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Recurrent quantum embedding 
neural network and its application 
in vulnerability detection
Zhihui Song 1,3, Xin Zhou 1,3, Jinchen Xu 1,2, Xiaodong Ding 1 & Zheng Shan 1,2*

In recent years, deep learning has been widely used in vulnerability detection with remarkable 
results. These studies often apply natural language processing (NLP) technologies due to the natural 
similarity between code and language. Since NLP usually consumes a lot of computing resources, 
its combination with quantum computing is becoming a valuable research direction. In this paper, 
we present a Recurrent Quantum Embedding Neural Network (RQENN) for vulnerability detection. 
It aims to reduce the memory consumption of classical models for vulnerability detection tasks and 
improve the performance of quantum natural language processing (QNLP) methods. We show that 
the performance of RQENN achieves the above goals. Compared with the classic model, the space 
complexity of each stage of its execution is exponentially reduced, and the number of parameters 
used and the number of bits consumed are significantly reduced. Compared with other QNLP 
methods, RQENN uses fewer qubit resources and achieves a 15.7% higher accuracy in vulnerability 
detection. 

There have been many studies using NLP technology to deal with programming languages1–3. These methods 
have been applied to the field of cyber security4–7 advancing the development of automated systems, including 
vulnerability detection systems based on deep learning8–11. The continuous development of NLP technology has 
led to significant improvements in these applications, but also to a massive increase in model complexity (e.g., 
the number of parameters in GPT models has reached the order of hundreds of billions12,13). Training such a 
model requires huge memory resources and time costs, which has become one of the bottlenecks in classical 
NLP technology. Such problems also plague applications such as vulnerability detection, as strong performance 
often means huge costs for complex models with extensive training. Therefore, one desire to find a more efficient 
computing method to optimize models and reduce costs14.

Quantum computing is a computing method with great potential. In quantum computing, qubits are able 
to represent a superposition of exponentially multiple states simultaneously and allow simultaneous operations 
on the superposition states. Therefore, it has more powerful information storage capacities and allows perform-
ing computations with less computational complexity compared to classical computing15–17. So far, there have 
been many studies on quantum neural networks (QNN). The so-called quantum neural network is a neural 
network model based on quantum computing that learns by executing a circuit composed of quantum unitary 
gates containing trainable parameters and optimizing the parameters18–20. It inherits the properties of quantum 
computing, including superposition, interference and entanglement of information carried by qubits. QNN is 
expected to take advantage of quantum computing to improve the performance of neural networks and reduce 
costs. This is because it can generate inter-variable correlations that cannot be represented by classical computing, 
achieve significantly higher effective dimensions and fit data faster on exponentially higher feature spaces21–23. 
Therefore, quantum neural networks are expected to solve the above problems.

However, it is difficult to combine QNN with NLP technology and apply it to vulnerability detection. Because 
simple combinatorial approaches of text embedding and context-dependent learning migrated from classical NLP 
techniques do not work in QNN. For example, QRNN24 can learn sequential data (such as sequences of digits), 
but it is unable to handle natural language. To address this difficulty, the Categorical Distributional Compositional 
(DisCoCat) model25 for natural language has been applied to QNN26, which has become the common theoretical 
framework for almost all QNLP methods27 However, such methods consume a large amount of qubit resources 
and their performance on specific tasks still needs to be improved. Therefore, in this paper, we aim to construct 
a QNN model for vulnerability detection that (a) consumes significantly less memory than classical neural 
networks and (b) perform better and consume fewer quantum resources compared to existing QNLP methods.
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To accomplish this goal, in this work, we propose a trainable encoding method based on parameterized 
binary index. Using this method, each token of the code sequence is transformed into a small segment of train-
able quantum embedding circuit to obtain an effective quantum word embedding. This quantum embedding 
circuit is used to form a recurrent cell in combination with the quantum weight circuit. And it is successively 
applied to the iterative inputs of the network to capture the contextual dependencies in the code. On this basis, 
we construct a Recurrent Quantum Embedding Neural Network (RQENN) model for vulnerability detection.

Simulation results and analysis on the vulnerability detection tasks show that compared with the classic model, 
the space complexity of each stage of RQENN execution is exponentially reduced, the number of parameters 
used is only 0.21% of the classic RNN, and the number of bits consumed is also significantly reduced. Compared 
with other QNLP methods, RQENN uses fewer qubit resources, runs fewer quantum circuits, performs fewer 
measurement operations, and achieves 15.7% higher accuracy in vulnerability detection. The results obtained 
are the state-of-the-art classification performance among reported QNLP methods.

In general, the contributions of this work are as follows:

1.	  We apply QNN to vulnerability detection, expanding the new way of combining quantum computing with 
cyber security.

2.	  We propose a trainable encoding method based on parameterized binary index, which can effectively extract 
quantum word embeddings.

3.	  We propose the RQENN model that can be used to process textual data, which opens up a new direction in 
QNLP technology different from the DisCoCat diagram model.

4.	  RQENN reduces the memory consumption of classical models; it consumes fewer qubit resources and has 
higher accuracy than other QNLP methods.

This paper is organized as follows. In the “Background” section, we introduce the vulnerability detection 
and QNLP technology. In the “Methods” section, we show the trainable encoding method, the RQENN cell, the 
implementation of the RQENN classification model, and the task flow of vulnerability detection. In the “Results” 
section, we show simulation results and analysis on vulnerability detection task using RQENN. Finally, in the 
“Discussion” section, we summarize the paper and look forward to further work.

