment
(µ→ e + γ).

coming from S and H, rather than the mass eigenstates, one sees that the field that
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couples to the W or t loop must be h. This can be seen as follows. The si have no

coupling to t at the leading order in ε2, since the t mass comes from order (S/MF )0,

i.e. nu33 = 0. [See Eqs. (2.2) and (2.9).] The si also have no coupling to the W±

since S does not participate in breaking SU(2)L ⊗ U(1)Y . [If there were two Higgs

doublets in the model, then the heavy loop could be a charged Higgs, in which case

the field coupling to it in Fig. 2.1 could be an s1.] However, the field coupling to the

electron line must be either s1 or s2 in order to obtain a CP -violating phase, since

the couplings of h are real and flavor diagonal in the physical basis of the leptons.

However, the s2, while it can give a CP -violating phase, does not mix with the h

and therefore would not be able to attach to the W or t loop. The scalar line in the

two-loop graph for de is thus s1 where it attaches to the electron, and h where it

attaches to the W or t loop. Consequently, the electron edm is proportional to the

mixing sinφ cosφ. A significant point about the de diagram, which has already been

alluded to, is that while the s1 coupling to the electron has a CP -violating phase,

that phase brings in an extra suppression of order ε2. The electric dipole moment

of a charged lepton is given by

di =
eGFα

8
√

2π3
mi Im[ALii − ARii ], (2.19)

where the dominant, reduced amplitude [104], comes from W loop and reads

AL,Rij = −
∑

a

cosϕa∆
a L,R
ij

[

3f

(
m2
W

m2
a

)

+
23

4
g

(
m2
W

m2
a

)

+
3

4
h

(
m2
W

m2
a

)]

. (2.20)

We define F (z) ≡ 3f(z)+ 23
4
g(z)+ 3

4
h(z), for short, where the functions f , g, and h

are as defined in Eqs. (10), (11), and (15) of Ref. [104], respectively. The function

F (m2
W/m

2) is plotted in the relevant region of scalar mass m in Fig. 2.2.

To determine the electron edm we need to determine the values of hl12 and

hl21 coefficients that enter the expressions for ∆aL
ee and ∆aR

ee . Since we cannot relate

them to the charged lepton masses to the leading order in ε2 we are prompted to

estimate their values. In view of the fact that all but a couple of hij coefficients has
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Figure 2.2: Plot of F (m2
W/m

2) ≡ 3f(m2
W/m

2) + 23
4
g(m2

W/m
2) + 3

4
h(m2

W/m
2) as

a function of scalar mass m.

come out to be of order unity we assume this to be the case for hl12 and hl21, too.

The same expectation applies to their phases. [We make the same assumption for

hd12 and hd21 coefficients later on.] Therefore, setting hl12 = hl21 = e−iπ/4 in Eq. (2.17),

the electron edm comes out to be

de = (1.5 × 10−27 ecm) sinφ cosφ
(v

u

) [

F

(
m2
W

m2
h′

)

− F

(
m2
W

m2
s′

)]

, (2.21)

Using the experimental value de = 0.18 × 10−26 ecm [105] gives the following limit:

sinφ cosφ
(v

u

) [

F

(
m2
W

m2
h′

)

− F

(
m2
W

m2
s′

)]

≤ 1.2. (2.22)

The diagram for µ→ e+ γ is of the same two-loop type as the electron edm

diagram, except that one of the external leptons is a µ rather than an e. As in

the de case, the scalar which couples to the lepton line must be s1 (here because it

involves flavor-changing), while the scalar that couples to the W± or t loop must be
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h. Thus the amplitude here is also proportional to sin φ cosφ. The branching ratio

for the process lj → li + γ is given by

B(lj → li + γ) =
3

4

(α

π

)3 mi

mj

(
1

2

∣
∣ALij

∣
∣
2
+

1

2

∣
∣ARij

∣
∣
2
)

. (2.23)

Again setting hl12 = hl21 = e−iπ/4, and imposing the experimental limit B(µ →
e+ γ) ≤ 1.2 × 10−11 [106], one obtains

sinφ cosφ
(v

u

) [

F

(
m2
W

m2
h′

)

− F

(
m2
W

m2
s′

)]

≤ 2.2. (2.24)

The diagram relevant for µ-e conversion on nuclei is Fig. 2.3. The field

eµ

p, n p, n

h, s1

s1

Figure 2.3: Tree level scalar exchange Feynman diagram for µ-e conversion on
nuclei.

that couples to the lepton line must be s1 or s2, but the field that couples at the

quark line may be h, s1, or s2. It is well known that the contributions of the

pseudoscalar exchange to the coherent µ-e conversion on nuclei can be neglected

[107] and will be ignored in our calculations. The contributions to the amplitude

from diagrams where the scalar couples to the lepton as s1 but to the quark as h go

as sin φ cosφ(1/m2
h′ − 1/m2

s′). Those in which the scalar couples to both the lepton

line and the quark line as s1 go as cos2 φ(1/m2
s′) + sin2 φ(1/m2

h′). We shall see these

expressions emerge in the formulas that appear below.
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The branching ratio of µ-e conversion B(µ− +(A,Z) → e− +(A,Z)), defined

to be the ratio of decay widths Γ(µ− + (A,Z) → e− + (A,Z))/Γ(µ− + (A,Z) →
capture), can be found using the procedure outlined in [108, 109]. We obtain

B = 2G2
Fmemµ

α3m5
µZ

4
eff

π2ZΓcapt
A2F (q2)2





∣
∣
∣
∣
∣

∑

a

m̃a
N

m2
a

∆aL
eµ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

∑

a

m̃a
N

m2
a

∆aR
eµ

∣
∣
∣
∣
∣

2


 , (2.25)

where F (q2) is the nucleon form factor, Zeff is the effective atomic number, and where

m̃a
N contains the heavy quark effects in effective scalar-nucleon-nucleon coupling

[110] and is given by

m̃a
N =

〈

N
∣
∣
∣

∑

l=u,d,s

ml∆
a
llψ̄lψl +

∑

h=t,b,c

mh∆
a
hhψ̄hψh

∣
∣
∣N
〉

. (2.26)

We derive the most general, model independent, expression for m̃a
N using the ap-

proach of Shifman et al. [111], and subsequent improvements of inclusion of strange

and heavy quark contributions discussed in [112, 113] as follows1

m̃a
N =

(
∑

h

∆a
hh

)

2

27

[

mN − σπN

(

1 +
y

2

ms

m̄

)]

+ σπN

[
∆a
uu + ∆a

dd

2
+ ∆a

ss

y

2

ms

m̄

]

,

(2.27)

where h runs over heavy quarks (t, b, c), y = 2〈N |s̄s|N〉/〈N |ūu+d̄d|N〉 is the strange

content in the nucleon, σπN is the pion-nucleon sigma term, mN is the nucleon mass,

and m̄ = (mu+md)/2. In our model, the diagonalization procedure in quark sector,

to the leading order in ε2, leads to

∆h′

ii =
[

cosφ− κi
v

u
sin φ

]/√
2, (2.28)

where (κu, κc, κt, κd, κs, κb) = (3, 1, 0, 3, 2, 1). Note that κi’s are the powers of ε̂2 of

the appropriate diagonal elements that appear in λ̂fij of Eq. (2.2).

1 Our general expression for m̃a
N reproduces Eq. (3) of Ref. [110] but yields an

additional term in Eq. (20) where authors analyze MSSM model. The additional
piece is σπN(cot β + tan β)/2.
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For µ-e conversion on 48
22Ti, we set Zeff = 17.6, F (q2 = −m2

µ) = 0.54, Γcapt =

2.59 × 106 s−1 [114], impose the experimental limit B < 4.3 × 10−12 [115], take

m̄ = 5MeV, and use the set (y, σπN) = (0.47, 60 MeV) [112], to obtain

(v

u

)
∣
∣
∣
∣
sin φ cosφ

(
1

m2
h′

− 1

m2
s′

)

m−
(v

u

)(sin2 φ

m2
h′

+
cos2 φ

m2
s′

)

m′
∣
∣
∣
∣
≤ 9 × 10−5

1 GeV
,

(2.29)

where m ' 350MeV, and m′ ' 500MeV.

The diagram relevant for the ∆S = 2 processes is Fig. 2.4. Here, the field

sd

s
_

d
_

s1, s2

Figure 2.4: Tree level contribution to K0 − K̄0 mixing.

that couples at both quark lines must be s1 or s2. Thus there are contributions

that go as cos2 φ(1/m2
s′)+sin2 φ(1/m2

h′) and as 1/m2
s2

. Noting that ∆L,R
ds is obtained

from ∆L,R
eµ by replacing hlij with hdij, and using the vacuum saturation approximation

for the hadronic element [116], we find a new contribution coming from the scalar

exchange to be

εaK ' CK
m2
a

{(
1

6

M2
K

(md +ms)2
+

1

6

)

Im

[(
hd∗12 + hd21√

2

)2
]

−
(

11

6

M2
K

(md +ms)2
+

1

6

)

Im

[(
hd∗12 − hd21√

2

)2
]}

(1 − cos2 ϕa), (2.30)
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while the exchange of pseudoscalar s2, due to the extra factor of i, yields

εs2K ' CK
m2
s2

{(
1

6

M2
K

(md +ms)2
+

1

6

)

Im

[(
hd∗12 − hd21√

2

)2
]

−
(

11

6

M2
K

(md +ms)2
+

1

6

)

Im

[(
hd∗12 + hd21√

2

)2
]}

, (2.31)

where we introduce

CK =
f 2
KMKBKε

12

8
√

2∆MK

(v

u

)2

. (2.32)

Using BK = 0.75, ∆MK ' 3.49 × 10−12 MeV, fK ' 160MeV, MK ' 497.67MeV,

ms = 175MeV, md = 8.9MeV, hd12 = hd21 = e−iπ/4, and requiring the terms in-

volving mh′, ms′ , and ms2 separately to contribute to εK an amount less than the

experimental value of that quantity (|εK | = 2.26 × 10−3 [105]) give the limits

(v

u

)2 sin2 φ

m2
h′
,
(v

u

)2 cos2 φ

m2
s′

≤ 3.9 × 10−6

1 GeV2 , and
(v

u

)2 1

m2
s2

≤ 3.8 × 10−5

1 GeV2 . (2.33)

If we take mh′ ' 102 GeV, as suggested by experiment, then Eq. (2.33) implies

that (v/u) sinφ ≤ 1/5, which is not a very stringent bound. Substituting this into

Eq. (2.21), one sees that the electron edm can easily be near the present published

experimental limit. For instance, taking (v/u) sinφ ' 0.1, so that flavon exchange

contributes of order 1/5 of the experimental value of εK , and taking ms′ ' 300GeV,

Eq. (2.21) gives de ∼ (0.6 × 10−27 ecm) cosφ.

Comparing Eqs. (2.22) and (2.24) (in which the unknown parameters, sinφ,

ms′, and u, enter in exactly the same way) reveals that the present limits on the

decay µ→ e+γ and the electron edm are about equally sensitive to flavon exchange

in this model. For example, if the CP -violating phases are large and all hij are close

to one, as was assumed in deriving Eqs. (2.21) and (2.24), and de is just below the

present limit, then the rate for µ→ e+ γ is roughly a forth of the present limit.

One sees here the importance of the fact that the diagonal Yukawa couplings

of the flavon field s1 have phases suppressed by ε2 ' 2 × 10−2. Were it not so,
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then the present limit on the electron edm would imply that the rate for µ→ e+ γ

was at least four orders of magnitude below present limits (unless parameters were

fine-tuned). µ+N → e+N would also be suppressed.

Turning to µ-e conversion on nuclei, one sees from Eq. (2.29) that the present

limit on this is also, for a wide range of parameters, about as sensitive to flavon

exchange as are the present limits on de and µ→ e+γ. For example, if (v/u) sinφ '
1/5, then the first term on the left-hand side of Eq. (2.29) (i.e. the term proportional

to sin φ cosφ/m2
h0

) gives a contribution to the rate for µ-e conversion that is about an

order of magnitude below the present limit. However, in some regions of parameter

space, µ + N → e + N can be the most sensitive to flavon exchange. Suppose, for

example, that v/u is smaller, but not much smaller, than one, and that sin φ � 1.

Then both de and µ→ e+γ are highly suppressed, whereas µ+N → e+N need not

be because of the term that goes as cos2 φ/m2
s′ on the left-hand side of Eq. (2.29).

We have only considered the effects arising from the effective Yukawa terms

in Eq. (2.1). However, there is another source of flavor violation from flavon ex-

change that can be very important. To get the effective low energy Yukawa terms

in Eq. (2.1), fermions having mass of order MF are integrated out. There are dia-

grams involving these heavy fermions that can be important. The most important

such diagram is that shown in Fig. 2.5, which is a contribution to K − K mixing.

The internal fermion has mass of order MF . The external fermion is the s0 quark,

i.e. the s quark in the original basis in which the Yukawa matrices of Eq. (2.2)

are written. When one goes to the physical basis of the light quarks, s0 will con-

tain a small admixture of the physical d quark: s0 = s + O(ε2)d. Consequently,

there will be from Fig. 2.5 a ∆S = 2 piece that goes as ε4. The Yukawa couplings

in Fig. 2.5 may be assumed to be of order unity. [The only reason the effective

Yukawa couplings of the known light quarks are small is that they are suppressed

by powers of ε2, since they arise from integrating out heavy fermions. However, in

59



s Q s

s Q s

S S

Figure 2.5: Box diagram contribution to K −K mixing. The internal fermion Q
has mass of order MF .

the underlying theory containing those heavy fermions there is no reason for the

Yukawa couplings to be small.] The coefficient of the ∆S = 2 operator arising from

Fig. 2.5 should therefore typically be of order (16π2)−1ε4(1/M2
F ) = (16π2)−1ε8u−2.

Using ε2 ∼ 2 × 10−2 and u ∼ 300GeV, one has that the coefficient of the ∆S = 2

term is of order 10−14 GeV−2. With some of the phases or couplings being assumed

somewhat smaller than one, the contribution from Fig. 2.5 can easily be within the

limit set by εK .

2.4 Conclusions

We presented a simple flavon model that can accommodate the observed

hierarchy of the charged fermion masses and mixings in terms of the powers of

one small parameter. It has been shown that the flavor-diagonal couplings of the

flavon field, under a general set of assumptions, are real to the leading order in

that parameter. This implies that flavor changing and CP violating signatures,

de, µ → e + γ, and µ-e conversion on nuclei, can be equally near the present

experimental limits with all other low energy constraints satisfied. For a significant

range of parameters µ-e conversion can be the most sensitive place to look for such

signatures.
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Chapter 3

OBTAINING THE LARGE ANGLE MSW SOLUTION TO

THE SOLAR NEUTRINO PROBLEM IN MODELS

3.1 Introduction

The main solutions to the solar neutrino problem are the small mixing angle

MSW1 solution (SMA), the large mixing angle MSW solution (LMA), the LOW

solution [119, 120, 121], and the vacuum oscillations solution (VAC) [122, 123].

The experimental situation has been very ambiguous until the recent results of the

Sundbury Neutrino Observatory [124] (SNO) and the Kamioka Liquid scintillator

AntiNeutrino Detector [72] (KamLAND) experiments. The results of the SNO ex-

periment have firstly singled out the LMA and LOW solutions as the most likely

oscillation solutions [125]. The more recent results of the KamLAND experiment

have then eliminated even the LOW solution [126], leaving the LMA solution as the

only viable one.

On the other hand, a survey of the hundreds of published models of neutrino

masses and mixings shows that most of them yield the SMA or VAC solution, and

even some that claim to obtain the LMA solution are only marginally consistent with

the latest global analyses of the data. The purpose of this chapter is to look at the

main types of models of neutrino masses and mixing angles that have been proposed

1 MSW stands for Mikheev-Smirnov-Wolfenstein, in honor of the co-discoverers
of the matter effect [117, 118] on solar neutrinos. This effect allows for the con-
version of solar neutrinos into neutrinos of another flavor due to the interaction
with the matter thus explaining their observed deficit.
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in the literature from the point of view of their ability to yield the LMA solution

in a natural way. There are two aspects of this question that can be distinguished.

First, one can ask whether a certain scheme or model can fit the LMA solar solution

with some choice of model parameters that is not too badly fine tuned. Second,

one can ask whether the model explains the LMA values of the neutrino masses

and mixing angles. In order to say that a theoretical model really explains them,

something close to the LMA best-fit values should emerge automatically when the

parameters of the theoretical model take their most “natural values”. If a model

parameter that is a priori of order one must be set to a value of ten or a tenth in

order to fit the neutrino masses and mixings, one has accommodated them but not

really explained them. What our survey will show is that of the great number of

models that now exist in the literature, few can be said to provide an explanation

(in this sense) of the LMA values of tan2 θsol and ∆m2
sol.

What are the LMA values that are to be explained? A recent global analysis

of Fogli, Lisi, Marrone, Montanino and Rotunno [131] have shown that the LMA

solution splits into two sub-regions, LMA-I and LMA-II. The region LMA-I is pre-

ferred by the global fit with the best fit of ∆m2
sol ∼ 7× 10−5 eV2 and sin2 θsol ∼ 0.3,

where ∆m2
sol = m2

2 −m2
1 and sin θsol ≡ |Ue2|. The region LMA-II is characterized by

the best fit with the twice the value of ∆m2
sol and almost the same value of sin2 θsol.

The two regions merge at 99.37% confidence level giving ∆m2
sol ∼ 3 × 10−4 eV2.

The 95% confidence-level allowed region given in [131] extends in ∆m2
sol from about

5 × 10−5 eV2 to 8 × 10−4 eV2, and in tan2 θsol from about 0.3 to 0.7. Similar re-

sults have been presented by Gonzalez-Garcia and Pena-Garay [133]. Their 90%

confidence-level region extends in tan2 θsol from about 0.3 to 0.8. A significant as-

pect of the fits is that they exclude exactly maximal mixing for the LMA solution.

The experimental signal reported by the LSND Collaboration [127], when

combined with the results of the experiments on solar and atmospheric neutrinos,
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requires at least four light neutrino species. Their signal, however, has not been

corroborated (nor completely excluded) by the results reported by the KARMEN

Collaboration [128]. Therefore, we limit our survey to the models with the three

light neutrinos. There is also a whole new class of neutrino models where neutrinos

have extra-dimensional origin (for a brief review see [129]). These models are still not

as predictive as the four-dimensional ones even though they have certain promising

features (see [130]). For example, we have seen in Section 1.4.2 that the see-saw

formula yields the neutrino mass of the order of 1/103 eV which is smaller by a

factor of ten than the experimentally preferred value. In the extra-dimensional

setting one can identify the scale of the right-handed Majorana neutrinos to be the

compactification scale MC of the extra-dimension instead of the usual assumption

that MR ∼ MGUT. The compactification scale, as we demonstrate in Chapter 5, is

usually of the order of 1014 GeV, giving the light neutrino mass in the right range.

