
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports

Recurrent quantum embedding
neural network and its application
in vulnerability detection
Zhihui Song 1,3, Xin Zhou 1,3, Jinchen Xu 1,2, Xiaodong Ding 1 & Zheng Shan 1,2*

In recent years, deep learning has been widely used in vulnerability detection with remarkable
results. These studies often apply natural language processing (NLP) technologies due to the natural
similarity between code and language. Since NLP usually consumes a lot of computing resources,
its combination with quantum computing is becoming a valuable research direction. In this paper,
we present a Recurrent Quantum Embedding Neural Network (RQENN) for vulnerability detection.
It aims to reduce the memory consumption of classical models for vulnerability detection tasks and
improve the performance of quantum natural language processing (QNLP) methods. We show that
the performance of RQENN achieves the above goals. Compared with the classic model, the space
complexity of each stage of its execution is exponentially reduced, and the number of parameters
used and the number of bits consumed are significantly reduced. Compared with other QNLP
methods, RQENN uses fewer qubit resources and achieves a 15.7% higher accuracy in vulnerability
detection.

There have been many studies using NLP technology to deal with programming languages1–3. These methods
have been applied to the field of cyber security4–7 advancing the development of automated systems, including
vulnerability detection systems based on deep learning8–11. The continuous development of NLP technology has
led to significant improvements in these applications, but also to a massive increase in model complexity (e.g.,
the number of parameters in GPT models has reached the order of hundreds of billions12,13). Training such a
model requires huge memory resources and time costs, which has become one of the bottlenecks in classical
NLP technology. Such problems also plague applications such as vulnerability detection, as strong performance
often means huge costs for complex models with extensive training. Therefore, one desire to find a more efficient
computing method to optimize models and reduce costs14.

Quantum computing is a computing method with great potential. In quantum computing, qubits are able
to represent a superposition of exponentially multiple states simultaneously and allow simultaneous operations
on the superposition states. Therefore, it has more powerful information storage capacities and allows perform-
ing computations with less computational complexity compared to classical computing15–17. So far, there have
been many studies on quantum neural networks (QNN). The so-called quantum neural network is a neural
network model based on quantum computing that learns by executing a circuit composed of quantum unitary
gates containing trainable parameters and optimizing the parameters18–20. It inherits the properties of quantum
computing, including superposition, interference and entanglement of information carried by qubits. QNN is
expected to take advantage of quantum computing to improve the performance of neural networks and reduce
costs. This is because it can generate inter-variable correlations that cannot be represented by classical computing,
achieve significantly higher effective dimensions and fit data faster on exponentially higher feature spaces21–23.
Therefore, quantum neural networks are expected to solve the above problems.

However, it is difficult to combine QNN with NLP technology and apply it to vulnerability detection. Because
simple combinatorial approaches of text embedding and context-dependent learning migrated from classical NLP
techniques do not work in QNN. For example, QRNN24 can learn sequential data (such as sequences of digits),
but it is unable to handle natural language. To address this difficulty, the Categorical Distributional Compositional
(DisCoCat) model25 for natural language has been applied to QNN26, which has become the common theoretical
framework for almost all QNLP methods27 However, such methods consume a large amount of qubit resources
and their performance on specific tasks still needs to be improved. Therefore, in this paper, we aim to construct
a QNN model for vulnerability detection that (a) consumes significantly less memory than classical neural
networks and (b) perform better and consume fewer quantum resources compared to existing QNLP methods.

OPEN

1Information Engineering University, Zhengzhou 450001, China. 2Songshan Laboratory, Zhengzhou 450001,
China. 3These authors contributed equally: Zhihui Song and Xin Zhou. *email: shanzhengzz@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-63021-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

To accomplish this goal, in this work, we propose a trainable encoding method based on parameterized
binary index. Using this method, each token of the code sequence is transformed into a small segment of train-
able quantum embedding circuit to obtain an effective quantum word embedding. This quantum embedding
circuit is used to form a recurrent cell in combination with the quantum weight circuit. And it is successively
applied to the iterative inputs of the network to capture the contextual dependencies in the code. On this basis,
we construct a Recurrent Quantum Embedding Neural Network (RQENN) model for vulnerability detection.

Simulation results and analysis on the vulnerability detection tasks show that compared with the classic model,
the space complexity of each stage of RQENN execution is exponentially reduced, the number of parameters
used is only 0.21% of the classic RNN, and the number of bits consumed is also significantly reduced. Compared
with other QNLP methods, RQENN uses fewer qubit resources, runs fewer quantum circuits, performs fewer
measurement operations, and achieves 15.7% higher accuracy in vulnerability detection. The results obtained
are the state-of-the-art classification performance among reported QNLP methods.

In general, the contributions of this work are as follows:

1.	 We apply QNN to vulnerability detection, expanding the new way of combining quantum computing with
cyber security.

2.	 We propose a trainable encoding method based on parameterized binary index, which can effectively extract
quantum word embeddings.

3.	 We propose the RQENN model that can be used to process textual data, which opens up a new direction in
QNLP technology different from the DisCoCat diagram model.

4.	 RQENN reduces the memory consumption of classical models; it consumes fewer qubit resources and has
higher accuracy than other QNLP methods.

This paper is organized as follows. In the “Background” section, we introduce the vulnerability detection
and QNLP technology. In the “Methods” section, we show the trainable encoding method, the RQENN cell, the
implementation of the RQENN classification model, and the task flow of vulnerability detection. In the “Results”
section, we show simulation results and analysis on vulnerability detection task using RQENN. Finally, in the
“Discussion” section, we summarize the paper and look forward to further work.

Background
Vulnerability detection
Software vulnerabilities pose a serious threat to network security. Traditional vulnerability detection methods
often rely on static analysis (e.g., vulnerability rules, symbolic execution) or dynamic analysis (e.g., fuzzing
test, taint analysis) techniques. However, these methods have certain limitations28. Static analysis methods are
often limited by the complexity of the code and have many false positives and false negatives. Dynamic analysis
methods consume a lot of time due to the running of the program and are sensitive to test data. Therefore, they
are difficult to meet the current complex and changing software security requirements.

In recent years, the excellent performance of deep learning on NLP tasks has inspired researchers to use
neural networks to build automated vulnerability detection systems and achieved remarkable results. Vulner-
ability detection methods based on neural networks aim to extract high-dimensional features of the code through
neural networks to make a judgment on the existence of vulnerabilities at the level of code slices, functions,
or statements. These studies extract effective abstractions from raw code data by processing code as text29,30,
extracting vulnerability function/API-related code slices (e.g., code gadgets)31–33, and extracting graph structural
information such as PDG and AST of the code11,34–36 and other methods. They are converted into vectors for
input to the neural network by further preprocessing. Similar to traditional NLP tasks, vulnerability detection
also requires neural networks to be able to memorize sequential and semantic information about the code,
because the context information of the code often contains the conditions for triggering the vulnerability. As a
result, CNNs, RNNs, and some GNNs are frequently used28,37,38, and some large language models1,39,40 migrated
to code also come into play.

