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Preface

Heavy-quark production in ep interactions in the deep inelastic scattering (DIS)

regime is dominated by the interaction between the exchanged virtual photon and

a gluon within the proton, the so-called Boson Gluon Fusion (BGF) mechanism.

Heavy-quark production provides a twofold test of quantum chromodynamics (QCD):

a thorough study of the Born process and higher-order corrections to the BGF re-

action, and an independent check of the gluon density in the proton extracted from

the inclusive DIS data. Of the two heavy quarks whose production is accessible by

HERA, c and b, the latter is strongly suppressed due to its smaller electric charge

and larger mass. This analysis reports a study of c-quark production.

A charm quark in the final state is identified by the presence of a correspond-

ing charmed hadron. This analysis studies the production of the pseudo-scalar

mesons D0, D+, D+
s and the vector meson D∗+ from the decays D0 → K−π+,

D+ → K−π+π+, D+
s → φπ+ → K+K−π+ and D∗+ → D0π+ → K−π+π+ (the

charge conjugated modes are implied throughout this document). Since a D hadron

is measured and not the c quark itself, any comparison with perturbative QCD

(pQCD) requires a modelling of the c → D fragmentation. A consequence of the

QCD factorisation theorem [1] is that the “hard” (pQCD governed) c-production

mechanism is independent of the “soft” fragmentation process. Measurements of D-

hadron cross sections provide therefore information abou t both c-quark production

and its fragmentation.

This analysis presents a complete study of D-meson production in DIS at HERA:

measurements of c-quark fragmentation ratios and fractions with unprecedent pre-

cision, D-meson differential cross sections and the charm contribution, F cc̄
2 , to the

proton structure function F2. It addresses the universality of fragmentation and

tests the predictions of pQCD for charm production. The data sample used was

taken by the ZEUS detector during the years 1998 – 2000. The fragmentation mea-

surements follow closely those reported recently by ZEUS in the photoproduction

regime [2]. Using a variety of D mesons, the pQCD analysis complements the study

done with D∗+ in the same data sample [3]. Measurements of D∗ cross sections are

only used in this analysis for the extraction of the fragmentation parameters.

Similar measurements of the properties of c-quark fragmentation in DIS have also

been performed by the H1 collaboration [4]. Other previous measurements of charm

production in DIS with pQCD analyses used the D∗+ meson [3, 5–9] or inclusive

lifetime tags [10]. There are also several measurements of charm photoproduction

[9, 11–15].



The results of this analysis have been published by the ZEUS Collaboration [16].

Furthermore, they have been presented by the author in the ICHEP06 conference [17].

They have also been presented in the EPS07 conference [18].



Prefacio

La producción de quarks pesados en régimen de dispersión profundamente inelástica

(DIS) está dominada por la interacción entre el fotón virtual itercambiado y el gluón

en el protón, el denominado mecanismo de fusión bosón-gluón (BFG). La producción

de quarks pesados proporciona un doble test de cromodinámica cuántica: un estudio

detallado del proceso Born y correciones de orden mas alto a la reacción BGF, y una

comprobación independiente de la densidad gluónica en el protón extraida de datos

inclusivos en DIS. De los dos quarks pesados cuya producción es accesible en HERA,

c and b, el último está fuertemente suprimido debido a su menor carga eléctrica y a

su mayor masa. Este análisis presenta un estudio de la producción de quark c.

Un quark charm en el estado final se identifica por la presencia de un hadron

correspondiente. Este análisis estudia la producción de los mesones psudo-escalares

D0, D+, D+
s y del mesón vectorial D∗+ reconstruidos en los canales desintegración

D0 → K−π+, D+ → K−π+π+, D+
s → φπ+ → K+K−π+ y D∗+ → D0π+ →

K−π+π+ (los modos de carga conjugadas se suponen impĺıcitos a lo largo de todo

este documento). Puesto que lo que se mide es un hadrón D y no el propio quark

c, cualquier comparación con QCD perturbativa (pQCD) requiere modelar la frag-

mentación c → D. Una consecuencia del teorema de factorización en QCD [1]

es que el mecanismo “duro” de producción de quark c (gobernado por pQCD) es

independiente del proceso “blando” de fragmentación.