We do not discuss these models in this chapter any further.

As we shall see, the issue of how close to exact maximal mixing tan2 θsol is

allowed to be is crucial for deciding whether several kinds of models can naturally

give an acceptable LMA solution. In this chapter we shall say that a model gives an

LMA solution that is in comfortable agreement with the data if it predicts tan2 θsol ≤
0.8. It is convenient to express the mass-squared splitting ∆m2

sol as a fraction, which

we shall call r, of the mass-squared splitting relevant to the atmospheric neutrino

oscillations: r ≡ ∆m2
sol/∆m

2
atm. The value of ∆m2

atm(≡ m2
3 − m2

2)
‡ has recently

been decreased from 2.6 × 10−3 eV2 [132, 133] to 2 × 10−3 eV2 by the preliminary

reanalysis of the existing data by the Super-Kamiokande Collaboration [134]. This,

however, has made no impact on the values of the ∆m2
sol, tan2 θsol [135], and the

value of the atmospheric angle tan2 θatm = 1, where sin θatm ≡ |Uµ3|. We take the

‡ The sign of ∆m2
sol is known from solar matter effect. The sign of ∆m2

atm, on
the other hand, is still not determined giving the rise to two possible mass
hierarchies in the neutrino sector.
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best fit values before the reanalysis that give r ' 2.8× 10−2 for the LMA-I region.

The rest of this chapter is organized as follows. In Section 3.2, we shall look

at the basic non-see-saw approaches to neutrino mass. We shall see that models

based on such approaches have been constructed which can fit the LMA solution,

but for the most part not comfortably, either because r tends to come out too

small or because the solar mixing angle tends to come out too close to maximality.

In other words, most of the non-see-saw models that can fit the LMA solution do

not really explain it in the sense that we have defined. In Section 3.3, we look at

see-saw models. Here too, most of the published models give the SMA or VAC

solutions. However, we show that there are some reasonably simple “textures” that

can reproduce nicely the LMA values of the neutrino masses and mixings. However,

it remains unclear whether these simple textures can arise in simple models.

In Section 3.4, we look at a well-known model that is particularly interesting

for two reasons: (a) it is very simple in conception, and (b) it can explain at least

the LMA value of the solar neutrino angle, although it does not explain the value

of the neutrino mass splitting. It is an SU(5) grand unified model with an Abelian

family symmetry. We shall analyze this model in some detail both analytically

and numerically. We shall show how the predictions of this model can be studied

statistically in a completely analytic way by assuming that the unknown parameters

of the model have Gaussian distributions. This method should be easily applicable

to many other kinds of models.

Section 3.5 is a brief summary.

3.2 Non-see-saw models

3.2.1 Non-see-saw models where θatm comes from Mν.

In non-see-saw models the mass matrix Mν of the three light neutrinos is

typically generated by new low-energy physics. It therefore has no relation, or only

a very indirect relation, to the Dirac mass matrices of the charged leptons, the down
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quarks, and the up quarks. This has the great advantage of making it easy to explain

why the atmospheric neutrino mixing angle is very large (|Uµ3| ≡ sin θatm
∼= 0.7)

while the corresponding quark mixing is so small (|Vcb| ∼= 0.04). If the Dirac matrices

are assumed to be hierarchical, then they would naturally give the small mixing

angles seen in the quark sector. But if Mν is unrelated to the Dirac mass matrices,

it could easily have a very different form with large off-diagonal elements that gives

large mixing angles. Non-see-saw models based on this idea are called Type I(1) in

[136].

The tricky question for this type of model is to explain why ∆m2
sol � ∆m2

atm.

If the large mixing Uµ3 comes from diagonalizing the 2-3 block of Mν, one would

expect that m2 and m3, the second and third eigenvalues of Mν , would have similar

magnitudes, in which case typically so would ∆m2
sol and ∆m2

atm. The challenge then

is to reconcile the hierarchy seen in the eigenvalues of Mν with the large atmospheric

mixing angle. To do this requires a special form of Mν . Two special forms have

been found viable in constructing realistic models, one leads to a so-called “inverted

hierarchy” m1
∼= m2 � m3, and the other to the ordinary hierarchy m1 � m2 � m3.

We shall consider these in turn.

3.2.1.1 Inverted hierarchy models.

Inverted hierarchy models have the following special form for Mν :

Mν =








m11 cM sM

cM m22 m23

sM m23 m33







. (3.1)

Here c ≡ cos θ and s ≡ sin θ, where θ ∼ 1, and mij �M . One can diagonalize this

matrix in stages, the first step being to rotate by angle θ in the “23 plane”, bringing
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the matrix to the form

M ′
ν =








m11 M 0

M m′
22 m′

23

0 m′
23 m′

33







. (3.2)

One sees immediately that m1
∼= m2

∼= M � m3. The mass-squared splitting

relevant to atmospheric oscillations is ∆m2
atm

∼= M2, whereas the splitting relevant

to solar oscillations is ∆m2
sol

∼= 2(m11+m
′
22)M , which is much smaller, as required by

all the viable solar solutions. The atmospheric angle gets a contribution θ ∼ 1 from

diagonalizing the 2-3 block of Mν , so in the absence of some unlikely cancellation it

will be large, as observed. But what of the solar angle? From the fact that the 1-2

block of Eq. (3.2) has a pseudo-Dirac form of Eq. (1.58) it is apparent that the solar

mixing angle will be close to maximal. Consequently, inverted hierarchy models

cannot give the SMA solar solution, but rather give “bimaximal” mixing.

The inverted hierarchy form of Eq. (3.1) can arise in several plausible ways.

One example is the Zee type of model [137, 138, 139]. In the Zee model [140, 141]

there is a singly charged singlet scalar field h+, which is allowed by the Standard

Model quantum numbers to couple (antisymmetrically) to both a pair of lepton

doublets (h+LiLj) and a pair of Higgs doublets (h+ΦaΦb), assuming that more than

one Higgs doublet exists. If both types of coupling are present, a conserved lepton

number cannot be consistently assigned to h+, and consequently ∆L = 2 Majorana

masses for the left-handed neutrinos arise at one-loop level. The resulting one-loop

mass matrix has the form

Mν =








0 a b

a 0 c

b c 0







. (3.3)

For c� a ∼ b, this has the desired inverted hierarchy form.

The inverted hierarchy form can also arise in models with an approximately

conserved Le−Lµ−Lτ lepton number. If this quantum number is exactly conserved,
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then only the 12, 21, 13, and 31 elements of Mν can be nonvanishing. If there are

small violations of Le−Lµ−Lτ the form in Eq. (3.1) can result [142, 139, 143, 144,

145, 146, 147, 148].

The question of present interest to us is whether the inverted hierarchy can

give an acceptable LMA solution. To answer this one must look more closely at the

solar neutrino mixing angle. This is given by θsol = θν12 − θl12, where the two angles

on the right-hand side are the contributions that come from diagonalizing Mν and

L respectively. From Eq. (3.2) it is easily found that tan 2θν12
∼= 2M/(m′

22 −m11), so

that θν12
∼= π/4− (m′

22 −m11)/4M . We have already seen that r ≡ ∆m2
sol/∆m

2
atm

∼=
2(m′

22 + m11)/M . Requiring that this be of order 10−2 as needed for the LMA-

I solution, and assuming that there are no accidental cancellations, one has that

θν12
∼= π/4 + O(10−3). If θl12 vanished, this would give tan2 θsol = 1 + O(10−3),

which is too close to maximal mixing to be in comfortable accord with the global

fits. However, one expects that θl12 ∼
√

me/mµ
∼= 0.07. This contribution can have

any complex phase relative to the contribution from Mν , and can therefore increase

or decrease tan2 θsol from unity. If one assumes that θl12 = 0.07 and has a relative

minus sign to θν12, then tan2 θsol ∼= 0.75, which is consistent with the global LMA fits.

However, one can see that the tendency of inverted hierarchy models is to give solar

mixing that is closer to maximality than to the best-fit LMA value of tan2 θsol ≈ 0.4.

This is one reason why many of the published inverted hierarchy models claim a

better fit to the VAC solution than to the LMA solution [143, 144, 145, 146, 147] A

significant reduction of the experimental upper limits on tan2 θsol would make the

inverted hierarchy idea much less plausible as an explanation of the LMA solution.

For example, a value of tan2 θsol = 0.5, would imply in the inverted hierarchy context

that tan θl12
∼= 0.17 ∼= 2.5

√

me/mµ, which would require a very special form of the

1-2 block of L.
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3.2.1.2 Ordinary hierarchy models.

The other possibility for non-see-saw models that gives a large atmospheric

neutrino mixing angle coming from Mν and a hierarchy in the mass-squared split-

tings is

Mν
∼=








m11 m12 m13

m12 s2M scM

m13 scM c2M







. (3.4)

Here, again, c ≡ cos θ and s ≡ sin θ, where θ ∼ 1, and mij � M . As written, the

2-3 block of the matrix has vanishing determinant; however, it is assumed that there

are small corrections to these elements, which we have not written.

As in the case of the inverted hierarchy models, one can diagonalize this in

stages, starting with a rotation by angle θ in the 23 plane. The result of such a

rotation is to bring the matrix to the form

M ′
ν =








m11 m′
12 m′

13

m′
12 m′

22 0

m′
13 0 M







. (3.5)

Because of the small corrections to the 23 block that were just mentioned, the 22

element in Eq. (3.5) does not vanish, but is small compared to M . This matrix gives

∆m2
sol = O(m2

ij) and ∆m2
atm

∼= M2. Thus the right hierarchy of splittings for any

of the solutions can be achieved for the appropriate values of mij/M . In contrast

to the inverted hierarchy form, this form can give either small or large θsol, and in

the large-angle case there is no preference for values of θsol that are very close to

maximal.

The form in Eq. (3.4) is clearly special in the sense that the 2-3 block is ap-

proximately of rank one. This would be unnatural unless some symmetry or mecha-

nism guaranteed it. One possibility is that this form arises from a non-Abelian flavor

symmetry [149], however, this is difficult to achieve. Rather, almost all published

68



models that achieve this form in a natural way use the idea of factorization. The

idea of factorization is that the dominant contribution to the neutrino mass matrix

has the form (Mν)ij = fifj, which is obviously of rank one. If f1 � f2, f3, this

dominant term reproduces the large elements in Eq. (3.4). The condition that f1

is small compared to f2 and f3 is necessary to satisfy the experimental constraint

that Ue3 ≤ 0.15. One drawback of most models based on factorization is that they

do not explain why f1 is small.

A factorized form can arise in various ways in non-see-saw models. A much

studied example is supersymmetry with terms in the superpotential that violate both

lepton number and R-parity. Cubic terms of this type are λijkLiLj ēk and λ′ijkLiQj d̄k.

The latter leads to one-loop ∆L = 2 neutrino mass diagrams, in which a neutrino

converts into a virtual quark-squark pair. Assuming that the LR squark masses

are proportional to the corresponding quark masses, this diagram gives (Mν)ij ∝
λ′∗iklλ

′
jlkmdk

mdl
. Consequently, the b-quark/b-squark loop dominates, and gives a

contribution that is proportional to λ′∗
i33λ

′
j33m

2
b , which obviously has a factorized

form. This gives only the heaviest neutrino mass, m3. The second largest neutrino

mass comes from a similar diagram with both b and s quarks/squarks in the loop.

Consequently, one has that r ∼= (m2/m3)
2 ∼ (ms/mb)

2 ∼ 3 × 10−4. This is much

smaller than the value of 2.8 × 10−2 preferred by experiment; however, there are

several unknown parameters that come into this calculation, such as the couplings

λ′ijk, so that nothing prevents the right LMA value of r from being obtained [150].

However, the model does not really explain the magnitude of r.

We have only considered the effects of the cubic lepton-number-violating and

R-parity-violating terms in the superpotential. There are also in general bilinear

terms of the form LiHu. These have the effect of mixing leptons and Higgs fields,

and so allow the sneutrino fields to acquire non-vanishing vacuum expectation values.

That, in turn, through the sneutrino-neutrino-neutralino coupling gives a tree-level
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neutrino mass in which the neutralino plays the role of “right-handed neutrino”. It is

easily seen that this tree-level mass has a factorized form and gives mass only to one

neutrino, i.e. m3. The other neutrino masses, m2 and m1, arise from the one-loop

diagrams previously discussed. In consequence, in such models where both cubic and

bilinear R-parity-violating terms contribute to Mν one expects that r ∼= (m2/m3)
2 ∼

(loop/tree)2 � 10−2. For this reason, most analyses of supersymmetric models in

which the bilinear R-parity-violating terms contribute to Mν conclude that there is

much more parameter space for the VAC solution than for the LMA solution, i.e.

the LMA solution requires special choices or tuning of parameters [151, 152, 153,

154, 155]. However, in [156] it is shown that under certain assumptions (specifically,

that there are only bilinear R-parity-violating terms and that the SUSY-breaking

terms are non-universal) the LMA solution can be achieved without fine tuning.

Nevertheless, it seems, on the whole, that the SUSY models with R-parity breaking

do not do well in explaining the LMA value of ∆m2
sol.

Another possibility for obtaining an approximately factorized form for Mν

that has been much studied in the literature is called “single right-handed neutrino

dominance” (SRHND) [157]. As the name suggests, the idea here is that instead of

there being three right-handed neutrinos, one in each family, as there are in typical

grand unified theories or Pati-Salam models, there is just one right-handed neutrino,

ν̄, which can have mass terms MRν̄ν̄ + fi(νiν̄)〈H〉. Integrating out ν̄ gives a rank-1

factorized contribution to Mν . If one assumes that ν̄ couples with almost equal

strength to the µ and τ neutrinos, and (for some reason not generally explained)

only weakly to the electron neutrino, the large terms in Eq. (3.4) are reproduced.

One way to explain the smallness of the coupling of ν̄ to the electron neutrino

would be to impose a symmetry that distinguishes νe from the νµ and ντ (but does

not distinguish the latter from each other). Such a symmetry would also tend to

suppress mixing between the νe and the heavier neutrinos, and thus give the SMA
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solar solution, as in the model of [158].

Since the right-handed neutrino only gives mass to one neutrino, some other

mechanism must be found to give mass to the other neutrinos. In [159] the lighter

two neutrino masses arise from loop effects. In [160] they arise at tree level from

integrating out other heavy states that have different flavor quantum numbers than

ν̄. In [161] they arise from operators of the form νiνjHuHu/MPl, which it is argued

are generally there anyway, the idea being to avoid having to invent new beyond-

the-standard-model physics to account for each kind of neutrino mass. In all these

cases, m1 and m2 are much less than m3, though the specific reason is different in

each case: in [159] they are suppressed by loop factors, in [160] by small flavor-

breaking parameters, and in [161] by MR/MPl. That SRHND models tend to give a

strong hierarchy in neutrino masses is what one would naturally expect. Since the

mechanisms that generate the largest neutrino mass and the other neutrino masses

are different, there is no reason a priori that they should yield masses of similar

scale. Rather, it would be a coincidence calling for an explanation if they did.

Because most SRHND models give m2 � m3 they yield the VAC solution or SMA

solution to the solar neutrino problem rather than the LMA solution [159, 160, 161].

To obtain the LMA solution, one wants m3 and m2 to be only about a factor

of ten in ratio. This suggests that they arise from the same basic mechanism. One

possibility is that all three neutrino masses arise from integrating out right-handed

neutrinos, but that one of those right-handed neutrinos is somewhat lighter than

the others and so dominates to some extent, but not by a large factor. However,

this would really be just a special case of the ordinary see-saw mechanism, which

we will discuss in the next section. In fact, the structure given in Eq. (3.13) is really

based on this idea, which was proposed in [162].
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3.2.2 Non-see-saw models where θatm comes from L.

There is another class of non-see-saw models in which the large atmospheric

neutrino angle comes predominantly from the diagonalization of the charged lepton

mass matrix L. [This class of models is called Type II(1) in [136].] This has the

advantage that it becomes easy to reconcile the largeness of θatm with the smallness

of ∆m2
sol/∆m

2
atm, since the former comes from L while the latter comes from Mν .

On the other hand another issue arises for this class of models, namely explaining

why the CKM angles are small. Since the form of L is such as to give a large mixing

angle θatm, one would naturally expect that the Dirac mass matrices D and U of the

quarks would be such as to give similarly large contributions to the CKM angles.

The point is that in many kinds of models the Dirac mass matrices L, D, and U are

closely related to each other.

One possibility is that there are indeed large contributions to the CKM angles

coming from U and D, but that these nearly cancel. This possibility is realized in

a much-studied class of models based on the idea of “flavor democracy” [165, 166,

167, 168, 169, 170, 171, 172]. In flavor democracy models it is assumed that all the

Dirac mass matrices have approximately the “democratic” form








1 1 1

1 1 1

1 1 1







. (3.6)

This form can be enforced by permutation symmetries among the three fam-

ilies. In the limit of exact flavor democracy, the matrices U and D are exactly of

the same form, so that flavor mixing in the quark sector cancels out. On the other

hand, it is assumed that the neutrino mass matrix Mν has a very different form. In

most papers it is assumed to be approximately proportional to the identity matrix,

though in some papers it is only assumed to be nearly diagonal. As a result, for
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the leptonic mixing angles there is no cancellation such as makes the CKM angles

small.

If L has exactly the democratic form, then

U †
l =








1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6

1/
√

3 1/
√

3 1/
√

3








≡ UFD. (3.7)

If the mass matrix of the neutrinos is exactly diagonal, then UPMNS = U †
l = UFD.

This would give sin2 2θatm = 8/9, which is consistent with the data, and tan2 θsol = 1,

i.e. exactly maximal mixing for solar neutrinos. However, the matrix L clearly

cannot have exactly the democratic form, as that is rank one and would give me =

mµ = 0. There must therefore be small corrections to L coming from the breaking

of the permutation symmetries. These corrections not only generate masses for the

electron and muon but also make the angle θsol deviate from maximality. For the

simplest and most widely assumed form of these corrections to L, one can calculate

the corrections to θsol in terms of
√
me/mµ. One finds, still assuming that Mν is

diagonal, that

tan2 θsol = 1 − 4√
3

√

me/mµ
∼= 0.84,

or equivalently sin2 2θsol = 0.993. This is too close to unity to be in comfortable

agreement with the LMA global fits. Almost all published models based on flavor

democracy have tan2 θsol ∼= 1, or else obtain smaller values by fine-tuning. However,

Tanimoto, Watari, and Yanagida have a version in which there are small corrections

to Mν that can reduce tan2 θsol to the region preferred by the LMA fits [173]. While

this shows that it is possible within the flavor democracy framework to construct

LMA models that can fit the data, it does not appear that flavor democracy does

a good job of explaining the LMA value of tan2 θsol. Flavor democracy is more

naturally compatible with the VAC or LOW solutions.
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We may summarize the situation by saying that most schemes that have been

proposed based on non-see-saw mechanisms neither very comfortably fit nor really

do much to explain the values of the neutrino parameters required for the LMA

solution to the solar neutrino problem. The great majority of non-see-saw models in

the literature more naturally give the SMA or VAC solutions. There are exceptions,

which we have noted above. How close tan2 θsol is to 1 is a crucial issue.