As a clear example, ref.30 implements the first deep learning-based vulnerability detection system, propos-
ing a code intermediate representation "code gadget". A code gadget is a collection of code statements that are
semantically related to some manually defined vulnerability characteristics in a program (e.g., an API call). The
code gadget extracted from source code is regarded as text, and each token is encoded into a word vector through
word embedding then input into BLSTM network to capture the sequence information of the code. Eventually
the trained model will make a detection of whether the code contains vulnerabilities.

QNLP technology
In recent years, the size of classical NLP models has been increasing, with neural networks reaching even hun-
dreds of billions of parameters12,13. The strong performance of classical NLP models often means complex models
and huge memory consumption, and there seems to be an irreconcilable contradiction between model perfor-
mance and memory consumption, which hinders their further application in vulnerability detection. The reason
for the huge memory consumption of these models is that these models suffer from dimensionality catastrophe
when dealing with high-dimensional, complex data. When the dimensionality of the data increases, the required
computational resources and storage space increase dramatically. At the same time, a large number of param-
eters of the model are involved in the forward propagation, and the calculated hidden layer variables continue
to accumulate, resulting in rapid memory consumption.

In order to reduce the computing cost of current NLP methods, some studies combine QNN with NLP to
take advantage of the huge benefits of quantum computing in information storage and parallel acceleration,

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

which is called quantum natural language processing (QNLP)26,41–43. Reference26 encodes words and phrases
into quantum states and processes based on the DisCoCat model and implements it using variational quantum
circuits (VQC). The core of the approach is to consider DisCoCat as a tensor network model of natural language
meanings, which can be represented as string diagrams and further transformed into quantum circuits. This
method has been proven to have certain advantages in theory25,41, so the DisCoCat model became a common
theoretical framework for almost all QNLP methods. But it has only been tested on very small datasets43–45 and
has not yet been applied to real-world tasks. In addition, some QNNs for processing sequence data have been
proposed, such as RQNN24. However, they cannot be useful for specific tasks related to text or language, because
QNN is unable to obtain quantum word embeddings from textual information as efficiently as classical models
using a combination of one-hot and word embedding methods. There are also methods based on the classical
network structure (e.g., QLSTM45–47), which perform NLP tasks by replacing weight parameters with VQCs,
and this hybrid quantum-classical network structure is also considered as a QNLP model in a broader sense. The
proposed methods have promoted the development of QNLP, but they are still far from practical application. The
results on small tests27 show that the exploration of QNLP technology is still full of challenges.

Methods
In this section, we first introduce the composition and principles of the important components of RQENN
including the trainable encoding method based on parameterized binary index and recurrent cell. Then we
introduce the RQENN-based classification model. Finally, we present the task flow of applying RQENN clas-
sification model to vulnerability detection.

Trainable encoding method
Classical neural network models for processing NLP tasks first need to tokenize the text and build a word dic-
tionary, according to which the text is converted into a digital index sequence of words. Each digital index cor-
responds to a one-hot vector, which are transformed into dense vectors by word embedding methods involved
in the network training to obtain a more accurate vector representation. However, similar methods migrated
to QNN do not work. Specifically, in the classical model, the one-hot vectors are sparse and orthogonal, which
means that when word embedding is performed, each word gets only some of the weights from the embedding
weight matrix W as the representation vector. This process can be viewed as using the one-hot vector as the key
to query the corresponding value in the weight map W , as shown in Fig. 1a. Thus, in the case of random ini-
tialization of weights, the initial representation vectors of all words are uncorrelated, and they establish lexical
connections as the training process proceeds. However, in the quantum model, due to the properties of quantum
superposition and entanglement, the quantum state obtained from encoded words (e.g., |ψ1� in Fig. 1b) is difficult
to be sparse and orthogonal as the classical one-hot vectors. This implies that the initially encoded quantum
state of each word has some kind of connection, and the use of this quantum state as the "key" inevitably leads
to the "value" obtained from the query being related to all the elements in the unitary matrix, which contains
various non-semantic connections. The use of this quantum state as the "key" inevitably leads to a query that
yields a "value" that is related to all the elements of the Missy’s orthogonal weight matrix, and the results obtained
contain various non-semantic connections. This prevents QNN from learning the semantics of words through
the quantum embedding method.

To address this problem, we propose a trainable encoding method based on parameterized binary index to
encode code tokens as quantum state data and efficiently learn the semantics of the tokens. The specific steps
are as follows:

Step I: Tokenize source code into tokens to create a dictionary and then tokens are mapped to numeric
indexes.

Step II: Convert the numeric indexes from decimal to binary representation. For a dictionary containing N
words, an index is represented by an n = ⌈log2N⌉ bits binary numbers.

Step III: Replace "0" and "1" in the binary number indexes with the trainable parameters " θ0 " and " θ1 ", forming
parameterized binary indexes.

Step IV: Encode parameterized binary index using n = ⌈log2N⌉ qubits. Each bit of the input is encoded to the
corresponding qubit through an Ry rotation gate.

Figure 1.   (a) The process of token ’NULL’ being encoded into a quantum circuit. The |ψ1� obtained after
rotation input layer is treated as a quantum one-hot vector. It further applies QEmbedding to obtain |ψ2�
which can be treated as a quantum dense vector used as token representation. (b) Classical word embedding
computation process. The one-hot vector is treated as a key to query value in the map of weights.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

Step V: Add a trainable layer containing parameters to the quantum circuit as a quantum embedding (QEm-
bedding) implementation.

The Ry rotation input layer and the QEmbedding layer in the above steps together form the trainable encod-
ing layer.

As a simple example, for the following source code training set:

we can build such a dictionary to map all code tokens to numeric indexes:

These numeric indexes are further converted to parameterized binary indexes:

Next, we determine the angles of the Ry gates and construct the quantum circuit based on the parameter-
ized binary index of the word to be encoded. Taking encoding token ’NULL’ as an example, as shown in Fig. 1b,
its corresponding indexes θ1θ0 are encoded bit-by-bit to a circuit with 2 qubits as the Ry gates’ angles. Then a
QEmbedding layer is further added to jointly form the quantum trainable encoding circuits.

As Eqs. (1–3) shown below. |ψ0� is the initial state. The quantum circuit encodes the index θ1θ0 into the
quantum state |ψ1� by rotation input layer. It is a 2n-dimensional vector. It has N different cases, corresponding
to N possible combinations of the input rotation layer parameters. The parameters " θ0 " and " θ1 " are involved in
the training process of QNN to eliminate possible inherent connections, so that |ψ1� has the same function as
the classic one-hot vector. The one-hot vector is a form transformed by symbols that is easy to use by the classic
network model, and the obtained |ψ1� is a form transformed by symbols that is easy to use by QNN. This is the
unique aspect of trainable encoding based on parameterized binary index and the key to improving model per-
formance. Next, |ψ1� learns lexical connections between encoded words through a trainable QEmbedding layer
Uqe(θqe) , which is similar to the classic word embedding principle. The obtained quantum state |ψ2� is described
in Eq. (3), where Uqe(θqe) = [u

†
0 u

†
1 u

†
2 u

†
3
]
† . At this point, the 2n-dimensional dense vectors corresponding to

|ψ2� are the representations of the words, except that the words are converted from indexes to quantum-friendly
quantum state representations instead of classical vector representations.

