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A B S T R A C T

This work consists of three independent chapters, all of them dealing with the weak

interactions.

The subject of the first chapter is left-right symmetric theories. The two main

versions of these theories are discussed and compared. In addition, the K — K mixing

term is analysed: It has been known for several years now that in a left-right symmetric

model there are new contributions to the mixing of the kaons. However, the importance

of these contributions was not clear: Though (the absolute value of) every contribution

by itself is large — it could in principle happen that the various contributions will

cancel each other, leaving therefore no significant effect. We show that in the most

appealing left right symmetric model — the new contributions add up constructively.

Consequently, we may derive reliable bounds on the mass of the right-handed gauge

boson and the average mass of the (unavoidable) physical Higgs scalars. We also found

that the new contributions are proportional to a new CP violating phase. This phase

could serve as an alternative source for CP violation if the Kobayashi-Maskawa phase

fails to account for the observed e value. While all previous treatments of the K — K

system were limited to the minimal model, we succeed to show that our results hold

also in the general case of nonminimal models.

The second chapter deals with the possibility that W and Z are composite. Three

experimental tests are discussed: (i) Universality — if W is composite then its coupling

to the fermions are expected to deviate from universality. Since such deviations were



not yet seen — we derive a lower bound on the compositeness scale, (ii) Possible

enhancement of the reaction p + p —> Z° + 7 + any — we show that if Z° is composite

then the cross section for the process p + p —• Z° + 7 + any might be considerably

enhanced and this effect could be measured at CERN and Fennilab. (iii) The eeq events

of the 1983 run in CERN — we show that in contradiction to suggestions made in several

papers, these events may not be explained by a composite-Z decaying through a scalar.

In the last chapter we discuss the quark mixing angles. We suggest a new

parametrization to the mixing matrix. The new parameters have simple physical mean-

ing and they are simply and conveniently related to measurable quantities. We use

this parametrization to repeat the analysis of the potential problem the standard model

might have with the £-parameter. The results of the analysis are very conveniently ex-

pressed in terms of bounds on the new parameters. In this chapter we also discuss the

Fritzsch mass matrices and show that, presently, they are consistent with the minimal

standard model.
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1 Preface

Fourteen years ago, it was proved [i] that the Glashow-We'mberg-Salam (GWS)

model [2] is theoretically self-consistent. Since then, the model, proving itself to be also

in agreement with experiment, gained more and more respect, till it became known as

the "standard-model".

In spite of its big success, there are still some facts which inspire people to suspect

that the standard model is not the fundamental theory of the world but rather an ef-

fective low energy theory. These facts are:

(1) The Higgs-scalar becomes unnatural at energies around 1 TeV. This unpleasant fea-

ture of the scalar would have been cured if there is some underlying physics whose scale

is 1 TeV or less. Technicolor theories (for example) have suggested a solution to this

"scalar-problem".

(2) Parity and charge-conjugation are explicitly broken by the weak interactions of the

standard-model. This feature of the model might be considered as somewhat "unaes-

thetic", and it leads to speculations about some underlying physics in which parity

and charge conjugation are only spontaneously broken. The simplest extensions of the

standard model which incorporate spontaneous breakdown of P and C are the ''left-

right-symmetric models". They are the subject of the first chapter of this work.

(3) The standard model has many fundamental particles and many free parameters.

The "proliferation" of particles and parameters might hint that the standard model is

not fundamental. An even stronger hint in this direction we get from the pattern which

is observed in the spectrum: The particles are falling into three "generations", with in-
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creasing masses. The mixings between the generations seem also to have some definite

pattern. The standard model has no means for explaining the proliferation of particles

and parameters, nor may it provide explanation for their pattern. The way is therefore

open for imagining underlying theories which might explain these observations. Some

of the candidate underlying theories are horizontal models, grand-unified theories and

composite models. In the second chapter we discuss some of the aspects of composite

models. The subject of the third (and last) chapter is the quark mixing angles and their

pattern.

(4) In the last few years a possible experimental difficulty for the standard model have

been discussed: It was observed that if the t-quark mass is relatively low and if b-decay

rates are sufficiently slow then the model fails to explain the observed value of the CP

violating parameters e and e'. In the framework of the third chapter we analyze this

potential problem in detail. The problem is also discussed in the first chapter where we

show that left-right symmetric theories have an additional CP violating phase whose

contribution to e is independent of the t-quark mass or b-decay rates.

(5) An important fact is our IGNORANCE: The standard model of weak interactions

have been tested mainly in the low energy regime, while the "real test" is at the typical

scale of the model, namely, 100 GeV. This fact used to encourage the "composite-W"

people (and also supporters of other low-energy-nonstandard-models). Recently, exper-

iment have penetrated the higher energy domain, and the W and Z have been observed

and their mass measured. However this results are still preliminary and we are as yet

quite ignorant of the physics of 100 GeV (for example: The mass ratio of the W and

- 1 -



Z is not yet accurately measured, the width of W and Z is not yet known, the Higgs

particle was not observed). The composite-W models do therefore still compete with

the standard model. The second chapter of this work deals with the possibility that the

W and Z are composite and SU{2)w is a global symmetry.

(6) Nowadays the term "standard-model" refer not only to the electro-weak interactions

of G WS but also to the QCD model of strong interactions. There are several problems

of the ii.iout.i vvii.ic.u are strongly connected to the strong interactions, like: The strong

CP problem, chiral symmetry breaking and the A7 = \ rule. These problems will not

be discussed here.

In this work we deal with some of the above mentioned problems of the weak

interactions of the standard model. In the first chapter left-right symmetric models are

discussed. The subject of the second chapter is composite W and Z and in the last

chapter we discuss the quark mixing angles in the framework of the (minimal) standard

model.

Every one of the three chapters is independent of the others and has its own intro-

duction and summary. References are collected into a single list and tables, figures and

appendices appear in the end.
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Chapter 1

Left-Right Symmetric Theories

1.1 Introduction

The standard model [2] though successful in all experimental tests has, from an

"aesthetic" point of view, several unattractive features. One of them is the explicit

breakdown of parity (P), charge conjugation (C) and CP. The left-right symmetric

(LRS) models are the simplest extensions of the standard model in which parity or

charge conjugation are restored [3] . In an LRS theory the Lagrangian is invariant under

the gauge symmetry SU{2)L X SU[2)R X 17(1) and under P or C. The discrete symmetry

(P or C) relates the coupling constants g^, gn of SU(2)L, SU(2)R to each other so that

9L = 9R- At a high energy scale the discrete symmetry breaks down spontaneously

together with the gauge symmetry, which breaks to the standard 517(2) x U(l). From

this scale downward the left-right symmetric theory mimics the standard model, except

for small corrections.

These small corrections are, at present, our only tool for studies of the "hidden

right handed sector" of the theory. It turns out that the most important corrections are

strongly dependent on the right handed quark mixing angles. Therefore, it is necessary

to have some understanding of these mixings.
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In 1977 Beg et al. [4] introduced the following assumption: The right handed

mixing angles are equal to the left handed ones. The meaning of this assumption is that

parity is conserved in the quark mass sector, i.e., the information about the spontaneous

breaking of parity does not reach the quark mass matrices. Beg et al. called their model

"manifest" since parity was manifested in the low lying quark spectrum. The manifest

LRS model was quite popular and important calculations were done in its framework.

However we found the "manifest" model unsatisfactory for two reasons:(i) The

assumption that P is unbroken in the quark mass matrices is unjustified (as we will

show), (ii) In a manifest model the discrete symmetries C and CP are explicitly broken.

Since the main motivation for LRS models is "aesthetics" — we find that models which

are symmetric under both P and C are more appealing.

We thus suggest an alternative point of view to the mixing angles in LRS theories:

Instead of concentrating on parity — consider charge conjugation. It turns out that

in an LRS model with C-conserving Lagrangian the (tree-level) quark mass matrices

are necessarily C-invariant, i.e., the information about the spontaneous breakdown of C

may never reach the quark masses. Thus, the right handed mixings in such models are

always related, through C, to the left handed ones (exact relations will be given later).

In section 1.2 we introduce the LRS theories in more detail with emphasis on the

manifest and C-invariant models. (We call the C-invariant models "CCC" - Charge

Conjugation Conserving). The K — K mixing parameter, M ^ , will be discussed in

section 1.3. Four years ago Beall, Bander and Soni [5] showed that M12 is very sensitive

to effects of the right-handed currents. They were therefore able to derive from Mi 2
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a strong lower bound on the mass of the right handed W. The computation of Beall

et al. was carried out in the framework of two-generation manifest LRS model. Many

authors [6-11] have since discussed Mi2 in various LRS models, pointing out important

contributions which were neglected in the original work. We here collect all these

contributions and complete them in order to get Af12 for a CCC model. We show that

M I J ( C C C ) has an especially simple structure which enables us to derive interesting

conclusions on phenomenology of CCC models.

1.2 Some Features of Left-Right Symmetric Models

In this section we describe the particle content of an LRS theory (subsection 1.2.1)

and the transformation rules of the particles under the discrete symmetries P,C and CP

(subsection 1.2.2). We then briefly review the breakdown of the gauge symmetries and

give the masses of the W-bosons in terms of the parameters of the theory (subsection

1.2.3). Finally, in subsection 1.2.4 we discuss the mass matrices of the fermions and

introduce the manifest and CCC models.

1.2.1 The Particle Content of a Left-Right Symmetric Model

The gauge particles of SU{2)L x SU{2)R x U(l)B-i are the three WL's, the three

WR's and the vector-boson which couples to (B-L). After symmetry breaking the neutral

vector-bosons mix to form the photon, the Z and the Z'. The charged bosons mix slightly
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and form the mass eigenstates W\ and W2

The fermions are the quarks, q, and the leptons, I. The left handed quarks, q£

the left handed leptons, l^ , are grouped into doublets of £17(2) ̂  and are singlets under

SU(2)R. The right handed quarks, qR , and leptons, lR', are grouped into doublets

of SU(2)R and are singlets of SU(2)L. (The superscript (°) stands for interaction

eigenstates, as opposed to mass eigenstates.)

The Higgs spectrum of an LRS model is not unique and depends on the specific

model. However, every LRS model must contain at least one complex scalar $ in the

(h 5*)° representation of SU(2)L X SU(2)R X Z7(1)(B-L)- This scalar is necessary be-

cause it is the only one which may provide the charged fermions (i.e. the quarks and the

e, (1, T ) with nonzero mass. We need at least one complex $ because a single real $ gives

the u-quarks and the d-quarks equal masses. $ 's in ( | , | )o representation do not ex-

haust the Higgs spectrum. This is because < $ > breaks SU{2)L x SU[2)R x U(l)(B_L)

into £7(1) x 17(1) while the gauge symmetry should be broken into a single £7(1). There

exist several suggestions for the additional Higgs fields (see e.g. [3] versus [12]). We

will restrict ourselves to the class of models in which the additional Higgs fields are A^

and AR in the (1,0)2 and (0,1)2 representations. The advantages of these models are

that (i) They may provide a natural explanation for the smallness of the left-handed

neutrino mass [12] and (ii) all the Higgs fields, $, AL , AH may be formed from fermion

bilinears (i.e. $ ~ q^qR or IL^R, AL ~ 1^1^ , AR ~ IRIR). Consequently, this Higgs

spectrum is favorable from the point of view of composite models [13] .
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1.2.2 Parity and Charge Conjugation in LRS Models

The P and C transformation rules are summarized in the following table:

under parity under charge conjugation

• 4 0 )

where QL?R\ are the left (right) handed quark doublets; <r2 is a Pauli matrix in the

two-dimensional space of the Weyl spinors; &~£?Ry ̂ IR) an<i ^L(R) a r e *^e c n a x I e 2,

1 and 0 components of A^^jiy, $ is denoted as a 2 x 2 matrix:

We note that $ and r2$*r2 have the same properties under the gauge group. Therefore

the C and P transformation rules of $ are not unique: Under parity $ could transform
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to T]p$+ or to r]p(T2$*T2) + • (T]P is a phase, called the "intrinsic parity" of <§.) Simi-

larly, under charge conjugation $ could transform to r)c^1 or to ycfa^*^)1- In order

to choose the transformation rules for <5 we employed two (different and unrelated)

criteria:

(i) <& should transform like a fermion bilinear, i.e., like qi/fR OT IL^R- This requirement

is in the spirit of composite models [13] .

(ii) Consider a minimal, P and C invariant LRS model, (a "minimal" model has a

minimal Higgs spectrum: A single $ and only one pair of A fields). Every choice of

the P and C transformation rules for $ leads (through the requirement for P and C

invariance) to constraints on the Yukawa couplings and hence to constraints on the mass

matrices. We demand that these constraints will not lead to nonrealistic mass spectrum,

(for example — we do not allow identical mass spectrum in the u and d sectors).

It turns out that every one of the two criteria singles out the transformation rules

which are given in the table above.



1.2.3 Breakdown of Gauge Invariance and the Masses of the

Gauge Bosons

We first discuss the case of the minimal model. The vacuum expectation values

(VEV's) of the Higgs fields are:

< Ar, >=

/ 0 \

\VLJ

, <AR>=

0 \

, < $ > =
k 0

0 k'
(1.1)

These VEV's break the gauge symmetry and give the gauge bosons masses. The mass

matrix of the charged gauge bosons is:

. ( 2 | VL |2 + | k |2 + | k' |2 -2k'k* \
m

2(^--fc) = V (1.2)
2 1 * 2 2 12 I

Since the right-handed W should be much higher in energy than the left-handed W we

find that:

| VR | > | k | , | k' | , | VL |

In order to secure the preservation of the Weinberg mass relation:

m(W) = m(Z)cos8w

we must also require

|2 » | vL

We denote the W mass eigenstates by W\, W2. Their masses are:

2 | VR |2
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We denote the mass ratio m2(iy1)/m2(H-^) by /?. Wi, W2 are equal to Wi, WR up to

small mixings:

Wl ~WL

where: £ = ^

Note that | £ | is smaller than /?:

22 | VR |> ""

Several years ago it was believed that /? could be as large as 0.1 [4] . The bound

| £ |< 0 seemed thus insufficient since an analysis of nonleptonic K-decays gave a much

stronger bound [14]: | £ |< 0.004. It was therefore customary to assume that | k'/k |«C 1

and so:

I kk'* I k'

However, as we will show, /? is probably not larger than 10~4 and consequently the

bound

is satisfactory. We. therefore do not assume that | kf/k |<C 1.

The generalization to the case of a nonminimal model, where we have several At's,

AJJ'S and <£'s, is straight-forward. All the equations above should be modified by the

replacements:
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yL
2

k

Vh{R)
a

fc(0 |2

where a is an index which goes over the various &L(R) fields and i is an index for the

various $ fields.

1.2.4 Quark Mass Matrices and Introduction to the "Manifest"

and "CCC" Models

This subsection is organized as follows: We first discuss the Yukawa couplings and

examine the constraints imposed on them by P and C invariance. We then study < $ >

and find out which of the discrete symmetries P, C, CP is broken by this VEV. Then

we introduce the "manifest" and "CCC" models and discuss the properties of the quark

mass matrices in the two models. Finally, we give a short comparison of the manifest

and C-conserving models. All this is done in the framework of a minimal model. The

generalization to the nonminimal case is given in the end.



The Yukawa Couplings

The Yukawa interaction is:

W + q^ Br2V r ^ + h.c. (1.3)

In (1.3) q^ , q^ carry a generation index. A, B are matrices in generation space, and

r2 is the Pauli matrix acting in the SU(2)L or SU(2)R space.

It is straightforward to show that if the Lagrangian is P-invariant then the matrices

A, B are hermitian, if the Lagrangian is C-invariant then A, B are symmetric and CP

invariance implies that A, B are real.

The VEV of $

Though the symmetry between Left and Right breaks at a very high scale (at

^WR)), the information about this breaking reaches the quark mass matrices only at

much lower energies (at m(WL))'- To tree level this information arrives only through

the VEV of $. We should therefore check which of the Left-Right symmetries is broken

by $. The transformation rules for $ clearly imply that < $ > never break C. < $ >

breaks P and CP if fc, fc' are not real. We note here that by an SU{2)L x SU(2)R gauge

transformation we can always make r̂ real. Thus, as a matter of fact, < $ > breaks P

and CP when k • k' is not real.
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The Manifest Model

In a manifest model the Lagrangian is P invariant. P is spontaneously broken by

Ax, and AR. < $ > is assumed to be real. Thus in a manifest model the information

about parity-breaking does not reach the quark mass matrices. These matrices are:

Mu = kA + k'*B

(1.4)
Md = k'A + k*B

In a manifest model A, B are hermitian and k, k' are real. Thus Mu, Md are also

hermitian. As we show in Appendix A, the hermiticity of M u , Md implies:

CR = F«(±)CLFd(±) (1.5)

where CL, CR are the left-handed and right-handed mixing matrices; Fu(±) and Fd(±)

are diagonal unitary matrices with eigenvalues ±1.