Background
Vulnerability detection
Software vulnerabilities pose a serious threat to network security. Traditional vulnerability detection methods 
often rely on static analysis (e.g., vulnerability rules, symbolic execution) or dynamic analysis (e.g., fuzzing 
test, taint analysis) techniques. However, these methods have certain limitations28. Static analysis methods are 
often limited by the complexity of the code and have many false positives and false negatives. Dynamic analysis 
methods consume a lot of time due to the running of the program and are sensitive to test data. Therefore, they 
are difficult to meet the current complex and changing software security requirements.

In recent years, the excellent performance of deep learning on NLP tasks has inspired researchers to use 
neural networks to build automated vulnerability detection systems and achieved remarkable results. Vulner-
ability detection methods based on neural networks aim to extract high-dimensional features of the code through 
neural networks to make a judgment on the existence of vulnerabilities at the level of code slices, functions, 
or statements. These studies extract effective abstractions from raw code data by processing code as text29,30, 
extracting vulnerability function/API-related code slices (e.g., code gadgets)31–33, and extracting graph structural 
information such as PDG and AST of the code11,34–36 and other methods. They are converted into vectors for 
input to the neural network by further preprocessing. Similar to traditional NLP tasks, vulnerability detection 
also requires neural networks to be able to memorize sequential and semantic information about the code, 
because the context information of the code often contains the conditions for triggering the vulnerability. As a 
result, CNNs, RNNs, and some GNNs are frequently used28,37,38, and some large language models1,39,40 migrated 
to code also come into play.

As a clear example, ref.30 implements the first deep learning-based vulnerability detection system, propos-
ing a code intermediate representation "code gadget". A code gadget is a collection of code statements that are 
semantically related to some manually defined vulnerability characteristics in a program (e.g., an API call). The 
code gadget extracted from source code is regarded as text, and each token is encoded into a word vector through 
word embedding then input into BLSTM network to capture the sequence information of the code. Eventually 
the trained model will make a detection of whether the code contains vulnerabilities.

QNLP technology
In recent years, the size of classical NLP models has been increasing, with neural networks reaching even hun-
dreds of billions of parameters12,13. The strong performance of classical NLP models often means complex models 
and huge memory consumption, and there seems to be an irreconcilable contradiction between model perfor-
mance and memory consumption, which hinders their further application in vulnerability detection. The reason 
for the huge memory consumption of these models is that these models suffer from dimensionality catastrophe 
when dealing with high-dimensional, complex data. When the dimensionality of the data increases, the required 
computational resources and storage space increase dramatically. At the same time, a large number of param-
eters of the model are involved in the forward propagation, and the calculated hidden layer variables continue 
to accumulate, resulting in rapid memory consumption.

In order to reduce the computing cost of current NLP methods, some studies combine QNN with NLP to 
take advantage of the huge benefits of quantum computing in information storage and parallel acceleration, 
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which is called quantum natural language processing (QNLP)26,41–43. Reference26 encodes words and phrases 
into quantum states and processes based on the DisCoCat model and implements it using variational quantum 
circuits (VQC). The core of the approach is to consider DisCoCat as a tensor network model of natural language 
meanings, which can be represented as string diagrams and further transformed into quantum circuits. This 
method has been proven to have certain advantages in theory25,41, so the DisCoCat model became a common 
theoretical framework for almost all QNLP methods. But it has only been tested on very small datasets43–45 and 
has not yet been applied to real-world tasks. In addition, some QNNs for processing sequence data have been 
proposed, such as RQNN24. However, they cannot be useful for specific tasks related to text or language, because 
QNN is unable to obtain quantum word embeddings from textual information as efficiently as classical models 
using a combination of one-hot and word embedding methods. There are also methods based on the classical 
network structure (e.g., QLSTM45–47), which perform NLP tasks by replacing weight parameters with VQCs, 
and this hybrid quantum-classical network structure is also considered as a QNLP model in a broader sense. The 
proposed methods have promoted the development of QNLP, but they are still far from practical application. The 
results on small tests27 show that the exploration of QNLP technology is still full of challenges.

Methods
In this section, we first introduce the composition and principles of the important components of RQENN 
including the trainable encoding method based on parameterized binary index and recurrent cell. Then we 
introduce the RQENN-based classification model. Finally, we present the task flow of applying RQENN clas-
sification model to vulnerability detection.

Trainable encoding method
Classical neural network models for processing NLP tasks first need to tokenize the text and build a word dic-
tionary, according to which the text is converted into a digital index sequence of words. Each digital index cor-
responds to a one-hot vector, which are transformed into dense vectors by word embedding methods involved 
in the network training to obtain a more accurate vector representation. However, similar methods migrated 
to QNN do not work. Specifically, in the classical model, the one-hot vectors are sparse and orthogonal, which 
means that when word embedding is performed, each word gets only some of the weights from the embedding 
weight matrix W as the representation vector. This process can be viewed as using the one-hot vector as the key 
to query the corresponding value in the weight map W , as shown in Fig. 1a. Thus, in the case of random ini-
tialization of weights, the initial representation vectors of all words are uncorrelated, and they establish lexical 
connections as the training process proceeds. However, in the quantum model, due to the properties of quantum 
superposition and entanglement, the quantum state obtained from encoded words (e.g., |ψ1� in Fig. 1b) is difficult 
to be sparse and orthogonal as the classical one-hot vectors. This implies that the initially encoded quantum 
state of each word has some kind of connection, and the use of this quantum state as the "key" inevitably leads 
to the "value" obtained from the query being related to all the elements in the unitary matrix, which contains 
various non-semantic connections. The use of this quantum state as the "key" inevitably leads to a query that 
yields a "value" that is related to all the elements of the Missy’s orthogonal weight matrix, and the results obtained 
contain various non-semantic connections. This prevents QNN from learning the semantics of words through 
the quantum embedding method.