3.3 See-saw models

The see-saw mechanism is usually associated with grand unification. In

SO(10) grand unified models, and in most other unified schemes except SU(5),

the existence of one right-handed neutrino for each family is required to make up

complete multiplets of the unified group. Moreover, the see-saw formula Mν =

−NTM−1
R N gives neutrino masses in the range required by experiment if the scale

of MR is near the grand unified scale. Thus both the existence of neutrino masses

and their magnitude are elegantly accounted for by the related ideas of grand uni-

fication and the see-saw mechanism. In this section, we shall therefore assume that

we are dealing with a grand unified model.

3.3.1 See-saw models where θatm comes from Mν.

In models based on SO(10), there is generally a close relationship among the

four Dirac mass matrices N , U , D, and L. Indeed, in the minimal SO(10) model of

Section 1.4.3 (which is too simple to be realistic) N = U ∝ D = L. The smallness of

the CKM angles and the small interfamily mass ratios of the quarks can be explained

by assuming that the matrices U and D are “hierarchical” in form. There are two

simple kinds of hierarchical mass matrix that are frequently encountered in models







(ε′)2 εε′ ε′

εε′ ε2 ε

ε′ ε 1







, and








ε′ ε′ ε′

ε′ ε ε

ε′ ε 1







, (3.8)
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where ε′ � ε � 1. The entries in these matrices as written are to be understood

as giving only the order in the small parameters of the entries. The first form in

Eq. (3.8) has what may be called a “geometric hierarchy”, since an off-diagonal

element is of the same order as the geometric mean of the corresponding diagonal

elements. The second form in Eq. (3.8) has what may be called a “cascade hier-

archy”, since the matrix is made up of successive tiers, a 1-by-1, a 2-by-2, and a

3-by-3, of ever smaller magnitude. Both forms in Eq. (3.8), if applied to the quark

masses, give Vcb ∼ ε, Vus ∼ ε′/ε, and Vub ∼ ε′ ∼ VusVcb.

While there is as a rule a close relation among the four Dirac mass matrices

in SO(10), the Majorana mass matrix MR of the right-handed neutrinos can be

quite different in form. For example, in minimal SO(10) the Dirac mass matrices all

come from the same term, 16i16j10H , whereas the matrix MR comes from different

terms, either 16i16j126H or 16i16j16H16H as was discussed in Section 1.4.3. A

reasonable hypothesis is that the CKM angles are small because of the hierarchical

nature of the Dirac matrices, while the largeness of θatm and possibly of θsol has to

do with the very different form of MR. Models based on this idea were classified in

[136] as Type I(2).

A potential difficulty with this idea is that if the Dirac mass matrix of the

neutrinos N has a hierarchical form it tends, through the see-saw formula, to make

Mν also have a hierarchical form, indeed a more strongly hierarchical form. For

example, suppose N = diag(ε′, ε, 1), and we parameterize M−1
R as (M−1

R )ij = aij.

Then

Mν =








(ε′)2a11 εε′a12 ε′a13

εε′a12 ε2a22 εa23

ε′a13 εa23 a33







. (3.9)

If all the aij are of the same order, then tan 2θν23
∼= 2εa23/(a33 − ε2a22) ∼ ε. In

order for θatm to come primarily from diagonalizing Mν , one must have θν23 ∼ 1.

Clearly, this is only possible with some special form of MR. One possibility is that
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a23/a33 ∼ ε−1. If this is true, then there is a hierarchy among the elements of MR

that is related to the hierarchy among the elements of N . That is, the atmospheric

neutrino mixing angle is of order unity because of a conspiracy between the Majorana

and Dirac neutrino mass matrices. This would appear to be somewhat unnatural

in a theory in which MR and N have different origins, as is typically the case in

unified models. On the other hand, this “Dirac-Majorana conspiracy” might not

be unnatural in a model in which the same flavor symmetry, and the same small

parameter characterizing the breaking of that symmetry, controlled the structure

of both matrices. A good example of such “correlated hierarchies” is the model of

[174].

A very important question is whether θatm can naturally be of order unity

even if the Dirac matrices are hierarchical and the parameters in MR have no direct

relationship to those of N . The answer is yes. In [175] and [162] interesting examples

were found that satisfy these criteria. The specific forms given in those papers

happen to lead to the SMA solar solution, but with some modifications they can

also yield a satisfactory LMA solution, as we will now see.

Example 1: The following structure is closely related to that in [175]:

N =








dε′ eε′ fε′

gε′ aε bε

hε′ cε 1







mN , MR =








0 0 A

0 1 0

A 0 0







mR. (3.10)

Here a, ..., h are of order one, ε′ � ε � 1, and (ε′/ε)ε−1 � A� ε−1. Keeping only

the significant terms, the resulting light neutrino mass matrix Mν = −NTM−1
R N is

Mν
∼= −








O(ε′2) O(εε′) dε′/A

O(εε′) a2ε2 abε2 + eε′/A

dε′/A abε2 + eε′/A b2ε2 + 2fε′/A








m2
N

mR

. (3.11)
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A rotation in the 23 plane by angle θ ∼= tan−1(a/b) ∼ 1 diagonalizes the 2-3 block

and brings the matrix to the form

M ′
ν
∼= −








O(ε′2) − ad√
a2+b2

ε′/A bd√
a2+b2

ε′/A

− ad√
a2+b2

ε′/A 2a(af−be)
a2+b2

ε′/A 0

bd√
a2+b2

ε′/A 0 (a2 + b2)ε2








m2
N

mR
. (3.12)

If one assumes that ε′/A ∼ ε2/10, then it is apparent that ∆m2
sol/∆m

2
atm ∼ 10−2 as

required for the LMA solution. It is to be observed that the 12 and 21 elements of

this matrix are of the same order as the 22 element. This is just what is needed to

get the right value of θsol for the LMA solution, i.e. a value that is of order unity,

but not very close to maximal. For example, if the 12 element is exactly equal to the

22 element, then tan2 θsol ∼= 0.39, which is in excellent agreement with the LMA-I

best-fit value given in [131]. An examination of this matrix reveals that in obtaining

the LMA solution a crucial role is played by the “cascade hierarchy” form of N . In

particular, it is important that d be of the same order as e and f , which would not

be the case if N had a “geometric hierarchy” form. It should also be noted that the

largeness of the atmospheric angle is also traceable to the cascade hierarchy form of

N , and specifically to the fact that b is of the same order as a.

Example 2: The following structure is closely related to that given in [162]

N =








dε′ eε′ fε′

gε′ aε bε

hε′ cε 1







mN , MR =








B 0 0

0 A 0

0 0 1







mR. (3.13)

As in the last example, a, ..., h are of order one, and ε′ � ε� 1. If one also assumes

that ε2/A � ε′2/B � 1, then the light neutrino mass matrix Mν = −NTM−1
R N

takes the form (keeping only the important terms):

Mν
∼=








O(ε′2/A) gaεε′/A+ deε′2/B gbεε′/A+ dfε′2/B

gaεε′/A+ deε′2/B a2ε2/A+ e2ε′2/B abε2/A+ efε′2/B

gbεε′/A+ dfε′2/B abε2/A+ efε′2/B b2ε2/A+ f 2ε′2/B








m2
N

mR
.
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A rotation in the 23 plane by angle θ ∼= tan−1(a/b) ∼ 1 diagonalizes the 2-3 block

and brings the matrix to the form

M ′
ν
∼=








O(ε′2/A) d(be−af)√
a2+b2

ε′2/B O(εε′/A) +O(ε′2/B)

d(be−af)√
a2+b2

ε′2/B (be−af)2

a2+b2
ε′2/B 0

O(εε′/A) +O(ε′2/B) 0 (a2 + b2)ε2/A








m2
N

mR
.

The same remarks apply as in the previous example. The largeness of both the at-

mospheric neutrino angle and the solar neutrino angle can be traced to the “cascade

hierarchy” form of N . Because the 12, 21, and 22 element are of the same order, the

solar angle is (as required for the LMA solution) of order one, but not very close to

maximal. The right ratio of mass splittings for the LMA solution can be obtained

if ε′2/B ∼ 10−1ε2/A.

These two examples show that there are reasonable forms or “textures” for

the mass matrices in the context of the see-saw mechanism that can quite naturally

yield the LMA solution. However, actual detailed models based on these textures

have not been constructed. It is also not clear how simple it is for the seemingly

required “cascade hierarchy” form to arise in the framework of grand unified models.

Finally, it should be noted that while some forms for N and MR can be identified

which would naturally give the LMA solution, most of the viable forms give the

SMA or VAC solutions, and indeed the great majority of see-saw models published

in the literature give the latter solutions rather than the LMA solution.

It has been recently suggested by Hall, Murayama and Weiner [82] that even

the structureless mass matrices in the neutrino sector can lead to θatm of order unity.

In their approach, dubbed “anarchy”, the entries of the mass matrices are taken to

be random numbers of constant probability in a given range. The ratio r is then

explained through the fact that any hierarchy factor that might show up in the

Dirac mass matrix of the neutrinos tends to be quadratically enhanced via see-saw

mechanism. The presence of the MR mass matrix further helps in smoothing out
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the distribution. The major prediction of the anarchy-type models [82, 83, 163, 164]

is that all three angles in the lepton sector are close to their maximal values (barring

any accidental cancellations). This, then, represents a serious problem due to the

experimental limits on the value of |Ue3|. One might say that the anarchy models

give “trilarge” mixing.

3.3.2 See-saw models where θatm comes largely from L.

As we saw in Subsection 3.2.2, there are advantages to models in which the

large atmospheric angle comes primarily from the charged lepton mass matrix L.

In particular it becomes easy to reconcile the largeness of θatm with the smallness

of ∆m2
sol/∆m

2
atm, since they come from different matrices: the former from L and

the latter from Mν. As we also saw, however, having a large angle arise from the

diagonalization of L raises the question of why a large CKM angle does not arise

from the diagonalization of the quark mass matrices D and U . The answer in the

“flavor democracy” models, was that the CKM angles are small by a cancellation

caused by an approximate symmetry. The possibility of a different and very elegant

answer arises in the context of grand unified models, especially if an SU(5) symmetry

plays a role in the form of the fermion mass matrices.

We have seen in Section 1.5 that within SU(5) one can realize the idea that

the matrix L is such as to give large left-handed mixings and small right-handed

mixings, so that θatm can be large while Vcb is small. In other words, L must be

highly asymmetric or lopsided [77]. [It should be noted that in SU(5), L is related

to DT, but not in general to U or N . Thus while the lopsidedness of L entails the

lopsidedness of D, there is no reason to expect N and U to be lopsided, and in the

examples we give below they are not.]

Many models have been proposed based on this idea of lopsided mass matrices

[73, 76, 176, 77, 78, 177, 178, 179, 180, 181, 182, 90, 183, 184, 185, 186, 187, 188,

189, 190, 191, 192]. These are classified as Type II(2) in [136]. The great majority
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of these models give the SMA solution or the VAC solution to the solar neutrino

problem. However, it is possible to obtain the LMA solution as well [190, 191, 192].

In a lopsided model in which the LMA, LOW, or VAC solution arises, the large

atmospheric angle can come primarily from the matrix L while the large solar angle

can come from the matrix Mν . This actually has the virtue of simplicity, since the

form of Mν is less constrained than in models where it must give rise both to a large

θatm and large θsol.

An example of how the LMA solution might arise in a see-saw model with

lopsided L is provided by the following matrices:

N =








dε′ eε′ fε′

gε′ aε bε

hε′ cε 1







mN , MR =








0 A 0

A 0 0

0 0 1







mR. (3.14)

As before, it is assumed that a, ..., h are of order one, and that ε′ � ε � 1.

Suppose the value of A is such that ε2, ε′ � εε′/A � 1. Then, keeping only the

most important terms, the light neutrino mass matrix has the form:

Mν
∼= −








O(ε′2/A) adεε′/A bdεε′/A

adεε′/A 2aeεε′/A (af + be)εε′/A+ cε

bdεε′/A (af + be)εε′/A+ cε 1








m2
N

mR
.

Here the 23 and 32 elements are small compared to the 33 element, leading to a small

contribution to θatm; but that is alright, since θatm is supposed to arise primarily

from diagonalizing L in this class of models. As in the previous examples, one sees

that the 12, 21 and 22 elements are of the same order, giving a large, but not nearly

maximal, value of θsol as required by the LMA solution. To get the right ratio of

neutrino mass-squared splittings one needs εε′/A ∼ 10−1.

3.4 An SU(5) pattern

A particularly interesting kind of pattern can arise very simply in the context

of SU(5) with Abelian flavor symmetry. Consider an SU(5) model with a U(1)
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flavor symmetry under which the quark and lepton multiplets have the following

charge assignments: 101(2), 102(1), 103(0), 51(1), 52(0), 53(0), Let the breaking

of the U(1) flavor symmetry be done by a field S having U(1) charge -1, and an

expectation value 〈S〉/MF = ε � 1. Then the mass matrices of the quarks and

charged leptons will have the following forms:

D ∼








ε3 ε2 ε

ε2 ε 1

ε2 ε 1







mD, U ∼








ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1







mU ,

L ∼








ε3 ε2 ε2

ε2 ε ε

ε 1 1







mD.

(3.15)

Note that L and D have the lopsided form. It has been pointed out in several papers

in the literature that these forms give a very good account of the mass ratios and

mixing angles of the quarks and leptons [76, 193, 194].

One can see that the quantities mµ/mτ ' 1/17, ms/mb ' 1/50, and Vcb '
1/25 all are of order ε. Thus, ε is roughly of order 1/20. A consistent value of ε is

obtained from the fact that mc/mt ' 1/400, mu/mc ' 1/200, me/mµ ' 1/200, and

Vub ' 1/300 are all of order ε2. From the Cabibbo mixing and the ratio md/ms, one

would get the somewhat larger value ε ∼ 1/5.

The light neutrino mass matrix Mν arises from the see-saw mechanism; so

to know this matrix exactly it would be necessary to know MR. However, to know

merely the order in ε of the elements of Mν it is not necessary to know the U(1)

family charges of the right-handed neutrinos at all, since the effective mass term in

which Mν appears involves only the left-handed lepton doublets, which are in the
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5i. Knowing the U(1) charges of the 5i tells us that

Mν ∼








ε2 ε ε

ε 1 1

ε 1 1







m2
D/mR. (3.16)

From the forms of L and Mν it is obvious that the mixing Uµ3 of the second

and third family neutrinos will get O(1) contributions from both these matrices, thus

explaining the largeness of the atmospheric neutrino mixing angle. Let us imagine

now diagonalizing the 2-3 block of Mν to get

M ′
ν ∼








ε2 ε ε

ε m2(0) 0

ε 0 1







m2
D/mR. (3.17)

The entry m2(0) would naturally be expected to be of order 1. However, for the ratio

r ≡ ∆m2
sol/∆m

2
atm to come out to be of order 10−2, as required by the LMA solution,

m2(0) should rather be of order 1/10. If we accept this rather mild fine-tuning, and

assume that m2(0) ∼ 1/10, something interesting can be observed, namely that the

12 and 21 elements of M ′
ν are of the same order as the 22 element, since ε ∼ 1/20.

Recall that this is just what is needed for tan2 θsol to come out to be near the best-fit

LMA value of about 0.3 or 0.4.

This model, then, naturally explains both the value of θatm and the LMA

value of θsol, provided that r ≡ ∆m2
sol/∆m

2
atm is set to the LMA value.

Let us now imagine diagonalizing M ′
ν. The rotation needed to eliminate the

13 and 31 elements will give a contribution to Ue3 that is of order ε, quite consistent

with the present experimental limit of 0.15. This leaves the diagonalization of the 1-2

block. In doing this one may neglect the 11 element, since it is of order ε2. One then

finds the simple relations (a) tan 2θsol ∼ 2ε/m2(0), and (b) m2 = m2(0)/(1−tan2 θsol).

[Here we have ignored the O(ε) contribution to θsol coming from diagonalizing L,

since we are interested in large values of θsol.] From these relations one can infer
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roughly what region this model gives in the standard log(tan2 θsol)-log(∆m2
sol) plot.

One sees from (a) that tan2 θsol ∼ ε2(m2(0))
−2, and from (b) that ∆m2

sol ∼ (m2(0))
2.

In other words, in the standard plot the region corresponding to this model lies

roughly along a line with slope −1 going through the LMA allowed region. We

shall see shortly, both by a much more careful analytic calculation and by a Monte

Carlo numerical calculation, that this conclusion is correct. The form of (b) tells

us something else that is interesting. As the value of the solar angle approaches

maximality, i.e. tan2 θsol −→ 1, the denominator in (b) approaches zero. Therefore,

to maintain a finite value of ∆m2
sol the value of m2(0) must be tuned to be extremely

small. Thus, one expects the region of greatest probability in this model to fade

away as tan2 θsol approaches 1. This is confirmed by the analytic and Monte Carlo

calculations, as we shall see.

We shall now study the predictions of this model in a statistical way, much in

the spirit of [83]. Similar statistical analyses have been done in several recent papers

[194, 164, 195], and our results are consistent insofar as they can be compared with

theirs. However, our analysis differs in some respects. We do not treat ε as a free

parameter, and seek to find its optimal value for the various solar solutions. Rather,

we fix ε to the value that best reproduces the mass ratio mµ/mτ and then derive the

full region of the tan2 θsol -∆m2
sol plane which results. We also show that by treating

the random variables as having a Gaussian distribution the statistical predictions of

the model can be obtained analytically. We also carry out a numerical simulation

using both a Gaussian and a non-Gaussian distribution similar to those used in

previous analyses and show that it agrees remarkably well with the analytic results

obtained using a Gaussian distribution.

To carry out the statistical analysis we parameterize the neutrino and charged
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lepton mass matrices as follows:

Mν =








fε2 dε/
√

2 eε/
√

2

dε/
√

2 b c/
√

2

eε/
√

2 c/
√

2 a







m2
D/mR, (3.18)

and

L =








O(ε3) O(ε2) O(ε2)

O(ε2) Dε Cε

O(ε) B A







mD. (3.19)

We will take the unknown order-one parameters a, b, c, d, e, f , A, B, C, and

D, to be complex random variables whose real and imaginary parts have Gaussian

distributions with standard deviation σ. For example, if a = |a|eiθa, then P (a) da =

(2πσ2)−1 exp(−|a|2/2σ2)|a| d|a| dθa. It should be noted that we have put factors of

1/
√

2 in the off-diagonal elements of Mν . This is the appropriate normalization to

use for a symmetric matrix.