Este análisis presenta un estudio completo de la producción de mesones D en

DIS en HERA: medidas de razones y fracciones de fragmentación de quark c con

precisión sin precedente, secciones eficaces diferenciales de producción de mesones

D y la contribucion charm, F cc̄
2 , a la función de estructura del protón F2. Considera

la universalidad de la fragmentación y comprueba las predicciones de pQCD para

producción de charm. La muestra de datos usada fue tomada con el detector ZEUS

durante los años 1998 – 2000. Las medidas de fragmentación siguen de cerca las

presentadas recientemente por ZEUS en régimen de fotoproducción [2]. Usando

una variedad de mesones D, el análisis de pQCD complementa el estudio hecho

con D∗+ en la misma muestra de datos [3]. Las medidas de secciones eficaces de

producción de D∗+ se usan solo en este análisis para la extracción de los parámetros

de fragmentación.

Medidas similares de las propiedades de fragmentación del quark c han sido igual-

mente realizadas por la colaboración H1 [4]. Otras medidas previas de producción

de charm en DIS con análisis de pQCD usan el mesón D∗+ [3, 5–9] o identificación

inclusiva basada en tiempos de desintegración [10]. Hay también varias medidas de



charm en régimen de fotoproducción [9, 11–15].

Los resultados de este análisis han sido publidados por la Colaboración ZEUS [16].

Además, han sido presentados por el autor en la conferencia ICHEP06 [17]. También

han sido presentados en la conferencia EPS07 [18].
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Chapter 1

Theoretical Introduction

In this chapter we give a brief introduction to QCD, e±p interactions and Heavy

Flavour production, revising the main concepts that will play a significant role in

our measurement.

1.1 Quantum Chromodynamics

Quantum Chromodynamics(QCD) is a quantum field theory based on the colour

group SU(3)c, as a global symmetry. Imposing local symmetry over the free quark

lagrangian, a non-abelian interacting theory of quarks and gluons emerges. The

lagrangian of the theory is

L = −1

4
FA

αβF
αβ
A +

∑

flavours

q̄a [γµDµ −m]ab qb ,

where FA
αβ is the field strength tensor defined in terms of the gluon field AA

α by

FA
αβ = ∂αA

A
β − ∂βA

A
α − gfABCAB

αA
C
β ,

where indexes A,B,C run over the eight colour degrees of freedom of the gluon field.

The term −gfABCAB
αA

C
β gives rise to the gluon self-interactions; g is the coupling

that determines the strength of the interaction, and fABC are the structure constants

of the SU(3) group.

The sum in the lagrangian runs over the different flavours of quarks. The quark

fields qa (a = 1, 2, 3) are a basis of the triplet representation of SU(3). The covariant

derivative Dµ is

(Dµ)ab = δab∂α + ig (tcAc
α)ab ,

where δab is the Kronecker’s delta and {t} are matrices in the fundamental represen-

tation of SU(3). By convention, the nomalisation of the SU(N) matrices is chosen
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to be

Tr
(

tAtB
)

=
1

2
δAB .

With this choice, the colour matrices obey the following relations

∑

A

tAabt
A
ba = CF δab , CF =

N2 − 1

2N
,

Tr
(

TCTD
)

=
∑

A,B

fABCfABD = CAδCD , CA = N ,

where T are matrices in the adjoint representation of SU(N). In the case of the

group SU(3), they are the eight Gell-Mann matrices.

Within this scheme, the theory becomes predictive in the perturbative regime,

when the strong coupling constant αs = g2/4π is small. At leading order, it is given

by

αs(µ
2) =

4π

β0 ln(µ2/Λ2
QCD)

,

where µ defines the energy scale at which αs is measured, ΛQCD is a QCD cutoff

parameter (experimentally determined to be around 200 MeV), and β0 is defined as

β0 = 11 − 2/3Nf .

Here, Nf = 6 is the number of quark flavours, so β0 is positive definite. Therefore,

the coupling constant αs is a decreasing function of the energy, so at short distances

(i.e., large energy) particles interacting through QCD behaves as quasi-free. This is

what we mean by “asymptotic freedom”. On the other hand, at large distances (i.e.,

low energy), the strenght of the interaction becomes large, so that is why partons

(quarks and gluons) can not be observed in isolation (color confinement). Instead,

a “jet” of particles (hadrons) emerging from the direction of the parton is what we

observe experimentally.