To address this problem, we propose a trainable encoding method based on parameterized binary index to 
encode code tokens as quantum state data and efficiently learn the semantics of the tokens. The specific steps 
are as follows:

Step I: Tokenize source code into tokens to create a dictionary and then tokens are mapped to numeric 
indexes.

Step II: Convert the numeric indexes from decimal to binary representation. For a dictionary containing N 
words, an index is represented by an n = ⌈log2N⌉ bits binary numbers.

Step III: Replace "0" and "1" in the binary number indexes with the trainable parameters " θ0 " and " θ1 ", forming 
parameterized binary indexes.

Step IV: Encode parameterized binary index using n = ⌈log2N⌉ qubits. Each bit of the input is encoded to the 
corresponding qubit through an Ry rotation gate.

Figure 1.   (a) The process of token ’NULL’ being encoded into a quantum circuit. The |ψ1� obtained after 
rotation input layer is treated as a quantum one-hot vector. It further applies QEmbedding to obtain |ψ2� 
which can be treated as a quantum dense vector used as token representation. (b) Classical word embedding 
computation process. The one-hot vector is treated as a key to query value in the map of weights.
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Step V: Add a trainable layer containing parameters to the quantum circuit as a quantum embedding (QEm-
bedding) implementation.

The Ry rotation input layer and the QEmbedding layer in the above steps together form the trainable encod-
ing layer.

As a simple example, for the following source code training set:

we can build such a dictionary to map all code tokens to numeric indexes:

These numeric indexes are further converted to parameterized binary indexes:

Next, we determine the angles of the Ry gates and construct the quantum circuit based on the parameter-
ized binary index of the word to be encoded. Taking encoding token ’NULL’ as an example, as shown in Fig. 1b, 
its corresponding indexes θ1θ0 are encoded bit-by-bit to a circuit with 2 qubits as the Ry gates’ angles. Then a 
QEmbedding layer is further added to jointly form the quantum trainable encoding circuits.

As Eqs. (1–3) shown below. |ψ0� is the initial state. The quantum circuit encodes the index θ1θ0 into the 
quantum state |ψ1� by rotation input layer. It is a 2n-dimensional vector. It has N different cases, corresponding 
to N possible combinations of the input rotation layer parameters. The parameters " θ0 " and " θ1 " are involved in 
the training process of QNN to eliminate possible inherent connections, so that |ψ1� has the same function as 
the classic one-hot vector. The one-hot vector is a form transformed by symbols that is easy to use by the classic 
network model, and the obtained |ψ1� is a form transformed by symbols that is easy to use by QNN. This is the 
unique aspect of trainable encoding based on parameterized binary index and the key to improving model per-
formance. Next, |ψ1� learns lexical connections between encoded words through a trainable QEmbedding layer 
Uqe(θqe) , which is similar to the classic word embedding principle. The obtained quantum state |ψ2� is described 
in Eq. (3), where Uqe(θqe) = [ u

†
0 u

†
1 u

†
2 u

†
3
]
† . At this point, the 2n-dimensional dense vectors corresponding to 

|ψ2� are the representations of the words, except that the words are converted from indexes to quantum-friendly 
quantum state representations instead of classical vector representations.

Compared with the trainable encoding method based on parameterized binary index, if the binary index 
obtained in Step II is used for encoding, the fixed angle of the rotation gate (0 or 1) will result in constant non-
lexical connections between |ψ1� of different words. These connections are brought into training process of the 
quantum word embedding layer, possibly affecting the normal learning of lexical connections of the code tokens. 
In fact, it can also make the N  quantum states |ψ1� orthogonal to each other like classical one-hot vectors by 
choosing a suitable fixed angle of the rotation gate, this method is called the "orthogonal method". It determines 
the specific angles " θ0 " and " θ1 " to be used for replacing the binary "0" and "1" before training. By respectively 
applying N different rotation layers with angles " θ0 " and " θ1 " on N independent quantum circuits, we can obtain 
N  quantum states. We use the gradient descent algorithm to minimize the sum of the absolute values of the 
two-by-two inner products of these N quantum states under random initialization of the quantum initial states. 
This approach references the property of mutual orthogonality between one-hot vectors, which ultimately yields 
θ0 = −π

2
 and θ1 = π

2
 , and encoding using this value will make |ψ1� as orthogonal as possible for different tokens. 

But there are also differences between QEmbedding and classical embedding. Each element of the weight matrix 
in classical embedding is a trainable parameter, while QEmbedding only controls the changes of the matrix 
through a small number of parameter-containing unitary gates. It cannot be proved that the always orthogonal 
|ψ1� is more helpful for learning |ψ2� . Therefore, in this paper, we add " θ0 " and " θ1 " as trainable parameters to 
the learning process of RQENN, which is the reason for using parameterized binary indexes in Step III. We will 
show in the Results section the performance of the model when using trainable encoding based on binary index, 
orthogonality method, and parameterized binary index as data inputs, further demonstrating the effectiveness 
of the proposed methods.