Compared with the trainable encoding method based on parameterized binary index, if the binary index
obtained in Step II is used for encoding, the fixed angle of the rotation gate (0 or 1) will result in constant non-
lexical connections between |ψ1� of different words. These connections are brought into training process of the
quantum word embedding layer, possibly affecting the normal learning of lexical connections of the code tokens.
In fact, it can also make the N quantum states |ψ1� orthogonal to each other like classical one-hot vectors by
choosing a suitable fixed angle of the rotation gate, this method is called the "orthogonal method". It determines
the specific angles " θ0 " and " θ1 " to be used for replacing the binary "0" and "1" before training. By respectively
applying N different rotation layers with angles " θ0 " and " θ1 " on N independent quantum circuits, we can obtain
N quantum states. We use the gradient descent algorithm to minimize the sum of the absolute values of the
two-by-two inner products of these N quantum states under random initialization of the quantum initial states.
This approach references the property of mutual orthogonality between one-hot vectors, which ultimately yields
θ0 = −π

2
 and θ1 = π

2
 , and encoding using this value will make |ψ1� as orthogonal as possible for different tokens.

But there are also differences between QEmbedding and classical embedding. Each element of the weight matrix
in classical embedding is a trainable parameter, while QEmbedding only controls the changes of the matrix
through a small number of parameter-containing unitary gates. It cannot be proved that the always orthogonal
|ψ1� is more helpful for learning |ψ2� . Therefore, in this paper, we add " θ0 " and " θ1 " as trainable parameters to
the learning process of RQENN, which is the reason for using parameterized binary indexes in Step III. We will
show in the Results section the performance of the model when using trainable encoding based on binary index,
orthogonality method, and parameterized binary index as data inputs, further demonstrating the effectiveness
of the proposed methods.

RQENN cell
The trainable encoding method defined in the above section is a crucial component in the construction of our
recurrent quantum embedding neural network cell. Much like classical RNNs, we define such a cell that will be
successively applied to the input presented to the network for capturing contextual connections in the code. More
specifically, the cell is comprised of a trainable encoding stage and a working stage, which are used to learn the
semantics of input tokens and memorize contextual dependencies, respectively. This cell is applied iteratively in

[“VAR1 = NULL”, “VAR2 = NULL”, “VAR1 = VAR2”],

{‘ = ’ : 0, ‘VAR1’ : 1, ‘NULL’ : 2, ‘VAR2’ : 3}.

{‘ = ’ : θ0θ0, ‘VAR1’ : θ0θ1, ‘NULL’ : θ1θ0, ‘VAR2’ : θ1θ1}.

(1)|ψ0� = [ε0 ε1 ε2 ε3]
†

(2)|ψ1 � =






Ry(θ0)⊗ Ry(θ0)|ψ0 �, index = θ0θ0
Ry(θ0)⊗ Ry(θ1)|ψ0 �, index = θ0θ1
Ry(θ1)⊗ Ry(θ0)|ψ0 �, index = θ1θ0
Ry(θ1)⊗ Ry(θ1)|ψ0 �, index = θ1θ1

(3)|ψ2� = Uqe(θqe)|ψ1� = [u
†
0|ψ1� u

†
1|ψ1� u

†
2|ψ1� u

†
3|ψ1�]

†

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

RQENN, and its internal state is passed on to the next iteration of the network. RQENN cells at all time steps
share the same trainable parameters.

Figure 2 illustrates the RQENN cell, which learns the quantum word embedding of the current time step
input xt = (xt0 , ..., xtn) in the encoding stage and combines it with the cell input hidden state |ψt−1� in the work
stage to learn the mapping relation from this combined state to the cell output hidden state |ψt� . The equation
for this process is as follow:

where Uin , Uqe and Uqnn denote the unitary matrix of the rotation input layer, QEmbedding layer and quantum
weight (QWeight) layer, respectively.

The encoding stage uses the trainable encoding method described above. In the rotation input layer, an Ry
gate is applied on the ith qubit to rotate the angle to the ith value of the parameterized binary index. In the QEm-
bedding layer, a m layer ansatz composed of alternate rotation layer and entanglement layer is used to learn the
quantum word embedding representation. Each layer of the ansatz consists of 2 rotation layers and 2 entangle-
ment layers consisting of staggered entanglements between adjacent qubits. In the working stage, a n layer one-
dimensional alternating layered Hardware Efficient Ansatz48,49 was used to build the QWeight layer. This ansatz
is implemented by sequentially applying a two-qubit unitary to adjacent qubits. Each two-qubit unitary entangles
the last qubit obtained from a previous unitary with the next one. The unique recurrent circuit cell architecture
with scalable layer in multi-stage is the key to improving model performance. This two-qubit unitary consists
of two Ry gates and a Cnot gate that have been proven effective50, and its unitary transformation is described
by Eq. (5). We show below the specific implementations of the different network layers by equations. Equation
(6) shows the unitary transformation of the rotation input layer, where t ∈ {1, ...,T} represents the time step. A
token is input into the network at each time step, and T is set as the total code length. Equations (7, 8) and Eq.
(9) are the unitary transformations of the QEmbedding layer and QWeight layer respectively.

Classification model
We use RQENN cell to build classifiers applied to vulnerability detection. Similar to RNN, RQENN initializes the
hidden state at t = 0 by adding a layer of Hadamard gates initially, and then the RQENN cell is iteratively applied
to a sequence of the input source code x1, x2, ..., xT as shown in Fig. 3 to capture the contextual connections in

(4)|ψt� = UqnnUqeUin(xt)|ψt−1�

(5)U
[2]
l,i

(
θ l,i

)
= Cnoti,i+1⊗

1
j=0Ryi+j

(
θl,i,j

)
, l ∈ {0,1}andi ∈ {0, . . . , n− 2}

(6)Uin(xt) = ⊗n
i=0

(
Ryi

(
xti
))
, xti ∈ {θ0, θ1}andt ∈ {1, ...,T}

(7)Uqel (θqel) =

⌊(n−1)/2⌋∏

i=1

Cnot2i−1,2i⊗
n−1
i=0 Ryi(θl,n+i)

⌊n/2⌋∏

i=1

Cnot2i−2,2i−1⊗
n−1
i=0 Ryi(θl,i)

(8)Uqe

(
θqe

)
= Uqe1

(
θqe1

)
Uqe0

(
θqe0

)

(9)Uqnn

(
θqnn

)
= U

[2]
1,n−2

(
θ1,n−2

)
. . .U

[2]
1,0

(
θ1,0

)
U

[2]
0,n−2

(
θ0,n−2

)
. . .U

[2]
0,0

(
θ0,0

)

Figure 2.   Recurrent quantum embedding neural network cell. It consists of a trainable encoding stage and a
QNN work stage, where the principle of the encoding stage is as described in the above section. It transforms
the internal state in into the state out at each time step and iterates this process.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

the source code. The entire model also includes measuring the expectation value of a single qubit for the last two
qubits. This expectation value is described as Eq. (10):

where UQC(X ,�) = Ucell(x1,�)...Ucell(xT ,�) is the a quantum circuit composed of all cells, and
Ucell(xt ,�) = Uqnn(θqnn)Uqe(θqe)Uin(xt , θ in) . � is the parameter set of the cell, and X = [x1, . . . , xT] is the
input index sequence. M̂i is the operator used to calculate the expectation of the ith qubit, i.e.

