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ABSTRACT

There is already significant evidence, both experimental and theoretical, that
the Standard Model of elementary particle physics is just another effective physical
theory. Thus, it is crucial (a) to anticipate the experiments in search for signatures
of the physics beyond the Standard Model, and (b) whether some theoretically pre-
ferred structure can reproduce the low-energy signature of the Standard Model. This
work pursues these two directions by investigating various extensions of the Stan-
dard Model. One of them is a simple flavon model that accommodates the observed
hierarchy of the charged fermion masses and mixings. We show that flavor changing
and CP violating signatures of this model are equally near the present experimental
limits. We find that, for a significant range of parameters, p-e conversion can be
the most sensitive place to look for such signatures.

We then propose two variants of an SO(10) model in five-dimensional frame-
work. The first variant demonstrates that one can embed a four-dimensional flipped
SU(5) model into a five-dimensional SO(10) model. This allows one to maintain
the advantages of flipped SU(5) while avoiding its well-known drawbacks. The sec-
ond variant shows that exact unification of the gauge couplings is possible even
in the higher dimensional setting. This unification yields low-energy values of the
gauge couplings that are in a perfect agreement with experimental values. We show
that the corrections to the usual four-dimensional running, due to the Kaluza-Klein
towers of states, can be unambiguously and systematically evaluated.

We also consider the various main types of models of neutrino masses and

mixings from the point of view of how naturally they give the large mixing angle

Xiv



MSW solution to the solar neutrino problem. Special attention is given to one
particular “lopsided” SU(5) model, which is then analyzed in a completely statistical
manner. We suggest that this sort of statistical analysis should be applicable to other

models of neutrino mixing.
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Chapter 1

INTRODUCTION

Our current understanding of Nature entails the existence of four fundamental
interactions: electromagnetic, weak, strong, and gravitational interaction. The need
for their full theoretical description has been a driving force behind the development
of the modern physical theories.

The branch of physics that addresses the fundamental building blocks of
Nature and their interactions is elementary particle physics. Its goal is to accurately
depict the physical phenomena involving the fundamental forces to an arbitrarily
high energy scale. Due to the various difficulties, this goal is commonly replaced
with a more modest one of obtaining an effective theoretical description that agrees
with experiments up to a specific energy scale but depicts the physical reality less
accurately.

The effective theory approach is not specific for the elementary particle
physics only and its examples abound in other areas of physics. If one is interested
in macroscopic properties of the solid state system that consists of a large number
of atoms placed at the lattice sites with the lattice spacing a, one can switch from a
discreet to a continuous description of the system as long as the macroscopic prop-
erties pertain to the length scale that is much greater than the intrinsic scale a. One
does not expect an agreement between the theory and the experiment for the length
scale smaller than a as the theoretical description at that scale needs to be modified.
In the formal language of elementary particle physics the scale a is referred to as

the ultraviolet cutoff scale.



It is possible the cutoff scale of some effective theory is not known a priori
due to the lack of our understanding of the underlying structure of the physical
system. In such a case there is a possibility the effective theory itself contains the
hint of where the cutoff might be. Simply put, the cutoff scale will be the scale
where the theory does not cut it anymore. To show how this works in practice we
turn to the self-energy of the electric field of a point charge within the classical
electrostatic theory described by Coulomb’s Law. Our initial expectation, just on
the grounds of naturalness, is to find the self-energy of the electric field of the electron
to be of the order of its rest mass. However, the self-energy, being proportional to
the integral over the whole space of the square of the electric field, will diverge at
the lower boundary of integration if we treat the electron as truly point-like and
integrate from zero to infinity over the radial distance r. To cure the divergence
we can parameterize our inability to describe the physics at very short distances by
introducing a cutoff r;, to be the fictitious radius of the electron, integrate, and
finally compare the electrostatic energy with the rest energy of electron m.c?. We
thus obtain rp, ~ 4mege?/(mec®) ~ 0.28 x 10~ m, which corresponds to the energy
scale! A ~ 0.71 x 108eV, as the plausible limit on the applicability of the classical
electrostatics.

Introduction of the cutoff in the previous example does not imply that Cou-
lomb’s Law is completely wrong; it simply emphasizes the fact that Coulomb’s Law
is valid only within a certain energy range in which it properly accounts for all the
relevant degrees of freedom. The theory must be modified at length scales smaller
than ry;,. In the electrostatics case, the modification should already take place at

the scale A = 2m.c? ~ 1.0 x 10%eV to allow the possibility of the electron-positron

! In the natural system of units, where ¢ = A = 1, we can treat the energy
and the length on an equal footing. One is the inverse of the other, i.e. small
lengths correspond to large energies and vice versa. The conversion factor is
hic = 0.19 x 10~%eVm.



creation and annihilation. The theory has to be taken from the classical to the
quantum level to accommodate new degrees of freedom. It is generally expected
that the cutoff scale represents the scale where new degrees of freedom enter the
physical picture.

The prime theory of elementary particle physics is the Standard Model (SM).
It is, by far, the most successful theoretical structure that we have. In the case of the
anomalous magnetic moment of the electron the agreement between the experiment
and the prediction of the SM has been verified at the level of one part in 10® (for a
review see [1]). The modern view is that the SM itself represents an effective theory
valid up to certain energy scale. Where that scale is could be revealed through (a)
the careful analysis of the theoretical structure of the SM following the same line of
reasoning as in the case of the self-energy of the electron, and (b) the comparison
against the experimental signatures.

Accepting that the SM is just an effective theory, we are bound to modify
it and go beyond in order to make the theory applicable in a wider energy range,
and to make it more self-consistent, and more predictive. It is, in the end, this
predictability that can help us falsify or confirm the correctness of the theoretical
ideas we build into the various models using the experimental results.

The SM has been around for more than three decades. It has proved itself
against the electroweak precision measurements (for a review see Ref. [2]) and has
resisted any significant modification. To fully appreciate the effectiveness of the SM

we briefly describe its structure in what follows.

1.1 The Standard Model
The Standard Model is a gauge theory that comprises the Glashow, Weinberg,
and Salam theory of electroweak interactions [3, 4, 5] and the theory of strong

interactions [6, 7, 8, 9, 10]. The form of the interactions is governed by the direct



product H = SU(3), ® SU(2);, ® U(1)y of gauge symmetries.? In addition, the
model is Lorentz invariant and renormalizable. The strength of each interaction of
the particular group is parameterized by the corresponding gauge coupling constant.
In the case of H, this amounts to specifying three gauge constants gs, g2, and ¢;.

The carriers of the interactions are spin-1 particles called gauge bosons. They
are always associated with the adjoint representation of the appropriate gauge group.
The dimension of the adjoint representation for the special unitary group SU(N)
is N2 — 1. Thus, there are eight carriers of the strong interactions—gluon fields®
G'—associated with an 8 of SU(3).., three W* bosons associated with a 3 of SU(2),
and one B boson of U(1)y. Here we use the group theoretical language and specify
the representation by its dimension. Going one step further we say that, under H,
the gluons transform as (8,1,0), W’s transform as (1,3,0), and B transforms as
(1,1,0). Note that for the Abelian gauge group U(1) it suffices to specify only one
number, i.e. the gauge quantum number the field carries under the U(1). At this
stage all the gauge bosons are massless.

The fermionic content of the theory is made out of spin-1/2 particles. In
addition to their transformation properties under ‘H we can also distinguish them
by their spin orientation. If the spin of the fermion and its direction of motion are
parallel (anti-parallel) the fermion is right-handed (left-handed). We can always
project out the right-handed and the left-handed part of a Dirac spinor 1 using the
projection operators Pp = (1 + v5)/2 and P, = (1 — 75)/2 respectively. Namely,
the right-handed (left-handed) four-component spinor is g1y = Pr(r)%. Using the
subscripts L and R to specify the handedness, the fermions of the Standard Model,

2 Tt took almost a decade for SU(3), to be promoted from a global [6, 7] to a local
symmetry [8, 9, 10]. For an extensive list of references on the development of
the Standard Model see Ref. [11]

3 The gauge bosons carry the group index (for gluons i = 1,...,8; for W’s i =
1,2,3; for B i = 1) as well as the Lorentz index p = 0, 1,2,3. We will usually
suppress these indices for brevity.



usually referred to as the matter fields, and their transformation properties under

‘H are

Ly = (1,2,-1)n = : (1.1a)
©J L

€ri = (17 17 _2>Ri> (llb)
u

Qu = (3,2,1/3)n; = : (1.1c)
4/,

upi = (3,1,4/3)ri, (1.1d)

dri = (3,1,-2/3)ri, (1.1e)

where i = 1,2,3 represents the generation index. The SU(3). color index of the
quarks (o = 1,2, 3) and the SU(2), index of the doublets (a = 1,2) are suppressed.

The first two rows in Egs. (1.1) are the leptons and the last three rows are
the quarks. The fermionic members of one generation make up a family. The
SM contains three of them. The hypercharge—the U(1)y quantum number—is
normalized so that Q = I3, + Y/2, where ) represents the electric charge operator
and I3y, is the isospin, i.e. the eigenvalue of the third generator of the isospin group
SU(2)r. The matter fields are also massless at this point.

The gauge invariant kinetic energy terms for the fermions and the gauge

bosons are
Ltermion = Lrii PLr; + €rii Peri + Qi PQri + Upid Pug; + drii Pdpi,  (1.2)

and
1 7 iz 1 7 Nz 1 "z
‘Cgauge = _ZGNVG - ZWNVW - ZBMVB 5 (13)

respectively. The field strength tensors are

G, = 0.G,—08,G, - gsfi;GLGY, (1.4a)
Wi, = 0.W,—9,W, — ggeijngwf, (1.4b)
B,, = 0,B,—0,B,, (1.4c)

5



where f;jr and €;;; represent totally antisymmetric structure constants of SU(3)
and SU(2) respectively. [The structure constants g;;; of the SU(N) group can be
found for any nontrivial d-dimensional representation associated with the generators

@ X =g X ] The

Xi(d) of that group through the commutation relations [X;”, X;

gauge covariant derivative
Dy, = (0, +igsLiG}, + iga Lt W), +ig1Y /2B, (1.5)

acts in the group space defined by the dimension of the representation of the ap-
propriate matter field, where I;. (I;) are SU(3). (SU(2)r) matrices. In the funda-
mental representation of SU(3). (SU(2)r), Lie = \/2 (I, = 7%/2), where A (17)
represent the familiar Gell-Mann (Pauli) matrices. Recall that the dimension of the
fundamental (defining) representation of SU(N) is N. We normalize the generators
of SU(N) so that Tr[Xi(N)X;N)] = (1/2)0;; for the fundamental representation.

We know from experiments that the matter fields have mass. How do the
masses arise in the SM? We first show that the SU(2), ®U(1)y gauge symmetries of
the SM do not allow the usual bare masses for the matter fields and then introduce
the mechanism that rectifies this shortcoming.

The bare mass m of the fermionic field ¢ comes from the Lagrangian term

mp) = m(P P + Y Pri)) = mip giby, + map g, (1.6)

which suggests that the fermions get their mass through the mating of the left-
and the right-handed fields. The mass of the charged leptons thus comes from
the mating of L;; fields with ep; fields. The trouble is that their product in the
group space is not H invariant due to the chiral nature of the SM, i.e. the left- and
the right-handed fields transform differently under H. More specifically, the product
behaves as a singlet, i.e. gauge invariant, under SU(3). but a doublet under SU(2) ..



Moreover, the hypercharges of the fields add to —18 instead of zero. Any attempt to
provide the mass for the up (down) quarks fails for the same reason. The product of
the Q;; with the up; (dg;) yields the singlet of SU(3),, the doublet of SU(2);, and
the hypercharges of the fields add to nonzero value 1 (—1). To summarize, the bare
mass of the leptons and the quarks, though allowed by the color group, is explicitly
forbidden by SU(2);, ® U(1)y gauge symmetry.

It is not only the matter fields that need to get mass. The gauge bosons of
the weak interactions also have to be massive since the weak force is a short range
one. The Higgs mechanism [12, 13, 14, 15, 16, 17] solves both of these problems. It
bypasses the violation of the gauge invariance by replacing the bare mass in Eq. (1.6)
with a complex spin-0** Higgs field H that transforms nontrivially under H. The
gauge properties of H are always chosen to yield a gauge singlet when contracted
with the left-right field combination. In the SM case it obviously has to be a singlet
under SU(3)., a doublet under SU(2)y, and its hypercharge must be 1 (—1) when
coupled with the leptons and the down (up) quarks. This last requirement would call
for two distinct Higgs fields if it was not for one special property of the fundamental
representation of SU(2). Namely, the 2 and the 2 are related to each other via a
similarity transformation. In our notation

H=(1,2,1)= HT) L[ Hid : (1.7)

HO V2 \ Hy-iH,
where the superscript indicates the electric charge of the Higgs fields. The last form
in Eq. (1.7) is written in terms of the Hermitian fields H; = H, observing that one

complex scalar doublet has four degrees of freedom.

5 Note that the hypercharge of Ly; is 1 (see Eq. (1.1a)). In general, if the field v
is associated with the representation of dimension d, then its conjugate belongs
to the conjugate representation d = d*. In the case of the U(1) symmetry this
amounts to a change of sign of the U(1) quantum number.

** This field carries no Lorentz indices and has the same dimensions as the mass.



The fermion masses arise from the gauge invariant Yukawa terms
Lyawa = =5 Q i H upy — MNQpHdr; — N;L7;H%p;j + Hec., (1.8)

after H obtains a constant value. This happens only under the suitable circum-
stances which we investigate shortly. Here, 7,7 = 1,2,3 are the family indices,
a,b=1,2 are SU(2), indices, and €® is a totally antisymmetric tensor. The matri-
ces A%l are dimensionless and completely arbitrary. Their entries are referred to
as the Yukawa couplings.

The gauge boson masses come from the Higgs field Lagrangian
Lriiges = (D*H)'D,H — V(H), (1.9)

where the gauge covariant derivative D, H = (QL + iggliLWZ +ig1Y/ 2Bu) H acts
on H and V(H) is the Higgs potential. The form of the potential, restricted by
SU(2)r, ® U(1)y invariance, is

V(H)=XNH'H)* - p*(H'H), (1.10)

where the choice \, u? > 0 makes H take on a nonzero vacuum expectation value
(VEV). This simply means that the nonzero value of the field H minimizes the
potential V(H). If the VEV is chosen to be

1 0
(01H10) = (H) = — : (1.11)

V2 |y
where v? = 2/ yields the minimum of V' (H), the generators I, Ior, and I3, —Y/2
are spontaneously broken, i.e. the vacuum state is not invariant under the gauge
transformations generated by these generators. However, the linear combination
I3;, +Y/2 annihilates the vacuum since the vacuum carries no charge (see Eq. (1.7))

leaving residual U(1),,, gauge symmetry behind. This residual gauge symmetry has

made its debut in the Maxwell’s equations of the classical electrodynamics. The

8



gauge boson of the unbroken U(1),, is the familiar massless photon. The process
of the spontaneous symmetry breaking can be schematically shown as SU(3), ®
SUR),@U(l)y — SU3).®@ U(1)em.

If SU(2), ® U(1)y were a global symmetry we would expect to see three
massless Nambu-Goldstone bosons [18, 19, 20, 21, 22] upon the symmetry breaking.
This is not the case for the local (gauge) symmetry where these would-be massless
fields get absorbed (eaten) by the gauge bosons associated with the generators of the
broken symmetries that require these fields to become massive.* To see this process
clearly we can use the freedom to rotate the Higgs field in the SU(2), @ U(1)y space
to absorb the three degrees of freedom visible in Eq. (1.7). This defines a so-called
unitary gauge where the Higgs field takes the following form

e 0 (1.12)
V2 v+ h . .

The field h represents the fluctuations around the minimum and it is the actual
physical Higgs scalar. At the same time the potential, in the unitary gauge, reads

4 2
1% 212 PR )‘4
— 1/_ — 1.1
V(h)— )\+uh —l—)\ )\h—l— h, ( 3)

yielding the Higgs scalar mass
mp = /2% = V2\v. (1.14)

The physical gauge bosons and their masses follow from the first term of Eq. (1.9).

The heavy bosons of weak interactions are

1 :
W, = E(WJZHWi), (1.15a)

Zy = —sinfyB, + cos Oy Wy, (1.15b)

4 Massless vector field, such as a photon, has two transverse degrees of freedom
while massive field has an extra (longitudinal) degree of freedom. Therefore,
massless gauge boson has to gain one degree of freedom to become massive.
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where Oy is the electroweak mixing angle defined by tan 6y, = g1/go. Their masses

are

mw = %v, (1.16)

and

2 2
VIt mw (1.17)

my = = .
2 cos Oy

Finally, the linear combination orthogonal to Zg is the massless photon field
A, = cos Ow B, + sin Oy W (1.18)

The fermion masses emerge upon the diagonalization of the couplings in

Eq. (1.8) which prior to that reads

U d l

»CYukawa = \/iuLiuRj ('U + h) — ﬂaLide(U + h) — \/EELieRj ('U + h) + H.c.. (119)

The Dirac mass matrices U = )x“v/\/i, D = Adv/\/ﬁ, and L = Alv/\/§ are in general
completely arbitrary and must be diagonalized by bi-unitary transformations. For
example, the redefinition of the matter fields in the flavor space ur; — (U,);jur; and
up; — (Vu)ijurj, where the unitary matrices U, and V,, are chosen to diagonalize U
(UIUV, = U%28) specifies the mass basis for the up quarks. The same procedure
can be repeated for the down quarks (U ;DVd = D%ag) and the charged leptons
(U;LV} = L%28) yielding the familiar up quark mass eigenstates (u, ¢, t), the down
quarks mass eigenstates (d, s, b), and the charged leptons mass eigenstates (e, p, 7).
The only place where the change of the basis leaves a trace, generating the changing
of the flavor, is in the Lagrangian term that describes the charged-current processes.

Its form (see Eq. (1.2)), in terms of the gauge boson mass eigenstates, is
Leo = —go (WJJ#V + W;JﬁJ) , (1.20)
where the charged current reads
1

J{/LVT = ﬁ (ﬁLm“eLi —+ ﬂLj’}/udLj) . (121)
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If we now redefine the matter fields as suggested above

Uy dr; — Ul Ugrdor = Gy Vexadr, (1.22)

utj

we generate Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix Vexy = Ul Uy [23,
24]. The CKM matrix parameterizes the strength of the flavor changing as well as
the amount of C'P violation in the SM. The elements of the CKM matrix are labeled
Vij, where i = u,c,t and j = d, s, b.

Since the neutrinos have no mass in the SM we are free to rotate them to
match the change in the definition of ey; fields in Eq. (1.21). This implies there is no
analogue of the CKM matrix in the leptonic sector of the theory. Anticipating the
extensions of the SM that accommodate experimentally observed neutrino masses
we are led to introduce Pontecorvo-Maki-Nakagawa-Sakata mixing matrix Upyng =
U ITUV 25, 26, 27] where U, is the unitary matrix that diagonalizes the neutrino mass
matrix M,. We will see later that the matrix M, is always symmetric which makes
it qualitatively different from U, D, and L. The elements of the PMNS matrix are
labeled U;;, where @ = e, i, 7 and j = 1,2,3. The reason behind this notation is
that the neutrino mass eigenvalues are labeled m, msy, and ms.

One of the successes of the SM is the explanation of the Fermi theory of beta
decay on a more fundamental level. If we contract the two terms of Eq. (1.20) to
obtain the tree level description of the four-fermion interaction, and integrate out

the W boson, we obtain

2
92 = — _
Lefrective = —27712%[/ (€riv"'vei + drjv'ur;)(Trivuer: + G vudr;)- (1.23)
Comparison with Fermi’s four-fermion point interaction Lagrangian yields

Gr 9% 1
ol Tt (1:24)

where G represents the Fermi constant. Since the value of Gr can be extracted

from the experiments on the muon lifetime (G = 1.16637(1) x 107> GeV 2 [28])
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we can determine the value of SU(2), ® U(1)y breaking scale v ~ 246 GeV. The
Fermi theory is yet another example of an effective theory with a known cutoff. It
is applicable in the regime of the length scales much larger than the length scales
of the weak interactions (as determined by the electroweak breaking scale). Only
when we resolve the gauge boson degrees of freedom we have to switch to the more
fundamental description of Eq. (1.20).

An unexpected prediction of the SM is the conservation of B and L numbers.
Namely, if we assign a baryon number B to all the quarks (1/3 (—1/3) for the
quark (antiquark)) and a lepton number L to all the leptons (—1 (1) for the lepton
(antilepton)) it turns out that all the processes with AB # 0 and AL # 0 are
forbidden by the SM Lagrangian. This comes from an accidental symmetry of the
SM. But it is this very accident that ensures the stability of the proton and thus
the stability of our Universe.

We end this brief review of the SM by quoting some numerical values of
the SM parameters.® The electroweak angle is determined from the measured mass
of my (myz = 91.1876 4+ 0.0021 GeV) and the fine structure constant a(myz) =
e(mz)?/(4rm) (a(mz)™' = 128.92 4+ 0.03). [The electric charge of the positron is
identified with e = g1ga/\/9? + g2 = ga2sinfy,.] One obtains sin® 6y, = 0.23105 F
00008 [29]. The strong coupling constant is ag(mz) = 0.118 £ 0.003 and my =
80.423 + 0.039 GeV.

1.2 Open questions of the Standard Model

If the SM is truly an effective theory it has its own physical cutoff A. This
cutoff, as we have seen in the Introduction, represents the energy scale where new
degrees of freedom enter the physical picture. In our case the next obvious scale

after the electroweak breaking scale v is given by the reduced Planck mass Mp, =

® The quoted values are from Ref. [28] unless specified otherwise.
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(8T GNewton) /2 = 2.4 x 10'® GeV where the gravitational degrees of freedom start
to compete with the SM ones. The disparity between the two scales is the very
essence of the infamous hierarchy problem [30, 31, 32, 33].

To give a full flavor of the hierarchy problem let us consider the one-loop
quantum corrections to the p? parameter of the Higgs potential. These corrections
stem from the fermion-fermion-Higgs couplings (see Eq. (1.8)) of the general form
)xd,@lpH , where )\, represents the Yukawa coupling of the Dirac fermion 1. Assuming
that the Higgs field H is just an ordinary complex scalar field the contribution of

the fermion 1 reads (for a relevant Feynman diagram see Fig. 1.1 (a))

(a) // \\

(b)

Figure 1.1: Feynman diagram of the one-loop correction to the Higgs potential
parameter p? via (a) the fermion loop; (b) the scalar loop(s).

Ap? = ol 20% — 6m? lnA—2+--- (1.25)
1672 Y m? ’ '

where the ellipses represent finite terms that do not depend explicitly on A. The
value that we prefer from the point of view of the electroweak symmetry breaking
is u? ~ (100 GeV)? (assuming A ~ O(1)). But if the scale A was associated with
the natural cutoff—the Planck scale—the quadratically divergent loop correction
would drive 2 to the value that is 30 orders of magnitude away from the preferred

value. Even without any correction we would expect the natural value of u? to be
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of the order of the Planck mass since there is no symmetry that prevents the Higgs
mass term in the Higgs potential. It is possible that some miraculous accidental
cancellation takes place between the Higgs bare mass and the quantum corrections
to explain ;2 of the order of the weak scale but this is considered highly unnatural.
The hierarchy problem becomes even more obvious if we note that all the quarks
and the leptons and all the heavy gauge bosons get their masses through the Higgs
mechanism. Any shift in the Higgs mass will manifest itself in the shift of all other
masses. If the shift was infinite the theory would not be plausible anymore. The
three main directions in elementary particle physics that address the stability of the
Higgs mass under the quantum corrections and the disparity between the Planck
and the weak scale are supersymmetry (see a review [34]), dynamical electroweak
symmetry breaking (see a review [35]), and the theories with large extra spatial
dimensions [36, 37, 38, 39]. We will describe the first of these ideas in some detail
in Section 1.3.

Another shortcoming of the SM is the existence of a large number of free input
parameters. There are three gauge groups with three distinct gauge couplings. There
are nine seemingly unrelated masses of the quarks and charged leptons randomly
spread over the energy range spanning six orders of magnitude. There are four
parameters of the CKM mixing matrix (three angles and a phase) that come out of
the diagonalization of the mass matrices. There are also two parameters of the Higgs
potential that have to be fine-tuned to give the electroweak symmetry breaking. In
addition to these, there is one more parameter of the SM: the 6 parameter of QCD
(for a review see [40]). Its existence is connected to the CP violating term of the
SM Lagrangian and its smallness is what constitutes the strong C'P problem. All in
all, there are nineteen apparently unrelated parameters that one has to deal with.
[Admittedly, the SM works well but only after we replace its parameters with the

experimentally determined values.] What one would hope is to have an underlying
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principle that connects these seemingly unrelated parameters of the SM.

The shortcomings do not end here. There is also the question of the mys-
terious hypercharge assignment of the quarks and the leptons that gives both the
neutrality of the ordinary matter (Q. = —Qproton) and the charge quantization.
Moreover, the same hypercharge assignment is the backbone of the proof of the
renormalizability of the SM that hinges on the fact that the triangular anomaly
cancellation takes place. The condition for anomaly cancellation is that the sums
of Y and Y3 over the members of one family, taking the hypercharge of the right-
handed field with an extra (—) sign, vanish. Looking back at Eqs. (1.1) we have

1\? 4\° 2\°

tr[Y] = 2(=1)>+(2)* +6 (5) +3 (—5) +3 (5) =0, (1.26a)

tr[Y?] = 2(=1)+(2)+6 (%) + 3 (—%) +3 (g) =0, (1.26b)
which represents a truly miraculous cancellation in view of the fact that it comes
about through the conspiring of unrelated multiplets of the quarks and the leptons.
The set of the theories that justifies the anomaly cancellation, relates the gauge
couplings of otherwise unrelated gauge groups, and along the way arranges many
other pieces of the puzzle goes under the generic name of Grand Unified Theories
(GUTs). We will formally introduce the GUTs in Section 1.4.

All unresolved issues that we have mentioned so far are related to the purely
theoretical considerations of the self-consistency of the SM. Their explanation is
motivated in part by the quest for the naturalness of the theory, the aesthetics, and,
in some instances, the experimental hints. There is, however, one pressing issue—
the issue of the neutrino mass—that is raised by the experimental observations
only. It stems from the fact that the SM fails to accommodate the neutrino mass
contrary to an overwhelming body of experimental evidence (for a review see [41]).

With the neutrino mass in place the palette of the SM would have to accept at
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least seven more parameters (three neutrino masses, and four parameters of the
PMNS matrix) and the energy range would have to stretch additional six orders of
magnitude to accept the neutrino mass of the order of 1/20eV as suggested by the
Super-Kamiokande experiment [42]. The smallness of the neutrino mass suggests
that the entries of the matrix M, are much smaller than the entries of U, D, and
L. This is another qualitative difference between M, and U, D, and L. Postponing
any further discussion on neutrino mass until the Section 1.4 we now turn to the

description of some of the most interesting extensions of the SM.

1.3 Supersymmetry

Supersymmetry (SUSY) is a symmetry that turns fermions into bosons, and
vice versa. It is conceptually completely different from the familiar gauge symme-
tries. The generators responsible for the mutation of the bosons into the fermions are
spin-1/2 fermionic operators. This makes SUSY a spacetime symmetry as oppose to
the usual gauge symmetry that simply commutes with the Lorentz transformations
and thus operates in its own gauge-space. Moreover, the fermionic operators anti-
commute and so will the SUSY generators, in sharp contrast to the gauge symmetry
generators that always satisfy commutation relations. This drastic departure from
the usual gauge symmetries is worthwhile since SUSY ameliorates the hierarchy
problem by stabilizing the Higgs mass against the radiative corrections as we soon
demonstrate.