RQENN cell
The trainable encoding method defined in the above section is a crucial component in the construction of our 
recurrent quantum embedding neural network cell. Much like classical RNNs, we define such a cell that will be 
successively applied to the input presented to the network for capturing contextual connections in the code. More 
specifically, the cell is comprised of a trainable encoding stage and a working stage, which are used to learn the 
semantics of input tokens and memorize contextual dependencies, respectively. This cell is applied iteratively in 

[“VAR1 = NULL”, “VAR2 = NULL”, “VAR1 = VAR2”],

{‘ = ’ : 0, ‘VAR1’ : 1, ‘NULL’ : 2, ‘VAR2’ : 3}.

{‘ = ’ : θ0θ0, ‘VAR1’ : θ0θ1, ‘NULL’ : θ1θ0, ‘VAR2’ : θ1θ1}.

(1)|ψ0� = [ ε0 ε1 ε2 ε3 ]
†

(2)|ψ1 � =






Ry(θ0)⊗ Ry(θ0)|ψ0 �, index = θ0θ0
Ry(θ0)⊗ Ry(θ1)|ψ0 �, index = θ0θ1
Ry(θ1)⊗ Ry(θ0)|ψ0 �, index = θ1θ0
Ry(θ1)⊗ Ry(θ1)|ψ0 �, index = θ1θ1

(3)|ψ2� = Uqe(θqe)|ψ1� = [ u
†
0|ψ1� u

†
1|ψ1� u

†
2|ψ1� u

†
3|ψ1� ]

†
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RQENN, and its internal state is passed on to the next iteration of the network. RQENN cells at all time steps 
share the same trainable parameters.

Figure 2 illustrates the RQENN cell, which learns the quantum word embedding of the current time step 
input xt = (xt0 , ..., xtn ) in the encoding stage and combines it with the cell input hidden state |ψt−1� in the work 
stage to learn the mapping relation from this combined state to the cell output hidden state |ψt� . The equation 
for this process is as follow:

where Uin , Uqe and Uqnn denote the unitary matrix of the rotation input layer, QEmbedding layer and quantum 
weight (QWeight) layer, respectively.

The encoding stage uses the trainable encoding method described above. In the rotation input layer, an Ry 
gate is applied on the ith qubit to rotate the angle to the ith value of the parameterized binary index. In the QEm-
bedding layer, a m layer ansatz composed of alternate rotation layer and entanglement layer is used to learn the 
quantum word embedding representation. Each layer of the ansatz consists of 2 rotation layers and 2 entangle-
ment layers consisting of staggered entanglements between adjacent qubits. In the working stage, a n layer one-
dimensional alternating layered Hardware Efficient Ansatz48,49 was used to build the QWeight layer. This ansatz 
is implemented by sequentially applying a two-qubit unitary to adjacent qubits. Each two-qubit unitary entangles 
the last qubit obtained from a previous unitary with the next one. The unique recurrent circuit cell architecture 
with scalable layer in multi-stage is the key to improving model performance. This two-qubit unitary consists 
of two Ry gates and a Cnot gate that have been proven effective50, and its unitary transformation is described 
by Eq. (5). We show below the specific implementations of the different network layers by equations. Equation 
(6) shows the unitary transformation of the rotation input layer, where t ∈ {1, ...,T} represents the time step. A 
token is input into the network at each time step, and T is set as the total code length. Equations (7, 8) and Eq. 
(9) are the unitary transformations of the QEmbedding layer and QWeight layer respectively.

Classification model
We use RQENN cell to build classifiers applied to vulnerability detection. Similar to RNN, RQENN initializes the 
hidden state at t = 0 by adding a layer of Hadamard gates initially, and then the RQENN cell is iteratively applied 
to a sequence of the input source code x1, x2, ..., xT as shown in Fig. 3 to capture the contextual connections in 

(4)|ψt� = UqnnUqeUin(xt)|ψt−1�

(5)U
[2]
l,i

(
θ l,i

)
= Cnoti,i+1⊗

1
j=0Ryi+j

(
θl,i,j

)
, l ∈ {0,1}andi ∈ {0, . . . , n− 2}

(6)Uin(xt) = ⊗n
i=0

(
Ryi

(
xti
))
, xti ∈ {θ0, θ1}andt ∈ {1, ...,T}

(7)Uqel (θqel ) =

⌊(n−1)/2⌋∏

i=1

Cnot2i−1,2i⊗
n−1
i=0 Ryi(θl,n+i)

⌊n/2⌋∏

i=1

Cnot2i−2,2i−1⊗
n−1
i=0 Ryi(θl,i)

(8)Uqe

(
θqe

)
= Uqe1

(
θqe1

)
Uqe0

(
θqe0

)

(9)Uqnn

(
θqnn

)
= U

[2]
1,n−2

(
θ1,n−2

)
. . .U

[2]
1,0

(
θ1,0

)
U

[2]
0,n−2

(
θ0,n−2

)
. . .U

[2]
0,0

(
θ0,0
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Figure 2.   Recurrent quantum embedding neural network cell. It consists of a trainable encoding stage and a 
QNN work stage, where the principle of the encoding stage is as described in the above section. It transforms 
the internal state in into the state out at each time step and iterates this process.
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the source code. The entire model also includes measuring the expectation value of a single qubit for the last two 
qubits. This expectation value is described as Eq. (10):

where UQC(X ,�) = Ucell(x1,�)...Ucell(xT ,�) is the a quantum circuit composed of all cells, and 
Ucell(xt ,�) = Uqnn(θqnn)Uqe(θqe)Uin(xt , θ in) . � is the parameter set of the cell, and X = [x1, . . . , xT ] is the 
input index sequence. M̂i is the operator used to calculate the expectation of the ith qubit, i.e.

The two calculated expectation values are used to determine the data category by comparing the numerical 
magnitudes, and we use them as logits to calculate the cross-entropy loss function for classification.