In QCD calculations, physical quantities can be expressed in terms of a series

in powers of αs, if µ2 ≫ Λ2
QCD. In that case we say that the calculation has a

hard scale. The momentum transfer in the interaction provides one hard scale for

perturbative calculations, but other scales are also possible, like the mass of heavy

quarks or the transverse energy of jets. HERA is a testing ground of QCD. Large

center of mass energy allow a test of perturbative QCD predictions. Soft processes

(i.e., hadronization), described by phenomenological models, are also tested, as they

occur in the same experiment.
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1.2 Deep Inelastic Processes

One of the most useful experiments to study the internal structure of hadrons is

the scattering of leptons on hadrons. When the momentum transfers are very large,

the process is call deep inelastic scattering (DIS). In this case the target looses its

identity completely and the resulting final states consist of multiparticle states. The

study of those states allows to gain insight into the internal structure of the hadron

in the initial state. At HERA, the hadron is a proton, and the lepton is an electron

or a positron.

The reaction between the lepton and the proton is mediated by the electromag-

netic force via the exchange of a photon, or by the weak force via the exchange of

a Z0 or W±. If the exchanged boson is a γ or a Z0, the process is called neutral

current (NC) DIS. If the exchanged boson is a W±, the process is called charged

current (CC) DIS. To distinguish between the two processes, the only information

that we need is the type of the final state lepton. If it is the same that the initial

one, a neutral current interaction has happened. If not, the electric charge of the

incoming lepton has been taken by the exhanged particle and the final state particle

can not be the same that the initial one; the electron (positron) has transformed

into a neutrino (anti-neutrino) via the exchange of a W± boson.

e(k) e(k′)

γ*, Z0 (q)

Proton(P)

X(P′)

e(k) ν(k′)

W (q)

Proton(P)

X(P′)

Figure 1.1: Feynman diagrams for DIS; neutral current interaction on the left, and charged

current interaction on the right.

These reactions are shown in Figure 1.1 and can be expressed as:

e±P → e±X (NC)

e+(e−)P → ν̄(ν)X (CC) .

In general, the proton breaks into a hadronic system, X, which gives rise to the inelas-

tic part of DIS. It is usual to describe the DIS process in terms of Lorentz-invariant

variables Q2, x, y and W . If the incoming and outgoing lepton four-momenta are

labelled by k and k′, and the four-momentum of the proton by P , then the DIS



4 Theoretical Introduction

variables are defined by

Q2 = −q2 = −(k − k′) > 0

x =
Q2

2P · q

y =
q · P
k · P

W 2 = (P + q)2

where Q2 is the invariant mass, or virtuality, of the exchanged boson, x is the scaling

variable introduced by Bjorken [19]. In the quark parton model it is interpreted as

the fraction of the proton momentum carried by the struck quark. The variable y

corresponds to the fractional energy transfer from the lepton to the proton, in the

proton rest frame. Finally, W is the center of mass energy of the system proton-γ.

Neglecting the masses of the particles, the squared invariant mass (squared center

of mass energy) of the initial state is given by

s = (P + k)2 ≈ 2P · k =
Q2

xy

Therefore, at a given value of s, the kinematic of a DIS process is fully specified

by two independent variables from the set Q2, x, y. Q2 can take values in the range

0 < Q2 < s. Events with Q2 ≈ 0 (i.e., exchanged boson quasi-real) define the

photoproduction (γp) regime. On the other hand, high values of Q2 define the DIS

regime. The transverse distance that can be probed within the proton is inversely

proportional to Q2, so, as Q2 increases, finer structure can be seen.

1.3 Proton Structure Functions

e±p interactions can be viewed as the emission of a photon from the lepton, followed

by a photon-proton interaction. This is known by factorisation; the cross section is

then represented by convolution [20]

σ =
∑

i

fi ⊗ σi ,

where the sum is over all partons, i, within the hadron. The quantity σi contains

the dynamics of the hard scattering, whereas the fi are known as the parton dis-

tribution functions (PDFs), and contain the unknown non-perturbative physics at

the hadronic vertex. The NC and CC cross sections can be described in terms of

the “structure functions”, Fi, which further parametrise the structure of the proton

target as seen by the probing photon. The double differential cross section for e±p
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NC scattering [21] is

d2σep

dxdQ2
=

4πα2

xQ4

[

y2

2
2xF1 + (1 − y)F2 ∓ (y − y2

2
)xF3

]

.

