INiS DOCUMENT

TRN L 2103398

STANDARD AND NON-STANDARD

WEAK INTERACTIONS

INIS-mf--11100

Thesis for the Degree of
Doctor of Philosophy

Miriam Leurer

Submitted to the Scientific Council of the
Weizmann Institute of Science, Rehovot

December 1985



INiIS DOCUMERS

TRN IL 4103348

STANDARD AND NON-STANDARD

WEAK INTERACTIONS

Thesis for the Degree of
Doctor of Philosophy

Miriam Leurer

Submitted to the Scientific Council of the
Weizmann Institute of Science, Rehovot

December 1985



This work was carried out under the supervision of Professor

Haim Harari, The Weizmann Institute, Rehovot



ACKNOWLEDGEMENT

I thank Haim Harari for his guidance through this work, for teaching me physics
during the last four years and for making me realize that the computer is not as mon-
strous as [ used to think.

I thank Aharon Davidson for many enthusiastic and fruitful discussions.

I am grateful to Naomi Cohen for TEX-typing some of the more complicated tables
and formulas which appear in this work, to Elisha Moses for his help in running the
computer program used in section 2.3 and to Avi Yagil for transferring to me all kinds

of useful “execs” and teaching me how to use them.

Finally — many thanks to my family and friends for their encouragement and pa-

tience during the long months of writing my thesis.



To Udi and Maymon



Contents

Page

1 Preface . . . . . . . e e 6
Chapter 1. Left-Right Symmetric Theories . . . . . . . . . . . ... .. .... ... 9
1.1 Introduction . . . . . . . . . . . L L Lo e 9
1.2 Some Features of Left-Right Symmetric Models . . . . . . . . ... ... ... 11
1.2.1 The Particle Tontent of a Left-Right Symmetric Model . . . . . . . . .. 11

1.2.2 Parity and Charge Conjugation in LRSModels . . . . . . . . . . .. .. 13

1.2.3 Breakdown of Gauge Invariance and the Masses of the Gauge Bosons . . . 15

1.2.4 Quark Mass Matrices and Introduction to the “Manifest” and

“CCC” Nodels . . , 17

1.3 K9 — K° Mixing in Left Right Symmetric Theories . . . . . ... . ... ... 22
1.3.1 Mjq in the Minimal Standard Model . . . . . . . . .. .. ... .. .. 23

1.3.2 Mj2 in the Minimal LRS Model . . . . . . . . ... ... ... .... 29

1.3.3 Mj, in the Non-Minimal CCCModel . . . . . .. ... .. ... ... 43

1.4 Summary . . . . .. L e e e e e e e e e e e e e e e e 48
Chapter 2. Composite Vector Bosons . . . . . . . . . . . . . ... .00 51
2.1 Why Composite Vector Bosons? . . . . . . . . . . . . .. .o 51



2.2 More on Composite Vector Bosons [35. . . .. . . . . . ... ... ... ... 52

2.3 Testing Universality

2.4 An experimental Test of Z9 Compositeness in Praton Anti-Proton Collider [43] . 67

2.5 OntheeeyEvents [49] . . . . . . . . . . .. ... 77
26 SUMIMATLY . . .« o v e e e e e e e e e e e e e e e e e e e e 81
Chapter 3. The Quark Mixing Matrix . . . . . . . . . . . . . .. v ... 82
3.1 Imtroduction . . . . . . . . . . e e e e e e e e e e e e 82
3.2 A Parametrization of the Mixing Matrix . . . . . . . . ... .. ... .. ... 84
3.3 Possible Inconsistencies of the Minimal Standard Model with Experiment . . . . 90
3.3.1 Mixing parameters and b-decays . . . . ... . . ... .00 L. 92

3.3.2 The Mixing Parameters and the CP Violation Paran.wters¢and € . . . . 93

3.3.3 Is the Minimal Standard Model Consistent with Experiment? . . . . . . 97

3.4 The Fritzsch Mass Matrices and the Minimal Standard Model . . . . . . . .. 101
3.4.1 Introduction to the Fritzsch Mass Matrices [67-68] . . . . . . . .. .. 101

3.4.2 The Fritzsch Mass Matrices and the Standard Model . . . . . . . . .. 104

35 SUmMmMAarLY . . . & . . e e e e e e e e e e e e e e e e e e e e 110
Appendix A . . L L L e e e e e e e e e e e e e e e 112
Appendix B . . . . . L e e e e e 117
Appendix C . . . . L e e e e e e e e 118



.............

ablog o 4t v v e o e m a e e e e e e e e e e e e e e e e e e e e e e e e e e e e



ABSTRACT

This work consists of three independent chapters, all of them dealing with the weak
interactions.

The subject of the first chapter is left-right symmetric theories. The two main
versions of these theories are discussed and compared. In addition, the K — K mixing
term is analysed: It has been known for several years now that in a left-right symmetric
model there are new contributions to the mixing of the kaons. However, the importance
of these contributions was not clear: Though (the absolute value of) every contribution
by itself is large — it could in principle happen that the various contributions will
cancel each other, leaving therefore no significant effect. We show that in the most
appealing left right symmetric model — the new contributions add up constructively.
Consequently, we may derive reliable bounds on the mass of the right-handed gauge
boson and the average mass of the (unavoidable) physical Higgs scalars. We also found
that the new contributions are proportional to a new CP violating phase. This phase
could serve as an alternative source for CP violation if the Kobayashi-Maskawa phase
fails to account for the observed € value. While all previous treatments of the X — K
system were limited to the minimal model, we succeed to show that our results hold
also in the general case of nonminimal models.

IThe second chapter deals with the possibility that W and Z are composite. Three
experimental tests are discussed: (i) Universality — if W is composite then its coupling

to the fermions are expected to deviate from universality. Since such deviations were



not yet seen — we derive a lower bound on the compositeness scale. (ii) Possible
enhancement of the reaction g+ p ~— Z° + v+ any — we show that if Z° is composite
then the cross section for the process s + p — Z° + v + any might be considerably
enhanced and this effect could be measured at CERN and Fermilab. (iii) The eery events
of the 1983 run in CERN — we show that in contradiction to suggestions made in several
papers, these events may not be explained by a composite-Z decaying through a scalar.

In the last chapter we discuss the quark mixing angles. We suggest a new
parametrization to the mixing matrix. The new parameters have simple physical mean-
ing and they are simply and conveniently related to measurable quantities. We use
this parametrization to repeat the analysis of the potential problem the standard model
might have with the e-parameter. The results of the analysis are very conveniently ex-
pressed in terms of bounds on the new parameters. In this chapter we alsc discuss the

Fritzsch mass matrices and show that, presently, they are consistens with the minimal

standard model.



1 Preface

Fourteen years ago, it was proved [1] that the Glashow-Weinberg-Salam (GWS)
model [2] is theoretically self-consistent. Since then, the model, proving itself to be also
in agreement with experiment, gained more and more respect, till it became known as
the “standard-model”.

In spite of its big success, there are still some facts which inspire people to suspect
that the standard model is not the fundamental theory of the world but rather an ef-
fective low energy theory. These facts are:

(1) The Higgs-scalar becomes unnatural at energies around 1 TeV. Tkis unpleasant fea-
ture of the scalar would have been cured if there is some underlying physics whose scale
is 1 TeV or less. Technicolor theories (for example) have suggested a solution to this
“scalar-problem”.

(2) Parity and charge-conjugation are explicitly broken by the weak interactions of the
standard-model. This feature of the model might be considered as somewhat “unaes-
thetic”, and it leads to speculations about some underlying physics in which parity
and charge conjugation are only spontaneously broken. The simplest extensions of the
standard model which incorporate spontaneous breakdown of P and C are the “left-
right-symmetric models”. They are the subject of the first chapter of this work.

(3) The standard model has many fundamental particles and many free parameters.
The “proliferation” of particles and parameters might hint that the standard model is
not fundamental. An even stronger hint in this direction we get from the pattern which

is observed in the spectrum: The particles are falling into three “generations”, with in-
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creasing masses. The mixings between the generations seem also to have some definite
pattern. The standard model has no means for explaining the proliferation of particles
and parameters, nor may it provide explanation for their pattern. The way is therefore
open for imagining underlying theories which might explain these observations. Some
of the candidate underlying theories are horizontal models, grand-unified theories and
composite models. In the second chapter we discuss some of the aspects of composite
models. The subject of the third (and last) chapter is the quark mixing angles and their
pattern.

(4) In the last few years a possible experimental difficulty for the standard model have
been discussed: It was observed that if the t-quark mass is relatively low and if b-decay
rates are sufficiently slow then the model fails to explain the observed value of the CP
violating parameters € and ¢’. In the framework of the third chapter we analyze this
potential problem in detail. The problem is also discussed in the first chapter where we
show that left-right symmetric theories have an additional CP violating phase whose
contribution to € is independent of the t-quark mass or b-decay rates.

(5) An important fact is our IGNORANCE: The standard model of weak interactions
have been tested mainly in the low energy regime, while the “real test” is at the typical
scale of the model, namely, 100 GeV. This fact used to encourage the “composite-W”
people (and also supporters of other low-energy-nonstandard-models). Recently, exper-
iment have penetrated the higher energy domain, and the W and Z have been observed
and their mass measured. However this results are still preliminary and we are as yet

quite ignorant of the physics of 100 GeV (for example: The mass ratio of the W and
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Z is not yet accurately measured, the width of W and Z is not yet known, the Higgs
particle was not observed). The composite-W models do therefore still compete with
the standard model. The second chapter of this work deals with the possibility that the
W and Z are composite and SU(2)w is a global symmetry.

(6) Nowadays the term “standard-model” refer not only to the electro-weak interactions
of GWS but also to the QCD model of strong interactions. There are several problems
of the wiaer wulca are strongly connected to the strong interactions, like: The strong
CP problem, chiral symmetry breaking and the AJ = % rule. These problems will not
be discussed here.

In this work we deal with some of the above mentioned problems of the weak
interactions of the standard model. In the first chapter left-right symmetric models are
discussed. The subject of the second chapter is composite W and Z and in the last
chapter we discuss the quark mixing angles in the framework of the (minimal) standard
model.

Every one of the three chapters is independent of the others and has its own intro-
duction and summary. References are collected into a single list and tables, figures and

appendices appear in the end.



Chapter 1

Left-Right Symmetric Theories

1.1 Introduction

The standard model [2] though successful in all experimental tests has, from an
“aesthetic” point of view, several unattractive features. One of them is the explicit
breakdown of parity (P), charge conjugation (C) and CP. The left-right symmetric
(LRS) models are the simplest extensions of the standard model in which parity or
charge conjugation are restored (3] . In an LRS theory the Lagrangian is invariant under
the gauge symmetry SU(2); x SU(2)g xU(1) and under P or C. The discrete symmetry
(P or C) relates the coupling constants gz, gg of SU(2)r, SU(2) g to each other so that
gr = gr. At a high energy scale the discrete symmetry breaks down spontaneously
together with the gauge symmetry, which breaks to the standard SU(2) x U(1). From
this scale downward the left-right symmetric theory mimics the standard model, except
for small corrections.

These small corrections are, at present, our only tool for studies of the “hidden
right handed sector” of the theory. It turns out that the most important corrections are
strongly dependent on the right handed quark mixing angles. Therefore, it is necessary
to have some understanding of these mixings.
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In 1977 Beg et al. [4] introduced the following assumption: The right handed
mixing angles are equal to the left handed ones. The meaning of this assumption is that
parity is conserved in the quark mass sector, i.e., the information about the spontaneous
breaking of parity does not reach the quark mass matrices. Beg et al. called their model
“manifest” since parity was manifested in the low lying quark spectrum. The manifest
LRS model was quite popular and important calculations were done in its framework.

However we found the “manifest” model unsatisfactory for two reasons:(i) The
assumption that P is unbroken in the quark mass matrices is unjustified (as we will
show). (ii) In a manifest model the discrete symmetries C and CP are ezplicitly broken.
Since the main motivation for LRS models is “aesthetics” — we find that models which
are symmetric under both P and C are more appealing.

We thus suggest an alternative point of view to the mixing angles in LRS theories:
Instead of concentrating on parity — consider charge conjugation. It turns out that
in an LRS model with C-conserving Lagrangian the (trce-level) quark mass matrices
are necessarily C-invariant, i.e., the information about the spontaneous breakdown of C
may never reach the quark masses. Thus, the right handed mixings in such models are
always related, through C, to the left handed ones (exact relations will be given later).

In section 1.2 we introduce the LRS theories in more detail with emphasis on the
manifest and C-invariant models. (We call the C-invariant models “CCC" - Charge
Conjugation Conserving). The K — K mixing parameter, M3, will be discussed in
section 1.3. Four years ago Beall, Bander and Soni [5] showed that M) is very sensitive

to effects of the right-handed currents. They were therefore able to derive from M,
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a strong lower bound on the mass of the right handed W. The computation of Beall
et al. was carried out in the framework of two-generation manifest LRS model. Many
authors [6-11] have since discussed M2 in various LRS models, pointing out important
contributions which were neglected in the original work. We here collect all these
contributions and complete them in order to get M;, for a CCC mode]l. We show that

M;2(CCC) has an especially simple structure which enables us to derive interesting

conclusions on phenomenology of CCC models.

1.2 Some Features of Left-Right Symmetric Models

In this section we describe the particle content of an LRS theory (subsection 1.2.1)
and the transformation rules of the particles under the discrete symmetries P,C and CP
(subsection 1.2.2). We then briefly review the breakdown of the gauge symmetries and
give the masses of the W-bosons in terms of the parameters of the theory (subsection
1.2.3). Finally, in subsection 1.2.4 we discuss the mass matrices of the fermions and

introduce the manifest and CCC models.

1.2.1 The Particle Content of a Left-Right Symmetric Model
The gauge particles of SU(2)p x SU(2)g X U(1)p—r are the three Wi’s, the three
Wr’s and the vector-boson which couples to (B-L). After symmetry breaking the neutral
vector-bosons mix to form the photon, the Z and the Z’. The charged bosons mix slightly
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and form the mass eigenstates W; and W,

The fermions are the quarks, ¢, and the leptons, [. The left handed quarks, q(Lo) , and
the left handed leptons, lio), are grouped into doublets of SU(2)r and are singlets under
SU(2)g. The right handed quarks, quo), and leptons, 1(0), are grouped into doublets
of SU(2)r and are singlets of SU(2);. (The superscript (°) stands for interaction
eigenstates, as opposed to mass eigenstates.)

The Higgs spectrum of an LRS model is not unique and depends on the specific
model. However, every LRS model must contain at least one complex scalar ® in the
(1,1%)o representation of SU(2); x SU(2)r X U(1)(s~r)- This scalar is necessary be-
cause it is the only one which may provide the charged fermions (i.e. the quarks and the
e, 1, T ) with nonzero mass. We need at least one complez ® because a single real ® gives
the u-quarks and the d-quarks equal masses. ® ’s in (%, %‘)0 representation do not ex-
haust the Higgs spectrum. This is because < & > breaks SU(2) xSU(2)r xU(1)(5-1)
into U(1) x U(1) while the gauge symmetry should be broken into a single U(1). There
exist several suggestions for the additional Higgs fields (see e.g. {3] versus {12]). We
will restrict ourselves to the class of models in which the additional Higgs fields are A
and Apg in the (1,0); and (0,1)2 representations. The advantages of these models are
that (i) They may provide a natural explanation for the smallness of the left-handed
neutrino mass [12] and (ii) all the Higgs fields, &, AL, Ar may be formed from fermion
bilinears (i.e. ® ~ g gx or Izix, Ar ~ Igly , Ar ~ Iglg). Consequently, this Higgs

spectrum is favorable from the point of view of composite models [13] .
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1.2.2 Parity and Charge Conjugation in LRS Models

The P and C transformation rules are summarized in the following table:

under parity under charge conjugation
(W)™ = (Wi)u (W) = —(WE)*
(W9 = (W), (W9)* o —(W)»

VE oV, VB o —VH

R ¢l ioa(gy))"

10 ) 1) s i, (1500

Ap* o ALt AT* o A5

At — AF AY ~ Ag

A% — A9 A} — AG

L I I

where qéo()R) are the left (right) handed quark doublets; o2 is a Pauli matrix in the

two-dimensional space of the Weyl spinors; AZ&), AI( R) and A%( R) are the charge 2,
1 and O components of Az (gy; @ is denoted as a 2 X 2 matrix:
Y  &f

®; %5

We note that & and r,$* 15 have the same properties under the gauge group. Therefore
the C and P transformation rules of & are not unique: Under parity ¢ could transform
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to np®* or to np(r28*r2)*. (np is a phase, called the “intrinsic parity” of ®.) Simi-
larly, under charge conjugation & could transform to nc®* or to nc(r2®*r2)%. In order
to choose the transformation rules for ¢ we eraployed two (different and unrelated)
criteria:
(i) @ should transform like a fermion bilinear, i.e., like g% or !Llz. This requirement
is in the spirit of composite models [13] .
(ii) Consider a minimal, P and C invariant LRS model. (a “minimal” model has a
minimal Higgs spectrum: A single & and only one pair of A fields). Every choice of
the P and C transformation rules for ® leads (through the requirement for P and C
invariance) to constraints on the Yukawa couplings and hence to constraints on the mass
matrices. We demand that these constraints will not lead to nonrealistic mass spectrum.
(for example — we do not allow identical mass spectrum in the u and d sectors).

It turns out that every one of the two criteria singles out the transformation rules

which are given in the table above.

-1 -



1.2.3 Breakdown of Gauge Invariance and the Masses of the

Gauge Bosons

We first discuss the case of the minimal model. The vacuum expectation values

(VEV’s) of the Higgs fields are:

0 0
k O
<Ar>=10 , <Ap>=10 , <<I>>=( ) (1.1)
0o ¥
VL Ve

These VEV’s break the gauge symmetry and give the gauge bosons masses. The mass

matrix of the charged gauge bosons is:

1 2| VL P+ k2+ |k |? —2k'k*

m2(W*) = 592 (1.2)
—2kk" 2| VR P+ |k]2+|K|?

Since the right-handed W should be much higher in energy than the left-handed W we

find that:

| VR =>k|, ||, ]|VL]
In order to secure the preservation of the Weinberg mass relation:
m(W) = m(2)coslw
we must also require
|2+ K [2>| VL
We denote the W mass eigenstates by W, W,. Their masses are:
1
m(Wa)z5a* (1 k * + | K )
m?(W3)zg® | Vg |?
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We denote the mass ratio m?(W;)/m?(W,) by 8. W;, W, are equal to Wy, Wx up to

small mixings:

Wi~ WL+ {Wg

Wy~ —€"WL +Wpg

kk'*

where: £ = Vel

Note that | £ | is smaller than 3:

! % 2 112
LB 1R RE

R A A

Several years ago it was believed that 8 could be as large as 0.1 [4] . The bound
| € |< B seemed thus insufficient since an analysis of nonleptonic K-decays gave a much

stronger bound [14]: | £ |< 0.004. It was therefore customary to assume that | ¥'/k |< 1
and so:

_Ikkli"vkl
'H—TV_R—P_ |~k—fﬁ<<ﬁ

However, as we wiil show, § is probably not larger than 10~ and consequently the

bound

1 €i<p

is satisfactory. We therefore do not assume that | k'/k [« 1.