The most obvious change SUSY brings along is the doubling of the number of
the degrees of freedom of the SM. For every boson (fermion) of the SM it introduces
its SUSY partner—a fermion (boson). [We will use ~ over the particle’s SM symbol
to explicitly mark its SUSY partner.] The doubling procedure is very special. It
assigns the same gauge transformation properties and the gauge interactions to
the SUSY particle its SM counterpart has by making them both share the same
supermultiplet. The supermultiplets of the matter (gauge) fields and their partners
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are called the chiral (vector) supermultiplets. In addition, the Higgs field itself
forms a chiral supermultiplet with its SUSY partner—the Higgsino. [The name of
the spin-1/2 superpartner of the SM boson is obtained by appending “-ino” to the
boson name.] The chiral nature of the SM requires two different supermultiplets for
the left- and the right-handed parts of the Dirac fermion. It is thus more convenient
to part with the usual Dirac four-component notation and treat the left- and the
right-handed parts as being two different two-component Weyl spinors.® [The change
in the notation will also make our discussion on the GUTs much more transparent.|

In the Weyl notation the Dirac fermion 1) reads

b= e (1.27)
Yr

It is also more convenient to deal with the left-handed Weyl fields only, which is
achieved by Hermitian conjugation of all the right-handed fields. [For example,
the left-handed field form of ¢y is w;.] In terms of the new notation the chiral

supermultiplets are

L = (1,2,-1),;, (1.28a)
& = (1,1,2); (1.28D)
Qi = (3,2,1/3),, (1.28¢)
a = (3,1,-4/3);, (1.28d)
d = (3,1,2/3),, (1.28¢)

where the bar over u, d, and e reminds us that we deal with the left-handed fields

only. It is understood that each Weyl fermion in Eqgs. (1.28) is accompanied with

the complex scalar (&; = <e}%, é*RZ-)). [The name of the spin-0 superpartner of the

7

SM fermion is obtained by adding “s-” on the fermion name. For example, the

superpartner of the electron is selectron.]

6 For the alternative approach see Ref. [43].
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The doubling will now generate a new contribution to Au? at the one-loop
level coming from the scalar superpartners ’(ZJZ and @E}*{ of the Dirac fermion v (see

Fig. 1.1 (b) for the relevant Feynman diagram). The contribution reads

- 2

A A
2 ¥ 2 2
Ap~ = 16,2 2A —I—melnm% + , (1.29)

where m,; represents the scalar mass. SUSY not only ensures that Ayl? = Aj SO
that the quadratic divergences in Eqgs. (1.25) and (1.29) cancel against each other
but forces the cancellation to take place for all the fields and to all orders. Moreover,
by imposing the same gauge transformations for the SM fields and their partners,
unbroken SUSY predicts my = m,.

The situation with the Higgs sector is a little different from the SM case. As
we have already seen, the anomaly cancellation represents an external consistency
condition imposed on the SM structure. In the case of SUSY it requires the existence
of two Higgs supermultiplets H, = (1,2,1) and Hy; = (1,2, —1) instead of one.
If only one of them were present the contribution from the Higgs superpartner—
Higgsino—would spoil the neat cancellation exhibited in Eq. (1.26). The situation
is much better if there are two superpartners with the opposite hypercharges. It is
only then that their contributions towards Y and Y3 traces cancel. The subscripts
u and d serve the bookkeeping purpose: H,, with the VEV (H,) = (U(l), gives the
mass to the up quarks; H,, with the VEV (H,) = (%d), gives the mass to the down
quarks and the charged leptons. The ratio tan 5 = v, /v, plays an important role in
the phenomenological considerations. The VEVs themselves are directly related to
the electroweak breaking scale via v = 2\/m .

The gauge sector of the SM is promoted into the set of vector supermultiplets
comprising the usual gauge bosons and their fermionic superpartners—gauginos.
These vector supermultiplets and the chiral supermultiplets mentioned above specify

the particle content of the Minimal Supersymmetric Standard Model (MSSM).
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The most obvious problem with any supersymmetric theory, including the
MSSM, is the mass degeneracy of the fields with the opposite statistics that inhabit
the same supermultiplet. This degeneracy has to be lifted since we have not detected
any bosonic particle with the mass corresponding to the mass of any of the matter
fields of the SM. The lifting has to be done with two objectives in mind. First, we
do not want to spoil the cancellation of the quadratic divergences that represented
the strongest motivation for SUSY. Second, we need to keep the mass gap between
the matter fields and their superpartners of the order of the electroweak breaking
scale v. The first objective is accomplished if we break the SUSY via the “soft”
breaking terms (for a detail classification see [44]). These terms have one thing in
common: the couplings that multiply them have the mass dimension greater than
or equal to one. The importance of the second objective is obvious. If violated,
the second term in Eq. (1.25), proportional to the (mass)?, would again drive the
u? parameter away from the preferred value. The second objective represents the
so-called naturalness constraint on the superparticle masses. The justification for
the presence of the soft terms in the Lagrangian and the exact scheme of the SUSY
breaking represent the most active areas of the modern research on supersymmetric
theories.

Besides the stabilization of the Higgs mass against the radiative corrections,
SUSY makes two more improvements over the SM. One of them, which we find
extremely significant, is on the unification of the gauge coupling constants. The
running of the gauge coupling constants at the one-loop level, from one energy scale
to the other, is given by

2 27 !

17
ai(p)  ou(p) 1 (1.30)

where p and p/ are the energy scales in question, and, as before, a; = ¢?/(4m).

Within the SM framework the beta coefficients b; for the SU(N) group read

pM — —%CQ(SU(N)) + ng(d) + %Tb(d), (1.31)
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where Cy is the quadratic Casimir (gumgjim = C20i;), and Tjp)(d) is the Dynkin
index for the fermions (bosons) in the d-dimensional representation (Tr [Xi(d)X ](-d)] =

T(d)d;;). On the other hand, the beta coeflicients within SUSY simplify to
VYUY = —3C,(SU(N)) + T(d), (1.32)

due to the fact that the chiral supermultiplets always have the same number of
fermions and bosons (T¢(d) = T,(d)) and the gauginos always live in the adjoint
representation with the gauge bosons (Co(SU(N)) = T;(N? — 1)). The beta coeffi-
cient of the U(1)y gauge group is

by = %Z (g)Q (1.33)

where the index ¢ runs over all the particles. It is now easy to run the gauge couplings
in both the SM and the MSSM from the scale at which they are well known such as
the My scale to much higher scale where we suspect the more fundamental theory
resides. It turns out that the gauge couplings almost meet but only in the case of
MSSM (see Fig. 1.2). The scale where they meet lies below the Planck scale and
it is usually referred to as the GUT scale (Mgyr ~ 2 x 10'® GeV) since it is only
within the Grand Unified Theories that we expect solid interpretation of the gauge
unification. The fact that the MSSM steers the couplings in the “right” direction is
one more motivation to take SUSY seriously.

The other significant improvement of MSSM is on the justification of the
electroweak symmetry breaking. As we have already seen, the presence of the spin-0
Higgs field in the SM is somewhat ad hoc. On the other hand, SUSY treats the Higgs
field on an equal footing with the other matter fields placing it into just another chiral
supermultiplet. This makes its appearance somewhat less special than it is in the
SM. More importantly, the analysis of the renormalization group equations (RGEs)
has shown that the running of the masses of the MSSM fields can drive the Higgs

mass term towards the negative values. This makes the electroweak breaking an

20



60

501

40

301

20t

10}

In(/Mgyr)

Figure 1.2: The two-loop running of the gauge couplings within the MSSM taking
all superpartners to be degenerate at m;. The relevant beta coefficients
are summarized in Ref. [45].

ubiquitous process within the MSSM rather than an artificially introduced apparatus
as it was in the SM.

For the sake of completeness of our exposition we proceed with the specifi-
cation of the formalism of A' = 1 supersymmetry (for more details see Ref. [46]).
The same formalism and notation will be used in the rest of this work. As the
generic symbol for the chiral (vector) supermultiplet it is common to use ® (V).
Since the vector superfield belongs to the adjoint of the appropriate gauge group
it obviously carries the group index a which we suppress. One then defines the
chiral superfield W, = —imDaV, where the differential operators D, and D,
act in the superspace spanned by the variables (z,6,6), and o and & are the Weyl
spinor indices in van der Waerden notation. In terms of these supermultiplets the

most general supersymmetric renormalizable Lagrangian can then be written in the
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following form [46]:

E:

e TV
TPk WOW, |y + Hee| + @leV ®i] 00
1 1

W(®)

(1.34)

Here, [gp = [d?0 = —i i d?0°0P¢,;5 is the shorthand for the integration over the
Grassmann variables 6, and V = V*X,, where Tr[X,X,] = k4 in the adjoint. The
holomorphic function W (®) is the superpotential. It contains all the information on
the Yukawa couplings of the theory. Applying this formalism to the particle content
of the MSSM we obtain the following form of the Lagrangian:

1 afy/t
L=igra ™ WEWEyy + e
+ [LTeVLL + TVl + Qe Q + wfe"a + dfe¥ed + Hie m« H, + He # Hd] ’ -
0660
| (H Ha + N Qi Hy + X Qudi Ha + Ny LiliHa) |y + H. |
(1.35)

In addition, there are the soft breaking terms which lift the SUSY degeneracy that
we omit for simplicity.

As we have seen, SUSY has been tailored to make the theory stable under the
radiative corrections ensuring its validity until we reach certain high energy scale
where some more fundamental theory awaits. The new theory might show up at the
GUT scale, as suggested by the MSSM running, introducing various relationships
between the SM parameters valid only at that particular scale. In order to judge
the credibility of the predictions and relationships of the new theory we need to
propagate the values of the parameters that we observe at the weak scale up to
the scale of the new theory. This we do in the case of the quark and the charged
lepton masses, and the mixing angles, assuming the new theory emerges at the

GUT scale. The results are summarized in Table 1.1. There are some quantitative
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Table 1.1: The values of the quark and the charged lepton masses and the CKM
angles Vi, Vi, and V,;, at the m; scale, compared to the experimental
values extrapolated to the GUT scale (Mgur = 2.37 x 101 GeV). Ex-
trapolation is done taking all SUSY particles to be degenerate at m,
and assuming tan § = 3. Masses are given in units of GeV.

‘ m(mt) m(MGUT)
My 0.00127 0.000570
me 0.601 0.269
my 165 112
my 0.00288 0.000862
ms 0.0501 0.0150
me 2.78 0.957
Me 0.000502 0.000334
m, 0.104 0.0690
m. 1.75 1.16
Vs 0.22 0.22
Vs 0.041 0.036
\ 0.0036 0.0032

relations that appear to hold at the GUT scale such as my(Mgur) ~ m,(Mgur),
ms(Maur) ~ mu(Mgur)/3, and mg(Maur) =~ 3me(Mguyr) that the new theory
should try to account for. [This particular set of relations is referred to as the
Georgi-Jarlskog [56] relations. The factors 1/3 and 3 are thus the Georgi-Jarlskog
factors.] Bearing this in mind, we now turn our attention to the class of theories that
are perfectly suited for explaining the quark and the lepton masses and mixings, as

well as the gauge coupling unification.

1.4 Grand Unified Theories

The Grand Unified Theory aims at the unification of the quarks and the lep-
tons under the group transformations of a certain unifying group F (for a review
on group theory see [48]). The group F obviously contains the group H (F D H)

and its gauging usually aids the understanding of the unification of the fundamental
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interactions already embedded in H. The symmetry of the group F must be bro-
ken to yield the phenomenology in accord with the low-energy observations. The
breaking F — H is usually assumed to happen at some very high energy scale. We
then identify the breaking scale with the GUT scale where the couplings merge. We
mostly review the supersymmetric form of GUTs (SUSY GUTSs) unless explicitly
stated otherwise.

It should be stressed from the onset that the group F does not have to be a
single unifying group. It can also be a direct product of the groups. In that case the
gauge coupling unification is not a prediction of the theory but rather an external

aesthetic requirement. We will see examples of both cases in what follows.

1.4.1 Pati-Salam Model

The very first model of the quark-lepton unification is the model of Pati and
Salam [49, 50, 51]. The model is based on the group F = SU(4).@SU(2),®SU(2)r
with all the members of one family being placed in two multiplets: Fp; = (4,2,1);
and Fgr; = (4,1, 2)g;. More explicitly, we have

ul U2 U3 v

FrLri = , (1.36)

dt d* & e ,

L,Ri
where we show the SU(3). color indices only. [Note that Fp; and Fpg; are the con-
jugates of each other under the left-right discrete symmetry (L < R).] The SU(4).
acts horizontally treating “lepton number as the fourth color” while both SU(2).
and SU(2)g act vertically on their respective multiplets. The charge operator in

Pati-Salam model (PS) is given by a simple formula

B-L
Q=L+ Isr+ —5—, (1.37)

which is to be compared with the SM one: @ = I3, +Y/2. The hypercharge is clearly
given by Y/2 = I3r+(B—L)/2, where B— L represents the generator of SU(4),. . [In
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the fundamental representation of SU(4). we have B — L = diag(1/3,1/3,1/3,—1).]
This time all the generators that enter the hypercharge definition originate from
the non-Abelian groups. One of the properties of the non-Abelian groups is the
quantization of the eigenvalues of their generators due to the nontrivial commuta-
tion relations that define the group algebra. Thus, Pati-Salam model justifies the
peculiarity of the hypercharge assignment of the SM in a very natural way. This, in
turn, ensures the neutrality of the ordinary matter and the anomaly cancellation.
[Note that the right-handed neutrino makes no contribution to the anomaly.] The
PS model introduces one right-handed neutrino for each family opening the possi-
bility of generation of the experimentally observed neutrino mass. In addition to
all that, the model promotes B — L to a local symmetry. This turns out to be very
important for the explanation of baryogenesis via leptogenesis [52]. The idea here is
that the spontaneous violation of the local B — L symmetry at some high temper-
ature creates a lepton asymmetry. This then is converted to the observed baryon
excess at lower temperatures by electroweak sphalerons [54, 55]. [It is the decay of
the heavy right-handed neutrinos that can start the leptogenesis (for a review see
[53]).]

All in all, the Pati-Salam model introduces a number of qualitatively new

features with respect to the SM. These are:

Unification of all the quarks and the leptons of one family within two multi-

plets.

Introduction of the right-handed neutrinos.

Justification of the hypercharge assignment and neutrality of the ordinary

matter.

Promotion of B — L into a local symmetry.
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Of course, one still needs to break the Pati-Salam model down to the SM.
This is accomplished with the field (4,1, 2) that gets very large VEV in the right-
handed neutrino direction. [To avoid SUSY breaking one actually needs the VEV for
(4,1,2), too.] This breaking however is not relevant for the quark and the charged
lepton masses. They originate, together with the electroweak breaking, from the
usual Higgs mechanism with “bi-doublet” of Higgs fields (H, and H,) transforming
as (1,2,2)y under the PS group. To see the pattern of the masses and the mixings
in the minimal PS model we switch again to the description in terms of the left-
handed Weyl spinors: (4,2,1); — (4,2,1); (4,1,2) — (4,1,2). The Yukawa

term responsible for the mass, in group theoretical language, reads
EYukawa == AZJ(47271>Z(17172>j(17272)H (138)

where, as before, A represents arbitrary dimensionless matrix in the flavor space.
After the Higgses in the bi-doublet get their VEVs we are left with the following
prediction of the minimal supersymmetric Pati-Salam model: U = N « D = L,
where N represents the Dirac mass matrix of neutrinos. This prediction is in gross
disagreement with the experimental data. Moreover, it leads to the trivial CKM
mixing matrix. [Note that the same bi-unitary transformations diagonalize U and
D.] However, the most important thing is that we finally have the tool to relate
mass matrices to one another. To create more realistic mass and mixing patterns
one needs to extend the Higgs sector. For example, one can reproduce the Georgi-
Jarlskog relations by introducing the Higgs in the adjoint of SU(4). with the VEV
pointing in the B — L direction.

1.4.2 SU(5)

The smallest special unitary group that contains the SM group H is SU(5).
This fact prompted Georgi and Glashow [57] to use SU(5) as a basis for the first
true Grand Unified model.
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The generators of SU(5), in the fundamental representation, are 5x5 traceless
Hermitian matrices acting on the five-dimensional vectors ¥* (u = 1,...,5) we
associate with the 5. The embedding of H into SU(5) is obvious if we perceive
the 3 x 3 upper block matrices and the 2 x 2 lower block matrices of the SU(5)
generators as being the generators, in the fundamental representation, of SU(3).
and SU(2)p groups respectively. This means that the first three components of
Y* transform as the triplet of SU(3). while the last two components transform as
the doublet of SU(2),. To stress this fact it is customary to separate the index
w into two indices: o = 1,2,3 of SU(3). and i = 4,5 of SU(2),. The U(1)y
hypercharge generator must commute with all other generators and is chosen to
be Y = diag(—2/3,-2/3,—-2/3,1,1). If we look back at Eqgs. (1.28) we see that
stacking the anti-triplet d; and the doublet L; into the five-dimensional vector yields
appropriate representation and hypercharge assignments except for an extra field
conjugation. To fix that we place d; and L; into the vector 1, associated with the
conjugate of the 5—the 5. In the group theoretical language, the decomposition

SU(5) — H for the anti-fundamental reads

The next smallest representation of SU(5) is the 10. It is the antisymmetric product
of the 5 with itself leading to the decomposition

which is just what we need to house the remaining ten particles of one family

(Q;, u;, and €;). Associating the 10 with a ten-dimensional antisymmetric tensor
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P = {7, YV}, we have

dy 0 Us —us —ut —d!
da —uz 0 u —u? —d?
Vo= dy |, and "' =| @ - 0 —u® —d&® |. (1.41)
v utowr oW 0 —e
e d! d? d? 3 0

The fact that the matter fields fit so neatly into two smallest representations of
SU(5) is nothing short of a miracle and serves as one of the main arguments for the
GUTs.

The picture is not so perfect when it comes to the embedding of the Higgs
doublets into SU(5). It turns out that they abhor the unification. Assuming the
MSSM content we need at least the 55 and the 55 to accommodate H, and Hj,
respectively. The problem is that they come with a triplet and an anti-triplet of
“color” Higgses as can be seen from Eq. (1.39). Giving the large mass to these extra-
fields to remove their signature from the low-energy phenomenology while keeping
the doublets light is one of the most difficult tasks for model builders. This is the
infamous “doublet-triplet splitting problem”. We will address its implications and
possible resolutions in great detail in Chapter 4.

The gauge fields, as always, reside in the adjoint representation—the 24.
We can read off their transformation properties under H evaluating the product
5®5 =24@ 1 in its decomposed form:

_ _ ——
55 — (1,1,0)® (8,1,0) & (3,2,—5/3) & (3,2,5/3) ® (1,3,0) & (1,1,0)..

24

We now see that the gauge fields (A*, (A*, = 0)), using the block matrix notation,
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transform as

(8.1,0) | (3.2.-5/3)

AP, = R — — +(1,1,0).  (1.42)
Ao | A, (3.2,5/3) | (13,0
2x3 | 2x2

Obviously, the fields (8,1,0), (1,3,0), and (1,1,0) are the familiar gauge fields of
the group H. On the other hand the fields (3,2,—5/3) and (3,2,5/3) represent
completely novel interaction carriers. For example, the fields (3,2, —5/3) can turn
the anti-quark field in (3,1,2/3) into the lepton field in (1,2,—1). This sort of
process violates B and L numbers and represents the major prediction of any GUT—
the prediction of the proton decay. The experimental limits on the lifetime of the
proton are so severe that they represent the biggest stumbling block for any realistic
GUT.

The breaking of SU(5) down to SU(3), ® SU(2), @ U(1)y is facilitated by
a Higgs field in an adjoint (¢*, (¢*, = 0)). If the large VEV of the Higgs points in
the direction of the hypercharge ({(¢*,) = diag(—2/3,—-2/3,—2/3,1,1)) the Higgs
will not commute with the off-diagonal block matrices in Eq. (1.42) leaving the
appropriate gauge bosons massive.

At this point, we observe that the Georgi-Glashow (GG) model has an extra
desirable feature over the PS model. It introduces the notion of the gauge unifica-
tion. Namely, since there is only one group there will be only one gauge coupling
g. It is after the breaking that the familiar low-energy couplings g3, g2, and g¢;
emerge. The ratio of these gauge couplings is now uniquely determined through the
requirement that the appropriate generators in Eq. (1.5) all be normalized equally.
In other words, we must have g3 Tr[I3] = g3 Tr[I3,] = ¢f Tr[(Y/2)?] = ¢ (1/2) for
the fundamental representation of SU(5). This condition, valid at the GUT scale,

immediately gives g2 = g2 = (3/5)g? = g% predicting sin® Oy = 3/8.

¥ This explains the normalization of b; beta function in Eq. (1.33).
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The unity of the quarks and the leptons always comes at a cost. We now
have to use multiple stages of symmetry breaking as opposed to the SM case where
there is only need for one. On the other hand, the enlarged symmetry relates the
masses of the matter fields as we could have already witnessed in the PS model. In

the case of SU(5) model the minimal set of Yukawa terms is

Lyukawa = A5 10,1055 +A¢; 10,55, (1.43)
U D,L

which, after the Higgses get their VEVs, generates the following Dirac mass matrix
relations: U = U = X\, and D = LT = \v,;. More realistic mass and mixing
patterns require larger Higgs sector. For example, we can reproduce the Georgi-
Jarlskog relations that were mentioned a couple of times already with an extra 45
of Higgs.

It is not difficult to extend the minimal SU(5) model to accept the right-
handed neutrinos 7;. They will correspond to the gauge singlet fields—the 1;. Their
existence allows two qualitatively different types of the mass terms: (i) Majorana
mass term, and (ii) Dirac mass term. The latter one is already familiar originating
from )\;-’jgil ;9m, while the former one is allowed only for the particles that are their
own antiparticles. If this indeed is the case for the electrically neutral neutrinos we
can introduce the explicit Majorana mass term (Mg);;1,1;, where (Mg);; = (Mg);;
represents the Majorana mass matrix. Since no symmetry forbids Mz the magnitude
of its elements is expected to be of the order of the cutoff scale of the theory. On

the other hand, the Dirac mass matrix N = \”v, is of the order of the electroweak

scale for O(1) Yukawa couplings. The two terms, shown together as

0 N v
(v ) : (1.44)

NT Mg 7
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can be brought through the redefinition of the fields into the following approximate
block diagonal form
—~NMp'NT 0
0 Mg

(1.45)

Clearly, the mass eigenstates of the light neutrinos are obtained by diagonalizing
the symmetric matrix N, = N = —NM;'NT. The form of N, implies that it is
the largeness of My that is responsible for the smallness of the observed neutrino
masses. This mechanism is thus referred to as the “see-saw” mechanism [58, 59].
Taking N ~ 200GeV and My ~ Mgyt ~ 2 x 1019 GeV we get the light neutrino
mass of the order of 1/10% eV which is smaller but still very close to the value
1/20eV deduced from the experiments. The see-saw naturally explains why M, has
entries that are much smaller than the entries of U, D, and L.

One of the most aesthetically pleasing features of SU(5) is the fact that the
members of one family (including the right-handed neutrino) completely fill three
smallest representations—the 1, the 5, and the 10. Another one is the fact that
SU(5), being the simple group, naturally predicts the gauge coupling unification.
One might hope that it is possible to go a step further and completely unify the
members of the family while preserving the gauge coupling unification. We now

turn our attention to the group that allows us to do just that.

1.4.3 SO(10)
The special orthogonal group SO(10) is a rank-five” group. We thus expect
both SU(5) (a rank-four) and SU(4) ® SU(2) ® SU(2) (a rank-five) to be possible

candidates for subgroups of SO(10). The exact decomposition turns out to be:

(I) SO(10) — SU(5) ® U(1) and (II) SO(10) — SU(4) ® SU(2) ® SU(2). The

T The rank of any group JF is equal to the total number of its commuting gener-
ators. The rank of any subgroup of F, for obvious reasons, must be equal or
smaller than the rank of F itself.

31



choice of the particular symmetry breaking chain has profound consequences for the
mass relations and the low-energy phenomenology. The smallest representations of
SO(10) are the 10 (a fundamental), the 16 (a spinor), and the 45 (an adjoint).
Before discussing any phenomenological signature of SO(10) we show how each one
of these look under the decompositions (I) and (II).

If the sixteen members of one family are to be united within the single mul-
tiplet of SO(10) the family must reside in the 16. Since we already know the
representations that make the family in both the GG and the PS models we can

immediately write the decomposition as

16 % 1Pe5 o10, (1.46a)
16 Y 4,210 31,2), (1.46b)

where the superscript represents the U(1) charge. [SO(10) ensures an automatic
anomaly cancellation for every representation. This can help in determining the
U(1) charge since the sums over the charges and their cubes must vanish for every
representation. All one has to decide on is how to fix the overall normalization.]

The 45 decomposes as

45 U 249070 g 101 @ 1°, (1.472)
45 Y (151,1)@(1,3,1) @ (1,1,3) & (6, 2,2), (1.47b)

where we use the fact that the adjoint is always a self-conjugate. Namely, in terms
of decomposition (I) we know that the 45 must contain the 24 and the 1. To keep
it real we just account for the difference with the 10 and its conjugate—the 10. As

for the 10, it decomposes as

10 Y 520F (1.48a)
10 W (1,2,2)@(6,1,1), (1.48b)

which makes it a perfect candidate for the familiar Higgs fields of the MSSM.
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We are now ready to construct the minimal SO(10) model. Setting aside
the questions pertaining to the actual breaking down to the SM group we observe
that the families reside in the 16; (i = 1,2,3) and the Higgses live in the 104.
The Yukawa term is simply \;;16,16;105, where \;; represents a dimensionless

symmetric matrix in the family space. It falls apart as

2i;16,16;10;

i) ( 10110'5;2 +10/5,°5, + 5, °10'5;, + 5, *175,7 + 175, °5,; ) ,

~
U D L N

which yields the following mass matrix relations: U = N o« D = L « A. Once again
we are led to the trivial form of the CKM matrix.

The very fact that the right-handed neutrinos are unified with the quarks
and the leptons prevents them from obtaining the simple SU(5)-like Majorana mass
term that generates Mg. This is the problem that any realistic SO(10) model has to
address (for a review on SO(10) models see [69]). There are two possible directions

that one might take.

e First approach is to use renormalizable operators such as:

(a) Apiy16,16,1265 o A 1917(15) (1.49)
== 0] 5 1
(b) Anij16,1;165 + M;;1,1; — Ay 1719(1,7) + 5Mij191§ (1.50)
where in the case (a) we introduce the 126 5 of Higgs while in the case (b) we
introduce, in addition to the 165 of Higgs, some singlets of SO(10). In both
cases we expect the VEVs as well as the entries of M to be at or immediately
below the cutoff scale of the theory. It is clear that the case (a) leads directly
to the standard “see-saw” mechanism while the case (b) generates the “double

see-saw” mechanism since we first have to rotate in the space spanned by the

33



right-handed fields only. Namely, to obtain the light eigenstates, we have to

diagonalize the matrix

0O N 0 v
(v v 1% NT 0 M v (1.51)
0o MT M 1°
where we define M' = )\N<T1_{5>- This can be achieved by two successive

rotations. First, we can rotate in the “23 plane” to eliminate the 13 and
31 elements. Then, we can rotate in the “12 plane” to eliminate the 12
and 21 elements. The outcome is the light mass matrix of the form M, =~

N(M/M_lM/T)_lNT.

e Second approach is based on the use of the higher dimension operators. The
philosophy behind this approach is that SO(10) represents just another ef-
fective theory. Introducing the cutoff, say Mqyr, then allows us to use the
operator Ap;;16;16,16516/Mcur D, ARijllsl?TI}STI_{S/MGUT to generate
Mp after the 16y gets very large VEV in the right-handed neutrino direc-
tion ((T;I5> ~ Mgyr). This again brings us back to the standard “see-saw”

mechanism.