What we want to calculate is the probability distribution P (r, t) dr dt, where

r ≡ ∆m2
sol/∆m

2
atm, as before, and t ≡ tan2 θsol, given that the order-one unknown

parameters in the mass matrices have Gaussian distributions as described. We will

first describe and give the results of an analytic calculation of P (r, t), and then

present the results of a Monte Carlo numerical calculation of P (r, t).

A very important point in what follows is that if one does unitary changes of

basis 


νL2

νL3



 −→ V




νL2

νL3



 or




`−L2

`−L3



 −→ V




`−L2

`−L3



 ,

the resulting parameters a′, ..., e′, A′, ..., D′, have exactly the same Gaussian dis-

tributions as the parameters in the original basis. (This would not be true without

the factors of 1/
√

2 in Mν .) This is one fact that makes the analytic calculation

tractable using Gaussian distributions. Moreover this basis independence is more

consistent with the group-theoretical approach advocated in [83].
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The first thing to do is diagonalize L. For our purposes, we need only di-

agonalize the 2-3 block to find mµ/mτ and the contribution of L to θatm. This

involves multiplying the 2-3 block of L from the right (which in our convention is a

transformation on the left-handed leptons) by a unitary matrix

U
[23]
`

∼=




A B∗

−B A∗



 (|A|2 + |B|2)−1/2.

This eliminates the large element B in L. At the same time, the 33 element be-

comes
√

|A|2 + |B|2. The new 22 and 23 elements, which can be written D′ε and

C ′ε respectively, have the same Gaussian distribution as do A, B, C, and D. Con-

sequently, one has that

(mµ)rms/(mτ )rms = ε|D′|rms/(
√

|A|2 + |B|2)rms = ε/
√

2.

Thus, the most reasonable value to choose for the small parameter, from the point

of view of lepton physics, is ε/
√

2 = mµ/mτ .

The first constraint that we shall impose is that the atmospheric neutrino

mixing comes out to be very close to maximal, as found experimentally. This angle

gets contributions from the diagonalizations of both L and Mν. It would seem, then,

that we must, in computing P (r, t), take into account the random variables in both

mass matrices. However, a great simplification occurs because of the use of Gaussian

distributions and the resulting basis independence of the probability distributions.

A little thought shows that one can compute P (r, t) in a basis where the contribution

to the atmospheric neutrino mixing coming from L has some fixed value, and the

result will not depend on that value. Thus the parameters in L are irrelevant to

P (r, t). It is simplest in practice to choose the basis where the entire atmospheric

neutrino mixing comes from L. A further simplification is achieved by neglecting the

parameters e and f . The parameter e comes into calculating Ue3 (which is predicted

to be of order ε, and so consistent with the experimental bound |Ue3| ≤ 0.15), but
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has a negligible effect on θsol, θatm, and the neutrino masses. The parameter f is

multiplied by ε2, and so is negligible also. Finally, one can choose a basis where the

parameters a, b, and d are real. That means that the only parameters that come

into the calculation of P (r, t) are |a|, |b|, |c|, |d|, and θc ≡ arg c. From now on, we

shall drop the absolute value signs and denote |a|, for example, simply by a.

One begins, then, with a matrix

Mν =








0 dε/
√

2 0

dε/
√

2 b ceiθc/
√

2

0 ceiθc/
√

2 a







m2
D/mR, (3.20)

and a probability distribution

P (a, b, c, θc, d) =
abcd

2πσ8
e−

1

2σ2
(a2+b2+c2+d2). (3.21)

The first step is to diagonalize the 1-2 block of the matrix given in Eq. (3.20),

which gives tan 2θsol ≡ s =
√

2dε/b. This allows the elimination of the random

variable d in favor of the measurable parameter s or equivalently t. The 11 and 22

elements of the matrix then become 1
2
(1−

√
1 + s2)b and 1

2
(1+

√
1 + s2)b respectively.

The latter quantity we shall denote as b′. The next step is to impose the atmospheric

angle constraint. Since we are working in a basis where the contribution to this angle

from Mν is vanishingly small, the imposition of this constraint sets the parameter

c to zero. More precisely, if one requires that the (complex) contribution to the

atmospheric angle from Mν have magnitude bounded by some arbitrary small cutoff

∆atm � 1, the condition on c becomes (c/
√

2)/(a − b′) ≤ ∆atm. This means that

the integration over dc dθc in the probability distribution can be done, yielding
∫
c dc dθc = π(

√
2(a − b′)∆atm)2. The only remaining variables are then a, b, and

s. The random variable a can be eliminated in favor of the measurable ratio r of

mass-squared splittings using the relation r = (b2
√

1 + s2)/(a2 − b′2). It is a very

good approximation here to replace b′ by b, since for the whole region of interest
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either s or r is very small as we shall see. After all these steps, one is left with

a probability distribution P (r, b, s). The final step is simply to integrate over the

random variable b. Since this integral is a Gaussian it is easily done. The final result

is

P (r, s) dr ds = N
rs dr ds

1 + s2

[√

1 +
r√

1 + s2
−
√

r√
1 + s2

]2

[

1 +
2r√

1 + s2
+

rs2

2ε2
√

1 + s2

]4 , (3.22)

where N is just a normalization constant. Changing variable from s ≡ tan 2θsol to

t ≡ tan2 θsol one finds that

P (r, t) dr dt = N
2r dr dt

1 − t2

[√

1 + r

(
1 − t

1 + t

)

−
√

r

(
1 − t

1 + t

)]2

[

1 + 2r

(
1 − t

1 + t

)

+
2rt

ε2(1 − t2)

]4 . (3.23)

One can see the qualitative behavior of this function rather easily. The crucial

term is the one containing ε2 in the denominator. This term forces the product rt

to be of order ε2. This is consistent with what we argued above, namely that the

region of greatest probability in this model has rt ∼ constant, i.e. a line of slope -1

in the log(tan2 θsol)-log(∆m2
sol) plane. Moreover, we see that as t −→ 1, the product

rt is forced to be less than or of order ε2(1 − t2) −→ 0, so that the probability is

suppressed for t ∼= 1.

In Fig. 3.1, we give a contour plot of the probability function P (r, t) just

computed analytically, and compare it to the results of a Monte Carlo calculation.

For the Monte Carlo calculation we used the forms in Eqs. (3.18) and (3.19), with

ε/
√

2 = mµ/mτ , and assumed that the magnitudes of the complex random variables

had a Gaussian distribution. The phases of the complex variables were also treated

as random numbers and were varied from 0 to 2π. We then diagonalized randomly

generated matrices to obtain the corresponding PMNS mixing matrices UPMNS and

neutrino masses and analyzed the results by imposing the conditions sin2 2θatm ≥ 0.9
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and |Ue3| ≤ 0.15. These conditions reduced our initial set of 50,000 data points to

15,718 that were compatible with both the CHOOZ reactor data [196] and the

atmospheric neutrino experiments. Only the points that passed the cuts are given

in Fig. 3.1.

In Fig. 3.2, we generate the points assuming that the magnitudes of the com-

plex variables, instead of having the Gaussian distribution, have constant probability

in the interval 0.5 to 2.0 and zero probability outside that interval. The phases are

again treated as the random numbers in the interval from 0 to 2π. This time 20,860

points, out of the initial set of 50,000 points, have passed all the cuts.

We expect Gaussian distribution to be in better agreement with the ana-

lytic solution than the constant probability distribution. But, one can see from

the excellent agreement between the analytic and Monte Carlo results presented in

Fig. 3.2 that the exact form used for the probability distributions of the random

variables themselves makes little difference. This has also been found in other pa-

pers [83, 194, 164, 195]. One point that should be noted is that since Figs. 3.1 and

3.2 are the log-log plots, the correct thing to plot and what has been plotted, is

P (log r, log t) ∼ P (r, t)rt.

In Figs. 3.3(a) and 3.3(b), we have fixed the value of r at r = 2.8×10−2, which

comes from using the best-fit values from experiment, and plotted the resulting

P (log t) against a normalized, binned distribution that was extracted from the data

set produced with (a) the Gaussian and (b) the constant probability distribution

respectively. We have obtained the binned distributions by counting the number of

data points in the strip log r = log(2.8× 10−2)± 0.1, the width of one bin being 0.2.

This strip is shown in Figs. 3.1 and 3.2. The normalization has been carried out

with respect to the maximum of P (log t). Note the excellent agreement between the

analytic and Monte Carlo solution in Fig. 3.3(a). On the other hand, the binned

distribution in Fig. 3.3(b) lies slightly below the analytic curve. We expect this
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behavior since the data set created by the constant probability distribution limits

the scope of the magnitudes of the matrix elements in Eqs. (3.18) and (3.19). In

both cases the most probable value for tan2 θsol is about 0.1, with a very substantial

part of the area under the curve being in the region [0.3, 0.8] preferred by both

the LMA-I and LMA-II solution global fits. This region is shaded in Fig. 3.3 for

convenience.

The one weakness of this model is that it does not explain the value of

r ≡ ∆m2
sol/∆m

2
atm as required by the LMA-I solution fits. From Figs. 3.1 and

3.2 one sees that a value of 10−1 for this ratio is near the peak of the probability

distribution P (r, t). However, the same figure shows that a value of 2.8×10−2 is near

the edge of the preferred region, and so requires a mild fine-tuning. On the other

hand, this model accommodates the value of r as preferred by the LMA-II solution

fits. [If the preliminary reanalysis of the existing data by the Super-Kamiokande

Collaboration [134] proves to be correct the value of r will change from 2.8 × 10−2

(5.8×10−1) to 5.8×10−2 (7.5×10−1) for the LMA-I (LMA-II) solution. This would

put the predicted value of r of the model in the middle of the preferred region.]

However, once r is constrained to be the right value, the value of tan2 θsol needed for

both the LMA-I and LMA-II solution emerges quite naturally, as can be seen from

Figs. 3.3(a) and 3.3(b). The atmospheric mixing angle is, of course, also naturally

explained.

3.5 Conclusions

One can see from the foregoing that it is considerably easier to build satis-

factory models of the VAC, LOW, or SMA type than of the LMA type. That is

reflected in the models that have actually been constructed in the literature. One

problem is that in many models which predict large solar mixing angle, notably

inverted hierarchy schemes and flavor democracy schemes, this angle tends to come

out very close to maximal. They do not naturally explain why tan2 θsol should
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come out in the range 0.3 to 0.8 preferred by the data. Other non-see-saw schemes,

such as SUSY with R-parity breaking and single-right-handed-neutrino-dominance

(SRHND) models, tend to predict a value of ∆m2
sol/∆m

2
atm significantly less than

that preferred by the LMA solution. While the LMA value of this ratio can be

fitted, it is not really explained.

The situation seems more promising for the see-saw approaches, although

here also the great majority of published models give the small angle or vacuum solar

solutions. We showed that certain fairly simple textures exist that would naturally

reproduce the neutrino masses and mixings required by the LMA solution. Whether

these textures can be implemented in simple models remains to be seen.

One of the few existing schemes that shows a natural preference for the

LMA solution is the lopsided SU(5) model studied in Section 3.4. The value of

∆m2
sol/∆m

2
atm requires a mild fine-tuning, but given that, both the atmospheric

angle and the LMA value of the solar angle emerge quite naturally. We studied

the predictions of this model in a statistical way, and found that by using Gaussian

distributions the analysis could be carried out very simply and accurately by purely

analytic means. We believe that the same methods should be applicable to many

other models. The advantage of such statistical analyses is that they allow one to

estimate in a somewhat objective and quantitative way how ”fine tuned” models

must be to reproduce the data.
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Figure 3.1: Contour plot of the normalized probability distribution P in
log(tan2 θsol)-log(∆m2

sol/∆m
2
atm) plane with the contour values 0.002,

0.02, 0.06, 0.1, and 0.14 superimposed on the numerically generated
distribution of points. The points are generated using the Gaussian
distribution for the magnitudes of the mass matrix entries. Large
dots represent the best-fit values for LMA-I and LMA-II solutions as
indicated.
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sol/∆m
2
atm) plane with the contour values 0.002,

0.02, 0.06, 0.1, and 0.14 superimposed on the numerically generated
distribution of points. The points are generated using the constant
probability distribution. Large dots represent the best-fit values for
LMA-I and LMA-II solutions as indicated.
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Figure 3.3: Normalized probability distribution P (solid line) as a function of
log(tan2 θsol) for the best-fit LMA-I solution value ∆m2

sol/∆m
2
atm =

2.8×10−2 plotted against the normalized, binned distribution (dashed
line) extracted from (a) the Gaussian and (b) the constant probability
data sets.
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Chapter 4

UNIFYING FLIPPED SU(5) IN FIVE DIMENSIONS

4.1 Introduction

A beautiful feature of flipped SU(5) [62, 84, 85] is that it provides a natural

setting for the missing partner mechanism. This mechanism, when implemented in

flipped SU(5), not only solves the doublet-triplet splitting problem but also allows

one to avoid entirely the Higgsino-mediated proton decay that is such a difficulty for

SUSY GUTs. On the other hand, flipped SU(5) gives up one of the most attractive

features of grand unification, namely unification of gauge couplings, because it is

based on the group SU(5) ⊗ U(1). Another drawback of flipped SU(5) models is

that the masses of down quarks and charged leptons come from different operators,

so that one does not obtain the relation mb(MGUT) = mτ (MGUT). The unification

of gauge couplings and relations between down quark masses and charged lepton

masses could be recovered by embedding the group SU(5) ⊗ U(1) in the simple

group SO(10). However, in that case, the missing partner mechanism no longer

works, since the partner that was missing from the SU(5) multiplets is present in

the larger SO(10) multiplets.

One is thus in somewhat of a quandary. The point of this chapter is that a

way out of this quandary is provided by unification in five dimensions. We show

that if the group SO(10) in five dimensions is broken by orbifold compactification

to the group SU(5) ⊗ U(1) in four dimensions it is possible to have at the same

time the good features of both flipped SU(5) and of SO(10). The essential reason
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is that if SO(10) is broken by the orbifold compactification then the fields of the

effective four-dimensional theory need not be in complete SO(10) multiplets. This

means that at the four-dimensional level the famous missing partners can still be

missing and the doublet-triplet splitting can be achieved without the dangerous

Higgsino-mediated proton decay. On the other hand, because there is SO(10) at

the five-dimensional level, there is approximate unification of gauge couplings, and

there is also the possibility of getting SO(10)-like Yukawa couplings for the quarks

and leptons.

By now there are many models that use orbifold compactification of extra

dimensions to break grand unified symmetries. The first such models [86, 197, 198,

199, 200, 87, 201] showed that with one extra dimension it is possible to construct

SU(5) models which have natural doublet-triplet splitting and no problem with

the d = 5 proton decay operators that plague four-dimensional SUSY GUTs. The

breaking of grand unified symmetries by orbifold compactification of a single extra

dimension does not reduce the rank of the group [202]. Thus to break SO(10) all the

way to the Standard Model by orbifold compactification requires at least two extra

dimensions. Interesting six-dimensional SO(10) models have been constructed in

several papers [203, 204, 205]. However, it is also possible that the breaking from the

grand unified group to the Standard Model is achieved by a combination of orbifold

compactification and the conventional four-dimensional Higgs mechanism. That

allows the construction of realistic SO(10) models with only a single extra dimension,

as was first shown by Dermı́̌sek and Mafi [206]. In their model the theory in the five-

dimensional bulk has N = 1 supersymmetry and gauge group SO(10). Orbifolding

breaks SO(10) to the Pati-Salam [51] symmetry SU(4)c ⊗ SU(2)L ⊗ SU(2)R. The

orbifold has two inequivalent fixed points O and O′. On O there is a full SO(10)

symmetry, but on O′ only the Pati-Salam group. On the brane at O the conventional

Higgs mechanism breaks SO(10) down to SU(5). Thus the unbroken symmetry in
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the low-energy theory in four dimensions is the intersection of SU(5) and the Pati-

Salam group, i.e. the Standard Model group. Another, more recent, example of

realistic SO(10) model in five dimensions is that of Albright and Barr [207]. Their

model also harbors the Pati-Salam group on the hidden brane. For more examples

of SO(10) based models in five dimensions see [208, 209].

The model we shall present is similar in some ways to that of Dermı́̌sek and

Mafi but differs from it in several important respects. Whereas they use orbifold

compactification to break to the Pati-Salam group and Higgs fields on the brane O

to break to SU(5), we shall use orbifold compactification to break to SU(5)⊗ U(1)

and Higgs fields in the bulk to break the rest of the way to the Standard Model.

They use orbifold breaking to split the doublets from the triplets, whereas we use

the four-dimensional flipped-SU(5) missing partner mechanism.

4.2 Missing partners in four dimensions

Before we consider higher dimensional theories we shall briefly review the

missing partner mechanism in four-dimensional theories, showing why it works in

flipped SU(5) but not in SO(10).

4.2.1 Flipped SU(5)

First recall what happens in ordinary (i.e. Georgi-Glashow) SU(5) [57]. In

ordinary SU(5) the two Higgs doublets of the MSSM, which we shall denote 2 and

2, have color-triplet partners, which we shall denote 3 and 3. [We use this short-

hand notation for Standard Model representations: 2 ≡ (1, 2, 1), 2 ≡ (1, 2,−1),

3 ≡ (3, 1,−2/3), 3 ≡ (3, 1, 2/3).] These are contained in fundamental and anti-

fundamental multiplets of SU(5): 5 = 2 + 3 and 5 = 2 + 3 (see Eq. (1.39)). A

combination of an SU(5)-singlet mass term and a Yukawa coupling to a Higgs in

the adjoint representation, can (with suitable fine-tuning) give GUT-scale mass to
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the triplet partners while leaving the MSSM Higgs doublets light. This can be

represented schematically as




3

2








3

2





‖ ‖
5 5

where the solid horizontal line represents a large Dirac mass M3 connecting the

colored Higgsinos 3 and 3. It is well-known that the exchange of these colored

Higgsinos gives a dangerous d = 5 proton-decay operator, as shown in Fig. 4.1.