The generalization to the case of 2 nonminimal model, where we have several Ap’s,
Agr’s and @’s, is straight-forward. All the equations above should be modified by the
replacements:
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|VL(R) 2 — > | vk 2
a
[k [P R SO0 P 4 e )
B 3 RO
i
where a is an index which goes over the various Ay (g) fields and 1 is an index for the

various ® fields.

1.2.4 Quark Mass Matrices and Introduction to the “Manifest”

and “CCC” Models
This subsection is organized as follows: We first discuss the Yukawa couplings and
examine the constraints imposed on them by P and C invariance. We then study < & >
and find out which of the discrete symmetries P, C, CP is broken by this VEV. Then
we introduce the “manifest” and “CCC” models and discuss the properties of the quark
mass matrices in the two models. Finally, we give a short comparison of the manifest
and C-conserving models. All this is done in the framework of a minimal model. The

generalization to the nonminimal case is given in the end.
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The Yukawa Couplings

The Yukawa interaction is:

Lyukawa = ng)A@qg)) + qgo)B'rg@"rzqg)) + h.c. (1.3)

In (1.3) qéo), qg)) carry a generation index. A, B are matrices in generation space, and
72 is the Pauli matrix acting in the SU(2)p or SU(2)r space.

It is straightforward to show that if the Lagrangian is P-invariant then the matrices
A, B are hermitian, if the Lagrangian is C-invariant then A, B are symmetric and CP

invariance implies that A, B are real.

The VEV of &

Though the symmetry between Left and Right breaks at a very high scale (5t
m(Wg)), the information about this breaking reaches the quark mass matrices only at
much lower energies (at m(W)): To tree level this information arrives only through
the VEV of &. We should therefore check which of the Left-Right symmetries is broken
by ®. The transformation rules for ® clearly imply that < & > never break C. < ® >
breaks P and CP if k, k’ are not real. We note here that by an SU(2)L x SU(2) r gauge
transformation we can always make 1}' real. Thus, as a matter of fact, < & > breaks P

and CP when k- k' is not real.
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The Manifest Model

In a manifest model the Lagrangian is P invariant. P is spontaneously broken by
Ar and Agr. < ® > is assumed to be real. Thus in a manifest model the information
about parity-breaking does not reach the quark mass mairices. These matrices are:
M"=kA+ k"B
(1.4)
M*=kKA+k*B
In a manifest model A, B are hermitian and k, k' are real. Thus M*, M¢ are also

hermitian. As we show in Appendix A, the hermiticity of M*, M¢ implies:
Cr = F*(£)CF%(£) (1.5)

where Cp,, C are the left-handed and right-handed mixing matrices; F¥(%) and F¢(z)
are diagonal unitary matrices with eigenvalues £1.

Relation (1.5) is the low energy “manifestation” of the symmetry between Left
and Right. This “manifestation” made the “manifest” model convenient to treat and
thus very popular. However, we find that this model suffers from a serious drawback:
The manifestation of parity in the quark mass matrices does nct result from the model
but is rather assumed. Equation (1.5) stems from the assumption that < ® > does
not break parity. This assumption is unjustified, since < & > couples to Ay, A and
< Ar >, < Ar > break parity. Moreover, < A >, < Agr > break parity at a scale
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much higher than < & >.

Note also that in a manifest model C (and CP) must be explicitly broken: Suppose
C would have been conserved in the manifest Lagrangian. Then, in the quark mass
matrices both P and C would have been conserved (since by assumption < & > con-
serves P and it always conserves C). We then end up with CP invariant mass matrices.

This result is clearly incompatible with experiment. We therefore conclude that in the

ma~ifest model C and CP are explicitly broken.

The CCC Models

In a C-conserving LRS model C is spontaneously broken by < Ay >, < Ap >.
However, the information about C oreaking never reaches the tree level quark mass
matrices, since < ® > may not break C. The Yukawa couplings A, B are symmetric
and thus, the mass matrices M*, M? are also symmetric. As we show in Appendix A

the symmetry of M*, M% implies:

Cg = FuCy(F%)* (1.6)

where F*, F? are diagonal unitary matrices. It is actually possible to find particular

phase conventions in which the relation between Cr and Cg is even simpler:

Cr=Cj
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The relation (1.6) is the low energy manifestation of a symmetry between left and
right. This manifested symmetry is not parity but charge conjugation.

We distinguish two kinds of CCC models which we call CCC; and CCC,: The
CCC; models have a higher degree of symmetry: The CCC, Lagrangian is invariant
under P and C (and under CP). We note that for these models we must assume that
< ® > does break P (otherwise the mass matrices are CP invariant). This assumption
(which we find to be perfectly reasonable), is the opposite to the manifest model as-
sumption. The CCC2 models have C-invariant Lagrangian but P is explicitly broken.
From the point of view of “aesthetics” these models are no better than the “manifest”
model, however C CC2 models are interesting as possible effective theories of grand uni-
fied models {15]. Consider for example an SO(10) theory. One of the possibie chains of

spontaneous symmetry breaking is:

SO(10) = ... = SU(3)c x SU(2); x SU(2) g xU(1) = ... = SU(3)o x SU(2) x U(1)

The SU(2), and SU(2) g are related to each other through a discrete symmetry which
is included in SO(10). This discrete symmetry may actually be identified as charge
conjugation. As for parity — this symmetry is rot included in the SO(10) group and
may even be explicitly violated in the Lagrangian.(Actually, in order to account for
the observed baryon asymmetry in the universe it is preferable that parity is explicitly
violated [15]). We therefore find that the low lying effective LRS theory of SO(10) is
necessarily C-invariant but it may be P-violating.

We favor the CCC; models because of their nice symmetric feature. In our pa-
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pers the term “CCC model” refers actually only tc the CCC; models. In table 1 we
summarize the properties of the manifest and CCC models. Note that with respect to
the quark mass matrices C plays a more important role than P: If the Lagrangian is
C invariant then automatically C will leave its traces in the mass matrices; if there is
P invariance then only under special and unjustified assumption, P manifests itself in
the quark mass matrices. We thus find CCC models to be more attractive than the

“manifest” model.

1.3 K9 — K0 Mixing in Left Right Symmetric Theories

The various contributions to the X — K mixing term Mz, were computed in
the last five years in the framework of different LRS models. Here we present the
leading contributions to M2 in the manifest and CCC models and discuss the relative
importance of each contribution. It turns out to be most convenient to express M,z in
terms of M, (standard-model). We therefore start with a review of M2 in the standard

mode] and then turn to the discussion of Mj;(manifest) and M;2(CCC).
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1.3.1 Mjs in the Minimal Standard Model

two-generation-case:

The original computation of M), was carried out by Gaillard and Lee [16] .
They considered the Feynman diagrams of figure 1.1:

The relevant interactions are:

\%U%%(l — 45)CD(WH)* + hec. (1.7)
where g is the weak-interaction coupling constant

U are the physical (mass eigenstates) up quarks: U = (:)

D are the physical (nass eigenstates) down quarks: D = (':)

C is the Cabibbo mixing matrix.

In the course of the computation the following approximations were introduced:

(i) External momenta are neglected in the internal line propagators.
(ii) Terms of second order in the small quantities (ﬁﬁj)z’ (%s)? are neglected (my,

m, are the masses of the u, ¢ quarks and m(W) is the mass of the W-boson). The result

is presented in terms of an effective interaction Lagrangian:

. G o m z_ -
int F . 2 c
ne — 0: [ » d 1.8
LCH 73 irsinil (cosf.sind.) ( (W)> dry¥spdrvust (1.8)
L;’}*f is related to M. through:
—(K° | L} | K°) = (M?)12 = 2mg M2 (1.9)

where mg is the kaon mass.
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In the computation of the matrix element —(K° | L‘e'}tf | K°) we actually take
into acconnt the nonperturbative QCD effects which bind the s and d yuarks into a
K°. In order to estimate this matrix element Gaillard and Lee introduced the so called
“vacuum insertion approximation”: In this approximation one sums up all four Fiertz
transformations of the operator dpvy*s LJLﬂp.S ¢ and then, for every one of the four
operators, only the contribution of one intermediate state, the vacuum, is taken into
account (the contribution of the vacuum is computed through PCAC relations). Though
the vacuuin insertion approximation seem to be very crude it turns out that it does give
a correct order of magnitude estimate. We will therefore use this approximation through

all the following discussion. (For arguments which justify this approximation for LRS

models see [5],[7].) Using the vacuum insertion approximation one gets:

(K° | dpyPspdrvyuss | K°) = =fimk (1.10)

Wil

where fy is the K decay constant. Equations (1.8) , (1.9) and (1.10) imply:

1GFr a . of me \?2 2
Mg = = — — — = 1.11
12 2 \/§ 47I'sin20W (cosﬂcsmﬂc) (m(W)) 3meK ( )

M, is related to Amy, the K-mass difference, through:
AmK = 2Re M12 (1.12)

Substituting the experimental values for G (~ 1.1-1075 GeV ~2), «(1/137), sin?0w (~
0.22), sinf.(~ 0.22), m.(~ 1.5 GeV), m(W) (~ 82 GeV) and fx(~ 165 MeV) we find
that the minimal two-generation standard model predicts: Amy /my ~ 0.57 - 107,
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This result is in reasonably good agreement with the experimental value: Amy/my ~
0.71-107 4,

Note that Amg /my is extremely small. The success of the Gaillard-Lee compu-
tation in giving the correct tiny M5 is due to the GIM mechanism: this mechanism is
responsihle for three suppression factors in (1.7) . These are: « (which appears in addi-
tion to G p because the process is of fourth order in the weak interaction), (cosf.sinf.)?
and (m./m(W))32.

We point out that there is a kind of inter-relation between the last two suppres-
sion factors: when we will consider the three-generation case there will be new terms.
In such a new term the factor (m./m(W))? may, e.g., be replaced by (m:/m(W))?
(which is much larger than (m./m(W))?). However, in this case the mixing factor
(cosf.sinb.)? will be replaced by the mixing factor of the t-quark (which is much smaller
than (cosf.sinf.)?). The net result will be that the new additional term will not be
larger than the original Gaillard-Lee term.

The computation of equation (1.8) was carried out in the 't Hooft-Feynman gauge
and thus, the contribution of the unphysical charged Higgs should have also been taken
into account. The diagrams involving the neutral Higgs are shown in figure 1.2 and the

relevant interaction terms are:

9 1
v2m(W)

4 [M“C’%(l——’ys) - CM‘*%(1+~/5) D¢+ + he. (1.13)

where J\:I“,J\;Id are the diagonal mass matrices and #{+) is the unphysical Higgs. Note
that the unphysical Higgs coupling to quarks is suppressed (relative to the W-coupling)
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by mgq/m(W) (mq is the mass of one of the quark fields of the corresponding ver-
tex). Therefore the contribution of diagram 1.2(c) to M;; is O ((m,,/m(W))“) and
it is clearly negligible in the two-generation case. As for diagrams 1.2(a) and 1.2(b):
the Higgs coupling introduces one factor of (mq/m(W))2. It turns out that the left-
handed character of the W-coupling together with GIM mechanism introduces another
factor of (mq/m(W))2. Thus the whole contribution of the unphysical Higgs particles
is O ((mq¢/m(W))*) and may be neglected. Obviously, if a right-handed W is taken into
account or if the three generation case is considered, the unphysical Higgs contribution
should be reconsidered.

We denote M;2 of Gaillard and Lee by M;2(G — L). Since 2My3(G — L) is so
succegsful in estimating Am g we will often approximate Amg by 2M;2(G — L).

Finally, we add a remark on QCD corrections: According to [17] short range cor-
rections do not introduce significant effects. * ? In the following we will not take into

account these effects. We expect such an approximation to be valid within a factor of

~ 2.

! For a discussion of long range corrections see [18].
2 Short range QCD corrections in LRS models are mentioned in [5] and discussed

in great detail in a recent paper by Ecker and Grimus [19].
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Three Generation Case

In order to discuss the three generation case — we make use of a specific

parametrization of the generalized Cabibbo mixing matrix which we introduce in the

third chapter of this thesis:

—t8
€1,2€1,3 §1,2€1,3 s1,3e "
— 5 5
C= —$81,2€2,3 — 61,252,3-‘31,3“3l €1,2€2,3 — -‘31,2-‘32,3-!31,38l §82,3C1,3
_ i5 i
§1,2582,3 — €1,2€2,381,3¢€ —C€1,282,3 — 81,2€2,381,3€ €1,2€1,3

where: s;; = sinb;;, ¢;; = cosb;j, and all 6;; are between O and 7/2. B;; is the
mixing angle of the ith and jth generations.

01,2 is actually the Cabibbo angle 8;. The angles 633 and #;,3 are determined from
b-decay. The present experimental situation [20-22] implies [23-24] that s, 3 < 0.065
(since 7, ~ 1 ps) and sy,3 < 0.0087 (since 7, ~ 1ps and R(b — u) < 0.04). For
our purposes we may approximate (this approximation was originally proposed by L.

Wolfenstein [25]):

—is
1 51,2 S1,3€
Cz —$1,2 1 $2,3
6 _ 1
§1,252,3 — 51,3€ S§2,3

the computation of M1, in the three-generation case involves reconsideration of all the
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diagrams of figures 1.1,1.2. The final result is [26]:

{53,2$c+

. 3 1
+ 281,282,3(81,282'3 - 81,38—'6) cz. |in ﬂ + - Tt Tt In{—]-1
T, 41 — =, 1l—x T
3
4

71(1233) +g (1 —I it)?'ln (xl:)] }

where z. is (m./m(W))? and z; is (m:/m(W))2.

2 —i5\2
+ 53,3(51,352,3 — 51,367 )"z [1 -

(1.14)

The first term in the curly bracket is the Gaillard-Lee term, the other terms arise from
the presence of the third generation.

While in the two generation case M;; is real — in the case of three generations an
imaginary, CP violating part, appears. We now discuss the real and imaginary parts of
Mijs:

ReMq: It is straightforward to verify that the contribution of the third generation to
the real part of M2 (or: to Amg) is not significant: if m; is around 45 GeV [27] then
the strong constraints on sg 3,513 imply that the t-quark contribution is not larger than
~15%.

ImMjs: Contrary to the real part of M2 — the imaginary part (in the case of the
standard model) is totally due to the presence of the third generation [28]. ImM,; is

related to the CP-violating parameter € through:

e___ei% (ImM12 Ion > (1'15)

V2Amg  V2ReA,
where Ap is the K-decay amplitude to two pions coupled to zero-isospin. In the minimal
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standard model it is possible to show that, to first approximation:

€~ e'% (M) (1.16)
V2Amg ’

(1.14) and (1.16) imply that € is proportional to s3,381,3siné and that € gets
larger values as m; increases. We thus find that if further measurements of b-decay
will give stronger bounds on s3 3,51 3 and if m; is indeed around 45 GeV (or less) then
ImM,, may turn out to be too small 3 | i.e., ImM;; will provide an ¢ value which is
substantially smaller than the experimentally observed e. We will return to this point

when we discuss € in the LRS model.

1.3.2 Mjis in the Minimal LRS Model

Two-Generation Case:

The contributions to M2 which we take into account are of lowest order in the
weak interaction and of zero or first order in S. These contributions include the W-
W box diagram, the unphysical Higgs contribution, the tree diagrams of the neutral
physical Higgs particles and the box diagrams involving the charged physical Higgs.
(i) The W-W box diagram [5]:

This contribution involves the diagrams of figure 1.3. The corresponding interactions

3 For a more detailed discussion see section 3.3.
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are:

_ 1 - 1
% (U7“§(1 ~75)CLD(WE)* + Uy (1 + qs)cRD(W;{)“> + hec. (1.17)

were Cp s given by (1.5) for the manifest model and by (1.6) for the CCC model.
We note here that the Wy — Wx mixing may be safely neglected. It turns out that all
contributions to A, which involve £ are esther of second order in £ (and consequently
of second order in B) or they are suppressed both by a power of ¢ and by one or two
powers of m,/m(W), ma/m(W). We will therefore completely ignore £ through all our
discussion of M;,. Ignoring &, we identify the diagram 1.3(a) with diagram 1.1, and the
first term of the interaction (1.17) with (1.7) .

We find | 5]:

. 1 GF o . 2 me 2 1
= 2ZE__ % (c0sf.sind.)? -
(manifest) 3 /5 dnsinily (cosl.sind.) (m(Wl)) o

2
[(KD ' (JL'Y“SL)z l KD) :Fﬂ 2 -4([71 (%ﬁ) -_ 1)<K° l JLst-RsL ( I_{o)]

wW-w
Mz~

(1.18)

[
where the F sign is determined by the relative sign of the two phases in F?().

