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Abstract

Within the last decade, we have been able to observe our universe with incredibly

high precision. Nevertheless, there are theoretical problems that still do not have

an answer. In this thesis, we have studied the issue of the initial conditions of in-

flation, and we proposed a model for which they arise naturally as an attractor.

It is achieved by considering the interaction of the inflaton with a thermal bath

of particles, which are in equilibrium with the horizon temperature. If inflation

happens at high energies, the electroweak vacuum is unstable. Therefore, we stud-

ied how fermions help make the Standard Model more stable, by calculating their

gravitational creation during inflation.
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Chapter 1

Introduction

In the last century, research in the fields of particle physics and cosmology has led

us to describe the universe, as we know it, by two great theories: the standard

model of cosmology (ΛCDM), also known as Concordance Model, and the Standard

Model (SM) of particle physics. The former explains the dynamical evolution of our

universe as a whole, whilst the latter describes the content of the matter that we

can study on Earth.

ΛCDM model is a gravitational theory for a homogeneous and isotropic universe

which is exceptionally accurate with its predictions [1]. It tells us that the universe

is 13.8 billion years old. Soon after the beginning of the universe, observations in-

dicate that the universe was almost uniform with small perturbations. These tiny

perturbations grew to give the cosmos its rich structure: galaxies, galaxy clusters,

planets and stars. We study the first light emitted about 380 000 years after the

initial singularity, which is called the Cosmic Microwave Background (CMB), to

obtain information about the early universe. It was discovered in 1965 by Penzias

and Wilson [2] for which they later won the Nobel prize in 1978. The CMB radi-

ation is homogeneous and isotropic with a blackbody spectrum at a temperature

of T = 2.7K. The anisotropies of this radiation were later studied by the COBE

satellite [3] in 1992, which led to John C. Mather and George F. Smoot to gain the

Nobel prize in 2006 for the discovery of the blackbody form and anisotropy of the

CMB. An extensive study of these perturbations was later done by two satellites:
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the American WMAP [4] in 2001 and the European PLANCK [1] in 2009. While

phenomenologically ΛCDM is a very successful model, there are still various theo-

retical drawbacks yet to be explained, such as the nature of dark matter needed to

explain the formation of cosmological structures, dark energy to solve the current

accelerated expansion of the universe and an extension to justify the initial condi-

tions of the universe; being inflation one of the most popular, which we will study

later in this thesis.

The Standard Model of particle physics explains quantum-mechanically three

fundamental interactions, electromagnetism, weak and strong forces (the forth is

gravity described by General Relativity). They are responsible for the structure of

atoms, its decay and the structure of quarks within the nuclei of the atom, respec-

tively. The last missing particle to be discovered and complete the Standard model

was the Higgs boson in 2012 [5,6], predicted in 1964 by Peter Higgs [7], Englert and

Brout [8] and Guralnik, Hagen and Kibble [9], which consequently lead to the Nobel

prize in 2013 to be awarded to Higgs and Englert. The Higgs boson is responsible

for giving all massive SM particles a mass. Even though the SM is able to repro-

duce precise experimental tests, there are also some caveats. It can not explain the

masses of the neutrinos, there is a hierarchy problem between the SM and gravity,

and it does not point towards a successful grand unified theory (GUT), as many

physicists would like.

It is of crucial importance to understand these theories in situations where they

both apply, as in the early universe.In this thesis, we are going to address the issue

of combining these two theories in the early universe, when the energies were so high

that instead of planets and stars, the universe was filled with a primordial “soup” of

particles. We will elaborate on a model of inflation, taking into account the Hawking

radiation, as well as studying the behaviour of the Higgs fields in this early high

energetic environment.

In the rest of this chapter, we will introduce the basis of cosmology, the issues

of the early universe, and how inflation can provide a solution. It will lead us to the

concept of gravitational particle creation by a dynamic background metric, and we
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will relate it to the anisotropies in the CMB. Finally, we will illustrate the relevance

of the Higgs in the SM and its problem in the early universe.

Useful notation in this thesis: we are going to use natural units where ~ = c = 1,

for which the reduced Planck mass is MP =
√

~c
8πG

= 2.4·1018GeV. We use df/dt ≡ ḟ

for time differentiation and df/dx ≡ f ′ for the other differentiations. log is for

decimal logarithm and ln for the natural one. Greek indices µ, ν... runs from 0 to 4

whereas latin indices i, j... go from 1 to 3.

1.1 Cosmology

In 1915, Einstein published his equations of motion of gravity [10]

Rµν −
1

2
gµνR = 8πGTµν , (1.1)

where G is the gravitational constant (G = 6.67 × 10−11m3kg−1s−2), Rµν the Ricci

tensor, R the Ricci scalar and Tµν the stress energy tensor. The left hand side of

the equation is related to the metric and determines the space-time curvature of the

universe, whereas the right hand side is given by the matter content of the universe.

Einstein equations of motion in vacuum can be derived from the Einstein-Hilbert

action by varying the action with respect to the metric gµν

Sg =

∫
d4x
√
−gM

2
PR

2
, (1.2)

where g = det(gµν).

By taking the covariant derivative of Eq. (1.1) and using the Bianchi identity,

the Einstein equations imply the continuity equation

∇µT
µν = 0 . (1.3)

Modern cosmology is based on the evidence that at large scale (larger than 300

million light years [11]) the universe is homogeneous and isotropic. Different ex-

periments have corroborated these assumptions. One is the identically observed
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temperature of the CMB, another is the distribution of galaxies around us mea-

sured by the 2dF Galaxy Redshift Survey [12] (see Fig. (1.1)).

Figure 1.1: Each dot is a galaxy with the Earth in the center of the map. It shows the
spatial distribution of galaxies as a function of redshift from the 2dF Galaxy
Redshift Survey [12]. On small scales the distribution is inhomogeneous but
becomes more homogeneous on large scales.

It points out that when averaged over large distances, the distribution of galaxies

is independent of the direction (isotropic). Also to any free-falling observer, inde-

pendently of his position, the universe is going to look isotropic, resulting in the

universe being homogeneous as well.

Our universe is expanding with time, galaxies move away from each other as time

passes. Then we can decompose space-time in slices of constant time that are ho-

mogeneous and isotropic (foliation). The metric for such a universe is called the

Friedmann–Lemâıtre–Robertson–Walker (FRW) metric [13,14]

ds2 = −dt2 + a(t)2

(
dr2

1−Kr2
+ r2

(
dθ2 + sin2(θ)dφ2

))
. (1.4)

The function of time, a(t), is called scale factor and determines the expansion of the

universe, and K is the spatial curvature. If K = 0 the universe is flat, K > 0 if it

is closed and K < 0 for an open universe. The coordinates xi = {r, θ, φ} are called

co-moving coordinates as they co-move with the expansion of the universe. Physical
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coordinates are defined as xiphys = a(t)xi.

It is useful to define the Hubble parameter, H ≡ ȧ/a, which is the rate of expansion

of the universe, as well as the number of e-folds of expansion, Ne = ln af/ai between

an initial time ai = a(ti) and a final time af = a(tf ); in differential form it is defined

as dNe = d ln a = Hdt. Instead of using t as a time coordinate, sometimes is useful

to use the conformal time, defined as dη = dt/a(t), which will make the metric look

similar to a Minkowski space-time, ds2 = a(η)2(−dη2 + dx2).

The notion of the horizon is also important. Two points in space are causally

connected if, in a given time interval, light can travel between both points. Since

light follows null geodesics (ds2 = 0), we can define a horizon as dp =
∫
dr =∫

dt/a(t); it tells us the maximum comoving distance at which past or future events

are causally connected. For past events we call it particle horizon and for future

events we use event horizon.

dp =

∫
dt

a(t)
=

∫
(aH)−1d ln a . (1.5)

One important extra definition is the integrand, which is the Hubble radius,

RH = (aH)−1 = 1/ȧ.

Given the FRW metric, we can study the left-hand side of Einstein equations.

For the right-hand side, we need to study the content living in that space-time via

the stress-energy tensor, Tµν . In cosmology, we study the evolution of the universe

as a whole, which is composed of a vastly large number of galaxies, clouds and

elementary particles ultimately. While in principle it is possible to study all of them

individually, it is more convenient to treat them as a continuum and describe them

as a fluid, by studying their macroscopic properties such as density and pressure.

The stress-energy density for a perfect fluid is

T µν = (ρ+ p)UµUν + pδµν , (1.6)

where Uµ is the fluid 4-velocity, ρ the energy density and p the isotropic pressure.
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For a co-moving observer to the FRW metric, Uµ = (1, 0, 0, 0), we can easily see

that the energy density is ρ = −T 0
0 and the pressure is p = T ii .

The equation of state of a fluid is defined as w = p/ρ, which is always a number

between +1 and −1. There are three types of matter that are important to mention:

1. w = 0 is called cold matter, for fluids formed of non-relativistic particles

(v � 1). It is the case of dark matter and baryons.

2. w = 1/3 is called radiation, for fluids formed of relativistic particles (v ≈ 1).

It is the case of photons, neutrinos and gravitons.

3. w = −1 for fluids with negative pressure. It is the case for a cosmological

constant and dark energy.

1.1.1 Friedmann equations

The Friedmann equations are the Einstein equations in the FRW metric for a uni-

verse filled with a perfect fluid

H2 =
ρ

3M2
P

− K

a2
, (1.7)

Ḣ +H2 = −ρ+ 3p

6M2
P

. (1.8)

From the continuity equation (1.3) we are mostly interested in the first one with

index ν = 0

∇µT
µ0 = 0 → ρ̇+ 3H(ρ+ p) = 0 . (1.9)

Out of these three equations (1.7), (1.8) and (1.9), only two are independent.

For a universe filled with a fluid with equation of state w, the solution of the con-

tinuity equation (1.9) is ρ ∝ a−3(1+w). Similarly we define an equation of state for

the curvature (K), as a fluid with equation of state w = −1/3 in order to make this

fluid redshift as the curvature term does in Eq. (1.7).

By solving the first Friedmann equation (1.7) and using the previous solution for the

continuity equation (1.9), we get a ∝ t2/3(1+w) for w 6= −1 and a ∝ eHt for w = −1.
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See the table below for a summary of these solutions for the most important equa-

tions of state.

w ρ(a) a(t) a(η)

0 a−3 t2/3 η2

1/3 a−4 t1/2 η

-1 const. eHt −1/η

1.1.2 ΛCDM

Observations constrain the current content of the universe in what is called the

ΛCDM (Lambda Cold Dark Matter) model [1]. Defining the dimensionless density

parameter

Ω =
ρ

ρc
; ρc = 3H2

0M
2
P , (1.10)

where H0 is the current observed Hubble parameter H0 = 67.4 km s−1Mpc−1 =

1.4 · 10−42GeV [15]. Observations indicate that [15]

Ωm = 0.31 , ΩΛ = 0.68 , Ωr = 9 · 10−5 , |Ωk| < 0.01 , (1.11)

where subscript m is for matter, Λ for dark energy, r for radiation and k for the

curvature density parameter.

The dark energy is modelled as a cosmological constant, w = −1 (Λ), currently dom-

inating the energy budget of the universe. The matter in the universe is composed

by dark matter (85%) and baryons (15%). Radiation nowadays has a subdominant

contribution to the energy budget of the universe and curvature is so small that can

only be constrained to be smaller than 1%, therefore the universe is assumed to be

flat (K = 0).

1.2 Inflation

Despite the success of describing the current state of the universe, the ΛCDM model

leaves us with three important problems to solve, the horizon, flatness and monopole
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problems, addressing the questions of what initial conditions seem likely for the Big

Bang. Alan Guth [16] proposed the theory of inflation to solve them which later on

was improved by Linde [17] and Albrecht & Steinhardt [18].

Inflation is a theory that describes the very early universe. One of the most appealing

features of inflation is not that it solves these three problems, but as a consequence,

it also gives us a natural mechanism to explain the density perturbations in the

CMB (see Fig. (1.2)).

P
S
fr
a
g
re
p
la
ce
m
en
ts

-300 300 µK

Figure 1.2: The temperature of the CMB is on average TCMB = 2.7K. In this map by
Planck [1] we can see the anisotropies on top of TCMB. The scale of this
inhomogeneities is O(100)µK, five orders of magnitude smaller than TCMB,
from which we can assume than the universe is homogeneous on large scales.

In this section, firstly we will describe the three problems that inflation solves and

how they can be solved, then we will explain the slow-roll dynamics of inflation and

finally how we can obtain the correct spectrum of perturbations.

1.2.1 Three problems of the Big Bang theory

1.2.1.1 Horizon problem

The CMB is the first light that we can observe after the Big Bang. It was emitted

at the time when electron and protons form bounded structures, Hydrogen atoms.

Since then, the photons can travel freely until today. One of the most remarkable

characteristics of the CMB is its isotropy. Today it is measured to be T = 2.7K
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with perturbations of the order of δT/T ∼ 10−5.

If we compare the size of the particle horizon from today to the time when the

CMB was emitted, dp(t0) =
∫ t0
tCMB

dt
a(t)

with the comoving particle horizon at

recombination, dp(tCMB) =
∫ tCMB

0
dt
a(t)

, we can show that dp(t0) � dp(tCMB),

in particular the angle subtended by the comoving horizon at recombination is

θ = dp(tCMB)/dp(t0) = 1.16◦. Therefore we should not observe correlations in the

CMB for angles larger than 2 degrees, then how can the temperature of the CMB

be 2.7K everywhere to a five-digit precision? This is the so-called Horizon problem.

To solve this, we need to realise that for a universe dominated by a fluid with an

equation of state w, the Hubble radius is RH ∝ t1−
2

3(1+w) . Therefore the Hubble

radius grows for w > −1/3 and shrinks for w < −1/3.

The Horizon problem can be solved if we introduce a period of decreasing Hubble

radius with time, which will make the particle horizon at recombination much larger.

This condition is equivalent to the introduction of an accelerated expansion of the

universe or to a period dominated by a fluid with equation of state w < −1/3. This

also implies that ε ≡ −Ḣ/H2 < 1.

d

dt
(aH)−1 < 0 ↔ d2a

dt2
> 0 ↔ w < −1/3 ↔ ε = − Ḣ

H2
< 1 . (1.12)

All of these conditions are equivalent to each other and define a period of inflation

needed to solve the Horizon problem and, as we will see, they will solve the other

Big Bang problems.

The next question to answer is how long does inflation need to last. The

requirement is that at least our current observable horizon (RH0) fits inside the

Hubble radius at the start of inflation, RHI > RH0 . Now, for simplicity, we assume

that the universe has always been dominated by radiation (H ∝ a−2), then the

Hubble radius at the end of inflation (RHE) is related with today’s Hubble radius as

RHE =
a0H0

aEHE

RH0 =
aE
a0

RH0 ≈
T0

TE
RH0 = 10−28RH0 , (1.13)

where today’s temperature T0 = 2.7K ≈ 10−4eV and we have estimated a tempera-
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ture at the end of inflation TE = 1015GeV. In the first approximation we have used

the fact that the temperature redshifts like T ∝ a−1. Since during inflation ε < 1,

we can approximately say that HE ≈ HI , then RHI = aE
aI
RHE = aE

aI
10−28RH0

aE
aI

> 1028 ↔ ln
aE
aI

> 64 . (1.14)

Therefore inflation needs to last for at least 60 e-folds.

1.2.1.2 Flatness problem

From the Friedmann equations (1.7), we get

Ω− 1 =
k

(aH)2
= kR2

H . (1.15)

It has been measured |1 − Ω(a0)| < 0.01 (1.11). It indicates that the universe is

effectively flat nowadays. If the universe is dominated by matter or radiation, the

contribution from the curvature to Ω will grow with time (as RH does), meaning

that the universe was even flatter before.

Rmatter
H ∝ t1/3 , (1.16)

Rrad
H ∝ t1/2 . (1.17)

In particular, at the Planck time (tpl ∼ 10−43 seconds), |1 − Ω(tp)| < 10−42 or

|1−Ω(tp)| < 10−62 respectively for a matter or radiation dominated universe, since

our universe undergoes a radiation period followed by a matter-dominated era, the

real number is in between these two estimates. Then to solve the flatness problem,

we need to propose a theory that explains why the universe was so flat at early

times. Similarly to the solution of the Horizon problem, it can be solved with a

period where the Hubble radius decreases with time, so whichever configuration

we had initially, inflation drives our universe towards a flat configuration. During

inflation for w = −1
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Ω− 1 = kR2
H ∝ e−2Ht . (1.18)

We need at least 60 e-folds of inflation to solve the Horizon problem, that means

that for the flatness problem, whatever initial configuration of the curvature of the

universe is, by the end of inflation, it is going to be smaller by a factor 10−56. We

conclude that by solving the Horizon problem, we also solve the flatness problem.