Relation (1.5) is the low energy "manifestation" of the symmetry between Left

and Right. This "manifestation" made the "manifest" model convenient to treat and

thus very popular. However, we find that this model suffers from a uerious drawback:

The manifestation of parity in the quark mass matrices does not result from the model

but is rather assumed. Equation (1.5) stems from the assumption that < $ > does

not break parity. This assumption is unjustified, since < $ > couples to Aj,, AR and

>, < AR > break parity. Moreover, < A^ >, < AR > break parity at a scale
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much higher than < $ >.

Note also that in a manifest model C (and CP) must be explicitly broken: Suppose

C would have been conserved in the manifest Lagrangian. Then, in the quark mass

matrices both P and C would have been conserved (since by assumption < $ > con-

serves P and it always conserves C). We then end up with CP invariant mass matrices.

This result is clearly incompatible with experiment. We therefore conclude that in the

manifest model C and CP are explicitly broken.

The CCC Models

In a C-conserving LRS model C is spontaneously broken by < A& >, < AR >.

However, the information about C breaking never reaches the tree level quark mass

matrices, since < $ > may not break C. The Yukawa couplings A, B are symmetric

and thus, the mass matrices M u , Md are also symmetric. As we show in Appendix A

the symmetry of M u , Md implies:

CR = FuCl{FdY (1.6)

where Fu, Fd are diagonal unitary matrices. It is actually possible to find particular

phase conventions in which the relation between CL and CR is even simpler:

= C*L
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The relation (1.6) is the low energy manifestation of a symmetry between left and

right. This manifested symmetry is not parity but charge conjugation.

We distinguish two kinds of CCC models which we call CCCi and CCC2: The

CCCi models have a higher degree of symmetry: The CCCi Lagrangian is invariant

under P and C (and under CP). We note that for these models we must assume that

< $ > does break P (otherwise the mass matrices are CP invariant). This assumption

(which we find to be perfectly reasonable), is the opposite to the manifest model as-

sumption. The CCCi models have C-invariant Lagrangian but P is explicitly broken.

From the point of view of "aesthetics" these models are no better than the "manifest"

model, however CCCi models are interesting as possible effective theories of grand uni-

fied models [15]. Consider for example an SO(10) theory. One of the possible chains of

spontaneous symmetry breaking is:

5 0 ( 1 0 ) - * . . . - > SU{3)C x SU(2)L x SU[2)R x U{1) - + . . . - > SU{3)C x SU{2)L x 17(1)

The SU(2)L and SU(2)R are related to each other through a discrete symmetry which

is included in SO(10). This discrete symmetry may actually be identified as charge

conjugation. As for parity — this symmetry is not included in the SO(10) group and

may even be explicitly violated in the Lagrangian.(Actually, in order to account for

the observed baryon asymmetry in the universe it is preferable that parity is explicitly

violated [15]). We therefore find that the low lying effective LRS theory of SO(10) is

necessarily C-invariant but it may be P-violating.

We favor the CCC! models because of their nice symmetric feature. In our pa-
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pers the term "CCC model" refers actually only tc the CCCi models. In table 1 we

summarize the properties of the manifest and CCC models. Note that with respect to

the quark mass matrices C plays a more important role than P: If the Lagrangian is

C invariant then automatically C will leave its traces in the mass matrices; if there is

P invariance then only under special and unjustified assumption, P manifests itself in

the quark mass matrices. We thus find CCC models to be more attractive than the

"manifest" model.

1.3 K° - K° Mixing in Left Right Symmetric Theories

The various contributions to the K — K mixing term M12, were computed in

the last five years in the framework of different LRS models. Here we present the

leading contributions to Mi2 in the manifest and CCC models and discuss the relative

importance of each contribution. It turns out to be most convenient to express M12 in

terms of M12(standard-model). We therefore start with a review of M12 in the standard

model and then turn to the discussion of M12 (manifest) and Mi2(CCC).
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1.3.1 Mi2 in the Minimal Standard Model

two-generation-case:

The original computation of M i 2 was carried out by Gaillard and Lee [16] .

They considered the Feynman diagrams of figure 1.1:

The relevant interactions are:

^flt}-[\ " ls)CD(W+y + h.c. (1.7)

where g is the weak-interaction coupling constant

U are the physical (mass eigenstates) up quarks: U = (")

D are the physical (mass eigenstates) down quarks: D = (j)

C is the Cabibbo mixing matrix.

In the course of the computation the following approximations were introduced:

(i) External momenta are neglected in the internal line propagators.

(ii) Terms of second order in the small quantities ( m 7 ^ ) 2 , ( ^ ) 2 a r e neglected (mu,

mc are the masses of the u, c quarks and m(W) is the mass of the W-boson). The result

is presented in terms of an effective interaction Lagrangian:

lj is related to M\2 through:

-{K° | L{n/f | K°) = (M2)12 = 2mKM12 (1-9)

where m^ is the kaon mass.
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In the computation of the matrix element —(K° | L'̂ y- | K°) we actually take

into account the nonperturbative QCD effects which bind the 5 and d quarks into a

K°. In order to estimate this matrix element Gaillard and Lee introduced the so called

"vacuum insertion approximation": In this approximation one sums up all four Fiertz

transformations of the operator djJ"fliSildi/'yflSiJ and then, for every one of the four

operators, only the contribution of one intermediate state, the vacuum, is taken into

account (the contribution of the vacuum is computed through PCAC relations). Though

the vacuum insertion approximation seem to be very crude it turns out that it does give

a correct order of magnitude estimate. We will therefore use this approximation through

all the following discussion. (For arguments which justify this approximation for LRS

models see [5],[7].) Using the vacuum insertion approximation one gets:

(K° I dLl»sLdLlllsL I R°) = 2-f2
Km\ (1.10)

where fjc is the K decay constant. Equations (1.8) , (1.9) and (1.10) imply:

M12 = \%A .tt (coS9csin6c)
2 ( - ^ V \&mK (1.11)

2 y/2 47rsm20w \m\W) J 3

M\2 is related to Amjc, the K-mass difference, through:

Am*- = 2Re Ml2 (1.12)

Substituting the experimental values for Gp (~ 1.1-10~5 GeV~2), a(l/l37), sin2Bw{~

0.22), sin0e{~ 0.22), mc(~ 1.5 GeV), m(W) (~ 82 GeV) and fK(~ 165 MeV) we find

that the minimal two-generation standard model predicts: ATTIR/mx ~ 0.57 • 10~14.

- n -



This result is in reasonably good agreement with the experimental value:

0.71 -lCT14,

Note that Amx/mx is extremely small. The success of the Gaillard-Lee compu-

tation in giving the correct tiny M12 is due to the GIM mechanism: this mechanism is

responsible for three suppression factors in (1.7) . These are: a. (which appears in addi-

tion to Gp because the process is of fourth order in the weak interaction), (cos9csin6c)
2

and (mc/m{W))2.

We point out that there is a kind of inter-relation between the last two suppres-

sion factors: when we will consider the three-generation case there will be new terms.

In such a new term the factor (mc/m(W))2 may, e.g., be replaced by {mt/m(W))2

(which is much larger than (mc/m(W))2). However, in this case the mixing factor

(cos9csin0c)
2 will be replaced by the mixing factor of the t-quark (which is much smaller

than (cos9csin6c)
2). The net result will be that the new additional term will not be

larger than the original Gaillard-Lee term.

The computation of equation (1.8) was carried out in the 't Hooft-Feynman gauge

and thus, the contribution of the unphysical charged Higgs should have also been taken

into account. The diagrams involving the neutral Higgs are shown in figure 1.2 and the

relevant interaction terms are:

N/2m(VK) [ 2 2 J

where Mu,Md are the diagonal mass matrices and <j!>(+) is the unphysical Higgs. Note

that the unphysical Higgs coupling to quarks is suppressed (relative to the W-coupling)
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by mq/m(W) (mq is the mass of one of the quark fields of the corresponding ver-

tex). Therefore the contribution of diagram 1.2(c) to M12 is O ([irnq/m(W))4) and

it is clearly negligible in the two-generation case. As for diagrams 1.2(a) and 1.2(b):

the Higgs coupling introduces one factor of (mq/m(W))2. It turns out that the left-

handed character of the W-coupling together with GIM mechanism introduces another

factor of (mq/m(W))2. Thus the whole contribution of the unphysical Higgs particles

is O ((mg/m(W))4) and may be neglected. Obviously, if a right-handed W is taken into

account or if the three generation case is considered, the unphysical Higgs contribution

should be reconsidered.

We denote M\i of Gaillard and Lee by Mu{G — L). Since 2M\i(G — L) is so

successful in estimating Amx we will often approximate Amjf by 2Mi2[G — L).

Finally, we add a remark on QCD corrections: According to [17] short range cor-

rections do not introduce significant effects. * 2 In the following we will not take into

account these effects. We expect such an approximation to be valid within a factor of

1 For a discussion of long range corrections see [18].

2 Short range QCD corrections in LRS models are mentioned in [5] and discussed

in great detail in a recent paper by Ecker and Grimus [19].
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Three Generation Case

In order to discuss the three generation case — we make use of a specific

parametrization of the generalized Cabibbo mixing matrix which we introduce in the

third chapter of this thesis:

C = —•Sl,2c2,3 el
6*

,-iS \

52,3C1,3

where: Sij = sinOij, C{j = cosBtj, and all flt>y are between 0 and 7r/2. Oij is the

mixing angle of the zth and j th generations.

0it2 is actually the Cabibbo angle 6C- The angles #2,3 and #1,3 are determined from

b-decay. The present experimental situation [20-22] implies [23-24] that s2,3 < 0.065

(since n ~ 1 ps) and s1>3 < 0.0087 (since r6 ~ lps and R(b -* u) < 0.04). For

our purposes we may approximate (this approximation was originally proposed by L.

Wolfenstein [25]):

1 —iS \

1 51,2 51,32 *

-•Sl,2 1 52,3

V 51,252,3 — 5i,3e' —52,3 1 /

the computation of M12 in the three-generation case involves reconsideration of all the
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diagrams of figures 1.1,1.2. The final result is [26]:

1 GF a 2 2
M l 2 f

•> / —iS\ j / xt \ , J •ct / / X
' < S 1 I 2 5 2 I 3V' S 1 I 2 5 2 I 3 — s l , 3 e J - iCc i n I — 1 H I I

L \XCJ 4 1 — X t \ \ l —
2 I —tfi\2 -i 3 3^(1 + If) 3 XJ.

S2>3(51,3S2,3 - « l , 8 e ) Xt 1 - - - y — - — W +-2 ( 1 -
(1-14)

where xc is (mc/m(W))2 and xt is (mt/m(W))2.

The first term in the curly bracket is the Gaillard-Lee term, the other terms arise from

the presence of the third generation.

While in the two generation case M\2 is real — in the case of three generations an

imaginary, CP violating part, appears. We now discuss the real and imaginary parts of

: It is straightforward to verify that the contribution of the third generation to

the real part of M\2 (or: to Amx) is not significant: if m* is around 45 GeV [27] then

the strong constraints on 62,3,51)3 imply that the t-quark contribution is not larger than

-15%.

ImMi2m. Contrary to the real part of M12 — the imaginary part (in the case of the

standard model) is totally due to the presence of the third generation [28]. / m M u is

related to the CP-violating parameter e through:

JmAo_\ }

V2ReA0J

where Ao is the K-decay amplitude to two pions coupled to zero-isospin. In the minimal
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standard model it is possible to show that, to first approximation:

(1.14) and (1.16) imply that e is proportional to S2,3-Si,35m6 and that e gets

larger values as m,t increases. We thus find that if further measurements of b-decay

will give stronger bounds on S2t3,sits and if mj is indeed around 45 GeV (or less) then

ImM\2 may turn out to be too small 3 , i.e., ImM\2 will provide an e value which is

substantially smaller than the experimentally observed e. We will return to this point

when we discuss € in the LRS model.

1.3.2 M12 in the Minimal LRS Model

Two-Generation Case:

The contributions to M12 which we take into account are of lowest order in the

weak interaction and of zero or first order in /?. These contributions include the W-

W box diagram, the unphysical Higgs contribution, the tree diagrams of the neutral

physical Higgs particles and the box diagrams involving the charged physical Higgs.

(i) The W-W box diagram [5]:

This contribution involves the diagrams of figure 1.3. The corresponding interactions

3 For a more detailed discussion see section 3.3.
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are:

h.c. (1.17)

were CR IS given by (1.5) for the manifest model and by (1.6) for the CCC model.

We note here that the WL — WR mixing may be safely neglected. It turns out that all

contributions to Jvll2 which involve £ are either of second order in £ (and consequently

of second order in /?) or they are suppressed both by a power of £ and by one or two

powers of ma/m[W), md/m(W). We will therefore completely ignore £ through all our

discussion of Mi2 . Ignoring £, we identify the diagram 1.3(a) with diagram 1.1, and the

first term of the interaction (1.17) with (1.7) .

We find [ 5]:

^~W)(manifest) = l-% ° {cos6csin6c? • ( - ^ Y - L

( ) - l)(K° | dLsRdRsL

where the ^ sign is determined by the relative sign of the two phases in Fd(±).

For the CCC model we get [29]:

j J^CCC) = ^^(cos9sin9y • f ^ V L12

| K°) - ^ • 2 • 4(ln (??!¥A) - 1){K° \ dLsRdRsL \ K°

(1.19)

where 7 is the difference between the two phases in Fd.

The first term in the square brackets is the usual Gaillard-Lee term. The sec-

ond term arises from the contributions of diagrams 1.3(b), 1.3(c). As expected, this
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contribution is suppressed by one power of /?. However, there are also several enhance-

ment factors:(i) A factor of 2 since two diagrams are contributing, (ii) a factor of

4(ln(m(Wi)/mc)
2 — 1) ~ 28. This factor arises from the loop integration, (iii) An

additional enhancement from the matrix element:

mK

dLsRdRsL
mK

ma +
+ \

(1.20)

Substituting mK = 498 MeV, mB = 150 MeV, md = 7 MeV we find that the ma-

trix element of (11) is enhanced by a factor of ~7.6 relative to (3). Altogether the

enhancement factor of the second term amounts to ~430. Equations (1.18) and (1.19)

therefore imply:

M%~W(manifest) = M12{G -L)[l± 430)9) (1.21)

r-W (CCC) = M i 2(G - L) • (1 - 430/?et-1f) (1.22)

We wish to point out the following interesting point: We mentioned above that the

success of the Gaillard-Lee computation in achieving the correct tiny M\2 is due to the

GIM mechanism: GIM is responsible for the suppression factors a, (cos9csin9c)
2 and

(mc/m(V7))2. We see that the W\ —W2 box diagrams are also suppressed by these three

factors. However, the detailed computation shows that the origin of the (mc/m(W))2

factor in this case is not the GIM mechanism. The (mc/m(W))2 factor comes from the

propagators of the internal quarks and it is due to the fact that every internal quark

line couples at one end to a left-handed vertex and at the other end to a right-handed

vertex.
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(ii) The unphysical Higgs contribution

There are two unphysical charged Higgs fields (}>1[,$% which are to be "eaten up"

by W^,W£', respectively. All contributions of cj>% to Mi2 are of second order in /?: the

propagator of (f>% introduces one /?-factor and its coupling to the fermions introduces

another /?. Therefore we will not take <p^ into consideration. As for <j>* — we may

identify it with the unphysical Higgs <j>+ of the standard model. Its interactions with

the fermions are (up to negligible corrections) given in (1.14) . The diagrams involving

<£i~ are described in figure 1.4. The diagrams 1.4(a)-1.4(c) are identical to 1.2(a)-1.2(c).