For the CCC model we get [29)]:

2
(W-W) _1GrF a 0.sing 2. [ e ) 1
Miy =7 (CCC) = 5= Tremiayy (005l \ Ty ) mm

2
[<K° | o) | B2) = 62 40tm (") 1) | dusndpo R°>]
(1.19)

where ~ is the difference between the two phases in F¢.
The first term in the square brackets is the usual Gaillard-Lee term. The sec-
ond term arises from the contributions of diagrams 1.3(b), 1.3(c). As expected, this
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contribution is suppressed by one power of 4. However, there are also several enhance-
ment factors:(i) A factor of 2 since two diagrams are contributing. (ii) a factor of
4(In(m(W1)/m.)® — 1) ~ 28. This factor arises from the loop integration. (iii) An

additional e.chancement from the matrix element:

1 ;- " 1 mg \® 1
——(K° | drsrd K% =~ |{ - —— ~| f2 .
i K | dzsrdrsr | K®) = 2 [(rn,+md) + 6] femx (1.20)
Substituting mg = 498 MeV, m, = 150 MeV, myg = 7 MeV we find that the ma-
trix element of (11) is enhanced by a factor of ~7.6 relative to (3). Altogether the
enhancement factor of the second term amounts to ~430. Equations (1.18) and (1.19)

therefore imply:

MY =W (manifest) = M;2(G — L)(1 + 4308) (1.21)
M{5 Y (CCC) = M12(G — L) - (1 — 4308¢*7) (1.22)

We wish to point out the following interesting point: We mentioned above that the
success of the Gaillard-Lee computation in achieving the correct tiny M;. is due to the
GIM mechanism: GIM is responsible for the suppression factors a, (cosf.sinf.;)? and
(mc/m(W))%. We see that the Wy — W, box diagrams are also suppressed by these three
factors. However, the detailed computation shows that the origin of the (mc/m(W))?
factor in this case is not the GIM mechanism. The (m./m(W))? factor comes from the
propagators of the internal quarks and it is due to the fact that every internal quark

line couples at one end to a left-handed vertex and at the other end to a right-handed

vertex.
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(ii) The unphysical Higgs contribution

There are two unphysical charged Higgs fields d;'f, qb'{ which are to be “eaten up”
by W1+ ,W;’ , respectively. All contributions of ¢; to M, are of second order in f: the
propagator of ¢'2*' introduces one f-factor and its coupling to the fermions introduces
another 8. Therefore we will not take d;;* into consideration. As for ¢'1*' — we may
identify it with the unphysical Higgs ¢ of the standard model. Its interactions with
the fermions are (up to negligible corrections) given in (1.14) . The diagrams involving
#7 are described in figure 1.4. The diagrams 1.4(a)-1.4(c) are identical to 1.2(a)-1.2(c).
Therefore, as discussed above, we may neglect their contribution in the two-generation
case. The contribution of diagrams 1.4(d) and 1.4(e) was computed by Mohapatra,

Senjanovic and Tran {10]. According to them it amounts to:

1Gp « g m, \* . 1
Eﬁm(cosﬂcsznﬁc) (WV—I_)) ﬂe 2[TL(E)

1 - _
. —(K° |drsrdrst | B°) (1.23)
mg

M l(g)(ma.nifest) =F

(G- D335

2
62 = LGF @ oshesinde)? - (—E ) - BT aln(E
M’ (CCC) 2\/2_4ﬂsinzaw(cosﬂcsmﬂc) (nz(W1)> fe n(ﬂ)
1 - . _
- ——(K°® | dpsgdgrsy | K°) (1.24)
mg

= —M;2(G — L)Be" -15-In(2)

™|~

(iii). The neutral Higgs contribution:

In a minimal LRS model there are four neutral complex scalars (A%, A%, 9, ®9)
or eight real neutral scalars. Qut of these eight scalars — two are unphysical, their
couplings to the quarks are diagonal and consequently they do not contribute to Ms.
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The other six scalars are all physical. Four of the physical scalars may not contribute
to Mj2: Three do not couple to quarks at all (they originate from the A-fields) and the
fourth couples diagonally to quarks (this is the neutral physical Higgs of the standard
model). The last two Higgs fields we combine to a single complex scalar, H°. The

coupling of H® to the d-quarks is:

g 1 N 2kk’*
V2 m(wy) 2#De | =G MECr ¥ e

M?| DpH® + h.c. (1.25)

where Qg = {ﬂ;—'}l—'i—;-'r: (Note that Qg is well defined: |k| # |k'| since otherwise the mass
spectrum in the u-quark sector becomes equal to the mass spectrum in the d-sector.
Clearly: Qu > 1. We assume that Qg is O(1).

The natural value for the mass of H? is around m(W3) (for a discussion of this
point see [11]). Therefore we will consider H? contributions only to first order in
Bro = m?(W,)/m2(H®). H® contributes to Mj2 through a second order tree diagram
(see figure 1.5). For simplicity we assume that the masses of the two real components

of H® are equal. Then, we get [10] [11]:

My, (2 )(manifest) =

me

2
1 - - .
————— - 2_ ° °
2\/_(c059 sind.)? . ( (Wx)) Bro -4Q% K(K | dpsrdrst | K°)

. 2
= :FM12(G—'L) (ﬂHo -Qi{. }Eriz(!n_zﬂ_W.E [<_m§__) + l])

4 m, +my 6

(1.26)

= FM12(G ~ L) (Byo - Q% - 11,600)



M;y; '(CCC) =
1Gp . mc 2 . 1 ol 3 - _
= —Eﬁ(cosﬂcsznﬁc\z . (m) Bro -7 4Qf’{m—K(K | drsrdrsy | K°)

. 2
= —M;(G - L) (ﬁHo e7.QY . 167sinfw .% [<__”_"K__> + ED

o m, + my 6

= —M13(G - L) (Buo - € - Q} - 11,600)
(1.27)

The large enhancement factor of 11,600 arises because the H°-contribution is of second
order in the weak interaction. We note that if the two real components of H® are not

equal, then B0 should be replaced by a number which is between Sy, and Sy, (where

H,, H; are the two components of H°).

(iv) The cha.rged physical Higgs contribution:

In a minimal LRS model there exist four singly-charged Higgs fields (Af, A;, a7,
®1). Out of these four — two are unphysical and their contribution was discussed
above. Two Higgs fields are physical. One of them does not couple to quarks at all and

therefore may not contribute to M;5. The other charged Higgs we denote by H+. Its

couplings to fermions are:

g 1 _ . 2kk'* “~d

= LU | -M*Cp+—————C LM% D

V2 m(wy) OF { [ AR R R
i 2k CpMe|DLYHY + R
+UR —WM CL+ R L + n.c.

(1.28)

H* contributes to M;2 through the box diagrams of figure 1.6. Its contribution [10] is
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given by:

M(H ) (manifest) =

1 Gr a . 2 me 2 1 2
= —— )l | ——— 2.1 .
2 V2 7rsm20w Traingty, (C0s0esinde) (m(W1)) B " (ﬂH+) U

o " (1.29)
;-};(K° | dpsrdrsy | K°) =
= :FMH(G L) ﬂH+ luln( > QH
Ba+

ME(cee) =

1Gp a NPT me \* d ( 1 > 7
__1Gr __a A _Me e .9 .

23 Trsiniln (cosl.sind.) <m(W1)) B+ -€7-2-In e Qn (1.30)

1 o - F O
——(K° | dysrdrsy | K°) =
mg

= —M;i2(G—-L)-By+ - ¢ 715In ( 1 ) Q%
B+
where S+ = m?(W,)/m?(H)

For simplicity we will assume from now on that fgo = B+ = GH.

- 85 -



Discussion of M2 in Minimal LRS Theories:

We collect all the contributions to M;2 and get:
Mn(manifest) = Mu(G - L)

-{1 ¥ [4308 + 150In (%) +Q% - (II,GOOﬂH + 15ﬂH’n(ﬂi))]}
H

(1.31)
M,2(CCC) = My2(G - L)

- {1 - €"7[4308 + 154In (ﬁ) +Q% - (11,600ﬁn + 15ﬂHln(51;;))]}
(1.32)

The first term in the curly brackets is the old Gaillard Lee term. Note that all the other
new contributions have the the same phase and thus they all add up constructively.
(this fact was pointed out by Ecker et al [19] and independently by us [30].)

We denote M)3(manifest) and M;2(CCC) together by M;3(LRS). The phe-
nomenology of the K — K system tells us that M;2(LRS) is almost real and that
|M12(LRS)| ~ $Amg. As mentioned above, My2(G— L) is also of the order of 1 Amg.
Thus, we find that the absolute value of the sum of all new contributions to M;2(LRS)

is of the order of §Amg or less:

Mi2(G - L) | (430B +150In (ﬁ> +Q% - (11 6008y + 158xin (ﬁ,,))) | <

—ATTI.K ~M12(G L)

B =

(1.33)
(1.33) readily implies [5], [29] :
4306 <1 or: m(W2) > 1.7TeV
and [19], [30]:
11,6000y <1 or: m(H)>88TeV
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These results hold for both the manifest and CCC models.

Consider now CP violation: Clearly in the two generation case CP is not violated
in My;(manifest) but it is broken in M;,(CCC). This is due to the phases of F* and
F3, For the € parameter in the CCC model we use the approximation:

ImM12
V2Amg

€~ €'t

(some arguments which justify this approximation were given by Chang in [8] ). We

find [8-9], [19], [29-30] :

€~ e'T {—sz'n'y [430[3 + 158In (-1—) +

B
2 (11, 2| A Me(G-L),
+ Q (11,600[33 + 158xin (ﬂn))] } AmeC | |
=e'd {—;Wsin'y [430/3 +158In (%) +QY (11,600[3;; + 158xin (fil?))J}

(1.34)

three-generation case

For convenience we will concentrate on the case of the CCC model. In the end we
will comment on the case of the manifest model.
We introduce the following notation
hi = (CL)1a(CL)ie
Xy = (CL){4(CL)i 6™
where i = u,c,d and «; is the i’th phase in the diagonal matrix F*.
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Following Mohapatra, Senjanovi¢ and Tran [10] we denote

o min(g) L
It(zi,z5) = (z —z,)(1 - =) + (i < J)
z3n(L
Ig(::.-,::j,ﬂ) = (z‘. —‘Ij)((;.-)_ z;) + (i — _7) + ln(-;—)

_ 1 zidn(3) ‘o
TiEn) = (1—zf)(1—z,-)+{(z.--z,-)(1—zf)2+( ’)}

B 1 ~ ziin(3;) L
Ja(zi,25) = (1—-z)(1 - zj) { (i —z;)(1 — z4)? s J)}

In terms of these quantities:

_ _sy 1G
M, (standard model) = Ml(;V1 W) Mgvx ) = 9 \/F“ 47rs1‘:29w

{Z Aidj [(1+ z,:c,-) Jo(zi, ) + 2:::.-x,-J1(:c;,z,-)] };E(Ko | (drvuse)? | B°) (a)

i,J

(W), —W,) (¢1—=W3) _ 1Gr a ]
Mz + Mz - 2\/_47rsm20wﬁe

{Z,\ AP T - (411 (i, 25) +Iz(z.-,z,-,ﬂ)]} -mL K°|drsrdrsy | K°) =

_ 1 GF o i

2 /2 47sin?iw Be

1 - - _
{ZRe (AN vEEG (40 (24, 25) + Ig(z‘,a:,,ﬁ)} —TEU{O | dpsrdrsy | K°) (b)

° 1 o n 7 o

- _lG_\/{ﬁ e’ . 4Q% {ZRC AT \/1_-17} EIE(K° | desrdrsr | K°) ()
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1G a
MEHEDN__LEF & 4 502
12 2 \/i 4.7\'81:17.29“/ 'BH ZQH

| - 1 (] J o
v 2,\’,\’ VZ:Z; (I2(z4, 25, Bu) + zizily (24, 2;)) —EEU{ | dpsrdpsy | K°)+

|2kk"*|? 1
(O ey | 2 A (G etz 5, ) + D) |-
8,

1 ] T 7]
——(K° | (dry*sL)? | K°)
mg

2 /2 4wsin2ly

. 1,0 o
ER& A’ )VEZ; (I2(z:, 25, Brr) +:1:‘~:1:_.,-I1(:1:,-,:5_.,-)):| . -";{-(K | dpsrdrsy | K°)

lG’p LI |2kk'* |2
2 /2 4wsin?ly (|k|2 |k']2)?

Z'\'\Jz-za(h(-’ruz:)+ 712(zi, %5, 8n)) ';ll-E(K°I(5L'7“8L)2IR°) (d)
5y

(1.35)

The coefficients of A/X’} in equations (1.35) (b-d) are symmetric in i,j. Therefore,

as a second step in these equations we replaced MA'; by Re(A{\'}). With this replace-
ment it becomes clear that all the contributions which arise from the right-handed W
and from the physical Higgs fields have the same phase: ¢ ’. An exception is the last
term of M. gﬁ). Note that this exceptional term is very similar in form to the standard
model Mjs: It involves only the left-handed mixings (i.e., it involves only A; and not
Al), and its matrix element is identical to the matrix element of M l(;v 1=W1) In the fol-
lowing we will neglect this last term of M, (H*) pecause it is suppressed by Sy and has
no compensating enhancement factor. We remark that the above contributions to M;,
were computed by various authors, starting with Beall et al (5] who gave M, (W‘ wa)

for the two generation manifest model, through Mohapatra et al [10] who gave (with
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some errors) all the contributions (1.35) (a-d) for the three generation manifest model
and finally us [29], [30] and Ecker et al [11], [19] who generalized all these results to the
CCC models. Our calculation is the only one in which the assumption that |k’/k| is
small was not introduced.

Consider the sum:

MED b ¢ aaf

The phase of every single term in the sum is e*7. Every term is suppressed relatively to
M;,(G — L) by a factor of 8 or By, and every term has a compensating enhancement
factor. The enhancement factors for the two-generation case were given in equation
(1.32) . As for the three-generation case: the strong experimental bounds on the t-
quark mixings imply that the enhancement factors do not significantly change (for m;
around 45 GeV they change at most by a factor ~ 2). We thus conclude that our bounds
on m(W3), m(H) still hold (up to a factor ~ 1.5).

We now compute € in the three generation case. Denote
M12(CCC) = M3 (standard model) — e(AB + AgBu)M12(G — L) (1.36)

where A, Ay are enhancement factors. (A is around 430 and Ay around 11,600).

E(CCC);el% Iliz(CCC) —
V2Amgk

;= [ ImM;, (standard — model) . M12(G—L)}
=¢'c —siny(AB+ A —_—

e { T iny(AB HBu) Vabmn

w1

~ €e(standard-model) — ¢'< ny(AB + A

¢(standard-model) — e 2\/§sm'7( B gBu)

(1.37)
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We see that ¢(CCC) is built up of two distinct contributions which arise from two dif-
ferent CP violating phases: The first is the familiar € of the standard model which arises
from the “Kobayashi-Maskawa” phase. This contribution is proportional to s3 35, 3siné.
The second contribution is proportional to siny and depends only weakly (through
A,Ap) on s33,51,3.

Suppose that the experimental constraints on s2 3, s1,3 will be strengthened enough
to imply:

|e(standard model)| < |e(experimental)|

then:

v 1
e(CCC) ~ 't { — siny(AB + A } 1.38
(00C) ~ % { - L sin(45 + AnB) (139
We now use (1.38) to get a new upper bound on m(W3):

1

Ve 12,0008 (1.39)

1 1
le(cco)l < Z/—E(Aﬁ + AHBH)Sm(A +Ag)B ~

In the last step of (1.39) we assumed that 8 is < 8 (or: m(H) > m(Wz)). (1.39)
implies:

m(W;)<120 TeV - (1.40)

Combining the upper bound (1.40) with the lower bound of Beall, Bander and
Soni we find that (if e(standard model) < ¢(experimental) then) the scale of the right
handed currents is expected to be in between ~ 1.7r.yv and ~ 120r.v.

Let us now comment on M)z(manifest) in the three generation case: The con-
tributions to Mj2(manifest) are given by equations (1.35) (a)-(b) when we replace
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Zi,j A:-A;-" by Zi,j Ai)j and €7 by (F) (where (F) is determined by the relative sign
between the first two phases of F4(+)). The real part of Mi2, or Amy, provides us
with lower bounds on m(W;) and m(H) which are essentially the same as those we get
in the CCC model. The imaginary CP violating part of M. arises from a single phase

— the “Kobayashi-Maskawa” phase. We find that:
¢(manifest) oc 54 351 35(né

Therefore the manifest model faces, in principle, the same potential trouble as the
standard model does: b-decays may imply that sg 3, 51,3 are so small that e¢(manifest)
is considerably smaller than the measured e. However, we note that the problem for
the manifest model is not as acute as the problem for the standard model: to see this

consider the approximate formula:

e~ e”‘ ImM12 ci* ImM12
TV2 Amg 24/2 ReM,,

Inspection of the ratio %}\AT‘.L:' shows that it may be considerably larger for the man-
ifest model (than for the standard model) since the ratio of “Im” to “Re” is much
larger in the additional terms Mf"v‘vl—w,) + Ml(g'_w’) + M1(§’°) + Mg#) than in
M, (standard model).

Finally, we comment on the case of N-generation CCC model. The contributions
to M2 in this case are given in equations (21.1-21.4) where i,j go from 1 to N. Clearly,

Mj: is again of the form:

M;2(CCC,N generations) = M, (standard model) — e*7(AB + AxfBr)
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We believe that the high generations should be, to a good approximation, decoupled
from the low energy physics. We therefore expect A, Ay to be of the same order of
magnitude as in the case of two and three generations. If this is true then all our results

in the three generation case hold also for the case of N generations.

1.3.3 Mj4 in the Non-Minimal CCC Model

The difficulty involved in computing Mjz for a non-minimal LRS model is that
the Yukawa-couplings of the physical Higgs fields are unknown. This technical difficulty
forced many authors to restrict their analysis to the minimal model, where the Yukawa
couplings may be fully expressed in terms of the parameters k, k' and the matrices M*,
M?. However, one does not really expect LRS theories to be minimal: LRS theories
suffer from similar “diseases” as those of the standard model: LRS theories have many
parameters, many particles, they become unnatural at high energies (~ 10M(W3)). The
only advantage of LRS theories on the standard model is that they violate P, C and
CP spontaneously and not explicitly. We therefore expect LRS theories to be merely
effective low energy models of some more fundamental physics. If this is indeed the
case then, probably, the Higgs spectrum is not minimal. (For example consider: (i)
Composite models of quarks, leptons and scalars. If the Higgs is composite then we
expect several scalar bound states to appear in the (1,1") representation. (ii) Grand
Unified Theories (GUTs): Many GUTs need more than a single Higgs in order to get
realistic fermion masses.) We found [30] that for CCC theories it is possible to generalize

our results to the case of nonminimal Higgs spectrum. The idea is as follows: Consider
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the contribution of the physical Higgs particles to M;2: The contribution of the charged
Higgs particles is of fourth order in the weak interaction, while the contribution of the
neutral Higgs is of second order. We therefore assume that to a first approximation
we may ignore the contribution of the charged Higgs particles. The contribution of
the neutral Higgs particles depends on their Yukawa couplings to the d-quarks. These
couplings are symmetric matrices (as required by the C-invariance of the Lagrangian).

We will now prove that this symmetry ensures that the neutral Higgs contribution is of

the form:

ME = ¢ 4x g My2(G - L) (1.41)

where Ay is a real positive enhancement factor.

Let H? be one of the (possibly many) real neutral Higgs fields of a CCC theory.

We denote the Yukawa coupling of H? to the d quarks by a matrix N;:

Lyukawa(HY) = gD N, D4 H? + hec. (1.42)

where g is the weak interaction coupling constant (clearly we could have absorbed g
in the Yukawa coupling N; but it turns out that the above representation is more
convenient).
2, D% are the interaction eigenstates and not the physical or mass eigenstates. N,
(like every Yukawa coupling of a CCC model) is symmetric.
We now wish to rewrite the couplings of H, to quarks in terms of the physical

d-quarks and in terms of a diagonalized matrix of Yukawa couplings:
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(i) Since Nj is symmetric — there exists a unitary matrix Vj such that:

Ny =V, N V¢ (1.43)

where N 1 is diagonal and all its eigenvalues are real and non negative.

(ii) In order to get the relation between the interaction eigenstates and the mass eigen-

states — we consider the nondiagonalized mass matrix:
DIM®D% + h.c.
M4 is related to the diagonalized mass matrix M¢ through:

M¢ = UM (UY)(F)* (1.44)

where U¢ is a unitary matrix. (As discussed in Appendix A, U? and the analogous U"

are related to Cy, through: Cp = U¥(U%)™1).