1.2.1.3 Monopole problem - Unwanted relics

There is another problem that is usually found in the literature, the monopole

problem [19–21]. A monopole, or any other topological defect, arises when a phase

transition takes place early in the history of the universe. If there is a Grand Unified

Theory (GUT) unifying Standard Model (SM) gauge groups at high energies, early

in the history of the universe, a phase transition will occur, and generally, we expect

monopoles to be produced. These monopoles would dominate the energy density

of the universe before helium synthesis [19], something that has been disproved by

experiments. Since we do not observe any of these topological defects, we need a

mechanism to wash them out. This principle also applies to any other unwanted

relic of particles or topological defects.

The energy density is diluted as ρ ∝ a−3(1+w). For inflation, we require w < −1/3,

so for any unwanted relic with an equation of state larger than the one for inflation,

its energy density is going to be incredibly reduced after 60 e-folds of inflation.

1.2.2 Scalar field dynamics

The scalar field that is going to drive inflation is called the inflaton (φ), with action

Sφ =

∫
d4x
√
−gLφ ; Lφ = −1

2
gµν∂µφ∂νφ− V (φ) , (1.19)

where V (φ) is the inflaton potential and g the determinant of the metric gµν . The

equation of motion for the inflaton is obtained by varying the action with respect
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to φ. For a FRW metric we get

φ̈− ∇
2φ

a2
+ 3Hφ̇+

dV

dφ
= 0 , (1.20)

where ∇2 is the Laplacian. For consistency with the FRW symmetries we impose

a homogeneous field distribution throughout the universe at the background level

φ(t,x) = φ(t), then ∇2φ = 0. To recover the Einstein equations of motion, the

stress energy density is

Tµν = −2
∂Lφ
∂gµν

+ gµνLφ . (1.21)

For the inflaton Lagrangian (1.19) then

T µν = ∂µφ∂νφ− δµν
(

1

2
gαβ∂αφ∂βφ+ V (φ)

)
, (1.22)

a homogeneous scalar field can be studied as a perfect fluid, with the diagonal terms

of the stress energy tensor corresponding to an energy density and pressure

ρ =
1

2
φ̇2 + V (φ) , (1.23)

p =
1

2
φ̇2 − V (φ) . (1.24)

The Friedmann equations for the inflaton field are,

3H2M2
P =

1

2
φ̇2 + V (φ) , (1.25)

−2ḢM2
P = φ̇2 . (1.26)

Inflation occurs for w < −1/3 (1.12). If w = −1, we can see that the inflaton

has only potential energy, then it is just a cosmological constant, the space-time in

this case is the de-Sitter solution to the Einstein equations. When the potential

is not constant, the inflaton can acquire kinetic energy, then −1 < w < −1/3 and

the space-time is called quasi de-Sitter. In a quasi de-Sitter scenario, the inflaton

slowly increases the kinetic energy up to ε = 1, point at which inflation ends. After
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inflation we need to transfer all the energy in the inflaton to SM particles, this epoch

is called reheating.

1.2.2.1 Slow-roll

Slow-roll parameters are defined as

εn+1 =
d ln εn
dNe

; ε ≡ ε0 = −d lnH

dNe

, (1.27)

where Ne is the number of e-folds and H is the Hubble parameter. From the infla-

tion conditions (1.12) we know that ε < 1 and we need to maintain it for at least

60 e-folds, then we impose that ε does not change too much with time, meaning

|ε1| < 1.

The slow-roll approximation takes the conditions {ε, ε1} � 1, to simplify the Fried-

mann equations of motion for the inflation.

ε = 3
1
2
φ̇2

1
2
φ̇2 + V (φ)

� 1 , (1.28)

ε1 = 2
φ̈

Hφ̇
− 2

Ḣ

H2
� 1 . (1.29)

The first equation tells us that the kinetic term is smaller than the potential whereas

the second that the acceleration is smaller than Hφ̇.

Thus the equations of motion for the inflaton are simplified to be

3H2M2
P = V (φ) , (1.30)

3Hφ̇ =
dV

dφ
. (1.31)

Now with these equations of motion is much easier to study analytically the evolution

of the inflaton. It is convenient to define a new set of slow-roll parameters as a

function of the potential of the inflaton, using the definitions (1.28) and (1.29) and
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the approximations to the Friedmann equations (1.30) and (1.31)

εV =
M2

P

2

(
V ′(φ)

V

)2

, (1.32)

|ηV | = M2
P

|V ′′(φ)|
V

. (1.33)

Slow-roll inflation occurs for {εV , |ηV |} � 1.

In the next section we are going to relate these parameters with physical observables

that we can observe experimentally.

1.3 Perturbations in the CMB

So far, we have described the dynamics of a homogeneous and isotropic universe.

From CMB observations, we know that at the time of decoupling, the universe was

inhomogeneous at the level of one part in a hundred thousand. The inflation model

is able to generate these deviations quite naturally. In this section, we are going to

introduce how we quantify these perturbations. In Sec. 1.3.1 we will develop the

theory of quantum field theory in curved space-time needed to calculate them and

in Sec. 1.3.2 we will link the physical observables with the inflaton field.

The anisotropies are studied using perturbation theory, treating the background

evolution of the universe homogeneous and isotropic and on top of that small per-

turbations.

ρ(t,x) = ρ̄(t) + δρ(t,x) . (1.34)

Due to the symmetries of a spatially flat, homogeneous and isotropic universe, we

can decompose the metric perturbations in scalar, vector and tensor perturbations,

defined by their helicities [22]. At a linear level, each perturbation evolves indepen-

dently of the others, and we can study them separately.

For inflation, we are only interested in scalar and tensor perturbations, since vectors

perturbations are not sourced by inflation [22]. A crucial feature of this decom-

position is its non-uniqueness, which means we need to choose a gauge and all of

our physical observables need to remain gauge invariant. Otherwise we could find
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coordinate frames in which we create fictitious perturbations or even remove real

perturbations. Tensor fluctuations are gauge invariant but scalar perturbations are

not [22].

For scalars perturbations, we are only going to be interested in the curvature per-

turbation on uniform-density hypersurfaces, using the spatially flat gauge [22], it is

defined as,

ζ ≡ −H
˙̄ρ
δρ . (1.35)

The key feature of this quantity is that it does not evolve on super-horizon scales

(k � aH), for adiabatic matter perturbations. Therefore, it relates the perturba-

tions produced during inflation with the temperature fluctuations that we observe

in the CMB radiation.

ζ̇ = 0 for k � aH . (1.36)

Primordial scalar perturbations are studied by the power spectrum of ζ, obtained

from the 2-point correlator function

〈ζkζk’〉 = (2π)3δ(k + k’)Pζ(k) ; ∆2
s ≡ ∆2

ζ =
k3

2π2
Pζ(k) . (1.37)

The power spectrum has a scale dependence defined by the scale spectral index (also

called tilt)

ns − 1 ≡ d ln ∆2
s

d ln k
. (1.38)

If the power spectrum is scale invariant, then ns = 1.

It can be approximated as

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k)−1

, (1.39)
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where k∗ is a pivot scale, an arbitrary reference value for the k modes. From CMB

observations [1], we know that the scalar power spectrum 60 e-folds before the end

of inflation has to be

ln
(
1010As

)
= 3.047± 0.014 . (1.40)

Tensor perturbations have two polarizations (h+,h×). The power spectrum of

tensor perturbations is the addition of both

∆2
t = 2∆2

h = At(k∗)

(
k

k∗

)nt
. (1.41)

From observations we can put bounds on the ratio of tensor to scalar perturbations

r =
At
As

. (1.42)

In Fig. (1.3) we can see the current bounds on the tilt of the power spectrum of

primordial fluctuations and the tensor to scalar ratio. We know that ns < 1 but

for the tensor to scalar ratio we only have a bound since there is still no detection

of primordial gravitational waves. In the next section, we are going to study scalar

fields in curved space-time and show how can we relate ns − 1 and r to the inflaton

field.

1.3.1 Quantum field theory in curved space-time

We are going to study a spectator field. It is a field with a sub-dominant contribution

to the total energy density. It means that the backreaction of the field to the metric

is negligible. Therefore it is possible to quantise the field in curved space-time. We

will show how it leads to the concept of particle creation by gravitational fields and

also the production of primordial fluctuations during inflation.
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Figure 1.3: Plot by Planck [23] showing the current bound on the tensor to scalar ratio
for a pivot scale of k∗ = 0.002Mpc−1, r < 0.1 and the spectral tilt ns − 1 =
0.97. Current measurements disfavour a monomial inflaton potential with
exponent larger than one for a duration in between 50 to 60 e-folds. It also
favours a concave inflaton potential.

The total action of the system is

S = Sg + Sm =

∫
d4x
√
−gM

2
PR

2
+

∫
d4x
√
−gLm . (1.43)

The gravity action is not quantised, and the equations of motion for an FRW metric

are the Friedmann equations.

For a field φ(x), the canonical momenta is π(x) = ∂L
∂(∂tφ)

and the canonical

commutation relations hold the same as in Minkowski space-time. For a boson it
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would be

[φa(t,x), φb(t,x’)] = 0 , (1.44)

[πa(t,x), πb(t,x’)] = 0 , (1.45)

[φa(t,x), πb(t,x’)] = iδa,bδ(x− x’) , (1.46)

for fermions this is different and we will study them in chapter 3.

The Lagrangian density for a general real massive scalar field (φ) is [24,25]

L = −1

2
gµν∂µφ∂νφ−

1

2
m2φ2 +

1

2
ξRφ2 , (1.47)

where ξ is the non-minimal coupling of φ to gravity and R the Ricci scalar. There

are two important values for ξ: the field is minimally coupled to gravity for ξ = 0

and is conformally coupled for ξ = −1/6 (in four dimensions). In general this term

modifies the equation of motion of gravity, but for our scenario, where the field is

sub-dominant (ξφ2 �M2
P) it will not.

The corresponding equation of motion is the Klein-Gordon equation

(−�+m2 − ξR)φ = 0 . (1.48)

The inner product of two solutions to the equation of motion is defined as

(φ1, φ2) = i

∫
d3x
√
|g|φ∗1(x)

←→
∇ 0φ2(x);

←→
∇ µ =

−→
∇µ −

←−
∇µ . (1.49)

To solve the Klein-Gordon we decomposed the field in Fourier modes with an or-

thonormal basis {fi, f ∗i }, where {fi} is a complete set of positive norm solutions and

{f ∗i } is a complete set of negative norm solutions. Both are solutions to the wave

equation, we can write generically the solution to the Klein-Gordon equation as

φ =
∑
k

(akfk + a†kf
∗
k) , (1.50)
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where ak and a†k are the annihilation and creation operator, respectively, as defined

in Minkowski space-time. According to the canonical quantization (1.44) they need

to satisfy

[ak, a
†
k’] = δk,k’ ; [ak, a

†
k] = 0 . (1.51)

This expansion defines a vacuum state |0〉 such that ak|0〉 = 0 for any k.

The functions fi are the basis of the Fourier decomposition

fk(x) =
eik·x

(2π)3/2
y(t) . (1.52)

In flat spacetime we define the basis function y(t) as the set of solutions with a

positive frequency, which, independently of the Lorentz frame, let us define the

same and unique Minkowski vacuum state. In general relativity this choice is not

unique and the basis functions are not independent of our frame. But our vacuum

state (|0〉) does not change with time; this is the Heisenberg Picture. Then since our

basis functions change with time but our state does not, this implies that there is

a time dependence of the annihilation and creation operators. Therefore, in general

relativity, we can not uniquely define a vacuum solution. This characteristic of non-

uniqueness is essential for the concept of particle creation since we can not identify

a vacuum state with the notion of particle content. Now we will present an example

where we explicitly show how this leads to the concept of particle creation.

Let us consider a space-time which is asymptotically flat (Minkowski) in the

past and in the future in which we do not have a problem with the definition of a

vacuum state. We will denote the basis of the solution to the Klein-Gordon in the

asymptotic past as fi, and Fi for the future. It is commonly called the “in-region”

for the past and the “out-region” for the future. These two set of solutions form an
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orthonormal basis, which satisfy

(fi, fj) = (Fi, Fj) = δij , (1.53)

(f ∗i , f
∗
j ) = (F ∗i , F

∗
j ) = −δij , (1.54)

(fi, f
∗
j ) = (Fi, F

∗
j ) = 0 . (1.55)

Then we are able to express one basis as a linear combination of the other, such that

fj =
∑
k

(αjkFk + βjkF
∗
k ) , (1.56)

where α and β are called Bogoliubov coefficients.

The orthogonality conditions give us the relation

∑
k

αikα
∗
jk − βikβ∗jk = δij , (1.57)∑

k

αikαjk − βikβjk = 0 . (1.58)

The solution to the Klein-Gordon equation can be expressed in either basis

φ =
∑
i

(aifi + a†if
∗
i ) =

∑
i

(biFi + b†iF
∗
i ) , (1.59)

where a, a† are the annihilation and creation operators in the “in-region” and where

b, b† are the annihilation and creation operators in the “out-region”. In the same way

that we have related the “in” and “out” functions, we can also relate the creation

and annihilation operators.

The key concept here is that we have two set of annihilation and creation operators,

therefore there are two vacuum solutions, ai|0〉in = 0 and bi|0〉out = 0. This implies

the physical phenomena of particle creation by a gravitational field. A vacuum state

is defined initially in the “in-region” with the operators a, then at late times, the

state has not changed |0〉in (Heisenberg picture) but the solution of a vacuum state

at that time has changed and is defined by the operators b. They measure the
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number of particles in a state, thus the number of particles measured at late time

of an initial vacuum state is

Nk =in 〈0|b∗kbk|0〉in =
∑
i

|βik|2 . (1.60)

For concreteness if we study a scalar field as before (1.48) in a FRW metric using

conformal time, the Fourier decomposition is fk(x) = eik·x

(2π)3/2
h(η)
a(η)

, and we need to

solve

d2h(η)

dη2
+

(
k2 + a2(η)

(
m2 −

(
ξ +

1

6
R(η)

)))
= 0 , (1.61)

the inner product give us the norm for fk, translating in to the Wronskian

h(η)h′∗(η)− h∗(η)h′(η) = i . (1.62)

The second boundary condition is set by our choice of vacuum, either ai|0〉in = 0

or bi|0〉out = 0. Thus the vacuum is defined as a solution with a positive norm.

From (1.61) the frequency is w2 = k2 + a2(η)
(
m2 −

(
ξ + 1

6
R(η)

))
and the initial

conditions to the equation (1.61) at a given time (η0) are,

|h(η0)|2 =
1

2w
; h′(η0) = −iwh(η0) . (1.63)

1.3.2 Particle production in de-Sitter/inflaton perturba-

tions

The idea of this subsection is to link the calculation of the inflaton power spectrum

with the particle production that we just derived. The power spectrum is calculated

with the gauge invariant quantity

ζ = −H
˙̄ρ
δρ = −Hδφ

˙̄φ
, (1.64)
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where in the last equality we have used the fact that during inflation V � φ̇2/2,

then δρ = V ′δφ and also 3Hφ̇ = −V ′.

The inflaton field is decomposed as we did for the perturbations

φ(t,x) = φ̄(t) + δφ(t,x) . (1.65)

Then from the equation of motion of the inflaton (1.20), we obtain

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) + δ̈φ+ 3H ˙δφ− ∇
2δφ

a2
+ V ′′δφ = 0 , (1.66)

where V includes the mass of the field and its coupling, also including the non-

minimal coupling.

We want to express the quantities ∆2
s, ns − 1 and r as a function of the inflaton

potential and/or the slow-roll parameters.

For the perturbations of the inflaton δφ, we study its Fourier transform

¨δφk + 3H ˙δφk +
k2

a2
δφk + V ′′δφk = 0 . (1.67)

The modes outside the horizon are frozen (1.36), therefore we need to study them

when they are inside the horizon (sub-horizon), k � aH. Once the horizon shrinks

to the size of the perturbation k = aH (horizon crossing), they freeze and remain

unchanged until they re-enter the horizon after inflation has ended when the horizon

is growing. From the slow-roll approximation, we know that ηV � 1, which implies

V ′′ � V/M2
P and using the first slow-roll condition, εV � 1, we obtain V ′′ � H2,

then for sub-horizon modes during inflation k2

a2
� V ′′.

The inflaton perturbations are quantized

δφ =

∫
d3k

(2π)3/2

(
δφkake

ikx + δφ∗ka
†
ke
−ikx

)
, (1.68)

and satisfy the canonical commutation relations that we have showed already,

[ak, a
†
k’] = (2π)3δ(k − k’). We use the definition δφk ≡ vk(η)/a, where η is the
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conformal time and R = 6a′′/a, to get

v′′k(η) + (k2 − a′′

a
)vk(η) = 0 . (1.69)

From here we can see how for super-horizon modes (k � aH), the solution is

homogeneous and v ∝ a making δφ constant, this is why the perturbations “freeze”

on super horizon scales and we are just interested in them inside the horizon.