From the figure one sees that this proton decay amplitude is proportional to the

dj

ui uk

ll
-

M3

3 3

Figure 4.1: The kind of graph that gives rise to d = 5 proton decay operators.

mass connecting 3 to 3. Suppressing this proton decay therefore requires severing

this connection. This can be done by introducing an extra pair of Higgs multiplets

5′ +5
′
, so that the triplets in the unprimed multiplets get mass not with each other

but with the triplets in the primed multiplets as shown in the following diagram




3

2








3
′

2
′




· · ·
· · ·




3′

2′








3

2





‖ ‖ ‖ ‖
5 5

′
5′ 5
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If the MSSM Higgs doublets are the unprimed ones, then one sees that their colored

partners are not connected to each other by a mass term, so that the d = 5 proton-

decay amplitude vanishes. Unfortunately, however, there is an extra pair of doublets

that remains light, namely the primed ones. The effect of these on the renormaliza-

tion group equations would destroy gauge coupling unification. To give the needed

superheavy mass to these doublets one could introduce a term M5
′
5′; however, this

would give mass terms connecting not only 2′ to 2 but also 3′ to 3
′
(indicated by

dotted lines in the previous diagram) and thus indirectly (after the primed triplets

were integrated out) reconnecting 3 to 3 and bringing back the dangerous d = 5

proton decay amplitude.

Now let us turn to flipped SU(5) and see how it avoids these problems very

elegantly [85]. In flipped SU(5) models one has Higgs fields in the following rep-

resentations of SU(5) ⊗ U(1): h = 5−2, h = 5
2
, H = 101, and H = 10

−1
. Under

the Standard Model group these decompose as follows, h = 2 + 3, h = 2 + 3,

H = 3 + (3, 2, 1/3) + (1, 1, 0), and H = 3 + (3, 2,−1/3) + (1, 1, 0). The Higgs

superpotential contains the terms hH H + hH H. When the Standard Model sin-

glets (1, 1, 0) in the H and H acquire VEVs they break SU(5) ⊗ U(1) down to the

Standard Model group and they also give mass to the triplet Higgs. Schematically,




3

2








3

other








3

other








3

2





‖ ‖ ‖ ‖
h H H h

(4.1)

where, for simplicity, (3, 2, 1/3) + (1, 1, 0) ≡ other. The triplets in h and h get

mass with those in H and H. However the doublets in h and h remain massless

because there are no doublets in H and H for them to mate with—thus the name

“missing partner mechanism”.
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At first glance one might worry that the same problem arises here as in the

ordinary SU(5) case discussed previously. The multiplets 5′ and 5
′

there played

the same role as the multiplets H and H here. And we saw that one could not

give mass to the doublets in 5′ and 5
′
without reintroducing the dangerous proton

decay amplitude. This leads to the question whether there is not an analogous

difficulty in giving mass to some of the components of H and H, and specifically to

the (3, 2, 1/3) + (1, 1, 0) + (3, 2,−1/3) + (1, 1, 0), since here also an explicit mass

term MHH would reintroduce the problem of proton decay. The beautiful answer

is that these “other” components of H and H do not have to get mass. Indeed,

they must not get mass, because they are the Goldstone modes that get eaten when

SU(5) ⊗ U(1) breaks to SU(3) ⊗ SU(2) ⊗ U(1). In other words, the fact that

SU(5)⊗U(1) breaks to the Standard Model group guarantees that there is no mass

connecting H and H and therefore guarantees the absence of the d = 5 proton decay

amplitude.

4.2.2 SO(10)

Now let us see why embedding flipped SU(5) in SO(10) in four dimensions

destroys the beautiful missing partner solution to the doublet-triplet splitting and

proton decay problems that we have just reviewed.

In SO(10) the simplest possibility is that the terms hH H + hH H come

from the terms 10 16 16 + 1016 16, where 10 = h + h, 16 = H + h
′
+ 15, and

16 = H + h′ + 1−5. Here h′ = 53 and h
′
= 5

−3
. The problem is that the doublet

partners that were missing from H and H are now present in h
′
and h′.

The terms 10 1616 + 10 1616 contain not only hH 〈H〉+ hH 〈H〉 but also

h h
′ 〈H〉+h h′ 〈H〉. These latter terms mate the doublet Higgs in h and h with those

in h
′
and h′, destroying the solution of the doublet-triplet splitting problem.

A possible remedy to this difficulty suggests itself. One can have h and h

come from different 10s of SO(10). Let us examine what happens in this case, since
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it will be directly relevant to what we shall do in five dimensions later. Suppose

there are two vector Higgs representations, denoted 101 and 102, with couplings

101 16 16 + 102 1616. We write 101 = h1 + h1 and 102 = h2 + h2. Suppose that

the two light doublets of the MSSM lie in h1 and h2; then the triplet partners of

these light doublets will obtain mass from the terms h1H〈H〉+h2H〈H〉. The terms

that give superlarge mass to doublets, and which correspond to those we found

troubling before, are h1h
′〈H〉 + h2h

′〈H〉. These do not give superlarge mass to the

MSSM doublets, but to the doublets in h1 and h2. Thus, we would appear to have

satisfactory doublet-triplet splitting with no dangerous d = 5 proton decay, just as

in flipped SU(5).

However, this is not so, for the question arises how the triplets in h1 and h2

are to acquire superheavy mass. It would seem that the only way is through a mass

term connecting them. But that would have to come from a term Mh1h2, which

in turn comes from M101102, and this would also give Mh1h2 and thus superlarge

mass to the MSSM doublets.

We see, then, that the missing partner mechanism does not work in four-

dimensional SO(10) theories. However, we shall see that it can work in five-

dimensional SO(10) theories. The crucial difference will be that orbifold breaking

of SO(10) can split the SO(10) Higgs representations. In particular, in the example

we just looked at the troublesome triplets in h1 and h2 can be given Kaluza-Klein

masses by the orbifold compactification while leaving the MSSM doublets in h1 and

h2 light.

4.3 An SO(10) model in five dimensions

We now present an SO(10) supersymmetric model in five dimensions com-

pactified on an S1/(Z2 × Z ′
2) orbifold that yields a realistic supersymmetric flipped

100



SU(5) model in four dimensions. The breaking of SU(5) ⊗ U(1) down to the Stan-

dard Model gauge group, the doublet-triplet splitting, and the solution to the prob-

lem of d = 5 proton-decay operators will all be as in conventional four-dimensional

flipped SU(5) models. Moreover, there will be distinctive flipped SU(5) relation-

ships among gaugino masses. However, the gauge couplings will be unified (with

some threshold corrections, that can be argued to be small [87]) because of the

underlying five-dimensional SO(10) symmetry. And the Yukawa couplings of the

quarks and leptons can have relationships that are similar to what is found in ordi-

nary SU(5) and SO(10) models rather than in flipped SU(5).

As already elaborated in Refs. [86, 197, 198, 199, 87, 200, 201], the fifth

dimension, being the circle with coordinate y and circumference 2πR, is compactified

through the reflection y → −y under Z2 and y′ → −y′ under Z ′
2 where y′ = y +

πR/2. This identification procedure leaves two fixed points O and O′ of Z2 and Z ′
2

respectively and reduces the physical region to the interval y ∈ [−πR/2, 0]. Point

O at y = 0 is the “visible brane” while point O′ at y′ = 0 is the “hidden brane”.

This orbifolding procedure is shown schematically in Fig. 4.2. The compactification

scale 1/R ≡ MC is assumed to be close to the scale at which the gauge couplings

unify, i.e. the GUT scale MGUT ∼ 1016 GeV.

The generic bulk field φ(xµ, y), where µ = 0, 1, 2, 3, has definite parity

assignment under Z2 × Z ′
2 symmetry. Taking P = ±1 to be parity eigenvalue

of the field φ(xµ, y) under Z2 transformation and P ′ = ±1 to be parity eigen-

value under the Z ′
2 transformation, a field with (P, P ′) = (±,±) can be denoted

φPP
′

(xµ, y) = φ±±(xµ, y). The Fourier series expansion of the fields φ±±(xµ, y)

101
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Z2

Z'2

Figure 4.2: Compactification of S1 space under Z2×Z ′
2 symmetry transformations.

The reflections under Z2 and Z ′
2 identify the fixed points O′ and O

respectively.

yields

φ++(xµ, y) =
1√

2δn0πR

∞∑

n=0

φ++(2n)(xµ) cos
2ny

R
, (4.2a)

φ+−(xµ, y) =
1√
πR

∞∑

n=0

φ+−(2n+1)(xµ) cos
(2n+ 1)y

R
, (4.2b)

φ−+(xµ, y) =
1√
πR

∞∑

n=0

φ−+(2n+1)(xµ) sin
(2n+ 1)y

R
, (4.2c)

φ−−(xµ, y) =
1√
πR

∞∑

n=0

φ−−(2n+2)(xµ) sin
(2n+ 2)y

R
. (4.2d)

The profile of the wave function in the fifth dimension is shown in Fig. 4.3.

In the effective theory in four dimensions all the fields in Eqs. (4.2) have

masses of order MC except the Kaluza-Klein zero mode φ++(0) of φ++(xµ, y), which

remains massless. Moreover, fields φ−±(xµ, y) vanish on the visible brane and fields

φ±−(xµ, y) vanish on the hidden brane.
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Figure 4.3: A profile of the wave functions of the first three modes of the Kaluza-
Klein tower of states for every possible parity assignment. A flat line
in the plot of ++ states represents the profile of the massless n = 0
mode. All other states are massive with their mass being quantized in
units of 1/R. Here, we take R = 1.

In our model, we assume that gauge fields and gauge-non-singlet Higgs fields

exist in the five-dimensional bulk, while the quark and lepton fields and certain

gauge-singlet Higgs fields exist only on the visible brane at O. The gauge fields in the

bulk are of course in a vector supermultiplet of 5d supersymmetry that is an adjoint

representation of SO(10). We will denote it by 45g, where the subscript ‘g’ stands

for ‘gauge’. The gauge-non-singlet Higgs fields in the bulk are in hypermultiplets

of 5d supersymmetry and consist of two tens of SO(10), denoted 101H and 102H ,

and a spinor-antispinor pair of SO(10) denoted 16H and 16H . The subscript ‘H’

indicates a Higgs field.

The vector supermultiplet 45g decomposes into a vector multiplet V and a
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chiral multiplet Σ of N = 1 supersymmetry in four dimensions. Each hypermulti-

plet splits into two left-handed chiral multiplets Φ and Φc, having opposite gauge

quantum numbers. As shown in Section 1.4.3, under the SU(5) ⊗ U(1) subgroup

the SO(10) representations decompose as follows: 45 → 240 + 10−4 + 10
4

+ 10;

10 → 5−2 + 5
2
; 16 → 101 + 5

−3
+ 15; and 16 → 10

−1
+ 53 + 1−5. With these

facts in mind we shall now discuss the transformation of the various fields under the

Z2 × Z ′
2 parity transformations.

The first Z2 symmetry (the one we denote as unprimed) is used to break

supersymmetry to N = 1 in four-dimensions. [N = 1 in five dimensions is equivalent

to N = 2 in four dimensions; so we are breaking half the supersymmetries.] To do

this we assume that under Z2 the V is even, Σ is odd, Φ are even, and Φc are odd.

The Z ′
2 is used to break SO(10) down to SU(5) ⊗ U(1). The 240 and 10 of V are

taken to be even under Z ′
2, while the 10−4 and 10

4
are taken to be odd. In 101H

the 5−2 are taken to be even and the 5
2

odd, whereas in 102H the parities are taken

to be the reverse, 5−2 odd and 5
2

even. All told we have

45g = V ++
24

0 + V ++
10 + V +−

10
−4 + V +−

10
4 + Σ−−

24
0 + Σ−−

10 + Σ−+
10

−4 + Σ−+

10
4 , (4.3a)

101H = Φ++

5
−2

1

+ Φ+−
5
2

1

+ Φc−−
5
2

1

+ Φc−+

5
−2

1

, (4.3b)

102H = Φ+−
5
−2

2

+ Φ++

5
2

2

+ Φc−+

5
2

2

+ Φc−−
5
−2

2

, (4.3c)

16H = Φ++
101 + Φ+−

5
−3 + Φ+−

15 + Φc−−
10

−1 + Φc−+
53 + Φc−+

1−5 , (4.3d)

16H = Φ++

10
−1 + Φ+−

53 + Φ+−
1−5 + Φc−−

101 + Φc−+

5
−3 + Φc−+

15 , (4.3e)

where the transformation properties of the fields under SU(5) ⊗ U(1) are indicated

with the subscript. Massless zero modes of the Kaluza-Klein towers exist only for

fields with Z2 × Z ′
2 parity ++. This includes Φ++

5
−2

1

, Φ++

5
2

2

, Φ++
101 , and Φ++

10
−1 . We will

call the zero modes of these components h1, h2, H, and H, respectively, using the

same notation we used in the last section. The h1 and h2 contain the two Higgs

doublets of the MSSM and their colored partners.
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To justify these parity assignments at the more formal level, we first specify

the action of the bulk fields [210] applicable in our five-dimensional theory. Its form

is

Sbulk
5 =

∫

d5x

{
1

4kg2
5

Tr
[

W αWα

∣
∣
θθ

+ H.c.
]

+
1

kg2
5

Tr
[(

(
√

2∂5 + Σ)e−V (−
√

2∂5 + Σ)eV + ∂5e
−V ∂5e

V
)]
∣
∣
∣
θθθθ

+
[

Φc
ie
V Φ

c

i + Φie
−V Φi

]∣
∣
∣
θθθθ

+
[

Φc
i(∂5 −

1√
2
Σ)Φi

∣
∣
θθ

+ H.c.
]}

,

(4.4)

where index i goes through all chiral hypermultiplets of the bulk (in our case i =

1, . . . , 4). The second and the last line clearly indicate that the bulk field Σ pairs

up with the differential operator ∂5. Thus, the field Σ must be odd under y → −y
reflection since under same reflection ∂5 → −∂5. The last term also shows that

Φc
i and Φi always have opposite parities. More generally, the action in Eq. (4.4) is

invariant under y → −y reflection if the superfields transform as

V a(xµ,−y)Ta = V a(xµ, y)PTaP, (4.5a)

Σa(xµ,−y)Ta = −Σa(xµ, y)PTaP, (4.5b)

Φi(x
µ,−y) = ±PΦi(x

µ,−y), (4.5c)

Φc
i(x

µ,−y) = ∓P TΦc
i(x

µ,−y), (4.5d)

where V = V aTa, Σ = ΣaTa, and P = P−1 is the parity operator. The Ta

are the generators of SO(10) in the appropriate representation with normalization

Tr[TaTb] = kδab in the adjoint. The replacement y → y′ and P → P ′ in Eqs. (4.5)

specifies the transformation of the superfields under y′ → −y′ reflection. To imple-

ment the particular parity assignment of our model, as given in Eqs. (4.3), we define

P and P ′ through their action on the fundamental, the 10, of SO(10) as follows:

we associate P ≡ σ0 ⊗ I (P ′ ≡ σ2 ⊗ I) with the Z2 (Z ′
2). Here, I and σ0 are 5 × 5

and 2 × 2 identity matrices and σ2 is the usual Pauli matrix.
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Having done with the parity assignment for the bulk fields we can turn our

attention towards the brane physics. On the brane at O we put the three families of

quarks and leptons. Since the gauge symmetry on this brane is SO(10), these are

contained in three chiral superfields that are spinors of SO(10), which we denote

16i, where i = 1, 2, 3 is the family index. Later for various reasons we shall intro-

duce some gauge-singlet superfields on the brane at O, but let us first discuss the

interactions of the fields introduced up to this point.

The Z2 parity of fields in the 16i must be positive. The Z ′
2 parity, determined

by the transformation properties of the gauge fields in Eqs. (4.3), is 16 → 101± +

5
−3∓

+ 15∓, where 10i = (Q, d̄, ν̄)i, 5i = (ū, L)i, and 1i = ēi, in accord with our

discussion in Section 1.4.4. The action for the coupling of the matter fields, residing

on the visible brane, with the Higgs fields, coming from the bulk, is

Smatter
5 =

∫

d5x
1

2
[δ(y) + δ(y − πR)] (2πR)1/2 λdij16i16j101H

∣
∣
θθ

+

∫

d5x
1

2
[δ(y) − δ(y − πR)] (2πR)1/2 λuij16i16j102H

∣
∣
θθ

+ H.c.,

where λuij and λdij are Yukawa couplings. The normalization factor (2πR)1/2 is in-

serted by hand to make them dimensionless. [Note that the mass dimension of the

bulk superfield is 3/2, the dimension of the four-dimensional brane superfield is 1,

and the dimension of θ is 1/2.] What we really expect in a realistic scenario is

to have the suppression of the Yukawa couplings by a factor of 1/(M∗R)1/2 since

the Higgs field wave function spreads throughout the extra-dimension. The mass

M∗ is an ultraviolet cutoff that specifies the scale at which new physics (eg. other

dimensions beyond five, strings) become important. We take M∗ to be close to

MGUT but, of course, somewhat larger. In general, if the Yukawa term involves n

(n = 1, 2, 3) bulk fields the overall normalization factor is 1/(M∗R)n/2. [Note that

the mass dimension of the Yukawa coupling is −n/2 where n is the number of the

bulk fields.] This has suggested the idea to use the geography (the brane or the bulk

localization) of the matter fields and the Higgs fields to achieve the hierarchy of the
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quark and lepton masses in the orbifold models [88]. The main problem with this

idea is that it tends to ruin one of the most significant features of the GUT—the

unification of matter—if one places the matter fields in the bulk. For example, it

would take two different 16s in the bulk to reproduce the content of one family on

the brane. This shortcoming is the main reason why we do not pursue this idea

here.

If we now integrate Eq. (4.6) over the fifth dimension using Eqs. (4.2), keeping

only the terms that involve the Yukawa couplings of the MSSM Higgs doublets and

their triplet partners, we obtain the following Lagrangian in four dimensions

Lmatter
4 =

∞∑

n=0

√

2

2δn0

{

λdij

[

Qid̄jd
(2n)

1H + Liējd
(2n)

1H +
1

2
QiQjt

(2n)
1H + ūiējt

(2n)
1H

]

+ λuij

[

Qiūjd
(2n)
2H + Liν̄jd

(2n)
2H +QiLjt

(2n)
2H + ūiējt

(2n)
2H

]}
∣
∣
∣
∣
θθ

+ H.c.

where d
(2n)

1H and t
(2n)
1H are the doublet and triplet contained in Φ++

5
−2

1

(whose zero

mode is h1) and d
(2n)
2H and t

(2n)
2H are the doublet and triplet contained in Φ++

5
2

2

(whose

zero mode is h2). All the remaining terms coming from Eq. (4.6) are found by the

replacement λuij ↔ λdij, (1H) ↔ (2H), (2n) → (2n+ 1), and δn0 → 1 in Eq. (4.6).

This represents a minimal set of Yukawa terms, and would lead to the fol-

lowing relations among the quark and lepton mass matrices: L = D ∝ λd and

N = U ∝ λu, with λu and λd being completely independent symmetric matrices.