We now rewrite (1.42) in terms of the physical (mass eigenstates) d-quarks and in terms

of the diagonalized matrix NVy:

Lyukowa(HS) = ¢D1Cx, N1 CY (FY)* DrHY + hec. (1.45)

where: Cy, = U%V,"
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Consider now the tree diagram of figure 1.5. Its contribution is:

2
(HY) g
MoV = ———

12 4m?(H,)

{{Z_(CH,)d.i(Cm)a,m-‘e_"‘"} (K° | ;1;(31,33)2 | K°)

2
+ Z(CHX)E,.-(CH,)Z,‘-W"“‘] ;%(Kol(JRSLVlKO)"’ (1.46)

Lt

L 1 J

+ Z(CHx)d,i(Cﬂx)a,inie_ia'] I:Z(Cm)Q,j(Cm):,jn'je""‘d}.

1 -] T J 7] -] 7 7 7ga-]
. E((K IdLSRdRSL|K )+(K IdRSLdLSR[K ))}

where ag4, o, are the first two phases of F¢ and n; are the eigenvalues of N;.

We use the vacuum insertion approximation to get:

(K° | (dpsr)® | B°) = (K° | (drst)’ | R°) = %ffmi (—i) (——mi—)z

3 me +my

2
- - - ° - - — o 1 m 1
(K° I drLSRARSL | K°) = (K I drsrdrsr l K ) = Zf,fmi .2 [(__}f___) + _]
we denote:

a= (Z(CHl)d.i(CHl)a.ini) N (1.48)

X
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and recall that v = a4 — a,. We then find:

2
HEY ___ 9 1l i
Mia™ =~ gy g /xmRe

e () (25) w22 (w5) 4]

1G
=- ETFmeKﬂH‘

{3 () ] 2 (e 3]

SR T
V2

We now express Ml(f?) in terms of M;3(G — L):

47r3m20w 3 T.4(Rea)? + 74(Ima)?

a "2 (cost, sinfe)?(ony)?
7.4(Rea)? + 74(Ima)?
(cosfcsind.)?(hgy)?
= — €Ay, B, My2(G — L)

MED -

Bu,M;2(G — L)

s —e¥7.570-

B, My3(G — L) (1.50)

where:

2 2
_570. 7.4(Rea)? + T4(Ima)

A
H (cos8in8.)? (iiry)?

(1.51)

In order to get an order of magnitude estimate of the enhancement factor Ay, we
remind the reader that in a minimal CCC model we have two real neutral physical Higgs

particles. For one of them:

a~ %Ecoshsinoc—r;l—le—v;j
and for the other:
a~ i-Qz—Hcosﬂcsz'nocm—Tv—;’—)
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We therefore expect Ay, to be of the order of 10® — 10* This completes our proof.

We conclude that in the nonminimal model

Mlg(CCC) = Mlg(sta.nda.rd model) - 8‘.’1(44,3 + ZAH.-,BH;)M12(G - L)

1

(1.52)

where H; are the neutral physical Higgs particles.
Ap, are the corresponding enhancement factors (clearly Ay, depends on the Yukawa
coupling Nj).
We denote:

Y An.Bu, = ApPn (1.53)
where Bj is the average of the By, and Ay is defined through (1.53) . We expect Ay
to be of the order of magnitude of Ay (~ 12,000).

We now obtain:
M,(CCC) = Miz(standard model) — eV(AB + ApBy) - M12(G — L) (1.54)

Equation (1.54) is actually identical to equation (1.36) . Therefore we may derive
for the nonminimal case the same bounds on m(W;) and m(H) as we derived for the
minimal case. We also find the same expression for € in the nonminimal model as we

had in the minimal model.

1.4 Summary
We have tried to explore the importance of C-invariance in LRS models. We did
this through a detailed comparison of CCC (Charge Conjugation Conserving) models
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with “manifest” LRS models.
We showred that in » CCC model the information about spontaneous breaking of C may

not reach the quark mass matrices. Therefore, we found that the left handed Cabibbo

mixing angles are related to the right handed ones through:
Cr = F*CL(F%*
where F¥, F4 are diagonal unitary matrices. In the manifest model one assumes that
the spontaneous breakdown of parity does not reach the quark mass matrices and then
one finds:
Cr = F*(£)CLF%(4)

where FU(x), Fé(£) are real diagonal unitary matrices. However, as we showed the
assumption of the manifest model is unjustified. Also, under this assumption one finds
that the LRS Lagrangian must break C and CP explicitly.

We discussed the K° — K° mixing in the CCC model. We were able to show (using
also results of previous works(5], [10]) that in a minimal CCC model one may derive

from M,2 the following lower bounds on m(W3,) and m(H):
m(Wg) 2 1.7 TeV
m(H) > 8.8 TeV

Similar bounds may also be derived for a manifest modcl.
We showed that in a CCC model the CP violating parameter € has the following

form:

€(CCC) = ¢(standard model) — sinfyz——\l/i(Aﬂ + AgPu)



where A, Ay are large enhancement factors.

We discussed the possibility that ¢(standard model) will become too small to ac-
count for the experimentally observed e. In this case the CP violating phase v may
provide us with the main contribution to ¢ and we may even get an upper bound on
m(Ws):

m(W,) < 120 TeV

For the manifest model we found that there is no new source of CP violation. The
only CP violating phase is the Kobayashi-Maskawa phase, and it always appears with
the coefficient s2,351,3. Therefore if the rate of b-decay to u will be found to be very
slow — then ¢ in the manifest model will be much smaller than the experimentally
measured e.

Finally, we considered the nonminimal LRS models. We believe that LRS models
may at most be effective theories of some more fundamental physics. If this is true, then
the Higgs spectrum of the LRS model is expected to be nonminimal. In a nonminimal
model the Yukawa couplings of the physical Higgs particles are unknown and it is
therefore difficult to estimate their contribution to M;,. We showed that in a CCC
model it is possible to use the special form of the Yukawa couplings (these are symmetric
matrices) in order to prove that the Higgs contribution to M, is essentially the same
as in the minimal case. We therefore generalize all the results of the minimal model to

nonminimal CCC model.

- 50 —



Chapter 2

Composite Vector Bosons

2.1 Why Composite Vector Bosons?

In this introductory section we will explain how composite models of quarks and
leptons motivate us to consider the possibility of composite W and Z.

Suppose that the quarks and leptons are composite. The fundamental building
blocks inside the low energy fermions are then (presumably) bound together by some
super strong force. We therefore expect that the quarks and leptons will undergo a
short range interaction which is the residue of the new superstrong force. This residual
interaction could be yet unknown bpt it could also be one of the already familiar forces.
Of all the forces known today the only candidate to be this short range force is the weak
interaction, since only the mediators of the weak force, the W and the Z, are massive. If
the weak interactions are indeed residuai interactions of a superstrong force, then the W
and Z are, like the quarks and leptons, composites of the fundamental building blocks
[31-34]. In this case, SU(2)w is not local but is only a global, approximate symmetry.

A similar scenario has been observed in the last twenty years for the nuclear forces:
At the low energy level one sees pions, nucleons and p mesons, undergoing electromag-
netic and nuclear interactions. For a while, the nuclear forces seemed to be the gauge
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interactions of SU(2) of (strong) isospin with the p-mesons as the corresponding vector
bosons. When the higher energy domain was penetrated it was found that the nucleons
and pions are composites of more fundamental particles — the quarks, which are bound
together by strong color forces. Nuclear interactions were then seen to be only residual
of the fundamental color-force, and the p mesons were found to be composed of quarks,
like the nucleons. SU(2) of isospin is now known to be only a global, approxiinaie
symmetry.

In the foilowing we will first discuss in more detail the theory-of composite W and
Z. We will then discuss three tests of such possible compositeness:
(i) Universality of the coupling constant of the W boson.
(ii) Special unrenormalizable effective interactions whose effect may be detected in
present and near future pp colliders.

(iii) The eewy events of the 1983-run in CERN.

2.2 More on Composite Vector Bosons [35]

We start with the difficulties of the composite vector boson scenario: The basic
difficulty in all composite models of W and Z is their mass (mw ~ 0.17.y) which is
considerably smaller than the compositeness scale (A > lr.y [36]). So far no one
has suggested a mechanism which would protect masses of composite spin 1 bosons.
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Another problem is the small coupling constant gw of the weak interacticns. If the W’s
mediate the residue of a superstrong force, then their couplings are expected to be large
(like p meson couplings). We have no solution to these two problems, however we note
that they could be two aspects of only one (unknown) cause: Though both mw and gw

are small their ratio is of the correct order of magnitude.

g . 9% (2.1)
md, A2 '

where g, is a typical strong coupling constant (92 ~ O(4r)) and we assumed that A is
O(1lrev).

Keeping these basic problems of composite W and Z in mind we now describe the
more successt:ul aspects of the compositeness idea. A composite model of vector bosons
has to provide its own explanation to the following successful predictions of the standard
model:

(1) The couplings o.f W and Z to quarks and leptons are universal i.e., the coupling
of W to u(97d(®) is equal to its coupling to, e.g., De. (The superscript (Yon u, d indicates
that these are the interaction eigenstates).

(2) The neutral current of the fermions which couple to the Z boson is:

g , . .
cou b U7 — sin’ 6w z™)

where j,(,o) is the neutral component of the generating current of SU(2)r, ji™ is the
electromagnetic current and fw is an angle parameter (called the Weinberg angle).
We remind the reader that (1) and (2) together imply that there are no flavour

changing neutral currents.
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(3) sin @ is related to e, gw through:

sinfw = = (2.2)
aw
(4) The Weinberg mass relation:
mgzg = cos Oy (2.3)

In the standard model universality is automatic, since SU(2)w is a gauge symmetry,
and (2)—(4) follow from the Higgs mechanism for spontaneous breaking of SU(2). In a

composite model SU(2) is only global and it is not spontaneously broken. In order to

reproduce (1)—(4) in the framework of a composite model of W and Z one proceeds in
analogy to p meson physics: We assume that
(2) The approximate global SU (2) L symmetry of low energy physics is broken only by
electromagnetic interaction (and fermion mass terms). Every term in the low energy
Lagrangian which does not involve a photon (and is not a fermionic mass term) should
be SU(2)-invariant. !
(b) The neutral W boson dominates the left handed part of the electromagnetic current
of the primordial photon.

In order to see what is the use of these two assumptions let us consider the parts

of the Lagrangian which include the kinetic and mass terms cf the photon and the W

! The SU(2) symmetry may or may not exist at energies > A: For instance, in the
Haplon model [33] SU(2), exists also at high energies while in the Rishon model (31]

it appears only at the low lying level.

_54_



bosons and their interactions with the fermions.
1 1 By
L= Zfuf® W - 2 WO
4 4 2
b

—mi W, W (2.4)

R — =
—eaygh, - W-J

where: a, is the primordial photon field.
fuv = 8pay — dva,
Wy = 0,W, -8,W,
74, is the electromagnetic current
J is the current which couple to the W field.
The assumption of SU(2) invariance of the Lagrangian implies that J is in the
triplet representation of SU(2).
The SU(2) breaking character of the electromagnetic interactions is exhibited in

the interaction of @, with the fermions and in the W,SO) — a, mixing term.
Diagonalizing the quadratic (kinetic and mass) terms of the above Lagrangian one
finds: 1 L 1
—) BV
L=— JFuF* - 22,2 - EW,S;r)w( )
+im2z,20 + m2w (DO (2.5
. 1 )8
—eA it - Z,J% - :/_E(W'SHJ( ¥ + h.e)
where A, is the physical photon and F,, = 3,4, — 3, 4,.
Ay, Z, are related to a,, W,SO) through:
Ay =a, + W)
Z,=vV1-x2w0
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J% is related to J ©)#, i through:

1 I .
Jz = ——'—’—‘,1—:—,\—2—(-7(0) — Aejim) (2.7)

— mw
mdmz = 70
It is possible to show that the assumption of W (®)-dominance in the left handed
part of the electromagnetic current implies [35]:
(i) That

AT @ = ¢j(0)¥ (2.8)

where j(9" is the generating current of the neutral component of SU (2)L. Using the
SU(2);, symmetry we find:

AJT# = g7k (2.9)

where j# is the generating current of SU(2)r. Note that equation (2.9) means
universality of W and Z couplings.

(ii) e, gw and A are related:

Defining A = sin 0y we get:
. aw (0} B . 2 .
Tt =2 (5007 —sin? b j¥
Zz cos 0W (-7 i WJem)
mw
cos Oy

mgz =
Therefore all the predictions (1)—(4) of the standard model are shared also by a com-
posite model of W and Z when (a) and (b) are assumed.

We remark that under our assumptions it is possible to show that the WWW
coupling is also equal to the universal gw, as is the case in the standard model [35].
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However, since WWW couplings were not yet measured we will not pursue this subject

any further.

2.3 Testing Universality

The universality of the couplings of composite W’s is not expected to be exact
(in contrast to the standard SU(2)L x U(1) gauge model). The reason for universality
breaking is the heavier vector bosons which are expected to appear at energies of order
A.

In order to explain in more detail what is involved — we will restrict ourselves to the
specific kind of composite models where the global SU(2), symmetry exists also at high
energies (as high as A). The heavy vector bosons are then also grouped into multiplets
of SU(2), and here we consider only triplets. Denote by Wl the known low lying
triplet of vector bosons a.nd by Wz, Wa, ... the heavy triplets. A1, A3, A3, ... are their
corresponding mixings with the photon and J-;, J-;, .I-;;, ... are their fermionic currents.
The assumption of vector meson dominance should now be modified and relaxed: We
do not assume that Wl(o) is dominating the (left-handed part of the) electromagnetic
current, but that the bunch of all W‘-(o) is dominating this current. Equations (2.8) ,
(2.9) are accordingly modified and we find:

YAd =@ (a)

L (2.10)
D OTE = eg (b)

(where j# is the generating current of SU (2)r and 7(®* is ijts neutral component).
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Consider now the W-coupling to a certain fermion pair f(a)go)'yp f(b)go) (2, b are gener-
ation indices; f((f)) and f((f)) are interaction eigenstates). Denote by gi(u,b) the coupling

of W; to this pair. Then, we find (see (2.10) (a)):

Z AiGi(a,b) = €0a,b (2.11)
=1
or
1
91(a,b) = ,\_1(65“"’ - E /\igi(a,b)) (2.12)
=2

(2.12) clearly implies that only in the case of a single composite W - the assump-
tion of vector meson dominance is powerful enough to ensure the absence of Flavour
Changing Neutral Currents (FCNC) and the universality of the flavour conserving part
of the neutral currents. In order to proceed to the more reasonable case of several
W'’s we should add two assumptions: (a) The assumption of horizontal symmetry: We
assume that there is a horizontal quantum number h which is strictly conserved in the
interactions of the fermions with the vector bosons. This means that the interaction
eigenstates, f((g)), carry a well defined h, and that the W’s (as well as the photon and
the gluon) carry h=0. We further assume that different generations carry different h-
values. Under this assumption we are ensured that, (at least in the interaction basis),
there are no FCNC, namely, g;(, p) & 6(a,b)- (b) We will assume that the deviation from
g1 universality which is due to the heavier vector bosons is small. More quantitatively,

we assuime: A
X comy

! (2.13)
gi mwy
oW

g1 ( A )
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Roughly speaking, the justification to (2.13) is that the very heavy W, Wi, ... should
not have strong couplings to low lying physics. More specific justifications are to be
found in {37-38].

Under the above assumptions we get:

1oty = bone + O((ZE))

—
|3
"
o

S,

where g; = )‘51- is independent of (a,b) i.e., we find that the Wy couplings to fermions

are universal up to corrections of order ('—"T""—)2

Note that the deviation from universality implies that even though there are no
FCNC in the interaction basis of the fermions — there might after all be FCNC when
we transform to the physical basis of mass eigenstates. The couplings of these FCNC
are proportional to the deviation of 91(a,b) from universality.

No effects due to deviation from universality have been seen up to now. We there-
fore may at present only give upper bounds on such deviations. Such upper bounds
imply through (2.14) a lower bound on the compositeness scale A. The best bounds
are derived from w-decays and from the absence of FCNC effects in the K° — K° and
D° — D9 systems. We compare m-decay to ev with w-decay to uv, and w-decay to
mev with p-decay (to v,ev). We also discuss the effect of FCNC on the K° — K° and
Dc_’ — DP° mixings.

Comparison of w-Decays to er and uv

Experimentally:

R = I(m — ev)

=_\ "7 =1267-1074+18 2.15
=P I(r — pv) % ( )
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Theoretically: If there is a single W particle and its couplings are strictly universal

then [39]:

Ripeor = 1.236 - 107 + 0.3% (2.16)

Let us suppose now that the low lying W-particle is composite. Then, (2.16) is modified

to:
Rineor = 1.236-1074((1 + €1)* + ;) £ 0.3% (2.17)

where €1, €2 are small corrections: ¢; is due to deviation from universality in the W;-

couplings. According to (2.14)
mwy .2
€1 ~ O((T) ). (2.18)

€2 arises from w-decay through Wa, W3, ... according to (2.13) :

Sics iy
==~ oY) (2.19)

mwl

€2 =

In the following we will consider only corrections of first order in (%1)2’ then, €2 and

€2 will be neglected.
Rineor = 1.236-107%(1 + 2¢,) £0.3% (2.20)

The experimental value of R agrees with the theoretical value (2.16) within the error-

bars. We therefore find the following bound on ¢;:

|2€1| = lezp - Rthcor < 1-267 - 1.236

2 2 .
ey | < — 267 + /(1.8%)2 + (0.3%)% ~ 4.3%  (2.21)
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Substituting for ¢; the rough estimate:

1‘I‘I.pv2

el ~ ()

2
>4\ ———— -82 ~ 560 .
A2\ 1302 8% Gev (2.22)

Comparison of w-Decay to mer with u-Decay

we find:

'We first assume the existence of a single W and strictly universal couplings. Mea-
surements of ut-decay to t?,uz*'p,e and theoretical computations of this decay enable us
to extract the value of W-coupling to fermions. Substituting this value in the theoretical

computation for I'(x* — x%e*v,) one finds [40):
[(rt — 7%*v) = 0.391 £ 0.027 (2.23)
We compare this result with the direct measurement of 7-decay to mev [41]:
Tezp(nt — 7%t0) = 0.403 +0.003 (2.24)

The prediction (2.23) , which is based on the assumption of g-universality agrees, within
error bars, with the experimental value (2.24) .
Suppose now that W is composite and its coupling is universal only up to corrections

O((mx)?). Equation (2.23) would then be modified to:
A
T(rt — 7% v) =0.391(1 + 62) £ 0.027 = 0.391(1 + 26,) £ 0.027 (2.25)

5, represents the deviation from universality and we roughly estimate:

my 2
o~ ()
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Comparison of (2.25) and (2.23) implies:

mw .2 _ 0.403 -0.391 +/0.027% + 0.0032

2(B¥)” < ~ 0, .
() < —%ms  tT oa 01 (2.26)

Consequently, we find:

A > 370G.v (2.27)

K° — K° and D° — D° mixings

In order to simplify our discussion we will consider only the first two generations.
We denote the interaction eigenstsates by u(o) d(o), c(Lo), EO). In terms of these states

the neutral current of the Z%-boson is flavour conserving and it is almost universal:

1
B (0) y 1
Jz cos Gw( = AeJem)

(0)

= _((;O O =4 a2 169 y.ufuL

2 cos 0w((uL ) [(1 3 sin® Ow) I + 2 ow oa)y go) (2.28)

7 —0) 2 . 2 1 6g d(LO)

+ (dg) S(LO)) -1 - 3 sin Ow)I — Eg—v;-aah“ (3&0) )

where gw is the coupling of the Wl multiplet to the fermions (averaged over the two
generations); &g is the deviation from universality (the difference between the coupling
of Wl to the first and to the second generation), I is the identity matrix and o3 the
diagonal Pauli matrix, both acting in generation space.