1.4.4 Flipped SU(5)

One of the breaking chains of SO(10) reproduces Georgi-Glashow SU(5)
model with the addition of an extra U(1) symmetry. The electric charge @ is
then the generator of the GG SU(5) only, in accord with our previous discussion.
There is however another avenue that one might take. One can embed the electric
charge in such a manner as to have it come from the linear combination of the
generators operating in both SU(5) and U(1). This is exactly what is done in a
flipped SU(5) [60, 61, 62] as we demonstrate below.
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The flipped SU(5) is best visualized through the following schematics:

flipped SU(5)
SO(10) — SU(B) @ U(1)x —

SU3). ® SU(2), ® U(1)z @ U(1)x — SU(3).® SU(2); @ U(1)y.

Uy

Clearly, the hypercharge, and thus the electric charge, originates from the linear
combination of the Z and the X generators:

Y Z

where v and (3 are the coefficients to be determined. Note that we already know the
values of Z (Z = diag(—2/3,—2/3,—2/3,1,1) in the fundamental representation of
SU(5)) while the values of X are fixed by the SO(10) decomposition. With this in
mind, it is now easy to find the values of o and # by imposing the condition that
Eq. (1.52) reproduces the known hypercharges of the matter fields. We observe that
the quarks in (3,2,1/3); must reside in the 10; since there is not enough room for
them in the 5; . This gives the first condition: (1/6) = a(1/6) + B(1). On the
other hand, we expect the leptons from (1,2, —1); to be in the 5, ® since the rest of
the states will be occupied by the anti-triplet of quarks. This in turn provides the
second condition: (—1/2) = a(—1/2) + $(—3). These two conditions provide two

different embedding schemes for the matter fields, as shown by Barr in Ref. [62]:
1. (e, B) = (1,0), corresponds to the GG SU(5) embedding scheme.
2. (o, ) = (=1, ), is the flipped SU(5) embedding scheme.

We can now reconstruct the embedding of the rest of the matter fields of one family
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which in the SU(5) language looks like

Uy 0 ds —dy —db —ul
Ug —ds 0 d —d® —u?
o=\ a3 |, VW= d& -d 0 —-d& —u® |, and v =e. (1.53)
e v &# B0 v
v ut o ow? o W? v 0

Flipped SU(5) has certain appealing features that make it very attractive
from the model building point of view. Since we plan to take advantage of these
features in Chapters 4 and 5, where we describe them in great detail, we postpone
any further discussion on flipped SU(5).

We have seen that GUTs have introduced many qualitatively new notions
into the realm of elementary particle physics. The ideas such as the gauge coupling
unification, and the unification of the matter fields have become a reality. But one
question still remains: Are these ideas enough to account for the mass and the

mixing patterns?

1.5 Flavor Symmetry

The majority of the realistic GUT models in the literature utilizes the gauge
symmetry in conjunction with some form of the flavor symmetry [63, 64, 65], i.e.
the symmetry that acts in the flavor space, to create realistic patterns of the masses
and the mixings. The idea of Abelian flavor symmetry in this context is especially
simple.

It has been observed that all of the interfamily mass ratios and mixing angles
can be written as powers of one or two small parameters. For example, the quark

and the lepton mass ratios and the mixing angles (see Table 1.1.) at the GUT scale
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are

My Me:my ~ € et (1.54a)
Mg :ms:my ~ € :e 1, (1.54b)
Mme:my, im, ~ € e, (1.54c¢)
|VUS‘ ~ €, |‘/cb‘ ~ 627 ‘Vub‘ ~ 647 (155)

and so on, where € ~ A ~ 0.22 is the Wolfenstein parameter [100]. This has suggested
to many theorists the idea that there is a weakly broken Abelian symmetry which
distinguishes fermions that are of the same type but of different families. Suppose,
for instance, that there is a U(1) s flavor symmetry, under which the Standard Model
Higgs has charge zero, the fermions v; and 1; have charges ¢; and ¢;, and a “flavon”
field S has charge —1. Then a Yukawa operator 1;1; H is forbidden by the flavor
symmetry, but the effective operator ;1 H(S/Mp)@+9) is not. Such an effective
operator might arise from integrating out vector-like fermionic fields whose mass is
of order Mp, the “flavor scale”. If one assumes that the breaking of U(1) g is weak,
in the sense that (S)/Mpr = € < 1, then one has explained the fact that the effective
mass parameter of the term @iwj is proportional to a power of the small quantity e.
This is the basic idea of Froggatt and Nielson [63], which has inspired a very large
number of models in the literature.

The use of the flavor symmetry is closely tied to the expectation that the
Yukawa couplings are O(1) parameters. This indeed is the case for the top quark
so we expect its Yukawa operator to be allowed by the flavor symmetry. All other
Yukawa operators will usually be suppressed by the appropriate powers of the pa-
rameter €. The flavor symmetry alone gives only order of magnitude estimates
instead of the exact predictions for the matrix elements of the mass matrices. But
then again, in conjunction with the GUTs it can be a powerful tool that relates the

mass ratios and the mixing angles as we demonstrate next.
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Concentrating our attention on the first two families of the quark sector we

can posit the following form of the mass matrix [66, 67, 68]

D= m. (1.56)
e 1

The symmetric form might originate from the GUT with the hierarchical pattern
ensured by an appropriate flavor symmetry. The task of bringing this matrix into the
diagonal form is accomplished with the 2 x 2 orthogonal rotations (O} DO, = D2)
with the rotation angle defined by tan 20 = 2¢. For small €, 6 = ¢, the eigenvalues
are m, = m, and my = —e*m. [Note that det D = —e?m? = mgm,.] This finally
establishes the link between the mixing angle # and the mass ratio, § = \/W ,

we were hinting at. Applying the same idea to the mass matrix U and allowing for

more realistic complex entries the Cabbibo angle turns out to be

0. = '1/@ —ei‘ﬁumu
ms me

which is to be compared with the value of |V,;|. The agreement seems excellent for

any value of the phase ¢ since at the GUT scale y/mg/ms &~ 0.24, and /m,/m. =~
0.046 (see Table 1.1.).

, (1.57)

The synergy between the flavor symmetry and the GUTs can be nicely
demonstrated in the GG SU(5) model. As we have seen in Eq. (1.43), the U mass
matrix comes from the term involving the product of two 10’s while both the D and
the L matrices involve the product of only one 10 with the 5. To use this to our
advantage we can assign the same U(1)r charges to all the 5’s while assigning suc-
cessively greater charges to the 103, 105, and 10;. This creates doubly suppressed
hierarchy in the up sector compared to the down and the charged lepton sector as
required by the empirical GUT relations in Eqs. (1.54).

All the mixing angles in the quark sector have turned out to be very small.

This has suggested the idea of relating the small mixing angles of the CKM matrix
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to the small ratios of the entries of the U and D mass matrices of the quarks. As we
have seen, this idea has been implemented by positing the symmetric “texture zero”
form of these matrices. On the other hand, the mixing angles of the PMNS matrix
in the lepton sector have not come out to be as small as was initially expected.
Some of them are actually very close to their maximal value. More specifically,
the measurements of neutrino oscillations (for a theoretical overview see [75]) have
unambiguously shown that |U,s| = 0.71 [42], and |Ue| ~ 0.5 [70, 71, 72]. Therefore
the question is: How do we accommodate the maximal mixing? [The largeness of
the mixing angles in the lepton sector has raised a number of theoretical puzzles.
For a beautiful account of these puzzles and possible solutions see [74].]

It is very simple to accommodate the maximal mixing using the symmetric
form of the mass matrix. For example, the maximal mixing in a two-state system

is easily implemented with a following “pseudo-Dirac” matrix

, (1.58)

where € < 1. We note that the mixing angle is very close to /4, while the resulting
masses are both of order one. It is clear from this simple example that the symmetric
form implies the existence of the degenerate mass eigenvalues whenever there is a
maximal mixing in the system. This approach, then, is not appropriate in the
lepton sector where both charged leptons and neutrinos show certain mass hierarchy:.
This has suggested a somewhat novel approach based on the idea [73] to use the
antisymmetric form of the mass matrices to explain the unexpected largeness of the
mixing angles and the large hierarchy in the lepton sector. Obviously, the idea of
the antisymmetry in the lepton sector can only be applied to the charged lepton
mass matrix L since we know M, to be symmetric. We demonstrate the beauty of
this idea in its natural setting of an SU(5) GUT.

Recall that in SU(5) there is a prediction for the relationship between D and
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L mass matrices: D = L. Since the physical mixing angles (the angles that enter
CKM and PMNS mixing matrices) are the angles used to redefine the left-handed
fields (see Eq. (1.22)), we can arrange things as follows. We can posit the form of the
matrix L to require large rotations of the left-handed charge leptons via U;. These
large rotations in U; are then related by SU(5) to the large rotations in Vj, which
are the rotations of the right-handed down quarks. But these right-handed mixing
angles have nothing to do with the observed CKM angles. On the other hand, the
small CKM angles originating from Uy are related by SU(5) to small mixings of the
right-handed leptons in V;, which are irrelevant to neutrino oscillation phenomena
since they do not enter PMNS mixing matrix. The models based on this idea are
referred to as “lopsided” [77].

An example of how an SU(5) lopsided model works is provided by the fol-

lowing mass matrices:

0 € 0 o
D= m, and L = m. (1.59)
o 1 e 1

Here, we consider only the last two families of the down quarks and the leptons,
taking ¢ < 1 and ¢ ~ 1. To bring L into the diagonal form we first perform
a rotation from the left with an angle defined by tanf, = o. Then, we rotate
from the right with an angle defined by tanfi = ¢/v/1+02 ~ e. This yields
the mass eigenvalues ratio m,/m, ~ eo which is equal to the mass ratio m,/my
in the down quark sector. The angles 0} and 6%, are equal to the angles 6% and
64 in the down quark sector repectively due to the SU(5) symmetry. Being the
left-handed mixing angle in the “23 plane”, 6} (6¢) contributes towards the PMNS
(CKM) matrix element U,s (V). Thus, we have U, ~ 0 ~ \/o/ey/m,/m, and
Vi ~ €~ \/%W We can clearly see that the smallness of V,;, is directly
related to the largeness of U,;.

We analyze one lopsided model in great detail in Chapter 3 and create another
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one in Chapter 4 to obtain realistic scheme of the masses and the mixings in extra-

dimensional setting.

1.6 Outline

We have discussed the Standard Model structure in great length in this chap-
ter. There is, however, one particular feature of the SM that has not been mentioned
yet—the coupling of the Higgs scalar h to the fermions in the SM is flavor diagonal.
We have taken it for granted since the mass matrices of the quarks and the leptons
were proportional to the appropriate Yukawa coupling matrices (A\%%!). This does
not have to be the case always, especially if there are more Higgs-type scalars in
the theory as we will see in Chapter 2. The appearance of these extra scalars is
ubiquitous in the models with Abelian flavor symmetry. In these models the small
mixing angles and mass ratios of quarks and leptons are typically given by powers
of small parameters characterizing the spontaneous breaking of flavor symmetry by
the Higgs-type “flavon” fields. The usual assumption that the spontaneous breaking
takes place at some high energy scale makes all the effects of the flavon exchange
virtually unobservable. But, if the scale of the breaking of flavor symmetry is near
the weak scale, flavon exchange can lead to interesting flavor-violating and CP vio-
lating effects. These are studied in Chapter 2. We will put special emphasis on pu-e
conversion since there are a number of experiments aiming at the improvement of
existing limits. Some of them are already taking data (SINDRUM II Collaboration
at PSI [79]), and some are planned to start in near future (MACO at BNL [80] and
NUFACT at CERN [81]). In addition, we will investigate the effect of the flavon
exchange on the processes such as d., and y — e + 7.

Experiments on neutrino oscillations have unambiguously shown that the
only viable solution of the solar neutrino problem is the large mixing angle MSW
solution. On the other hand, the majority of the models on neutrino masses and

mixings that has been published seems to have difficulty in explaining the values of
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the parameters required to produce that solution in a natural way. We investigate in
Chapter 3 how well various neutrino models accommodate the values of the neutrino
masses and mixings that are preferred by the recent global fit analyses. We also
address this question in a statistical manner and propose to treat the entries of the
mass matrices to be the random variables much in the spirit of the work of Hall,
Murayama and Weiner [82] and subsequent analysis of Haba and Murayama [83].
We suggest this approach to be a very good indicator of how natural neutrino mass
model is. Moreover, we claim this analysis to be applicable to a very large class of
models of the neutrino masses and mixings.

The most appealing feature of the flipped SU(5) is the way it allows one to
solve the doublet-triplet splitting problem via the missing partner mechanism [84,
85]. The implementation of this mechanism however prohibits any further embed-
ding of the flipped SU(5) into SO(10). This naturally means an automatic loss
of the gauge coupling unification as the genuine prediction of the flipped SU(5)
model. So the question of whether it is possible to reconcile the gauge symmetry
of flipped SU(5) with the gauge unification becomes extremely important. We will
show in Chapter 4 that embedding a four-dimensional flipped SU(5) model in a
five-dimensional SO(10) model a la Kawamura [86], preserves the best features of
both flipped SU(5) and SO(10). The missing partner mechanism, which naturally
achieves both doublet-triplet splitting and suppression of d = 5 proton decay oper-
ators, will be realized as in flipped SU(5), while the gauge couplings will be unified
as in SO(10). As promised before, we will also discuss in Chapter 4 the nature of
the doublet-triplet problem.

If we believe in the gauge unification we can ask whether the gauge couplings
truly unify at the GUT scale. The answer to this question was positive not so long
ago since the uncertainty in their initial values extracted from the experiments were

large enough to allow the three of them to meet. The situation has changed after
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the electroweak precision measurements and the improvements in measurements of
a3 since the error bars on the experimental values have become sufficiently small to
prevent the exact unification. What we need is to identify the source that modifies
the values of the gauge couplings sufficiently enough to lead to their perfect unifi-
cation. At the same time we have to ensure that this source is not contradicting
the existing experimental limits. This has been achieved in a number of ways. The
most common one is to postulate the existence of the extra-matter fields within the
usual four-dimensional framework. We are going to propose in Chapter 5 an extra-
dimensional SO(10) scheme that modifies the particle spectrum of the MSSM below
Mgyt and generates the so-called Kaluza-Klein (KK) grand unification [87, 88]. The
model will also be interesting from the phenomenological point of view. The cutoff
of the model will be closer to Mp; than was the case in four-dimensional GUTs. On
the other hand, the mass of the heavy states will be below the usual Mgyt and yet

there will be no problems in satisfying the constrains of proton decay experiments.
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Chapter 2

FLAVOR EXCHANGING EFFECTS IN MODELS WITH
ABELIAN FLAVOR SYMMETRY

2.1 Introduction

Flavor symmetry was first proposed to explain the structure of the quark and
lepton mass spectrum and the CKM mixing of the quarks [63, 64]. More recently
these ideas have been extended to account for the observed patterns of neutrino
masses and mixings (see for instance [89, 78, 90, 91, 92]). In the context of SUSY,
flavor symmetry has been invoked to solve the problem of flavor changing neutral
currents, i.e. “the SUSY flavor problem” [93, 94, 95, 96, 97, 98, 99].

A wide assortment of flavor symmetries has been suggested. In particular,
models based on both non-Abelian and Abelian symmetries have been constructed.
One virtue of non-Abelian symmetries is that they can lead to degenerate masses,
which have various theoretical uses. For example, one solution to the SUSY flavor
problem is to posit a near degeneracy of the squark/slepton masses of the first two
families. For another example, large neutrino mixing angles can be obtained by
positing nearly degenerate neutrino masses. However, in this chapter we shall be
interested in Abelian flavor symmetries.

Aside from having the potential to explain the hierarchies observed among
fermion masses and mixing angles, the idea of a weakly broken Abelian flavor sym-
metry a la Froggatt and Nielson [63] can be used to construct models in which

the dangerous flavor-changing effects in supersymmetric models are suppressed by
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“flavor alignment” [93]. The idea here is that in the preferred basis defined by
the Abelian flavor charge assignments the off-diagonal elements of both the fermion
mass matrices and the sfermion mass-squared matrices are suppressed by powers
of the small parameters which characterize flavor breaking (i.e. parameters like €).
Thus the fermion and sfermion mass matrices are nearly “aligned” by flavor sym-
metry. The angles expressing their misalignment are suppressed by powers of the
small parameters. If this suppression is strong enough it would solve the SUSY
flavor problem.

In this chapter we examine some of the possible consequences for phenomenol-
ogy of the exchange of the “flavon” fields themselves. A point that should be stressed
from the outset is that there do not have to be such consequences at all. The reason
is that the flavor scale Mp can be anything from the weak scale up to the Planck
scale. All that matters is that the ratio (S)/Mp of the flavon expectation value
(or values) to the flavor scale be somewhat smaller than 1. If the flavor scale is
much larger than the weak scale, then the phenomenological effects of flavon ex-
change will be unobservable. In fact, many papers assume that the flavor scale is
near the Planck scale, which is certainly a reasonable expectation. However, since
we do not know a priori what the flavor scale is, it is interesting to investigate
the phenomenology that would result from its being near the weak scale, and in
particular to ask how low the flavor scale could actually be given present limits on
flavor-changing and CP-violating processes. We would also like to know in which
processes flavon-exchange effects would be likely first to show up.

There are many ways that new flavor physics just above the weak scale could
affect low-energy phenomenology. For instance, if the Abelian flavor group is local,
the exchange of the corresponding gauge bosons could cause flavor-changing neutral
current processes. We will assume that the flavor group is either global, or breaks

to a global symmetry at a sufficiently high scale that such gauge-boson-exchange
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effects can be ignored. We are only interested in this chapter in the exchange of the
flavon fields themselves.

There are many models with Abelian flavor symmetry, and the number of
parameters in such models can be large. What we shall do, therefore, is write down
an effective low-energy theory that has a manageably small number of parameters
and that has some of the typical features of models with Abelian flavor symmetry.
Studying this toy model will give some idea of the likely magnitude of various effects.
We will then look at some variations of the model to see how they would change the

conclusions.

2.2 A simple effective theory of flavon physics

The model we shall study has a single flavon field S that is a singlet under
the SM gauge group H. The effective Yukawa couplings of the quarks and leptons
to S and to the ordinary Standard Model Higgs field H, after integrating out all the

fields whose mass is of order of the flavor scale Mg, is assumed to be
Lyuawa = — N5 Qp H P up; — MN-QrH dpy — MLy, Hlp; + Hee, (2.1)

where i,j = 1,2,3 are family indices, and a,b = 1,2 are SU(2), indices. The N's

are given by the following expressions:

¢6 4 6 pd 26 6
1% hiyet higét h$1é8  hdyeS  hise
Au — u 24 u 22 u 22 Ad _ 6 4
AT = yet hde? hye? |, and A= [ nde® hdet hige . (2.2)
~A ” 6
hi € hi,é iy h§i€® et hgyé

The corresponding matrix for the charged leptons, A}, is assumed to have the same
form as A? with hfj — hﬁj. In these expressions the h;; are all assumed to be of
order unity, and the hierarchy among various masses and mixing angles therefore

comes from the powers of €2, which is defined to be

2 S

i (2.3)

>
Il
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The particular structure given in Eq. (2.2) is inspired by a model of Babu and
Nandi [101], which has the same powers of ¢, but where ¢2 = (HTH)/M2% rather
than S/Mp as here. Thus, their model is not a typical flavon model. However, the
pattern of powers of € is quite typical of many Abelian flavon models, and gives, as
Babu and Nandi show (see below), an excellent fit to quark and lepton masses and
CKM angles. If we call the vacuum expectation value of the flavon field (S) = u,
then the small parameter that characterizes flavor changing is €2 = u/Mp.

The Higgs potential is assumed to have the form

V(H,S) =XH'H)? = p*(H'H) + \s(5*S)* — pi5(5*5)
(2.4)
+ N(H'HS*S) — %(5771252 +H.c.).

The last term has been put in to give a soft breaking of the global U(1)r under
which S — €S, and thus to give mass to the pseudoscalar part of S. [This global
U(1) may ultimately come from a local flavor symmetry that is broken at a higher
scale.] The parameter dm? is the only one in the Higgs potential that can have a
phase. However, one can absorb this by a phase rotation of S. Having done so, the

VEV of S is a real quantity. Minimizing this potential gives
1 i

S = u+ ﬁsl + %82, (2.5a)
0
H = ) : (2.5b)
v+ Ehf
where
v o= [2Asp” = N(uE +0m?)] / (40hs — A7), (2.6)
o= [2M(pE 4 0m®) = Np?] [ (Mg — X?), (2.7)

with v ~ 174 GeV, and (s1) = (s2) = (h) = 0. We have changed the definition of v
compared to the definition of Eq. (1.12) for later convenience. From Egs. (2.3), and

(2.5), we can write
51+ isg

6:62{1 ﬂu]
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Consequently, the couplings of s; and s, to the quarks and leptons are obtained by

taking, in Eq. (2.1),

f 3
n;.(s1 +1s h
(51 2)

V2u Vau |’

1+

MNH = A{jg%f} <U + i) >t (2.9)

va) ="

f

! is the power of ¢ that appears in j‘w It turns out

where f = u,d,l, and where n;;
that for the interesting phenomenology one can ignore the terms higher than linear
in the fields s; and s, in Eq. (2.9). Note that the coupling of h to the quarks and
leptons will be made real and diagonal when the mass matrices mlfj are, but that the
coupling of the flavon fields s; and s, will not be made real and diagonal because of
the extra factor of nzfj This is what will give the flavor-changing and CP-violating
effects that we shall be interested in. We see also that s, couples in the same way to
quarks and leptons as s; does but with a relative phase of i. This factor of i comes
in squared in s, exchange and so does not lead to C'P-violating effects to the order
we are interested in.

Let us now look at how many parameters the model has. First, there are the
large number of parameters that we have called h{] Because there are so many, there

is no hope of making any sharp predictions. However, if we confine our ambition

to making order of magnitude estimates of effects, then we can (for the most part)

f
5

ignore the h:., since they are assumed all to be of order unity. This leaves the six
parameters in the Higgs potential (), u?, \g, u%, N, dm?), and the flavor scale Mp.
These parameters can be traded for v, my, u, ms,, sin ¢, ms,, and Mp. The VEV
v is known precisely; the mass of the ordinary Higgs my is known approximately:;
and the parameter M is determined by the relation €2 = u/Mp. (The value of € is
known approximately from the values of the quark and lepton mass ratios and the
CKM angles.) Consequently, one is left with four free parameters: the masses of the
scalar flavon mg, and the pseudoscalar flavon my,, the VEV w of the flavon (which,

as we have seen, controls the strength of the flavon couplings to matter), and the
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parameter sin ¢ that describes the mixing between the ordinary Higgs scalar and

the scalar flavon. This mixing is described by the mass matrix

4 % 2Nvu 0 h
1
§(h s1 82) | 2Nwvu 4ddgu®? 0 s1 |- (2.10)
0 0 20m? So

so that tan 2¢ = (Nvu)/(Asu®—Av?). We will call the mass eigenstates h’ = cos ¢ h—
sin ¢ sy, and s = sin ¢ h + cos ¢ s1, and their masses my/, and my, respectively.
Turning to the diagonalization of the quark and lepton mass matrices, one

finds the following masses and mixing angles

(M M, M) = (Wfl — hiohiy [ hsy|€, [ R €2, Ry ) v, (2.11a)
(masmgms) = (R4, [l [Ra]e?) v, (2.11D)
(mesmymy) = (|h ] hbylet, [ le) v, (2.11¢)
and
hd hY.
Vis| = |22 — 221 (2.12a)
th hs
hd h
V| = |22 - 2B\ 2.12b
Val = |52 -5l (2.12b)
‘V ‘ ~Y h?3 h"lll3 h',llléhg3 + h',llléhg3 4 (2 12 )
wl =T T ” €. 12¢
hg?; his h22h§3 h22h§3

Babu and Nandi [101] showed that this gives a reasonable fit to the data.
They took m,(1GeV) = 5.1 MeV, my(1 GeV) = 8.9MeV, my(1GeV) = 175MeV,
me(me) = 1.27GeV, my(my,) = 4.25 GeV, mPs = 175 GeV, m, = 1.78 GeV, my, =
105.6 MeV, and m, = 511 keV. Extrapolating, using the 3-loop QCD and one-loop
QED beta functions, with as(Mz) = 0.118, they obtained the running masses in
GeV evaluated at m;: m; ~ 166, m, ~ 0.6, m, ~ 0.0022, m, ~ 2.78, m, ~ 0.075,
mg =~ 0.0038, m, ~ 1.75, m, ~ 0.104, and m. ~ 0.0005. These are well fitted
by € ~ (1/6.5)? = 0.024, if one takes |h¥, — h%,h%, /hY| ~ 0.95, |h%| ~ 0.14,
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|hds| =~ 0.96, |hd)| =~ 1.65, |hdy| =~ 0.77, |hds| = 0.68, |h};| =~ 0.21, |hL,| ~ 1.06,
and |hls| ~ 0.42. [The numerical values of the running masses at m; of Babu and
Nandi differ from our values, presented in Table 1.1., due to the difference in the
initial conditions. We have used the central values of the quark masses at 2 GeV as
given in Ref. [28] while Babu and Nandi used the initial values at 1 GeV as given in
Ref. [102].]

Note that with the exception of hY, and h!, all these are of order unity. And
as emphasized in [101] the smallness of hY, actually helps account for the values of
|Vis| and |Vip|. From Eq. (2.12) one sees that with hy, ~ 1/7, these mixings come
out to be |V ~ 7€ ~ 0.2, and |V,p| ~ Te* ~ 3 x 1073,

As mentioned, in the basis where the mass matrices of the quarks and leptons
are diagonal and real, the couplings of s; and sy remain with off-diagonal and com-
plex elements, due to the extra factors of n{j in Eq. (2.9). However, it is interesting
that the flavor-diagonal couplings of s; are, in fact, real to leading order in the small

2. That is, the imaginary part of these diagonal couplings is of order

parameter €
€2 ~ (.02 times the real part. This is significant for the lepton and quark electric
dipole moments, as we shall see. The reason that the diagonal couplings of s; are

real to leading order can be seen by looking at a simple two-by-two example:

hiy ™1 hjge?™:2 hiing €™ higngge®™? v
A B P 2 I T
mn mn 3 3
ho1 €72 hgge™"?2 ho1mg1 €72 hggnigge™"??

In the basis where Y, is diagonal and real, which we shall denote by primes,

hioh .
(Y}Z)ll ~ [h11€2n11 _ 127021 62(n12-|—n21—nzz) elO!’ (2.14)
h22
hioh .
Y ) = {hllnnﬁznn - %(nlz + Ny — nigg) 2zt | gl (9 15
22 u

The factor of € is the phase rotation required to make (Y;);; real. [In the same
basis, the matrix Y; is easily seen to be non-diagonal: |(Y] )i2| = |hi2(n12 —

ng2)e?™?|(v/u), and [(Y] )a1| = |hot(nar — noo)e®™ |(v/u).] In Eq. (2.14) one sees
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two terms in the expression for (Y;);;. There are two cases to consider: either
these two terms are of the same order in €2, or one is higher order in €? than the
other. If they are the same order, then nis + no; — N9y = nq1, which means that
(Y2 )11 = n11(Yy)11(v/u), a real quantity, to leading order in €. If, on the other
hand, one term in (Y})1; is of lower order in € than the other and dominates, then
the corresponding term dominates in (Y; )11. Consequently, to leading order in €2,
one has again that (Y] )11 is just an integer times (Y/)11(v/u) and therefore real.
This conclusion generalizes to more complicated situations. It is true for N-
by-N matrices. It is also true if there are several Abelian flavon fields giving several
€ parameters, as long as contributions to diagonal Yukawa couplings that are of

different orders in the small parameters are not accidentally numerically comparable.

2.3 Flavor-changing and CP-violating processes

We are now ready to discuss various flavor-changing and CP-violating pro-
cesses. The ones that shall be of chief interest are Am? and ek in the neutral kaon
system, the electric dipole moment of the electron d., the decay © — e + v, and
p-e conversion on nuclei p + N — e + N. It is straightforward to calculate the
contributions to these effects coming from flavon exchange in our toy model.