Task flow
The goal of our vulnerability detection is to detect whether a program’s source code may contain vulnerabilities 
using the RQENN classifier. In this paper, we perform the vulnerability detection task using the pipeline shown 
in Fig. 4, which consists of the following three steps:

Step I: Generating normalized code gadgets and labels from source code. First, we extract the data dependency 
graph (DDG) of the code using the open source code analysis tool Joern. Next, we extract labeled code gadgets 
based on manually defined vulnerability features. Specifically, we locate the node containing the vulnerable 
library function/API call in the extracted DDG, such as the "strcat" function shown in left side of Fig.4, and slice 
the code into small pieces according to the connection to the node. The types of API calls are categorized into 
forward (e.g., the "recv" function) and backward API calls (e.g., the "strcat" function here) according to whether 
or not they take external input from a socket, and forward slices and backward slices are generated accordingly. 
The forward slices obtain the set of statements of the nodes in the DDG that are recursively pointed forward from 
the API node, and the backward slices obtain the set of statements of the nodes in the DDG that are recursively 
pointed to the API node. These slices are code gadgets, which are labeled ’0’ or ’1’ depending on whether they 
contain vulnerabilities or not. In the next step we normalized the code gadget. The processing methods include 

(10)Ei(X ,�) = �0⊗n|H†⊗nU†
QC(X ,�)M̂iUQC(X ,�)H⊗n|0⊗n�, i ∈ {n− 1, n− 2}

(11)M̂i =

{
I ⊗ I ⊗ ...⊗ σz ⊗ I , i = n− 2

I ⊗ I ⊗ ...⊗ I ⊗ σz , i = n− 1

Figure 3.   RQENN classifier. The model is built by iteratively applying the same RQENN cell to the input code 
token sequence. Measurements are performed on the last two qubits separately to obtain the expectation values 
as classification logits.

Figure 4.   Vulnerability detection task flow. We extract normalized labeled code gadgets from the source code 
as training data and then generate parameterized binary indexes from them, which are fed into the RQENN 
classifier. After training, the model can detect the presence of vulnerabilities in the source code.
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removing comments and strings, normalizing user-defined variable names (’VAR1’ etc.) and function names 
(’FUN1’ etc.). Finally, the normalized labeled code gadget is obtained.

Step II: The normalized labeled code gadgets are treated as text data from which parameterized binary 
index sequences are generated. First, we preprocess the data set, clean the original text, remove punctuation 
marks and non-ascii characters, etc. Then we split and pad the preprocessed text and build a dictionary, which 
is converted into a parameterized binary index dictionary according to the method mentioned before. Finally, 
the token sequences after tokenization are converted into parameterized binary index sequences according to 
the dictionary.

Step III: Training and evaluating RQENN Models. We input the sequence of parameterized binary indexes 
into the RQENN model in order, execute the quantum circuit on the simulator or a real machine, and complete 
the training and validation of the RQENN model according to the quantum circuit learning framework18. The 
model can detect the presence of vulnerabilities in the source code.

Results
Dataset description
There is a public dataset we use for vulnerability detection. This dataset is collected from the NVD and SARD 
vulnerability repositories and provided by Li et al.31. It contains C/C++ source codes containing two types of 
vulnerabilities, buffer overflow and resource management vulnerabilities, as well as source codes that does not 
contain vulnerabilities. It is used to evaluate the ability of vulnerability detection tools for detecting the presence 
of vulnerabilities in code. We generated code gadgets from this dataset, and independently selected 1000 data 
respectively in six intervals ranging from 40 to 100, with the interval length being 10.The number of different 
categories of data is balanced for each interval. They are used to evaluate the performance of RQENN. Where 
the average tokens length and maximum length of all 5000 data are 64 and 90 respectively. The number of data 
with different labels in each interval is balanced. They are used to evaluate the performance of RQENN. Among 
them, the average token length and maximum length of all 5000 data are 69 and 100 respectively.

Simulation setup
Our simulations use mindspore as the neural network framework in the Ubuntu environment, and use mind-
quantum to simulate quantum circuits. All implementations are based on Python language.

We use a fivefold cross-validation method to partition the dataset and test the performance of the model. 
The size of the dictionary is set to 128, so we use 7 qubits to construct the circuit of RQENN. The time step T is 
set to the longest length of the token sequence in the selected interval, and the token sequences are padded to 
the uniform length to support batch processing. We set the training batch size to 64 and the maximum epoch to 
10. We use the cross-entropy loss function and the Adam optimizer with a learning rate of 0.01 for training. We 
use accuracy as the metric to evaluate the model performance. All simulations are performed on a server with 
an 8-core 3.60 GHz Intel(R) Core(TM) i7-7820X CPU and TITAN RTX GPU.

Research questions and results
Our simulations are designed to study the following Research Questions (RQ):

RQ1 How does the composition of RQENN affect the model’s performance in vulnerability detection tasks?

We conducted two ablation experiments on the full dataset using a fivefold cross-validation approach to 
explore the effect of the composition of RQENN on the model performance, with T = 100 in both simulations. 
In the first simulation, we conduct an ablation experiment for the number of network layers. We test the effect 
of using different numbers of QEmbedding and QWeight layers on the performance of the RQENN model in 
the vulnerability detection task, respectively. Figure 5 shows a heatmap of the median of the best test accuracy 
for models using m QEmbedding layers and n QWeight layers in the five-fold cross-validation of vulnerability 
detection task.