We now wish to present the current (2.28) in terms of the mass eigenstates ug,

dr, c¢r, sr. Using the notation of Apperdix A we denote:

("g})) = yvt ("’*) (2.29)
c(LO) cL



(0)
(d(LO) ) =’ (dL> (2.30)
Sy, SL

where U%, U? are unitary matrices acting in the (two dimensional) generation space.

Since ur, ¢r, dr and sy are defined only up to phases we are free to multiply U'**
and U by phases from the right. We are also free to clioose the phases of ugo) , c‘L"),
but once these phases were chosen we do not have any more freedom to choose the
phases of d&o) and sgo), since the relative phase of dgo) and ug‘o) (and the relative phase
of sgo) and c&o)) is fixed (through the requirement that they are the two components of
the same SU(2)-doublet). We therefore find that we may rultiply U** from the left
by arbitrary phases, but we do not have this freedom in U d+,

Taking into account all the freedom we have we find that it is possible to choose

the phases such that:

e+ = (cosa“ —sin0“>

sinf*% cosf@¥

et = et 0 cos§¢ —sin g%
T\0 e sing?  cos 04

where 0<¢* < £,0< %< I,

The Cabibbo mixing matrix is:
C = Uttt

and it is straight-forward to see that the Cabibbo angle 0. is related to the parameters

0y, 04 and ¢ through:

sin 8. = | cos ¢sin(8* — %) — ¢'sin #sin(8* + 69| (2.31)
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Subs. tuting U**, U4" in (2.29) , (2.30) and then substituting (2.29) , (2.30) in (2.28)

we get:
g _ 4 1 &g u
Jh ::ﬁ((z@ er) (1 - §sm “Ow)I + Eg—w(cos(%“)og + sin(26%)oy ) |y* ( )
— 2 6
+(dr sz)[—(1 - Zsin*dw)I - l—'(’,(cos(26d)o3 + sin(26%)0,)] ( )
3 2 gw

(2.32)
In (2.32) we clearly see that in the physical basis of mass eigenstates, thezc are
flavour changing neutral currents, proportional to ég.

The effective four-Fermi flavour changing interaction is:

59) 2 GF
aw’ V2

L;;ch = ——[(sin 8* cos %) (uL'y“cL)2+(s'm€dcos&d)z(EZ'y“sL)z]-{-c.h. (2.33)

where G is the Fermi constant.

The contribution of LFCNC to K° — K° and D° — D° mixings is:

Amg 69 >Gp d d\2 2

—_— sin 6% cos § Bxf 2.34

MK FCNC gw) \/_( ) K ( )

Amp 59 1Gr u 22 2
sin@“cos0“)*=Bpf 2.35

mp 'FcNc 9w \/_( )3 P (2:35)

where By, Bp are the “bag factors” of the K — K and D — D respectively and fx, fp
are the K, D decay constants.
The contributions (2.34) , (2.35) to %&’ AT";D- should be compared with the

standard contributions which arise from the standard-model box diagrams:

Amg G a . me

S = ————>—(cosé.sind B f2 2.36)
( mg )standard ‘\/5 47 sin2 9w ( ¢ C) ( w) 3 K/K (

Smp Cr (cosf.sinb,) ( s ) BD 73 (2.37)

—_ _——'—2——
Mp standard ‘\/547'(‘5”1 Ow
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where m., m, are the masses of the c, s quarks respectively (and « is the fine structure

constant).

It is well known that {&mx) is in good agreement with experiment. We

MKk ‘standard
therefore require that:
Am Am
X < (52X (2.38)
MK FCNC MK standard

é"_';_"l_)n was not yet measurec. Presently, we have only an experimental upper bound:

Amp < 85 10~1% MeV
MD  experimental - 1864 MeV

(

=3.5-10712 (2.39)

Substituting in (2.37) Bpf3 = 0.19 GeV [42], Gr =1.1-107° GeV "2, a = 1=,

sin® 0w = 0.22, sinf, = 0.22 and m, = 150 MeV, we find that the experimental bound

on én%:z is about 900 times larger than the standard model estimate. We therefore

require:

AmD 5900. (AmD

™MD FCNC MD  standard

(2.40)

The inequalities (2.38), (2.40) together with equations (2.34), (2.35), (2.36),

(2.37) imply that:

bg.,2 . 2 . 2 , Mc 2 o
—) (cosfysinby)” < f.cos8.)” - 2.41
(gw) ( ¢ )" < (sinf; cosfc) (mw 47 sin® O (2.41)
bg \* . 2 . 2 , My 2 a
0«. 0«. S 0: 0: : 2.42
(_gw) (cos b, sinb,)” < (sinf.cosd.) (mw prp . (2.42)

We substitute in (2.42) : m, = s5m. and then take the square root of (2.41) and

6 me
|—-q-|| cos % sin 6| < sin 8. cos f. .a (2.43)
7
aw mw V 47 sin” 6y
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(2.43) and (2.44) imply:

]
|—g||cos 0% sin 6| < 3sin b, cos f, T \/ — (2.44)
aw mw \ 47sin” fw
mc

|§£||Sin(0u — 69| < 4sinf. cosé,
w

a
[24
A / 2.45
mw 4 Si]‘].2 0w ( )
129, sin(0* + 64)] < 4sin 0, cos8, < [ 2 (2.46)
aw mw \ 47sin” 0w

(2.45) , (2.46) and (2.31) imply:

24

me
my \/ 47 sin® ow

Iig—l < 4e = (2.48)
gw mw \ 47sin” fw

Substituting for |g££—| the rough estimate (l!t"-)z, and using the values m, ~ 1.5g.v,

6 .
l—g—l sinf, cosd, < 4sinf. cosd. (2.47)

and therefore:

mw ~ 82Gev, @ ~ 1= and sin®fy ~ 0.22 we get the following lower bound on A:

A > 1.27ev

Let us summarize: In the standard model W-couplings to fermion-pairs are univer-
sal. In a composite model for vector bosons one expects deviations from universality.
We estimated such deviations to be of order ("‘T"")2 At present no deviations from
universality have been seen, and therefore we may only put upper bounds on (-'Z'A-“-’-)2 or
lower bounds on A. We find:

(i) A > 560G,y from comparison of I'(r —+ evr) and I'(r — uv) (i.e., comparison of
W-couplings to év and gv).
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(i) A > 370gev from comparison of I'(x —+ vev) and I'(x — wev) (i.e., comparison
of W-coupling to v and to id).

(iii) The deviation from universality also implies that there are flavour changing neutral
currents (FCNC). Since effects of FCNC were not yet seen we again may derive a lower
bound on the compositeness scale. From the K° — K9 and D° — D° mixings we derive

the following bound:

A> 1-2TeV

This bound is comparable to the Eichten-Lane-Peskin bound [36] on the compositeness

scale of the fermions.

2.4 An experimental Test of Z® Compositeness in Proton Anti-Proton

Collider [43]

In this chapter we will consider effective interactions of the form:

A A o (2.49)
|
(n—1) fields

where V0 is a photon or a gluon field. In the standard model such effective interactions
are of n'th order and they arise as radiative corrections involving a ferraion loop (see
fig. 2.1(a)). In a composite model an additional source for the interactions (2.49) is

effective terms of the form:

WO v°...° (2-50)
N s’
(n—1) fieldas
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0

where v” is a primordial photon or a gluon field. Substituting in (2.50) :

wo L Z9

B cosbw *

(2.51)
a, = A, — ta.nﬂwzg
we get:

1
cos fw

2° y°...V° 4 (terms involving two or more Z fields) (2.52)
— e’
(n—1) fields

;Blm- is =~ 1 and in the following we will ignore this factor.

In a composite model the effective term (2.50) may be of n-1 order, reflecting direct
couplings [44-45] of the photons and gluons to the preons inside the W° (see fig. 2.1(b)).
The strength of such a term is proportional to < (eQ)"(gQs)™* > where n,, n, are
the numbers of photons and gluons in the effective term; e,g are the electromagnetic
and QCD coupling constants; Q is the preon electric charge; Qg is a preon color charge
(@s=1,0 for color triplet, singlet); <> denotes an appropriately weighted summation
on all preonic components of the W?, depending on the detailed wave-function of the
composite W°, Since, in a composite model, the interactions of the form (2.49) are
of smaller order in the gauge coupling, they may provide us with an interesting test of
vect'or boson compositeness. However we note that:

(1) SU(3)cotor X U(1)em gauge invariance together with Lorentz invariance imply that a
term of the form (2.49) appears with (at least) n derivatives. Therefore, the coefficient
of this term should include a factor of the form & L __ where E is a characteristic energy
scale. If E is the compositeness scale A, then the terms (2.49) are strongly suppressed

and are rendered uninteresting. Here we want to speculate on the possibility that E
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is O(mw). This speculation is based on the observation that the energy scale which
characterizes W and Z is mw and not A: Note that (i) the mass of W is mw. (ii) The
W?° — 4 mixing A is much larger than the p® — 4 mixing. This is related to the fact that
the mass scale which characterizes the W is mw and not the much larger scale A [37].2
In the following we will assume that E ~ my,.
(2) If E is O(mw) then the interactions W%P°...v? are part of the low energy (energy<
A) Lagrangian. Therefore they are either SU(2) invariant or they involve one or more
photons. Since a W%, ..v° term may not be SU(2) invariant we conclude that it must
involve at least one photon. In other words — all Z°V°.. VO effective interactions
which are of inte;est for testing Z-compositeness — must involve at least one photon.
In a series of papers Renard has investigated the Z°V°V° and Z°V°V°V° vertices.
He pointed out [44] that the Z%y~ vertex may produce a detectable effect in et e~ — Z%
scattering, and that the Z%yv+ vertex may strongly enhance the decay of Z° — ~yyv
[45]. We agree with these observations and we believe that they will provide good
experimental tests in an ete~ collider such as LEP or SLC. Renard also considered the
contribution of the vertex Z%vgg to Z° — ~gg decay [45]. However, it turns out that the
experimental signature of this process is relatively unclear, due to a variety of possible
backgrounds. Finally, Renard analyzed the effects of the Z%ggg vertex for the decay
Z° — ggg and the production process g + g — Z° + g (in a pp collider). We disagree

with this part of his work since, as explained above, the unavoidable global SU(2)

2 In the nonrelativistic bound state model [45], [46] which we use later the fact that
A is O(1) implies that E is indeed O(mw) and not O(A).
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symmetry suppresses the effective Z°ggg coupling down to its standard model value.
Consequently, the corresponding processes should not be enhanced in a composite-Z
model and cannot serve as useful tests. There is, however, another process which has
not been previously discussed and which appears to provide the only feasible experiment
of this family during the next few years (prior to the completion of SLC or LEP). We
refer to Z%y production (through an effective Z Oygg vertex) in a gp collider.

The relevant experimental process is:
p+p— Z° +7+ anything (2.53)
In the standard model Z%y production is due to the subprocess:
g+q— 2%+~ (2.54)

with the diagrams of figure 2.2(a),(b).
In a composite model we have an additional contribution from the Z%vgg vertex through

the subprocess:

g+g— 2%+~ (2.55)

(see diagram 2.2(d)).

The standard model process is O(a?). The contribution of the effective Z%vgg vertex in
a composite model is O(aa?). At the relevant energies (0.5-2 TeV) the two contributions
are of the same order of magnitude (i.e. a? is O(e)). However, note that the angular
distributions of the processes (2.54) and (2.55) 2re completely different: The standard
model process involves the exchange of a light particle (u, d or s quark) in the t or u

-0 -



channel. The angular distribution of the photon is therefore expected to be concentrated
around the beams directions. The composite model process is, in contrast, pointlike and
is therefore expected to have a relatively flat angular distribution. Consequently, we
hope to distinguish the effect of the Z%ygg vertex from the background of the standard
model. We note that the cuts in the analysis of experimental data tend to strengthen
the effect of the Z%ygg vertex (if it exists): It turns out that, in order for a single
prompt photon to be identified, it must be sufficiently hard. For the SppS collider at
CERN and for the Fermilab pp collider the pr cutoff should be around 5-10 TeV (p}.
is the transverse momentum of the photon). Such a cutoff may considerably reduce the
cross-section of the standard model process (2.54) (since the angular distribution is
concentrated at small pr), while the Z%~gg vertex contribution to Z%y production will
not be strongly effected (since its angular distribution is quite flat).

In the rest of this chapter we give more detailed analysis of Z%y production and
show that it may indeed be an important test of Z° compositeness.

The contribution of the standard model diagrams to the unpolarized cross-section

tot [~ P dra’ 2 (A2 2
o (i+a— 2 +'7)="§'S“Q|'(GV|‘+GA1')X
M2 s 2M2 8
(- 5F) (onp ) + i e

where Q; and m; are the electric charge and mass of the i'th quark and Gv;, Ga;
are its vector and axial couplings to the Z-boson (Gau = —Gad=1/(4sinfwcosfw);

-1 -



Gvi = G4i — Q;tanfw). The angular distribution in the c.m.s. is
da' _ ° az
E(Qi"r%‘—' Z°+4)= -3—Q? (G¥:i + G4i) x

Rk (1+ (ﬂ;l)z) ) (1_ M_%)z (2.57)

X
2

sin20+4ﬂsl?- 5

In our calculations we have included only the light quark contributions (u,d,s),
using m;=0.3 GeV.

In a composite-Z° model we encounter the following contributions to g + p —
Z° + 4+ any:

(i) The standard model contributions (figures 2.2(a), 2.2(b)) remain essentially
unchanged.

(ii) An effective Z°Z°~ interaction may provide an additional contribution to the
g+ g — Z°+ ~ subprocess (figure 2.2(c)). This contribution is expected to be small
[44].

(iii) The most important contribution may come from the subprocess (figure 2.2(d)):
g+g—2°+n

which is negligible in th.e standard model. We have already discussed the coefficient
of the effective Z%ygg vertex but we do not know its explicit form. We have therefore
chosen a nonrelativistic bound state model which was previously used by Renard [45],
[46). We do so, just because we are not aware of any other simple framework. It is
obvious that this model is totally inadequate in its details, but we hope that it may well

serve as a crude order-of-magnitude estimate. We should probably not trust the results
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to better than a factor of 4 or so. Using this model, one obtains:

%(g +9g—=2°+9) = (3+cos?8)(< Q3Q >)?  (2.58)

47ra§a Fw s M%
9s Mw 2s

where % = ‘:— ~ 1.6. The values of (< Q3Q >)? are usually of order 1 (e.g.  in the
Rishon model [31] and 25& in the Haplon model [33] with Ny hypercolors).

The transition from the subprocesses § + ¢ —+ Z° + v and g+ ¢ — Z° + « to the
actual contributions to p+p — Z° +~+ any involves the quark and gluon distributions

inside the proton. In the standard model:

at°t(ﬁ+p—> 2°+~+any) =

i (2.59)
I / dzydzy(D;i(z1) Di(z2) + Di(z1) Di(22))e*** (7 + ¢ — Z2° + 1)

do
a’-f-(ﬁ+p-+Z°+'1+a.ny) =
T

Bs / dzydza(Di(z1)Di(z2) + Di(z1) Di(z2)) P8, P%)%(ii +¢i — Z2° +1)
(2.60)

where i is the quark flavor; D;, D, are the distribution functions of the i’th quark in the
proton and antiproton respectively; § is the squared invariant mass of the Z°y system;

P(s, p%) is given by:

N 87§
P(3,p7) =

_ (2.61)
(38— M2)[(8 — M32)? — 48p%]*

similarly, the contribution of g + g — Z° + ~+ leads to:

o' p+p— Z°+~+any) = / dz1dz2Dg(z1)Dg(z2)0* (g +9 = Z2° +17) (2.62)
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di:i;(ﬁ +p—Z°+~+any) = / d:cld:czDg(zl)Dg(zz)P(é,p%-)%(g +9—2Z°+7)
(2.63)
where D, is the distribution function of gluons in the proton.

Among the various available phenomenological distribution functions we have cho-
sen the ones of Baier et al. [47], using A=.4 GeV. We have checked the sensitivity of
the results by repeating the computations with A=.1 GeV. Following the procedure of
Brown et al. [48] in the case of W~ production, we introduce in all cases a lower cutoff
on the Z+ invariant mass M3, > 1.1 M3. This cutoff enables us to avoid all threshold
divergences without “losing” any photons with pr > 5 GeV. Computations were done
for pp colliders at /s = 540 GeV (CERN SppS) and /s=2000 GeV (Fermilab). The
differential cross sections are shown in figure 2.3. Note that these cross-sections are
correct (i.e. independent of the infra-red cutoff) only for pr > 5g.v.

We see that, as expected, the standard model contribution drops quickly down
while the composite model contribution is relatively flat and is therefore dominating at
large po.

The number of expected events in the two energy ranges (/s = 540¢.v and /s =
2000g.v), for the standard model and for a composite model, are given in table 2,
assuming an integrated luminosity of 1037¢m~2 per year. The composite model leads
to an energy dependent enhancement of one order of magnitude at CERN energies
(540 GeV) and two orders of magnitude at Fermilab energies (2000 GeV).This energy
dependence is due to the increased importance of gluon contributions at high energies.

We note that the total cross sections for g+ ¢ — Z°+ vy and g+ g — Z2° + 7 are,
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actually, of the same order of magnitude. Only the experimentally motivated limitation
of pJ > 5 GeV together with the “flatness” of the composite model pr-dependence lead
to the predicted enhancement.

There are many uncertainties in our calculation. Some of them are “technical”,
including the choice of a detailed distribution function, the value of Agcp, the assumed
quark masses, etc. All of these uncertainties probably contribute a factor of 4 or so which
could go in either direction. Additional uncertainties come from QCD corrections to
the standard model which are likely to flatten the pJ. distributions. Another unknown
parameter is the model-dependent factor < Q2Q >. This quantity actually vanishes if
the preons are colorless [32], [34] . However, in most other cases it is likely to be of order
one. All the above uncertainties can be largely eliminated by performing additional
calculations and by restricting one’s attention to a specific composite scheme.