Therefore, as discussed above, we may neglect their contribution in the two-generation

case. The contribution of diagrams 1.4(d) and 1.4 (e) was computed by Mohapatra,

Senjanovic and Tran [10]. According to them it amounts to:

Manifest) = Tl >

dLsRdRsL | K°) (1-23)

dLsRdRsL | K°) (1-24)

=*-Ml2{G - L)0e 1 5 / n (

(iii). The neutral Higgs contribution:

In a minimal LRS model there are four neutral complex scalars (A£, A^, $° , $2)

or eight real neutral scalars. Out of these eight scalars — two are unphysical, their

couplings to the quarks are diagonal and consequently they do not contribute to Mi2.
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The other six scalars are all physical. Four of the physical scalars may not contribute

to Mi 2: Three do not couple to quarks at all (they originate from the A-fields) and the

fourth couples diagonally to quarks (this is the neutral physical Higgs of the standard

model). The last two Higgs fields we combine to a single complex scalar, H°. The

coupling of H° to the d-quarks is:

•QHDL +
2kk*

:Md DRH° + h.c. (1.25)

where QH = hfalLi a (Note that QH is well defined: |A;| ̂  \k'\ since otherwise the mass

spectrum in the u-quark sector becomes equal to the mass spectrum in the d-sector.

Clearly: QH > 1. We assume that QH is 0(1).

The natural value for the mass of H° is around m(W2) (for a discussion of this

point see [11]). Therefore we will consider H° contributions only to first order in

/3H° = m2(Wri)/Tn2(H°). H° contributes to M12 through a second order tree diagram

(see figure 1.5). For simplicity we assume that the masses of the two real components

of if0 are equal. Then, we get [10] [11]:

(manifest) =

IPH° •QH

QH-

16

11,

a

600)

v 3
4

(1.26)
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J(CCC) =

mK

3 ' — x 2

I - I 4-
a 4

= -M 1 2 (G - L) (pHo • e'1 • Q\ • 11,600)

(1.27)

The large enhancement factor of 11,600 arises because the ^-contribution is of second

order in the weak interaction. We note that if the two real components of H° are not

equal, then /?#o should be replaced by a number which is between /?#, and /J#a (where

Hi,H2 are the two components of H°).

(iv) The charged physical Higgs contribution:

In a minimal LRS model there exist four singly-charged Higgs fields (A£, A^, $^\

$ J ) . Ou* °f these four — two are unphysical and their contribution was discussed

above. Two Higgs fields axe physical. One of them does not couple to quarks at all and

therefore may not contribute to M\2- The other charged Higgs we denote by H+. Its

couplings to fermions are:

QH • {*L [-^CR+WTWc^d] DR

(1.28)

contributes to Mn through the box diagrams of figure 1.6. Its contribution [10] is



given by:

Af|2 (manifest) =

in9cy.(-^)2pH+ .2-In

dLsRdRsL | K°) =

2 y/2 4irstn2ew W^i)/ \PH+ J ,

- L) • 0H+ • 15/n

2 y/2 47rain2flvv V m ( w i ) / \PH+J . .
(1.30)

= -M 1 2 (G - L)

where /3H + = m2

For simplicity we will assume from now on that @Ho — /?#+ = /3JJ.
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Discussion of M\i in Minimal LRS Theories:

We collect all the contributions to M12 and get:

M\2 (manifest) = Mi2[G — L)

• {1 =F [430/3 + 15/3/n (j\ + Q\ • f 11,6000* + 150Hln{-l-)\] }

(1.31)
M12(CCC)=M12(G-L)

• {1 - e*» [430/J + 15/Hn Q j + Q^ • fll,600/?H + lspHln(j-)\] }

(1.32)

The first term in the curly brackets is the old Gaillard Lee term. Note that all the other

new contributions have the the same phase and thus they all add up constructively.

(this fact was pointed out by Ecker et al [19] and independently by us [30].)

We denote Ml2{manifest) and Af12(CCC) together by Mi2{LRS). The phe-

nomenology of the K — K system tells us that Mi2(LRS) is almost real and that

|Afi2(I-i25)| ~ jAmjf. As mentioned above, M\2{G — L) is also of the order of ^ATTIR .

Thus, we find that the absolute value of the sum of all new contributions to Mi2(LRS)

is of the order of {Amx or less:

Ml2(G-L) • I (430/3 + 15/Mn (j\ + Q2
H • (ll,600/3w + 15/?»/n ( j - ) ) ) I <

(1.33)

(1.33) readily implies [5], [29] :

430/? < 1 or: m[W2) > 1.7 TeV

and [19], [30]:

ll,600/?H < 1 or: m[H) > 8.8 TeV
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These results hold for both the manifest and CCC models.

Consider now CP violation: Clearly in the two generation case CP is not violated

in M\2(manifest) but it is broken in ilfi2(CCC). This is due to the phases of Fu and

Fd. For the e parameter in the CCC model we use the approximation:

y/2AmK

(some arguments which justify this approximation were given by Chang in [8] ). We

find [8-9], [19], [29-30] :

e ~ e1'* | -sin*/ 430/?

+ 1 5 ^ n (j) + & (U.600/?H + (^))J }
(1.34)

three-generation case

For convenience we will concentrate on the case of the CCC model. In the end we

will comment on the case of the manifest model.

We introduce the following notation

*.• = (cLyitd(cL)it.

where i = u,c,d and a» is the i'th phase in the diagonal matrix Fu.
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Following Mohapatra, Senjanovic and Tran [10] we denote

z?fn(-*-)

In terms of these quantities:

(a)

+ to
12

iLaRiRsL

^ dLsRdRsL \ K°) (b)

— dLsRdRsL | K°) (c)
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+
••J mK

dLsRi
RsL

|2Jbib ' • 1 2

-

dLsRd
RsL

2 y/2 4itsin2dw

| 2 ibJb* |, '*|2

cy) + -J2(a;m,a:y,

(1.35)

The coefficients of AjA'y in equations (1.35) (b-d) are symmetric in i j . Therefore,

as a second step in these equations we replaced AJA'y by iZe(AjA'y). With this replace-

ment it becomes clear that all the contributions which arise from the right-handed W

and from the physical Higgs fields have the same phase: t ' . An exception is the last

term of Af}2 ' . Note that this exceptional term is very similar in form to the standard

model M\2- It involves only the left-handed mixings (i.e., it involves only A,- and not

AJ), and its matrix element is identical to the matrix element of M[2
 l~ . In the fol-

lowing we will neglect this last term of M\2 because it is suppressed by 0H and has

no compensating enhancement factor. We remark that the above contributions to M12

were computed by various authors, starting with Beall et al [5] who gave M{2
 l~

for the two generation manifest model, through Mohapatra et al [10] who gave (with
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some errors) all the contributions (1.35) (a-d) for the three generation manifest model

and finally us [29], [30] and Ecker et al [11], [19] who generalized all these results to the

CCC models. Our calculation is the only one in which the assumption that \k'/k\ is

small was not introduced.

Consider the sum:

The phase of every single term in the sum is e1"7. Every term is suppressed relatively to

•^12 (G — L) by a factor of f3 or /?#, and every term has a compensating enhancement

factor. The enhancement factors for the two-generation case were given in equation

(1.32) . As for the three-generation case: the strong experimental bounds on the t-

quark mixings imply that the enhancement factors do not significantly change (for mt

around 45 GeV they change at most by a factor ~ 2). We thus conclude that our bounds

on m{W2), m(H) still hold (up to a factor ~ 1.5).

We now compute c in the three generation case. Denote

Mi2{CCC) = Ml2(standard model) - el'7(yl/? + AHf3H)M12{G - L) (1.36)

where A, AH are enhancement factors. (A is around 430 and AH around 11,600).

=
y / 2 A m K

I m M i 2 ( s t a n d a r d - m o d e l ) . , A a , A n ^ M l 2 { G - L )

~ e(standard-model) - e1^—y=sin^(AP +
2y2

(1.37)
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We see that e(CCC) is built up of two distinct contributions which arise from two dif-

ferent CP violating phases: The first is the familiar e of the standard model which arises

from the "Kobayashi-Maskawa" phase. This contribution is proportional to 52,3Si ssin.6.

The second contribution is proportional to story and depends only weakly (through

A,AH) On 52l3,5l,3-

Suppose that the experimental constraints on 52,3,51,3 will be strengthened enough

to imply:

|e(standard model) | «C ̂ (experimental) |

then:

e(CCC) ~ el* | --±-sin-i{A0 + AH(3H) \ (1.38)

We now use (1.38) to get a new upper bound on

\t{CCC)\ < YJ=W + AHpH)<^={A + AH)P ~ -^y= 12,000/3 (1.39)

In the last step of (1.39) we assumed that (5H is < p (or: m(H) > m{W2)). (1.39)

implies:

m(W2)<120 TeV • (1.40)

Combining the upper bound (1.40) with the lower bound of Beall, Bander and

Soni we find that (if e(standard model) < e(experimental) then) the scale of the right

handed currents is expected to be in between ~ 1.7yev and ~ 120reV-

Let us now comment on Mj2(manifest) in the three generation case: The con-

tributions to M12 (manifest) are given by equations (1.35) (a)-(b) when we replace
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S«,i ^«"̂ j* ^y S»',y ^ i an(^ e t 7 ^y (^) (where (=F) is determined by the relative sign

between the first two phases of Fd(±)). The real part of M12, or Am^, provides us

with lower bounds on miW^) and rn(H) which are essentially the same as those we get

in the CCC model. The imaginary CP violating part of M\i arises from a single phase

— the "Kobayashi-Maskawa" phase. We find that:

e(manifest) a S2,35i,35i

Therefore the manifest model faces, in principle, the same potential trouble as the

standard model does: b-decays may imply that $2,3> si,3 a r e s o small that £(manifest)

is considerably smaller than the measured e. However, we note that the problem for

the manifest model is not as acute as the problem for the standard model: to see this

consider the approximate formula:

* ImM12

AmK ~ 2^2 ReM 12

Inspection of the ratio ^f f i* shows that it may be considerably larger for the man-

ifest model (than for the standard model) since the ratio of "Im" to "Re" is much

larger in the additional terms M1
(
2

Vl~W'a) + Af1
(}l~W'a) + M[f] + M["+) than in

M12(standard model).

Finally, we comment on the case of N-generation CCC model. The contributions

to M12 in this case are given in equations (21.1-21.4) where i j go from 1 to N. Clearly,

is again of the form:

Afi2(CCC,N generations) = Afi2(standard model) - e*'T(A/9 +



We believe that the high generations should be, to a good approximation, decoupled

from the low energy physics. We therefore expect A, AH to be of the same order of

magnitude as in the case of two and three generations. If this is true then all our results

in the three generation case hold also for the case of N generations.

1.3.3 M12 in the Non-Minimal CCC Model

The difficulty involved in computing M12 for a non-minimal LRS model is that

the Yukawa-couplings of the physical Higgs fields are unknown. This technical difficulty

forced many authors to restrict their analysis to the minimal model, where the Yukawa

couplings may be fully expressed in terms of the parameters fc, fc' and the matrices Mu ,

Md. However, one does not really expect LRS theories to be minimal: LRS theories

suffer from similar "diseases" as those of the standard model: LRS theories have many

parameters, many particles, they become unnatural at high energies (~ 10M(W2)). The

only advantage of LRS theories on the standard model is that they violate P, C and

CP spontaneously and not explicitly. We therefore expect LRS theories to be merely

effective low energy models of some more fundamental physics. If this is indeed the

case then, probably, the Higgs spectrum is not minimal. (For example consider: (i)

Composite models of quarks, leptons and scalars. If the Higgs is composite then we

expect several scalar bound states to appear in the (A, ̂ *) representation, (ii) Grand

Unified Theories (GUTs): Many GUTs need more than a single Higgs in order to get

realistic fermion masses.) We found [30] that for CCC theories it is possible to generalize

our results to the case of nonminimal Higgs spectrum. The idea is as follows: Consider



the contribution of the physical Higgs particles to M\2'- The contribution of the charged

Higgs particles is of fourth order in the weak interaction, while the contribution of the

neutral Higgs is of second order. We therefore assume that to a first approximation

we may ignore the contribution of the charged Higgs particles. The contribution of

the neutral Higgs particles depends on their Yukawa couplings to the d-quarks. These

couplings are symmetric matrices (as required by the C-invariance of the Lagrangian).

We will now prove that this symmetry ensures that the neutral Higgs contribution is of

the form:

M[f) = -e^AHpHM12{G - L) (1.41)

where AH is a real positive enhancement factor.

Let H° be one of the (possibly many) real neutral Higgs fields of a CCC theory.

We denote the Yukawa coupling of H® to the d quarks by a matrix JVi:

h.c. (1.42)

where g is the weak interaction coupling constant (clearly we could have absorbed g

in the Yukawa coupling Ni but it turns out that the above representation is more

convenient).

D°L% D°R are the interaction eigenstates and not the physical or mass eigenstates. Ni

(like every Yukawa coupling of a CCC model) is symmetric.

We now wish to rewrite the couplings of Hi to quarks in terms of the physical

d-quarks and in terms of a diagonaliztd matrix of Yukawa couplings:
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(i) Since iVj is symmetric — there exists a unitary matrix Vx such that:

(1.43)

where N\ is diagonal and all its eigenvalues are real and non negative,

(ii) In order to get the relation between the interaction eigenstates and the mass eigen-

states — we consider the nondiagonalized mass matrix:

h.c.

Md is related to the diagonalized mass matrix Md through:

Md = UdMd(Ud)t{Fd)+ (1.44)

where Ud is a unitary matrix. (As discussed in Appendix A, Ud and the analogous Uu

are related to CL through: CL = Uu[Ud)+).

We now rewrite (1.42) in terms of the physical (mass eigenstates) d-quarks and in terms

of the diagonalized matrix Ni:

h.c. (1.45)

where: CHi = UdV+
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Consider now the tree diagram of figure 1.5. It? contribution is:

4m2(£Ti)

mK

. t

.-.„-»<*.

— ({if° | dLsRiRaL

(1.46)

where ctd,cts are the first two phases of Fd and nt- are the eigenvalues of

We use the vacuum insertion approximation to get:

(IT \= \flml

dLsRdRsL

we denote:

m.
+-

6
(1.47)

a = (1.48)



and recall that *y = ad — aa. We then find:

, ,(H'\ a2 1

^^—V +1-
. + roi/ 6

\ + 1

7.4 + (7ma)2 • 74}

22

T

(1.49)

/ rrO\

We now express M^2
 l in terms of Mi2(G — L):

1 2

3
2

_
1 12K '

(1.50)

where:

"
7.4(flea)2+74(Ima)

(1.51)

In order to get an order of magnitude estimate of the enhancement factor Agl we

remind the reader that in a minimal CCC model we have two real neutral physical Higgs

particles. For one of them:

QH

and for the other:

a ~ t cosOcsin6- mc

m{W)



We therefore expect AH1 to be of the order of 103 — 104 This completes our proof.

We conclude that in the nonminimal model

Ml2(CCC) = Mi2(standard model) - ciri[A0 + J ^ AHiPHi)M12{G - L) /± 5 2 >
t

where Hi are the neutral physical Higgs particles.

Afft are the corresponding enhancement factors (clearly Aui depends on the Yukawa

coupling Ni).

We denote:

Y^AH^H^AHPH (1.53)
i

where /?# is the average of the /?#; and AJJ is defined through (1.53) . We expect AJJ

to be of the order of magnitude of AH (~ 12,000).

We now obtain:

MX2{CCC) = M12(standard model) - e^A/? + AH0H) • M12{G - L) (1.54)

Equation (1.54) is actually identical to equation (1.36) . Therefore we may derive

for the nonminimal case the same bounds on m(M 2̂) a nd TTI(H) as we derived for the

minimal case. We also find the same expression for e in the nonminimal model as we

had in the minimal model.

1.4 Summary

We have tried to explore the importance of C-invariance in LRS models. We did

this through a detailed comparison of CCC (Charge Conjugation Conserving) models
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with "manifest" LRS models.

We sho\7ed that in a CCC model the information about spontaneous breaking of C may

not reach the quark mass matrices. Therefore, we found that the left handed Cabibbo

mixing angles, are related to the right handed ones through:

CR = FuCL{Fd) +

where Fv, Fd are diagonal unitary matrices. In the manifest model one assumes that

the spontaneous breakdown of parity does not reach the quark mass matrices and then

one finds:

CR = F«(±)CLFd(±)

where .Fu(±), Fd(±) are real diagonal unitary matrices. However, as we showed the

assumption of the manifest model is unjustified. Also, under this assumption one finds

that the LRS Lagrangian must break C and CP explicitly.

We discussed the K° — K° mixing in the CCC model. We were able to show (using

also results of previous works[5], [10]) that in a minimal CCC model one may derive

from M\i the following lower bounds on mfW^) and m(H):

m[W2) > 1.7 TeV

m{H) > 8.8 TeV

Similar bounds may also be derived for a manifest model.

We showed that in a CCC model the CP violating parameter c has the following

form:

e{CCC) « e(standard model) - sin7—y={A(3 + AH0H)
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where A, AH are large enhancement factors.