The simulation results show that the best median test accuracy of the model tends to increase in general as m 
and n increase. When m = 4 and n = 4 , the best median test accuracy of the model reaches the highest 87.4%. In 
some cases, even if the number of layers increases, the accuracy decreases. For example, the best median accuracy 
of RQENN with m = 6 and n = 6 is lower than that of RQENN with m = 3 and n = 3 . This suggests that the 
reason that affects the performance of the model is not only that models with different numbers of layers have 
different numbers of trainable parameters, but also that different numbers of QEmbedding and QWeight layers 
themselves have different representational capabilities, which directly affect the size of the solution space of the 
model, thus leading to different best accuracies.

In the second simulation, we perform ablation experiment for the encoding method. We train the model 
using original binary index data, data generated by the orthogonality method, and parameterized binary index 
data inputs, respectively, to study the improvement of RQENN ( m = 4 and n = 4 ) by using trainable encoding 
method. where the orthogonality method fixes the parameters of the parameterized binary index to θ0 = −π

2
 

and θ1 = π
2

 . We plot boxplots of the best test accuracy in five-fold cross-validation for models using different 
data inputs in Fig. 6.

The simulation results show that the median of best test accuracy of the model using the orthogonal method 
is 77.8%, which is 2.4% higher than the 80.2% of the model using binary index. This shows that using the fixed 
angles for rotation gates obtained by the orthogonality method ( θ0 = −π

2
 and θ1 = π

2
 .) instead of the angles 

( θ0 = 0 and θ1 = 1 ) from the original data reduces the effect of the constant non-lexical connections between |ψ1� 
of different words on the model’s ability to learn the meaning of code tokens to some extent. It makes RQENN 
perform better. And the median of the best test accuracy of the model using parameterized binary index data 
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reached 87.4%, which improved the RQENN by 9.6% compared to the original binary index data. This proves 
the effectiveness of parameterized binary index. The two angles used in the rotation gates participate in the 
training process of the model, allowing |ψ2� obtained by the quantum word embedding to better represent the 
meaning of the code.

In summary, the number of QEmbedding and QWeight layers of RQENN and the encoding method affect 
the performance of the model in vulnerability detection. Within a certain range, the accuracy of the model tends 
to increase with increasing number of layers and reaches its best at m = 4 and n = 4 . Using trainable encoding 
based on parameterized binary indexes is a crucial factor in improving model performance.

RQ2 What are the advantages and limitations of RQENN compared with classical models in vulnerability 
detection tasks?

In this research problem, we compare the performance of RQENN and the classical RNN model on the 
vulnerability detection task and analyze the differences in memory consumption between the two in order to 
explore the advantages and limitations of RQENN over the classical model. In this process, RQENN uses the best 
performing layers ( m = 4 and n = 4 ) from the previous section. As a comparison, the classical RNN network 
and RQENN perform training with the same settings for all hyperparameters and use the same dictionary. The 
word embedding dimension and hidden dimension of RNN are both set to 128, which is the same as the vector 
dimension represented by the quantum state in RQENN.
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QWeight layers.
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For the performance of the models in the vulnerability detection task, we first conduct simulation on the 
full dataset, and the results in Fig. 7 show the average training loss and test accuracy changes of RQENN and 
RNN for 10 epochs of training in a five-fold cross-validation. The simulation results show that the two models 
demonstrate similar convergence speeds during training, with the RNN having a slightly lower training loss. 
On the test dataset, RQENN achieves a best test accuracy of 85.4%, which is slightly lower than RNN’s 86.1%.

Next, we test two models separately in datasets with different length intervals to investigate the effect of code 
length variations on model performance. The normalized code gadgets are divided into intervals from length 
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train on the full dataset with a batch size of 64, using the Adam optimizer. We plot the training loss over 630 
iterations and the validation accuracy over 10 epochs.
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are trained for 10 epochs on each interval.

Table 1.   Classical information amount and space complexity of the two models at each stage of execution.

Model’s execution stage
Equivalent classical information 
dimension Space complexity of RNN Space complexity of RQENN

Building dictionary N O(N) O(log2N)

Inputting one-hot vectors ( |ψ1�) N × T O(N × T) O(log2N × T)

Embedding word vectors ( |ψ2�) d O(d) O(log2d)

Getting hidden states h O(h) O (log2h)
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40 to 100 with interval size �r = 10 . We use dimensionally equivalent RNN as a comparison, and all hyperpa-
rameters of the experiment are set the same as RQENN.

Figure 8 illustrates the median of best test accuracy of both models in different intervals. The results 
show that as T increases, RQENN outperforms RNN in intervals of T ≤ 80(�r = 10) . And in the interval of 
T ≥ 90(�r = 10) , RNN performed better. This shows that RQENN has better vulnerability detection capabilities 
on shorter code lengths, and is worse than RNN on longer code. In addition, the test accuracies of RQENN in 
intervals with smaller size of �r = 10 are all higher than the test accuracy of �r = 50 in RQ1, which indicates 
that data padding also affects the model performance to some extent.

For the differences in memory consumption of the models, due to the fundamentally different computational 
systems on which they are based, we estimate and compare their memory consumption from multiple perspec-
tives of the equivalent classical information dimension processed and the space complexity at each stage of the 
model’s execution, the number of parameters, and the bit/qubit consumption.