The two calculated expectation values are used to determine the data category by comparing the numerical
magnitudes, and we use them as logits to calculate the cross-entropy loss function for classification.

Task flow
The goal of our vulnerability detection is to detect whether a program’s source code may contain vulnerabilities
using the RQENN classifier. In this paper, we perform the vulnerability detection task using the pipeline shown
in Fig. 4, which consists of the following three steps:

Step I: Generating normalized code gadgets and labels from source code. First, we extract the data dependency
graph (DDG) of the code using the open source code analysis tool Joern. Next, we extract labeled code gadgets
based on manually defined vulnerability features. Specifically, we locate the node containing the vulnerable
library function/API call in the extracted DDG, such as the "strcat" function shown in left side of Fig.4, and slice
the code into small pieces according to the connection to the node. The types of API calls are categorized into
forward (e.g., the "recv" function) and backward API calls (e.g., the "strcat" function here) according to whether
or not they take external input from a socket, and forward slices and backward slices are generated accordingly.
The forward slices obtain the set of statements of the nodes in the DDG that are recursively pointed forward from
the API node, and the backward slices obtain the set of statements of the nodes in the DDG that are recursively
pointed to the API node. These slices are code gadgets, which are labeled ’0’ or ’1’ depending on whether they
contain vulnerabilities or not. In the next step we normalized the code gadget. The processing methods include

(10)Ei(X ,�) = �0⊗n|H†⊗nU†
QC(X ,�)M̂iUQC(X ,�)H⊗n|0⊗n�, i ∈ {n− 1, n− 2}

(11)M̂i =

{
I ⊗ I ⊗ ...⊗ σz ⊗ I , i = n− 2

I ⊗ I ⊗ ...⊗ I ⊗ σz , i = n− 1

Figure 3.   RQENN classifier. The model is built by iteratively applying the same RQENN cell to the input code
token sequence. Measurements are performed on the last two qubits separately to obtain the expectation values
as classification logits.

Figure 4.   Vulnerability detection task flow. We extract normalized labeled code gadgets from the source code
as training data and then generate parameterized binary indexes from them, which are fed into the RQENN
classifier. After training, the model can detect the presence of vulnerabilities in the source code.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

removing comments and strings, normalizing user-defined variable names (’VAR1’ etc.) and function names
(’FUN1’ etc.). Finally, the normalized labeled code gadget is obtained.

Step II: The normalized labeled code gadgets are treated as text data from which parameterized binary
index sequences are generated. First, we preprocess the data set, clean the original text, remove punctuation
marks and non-ascii characters, etc. Then we split and pad the preprocessed text and build a dictionary, which
is converted into a parameterized binary index dictionary according to the method mentioned before. Finally,
the token sequences after tokenization are converted into parameterized binary index sequences according to
the dictionary.

Step III: Training and evaluating RQENN Models. We input the sequence of parameterized binary indexes
into the RQENN model in order, execute the quantum circuit on the simulator or a real machine, and complete
the training and validation of the RQENN model according to the quantum circuit learning framework18. The
model can detect the presence of vulnerabilities in the source code.

Results
Dataset description
There is a public dataset we use for vulnerability detection. This dataset is collected from the NVD and SARD
vulnerability repositories and provided by Li et al.31. It contains C/C++ source codes containing two types of
vulnerabilities, buffer overflow and resource management vulnerabilities, as well as source codes that does not
contain vulnerabilities. It is used to evaluate the ability of vulnerability detection tools for detecting the presence
of vulnerabilities in code. We generated code gadgets from this dataset, and independently selected 1000 data
respectively in six intervals ranging from 40 to 100, with the interval length being 10.The number of different
categories of data is balanced for each interval. They are used to evaluate the performance of RQENN. Where
the average tokens length and maximum length of all 5000 data are 64 and 90 respectively. The number of data
with different labels in each interval is balanced. They are used to evaluate the performance of RQENN. Among
them, the average token length and maximum length of all 5000 data are 69 and 100 respectively.

Simulation setup
Our simulations use mindspore as the neural network framework in the Ubuntu environment, and use mind-
quantum to simulate quantum circuits. All implementations are based on Python language.

We use a fivefold cross-validation method to partition the dataset and test the performance of the model.
The size of the dictionary is set to 128, so we use 7 qubits to construct the circuit of RQENN. The time step T is
set to the longest length of the token sequence in the selected interval, and the token sequences are padded to
the uniform length to support batch processing. We set the training batch size to 64 and the maximum epoch to
10. We use the cross-entropy loss function and the Adam optimizer with a learning rate of 0.01 for training. We
use accuracy as the metric to evaluate the model performance. All simulations are performed on a server with
an 8-core 3.60 GHz Intel(R) Core(TM) i7-7820X CPU and TITAN RTX GPU.

Research questions and results
Our simulations are designed to study the following Research Questions (RQ):

RQ1 How does the composition of RQENN affect the model’s performance in vulnerability detection tasks?

We conducted two ablation experiments on the full dataset using a fivefold cross-validation approach to
explore the effect of the composition of RQENN on the model performance, with T = 100 in both simulations.
In the first simulation, we conduct an ablation experiment for the number of network layers. We test the effect
of using different numbers of QEmbedding and QWeight layers on the performance of the RQENN model in
the vulnerability detection task, respectively. Figure 5 shows a heatmap of the median of the best test accuracy
for models using m QEmbedding layers and n QWeight layers in the five-fold cross-validation of vulnerability
detection task.

The simulation results show that the best median test accuracy of the model tends to increase in general as m
and n increase. When m = 4 and n = 4 , the best median test accuracy of the model reaches the highest 87.4%. In
some cases, even if the number of layers increases, the accuracy decreases. For example, the best median accuracy
of RQENN with m = 6 and n = 6 is lower than that of RQENN with m = 3 and n = 3 . This suggests that the
reason that affects the performance of the model is not only that models with different numbers of layers have
different numbers of trainable parameters, but also that different numbers of QEmbedding and QWeight layers
themselves have different representational capabilities, which directly affect the size of the solution space of the
model, thus leading to different best accuracies.

In the second simulation, we perform ablation experiment for the encoding method. We train the model
using original binary index data, data generated by the orthogonality method, and parameterized binary index
data inputs, respectively, to study the improvement of RQENN ( m = 4 and n = 4 ) by using trainable encoding
method. where the orthogonality method fixes the parameters of the parameterized binary index to θ0 = −π

2

and θ1 = π
2

 . We plot boxplots of the best test accuracy in five-fold cross-validation for models using different
data inputs in Fig. 6.