During inflation the universe evolves as a de-Sitter space-time, then a′′/a = 2/η2,

which we solve by requiring orthonormality (1.62) and being a vacuum state initially

(1.63), i.e. at η → −∞

vini
k (η) =

e−ikη√
2k

, (1.70)

the full solution for vk is

vk(η) =
e−ikη√

2k
(1− i

kη
) , (1.71)

now we can calculate the value for the two point function

〈δφkδφk’〉 = 〈0|δφkδφk’|0〉 = (2π)3δ(k + k’)
|vk(η)|2

a2

= (2π)3δ(k + k’)
H2

2k3
(1 +

k2

a2H2
) = (2π)3δ(k + k’)

k3

2π2
∆2
δφ . (1.72)

On super horizon scales and at horizon crossing, the value of the perturbation is the

same

∆2
δφ =

(H
2π

)2

. (1.73)

Then the power spectrum for scalar perturbations is (1.64)

∆2
s(k) =

H2

˙̄φ
2

(H
2π

)2

=
1

8π2

H2

M2
P

1

ε
, (1.74)
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where all the quantities are evaluated at horizon crossing.

Tensor perturbations (hij) are obtained by expanding the Einstein Hilbert ac-

tion to second order. The action for the graviton is the same than for a massless

scalar particle but twice, accounting for the two polarizations of the graviton (×,+).

Then the power spectrum of the tensor perturbations is double the one for scalar

perturbations. Tensor perturbations are dimensionless, so to be able to do this re-

lation, we need to identify the scalar perturbation hs = 2
MP
δφ, where s = ×,+ is

the polarization of the perturbations

∆2
t (k) = 2∆2

h(k) = 2

(
2

MP

H

2π

)2

, (1.75)

evaluated at horizon crossing (k = aH).

From here we can easily calculate the tensor to scalar ratio

r = ∆2
t/∆

2
s = 16ε . (1.76)

From CMB observations we have measured ∆2
s = 2.2 · 10−9, therefore observations

of r would tell us the energy scale of inflation (H).

From the scalar power spectrum (1.74) we can calculate its scale dependence (ns−1);

since it is evaluated at horizon crossing, k = aH → ln(k) = Ne + ln(H), we get

ns − 1 ≡ d ln ∆2
s

d ln k
= −2ε− ε1 = 2ηV − 6εV . (1.77)

1.3.3 Stochastic motion of fields

We have shown how the modes inside and outside the horizon behave differently; in

particular, outside the horizon, they are frozen. We can use this to split the field

mode function between modes sub and super horizon. By doing this we are going

to show how the sub horizon modes act as a stochastic noise term in the equation

of motion of the averaged super horizon modes [26,27]. This is true for any field, it
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does not matter if it is sub-dominant or not.

φ(t,x) = φ̄(t,x) +

∫
d3k

(2π)3/2
θ(k − εaH)

(
akφk(t)e−ik·x + a†kφ

∗
k(t)eik·x

)
. (1.78)

The function θ is the Heaviside step function, it ensures that short wavelength modes

are inside the integral and the long wavelength modes are included in φ̄. Also φ̄ is

the average over distances larger than the horizon since it includes all the modes

smaller than k < εaH, where ε is just a number smaller than one. Then the volume

over which we averaged the field is for distances larger than the Hubble horizon. Due

to this split of wave modes, we can say that any two points closer than a Hubble

horizon have the same value of φ̄, this is called coarse-graining.

From the equation of motion of the field φ with potential V (φ) (1.20) by using

the decomposition (1.78) during inflation, φ̈ � 3Hφ̇ (this holds for long and short

wavelengths), we obtain

˙̄φ(t,x) = −V
′(φ̄)

3H
+ f(t,x) , (1.79)

where

f(t,x) = εaH2

∫
d3k

(2π)3/2
δ(k − εaH)

(
akφk(t)e−ik·x + a†kφ

∗
k(t)eik·x

)
, (1.80)

here δ(x) is the Dirac delta, which comes from the time differentiation of the previous

Heaviside step function.

From Eq. (1.79) we can see that the field is going to evolve with time following a

classical trajectory given by −V ′(φ̄)
3H

which is called a drift and a random contribution

from the stochastic noise f(t,x). This random contribution is going to be a collection

of quantum ‘kicks’, and by the Central Limit Theorem the effect after a small time

step is Gaussian. The mean of a Gaussian distribution is zero and the variance is

given by

〈f(t,x)2〉 =
H3

(2π)2
. (1.81)
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The missing key now to identify the equation of motion of the scalar field φ with the

Langevin equation is the fact that, formally, φ̄ remains a quantum operator. This

can be handled by using an auxiliary classical stochastic scalar field (ϕ) with the

same expectation values for all the observables.

dϕ

dNe

=
−V ′

3H2
+
H

2π
ξ , (1.82)

where ξ is a Gaussian noise term with vanishing mean and unit variance. This is

the Langevin equation, it is better expressed as a function of the number of e-folds

instead of the cosmic time t for situations where inflation does not occur in per-

fect de-Sitter and H changes slowly with time. Since in the Itô interpretation, the

corresponding Fokker-Planck equation would be different [28]. From the stochastic

differential equation we obtain a Partial Differential Equation (PDE) for the Prob-

ability Distribution Function (PDF) of the scalar field, the Fokker-Planck equation

for the probability distribution function P (φ̄ = ϕ,Ne) is given by,

∂P (ϕ,Ne)

∂Ne

=
∂

∂ϕ

(V ′(ϕ)

3H2
P (ϕ,Ne)

)
+
H2

8π2

∂2

∂ϕ2
(P (ϕ,Ne)) , (1.83)

which has a stationary solution for perfect de-Sitter space-time,

Pstatic(ϕ) ∝ e−
8π2V (ϕ)

3H4 , (1.84)

which needs to be normalized.

The value of the variance in the static limit from this calculation and the two point

function from the gravitational particle creation of the previous section give us the

very same result [29].

We have shown how a scalar field is disturbed during inflation; it makes sense

now to study the only scalar field that we have in the SM and what consequences

may these effects have.
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1.4 Standard Model of particle physics

The Standard Model (SM) of particle physics is the theory which describes three

of the fundamental forces (electromagnetic, weak and strong). It describes the

interactions between quarks and leptons, divided in three families.

Families Interactions

1st 2nd 3rd gauge bosons scalar boson

quarks
u c t g H

d s b γ

leptons
e µ τ Z

νe νµ ντ W±

The Gauge symmetry of the Standard Model is SUC(3)⊗ SUL(2)⊗UY (1); the

term SUC(3) corresponds to the strong interaction, formed by quarks and gluons;

SUL(2)⊗UY (1) represents the electroweak (EW) interaction, possessed by leptons,

quarks and gauge bosons γ, Z and W±. SUL(2) ⊗ UY (1) is spontaneously broken,

leaving only the electromagnetic subgroup Uem(1) unbroken.

The SM Lagrangian corresponds to the matter content of the universe in Eq. (1.43).

It has been tested to high precision in the Large Hadron Collider (LHC) with energies

up to 10 TeV [30].

1.4.1 Higgs and the interactions with other fields

The fundamental field in the SM that gives particles their mass is the Higgs field,

by their interaction, after a spontaneous symmetry breaking, SM particles acquire

a mass (except for the photon which is massless).

To spontaneous break SU(2) we need two complex Higgs fields to do it, they form

the Higgs doublet H =
(
H1

H2

)
, in the unitary gauge we can choose H1 = 0 and

H2 = 1√
2
(v+ h) real, where v is the Higgs field vacuum expectation value (vev) and

h are the oscillations around the vev called Higgs bosons. The Higgs potential has

a Mexican-hat shape

V (H) = −µ2(H†H) + λ(H†H)2; µ2 > 0 , (1.85)
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where λ is the Higgs self-interaction term and µ = 88GeV is a parameter of the

Higgs field related to its mass. Because of the negative sign in front of µ2, it is not a

mass term, sometimes it is called a tachyonic mass. The minimum of the potential

is not at the origin but at v

v ≡
√
µ2

λ
, (1.86)

which is the Higgs vev. From muon decay [31] we know its value v = 1/
√√

2GF ≈

246GeV, where GF ∼ 10−5GeV−2 is the Fermi coupling constant. Then we can

calculate the value of the self-interaction λ = µ2/v2 = 0.12. The mass for the Higgs

boson is obtained expanding the potential around the vev

mh =
√

2µ2 = 125GeV . (1.87)

The full SM Lagrangian includes all the quarks and leptons, but in this thesis, we

are going to focus mostly on the interaction of the Higgs field with one fermion,

avoiding the complexities of quark mixing. In the SM, the fermion that affects the

most the Higgs field is the top quark, the interaction between the Higgs field and

other fermions is sub-dominant. The interaction term in the Lagrangian for a system

with the Higgs field and the top quarks is

LHiggs & top = 3yt
v + h√

2
ψ̄ψ , (1.88)

yt is the top Yukawa coupling, it is the dimensionless parameter that parametrises

the interaction between the Higgs and the tops (ψ). There are three tops quarks,

because of the colour charge. The mass of the top quarks is [31]

mt = yt
v√
2

= 173GeV . (1.89)

Then the top Yukawa coupling value is yt = 0.93.
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1.4.2 Quantum corrections and instability of the EW vac-

uum

The dimensionless parameters in the SM Lagrangian (λ, yt) depend on the energy

scale at which they are measured. The physical constants that we can observe are

the subtraction of two infinitely large quantities, the bare physical constant and

the counter term, which subtracts the divergent part of the former, this process is

called Renormalisation [32]. The counter terms cancel the divergence up to an

energy scale, cut off. This leads us to realise that the values of the physical constant

changes depending on the energy scale, this is calculated via the beta functions, in

particular for the standard model Higgs to one-loop order [33]

βλ = dλ(µ)
d ln(µ)

= 1
(4π)2

(24λ2 + 12λy2
t − 6y4

t ) , (1.90)

βyt = dyt(µ)
d ln(µ)

= 1
(4π)2

(9
2
y3
t ) , (1.91)

µ is not the mass but the energy scale. There is one crucial feature that appears even

at one-loop order, the negative term from the top Yukawa coupling in the running of

the Higgs self-interaction. At very high energies, it will make βλ negative, meaning

that λ would decrease with the scale and at some energy, it would be zero and then

take negative values. This is the instability of the electroweak (EW) vacuum. If

λ < 0 the Higgs potential is unbounded and has no minima.

Fig. (1.4) shows the running of λ with the scale. The LHC has measured

λ = 0.12 and yt = 0.93 at a energy scale µ = 100 GeV, these are the initial conditions

for solving the Renormalization Group Equations (RGE) (1.90) and (1.91); in the

plot we can see how small variations of the top mass and/or αs (the coupling strength

of the Strong Interaction between quarks and gluons) within the experimental error

bars can change the instability scale.

The beta functions (1.90,1.91) are obtained from the SM effective potential to one-

loop order. It is the addition of the classical potential (V (0)), and other terms that

arise from quantum fluctuations around the classical field value (V (1)). For the SM
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Figure 1.4: Running of the Higgs self-interaction coupling from [34]. The instability scale
is at about 1010 GeV for SM central values. It shows how much depends on
the mass of the top quark, the Higgs mass and αs.

Higgs without including interactions with other particles is [33]

V = V (0) + V (1) = −1

2
m2
hh

2 +
λ

4
h4 +

1

64π2
M4

(
log
|M2|
µ2
− 3

2

)
; M2 = 3λh2 −m2

h .

(1.92)

The scale µ is chosen to make the logarithmic divergences that arise from quantum

fluctuations in the effective potential small. In Eq. (1.92) it is clear that if µ = h

that would be the case. For the full SM effective potential, there is a contribution

like V (1) from each SM particle with M2 proportional to the mass of the particle.

Since all the SM particles acquire a mass proportional to the Higgs vev, the scale µ

in flat space-time is commonly chosen µ = h [35].

In a curved space-time background, there is another scale in the problem, gravity.

In this case, because there is a non-minimal coupling between the Higgs and gravity,

the logarithmic divergences depend on an effective mass, which is related to the SM
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masses as before and the Ricci scalar, m2 → m2− ξR. In this case, in order to keep

the divergences as small as possible, it is better to choose the scale [33]

µ2 = h2 +H2 , (1.93)

where H is the Hubble parameter, since R = 3(1 − 3w)H2. We have not included

order one factors in front of H since for our purposes they will not influence the

calculation, and there is not a general consensus in the literature [33,36–38].

It is important to notice that this choice does not rely on having a non-minimal

coupling, since this is another interaction term in our theory, and it depends on the

scale µ as well. So even though we can choose ξ = 0 at one scale, because its beta

function βξ ∝ (ξ + 1/6), it will be different from zero at a different scale. Which

means that this term is always present.

The instability of the EW vacuum is particularly important during inflation

since the Higgs vev is obtained using the Langevin equation Eq. (1.79). Even if

the Higgs field is initially at the origin, in one e-fold, it will move H/2π. As a

very crude approximation, if the scale of inflation is larger than the scale of the

Higgs instability, the Higgs may end up in the regime where λ < 0, rendering our

vacuum unstable and with no clear answer for why we are not in the unstable re-

gion of the Higgs potential nowadays. It will be discussed more in detail in chapter 3.

These corrections to the potential have been studied in empty space. There are

situations (as we will study in this thesis) where the field is interacting with many

particles and technically is too complicated to calculate a many-particle scattering

reaction. If we are interested in averaged quantities over a long period of time, we

can represent a bath of particles by its temperature T . There is a loss of information

about the microscopic dynamics but allows us to work in a thermal background. In

this case, there is also a contribution to the effective potential from the thermal
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background [39]

V = V
(0)
T=0 + V

(1)
T=0 + V

(1)
T 6=0 ; V

(1)
T 6=0 =

1

2
g2T 2h2 . (1.94)

The effective interaction between a thermal bath and the Higgs or any other scalar

field is an effective thermal mass meff = g2T 2, where g is an adimensional parameter

that mimics the interaction between the background and the scalar field.

Since this is a positive mass term, it can help stabilise the EW vacuum [35].

1.5 Thesis outline

In this chapter, we have given an overview of the inflation theory, the problems that

solve, and how the perturbations are generated. To explain it, we have developed

the mechanism of gravitational particle creation for scalar fields. At the end of the

section we have introduced the standard model Higgs field and its running, which

combined with its quantum fluctuations during inflation, it leads us to the problem

of the stability of the electroweak vacuum. The rest of the thesis is going to be

structured as follows:

• In chapter 2, we consider the effect of the Gibbons-Hawking radiation on the

inflaton in the situation where it is coupled to a large number of spectator

fields. We argue that this will lead to two significant effects - a thermal contri-

bution to the potential and a gradual change in parameters in the Lagrangian,

which results from thermodynamic and energy conservation arguments. We

present a scenario of hilltop inflation, where the field starts trapped at the

origin, before slowly experiencing a phase transition during which the field,

extremely slowly, moves towards its zero temperature expectation value. We

show that it is possible to obtain enough e-folds of expansion as well as the

correct spectrum of perturbations without hugely fine-tuned parameters in the

potential (albeit with many spectator fields). We also comment on how initial

conditions for inflation can arise naturally in this situation. This chapter is

based on the work published in [40].
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• In chapter 3, we study the (Brout-Englert-)Higgs quartic coupling which be-

comes negative at high energies rendering our current electroweak vacuum

metastable, but with an instability timescale much longer than the age of the

current universe. During cosmological inflation, unless there is a non-minimal

coupling to gravity, the Higgs field is pushed away from the origin of its po-

tential due to quantum fluctuations. It is therefore a mystery how we have

remained in our current vacuum if we went through such a period of inflation.

In this chapter, we study the effect of top quarks created gravitationally during

inflation and their effect upon the Higgs potential using only general relativity

with minimal couplings and Standard Model particle physics. We show how

the evolution of the Higgs field during inflation is modified concluding that

this effect is non-negligible for scales of inflation close to or larger than the

stability scale but small for scales where the Higgs is stable. Also, we briefly

discuss the effect of other fermions on the Higgs instability. This chapter is

based on work published in [41].



Chapter 2

Horizon Feedback Inflation

2.1 Introduction

Cosmological inflation, as we have explained in Sec. 1.2, is the leading paradigm

which explains the horizon, flatness and defect problem of the extremely successful

FLRW hot Big Bang model as well as explaining the source of the initial density

perturbations observed to exist in the CMB [42] (see Sec. 1.3). Furthermore, the

exponential expansion seems to have an elegant explanation in field theory as being

sourced by the potential energy of a field which rolls slowly down to its minimum,

and its kinetic energy is being redshifted by this rapid expansion [17, 18, 43]. It is

also challenging to think up alternatives to inflation which are natural [44], even

with significant modifications of general relativity and those which do exist often

create the wrong spectrum of perturbations [45].

Unfortunately, there are several problems with the standard inflationary sce-

nario [46]. The most difficult problem is (arguably) the fact that for inflation to

start in the first place, one needs to find a Hubble patch in the early universe across

the entirety of which the potential energy dominates the kinetic energy of the field

and last long enough [47]. Another way of putting this is that to solve the horizon

problem, one creates another one at earlier times. Other problem is that in order

for the kinetic energy to be redshifted by the expansion for long enough to explain

the horizon and flatness problems, either the inflaton field has to be transplanckian

during inflation or the shape of the potential below the Planck scale has to be ex-
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tremely flat, in other words, the extent in the scalar field direction has to be much

larger than its height in the energy direction.