First, we compare the equivalent classical information dimension processed and the space complexity at each 
stage of the models’ execution. As shown in Table 1, the equivalent classical information dimension processed 
at different execution stages of the two models is the same, but the space complexity is different. At the stage of 
building dictionary, building a dictionary containing N  words requires O(N  ) space for RNN, while RQENN 
requires only O(log2N  ). At the inputting stage, for a code sequence of T tokens where the dimension of each 
token vector is N , the equivalent classical information dimension processed by the models is N × T , the space 
complexity of RNN is O(N × T ), while that of RQENN is only O(log2N × T ). At the stage of embedding word 
vectors and getting hidden states, the equivalent classical information dimensions carried by the embedding vec-
tors and hidden states are d and h , respectively, and the space complexity of RNN is O(d ) and O(h ), respectively, 
while the space complexity of RQENN is O(log2d ) and O (log2h) , respectively. Therefore, the space complexity 
of RQENN is exponentially reduced compared to the classical model at different stages of the model.

Second, we compare the number of parameters of the two models. In classical neural networks, the number 
of parameters directly determines the memory consumption. The RNN model is set up to have the same word 
embedding and hidden dimensions as RQENN, but they have a vastly different number of trainable parameters. 
The weight tensor of h × h dimension in classical RNN can be represented in RQENN using the unitary opera-
tor which only contains a small number of trainable parameters. Table 2 demonstrates the number of trainable 
parameters for both models.

The parameters of RNN contain three parts: word embedding, recurrent cell, and output dense layer. It 
contains a total of 49,666 trainable parameters. The parameters of RQENN contain three parts: input rotation 
layer, QEmbedding layer, and QWeight layer (recurrent cell), which contain a total of 106 trainable parameters. 
The number of parameters of the word embedding and recurrent cell used in RNN is 16,384 and 33,024, respec-
tively, while the corresponding number of parameters of the RQENN part is 56 and 48, respectively. Therefore, 
the number of parameters used in the vulnerability detection model based on RQENN is reduced dramatically 
compared to the classical model (only 0.21%).

Lastly, we compare the models in terms of the number of classical or quantum bits required. Each parameter 
of type float 32 in the RNN model occupies 32 classical bits. Thus RNN needs to occupy 1,585,216 classical bits 
for inference computation. Whereas the RQENN model uses only 7 qubits for inference computation. Although 
classical bits and qubits are fundamentally different, this comparison also reflects to some extent the huge dif-
ference in memory consumption between the two models.

In summary, compared to the classical model, the advantages of the RQENN-based vulnerability detection 
model are: the RQENN model has a significant advantage in memory consumption, the space complexity at its 
each execution stage is exponentially reduced, the number of parameters used and the number of bits consumed 
are substantially less than the classical model. The limitations of the RQENN-based vulnerability detection 
model are: the RQENN model is slightly less accurate than the classical RNN, and its vulnerability detection 
performance is more sensitive to the code length compared to RNN, its detection performance on long code is 
worse than that of RNN.

RQ3 Compared with other QNLP models, does RQENN have more advantages in vulnerability detection 
tasks?

We conducted extensive simulations on different intervals of the dataset. In addition to the DisCoCat model, 
we also consider the QLSTM model. Their specific implementation is as follows:

•	 DisCoCat. We use the lambeq51 open source framework to implement DisCoCat diagram for testing. This 
method adopts a categorical distributional compositional model to construct quantum circuit for language 

Table 2.   Comparison of the number of trainable parameters for two models used in vulnerability detection.

Model RNN RQENN

Parameters in input layer 0 2

Parameters in word embedding layer 16,384 56

Parameters in the recurrent cell 33,024 48

Parameters in the output layer 258 0

Total number of parameters 49,666 106
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modeling. First, the grammatical reduction of a sentence is interpreted as a diagram that extracts sentence 
semantics by encoding specific interactions of words according to the grammar. The sentence diagram is 
then rewritten to simplify the diagram and optimize the use of quantum resources. Finally, depending on the 
particular parameterization scheme and the specific choice of ansätze, the generated diagrams are converted 
into specific quantum circuits.

•	 QLSTM. We implement the QLSTM model proposed in ref. 47 and test it. The implementation method is 
to use variational quantum circuits to replace the trainable parameters in the classic LSTM Cell. Each cell 
requires 6 VQCs. QLSTM uses classical activation functions. It inputs classical data into VQCs during train-
ing, measures the internal state and returns it to classical, and cycles this process between different VQCs. 
In order to enable QLSTM to perform vulnerability detection tasks, we use a classic embedding layer to 
obtain the vector representation of words to input into QLSTM, and we add a classic dense layer and a batch 
normalization layer for post-processing. The word embedding dimension is 128, all VQCs use 7 qubits, and 
the data is input into VQCs using classical dense layer dimensionality reduction.

We test the detection ability of the three QNLP models on code sets with different length intervals, and the 
median of the best test accuracy obtained from the five-fold cross-validation are shown in Table 3. Due to the 
limitation of the simulator’s memory, it is hard to simulate enough qubits for DisCoCat diagrams. The DisCoCat 
model can only perform classification tasks of T = 20 at most. Therefore, we additionally selected 100 and 250 
data in the T = 10(�r = 10) and T = 20(�r = 10) data intervals for testing, respectively. The results show that 
RQENN outperforms DisCoCat and QLSTM in almost all length intervals. All three QNLP models perform 
well in the detection task in the shortest two length intervals. In the detection task at longer lengths, RQENN 
shows better accuracy compared to QLSTM. In the task of complete dataset of length interval ranging from 40 
to 100, RQENN has a 15.7% higher accuracy than QLSTM, which shows that data padding has less impact on 
RQENN and the model has better stability. These results show that RQENN is more efficient compared to other 
existing QNLP methods, and its performance advantage comes from (a) the trainable encoding method based on 
parameterized binary index substantially enhances the semantic understanding of the model, making it possible 
to learn code data using a recurrent structure on quantum circuits, and (b) the recurrent structure of RQENN 
endows the model with a stronger long-term memory capability.