We discussed the possibility that e (standard model) will become too small to ac-

count for the experimentally observed e. In this case the CP violating phase 7 may

provide us with the main contribution to e and we may even get an upper bound on

m{W2):

m{W2) < 120 TeV

For the manifest model we found that there is no new source of CP violation. The

only CP violating phase is the Kobayashi-Maskawa phase, and it always appears with

the coefficient 43,361,3. Therefore if the rate of b-decay to u will be found to be very

slow — then c in the manifest model will be much smaller than the experimentally

measured e.

Finally, we considered the nonminimal LRS models. We believe that LRS models

may at most be effective theories of some more fundamental physics. If this is true, then

the Higgs spectrum of the LRS model is expected to be nonminimal. In a nonminimal

model the Yukawa couplings of the physical Higgs particles are unknown and it is

therefore difficult to estimate their contribution to Mn. We showed that in a CCC

model it is possible to use the special form of the Yukawa couplings (these are symmetric

matrices) in order to prove that the Higgs contribution to Mi 2 is essentially the same

as in the minimal case. We therefore generalize all the results of the minimal model to

nonminimal CCC model.
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Chapter 2

Composite Vector Bosons

2.1 Why Composite Vector Bosons?

In this introductory section we will explain how composite models of quarks and

leptons motivate us to consider the possibility of composite W and Z.

Suppose that the quarks and leptons are composite. The fundamental building

blocks inside the low energy fermions are then (presumably) bound together by some

super strong force. We therefore expect that the quarks and leptons will undergo a

short range interaction which is the residue of the new superstrong force. This residual

interaction could be yet unknown but it could also be one of the already familiar forces.

Of all the forces known today the only candidate to be this short range force is the weak

interaction, since only the mediators of the weak force, the W and the Z, are massive. If

the weak interactions are indeed residual interactions of a superstrong force, then the W

and Z are, like the quarks and leptons, composites of the fundamental building blocks

[31-34]. In this case, SU{2)w is not local but is only a global, approximate symmetry.

A similar scenario has been observed in the last twenty years for the nuclear forces:

At the low energy level one sees pions, nucleons and p mesons, undergoing electromag-

netic and nuclear interactions. For a while, the nuclear forces seemed to be the gauge
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interactions of SU(2) of (strong) isospin with the p-mesons as the corresponding vector

bosons. When the higher energy domain was penetrated it was found that the nucleons

and pions are composites of more fundamental particles — the quarks, which are bound

together by strong color forces. Nuclear interactions were then seen to be only residual

of the fundamental color-force, and the p mesons were found to be composed of quarks,

like the nucleons. SU(2) of isospin is now known to be only a global, approximate

symmetry.

In the following we will first discuss in more detail the theory of composite W and

Z. We will then discuss three tests of such possible compositeness:

(i) Universality of the coupling constant of the W boson.

(ii) Special unrenormalizable effective interactions whose effect may be detected in

present and near future pp colliders,

(iii) The ec/ events of the 1983-run in CERN.

2.2 More on Composite Vector Bosons [35]

We start with the difficulties of the composite vector boson scenario: The basic

difficulty in all composite models of W and Z is their mass (mw ~ OAxev) which is

considerably smaller than the compositeness scale (A > lreV [36]). So far no one

has suggested a mechanism which would protect masses of composite spin 1 bosons.
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Another problem is the small coupling constant gw of the weak interactions. If the W's

mediate the residue of a superstrong force, then their couplings are expected to be large

(like p meson couplings). We have no solution to these two problems, however we note

that they could be two aspects of only one (unknown) cause: Though both mw and gw

are small their ratio is of the correct order of magnitude.

where ga is a typical strong coupling constant (g% ~ O(4TT)) and we assumed that A is

O(lr«v).

Keeping these basic problems of composite W and Z in mind we now describe the

more successful aspects of the compositeness idea. A composite model of vector bosons

has to provide its own explanation to the following successful predictions of the standard

model:

(1) The couplings of W and Z to quarks and leptons are universal i.e., the coupling

of W to u(°)d(°) is equal to its coupling to, e.g., Pe. (The superscript (°W u, d indicates

that these are the interaction eigenstates).

(2) The neutral current of the fermions which couple to the Z boson is:

where jf?' is the neutral component of the generating current of SU(2)i, j£m is the

electromagnetic current and 6w is an angle parameter (called the Weinberg angle).

We remind the reader that (1) and (2) together imply that there are no flavour

changing neutral currents.
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(3) sin Qw is related to e, gw through:

— (2.2)
9w

(4) The Weinberg mass relation:

In the standard model universality is automatic, since SU[2)w is a gauge symmetry,

and (2)-(4) follow from the Higgs mechanism for spontaneous breaking of SU(2). In a

composite model SU(2) is only global and it is not spontaneously broken. In order to

reproduce (l)-(4) in the framework of a composite model of W and Z one proceeds in

analogy to p meson physics: We assume that

(a) The approximate global 5^(2)^ symmetry of low energy physics is broken only by

electromagnetic interaction (and fermion mass terms). Every term in the low energy

Lagrangian which does not involve a photon (and is not a fermionic mass term) should

be SU(2)-invariant. 1

(b) The neutral W boson dominates the left handed part of the electromagnetic current

of the primordial photon.

In order to see what is the use of these two assumptions let us consider the parts

of the Lagrangian which include the kinetic and mass terms cf the photon and the W

1 The SU(2) symmetry may or may not exist at energies > A: For instance, in the

Haplon model [33] SU(2)i, exists also at high energies while in the Rishon model [31]

it appears only at the low lying level.
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bosons and their interactions with the fermions.

(2.4)

where: oM is the primordial photon field.

j£m is the electromagnetic current

J is the current which couple to the W field.

The assumption of SU{2) invariance of the Lagrangian implies that J is in the

triplet representation of 517(2).

The 517(2) breaking character of the electromagnetic interactions is exhibited in

the interaction of oM with the fermions and in the WJi, — a^ mixing term.

Diagonalizing the quadratic (kinetic and mass) terms of the above Lagrangian one

finds:
T El

+ m^W^W^" (2.5)

) + /i.e.)

where A^ is the physical photon and F^u

Ap, Zp are related to aM, W^0' through:

Zp = V T 3 A ^ ° >
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J£ is related to j(°>M, tfm through:

,) (2-7)

and mz =

It is possible to show that the assumption of W^-dominance in the left handed

part of the electromagnetic current implies [35]:

(i) That

AJ(°)M = ejW (2.8)

where j(°) is the generating current of the neutral component of SU(2)L- Using the

SU(2)z, symmetry we find:

A J* = e j" (2.9)

where j1* is the generating current of SU(2)L. Note that equation (2.9) means

universality of W and Z couplings,

(ii) e, gw and A are related:

9w

Defining A = sin By/ we get:

2—
COS0VV

Therefore all the predictions (l)-(4) of the standard model are shared also by a com-

posite model of W and Z when (a) and (b) are assumed.

We remark that under our assumptions it is possible to show that the WWW

coupling is also equal to the universal gw, as is the case in the standard model [35].
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However, since WWW couplings were not yet measured we will not pursue this subject

any further.

2.3 Testing Universality

The universality of the couplings of composite W's is not expected to be exact

(in contrast to the standard SU[2)L X 17(1) gauge model). The reason for universality

breaking is the heavier vector bosons which are expected to appear at energies of order

A.

In order to explain in more detail what is involved — we will restrict ourselves to the

specific kind of composite models where the global 51/(2) L symmetry exists also at high

energies (as high as A). The heavy vector bosons are then also grouped into multiplets

of 5J7(2)x, and here we consider only triplets. Denote by Wi the known low lying

triplet of vector bosons and by W2, W3, . . . the heavy triplets. Ai, A2, A3, . . . are their

corresponding mixings with the photon and J\t J2, J3, . < • are their fermionic currents.

The assumption of vector meson dominance should now be modified and relaxed: We

do not assume that W± is dominating the (left-handed part of the) electromagnetic

current, but that the bunch of all W+ is dominating this current. Equations (2.8) ,

(2.9) are accordingly modified and we find:

5 > J < 0 > M = ei<°>M (a)
(2.10)

J? = «?» (b)

(where j M is the generating current of SU{2)L and j ^ Q ^ is its neutral component).
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Consider now the W-coupIing to a certain fermion pair f(ay£ 7M/(&)£^ (a, b are gener-

ation indices; / / » and /,jx are interaction eigenstates). Denote by g{/u b\ the coupling

of Wi to this pair. Then, we find (see (2.10) (a)):

i9i(a,b) = eSa,b (2.11)

or

1 , v ^ \
9l(a,b) = J-(efia,b - 2_s *i9i{a,b)) (2-12)

1 »=2

(2.12) clearly implies that only in the case of a single composite W - the assump-

tion of vector meson dominance is powerful enough to ensure the absence of Flavour

Changing Neutral Currents (FCNC) and the universality of the flavour conserving part

of the neutral currents. In order to proceed to the more reasonable case of several

W's we should add two assumptions: (a) The assumption of horizontal symmetry: We

assume that there is a horizontal quantum number h which is strictly conserved in the

interactions of the fermions with the vector bosons. This means that the interaction

eigenstates, / / J , carry a well denned h, and that the W's (as well as the photon and

the gluon) carry h=0. We further assume that different generations carry different h-

values. Under this assumption we are ensured that, (at least in the interaction basis),

there are no FCNC, namely, <7i(O)M oc 6(a>i>)- (b) We will assume that the deviation from

<7i universality which is due to the heavier vector bosons is small. More quantitatively,

we assume:

A l A (2.13)
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Roughly speaking, the justification to (2.13) is that the very heavy W2, W3, ... should

not have strong couplings to low lying physics. More specific justifications are to be

found in [37-38].

Under the above assumptions we get:

! 2 ) ) (2.14)

where g\ = y_ is independent of (a, b) i.e., we find that the Wi couplings to fermions

are universal up to corrections of order {pj^-) •

Note that the deviation from universality implies that even though there are no

FCNC in the interaction basis of the fermions — there might after all be FCNC when

we transform to the physical basis of mass eigenstates. The couplings of these FCNC

are proportional to the deviation of fifi(a,b) from universality.

No effects due to deviation from universality have been seen up to now. We there-

fore may at present only give upper bounds on such deviations. Such upper bounds

imply through (2.14) a lower bound on the compositeness scale A. The best bounds

are derived from 7r-decays and from the absence of FCNC effects in the K° — K° and

D° — D° systems. We compare ;r-decay to eu with 7r-decay to fii/, and 7r-decay to

veu with ^-decay (to u^eu). We also discuss the effect of FCNC on the K° — K° and

I?0 - 5 ° mixings.

Comparison of 7r-Decays to tv and \iv

Experimentally:

R = 1 ^ ! ^ . = 1.267 • 10-4 ± 1.8% (2.15)
T{ir —*• \iv)
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Theoretically: If there is a single W particle and its couplings are strictly universal

then [39]:

Rtheor = 1-236 • 1CT4 ± 0.3% (2.16)

Let us suppose now that the low lying W-particle is composite. Then, (2.16) is modified

to:

=• 1.236 • 10"4((l + £ l )
2 + e2) ± 0.3% (2.17)

where ei, £2 are small corrections: ei is due to deviation from universality in the

couplings. According to (2.14)

(2.18)

£2 arises from TT-decay through W2, W3, • •. according to (2.13)

In the following we will consider only corrections of first order in {^-) , then, ef and

£2 will be neglected.

Rtheor = 1-236 • 10~4(l + 2£l) ± 0.3% (2.20)

The experimental value of R agrees with the theoretical value (2.16) within the error-

bars. We therefore find the following bound on ci:

| 2 e i | = I"""""-""""-! < L 2 6 7 " 1 J 2 3 6
 + %/(l-8%)2 + (0.3%)2~4.3% (2.21)
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Substituting for ei the rough estimate:

we find:

/ 2
- 560ceV4.3 • 10-2

Comparison of 7r-Decay to net/ with /x-Decay

We first assume the existence of a single W and strictly universal couplings. Mea-

surements of /x+-decay to P^e4"^,. and theoretical computations of this decay enable us

to extract the value of W-coupling to fermions. Substituting this value in the theoretical

computation for F(7r+ —• n°e+ue) one finds [40]:

T(n+ —• 7r°e+i/) = 0.391 ± 0.027 (2.23)

We compare this result with the direct measurement of 7r-decay to nev [41]:

reip(7r+ —• n°e+u) = 0.403 ± 0.003 (2.24)

The prediction (2.23) , which is based on the assumption of g-universality agrees, within

error bars, with the experimental value (2.24) .

Suppose now that W is composite and its coupling is universal only up to corrections

O((!2JK.)2). Equation (2.23) would then be modified to:

r(7r+ —> n°e+u) & 0.391(1 + 6*) ± 0.027 S 0.391(1 + 2SX) ± 0.027 (2.25)

6\ represents the deviation from universality and we roughly estimate:
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Comparison of (2.25) and (2.23) implies:

2 0.403-0.391 V0.0272 + 0.0032

v A ' ~ 0.403 0.403 K '

Consequently, we find:

A > 370GeV (2.27)

K° - R° and D° - D° mixings

In order to simplify our discussion we will consider only the first two generations.

We denote the interaction eigenstsates by u^ , <vL\ c^ , s^ '. In terms of these states

the neutral current of the JJ°-boson is flavour conserving and it is almost universal:

^ W) H* " |-

where gw is the coupling of the W \ multiplet to the fermions (averaged over the two

generations); Sg is the deviation from universality (the difference between the coupling

of W\ to the first and to the second generation), I is the identity matrix and 03 the

diagonal Pauli matrix, both acting in generation space.

We now wish to present the current (2.28) in terms of the mass eigenstates u^,,

SL. Using the notation of Appendix A we denote:

,(°)\ /ur\
(0) = UU+ (2-29)
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_ d+(dL\

where Uu, Ud are unitary matrices acting in the (two dimensional) generation space.

Since u^,, c^, d^ and sj, are defined only up to phases we are free to multiply Uu+

and Ud by phases from the right. We are also free to choose the phases of u ^ , c ^ ,

but once these phases were chosen we do not have any more freedom to choose the

phases of d^ and sL , since the relative phase of d^L and u^ (and the relative phase

of sL ' and c^') is fixed (through the requirement that they are the two components of

the same £!7(2)-doublet). We therefore find that we may multiply J7U+ from the left

by arbitrary phases, but we do not have this freedom in Ud .

Taking into account all the freedom we have we find that it is possible to choose

the phases such that:

u + _ / c o s 0 u - s i n 0 u \
~ Vsin0u cosfl" )

TTd+_(ei4> 0 \{cosOd -sm6d\
U ~{o e-^J \sinOd cosQd )

where 0 < 6U < f, 0 < 9d < f.

The Cabibbo mixing matrix is:

C = UuUd+

and it is straight-forward to see that the Cabibbo angle 6C is related to the parameters

0u> 9<l and <f> through:

sin0c = |cos</>sin(0u - 9d) - t"sin<£sin(0u + 6d)\ (2.31)
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Subs> tuting Uu+, Ud+ in (2.29) , (2.30) and then substituting (2.29) , (2.30) in (2.28)

we get:

«L ) ["(I - \ sin2 0^)7 - i-^-(cos(2^)a3 + sin(20
6 2gw \

(2.32)

In (2.32) we clearly see that in the physical basis of mass eigenstates, thce are

flavour changing neutral currents, proportional to 6g.

The effective four-Fermi flavour changing interaction is:

= (—)2^[{sm0"cos6")2{W[;1»cL)2^s\n6dcoSed)2(dE1>isL)2}+c.h. (2.33)
gw v2

where Gp is the Fermi constant.

The contribution of Z<FCNC
 t o K° ~ K° a n d D° ~ D° mixings is:

(2.34)) ( ^
rnK FCNC 9W

^ 2 % | (2.35)()
FCNC 9W

where J3K> BD are the "bag factors" of the K — K and D — D respectively and /K, ID

are the K, D decay constants.

The contributions (2.34) , (2.35) to ^ S ^>- should be compared with the

standard contributions which arise from the standard-model box diagrams:

<—> = ̂ 7-^l™'*™e<fffitlBKf* (2"36)

m standard V2 4?T Sin'' 0W ™ *
AmD. GF

- —
47rsi
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where mc, ma are the masses of the c, s quarks respectively (and a is the fine structure

constant).