The relevant couplings for flavor-changing and CP-violating processes, in the

physical basis of fermions and bosons, can be parameterized as

m;m; —

L=— Ui (AL P + ALRPR) b Hy + gmyy cos @W W™ Hy + -+, (2.16)

(%

where a = I/, s', and where indices i and j run over all quarks and charged leptons.
We observe that due to the scalar nature of A’ and s, to the leading order in €2,
AL = Aels = A4R = A% is real for all i’s. [See the discussion after Eq. (2.14).]

Acting on Yukawa coupling matrices with a set of bi-unitary transformations that
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brings fermion mass matrices into diagonal form, and simultaneously diagonalizing

the Higgs sector one finds that

/ hi,h v
APE = 42 A2 2L gin g (2.17a)
ee \/5 U’
, hl* hl* v
AR — 422 22 gin (2.17b)
ee \/5 u’
AML = —Xe@ sin QSE (2.17¢)
[ \/§ u> .
/ h: v
AR — el gin ¢—, 2.17d
e X5 ¢ (2.17d)

and

COS Yy = COS ¢, COs g = sin ¢, (2.18)

where we have omitted a term in A, which is real and leading order in €2, and
introduced x = (|h},||hbs|) /2. The coefficients Af; LR are obtained from A?jl R
making the transformation cos ¢ — sin ¢, and sin ¢ — — cos ¢.

The electric dipole moment of the electron (d.) comes from the familiar type

of two-loop graph [103] shown in Fig. 2.1. In terms of the original fields s, s and h

e (W e

Figure 2.1: A two-loop Feynman diagram for electron electric dipole moment
(h—e+7)

coming from S and H, rather than the mass eigenstates, one sees that the field that
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couples to the W or ¢ loop must be h. This can be seen as follows. The s; have no
coupling to ¢ at the leading order in €2, since the ¢ mass comes from order (S/Mp)?,
ie. n% = 0. [See Egs. (2.2) and (2.9).] The s; also have no coupling to the W=
since S does not participate in breaking SU(2), ® U(1)y. [If there were two Higgs
doublets in the model, then the heavy loop could be a charged Higgs, in which case
the field coupling to it in Fig. 2.1 could be an s;.] However, the field coupling to the
electron line must be either s; or s, in order to obtain a C'P-violating phase, since
the couplings of h are real and flavor diagonal in the physical basis of the leptons.
However, the sy, while it can give a C'P-violating phase, does not mix with the h
and therefore would not be able to attach to the W or ¢ loop. The scalar line in the
two-loop graph for d. is thus s; where it attaches to the electron, and h where it
attaches to the W or t loop. Consequently, the electron edm is proportional to the
mixing sin ¢ cos ¢. A significant point about the d. diagram, which has already been
alluded to, is that while the s; coupling to the electron has a C'P-violating phase,
that phase brings in an extra suppression of order €2. The electric dipole moment
of a charged lepton is given by

where the dominant, reduced amplitude [104], comes from W loop and reads

2 2 2
LR _ aL,R ”LW 23 m 3 m
AT =— Ea cos pa A5 [3]? <—m2 ) + 79 (—mg ) + Zh (—mg )] . (2.20)

a a a

We define F(z) = 3f(z) + 2¢(z) 4+ 3h(2), for short, where the functions f, g, and h
are as defined in Egs. (10), (11), and (15) of Ref. [104], respectively. The function
F(m},/m?) is plotted in the relevant region of scalar mass m in Fig. 2.2.

To determine the electron edm we need to determine the values of hl, and
hb, coefficients that enter the expressions for A%l and A%, Since we cannot relate

2

them to the charged lepton masses to the leading order in € we are prompted to

estimate their values. In view of the fact that all but a couple of h;; coefficients has

53



100 150 200 250 300 350 400
m (GeV)

Figure 2.2: Plot of F(mj,/m?) = 3f(m},/m?) + Zg(m3, /m?) + 3h(m3, /m?) as
a function of scalar mass m.

come out to be of order unity we assume this to be the case for hl, and hb,, too.

The same expectation applies to their phases. [We make the same assumption for

hd, and h, coefficients later on.] Therefore, setting hl, = hl, = e7"/* in Eq. (2.17),

the electron edm comes out to be

(1.5 x 1027 ecm) sin ¢ cos ¢ (%) {F (m?) _F (miv)} , (2.21)

My, me

de

Using the experimental value d, = 0.18 x 1072 ecm [105] gives the following limit:

sin ¢ cos ¢ (%) [F (7:;2;/) —F (7::23/)} <1.2. (2.22)
W )

s

The diagram for u — e + 7y is of the same two-loop type as the electron edm
diagram, except that one of the external leptons is a p rather than an e. As in
the d. case, the scalar which couples to the lepton line must be s; (here because it

involves flavor-changing), while the scalar that couples to the W= or ¢ loop must be
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h. Thus the amplitude here is also proportional to sin ¢ cos ¢. The branching ratio

for the process [; — [; + 7y is given by

Bl — L +7) = (2)

3 m; 1 L 2 1 R 2
(=) = <§\A,.j +§}A,.j ) (2.23)

my;

—in/4

Again setting h'y, = hl, = e , and imposing the experimental limit B(y —

e+7) < 1.2 x 107! [106], one obtains

sin ¢ cos (%) {F (:ZEV) _F (Z%V)} <22, (2.24)

h/

The diagram relevant for p-e conversion on nuclei is Fig. 2.3. The field

pn pn

Figure 2.3: Tree level scalar exchange Feynman diagram for p-e conversion on
nuclei.

that couples to the lepton line must be s; or s, but the field that couples at the
quark line may be h, si, or so. It is well known that the contributions of the
pseudoscalar exchange to the coherent p-e conversion on nuclei can be neglected
[107] and will be ignored in our calculations. The contributions to the amplitude
from diagrams where the scalar couples to the lepton as s; but to the quark as h go
as sin ¢ cos ¢(1/m3, — 1/m?). Those in which the scalar couples to both the lepton
line and the quark line as s; go as cos? ¢(1/m?) +sin® ¢(1/m?2,). We shall see these

expressions emerge in the formulas that appear below.
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The branching ratio of p-e conversion B(u~+ (A, Z) — e~ 4+ (A, Z)), defined
to be the ratio of decay widths I'(u~ + (A, Z) — e~ + (A, 2))/T(n + (A, Z) —
capture), can be found using the procedure outlined in [108, 109]. We obtain

2
+

2
a’md 74

_ 2 pefl 42 212

B = 2GFmemumA F(q )

m[;\f aR
ngAe“ . (2.25)

~a
E my AaL
m2 ep

a a

where F'(¢?) is the nucleon form factor, Z.g is the effective atomic number, and where
mQ contains the heavy quark effects in effective scalar-nucleon-nucleon coupling
[110] and is given by

my = <N’ Z miAfpi + Z mhAZh@Eh¢h‘N>. (2.26)

I=u,d,s h=t,b,c

We derive the most general, model independent, expression for m$; using the ap-
proach of Shifman et al. [111], and subsequent improvements of inclusion of strange
and heavy quark contributions discussed in [112, 113] as follows!

(2.27)
where h runs over heavy quarks (¢, b, ¢), y = 2(N|3s|N)/(N|uu-+dd|N) is the strange
content in the nucleon, o,y is the pion-nucleon sigma term, my is the nucleon mass,
and m = (my +my)/2. In our model, the diagonalization procedure in quark sector,

to the leading order in €2, leads to
Al = [cosgb - Iiig sin qb] /\/5, (2.28)
u

where (Ky, Ke, Kit, Ka, Ks, kp) = (3,1,0,3,2,1). Note that k;’s are the powers of €2 of

the appropriate diagonal elements that appear in j\fj of Eq. (2.2).

1 Our general expression for m¢% reproduces Eq. (3) of Ref. [110] but yields an
additional term in Eq. (20) where authors analyze MSSM model. The additional
piece is o,y (cot 5+ tan 3)/2.
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For p-e conversion on 53Ti, we set Zeg = 17.6, F(q* = —m?) = 0.54, Tcapy =
2.59 x 105s7! [114], impose the experimental limit B < 4.3 x 1072 [115], take
m = 5MeV, and use the set (y,0,y) = (0.47,60 MeV) [112], to obtain

1 1 in’ 2 9x107°
<E) sin ¢ cos ¢ (—2 - —2) m — (E) (Sm2¢ + cos;b) m!| < 22
u mh/ msl u mh/ ms/

— 1GeV '’
where m ~ 350 MeV, and m’ ~ 500 MeV.

(2.29)

The diagram relevant for the AS = 2 processes is Fig. 2.4. Here, the field

d S

Figure 2.4: Tree level contribution to K — K° mixing.

that couples at both quark lines must be s; or s;. Thus there are contributions
that go as cos® ¢(1/m?2) +sin® ¢(1/m?,) and as 1/m?2,. Noting that A" is obtained

from AeLp’LR by replacing h!; with h,

ij i;» and using the vacuum saturation approximation

for the hadronic element [116], we find a new contribution coming from the scalar

exchange to be

1 M 1 hds + nd \?
€ ~ Cx K 4 ) Im | 222 M
m2 6 (mg +ms)?2 6 V2

. (%% " é) - [(%)2] } (1 - cos? ), (2:30)




while the exchange of pseudoscalar s,, due to the extra factor of i, yields

» 2
€ ~ Cx E M + E Im Ll? — iy
m2, 6 (mg+ms)? 6 V2

L[|

where we introduce

2M B 12 2
_ JiMxBre” (Z) . (2.32)

T U8VRAMY
Using Bx = 0.75, AMyg ~ 3.49 x 1072 MeV, fx ~ 160 MeV, My ~ 497.67 MeV,

m, = 175MeV, my = 8.9MeV, hd, = hd, = e /4 and requiring the terms in-
volving my/, my, and m,, separately to contribute to ex an amount less than the

experimental value of that quantity (|ex| = 2.26 x 1073 [105]) give the limits

<g>2sin2¢ (v)Qcosz¢<3.9x10_6’ and (3)2 1 <3.8><1O‘5

— 2.33
uw/  mi m?% —  1GeV? u/ m? —  1GeV? (2:33)

u

If we take my, ~ 102 GeV, as suggested by experiment, then Eq. (2.33) implies
that (v/u)sin¢ < 1/5, which is not a very stringent bound. Substituting this into
Eq. (2.21), one sees that the electron edm can easily be near the present published
experimental limit. For instance, taking (v/u)sin¢ ~ 0.1, so that flavon exchange
contributes of order 1/5 of the experimental value of €, and taking my ~ 300 GeV,
Eq. (2.21) gives d. ~ (0.6 x 10727 ecm) cos ¢.

Comparing Eqgs. (2.22) and (2.24) (in which the unknown parameters, sin ¢,
mg, and u, enter in exactly the same way) reveals that the present limits on the
decay p — e+ and the electron edm are about equally sensitive to flavon exchange
in this model. For example, if the CP-violating phases are large and all h;; are close
to one, as was assumed in deriving Eqs. (2.21) and (2.24), and d, is just below the
present limit, then the rate for ;1 — e + v is roughly a forth of the present limit.

One sees here the importance of the fact that the diagonal Yukawa couplings

of the flavon field s; have phases suppressed by €2 ~ 2 x 1072, Were it not so,
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then the present limit on the electron edm would imply that the rate for p — e+~
was at least four orders of magnitude below present limits (unless parameters were
fine-tuned). u+ N — e + N would also be suppressed.

Turning to p-e conversion on nuclei, one sees from Eq. (2.29) that the present
limit on this is also, for a wide range of parameters, about as sensitive to flavon
exchange as are the present limits on d. and g — e+~. For example, if (v/u) sin ¢ ~
1/5, then the first term on the left-hand side of Eq. (2.29) (i.e. the term proportional
to sin ¢ cos ¢/m3 ,) gives a contribution to the rate for u-e conversion that is about an
order of magnitude below the present limit. However, in some regions of parameter
space, it + N — e + N can be the most sensitive to flavon exchange. Suppose, for
example, that v/u is smaller, but not much smaller, than one, and that sin ¢ < 1.
Then both d. and  — e+ are highly suppressed, whereas 4+ N — e+ N need not
be because of the term that goes as cos® ¢/m? on the left-hand side of Eq. (2.29).

We have only considered the effects arising from the effective Yukawa terms
in Eq. (2.1). However, there is another source of flavor violation from flavon ex-
change that can be very important. To get the effective low energy Yukawa terms
in Eq. (2.1), fermions having mass of order My are integrated out. There are dia-
grams involving these heavy fermions that can be important. The most important
such diagram is that shown in Fig. 2.5, which is a contribution to K — K mixing.
The internal fermion has mass of order Mp. The external fermion is the sy quark,
i.e. the s quark in the original basis in which the Yukawa matrices of Eq. (2.2)
are written. When one goes to the physical basis of the light quarks, sy will con-
tain a small admixture of the physical d quark: sy = s + O(e?)d. Consequently,
there will be from Fig. 2.5 a AS = 2 piece that goes as €*. The Yukawa couplings
in Fig. 2.5 may be assumed to be of order unity. [The only reason the effective
Yukawa couplings of the known light quarks are small is that they are suppressed

by powers of €2, since they arise from integrating out heavy fermions. However, in
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Figure 2.5: Box diagram contribution to K — K mixing. The internal fermion Q
has mass of order Mp.

the underlying theory containing those heavy fermions there is no reason for the
Yukawa couplings to be small.] The coefficient of the AS = 2 operator arising from
Fig. 2.5 should therefore typically be of order (1672)~1e*(1/M2) = (167%)~1edu 2.
Using €2 ~ 2 x 1072 and u ~ 300 GeV, one has that the coefficient of the AS = 2
term is of order 10714 GeV~2. With some of the phases or couplings being assumed
somewhat smaller than one, the contribution from Fig. 2.5 can easily be within the

limit set by ek

2.4 Conclusions

We presented a simple flavon model that can accommodate the observed
hierarchy of the charged fermion masses and mixings in terms of the powers of
one small parameter. It has been shown that the flavor-diagonal couplings of the
flavon field, under a general set of assumptions, are real to the leading order in
that parameter. This implies that flavor changing and CP violating signatures,
de, t — e + v, and p-e conversion on nuclei, can be equally near the present
experimental limits with all other low energy constraints satisfied. For a significant
range of parameters p-e conversion can be the most sensitive place to look for such

signatures.
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Chapter 3

OBTAINING THE LARGE ANGLE MSW SOLUTION TO
THE SOLAR NEUTRINO PROBLEM IN MODELS

3.1 Introduction

The main solutions to the solar neutrino problem are the small mixing angle
MSW! solution (SMA), the large mixing angle MSW solution (LMA), the LOW
solution [119, 120, 121}, and the vacuum oscillations solution (VAC) [122, 123].
The experimental situation has been very ambiguous until the recent results of the
Sundbury Neutrino Observatory [124] (SNO) and the Kamioka Liquid scintillator
AntiNeutrino Detector [72] (KamLAND) experiments. The results of the SNO ex-
periment have firstly singled out the LMA and LOW solutions as the most likely
oscillation solutions [125]. The more recent results of the KamLAND experiment
have then eliminated even the LOW solution [126], leaving the LMA solution as the
only viable one.

On the other hand, a survey of the hundreds of published models of neutrino
masses and mixings shows that most of them yield the SMA or VAC solution, and
even some that claim to obtain the LMA solution are only marginally consistent with
the latest global analyses of the data. The purpose of this chapter is to look at the

main types of models of neutrino masses and mixing angles that have been proposed

L MSW stands for Mikheev-Smirnov-Wolfenstein, in honor of the co-discoverers
of the matter effect [117, 118] on solar neutrinos. This effect allows for the con-
version of solar neutrinos into neutrinos of another flavor due to the interaction
with the matter thus explaining their observed deficit.
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in the literature from the point of view of their ability to yield the LMA solution
in a natural way. There are two aspects of this question that can be distinguished.
First, one can ask whether a certain scheme or model can fit the LMA solar solution
with some choice of model parameters that is not too badly fine tuned. Second,
one can ask whether the model explains the LMA values of the neutrino masses
and mixing angles. In order to say that a theoretical model really explains them,
something close to the LMA best-fit values should emerge automatically when the
parameters of the theoretical model take their most “natural values”. If a model
parameter that is a priori of order one must be set to a value of ten or a tenth in
order to fit the neutrino masses and mixings, one has accommodated them but not
really explained them. What our survey will show is that of the great number of
models that now exist in the literature, few can be said to provide an explanation
(in this sense) of the LMA values of tan? 6y, and Am?2 .

What are the LMA values that are to be explained? A recent global analysis
of Fogli, Lisi, Marrone, Montanino and Rotunno [131] have shown that the LMA
solution splits into two sub-regions, LMA-I and LMA-II. The region LMA-I is pre-
ferred by the global fit with the best fit of Am2, ~ 7 x 107°eV? and sin? 6, ~ 0.3,

sol

2 =m3—m? and sin 6y, = |U,|. The region LMA-IT is characterized by

where Am
the best fit with the twice the value of Am?2 and almost the same value of sin? 6.

The two regions merge at 99.37% confidence level giving Am2, ~ 3 x 107*eVZ.

2

-, from about

The 95% confidence-level allowed region given in [131] extends in Am
5 x 107%eV? to 8 x 10~*eV?, and in tan®6y, from about 0.3 to 0.7. Similar re-
sults have been presented by Gonzalez-Garcia and Pena-Garay [133]. Their 90%
confidence-level region extends in tan? 6, from about 0.3 to 0.8. A significant as-
pect of the fits is that they exclude exactly maximal mixing for the LMA solution.

The experimental signal reported by the LSND Collaboration [127], when

combined with the results of the experiments on solar and atmospheric neutrinos,
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requires at least four light neutrino species. Their signal, however, has not been
corroborated (nor completely excluded) by the results reported by the KARMEN
Collaboration [128]. Therefore, we limit our survey to the models with the three
light neutrinos. There is also a whole new class of neutrino models where neutrinos
have extra-dimensional origin (for a brief review see [129]). These models are still not
as predictive as the four-dimensional ones even though they have certain promising
features (see [130]). For example, we have seen in Section 1.4.2 that the see-saw
formula yields the neutrino mass of the order of 1/10%eV which is smaller by a
factor of ten than the experimentally preferred value. In the extra-dimensional
setting one can identify the scale of the right-handed Majorana neutrinos to be the
compactification scale Mo of the extra-dimension instead of the usual assumption
that Mr ~ Mgur. The compactification scale, as we demonstrate in Chapter 5, is
usually of the order of 10 GeV, giving the light neutrino mass in the right range.
We do not discuss these models in this chapter any further.

As we shall see, the issue of how close to exact maximal mixing tan? f, is
allowed to be is crucial for deciding whether several kinds of models can naturally
give an acceptable LMA solution. In this chapter we shall say that a model gives an
LMA solution that is in comfortable agreement with the data if it predicts tan? 6y, <
0.8. It is convenient to express the mass-squared splitting Am? as a fraction, which
we shall call r, of the mass-squared splitting relevant to the atmospheric neutrino

2

oscillations: r = Am?2,/Am?,,. The value of Am2, (= m3 — m3)* has recently

been decreased from 2.6 x 1073 eV? [132, 133] to 2 x 10~%eV? by the preliminary
reanalysis of the existing data by the Super-Kamiokande Collaboration [134]. This,
however, has made no impact on the values of the Am?, tan? 6y, [135], and the

sol’

value of the atmospheric angle tan? fay,, = 1, where sin 0, = |U,3]. We take the

Y The sign of Am2,, is known from solar matter effect. The sign of Am?_, on
the other hand, is still not determined giving the rise to two possible mass

hierarchies in the neutrino sector.
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best fit values before the reanalysis that give r ~ 2.8 x 1072 for the LMA-I region.

The rest of this chapter is organized as follows. In Section 3.2, we shall look
at the basic non-see-saw approaches to neutrino mass. We shall see that models
based on such approaches have been constructed which can fit the LMA solution,
but for the most part not comfortably, either because r tends to come out too
small or because the solar mixing angle tends to come out too close to maximality.
In other words, most of the non-see-saw models that can fit the LMA solution do
not really explain it in the sense that we have defined. In Section 3.3, we look at
see-saw models. Here too, most of the published models give the SMA or VAC
solutions. However, we show that there are some reasonably simple “textures” that
can reproduce nicely the LMA values of the neutrino masses and mixings. However,
it remains unclear whether these simple textures can arise in simple models.

In Section 3.4, we look at a well-known model that is particularly interesting
for two reasons: (a) it is very simple in conception, and (b) it can explain at least
the LMA value of the solar neutrino angle, although it does not explain the value
of the neutrino mass splitting. It is an SU(5) grand unified model with an Abelian
family symmetry. We shall analyze this model in some detail both analytically
and numerically. We shall show how the predictions of this model can be studied
statistically in a completely analytic way by assuming that the unknown parameters
of the model have Gaussian distributions. This method should be easily applicable
to many other kinds of models.

Section 3.5 is a brief summary.

3.2 Non-see-saw models
3.2.1 Non-see-saw models where 0,;,,, comes from M.

In non-see-saw models the mass matrix M, of the three light neutrinos is
typically generated by new low-energy physics. It therefore has no relation, or only

a very indirect relation, to the Dirac mass matrices of the charged leptons, the down
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quarks, and the up quarks. This has the great advantage of making it easy to explain
why the atmospheric neutrino mixing angle is very large (|Uus| = sinfam = 0.7)
while the corresponding quark mixing is so small (|V| = 0.04). If the Dirac matrices
are assumed to be hierarchical, then they would naturally give the small mixing
angles seen in the quark sector. But if M, is unrelated to the Dirac mass matrices,
it could easily have a very different form with large off-diagonal elements that gives
large mixing angles. Non-see-saw models based on this idea are called Type I(1) in
[136].

The tricky question for this type of model is to explain why Am?, < Am2, .
If the large mixing U,3 comes from diagonalizing the 2-3 block of M,,, one would
expect that ms and mg, the second and third eigenvalues of M,,, would have similar
magnitudes, in which case typically so would Am?2, and Am?_ . The challenge then
is to reconcile the hierarchy seen in the eigenvalues of M, with the large atmospheric
mixing angle. To do this requires a special form of M,. Two special forms have
been found viable in constructing realistic models, one leads to a so-called “inverted

hierarchy” my = msy > mgs, and the other to the ordinary hierarchy m; < mo < ms.

We shall consider these in turn.

3.2.1.1 Inverted hierarchy models.

Inverted hierarchy models have the following special form for M,:

miq cM  sM
M, = cM  moy mo3 : (3-1)

sM Moz 1TN33

Here ¢ = cosf and s = sin @, where 6 ~ 1, and m;; < M. One can diagonalize this

matrix in stages, the first step being to rotate by angle 8 in the “23 plane”, bringing
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the matrix to the form
my M 0
My=| M mh mhy |- (3.2)
0 mhy mig
One sees immediately that m; = my = M > mj3. The mass-squared splitting

2 v

relevant to atmospheric oscillations is Am?2, = M?, whereas the splitting relevant
to solar oscillations is Am2, = 2(my;+mb,) M, which is much smaller, as required by
all the viable solar solutions. The atmospheric angle gets a contribution 6 ~ 1 from
diagonalizing the 2-3 block of M, so in the absence of some unlikely cancellation it
will be large, as observed. But what of the solar angle? From the fact that the 1-2
block of Eq. (3.2) has a pseudo-Dirac form of Eq. (1.58) it is apparent that the solar
mixing angle will be close to maximal. Consequently, inverted hierarchy models
cannot give the SMA solar solution, but rather give “bimaximal” mixing.

The inverted hierarchy form of Eq. (3.1) can arise in several plausible ways.
One example is the Zee type of model [137, 138, 139]. In the Zee model [140, 141]
there is a singly charged singlet scalar field A", which is allowed by the Standard
Model quantum numbers to couple (antisymmetrically) to both a pair of lepton
doublets (h*L,;L;) and a pair of Higgs doublets (h*®,®,), assuming that more than
one Higgs doublet exists. If both types of coupling are present, a conserved lepton
number cannot be consistently assigned to h*, and consequently AL = 2 Majorana
masses for the left-handed neutrinos arise at one-loop level. The resulting one-loop

mass matrix has the form
0 a b

M,=1a 0 ¢ |- (3.3)
b ¢ 0
For ¢ < a ~ b, this has the desired inverted hierarchy form.
The inverted hierarchy form can also arise in models with an approximately

conserved L, — L, — L. lepton number. If this quantum number is exactly conserved,
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then only the 12, 21, 13, and 31 elements of M, can be nonvanishing. If there are
small violations of L, — L, — L, the form in Eq. (3.1) can result [142, 139, 143, 144,
145, 146, 147, 148].

The question of present interest to us is whether the inverted hierarchy can
give an acceptable LMA solution. To answer this one must look more closely at the
solar neutrino mixing angle. This is given by 0y, = 6%, — 6., where the two angles
on the right-hand side are the contributions that come from diagonalizing M, and
L respectively. From Eq. (3.2) it is easily found that tan 26, = 2M/(mby —myy), so
that 0%, = m/4 — (mhy, —my1)/4M. We have already seen that r = Am?2,/Am?2, =
2(mby + my1)/M. Requiring that this be of order 1072 as needed for the LMA-
I solution, and assuming that there are no accidental cancellations, one has that

Voo /4 + O(1073). If 6%, vanished, this would give tan?fy, = 1 + O(107?),
which is too close to maximal mixing to be in comfortable accord with the global
fits. However, one expects that 6%, ~ \/m,./m, = 0.07. This contribution can have
any complex phase relative to the contribution from M,,, and can therefore increase
or decrease tan® 6, from unity. If one assumes that €', = 0.07 and has a relative
minus sign to 6%,, then tan? 6,,; = 0.75, which is consistent with the global LMA fits.
However, one can see that the tendency of inverted hierarchy models is to give solar
mixing that is closer to maximality than to the best-fit LMA value of tan? 6, ~ 0.4.
This is one reason why many of the published inverted hierarchy models claim a
better fit to the VAC solution than to the LMA solution [143, 144, 145, 146, 147] A
significant reduction of the experimental upper limits on tan? 6., would make the
inverted hierarchy idea much less plausible as an explanation of the LMA solution.
For example, a value of tan? 6,,; = 0.5, would imply in the inverted hierarchy context
that tan 6!, = 0.17 = 2.5y/m,/m,,, which would require a very special form of the
1-2 block of L.
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3.2.1.2 Ordinary hierarchy models.

The other possibility for non-see-saw models that gives a large atmospheric
neutrino mixing angle coming from M, and a hierarchy in the mass-squared split-
tings is

mip Tz Mg
M, =1 my s*M scM |- (3.4)
mys scM M
Here, again, ¢ = cosf and s = sinf, where 6 ~ 1, and m;; < M. As written, the
2-3 block of the matrix has vanishing determinant; however, it is assumed that there
are small corrections to these elements, which we have not written.

As in the case of the inverted hierarchy models, one can diagonalize this in

stages, starting with a rotation by angle 6 in the 23 plane. The result of such a

rotation is to bring the matrix to the form

/ /
min My Mg
I / /
/
mhy 0 M

Because of the small corrections to the 23 block that were just mentioned, the 22
element in Eq. (3.5) does not vanish, but is small compared to M. This matrix gives

Am? | = O(mfj) and Am?2,

=~ M?. Thus the right hierarchy of splittings for any
of the solutions can be achieved for the appropriate values of m;;/M. In contrast
to the inverted hierarchy form, this form can give either small or large 6, and in
the large-angle case there is no preference for values of 6y, that are very close to
maximal.

The form in Eq. (3.4) is clearly special in the sense that the 2-3 block is ap-
proximately of rank one. This would be unnatural unless some symmetry or mecha-
nism guaranteed it. One possibility is that this form arises from a non-Abelian flavor

symmetry [149], however, this is difficult to achieve. Rather, almost all published
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models that achieve this form in a natural way use the idea of factorization. The
idea of factorization is that the dominant contribution to the neutrino mass matrix
has the form (M,);; = f;f;, which is obviously of rank one. If f; < fy, f3, this
dominant term reproduces the large elements in Eq. (3.4). The condition that f;
is small compared to f, and f3 is necessary to satisfy the experimental constraint
that U.3 < 0.15. One drawback of most models based on factorization is that they
do not explain why f; is small.