There is, however, one major uncertainty which may destroy the entire argument:
We have assumed that the energy scale of the effective Z°ygg term is O(Myy), not
O(A). This is the case in the explicit, but inadequate, nonrelativistic scheme used in
the computation. If, however, the relevant energy scale is A (greater than 1 TeV), the
magnitude of the subprocess g +g — Z + 7 is diminished at least by a factor (Mw /A)4,
and the predicted effect may disappear. In the absence of a clear understanding of
the dynamics of a composite Z, and in view of the required small Mw /A ratio which
remains unexplained, we must conclude that our ignorance allows for any energy scale
between Mw and A. Consequently, all our calculations (as well as the earlier calculations

of Renard) must be viewed as approximate upper limits of the expected effects. An
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experimental observation of the predicted cross section will indicate Z-compositeness.
On the other hand, if the observed cross section agrees with the standard model, we still
have several possibilities: (i) Z° is not composite; (ii) Z° is composite but the energy
scale of the Z°4gg effective coupling is A, not Mw; (iii) Z° is composite but contains
colorless preons.

We summarize: Several experimental tests of Z°- compositeness have been proposed
[45] earlier, using effective Z°V°V°V* interactions (V° = 4 or g). We add to these a
new reaction which turns out to be the o_nll feasible test at present and near-future pp
colliders. All other tests of a similar nature must await ete™ colliders at /s = M3.
Our process is p+ p — Z° 4+ 4 + any and the expected signals are: a cross section
which is substantially larger than the standard-model prediction, and a nearly-flat pr
distribution. Either one of these, if observed, may serve s a strong indication for

Z°-compositeness.
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2.5 On the eey Events [49]

In 1983 UA2 [50] and UA1l [51] collaborations have reported the observation of
three £¥ £~ events at invariant mass of 90 GeV. This number of events (when compared
with 12 Z° — ete™ events seen at the time) is larger by an order of magnitude than
the standard model prediction. Though the possibility of statistical fluctuation was not
yet ruled out — the other possibility, of new physics reflected in these events, has been
.already considered by several authors [52-55]. We shall discuss here the interpretation
suggested by [53], [54). The authors of these papers have suggested the following:

Quarks, leptons and W, Z are all composite. In addition to these “standard” particles

there is also a composite scalar X with mass 40-50 GeV. A new decay mode of the Z

boson is responsible for the observed [*I~+ events:
Z° — X
[__) (2.64)
ete”

In this section we explore our objection to the above scenarioc. We claim that in
the framework of composite models the decay (2.64) is strongly suppressed and thus
it is unlikely that this process is a source for high £¥£~~ rate: We first prove that the
process (2.64) must break chiral symmetry; we then show that this symmetry breaking
unavoidably causes strong suppression of (2.64) .

We follow references [53], (54) and consider only the eey events. In composite models
there is always some (approximate) chiral symmetry which is protecting the masses of
the light fermions [56]. Associated with chiral symmetry there is an (approximately)

conserved quantum number Y such that
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Y(eg)=-Y(ef) =a (2.65)

Y(eg) =-Y(ef)=B#c (2.65)

Consider the electron coupling to the photon and the Z-boson: Since -y and Z are vectors
they couple to electron-positron pairs which carry vanishing Y (i.e., they couple to eE er
and eIe;). Therefore, the v and Z must carry no Y. We may now show that chiral
symmetry is broken in (2.64) : The initial state is Z° which has Y=0. The final state
“is 7 + (e+ €™ )coupled to scalar- The photon carries no Y; the (e+e™)coupied to scalar IS &
linear combination of states that do carry nontrivial Y (i.e. it is a linear combination
of efef (Y =a—p#0)and efey (Y = —(a—pB) #0)). Thus, Y is not conserved
in the process, i.e. chiral symmetry is broken.
What are the consequences of this breaking? In order for (2.64) to account for the

observed ete~~ rate the following condition should be satisfied (53] (54] :
['(Z° = 7X)BR(X — eTe™) ~ 20prev - (2.67)

We will now show that the breaking of chiral symmetry implies that the lhs of (2.67)
is much smaller than 20 MeV: As mentioned above, the role of chiral symmetry in
composite models is to protect the masses of the light fermions. Therefore terms in
the low energy Lagrangian which do not conserve chiral symmetry are expected to be
suppressed hy a factor of EAL where m is some characteristic fermion mass and A is
the compositeness scale [56] . Since chiral symmetry is broken in the process (2.64) —
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it must be violated (at least) in one of the vertices Z°yX, Xete™. Thus, one of these
vertices should be suppressed by an EA!_ factor:

(i) Suppose chiral symmetry is broken at Z°yX vertex. As was calculated in
reference (53] [54] : ['(Z° — ~.X) with no suppression is 5 300 MeV; BR (X — e*e™) is
5—2!5 (this is because the decay strength of X to e*e™ is supposed to be approximately
equal to the decay strength of X to any of the other 20 light pairs of fermion-anti-
fermion). If we now take into account a suppression factor of (T‘{L)2 for T{Z° — ~vX)
we find:

1
I'(Z° —1X)BR(X — e+e")5(7—%‘f-)2300M,v2—0 = (ﬁAf-)zlsM,v < 20MeV

(ii) If chiral symmetry is broken at the Xe*e™ vertex then this vertex is expected
to be suppressed by Be. Thus I'(X — e*e™) is ~ (B2)?m. which is <10~%eV (the
last bound arises because m  is ~ 40-50 GeV [53] {54] and A is not smaller than 1 TeV
(36]). In this case the important bound on BR (X — ete™) comes from the competing
decay X — ~4v: W-dominance makes it reasonable to expect (see [53] and appendix B)
that the ZyX and the X~ vertices are identical, except for a factor of tan fy (~ 1/2).

Taking the tanfw factor and a phase space factor into account one gets (53] [54] :

I'(X = 4q) ~ 1161‘(2 —7X) (2.68)
Thus:
- ['(X —ete™) [(X —ete™)
— et < — L ~ 10—t 2.69
BRX =) s Tr— T(Z = 1X) (269
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and:
T(Z -+ 4X)BR(X — eTe™) < 10T(X — ete™) ~ 01,1 < 20prev (2.70)

We thus see that whether chiral symmetry is broken at Z°~4X vertex or in Xete™ vertex
— its breaking implies a suppression of the decay (2.64) to such small values that this
decay may no longer be responsible for the observed ee+ rate.

‘We wish to remark that our considerations apply only to Z° decay through in-

termediate scalar when the underlying theory is compositeness. Our “chiral symmetry

argument” does not apply if the underlying theory is not compositeness or if the in-
termediate particle is not a scalar but a fermion or a vector (as proposed in [52], [54],
[55]). However, though such alternative decays are not excluded by our arguments they
encounter other difficulties [52], [54], [55] which we shall not treat here.

Concluding, we indicate that three composite-model explanations were suggested
for eey events: Z° decay through a scalar (53], [54] , fermion [55], [54] , or a vector [52],
[54] . We showed that the first suggestion (intermediate scalar) is unfavoured by chiral
symmetry [49].

We are aware of the fact that with the accumulation of events in the 1984 run
and the improvement of statistics — the eey events are now in agreement with the
Bremsstrahlung process predicted by the standard model. However the analysis we
presented here might still be of some interest: First, it manifests the important role
chiral symmetry is playing in composite models. Second, we may conclude that the Z°
might after all be composite and there might exist a composite scalar X in the 40-50
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GeV region. This scalar was not yet seen because chiral symmetry makes it undetectable

at present energies.

2.6 Summary

In this part of the work we have discussed three tests of W and Z compositeness:
(i) Universality — At present no deviations from universality have been seen, nor have
FCNC effects been observed. Therefore we were able to put only upper bounds on
deviations from universality. Under simple assumptions these were translated to lower
bounds on the compositeness scale A. The best bound was obtained from the absence

of FCNC effects in K° — K° and D° — D° mixings:
A > 1.21.v

(ii) In a composite model one expects the appearance of effective terms of the form
Z%V°...V° where a V° is a photon o: a gluon field. Considering the terms Z°V°V?°
and Z°VOVOoVO we found that the most important term for near future physics is the
Z%~gg vertex which may give a sizeable effect in the fp colliders of CERN and Fermilab.
(iii) We criticized the idea that the 1983 ee~y events are due to composite Z decay through
an intermediate scalar. Our objection is based on the observation that chiral symmetry

is broken in this process.
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Chapter 8

The Quark Mixing Matrix

3.1 Introduction

The many particles and parameters of the standard model lead us to speculate
about the possibility of an underlying theory. However, such speculations are not only
due to the proliff.ration of particles and their parameters, but also to the pattern which
seems to exist in the spectrum:

(i) We see three “generations”, having identical SU(3)¢c x SU(2)w x U(1)y properties.
(ii) There is a mass hierarchy between the generations. |
(iii) There is also a hierarchy inside each generation: the u-like quark is heavier than
the d-like quark (except for the case of the first generation); the quarks are heavier than
the charged lepton which is heavier than its (left-har.ded) neutrino.

(iv) mixings between neighbouring generations (i.e. mixing between the first and second
generations or between the second and third generations) are bigger than other mixings
(i.e. bigger than the mixing between the first and third generations).

(v) The mixing of the i’th and j'th generations seems to be related to mass ratios \/_%

where my, m; are characteristic masses of the i’th, j’th generations. The most famous

relation of this kind is: sinf. ~ /4.
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Clearly, the identification of phenomenological rules such as (1)-(v), may help us
in our search for possible “underlying physics”. In this chapter we make a modest step
in this direction: We suggest a new parametrization to the mixing matrix. The new
parameters have a simple meaning and they are simply and conveniently related to
measurable quantities. Also, the pattern we recognize in the mixing matrix is simply
formulated in terms of these parameters. Our parametrization is generalizable in a
straight-forward manner to the case of more than three generations (in contrast to
the Kobayashi-Maskawa parametrization which has no obvious generalization). We
therefore hope that the parametrization we propose here will prove to be useful for
derivations of new phenomenological rules or for generalizations of known rules to higher
generations.

The rest of this chapter is divided into four sections: In section 3.2 we describe
our parametrization and discuss its properties and advantages. In sections 3.3 and 3.4
we exemplify the usefulness of our parametrization: Section 3.3 includes an analysis of
possible inconsistencies of the minimal standard model with experiment. In section 3.4
we discuss the Fritzsch mass matrices in the framework of the minimal standard model.

In section 3.5 we summarize our results.
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3.2 A Parametrization of the Mixing Matrix

The mixing between generations appears because the mass eigenstates are different

from the eigenstates of the weak interaction. The weak charged current is:

. _ 1

33t = TWChyrug (1 — 8)d; (3.1)
where i, j are generation indices: 1,5 = 1,2,.....,, N; u;, d; are the (mass eigenstates)
quark-fields: u; = u,¢,t,... ; d; =d,s,b,... and C is the generalized Cabibbo mixing

matrix.

The fermion fields u;, d; are defined only up to a phase. Therefore C is defined only
up to a multiplication by phases, i.e. we are free to multiply C by a diagonal unitary
matrix on the left and by another diagonal unitary matrix on the right.

C, as an N x N unitary matrix, has a priori N2 parameters: ﬂ_};_—g are rotation
angles and Mz_'*_'}l are phases. However, for the reasons stated above, (2N —~ 1) phases
are unphysical. We are therefore left with (M_—_ﬂz(_N;i‘)) phases. Consider for example
the case N=2: We have one rotation angle and no physical phase. The conventional

parametrization for C in this case is:

cosl, sinf,
C= ( ) (3.2)

—sinf, cosl,

where § is between 0 and 3.
Consider next the three generation case: We have three rotation angles and one physical
phase. The conventional parametrization for C is the Kobayashi-Maskawa parametriza-
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tion [28]:

c1 Ss1€3 S$183
.8 -8
CKM — —81€2 C1CaC3 — .‘:‘2838l €1€283 + 52638l (3.3)
_ _ i§ i
8182 €182€3 — €283¢€ —C€15283 + c2¢3¢8

where ¢; = cosf; and s; = sinf; (i=1,2,3). All rotation angles 6; can be chosen to lie

between O and 7; the phase 6 is between 0 and 2.

The 6; of Kobayashi and Maskawa are actually the Euler angles:

1 0] 0] ¢ s1 O 1 1 0 0
Cumr=]0 ¢2 s2 ~3; ¢ O 1 0 c3 s3
0 —-s3 ¢ 0 0 1 et 0 —s3 ¢

Since the Euler angles are defined only for the three dimensional rotation it is not clear

how to generalize Cxar to N generations.

We therefore suggest the following parametrization for the mixing matrix in the N

generation case ! :

Cn=0N_1 NON-aN-- - M NON_g N1--- D1 N-1..- 012,300,300 2 (3.4)

! the same parametrizﬁtion was independently suggested by Chau and Keung [57)

but they have considered only the three-generation case.
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where Q; ; for 1 < j is a complez rotation between the i’th and and j’th generations:

o \

1
cosl; ; 0O ... 0 sinﬂ;,,‘e'”’-‘d
0 1 0
ﬂ,"j = . * : (35)
0 1 0
—sinﬁ,-,,~e‘5-"i 0 ... 0 cost; ;

\ )

8i; is a real rotation angle (and is between 0 and I); 6;; is a phase.

In this representation every rotation angle 0; ; (¢ < j) appears with its correspond-
ing phase §; ;. Recall now that the number of physical phases is smaller than the number
of rotation angles by (N — 1). Indeed, it turns out that it is possible to set the (N — 1)
phases 6; ¢4y (# =1,...,N —1) to 0. All other phases are not restricted. From now on
we will make this choice.

We denote cosb; ; by ¢;,; and sinf; ;€% by s, ;. (in this notation sinb,; is |s; ;).
si,; is simply interpreted as the (complex) mixing between the i'th and j'th genera-
tions (in the Kobayashi Maskawa parametrization there is no simple interpretation to
s2, $3). Note that the mixing between neighbouring generations is always real. In or-
der to further analyze the properties of the parametrization (3.3) we write down the

corresponding matrix for the N = 3 case:
Cz = 12,3011,3(l1,2 =

€1,2€1,3 $1,2€1,3 $1,3

- (3‘6)
= | —s1,2€2,3—¢€1,282,381 3  €1,2€2,3 — $1,252,3513  $2,3€1,3

-
$1,282,3 — 61,262,33;,3 —Cy,282,3 — 81,2€2,38; 3  €2,3€1,3
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We see that the first row and the last column of C3 have an especially simple form.

This property is generalized to Cn in the following way: The first row of Cy is:

(61'261,3...61,}\7), (31,261’3...61'1\7), (31,3c1,4...c1,N), ...... ’ (SI,N—ICI,N), S1,N

and the last column is:
S1,N
S2,NC1,N
S3,NC2,NC1,N

SN-1,NCN-2,N ---C1,N
_ CN—-1,NCN-2,N+..C1 N
In the three-generation case all mixings s,,2, 82,3, 1,3 are small. We assume that this
is true also in the N-generation case. Then, to a first approximation, the first column
and last row are:
l 812 13 ... S ,N-1 SIN

S2,N
S3,N

SN-1,N
1
i.e., to a good approximation the elements in the first and last column are simply the

corresponding mixings:
(CN)1,; = 81,5
(CN)i,N = siN
We now proceed from the first row and last column to a discussion of all elements
that lie above the main diagonal. We start by examining C3: Note that in the limit of

vanishing s, 3 the upper right corner of C3 looks like:

51,2 0
82,3
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This property is generalizable to Cy in the following way: When s, v vanishes, the

upper-right corner becomes:

sin-1 O
S2,N

When s1,n, 81,4—1 and sz n all vanish — this corner becomes:

81,N-2 0 0
S2,N—1 0
S3,N

and when s; ; vanishes for all 7, ; such that j — ¢ > k then the corner is:

S1,k 0 [ 0
S2,k—1
0
SN —(k—1),k

In the three-generation case we know that 6 3 must be considerably smaller than
01,2, 02,3. (81,2 is actually the original Cabibbo mixing angle 8. ~ 0.22; 82,3 is measured
through the b-lifetime (62,3 ~ 0.065) and bounds on 6, 3 are obtained from the bounds
on b-decay-raw® to the u-quark (6,3 < 0.0087)). We generalize this property to N
generations by aséuming that |s, ;| becomes smaller as (5 — 1) (the distance between the
generations) increases. More quantitatively, we assume that |s; ;| is O(a?~*) where a is
2 small number (« is between ~ ¢ and ~ {£). « is also the parameter which describes
the hierarchy of the generation masses: l,:—: is ~O(a2(~%) where m,; is the typical mass
scale of the i’th generation. Under the last assumption we find that, to a very good
approximation (up to corrections of order a*), the upper half of the mixing matrix is
given by:

(Ch);, = sy  fori<j (3.7)
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and the diagonal is:
c1,2

€1,2¢2,3
€2,3€3,4

CN-2,N-1CN—-1,N-2
CN-1,N

The elements below the diagonal are more complicated, but it is possible to show that
(Cn);,; is O(al®=41) for all 4, j (i.e., also for the elements below the diagonal).

Note how convenient it is to have simple elements above the diagonal: |(Cy) ‘-.J-l2
for 1 < j, is, up to a phase space factor, the decay-rate of d; t;) u,;. A measurement
of this rate immediately gives the value of |s; j|, i.e., it gives the pé.rameter 6;,;. For
exaruple, in the three-generation case, measurements of the rate of b-decay to c give the
parameter 6, 3 while for the Kobayashi Maskawa parametrization the rate of b-decay to
¢ gives only the va.lue. of a relatively complicated function of sg, s3 and &: |s3 + sae""l.

we indicate that we could have chosen a parametrization in which the elements

below the diagonal are simple i.e., we could have chosen :

C"N = n1,2n1,3ﬂ2,3 ...... ﬂl'anlN...nN_l'N (3.8)

Then we would have found that:

(Cn)sjmsiy  fori>j (3.9)

and we would have got 6;; from measurements of u; decay-rate to d;. However, note
that according to our experience with the first three generations we expect the u-like
quarks of a heavy generation to be heavier than its d-like partner. Therefore, the
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main channel for u; decay is to its partner d; while u; decay to lower generations is
suppressed and hard to detect. In contrast to this situation, d; is forced to decay to
lower generations. Also d;’s are discovered and produced before the u;’s are (strangeness
was known long before charm and the b-quark was discovered in 1977 while it is not yet
clear if the t-quark has been really seen). We therefore find the parametrization (3.4)
more useful than (3.8) .
Another advantage of the parametrization (3.4) is that it may be represented by
a recursive formula in N, i.e.:
0
Cn-1 :
Cn=0n_inN... Dy nN- (3.10)
0
0 . 0 1
This representation of Cy enables us to prove all the above mentioned properties of Cn
by induction on N.
We conclude that our parametrization (3.4) for the mixing matrix is, in the case
of three generations, more convenient than the traditionally used Kobayashi-Maskawa

matrix. If a fourth generation will be discovered, our parametrization will be generalized

in a simple and transparent manner.