It is well known that {A™K) , , is in good agreement with experiment. We
v mK 'standard r

therefore require that:

,Amj{, ,ArriK\ , •.
I ^ ^ ^ ^ ^ ^ ^ I <f I 1 In OQI
V / — V / î.uoj

mK FCNC mK standard
A

r£
le was not yet measured. Presently, we have only an experimental upper bound:

™D experimental

Substituting in (2.37) BDf% = 0.19 GeV [42], GF = 1.1 • 1CT5 GeV~2, a = -^,

sin2 $w = 0.22, sin0c = 0.22 and ma = 150 MeV, we find that the experimental bound

on £^D is about 900 times larger than the standard model estimate. We therefore

require:

^ £ ^ £ (2.40)
mD FCNC mD standard

The inequalities (2.38) , (2.40) together with equations (2.34) , (2.35) , (2.36) ,

(2.37) imply that:

(—) (cos »j sin Od) < (sin0ccos^c) •( ) s (2-41)
gw mw 47rsin Ow

2 2 ^ 2 ^ (2.42)( ) ( c o s 5 u s i n t f u ) ( s i n 5 c c o s c ) ( ) ^
ffiv mw 47rsin Ow

We substitute in (2.42) : mB = -^mc and then take the square root of (2.41) and

(2.42) . We get:

| -^-| | cos 9d sin 6d I < smdccos 6C — J = (2.43)
gw mw V 47rsin 8w
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I — ||cos0usin0u | < 3 sin 9C cos 8C - ^ . / %^ (2.44)
9w rnw Y 4TT sin2 6W

 v ;

(2.43) and (2.44) imply:

(2.45)l l s m ( g O l < 4 s i n f l c c o s g c . /
9w mw V 47rsin 0vv

(2.46)
i l l \ / i — ** w i / « •

gw mw V 4?rsin

(2.45) , (2.46) and (2.31) imply:

— j sin 6C cos 6e < 4 sin 6e cos flc ̂ - . / ^ (2.47)
gw rnw V 47i sin Ow

and therefore:

gw
. / " (2.48)
V 4jrsin v̂v

Substituting for |—2-| the rough estimate [^^-) , and using the values mc ~ 1.5Gev,

~ 82QeV. a ~ j^f and sin2 fliy ~ 0.22 we get the following lower bound on A:

A > 1.2Tev

Let us summarize: In the standard model W-couplings to fermion-pairs are univer-

sal. In a composite model for vector bosons one expects deviations from universality.

We estimated such deviations to be of order {^-)2- At present no deviations from

universality have been seen, and therefore we may only put upper bounds on f2^-) or

lower bounds on A. We find:

(i) A > 560Gey from comparison of T(x —> eu) and F(TT —• /j.u) (i.e., comparison of

W-couplings to tu and /if).
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(ii) A > 370G,JV from comparison of T(n —*• vtv) and T(TT — • new) (i.e., comparison

of W-coupling to p.u and to ud).

(iii) The deviation from universality also implies that there are flavour changing neutral

currents (FCNC). Since effects of FCNC were not yet seen we again may derive a lower

bound on the compositeness scale. From the K° — K° and D° — D° mixings we derive

the following bound:

A > 1.2TaV

This bound is comparable to the Eichten-Lane-Peskin bound [36] on the compositeness

scale of the fermions.

2.4 An experimental Test of ZQ Compositeness in Proton Anti-Proton

Collider [43]

In this chapter we will consider effective interactions of the form:

Z°V°...V° (2.49)

(n-l) field*

where V° is a photon or a gluon field. In the standard model such effective interactions

are of n'th order and they arise as radiative corrections involving a feriuion loop (see

fig. 2.l(a)). In a composite model an additional source for the interactions (2.49) is

effective terms of the form:

W° v°...v° (2.50)

(n-l)ficlda
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where u° is a primordial photon or a gluon field. Substituting in (2.50) :

K = —\-zl
cos6w ( 2 J 5 1 )

we get:

— Z° V°...V° + (terms involving two or more Z fields) (2.52)
cos0^ * ' v ) \ /

(n-l) fields

coa
1
gw, is « 1 and in the following we will ignore this factor.

In a composite model the effective tsrm (2.50) may be of n-l order, reflecting direct

couplings [44-45] of the photons and giuons to the preons inside the W° (see fig. 2.l(b)).

The strength of such a term is proportional to < {eQ)n"1{gQs)n'1 > where n7, ng are

the numbers of photons and giuons in the effective term; e,g are the electromagnetic

and QCD coupling constants; Q is the preon electric charge; Qs is a preon color charge

(Qs=l,0 for color triplet, singlet); <> denotes an appropriately weighted summation

on all preonic components of the W°, depending on the detailed wave-function of the

composite W. Since, in a composite model, the interactions of the form (2.49) are

of smaller order in the gauge coupling, they may provide us with an interesting test of

vector boson compositeness. However we note that:

(1) SU(Z)Coior X U[l)em gauge invariance together with Lorentz invariance imply that a

term of the form (2.49) appears with (at least) n derivatives. Therefore, the coefficient

of this term should include a factor of the form Ei\-i where E is a characteristic energy

scale. If E is the compositeness scale A, then the terms (2.49) axe strongly suppressed

and are rendered uninteresting. Here we want to speculate en the possibility that E
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is O(m\y). This speculation is based on the observation that the energy scale which

characterizes W and Z is my/ and not A: Note that (i) the mass of W is my/- (ii) The

W° — 7 mixing A is much larger than the p° — 7 mixing. This is related to the fact that

the mass scale which characterizes the W is mw and not the much larger scale A [37].2

In the following we will assume that E ~ mw

(2) If E is O(mw) then the interactions W°v° ...v° are part of the low energy (energy<

A) Lagrangian. Therefore they are either SU(2) invariant or they involve one or more

photons. Since a W°v° ... v° term may not be SU(2) invariant we conclude that it must

involve at least one photon. In other words — all Z°V° . . . V° effective interactions

which are of interest for testing Z-compositeness — must involve at least one photon.

In a series of papers Renard has investigated the Z°V°V° and ZOV°VOV° vertices.

He pointed out [44] that the Z°77 vertex may produce a detectable effect in c+e~ —• Z°7

scattering, and that the Z°777 vertex may strongly enhance the decay of Z° —* 777

[45]. We agree with these observations and we believe that they will provide good

experimental tests in an e+e~ collider such as LEP or SLC. Renard also considered the

contribution of the vertex Z°qgg to Z° —*• igg decay [45]. However, it turns out that the

experimental signature of this process is relatively unclear, due to a variety of possible

backgrounds. Finally, Renard analyzed the effects of the Z°ggg vertex for the decay

Z° —• ggg and the production process g + g -* ZQ + g (in a pp collider). We disagree

with this part of his work since, as explained above, the unavoidable global SU(2)

2 In the nonrelativistic bound state model [45], [46] which we use later the fact that

A is O(l) implies that E is indeed 0{mw) and not O(A).
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symmetry suppresses the effective Z°ggg coupling down to its standard model value.

Consequently, the corresponding processes should not be enhanced in a composite-Z

model and cannot serve as useful tests. There is, however, another process which has

not been previously discussed and which appears to provide the only feasible experiment

of this family during the next few years (prior to the completion of SLC or LEP). We

refer to Z0^ production (through an effective Zoigg vertex) in a pp collider.

The relevant experimental process is:

p + p-+Z°-\-i + anything (2.53)

In the standard model Z°i production is due to the subprocess:

q + q —+ Z° + 7 (2.54)

with the diagrams of figure 2.2(a),(b).

In a composite model we have an additional contribution from the Z°^gg vertex through

the subprocess:

g + g —•+ Z° + <y (2.55)

(see diagram 2.2(d)).

The standard model process is O[a2). The contribution of the effective Z°~fgg vertex in

a composite model is O{aal). At the relevant energies (0.5-2 TeV) the two contributions

are of the same order of magnitude (i.e. a2 is O(a)). However, note that the angular

distributions of the processes (2.54) and (2.55) ?re completely different: The standard

model process involves the exchange of a light particle (u, d or s quark) in the t or u
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channel. The angular distribution of the photon is therefore expected to be concentrated

around the beams directions. The composite model process is, in contrast, pointlike and

is therefore expected to have a relatively flat angular distribution. Consequently, we

hope to distinguish the effect of the ZOi~igg vertex from the background of the standard

model. We note that the cuts in the analysis of experimental data tend to strengthen

the effect of the Z°igg vertex (if it exists): It turns out that, in order for a single

prompt photon to be identified, it must be sufficiently hard. For the SppS collider at

CERN and for the Fermilab pp collider the p j cutoff should be around 5-10 TeV (pj

is the transverse momentum of the photon). Such a cutoff may considerably reduce the

cross-section of the standard model process (2.54) (since the angular distribution is

concentrated at small px), while the Z°~igg vertex contribution to Z°*i production will

not be strongly effected (since its angular distribution is quite flat).

In the rest of this chapter we give more detailed analysis of ZOr) production and

show that it may indeed be an important test of Z° compositeness.

The contribution of the standard model diagrams to the unpolarized cross-section

is:

(ft + qi-+Z° + -1) ^
d S (2.56)

17 Mz\ /, s \ 2Mz , s 1

where Q{ and m,- a re t he electric charge and mass of the i ' th quark and

are its vector and axial couplings to t he Z-boson {GAU — —Gxd=l/(4sinflvvcosflw);
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— QitanOw). The angular distribution in the c.m.s. is

i " 4 ^ + 7J - -z-Qi [GVi + GAi) x

2 (2.57)

In our calculations we have included only the light quark contributions (u,d,s),

using m,=0.3 GeV.

In a composite-Z0 model we encounter the following contributions to p + p —•

Z° + -y + any:

(i) The standard model contributions (figures 2.2(a), 2.2(b)) remain essentially

unchanged.

(ii) An effective Z°Z°i interaction may provide an additional contribution to the

q + q —• Z° + 7 subprocess (figure 2.2(c)). This contribution is expected to be small

[44].

(iii) The most important contribution may come from the subprocess (figure 2.2(d)):

which is negligible in the standard model. We have already discussed the coefficient

of the effective Z°^gg vertex but we do not know its explicit form. We have therefore

chosen a nonrelativistic bound state model which was previously used by Renard [45],

[46]. We do so, just because we are not aware of any other simple framework. It is

obvious that this model is totally inadequate in its details, but we hope that it may well

serve as a crude order-of-magnitude estimate. We should probably not trust the results
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to better than a factor of 4 or so. Using this model, one obtains:

6)«QlQ»> (2.58)
do i v 47raia / Fw \ s —

where -^ = 7 ~ 1.6. The values of (< Q\Q >) 2 are usually of order 1 (e.g. \ in the

Rishon model [31] and ̂ LK. in the Haplon model [33] with Njg hypercolors).

The transition from the subprocesses q + q —* Z° + 7 and g + g —• Z° + 7 to the

actual contributions to p+p —• Z° + 7 + any involves the quark and gluon distributions

inside the proton. In the standard model:

°tot{P + P - • 2° + 7 + any) =

r (2-59)
i{x2) + A(a:i)A(a:2))^ot(9i + Qi - Z° + 7)

y pD^qi + qi - Z° + 7)

(2.60)

where i is the quark flavor; Z\, D^ are the distribution functions of the i'th quark in the

proton and antiproton respectively; s is the squared invariant mass of the Z°~i system;

P(s,p?p) is given by:

P(s,p2
T) = — r (2-61)

( i ) [ ( l ) 2 2 ] 5

similarly, the contribution of g + g —+ Z° + 7 leads to:

+ P - Z" + 1 + any) = J dx1dx2Dg{x1)Dg{x2)a
tot{g + g^Z° + i) (2.62)atotl =
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+ P -*Z° + i + any) = J dx1dx2Dg{x1)Dg{x2)P{s,p2
T)^i{g + g -+ Z° + 7)

(2.63)

where Dg is the distribution function of gluons in the proton.

Among the various available phenomenological distribution functions we have cho-

sen the ones of Baier et al. [47], using A=.4 GeV. We have checked the sensitivity of

the results by repeating the computations with A=.l GeV. Following the procedure of

Brown et al. [48] in the case of W~i production, we introduce in all cases a lower cutoff

on the Z7 invariant mass M\n > 1.1 M\. This cutoff enables us to avoid all threshold

divergences without "losing" any photons with pr > 5 GeV. Computations were done

for pp colliders a t ^ = 540 GeV (CERN SppS) and ,/s=2000 GeV (Fermilab). The

differential cross sections are shown in figure 2.3. Note that these cross-sections are

correct (i.e. independent of the infra-red cutoff) only for px > 5Gey-

We see that, as expected, the standard model contribution drops quickly down

while the composite model contribution is relatively flat and is therefore dominating at

large py.

The number of expected events in the two energy ranges (•y/a = 540ceV and y/s =

2000cev)i for the standard model and for a composite model, are given in table 2,

assuming an integrated luminosity of 1037cm"2 per year. The composite model leads

to an energy dependent enhancement of one order of magnitude at CERN energies

(540 GeV) and two orders of magnitude at Fermilab energies (2000 GeV) .This energy

dependence is due to the increased importance of gluon contributions at high energies.

We note that the total cross sections for q + q —• Z° + 7 and g + g -+ Z° + 7 are,
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actually, of the same order of magnitude. Only the experimentally motivated limitation

of p j > 5 GeV together with the "flatness" of the composite model pr-dependence lead

to the predicted enhancement.

There are many uncertainties in our calculation. Some of them are "technical",

including the choice of a detailed distribution function, the value of S.QCD, the assumed

quark masses, etc. All of these uncertainties probably contribute a factor of 4 or so which

could go in either direction. Additional uncertainties come from QCD corrections to

the standard model which are likely to flatten the p j distributions. Another unknown

parameter is the model-dependent factor < Q\Q >. This quantity actually vanishes if

the preons are colorless [32], [34] . However, in most other cases it is likely to be of order

one. All the above uncertainties can be largely eliminated by performing additional

calculations and by restricting one's attention to a specific composite scheme.

There is, however, one major uncertainty which may destroy the entire argument:

We have assumed that the energy scale of the effective Z°~fgg term is O(Afyy), not

O(A). This is the case in the explicit, but inadequate, nonrelativistic scheme used in

the computation. If, however, the relevant energy scale is A (greater than 1 TeV), the

magnitude of the subprocess g + g —•Z + Hfis diminished at least by a factor (Mw/A)4,

and the predicted effect may disappear. In the absence of a clear understanding of

the dynamics of a composite Z, and in view of the required small Mw/A. ratio which

remains unexplained, we must conclude that our ignorance allows for any energy scale

between M\y and A. Consequently, all our calculations (as well as the earlier calculations

of Renard) must be viewed as approximate upper limits of the expected effects. An
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experimental observation of the predicted cross section will indicate Z-compositeness.

On the other hand, if the observed cross section agrees with the standard model, we still

have several possibilities: (i) Z° is not composite; (ii) Z° is composite but the energy

scale of the ZOrfgg effective coupling is A, not Mw] (iii) Z° is composite but contains

colorless preons.

We summarize: Several experimental tests of Z°- compositeness have been proposed

[45] earlier, using effective Z°V°V°V0 interactions (V° = 7 or g). We add to these a

new reaction which turns out to be the only feasible test at present and near-future pp

colliders. All other tests of a similar nature must await e+e~ colliders at y/i = Mz-

Our process is p + p —• Z" + 1 + any and the expected signals are: a cross section

which is substantially larger than the standard-model prediction, and a nearly-flat p j

distribution. Either one of these, if observed, may serve as a strong indication for

Z°-compositeness.
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2.5 On the eef Events [49]

In 1983 UA2 [50] and UA1 [51] collaborations have reported the observation of

three £+£~7 events at invariant mass of 90 GeV. This number of events (when compared

with 12 Z° —• e+c~ events seen at the time) is larger by an order of magnitude than

the standard model prediction. Though the possibility of statistical fluctuation was not

yet ruled out — the other possibility, of new physics reflected in these events, has been

already considered by several authors [52-55]. We shall discuss here the interpretation

suggested by [53], [54]. The authors of these papers have suggested the following:

Quarks, leptons and W ± , Z are all composite. In addition to these "standard" particles

there is also a composite scalar X with mass 40-50 GeV. A new decay mode of the Z

boson is responsible for the observed / + /~7 events:

Z° u (2.64)

In this section we explore our objection to the above scenario. We claim that in

the framework of composite models the decay (2.64) is strongly suppressed and thus

it is unlikely that this process is a source for high l+l~i rate: We first prove that the

process (2.64) must break chiral symmetry; we then show that this symmetry breaking

unavoidably causes strong suppression of (2.64) .