Cosmological inflation usually requires a period of de-Sitter or at least quasi

de-Sitter expansion in order to obtain the many e-folds required to solve the hori-

zon problem. The Gibbons-Hawking temperature associated with the cosmological

horizon in de Sitter space [48]

TH =
H

2π
, (2.1)

plays a central role in inflation as it acts as the source of quantum fluctuations in

the inflaton field, which source density perturbations (Eq. (1.73)). This thermal

radiation is analogous to the thermal population observed by an accelerating ob-

server, i.e. Unruh radiation [49] and closely resembles the Hawking radiation which

surrounds a black hole [50]. In the case of a black hole, the thermal Hawking radi-

ation escapes to infinity and energy is conserved only by postulating that the mass

of the black hole is correspondingly released - a hypothesis which cannot be proved

in semi-classical quantum gravity without including back-reaction but which does

fit coherently into the theory of black hole thermodynamics [51]. Black hole evapo-

ration has an interpretation of resulting from a flux of particles with negative mass

going into the black hole. A similar physical interpretation for de Sitter radiation is

possible, where the Cosmological Constant is reduced from the addition of negative

vacuum (zero-point) energy to the overall energy density of de Sitter [52].

In a first principle approach, this can be achieved in a prescription where the

energy-momentum tensor sourcing gravity is coarse-grained to include only the ob-

servable degrees of freedom, i.e. those inside the cosmological horizon [39,52–54].

Including a source of continuous particle production in de Sitter space is well-

known to bring about a qualitative change in the system’s behaviour: when given

enough time exponential expansion will cease, since the subdominant component

being produced start having a non-negligible contribution to the equations of motion,

implying that de Sitter space with particle production is not stable. In addition to

thermal radiation from the horizon a de Sitter instability has been speculated to
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result from a variety other underlying mechanisms ranging from quantum gravity

and infrared divergences in propagators to environment induced decoherence and the

second law of thermodynamics [52–74,74–77]. Despite all the work about the decay

of the cosmological constant, in the seminal paper of Gibbons and Hawking [48]

where the radiation of a cosmological horizon was studied in the first place, it is

mentioned that “the cosmological event horizon is stable” by using thermodynamic

arguments, although in the Padmanabhan work [78] by using also thermodynamics

arguments in de-Sitter, the opposite is claimed. One of the main key points in

the discussion of the stability, from a quantum field theory point of view, has to

do with the IR modes during inflation, which grows exponentially outside of the

horizon for a light field. There is a discussion in the community about how to deal

with them, since we can only access to the information inside our horizon. A recent

paper by Moreau and Serreau [79, 80] claimed that the IR divergence of a scalar

field in de-Sitter can be sorted out by imposing a infrared cutoff that ignores all

the super horizon modes as the universe expands. Although, in the famous paper

by Starobinsy [26], where the stochastic motion of a coarse grained field (expected

value averaged over the horizon) is studied, it was showed that the main contribution

comes from these IR modes and that it is only divergent in the case of a massless field

(a more rigorous quantum field theory approach also shows the same [28]). A purely

massless field should be protected by symmetries, otherwise a mass can be generated

by renormalization [81] and prevent the divergence. What was showed in [52] is that

even a massless conformally coupled field, can acquire a vev inside the horizon which

can affect the dynamics in the long term [53, 54]. The equation of state for these

fields is given by the relation between the energy density and the pressure (both

obtained from the renormalized stress-energy tensor) inside the horizon, otherwise

the decay of the cosmological constant could be avoided by having, for example,

a field with a non-standard equation of state. There are also other authors who

advocate for the stability of de-Sitter [65, 66, 82] by using a different vaccum state

rather than the Bunch Davies for a massless field since it is no longer de Sitter

invariant [70, 83]
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Despite all the different works in this subject, we support the idea of the instability

of de Sitter due to the effect of the Hawking radiation inside the horizon generating

a thermal bath of particles in equilibrium with the horizon temperature.

A de Sitter instability unavoidably leads to a dynamical cosmological constant

and multiple studies have looked at the possibility that particle production could

gradually reduce the value of the cosmological constant from a phenomenological

point of view [84–90], see [91,92] for observational investigations. It has been argued

that since particle production from gravitational fields seems to be an irreversible

process, this reduction is inevitable from a thermodynamical perspective [71,93–96].

Normally this effect is minimal and would not be a practical way of ensuring a small

cosmological constant. In particular, the rate of decrease would not get rid of the

cosmological constant fast enough in the late universe to explain today’s cosmic

acceleration [54].

It is interesting to consider the situation where the cosmological constant is not

identified as a geometric term in the Einstein field equation but is rather the energy

density of a field which is located at a stable point in its potential where dV/dϕ = 0.

In this situation, the same logic would imply that terms in the Lagrangian that

set the scale of the potential would also decay over time due to the gravitational

production of particles. For example for the potential

V (ϕ) =
λ

4

(
ϕ2 − ϕ2

0

)2
(2.2)

and for a field resting at the metastable origin ϕ = 0, the particle production

associated with the space-time curvature arising from the non-zero potential energy

at the origin should have the effect of making ϕ0 decrease with time, as we will see

in Sec. 2.2 and in particular in Eq. (2.9).

Another implication of the Gibbons-Hawking temperature would be the pos-

sibility that it might create non-negligible finite temperature contributions to the

potential energy of scalar fields (Eq. (1.94)) which are evolving in the quasi de Sitter

background.

In thermal inflation, a thermal sector with the equation of state of radiation
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and coupled to the inflaton keeps the field trapped at the origin for a few e-folds

until the thermal radiation has been redshifted away, decreasing its temperature [97].

However, if the origin of the thermal radiation is the Gibbons-Hawking temperature

associated with the horizon, then its temperature will be constant and will not

decrease over time if there is no corresponding change in the vacuum energy. It is

clear however that in this situation only a radiation bath with a large number of

degrees of freedom, all of which are coupled to the scalar field, would be able to keep

the field trapped at the origin (Eq. (2.12)). Also once located and stabilised there

due to this horizon temperature, the field would essentially be stuck at the origin

for all time. A constant TH would also violate the continuity equation [98].

If however ϕ0 changes over time due to the production of radiation, one can

imagine a situation where ϕ0 and consequently the energy density at the origin,

the rate of expansion of the universe and the temperature of the thermal radiation

all decrease with time. The stable point at the origin then eventually becomes

tachyonic, and the field becomes free to roll away from ϕ = 0, setting the initial

conditions for inflation (see also [99] for a similar idea in a different context). We

argue that this could happen and that thermal effects would subsequently slow the

phase transition sufficiently such that successful inflation can take place.

In section 2.2, we will go through the equations of this scenario in more detail

and study the dynamics of the field and how it might produce enough e-folds of

expansion. Then in section 2.3, we will study the inflationary predictions, namely

the perturbations and the spectral tilt, as well as comparing our analytic estimates

to a numerical treatment.

2.2 Phase transition with decaying vacuum en-

ergy

Let us examine the situation with the potential (2.2) in the presence of a thermal

sector characterized by the Gibbons-Haking temperature (2.1) in more detail. We
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start by writing down the Friedmann equations 3H2M2
P = T00 ≡ ρ

−(3H2 + 2Ḣ)M2
P = Tii/a

2 ≡ p

. (2.3)

Our model will consist of a scalar field ϕ and importantly N conformal fields that

couple to ϕ and are in thermal equilibrium with the horizon as described by (2.1).

This will lead to an additional temperature component for the energy and pressure

densities

ρ =
ϕ̇2

2
+ V (ϕ, TH) +N

π2

30
T 4
H ; p =

ϕ̇2

2
− V (ϕ, TH) +

N

3

π2

30
T 4
H , (2.4)

and in addition to (2.2) the potential contains a contribution from the thermalised

conformal fields

V (ϕ, TH) =
λ

4

(
ϕ2 − ϕ2

0

)2
+

1

2
Ng2T 2

Hϕ
2 . (2.5)

We will throughout work in the approximation where the energy density of the

thermal component is subdominant to that of the potential and in particular to the

vacuum energy piece

λ

4
ϕ4

0 ≡ ρΛ ≈ 3H2M2
P � N

π2

30
T 4
H . (2.6)

This condition will turn out to be easily satisfied for a large parameter range i.e.

1440π2

(
MP

H

)2

� N . (2.7)

From (2.3) we get the dynamical Friedman equation of motion

−2ḢM2
P = ϕ̇2 +

4

3
N
π2

30
T 4
H , (2.8)
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from which it is quite apparent that a thermal sector with the Gibbons-Hawking

temperature is inconsistent with strict de Sitter space (Ḣ = 0), but will lead to

Ḣ < 0. Furthermore, it is easy to see that the continuity equation

ρ̇+ 3H(ρ+ p) = 0 , (2.9)

can only be satisfied if ϕ0 is not strictly constant but still provides the source for

the continuous particle creation required for maintaining TH in the conformal fields,

despite the dilution from the expansion of space. This may be understood from the

situation when ϕ = 0 giving ρ ∼ ρΛ, but ρ + p ∼ T 4
H . However, as we will see, we

will not be relying on this feature of the current scenario in the current work other

than to set initial conditions, the dynamics of ϕ0 will be irrelevant by the time we

come to calculate observables, i.e. ϕ0 ∼ const. during 60 e-folds. Also, we have

deemed more natural to keep the usual interpretation of a strict coupling constant

for the other constants of our theory, λ and g, and only allow ϕ0 change with

time. Since the continuity equation (2.9) provides only one constraint, in principle,

one could consistently allow the other parameters to vary, at least from a purely

phenomenological point of view.

From (2.8) we may conclude that the change in H due to the thermal sector is

very gradual: the first Hubble slow roll parameter for ϕ = 0 and ϕ̇ = 0 reads

ε = − Ḣ

H2
=

NH2

720π2M2
P

, (2.10)

and if initially N � (720π2MP/Hinit)
2 then ε � 1 is clearly satisfied. For the

parameters in the example situation that we will present later ε ' 10−7. The

evolution of the Hubble expansion rate as a function of the number of e-folds is then

given by

H(Ne)

HSB

= 1/

√
1 +Ne

NH2
SB

360π2M2
P

; HSB =
4π2
√

12λ

Ng2
MP , (2.11)

where HSB is the value of the Hubble expansion at symmetry breaking. (The number
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Figure 2.1: Initially for a high temperature the field is located at the origin in the sym-
metric phase. As the temperature drops a new minimum is generated and
the symmetry is broken.

of e-folds Ne are obtained simply by integrating dNe = Hdt.)

However, the Friedman equations also show for ϕ = 0 and Eq. (2.7) that

ϕ0 ∝
√
HMP will decrease slower than TH ∝ H. Therefore, the effective mass

squared for ϕ

m2 ≡ Ng2T 2
H − λϕ2

0 , (2.12)

will eventually cross over to negative values, even if initially Ng2T 2
H � λϕ2

0. Simply

put, at some point the system will undergo a phase transition at m = 0 (HSB). This

phase transition in contrast to [97] is extremely gradual. As we will show, it can

take several thousands of e-folds to complete. This is due to the special nature of

the thermal radiation as given by TH : the thermal bath is continuously replenished

by the decay of ϕ0 and hence does not dilute in the usual fashion.

After the phase transition, ϕ will start rolling to the new minimum and plays

the role of the inflaton in the usual sense. The evolution of ϕ can be characterized

with (2.12) to consist of three regions, m2 & H2, |m2| . H2 and m2 . −H2.
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2.2.1 m2 & H2: gradual decay of ρΛ

If the inflaton is close to the origin of the potential initially, then eventually it will

end up rolling down to the minimum after symmetry breaking. The initial condi-

tions for the rolling down of the potential are set dynamically, as we will see later,

but they rely on us starting in a symmetric phase. For that we need the tempera-

ture term in the potential to be large enough, but, at the same time, this thermal

contribution is only different from zero if the universe is inflating. This is always

possible if the inflaton starts at the origin, but we are going to study first how far

away from the origin the inflaton can be and always end up relaxing to the origin.

Once the field starts rolling down, the horizon is formed and the temperature cor-

rection to the potential lifts the field. We will study if from that position the field

can roll down to the origin and still remain in a de-Sitter phase.

We study this by checking that ε < 1. For the initial situation where the horizon

has not been formed yet, the field rolls down from the origin to the minimum with

a mexican hat potential, then

εT=0 =
M2

P

2

(
V ′(ϕ)

V (ϕ)

)2

=
M2

P

2

(
4ϕ

ϕ2 − ϕ2
0

)2

. (2.13)

For values smaller than ϕ0, the maximum value for the field is ϕT=0
max/MP =√

(ϕ0/MP)2 − 2
√

2
√

(ϕ0/MP)2 + 2 + 4, if it is higher then εT=0 > 1. The infla-

ton will form an horizon after one e-fold of expansion while rolling down and after

that, the field is lifted because of the temperature term.

In a de-Sitter phase with the inflaton dominating the energy density of the universe

(over the spectator fields), we can simplify the first Friedman equation to obtain an

effective potential for the inflaton that only depends on its value

3H2M2
P =

λ

4

(
ϕ2 − ϕ2

0

)2
+

1

2
Ng2

(
H

2π

)2

ϕ2 . (2.14)
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Solving for H2 and substituting into the temperature correction term, we get

V (ϕ) = λ
4

(ϕ2 − ϕ2
0)

2
+ 1

2
Ng2T 2

Hϕ
2 (2.15)

= λ
4

(ϕ2 − ϕ2
0)

2 1

1− Ng2ϕ2

24π2M2
P

. (2.16)

There is a critical value for the inflaton ϕcrit =
√

24π2M2
P

Ng2
, at this value, the Hubble

parameter diverges, this means that in this configuration, the field can not acquire

larger values without having a quantum gravity backreaction, thus we will focus

only on values below ϕcrit during this phase. Also, we are interested in studying

the evolution of this system starting in a symmetric phase, i.e. m2 & H2. Studying

the potential in eq. (2.15) and requiring it to be convex in its whole domain, we

obtain the condition
Ng2ϕ2

0

48π2M2
P
� 1. This ensures that wherever the field starts, it will

roll down to the origin as long as the kinetic energy is not large enough to stop the

de-Sitter expansion. Another key consequence is that ϕcrit < ϕ0, therefore the field

can not roll down from higher values than ϕ0 as it is otherwise commonly studied

in the literature for a polynomial inflaton potential [22].

In this situation the field will now roll down to the origin rather than to ϕ0. From

the definition ε = −Ḣ/H2 and using the second Friedman equation, we know that

there are two contributions: one from the rolling of the field and another from the

Hawking temperature. Since we are studying when ε = 1 and we know from eq.

(2.10) that the contribution from the temperature is small, we only need to focus on

the contribution from the kinetic energy of the inflaton to Ḣ. Using the potential

(2.15)

ε =
Ng2

48π2

 4
√

Ng2ϕ2

24π2M2
P

Ng2ϕ2

24π2M2
P
− Ng2ϕ2

0

24π2M2
P

+
2
√

Ng2ϕ2

24π2M2
P

1− Ng2ϕ2

24π2M2
P

2

. (2.17)

As we are interested in the situations where the field ends in the origin, the most

constrained situation comes from the largest possible values of ϕ0, because the po-

tential becomes stiffer and the kinetic energy can be comparable to the potential

one. From (2.17), we take the limit for ϕ0 → ∞ and making ε = 1 we can obtain
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what is the maximum value of ϕ that will lead to inflation. To simplify more the

solution, we also consider that the number of fields is large, Ng2 � 24π2,

ϕmax =
1√
2

24π2

Ng2
MP , (2.18)

and for the situations where we are close to the symmetry breaking this maximum

value can be extended up to

ϕmax,SB = 21/6

(
24π2

Ng2

)2/3

MP , (2.19)

which is obtained by taking ϕ0 → (ϕ0)SB. We compare this value with HSB to

confirm that quantum fluctuations of that order will not be able to spoil the de-

Sitter evolution

ϕmax,SB/HSB =
21/6√
λ/3

(
Ng2

24π2

)1/3

. (2.20)

To conclude the initial conditions study, the inflaton will end up at the origin in

the symmetric phase if it starts with a value smaller than the minimum of the set

of these three values:
(
ϕmax, ϕmax,SB, ϕ

T=0
max

)
, which for the values chosen later in

Sec. 2.3 it gives us (1.08, 14.9, 1.02) · 10−3MP respectively, and we confirm that

ϕmax,SB/HSB = 500� 1.

So far we have only studied the temporal part of the field. The spatial part will allow

inflation to occur as long as there is a Hubble patch which supports inflation. This

patch will grow, since the gradient energy within this Hubble patch will be diluted.