Therefore, our proposed RQENN has better performance and stability on the vulnerability detection task 
compared to other QNLP models. In addition, RQENN uses fewer qubits than DisCoCat. DisCoCat requires 
an average of 12.8 and 23.4 qubits on the T = 10(�r = 10) and T = 20(�r = 10) datasets respectively (varying 
among sentences), while the number of qubits used by RQENN is only 7. RQENN performs fewer VQCs and 
measurement operations than QLSTM. One forward propagation of QLSTM requires executing multiple different 
VQCs, measuring all qubits, and transferring information between classical and quantum, which leads to inef-
ficiency. While RQENN only needs to perform one VQC and measurements on two qubits to complete the task.

Discussion
In this work, we propose a trainable encoding method based on parameterized binary index. On this basis, we 
construct a recurrent quantum embedding neural network model for vulnerability detection. Simulations and 
analysis show that the memory consumption of RQENN is significantly lower compared to the classical model, 
and RQENN consumes fewer qubit resources and has higher accuracy compared to other QNLP methods. The 
ablation experiments reveal that using trainable encoding based on parameterized binary index is a crucial factor 
in improving model performance. Also, the number of QEmbedding and QWeight layers affects the performance 
of the model in vulnerability detection. These results suggest that RQENN solves to a certain extent the problems 
of (a) high memory consumption of classical models, (b) difficulty of QNN in handling natural language and 
(c) poor performance of existing QNLP methods in vulnerability detection. RQENN achieves our preset goals.

However, our work still has some limitations. First, RQENN itself has limitations. This is manifested in (a) 
RQENN’s accuracy in vulnerability detection tasks is slightly lower than that of classical RNN, and this gap is 
further widened when compared to more advanced methods. For example, the best performance of LSTM in 
terms of average test accuracy in five-fold cross-validation is 89.7%, and BERT reaches 92.0% (although RQENN 
still leads in memory consumption). (b) RQENN vulnerability detection performance is more sensitive to code 

Table 3.   The median of best test accuracy of three QNLP models on data of different length intervals.

Model DisCoCat (%) QLSTM (%) RQENN (%)

T = 10(�r = 10) 95.0 95.0 100

T = 20(�r = 10) 98.0 90.0 98.0

T = 50(�r = 10) – 95.0 99.0

T = 60(�r = 10) – 74.0 92.0

T = 70(�r = 10) – 68.5 88.0

T = 80(�r = 10) – 85.5 90.0

T = 90(�r = 10) – 79.0 89.5

T = 100(�r = 10) – 76.0 88.5

T = 100(�r = 60) – 71.7 87.4
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length compared to RNN, with worse detection performance on long code than RNN. Second, RQENN’s learn-
ing process is based on the Quantum Circuit Learning (QCL) paradigm18, which causes it to suffer from similar 
difficulties as other QNNs employing this paradigm. This is demonstrated by the fact that (a) the QCL learning 
paradigm is unable to utilize quantum parallelism to process multiple examples at the same time, and thus the 
training time remains linearly increasing with the amount of data. (b) The performance of QCL-based QNN 
models is affected by the noise of the quantum hardware. While QNNs are inherently noise tolerant, the effect of 
noise accumulates as the VQC scale (or quantum volume) increases. Considering the circuit depth of RQENN, 
the impact of noise is undoubtedly significant, which directly weakens the stability and reliability of vulnerability 
detection results. (c) Limited by the quantum volume of the quantum hardware, the current QCL-based QNN 
model has a limitation on the number of qubits and depth of the circuit. RQENN has a deep circuit although 
it uses a sufficiently small number of qubits. This means that RQENN is only likely to be able to execute small 
examples on current quantum machines, with limited scalability for larger codebases.

Therefore, RQENN needs to be further improved. First, the trainable encoding method and the structure of 
RQENN need to be further improved to enhance its semantic comprehension and long-term memory. Second, 
the circuit depth of RQENN needs to be reduced to increase its scalability. This can be achieved, for example, 
by encoding multiple consecutive tokens within a single recurrent cell. Finally, to enhance the stability and reli-
ability of the model on real quantum hardware, RQENN needs to be run in quantum hardware with high fidelity 
to reduce the accumulated noise. A small amount of noise can instead enhance the generalization ability of the 
model. This approach has realizability for RQENN since it uses only 7 qubits.

In addition, task-related research should be carried out further. First, in the vulnerability detection task, since 
the real-world has much less vulnerable code than normal one, the impact of dataset imbalance on RQENN 
needs to be further explored, and strategies such as data augmentation, cost-sensitive learning, sampling and 
integration learning need to be adopted to ensure the generalization of the results. Second, in order to have a 
more comprehensive understanding of the performance of RQENN, we need to conduct in-depth studies and 
detailed analysis of its application in various QNLP tasks on more datasets. We will embark on the above studies 
in the next step of our work.

In summary, our work expands new approaches of quantum computing for cyber security and natural lan-
guage processing, and validates new applications of quantum computing in cyber security. We open up a new 
direction of QNLP technology that is different from the DisCoCat diagram model, and demonstrate the possibil-
ity of applying QNLP technology with quantum advantages to real-world tasks. We hope this work can inspire 
further research on QNLP technologies as well as their real-world applications41.

Data availability
All the data that support the findings of this study are available from the corresponding authors upon reason-
able request.
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