A factorized form can arise in various ways in non-see-saw models. A much
studied example is supersymmetry with terms in the superpotential that violate both
lepton number and R-parity. Cubic terms of this type are \;;, L; L;é;, and )\;jkLinJk.
The latter leads to one-loop AL = 2 neutrino mass diagrams, in which a neutrino
converts into a virtual quark-squark pair. Assuming that the LR squark masses
are proportional to the corresponding quark masses, this diagram gives (MM, );;
N Njma,ma,.  Consequently, the b-quark/b-squark loop dominates, and gives a
contribution that is proportional to Aj53\js3mi, which obviously has a factorized
form. This gives only the heaviest neutrino mass, ms. The second largest neutrino
mass comes from a similar diagram with both b and s quarks/squarks in the loop.
Consequently, one has that r & (my/m3)? ~ (mg/my)? ~ 3 x 1074 This is much
smaller than the value of 2.8 x 1072 preferred by experiment; however, there are
several unknown parameters that come into this calculation, such as the couplings

iix> S0 that nothing prevents the right LMA value of r from being obtained [150].
However, the model does not really explain the magnitude of 7.

We have only considered the effects of the cubic lepton-number-violating and
R-parity-violating terms in the superpotential. There are also in general bilinear
terms of the form L;H,. These have the effect of mixing leptons and Higgs fields,
and so allow the sneutrino fields to acquire non-vanishing vacuum expectation values.

That, in turn, through the sneutrino-neutrino-neutralino coupling gives a tree-level
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neutrino mass in which the neutralino plays the role of “right-handed neutrino”. It is
easily seen that this tree-level mass has a factorized form and gives mass only to one
neutrino, i.e. mg. The other neutrino masses, ms and m;y, arise from the one-loop
diagrams previously discussed. In consequence, in such models where both cubic and
bilinear R-parity-violating terms contribute to M, one expects that r = (my/ms)? ~
(loop/tree)? < 1072. For this reason, most analyses of supersymmetric models in
which the bilinear R-parity-violating terms contribute to M, conclude that there is
much more parameter space for the VAC solution than for the LMA solution, i.e.
the LMA solution requires special choices or tuning of parameters [151, 152, 153,
154, 155]. However, in [156] it is shown that under certain assumptions (specifically,
that there are only bilinear R-parity-violating terms and that the SUSY-breaking
terms are non-universal) the LMA solution can be achieved without fine tuning.
Nevertheless, it seems, on the whole, that the SUSY models with R-parity breaking
do not do well in explaining the LMA value of Am2 .

Another possibility for obtaining an approximately factorized form for M,
that has been much studied in the literature is called “single right-handed neutrino
dominance” (SRHND) [157]. As the name suggests, the idea here is that instead of
there being three right-handed neutrinos, one in each family, as there are in typical
grand unified theories or Pati-Salam models, there is just one right-handed neutrino,
v, which can have mass terms Mrov + f;(v;v)(H). Integrating out o gives a rank-1
factorized contribution to M,. If one assumes that 7 couples with almost equal
strength to the p and 7 neutrinos, and (for some reason not generally explained)
only weakly to the electron neutrino, the large terms in Eq. (3.4) are reproduced.

One way to explain the smallness of the coupling of 7 to the electron neutrino
would be to impose a symmetry that distinguishes v, from the v, and v, (but does
not distinguish the latter from each other). Such a symmetry would also tend to

suppress mixing between the v, and the heavier neutrinos, and thus give the SMA
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solar solution, as in the model of [158].

Since the right-handed neutrino only gives mass to one neutrino, some other
mechanism must be found to give mass to the other neutrinos. In [159] the lighter
two neutrino masses arise from loop effects. In [160] they arise at tree level from
integrating out other heavy states that have different flavor quantum numbers than
v. In [161] they arise from operators of the form v;v;H,H,/Mp), which it is argued
are generally there anyway, the idea being to avoid having to invent new beyond-
the-standard-model physics to account for each kind of neutrino mass. In all these
cases, m; and msy are much less than mgs, though the specific reason is different in
each case: in [159] they are suppressed by loop factors, in [160] by small flavor-
breaking parameters, and in [161] by Mpg/Mp;. That SRHND models tend to give a
strong hierarchy in neutrino masses is what one would naturally expect. Since the
mechanisms that generate the largest neutrino mass and the other neutrino masses
are different, there is no reason a prior: that they should yield masses of similar
scale. Rather, it would be a coincidence calling for an explanation if they did.
Because most SRHND models give my < ms they yield the VAC solution or SMA
solution to the solar neutrino problem rather than the LMA solution [159, 160, 161].

To obtain the LMA solution, one wants m3 and ms to be only about a factor
of ten in ratio. This suggests that they arise from the same basic mechanism. One
possibility is that all three neutrino masses arise from integrating out right-handed
neutrinos, but that one of those right-handed neutrinos is somewhat lighter than
the others and so dominates to some extent, but not by a large factor. However,
this would really be just a special case of the ordinary see-saw mechanism, which
we will discuss in the next section. In fact, the structure given in Eq. (3.13) is really

based on this idea, which was proposed in [162].
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3.2.2 Non-see-saw models where 0., comes from L.

There is another class of non-see-saw models in which the large atmospheric
neutrino angle comes predominantly from the diagonalization of the charged lepton
mass matrix L. [This class of models is called Type II(1) in [136].] This has the
advantage that it becomes easy to reconcile the largeness of 0,;,, with the smallness
of Am2,/Am?,, since the former comes from L while the latter comes from M,,.
On the other hand another issue arises for this class of models, namely explaining
why the CKM angles are small. Since the form of L is such as to give a large mixing
angle 0,:,, one would naturally expect that the Dirac mass matrices D and U of the
quarks would be such as to give similarly large contributions to the CKM angles.
The point is that in many kinds of models the Dirac mass matrices L, D, and U are
closely related to each other.

One possibility is that there are indeed large contributions to the CKM angles
coming from U and D, but that these nearly cancel. This possibility is realized in
a much-studied class of models based on the idea of “Havor democracy” [165, 166,

167, 168, 169, 170, 171, 172]. In flavor democracy models it is assumed that all the

Dirac mass matrices have approximately the “democratic” form

111
111 |. (3.6)
111

This form can be enforced by permutation symmetries among the three fam-
ilies. In the limit of exact flavor democracy, the matrices U and D are exactly of
the same form, so that flavor mixing in the quark sector cancels out. On the other
hand, it is assumed that the neutrino mass matrix M, has a very different form. In
most papers it is assumed to be approximately proportional to the identity matrix,

though in some papers it is only assumed to be nearly diagonal. As a result, for
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the leptonic mixing angles there is no cancellation such as makes the CKM angles
small.

If L has exactly the democratic form, then

1/vV2 —-1/vV2 0
Ul = 1/v6 1/v/6 —2/v6 | =Urp. (3.7)
1/vV3 1/V/3  1/V3

If the mass matrix of the neutrinos is exactly diagonal, then Upyng = UlT = Upp.
This would give sin? 20pim = 8 /9, which is consistent with the data, and tan? 6, = 1,
i.e. exactly maximal mixing for solar neutrinos. However, the matrix L clearly
cannot have exactly the democratic form, as that is rank one and would give m, =
m,, = 0. There must therefore be small corrections to L coming from the breaking
of the permutation symmetries. These corrections not only generate masses for the
electron and muon but also make the angle 6., deviate from maximality. For the
simplest and most widely assumed form of these corrections to L, one can calculate

the corrections to 6y in terms of /m./m,. One finds, still assuming that M, is

4
tan®fy = 1 — ﬁ\/me/mu =~ (.84,

or equivalently sin? 20,,; = 0.993. This is too close to unity to be in comfortable

diagonal, that

agreement with the LMA global fits. Almost all published models based on flavor
democracy have tan? 0, = 1, or else obtain smaller values by fine-tuning. However,
Tanimoto, Watari, and Yanagida have a version in which there are small corrections
to M, that can reduce tan? fy, to the region preferred by the LMA fits [173]. While
this shows that it is possible within the flavor democracy framework to construct
LMA models that can fit the data, it does not appear that flavor democracy does
a good job of explaining the LMA value of tan?#6,,. Flavor democracy is more

naturally compatible with the VAC or LOW solutions.
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We may summarize the situation by saying that most schemes that have been
proposed based on non-see-saw mechanisms neither very comfortably fit nor really
do much to explain the values of the neutrino parameters required for the LMA
solution to the solar neutrino problem. The great majority of non-see-saw models in
the literature more naturally give the SMA or VAC solutions. There are exceptions,

which we have noted above. How close tan? 6y, is to 1 is a crucial issue.

3.3 See-saw models

The see-saw mechanism is usually associated with grand unification. In
SO(10) grand unified models, and in most other unified schemes except SU(5),
the existence of one right-handed neutrino for each family is required to make up
complete multiplets of the unified group. Moreover, the see-saw formula M, =
—NTM, !N gives neutrino masses in the range required by experiment if the scale
of My is near the grand unified scale. Thus both the existence of neutrino masses
and their magnitude are elegantly accounted for by the related ideas of grand uni-
fication and the see-saw mechanism. In this section, we shall therefore assume that

we are dealing with a grand unified model.

3.3.1 See-saw models where 6,,, comes from M,,.

In models based on SO(10), there is generally a close relationship among the
four Dirac mass matrices N, U, D, and L. Indeed, in the minimal SO(10) model of
Section 1.4.3 (which is too simple to be realistic) N = U o< D = L. The smallness of
the CKM angles and the small interfamily mass ratios of the quarks can be explained
by assuming that the matrices U and D are “hierarchical” in form. There are two

simple kinds of hierarchical mass matrix that are frequently encountered in models

(6/) 2 66/ 6/ 6/ 6/ 6/
e/ € € |, and € e € |, (3.8)
¢ e 1 € € 1
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where ¢ < € < 1. The entries in these matrices as written are to be understood
as giving only the order in the small parameters of the entries. The first form in
Eq. (3.8) has what may be called a “geometric hierarchy”, since an off-diagonal
element is of the same order as the geometric mean of the corresponding diagonal
elements. The second form in Eq. (3.8) has what may be called a “cascade hier-
archy”, since the matrix is made up of successive tiers, a 1-by-1, a 2-by-2, and a
3-by-3, of ever smaller magnitude. Both forms in Eq. (3.8), if applied to the quark
masses, give Vg, ~ €, Vs ~ €' /e, and Vi ~ € ~ VsV,

While there is as a rule a close relation among the four Dirac mass matrices
in SO(10), the Majorana mass matrix Mg of the right-handed neutrinos can be
quite different in form. For example, in minimal SO(10) the Dirac mass matrices all
come from the same term, 16;16;104, whereas the matrix Mp comes from different
terms, either 16;16,126 or 16,16,16,16, as was discussed in Section 1.4.3. A
reasonable hypothesis is that the CKM angles are small because of the hierarchical
nature of the Dirac matrices, while the largeness of 0, and possibly of 0, has to
do with the very different form of Mp. Models based on this idea were classified in
[136] as Type 1(2).

A potential difficulty with this idea is that if the Dirac mass matrix of the
neutrinos NV has a hierarchical form it tends, through the see-saw formula, to make
M, also have a hierarchical form, indeed a more strongly hierarchical form. For
example, suppose N = diag(¢’, ¢, 1), and we parameterize M' as (My')y; = ajj.

Then
(€)ay; efarny €ags
Mu = EE/CL12 €2CL22 €Q93 . (39)
€' a3 €dg3  a33
If all the a;; are of the same order, then tan 26y, = 2eass/(azs — €2axn) ~ e. In

order for 0u, to come primarily from diagonalizing M, one must have 65; ~ 1.

Clearly, this is only possible with some special form of Mpz. One possibility is that
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a3 /ass ~ e 1. If this is true, then there is a hierarchy among the elements of Mg
that is related to the hierarchy among the elements of N. That is, the atmospheric
neutrino mixing angle is of order unity because of a conspiracy between the Majorana
and Dirac neutrino mass matrices. This would appear to be somewhat unnatural
in a theory in which Mg and N have different origins, as is typically the case in
unified models. On the other hand, this “Dirac-Majorana conspiracy” might not
be unnatural in a model in which the same flavor symmetry, and the same small
parameter characterizing the breaking of that symmetry, controlled the structure
of both matrices. A good example of such “correlated hierarchies” is the model of
[174].

A very important question is whether 6,, can naturally be of order unity
even if the Dirac matrices are hierarchical and the parameters in Mz have no direct
relationship to those of N. The answer is yes. In [175] and [162] interesting examples
were found that satisfy these criteria. The specific forms given in those papers
happen to lead to the SMA solar solution, but with some modifications they can
also yield a satisfactory LMA solution, as we will now see.

Example 1: The following structure is closely related to that in [175]:

de' e€e  fé 0 0 A
N=| gé ac be |mn, Mr=1]| 0 1 0 [|mg (3.10)
he' ce 1 A0 0

Here a, ..., h are of order one, ¢ < ¢ < 1, and (€'/e)e™! < A < e 1. Keeping only

the significant terms, the resulting light neutrino mass matrix M, = —NTM;'N is
O(e?) O(e€’) de' | A ,
m
M, =— | O(ee) a’e? abe® + ec' /A m—N (3.11)
R

dé'/A abe® +e' /A b*e* +2f¢ /A
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A rotation in the 23 plane by angle 6§ = tan~!(a/b) ~ 1 diagonalizes the 2-3 block

and brings the matrix to the form

0 —tnea e
M= — | g /A 20 e)A 0 Z—Z (3.12)
\/agdwe’/A 0 (a® + b*)e?
If one assumes that ¢/ /A ~ €2/10, then it is apparent that Am?2,/Am2,_ ~ 1072 as

required for the LMA solution. It is to be observed that the 12 and 21 elements of
this matrix are of the same order as the 22 element. This is just what is needed to
get the right value of 6, for the LMA solution, i.e. a value that is of order unity,
but not very close to maximal. For example, if the 12 element is exactly equal to the
22 element, then tan? 0y, = 0.39, which is in excellent agreement with the LMA-I
best-fit value given in [131]. An examination of this matrix reveals that in obtaining
the LMA solution a crucial role is played by the “cascade hierarchy” form of N. In
particular, it is important that d be of the same order as e and f, which would not
be the case if N had a “geometric hierarchy” form. It should also be noted that the
largeness of the atmospheric angle is also traceable to the cascade hierarchy form of
N, and specifically to the fact that b is of the same order as a.

Example 2: The following structure is closely related to that given in [162]

de’ e€  fé B 0 0
N=1\| gé¢ aec be |mny, Mr=| 0 A 0 | mg. (3.13)
he ce 1 0 0 1
As in the last example, a, ..., h are of order one, and ¢ < ¢ < 1. If one also assumes

that €2/A > €2/B > 1, then the light neutrino mass matrix M, = —NTM;'N
takes the form (keeping only the important terms):

O(e?/A) gaee' [A+ dec? /B gbee’ /A + dfe”?/B

M, = | gaee' /A+ dee?/B  a*¢*/A+ e*? /B abe?JA+ efe?/B

gbee' /A +dfe? /B abe’JA+ efeé?/B b’ /A+ f?€?/B

N
mg
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A rotation in the 23 plane by angle 6§ = tan~!(a/b) ~ 1 diagonalizes the 2-3 block

and brings the matrix to the form

O(e?/A) Weddle? /B O(ec /A) + O(c?/B) )
m
M, = Weeler/p LB 0 o
O(ed' JA) + O(¢?/B) 0 (a®> +b*)e? /A

The same remarks apply as in the previous example. The largeness of both the at-
mospheric neutrino angle and the solar neutrino angle can be traced to the “cascade
hierarchy” form of N. Because the 12, 21, and 22 element are of the same order, the
solar angle is (as required for the LMA solution) of order one, but not very close to
maximal. The right ratio of mass splittings for the LMA solution can be obtained
if €?/B ~ 10712/ A.

These two examples show that there are reasonable forms or “textures” for
the mass matrices in the context of the see-saw mechanism that can quite naturally
yield the LMA solution. However, actual detailed models based on these textures
have not been constructed. It is also not clear how simple it is for the seemingly
required “cascade hierarchy” form to arise in the framework of grand unified models.
Finally, it should be noted that while some forms for N and Mg can be identified
which would naturally give the LMA solution, most of the viable forms give the
SMA or VAC solutions, and indeed the great majority of see-saw models published
in the literature give the latter solutions rather than the LMA solution.

It has been recently suggested by Hall, Murayama and Weiner [82] that even
the structureless mass matrices in the neutrino sector can lead to 0., of order unity.
In their approach, dubbed “anarchy”, the entries of the mass matrices are taken to
be random numbers of constant probability in a given range. The ratio r is then
explained through the fact that any hierarchy factor that might show up in the
Dirac mass matrix of the neutrinos tends to be quadratically enhanced via see-saw

mechanism. The presence of the Mz mass matrix further helps in smoothing out
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the distribution. The major prediction of the anarchy-type models [82, 83, 163, 164]
is that all three angles in the lepton sector are close to their maximal values (barring
any accidental cancellations). This, then, represents a serious problem due to the
experimental limits on the value of |U.s|. One might say that the anarchy models

give “trilarge” mixing.

3.3.2 See-saw models where 0,, comes largely from L.

As we saw in Subsection 3.2.2, there are advantages to models in which the
large atmospheric angle comes primarily from the charged lepton mass matrix L.
In particular it becomes easy to reconcile the largeness of ., with the smallness
of Am?2,/Am2,,, since they come from different matrices: the former from L and
the latter from M,. As we also saw, however, having a large angle arise from the
diagonalization of L raises the question of why a large CKM angle does not arise
from the diagonalization of the quark mass matrices D and U. The answer in the
“flavor democracy” models, was that the CKM angles are small by a cancellation
caused by an approximate symmetry. The possibility of a different and very elegant
answer arises in the context of grand unified models, especially if an SU(5) symmetry
plays a role in the form of the fermion mass matrices.

We have seen in Section 1.5 that within SU(5) one can realize the idea that
the matrix L is such as to give large left-handed mixings and small right-handed
mixings, so that 6., can be large while V, is small. In other words, L must be
highly asymmetric or lopsided [77]. [It should be noted that in SU(5), L is related
to DT, but not in general to U or N. Thus while the lopsidedness of L entails the
lopsidedness of D, there is no reason to expect N and U to be lopsided, and in the
examples we give below they are not.|

Many models have been proposed based on this idea of lopsided mass matrices
(73, 76, 176, 77, 78, 177, 178, 179, 180, 181, 182, 90, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192]. These are classified as Type 11(2) in [136]. The great majority
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of these models give the SMA solution or the VAC solution to the solar neutrino
problem. However, it is possible to obtain the LMA solution as well [190, 191, 192].
In a lopsided model in which the LMA, LOW, or VAC solution arises, the large
atmospheric angle can come primarily from the matrix L while the large solar angle
can come from the matrix M,. This actually has the virtue of simplicity, since the
form of M, is less constrained than in models where it must give rise both to a large
Oatm and large 6.

An example of how the LMA solution might arise in a see-saw model with

lopsided L is provided by the following matrices:

de'  e€e  fé€ 0 AO
N=1 g¢ aec be |mny, Mr=| A 0 0 | mg. (3.14)
he ce 1 0 0 1

As before, it is assumed that a, ..., h are of order one, and that ¢ <« ¢ <« 1.
Suppose the value of A is such that €2, ¢ < e¢//A < 1. Then, keeping only the

most important terms, the light neutrino mass matrix has the form:

O(e?/A) adee’ |A bdee' | A
~ my
M, =—| aded/A 2aeee’ [A (af + be)e€e' /A + ce —
R
bdee' /A (af + be)ee' /A + ce 1

Here the 23 and 32 elements are small compared to the 33 element, leading to a small
contribution to €,,; but that is alright, since 6., is supposed to arise primarily
from diagonalizing L in this class of models. As in the previous examples, one sees
that the 12, 21 and 22 elements are of the same order, giving a large, but not nearly
maximal, value of 6y, as required by the LMA solution. To get the right ratio of

neutrino mass-squared splittings one needs ee’/A ~ 1071,

3.4 An SU(5) pattern
A particularly interesting kind of pattern can arise very simply in the context

of SU(5) with Abelian flavor symmetry. Consider an SU(5) model with a U(1)
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flavor symmetry under which the quark and lepton multiplets have the following
charge assignments: 10;(2), 105(1), 103(0), 5:(1), 52(0), 53(0), Let the breaking
of the U(1) flavor symmetry be done by a field S having U(1) charge -1, and an
expectation value (S)/Mp = € < 1. Then the mass matrices of the quarks and

charged leptons will have the following forms:

(3.15)

Note that L and D have the lopsided form. It has been pointed out in several papers
in the literature that these forms give a very good account of the mass ratios and
mixing angles of the quarks and leptons [76, 193, 194].

One can see that the quantities m,/m, ~ 1/17, my/my, ~ 1/50, and Vg ~
1/25 all are of order e. Thus, € is roughly of order 1/20. A consistent value of € is
obtained from the fact that m./m, ~ 1/400, m,,/m. ~ 1/200, m./m, ~ 1/200, and
Vi = 1/300 are all of order €2. From the Cabibbo mixing and the ratio mg/ms, one
would get the somewhat larger value € ~ 1/5.

The light neutrino mass matrix M, arises from the see-saw mechanism; so
to know this matrix exactly it would be necessary to know Mpg. However, to know
merely the order in € of the elements of M, it is not necessary to know the U(1)
family charges of the right-handed neutrinos at all, since the effective mass term in

which M, appears involves only the left-handed lepton doublets, which are in the
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5;. Knowing the U(1) charges of the 5; tells us that

€ € €
e 11

From the forms of L and M, it is obvious that the mixing U3 of the second
and third family neutrinos will get O(1) contributions from both these matrices, thus
explaining the largeness of the atmospheric neutrino mixing angle. Let us imagine
now diagonalizing the 2-3 block of M, to get

2

€ € €
My~ | ¢ myq 0 |mb/mg. (3.17)
€ 0 1

The entry my(g) would naturally be expected to be of order 1. However, for the ratio
r = Am?2,/Am?2, to come out to be of order 1072, as required by the LMA solution,
Mooy should rather be of order 1/10. If we accept this rather mild fine-tuning, and
assume that mo) ~ 1/10, something interesting can be observed, namely that the
12 and 21 elements of M/ are of the same order as the 22 element, since € ~ 1/20.
Recall that this is just what is needed for tan? 6, to come out to be near the best-fit
LMA value of about 0.3 or 0.4.

This model, then, naturally explains both the value of 0., and the LMA
value of g, provided that » = Am2,/Am2,  is set to the LMA value.

Let us now imagine diagonalizing M]. The rotation needed to eliminate the
13 and 31 elements will give a contribution to U, that is of order €, quite consistent
with the present experimental limit of 0.15. This leaves the diagonalization of the 1-2
block. In doing this one may neglect the 11 element, since it is of order €2. One then
finds the simple relations (a) tan 2605, ~ 2¢/ms(q), and (b) ma = mo() /(1 —tan? Oyy).
[Here we have ignored the O(e) contribution to 6y, coming from diagonalizing L,

since we are interested in large values of y,.] From these relations one can infer
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roughly what region this model gives in the standard log(tan? 6, )-log(Am?,) plot.
One sees from (a) that tan? O, ~ €(mae)) 2, and from (b) that AmZ; ~ (ma))*
In other words, in the standard plot the region corresponding to this model lies
roughly along a line with slope —1 going through the LMA allowed region. We
shall see shortly, both by a much more careful analytic calculation and by a Monte
Carlo numerical calculation, that this conclusion is correct. The form of (b) tells

us something else that is interesting. As the value of the solar angle approaches

maximality, i.e. tan? 6y, — 1, the denominator in (b) approaches zero. Therefore,

2

to maintain a finite value of AmZ

the value of my() must be tuned to be extremely
small. Thus, one expects the region of greatest probability in this model to fade
away as tan? 0, approaches 1. This is confirmed by the analytic and Monte Carlo
calculations, as we shall see.

We shall now study the predictions of this model in a statistical way, much in
the spirit of [83]. Similar statistical analyses have been done in several recent papers
[194, 164, 195], and our results are consistent insofar as they can be compared with
theirs. However, our analysis differs in some respects. We do not treat € as a free
parameter, and seek to find its optimal value for the various solar solutions. Rather,
we fix € to the value that best reproduces the mass ratio m,/m, and then derive the
full region of the tan? 6, -Am? plane which results. We also show that by treating
the random variables as having a Gaussian distribution the statistical predictions of
the model can be obtained analytically. We also carry out a numerical simulation
using both a Gaussian and a non-Gaussian distribution similar to those used in
previous analyses and show that it agrees remarkably well with the analytic results
obtained using a Gaussian distribution.

To carry out the statistical analysis we parameterize the neutrino and charged
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lepton mass matrices as follows:

fe2  de/V2 ee/V2
M,=| de/v2 b ¢/V2 |mp/mg, (3.18)
ee/\/2 c/x/i a

and

L=1 O(®) De Ce mp. (3.19)
O(e) B A

We will take the unknown order-one parameters a, b, ¢, d, e, f, A, B, C, and
D, to be complex random variables whose real and imaginary parts have Gaussian
distributions with standard deviation o. For example, if a = |a|el%, then P(a)da =
(2m0?) L exp(—|al?/20?)|a| d|a| df,. It should be noted that we have put factors of
1/ V2 in the off-diagonal elements of M, . This is the appropriate normalization to

use for a symmetric matrix.
What we want to calculate is the probability distribution P(r,t)dr dt, where
r = Am?2,/Am? ., as before, and ¢t = tan?f,,, given that the order-one unknown
parameters in the mass matrices have Gaussian distributions as described. We will
first describe and give the results of an analytic calculation of P(r,t), and then

present the results of a Monte Carlo numerical calculation of P(r,t).

A very important point in what follows is that if one does unitary changes of

VL2 VL2 Uy Cry
—V or —V ,
Vs Vs l 3 14 L3
the resulting parameters o/, ..., ¢/, A, ..., D', have exactly the same Gaussian dis-

tributions as the parameters in the original basis. (This would not be true without
the factors of 1/4/2 in M,.) This is one fact that makes the analytic calculation
tractable using Gaussian distributions. Moreover this basis independence is more

consistent with the group-theoretical approach advocated in [83].
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The first thing to do is diagonalize L. For our purposes, we need only di-
agonalize the 2-3 block to find m,/m, and the contribution of L to fay,. This
involves multiplying the 2-3 block of L from the right (which in our convention is a

transformation on the left-handed leptons) by a unitary matrix

A B*
U = (JA]2 + B2
—-B A

This eliminates the large element B in L. At the same time, the 33 element be-
comes y/|A|2+ |B|?. The new 22 and 23 elements, which can be written D’e and
(e respectively, have the same Gaussian distribution as do A, B, C', and D. Con-

sequently, one has that

(mu)rmS/(mT)rms = €|D/|rm8/( VIAP+ |B[?)rms = E/\/§

Thus, the most reasonable value to choose for the small parameter, from the point
of view of lepton physics, is €/v/2 = m,/m..

The first constraint that we shall impose is that the atmospheric neutrino
mixing comes out to be very close to maximal, as found experimentally. This angle
gets contributions from the diagonalizations of both L and M,,. It would seem, then,
that we must, in computing P(r,t), take into account the random variables in both
mass matrices. However, a great simplification occurs because of the use of Gaussian
distributions and the resulting basis independence of the probability distributions.
A little thought shows that one can compute P(r,t) in a basis where the contribution
to the atmospheric neutrino mixing coming from L has some fixed value, and the
result will not depend on that value. Thus the parameters in L are irrelevant to
P(r,t). It is simplest in practice to choose the basis where the entire atmospheric
neutrino mixing comes from L. A further simplification is achieved by neglecting the
parameters e and f. The parameter e comes into calculating U3 (which is predicted

to be of order €, and so consistent with the experimental bound |U.s| < 0.15), but
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has a negligible effect on 6y, Oam, and the neutrino masses. The parameter f is
multiplied by €2, and so is negligible also. Finally, one can choose a basis where the
parameters a, b, and d are real. That means that the only parameters that come
into the calculation of P(r,t) are |al, |b], |c|, |d|, and 6. = argc. From now on, we
shall drop the absolute value signs and denote |a|, for example, simply by a.