The simulation results show that the median of best test accuracy of the model using the orthogonal method
is 77.8%, which is 2.4% higher than the 80.2% of the model using binary index. This shows that using the fixed
angles for rotation gates obtained by the orthogonality method ( θ0 = −π

2
 and θ1 = π

2
 .) instead of the angles

( θ0 = 0 and θ1 = 1 ) from the original data reduces the effect of the constant non-lexical connections between |ψ1�
of different words on the model’s ability to learn the meaning of code tokens to some extent. It makes RQENN
perform better. And the median of the best test accuracy of the model using parameterized binary index data

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

reached 87.4%, which improved the RQENN by 9.6% compared to the original binary index data. This proves
the effectiveness of parameterized binary index. The two angles used in the rotation gates participate in the
training process of the model, allowing |ψ2� obtained by the quantum word embedding to better represent the
meaning of the code.

In summary, the number of QEmbedding and QWeight layers of RQENN and the encoding method affect
the performance of the model in vulnerability detection. Within a certain range, the accuracy of the model tends
to increase with increasing number of layers and reaches its best at m = 4 and n = 4 . Using trainable encoding
based on parameterized binary indexes is a crucial factor in improving model performance.

RQ2 What are the advantages and limitations of RQENN compared with classical models in vulnerability
detection tasks?

In this research problem, we compare the performance of RQENN and the classical RNN model on the
vulnerability detection task and analyze the differences in memory consumption between the two in order to
explore the advantages and limitations of RQENN over the classical model. In this process, RQENN uses the best
performing layers ( m = 4 and n = 4 ) from the previous section. As a comparison, the classical RNN network
and RQENN perform training with the same settings for all hyperparameters and use the same dictionary. The
word embedding dimension and hidden dimension of RNN are both set to 128, which is the same as the vector
dimension represented by the quantum state in RQENN.

0.771 0.775 0.83 0.843 0.861 0.84

0.792 0.832 0.837 0.832 0.863 0.868

0.827 0.85 0.852 0.848 0.847 0.854

0.806 0.833 0.842 0.874 0.858 0.872

0.868 0.867 0.858 0.859 0.837 0.858

0.83 0.832 0.845 0.844 0.864 0.836

1 2 3 4 5 6

1

2

3

4

5

6

n
 Q

W
ei

g
h

t
la

y
er

s

m QEmbedding layers

0.771

0.792

0.812

0.833

0.853

0.874

Median of best test accuracy

Figure 5.   Heatmap of the median of the best test accuracy of the model using m QEmbedding layers and n
QWeight layers.

Binary index Orthogonal method Parameterized

binary index

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

B
se

t
T

es
t

A
cc

u
ra

cy

Figure 6.   The best test accuracy of RQENN when using trainable encoding method based on binary index,
orthogonal method and parameterized binary index.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

For the performance of the models in the vulnerability detection task, we first conduct simulation on the
full dataset, and the results in Fig. 7 show the average training loss and test accuracy changes of RQENN and
RNN for 10 epochs of training in a five-fold cross-validation. The simulation results show that the two models
demonstrate similar convergence speeds during training, with the RNN having a slightly lower training loss.
On the test dataset, RQENN achieves a best test accuracy of 85.4%, which is slightly lower than RNN’s 86.1%.

Next, we test two models separately in datasets with different length intervals to investigate the effect of code
length variations on model performance. The normalized code gadgets are divided into intervals from length

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
 L

o
ss

Iteration

 RNN

 RQENN

0 2 4 6 8 10

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

T
es

t
A

cc
u
ra

cy

Epoch

 RNN

 RQENN

Figure 7.   Average training loss and average test accuracy changes of RQENN and RNN during training. We
train on the full dataset with a batch size of 64, using the Adam optimizer. We plot the training loss over 630
iterations and the validation accuracy over 10 epochs.

50 60 70 80 90 100

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
es

t
A

cc
u

ra
cy

T(Δr=10)

 RNN

 RQENN

Figure 8.   The median of the best test accuracy of RQENN and RNN in different length intervals. Both models
are trained for 10 epochs on each interval.

Table 1.   Classical information amount and space complexity of the two models at each stage of execution.

Model’s execution stage
Equivalent classical information
dimension Space complexity of RNN Space complexity of RQENN

Building dictionary N O(N) O(log2N)

Inputting one-hot vectors ( |ψ1�) N × T O(N × T) O(log2N × T)

Embedding word vectors ( |ψ2�) d O(d) O(log2d)

Getting hidden states h O(h) O (log2h)

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

40 to 100 with interval size �r = 10 . We use dimensionally equivalent RNN as a comparison, and all hyperpa-
rameters of the experiment are set the same as RQENN.

Figure 8 illustrates the median of best test accuracy of both models in different intervals. The results
show that as T increases, RQENN outperforms RNN in intervals of T ≤ 80(�r = 10) . And in the interval of
T ≥ 90(�r = 10) , RNN performed better. This shows that RQENN has better vulnerability detection capabilities
on shorter code lengths, and is worse than RNN on longer code. In addition, the test accuracies of RQENN in
intervals with smaller size of �r = 10 are all higher than the test accuracy of �r = 50 in RQ1, which indicates
that data padding also affects the model performance to some extent.

For the differences in memory consumption of the models, due to the fundamentally different computational
systems on which they are based, we estimate and compare their memory consumption from multiple perspec-
tives of the equivalent classical information dimension processed and the space complexity at each stage of the
model’s execution, the number of parameters, and the bit/qubit consumption.

First, we compare the equivalent classical information dimension processed and the space complexity at each
stage of the models’ execution. As shown in Table 1, the equivalent classical information dimension processed
at different execution stages of the two models is the same, but the space complexity is different. At the stage of
building dictionary, building a dictionary containing N words requires O(N  ) space for RNN, while RQENN
requires only O(log2N  ). At the inputting stage, for a code sequence of T tokens where the dimension of each
token vector is N , the equivalent classical information dimension processed by the models is N × T , the space
complexity of RNN is O(N × T ), while that of RQENN is only O(log2N × T ). At the stage of embedding word
vectors and getting hidden states, the equivalent classical information dimensions carried by the embedding vec-
tors and hidden states are d and h , respectively, and the space complexity of RNN is O(d ) and O(h ), respectively,
while the space complexity of RQENN is O(log2d ) and O (log2h) , respectively. Therefore, the space complexity
of RQENN is exponentially reduced compared to the classical model at different stages of the model.

Second, we compare the number of parameters of the two models. In classical neural networks, the number
of parameters directly determines the memory consumption. The RNN model is set up to have the same word
embedding and hidden dimensions as RQENN, but they have a vastly different number of trainable parameters.
The weight tensor of h × h dimension in classical RNN can be represented in RQENN using the unitary opera-
tor which only contains a small number of trainable parameters. Table 2 demonstrates the number of trainable
parameters for both models.

The parameters of RNN contain three parts: word embedding, recurrent cell, and output dense layer. It
contains a total of 49,666 trainable parameters. The parameters of RQENN contain three parts: input rotation
layer, QEmbedding layer, and QWeight layer (recurrent cell), which contain a total of 106 trainable parameters.
The number of parameters of the word embedding and recurrent cell used in RNN is 16,384 and 33,024, respec-
tively, while the corresponding number of parameters of the RQENN part is 56 and 48, respectively. Therefore,
the number of parameters used in the vulnerability detection model based on RQENN is reduced dramatically
compared to the classical model (only 0.21%).