We can quantify the spatial inhomogeneities and impose a maximum bound for them,

although for an accurate description we will need to evolve the initial configuration

in the lattice, as done in [100,101]. As a first order of approximation, we can estimate

them to be [100]

ρgrad < V → a× Lph >
2π√

6

∆ϕ

HMP

, (2.21)
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where Lph is the physical size of the patch and ∆ϕ the spatial variations within.

For subplanckian perturbations we only need an initial spatial homogeneous Hubble

patch with the proper homogeneous value across the Hubble radius to start inflation.

When the effective mass of the field (2.12) is very large and positive the min-

imum of the potential is at ϕ = 0. In this situation the Friedmann equations are

Eqns. (2.6) and (2.8) with ϕ̇ = 0, which leads to

H =
Hinit(

NH3
init

240π2M2
P
t+ 1

)1/3

t→∞−→
(

240π2

N

)1/3

(M2
P/t)

1/3 , (2.22)

which is consistent with the continuity equation

ρ̇Λ = −3H(ρ+ p) = −N 4π3

15
T 5
H , (2.23)

Interestingly, the late time limit of (2.22) is independent of the initial Hubble rate

indicating that the case m2 & H2 exhibits late time attractor evolution, which is

independent of initial conditions; after a sufficiently long time with m2 & H2 the sys-

tem will always relax to a configuration with H ∼ (M2
P/t)

1/3 and ϕ = ϕ̇ = 0. For the

remaining analysis we will choose the attractor configuration as our initial condition.

What is apparent from this section is that when m2 & H2 the system has fairly

unremarkable behaviour: the field sits put in its vacuum state and the vacuum

energy ρΛ gradually decays. The quantum fluctuations around the mean (ϕ) will

be denoted as φ. Similarly as we did for light fields in Sec. 1.3.2, the equation of

motion for the perturbations φk = vk(η)/a give us

v′′k(η) +

(
k2 +m2a2 − a′′

a

)
vk(η) = 0 , (2.24)

which in de-Sitter has the solution

vk(η) =
−1

2

√
π

a(η)H
H(1)
ν

(
k

a(η)H

)
; ν =

√
9

4
− m2

H2
, (2.25)
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Figure 2.2: In the unbroken phase the field is at rest at ϕ = 0 with practically no quan-
tum fluctuations, 〈φ2〉 ∼ 0. The suppression of the quantum fluctuations is
caused by the large effective mass making the field heavy with respect to the
background curvature.

for ν = 3/2 reduces to Eq. (1.71), but for heavy masses as is the case here, the

fluctuations are exponentially suppressed 1.

〈φ2〉 ∼ 0 . (2.26)

The case m2 & H2 is illustrated in Fig. (2.2).

As discussed after (2.12), eventually, the effective mass will vanish and the

system will undergo a phase transition leading to interesting dynamics for ϕ.

2.2.2 |m2| . H2: large quantum fluctuations

The phase transition happens when the effective mass of the field (2.12) vanishes

at the origin (m = 0). The value of the Hubble parameter at and soon after

the symmetry breaking transition is approximately given by the first Friedmann

1The asymptotic form of the Hankel function H(1)
ν (z) ∼

√
2
πz exp i (z − νπ/2− π/4) show how

for heavy fields ν = im/H there is an exponential suppression.
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equation from (2.6) as

HSB '
√

λ

12

(ϕ0)2
SB

MP

, (2.27)

where (ϕ0)2
SB corresponds to the time of symmetry breaking. In this phase, Eq.

(2.11) is still a good approximation because we can neglect both the thermal and

kinetic contributions to the first Friedman equation and the kinetic term in the

dynamical Friedman equation (2.8) so long as ϕ̇2 � NT 4
H � V . We can see that

NT 4
H � V is fulfilled at the time of symmetry breaking if the number of fields

N � λ/g4, which is obtained via (2.6) and (2.12). The second condition ϕ̇2 � NT 4
H

holds classically since at symmetry breaking ϕ̇ = 0; but as it is shown later due to

the quantum fluctuations ϕ̇ 6= 0. As will be discussed more in section 2.2.3 (see Eq.

(2.35)) when the quantum fluctuations dominate over the classical motion one may

write |ϕ̇| ∼ H2/(2π) which immediately implies ϕ̇2 � NT 4
H for large N (N � 4π2).

Also, the value of the field ϕ during this epoch is not large enough to affect the

dynamics of H, since from Eq. (2.27) and (2.11), (ϕ0)SB =
√

48π2/Ng2MP which is

orders of magnitude larger than ϕ ∼ H.

However, importantly, TH and hence m change very gradually and therefore,

immediately after symmetry breaking, we expect a long epoch of huge quantum

fluctuations before the rolling becomes dominant as illustrated in Fig. (2.3). The

behaviour and magnitude of these fluctuations may be analytically solved via the

stochastic formalism [26,102] (Sec. 1.3.3). This epoch of large quantum fluctuations

is quite important in our model since, as we will further discuss in section 2.2.3,

when the TH has dropped enough, the classical rolling will take over, and the initial

condition will be dynamically set by the period of quantum jumping. We note that

during this epoch where |m2| . H2 we would expect the large density perturbations

to lead to the formation of domain walls, but since we expect to obtain many more

than 60 e-folds of inflation after this period, we expect these evils to be swept outside

the horizon (in the example of Fig. (2.5), symmetry breaking happens hundreds of

e-folds before we obtained the correct spectrum of perturbations from inflation).

In order to obtain a qualitative picture of the system’s behaviour as the rep-
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Figure 2.3: Close to symmetry breaking the classical (mean) field ϕ is almost stationary,
but the quantum fluctuations 〈φ2〉 very large since the field is effectively light
|m2| . H2.

resentative value for the classical dynamics one may take the square root of the

variance ϕ2 ≡ 〈φ2〉. Here we settle for solving this expectation value by using the

Langevin equation in the Hartree approximation 2 relegating a more complete dis-

cussion to section 2.3.1. From the Langevin equation Eq. (1.82) multiplying it by

ϕ and taking the stochastic average gives us the relevant equation [26, 27] for the

second moment of the inflaton

d

dNe

〈φ2〉 =
H2

4π2
− 2m2

3H2
〈φ2〉 − 2λ

H2
〈φ2〉2. (2.28)

During this epoch there is little dynamics in 〈φ2〉. Initially, the field sits at the

origin, the evolution of the variance is

〈φ2〉 =
H2

4π2
Ne , (2.29)

2The Hartree approximation assumes that the PDF for the fluctuations is gaussian leading us
to 〈φ4〉 = 3〈φ2〉2 [26]. It is true for a massive field although for a massless self-interacting field
using the stochastic formalism we find 〈φ4〉/〈φ2〉2 = 2.2.
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until the gradient of the potential compares to the quantum fluctuations

〈φ2〉 =
H2

π
√

8λ
. (2.30)

This occurs close to the symmetry breaking m ∼ 0, but as the temperature drops

the mass increases and the field will roll down to the minimum

〈φ2〉 =
−m2

3λ
. (2.31)

The solution (2.30) is approached only at the saturated limit ( d
dNe
〈φ2〉 = 0) when

the system has been given enough time to equilibrate. The exact time this takes

depends on the parameters of the potential. For a quartic theory the equilibration

time scale in terms of e-folds is given by 1/
√
λ [27, 103], obtained by comparing

Eqns. (2.29) and (2.30). If the time scale for the change in the Hubble rate in

terms of e-folds or ε−1 (Eq. (2.10)) is much longer than the equilibration time our

approximation of using the results at the saturated limit is valid. With (2.11) and

(2.10) at m ≈ 0 we can write the condition ε−1 � λ−1/2 as

15g4N

4π2
√
λ
� 1 , (2.32)

which again is easy to satisfy for large N . Also, in our model the scale of symmetry

breaking (2.27) can be tuned by choosing λ, N and g in our potential (2.5) with

smaller scales corresponding to a slower dynamics as is evident from (2.10). Hence

the condition in (2.32) can also be understood to imply the freedom to choose HSB

low enough such that the saturated expressions in (2.30) are a good approximation.

The inflaton is in a thermal bath of particles and their fluctuations will also

affect the dynamics of the field [104]. To consider this effect we could add an extra

stochastic term to consider the external forces than these fields will have on the

inflaton. Another possibility is to decouple the equations of motion of the inflaton

and remove the temperature dependence on the field, thus studying an inflaton field

self-interacting (2.15). We use the later approach to prove than this effect is going
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to be negligible in our study.

In the Langevin equation, the gradient of the potential will affect the evolution of

the field. The extra contribution from the thermal fields to the inflaton equation of

motion when written explicitly as a function of the inflaton field is not trivial and

results in

dV (ϕ)

dϕ
=

d

dϕ

λ
4

(ϕ2 − ϕ2
0)

2

1− Ng2ϕ2

24π2M2
P

 =
(
λϕ3 +

(
Ng2T 2

H − λϕ2
0

)
ϕ
)
/

(
1− Ng2ϕ2

24π2M2
P

)
,

(2.33)

We can see from the denominator how if the field is not close to the critical

value (ϕcrit), the extra effect from the stochastic nature of the thermal fields to

the Langevin equation is negligible. Since we study the evolution of the field close

to the symmetry breaking, this effect will not have an impact in our results. This

extra term will mimick the contribution from the stochastic behaviour of the ther-

mal fields, by adding an extra term to the Langevin equation of motion.

For completeness, for the parameters chosen later in Sec. 2.3, the value of the

inflaton 60 e-folds before the end of inflation is

ϕ60

ϕcrit

= 0.004 , (2.34)

which reassure our assumption that this effect does not affect our calculation.

In the absence of the horizon entropy thermalising a large number of fields

coupled to the scalar field, this kind of symmetry breaking would not lead to good

inflationary initial conditions since the Kibble mechanism [105, 106] would lead to

large fluctuations from horizon to horizon with large field gradients that would pre-

vent inflation from starting in the first place. In this scenario, the thermal corrections

to the potential prevent the kinetic energy dominated regions from running straight

down to |ϕ| = ϕ0. Eventually, therefore, as the thermal dissipation continues to gen-

tly facilitate the slow phase transition and the field’s classical position and motion

starts to dominate over its quantum fluctuations, a region should emerge somewhere
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Figure 2.4: The onset of classical rolling occurs when the steepness of the potential has
increased enough. The initial value for the field is determined by the preced-
ing random-walking epoch when |m2| . H2.

where the field is coherent enough across several horizons such that the well-known

difficulties obtaining initial inflationary conditions are overcome.

2.2.3 m2 . −H2: classical rolling

Strictly speaking one can only talk about a classical “rolling” once the minimum is

further away from the origin than the stochastic vacuum expectation value (ϕ2 ≡

〈φ2〉) obtained from quantum fluctuations. As a first approximation one can say

that the field starts rolling when in one e-fold the size of a single quantum jump

(H/2π) is smaller that the distance traveled due to the classical rolling

|ϕ̇|H−1 &
H

2π
, (2.35)

which is the opposite to the usual condition for eternal inflation [107] and equivalent

to the condition |V ′| > H3, by using the equation of motion of the field during slow

roll. More accurately we can use (2.28) for the dynamics of 〈φ2〉.

As shown in the previous section, at the time of symmetry breaking (m = 0),

the variance of the field is approximately 2 λ
H2 〈φ2〉2 = H2

4π2 . At times soon after

symmetry breaking the mass term remains negligible m2〈φ2〉 � 3λ〈φ2〉2 and the
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field will remain constant at the value acquired at symmetry breaking until the

mass is relevant, i.e. −m2 − 3λ〈φ2〉 = 0. At this point, the potential will be steep

enough for classical slow roll to start and this classical motion will dominate over

the quantum fluctuations (see Fig. (2.4)). Note that this condition agrees with the

estimate (2.35) since d
dNe
〈φ2〉 = H2

4π2 . Once the classical rolling starts the mass is

given by

−m2 ' 3λ〈φ2〉 = 3λ
H2

π
√

8λ
, (2.36)

and the value of the field and the speed are

d

dNe

〈φ2〉 =
(H

2π

)2

, 〈φ2〉= H2

π
√

8λ
=
−m2

3λ
. (2.37)

Once classical rolling has been triggered, our model gives rise to the usual

slowly rolling inflation. We emphasise that the initial conditions for inflation are set

dynamically by the large quantum fluctuations prior to classical rolling and hence

are not free parameters. Similarly, the start of slow roll is triggered dynamically

once the potential has acquired sufficient steepness and occurs for a wide range of

values for ϕ0, in particular also for ϕ0/H � 1. Finally, we remind the reader that

the neat attractor behaviour of the solutions prior to symmetry breaking (2.22) also

exhibit independence from initial conditions. For these reasons, we can conclude

that the model presented here successfully evades all the usual fine-tuning issues of

inflationary models.

2.3 Inflationary predictions

To have a successful inflationary scenario, we need enough e-folds (at least 50-60)

and we need to obtain the right perturbations ∆2
s and spectral tilt ns 50-60 e-folds

before the end of inflation. As shown in the previous section, more than 60 e-folds

of expansion can be obtained very easily in this scenario - the scale of inflation

H can be set to be much smaller than the Planck mass, so ε � 1 continues for



2.3. Inflationary predictions 60

many e-folds before H differs significantly from the value at symmetry breaking

HSB, meaning that we get enough inflation. Here we show how the perturbations

are generated once the field is classically rolling to the minimum. The perturbations

in the spatially flat gauge (Ψ = 0) are defined as [22] (Eq. (1.64))

ζ = −H
˙̄ρ
δρ = −Hϕ̇ δϕ

ρ+ p
, (2.38)

where we use δρ = V ′δφ and also 3Hφ̇ = −V ′ but as opposed to what we did after

Eq. (1.64), we can not say ρ+ p = ϕ̇2. We note the pertubations in our model will

lead to the usual expression encountered in models of warm inflation [108]. More

explicitly, in our theory, the Hawking temperature is given by the vacuum solution of

a conformal field inside the horizon, but, as well, for any conformal scalar field, the

effective mass term of the Ricci scalar makes the field fluctuations around its mean

value exponentially small, therefore we do not need to consider the temperature

fluctuations in the calculation of the scalar perturbations.

The power spectrum takes the form

∆2
s = 〈ζζ〉 =

(
Hϕ̇

ρ+ p

)2(
H

2π

)2

=

(
Hϕ̇

−2ḢM2
P

(
H

2π

))2

, (2.39)

where from now on we set ϕ2 ≡ 〈φ2〉. In contrast to single field slow roll inflation

−2ḢM2
P = 4

3
N π2

30
T 4
H , in the current setting the perturbations and the tilt are given

by

∆2
s =

(
Hϕ̇

4
3
N π2

30
T 4
H

(
H

2π

))2

=

(
180π

ϕ̇

NH2

)2

=
(

60π
m2ϕ+ λϕ3

NH3

)2

,(2.40)

ns − 1 =
d ln ∆2

s

d ln k
= 6ε− 2η , (2.41)

where we used the slow roll condition ϕ̇ = −V ′/3H, and dropped the subdominant

kinetic piece ϕ̇2 in (2.8). Furthermore, we note that ε is negligible in the calculation

of the tilt. The difference with the usual single field slow-roll inflation (Eq. (1.77))

comes from the contribution of the thermal sector to the dynamical Friedman equa-
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tion (2.8), which both changes the vacuum energy decay and modifies the usual

calculation for the spectrum because of Ḣ ∝ H4. Because of this, the perturbations

follow the inverse of the usual ∆2
s ∝ H4/ϕ̇2 behaviour. This means that the usual

expression for the tilt ns − 1 ∝ η (1.77) is not true and we get ns − 1 ∝ −η (since

the scalar perturbations are the inverse of what we usually found up to an order of

magnitude which is irrelevant for the logarithmic term in ns − 1), where η = M2
P
V ′′

V

is the usual slow-roll parameter. So in order to obtain a red spectrum, the inflaton

needs to be evolving in the regime where the potential is convex (V ′′ > 0), i.e. be-

yond the inflection point at V ′′ = 0, contrary to the usual small field case.

We also study if the perturbations are conserved in super horizon scales, since in

many models of multifield inflation this can be an issue. The variation of the scalar

pertubation is given by [22]3

ζ̇ = −H δpen
ρ+ p

−O
(

k2

a2H2

)
, δpen = δp− ṗ

ρ̇
δρ . (2.42)

The contribution to the perturbations of the energy density and pressure are com-

ing from the inflaton (since the temperature bath is formed of conformal fields),

making δp = −δρ = −V ′δφ. The scalar perturbations may not be conserved on

super horizon scales if there is a significant non adiabatic contribution to the energy

density, because the thermal addition to the Friedmann equations has a different

equation of state to the inflaton. Therefore, we study more in detail the ratio

ṗ

ρ̇
=
−ρ̇− 2ḦM2

P

ρ̇
= −1− 2ḦM2

P

6HḢM2
P

= −1− 1

3

d ln Ḣ

dNe

, (2.43)

where we have used the second Friedmann equation (2.3) to substitute the temporal

evolution of the pressure and the first for the energy density. If the second term

in eq. (2.43) is much smaller than one, then δpen ≈ 0, making the perturbations

conserved on super horizon scales. The kinetic inflaton term is proportional to H2

close to symmetry breaking and in consequence is much smaller than the tempera-

ture term which is proportional to the number of spectator fields, NH4 (this is also

3The exact equation can be found in [22], equation (A71)
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corroborated in the simulations shown below). Then we can see that ṗ
ρ̇
≈ −1 since

d ln Ḣ
dNe

∝ 4d lnH
dNe

= −4ε � 1, which is much smaller than one during inflation, and

therefore the scalar perturbations are conserved on super horizon scales.