One begins, then, with a matrix

0 de/ /2 0
M,=| de/v2 b /2 | mp/mp, (3.20)
0 cewc/\/i a

and a probability distribution

P(a,b,c,0,,d) = gbai o~ Tz @+ ) (3.21)
mTo

The first step is to diagonalize the 1-2 block of the matrix given in Eq. (3.20),
which gives tan26,, = s = \/ide/ b. This allows the elimination of the random
variable d in favor of the measurable parameter s or equivalently ¢. The 11 and 22
elements of the matrix then become 3(1—+/1 + s%)b and 1(1++v/1 + s2)b respectively.
The latter quantity we shall denote as b’. The next step is to impose the atmospheric
angle constraint. Since we are working in a basis where the contribution to this angle
from M, is vanishingly small, the imposition of this constraint sets the parameter
¢ to zero. More precisely, if one requires that the (complex) contribution to the
atmospheric angle from M, have magnitude bounded by some arbitrary small cutoff
Aum < 1, the condition on ¢ becomes (¢/v/2)/(a — ') < Aum. This means that
the integration over dcdf. in the probability distribution can be done, yielding
[ededf, = m(v2(a — b')Auim)?. The only remaining variables are then a, b, and
s. The random variable a can be eliminated in favor of the measurable ratio r of
mass-squared splittings using the relation r = (b*>v/1+ s2)/(a® — ). It is a very

good approximation here to replace b’ by b, since for the whole region of interest
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either s or r is very small as we shall see. After all these steps, one is left with
a probability distribution P(r,b,s). The final step is simply to integrate over the
random variable b. Since this integral is a Gaussian it is easily done. The final result

18

2
T T
e
rsdrds{\/ N \/m]
1+ s? 2r rs’ r
+
V1482 23V1 4+ s2

where NV is just a normalization constant. Changing variable from s = tan 26, to

P(r,s)drds =N , (3.22)

[1+

t = tan® f,; one finds that
14 (1—75) (1—2&)
rl— ) —/r—
o dr dt 14+t 14+t

1—#2 Lo (L1) 2t !
T
1+t)  E(1-1%)

One can see the qualitative behavior of this function rather easily. The crucial

P(r,t)drdt =N

(3.23)

term is the one containing €? in the denominator. This term forces the product rt

to be of order €2

. This is consistent with what we argued above, namely that the
region of greatest probability in this model has rt ~ constant, i.e. a line of slope -1
in the log(tan? 0, )-log(Am?2 ) plane. Moreover, we see that as ¢ — 1, the product
rt is forced to be less than or of order €*(1 — ¢*) — 0, so that the probability is
suppressed for ¢t = 1.

In Fig. 3.1, we give a contour plot of the probability function P(r,t) just
computed analytically, and compare it to the results of a Monte Carlo calculation.
For the Monte Carlo calculation we used the forms in Eqgs. (3.18) and (3.19), with
¢/v/2 =m,/m.,, and assumed that the magnitudes of the complex random variables
had a Gaussian distribution. The phases of the complex variables were also treated
as random numbers and were varied from 0 to 27. We then diagonalized randomly

generated matrices to obtain the corresponding PMNS mixing matrices Uppng and

neutrino masses and analyzed the results by imposing the conditions sin? 26,4, > 0.9
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and |Ugs| < 0.15. These conditions reduced our initial set of 50,000 data points to
15,718 that were compatible with both the CHOOZ reactor data [196] and the
atmospheric neutrino experiments. Only the points that passed the cuts are given
in Fig. 3.1.

In Fig. 3.2, we generate the points assuming that the magnitudes of the com-
plex variables, instead of having the Gaussian distribution, have constant probability
in the interval 0.5 to 2.0 and zero probability outside that interval. The phases are
again treated as the random numbers in the interval from 0 to 27. This time 20,860
points, out of the initial set of 50,000 points, have passed all the cuts.

We expect Gaussian distribution to be in better agreement with the ana-
lytic solution than the constant probability distribution. But, one can see from
the excellent agreement between the analytic and Monte Carlo results presented in
Fig. 3.2 that the exact form used for the probability distributions of the random
variables themselves makes little difference. This has also been found in other pa-
pers [83, 194, 164, 195]. One point that should be noted is that since Figs. 3.1 and
3.2 are the log-log plots, the correct thing to plot and what has been plotted, is
P(logr,logt) ~ P(r,t)rt.

In Figs. 3.3(a) and 3.3(b), we have fixed the value of r at r = 2.8 x 1072, which
comes from using the best-fit values from experiment, and plotted the resulting
P(logt) against a normalized, binned distribution that was extracted from the data
set produced with (a) the Gaussian and (b) the constant probability distribution
respectively. We have obtained the binned distributions by counting the number of
data points in the strip logr = log(2.8 x 1072) £ 0.1, the width of one bin being 0.2.
This strip is shown in Figs. 3.1 and 3.2. The normalization has been carried out
with respect to the maximum of P(logt). Note the excellent agreement between the
analytic and Monte Carlo solution in Fig. 3.3(a). On the other hand, the binned

distribution in Fig. 3.3(b) lies slightly below the analytic curve. We expect this
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behavior since the data set created by the constant probability distribution limits
the scope of the magnitudes of the matrix elements in Egs. (3.18) and (3.19). In
both cases the most probable value for tan? 6, is about 0.1, with a very substantial
part of the area under the curve being in the region [0.3, 0.8] preferred by both
the LMA-I and LMA-II solution global fits. This region is shaded in Fig. 3.3 for
convenience.

The one weakness of this model is that it does not explain the value of
r = Am?,/Am?, . as required by the LMA-I solution fits. From Figs. 3.1 and
3.2 one sees that a value of 107! for this ratio is near the peak of the probability
distribution P(r,t). However, the same figure shows that a value of 2.8 x 1072 is near
the edge of the preferred region, and so requires a mild fine-tuning. On the other
hand, this model accommodates the value of r as preferred by the LMA-II solution
fits. [If the preliminary reanalysis of the existing data by the Super-Kamiokande
Collaboration [134] proves to be correct the value of r will change from 2.8 x 1072
(5.8 x1071) to 5.8 x 1072 (7.5 x 107!) for the LMA-I (LMA-II) solution. This would
put the predicted value of r of the model in the middle of the preferred region.|
However, once r is constrained to be the right value, the value of tan? s, needed for
both the LMA-I and LMA-II solution emerges quite naturally, as can be seen from
Figs. 3.3(a) and 3.3(b). The atmospheric mixing angle is, of course, also naturally

explained.

3.5 Conclusions

One can see from the foregoing that it is considerably easier to build satis-
factory models of the VAC, LOW, or SMA type than of the LMA type. That is
reflected in the models that have actually been constructed in the literature. One
problem is that in many models which predict large solar mixing angle, notably
inverted hierarchy schemes and flavor democracy schemes, this angle tends to come

out very close to maximal. They do not naturally explain why tan? 6, should
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come out in the range 0.3 to 0.8 preferred by the data. Other non-see-saw schemes,
such as SUSY with R-parity breaking and single-right-handed-neutrino-dominance
(SRHND) models, tend to predict a value of Am2,/Am?2, significantly less than
that preferred by the LMA solution. While the LMA value of this ratio can be
fitted, it is not really explained.

The situation seems more promising for the see-saw approaches, although
here also the great majority of published models give the small angle or vacuum solar
solutions. We showed that certain fairly simple textures exist that would naturally
reproduce the neutrino masses and mixings required by the LMA solution. Whether
these textures can be implemented in simple models remains to be seen.

One of the few existing schemes that shows a natural preference for the
LMA solution is the lopsided SU(5) model studied in Section 3.4. The value of
Am2,/Am?, . requires a mild fine-tuning, but given that, both the atmospheric
angle and the LMA value of the solar angle emerge quite naturally. We studied
the predictions of this model in a statistical way, and found that by using Gaussian
distributions the analysis could be carried out very simply and accurately by purely
analytic means. We believe that the same methods should be applicable to many
other models. The advantage of such statistical analyses is that they allow one to

estimate in a somewhat objective and quantitative way how ”fine tuned” models

must be to reproduce the data.
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Figure 3.1: Contour plot of the normalized probability distribution P in
log(tan? O, )-log(Am?2,/Am?, ) plane with the contour values 0.002,
0.02, 0.06, 0.1, and 0.14 superimposed on the numerically generated
distribution of points. The points are generated using the Gaussian
distribution for the magnitudes of the mass matrix entries. Large
dots represent the best-fit values for LMA-I and LMA-II solutions as

indicated.
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Figure 3.2:
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Contour plot of the normalized probability distribution P in
log(tan? O, )-log(Am?2,,/Am2,,,) plane with the contour values 0.002,
0.02, 0.06, 0.1, and 0.14 superimposed on the numerically generated
distribution of points. The points are generated using the constant
probability distribution. Large dots represent the best-fit values for

LMA-I and LMA-II solutions as indicated.
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Figure 3.3: Normalized probability distribution P (solid line) as a function of
log(tan® f,) for the best-fit LMA-I solution value Am?2,/Am?, =
2.8 x 1072 plotted against the normalized, binned distribution (dashed
line) extracted from (a) the Gaussian and (b) the constant probability

data sets.
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Chapter 4

UNIFYING FLIPPED SU(5) IN FIVE DIMENSIONS

4.1 Introduction

A beautiful feature of flipped SU(5) [62, 84, 85] is that it provides a natural
setting for the missing partner mechanism. This mechanism, when implemented in
flipped SU(5), not only solves the doublet-triplet splitting problem but also allows
one to avoid entirely the Higgsino-mediated proton decay that is such a difficulty for
SUSY GUTSs. On the other hand, flipped SU(5) gives up one of the most attractive
features of grand unification, namely unification of gauge couplings, because it is
based on the group SU(5) ® U(1). Another drawback of flipped SU(5) models is
that the masses of down quarks and charged leptons come from different operators,
so that one does not obtain the relation my(Mgyr) = m.(Mgut). The unification
of gauge couplings and relations between down quark masses and charged lepton
masses could be recovered by embedding the group SU(5) ® U(1) in the simple
group SO(10). However, in that case, the missing partner mechanism no longer
works, since the partner that was missing from the SU(5) multiplets is present in
the larger SO(10) multiplets.

One is thus in somewhat of a quandary. The point of this chapter is that a
way out of this quandary is provided by unification in five dimensions. We show
that if the group SO(10) in five dimensions is broken by orbifold compactification
to the group SU(5) ® U(1) in four dimensions it is possible to have at the same
time the good features of both flipped SU(5) and of SO(10). The essential reason
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is that if SO(10) is broken by the orbifold compactification then the fields of the
effective four-dimensional theory need not be in complete SO(10) multiplets. This
means that at the four-dimensional level the famous missing partners can still be
missing and the doublet-triplet splitting can be achieved without the dangerous
Higgsino-mediated proton decay. On the other hand, because there is SO(10) at
the five-dimensional level, there is approximate unification of gauge couplings, and
there is also the possibility of getting SO(10)-like Yukawa couplings for the quarks
and leptons.

By now there are many models that use orbifold compactification of extra
dimensions to break grand unified symmetries. The first such models [86, 197, 198,
199, 200, 87, 201] showed that with one extra dimension it is possible to construct
SU(5) models which have natural doublet-triplet splitting and no problem with
the d = 5 proton decay operators that plague four-dimensional SUSY GUTs. The
breaking of grand unified symmetries by orbifold compactification of a single extra
dimension does not reduce the rank of the group [202]. Thus to break SO(10) all the
way to the Standard Model by orbifold compactification requires at least two extra
dimensions. Interesting six-dimensional SO(10) models have been constructed in
several papers [203, 204, 205]. However, it is also possible that the breaking from the
grand unified group to the Standard Model is achieved by a combination of orbifold
compactification and the conventional four-dimensional Higgs mechanism. That
allows the construction of realistic SO(10) models with only a single extra dimension,
as was first shown by Dermisek and Mafi [206]. In their model the theory in the five-
dimensional bulk has A/ = 1 supersymmetry and gauge group SO(10). Orbifolding
breaks SO(10) to the Pati-Salam [51] symmetry SU(4). ® SU(2); ® SU(2)g. The
orbifold has two inequivalent fixed points O and O’. On O there is a full SO(10)
symmetry, but on O’ only the Pati-Salam group. On the brane at O the conventional

Higgs mechanism breaks SO(10) down to SU(5). Thus the unbroken symmetry in
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the low-energy theory in four dimensions is the intersection of SU(5) and the Pati-
Salam group, i.e. the Standard Model group. Another, more recent, example of
realistic SO(10) model in five dimensions is that of Albright and Barr [207]. Their
model also harbors the Pati-Salam group on the hidden brane. For more examples
of SO(10) based models in five dimensions see [208, 209].

The model we shall present is similar in some ways to that of Dermisek and
Mafi but differs from it in several important respects. Whereas they use orbifold
compactification to break to the Pati-Salam group and Higgs fields on the brane O
to break to SU(5), we shall use orbifold compactification to break to SU(5) ® U(1)
and Higgs fields in the bulk to break the rest of the way to the Standard Model.
They use orbifold breaking to split the doublets from the triplets, whereas we use

the four-dimensional flipped-SU(5) missing partner mechanism.

4.2 Missing partners in four dimensions
Before we consider higher dimensional theories we shall briefly review the

missing partner mechanism in four-dimensional theories, showing why it works in

flipped SU(5) but not in SO(10).

4.2.1 Flipped SU(5)

First recall what happens in ordinary (i.e. Georgi-Glashow) SU(5) [57]. In
ordinary SU(5) the two Higgs doublets of the MSSM, which we shall denote 2 and
2, have color-triplet partners, which we shall denote 3 and 3. [We use this short-
hand notation for Standard Model representations: 2 = (1,2,1), 2 = (1,2, 1),
3 =(3,1,—-2/3), 3 = (3,1,2/3).] These are contained in fundamental and anti-
fundamental multiplets of SU(5): 5 =2+ 3 and 5 = 2 + 3 (see Eq. (1.39)). A
combination of an SU(5)-singlet mass term and a Yukawa coupling to a Higgs in

the adjoint representation, can (with suitable fine-tuning) give GUT-scale mass to
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the triplet partners while leaving the MSSM Higgs doublets light. This can be

represented schematically as

3 3
2 2
I |
5 5

where the solid horizontal line represents a large Dirac mass Mj3 connecting the
colored Higgsinos 3 and 3. It is well-known that the exchange of these colored
Higgsinos gives a dangerous d = 5 proton-decay operator, as shown in Fig. 4.1.

From the figure one sees that this proton decay amplitude is proportional to the

U; Uy

dj I

Figure 4.1: The kind of graph that gives rise to d = 5 proton decay operators.

mass connecting 3 to 3. Suppressing this proton decay therefore requires severing
this connection. This can be done by introducing an extra pair of Higgs multiplets
5 +5/, so that the triplets in the unprimed multiplets get mass not with each other
but with the triplets in the primed multiplets as shown in the following diagram

=/

3 3 \..[ 3 3
2 2 ).\ 2 2
| 1 1 |
5 5 5/ 5
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If the MSSM Higgs doublets are the unprimed ones, then one sees that their colored
partners are not connected to each other by a mass term, so that the d = 5 proton-
decay amplitude vanishes. Unfortunately, however, there is an extra pair of doublets
that remains light, namely the primed ones. The effect of these on the renormaliza-
tion group equations would destroy gauge coupling unification. To give the needed
superheavy mass to these doublets one could introduce a term M 55/ ; however, this
would give mass terms connecting not only 2’ to 2 but also 3’ to 3 (indicated by
dotted lines in the previous diagram) and thus indirectly (after the primed triplets
were integrated out) reconnecting 3 to 3 and bringing back the dangerous d = 5
proton decay amplitude.

Now let us turn to flipped SU(5) and see how it avoids these problems very
elegantly [85]. In flipped SU(5) models one has Higgs fields in the following rep-
resentations of SU(5) ® U(1): h =52 h =5, H=10", and H = 10 '. Under
the Standard Model group these decompose as follows, h = 2+ 3, h = 2 + 3,
H =3+ (3,2,1/3) + (1,1,0), and H = 3 + (3,2,—-1/3) + (1,1,0). The Higgs
superpotential contains the terms h H H + h H H. When the Standard Model sin-
glets (1,1,0) in the H and H acquire VEVs they break SU(5) ® U(1) down to the

Standard Model group and they also give mass to the triplet Higgs. Schematically,

3 3 3 3
2 other other 2
(4.1)
| | | |
h H H h

where, for simplicity, (3,2,1/3) + (1,1,0) = other. The triplets in » and h get
mass with those in H and H. However the doublets in h and h remain massless
because there are no doublets in H and H for them to mate with—thus the name

“missing partner mechanism”.
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At first glance one might worry that the same problem arises here as in the
ordinary SU(5) case discussed previously. The multiplets 5" and 5 there played
the same role as the multiplets H and H here. And we saw that one could not
give mass to the doublets in 5’ and 5 without reintroducing the dangerous proton
decay amplitude. This leads to the question whether there is not an analogous
difficulty in giving mass to some of the components of H and H, and specifically to
the (3,2,1/3) + (1,1,0) + (3,2,—1/3) + (1,1,0), since here also an explicit mass
term M H H would reintroduce the problem of proton decay. The beautiful answer
is that these “other” components of H and H do not have to get mass. Indeed,
they must not get mass, because they are the Goldstone modes that get eaten when
SU(5) ® U(1) breaks to SU(3) ® SU(2) ® U(1). In other words, the fact that
SU(5) ®@U(1) breaks to the Standard Model group guarantees that there is no mass
connecting H and H and therefore guarantees the absence of the d = 5 proton decay

amplitude.

4.2.2 SO(10)

Now let us see why embedding flipped SU(5) in SO(10) in four dimensions
destroys the beautiful missing partner solution to the doublet-triplet splitting and
proton decay problems that we have just reviewed.

In SO(10) the simplest possibility is that the terms h H H + h H H come
from the terms 101616 + 101616, where 10 = h + h, 16 = H + & + 15, and
16 =H+" +17 Here ' = 5% and i’ = 5 °. The problem is that the doublet
partners that were missing from H and H are now present in B and K.

The terms 1016 16 + 10 16 16 contain not only h H (H) +h H (H) but also
R (H)+h K (H). These latter terms mate the doublet Higgs in h and & with those
in & and A’ , destroying the solution of the doublet-triplet splitting problem.

A possible remedy to this difficulty suggests itself. One can have h and h

come from different 10s of SO(10). Let us examine what happens in this case, since
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it will be directly relevant to what we shall do in five dimensions later. Suppose
there are two vector Higgs representations, denoted 10; and 10,, with couplings
10,1616 + 10,16 16. We write 10, = hy + hy and 10, = hy + he. Suppose that
the two light doublets of the MSSM lie in hy and hy; then the triplet partners of
these light doublets will obtain mass from the terms hy H (H) + ho H (H). The terms
that give superlarge mass to doublets, and which correspond to those we found
troubling before, are Tyl (H) -+ hoh/(H). These do not give superlarge mass to the
MSSM doublets, but to the doublets in h; and he. Thus, we would appear to have
satisfactory doublet-triplet splitting with no dangerous d = 5 proton decay, just as
in flipped SU(5).

However, this is not so, for the question arises how the triplets in h; and hs
are to acquire superheavy mass. It would seem that the only way is through a mass
term connecting them. But that would have to come from a term Mh;hy, which
in turn comes from M 10,105, and this would also give M hihs and thus superlarge
mass to the MSSM doublets.

We see, then, that the missing partner mechanism does not work in four-
dimensional SO(10) theories. However, we shall see that it can work in five-
dimensional SO(10) theories. The crucial difference will be that orbifold breaking
of SO(10) can split the SO(10) Higgs representations. In particular, in the example
we just looked at the troublesome triplets in h; and hy can be given Kaluza-Klein
masses by the orbifold compactification while leaving the MSSM doublets in h; and
hy light.

4.3 An SO(10) model in five dimensions
We now present an SO(10) supersymmetric model in five dimensions com-

pactified on an S'/(Zy x Z3) orbifold that yields a realistic supersymmetric flipped
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SU(5) model in four dimensions. The breaking of SU(5) ® U(1) down to the Stan-
dard Model gauge group, the doublet-triplet splitting, and the solution to the prob-
lem of d = 5 proton-decay operators will all be as in conventional four-dimensional
flipped SU(5) models. Moreover, there will be distinctive flipped SU(5) relation-
ships among gaugino masses. However, the gauge couplings will be unified (with
some threshold corrections, that can be argued to be small [87]) because of the
underlying five-dimensional SO(10) symmetry. And the Yukawa couplings of the
quarks and leptons can have relationships that are similar to what is found in ordi-
nary SU(5) and SO(10) models rather than in flipped SU(5).

As already elaborated in Refs. [86, 197, 198, 199, 87, 200, 201], the fifth
dimension, being the circle with coordinate y and circumference 27 R, is compactified
through the reflection y — —y under Z, and y' — —y' under Z where ¢/ = y +
mR/2. This identification procedure leaves two fixed points O and O’ of Zy and Z)
respectively and reduces the physical region to the interval y € [-wR/2,0]. Point
O at y = 0 is the “visible brane” while point O’ at ¥’ = 0 is the “hidden brane”.
This orbifolding procedure is shown schematically in Fig. 4.2. The compactification
scale 1/R = M is assumed to be close to the scale at which the gauge couplings
unify, i.e. the GUT scale Mgyt ~ 10'° GeV.

The generic bulk field ¢(z#,y), where p = 0,1,2,3, has definite parity
assignment under Z; x Z) symmetry. Taking P = +1 to be parity eigenvalue
of the field ¢(z*,y) under Z transformation and P’ = =£1 to be parity eigen-
value under the Z) transformation, a field with (P, P') = (£,4) can be denoted

oY (2, y) = ¢*F(a*,y). The Fourier series expansion of the fields ¢+ (2, y)
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Figure 4.2: Compactification of S* space under Z, x Z symmetry transformations.
The reflections under Z, and Z) identify the fixed points O" and O
respectively.

yields

ot (2" y) = Cos Q%y (4.2a)

++(2n
vV 25n07rR Z ¢ (=)

¢+—(1.u’y) — \/_ Z ¢+ 2n+1 ZL’M) oS (271; 1)y’ (42b)

(2n+ 1)y

o F(aty) = Z ¢~ (21 sin TR (4.2¢)
¢——($u’ y) _ \/_ Z ¢—— 2n+2 ZL’“) sin (2'”; Q)y (42d)

The profile of the wave function in the fifth dimension is shown in Fig. 4.3.
In the effective theory in four dimensions all the fields in Egs. (4.2) have
masses of order M¢ except the Kaluza-Klein zero mode ¢ of ¢++(x#, ), which

remains massless. Moreover, fields ¢~=(x#, ) vanish on the visible brane and fields

¢*~(2*,y) vanish on the hidden brane.
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Figure 4.3: A profile of the wave functions of the first three modes of the Kaluza-
Klein tower of states for every possible parity assignment. A flat line
in the plot of ++ states represents the profile of the massless n = 0
mode. All other states are massive with their mass being quantized in
units of 1/R. Here, we take R = 1.

In our model, we assume that gauge fields and gauge-non-singlet Higgs fields
exist in the five-dimensional bulk, while the quark and lepton fields and certain
gauge-singlet Higgs fields exist only on the visible brane at O. The gauge fields in the
bulk are of course in a vector supermultiplet of 5d supersymmetry that is an adjoint
representation of SO(10). We will denote it by 45,, where the subscript ‘g’ stands
for ‘gauge’. The gauge-non-singlet Higgs fields in the bulk are in hypermultiplets
of 5d supersymmetry and consist of two tens of SO(10), denoted 10,5 and 105y,
and a spinor-antispinor pair of SO(10) denoted 165 and 165. The subscript ‘H’
indicates a Higgs field.

The vector supermultiplet 45, decomposes into a vector multiplet I and a
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chiral multiplet ¥ of A/ = 1 supersymmetry in four dimensions. Each hypermulti-
plet splits into two left-handed chiral multiplets & and ®¢, having opposite gauge
quantum numbers. As shown in Section 1.4.3, under the SU(5) ® U(1) subgroup
the SO(10) representations decompose as follows: 45 — 24% + 107* + 10" + 19
10 > 5245216 — 101 +5 ° + 1% and 16 — 10 ' + 5% + 17°. With these
facts in mind we shall now discuss the transformation of the various fields under the
Zy X Zb parity transformations.

The first Z; symmetry (the one we denote as unprimed) is used to break
supersymmetry to NV = 1 in four-dimensions. [N = 1 in five dimensions is equivalent
to N/ = 2 in four dimensions; so we are breaking half the supersymmetries.] To do
this we assume that under Z; the V is even, ¥ is odd, ® are even, and ®¢ are odd.
The Z} is used to break SO(10) down to SU(5) ® U(1). The 24° and 1° of V are
taken to be even under Z), while the 10~* and T0" are taken to be odd. In 10,5
the 52 are taken to be even and the 5 odd, whereas in 109 the parities are taken

to be the reverse, 572 odd and 5” even. All told we have

45, = Vi +Vio" + Vgt + Vord + 55,0 + 500 + 00 + 200, (4.3a)
107 = @Ql,t + <I>g§‘ + 05T+ @;}j, (4.3b)
105 = <I>;252 + <I>g§+ + <I>;§+ + P (4.3¢)

165 = o7+ <I>gj3 + 7 + LT+ P+ DI, (4.3d)
16y = OTF, +Of + &7 + O + O + O, (4.3¢)

where the transformation properties of the fields under SU(5) @ U(1) are indicated
with the subscript. Massless zero modes of the Kaluza-Klein towers exist only for

fields with Z, x Zj parity ++. This includes @;fz, <I>§2+, ®7 5, and <I>1LO+, . We will
1 2

call the zero modes of these components hi, ho, H, and H, respectively, using the

same notation we used in the last section. The h; and hy contain the two Higgs

doublets of the MSSM and their colored partners.
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To justify these parity assignments at the more formal level, we first specify
the action of the bulk fields [210] applicable in our five-dimensional theory. Its form

is

u 1 (6%
Shulk — /d5 {41:: S Te [ WOl + He

T [((V205 + D)™V (V205 + D)e¥ + deVareV)|| - (a)

0000

. 1
o+ [cb,. (95 — ﬁzypi\% n H.c.} }

where index i goes through all chiral hypermultiplets of the bulk (in our case i =

+ [@fevaf + @e_vébi]

1,...,4). The second and the last line clearly indicate that the bulk field ¥ pairs
up with the differential operator 05. Thus, the field > must be odd under y — —y
reflection since under same reflection 05 — —0s. The last term also shows that
®¢ and &, always have opposite parities. More generally, the action in Eq. (4.4) is

invariant under y — —y reflection if the superfields transform as

Ve(at, —y)T, = V" y)PT,P, (4.5a)
Xt )T, = =X%z",y)PT,P, (4.5b)
O, (¥, —y) = L£PO;(a* —y), (4.5¢)
(2", —y) = FPTO{(", —y), (4.5d)

where V = VoT,, ¥ = X¢T,, and P = P! is the parity operator. The T,
are the generators of SO(10) in the appropriate representation with normalization
Tr[T,Ty] = kdap in the adjoint. The replacement y — ¢’ and P — P’ in Egs. (4.5)
specifies the transformation of the superfields under 3y’ — —y’ reflection. To imple-
ment the particular parity assignment of our model, as given in Eqgs. (4.3), we define
P and P’ through their action on the fundamental, the 10, of SO(10) as follows:
we associate P = 0o ® I (P' = 09 ® I) with the Zy (Z}). Here, I and oy are 5 X 5

and 2 x 2 identity matrices and o, is the usual Pauli matrix.
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Having done with the parity assignment for the bulk fields we can turn our
attention towards the brane physics. On the brane at O we put the three families of
quarks and leptons. Since the gauge symmetry on this brane is SO(10), these are
contained in three chiral superfields that are spinors of SO(10), which we denote
16;, where ¢ = 1,2, 3 is the family index. Later for various reasons we shall intro-
duce some gauge-singlet superfields on the brane at O, but let us first discuss the
interactions of the fields introduced up to this point.