This is different from the relations that arise with a minimal set of Yukawa terms

in four-dimensional models based on SO(10) or flipped SU(5). In four-dimensional

flipped SU(5), the minimal Yukawa terms give N = UT, where these matrices are

not predicted to be symmetric, and no relation for L and D. In four-dimensional

SO(10), as we saw in Section 1.4.3, the minimal Yukawa terms give L = D ∝ N = U ,

with these matrices predicted to be symmetric.

The Higgs fields, though defined in the bulk, will also couple to each other on

107



the branes. We assume that the Higgs coupling on the visible brane is of the form

SHiggs
5 =

∫

d5x
1

2
[δ(y) + δ(y − πR)] (2πR)3/2 101H16H16H

∣
∣
θθ

+

∫

d5x
1

2
[δ(y) − δ(y − πR)] (2πR)3/2 102H16H16H

∣
∣
θθ

+ H.c..

(4.6)

There could also be terms of the form 10iH10jH , which would directly produce a

GUT-scale µ term and destroy the gauge hierarchy. These must be forbidden by

a symmetry. This is not a novel requirement introduced by the fact that there

are extra dimensions. Terms that would directly produce a GUT-scale µ term

must also be forbidden in four-dimensional unified theories. For example, in four-

dimensional SU(5) theories as well as four-dimensional flipped SU(5) theories, there

are Higgs multiplets in 5 and 5, and these must be prevented from obtaining a

superheavy mass term together. Similarly, in four-dimensional SO(10) theories the

light Higgs doublets are typically in a 10 of Higgs, which must be prevented from

acquiring a superheavy self-mass term [211]. The same problem arises also in GUTs

in higher dimensions. Generally, some symmetry must be imposed to protect the

gauge hierarchy from such dangerous terms. We shall assume here that there is a

U(1)′ of the Peccei-Quinn type under which the quark and lepton spinors 16i have

charge +1, the Higgs fields 101H and 102H have charge −2, and the Higgs fields 16H

and 16H have charge +1. This approach of using a vector-like symmetry to prevent

a large direct µ term is used in Ref. [206]. A drawback of using that method here, as

will be seen later, is that to generate large Majorana mass terms for the neutrinos

without too large a µ term being generated by higher-dimension operators, it will

be necessary to assume a hierarchy of 10−4 between the U(1)′ breaking scale and

MGUT.

Another way of suppressing direct GUT-scale µ terms is by means of a con-

tinuous U(1)R symmetry as in Ref. [87]. In that paper it was found that µ and

µB parameters of the order of the weak scale could be generated, without any fine-

tuning, through the Giudice-Masiero mechanism [212]. We do not pursue other
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approaches such as that here.

The most general effective action of our theory should also include brane-

localized kinetic terms for the modes of the bulk fields that have non-vanishing

wave function on the branes. Since the symmetry that survives on the hidden brane

differs from the symmetry that governs the interactions on the visible brane and

in the bulk, one might worry that the hidden-brane kinetic terms with arbitrary

coefficients for the gauge fields would spoil the gauge coupling unification, and that

the hidden-brane kinetic terms for the Higgs fields could affect the mass matrix

prediction that stems from Eq. (4.6).

As it turns out, the gauge kinetic terms on the hidden brane do not spoil

the gauge coupling unification if the volume of the extra dimension is large enough

[87]. In that case the arbitrary coefficients of the gauge kinetic terms on the hidden

and the visible brane get diluted and their contribution to the gauge couplings of

the Standard Model can be neglected. The dominant contribution comes from the

universal coefficient that belongs to the gauge kinetic term in the bulk obeying the

full symmetry of the theory.

The hidden brane kinetic terms for the Higgs fields do not affect the mass

relations L = D ∝ λd and N = U ∝ λu. These hidden-brane terms violate SO(10)

but respect SU(5) ⊗ U(1), and so will have the effect of changing the relative nor-

malization of the 5 and 5 of Higgs that are inside the same 10 of SO(10). However,

the 5 of Higgs and the 5 of Higgs that contribute to quark and lepton masses in

this model come from different 10’s of Higgs anyway. The former comes from 101H ,

while the latter comes from 102H . While the matrices λu and λd will be differently

affected by the hidden-brane kinetic terms, the predictions that L = D ∝ λd and

N = U ∝ λu are not affected by that. The essential point is that these predictions

depend only on the SU(5) that is respected by the hidden-brane kinetic terms and

not on the full SO(10).
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As noted earlier, the only massless modes of the Higgs fields are h1 ⊂ Φ++

5
−2

1

⊂
101H , h2 ⊂ Φ++

5
2

2

⊂ 102H , H ⊂ Φ++
101 ⊂ 16H , and H ⊂ Φ++

10
−1 ⊂ 16H . Therefore, after

integrating over the fifth dimension, the terms in Eq. (4.6) yield in the superpotential

of the low-energy effective theory the terms h1HH + h2HH. These are just the

same terms that are present in conventional four-dimensional flipped SU(5) models

to do the doublet-triplet splitting.

We assume that the H and H acquire superlarge vacuum expectation values

that break SU(5) ⊗ U(1) down to the Standard Model group. The tree-level scalar

potential generated by the terms h1HH + h2HH is flat in this direction. However,

as noted in [85], this flatness can be lifted by radiative effects after supersymmetry

is broken. It is also possible that additional terms in the Higgs superpotential on

the visible brane can lead to a tree-level superpotential that produces the required

symmetry breaking, as we shall see later.

Besides breaking the gauge symmetry from SU(5) ⊗ U(1) down to SU(3) ⊗
SU(2) ⊗ U(1), the vacuum expectation values of the fields H ⊂ 16H and H ⊂
16H allow masses for the right-handed neutrinos. Such masses come from effective

operators of the form 16i16j16H16H . However, this product of fields has charge

+4 under the symmetry U(1)′. Consequently, this symmetry must be spontaneously

broken. It must be broken in such a way as to permit sufficiently large right-handed

neutrino masses without at the same time allowing too large a µ parameter (which is

the coefficient of the term 101H102H). This can be done in the following way (which

we do not claim to be unique). Suppose that there are fields S and S living on the

brane at O that are singlets under SO(10) and that have U(1)′ charges +1 and −1

respectively. In the superpotential on the brane at O there can be terms of the form

(SS −M2)X, where M = εMGUT, with ε � 1. These terms force 〈S〉 = 〈S〉 = M .

Let us suppose that on the brane at O there are, in addition to the quark and lepton

families in 16i, some leptons 1i (i = 1, 2, 3) that are SO(10) singlets but have charge

110



−1 under U(1)′. Then the following terms in the superpotential at O are possible:

Cij16i1j16HS/M∗ +Fij1i1jS
2/M∗, where the dimensionless coefficients Cij and Fij

are assumed to be of order one. These terms give a mass matrix for the neutrinos

that has the form

(νi ν̄i 1i)








0 (N)ij 0

(N)ji 0 CijεM

0 CjiεM Fijε
2M















νj

ν̄j

1j







, (4.7)

where M ≡ M2
GUT/M∗. [Note that we have taken 〈16H〉 = MGUT .] It is clear

that the six superheavy neutrinos have masses of order εM , whereas the three light

(left-handed) neutrinos have masses of order N 2/M . [See discussion on the double

see-saw mechanism after the Eq. (1.51).] Taking the largest neutrino mass m3 to

be about 6× 10−2 eV, as suggested by the atmospheric neutrino data, and its Dirac

mass to be mc
∼= 174GeV, as suggested by the relation N = U (which would hold

in a minimal SO(10) model), one has that M ∼ 1015 GeV. This accords well with

the assumption that M∗ is slightly larger than the GUT scale MGUT ∼ 1016 GeV.

The reason that we have assumed that the parameter ε ≡ 〈S〉/MGUT is much

smaller than one is that it suppresses certain dangerous operators. For example,

U(1)′ allows the effective operator 16i16j16k16`S
4
/M5

∗ . This gives a d = 5 proton

decay operator with coefficient of order ε4(1/M∗). Sufficient suppression of pro-

ton decay requires that ε ∼ 10−3 to 10−4. Similarly, U(1)′ allows the operator

101H102HS
4/M3

∗ . This gives a µ parameter for the MSSM doublet Higgs fields that

is of order ε4M∗. Requiring that this be no larger than the weak scale requires that

ε be less than about 3× 10−4. This corresponds to right-handed neutrino masses of

order 3 × 1011 GeV. Such intermediate mass scales for MR are good from the point

of view of leptogenesis [213].

The same singlet Higgs field S can play a role in generating the vacuum

expectation value for the spinor Higgs fields 16H and 16H . Such VEVs, as we have
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already noted, can arise due to radiative effects after SUSY breaking. But they can

also arise at tree level from a term in the superpotential on the brane at O of the

form (λ16H16H−S2)Y , where Y is a singlet superfield with U(1)′ charge of −2, and

λ ∼ ε2. Note that the F -terms of the fields 16H and 16H force 〈Y 〉 = 0, meaning

that there is no mass term linking 16H to 16H and thus H to H. The U(1)′ charge

assignments allow the higher dimensional term S
2
16H16H/M∗.

This will shift the VEV of Y , but the F -terms of the fields 16H and 16H still

enforce the condition that there is no mass term linking 16H to 16H .

Let us now examine the doublet-triplet splitting and proton decay problems.

The terms h1H〈H〉+h2H〈H〉 will couple the triplets in h1 and h2 to those in H and

H. The doublets in h1 and h2 remain light and are the two doublets of the MSSM.

There is no problem with d = 5 proton decay, because the triplet partners of the

MSSM Higgs doublets are not connected to each other. The triplets in h1 and H

have no mass terms with the triplets in h2 and H. Moreover, there are no unwanted

light states contained in the Higgs multiplets 101H , 102H , 16H , 16H . In the zero

modes (h1, h2, H, and H), the doublets remain light, the triplets become superheavy

by coupling to the VEVs of H and H, and the other gauge-non-singlet fields get

eaten by the Higgs mechanism when SU(5) ⊗ U(1) breaks to the Standard Model

group. All the non-zero modes, of course, have superheavy Kaluza-Klein masses.

This is the crucial difference with four-dimensional theories in which flipped SU(5) is

embedded in SO(10). In four dimensions, as we saw in the last section, the SO(10)

Higgs multiplets 101H and 102H when decomposed under SU(5)⊗U(1) contain not

only h1 and h2 but also h1 and h2; and these multiplets have triplets that cannot

be given mass without destroying the gauge hierarchy. Here, however, these extra

pieces are all made heavy by the orbifold compactification, since they do not have

parity ++. Thus it is the fact that the unification of SU(5) ⊗ U(1) into SO(10)

occurs only in higher dimensions that allows the missing partner mechanism to be
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implemented.

We have seen that with what may be called the minimal Yukawa couplings

16i16j(λ
d
ij101H +λuij102H) this model gives distinctive relations among mass matri-

ces that are different from those that result in four-dimensional models with minimal

Yukawa couplings in either SO(10) or flipped SU(5). In particular, L = D, and

N = U , with all these matrices being symmetric. This does give the desired relation

mb = mτ at the unification scale, a result of the fact that flipped SU(5) is embedded

in SO(10). However, this minimal set of Yukawa terms is clearly not enough to give

a realistic model of quark and lepton masses.

Recently it has been found that realistic and simple models of quark and

lepton masses can be constructed using the “lopsided” mass matrices [73, 76, 77, 78].

The essential feature of such models is that the mass matrices of the down quarks

and charged leptons are highly asymmetric and that L ∼ DT. Such a relationship

between L and DT is typical of models with an ordinary SU(5), not flipped SU(5).

However, as we shall now see, because the flipped SU(5) is here embedded in SO(10)

at the five-dimensional level, it is possible to obtain such a lopsided structure.

Suppose that one introduces on the visible brane not only spinors of quarks

and leptons, but SO(10) vectors as well. And suppose that there is in the bulk

a spinor Higgs field 16′
H that has a weak-doublet component that contributes to

the breaking of the electroweak symmetry. Then a diagram like that shown in

Fig. 4.4(a) may be possible. When decomposed under the SU(5) ⊗ U(1) subgroup,

this diagram contains the two diagrams shown in Figs. 4.4(b) and 4.4(c). It is easy

to see that these give contributions to L and D that are asymmetric and that are

transposes of each other, just as needed to build “lopsided” models. The reason

for this is that the diagram in Fig. 4.4(a) directly depends only on the GUT-scale

breaking done by the 16H and not on that coming from orbifold compactification.

The point is that the 16H VEV by itself would only break SO(10) down to the
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Georgi-Glashow SU(5). [It is the orbifold compactification that breaks SO(10) to

the flipped SU(5) ⊗ U(1) group.] That is why this diagram leads to the kind of

mass contributions that one expects from ordinary Georgi-Glashow SU(5). This

reasoning also shows that in order to introduce into the mass matrices contributions

that break Georgi-Glashow SU(5) it is necessary that the mass-splittings produced

by the orbifold compactification be involved. For example, by mixing quarks and

leptons that are on the visible brane with quarks and leptons in the bulk, it should

be possible to break the (bad) minimal SU(5) relations ms = mµ and md = me.

4.4 Gaugino mediated supersymmetry breaking

In this section we address the issue of how to break N = 1 supersymmetry of

our model below the compactification scale MC . As it turns out, the solution allows

the construction of viable SUSY breaking model that can easily satisfy present

experimental constraints.

It is well known that the models with visible and hidden branes separated by

extra dimension(s) naturally accommodate breaking of supersymmetry via gaugino

mediation [214, 215]. The basic idea behind gaugino mediation in the models based

on the orbifold compactification is as follows. The source of the SUSY breaking

is localized at the hidden brane. It couples directly to the gauginos at that brane

providing them with nonzero masses. If the gauge symmetry at the hidden brane

is reduced with respect to the bulk gauge symmetry this coupling induces non-

universal gaugino masses. For example, if the bulk symmetry is SO(10) and hidden

brane symmetry is flipped SU(5) one obtains M3 = M2 6= M1. Here, M1, M2, and

M3 represent gaugino masses of the MSSM.

Following in the footsteps of [206], we take the source of the SUSY breaking

to be a flipped SU(5) singlet chiral superfield Z localized on the hidden brane with

the VEV

〈Z〉 = θ2FZ. (4.8)
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The gaugino masses originate from the non-renormalizable operators at the hidden

brane of the form

LZ5 =
1

2
[δ(y − πR/2) + δ(y + πR/2)]

(

λ′5
Z

M2
∗
W iαW i

α

∣
∣
θθ

+ λ′1
Z

M2
∗
W αWα

∣
∣
θθ

+ H.c.
)

,

where the first and the second term under the integral represent the SU(5) and U(1)

part of the gauge group respectively. Corresponding gaugino masses generated in

this way are

MSU(5) =
λ′5FZMc

M2
∗

, MU(1) =
λ′1FZMc

M2
∗

, (4.9)

which translates into the following MSSM gaugino masses (we normalize the gener-

ators of SO(10) demanding that k = 1/2)

M1

g2
1

=
1

25

MSU(5)

g2
SU(5)

+
24

25

MU(1)

g2
U(1)

, M2 = MSU(5), M3 = MSU(5). (4.10)

Here gSU(5), and gU(1) are gauge coupling constants of the SU(5) and U(1) gauge

groups respectively, while g1 represents the U(1)Y gauge coupling constant of the

Standard Model (normalized as in GUTs). The relations of Eq. (4.10), which is valid

at the compactification scale MC , show that the gaugino mass M1 can in general be

completely different from the mass M2 = M3 due to their different origins. Namely,

the mass M1 is dominated by the U(1) sector of the theory as oppose to the masses

M2 and M3 that have their origin in the SU(5) part of the theory. We will later

see that this feature of non-universality of gaugino masses allows the construction

of the theory of SUSY breaking that leads to the realistic mass spectrum.

At this point we note that the natural scale for
√
FZ is the cutoff scale M∗.

[For the reasons that have to do with gauge coupling unification we take (MC ∼
1016 GeV) < (MGUT = 2 × 1016 GeV) < (M∗ ∼ 10MC) [206].] This implies that

masses in Eq. (4.9) are close to the compactification scale MC if the dimensionless

coefficients λ′
1 and λ′5 are taken to be of order one. To obtain SUSY breaking masses

that are in the TeV range we need to decrease the value of FZ in a way that does
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not involve any fine-tuning. To do that we propose to use the shining mechanism

[216, 217] which can reduce the natural scale of FZ by an exponential factor.

The shining mechanism requires the existence of a source J that is localized

on the visible brane and a massive hypermultiplet in the bulk. The hypermultiplet

of mass m is taken to be a gauge singlet and has couplings with both the source

and the superfield Z. These couplings can be arranged in a manner that leaves

the superfield Z with the nonzero F-term FZ ∼ Jexp(−πmR/2) after the massive

hypermultiplet is integrated out [217]. If the mass m is taken to be of order M∗ the
√
FZ will be of order 1012 GeV which gives desired TeV scale masses for gauginos in

Eq. (4.9).

The matter fields in our model reside on the visible brane. Thus, due to the

spatial separation between the branes the soft SUSY breaking scalar masses and

trilinear couplings are negligible at the compactification scale. This is good because

the number of the soft SUSY breaking parameters one has to consider is reduced

with respect to the usual set.

There are two additional positive features of the gaugino mediated supersym-

metry breaking models with the non-universal gaugino masses. Firstly, the renor-

malization group running of scalar masses and trilinear couplings between MC and

electroweak scale is significantly affected by gaugino masses but these contributions,

being flavor blind, do not cause any disastrous flavor violating effects. Secondly,

non-universality opens up the possibility for the deviation from the experimentally

disfavored prediction of the models with universal gaugino mass of stau being the

lightest supersymmetric particle (LSP). [The last statement holds for MC < MGUT

which is exactly the case we have.]

The class of models with non-universal gaugino mediated supersymmetry

breaking has been studied in more details by Baer et al. [218] (see also [219, 220]).

Their numerical study of the allowed region of SUSY parameter space shows that
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viable models with acceptable mass spectrum and neutral LSP particle can be ob-

tained. The study includes the case of completely independent M3, M2, and M1,

as well as the case where M1 is a definite linear combination (determined by group

theory) of M2 and M3. [The former case can be seen as a consequence of orbifold

reduction of SU(5) down to the Standard Model group on the hidden brane as

in Ref. [87] and the latter one follows from the reduction of SO(10) down to the

Pati-Salam group as in Ref. [206].] We have an intermediate scenario where M1

is independent of M2 and M3 which are made equal due to the SU(5) part of the

flipped SU(5). [This possibility was considered in Ref. [204] in the context of a

six-dimensional SO(10) model.]

It is not difficult to adapt the analysis of Baer et al. to our model to conclude

that for large enough M1 (i.e. |M1| > |M2|,M2 = M3) at the compactification scale

MC a viable region of parameter space opens up regardless of tan β value yielding

realistic mass spectrum with the LSP being wino-like or a mixture of higgsino and

bino. An example of this behavior is shown in Fig. 4.5.