We follow references [53], [54] and consider only the ee7 events. In composite models

there is always some (approximate) chiral symmetry which is protecting the masses of

the light fermions [56]. Associated with chiral symmetry there is an (approximately)

conserved quantum number Y such that
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Y[el) = -Y(e+) = a (2.65)

Y{eZ) = -Y{ei)=fi?a (2.65)

Consider the electron coupling to the photon and the Z-boson: Since 7 and Z are vectors

they couple to electron-positron pairs which carry vanishing Y (i.e., they couple to eje£

and e je^) . Therefore, the 7 and Z must carry no Y. We may now show that chiral

symmetry is broken in (2.64) : The initial state is Z° which has Y=0. The final state

is 7 + (e+fl~)coupiad to Bcalar- The photon carries no Y; the (e+«~)coupiad to Bcalar is a

linear combination of states that do carry nontrivial Y (i.e. it is a linear combination

of tl*1 ( 7 = a - / ? j 4 0) and e£e^ (Y = - ( a - /?) ^ 0)). Thus, Y is not conserved

in the process, i.e. chiral symmetry is broken.

What are the consequences of this breaking? In order for (2.64) to account for the

observed e+e~-f rate the following condition should be satisfied [53] [54] :

T(Z° - *iX)BR{X — e + O ~ 20Mev- (2-67)

We will now show that the breaking of chiral symmetry implies that the Ihs of (2.67)

is much smaller than 20 MeV: As mentioned above, the role of chiral symmetry in

composite models is to protect the masses of the light fermions. Therefore terms in

the low energy Lagrangian which do not conserve chiral symmetry are expected to be

suppressed by a factor of ^ where mj is some characteristic fermion mass and A is

the compositeness scale [56] . Since chiral symmetry is broken in the process (2.64) —
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it must be violated (at least) in one of the vertices Z°^X, Xe+e~. Thus, one of these

vertices should be suppressed by an ^- factor:

(i) Suppose chiral symmetry is broken at Z°iX vertex. As was calculated in

reference [53] [54] : T{Z° -> 7X) with no suppression is < 300 MeV; BR {X -• e+e~) is

<^j (this is because the decay strength of X to e+e~ is supposed to be approximately

equal to the decay strength of X to any of the other 20 light pairs of fermion-anti-

fermion). If we now take into account a suppression factor of (^ - ) 2 for T{Z° —*• 7X)

we find:

T(Z° -+ iX)BR{X -+ e +
e - ) < ( ^ ) 2 3 0 0 M e v i - = ( ^ ) 2 1 5 M e v < 2QMeV

A Zv A.

(ii) If chiral symmetry is broken at the Xe+e vertex then this vertex is expected

to be suppressed by ^ . Thus T(X -» e+e~) is ~ (z5s-)2mI which is <10~2eV (the

last bound arises because mx is ~ 40-50 GeV [53] [54] and A is not smaller than 1 TeV

[36]). In this case the important bound on BR (X -* e+e~) comes from the competing

decay X —* 77: W-dominance makes it reasonable to expect (see [53] and appendix B)

that the Z^X and the X77 vertices are identical, except for a factor of tan#vv(~ 1/2).

Taking the tan Qw factor and a phase space factor into account one gets [53] [54] :

r(z1x) (2.68)

Thus:
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and:

T{Z -* iX)BR{X -+ e+e~) < IOT{X -> e+e") ~ O.leV <£ 2QMtV (2.70)

We thus see that whether chiral symmetry is broken at Z°^X vertex or in Xe+e~ vertex

— its breaking implies a suppression of the decay (2.64) to such small values that this

decay may no longer be responsible for the observed ecy rate.

We wish to remark that our considerations apply only to Z° decay through in-

termediate scalar when the underlying theory is compositeness. Our "chiral symmetry

argument" does not apply if the underlying theory is not compositeness or if the in-

termediate particle is not a scalar but a fermion or a vector (as proposed in [52], [54],

[55]). However, though such alternative decays are not excluded by our arguments they

encounter other difficulties [52], [54], [55] which we shall not treat here.

Concluding, we indicate that three composite-model explanations were suggested

for ee7 events: Z° decay through a scalar [53], [54] , fermion [55], [54] , or a vector [52],

[54] . We showed that the first suggestion (intermediate scalar) is unfavoured by chiral

symmetry [49].

We are aware of the fact that with the accumulation of events in the 1984 run

and the improvement of statistics — the ecy events are now in agreement with the

Bremsstrahlung process predicted by the standard model. However the analysis we

presented here might still be of some interest: First, it manifests the important role

chiral symmetry is playing in composite models. Second, we may conclude that the Z°

might after all be composite and there might exist a composite scalar X in the 40-50
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GeV region. This scalar was not yet seen because chiral symmetry makes it undetectable

at present energies.

2.6 Summary

In this part of the work we have discussed three tests of W and Z compositeness:

(i) Universality — At present no deviations from universality have been seen, nor have

FCNC effects been observed. Therefore we were able to put only upper bounds on

deviations from universality. Under simple assumptions these were translated to lower

bounds on the compositeness scale A. The best bound was obtained from the absence

of FCNC effects in K° - K° and D° - D° mixings:

A. > 1.2Tov

(ii) In a composite model one expects the appearance of effective terms of the form

Z°V°... V° where a V° is a photon or a gluon field. Considering the terms Z°V°V°

and Z0V°V°V0 we found that the most important term for near future physics is the

Z°1Q9 vertex which may give a sizeable effect in the pp colliders of CERN and Fennilab.

(iii) We criticized the idea that the 1983 ecy events are due to composite Z decay through

an intermediate scalar. Our objection is based on the observation that chiral symmetry

is broken in this process.
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Chapter S

The Quark Mixing Matrix

3.1 Introduction

The many particles and parameters of the standard model lead us to speculate

about the possibility of an underlying theory. However, such speculations are not only

due to the proliferation of particles and their parameters, but also to the pattern which

seems to exist in the spectrum:

(i) We see three "generations", having identical SU{3)c * SU(2)w x U(l)y properties,

(ii) There is a mass hierarchy between the generations.

(Ill) There is also a hierarchy inside each generation: the u-like quark is heavier than

the d-like quark (except for the case of the first generation); the quarks are heavier than

the charged lepton which is heavier than its (left-handed) neutrino,

(iv) mixings between neighbouring generations (i.e. mixing between the first and second

generations or between the second and third generations) are bigger than other mixings

(i.e. bigger than the mixing between the first and third generations),

(v) The mixing of the i'th and j 'th generations seems to be related to mass ratios

where m;, my are characteristic masses of the i'th, j ' th generations. The most famous

relation of this kind is: sinOr
'c
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Clearly, the identification of phenomenological rules such as (i)-(v), may help us

in our search for possible "underlying physics". In this chapter we make a modest step

in this direction: We suggest a new parametrization to the mixing matrix. The new

parameters have a simple meaning and they are simply and conveniently related to

measurable quantities. Also, the pattern we recognize in the mixing matrix is simply

formulated in terms of these parameters. Our parametrization is generalizable in a

straight-forward manner to the case of more than three generations (in contrast to

the Kobayashi-Maskawa parametrization which has no obvious generalization). We

therefore hope that the parametrization we propose here will prove to be useful for

derivations of new phenomenological rules or for generalizations of known rules to higher

generations.

The rest of this chapter is divided into four sections: In section 3.2 we describe

our parametrization and discuss its properties and advantages. In sections 3.3 and 3.4

we exemplify the usefulness of our parametrization: Section 3.3 includes an analysis of

possible inconsistencies of the minimal standard model with experiment. In section 3.4

we discuss the Fritzsch mass matrices in the framework of the minimal standard model.

In section 3.5 we summarize our results.
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3.2 A Parametrization of the Mixing Matrix

The mixing between generations appears because the mass eigenstates are different

from the eigenstates of the weak interaction. The weak charged current is:

(3-1)

where i, j are generation indices: i,j = .1,2, ,N; u,-, dj are the (mass eigenstates)

quark-fields: u,- = u,c,t,... ; dj = d,s,b,... and C is the generalized Cabibbo mixing

matrix.

The fermion fields u,-, dj are defined only up to a phase. Therefore C is denned only

up to a multiplication by phases, i.e. we are free to multiply C by a diagonal unitary

matrix on the left and by another diagonal unitary matrix on the right.

C, as an N x N unitary matrix, has a priori N2 parameters: N\ 2~
1' are rotation

angles and —' 3 ' are phases. However, for the reasons stated above, (2N — l) phases

are unphysical. We are therefore left with f ̂ —-1^ ~2' J phases. Consider for example

the case N=2: We have one rotation angle and no physical phase. The conventional

parametrization for C in this case is:

( cos9c sinOc \
(3.2)

—sinBc cosOc J

where 6 is between 0 and ^.

Consider next the three generation case: We have three rotation angles and one physical

phase. The conventional parametrization for C is the Kobayashi-Maskawa parametriza-
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tion [28]:

S1C3

V S1S2 — C1S2CZ — —C1S2S3 + C2C3C,iS

(3.3)

where c,- = cosOi and st- = stnfl,- (i=l,2,3). All rotation angles fl,- can be chosen to lie

between 0 and ^; the phase 6 is between 0 and 2TT.

The 0,- of Kobayashi and Maskawa are actually the Euler angles:

f \ 0 0 \

0 C2 52

0 —32 C2 J

ci si Q

-&i ci 0

V 0 0 1 J

f 1 \

tiS )

/1 0 0 \

0 cz S3

\ 0 - 3 3 c3

Since the Euler angles are defined only for the three dimensional rotation it is not clear

how to generalize CRM to N generations.

We therefore suggest the following parametrization for the mixing matrix in the N

generation case l :

1 the same parametrization was independently suggested by Chau and Keung [57]

but they have considered only the three-generation case.
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where fitiy for t < j is a complex rotation between the i'th and and j ' th generations:

cosOitj

0
0
1

Si'' 0

,. 0

1
.. 0

0

0
(3.5)

V 1/

0,-,; is a real rotation angle (and is between 0 and j); 6ij is a phase.

In this representation every rotation angle 6{j (:' < j) appears with its correspond-

ing phase Sij. Recall now that the number of physical phases is smaller than the number

of rotation angles by (N — 1). Indeed, it turns out that it is possible to set the (N — 1)

phases t̂,«-f l (t ̂  1 , . . . , JV — 1) to 0. All other phases are not restricted. From now on

we will make this choice.

We denote cosBij by ct-,y and sinBijeSi'* by 3tiy. (in this notation sinBij is |st,y|)-

SitJ- is simply interpreted as the (complex) mixing between the i'th and j ' th genera-

tions (in the Kobayashi Maskawa parametrization there is no simple interpretation to

52> 53). Note that the mixing between neighbouring generations is always real. In or-

der to further analyze the properties of the parametrization (3.3) we write down the

corresponding matrix for the N = 3 case:

•S2,3C1,3

V sl,252,3 - 01,202,

(3.6)
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We see that the first row and the last column of C3 have an especially simple form.

This property is generalized to C^ in the following way: The first row of Cff is:

and the last column is:

2,N • • • C1,N

2,N - • • Cl,N

In the three-generation case all mixings si,2, ^2,3, £1,3 are small. We assume that this

is true also in the N-generation case. Then, to a first approximation, the first column

and last row are:

1

i.e., to a good approximation the elements in the first and last column are simply the

corresponding mixings:

We now proceed from the first row and last column to a discussion of all elements

that lie above the main diagonal. We start by examining C3: Note that in the limit of

vanishing si^ the upper right corner of C3 looks like:

51,2 0

^2,3
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This property is generalizable to C^ in the following way: When s\tN vanishes, the

upper-right corner becomes:

si,.v-i 0

S2,N

When 5itAr, «I,JV-I and S2,N all vanish — this corner becomes:

SI,JV-2 0 0

S2.N-1 0

•»3,JV

and when 3,-j vanishes for all i, j such that j — i> k then the corner is:

«i,fc 0 . . . 0

S2,k-1 '•

0
•SW-(Jt-l),fc

In the three-generation case we know that 01)3 must be considerably smaller than

0i,21 02,3- (̂ 1,2 is actually the original Cabibbo mixing angle 8C ~ 0.22; #2,3 is measured

through the b-1'fetime (#2,3 ~ 0.065) and bounds on 0ii3 are obtained from the bounds

on b-decay-rais to the u-quark (0^3 < 0.0087)). We generalize this property to N

generations by assuming that \sij\ becomes smaller as [j — t) (the distance between the

generations) increases. More quantitatively, we assume that js»,y| is O(a*~l) where a is

a small number (a is between ~ | and ~ yg). a is also the parameter which describes

the hierarchy of the generation masses: j£f is ~O(a2^'"1^) where m,- is the typical mass

scale of the i'th generation. Under the last assumption we find that, to a very good

approximation (up to corrections of order a4) , the upper half of the mixing matrix is

given by:

(C*r)ij = *<J f°r * < J (3-7)
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and the diagonal is:

C2.3C3.4

The elements below the diagonal are more complicated, but it is possible to show that

(CjvOij *s 0(<*'*~J') f°r all t, j (i.e., also for the elements below the diagonal).

Note how convenient it is to have simple elements above the diagonal: |(CJV), , |

for i < j , is, up to a phase space factor, the decay-rate of dy to u,-. A measurement

of this rate immediately gives the value of |«»,y|, i.e., it gives the parameter 0,-fy. For

example, in the three-generation case, measurements of the rate of b-decay to c give the

parameter 02,3 while for the Kobayashi Maskawa parametrization the rate of b-decay to

c gives only the value of a relatively complicated function of a?, S3 and 6: |s2 + 53c"|.

we indicate that we could have chosen a parametrization in which the elements

below the diagonal are simple i.e., we could have chosen :

CN = 01,201,302,3 01>Nn2 ,^ . . . OJV-I.JV (3.8)

Then we would have found that:

and we would have got 0,-,y from measurements of u,- decay-rate to dy. However, note

that according to our experience with the first three generations we expect the u-like

quarks of a heavy generation to be heavier than its d-like partner. Therefore, the
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main channel for u» decay is to its partner dj while u, decay to lower generations is

suppressed and hard to detect. In contrast to this situation, d{ is forced to decay to

lower generations. Also d,'s are discovered and produced before the u,'s are (strangeness

was known long before charm and the b-quark was discovered in 1977 while it is not yet

clear if the t-quark has been really seen). We therefore find the parametrization (3.4)

more useful than (3.8) .

Another advantage of the parametrization (3.4) is that it may be represented by

a recursive formula in N, i.e.:

0\

0
(3.10)

V0 .. . 0 1 /

This representation of Cs enables us to prove all the above mentioned properties of

by induction on N.

We conclude that our parametrization (3.4) for the mixing matrix is, in the case

of three generations, more convenient than the traditionally used Kobayashi-Maskawa

matrix. If a fourth generation will be discovered, our parametrization will be generalized

in a simple and transparent manner.

3.3 Possible Inconsistencies of the Minimal Standard Model with Exper-

iment

The particle content of the minimal standard model includes three fermion genera-
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tions and a single Higgs. The Higgs is in the | representation"of SU(2)w and has four

real components, three of which are "eaten up" by the massive W and Z and only the

fourth is physical. The parameters of the theory are the gauge couplings, the W-mass,

the fermion masses, the mixing matrix and the mass of the physical Higgs (and also

the strong CP violation parameter t?). These parameters are determined from various

measurements. Clearly, if the results of some measurements require a set of parameters

which is different than the set required by other measurements — we say that the model

is inconsistent with experiment.

It was pointed out several years ago [23-24] that the following measurements may

put the minimal standard model into such inconsistency:

(1) t-quark mass(mt).

(2) b-lifetime (r6).

(3) Branching ratio of b-decay to u-quark (R(b —• u)).

(4) CP violation in K — K system.

In this chapter we repeat the analysis of this possible inconsistency in terms of our

parameters. As we will show, with these parameters the analysis is very simple and so is

the representation of the results. In the following we give the relations between the mix-

ing parameters and b-decays (subsection 3.3.1) and the relations between the mixings

and the e, c' parameters (subsection 3.3.2). We then discuss the possible inconsistency

of the minimal standard model with experiment (subsection 3.3.3).
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3.3.1 Mixing parameters and b-decays

As explained in section 3.1, 62,3 and |si,3| are very simply related to b-decay rates:

12 n n ,n-3nfL A 1 0 J

Tb (3-11)

« 2.0 • 10~3R{b -*•

sl>3 « 4.2 • 10~3i2(6 -> c) • ~ *"~ (6)

where i2(6 —*• u), iZ(& —> c) are the branching ratios for b-decays to u+any, c+any

respectively. (The numerical coefficients in (3.11) are phase space-factors.) b-decays to

u were not yet seen. We therefore have only upper experimental bounds on R(b —* u).