The Z, parity of fields in the 16, must be positive. The Z) parity, determined
by the transformation properties of the gauge fields in Eqs. (4.3), is 16 — 10'* +
5°F 1 15F where 10; = (Q,d,v);, 5; = (u,L);, and 1; = &, in accord with our
discussion in Section 1.4.4. The action for the coupling of the matter fields, residing

on the visible brane, with the Higgs fields, coming from the bulk, is

1
Smatter _ / d°x 3 [6(y) + 6(y — 7R)] (27 R)"/? )‘%’16@'1611011{‘99

1
+ / d°z 3 [6(y) — 0(y — mR)] (2w R)"/> \!,16,16,102y |, + H.c.,

where A}, and >\Zdj are Yukawa couplings. The normalization factor (27 R)Y/2 is in-
serted by hand to make them dimensionless. [Note that the mass dimension of the
bulk superfield is 3/2, the dimension of the four-dimensional brane superfield is 1,
and the dimension of 6 is 1/2.] What we really expect in a realistic scenario is

1/2 gince

to have the suppression of the Yukawa couplings by a factor of 1/(M,R)
the Higgs field wave function spreads throughout the extra-dimension. The mass
M, is an ultraviolet cutoff that specifies the scale at which new physics (eg. other
dimensions beyond five, strings) become important. We take M, to be close to
Mgyt but, of course, somewhat larger. In general, if the Yukawa term involves n
(n = 1,2,3) bulk fields the overall normalization factor is 1/(M,R)™?2. [Note that
the mass dimension of the Yukawa coupling is —n/2 where n is the number of the

bulk fields.] This has suggested the idea to use the geography (the brane or the bulk
localization) of the matter fields and the Higgs fields to achieve the hierarchy of the
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quark and lepton masses in the orbifold models [88]. The main problem with this
idea is that it tends to ruin one of the most significant features of the GUT—the
unification of matter—if one places the matter fields in the bulk. For example, it
would take two different 16s in the bulk to reproduce the content of one family on
the brane. This shortcoming is the main reason why we do not pursue this idea
here.

If we now integrate Eq. (4.6) over the fifth dimension using Eqs. (4.2), keeping
only the terms that involve the Yukawa couplings of the MSSM Higgs doublets and

their triplet partners, we obtain the following Lagrangian in four dimensions

o0

2

£matter
2677,0

773 2") 1 2n — — ,(2n
{Aw [Q dds + Lie;d oy + §Q,.thgH> + uiejtgH)]

n=0

+ H.c.
06

z] [Q’ Uj (2n + Lz ]d2H + QZL tzH) + U ejtéH)]}

where d1 H and t") are the doublet and triplet contained in <I>;1,+2 (whose zero
mode is hy) and d5r) and 7 are the doublet and triplet contained in (ID%JF (whose
zero mode is hy). All the remaining terms coming from Eq. (4.6) are found by the
replacement XY, < A, (LH) < (2H), (2n) — (2n+ 1), and d,0 — 1 in Eq. (4.6).
This represents a minimal set of Yukawa terms, and would lead to the fol-
lowing relations among the quark and lepton mass matrices: L = D oc A% and
N = U o X\, with \* and \? being completely independent symmetric matrices.
This is different from the relations that arise with a minimal set of Yukawa terms
in four-dimensional models based on SO(10) or flipped SU(5). In four-dimensional
flipped SU(5), the minimal Yukawa terms give N = U™, where these matrices are
not predicted to be symmetric, and no relation for L and D. In four-dimensional
SO(10), as we saw in Section 1.4.3, the minimal Yukawa terms give L =D «c N = U,

with these matrices predicted to be symmetric.

The Higgs fields, though defined in the bulk, will also couple to each other on
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the branes. We assume that the Higgs coupling on the visible brane is of the form

iggs 1
GHiees / d’z 5 [5(y) + 6(y — 7R)] (27 R)** 10,416 4164,

' (4.6)
+ /d5x 3 [0(y) — 6(y — 7R)] (27 R)3/? IOQHEHEH}% + H.c..

There could also be terms of the form 10,7105, which would directly produce a
GUT-scale p term and destroy the gauge hierarchy. These must be forbidden by
a symmetry. This is not a novel requirement introduced by the fact that there
are extra dimensions. Terms that would directly produce a GUT-scale p term
must also be forbidden in four-dimensional unified theories. For example, in four-
dimensional SU(5) theories as well as four-dimensional flipped SU(5) theories, there
are Higgs multiplets in 5 and 5, and these must be prevented from obtaining a
superheavy mass term together. Similarly, in four-dimensional SO(10) theories the
light Higgs doublets are typically in a 10 of Higgs, which must be prevented from
acquiring a superheavy self-mass term [211]. The same problem arises also in GUT's
in higher dimensions. Generally, some symmetry must be imposed to protect the
gauge hierarchy from such dangerous terms. We shall assume here that there is a
U(1)" of the Peccei-Quinn type under which the quark and lepton spinors 16; have
charge +1, the Higgs fields 10,5 and 10,5 have charge —2, and the Higgs fields 16y
and 16 have charge +1. This approach of using a vector-like symmetry to prevent
a large direct p term is used in Ref. [206]. A drawback of using that method here, as
will be seen later, is that to generate large Majorana mass terms for the neutrinos
without too large a u term being generated by higher-dimension operators, it will
be necessary to assume a hierarchy of 10™* between the U(1)" breaking scale and
Mgur.

Another way of suppressing direct GUT-scale p terms is by means of a con-
tinuous U(1)r symmetry as in Ref. [87]. In that paper it was found that p and
1B parameters of the order of the weak scale could be generated, without any fine-

tuning, through the Giudice-Masiero mechanism [212]. We do not pursue other
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approaches such as that here.

The most general effective action of our theory should also include brane-
localized kinetic terms for the modes of the bulk fields that have non-vanishing
wave function on the branes. Since the symmetry that survives on the hidden brane
differs from the symmetry that governs the interactions on the visible brane and
in the bulk, one might worry that the hidden-brane kinetic terms with arbitrary
coefficients for the gauge fields would spoil the gauge coupling unification, and that
the hidden-brane kinetic terms for the Higgs fields could affect the mass matrix
prediction that stems from Eq. (4.6).

As it turns out, the gauge kinetic terms on the hidden brane do not spoil
the gauge coupling unification if the volume of the extra dimension is large enough
[87]. In that case the arbitrary coefficients of the gauge kinetic terms on the hidden
and the visible brane get diluted and their contribution to the gauge couplings of
the Standard Model can be neglected. The dominant contribution comes from the
universal coefficient that belongs to the gauge kinetic term in the bulk obeying the
full symmetry of the theory.

The hidden brane kinetic terms for the Higgs fields do not affect the mass
relations L = D o< AY and N = U « A\*. These hidden-brane terms violate SO(10)
but respect SU(5) ® U(1), and so will have the effect of changing the relative nor-
malization of the 5 and 5 of Higgs that are inside the same 10 of SO(10). However,
the 5 of Higgs and the 5 of Higgs that contribute to quark and lepton masses in
this model come from different 10’s of Higgs anyway. The former comes from 104y,
while the latter comes from 1055. While the matrices \* and \¢ will be differently
affected by the hidden-brane kinetic terms, the predictions that L = D oc A% and
N = U o \* are not affected by that. The essential point is that these predictions
depend only on the SU(5) that is respected by the hidden-brane kinetic terms and
not on the full SO(10).
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As noted earlier, the only massless modes of the Higgs fields are h; C q);r;’z C
10, hy C <I>;§Jr C 1054, H C ®];; C 164, and H C (13%421 C 164. Therefore, after
integrating over the fifth dimension, the terms in Eq. (4.6) yield in the superpotential
of the low-energy effective theory the terms hy H H + ho H H. These are just the
same terms that are present in conventional four-dimensional flipped SU(5) models
to do the doublet-triplet splitting.

We assume that the H and H acquire superlarge vacuum expectation values
that break SU(5) ® U(1) down to the Standard Model group. The tree-level scalar
potential generated by the terms hy HH + hoHH is flat in this direction. However,
as noted in [85], this flatness can be lifted by radiative effects after supersymmetry
is broken. It is also possible that additional terms in the Higgs superpotential on
the visible brane can lead to a tree-level superpotential that produces the required
symmetry breaking, as we shall see later.

Besides breaking the gauge symmetry from SU(5) ® U(1) down to SU(3) ®
SU(2) ® U(1), the vacuum expectation values of the fields H C 16y and H C
16 allow masses for the right-handed neutrinos. Such masses come from effective
operators of the form 162~16j1_6HEH. However, this product of fields has charge
+4 under the symmetry U(1)". Consequently, this symmetry must be spontaneously
broken. It must be broken in such a way as to permit sufficiently large right-handed
neutrino masses without at the same time allowing too large a p parameter (which is
the coefficient of the term 1015105y ). This can be done in the following way (which
we do not claim to be unique). Suppose that there are fields S and S living on the
brane at O that are singlets under SO(10) and that have U(1)’ charges +1 and —1
respectively. In the superpotential on the brane at O there can be terms of the form
(SS — M*)X, where M = eMgyr, with € < 1. These terms force (S) = (S) = M.
Let us suppose that on the brane at O there are, in addition to the quark and lepton

families in 16;, some leptons 1; (i = 1,2, 3) that are SO(10) singlets but have charge
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—1 under U(1)". Then the following terms in the superpotential at O are possible:
C;;16; 1]-1_6H§/M* + F; liljSz/M*, where the dimensionless coefficients C;; and Fj;
are assumed to be of order one. These terms give a mass matrix for the neutrinos

that has the form

0 (N)Z] 0 Vj
(Vi v; 11) (N)ﬂ 0 CUEM 17]' ) (47>
0 CjiEM F;'j€2M 1]'

where M = MZyp/M,. [Note that we have taken (16g) = Mgyr.] It is clear
that the six superheavy neutrinos have masses of order €M, whereas the three light
(left-handed) neutrinos have masses of order N2/M. [See discussion on the double
see-saw mechanism after the Eq. (1.51).] Taking the largest neutrino mass ms to
be about 6 x 1072 eV, as suggested by the atmospheric neutrino data, and its Dirac
mass to be m, = 174 GeV, as suggested by the relation N = U (which would hold
in a minimal SO(10) model), one has that M ~ 10'® GeV. This accords well with
the assumption that M, is slightly larger than the GUT scale Mgyt ~ 10 GeV.

The reason that we have assumed that the parameter € = (S)/Mgyr is much
smaller than one is that it suppresses certain dangerous operators. For example,
U(1)" allows the effective operator 16,16, 16klﬁg§4/Mf. This gives a d = 5 proton
decay operator with coefficient of order €¢*(1/M,). Sufficient suppression of pro-
ton decay requires that ¢ ~ 1072 to 107%. Similarly, U(1)" allows the operator
10,1055 5" /M3, This gives a p parameter for the MSSM doublet Higgs fields that
is of order ¢*M,. Requiring that this be no larger than the weak scale requires that
€ be less than about 3 x 107*. This corresponds to right-handed neutrino masses of
order 3 x 10! GeV. Such intermediate mass scales for My are good from the point
of view of leptogenesis [213].

The same singlet Higgs field S can play a role in generating the vacuum

expectation value for the spinor Higgs fields 167 and 16. Such VEVs, as we have
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already noted, can arise due to radiative effects after SUSY breaking. But they can
also arise at tree level from a term in the superpotential on the brane at O of the
form (A\165165 — S?)Y, where Y is a singlet superfield with U(1)’ charge of —2, and
A ~ €%. Note that the F-terms of the fields 165 and 16 force (Y) = 0, meaning
that there is no mass term linking 16 to 16y and thus H to H. The U(1)’ charge
assignments allow the higher dimensional term §2EH 165 /M..

This will shift the VEV of Y, but the F-terms of the fields 165 and 16 still
enforce the condition that there is no mass term linking 165 to 16.

Let us now examine the doublet-triplet splitting and proton decay problems.
The terms hy H{H) -+ hoH(H) will couple the triplets in h; and hy to those in H and
H. The doublets in h; and hy remain light and are the two doublets of the MSSM.
There is no problem with d = 5 proton decay, because the triplet partners of the
MSSM Higgs doublets are not connected to each other. The triplets in h; and H
have no mass terms with the triplets in hy and H. Moreover, there are no unwanted
light states contained in the Higgs multiplets 10z, 1055, 165, 164. In the zero
modes (hi, ho, H, and H), the doublets remain light, the triplets become superheavy
by coupling to the VEVs of H and H, and the other gauge-non-singlet fields get
eaten by the Higgs mechanism when SU(5) ® U(1) breaks to the Standard Model
group. All the non-zero modes, of course, have superheavy Kaluza-Klein masses.
This is the crucial difference with four-dimensional theories in which flipped SU(5) is
embedded in SO(10). In four dimensions, as we saw in the last section, the SO(10)
Higgs multiplets 1075 and 1025 when decomposed under SU(5) @ U(1) contain not
only hy and hy but also h; and hy; and these multiplets have triplets that cannot
be given mass without destroying the gauge hierarchy. Here, however, these extra
pieces are all made heavy by the orbifold compactification, since they do not have
parity ++. Thus it is the fact that the unification of SU(5) ® U(1) into SO(10)

occurs only in higher dimensions that allows the missing partner mechanism to be
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implemented.

We have seen that with what may be called the minimal Yukawa couplings
16,-16j()\§lj-101 g+ )\?j 10,y ) this model gives distinctive relations among mass matri-
ces that are different from those that result in four-dimensional models with minimal
Yukawa couplings in either SO(10) or flipped SU(5). In particular, L = D, and
N = U, with all these matrices being symmetric. This does give the desired relation
my = m, at the unification scale, a result of the fact that flipped SU(5) is embedded
in SO(10). However, this minimal set of Yukawa terms is clearly not enough to give
a realistic model of quark and lepton masses.

Recently it has been found that realistic and simple models of quark and
lepton masses can be constructed using the “lopsided” mass matrices [73, 76, 77, 78].
The essential feature of such models is that the mass matrices of the down quarks
and charged leptons are highly asymmetric and that L ~ DT. Such a relationship
between L and DT is typical of models with an ordinary SU(5), not flipped SU(5).
However, as we shall now see, because the flipped SU(5) is here embedded in SO(10)
at the five-dimensional level, it is possible to obtain such a lopsided structure.

Suppose that one introduces on the visible brane not only spinors of quarks
and leptons, but SO(10) vectors as well. And suppose that there is in the bulk
a spinor Higgs field 16, that has a weak-doublet component that contributes to
the breaking of the electroweak symmetry. Then a diagram like that shown in
Fig. 4.4(a) may be possible. When decomposed under the SU(5) ® U(1) subgroup,
this diagram contains the two diagrams shown in Figs. 4.4(b) and 4.4(c). It is easy
to see that these give contributions to L and D that are asymmetric and that are
transposes of each other, just as needed to build “lopsided” models. The reason
for this is that the diagram in Fig. 4.4(a) directly depends only on the GUT-scale
breaking done by the 165 and not on that coming from orbifold compactification.

The point is that the 16 VEV by itself would only break SO(10) down to the
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Georgi-Glashow SU(5). [It is the orbifold compactification that breaks SO(10) to
the flipped SU(5) ® U(1) group.] That is why this diagram leads to the kind of
mass contributions that one expects from ordinary Georgi-Glashow SU(5). This
reasoning also shows that in order to introduce into the mass matrices contributions
that break Georgi-Glashow SU(5) it is necessary that the mass-splittings produced
by the orbifold compactification be involved. For example, by mixing quarks and
leptons that are on the visible brane with quarks and leptons in the bulk, it should

be possible to break the (bad) minimal SU(5) relations my = m, and mg = m..

4.4 Gaugino mediated supersymmetry breaking

In this section we address the issue of how to break N' = 1 supersymmetry of
our model below the compactification scale M. As it turns out, the solution allows
the construction of viable SUSY breaking model that can easily satisfy present
experimental constraints.

It is well known that the models with visible and hidden branes separated by
extra dimension(s) naturally accommodate breaking of supersymmetry via gaugino
mediation [214, 215]. The basic idea behind gaugino mediation in the models based
on the orbifold compactification is as follows. The source of the SUSY breaking
is localized at the hidden brane. It couples directly to the gauginos at that brane
providing them with nonzero masses. If the gauge symmetry at the hidden brane
is reduced with respect to the bulk gauge symmetry this coupling induces non-
universal gaugino masses. For example, if the bulk symmetry is SO(10) and hidden
brane symmetry is flipped SU(5) one obtains M3 = My # M. Here, M;, M, and
Mj; represent gaugino masses of the MSSM.

Following in the footsteps of [206], we take the source of the SUSY breaking
to be a flipped SU(5) singlet chiral superfield Z localized on the hidden brane with
the VEV

(Z) =60°Fy. (4.8)
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The gaugino masses originate from the non-renormalizable operators at the hidden

brane of the form

+ A

2 yew,|, + He),

1 » Z i ’
£7 = 5160y — mR/2) + 8(y + wR/D) (Ma g WOy + Xy

5 M2 }60
where the first and the second term under the integral represent the SU(5) and U(1)
part of the gauge group respectively. Corresponding gaugino masses generated in
this way are

MNF, M, N Fz M.
Msys) = %, My = %, (4.9)

which translates into the following MSSM gaugino masses (we normalize the gener-

ators of SO(10) demanding that k = 1/2)

M, 1 Msyi) | 24 My

g 25 gg‘U(B) 25 912J(1) 7

My = Mgy s), My = Mgy s). (4.10)

Here gsy(s), and gya) are gauge coupling constants of the SU(5) and U(1) gauge
groups respectively, while g; represents the U(1)y gauge coupling constant of the
Standard Model (normalized as in GUTSs). The relations of Eq. (4.10), which is valid
at the compactification scale M¢, show that the gaugino mass M; can in general be
completely different from the mass My = M3 due to their different origins. Namely,
the mass M, is dominated by the U(1) sector of the theory as oppose to the masses
M, and Mj that have their origin in the SU(5) part of the theory. We will later
see that this feature of non-universality of gaugino masses allows the construction
of the theory of SUSY breaking that leads to the realistic mass spectrum.

At this point we note that the natural scale for /Fy is the cutoff scale M,.
[For the reasons that have to do with gauge coupling unification we take (Mo ~
10" GeV) < (Mgur = 2 x 10" GeV) < (M, ~ 10M¢) [206].] This implies that
masses in Eq. (4.9) are close to the compactification scale M¢ if the dimensionless
coefficients \| and A} are taken to be of order one. To obtain SUSY breaking masses

that are in the TeV range we need to decrease the value of F; in a way that does
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not involve any fine-tuning. To do that we propose to use the shining mechanism
[216, 217] which can reduce the natural scale of F; by an exponential factor.

The shining mechanism requires the existence of a source J that is localized
on the visible brane and a massive hypermultiplet in the bulk. The hypermultiplet
of mass m is taken to be a gauge singlet and has couplings with both the source
and the superfield Z. These couplings can be arranged in a manner that leaves
the superfield Z with the nonzero F-term Fy ~ Jexp(—mmR/2) after the massive
hypermultiplet is integrated out [217]. If the mass m is taken to be of order M, the
V' F7 will be of order 10'2 GeV which gives desired TeV scale masses for gauginos in
Eq. (4.9).

The matter fields in our model reside on the visible brane. Thus, due to the
spatial separation between the branes the soft SUSY breaking scalar masses and
trilinear couplings are negligible at the compactification scale. This is good because
the number of the soft SUSY breaking parameters one has to consider is reduced
with respect to the usual set.

There are two additional positive features of the gaugino mediated supersym-
metry breaking models with the non-universal gaugino masses. Firstly, the renor-
malization group running of scalar masses and trilinear couplings between Mg and
electroweak scale is significantly affected by gaugino masses but these contributions,
being flavor blind, do not cause any disastrous flavor violating effects. Secondly,
non-universality opens up the possibility for the deviation from the experimentally
disfavored prediction of the models with universal gaugino mass of stau being the
lightest supersymmetric particle (LSP). [The last statement holds for M¢ < Mgur
which is exactly the case we have.|

The class of models with non-universal gaugino mediated supersymmetry
breaking has been studied in more details by Baer et al. [218] (see also [219, 220]).

Their numerical study of the allowed region of SUSY parameter space shows that
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viable models with acceptable mass spectrum and neutral LSP particle can be ob-
tained. The study includes the case of completely independent Mjs, Msy, and M;,
as well as the case where M; is a definite linear combination (determined by group
theory) of My and Ms. [The former case can be seen as a consequence of orbifold
reduction of SU(5) down to the Standard Model group on the hidden brane as
in Ref. [87] and the latter one follows from the reduction of SO(10) down to the
Pati-Salam group as in Ref. [206].] We have an intermediate scenario where M;
is independent of My and M3 which are made equal due to the SU(5) part of the
flipped SU(5). [This possibility was considered in Ref. [204] in the context of a
six-dimensional SO(10) model.|

It is not difficult to adapt the analysis of Baer et al. to our model to conclude
that for large enough M (i.e. |My| > |Ms|, My = Mj3) at the compactification scale
M a viable region of parameter space opens up regardless of tan § value yielding
realistic mass spectrum with the LSP being wino-like or a mixture of higgsino and
bino. An example of this behavior is shown in Fig. 4.5.

At the end we observe that if we had the case of SO(10) being reduced on the
hidden brane to the Georgi-Glashow SU(5) with an extra U(1) symmetry we would
not only be prevented from using the simple form of the missing partner mechanism

but would also obtain universal gaugino masses M; = My = M3.

4.5 Conclusions

We have seen that by embedding a four-dimensional flipped SU(5) model into
a five-dimensional SO(10) model the advantages of flipped SU(5) can be maintained
while avoiding its well-known drawbacks. The two main drawbacks are the loss of
unification of gauge couplings and the loss of the possibility of relating down quark
masses to charged lepton masses, and therefore of obtaining desirable predictions
such as my, = m., and realistic quark and lepton mass schemes such as those based on

“lopsided” mass matrices. By embedding SU(5) ® U(1) in SO(10), the unification
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of gauge couplings is restored. There are corrections to this unification, coming
for example from gauge kinetic terms on the hidden brane; however, these have
been argued to be small [87]. The embedding in SO(10) also yields relationships
between the charged lepton and down quark mass matrices. We have also found
that interesting patterns of quark and lepton masses are possible that are different
from those encountered in four-dimensional grand unified theories, for example L =
D#N=U.

Embedding flipped SU(5) in SO(10) in four dimensions is well known to
destroy the missing partner mechanism for doublet-triplet splitting, which is one of
the most elegant features of flipped SU(5). However, when the unification in SO(10)
takes place in higher dimensions and the breaking to SU(5) ® U(1) is achieved
through orbifold compactification, then the missing partner mechanism can still
operate, as we have shown. One of the advantages of the missing partner mechanism
in flipped SU(5) is that it kills the dangerous d = 5 proton decay operators that
plague supersymmetric grand unified theories.

Thus in extra dimensions it is possible to have the best of both worlds, the
best of SO(10) combined with the best of flipped SU(5). One of the distinctive
predictions of the flipped SU(5) scheme that we have presented is that the gaugino
masses will have the pattern M3 = My # M;. The fact that M; is independent of

M, and M3 allows a much larger viable region of parameter space for the MSSM.

118



16, 10 10 16,

165 16

dc=10(16)  5(10) 5100 10(16)=d;

5 X
(b)
<10 (16)> <516k
I/ =5(16) 5(10) 5100  1(16)=1"
5 X
(c)
<10 (165> <5 (16%)

Figure 4.4: (a) A diagram that can give operators producing “lopsided” contri-
butions to D and L. (b) A term in its SU(5) ® U(1) decomposition
that contributes to D. (¢) A term in its SU(5) ® U(1) decomposition
that contributes to L.
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This diagram represents the results of numerical analysis of Baer
et al. [218] for the case of gaugino mediated SUSY breaking scenario
in the flipped SU(5) setting (My = Mz # M) for tan 5 = 30 and
i > 0. The allowed region in M; vs. My = Mj plane is shown in
green. The excluded regions are white (due to presence of tachyonic
particles in mass spectrum), red (due to lack of radiative breakdown
of EW symmetry), light blue (due to LEP constraint), dark blue (due
to LEP2 constraint), and magenta (due to the fact that charged par-
ticle is LSP). Vertical black line is where My = 114 GeV. For a full
discussion of numerical methods and assumptions used in the analysis
see Ref. [218].
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Chapter 5

KALUZA-KLEIN UNIFICATION IN A
FIVE-DIMENSIONAL MODEL

5.1 Introduction

The main motivation for SUSY, besides its ability to stabilize the Higgs mass
against the radiative corrections, is the way it steers the gauge couplings, within the
MSSM, towards the unification at the GUT scale. Assuming this is not an accident
but a signal for a new physics we are prompted not only to embrace the MSSM but
to incorporate it into the grand unified theory where the gauge unification repre-
sents a genuine prediction of the framework. It turns out, however, that it is very
problematic to build both realistic and simple SUSY GUT scheme and still preserve
the gauge unification. For example, the simplest of all such schemes, the minimal
Georgi-Glashow SU(5), is already ruled out by the experimental limits on proton
decay [221, 222, 223]. The crux of the problem is that the exact gauge unification
requires threshold corrections. But to create these corrections one needs certain
fields, responsible for the proton decay, to be too light compared to the existing
experimental constraints. This problem was not so serious in the past since the
low-energy values of the gauge couplings were not known well enough, leaving a lot
of room for maneuvering. The situation has changed after the electroweak preci-
sion measurements and the improvements in measurements of the strong coupling

constant. The error bars have simply become sufficiently small to prevent the exact
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unification without the help of the troublesome threshold corrections. So, the ques-
tion of whether we can achieve the gauge unification in accord with the low-energy
measurements in a natural manner within SUSY GUTSs is something we have to
address.

Among the fields that can improve on the gauge unification, via threshold cor-
rections, are the familiar colored Higgsinos. These are the fields, as we saw in Chap-
ter 4, that are responsible for a d = 5 proton-decay operator. Therefore, one wants
them light enough to generate the corrections but heavy enough to avoid violation
of the experimental limits on proton lifetime. The idea of Kawamura [86, 197, 198]
to use a five-dimensional theory seems perfectly suited to accommodate both of
these requirements. But, one might expect naively that the exact gauge unifica-
tion is impossible due to the threshold corrections that originate from the towers
of Kaluza-Klein modes. This naive expectation turns out to be wrong. The five-
dimensional theory, being non-renormalizable, must have a cutoff (M, ). Therefore,
the number of Kaluza-Klein modes that contribute is finite. This also makes the
threshold corrections finite and calculable so that the exact unification cannot be
excluded a priori.

This chapter is going to be devoted to the issues pertaining to the gauge
coupling unification in the five-dimensional setting. We show that it is possible
to achieve the unification using an N’ = 1 supersymmetric SO(10) model on an
St/(Zy x Z}) orbifold. The orbifold has two inequivalent fixed points, O and O,
identified by the action of (7 x Z}) twisting. On the point O there will be an SO(10)
gauge symmetry while on the point O there will be a flipped SU(5) gauge symme-
tries. Both symmetries will be the leftovers of a bigger, SO(10), bulk symmetry.
The bulk contains, besides the vector supermultiplet, a pair of chiral hypermutiplets:

10,5 and 1055. They give the Higgs fields of the MSSM: 2 and 2. The orbifolding
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procedure also reduces the amount of the supersymmetry from A/ = 1 in five dimen-
sions to N = 1 in four dimensions. To obtain the low-energy phenomenology of the
SM group ‘H we break flipped SU(5) on the O’ brane by implementing the missing
partner mechanism. This time, in contrast to the model presented in Chapter 4, we
do the breaking with the chiral superfields that reside on the O’ brane.