At the end we observe that if we had the case of SO(10) being reduced on the

hidden brane to the Georgi-Glashow SU(5) with an extra U(1) symmetry we would

not only be prevented from using the simple form of the missing partner mechanism

but would also obtain universal gaugino masses M1 = M2 = M3.

4.5 Conclusions

We have seen that by embedding a four-dimensional flipped SU(5) model into

a five-dimensional SO(10) model the advantages of flipped SU(5) can be maintained

while avoiding its well-known drawbacks. The two main drawbacks are the loss of

unification of gauge couplings and the loss of the possibility of relating down quark

masses to charged lepton masses, and therefore of obtaining desirable predictions

such as mb = mτ and realistic quark and lepton mass schemes such as those based on

“lopsided” mass matrices. By embedding SU(5) ⊗ U(1) in SO(10), the unification
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of gauge couplings is restored. There are corrections to this unification, coming

for example from gauge kinetic terms on the hidden brane; however, these have

been argued to be small [87]. The embedding in SO(10) also yields relationships

between the charged lepton and down quark mass matrices. We have also found

that interesting patterns of quark and lepton masses are possible that are different

from those encountered in four-dimensional grand unified theories, for example L =

D 6= N = U .

Embedding flipped SU(5) in SO(10) in four dimensions is well known to

destroy the missing partner mechanism for doublet-triplet splitting, which is one of

the most elegant features of flipped SU(5). However, when the unification in SO(10)

takes place in higher dimensions and the breaking to SU(5) ⊗ U(1) is achieved

through orbifold compactification, then the missing partner mechanism can still

operate, as we have shown. One of the advantages of the missing partner mechanism

in flipped SU(5) is that it kills the dangerous d = 5 proton decay operators that

plague supersymmetric grand unified theories.

Thus in extra dimensions it is possible to have the best of both worlds, the

best of SO(10) combined with the best of flipped SU(5). One of the distinctive

predictions of the flipped SU(5) scheme that we have presented is that the gaugino

masses will have the pattern M3 = M2 6= M1. The fact that M1 is independent of

M2 and M3 allows a much larger viable region of parameter space for the MSSM.
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Figure 4.4: (a) A diagram that can give operators producing “lopsided” contri-
butions to D and L. (b) A term in its SU(5) ⊗ U(1) decomposition
that contributes to D. (c) A term in its SU(5) ⊗ U(1) decomposition
that contributes to L.
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Figure 4.5: This diagram represents the results of numerical analysis of Baer
et al. [218] for the case of gaugino mediated SUSY breaking scenario
in the flipped SU(5) setting (M2 = M3 6= M1) for tanβ = 30 and
µ > 0. The allowed region in M1 vs. M2 = M3 plane is shown in
green. The excluded regions are white (due to presence of tachyonic
particles in mass spectrum), red (due to lack of radiative breakdown
of EW symmetry), light blue (due to LEP constraint), dark blue (due
to LEP2 constraint), and magenta (due to the fact that charged par-
ticle is LSP). Vertical black line is where MH = 114GeV. For a full
discussion of numerical methods and assumptions used in the analysis
see Ref. [218].
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Chapter 5

KALUZA-KLEIN UNIFICATION IN A

FIVE-DIMENSIONAL MODEL

5.1 Introduction

The main motivation for SUSY, besides its ability to stabilize the Higgs mass

against the radiative corrections, is the way it steers the gauge couplings, within the

MSSM, towards the unification at the GUT scale. Assuming this is not an accident

but a signal for a new physics we are prompted not only to embrace the MSSM but

to incorporate it into the grand unified theory where the gauge unification repre-

sents a genuine prediction of the framework. It turns out, however, that it is very

problematic to build both realistic and simple SUSY GUT scheme and still preserve

the gauge unification. For example, the simplest of all such schemes, the minimal

Georgi-Glashow SU(5), is already ruled out by the experimental limits on proton

decay [221, 222, 223]. The crux of the problem is that the exact gauge unification

requires threshold corrections. But to create these corrections one needs certain

fields, responsible for the proton decay, to be too light compared to the existing

experimental constraints. This problem was not so serious in the past since the

low-energy values of the gauge couplings were not known well enough, leaving a lot

of room for maneuvering. The situation has changed after the electroweak preci-

sion measurements and the improvements in measurements of the strong coupling

constant. The error bars have simply become sufficiently small to prevent the exact
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unification without the help of the troublesome threshold corrections. So, the ques-

tion of whether we can achieve the gauge unification in accord with the low-energy

measurements in a natural manner within SUSY GUTs is something we have to

address.

Among the fields that can improve on the gauge unification, via threshold cor-

rections, are the familiar colored Higgsinos. These are the fields, as we saw in Chap-

ter 4, that are responsible for a d = 5 proton-decay operator. Therefore, one wants

them light enough to generate the corrections but heavy enough to avoid violation

of the experimental limits on proton lifetime. The idea of Kawamura [86, 197, 198]

to use a five-dimensional theory seems perfectly suited to accommodate both of

these requirements. But, one might expect naively that the exact gauge unifica-

tion is impossible due to the threshold corrections that originate from the towers

of Kaluza-Klein modes. This naive expectation turns out to be wrong. The five-

dimensional theory, being non-renormalizable, must have a cutoff (M∗). Therefore,

the number of Kaluza-Klein modes that contribute is finite. This also makes the

threshold corrections finite and calculable so that the exact unification cannot be

excluded a priori.

This chapter is going to be devoted to the issues pertaining to the gauge

coupling unification in the five-dimensional setting. We show that it is possible

to achieve the unification using an N = 1 supersymmetric SO(10) model on an

S1/(Z2 × Z ′
2) orbifold. The orbifold has two inequivalent fixed points, O and O′,

identified by the action of (Z2×Z ′
2) twisting. On the point O there will be an SO(10)

gauge symmetry while on the point O′ there will be a flipped SU(5) gauge symme-

tries. Both symmetries will be the leftovers of a bigger, SO(10), bulk symmetry.

The bulk contains, besides the vector supermultiplet, a pair of chiral hypermutiplets:

101H and 102H . They give the Higgs fields of the MSSM: 2 and 2. The orbifolding
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procedure also reduces the amount of the supersymmetry from N = 1 in five dimen-

sions to N = 1 in four dimensions. To obtain the low-energy phenomenology of the

SM group H we break flipped SU(5) on the O′ brane by implementing the missing

partner mechanism. This time, in contrast to the model presented in Chapter 4, we

do the breaking with the chiral superfields that reside on the O′ brane.

It should be stressed that there are already two models in the literature that

provide the gauge coupling unification in the five-dimensional S1/(Z2 ×Z ′
2) setting.

• The first one is an SU(5) model of Hall and Nomura [87, 88]. In their model,

the orbifolding leaves an SU(5) gauge symmetry on one brane and the SM

gauge symmetry on the other. In addition, the orbifolding accomplishes the

doublet-triplet splitting by assigning the odd parity to the triplet fields. [The

common feature for both models is the placement of the multiplets that con-

tain the MSSM Higgs fields and the gauge sector in the bulk.] There is no

need for any extra Higgs breaking except for the usual electroweak one. For

gauge coupling unification not to be spoiled by arbitrary non-universal con-

tributions coming from the brane with the SM gauge symmetry they have to

invoke two requirements: (i) the couplings at the cutoff scale M∗ must enter a

strong coupling regime; (ii) the dimension(s) of the bulk must be large enough

(when expressed in terms of the compactification scale MC). We adopt their

requirements in our model, too.

• The second model is an SO(10) model of Dermı́̌sek and Mafi [206]. Their model

is described in some length in Chapter 4. Here, we just outline the features

that are relevant for comparison with our work. Since the breaking of SO(10)

down to H demands the reduction of the group rank, the authors use an extra

Higgs breaking. In the original version of Dermı́̌sek and Mafi [206] the breaking

of SO(10) down to SU(5) takes place on the visible brane. The low-energy
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signature of the SM gauge group is then due to the intersection of the Pati-

Salam and SU(5). The subsequent analysis of the second model by Kim and

Raby [224] demonstrated the feasibility of the gauge unification. The breaking,

in their case, takes place on a Pati-Salam brane affecting only the gauge sector

of the theory. [The orbifolding has already projected out the triplet partners

by assigning them odd parity.] We adopt and extend their method of analysis

to demonstrate the successful unification in our case. The reason behind the

extension is that, in our case, the extra Higgs breaking affects not only the

gauge sector but also the Higgs sector. Namely, the breaking is what makes

the triplets heavy via missing partner mechanism. This, as it turns out, has

profound consequences on the RGE running of the gauge couplings as we

demonstrate later.

In Section 5.2 we introduce our model and specify the mass spectrum of all

the fields. We rely heavily on the material already covered in Chapter 4 to avoid

being repetitious. We then proceed with the discussion on the gauge coupling RGE

running in five-dimensional orbifold setting in Section 5.3. This is where our two

main results, the relevant beta coefficients and their RGE numerical analysis, are

presented. Finally, we briefly conclude in Section 5.4.

5.2 An SO(10) model

We present an SO(10) supersymmetric model in five dimensions compactified

on an S1/(Z2 ×Z ′
2) orbifold. The orbifold is created after the fifth dimension, being

the circle S1 of radius R, gets compactified through the reflection y → −y under

Z2 and y′ → −y′ under Z ′
2, where y′ = y + πR/2. As seen from Fig. 4.2, there are

two fixed points, O and O′, that bound the physical space y ∈ [0, πR/2] of the bulk.

The point O is referred to as the “visible brane” while point O′ at y′ = 0 is referred

to as the “hidden brane”.
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We assume that the bulk contains an N = 1 vector supermultiplet, a 45g of

SO(10), and two chiral hypermultiplets, 101H + 102H . The vector supermultiplet

decomposes into a vector multiplet V , which contains the gauge bosons Aµ and

corresponding gauginos, and a chiral multiplet Σ of N = 1 supersymmetry in four

dimensions. Each hypermultiplet splits into two left-handed chiral multiplets Φ and

Φc, having opposite gauge quantum numbers. To reduce N = 1 supersymmetry

in five dimensions to N = 1 supersymmetry in four dimensions we use the parity

assignment under Z2. To reduce the gauge symmetry from SO(10) down to flipped

SU(5) ⊗ U(1) on the hidden brane we use the parity assignment under Z ′
2 t . Us-

ing the same notation as in the previous chapter the bulk content and the parity

assignments are

45g = V ++
240 + V ++

10 + V +−
10−4 + V +−

10
4 + Σ−−

240 + Σ−−
10 + Σ−+

10−4 + Σ−+

10
4 , (5.1a)

101H = Φ++

5
−2

1

+ Φ+−
5
2

1

+ Φc−−
5
2

1

+ Φc−+

5
−2

1

, (5.1b)

102H = Φ+−
5
−2

2

+ Φ++

5
2

2

+ Φc−+

5
2

2

+ Φc−−
5
−2

2

. (5.1c)

Only the fields with the ++ parity contain Kaluza-Klein zero mode fields (n =

0) that have no effective four-dimensional mass. [See Fourier series expansion in

Eqs. (4.2).] The masses of all other modes become quantized in units of 1/R ≡MC ,

where MC is the compactification scale. For example, all +− and −+ parity states

are actually the Kaluza-Klein towers of states with masses MC , 3MC , . . . , (2n +

1)MC , . . ., where n is the mode number.

We want to have the low-energy phenomenology that is described by the SM

group H. But, at this point, the brane O feels the SO(10) gauge symmetry while

the brane O′ feels the flipped SU(5) gauge symmetry. One could introduce a pair of

Higgses in the bulk, the 16H and the 16H , and use the parity assignment to project

out all the states except a pair 101
H + 10

−1
H that is needed for the missing partner

mechanism on the hidden brane. This time, however, we pursue slightly different

direction. Namely, noting that the minimal set of Higgses that breaks flipped SU(5)
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Table 5.1: The decomposition of the three lowest lying representations of SO(10)
under the flipped SU(5) group and the Standard Model gauge group.

SO(10) SU(5)⊗U(1) SU(3)c⊗SU(2)L⊗U(1)Y

240 (1, 1, 0) ⊕ (1, 3, 0) ⊕ (3, 2, 1/3) ⊕ (3, 2,−1/3) ⊕ (8, 1, 0)
10−4 (1, 1,−2) ⊕ (3, 1,−4/3) ⊕ (3, 2,−5/3)

45
10

4
(1, 1, 2) ⊕ (3, 1, 4/3) ⊕ (3, 2, 5/3)

10 (1, 1, 0)

15 (1, 1, 2)

16 5
−3

(1, 2,−1) ⊕ (3, 1,−4/3)
101 (1, 1, 0) ⊕ (3, 1, 2/3) ⊕ (3, 2, 1/3)

5−2 (1, 2,−1) ⊕ (3, 1,−2/3)
10

5
2

(1, 2, 1) ⊕ (3, 1, 2/3)

down to H is a pair of Higgs fields, 101
H+10

−1
H , we posit their existence on the hidden

brane. With these fields in place we specify the following brane localized entry of

the superpotential:

κ
[

δ
(
y − πR

2

)
+ δ
(
y − 3πR

2

)][

Φ++

5
−2

1

101
H 101

H + Φ++

5
2

2

10
−1
H 10

−1
H

]

, (5.2)

where κ represents the Yukawa coupling with the mass dimension -1/2. Clearly,

by giving very large VEVs to the (1, 1, 0) components of 101
H and 10

−1
H , we allow

the triplet partners of the doublets in Φ++

5
−2

1

and Φ++

5
2

2

to get large masses through

the mating with the triplets of 101
H and 10

−1
H without disturbing the lightness of

the doublets. This is schematically depicted in Eq. (4.1). Moreover, the symmetry

breaking makes the states (1, 1, 0), (3, 2, 1/3), and (3, 2,−1/3) from V ++
240 and V ++

10

of 45g absorb the corresponding components of the brane Higgses to become massive,

leaving unbroken H gauge symmetry behind. [See Table 5.1 for the decomposition

of SO(10) down to H via flipped SU(5).]

In the discussion from the previous paragraph, we have glossed over a fact

that the bulk fields are Kaluza-Klein towers of states. The explicit brane localized

breaking terms will disturb every state of that tower due to the change of the
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boundary conditions. Since we want to do an RGE analysis we need to determine

the position, i.e. the mass, of every state after the disturbance has taken place. This

is what we do next.

5.2.1 Mass Spectrum of the Gauge Fields

The five-dimensional theory is non-renormalizable. Therefore, we expect the

theory to have a cutoff scale M∗ where some new physics comes into play (e.g. other

dimensions beyond five, strings). We take the VEVs of the symmetry breaking Higgs

fields to be of the order of this cutoff: 〈(1, 1, 0)〉 ≡ M ∼ M∗. Then the Lagrangian

involving the gauge fields gets additional contribution [225, 224]

L ⊂ 1

2

[

δ
(
y − πR

2

)
+ δ
(
y − 3πR

2

)]

g2
5M

2AâµA
âµ, (5.3)

where g2
5 represents the gauge coupling of the five-dimensional theory and â is an

SO(10) group index that goes through all the gauge fields associated with the broken

++ parity generators we mentioned in Section 5.2. [The five-dimensional gauge

coupling g2
5 has mass dimension −1.] The equations of motion for the “broken”

gauge bosons are

−∂2
yA

â
µ(x, y) +

[

δ
(
y − πR

2

)
+ δ
(
y − 3πR

2

)]

g2
5M

2Aâµ(x, y) = (MA
n )2Aâµ(x, y), (5.4)

where MA
n represents the effective Kaluza-Klein mass in four dimensions of the nth

mode. It is defined via Klein-Gordon equation
[
∂ν∂

ν + (MA
n )2
]
Aâµ(x, y) = 0. The

second term on the left side of Eq. (5.4) is responsible for the deviation from the usual

mass spectrum of the ++ parity fields (MA
n = 0, 2MC, . . . , 2nMC , . . .). It reminds

us of the delta function-type potential in the ordinary Schrödinger’s equation. The

role of this term is thus to repel the bulk field wave function away from the brane. In

the language of the effective four-dimensional theory this means that even the zero
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mode (n = 0) of the gauge bosons becomes massive. Taking the following ansatz

for the five-dimensional gauge field on the segment y ∈ [0, πR/2]:

Aâµ(x, y) =
1√
πR

∞∑

n=0

NnA
â(n)
µ (x) cosMA

n y, (5.5)

the eigenvalue equation for the effective mass, due to the nontrivial boundary con-

dition at the hidden brane, takes the form [225]

tan
MA

n πR

2
=
g2
5M

2

2MA
n

. (5.6)

The normalization constant for the ++ parity bulk fields also changes from 1/
√

2δn0

to Nn =
[
1 + MCg

2
5M

2 cos2 MA
n πR
2

/(4π(MA
n )2)

]−1/2
. The plot of the modified wave

function profile for n = 1 is given in Fig. 5.1. [We excluded the normalization

constants for simplicity.]

There are two interesting approximations that we can consider: g2
5M

2 �MA
n

and g2
5M

2 � MA
n . The former one generates the following approximate solution of

the eigenvalue equation for the mass spectrum

MA
n ' (2n+ 1)MC

[
1 − ε+ ε2

]
, (5.7)

while the latter one yields

MA
0 ' 2MC

√

1

π2ε
, and MA

n6=0 ' 2nMC

[
1 +

1

π2εn2

]
, (5.8)

where we define ε ≡ (4MC)/(πg2
5M

2). The two approximations generate qualita-

tively different mass spectra. Therefore, it is very important to determine which

one is applicable to our scenario. Assuming that all the couplings of the theory

enter the strong regime at the cutoff M∗ we can use the result of the naive dimen-

sional analysis [226] in higher dimensional theories that suggests g2
5 ' 24π3/M∗ and

M ' M∗/(4π), which gives g2
5M

2 ' 3/2πM∗ > M∗ � MA
n . We thus choose the

former approximation. Following the work of Kim and Raby [224], we introduce the
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Figure 5.1: A plot of an n = 1 mode of the bulk field wave function profile in the
fifth dimension. The dashed line represents undisturbed profile given
by cos 2ny. The solid line represents the profile after the perturbation
due to the boundary condition is accounted for. The radius R is taken
to be 1.

parameter ζ = 2Nε, where 2N = M∗/MC and ζ ' 8/(3π2) ' 0.27, to rewrite the

approximate mass spectrum of the broken gauge bosons as

MA
n 'MC

(
2n + 1 − n

N
ζ
)
. (5.9)

One interesting feature to note is that the boundary condition in Eq. (5.6)

is not absolute. In our case, the broken ++ parity fields start off with the mass

spectrum that mimics the spectrum of the +− and −+ parity fields but then gradu-

ally merges with the spectrum of undisturbed ++ and −− parity bulk fields as one

moves up the Kaluza-Klein tower of states. One should also keep in mind that the

supersymmetry ensures the same fate for the chiral partners Σ of the vector fields
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V . Namely, the mass spectrum of the fields in Σ−− are shifted in the same manner

as the states in the V ++ that are made massive through the brane gauge breaking.