Lastly, we compare the models in terms of the number of classical or quantum bits required. Each parameter
of type float 32 in the RNN model occupies 32 classical bits. Thus RNN needs to occupy 1,585,216 classical bits
for inference computation. Whereas the RQENN model uses only 7 qubits for inference computation. Although
classical bits and qubits are fundamentally different, this comparison also reflects to some extent the huge dif-
ference in memory consumption between the two models.

In summary, compared to the classical model, the advantages of the RQENN-based vulnerability detection
model are: the RQENN model has a significant advantage in memory consumption, the space complexity at its
each execution stage is exponentially reduced, the number of parameters used and the number of bits consumed
are substantially less than the classical model. The limitations of the RQENN-based vulnerability detection
model are: the RQENN model is slightly less accurate than the classical RNN, and its vulnerability detection
performance is more sensitive to the code length compared to RNN, its detection performance on long code is
worse than that of RNN.

RQ3 Compared with other QNLP models, does RQENN have more advantages in vulnerability detection
tasks?

We conducted extensive simulations on different intervals of the dataset. In addition to the DisCoCat model,
we also consider the QLSTM model. Their specific implementation is as follows:

•	 DisCoCat. We use the lambeq51 open source framework to implement DisCoCat diagram for testing. This
method adopts a categorical distributional compositional model to construct quantum circuit for language

Table 2.   Comparison of the number of trainable parameters for two models used in vulnerability detection.

Model RNN RQENN

Parameters in input layer 0 2

Parameters in word embedding layer 16,384 56

Parameters in the recurrent cell 33,024 48

Parameters in the output layer 258 0

Total number of parameters 49,666 106

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

modeling. First, the grammatical reduction of a sentence is interpreted as a diagram that extracts sentence
semantics by encoding specific interactions of words according to the grammar. The sentence diagram is
then rewritten to simplify the diagram and optimize the use of quantum resources. Finally, depending on the
particular parameterization scheme and the specific choice of ansätze, the generated diagrams are converted
into specific quantum circuits.

•	 QLSTM. We implement the QLSTM model proposed in ref. 47 and test it. The implementation method is
to use variational quantum circuits to replace the trainable parameters in the classic LSTM Cell. Each cell
requires 6 VQCs. QLSTM uses classical activation functions. It inputs classical data into VQCs during train-
ing, measures the internal state and returns it to classical, and cycles this process between different VQCs.
In order to enable QLSTM to perform vulnerability detection tasks, we use a classic embedding layer to
obtain the vector representation of words to input into QLSTM, and we add a classic dense layer and a batch
normalization layer for post-processing. The word embedding dimension is 128, all VQCs use 7 qubits, and
the data is input into VQCs using classical dense layer dimensionality reduction.

We test the detection ability of the three QNLP models on code sets with different length intervals, and the
median of the best test accuracy obtained from the five-fold cross-validation are shown in Table 3. Due to the
limitation of the simulator’s memory, it is hard to simulate enough qubits for DisCoCat diagrams. The DisCoCat
model can only perform classification tasks of T = 20 at most. Therefore, we additionally selected 100 and 250
data in the T = 10(�r = 10) and T = 20(�r = 10) data intervals for testing, respectively. The results show that
RQENN outperforms DisCoCat and QLSTM in almost all length intervals. All three QNLP models perform
well in the detection task in the shortest two length intervals. In the detection task at longer lengths, RQENN
shows better accuracy compared to QLSTM. In the task of complete dataset of length interval ranging from 40
to 100, RQENN has a 15.7% higher accuracy than QLSTM, which shows that data padding has less impact on
RQENN and the model has better stability. These results show that RQENN is more efficient compared to other
existing QNLP methods, and its performance advantage comes from (a) the trainable encoding method based on
parameterized binary index substantially enhances the semantic understanding of the model, making it possible
to learn code data using a recurrent structure on quantum circuits, and (b) the recurrent structure of RQENN
endows the model with a stronger long-term memory capability.

Therefore, our proposed RQENN has better performance and stability on the vulnerability detection task
compared to other QNLP models. In addition, RQENN uses fewer qubits than DisCoCat. DisCoCat requires
an average of 12.8 and 23.4 qubits on the T = 10(�r = 10) and T = 20(�r = 10) datasets respectively (varying
among sentences), while the number of qubits used by RQENN is only 7. RQENN performs fewer VQCs and
measurement operations than QLSTM. One forward propagation of QLSTM requires executing multiple different
VQCs, measuring all qubits, and transferring information between classical and quantum, which leads to inef-
ficiency. While RQENN only needs to perform one VQC and measurements on two qubits to complete the task.

Discussion
In this work, we propose a trainable encoding method based on parameterized binary index. On this basis, we
construct a recurrent quantum embedding neural network model for vulnerability detection. Simulations and
analysis show that the memory consumption of RQENN is significantly lower compared to the classical model,
and RQENN consumes fewer qubit resources and has higher accuracy compared to other QNLP methods. The
ablation experiments reveal that using trainable encoding based on parameterized binary index is a crucial factor
in improving model performance. Also, the number of QEmbedding and QWeight layers affects the performance
of the model in vulnerability detection. These results suggest that RQENN solves to a certain extent the problems
of (a) high memory consumption of classical models, (b) difficulty of QNN in handling natural language and
(c) poor performance of existing QNLP methods in vulnerability detection. RQENN achieves our preset goals.

However, our work still has some limitations. First, RQENN itself has limitations. This is manifested in (a)
RQENN’s accuracy in vulnerability detection tasks is slightly lower than that of classical RNN, and this gap is
further widened when compared to more advanced methods. For example, the best performance of LSTM in
terms of average test accuracy in five-fold cross-validation is 89.7%, and BERT reaches 92.0% (although RQENN
still leads in memory consumption). (b) RQENN vulnerability detection performance is more sensitive to code

Table 3.   The median of best test accuracy of three QNLP models on data of different length intervals.

Model DisCoCat (%) QLSTM (%) RQENN (%)

T = 10(�r = 10) 95.0 95.0 100

T = 20(�r = 10) 98.0 90.0 98.0

T = 50(�r = 10) – 95.0 99.0

T = 60(�r = 10) – 74.0 92.0

T = 70(�r = 10) – 68.5 88.0

T = 80(�r = 10) – 85.5 90.0

T = 90(�r = 10) – 79.0 89.5

T = 100(�r = 10) – 76.0 88.5

T = 100(�r = 60) – 71.7 87.4

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

length compared to RNN, with worse detection performance on long code than RNN. Second, RQENN’s learn-
ing process is based on the Quantum Circuit Learning (QCL) paradigm18, which causes it to suffer from similar
difficulties as other QNNs employing this paradigm. This is demonstrated by the fact that (a) the QCL learning
paradigm is unable to utilize quantum parallelism to process multiple examples at the same time, and thus the
training time remains linearly increasing with the amount of data. (b) The performance of QCL-based QNN
models is affected by the noise of the quantum hardware. While QNNs are inherently noise tolerant, the effect of
noise accumulates as the VQC scale (or quantum volume) increases. Considering the circuit depth of RQENN,
the impact of noise is undoubtedly significant, which directly weakens the stability and reliability of vulnerability
detection results. (c) Limited by the quantum volume of the quantum hardware, the current QCL-based QNN
model has a limitation on the number of qubits and depth of the circuit. RQENN has a deep circuit although
it uses a sufficiently small number of qubits. This means that RQENN is only likely to be able to execute small
examples on current quantum machines, with limited scalability for larger codebases.