There are a variety of different combinations of parameters that can give rise

to the correct inflationary perturbations, however in what follows we will present a

situation where the 50-60 e-folds of inflation we are interested in starts very soon

after the symmetry breaking occurs. In this situation, the value of η is naturally

small enough to give us the right tilt because soon after symmetry breaking V ′′ = 0

by definition. There is, therefore, no need to fine-tune our tree-level parameters to

give us a flat potential near the origin effectively bypassing the issue that the natural

tree-level values are argued to give rise to η ' 1 [109].

Our system has 4 free parameters (N, λ, ϕ0 and g). However for the sake of

clarity we choose here the final e-folds of inflation to occur soon after symmetry

breaking and hence we can approximate the value of ϕ0 during inflation by

ϕ0

MP

≈ (ϕ0)SB

MP

=
4π
√

3√
Ng

, (2.44)

which can be derived by making use of mSB = 0 in (2.12) and (2.27). With the

above we effectively reduce the degrees of freedom from four to three. Also, if

the observable part of the inflationary spectrum is going to take place soon after

symmetry breaking then as soon as the classical rolling starts we want the field to

be in the red tilt regime. For this to occur we need to ensure that d
dt
〈φ2〉 > d

dt
−m2

λ

at the inflection point, otherwise the minimum (−m2/λ) would move faster away

from the origin than the field. If this were to occur, the spectral tilt would be blue

(after symmetry breaking). By making use of very similar steps that led to (2.44)

and the Hartree approximation for 〈φ2〉 from (2.28) one may show this condition to

lead to the order of magnitude constraint 1
g2
< 15

4π2 .

So from now on, we will set for simplicity g = 1. However, we also emphasise

that a red tilt can be obtained a long time after symmetry breaking, so g = 1 is

only a choice for the forthcoming calculation for the estimates of the perturbations

and the tilt, and none of the above derivations relies on a specific value of g.
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After this choice, we effectively have 2 degrees of freedom left (N, λ) that will

determine the perturbations and the spectral tilt soon after the classical roll to the

minimum starts. It proves convenient to define a new parameter, α = ϕ/
√
−m2/3λ,

where α = 1 means that the field is at the inflection point and α =
√

3 means

that the field is at the minimum of the potential. We can then approximate the

perturbations and the tilt from (2.41) and with the help of equations from section

2.2.3 by

∆2
s =

2025√
2π

(
− α +

α3

3

)2
√
λ

N2
; ns − 1 =

−1 + α2

√
2π

√
λ . (2.45)

It is interesting to note that the order of magnitude of the spectral tilt does not

depend on N while the magnitude of the perturbations depends on both (λ and N).

A smaller value of λ will make our spectrum become more scale invariant and will

allow us to reduce the number of conformal fields that need to be present to give us

the right spectrum. Hence we can shift the fine tuning between a small value of λ

and a large number of spectator fields.

The tensor to scalar ratio is given by the scale of inflation. Close to the sym-

metry breaking, we can make use of (2.45) and (2.11) to express it as a function of

the parameters of our theory, as we have done for ∆2
s and ns − 1, depending only

on λ, g and N .

r =
∆2
t

∆2
s

= 8

√
λ

g4

(
−α + α3/3

)−2
. (2.46)

As we have seen, g is setting how fast the minimum is moving away from the

origin in relation with the value of the field (initially freeze at the Starobinsky value

for approximately a ϕ4 field). Therefore the value of g will affect the slope of the

potential after symmetry breaking and ultimately the perturbations. Smaller values

of g makes the minimum to move faster away from the origin than the field and,

in consequence, the gradient of the potential increases, increasing the value of the

scalar perturbations. The value of the tensor to scalar ratio is the smallest at the

inflection point, which gives r ≈ 16
√
λ/g4. As the field rolls down to the minimum,
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r increases, diverging at the minimum since V ′ = 0.

Since in this model, inflation takes place between the inflection point and the

new minimum emerging due to broken symmetry, the field excursion of ϕ scales as

ϕ ∼
√
−m2/λ. Furthermore, since for our choice g = 1 this takes place soon after

symmetry breaking where the mass parameter can be estimated as −m2 ∼
√
λH2

(2.36), which with the Hubble rate from (2.27) and (2.44) indicates that for a large

number of spectator fields the field excursions are sub-Planckian. For the parameters

agreeing with observations, this turns out to be true. It indicates that despite begin

a small field model of inflation, the initial conditions are not fine-tuned but arise

naturally as the favoured attractor solutions, unlike what is usually encountered

[110]. For equations (2.45), (2.46) and (2.44) agreeing with the observables in [23],

we have three constraints for three observables, although the fact that inflation

occurs soon after symmetry breaking imposes the value of g to be close to unity,

and also the value of the tilt is mostly dominated by λ, leaving the perturbations

being determined by the number of fields. Of course there is some uncertainty in

the value of α as well, which can only be resolved numerically. The approximations

and estimates set out here agree with the numerical solution that we will turn to

now.

2.3.1 Numerical solution

In this section, we look at the numerical solution corresponding to the parameter

choices we have made above.

Before symmetry breaking the field lies at the origin ϕ = 0 until ϕ0 drops

sufficiently for the potential at the origin to become tachyonic. Classically, of course,

the field would then not move anywhere because dV/dϕ = 0 at the origin, and if

we were to introduce a small perturbation away from ϕ = 0 as an initial condition,

then classically our final solution would depend strongly on this perturbation. To

get around this problem, we evolve the field using the Langevin equation which takes

into account the stochastic quantum fluctuations the field receives

dϕ

dNe

= −m
2ϕ+ λϕ3

3H2
+
H

2π
ξ , (2.47)
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where ξ is Gaussian white noise with zero mean and unit variance.

For each combination of the remaining two free parameters (N, λ) we perform

104 numerical realisations of the Langevin equation and find the mean values of the

magnitude of the perturbations ∆2
s for each value of the tilt ns as the field evolves.

These simulations are also used to verify that the dynamics of the field agrees with

our analytical estimates from Sec. 2.2.

We know that to obtain a red spectrum (ns < 1), the field must lie between the

inflection point and the minimum.

Figure 2.5: Field dynamics with λ = 10−3, N = 105.5, ϕ0 = 10−1.27MP and g = 0.7.
We plot the evolution of the field expectation vs. the Starobinsky estimate in
units of H2

SB to show that they are different. We also show the time evolution
of the minimum and the inflection point (which the field must remain beyond
in order to obtain a red spectrum). Ne = 780 is the epoch when the spectrum
of perturbations and the tilt match the observed values by Planck.

Figure 2.5 shows how the variance of the field 〈φ2〉 evolves with respect to the

number of e-folds of expansion for the parameters λ = 10−3, N = 105.5, and g = 0.7

(making ϕ0 = 10−1.27MP). Note that the initial epoch where we set the horizontal

axis equal to zero is chosen arbitrarily. We also plot in the same figure the variance

of the field that one would expect using the Starobinsky-Yokoyama prescription for

the variance in a perfect de Sitter space-time corresponding to a vacuum energy
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Figure 2.6: Amplitude of the spectrum of perturbations versus the tilt with λ = 10−3, N =
105.5, ϕ0 = 10−1.27MP and g = 0.7 . The blue line is the simulation (aver-
age over 104 realisations) and the green and red lines are the cosmologically
observed value of the spectrum and amplitude of pertubations respectively.

equal to our evolving vacuum energy [26], assuming instant equilibration for the

probability distribution. The field expectation value lags behind this estimator,

showing the importance of solving the Langevin equation. The field approximately

remains constant at this value until the minimum has dropped enough to make the

potential steep and for it to possess an inflection point. We also plot the position of

the minimum as it moves out towards its zero temperature value and the position

of the inflection point, showing that we remain on the good side to obtain a red

spectrum. Note that in a period of time during inflation corresponding to 60 e-folds

of expansion, the variation of ϕ0 is negligible relative to the variation in ϕ so we

assume that it is constant for calculational simplicity.

Figure 2.6 shows the average evolution of the magnitude of perturbations for

the same parameters as a function of the spectral tilt. We can see that these pa-

rameters can give rise to the correct combination of amplitude and spectrum for the

perturbations to match what is observed in the Cosmic Microwave Background, i.e.

∆2
s = 2.2× 10−9 and ns = 0.96 [111,112].
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The power spectrum of tensor fluctuations is given by the energy scale of infla-

tion (1.75); therefore, for the parameters chosen, the tensor to scalar ratio that we

get is r = 0.07. This value is still within the 95 % CL from the Planck data [42]

although lower values can be obtained by choosing a different set of parameters,

since the scale of symmetry breaking can be easily tuned, Eq. (2.27).

In order to end inflation, we assume the temperature corresponding to the

expansion rate during inflation falls below the mass of the particles which form the

thermal bath affecting the potential for the scalar field. We set this by hand to

give us 60 e-folds after the epoch corresponding to the right values of ∆2
s and ns.

Otherwise, the field will go to the minimum and continue inflating the universe as

in the symmetric phase until ϕ = ϕ0 when H = 0 and TH = 0 resulting in an empty

universe.

2.4 Conclusion

In this work, we have presented a possible new mechanism for inflating the early

universe. We have argued that if one takes the Gibbons-Hawking temperature as-

sociated with the horizon of de Sitter space seriously, one is lead to a couple of

conclusions that can affect the evolution of quantum fields in the early universe sig-

nificantly. In particular, we have argued that if there are enough fields coupled to the

scalar field which takes the role of the inflaton, their horizon induced temperature

leads to thermal corrections to the potential which can affect its expectation value.

Since these thermal fluctuations do not redshift as rapidly as normal radiation, this

effect can last for a significant number of e-folds of expansion.

To summarise the mechanism - We consider a real scalar field with a Z2 sym-

metric potential with minima at ±ϕ0. If the field starts at the origin, the non-zero

energy density leads to de Sitter expansion and a cosmological horizon with an en-

tropy. The field is trapped at the origin due to its coupling to a large number of

conformal spectator fields which have a non-zero temperature associated with this

horizon entropy. The height of the potential at the origin decays slowly as a result of

the back-reaction of the thermal radiation on the parameter ϕ0 in the Lagrangian.
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The expansion rate, therefore, decreases as does the temperature TH of the thermal

radiation until the mass at the origin becomes tachyonic, at which point a phase

transition occurs and the field rolls away from the origin towards its zero tempera-

ture minimum at |ϕ| = ϕ0. This phase transition, however, occurs extremely slowly

due to the same finite temperature corrections to the potential. During this period

of rolling, we are able to obtain not only the correct number of e-folds but also the

correct perturbations and spectral tilt as measured in the CMB. This setup has two

attractive features:

• Normally, for a field to act as an inflaton, it must have a super Planckian

expectation value and/or very finely tuned parameters. The mechanism we

outline in this paper enables a potential which would otherwise not be flat

enough to give rise to enough e-folds of inflation to do so due to the thermal

effects of multiple spectator fields

• The initial conditions for inflation may arise naturally as attractor solutions

due to a slowly occurring phase transition. This happens despite the fact that

inflation occurs with sub-Planckian values for the inflaton. This is the result

of the parameters in the Lagrangian changing due to the back-reaction of the

thermal radiation.

It is clear that this scenario is not necessarily a panacea for all of the problems of

inflation. We need to assume that parameters in the Lagrangian decay over time

due to the back-reaction of Hawking radiation at the horizon. While there are

many respected physicists who believe that such behaviour is probable and perhaps

necessary, it is clear that further theoretical investigation and debate is required to

put such speculation on a stronger footing. We also require quite a large number

of fields which are coupled to the inflaton in order to obtain the thermal braking

required to obtain enough e-folds of inflation, in the example we have put forward

here about 3 · 105. The masses of the fields need to be chosen such that inflation

ends 50-60 e-folds after the epoch where the good perturbations and spectral index

are set. In return for this cost, we obtain a theory of inflation which doesn’t require
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transplackian field excursions, does not require extremely small parameters in the

Lagrangian (we use a value of λ ∼ 0.001) and which may naturally explain the

initial conditions for inflation. Finally, it seems quite challenging to understand

how the difference between this scenario and normal inflation could be distinguished

experimentally.



Chapter 3

Gravitationally produced Top

Quarks and the Stability of the

Electroweak Vacuum During

Inflation

3.1 Introduction

The measurement of the actual Higgs and the top quark masses at the LHC and

other colliders [113–115] leads to an interesting effect when one calculates their

Renormalisation Group running in that the quartic Higgs self-interaction coupling

λ becomes negative above around 1010 GeV [34,35,116,117]. This high energy scale

cannot be probed at current colliders but is much smaller than the Planck mass

and is in a region where all the couplings remain perturbative, so there is no reason

not to take this extrapolation seriously. Taking the central observed values for the

Higgs mass (mh), the top quark mass (mt), and the strong coupling constant (αs)

from [118], a calculation [34] of the running of λ and yt is shown in Figure 3.1

The implication of this is clear: in the absence of physics beyond the Stan-

dard Model affecting the running of the coupling constants, our current electroweak

vacuum favours a metastable solution over an absolute stable vacuum [119–124].

Fortunately when one calculates the lifetime for tunneling into the true vacuum
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Figure 3.1: Running of the Higgs self-interaction and the top yukawa coupling as a func-
tion of the energy scale µ up to 3-loops. The instability scale is at 1010 GeV,
when λ < 0 and yt = 0.5. To make this plot we have used mt = 173 GeV,
αs = 0.1181,mh = 125.18 GeV.

above 1010 GeV, one typically obtains numbers which are many orders of magni-

tude larger than the age of the universe [116], although it is still a subject of active

research where new physics could modify the lifetime [125–130]. One might expect

therefore that this unusual behaviour of the running at high scales is little more than

a curiosity; however this situation changes when one considers the early universe.

Also, the basis of the Standard Model instability relies on the assumption of

no new physics that will affect the running of the Higgs self interaction term from

the approximately 100 GeV energy scale at which it is measured until 1010 GeV

at which the coupling becomes negative. There are still many open questions in

physics for which we still do not have an answer and may affect this analysis. For

instance, the nature of dark matter could be a clue of physics beyond the Standard

Model [131] if it does not have an astrophysical origin such as primordial black

holes [132], another evidence is the discovery of the neutrino masses, for which the

seesaw models suggest new physics above the TeV scale [133], maybe even larger than

1010 Gev [119]. Another clues may be the baryon asymmetry of the universe [134]

and the huge difference in scales between the Higgs mass and the Planck mass which
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makes it difficult to study radiative corrections to the higgs mass [135], as well as

possible higher dimensional operators which may affect its running [136].

For several decades the leading hypothesis for the earliest stages of the evolution

of the universe has contained a period of cosmological inflation where the scale

factor expanded exponentially, solving many cosmological problems and explaining

the origins of astrophysical structure formation across many orders of magnitude

in physical scale [17, 18, 43] (more details in Sec.1.2). While inflation has its own

fine tuning problems (addressed and recasted in [40], Sec.2), there are not many

compelling alternatives to inflation which have a simpler or even equally simple

mathematical consistency [46].

Fluctuations in the Higgs field during inflation lead to stochastic growth in its

expectation value which could push it to the region of instability at around 1010

GeV [26] 1. The universe would then seemingly be overwhelmed by an anti-de Sitter

(AdS) 2 region which would subsequently collapse, allowing no possibility of us being

here today [35, 37, 38, 123, 139]. These AdS bubbles grow at the speed of light, but

they are in a dS background which is expanding even faster and in consequence,

they will never take over all dS space [35]. But even if they are not a problem

during inflation, they can neither be present at the end of inflation in our past light

cone, since after inflation ends, they will take over all our casual horizon [35, 140].

This is independent of the value of the Higgs field in the True vacuum, since the

bubbles nucleate for any negative value of the potential. Because of these bubbles,

there appear to be tight constraints upon the absolute scale of the expansion rate

H during inflation in order to evade the instability. This corresponds in a one-to-

one fashion upon the magnitude of primordial gravitational waves which might be

generated during inflation [22,141,142], which is parametrised by the tensor to scalar

ratio r.

What we propose in this chapter is to take into account for the first time the

gravitational particle production of fermions during inflation, in particular, the top

1It is usual to set the renormalisation scale µ to the expectation value of the Higgs h when
one considers effective potentials where the effects of loops are included as logarithmic corrections
[137,138].