The best bound is [22] R{b —* u) < 0.04. R(b -* c) is very close to 1. Substituting

R(b -+ u), R(b -+ c) in (3.11) we find:

n
(b)

n

Measurements of b-lifetime [20] give lpaec < H < 2paec. For every value of Tb in the

range 1-2 psec equation (3.12) gives us the corresponding value of 52,3 and an upper

bound on |si,3|.

Note that in the Kobayashi-Maskawa parametrization S2,3 in (3.12) (b) is replaced by

IS3 + $2e*5|. This last expression is inconvenient to deal with, since it involves three

parameters.
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3,3.2 The Mixing Parameters and the CP Violation Parameters

e and €'

Introduction to £ and e':

The parameters e and c' are given by:

= e,.. IrnM12 IrnA0

KV2Am V2ReA0 ( 3 1 3 )

fImAz _ ImA°\ tb)
ReAQ

K ReA2 ReA0
J v '

where Ao, Aj are the weak decay amplitudes of K° to two pions coupled to (strong)

isospin I = 0,2; SQ, 62 are strong interaction TT-TT phase shifts. M is the 2x2 mass matrix

of the K — K system; Amjc is the KL — Ks mass difference; We note that Amjc is

related to M12 through:

= 2ReMl2 (3.14)

We will first simplify expressions (3.13) (a) and (b). In our parametrization (3.4)

(and also in the Kobayashi-Maskawa parametrization) Ai is real 2 . We may therefore

simplify our expression for e':

e = e ( 3 1 5 )

v/2 ReAo ReA0
 v ;

We will now argue that | ^ ^ ° | < | J ^ ^ | a 1 and therefore the expression for e may be

2 This is due to the fact that in the parametrizations (3.3) and (3.4) the first two

elements of the first row are real.
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simplified to:

(3.16)

We use the following facts:

(i) Gilman and Wise [58] have shown that, in the minimal standard model, j is real

and positive.

(ii) Recent measurements of ^ give:

e

- = -0.0046 ± 0.0053 ± 0.0024 (3.17)

We now substitute in (3.17) the expressions (3.15) for e' and (3.13) (a) for e, and get:

IMI R*£Hir - ~0-0046 + V-00532 + .00242 = 0.0012 (3.18)
*" ReAo I

iiAT\ Js ~ ^ (*n*s ^ * n e AI = I rule). We therefore find that:

I 1 < 2.4 • 10 2|—= 1 (3.19)
ReA0 ~ y/2AMK

Consequently, the expression (3.19) is a good approximation for e.

The Relation Between e and the Mixing Angles

M12 was originally computed by Gaillard and Lee [16] for the two generation stan-

dard model. Later the computation was generalized to the case of three generations [59],



[26], QCD corrections were calculated [17] and the "vacuum insertion approximation"

introduced by Gaillard and Lee was reexamined. The final result is:

(3.20)

where:

Gp (~ 1.1 • 10^gV_3) is the Fermi constant; fjc (~ 165jvfev) is the K decay constant;

TTIK (~ 498jifev) is the kaon mass; mc, mt are the masses of the c, t quarks: mc is3

~ 1.5 GeV and we will assume throughout this work that 2QaeV < mt < 80ceV 4 •

xt = (mTt!t/\)2> B, Tji, 172, »?3 a r e correction factors: B is a multiplicative factor correcting

for the "vacuum insertion approximation". We will assume here that B ranges between

0.37 and 1 [61]. (B=l corresponds to the vacuum insertion approximation), t/i, r/2, 773

stand for short range QCD effects [62] . QCD effects were not taken into account at

all in the early works and all rn were assumed to be equal to 1. Gilman and Wise [17]

3 We prefer this relatively high value for mc since it leads, through (3.14) and

(3.20) , to better estimates of

4 The lower bound , mt > 20cev was established by Tasso Collaboration [60].

The UAl Collaboration have announced the identification of six t-quarks with mass

mt ~ 40 ± lOceV [27], This result is however controversial and we therefore allow

mt-values as low as 20 GeV. We arbitrarily choose to limit our attention to mt-values

that are not exceeding the W-mass.
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computed 77,- and found them all 0(1) but smaller than 1. Using [17] we will substitute:

17! = 0.7

772 = 0.6 "*

773 = 0.4

For the mixing matrix elements Ct|y we will use the parametrization (3.4) . We sub-

stitute ImM\2 in the expression (3.16) for c and find:
e «et-* 9.6552,3151,31 sin 5i,3-

(3.21)
• [(0.4/3(mt) -0.7)51,2 + 0.6/2(7714)52,3(51,252,3 + |si,3|cos<5i,3)]

In the Kobsiyashi-Maskawa parametrization one finds:

[(0.4/3(mt) — 0.7)$i +0.6/2(7714)52(5152 + 5is3cos<5)] (3.22)

The expressions (3.21) and (3.22) look very similar and at first sight it is not clear

what is the advantage of our parametrization. But, suppose mt is known, rj, is measured

with a high accuracy and improved theoretical calculations enable us to determine B.

If we use the parametrization (3.4) then, by substituting the value of r& in (3.12) (b)

we get the value of S2,3. Substituting in (3.21) the values 01 51,2 (= sin0c), 52,3, mo,

m t, B and e — we find ourselves with an implicit equation in the two variables a 1,3 and

£1,3. If, however, we use the standard Kobayashi-Maskawa parametrization then, by rt,

we get an implicit equation in the three variables 52, s3 and 6:

• .£,2 o 10~1 2psec
s3 + s2e

tS = 4.2 • 10~3

n

Substituting in (3.22) the values of 5i = sin0c, mc, m t, B and e — we get another

implicit equation in 52, 53 and 6. We therefore end up with two implicit equations for
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three variables. Clearly, it is easier to solve the one equation we get for for a l i3) <51]3

than to solve the two equations we get for 52, S3 and 8.

3.3.3 Is the Minimal Standard Model Consistent with Experiment?

We will now check whether the measurements of mj, rj,, R[b —• u), e and e' all

agree with the same "set of parameters" for the minimal standard model.

We know that rj, is between 1 and 2 psec and we will assume that mt is between

20 and 80 GeV. For every value of rj, and mt in this range we may determine the value

of 52,3 through (3.12) (b). We then substitute mt, $2,3 and the experimental value

of e (= 2.27 • 10~'3) in (3.21) . For every fixed value of the parameter B (we assume

that B is in the range 0.37-1) the solutions to equation (3.21) constitute a line in the

^1,3 ~ ^1,3 plane. (Note that the line exists only for 0° < £ l i3 < 180°. This is because

the measured phase of e is ~ ^. Consequently, equation (3.21) implies that sin 61,3 is

positive).

Consider R[b —• u). For our choice of rj, the present experimental bound on

12(6 —• u) gives an upper bound on 0^3 (see equation (3.12) (a)). In the 0it3 — 61,3

plane we may describe this bound as a straight line.

We now compare our "f-line" with the ub-decay bound". If none of the points on

the e-line obey the b-decay bound, we say that the standard model is inconsistent with

our choice of mt, rj, (and B). If there are no values of mt, r& (and B) with which the

standard model agrees — we may say that it is inconsistent with experiment.

Consider, for example, the values mt = 45GeV, n = l-5p«ec and B — 0.4. The
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corresponding e-line and b-decay bound are described in fig. 3.1. The e-line lies high

above the b-decay bound and therefore our parameters clearly do not agree with the

minimal standard model.

Straight-forward analysis of equation (3.21) shows that:

(1) The e-line "goes down" as B and m< increase (see e.g. figures 3.2, 3.3).

(2) The f-line "goes down" and the b-decay bound "goes up" when n decreases, (see

e.g. figures 3.2,3.3).

We conclude from these observations that:

(a) For fixed values of mt and 77, the "lowest" e-line is the line corresponding to B=l.

Therefore the B=l line gives a lower bound on #1,3. We call this line "the e bound".

Allowed values of #1,3 and $1,3 correspond to points lying in between the e bound and

b-decay bound.

(b) Consider the c-bound and b-decay bound for fixed value of r& and varying value

of mt: As m< decreases, the e-bound goes up till, at some value of mt, it crosses the

b-decay bound. For smaller values of mt the e lower bound is above the b-decay upper

bound. Clearly, there are no #1,3 and 6^3 that may obey such bounds. We therefore

find that these smaller values of mt are inconsistent with the standard model. Similarly,

if we fix mt and consider the e and b-decay bounds, we find that as rj, increases, the two

bounds are approaching each other (b-decay bound goes down while e-bound goes up)

till, at a certain value of 77, the two lines cross each other. Clearly, larger values of T\,

are forbidden (since there are no 01,3, 61,3 which may satisfy the bounds corresponding

to lower rfc's). Concluding, we find that there is a line in the mt-Tf, plane such that all
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points on one side of the line are consistent with the standard model while all those

on the other side are not. The inconsistent points have the lower m^-values and higher

revalues. The picture in the mt — 77, plane is described in figure 3.4.

Finally, we take into account the constraints imposed by the e'- parameter. Ac-

cording to Gilman and Hagelin [63] y is» in the minimal standard model, given by:

)

= A

e sin0c

where A is ~ 8.4.

As mentioned above, the latest experimental results imply:

- < 1.2 • 10~3 (3.24)

In our notation, (3.23) and (3.24) give:

8AS3'3lSl^nSl'3 < 1.2 • 10-3 (3.25)

For every value of r& and mt we now have:

(i) An upper bound on #1,3 from b-decay,

(ii) a lower bound on #1,3 through e and

(iii) another upper bound through e'.

In figure 3.5 we present the situation for rj, = 1 psec, mt = 45 GeV. We see that the

e bound is far from agreement with the e' bound. However we note that the situation

would have improved if the constant A would have been smaller and the bound on j

relaxed. Indeed, the theoretical uncertainties in the computation of A allow for vl-values

- 99 -



as small as 2 [64]. The experimental errors in the measurement of — allow us to relax

the upper bound (3.25) and we do so by summing the experimental errors linearly (and

not quadratically):

| - | < -0.0046 + -0053 + .0024 = 3.1 • 10~3 (3.26)

substituting in (3.23) A = 2 and the modified bound (3.26) on |^-| we get a weaker

bound on 0\tz which is described in figure 3.6. The allowed region (according to the

standard model) lies now in between the e-bound, the e'-bound and b-decay bound.

Let us summarize: In order to find a set of parameters with which the standard

model becomes consistent with present experimental results one should:

(1) Use figure 3.4 in order to choose the allowed values for rj, and mt.

(2) For these values of T&, mt one should find the region in the 0i)3 — 61,3 space which

is allowed by the e, e' and b-decay bounds. In figure 3.7 we give the allowed region

corresponding to r& = 1 psec and mt = 45 GeV.

The standard model will be "in trouble" if TJ, and m< will be measured and found

to be in the "forbidden" region, or if the experimental bounds on R(b —* u) and j will

become so strong that they will exclude every set of parameters. B

5 "Brand new" experimental results seem to indicate that the minimal standard

model is doing well: In the Tokyo conference [65] it was mentioned that the bound on

R(b —• u) stated in [22] is too strong: New careful analysis of the CLEO-experiment

give: R[b —• u) < .08. In addition, new measurements of TJ, seem to indicate that this

quantity is somewhat smaller than 1 psec [66] .

- 100 -



3.4 The Fritzsch Mass Matrices and the Minimal Standard Model

3.4.1 Introduction to the Fritzsch Mass Matrices [67-68]

In the late 70's the relation:

— ~s in0 c (3.27)

have attracted a lot of attention. Many proposals for the quark mass matrices have

arose, amongst them — the Fritzsch mass matrices. Fritzsch suggested that the quark

mass matrices are of the following form [67]:

where a and b are hierarchical, e.g.:

\T\<0{O) (3.29)

(a is the small parameter discussed in the first section of this chapter.) It is straight-

forward to show that if Mu, Md are of the form (3.28) then:

(3.30)

where <f> is the relative phase between the a-parameter of Mu and the a-parameter of

Md. If we choose $ ~ ^ then we get the relation (3.27) to a very good approximation.

A few months after the publication of [67], Fritzsch has generalized his matrices for the
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three-generation case. Here we will give the generalization to N generations:
/ 0 ax \

0 a2

M =
aj 0

0

a,
The parameters a,-, 6 are "hierarchical":

b real and positive (3.31)

b J

and

It is straight-forward to show that:

(l) The fermion masses are related to a,-, 6 through:

d{ RS (3.32)

("«" means equality up to corrections of order a2) . Note that the mass spectrum of

(3.31) is hierarchical:

"*_ < 0{a2) (3.33)

(2) The mixing angles of neighbouring generations are [69]:

(3-34)

where a", 6U are the parameters of Mu and m" are its eigenvalues, o^, bd and mf are

similarly related to Md. It is useful to rewrite equation (3.34) in the following way:

(3.35)
t + 1
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where <£,• is the relative phase of a" and af. Note that equation (3.35) reduces for i = 1

to (3.30) .

One of the nice features of the Fritzsch mass matrices is that the effective matrices

of the low lying generations are also of the Fritzsch type and are very simply related to

the original matrix 6 . The effective matrix for the first n generations (n < N) is:

0 oj ^

a\ 0 a2

M
XL generations)

'ff

Another attractive feature of the Fritzsch matrices is that they seem to arise from an

interesting underlying dynamics: (i) The many zeros in the matrices presumably arise

from some symmetries (originally, Fritzsch suggested discrete symmetries), (ii) The

hermiticity of the matrices seems to be related to some symmetry (Fritzsch suggested

left-right symmetry. In Appendix C wa comment on his suggestion), (iii) The masses of

the lower generations seem to be ftd down from the mass of the highest generation in a

hierarchical way. Many authors have tried to suggest mechanisms which could produce

such feed-down [69, 70].

6 By the effective matrices for the n(< N) low lying generations we mean: n x n

matrices whose eigenvalues give the low lying spectrum and whose mixings are the

mixings of the low lying generations among themselves.
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Here we will not try to understand what is the possible underlying physics which may

give rise to Fritzsch mass matrices. We will only consider these matrices in the frame-

work of the minimal standard model.

3.4.2 The Fritzsch Mass Matrices and the Standard Model

In this subsection we discuss the following question: Is it possible that the low lying

physics consists of the minimal standard model with Fritzsch mass matrices? In order

to see where problems may arise — consider the number of physical parameters in the

mass matrices: If Mu , Md are of the "Fritzsch-form", then they have 2N (dimensionful)

mass parameters (|o"|, 6", \ad\, bd) and 2(N-l) (dimensionless) phase parameters (the

phases of a", af). We now show that only (N-l) of the phases are physical. Consider

the quark mass term in the Lagrangian

Lm = U^MUU^ + D^)MdD{°) + h.c. (3.36)

Mo) - / u
N . r>(0) _

where t is a generation index and the index (°) indicates that the quark fields are in-

teraction eigenstates and not mass eigenstates (i.e. [uL \,dL J is an SU(2)L doublet).



We are clearly free to make the following redefinitions:

U{0)

UL(R)

D ( 0 )U

(0)

{0)

Mu'd —> FMu'dF+

Where F is a diagonal unitary matrix

F = (3.37)

V e
iiN J

Note that under these redefinitions the mass matrices keep their Fritzsch form. The

only change in these matrices is in the phases of a"1 : The phase of a"' is changed by

—f». We can choose the ft such that all the o" of the new M u are real and positive.

We then have 2N mass parameters in Mu, Md and (N-l) phase parameters which arise

from Md alone. Concluding, we find that, if the mass matrices are of the Fritzsch form,

they depend on 3N-1 physical parameters.

We now count the number of measurable parameters which M u and Md should

provide: These are the 2N masses of the u,- and d{ quarks, the N(N
2~

1> mixing angles

and the \N~1>\N~2) physical phases of the generalized Cabibbo matrix. Altogether we

should have (N2 + 1) parameters.

For N = 1,2 the number of measurable parameters,(./V"2 + l) , is equal to the number

of the parameters of the Fritzsch mass matrices, ZN — 1. But for N > 3:

N2 + 1 > 3N - 1
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and we therefore find that if the mass matrices are of the "Fritzsch" type then there

must be relations between measurable quantities. In particular, note that for the case

of three generations we have 10 measurable quantities but (assuming Fritzsch mass

matrices) only 8 of them are independent.

Consider now a minimal standard model with Fritzsch mass matrices. In the pre-

vious chapter we discussed the experimental constraints imposed on the mixing matrix

parameters and the quark masses. If the mass matrices are of the Fritzsch form we have

additional constraints. Is it possible to satisfy all these constraints simultaneously?

In order to answer this question we proceed in the following steps:

(a) We choose values of TJ, and mt that are "allowed" according to fig 3.4.