Therefore, RQENN needs to be further improved. First, the trainable encoding method and the structure of
RQENN need to be further improved to enhance its semantic comprehension and long-term memory. Second,
the circuit depth of RQENN needs to be reduced to increase its scalability. This can be achieved, for example,
by encoding multiple consecutive tokens within a single recurrent cell. Finally, to enhance the stability and reli-
ability of the model on real quantum hardware, RQENN needs to be run in quantum hardware with high fidelity
to reduce the accumulated noise. A small amount of noise can instead enhance the generalization ability of the
model. This approach has realizability for RQENN since it uses only 7 qubits.

In addition, task-related research should be carried out further. First, in the vulnerability detection task, since
the real-world has much less vulnerable code than normal one, the impact of dataset imbalance on RQENN
needs to be further explored, and strategies such as data augmentation, cost-sensitive learning, sampling and
integration learning need to be adopted to ensure the generalization of the results. Second, in order to have a
more comprehensive understanding of the performance of RQENN, we need to conduct in-depth studies and
detailed analysis of its application in various QNLP tasks on more datasets. We will embark on the above studies
in the next step of our work.

In summary, our work expands new approaches of quantum computing for cyber security and natural lan-
guage processing, and validates new applications of quantum computing in cyber security. We open up a new
direction of QNLP technology that is different from the DisCoCat diagram model, and demonstrate the possibil-
ity of applying QNLP technology with quantum advantages to real-world tasks. We hope this work can inspire
further research on QNLP technologies as well as their real-world applications41.

Data availability
All the data that support the findings of this study are available from the corresponding authors upon reason-
able request.

Received: 30 November 2023; Accepted: 23 May 2024

References
	 1.	 Feng, Z. et al. CodeBERT: A pre-trained model for programming and natural languages. In Findings of the Association for Compu-

tational Linguistics: EMNLP 2020 (eds. Cohn, T., He, Y. & Liu, Y.). 1536–1547 https://​doi.​org/​10.​18653/​v1/​2020.​findi​ngs-​emnlp.​
139 (Association for Computational Linguistics, 2020).

	 2.	 Jiang, X., Zheng, Z., Lyu, C., Li, L. & Lyu, L. TreeBERT: A tree-based pre-trained model for programming language. In Proceedings
of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence. 54–63 (PMLR, 2021).

	 3.	 Wang, Y., Wang, W., Joty, S. & Hoi, S. C. H. CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (eds.
Moens, M.-F., Huang, X., Specia, L. & Yih, S. W.). 8696–8708 https://​doi.​org/​10.​18653/​v1/​2021.​emnlp-​main.​685 (Association for
Computational Linguistics, 2021).

	 4.	 Aghaei, E., Niu, X., Shadid, W. & Al-Shaer, E. SecureBERT: A domain-specific language model for cybersecurity. In Security and
Privacy in Communication Networks (eds. Li, F., Liang, K., Lin, Z. & Katsikas, S. K.). 39–56 https://​doi.​org/​10.​1007/​978-3-​031-​
25538-0_3 (Springer, 2023).

	 5.	 Xiang, G., Shi, C. & Zhang, Y. An APT event extraction method based on BERT-BiGRU-CRF for APT attack detection. Electronics
12, 3349 (2023).

	 6.	 Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A. & Xu, M. A survey on machine learning techniques for cyber security in the
last decade. IEEE Access 8, 222310–222354 (2020).

	 7.	 Arp, D. et al. Dos and Don’ts of Machine Learning in Computer Security. 3971–3988 (2022).
	 8.	 Chakraborty, S., Krishna, R., Ding, Y. & Ray, B. Deep learning based vulnerability detection: Are we there yet?. IEEE Trans. Softw.

Eng. 48, 3280–3296 (2022).
	 9.	 Ziems, N. & Wu, S. Security vulnerability detection using deep learning natural language processing. In IEEE INFOCOM 2021—

IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 1–6 https://​doi.​org/​10.​1109/​INFOC​OMWKS​
HPS51​825.​2021.​94845​00 (2021).

	10.	 Thapa, C. et al. Transformer-based language models for software vulnerability detection. In Proceedings of the 38th Annual Com-
puter Security Applications Conference. 481–496. https://​doi.​org/​10.​1145/​35646​25.​35679​85 (Association for Computing Machinery,
2022).

	11.	 Hin, D., Kan, A., Chen, H. & Babar, M. A. LineVD: Statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories. 596–607. https://​doi.​org/​10.​1145/​35248​42.​35279​49
(Association for Computing Machinery, 2022).

	12.	 Floridi, L. & Chiriatti, M. GPT-3: Its nature, scope, limits, and consequences. Minds Mach. 30, 681–694 (2020).
	13.	 Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).
	14.	 Zhou, X. et al. A new method of software vulnerability detection based on a quantum neural network. Sci. Rep. 12, 8053 (2022).
	15.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 10th Anniversary Ed. https://​doi.​org/​10.​1017/​

CBO97​80511​976667 (Cambridge University Press, 2012).

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1007/978-3-031-25538-0_3
https://doi.org/10.1007/978-3-031-25538-0_3
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484500
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484500
https://doi.org/10.1145/3564625.3567985
https://doi.org/10.1145/3524842.3527949
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

	16.	 Kazem, B. R. & Saleh, M. B. The effect of Pauli gates on the superposition for four-qubit in Bloch sphere. J. Kerbala Univ. 18, 33
(2020).

	17.	 Ben-David, S. et al. Symmetries, graph properties, and quantum speedups. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS). 649–660 https://​doi.​org/​10.​1109/​FOCS4​6700.​2020.​00066 (2020).

	18.	 Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).
	19.	 Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).
	20.	 Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).
	21.	 Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
	22.	 Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).
	23.	 Du, Y., Hsieh, M.-H., Liu, T., You, S. & Tao, D. Learnability of quantum neural networks. PRX Quantum 2, 040337 (2021).
	24.	 Bausch, J. Recurrent quantum neural networks. In Advances in Neural Information Processing Systems. Vol. 33. 1368–1379 (Curran

Associates, Inc., 2020).
	25.	 Coecke, B., Sadrzadeh, M. & Clark, S. Mathematical Foundations for a Compositional Distributional Model of Meaning. http://​arxiv.​

org/​abs/​1003.​4394 (2010).
	26.	 Meichanetzidis, K. et al. Quantum natural language processing on near-term quantum computers. Electron. Proc. Theor. Comput.