2AdS is a solution to the Friedmann equations with a negative cosmological constant.
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quark which has the strongest interaction with the Higgs field. The energy density

of fermions produced during inflation is related to their mass [143], and since top

quarks have a Yukawa coupling yt of order unity, their mass is given by the Higgs

vacuum expectation value (vev) mt ∼ yt ·h. The interaction term in the Lagrangian

of the SM for the case of the Higgs and the top fermions is

Linteraction = yt
h√
2
ψ̄ψ . (3.1)

So as the Higgs field is pushed to higher values, the mass of the top quarks

will increase, and the production of fermions will also increase, meaning that the

contribution from the fermions ψ̄ψ to the Higgs potential will also rise. We aim to

show that there are situations where this contribution to the potential can change

the probability of ending in a catastrophic collapse during inflation.

The chapter is organised as follows, Section 3.2 reviews the instability of the

electroweak vacuum during inflation. Section 3.3 describes the particle production

of massive fermions in a de-Sitter background and their subsequent modification of

the Higgs potential in the case of top quarks. In Section 3.4 we study the stability

of the Higgs taking into consideration this effect before discussing the results in

Section 3.5

3.2 The Instability of the Electroweak Vacuum

during inflation

In this section, we will review the usual arguments which explain why a period of

inflation is dangerous for the stability of the electroweak vacuum given the fact that

the quartic coupling runs to negative values at high scales.

There is some discussion in the literature about the best choice of the scale

µ and its relationship with the Higgs field expectation value h when working with

the Higgs in the early universe. It was recently proposed [33, 36–38] that when

studying a quantum field in a curved space-time background, in order to cancel the

logarithmic divergences that arise in the potential at one-loop order, the choice of
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the scale µ is different (3.2) from the choice that is usually assumed for the same

situation in a flat space-time background where µ ≈ h is chosen [35]. In this work,

the results do not depend strongly on these two different choices of the scale, but

for definitiveness, we choose to set the scale of the running as

µ =
√
h2 +H2, (3.2)

where h is the Higgs vev and H = ȧ/a is the Hubble parameter, although we will

include an extension to our calculation to showcase the differences with the choice

of scale µ = h.

What is more widely agreed on is that during inflation, short wavelength fluc-

tuations behave as classical noise acting on the dynamics of the Higgs field on

super-Hubble scales and these fluctuations can be described using the Langevin

equation [26,27]

dh

dNe

= −V
′(h)

3H2
+
H

2π
ξ . (3.3)

Using this equation we can study how the expectation value of the Higgs field

〈h2〉 evolves with Ne - the number of e-folds of inflation (dNe = d ln a, where a is the

scale factor). The evolution is due to a combination of two effects: the first is given

by the classical equation of motion, where V ′(h) is the differentiation of the Higgs

potential with respect to the Higgs vev, and the second is due to the stochastic

noise, where ξ is a Gaussian white noise with zero mean and unit variance. The

Langevin equation is only valid for a light field V ′′ � H2, since for a heavy field

the fluctuations are suppressed (see footnote 1 in chapter 2). If the Higgs is initially

at the origin (h = 0), the stochastic term dominates over the classical term and on

average the Higgs vev after Ne e-folds of inflation would be

〈h2〉 =
(H

2π

)2

Ne, (3.4)
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until the classical term becomes as large as the stochastic term, which in the classical

picture occurs after Ne = 1/
√
λ, and the Higgs would then acquire an equilibrium

value given by

〈h2〉 = 0.13
H2

√
λ
. (3.5)

This is valid only if λ > 0 (and constant). In the case that λ is not positive, then the

Higgs vev motion would be unbounded. Note we are assuming here and throughout

that the Higgs field starts at the origin 60 e-folds before the end of inflation. This

assumption is somewhat important, but as long as h starts somewhere below H, we

expect very similar results. If h starts with a very high value, then a different kind

of analysis would have to be performed.

Therefore, even if we only assume 60 e-folds of de-Sitter expansion, on average,

the value of the Higgs vev is going to be close to the energy scale of inflation (h ≈ H)

and the running of the Higgs self-interaction λ(µ) ≈ λ(H), which is independent

of the the choice µ = h or µ2 = h2 + H2. If the energy scale of inflation is high

enough, then the Higgs field would move into the unstable region; in particular, for

60 e-folds, the scale of inflation should be about one order of magnitude smaller

than the scale at the maximum of the potential (µ = hmax ∼ 1010GeV) [35,123,139].

H

hmax

<
2

3

π

Ne

= 0.04 (3.6)

From the non detection of CMB polarisation associated with primordial grav-

itational waves (r < 0.12) [144] we can set an upper bound on the energy scale of

inflation H < 1013 GeV and since the instability scale is around µ = 1010 GeV [35],

we will focus on this energy interval H = 109 − 1013 GeV.

There are many possible alternative solutions to this problem of combining

inflation with the standard model. However, unlike what we are proposing here,

they all invoke new physics, the most obvious and well studied are a simple coupling

between the Higgs field and the inflaton [139,145–147] and a non-minimal coupling
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between the Higgs field and the Ricci Curvature [33,36,148,149] or both at the same

time [150]. See also [151] for the effect of the Gibbons-Hawking radiation during

inflation on this problem or around an evaporating Black Hole in [152].

Having explained the problem and shown that for inflation with H & 109GeV

the electroweak vacuum can be unstable, we now move on to consider the gravita-

tional production of fermions and how they might change this situation.

3.3 Massive fermion production

In this section we consider how fermions, in our case top quarks, can be produced

gravitationally and what effect they will have upon the Higgs potential.

The gravitational creation of fermions is similar to the scalars as studied in Sec.

1.3.1, where due to the dynamical background, the defintion of vacuum is non unique.

A crucial difference is that massless scalars in de-Sitter are infrared divergent [153]

whereas fermions are conformally invariant.

We will start with the action for a spin-1
2

massive (m) Dirac fermion (ψ) in curved

space-time [25,143]

S =

∫
d4x
√
|g|ψ̄(iγaeµa∇µ −m)ψ , (3.7)

where the spin-1
2

covariant derivative with vierbein dependent spin-connection, ωαβµ ,

is defined as ∇µψ = ∂µψ+ 1
8
ωαβµ [γα, γβ]ψ, eµa is the vierbein and γα are the standard

Minkowski space-time Dirac matrices. The vierbein is required to relate the metric

gµν with the Minkowski metric, in order to obtain a curved space definition of the γ

matrices, γ̄µ(x) = eµa(x)γa, which generalize the anticommutation {γ̄µ, γ̄ν} = 2gµν

From the lagrangian (3.7) we get the equation of motion:

(iγaeµa∇µ −m)ψ = 0 . (3.8)

It is a generalization of the Dirac equation in curved space-time obtained by replacing

the standard differentiation ∂µ for the covariant ∇µ and γa for γ̄µ. Working in a flat
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FRW metric ds2 = a2(η)(dη2 − d~x2), the vierbein is eµa = a(η)δµa , resulting in the

curved space Dirac matrices γ̄µ = γµ/a.

The equation of motion (3.8) can be simplified by perfoming a Weyl trasnformation

gµν = Ω2 ˜gµν , ψ = Ω−3/2ψ̃ , eµa = Ω−1ẽµa , (3.9)

where we choose Ω = a(η). The equation of motion in the rescaled frame looks like

(iγµ∂µ − a(η)m)ψ̃ = 0 . (3.10)

In the Heisenberg picture, the field operator ψ̃ is expanded in a basis

ψ =
∑
i

aiUi + b†iVi , (3.11)

in which the canonical anticommutation relations are defined as

{ψa(t,x), ψb(t,x’)} = 0 , (3.12)

{πa(t,x), πb(t,x’)} = 0 , (3.13)

{ψa(t,x), πb(t,x’)} = iδa,bδ(x− x’) , (3.14)

where π is the canonical momenta. These ensure the orthonormality of the mode

functions and the statistics for fermions (aka Pauli blocking)

{ai, a†j} = δij , {bi, b†j} = δij . (3.15)

The antiparticle state is related with the particle like: Vi = −iγ2U∗i

The solution to the Dirac equation can be then separated in components like

U~k,r(η, ~x) =
ei
~k·~x

(2π)3/2

 uA(k, η)hk̂,r

ruB(k, η)hk̂,r

 , (3.16)



3.3. Massive fermion production 78

in which k̂ is the unit vector of ~k, and hk̂,r the helicity 2-spinor which satisfies

k̂ · ~σhk̂,r = rhk̂,r , r = ±1 , (3.17)

with ~σ being a vector with the Pauli matrices and r is the parity of the state (+1

for right handed and −1 for left handed).

The normalization of the mode functions implies

h†
k̂,r
hk̂,s = δrs , (3.18)

|uA(k, η)|2 + |uB(k, η)|2 = 1 , (3.19)

then we end up with the equation of motion only depending on the conformal time

i∂η

 uA(k, η)

uB(k, η)

 =

 a(η)m k

k −a(η)m

 uA(k, η)

uB(k, η)

 . (3.20)

Since the choice of the orthonormal basis is not unique, we could define a different

basis {Ũi, Ṽi}, where ψ =
∑

i aiUi + b†iVi =
∑

i ãiŨi +
˜
b†i Ṽi.

The vacuum state is defined by ai|vac〉 = bi|vac〉 = 0, so in the tilde basis, the

number of particles measured over the initial (no-tilde) vacuum state is

〈vac| ˜a†i ãi|vac〉 =
∑
j

|βij|2 , (3.21)

where the relation between the two vacuum states is linear and parametrised

by the Bogoliubov coefficients (α~k ,β~k): Ũ~k = α~kU~k + β~kV ~−k.

Defining the initial basis with the index ‘in’ and the tilde basis in which we

measure the number of particles of the initial vacuum state as ‘out’, one obtains the

following relation:

|βk| = |uoutA (k, η)uinB (k, η)− uoutB (k, η)uinA (k, η)| . (3.22)

The ‘out’ is set to be the instantaneous vacuum state (zeroth-order in adiabatic
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expansion), and it can be obtained by using the Wentzel-Kramers-Brillouin (WKB)

approximation.

 uA(k, η)

uB(k, η)

WKB

= αk

 √
w+am

2w√
w−am

2w

 e−i
∫ η w(η)dη + βk

 √
w−am

2w

−
√

w+am
2w

 ei
∫ η w(η)dη (3.23)

valid for ∣∣∣∣ ẇw2

∣∣∣∣2 . 1 and

∣∣∣∣ ẅw3

∣∣∣∣ . 1 , (3.24)

where w2 = k2 + m2a2 and due to the normalization of the modes (3.19),

|αk|2 + |βk|2 = 1. A vacuum state is defined as α = 1 and β = 0.

This is a solution to (3.20) in a Minkowski space-time where the scale factor is con-

stant and there is no particle production, which is why it is called the instantaneous

vacuum, because as the scale factor changes with time, this vacuum would measure

a different number of particles.

There are two general properties for the production of fermions that can be

deduced independently of the details of the problem: first, fermions are conformally

invariant, meaning that in the massless limit there is a conformal transformation

from any Friedmann-Robertson-Walker (FRW) metric to Minkowski and therefore

no particles are produced. This is explicitly seen in Eq. (3.20) where if m = 0 the

dependence on the scale factor is lost. Second, particle creation is exponentially

suppressed for the case of heavy fermions (m � H) and large momenta. The

equation of motion (3.20) can be rewritten as

u′′A,B +

(
k2 +m2a2

(
1± iH

m

))
uA,B = 0 , (3.25)

now easily for the case of heavy fermions and large momenta the frequency looks

like w2 = k2 +m2a2 and as we showed for the scalars (see footnote 1 in chapter 2),

the production is exponentially suppressed. Both of these properties will be shown

throughout the section.
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The ‘in’ state is the Bunch-Davies vacuum state for a perfect de-Sitter back-

ground solution to (3.20), with a(η) = −1/Hη [154],

 uA(k, η)

uB(k, η)

in

=

√
π

4
kη

 e+πm
2HH

(1)
1
2
−im

H

(−kη)

e−
πm
2HH

(1)
1
2

+im
H

(−kη)

 . (3.26)

In the limit a → 0 (η → −∞) agrees with the WKB solution (3.23) at that

time. Therefore at the beginning there are no particles since both states coincide

with α = 1 and β = 0.

In order to not create extra particles from the sudden measurement of particles in

the instantaneous vacuum (3.23), we introduce a smooth exit from inflation into

Minkowski space-time such that Hη(η) = H(1 − tanh((η − ηi)/η0))/2, where ηi is

the time at which inflation ends, H is the value of the Hubble parameter during

inflation and η0 is the speed of the transition. Then (3.26) is the solution to (3.20)

for η � ηi and (3.23) is the solution at η � ηi where we can unequivocally define the

number of particles created during the de-Sitter period of expansion of the universe.

The speed of the transition is set to η0 = 1/H, the natural scale for inflation. In

the low limit mass, m/H � 1, the calculation is unaffected by the speed of the

transition. However, for masses m/H ≥ 1 if the transition is faster, η0 � 1/H, then

more particles would be created because of the sudden change in the scale factor,

and if η0 � 1/H, the transition happens too slow and heavy fermions would be

diluted leading to a smaller number of particles being produced. In Fig. (3.2) we

show how for the product 〈ψ̄ψ〉 (3.27), the light masses are unaffected by the speed

of the transition whereas the heavy fermions can be artificially created by a fast

change in the scale factor. For a more exhaustive study of the effect of the speed

of the transition we refer the reader to the work done for the case of scalar fields

in [155,156].

The production of heavy fermions, m & H, is exponentially suppressed by their

mass, |βk|2 = (1 + e2πm/H)−1, but for the case of light fermions, |βk|2 = 1/2 is
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Figure 3.2: Plot of the product 〈ψ̄ψ〉π
2

2H2m
as a function of the mass m/H. The speed of

the transition (η0) from de-Sitter to Minkowski only affects the production
of heavy fermions. Production of light fermions can be seen to be unchanged
regardless of the value of η0.

constant up to k/a = m as shown in Figure 3.3.

The quantity we are interested in is the expectation value of an initial vacuum

state for the product 〈ψ̄ψ〉, and using (3.23) this takes the form

〈ψ̄ψ〉 =

∫
d3kp
2π3

m

wp
|βk|2 , (3.27)

where the subscript p stands for physical quantities, so kp = k/a, wp = w/a. Also

the piece in the product coming from the initial vacuum and an oscillatory term

has been discarded, as it has been done as well in [157,158]; in the literature this is

called normal ordering or renormalization of the product.

For light fermions we can obtain analytically the value of the product 〈ψ̄ψ〉, since

|βk|2 = 1/2 up to k/a = m

〈ψ̄ψ〉 =
2

π2

∫ m

0

dkpk
2
p

m

kp

1

2
=
m3

2π2
. (3.28)

This behaviour is observed in Fig. (3.2) which is independent of η0. But for the

instability of the EW vacuum, we are interested in the peak produced by this pro-
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Figure 3.3: Plot of |βk|2 as a function of k/aH for different masses. If the fermions are
light, the spectrum can be approximated as 1/2 up to k/a = m; for the heavy
fermions the spectrum is suppressed as 1/(1 + e2πm/H).

duction, hence we perform a fit close to it (Fig. (3.4)).

In this way, we can obtain the expectation value for a massive fermion during

inflation as a function of its mass as shown in Figure 3.4

〈ψ̄ψ〉 = H3m

H

2

π2

0.063
(
m
H

)1.22

e4.92m
H + 1

. (3.29)

3.3.1 Addition to the Higgs potential

The full Lagrangian that determines the dynamics of the Higgs field is

LHiggs & top =
1

2
∂µh∂

µh− λ

4
h4 − 3yt

h√
2
ψ̄ψ + 3iψ̄γaeµa∇µψ . (3.30)

The mass of the fermions is of course explicitly given by the Higgs expectation

value. This coupling through the Yukawa coupling yt also leads to a term in the

equation of motion for h which is proportional to ψ̄ψ; and therefore the fermions

change its dynamics, and the factor 3 comes from the colour charge of the quarks in

the Standard Model (as pointed out in [159]). The addition to the Higgs potential
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Figure 3.4: Plot of 〈ψ̄ψ〉π
2

2H2m
as a function of m/H. If the fermions are light, 〈ψ̄ψ〉 ∝ m2.2

up to m/H = 0.49, above which it is exponentially suppressed.

coming from the production of fermions is (using the result obtained in (3.29))

V (h) = Vh + Vf =
λ

4
h4 + 3yt

h√
2
ψ̄ψ =

λ

4
h4 + 3H4

0.013(yt
|h|√
2H

)3.22

e
4.92(yt

|h|√
2H

)
+ 1

. (3.31)

The condensate created from the production of fermions changes the Higgs potential,

adding an extra term that peaks at hpeak = 0.96H/yt. At that value, the potential

is

V (hpeak)

H4
=
λ

4

0.84

y4
t

+ 0.00037 . (3.32)

So the contribution from the fermions to the Higgs potential can dominate if

yt > 4.8 · λ1/4 . (3.33)

As can be seen in Fig. (3.5), the height of the barrier is increased and there is a

visible shift in the scale of the instability; however, later we will see that this has

a disappointingly small effect upon the overall probability of becoming unstable.