Our choice is: 77, = lpaeci mt = 45cev- From rj, we extract the corresponding value of

52,3 (=0.065). We now have a set of eight parameters: The six quark masses

rnd =

mc = 1.

mb =

and two mixing angles

01.2 = Oe = 0.22

02.3 = -065

(b) Assuming a Fritzsch form of the mass matrices we proceed to compute the last

two parameters namely, #1,3 and <5i,3. We denote the three-generation Fritzsch mass
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0 a*

ad* 0 ba

V 0 bd' cd

o A
(3.38)

matrices by:

/ 0 a" 0 \

0 6"

V 0 6U" cu 7

We choose the convention in which all parameters of M u (au, 6u,cu) are real and positive

and denote:

(3.39)

bd =\bd\eiv*

The eight parameters of Mu, Md are related to the six quark masses and the two mixing

angles 0i>2, 02,3 through:

a u

52,3 — e 'V mt

From (3.41) we find:

^ = 0.042(1 + 0{a2))

» ±(87.6° ±0.1°)

Tî " + 7S7 ~ 52,3
I mt I ma

m t V m,

= 0.94(1 + O[a2))

« ±21°_go

(3.40)

(3.41)

(3.42)

(3.43)
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(In (3.42) , (3.43) we estimate: 0[a2) < ( | ) 2 = 0.04.) In order to get 01|3 and <5i|3 we

use results presented in a paper by Fritzsch in 1978 [68]. In this paper Fritzsch gives the

exact eigenstates e", ef of the mass matrices Mu, Md (equation (3.38) ). In a certain

phase convention the Cabibbo mixing matrix is then given by:

(3.44)

where (e^,ej) means hermitian product of the vectors e", ej.

sin5i>3 is |Ci,3| = |(ei,e3)|. Substituting the Fritzsch formula for e", e* we get:

sin 0i
m j , m t

r n u _ • >
(3.45)

[ip'2 is defined through the second equality of (3.45) ).

Substituting in (3.45) the values of the quark masses and of <p\, <p2 we find two solutions:

sin 01]3 = 0.0045(1 + O(a2)) or sin fl1>3 = 0.0022(1 + O{a2))

The smaller solution (sin #1,3 « 0.0022) is excluded by the e-bound on 01,3 (see fig. 3.6).

In order to compute #1,3 we use the following phase:

(Note that this phase is independent of phase convention). It is straightforward to check

that in the Fritzsch convention:

-. i r——.

(3.46)p h a s e L / —
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and in terms of our parameters (3.4) :

(3.47)

We therefore find:

phasef, & > > - (3.48)

Substituting in (3.48) mu , mc, mj, ms, si,2, s2>3, s1]3 and <px we get:

i,3 ii °r ± 118° ± 3°

(c) Finally, we check whether the 0^3, ^1,3 we have computed in step (b), through the

assumption of Fritzsch form of the mass matrices, are in the allowed range of the minimal

standard model. We therefore look at the allowed range corresponding to r& = lp<,ec

and mt = 45G«V and check whether any of the points:

M = (4.5 ± 0.2miUrad, ±35°± (4.5 ± 0.2mUirad, ±118° ± 3°)

fall into this range.We first note that the standard model allows only for 5 l i 3 in the range

0°-180°. We are therefore left with two possible points which may agree with both the

constraints on the minimal standard model and the constraints arising from the Fritzsch

mass matrices. In figure 3.8 we describe the two points and the range of 61,3 — 61^ values

allowed for the standard model. We see that the point (#1,3, £1,3) = (4.5mnirad»118°)

sits inside the allowed region.

Let us summarize: Assuming a Fritzsch form for the quark mass matrices we find

that 0\t3 and £^3 are not independent parameters but are functions of the quark masses
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and the mixing angles #1,2 and 02,3- We showed that the 6-L)3 and 61,3 values correspond-

ing to mt = 45 GeV and 77, = 1 psec are getting values consistent with the minimal

standard model We therefore conclude that, (at present), a minimal standard model

with Fritzsch mass matrices is consistent with experiment.

3.5 Summary

We have proposed a new parametrization for the mixing matrix. Our parameters

have both a simple interpretation and a simple relation to measurable quantities. We

used the new parametrization for an analysis of the present status of the standard model.

Assuming that m; is in the range 20-80 GeV and using the experimental knowledge that

Tf, is between 1 and 2 psec we were able to determine the region in the mt- 77, plane which

agrees with the standard model. For every value of mt and T\, which agrees with the

standard model, we were then able to describe in the #1,3 — £1,3 plane an allowed region.

This region includes the points which are consistent with the standard model according

to measurements of R{b —• u) and the CP violating parameters e, e'. We note that

in previous literature one usually find only the first part of our analysis (namely, the

allowed region in T\, — mt space). This is because in the traditional Kobayashi-Maskawa

notation the second part of the analysis is difficult and the results are obscured by the

inconvenient choice of parameters.

We have also shown that the "Fritzsch-mass-matrices" are still consistent with the

minimal standard model (a similar analysis was independently carried out by Shin [7l].)
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We conclude that the parametrization proposed here is more convenient to use

than the traditional Kobayashi-Maskawa parametrization. Also, our parametrization is

generalizable in a straight-forward manner to N generations. If more generations will

be discovered we believe that this parametrization should become the standard one.
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APPENDIX A

In this appendix we discuss the diagonlization of quark mass matrices. We will first

give the general procedure and then specialize to the manifest-model and CCC-model

cases.

Diagonalization of Quark Mass Matrices — General Case

Let M be any mass matrix. In order to diagonalize it we will use the following

mathematical theorem.

Theorem: There exist unitary matrices UL, UR such that:

(i) UzMUji is diagonal and positive definite,

(ii) UL diagonalizes MM+ and UR diagonalizes M+M.

A corollary from this theorem is: The eigenmasses of M are the square roots of the

eigenvalues of MM+.

Note that the theorem and its corollary specify the masses in a unique way. How-

ever, the mixing matrices UL and UR are not so clearly specified: If we chose an arbitrary

UL that diagonalizes MM+ and an arbitrary UR that diagonalizes M+M then , usually,

ULMUR is not diagonal and not positive-definite. However, we will now introduce the

assumption that there are no two up (or two down) quarks with the same mass, i.e.,

the eigenvalues of MM+ (and M+M) are not degenerate. Under this assumption it is

possible to show that the unitary matrix that diagonalizes MM+ (or M+M) is unique
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up to permutations and phases. In this last statement we mean the following: If UL

and UL are both diagonalizing MM+—then, there exist PL and FL such that:

UL = FLPLUL [A.I)

where:

PL is a matrix of permutations — it is a unitary matrix whose elements lire 0 or

1. Note that Pi permutes the rows of UL-

FL is a matrix of phases — it is a diagonal unitary matrix. Note that FL multiplies

every row of PLUL by a phase. We now conclude that if UL and UR are any two matrices

that diagonalize MM+ and M+M respectively — then UL and UR are given by:

UL =
(A.2)

UR = FRPRUR

We note that there are many pairs of UL and UR such that ULMU^ is diagonal

and positive definite. But, once we have a certain such pair (which we denote by V^,

VR) all other pairs are given by:
UL =FPVL

UR =FPVR

where F is a matrix of phases and P a matrix of permutations.

We now turn to examine the mixing matrices in the specific cases of the manifest

and CCC models.
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Diagonalization in the manifest model

Consider first M u . In the manifest model this matrix is hennitian, and thus there

exists a unitary matrix U% such that U£Mu{Ufi) is diagonal. We therefore choose

TTU TTU rVu / A *>\
UL = UR = U (^-3)

Then, clearly U]^MU[U^) is diagonal and real, but it is not necessarily positive defi-

nite, i.e. M u may have negative eigenvalues 7 . To correct for these possible negative

eigenvalues we multiply UR by Fu[±). Fu{±) is a matrix of real phases (i.e., a diagonal

unitary matrix whose eigenvalues are 1 or -1). Then: UIMU(UR) Fu(±) is diagonal

and positive definite, thus:

(AA)

Similarly, we get:

Tjd _ jjd

(A.5)
UR = Fd{±)U& = Fd{±)Ut

Since CL{R) = Ul{R)(U
d

w)+ (A.4) and (A.5) imply.

CR = Fu{±)CLFd{±) (A.6)

7 this was pointed up to us by G. Ecker.
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Diagonalization in the CCC Model

Consider first M u . Choose U£ to be any unitary matrix that diagnalizes MU{MU) +.

Choose now UR to be (U£)*. Such a choice is possible in a CCC model because Mu is

symmetric. Consider the matrix:

We claim that this matrix is diagonal (though it is not necessarily real). To prove our

claim we make use of the following points:

(i) E/£Mu(Z7£)+.is symmetric. This is because M u is symmetric and (U%)+ = {U^.

(ii) UZ and Uj[ are up to phases and permutations UL and UR. This means that

17JJMu{U]jj) has the following general form: In every row (and every column) there is

one and only one nonzero element. The absolute values of these elements are the masses

of the u-quarks.

Suppose now that UZMU{U^) is not diagonal, i.e., there exist a nonzero element

outside the diagonal. Then, by (i) this element is accompanied by another element on

the other side of the diagonal and these two elements are equal, (ii) will then imply

that there cje two equal masses in the spectrum. This is, of course, in contradiction

with our the assumption of non-degeneracy of the eigenmasses. Thus, we conclude that

UZMU(U£)+ is indeed diagonal.

We now want to correct for the phases of the eigenvalues of C/jJM'^t/jj) : Let F be

a matrix of phases that does these corrections and let F5 be a matrix of phases which
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is the square root of F, then:

is diagonal and positive definite. Thus:

Similarly we get:

UR = [Ud
LY (A.8)

(A.7) and (A.8) imply:

CR = Cl (A.9)

We note that (A.9) holds only in a specific phase convention. To get CL and CR in

any other phase convention, we have to multiply both CL and CR by the same phase

matrices:
CL ~

CR —

It is easy to derive from (A.9) and (A.10) the following relation for CL and CR in the

new phase convention:

CR = FuCl{Fd)* (All)

where Fu = (Fx)
2 and Fd = [F2)

2.
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APPENDIX B

We will explain here why the Z°~iX and "nXvertices are expected to be related to

each other by a factor tandvv (or, a factor of the same order of magnitude).

Let us denote:

J . m = J { 0 ) + j V (B.I)

where j(°> is the generating current of the neutral component of the SU(2)L symmetry

and Jy is the generating current of weak hypercharge.

The* Z°~fX and TY-X" vertices arise from loop diagrams like:

7
We assume that only the y(°) part of the electromagnetic current is relevant to

these diagrams. Under this simplifying assumption we find that the -7 coupling to the

particles in the loop is given by cj(°\ while the Z coupling is:

;(°) (B.2)

i.e., we find that the *yiX vertex is identical to the Z^X vertex, except for a

factor.
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APPENDIX C

Fritzsch suggested Left -Right Symmetry as the underlying physics which is re-

sponsible for the hermiticity of his matrices. As we discuss in Chapter 2 of the the-

sis, we prefer those versions of left-right symmetric theories which produce symmet-

ric (and not hermitian) mass matrices. In this appendix we show that, as far as the

low-energy standard-model is concerned — the hermitian and symmetric Fritzsch ma-

trices are equivalent.

The mass matrices Mu, Md are defined through:

h.c.

In the standard model the right-handed fermions are singlets of SU(2)L. We are there-

fore free to make the following transformations:

u
(o)

40 )
(C.I)

UUU+

Ma

MUU

MdUd+

where Uu, Ud are any unitary matrices. Consider now the mass matrices of Fritzsch:

\ \

a N-l bu

Md =
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We will show that under transformations of the type (C.I) the hermitian matrices (C.2)

become symmetric. Choose:

N~2 aN-l an-l
(C.3)

aaAT-2 a J V - l a n - l

where ^u, ^d are arbitrary phases. Transforming the hermitian Fritzsch mass matrices

(C.2) according to the rule (C.I) with the Ifs of(C3), (C.4) we get symmetric mass

matrices.
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TABLES

Table 1: Comparison of the manifest and CCC models

Table 2: predicted number of Z°*f events per year in pp colliders, assuming an integrated

luminosity of 1037 cm"2 . The distribution functions used are of Baier et.al.t13)

with A=.4 GeV. The cross sections are integrated up to Pj.=90 GeV. Composite

model predictions include standard model contributions and the g + g —* Z + 7

contribution. The latter are computed using the model mentioned in the text,

assuming < Q3Q > = 1. For py >10 GeV the enhancement factors of the

composite modrsl are 20 (at 540 GeV) and 170 (at 2000 GeV). For A = 0.1, the

corresponding enhancement factors are 7 and 40 (respectively).
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Table 1

Symmetry of

the Lagrangian

Assumption

on < <j> >

Symmetry manifested

in the quark

mass matrices

Relation between

CL and CR

Manifest

P

< <f> > conserves

P

(unreasonable)

P

CR=F"[±)CLFi{±)

ccc

CCCi

P,C,CP

< </> > breaks

P

(reasonable)

ccc2

c

no assumption

C

CR=F"Cl(Fd)*
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Table 2

cm. energy

540 GeV

2000 GeV

Standard

p j > 5 GeV

33

160

I

Model

4>io

15

90

GeV Pi

Composite-Z"

> 5 GeV

390

17000

Pi

Model

> 10 GeV

300

15000
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FIGURE CAPTIONS

Fig. 1.1 Lowest order diagrams contributing to K — K mixing in the minimal standard

model. ut-,Uj stand (in the 2-generation case) for u,c.

Fig. 1.2 Unphysical Higgs contribution to Mn in the standard model.

Fig. 1.3 Contribution of W-bosons to K — R mixing in a left-right symmetric model.

Only diagrams which are lowest order in a (the fine structure constant) and zero

or first order in 0 I = ( ̂ W ' ( J 1 are included.

Fig. 1.4 Unphysical Higgs contribution to M\2 in left-right symmetric model.

Fig. 1.5 Neutral physical Higgs contribution to Mi 2.

Fig. 1.6 Charged physical Higgs contribution to M\i.

Fig. 2.1 Effective Z0V°V°V° vertex (V° = 7 or g) in the standard model (2.1(a)) and

in a composite model (2.1 (b)).

Fig. 2.2 Subprocesses contributing to p + p —* Z" +1 + any. In the standard model, the

lowest order contributions correspond to q + q —* Z" + 7 (2.2(a);2.2(b)). In a

composite model additional effective terms appear (2.2(c);2.2(d)). The g + g —•

Z° + 7 subprocess (figure 2.2(d)) is likely to dominate the large px cross-section.

Fig. 2.3 The differential cross section for p + p —• Z° + 7 + any due to the standard

model diagrams and to the g + g —* Z" +~f subprocess in a composite-/?0 model.

We use the cutoff M.\ > 1.1 M\. The distribution functions are those of Baier

et al.t1^' with A = 0.4. The composite-/?0 contributions were computed using

the model mentioned in the text, assuming < Q\Q > = 1. The cm. energies

are: 54C GeV (2.3a) and 2000 GeV (2.3b).
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Fig. 3.1 b-decay (upper) bound and t-line for r&=1.5 psec, mt—45 GeV and B=0.4.

Clearly, non of the points of the e-line obeys the bound on #1,3 imposed by b-

decay.

Fig. 3.2 b-decay bound and e-lines for rj,=1.5 psec and various valuea of mt and B. We

see that as mt and B increase, the e-line "goes down".

Fig. 3.3 b-decay bound and e-lines for Tb=l psec and various values of mt and B. Com-

paring this figure with its former we see that as rj increases, the f-line "goes

down".

Fig. 3.4 Allowed and forbidden regions in Tb-mt plane, according to the standard model.

Fig. 3.5 b-decay (upper) bound, e (lower) bound and e' (upper) bound for 7"t=l psec and

mt=45 GeV. Clearly the e' bound does not agree with the e bound.

Fig. 3.6 b-decay bound, £ bound and relaxed (! bounds. The bound on e' is relaxed by

summing the experimental errors in the measurements of ^- linearly (and not

quadratically). As we see in the figure the e' is further relaxed by taking A

value as small as possible. The relaxed e' bound corresponding to A = 2 is com-

patible with the £ bound.

Fig. 3.7 The shaded area is the allowed region in 0i,3-<Si,3 plane for T-&=1 psec and

mt=45 GeV, as determined by the b-decay bound, the £-bound and the relaxed

f'-bound.

Fig. 3.8 The two "Fritzsch"-points and the allowed region in 0i,3-6i,3 space for r = l psec

and m#=45 GeV.
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