Sci. 340, 213–229 (2021).
	27.	 Guarasci, R., De Pietro, G. & Esposito, M. Quantum natural language processing: Challenges and opportunities. Appl. Sci. 12, 5651

(2022).
	28.	 Lin, G., Wen, S., Han, Q.-L., Zhang, J. & Xiang, Y. Software vulnerability detection using deep neural networks: A survey. Proc.

IEEE 108, 1825–1848 (2020).
	29.	 Russell, R. et al. Automated vulnerability detection in source code using deep representation learning. In 2018 17th IEEE Interna-

tional Conference on Machine Learning and Applications (ICMLA). 757–762 https://​doi.​org/​10.​1109/​ICMLA.​2018.​00120 (2018).
	30.	 Napier, K., Bhowmik, T. & Wang, S. An empirical study of text-based machine learning models for vulnerability detection. Empir.

Softw. Eng. 28, 38 (2023).
	31.	 Li, Z. et al. VulDeePecker: A deep learning-based system for vulnerability detection. In Proceedings 2018 Network and Distributed

System Security Symposium https://​doi.​org/​10.​14722/​ndss.​2018.​23158 (Internet Society, 2018).
	32.	 Zou, D., Wang, S., Xu, S., Li, Z. & Jin, H. μμVulDeePecker: A deep learning-based system for multiclass vulnerability detection.

IEEE Trans. Depend. Secure Comput. 18, 2224–2236 (2021).
	33.	 Li, Z. et al. SySeVR: A framework for using deep learning to detect software vulnerabilities. IEEE Trans. Depend. Secure Comput.

19, 2244–2258 (2022).
	34.	 Zhou, Y., Liu, S., Siow, J., Du, X. & Liu, Y. Devign: Effective vulnerability identification by learning comprehensive program seman-

tics via graph neural networks. In Advances in Neural Information Processing Systems. Vol. 32 (Curran Associates Inc., 2019).
	35.	 Partenza, G., Amburgey, T., Deng, L., Dehlinger, J. & Chakraborty, S. Automatic identification of vulnerable code: Investigations

with an AST-based neural network. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC).
1475–1482 https://​doi.​org/​10.​1109/​COMPS​AC517​74.​2021.​00219 (2021).

	36.	 Tang, W., Tang, M., Ban, M., Zhao, Z. & Feng, M. CSGVD: A deep learning approach combining sequence and graph embedding
for source code vulnerability detection. J. Syst. Softw. 199, 111623 (2023).

	37.	 Qu, Z. et al. Active and passive hybrid detection method for power CPS false data injection attacks with improved AKF and GRU-
CNN. IET Renew. Power Gener. 16, 1490–1508 (2022).

	38.	 Liao, W. et al. Sample adaptive transfer for electricity theft detection with distribution shifts. IEEE Trans. Power Syst. https://​doi.​
org/​10.​1109/​TPWRS.​2024.​33759​39 (2024).

	39.	 Guo, D. et al. GraphCodeBERT: Pre-training Code Representations with Data Flow (2020).
	40.	 Li, Y., Wei, X., Li, Y., Dong, Z. & Shahidehpour, M. Detection of false data injection attacks in smart grid: A secure federated deep

learning approach. IEEE Trans. Smart Grid 13, 4862–4872 (2022).
	41.	 Zeng, W. & Coecke, B. Quantum algorithms for compositional natural language processing. Electron. Proc. Theor. Comput. Sci.

221, 67–75 (2016).
	42.	 Coecke, B., de Felice, G., Meichanetzidis, K. & Toumi, A. Foundations for Near-Term Quantum Natural Language Processing. http://​

arxiv.​org/​abs/​2012.​03755 (2020).
	43.	 Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D. & Coecke, B. QNLP in practice: Running compositional models of

meaning on a quantum computer. J. Artif. Intell. Res. 76, 1305–1342 (2023).
	44.	 Ruskanda, F. Z., Abiwardani, M. R., Syafalni, I., Larasati, H. T. & Mulyawan, R. Simple sentiment analysis ansatz for sentiment

classification in quantum natural language processing. IEEE Access 11, 120612–120627 (2023).
	45.	 Abbaszade, M., Salari, V., Mousavi, S. S., Zomorodi, M. & Zhou, X. Application of quantum natural language processing for lan-

guage translation. IEEE Access 9, 130434–130448 (2021).
	46.	 Di Sipio, R., Huang, J.-H., Chen, S. Y.-C., Mangini, S. & Worring, M. The dawn of quantum natural language processing. In ICASSP

2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 8612–8616 https://​doi.​org/​10.​
1109/​ICASS​P43922.​2022.​97476​75 (2022).

	47.	 Chen, S. Y.-C., Yoo, S. & Fang, Y.-L. L. Quantum long short-term memory. In ICASSP 2022—2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 8622–8626 https://​doi.​org/​10.​1109/​ICASS​P43922.​2022.​97473​69 (2022).

	48.	 Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549,
242–246 (2017).

	49.	 Leone, L., Oliviero, S. F. E., Cincio, L. & Cerezo, M. On the Practical Usefulness of the Hardware Efficient Ansatz. http://​arxiv.​org/​
abs/​2211.​01477 (2022).

	50.	 Grant, E. et al. Hierarchical quantum classifiers. Npj Quantum Inf. 4, 1–8 (2018).
	51.	 Kartsaklis, D. et al. Lambeq: An Efficient High-Level Python Library for Quantum NLP. http://​arxiv.​org/​abs/​2110.​04236 (2021).

Author contributions
Zhihui S., X.Z. and Zheng S. designed the research plan. Zhihui S. and X.Z. conducted the experiments. Zhihui
S. wrote the manuscript. Zheng S., J.X. and X.D. analyze data and improved experiment designs. J.X. and X.D.
supervised the work and revised the manuscript. All authors reviewed the final manuscript.

Funding
This study was funded by Major Science and Technology Projects in Henan Province, China (Grant No.
221100210600).

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1109/FOCS46700.2020.00066
http://arxiv.org/abs/1003.4394
http://arxiv.org/abs/1003.4394
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1109/COMPSAC51774.2021.00219
https://doi.org/10.1109/TPWRS.2024.3375939
https://doi.org/10.1109/TPWRS.2024.3375939
http://arxiv.org/abs/2012.03755
http://arxiv.org/abs/2012.03755
https://doi.org/10.1109/ICASSP43922.2022.9747675
https://doi.org/10.1109/ICASSP43922.2022.9747675
https://doi.org/10.1109/ICASSP43922.2022.9747369
http://arxiv.org/abs/2211.01477
http://arxiv.org/abs/2211.01477
http://arxiv.org/abs/2110.04236

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:13642 | https://doi.org/10.1038/s41598-024-63021-y

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to Z.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Recurrent quantum embedding neural network and its application in vulnerability detection
	Background
	Vulnerability detection
	QNLP technology

	Methods
	Trainable encoding method
	RQENN cell
	Classification model
	Task flow

	Results
	Dataset description
	Simulation setup
	Research questions and results

	Discussion
	References