Note that the effect of the fermion back reaction dominates the potential when the
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criterion (3.33) is fulfilled, i.e. very close to the point where λ ∼ 0, at that scale

yt ∼ 0.5, so Vf peaks at hpeak/H ∼ 2.

If we were to study another fermion with a different Yukawa coupling to the SM

Higgs field, assuming that inflation occurs at a low energy scale where λ ∼ 0.1,

we would need a Yukawa coupling bigger than y > 2.7 in order for the fermions

to dominate (after 60 e-folds of fermion condensate production). So the bigger the

Yukawa coupling the bigger the effect, which is why we have been focusing on the

top quarks throughout this paper. We note, however, that a fermion with a larger

Yukawa coupling would destabilise the vacuum at a much lower value of the Higgs

field.

Figure 3.5: Plot of V/H4 as a function of h/H for H = 1010GeV. With the additional
effect of the fermionic contribution to the potential Vf , the total potential
V = Vh + Vf has a barrier which is five times higher.

The main difference in comparison with the calculation in Section 3.3 is that

the fermion mass is not a constant but now depends on the Higgs vev. The relevant

term in (3.20) is ma(η) = yt
h√
2
a(η) which clearly varies as h changes. We need to

establish if assuming that the mass is constant is a good approximation to trust our

calculation. To do this we need to compare the variation with time of the Higgs field

with that of the scale factor and ensure that h′

h
� a′

a
, where ′ ≡ d

dη
. The variation

with time of the Yukawa coupling is not considered since it would come from its



3.4. Stability study 85

running, but it should be close to zero since we are assuming close to perfect de-

Sitter and µ ≈ H. If we assume that the renormalisation scale µ is given by h and

not H, then the only difference will be a larger value of yt during the first e-fold of

inflation. However, during that time, the top quarks are almost massless (h � H)

and their production negligible, so we do not expect the calculation to be sensitive

to this choice.

The Higgs will jump stochastically due to quantum fluctuations, and in one e-fold

the size of a single quantum jump is H/2π [107]; therefore,

dh

dNe

=
H

2π
, (3.34)

and from the definition of the Hubble parameter a′ = Ha2, the assumption of having

a constant mass, in this case, is rewritten such that

h′

h
� a′

a
⇒ H

2π
� h . (3.35)

From (3.4) this is true after the first e-fold. Before that, the Higgs vev is close to

zero, making the fermion almost massless, and since the production of the fermions

is proportional to their mass, it is safe to neglect the production from the time when

(3.35) does not hold.

We have shown in this section how the gravitationally produced top quarks will

contribute to the Higgs potential. In the next section, we will study how this might

affect the stability of the electroweak vacuum during inflation.

3.4 Stability study

The Higgs field during inflation is moving stochastically. Even though the variance

of the field is given by (3.4) or (3.5), the probability distribution function extends

to infinity. Once the stationary solution is reached (3.5), from the Fokker Planck
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equation

Pstatic =
2
√
π
√

2λ/3

Γ
(

1
4

)
H

e−
8π2

3H4
λh4

4 . (3.36)

Also, initially (h = 0) and close to the instability (λ ≈ 0), a stationary solution

is not reached, the variance is given by (3.4) and the mean is zero, then the Higgs

acquires a Gaussian distribution

P (h,Ne) =
1√

2π〈h2〉
e
− h2

2〈h2〉 , 〈h2〉 =
(H

2π

)2

Ne . (3.37)

Therefore there is a possibility of going over the barrier and ending up in an anti-de

Sitter region. Since this is not the case in our current Hubble horizon, which is

composed of e3Ne causally independent regions, we need to impose the condition

that the probability of going over the barrier is, at least, smaller than e3Ne because

none of these regions can be in an anti-de Sitter space-time.

We do not study the evolution of the Higgs field after inflation and the possibility

that even if the Higgs goes over the barrier, thermal effects can make it go back

to the False vacuum. For more details concerning this, the reader should consult [35].

First, we solved numerically the Langevin equation (3.3) using the modified

potential (3.31) and obtained the probability that after 60 e-folds of inflation, the

Higgs field would have gone over the barrier, using both prescriptions to determine

the scale, µ2 = h2 +H2 (Fig. (3.6)) and µ = h (Fig. (3.7)). To get reliable statistics

we simulated 105 realizations. The way we determined if the Higgs goes over the

barrier is, after 60 e-folds, if V ′(h60) < 0, it has gone over the barrier and in the

opposite case, it has not.

For the choice of scale µ2 = h2 + H2 and H > 1010.2 GeV, the Higgs is always

unstable (probability is always one). This is because the value of λ is always nega-

tive and the Higgs, independently of its vev, ends up in an AdS vacuum. Once the
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Figure 3.6: Probability of going over the
barrier after 60 e-folds for
a renomalisation scale µ2 =
h2 +H2.

Figure 3.7: Probability of going over the
barrier after 60 e-folds for a
renomalisation scale µ = h.

production of top quarks is taken into account, the probability is smaller than one

since even though the value of λ is negative, there is still a barrier generated by the

top quarks preventing the Higgs from ending in an AdS region.

Comparing both plots, it can be seen that for the prescription µ2 = h2 + H2, one

is more likely to end in an AdS region for values of the Hubble parameter close to

1010GeV than in the case where the scale is just given by the Higgs vev. It makes

sense since in the former case there is a minimum value for the scale µ = H, and

therefore the value of λ is smaller and closer to zero, independently of the Higgs

vev. In this case, the Higgs feels less the potential and can acquire a larger vev

during 60 e-folds of inflation.

Also, it can be seen that if the scale of inflation is reduced, there is almost no

difference adding the top quarks to the potential - since the contribution from the

fermions is determined by the scale of inflation, the smaller the scale, the smaller

the effect. However, for the cases where it is crucial, the top quarks can reduce that

probability by up to 50% in the prescription µ2 = h2 +H2 and 10% for µ = h.

The stability condition is that the probability P < e−3Ne . For 60 e-folds, it

is not possible to study it numerically since the number of realisations that we

would need is of the order e3Ne . Instead we estimate the effect from the fermions
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analytically.

As can be inferred from Fig. (3.6) and (3.7), the effect from the top quarks for

values of the scale of inflation H < 1010GeV is very small, so we can treat this effect

perturbatively.

Following the work in [33, 123] for the study of the Higgs instability without the

top quarks, it was shown that for values of H < hmax (hmax is the Higgs vev at

the maximum of the potential), within 60 e-folds of inflation, the Higgs acquires

a constant variance, Eq. (3.5). Since the time it takes to reach an equilibrium

distribution is given by Ne = 1/
√
λ and we are studying the situation where H <

hmax, λ is never so small that the time it would take to reach the equilibrium

distribution was longer than 60 e-folds. In this situation, the stochastic motion is

compensated with the gradient of the Higgs potential and acquires an equilibrium

distribution (3.36). Once an equilibrium has been reached

P (h > hmax) = 1−
∫ hmax

−hmax

2
√
π
√

2λ/3

Γ
(

1
4

)
H

e−
8π2

3H4
λh4

4 =
Γ
(

1
4
, 8π2

3H4Vmax

)
Γ
(

1
4

) , (3.38)

where Γ (x, y) is the incomplete Gamma function [160], Vmax is the value of the

Higgs potential at its maximum and is larger than the scale of inflation, then P (h >

hmax) ≈ e−
8π2

3H4 Vmax , so the stability condition is

8π2

3H4
Vmax > 3Ne . (3.39)

The difference from previous studies is that we now consider what is the effect

of the top quarks, using (3.31) evaluated at a scale µ = hmax for both prescriptions,

since we are studying the cases where H < hmax. The value of the Higgs self-

interaction λ close to hmax is estimated as in [35], λ = 0.08/(4π)2. It is helpful to

define x = hmax/H, which for the case of the Higgs without the addition of the top

quarks to the potential is xh = 15.24 for 60 e-folds of inflation. Giving us a bound

on the scale of inflation to make the electroweak vacuum stable, H < 8 · 108GeV.
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The effect of the fermions coupled to the Higgs is parametrized like

xh+f

xh

= 1− α , (3.40)

where there is a minus sign since this effect makes the Higgs more stable, i.e. the

bound on the maximum scale of inflation is slightly larger. In general, this can be

generalised to any quark with a Yukawa coupling to the Higgs. The difference in

the stability scale induced by this effect is shown in Fig. (3.8). The value of the

top Yukawa coupling at the instability scale is 0.5 from Fig. (3.1), and therefore

αtop ∼ 10−13.

Figure 3.8: The effect of the fermions on the stability of the EW vacuum, parametrized by
α as a function of the Yukawa coupling y(µ = hmax). It peaks at y = 0.062,
close to the value for the bottom quarks. Larger Yukawa couplings have a
smaller effect on the stability of the EW vacuum.

The maximum difference on the stability scale comes from a Yukawa coupling

of y ∼ 10−2, i.e. bottom quarks, and that would be αbottom ∼ 10−6, still a small

difference but orders of magnitude larger than the effect from the top quarks.

This makes sense since the value of the potential at the maximum is given by

Vmax = λ
4
hmax + Vf (hmax). The contribution from the fermions (Vf ) peaks at

hpeak = 0.96H/y, so the maximum contribution from them to Vmax is when

hmax = hpeak. Therefore for x = 15.24, it gives y = 0.06 as we see in Fig. (3.8). In
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situations where hpeak > hmax the larger the Yukawa coupling, the larger the effect

on the stability of the EW vacuum.

Overall if there were to be a significant change to the study of the electroweak vac-

uum it would come from the top quarks since, proportionally, they modify the Higgs

potential the most (see Fig. (3.6) and (3.7)). Although in a scenario where the scale

of inflation is small enough such that there is not a problem with the stability of the

Higgs, then the biggest effect would come from the bottom quarks despite being a

tiny effect.

The Standard Model Higgs also gives mass to the ElectroWeak gauge bosons

(W±, Z) and therefore their production during inflation may also affect the dynam-

ics of the Higgs during inflation [159,161,162]. They are split into two transverse and

one longitudinal degree of freedom. The former are produced as fermions or confor-

mal scalar particles [161], meaning they are conformally invariant in the massless

limit and their production grows proportional with the mass, but for masses larger

than the scale of inflation, they are exponentially suppressed. Their contribution to

the Higgs dynamics during Inflation is equivalent to the already studied fermions

but with masses related to the Higgs as: mW = gh/2 and mZ =
√
g2 + g′2h/2,

where g and g′are the gauge couplings of SUL(2) and UY (1), respectively. Therefore

the study of the fermion production showed in here can be easily mapped to the

transverse gauge bosons contribution from the Standard Model and also enhance the

bounds on stability. The only difference in the contribution to the Higgs potential

(besides their mass) is the number of degrees of freedom, which for W± bosons is

four (two transverse modes per W ) and two for Z bosons as opposed to three from

the colour charge of the quarks.

The longitudinal degrees of freedom behaves differently [161], for the low mass

bosons their dispersion relation matches the one of a minimally coupled scalar, i.e.

their variance grows inversely proportional to their mass, since the infrared modes

can be tachyonically excited. Although for heavy bosons, their production is also

exponentially suppressed. Since the maximum value for the Higgs is larger than the

Hubble scale, the contribution to the stability from longitudinal degrees of freedom
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is negligible in comparison with the contribution from fermions or transverse degrees

of freedom [159].

3.5 Discussion

With only Standard model particle physics, the Higgs field h seems to become unsta-

ble at renormalisation scale µ > 1010GeV and from the non detection of primordial

tensor perturbations, we know that during inflation H < 1013GeV . If inflation oc-

curs with a value of H within this range, there is generically a problem with the

stability of the Higgs field.

In this work, we have shown how without the addition of physics Beyond the

Standard Model, the gravitational production of quarks during inflation changes the

Higgs potential in such a way as to make it more stable.

Since the Higgs vev gives the quarks their mass, if it obtains a significant value

during inflation, the fermions become relevant to the Higgs potential as shown in

(3.31). This contribution can be large enough to prevent the Higgs from being

pushed into the true vacuum during inflation in borderline cases (Figures (3.6) and

(3.7) ).

It is also clear from the stability study (Sec. 3.4) that since we have not added

anything new to the SM and there are no free parameters, there is no apparent

possibility of improving these results. At the very least, it is possible to extend the

stability of the Higgs a little bit (3.40).

Nevertheless, we find this an interesting and noteworthy effect. Possible fu-

ture extensions of this work would be looking at the effect of fermions beyond the

standard model to see if there is any way that they would change the situation.

In summary, in the Standard Model, the Higgs field seems to be unstable during

inflation, but slightly less unstable than before this effect is taken into account.
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Conclusion

The study of quantum fields in a curved background leads to several intriguing

effects. In this thesis, we have focused mostly on the gravitational particle creation

during inflation.In chapter 1, we motivated inflation as the theory to explain the

current problems that face Big Bang Nucleosynthesis. Although other theories

could also lead to the same observables, we argue that inflation stands out for its

simplicity. Particle creation during inflation manifests itself generating the density

perturbations in the CMB. Interestingly as well, at high energies, the Higgs self-

interaction term runs to negative values, which is an issue during inflation. The

Higgs field could be destabilized due to quantum fluctuations, making it difficult to

explain how it is in the false vacuum nowadays.

In chapter 2, we address the issues of inflation. Despite their many successes,

they all rely on the initial conditions of the inflaton field 60 e-folds before it ends. It

not only relies on the initial value of the inflaton but also it requires a homogeneous

initial configuration. Furthermore, there are several models where the inflaton ac-

quires super-Planckian expectation values. To address these issues, we consider the

Hawking temperature associated with the de-Sitter horizon. We study an inflaton

field with Mexican-hat shape potential and N conformal fields in thermal equilib-

rium with the Hawking temperature. If the number of fields is large enough, we have

shown how temperature corrections to the inflaton potential change its evolution.

In our scenario, the field is initially trapped at the origin acting as a cosmological
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constant. The effect of the Hawking radiation makes it decays, extremely slow. At

some point, the critical temperature is reached, and the symmetry is broken, at this

point, the field is effectively light and acquires an expectation value due to quantum

fluctuations. On average, the field is still at the origin until the temperature has

dropped enough to make the gradient in the potential larger than the quantum

fluctuations, and a quantum to classical transition occurs. Then the field starts to

classically roll down the potential to the minimum. During this process, we have

shown that the field produces the right perturbations observed by CMB measure-

ments. 60 e-folds after the right perturbations are generated, inflation needs to stop

and transfer all the energy in the universe to SM degrees of freedom.

In chapter 3, we have studied the SM during a high energy epoch of inflation.

In particular, we know that if the scale of inflation is larger than 109 GeV the Higgs

field would have been excited to its true vacuum. We studied the effect of SM

fermions on the stability of the EW vacuum. Generally, fermions during a de-Sitter

epoch are excited; the production is larger for more massive fermions peaking at

masses of the same order that the Hubble parameter. SM fermions mass is pro-

portional to the Higgs vev. During inflation, the expectation value of the Higgs

field grows to make the fermions massive. Therefore, they are produced and modify

the evolution of the Higgs field. We found that the probability of the Higgs going

over its barrier can be severely reduced thanks to the production of top quarks.

However, in order to make our current observable universe stable, the probability

of the instability happening needs to be extremely small. In these situations, the

peak produced in the Higgs potential by the fermions is not high enough to make

a sizeable contribution to the stability of the EW vacuum. For SM fermions, we

found that bottom quarks increase the stability of the Higgs the most, although

the effect is so small that the improvement is nothing else but a curiosity. Nev-

ertheless, we notice that this effect could be interesting for fermions Beyond the SM.

In this thesis, we have investigated the physics of the early universe with a
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new model of inflation and the stability of the electroweak vacuum. We find our

inflation model to have a few theoretical improvements to the current models, and

we showcase the noteworthy contribution that the gravitational creation of fermions

could have on the Higgs stability. We find all these effects fascinating and we hope

that they may help towards a better understanding of our universe.
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A. Holtkamp, T. Hyodo, K. D. Irwin, K. F. Johnson, M. Kado, M. Karliner,

U. F. Katz, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps,

B. Krusche, Y. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, J. Lesgourgues,

A. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, K. S.

http://arxiv.org/abs/1506.04732
http://arxiv.org/abs/0808.1786
http://arxiv.org/abs/1412.2666


Bibliography 99

Lugovsky, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel,

A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews,

U.-G. Meißner, D. Milstead, R. E. Mitchell, K. Mönig, P. Molaro,

F. Moortgat, M. Moskovic, H. Murayama, M. Narain, P. Nason, S. Navas,

M. Neubert, P. Nevski, Y. Nir, K. A. Olive, S. Pagan Griso, J. Parsons,

C. Patrignani, J. A. Peacock, M. Pennington, S. T. Petcov, V. A. Petrov,

E. Pianori, A. Piepke, A. Pomarol, A. Quadt, J. Rademacker, G. Raffelt,

B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli,

A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, R. A. Ryutin, C. T.

Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider,

K. Scholberg, A. J. Schwartz, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt,
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