With that said, we turn to the consideration of the Higgs field mass spectrum.

5.2.2 Mass Spectrum of the Higgs Fields

The missing partner mechanism affects only the color triplets of the bulk

states with ++ and −− parities. To determine their mass spectrum we concentrate

on the masses of the color Higgsinos. Supersymmetry then ensures the same mass

spectrum for their bosonic partners. Moreover, since there are two separate color

triplet sectors as indicated by the vertical line in Eq. (4.1), we treat only one of

them. The other sector will have the same mass spectrum as long as both sectors

share the same dimensionful coupling κ. We assume this to be the case. Note that

the bulk states with the +− and −+ parities, i.e. the odd states, do not get affected

by the brane breaking.

To make the discussion as transparent as possible we adopt the following

notation for the triplet Higgsinos: HC ∈ Φ++

5
−2

1

, Hc
C ∈ Φc−−

5
2

1

, and HCH
∈ 101

H . Their

equations of motion, derived from the brane coupling term in Eq. (5.2) and the bulk

action of Eq. (4.4), read [227]

iσ̄µ∂µHCH
− κMHC |y=(πR/2, 3πR/2) = 0, (5.10)

iσ̄µ∂µHC − ∂yH
c

C − κMHCH

(
δ(y − πR/2) + δ(y − 3πR/2)

)
= 0, (5.11)

iσ̄µ∂µH
c
C + ∂yHC = 0. (5.12)

These equations are satisfied by the following ansatz for the five-dimensional Hig-

gsino fields on the segment y ∈ [0, πR/2]

HC(x, y) =
1√
πR

∑

n

NH
n h

(n)
1 (x) cosMHC

n y, (5.13)

Hc
C(x, y) =

1√
πR

∑

n

NH
n h

(n)
2 (x) sinMHC

n y, (5.14)
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and the Higgsino field localized on the hidden brane

HCH
(x) =

1√
πR

∑

n

NH
n

κM

MHC
n

h
(n)
2 (x) cos

MHC
n πR

2
. (5.15)

Here, the eigenvalue equation for the effective mass, due to the nontrivial boundary

condition at the hidden brane, takes the form

tan
MHC

n πR

2
=

κ2M2

2MHC
n

, (5.16)

where we define the effective KK mass via a pair of Weyl equations: iσ̄µ∂µh
(n)
1 =

MHC
n h

(n)

2 and iσ̄µ∂µh
(n)
2 = MHC

n h
(n)

1 .

The naive dimensional analysis [226] in the strong coupling regime yields

κ ' (24π3/M∗)
1/2, which implies that κ2M2(' g2

5M
2) � MHC

n . In this limit, the

mass spectrum of the Higgsino triplets looks, in form, exactly the same as the mass

spectrum of the broken gauge fields. Namely, the mass eigenvalues of Eq. (5.16) are

MHC
n ' MC

(
2n+ 1 − n

N
ζ
)
, (5.17)

where we assume that κ2M2 = g2
5M

2 for simplicity. For completeness, the normal-

ization constant NHC
n is

NHC
n =

(

1 +
MCκ

2M2

π(MHC
n )2

cos2 M
HC
n πR

2

)−1/2

. (5.18)

In the case of the color Higgsinos there is a mixing between the bulk and the

brane fields. It is the role of the brane field HCH
to give the mass to the zero mode

component of HC . As described in Ref. [227], the Weyl spinors, h
(n)
1 and h

(n)
2 , pair

up at every Kaluza-Klein level to obtain the Dirac mass. The remaining states in the

101
H of Higgs get absorbed by the broken gauge bosons and completely disappear

as far as the running is concerned. We show the mass spectrum of one part of the

Higgs sector in Fig. 5.2. The other part looks exactly the same. Since this concludes

the discussion on the mass spectrum of both the gauge and the Higgs fields we turn

our attention towards the RGE analysis.
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Figure 5.2: (a) A mass spectrum of the Kaluza-Klein towers of the Higgs sector
after the compactification, but before the brane localized breaking.
(b) The mass spectrum after the brane localized breaking. The circles
represent the doublets and the squares represent the triplets.

5.3 Kaluza-Klein unification

The running of the gauge couplings in our model is the same as the running

in the usual four-dimensional theory as long as we stay below the compactification

scale MC . But, once we venture over MC , the running is affected by the towers

of Kaluza-Klein states until we reach the cutoff scale M∗, which we define as the

scale where effective gauge couplings merge. Since there are numerous states in the

KK towers one might expect that the analysis of the threshold effects on the gauge

coupling running from MC to M∗ is very difficult even at a one-loop level. This,

however, is not the case as we show next.

Let us, for concreteness, limit our discussion to the five-dimensional theory
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that is based on the simple gauge group F . The main simplification originates from

the observation that the compactification procedure forces all the states that make

up a single representation of F to appear within the interval [2nMC , 2(n + 1)MC ]

for every n 6= 0. [This statement is true regardless of the type of the additional

brane boundary conditions we discussed in the previous two sections.] These states

obviously contribute in an F invariant way to the running of all the gauge coupling

constants after we go over 2(n + 1)MC . Thus, the contribution of the nth Kaluza-

Klein level that enters at 2nMC drops out of the running of the difference of the

gauge couplings after we reach 2(n + 1)MC . In view of this fact we are motivated

to pursue the differential running, i.e. the running of the difference of the gauge

couplings. The previous observation also implies that the beta coefficients reset

themselves to the values of the familiar coefficients of the Standard Model group H
every time we go over another 2(n+ 1)MC scale.

Nontrivial boundary conditions distort the spectrum of Kaluza-Klein masses.

In our case, the members of the nth mode emerge at 2nMC , (2n + 1 − n
N
ζ)MC ,

(2n + 1)MC , and (2n + 2)MC energy levels. We have already concluded that from

2nMC to (2n+ 1 − n
N
ζ)MC the beta coefficients must be the coefficients of the SM

group H. We call this region I. Region II is the region from (2n + 1 − n
N
ζ)MC to

(2n + 1)MC , while region III stretches from (2n + 1)MC to (2n + 2)MC for n 6= 0.

The notation here and in what follows is exactly the same as the notation of Kim

and Raby [224]. Note that we do not mention the matter fields at any point. The

reason is that the matter fields of one family contribute equally to the running of

the gauge couplings regardless of their origin, i.e. whether they are located in the

bulk or on the brane.

As shown by Kim and Raby [224], if the compactification breaks F to G and,

then, the brane breaking reduces G to the SM group H, the beta coefficients§ of the

§ We use the notation b ≡ (b1, b2, b3), where b1, b2, and b3 are the coefficients
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gauge sector are:

bIgauge = bH(V );

bIIgauge = bH(V ) + bG/H(V ) + bG/H(Σ) = bG(V ) + bG(Σ) − bH(Σ);

bIIIgauge = bH(V ) + bG/H(V ) + bG/H(Σ) + bF/G(V ) + bF/G(Σ) = −bH(Σ).

(5.19)

Here, we use the fact that bF (V ) ≡ bH(V ) + bG/H(V ) + bF/G(V ) is an F invariant

coefficient that drops out from the running of the differences of the gauge couplings.

The same statement holds for bF (Σ) ≡ bH(Σ) + bG/H(Σ) + bF/G(Σ) coefficient. G/H
and F/G represent the appropriate coset-spaces (e.q. states that are in G ⊃ H but

not in H belong to G/H). Note that we always have b(Σ) = −b(V )/3 since Σ is

the chiral superfield and V is the vector superfield . In our case F corresponds to

SO(10) and G corresponds to the flipped SU(5) group.

Before we consider the beta coefficient of the Higgs sector we note the follow-

ing: the beta coefficients of the two supersymmetric Higgs doublets (triplets) are

b(2) ≡ (3/5, 1, 0) (b(3) ≡ (2/5, 0, 1)). Therefore, the sum of their contributions does

not affect the differential running and can be freely discarded. Moreover, as far as

the differential running is concerned, we can write b(2) = −b(3) = (0, 2/5,−3/5),

where we subtract the overall constant to make b1 = 0. This we do with all the

other beta coefficients in what follows. Recalling that there are two Higgs sectors

we can write:

bIHiggs = b(2);

bIIHiggs = b(2) + 2b(3) = b(3);

bIIIHiggs = b(3) + 2b(2) + 2b(3) = b(3).

(5.20)

Finally, we are ready to analyze the running at one-loop level. The relevant

RGEs and all the definitions are taken from Kim and Raby [224]. We present them

associated with the gauge couplings of U(1)Y , SU(2)L, and SU(3)c respectively.
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here for completeness of this work. The one-loop RGEs for the gauge couplings in

the effective four-dimensional theory are

2π

αi(µ)
=

2π

α(M∗)
+
[
bHi (V ) + bHi (2) + bHmatter

]
ln
MC

µ
+ ∆Higgs

i + ∆gauge
i , (5.21)

where ∆’s describe the appropriate threshold corrections of the Kaluza-Klein modes

from MC to M∗. They are given by

∆ ≡ beff ln
M∗

MC
= bIAI + bIIAII + bIIIAIII, (5.22)

with

AI =
N−1∑

n=1

ln
2n+ 1 − n

N
ζ

2n
, (5.23a)

AII =
N−1∑

n=1

ln
2n+ 1

2n+ 1 − n
N
ζ
, (5.23b)

AIII =

N∑

n=1

ln
2n

2n− 1
. (5.23c)

Obviously, AI, AII and AIII allow us to sum over the threshold corrections from the

corresponding regions.

Taking the large N limit, where 2N = M∗/MC , and using the approximation

ln(1 + x) = x+ · · · , Kim and Raby obtained

AI =
1

2
ln 2N − 1

2
ln
π

2
− ζ

2
+ O(

1

N
), (5.24a)

AII =
ζ

2
+ O(

1

N
), (5.24b)

AIII =
1

2
ln 2N +

1

2
ln
π

2
. (5.24c)

This gives the following expression for the threshold corrections of the gauge and

the Higgs sector:

∆ =
1

2
(bIII + bI) ln

M∗

MC

+
1

2
(bIII − bI) ln

π

2
+

1

2
(bII − bI)ζ. (5.25)
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Looking back at Eqs. (5.19) and (5.20) we have

∆gauge =
2

3
bH(V ) ln

M∗

MC
− 1

3
bH(V ) ln

π

2
+

1

3

[
bG(V ) − bH(V )

]
ζ, (5.26a)

∆Higgs = −b(2) ln
π

2
− b(2)ζ. (5.26b)

We are ready to evaluate the threshold corrections. Since bH(V ) represents

the beta coefficients of the gauge sector of the MSSM we have bH(V ) = (0,−6,−9).

On the other hand, bG(V ) represents the beta coefficients of the gauge sector of the

supersymmetric flipped SU(5): 240 + 10. Therefore, bG(V ) = (−3/5,−15,−15) ≡
(0,−72/5,−72/5), where we again subtract the overall constant contribution to

make b1 coefficient equal to zero. Using these results we find:

∆gauge =
(
0,−4 ln

M∗

MC

+ 2 ln
π

2
− 14

5
ζ,−6 ln

M∗

MC

+ 3 ln
π

2
− 9

5
ζ
)
, (5.27a)

∆Higgs =
(
0,−2

5
ln
π

2
− 2

5
ζ,

3

5
ln
π

2
+

3

5
ζ
)
. (5.27b)

Our goal is to find the values of MC and M∗ that allow the exact unification, at

least at one-loop level, of the gauge coupling constants at the scale M∗. To be able

to do that we first recall the situation we have in the usual four-dimensional SUSY

GUT. There we define MGUT to be the scale where α1(MGUT) = α2(MGUT) ≡ ᾱGUT

with the running given by

2π

αi(µ)
=

2π

αi(MGUT)
+
[
bHi (V ) + bHi (2) + bHmatter

]
ln
MGUT

µ
. (5.28)

If we ask how far off from ᾱGUT the coupling α3(MGUT) is, and parameterize the

degree of nonunification via ε3 =
(
2π/α3(MGUT)− 2π/ᾱGUT

)
, we obtain 5 ≤ ε3 ≤ 6

depending on the exact spectrum of SUSY particles. We show one example of

differential running in Fig. 5.3. This example takes into the account not only the

one-loop but the two-loop effects on the running of the gauge couplings. We also

assume that the superpartners have masses of the order of mt, and take the lower

experimental limit tanβ = 3 [47].
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Figure 5.3: A plot of the differential running δi(µ) = 2π(1/αi(µ)−1/α1(µ)) versus
ln(µ/MGUT), where MGUT = 2.37 × 1016 GeV.

In the five-dimensional setting the deviation from the usual running starts at

MC scale. Therefore, at MC , the left hand sides of Eqs. (5.21) and (5.28) must be

the same. Thus, we have that

δ2(MC) =
[
bH2 (V ) + bH2 (2)] ln

MGUT

MC

= ∆gauge
2 + ∆Higgs

2 ,

δ3(MC) =
(
2π/α3(MGUT) − 2π/ᾱGUT

)

+
[
bH3 (V ) + bH3 (2)] ln

MGUT

MC

= ∆gauge
3 + ∆Higgs

3 .

(5.29)

Solving these equations yields

MC ≈ 5.5 × 1014 GeV, and M∗ ≈ 1.0 × 1017 GeV, (5.30)

where we use the same value of ε3 as is used by Kim and Raby [224] (ε3 ' 6) and we

take MGUT = 3× 1016 GeV. These values imply that N = 90, justifying the large N
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approximations. In view of our results the following picture emerges. The effective

theory below the compactification scale looks exactly the same as the usual MSSM

theory. Then, once we go above MC , there emerge the towers of the Kaluza-Klein

states that change the behavior of the gauge running through the set of small but

numerous threshold corrections. The theory finally yields the gauge unification at

M∗ > MGUT where all the couplings of the theory enter the strong regime. At

that point the five-dimensional theory must be embedded into more fundamental

physical picture.

We should note that our result is not very sensitive to the exact value of

the small parameter ζ. On the other hand, the values of MC and M∗ depend very

strongly on the value of ε3. We have taken ε3 ' 6 to be able to compare our

results with the analysis of Kim and Raby [224]. This value, coming from the RGE

propagation of the experimental value of α3(mZ) = 0.118± 0.003 from the mZ scale

to the GUT scale, could be reduced by a factor of two or three in near future.

Namely, the latest analysis of Erler and Langacker as presented in [229] suggests

the new value to be α3(mZ) = 0.1221+0.0026
−0.0023. This would have a large impact on our

result since ε3 ' 3 would imply N = 2, making the whole KK unification picture

questionable. The model of Kim and Raby [224] might be in better shape since

ε3 ' 3 in their case suggests N = 27.

This chapter, as promised, has been devoted to the analysis of the gauge uni-

fication. This means that there are many questions left unanswered. For example,

one might ask what mechanism breaks four-dimensional N = 1 supersymmetry. Or,

how the Higgs fields responsible for the missing partner mechanism get their VEVs.

Our intention was not to answer the questions like these but to demonstrate the

possibility of the five-dimensional Kaluza-Klein unification and this we did.

Our result for MC and M∗ is very similar to the result obtained by Kim and
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Raby [224]. This is due to the fact that the biggest correction to the standard four-

dimensional running in both cases comes from the first term in Eq. (5.26a). Since

this term involves the beta coefficients of the SM gauge group the leading corrections

must be the same for all the schemes with the realistic low-energy signature. The

main difference between the two models in the gauge sector is generated by the beta

coefficients bG(V ) of the gauge group on the hidden brane. In our case the hidden

brane has the flipped SU(5) group with bG(V ) = (0,−72/5,−72/5), while in the

case of Kim and Raby the hidden brane harbors PS gauge group with bG(V ) =

(0, 12/5,−18/5). The main difference in the Higgs sector stems from the fact that

there is no distinction between the region I and region II in Kim and Raby case since

the additional boundary conditions do not affect the Higgs sector at all. Therefore,

the second term in Eq. (5.26b) is absent in their case. It is interesting to note that

the difference between the two models is in the terms that are proportional to the

small parameter ζ. Therefore, the limit ζ → 0 gives the same result in both cases. In

that limit we obtain MC ≈ 3.2× 1014 GeV, and M∗ ≈ 2.2× 1017 GeV. Interestingly

enough, the same limit reproduces the results of the analysis on the gauge coupling

unification of the five-dimensional SU(5) model.

Even though the exact unification of the gauge couplings in the four-dimen-

sional flipped SU(5) cannot be excluded [228], one can never justify the charge

quantization and the hypercharge assignment without embedding it into SO(10).

In our case this is not an issue. As long as the matter fields are placed in the bulk or

on the visible brane we guarantee the charge quantization. [Of course, if the matter

comes from the bulk multiplets we might lose the unification of quarks and leptons

of one family.] The only ad hoc feature of our model is the existence of the Higgses

on the hidden brane. It is difficult to justify their U(1) charges unless they originate

from the 16 of SO(10). We argue that their U(1) charges are what one expects from

the fields of flipped SU(5) and that they provide the anomaly cancellation on the
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hidden brane. The model can still produce interesting mass matrix patterns L = D

and N = U that we discussed in Chapter 4.

5.4 Conclusion

We have presented an SO(10) model in five dimensions. The model, admit-

tedly not complete, has served to demonstrate that the exact unification of the gauge

couplings is possible even in the higher dimensional setting. The corrections to the

usual four-dimensional running have been due to the Kaluza-Klein towers of states.

We have shown that despite the large amount of these states the corrections for the

MSSM running can be unambiguously and systematically evaluated. Demanding the

exact unification, the compactification scale is deduced to be MC ≈ 5.5 × 1014 GeV

with the cutoff of the theory atM∗ ≈ 1.0×1017 GeV. Therefore, the five-dimensional

theory exists in a rather large energy region before one needs to replace it with the

more fundamental one.

The usual problems of SUSY GUTs, such as the doublet-triplet splitting

problem, have been solved in a natural way. For example, the presence of the flipped

SU(5) symmetry on the hidden brane has allowed us to implement the missing

partner mechanism. At the same time the presence of the SO(10) symmetry on the

visible brane still allows one to obtain desirable predictions for the quark and lepton

masses such as mb = mτ .

The model yields the low-energy signature of the MSSM. In addition, it allows

for the justification of the charge quantization as long as the matter lives on the

visible brane or the bulk. On the other hand, the unification of the quarks and the

leptons is possible only if the matter resides on the visible brane.
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