It should be stressed that there are already two models in the literature that

provide the gauge coupling unification in the five-dimensional S'/(Zy x Z}) setting.

e The first one is an SU(5) model of Hall and Nomura [87, 88]. In their model,
the orbifolding leaves an SU(5) gauge symmetry on one brane and the SM
gauge symmetry on the other. In addition, the orbifolding accomplishes the
doublet-triplet splitting by assigning the odd parity to the triplet fields. [The
common feature for both models is the placement of the multiplets that con-
tain the MSSM Higgs fields and the gauge sector in the bulk.] There is no
need for any extra Higgs breaking except for the usual electroweak one. For
gauge coupling unification not to be spoiled by arbitrary non-universal con-
tributions coming from the brane with the SM gauge symmetry they have to
invoke two requirements: (i) the couplings at the cutoff scale M, must enter a
strong coupling regime; (ii) the dimension(s) of the bulk must be large enough
(when expressed in terms of the compactification scale M¢c). We adopt their

requirements in our model, too.

e The second model is an SO(10) model of Dermisek and Mafi [206]. Their model
is described in some length in Chapter 4. Here, we just outline the features
that are relevant for comparison with our work. Since the breaking of SO(10)
down to ‘H demands the reduction of the group rank, the authors use an extra
Higgs breaking. In the original version of Dermisek and Mafi [206] the breaking
of SO(10) down to SU(5) takes place on the visible brane. The low-energy
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signature of the SM gauge group is then due to the intersection of the Pati-
Salam and SU(5). The subsequent analysis of the second model by Kim and
Raby [224] demonstrated the feasibility of the gauge unification. The breaking,
in their case, takes place on a Pati-Salam brane affecting only the gauge sector
of the theory. [The orbifolding has already projected out the triplet partners
by assigning them odd parity.] We adopt and extend their method of analysis
to demonstrate the successful unification in our case. The reason behind the
extension is that, in our case, the extra Higgs breaking affects not only the
gauge sector but also the Higgs sector. Namely, the breaking is what makes
the triplets heavy via missing partner mechanism. This, as it turns out, has
profound consequences on the RGE running of the gauge couplings as we

demonstrate later.

In Section 5.2 we introduce our model and specify the mass spectrum of all
the fields. We rely heavily on the material already covered in Chapter 4 to avoid
being repetitious. We then proceed with the discussion on the gauge coupling RGE
running in five-dimensional orbifold setting in Section 5.3. This is where our two
main results, the relevant beta coefficients and their RGE numerical analysis, are

presented. Finally, we briefly conclude in Section 5.4.

5.2 An SO(10) model

We present an SO(10) supersymmetric model in five dimensions compactified
on an S'/(Z, x Z}) orbifold. The orbifold is created after the fifth dimension, being
the circle S* of radius R, gets compactified through the reflection y — —y under
Zy and y' — —y’ under Z}, where ¢y = y + 7R/2. As seen from Fig. 4.2, there are
two fixed points, O and O’, that bound the physical space y € [0, 7R/2] of the bulk.
The point O is referred to as the “visible brane” while point O’ at ¥’ = 0 is referred

to as the “hidden brane”.
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We assume that the bulk contains an N = 1 vector supermultiplet, a 45, of
SO(10), and two chiral hypermultiplets, 1015 + 1055. The vector supermultiplet
decomposes into a vector multiplet V', which contains the gauge bosons A, and
corresponding gauginos, and a chiral multiplet X of A = 1 supersymmetry in four
dimensions. Each hypermultiplet splits into two left-handed chiral multiplets ® and
®°, having opposite gauge quantum numbers. To reduce N' = 1 supersymmetry
in five dimensions to AN/ = 1 supersymmetry in four dimensions we use the parity
assignment under Zy. To reduce the gauge symmetry from SO(10) down to flipped
SU(5) ® U(1) on the hidden brane we use the parity assignment under Z5 t . Us-
ing the same notation as in the previous chapter the bulk content and the parity

assignments are

45, = Vo + Vit +ViT+ V%; + X0+ 20 +X .+ Z;Ot, (5.1a)

240 10~4
— ++ +- c—— c—+
105 = O+ LT+ 05, + &, (5.1c)
2 52 52 52

Only the fields with the 4++ parity contain Kaluza-Klein zero mode fields (n =
0) that have no effective four-dimensional mass. [See Fourier series expansion in
Egs. (4.2).] The masses of all other modes become quantized in units of 1/R = M,
where M¢ is the compactification scale. For example, all +— and —+ parity states
are actually the Kaluza-Klein towers of states with masses M¢,3Mc, ..., (2n +
1)Mc¢, ..., where n is the mode number.

We want to have the low-energy phenomenology that is described by the SM
group H. But, at this point, the brane O feels the SO(10) gauge symmetry while
the brane O’ feels the flipped SU(5) gauge symmetry. One could introduce a pair of
Higgses in the bulk, the 165 and the 16, and use the parity assignment to project
out all the states except a pair 10}, + ﬁ;fl that is needed for the missing partner
mechanism on the hidden brane. This time, however, we pursue slightly different

direction. Namely, noting that the minimal set of Higgses that breaks flipped SU(5)
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Table 5.1: The decomposition of the three lowest lying representations of SO(10)
under the flipped SU(5) group and the Standard Model gauge group.

| s000) | sueeuW) | su@.esu@E).e (1)y |
24° (1,1,0) & (1, )@(3,2,1/3)@(5,2,—1/3)@(8,1,0)
15 12—44 (1,1, 2)®(3,1,-4/3) ee_(3,2,—5/3)
10 (1,1,2) @ (3,1 4/3) (3,2,5/3)
1° (1,1,0)
1° (1,1,2)
16 57 | (1,2,-1) @ (3,1,-4/3)
100 | (1,1,008 (3,1,2/3) @ (3,2,1/3)
0 5_—22 (1,2,-1) & (3,1,-2/3)
5 (1,2,1)® (3,1,2/3)

down to ‘H is a pair of Higgs fields, 10}, +ﬁl_{1, we posit their existence on the hidden
brane. With these fields in place we specify the following brane localized entry of
the superpotential:

R 3R T
[5(y - %) + 5(y - WT)] [CI>++ 10H 10H + (I)'g? 1OH1 10H1]7 (5.2)

where  represents the Yukawa coupling with the mass dimension -1/2. Clearly,
by giving very large VEVs to the (1,1,0) components of 10} and ﬁf_{l, we allow
the triplet partners of the doublets in <I>+ , and @gg to get large masses through
the mating with the triplets of 10} and 10 H without disturbing the lightness of
the doublets. This is schematically depicted in Eq. (4.1). Moreover, the symmetry
breaking makes the states (1,1,0), (3,2,1/3), and (3,2, —1/3) from Vi and V5"
of 45, absorb the corresponding components of the brane Higgses to become massive,
leaving unbroken H gauge symmetry behind. [See Table 5.1 for the decomposition
of SO(10) down to H via flipped SU(5).]

In the discussion from the previous paragraph, we have glossed over a fact

that the bulk fields are Kaluza-Klein towers of states. The explicit brane localized

breaking terms will disturb every state of that tower due to the change of the
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boundary conditions. Since we want to do an RGE analysis we need to determine
the position, i.e. the mass, of every state after the disturbance has taken place. This

is what we do next.

5.2.1 Mass Spectrum of the Gauge Fields

The five-dimensional theory is non-renormalizable. Therefore, we expect the
theory to have a cutoff scale M, where some new physics comes into play (e.g. other
dimensions beyond five, strings). We take the VEVs of the symmetry breaking Higgs
fields to be of the order of this cutoff: ((1,1,0)) = M ~ M,. Then the Lagrangian
involving the gauge fields gets additional contribution [225, 224]

1 R 37 R -
£C3oly— ") +oly— ) |gdnrragan, (5.3)

where g2 represents the gauge coupling of the five-dimensional theory and a is an
SO(10) group index that goes through all the gauge fields associated with the broken
++ parity generators we mentioned in Section 5.2. [The five-dimensional gauge
coupling g2 has mass dimension —1.] The equations of motion for the “broken”

gauge bosons are

A R
02 (,y) + [0y - ) +0(y -

3TR
2

) |20 Al () = (M2 AL 2, ), (5.4)
where M2 represents the effective Kaluza-Klein mass in four dimensions of the nth
mode. It is defined via Klein-Gordon equation [8,0” + (M;")?] A%(x,y) = 0. The
second term on the left side of Eq. (5.4) is responsible for the deviation from the usual
mass spectrum of the ++ parity fields (M2 = 0,2M¢,...,2nMc¢,...). It reminds
us of the delta function-type potential in the ordinary Schrodinger’s equation. The

role of this term is thus to repel the bulk field wave function away from the brane. In

the language of the effective four-dimensional theory this means that even the zero
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mode (n = 0) of the gauge bosons becomes massive. Taking the following ansatz

for the five-dimensional gauge field on the segment y € [0, 7R/2]:
Al W, y) Z N, A“ " (x) cos M2y, (5.5)

the eigenvalue equation for the effective mass, due to the nontrivial boundary con-

dition at the hidden brane, takes the form [225]

MATR  g2M?
tan 5 = 25MA' (5.6)

The normalization constant for the ++ parity bulk fields also changes from 1/ V200
to N, = [1 + Meg2M? cos® e 7TR/(47T(]\4,;4)2)}_1/2. The plot of the modified wave
function profile for n = 1 is given in Fig. 5.1. [We excluded the normalization
constants for simplicity.|

There are two interesting approximations that we can consider: g2M? > M2

and g2M? < M. The former one generates the following approximate solution of

the eigenvalue equation for the mass spectrum
M~ (2n 4+ 1)Mc[1 — e + €%, (5.7)

while the latter one yields

1 1
A Ny
MO ~ 2MC 7'(—25’ and M n#0 — 27’LMC |:1 + 7T2—

en?

1, (5.8)

where we define ¢ = (4M¢)/(rg2M?). The two approximations generate qualita-
tively different mass spectra. Therefore, it is very important to determine which
one is applicable to our scenario. Assuming that all the couplings of the theory
enter the strong regime at the cutoff M, we can use the result of the naive dimen-
sional analysis [226] in higher dimensional theories that suggests g2 ~ 2473 /M, and
M =~ M,/(4r), which gives g2M? ~ 3/2rM, > M, > M?. We thus choose the

former approximation. Following the work of Kim and Raby [224], we introduce the

128



Figure 5.1: A plot of an n = 1 mode of the bulk field wave function profile in the
fiftth dimension. The dashed line represents undisturbed profile given
by cos2ny. The solid line represents the profile after the perturbation
due to the boundary condition is accounted for. The radius R is taken
to be 1.

parameter ( = 2Ne, where 2N = M, /M¢ and ¢ ~ 8/(37?) ~ 0.27, to rewrite the

approximate mass spectrum of the broken gauge bosons as
M2 ~ M (2n+1 — %g). (5.9)

One interesting feature to note is that the boundary condition in Eq. (5.6)
is not absolute. In our case, the broken ++ parity fields start off with the mass
spectrum that mimics the spectrum of the +— and —+ parity fields but then gradu-
ally merges with the spectrum of undisturbed ++ and —— parity bulk fields as one
moves up the Kaluza-Klein tower of states. One should also keep in mind that the

supersymmetry ensures the same fate for the chiral partners ¥ of the vector fields
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V. Namely, the mass spectrum of the fields in 3~ are shifted in the same manner
as the states in the V' that are made massive through the brane gauge breaking.

With that said, we turn to the consideration of the Higgs field mass spectrum.

5.2.2 Mass Spectrum of the Higgs Fields

The missing partner mechanism affects only the color triplets of the bulk
states with ++ and —— parities. To determine their mass spectrum we concentrate
on the masses of the color Higgsinos. Supersymmetry then ensures the same mass
spectrum for their bosonic partners. Moreover, since there are two separate color
triplet sectors as indicated by the vertical line in Eq. (4.1), we treat only one of
them. The other sector will have the same mass spectrum as long as both sectors
share the same dimensionful coupling k. We assume this to be the case. Note that
the bulk states with the +— and —+ parities, i.e. the odd states, do not get affected
by the brane breaking.

To make the discussion as transparent as possible we adopt the following
notation for the triplet Higgsinos: Ho € &1 5.2 HE € CI)%_, and Hg, € 10},. Their
equations of motion, derived from the brane coupling term in Eq. (5.2) and the bulk

action of Eq. (4.4), read [227]

i(r”@quH — KMFC|y:(7rR/2,37rR/2) =0, (510)
i10, He — 0, H ¢, — kMHg, (6(y —7R/2) +6(y — 3mR/2)) = 0, (5.11)
i6"0,H¢ + 0,He = 0. (5.12)

These equations are satisfied by the following ansatz for the five-dimensional Hig-

gsino fields on the segment y € [0, 7R/2]

He(z,y) ) x) cos Moy, (5.13)

HE(z,y) Z NI () sin Moy, (5.14)

\/_
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and the Higgsino field localized on the hidden brane

1 kM MHerR
He, () = = S oNH G h () cos ——. (5.15)

Here, the eigenvalue equation for the effective mass, due to the nontrivial boundary
condition at the hidden brane, takes the form
MlerR  w*M?

t =
an 5 Tk

(5.16)
where we define the effective KK mass via a pair of Weyl equations: i&“&uhgn) =
Mfcﬁén) and i1, h$" = M,ffcﬁi").

The naive dimensional analysis [226] in the strong coupling regime yields
K ~ (2473 /M,)Y?, which implies that x2M?(~ ¢g2M?) > M. In this limit, the
mass spectrum of the Higgsino triplets looks, in form, exactly the same as the mass

spectrum of the broken gauge fields. Namely, the mass eigenvalues of Eq. (5.16) are
MU ~ Mg (2n+1 — %g), (5.17)

where we assume that £*M? = gZM? for simplicity. For completeness, the normal-

ization constant Nc is

Nle = (1+

In the case of the color Higgsinos there is a mixing between the bulk and the

COSs

MowM?, MfexR\ ™Y (5.18)
m(MEe)? 2 ' '

brane fields. It is the role of the brane field Hg, to give the mass to the zero mode
component of Ho. As described in Ref. [227], the Weyl spinors, hg") and hé"), pair
up at every Kaluza-Klein level to obtain the Dirac mass. The remaining states in the
101, of Higgs get absorbed by the broken gauge bosons and completely disappear
as far as the running is concerned. We show the mass spectrum of one part of the
Higgs sector in Fig. 5.2. The other part looks exactly the same. Since this concludes
the discussion on the mass spectrum of both the gauge and the Higgs fields we turn

our attention towards the RGE analysis.
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Figure 5.2: (a) A mass spectrum of the Kaluza-Klein towers of the Higgs sector
after the compactification, but before the brane localized breaking.
(b) The mass spectrum after the brane localized breaking. The circles
represent the doublets and the squares represent the triplets.

5.3 Kaluza-Klein unification

The running of the gauge couplings in our model is the same as the running
in the usual four-dimensional theory as long as we stay below the compactification
scale Mq. But, once we venture over M, the running is affected by the towers
of Kaluza-Klein states until we reach the cutoff scale M,, which we define as the
scale where effective gauge couplings merge. Since there are numerous states in the
KK towers one might expect that the analysis of the threshold effects on the gauge
coupling running from Mg to M, is very difficult even at a one-loop level. This,
however, is not the case as we show next.

Let us, for concreteness, limit our discussion to the five-dimensional theory
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that is based on the simple gauge group F. The main simplification originates from
the observation that the compactification procedure forces all the states that make
up a single representation of F to appear within the interval [2nM¢,2(n + 1)M¢|
for every n # 0. [This statement is true regardless of the type of the additional
brane boundary conditions we discussed in the previous two sections.| These states
obviously contribute in an F invariant way to the running of all the gauge coupling
constants after we go over 2(n + 1)Mc. Thus, the contribution of the nth Kaluza-
Klein level that enters at 2nM drops out of the running of the difference of the
gauge couplings after we reach 2(n 4+ 1)M¢. In view of this fact we are motivated
to pursue the differential running, i.e. the running of the difference of the gauge
couplings. The previous observation also implies that the beta coefficients reset
themselves to the values of the familiar coefficients of the Standard Model group H
every time we go over another 2(n + 1)M¢ scale.

Nontrivial boundary conditions distort the spectrum of Kaluza-Klein masses.
In our case, the members of the nth mode emerge at 2nMc, (2n + 1 — £() M,
(2n + 1)M¢, and (2n + 2) M energy levels. We have already concluded that from
2nMc to (2n + 1 — $¢)Mc the beta coefficients must be the coefficients of the SM
group H. We call this region I. Region II is the region from (2n + 1 — £()M¢ to
(2n + 1) M, while region III stretches from (2n + 1)Me to (2n + 2) M for n # 0.
The notation here and in what follows is exactly the same as the notation of Kim
and Raby [224]. Note that we do not mention the matter fields at any point. The
reason is that the matter fields of one family contribute equally to the running of
the gauge couplings regardless of their origin, i.e. whether they are located in the
bulk or on the brane.

As shown by Kim and Raby [224], if the compactification breaks F to G and,
then, the brane breaking reduces G to the SM group H, the beta coefficients® of the

5 We use the notation b = (by, ba, b3), where by, by, and by are the coefficients
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gauge sector are:

blgaugo = bH(v)7
Do = (V) + b9(V) + b9(8) = b9(V) + b9(X) — b"(2); (5.19)

P = (V) + (V) + b9(E) + 679 (V) + T (2) = —bH(D).

gauge

Here, we use the fact that b7 (V) = b"(V) + 9/"(V) + b7/9(V) is an F invariant
coefficient that drops out from the running of the differences of the gauge couplings.
The same statement holds for b* (X) = b™(X) +b9/7(X) + b*/9(%) coefficient. G/H
and F /G represent the appropriate coset-spaces (e.q. states that are in G D H but
not in H belong to G/H). Note that we always have b(X) = —b(V)/3 since X is
the chiral superfield and V' is the vector superfield . In our case F corresponds to
SO(10) and G corresponds to the flipped SU(5) group.

Before we consider the beta coefficient of the Higgs sector we note the follow-
ing: the beta coefficients of the two supersymmetric Higgs doublets (triplets) are
b(2) = (3/5,1,0) (b(3) = (2/5,0,1)). Therefore, the sum of their contributions does
not affect the differential running and can be freely discarded. Moreover, as far as
the differential running is concerned, we can write b(2) = —b(3) = (0,2/5,—3/5),
where we subtract the overall constant to make b; = 0. This we do with all the
other beta coefficients in what follows. Recalling that there are two Higgs sectors

we can write:

b%{iggs = b(z)a
Diiges = D(2) + 2b(3) = b(3); (5.20)
Diilges = b(3) +2b(2) + 2b(3) = b(3).

Finally, we are ready to analyze the running at one-loop level. The relevant

RGEs and all the definitions are taken from Kim and Raby [224]. We present them

associated with the gauge couplings of U(1)y, SU(2)., and SU(3). respectively.
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here for completeness of this work. The one-loop RGEs for the gauge couplings in

the effective four-dimensional theory are

2m 2T Me Hi
— + [BTH(V) 4+ b7H(2) + b o | In == 4+ AES 4 A (521

where A’s describe the appropriate threshold corrections of the Kaluza-Klein modes

from Mg to M,. They are given by

M,
A= Tln i = b A + 0" Ay + oM Ay, (5.22)
C
with
N-1
2 +1——
A = Z mAl-ye (5.23a)
=1
N-1
2n+1
Ay = 1 - 23b
" 2+ 1— 2( (5.23b)
N
Am = g 2n—1 (5.23¢)

Obviously, Ay, Ay and Ajpp allow us to sum over the threshold corrections from the
corresponding regions.

Taking the large N limit, where 2N = M, /M, and using the approximation
In(l1+2) =z +---, Kim and Raby obtained

1 1.7 ¢ 1
Al = —-In2N——-In— — = — .24
¢ 1
An = 2+0(—= 5.24b
I 5 + (N)’ ( )
1 1. 7
AIH = 5 ln 2N + 5 ln 5 (524C)

This gives the following expression for the threshold corrections of the gauge and

the Higgs sector:

A (bHI + bI)l

M, L o I T 1.4 I
— —b)ln—+ = — ) .2
o 2(6 b)n2+2(b b)( (5.25)
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Looking back at Egs. (5.19) and (5.20) we have

2 M, 1 1
A= SNV = (V) lﬂg +3[07(V) = 0(V)]C, (5.26a)
AHiggs — _b(z) lng _ b(z)C (526b)

We are ready to evaluate the threshold corrections. Since b™ (V) represents
the beta coefficients of the gauge sector of the MSSM we have b™(V') = (0, —6, —9).
On the other hand, b9(V) represents the beta coefficients of the gauge sector of the
supersymmetric flipped SU(5): 24° + 1°. Therefore, b9(V) = (=3/5,—15,—15) =
(0,—72/5,—72/5), where we again subtract the overall constant contribution to

make by coefficient equal to zero. Using these results we find:

M, T 14 M, T 9
Agauge  — (). —4] 2In— — —(,—61 3In—- — = 5.27
(0.~ g7 +2In g = ¢ —6lgn +3lng = 50), (527a)
. 2.t 2 3. 7™ 3
Anggs — 0 S [ —_ln—= — . 527b
(0. =55 —5Gzng +50) (5.27b)

Our goal is to find the values of My and M, that allow the exact unification, at
least at one-loop level, of the gauge coupling constants at the scale M,. To be able
to do that we first recall the situation we have in the usual four-dimensional SUSY
GUT. There we define Mgyt to be the scale where a; (Mgur) = as(Mgut) = agur

with the running given by

s 2 Mcur
— + [BIEH(V) + B]H(2) + bl o] In : 5.28

If we ask how far off from agur the coupling asz(Mgur) is, and parameterize the
degree of nonunification via €3 = (27r/a3(MGUT) — 27T/O_JGUT), we obtain 5 < e3 < 6
depending on the exact spectrum of SUSY particles. We show one example of
differential running in Fig. 5.3. This example takes into the account not only the
one-loop but the two-loop effects on the running of the gauge couplings. We also
assume that the superpartners have masses of the order of m;, and take the lower

experimental limit tan 5 = 3 [47].
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51 In(u/Mgyr)

Figure 5.3: A plot of the differential running 6;(u) = 2m(1/c;(p) —1/aq (1)) versus
hl(,LL/MGUT), where MGUT =237 X 1016 GeV.

In the five-dimensional setting the deviation from the usual running starts at
M¢ scale. Therefore, at M, the left hand sides of Egs. (5.21) and (5.28) must be

the same. Thus, we have that

52(Mo) = [B(V) + B ()] In 5

A gauge Higgs
- A2 + A2 )

d03(Mg) = (2m/as(Maur) — 27/acur) (5.29)
M,
+ [B(V) + bH(2)] In =57
Mc
_ Agauge _i_Ainggs'
Solving these equations yields
Mg ~ 5.5 x 10" GeV, and M, ~ 1.0 x 10'7 GeV, (5.30)

where we use the same value of €3 as is used by Kim and Raby [224] (¢35 ~ 6) and we

take Mqur = 3 x 10'® GeV. These values imply that N = 90, justifying the large N
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approximations. In view of our results the following picture emerges. The effective
theory below the compactification scale looks exactly the same as the usual MSSM
theory. Then, once we go above M¢, there emerge the towers of the Kaluza-Klein
states that change the behavior of the gauge running through the set of small but
numerous threshold corrections. The theory finally yields the gauge unification at
M, > Mgyt where all the couplings of the theory enter the strong regime. At
that point the five-dimensional theory must be embedded into more fundamental
physical picture.

We should note that our result is not very sensitive to the exact value of
the small parameter (. On the other hand, the values of Ms and M, depend very
strongly on the value of e3. We have taken e3 ~ 6 to be able to compare our
results with the analysis of Kim and Raby [224]. This value, coming from the RGE
propagation of the experimental value of az(mz) = 0.118 0.003 from the m scale
to the GUT scale, could be reduced by a factor of two or three in near future.
Namely, the latest analysis of Erler and Langacker as presented in [229] suggests
the new value to be az(myz) = 0.12217500%. This would have a large impact on our
result since €3 ~ 3 would imply N = 2, making the whole KK unification picture
questionable. The model of Kim and Raby [224] might be in better shape since
€3 ~ 3 in their case suggests N = 27.

This chapter, as promised, has been devoted to the analysis of the gauge uni-
fication. This means that there are many questions left unanswered. For example,
one might ask what mechanism breaks four-dimensional N' = 1 supersymmetry. Or,
how the Higgs fields responsible for the missing partner mechanism get their VEVs.
Our intention was not to answer the questions like these but to demonstrate the
possibility of the five-dimensional Kaluza-Klein unification and this we did.

Our result for Ms and M, is very similar to the result obtained by Kim and
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Raby [224]. This is due to the fact that the biggest correction to the standard four-
dimensional running in both cases comes from the first term in Eq. (5.26a). Since
this term involves the beta coefficients of the SM gauge group the leading corrections
must be the same for all the schemes with the realistic low-energy signature. The
main difference between the two models in the gauge sector is generated by the beta
coefficients b9(V') of the gauge group on the hidden brane. In our case the hidden
brane has the flipped SU(5) group with b9(V) = (0,—72/5,—72/5), while in the
case of Kim and Raby the hidden brane harbors PS gauge group with b9(V) =
(0,12/5,—18/5). The main difference in the Higgs sector stems from the fact that
there is no distinction between the region I and region II in Kim and Raby case since
the additional boundary conditions do not affect the Higgs sector at all. Therefore,
the second term in Eq. (5.26b) is absent in their case. It is interesting to note that
the difference between the two models is in the terms that are proportional to the
small parameter (. Therefore, the limit ( — 0 gives the same result in both cases. In
that limit we obtain My ~ 3.2 x 101 GeV, and M, =~ 2.2 x 10*” GeV. Interestingly
enough, the same limit reproduces the results of the analysis on the gauge coupling
unification of the five-dimensional SU(5) model.

Even though the exact unification of the gauge couplings in the four-dimen-
sional flipped SU(5) cannot be excluded [228], one can never justify the charge
quantization and the hypercharge assignment without embedding it into SO(10).
In our case this is not an issue. As long as the matter fields are placed in the bulk or
on the visible brane we guarantee the charge quantization. [Of course, if the matter
comes from the bulk multiplets we might lose the unification of quarks and leptons
of one family.] The only ad hoc feature of our model is the existence of the Higgses
on the hidden brane. It is difficult to justify their U(1) charges unless they originate
from the 16 of SO(10). We argue that their U(1) charges are what one expects from
the fields of flipped SU(5) and that they provide the anomaly cancellation on the

139



hidden brane. The model can still produce interesting mass matrix patterns L = D

and N = U that we discussed in Chapter 4.

5.4 Conclusion

We have presented an SO(10) model in five dimensions. The model, admit-
tedly not complete, has served to demonstrate that the exact unification of the gauge
couplings is possible even in the higher dimensional setting. The corrections to the
usual four-dimensional running have been due to the Kaluza-Klein towers of states.
We have shown that despite the large amount of these states the corrections for the
MSSM running can be unambiguously and systematically evaluated. Demanding the
exact unification, the compactification scale is deduced to be Mq ~ 5.5 x 104 GeV
with the cutoff of the theory at M, ~ 1.0x 10" GeV. Therefore, the five-dimensional
theory exists in a rather large energy region before one needs to replace it with the
more fundamental one.

The usual problems of SUSY GUTSs, such as the doublet-triplet splitting
problem, have been solved in a natural way. For example, the presence of the flipped
SU(5) symmetry on the hidden brane has allowed us to implement the missing
partner mechanism. At the same time the presence of the SO(10) symmetry on the
visible brane still allows one to obtain desirable predictions for the quark and lepton
masses such as my = m,.

The model yields the low-energy signature of the MSSM. In addition, it allows
for the justification of the charge quantization as long as the matter lives on the
visible brane or the bulk. On the other hand, the unification of the quarks and the

leptons is possible only if the matter resides on the visible brane.
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