3.3 Possible Inconsistencies of the Minimal Standard Model with Exper-

iment

The particle content of the minimal standard model includes three fermion genera-
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tions and a single Higgs. The Higgs is in the % representation of SU(2)w and has four
real components, three of which are “eaten up” by the massive W and Z and only the
fourth is physical. The parameters of the theory are the gauge couplings, the W-mass,
the fermion masses, the mixing matrix and the mass of the physical Higgs (and also
the strong CP violation parameter ¥). These parameters are determined from various
measurements. Clearly, if the results of some measurements require a set of parameters
which is different than the set required by other measurements — we say that the model
is inconsistent with experiment.

It was peinted out several years ago [23-24] that the following measurements may
put the minimal standard model into such inconsistency:

(1) t-quark mass(m;).

(2) b-lifetime (73).

(3) Branching ratio of b-decay to u-quark (R(b — u)).
(4) CP violation in K — K system.

In this chapter we repeat the analysis of this possible inconsistency in terms of our
parameters. As we will show, with these parameters the analysis is very simple and so is
the representation of the results. In the following we give the relations between the mix-
ing parameters and b-decays (subsection 3.3.1) and the relations between the mixings
and the ¢, ¢’ parameters (subsection 3.3.2). We then discuss the possible inconsistency

of the minimal standard model with experiment (subsection 3.3.3).
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3.3.1 Mixing parameters and b-decays

As explained in section 3.1, s3,3 and ]si,3| are very simply related to b-decay rates:

10-12
joval? %20 107 R(b — ) - LBFC ()
b
10~ 2psec (3.11)
$3,3 ™ 42:107°Rb—~ ) ——  (})

where R(b — u), R(b — ¢) are the branching ratios for b-decays to u+any, c+any
respectively. (The numerical coefficients in (3.11) are phase space-factors.) b-decays to
u were not yet seen. We therefore have only upper experimental bounds on R(b — u).
The best bound is [22] R(b — u) < 0.04. R(b — ¢) is very close to 1. Substituting

R(b— u), R(b—¢) in (3.11) we find:

10~ 12gec
1,3 < 8-1075—

(a)
(6)

3.12
0-2 10~ 12sec (312)

s3am42-1 -
Measurements of b-lifetime [20] give lpsec < 75 < 2pscc. For every value of 7 in the
range 1-2 psec equation (3.12) gives us the corresponding value of s 3 and an upper
bound on |sy 3.

Note that in the Kobayashi-Maskawa parametrization s; 3 in (3.12) (b) is replaced by

lsa + sze‘sl. This last expression is inconvenient to deal with, since it involves three

parameters.
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3.3.2 The Mixing Parameters and the CP Violation Parameters

€ and ¢’

Introduction to € and ¢€’:

The parameters ¢ and €’ are given by:

ImM12 Ion

+
(f 5ome | V3ReAs (a) (3.13)
e = T 1(63—60)R8A2 ImA, Ion) (%) )
\/f ReAo ' ReAs ReAo

where Ao, Az are the weak decay amplitudes of K° to two pions coupled to (strong)
isospin I = 0,2; 66, 8, are strong interaction w-r phase shifts. M is the 2 x 2 mass matrix
of the K — K system; Amg is the K — Ks mass difference; We note that Ampy is

related to M,z through:

Amyg = 2ReM, (3.14)

We will first simplify expressions (3.13) (a) and (b). In our parametrization (3.4)
(and also in the Kobayashi-Maskawa parametrization) A; is real 2 . We may therefore

simplify our expression for €’:

' gi6a—da) _A2_ A; ImAo

3.15
\/5 ReAq Rer ( )

We will now argue that | Rngl < |I—"‘M11| and therefore the expression for € may be

2 This is due to the fact that in the parametrizations (3.3) and (3.4) the first two

elements of the first row are real.
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simplified to:
ix Ili 2

e=e't — " 3.16
We use the following facts:

(i) Gilman and Wise [58] have shown that, in the minimal standard model, ‘—; is real
and positive.

e U .
(ii) Recent measurements of < give:

1
‘? = —0.0046 + 0.0053 + 0.0024 (3.17)

We now substitute in (3.17) the expressions (3.15) for ¢ and (3.13) (a) for €, and get:

| ek 1 Feae |
| Tmbia T T I ~0.0046 + v/.00532 + .G0242 = 0.0012 (3.18)

\/—AMK + RGAQ

| #22-| is ~ g5 (this is the AT = } rule). We therefore find that:

I on
R er

Iliz
V2AMg

| <2.4-107% | (3.19)

Consequently, the expression (3.19) is a2 good approximation for e.

The Relation Between € and the Mixing Angles

M, , was originally computed by Gaillard and Lee [16] for the two generation stan-

dard model. Later the computation was generalized to the case of three generations {59,
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[26], QCD corrections were calculated [17] and the “vacuum insertion approximation”

introduced by Gaillard and Lee was reexamined. The final result is:

1
My, = 1%2@} f}{mxm:B

- (11(C3,,C2,2)® + n2(C3 1 Cs,2)* f2(me) + 2n3(C3 1 C2,2C5.1 Ca,2) fa(me))

(3.20)
where:
fa(me) = ':%:' ( E:‘:Z(l_—;a):;) (1+ 12_2:;2 In z:))
fa(me) =zn(;’"n_:2) ~i s -z

Gp (~ 1.1- 1055‘,_,) is the Fermi constant; fx (~ 16557.v) is the K decay constant;
mg (~ 498ps.v) is the kaon mass; m., m; are the masses of the c, t quarks: m, is®
~ 1.5 GeV and we will assume throughout this work that 20g.y < m: < 80gev 4 .
Ty = (—"T’("WT)Z; B, 11, n2, n3 are correction factors: B is a multiplicative factor correcting
for the “vacuum insertion approximation”. We will assume here that B ranges between
0.37 and 1 [61]. (B=1 corresponds to the vacuum insertion approximation). n;, 72, 73
stand for short range QCD effects [62] . QCD effects were not taken into account at

all in the early works and all n; were assumed to be equal to 1. Gilman and Wise [17]

3 We prefer this relatively high value for m, since it leads, through (3.14) and

(3.20) , to better estimates of Amg.
4 The lower bound , m; > 20g.v was established by Tasso Collaboration [60].

The UA1 Collaboration have announced the identification of six t-quarks with mass
m; ~ 40 + 10gevy [27]. This result is however controversial and we therefore allow
my-values as low as 20 GeV. We arbitrarily choose to limit our attention to m¢-values
that are not exceeding the W-mass.
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computed 7; and found them all O(1) but smaller than 1. Using [17] we will substitute:

n = 0.7
72 = 0.6 *
N3 = 0.4

For the mixing matrix elements C;; we will use the parametrization (3.4) . We sub-

stitute /mM),, in the expression (3.16) for € and find:

% .
€ et 9.6352,3|81,3I sin 51,3-

(3.21)
- [(0.4f3(me) — 0.7)s1,2 + 0.6 f2(m)s2,3(51,252,3 + |s1,3] cos 6y 3))

In the Kobayashi-Maskawa parametrization one finds:
€= €e'$9.6Bs;3283sin6 - [(0.4f3(mt) —0.7)s1 + 0.6 f2(ms)s2(s182 + s1s3cos 6)] (3.22)

The expressions (3.21) and (3.22) look very similar and at first sight it is not clear
what is the advantage of our parametrization. But, suppose m; is known, 7 is measured
with a high accuracy and improved theoretical calculations enable us to determine B.
If we use the parametrization (3.4) then, by substituting the value of 7, in (3.12) (b)
we get the value of s7 3. Substituting in (3.21) the values oi s,,2 (= sinf.), s2,3, mc,
my, B and € — we find ourselves with an implicit equation in the two variables s, 3 and
01,3. If, however, we use the standard Kobayashi-Maskawa parametrization then, by 7,

we get an implicit equation in the three variables s3, s3 and é:

. 10~ 2psec
lsa + s2¢®)* =4.2-1073 —-T-p——
b

Substituting in (3.22) the values of s; = sinf., m., m;, B and ¢ — we get another
implicit equation in sz, s3 and §. We therefore end up with two implicit equations for
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three variables. Clearly, it is easier to solve the one equation we get for for 3,3, 61,3

than to solve the two equations we get for sz, s3 and 4.

3.3.3 Is the Minimal Standard Model Consistent with Experiment?

We will now check whether the measurements of m;, r, R(b — u), € and € all
agree with the same “set of parameters” for the minimal standard model.

We know that 7, is between 1 and 2 psec and we will assume that m; is between
20 and 80 GeV. For every value of 7, and m; in this range we may determine the value
of s3,3 through (3.12) (b). We then substitute m;, sz 3 and the experimental value
of € (= 2.27- 10""3) in (3.21) . For every fixed value of the parameter B (we assume
that B is in the range 0.37-1) the solutions to equation (3.21) constitute a line in the
0,3 — 61,3 plane. (Note that the line exists only for 0° < é; 3 < 180°. This is because
the measured phase of ¢ is ~ . Consequently, equation (3.21) implies that siné,,3 is
positive).

Consider R(b — u). For our choice of 7, the present experimental bound on
R(b — u) gives an upper bound on 0, 3 (see equation (3.12) (a)). In the 81,3 — 61,3
plane we may describe this bound as a straight line.

We now compare our “e-line” with the “b-decay bound”. If none of the points on
the e-line obey the b-decay bound, we say that the standard model is inconsistent with
our choice of my, 7, (and B). If there are no values of m;, 7, (and B) with which the
standard model agrees — we may say that it is inconsistent with experiment.

Consider, for example, the values m; = 45g.v, 7o = 1.5psec and B = 0.4. The
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corresponding e-line and b-decay bound are described in fig. 3.1. The e-line lies high
above the b-decay bound and therefore our parameters clearly do not agree with the
minimal standard model. |

Straight-forward analysis of equation (3.21) shows that:
(1) The e-line “goes down™ as B and m; increase (see e.g. figures 3.2, 3.3).
(2) The e-line “goes down” and the b-decay bound “goes up” when 7, decreases. (see
e.g. figures 3.2,3.3).
We conclude from these observations that:
(a) For fixed values of m; and 7, the “lowest” e-line is the line corresponding to B=1.
Therefore the B=1 line gives a lower bound on ;3. We call this line “the ¢ bound”.
Allowed values of 8, 3 and 6, 3 correspond to points lying in between the ¢ bound and
b-decay bound.
(b) Consider the e-bound and b-decay bound for fixed value of 7, and varying value
of my: As m, decreases, the e-bound goes up till, at some value of m;, it crosses the
b-decay bound. For smaller values of m; the € lower bound is above the b-decay upper
bound. Clearly, there are no 6; 3 and 6;,3 that may obey such bounds. We therefore
find that these smaller values of m; are inconsistent with the standard model. Similarly,
if we fix m; and consider the ¢ and b-decay bounds, we find that as 7, increases, the two
bounds are approaching each other (b-decay bound goes down while e-bound goes up)
till, at a certain value of 7, the two lines cross each other. Clearly, larger values of 7
are forbidden (since there are no 6, 3, 6;,3 which may satisfy the bounds corresponding

to lower 7,’s). Concluding, we find that there is a line in the my-1, plane such that all
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points on one side of the line are consistent with the standard model while all those
on the other side are not. The inconsistent points have the lower m;-values and higher
7p-values. The picture in the m; — 7, plane is described in figure 3.4.

Finally, we take into account the constraints imposed by the ¢’- parameter. Ac-

cording to Gilman and Hagelin [63] ‘?' is, in the minimal standard model, given by:

d Im(C; ,C
¢ _ 4Im(CinCaa) 2,1 2.2) (3.23)
€ sin @,
where A is ~ 84.
As mentioned above, the latest experimental results imply:
£I
—-<12-1073 (3.24)
€
In our notation, (3.23) and (3.24) give:
8.4 32,3‘81,3‘8111 61,3 s 1.2 10—3 (3.25)

0.22

For every value of r, and m; we now have:

(i) An upper bound on 6, 3 from b-decay,

(ii) a lower bound on 8y 3 through € and

(iii) another upper bound through ¢'.

In figure 3.5 we present the situation for 7, = 1 psec, m; = 45 GeV. We see that the
¢ bound is far from agreement with the ¢/ bound. However we note that the situation
would have improved if the constant A would have been smaller and the bound on ‘?’
relaxed. Indeed, the theoretical uncertainties in the computation of A allow for A-values
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as small as 2 [64]. The experimental errors in the measurement of f{—' allow us to relax

the upper bound (3.25) and we do so by summing the experimental errors linearly (and

not quadratically):

!
€
|=-| < ~0.0046 + 0053 + .0024 = 3.1- 10 (3.26)

substituting in (3.23) A = 2 and the modified bound (3.26) on ]%I we get a weaker
bound on @y,3 which is described in figure 3.6. The allowed region (according to the
standard model) lies now in between the e-bound, the ¢-bound and b-decay bound.
Let us summarize: In order to find a set of parameters with which the standard
model becomes consistent with present experimental results one should:
(1) Use figure 3.4 in order to choose the allowed values for 7, and m;.
(2) For these values of 75, m; one should find the region in the 8, 3 — 6,3 space which
is allowed by the ¢, ¢ and b-decay bounds. In figure 3.7 we give the allowed region
corresponding to 7, = 1 psec and m; = 45 GeV.
The standard model will be “in trouble” if 7, and m; will be measured and found
to be in the “forbidden” region, or if the experimental bounds on R(d — u) and % will

become so strong that they will exclude every set of parameters. %

6 “Brand new” experimental results seem to indicate that the minimal standard
model is doing well: In the Tokyo conference [65] it was mentioned that the bound on
R(b — u) stated in [22] is too strong: New careful analysis of the CLEO-experiment
give: R(b — u) < .08. In addition, new measurements of 7, seem to indicate that this
quantity is somewhat smaller than 1 psec [66] .
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3.4 The Fritzsch Mass Matrices and the Minimal Standard Model

3.4.1 Introduction to the Fritzsch Mass Matrices [67-68]

In the late 70’s the relation:

B4 sin 0. (3.27)
M,

have attracted a lot of attention. Many proposals for the quark mass matrices have

arose, amongst them — the Fritzsch mass matrices. Fritzsch suggested that the quark

mass matrices are of the following form [67]:

0 a .
M= (a. b) (3.28;

where a and b are hierarchical, e.g.:

21<0(a) (3.29)

(o is the small parameter discussed in the first section of this chapter.) It is straight-

forward to show that if M™, M are of the form (3.28) then:

sinf, = |e‘4',/%‘- —,/%H (3.30)
L c

where ¢ is the relative phase between the a-parameter of M™* and the a-parameter of
M4, If we choose ¢ ~ % then we get the relation (3.27) to a very good approximation.
A few months after the publication of [67], Fritzsch has generalized his matrices for the
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three-generation case. Here we will give the generalization to N generations:

(0. )

a; 0 a2

M = ] _ ) b real and positive (3.31)

\ an_; b )

The parameters a;, b are "hierarchical”:

|| <0(a?) and |22 <O(a).
141

It is straight-forward to show that:

(1) The fermion masses are related to a;, b through:

b mpy a; &= /mimi (3.32)

(“~™ means equality up to corrections of order a?). Note that the mass spectrum of

(3.31) is hierarchical:
— < 0(a?) (3.33)

m‘+1

(2) The mixing angles of neighbouring generations are [69]:

d u

a? al
i1 =~ lm‘_i;_l - m|;+1| (3.34)
1} 1

where a}, b* are the parameters of M* and m} are its eigenvalues. a?, b? and m? are

similarly related to M?. It is useful to rewrite equation (3.34) in the following way:

Oiiv1 =~ |e* 4"\/ ¢ (3.35)
l+1 l+1
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where ¢; is the relative phase of a* and a¢. Note that equation (3.35) reduces for i = 1
to (3.30) .

One of the nice features of the Fritzsch mass matrices is that the effective matrices
of the low lying generations are also of the Fritzsch type and are very simply related to
the original matrix ® . The effective matrix for the first n generations (n < N) is:

(° - )
aiy 0O a2

az O

M(n generations) ~

eff

‘- 0 an—1
\ a._, m, ]

Another attractive feature of the Fritzsch matrices is that they seem to arise from an

interesting underlying dynamics:(i) The many zeros in the matrices presumably arise
from some symmetries (originally, Fritzsch suggested discrete symmetries). (ii) The
hermiticity of the matrices seems to be related to some symmetry (Fritzsch suggested
left-right symmetry. In Appendix C we comment on his suggestion). (iii) The masses of
the lower generations seem to be fed down from the mass of the highest generation in a
hierarchical way. Many authors have tried to suggest mechanisms which could produce

such feed-down (69, 70].

6 By the effective matrices for the n(< N) low lying generations we mean: n x n
matrices whose eigenvalues give the low lying spectrum and whose mixings are the
mixings of the low lying generations among themselves.
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Here we will not try to understand what is the possible underlying physics which may

give rise to Fritzsch mass matrices. We will only consider these matrices in the frame-

work of the minimal standard model.

3.4.2 The Fritzsch Mass Matrices and the Standard Model
In this subsection we discuss the following question: Is it possible that the low lying
physics consists of the minirnal standard model with Fritzsch mass matrices? In order
to see where problems may arise — consider the number of physical parameters in the
mass matrices: If M*, M4 are of the “Fritzsch-form”, then they have 2N (dimensionful)
mass parameters (|a%{, b%, [a¢[, %) and 2(N-1) (dimensionless) phase parameters (the
phases of a¥, a¥). We now show that only (N-1) of the phases are physical. Consider

the quark mass term in the Lagrangian

L = UM UQ + DOMDY + hec. (3.36)

U = {5} 5 D = {a, )

1=1 1=1
where 1 is a generation index and the index (°) indicates that the quark fields are in-
teraction eigenstates and not mass eigenstates (i.e. (u([lo)‘.,d(Lo)i) is an SU(2) doublet).
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We are clearly free to make the following redefinitions:

U(O) ., FU(O)

L(R) L(R)
(0) (0)
Diry — FDL(R)

Mu,d N FMu.,dF+
Where F is a diagonal unitary matrix
eigl
éifz

F = _ (3.37)

giin
Note that under these redefinitions the mass matrices keep their Fritzsch form. The
only change in fhese matrices is in the phases of a:-"d: The phase of a:-‘ 4 i changed by
—¢i- We can choose the ¢; such that all the af of the new M™® are real and positive.
We then have 2N mass parameters in M*, M? and (N-1) phase parameters which arise
from M? alone. Concluding, we find that, if the mass matrices are of the Fritzsch form,
they depend on 3N-1 physical parameters.

We now count the number of measurable parameters which M“ aﬁd M? should
provide: These are the 2N masses of the u; and d; quarks, the ﬂ%ﬂ mixing angles
and the .(E_:l)i(_N;z). physical phases of the generalized Cabibbo matrix. Altogether we
should have (N2 + 1) parameters.

For N = 1,2 the number of measurable parameters,(N2+1), is equal to the number

of the parameters of the Fritzsch mass matrices, 3N — 1. But for N > 3:

N241>3N -1
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and we therefore find that if the mass matrices are of the “Fritzsch” type then there
must be relations between measurable quantities. in particular, note that for the case
of three generations we have 10 measurable quantities but (assuming Fritzsch mass
matrices) only 8 of them are independent.

Consider now a minimal standard model with Fritzsch mass matrices. In the pre-
vious chapter we discussed the experimental constraints imposed on the mixing matrix
parameters and the quark masses. If the mass matrices are of the Fritzsch form we have
additional constraints. Is it possiblé to satisfy all these constraints simultaneously?

In order to answer this question we proceed in the following steps:
(a) We choose v;lues of 7, and m; that are “allowed” according to fig 3.4.
Our choice is: 7y = 1psec, Mt = 45gev. From 75 we extract the corresponding value of

82,3 (=0.065). We now have a set of eight parameters: The six quark masses

My = 40fev md = Trpev
m, = 1.5g.v m, = 150ps.v
mi = 45Gev mp = 4.8g.v

and two mixing angles
01,2 = 0,: - 0-22
02,3 = 065
(b) Assuming a Fritzsch form of the mass matrices we proceed to compute the last

two paraimeters namely, 0,3 and 6,,3. We denote the three-generation Fritzsch mass
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matrices by:

0 b" ct 0 b

0\
bd (3.38)

cd

We choose the convention in which all parameters of M* (a%, b%,c*) are real and positive

and denote: )
a? =ia,d|e"‘:’l

b =|bd|e""’

(3.39)

The eight parameters of M*, M? are related to the six quark masses and the two mixing

angles 8y 2, 02,3 through:

a% ~  /myme lag| = /Mam,
b¥ ~ /momy |bg] = \/mamy
c¥ =~ my c? ~ my (3.40)
1 |y - oo [
m
e — (3.41)
S2,3 & l\ / Ta _ e“ip’vﬂ
my my
From (3.41) we find:
R
cospy = e Z =0.042(1 + O(c?))
2/
= p; ~ £(87.6° £ 0.1°) (3.42)
m m 2
] + —t s
cosipg x T M 23— 0.94(1 + O(a?))
2,/ 2%, [ 2
b me
= o, & £21°15] (3.43)
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(In (3.42) , (3.43) we estimate: O(a?) < (3)? = 0.04.) In order to get 0; 3 and 6, 5 we
use results presented in a paper by Fritzsch in 1978 [68]. In this paper Fritzsch gives the
exact eigenstates e¥, e? of the mass matrices M*, M? (equation (3.38) ). In a certain

phase convention the Cabibbo mixing matrix is then given by:

Cij = (e}, ¢f) (3.44)
where (e, ;i) means hermitian product of the vectors e, ;i
sind; 3 is |Cy1,3| = |(e¥, e2)|. Substituting the Fritzsch formula for e¥, ed we get:
m + e"‘.Pl — e—l‘iﬂ:
me

my ' m my
bV b (3.45)
= T—i ﬂg + e—‘.pl ﬁe_ip;‘gz,a.
my V myp v me
(1% is defined through the second equality of (3.45) ).

Substituting in (3.45) the values of the quark masses and of ¢, 2 we find two solutions:
sinf; 3 = 0.0045(1 + O(a?)) or sinfy 3 = 0.0022(1 + O(a?))

The smaller solution (sin f; 3 = 0.0022) is excluded by the e-bound on #, 3 (see fig. 3.6).

In order to compute 61,3 we use the following phase:
C21C
phase ( 2,1¢3.3 )

(Note that this phase is independent of phase convention). It is straightforward to check

that in the Fritzsch convention:

C2,1C3,3 /
—= "% ) ~ ph 3.46
phase(ca,lcz’:i) phase ‘V mc ( )
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and in terms of our parameters (3.4) :

C21C33 —i6 51,252,3
h ] ] ~ t01,3 3 [}
p ase(——cs,102,a) = phase(e — —————51’3 ) (3.47)

We therefore find:

R S .
phase(c"ﬁ‘-° - —1—'2—s2ﬁ) ~ pha.se(, [T gier A /E) (3.48)
51,3 M M,

Substituting in (3.48) my, m., my, m,, 1,2, S2,3, 51,3 and p; we get:
b1,3=%33°T8. or +118°£3°

(c) Finally, we check whether the 0,3, 61,3 we have computed in step (b), through the
assumption of Fritzsch form of the mass matrices, are in the allowed range of the minimal
standard model. We therefore look at the allowed range corresponding to 7, = 1p,ec

and m; = 45q.v and check whether any of the points:
(01,3,61,8) = (4.5 & 0.2mitirad, £35°751.) (4.5 £ 0.2mitirad, £118° + 3°)

fall into this ra.nge..We first note that the standard model allows only for &, 3 in the range
0°-180°. We are therefore left with two possible points which may agree with both the
constraints on the minimal standard model and the constraints arising from the Fritzsch
mass matrices. In figure 3.8 we describe the two points and the range of 8, 3—6;,3 values
allowed for the standard model. We see that the point (8, 3,61,3) = (4.5milirad, 118°)
sits inside the allowed region.

Let us summarize: Assuming a Fritzsch form for the quark mass matrices we find
that #,,3 and 6, 3 are not independent parameters but are functions of the quark masses
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and the mixing angles #;,2 and 6 3. We showed that the #; 3 and 6,3 values correspond-
ing to m; = 45 GeV and 7, = 1 psec are getting values consistent with the minimal
standard model We therefore conclude that, (at present), a minimal standard model

with Fritzsch mass matrices is consistent with experiment.

3.5 Summary

We have proposed a new parametrization for the mixing matrix. Our parameters
have both a simple interpretation and a simple relation to measurable quantities. We
used the new parametrization for an analysis of the present status of the standard model.
Assuming that m; is in the range 20-80 GeV and using the experimental knowledge that
7p is hetween 1 and 2 psec we were able to determine the region in the m;— 7, plane which
agrees with the standard model. For every value of m; and 7, which agrees with the
standard model, we were then able to describe in the 8; 3 — 61,3 plane an allowed region.
This region includes the points which are consistent with the standard model according
to measurements of R(b — u) and the CP violating parameters ¢, ¢’. We note that
in previous literature one usually find only the first part of our analysis (namely, the
allowed region in 7, — m; space). This is because in the traditional Kobayashi-Maskawa
notation the second part of the analysis is difficult and the results are obscured by the
inconveunient choice of parameters.

We have also shown that the “Fritzsch-mass-matrices” are still consistent with the
minimal standard model (a similar analysis was independently carried out by Shin {71}.)
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We conclude that the parametrization proposed here is more convenient to use
than the traditional Kobayashi-Maskawa parametrization. Also, our parametrization is
generalizable in a straight-forward manner to N generations. If more generations will

be discovered we believe that this parametrization should become the standard one.

- 111 -



APPENDIX A

In this appendix we discuss the diagonlizaticn of quark mass matrices. We will first
give the general procedure and then specialize to the manifest-model and CCC-model

cases.

Diagonalization of Quark Mass Matrices — General Case

Let M be any mass matrix. In order to diagonalize it we will use the foliowing

mathematical theorem.

Theorem: There exist unitary matrices Uy, Ug such that:

(i) UMUZ is diagonal and positive definite.

(i) U diagonalizes MMt and Uy diagonalizes M+ M.

A corollary from this theorem is: The eigenmasses of M are the square roots of the
eigenvalues of MM+,

Note that the theorem and its corollary specify the masses in a unique way. How-
ever, the mixing matrices Uy, and Uy are no;: so clearly specified: If we chose an arbitrary
Uy that diagonalizes MM+ and an arbitrary Ug that diagonalizes M+ M then , usually,
U M U }'{' is not diagonal and not positive-definite. However, we will now introduce the
assumption that there are no two up (or two down) quarks with the same mass, i.e.,
the eigenvalues of MMt (and M+ M) are not degenerate. Under this assumption it is
possible to show that the unitary matrix that diagonalizes M M™* (or M M) is unique
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up to permutations and phases. In this last statement we mean the following: If Uy

and ﬁ[, are both diagonalizing M M *—then, there exist Py and Fy such that:

Up=FLPLUL (A1)

where:

Pr, is a matrix of permutations — it is a unitary matrix whose elements are 0 or
1. Note that Pr, permutes the rows of Uy.

Fr, is a matrix of phases — it is a diagonal unitary matrix. Note that F multiplies
every row of PLU by a phase. We now conclude that if U L and ffR are any two matrices

that diagonalize MM ™ and MM respectively — then U and Uy are given by:

Uy = FLP,UL
(A.2)
Ug = FrPrUr

We note that there are many pairs of Uz and Ug such that UM U; is diagonal
and positive definite. But, once we have a certain such pair (which we denote by Vi,

Vgr) all other pairs are given by:
UL =FPV,

Ur =FPVpg

where F is a matrix of phases and P a matrix of permutations.

We now turn to examine the mixing matrices in the specific cases of the manifest

and CCC models.
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Diagonalization in the manifest model

Consider first M*“. In the manifest model this matrix is hermitian, and thus there

exists a unitary matrix U ¥ such that [-]}“M “([7'}“)+ is diagonal. We therefore choose

u
R

o« (A.3)

rTU
L

Then, clearly U LM “((}5)+ is diagonal and real, but it is not necessarily positive defi-
nite, i.e. M* may have negative eigenvalues 7 . To correct for these possible negative
eigenvalues we multiply (.J,‘; by F“(£). F*(%) is a matrix of real phases (i.e., a diagonal
unitary matrix whose eigenvalues are 1 or -1). Then: U}M “((7,‘3)+F“(i) is diagonal

and positive definite, thus:

Ug = U
(A.4)
Ug = F*(£)U = F*(£)U}
Similarly, we get: ;
UL =Ug
(A.5)
U = FYx)08 = Fé(£)U}
Since Cp(ry = UE(R)(Ug(R))+ (A.4) and (A.5) imply:
Cr = F¥(£)CLFi(x) (A.6)

7 this was pointed up to us by G. Ecker.
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Diagonalization in the CCC Model

Consider first M¥, Choose I/ £ to be any unitary matrix that diagnalizes M*(M¥)™.

Choose now U to be (UE)*. Such a choice is possible in a CCC model because M* is

symmetric. Consider the matrix:
oM (Op)*

We claim that this matrix is diagonal (though it is not necessarily real). To prove our
" claim we make use of the following points:

(i) UpMe ((}}‘Q)-’-,is symmetric. This is because M* is symmetric and ((7,'{)+ = (ﬁ[‘,‘)t
(ii) ﬁ},‘ and U g are up to phases and permutations Uy and Ugr. This means that
UM U(I-J}‘é)+ has the following general form: In every row (and every column) there is

one and only one nonzero element. The absolute values of these elements are the masses

of the u-quarks.

Suppose now that M “(fJ I‘;)+ is not diagonal, i.e., there exist a nonzero element
outside the diagonal. Then, by (i) this element is accompanied by another element on
the other side of the diagona! and these two elements are equal. (ii} will then imply
that there are two equal masses in the spectrum. This is, of course, in contradiction
with our the assumption of non-degeneracy of the eigenmasses. Thus, we conclude that
TeM¥ (%) is indeed diagonal.

We now want to correct for the phases of the eigenvalues of T M®( -§)+: Let F be

a matrix of phases that does these corrections and let F% be a matrix of phases which

- 115 -



is the square root of F , then:
Pifruaqurfruyt AL
FiUiM*(Ug) F=

is diagonal and positive definite. Thus:

Uy = F10}
. (A7)
Ug = (F7) Ug=(F%) (Ug)) =(Up)"
Similarly we get:
Ug = (Ug) (A.8)
(A.7) and (A.8) imply:
Cr = CE (A.9)

We note that (A.9) holds only in a specific phase convention. To get Cp and Cg in

any other phase convention, we have to multiply both Cp and Cr by the same phase

matrices:
Cr — FiCLF;
(A.10)
Cr — F\CrF;

It is easy to derive from (A.9) and (A.10) the following relation for Cp and Cg in the

new phase convention:

Cr = F*C}(F?Y (A.11)

where F* = (F,)? and F¢ = (F;)°.
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APPENDIX B

We will explain here why the Z°4X and yyXvertices are expected to be related to
each other by a factor tan §w (or, a factor of the same order of magnitude).
Let us denote:

Jem = J(o) + jY (Bl)

where 7(9) is the generating current of the neutral component of the SU(2) L symmetry
and Jy is the generating current of weak hypercharge.

The Z°4X and 44X vertices arise from loop diagrams like:
(o]

£ Y

Y Y

We assume that only the j(°) part of the electromagnetic current is relevant to
these diagrams. Under this simplifying assumption we find that the ~ coupling to the

particles in the loop is given by ej(©), while the Z coupling is:

aw +(0) _ 12 +(0)y — 1 -(0) B.2
cos w (J sin” fwJ ) tan w € ( )

i.e., we find that the yyX vertex is identical to the Z~X vertex, except for a tanfw

factor.
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APPENDIX C

Fritzsch suggested Left -Right Symmetry as the underlying physics which is re-
sponsible for the hermiticity of his matrices. As we discuss in Chapter 2 of the the-
sis, we i)refer those versions of left-right symmetric theories which produce symmet-
ric (and not hermitian) mass matrices. In this appendix we show that, as far as the

low-energy standard-model is concerned — the hermitian and symmetric Fritzsch ma-

trices are equivalent.

The mass matrices M*, M¢ are defined through:

Lmass = u(z?)M"u.g)) + d(Lo)Mddg)) + h.c.

In the standard model the right-handed fermions are singlets of SU(2) . We are there-
fore free to make the following transformations:

ug)) — U"usg)

4 — gl

(C.1)
Mu. —_ MuUu+
M — Mepdt

where U", U? are any unitary matrices. Consider now the mass matrices of Fritzsch:

u d
ay a,
» di
au.* .., a
MU =™ Mé=| ™ (C.2)
. d
. an_1 ) a'Nd—l
u u uw [
ay_, b ay_y b
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We will show that under transformations of the type (C.1) the hermitian matrices (C.2)

become symmetric. Choose:

u iEv g ay_g GN_; GN_
U* =e'* diag(...... s o 1) (C.3)
@N—2 @N-1 %n-1
d d d
. a%_, a%y_, a%_
U = € diag(....... R R S ) (C.4)

where &%, ¢4 are arbitrary phases. Transforming the hermitian Fritzsch mass matrices
(C.2) according to the rule (C.1) with the U’s of(C.3), (C.4) we get symmetric mass

matrices.
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Tahle 1:

Table 2:

TABLES

Comparison of the manifest and CCC models

predicted number of Z°~ events per year in pp colliders, assuming an integrated
luminosity of 1037 ¢cm™2, The distribution functions used are of Baier et.al.(13)
with A=.4 GeV. "The cross sections are integrated up to p;’.=90 GeV. Composite
model predictions include standard model contributions and the g+¢g — Z + v
contribution. The latter are computed using the mode] mentioned in the text,
assuming < Q2Q > = 1. For p;" >10 GeV the enhancement factors of the
composite modnl are 20 (at 540 GeV) and 170 (at 2000 GeV). For A = 0.1, the

corresponding enhancement factors are 7 and 40 (respectively).
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Table 1

Manifest cccC
cce, CCC;4
Symmetry of P P,C,CP C
the Lagrangian
Assumption < ¢ > conserves < ¢ > breaks
on < ¢ > P P no assumption
(unreasonable) (reasonable)
Symmetry manifested

in the quark P C

mass matrices

Relation between

Cr and Cg

Cr = F¥(£)CLF3(%)

Cr = F*C}(F%)*
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Table 2

c.m. energy

Standard Model

Composite-Z° Model

pr>5GeV | pl >10GeV || pl >5GeV | pF > 10 GeV
540 GeV 33 15 390 300
2000 GeV 160 90 17000 15000
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Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

1.1

1.2

1.3

1.4

1.5

1.6

.21

2.2

23

FIGURE CAPTIONS
Lowest order diagrams contributing to X — K mixing in the minimal standard
model. u;,u; stand (in the 2-generation case) for u,c.
Unphysical Higgs contribution to M;2 in the standard model.
Contribution of W-bosons to K ~ K mixing in a left-right symmetric model.
Only diagrams which are lowest order in c (the fine structure constant) and zero

2

or first order in § (= (: W;)) ) are included.
Unphysical Higgs contribution to M2 in left-right symmetric model.
Neutral physical Higgs contribution to M.
Charged physical Higgs contribution to M.
Effective Z°V°V°V° vertex (V° = < or g) in the standard model (2.1(a)) and
in a composite model (2.1(b)).
Subprocesses contributing to p + p — Z° + 7y + any. In the standard model, the
lowest order contributions correspond to § + ¢ —+ Z° + -y (2.2(a);2.2(b)). In a
coraposite model additional effective terms appear (2.2(¢c);2.2(d)). Theg+ g —
Z° +y subprocess (figure 2.2(d)) is likely to dominate the large pr cross-section.
The differential cross section for p + p — Z° + v + any due to the standard
model diagrams and to the g +g — Z° -+ subprocess in a composite-Z° model.
We use the cutoff M %,7 >11 Mg- The distribution functions are those of Baier
et al.(13) with A = 0.4. The composite-Z° contributions were computed using
tie model mentioned in the text, assuming < Q2Q > = 1. The c.m. energies

are: 54C GeV (2.3a) and 2000 GeV (2.3b).
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.1

3.2

3.3

3.4

3.5

ig. 3.6

3.7

3.8

b-decay (upper) bound and ¢-line for 7s=1.5 psec, m;=45 GeV and B=0.4.
Clearly, non of the points of the ¢-line obeys the bound on 8, 3 imposed by b-
decay.

b-decay bound and ¢-lines for 75=1.5 psec and various valuea of m; and B. We
see that as m; and B increase, the e-line “goes down”.

b-decay bound and ¢-lines for 7,=1 psec and various values of m; and B. Com-
paring this figure with its former we see that as 73 increases, the e-line “goes
down”.

Allowed and forbidden regions in 1,—m; plane, according to the standard model.
b-decay (upper) bound, € (lower) bound and €’ (upper) bound for 7,=1 psec and
m;=45 GeV. Clearly the ¢ bound does not agree with the ¢ bound.

b-decay bound, € bound and relaxed ¢/ bounds. The bound on € is relaxed by
summing the experimental errors in the measurements of -‘é linearly (and not
quadratically). As we see in the figure the €’ is further relaxed by taking A
value a4 small as possible. The relaxed €’ bound corresponding to A = 2 is com-
patible with the € bound.

The shaded area is the allowed region in ¢, 3-61,3 plane for 7,=1 psec and
m;=45 GeV, as determined by the b-decay bound, the e-bound and the relaxed
¢/-bound.

The two “Fritzsch”-points and the allowed region in 84 3-61 3 space for 7=1 psec

and m;=45 GeV.
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