Using the relation FL = F2 − 2xF1, where FL is the longitudinal structure function,

this reduces to
d2σep

dxdQ2
=

2πα2

xQ4

[

Y+F2 − y2FL ∓ Y−xF3

]

,

where

Y± = 1 ± (1 − y)2 .

The term xF3 arises from the parity-violating part of Z0 exchange. It is small for

Q2 ≪M2
Z , so it can be neglected here.

1.4 The Quark Parton Model

In the Quark Parton Model [22, 23], the proton is composed of point-like, non-

interacting, spin-1/2 partons. The inelastic scattering of the lepton off the proton

is viewed as the elastic scattering of the lepton off a parton within the proton. The

e±p cross section is the given by the incoherent sum of the e±-parton scattering

processes. In the infinite proton momentum frame, the partons have no transverse

momentum, and the masses can be neglected. In this limit, the Bjorken scaling

variable

x =
Q2

2P · q
has a simple interpretation as the fraction of the proton momentum carried by

the struck quark. Bjorken suggested that at high Q2 and high ν, where ν is the

fraction of the lepton energy carried by the photon in the proton rest frame, the

structure functions would be functions of x only, and not of both Q2 and x (Bjorken

scaling [19]). This can be seen in the quark parton model as the partons appearing

always point-like, regardless of the scale at which they are probed. The structure

functions Fi correspond to the sum of the parton momentum distributions weighted

with the square of the electric charge of each parton

F1(x) =
1

2

∑

i

e2i fi(x)

F2(x) =
∑

i

e2ixfi(x) ,

where fi(x) are the pdfs, which can be interpreted as the probability of finding a

parton with the momentum fraction x in the proton. The structure functions are
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related by the Callan-Gross relation

2xF1(x) = F2(x)

which holds exactly only for spin-1/2 partons which cannot couple to longitudi-

nally polarised photons. The experimental confirmation of this relation allowed the

identification of Feynman’s partons with Gell-Mann’s quarks.

The quark parton model was very successful in explaining many results obtained

in DIS experiments but soon some of its problems became apparent. One of them is

the prediction that all the parton momentum is carried by quarks. The experimental

data proved this prediction to be wrong. In fact, from experimental measurements

it was obtained that less than 50% of the proton’s momentum is carried by the

charged valence quarks:

∑

i

1
∫

0

dx xfi(x) ≈ 0.5 .

That is, half of the moementum of the proton is carried by neutral particles. In

addition, the fact that no free quarks were observed experimentally could not be

explained by the qurk parton model. Both these problems were solved by QCD.

In the limit Q2 → ∞, QCD reproduces the quark parton model. In the improved

parton model, the proton no longer consists merely on quasi-free quarks, but also a

sea of gluons and virtual quark-antiquark pairs.

1.5 QCD evolution equations

The Q2 dependence of the parton distribution fuctions can be calculated within the

pQCD. The main origin of this dependence is that a quark seen at a certain scale

Q2
0 as carrying a certain fractional momentum of the hadron x0 can be resolved into

more quarks and gluons if it is probed at a higher scale Q2. The resolved quarks and

gluons carry a smaller fractional momentum of the hadron (x < x0). Thus, when

all QCD effects are included, the structure function F2 is expected to rise at low

x. This is because the low x region is populated by gluons and sea quarks and the

quark density is large. The resulting logarithmic dependence of F2 on Q2 at fixed x

is known as scaling violation.

At HERA, the structure function F2 has been measured in a very wide range of

Q2 and x and the scaling violation at low x has been demonstrated. This is shown

in Figure 1.3.

The DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations are a set of

(2nf + 1) coupled integro-differentail equations. They can be used to determine

the quarks and gluon distributions functions for any value of Q2 provided they are
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known at a particular value of Q2
0 within the range of applicability of perturbative

QCD. These equations are derived by requiring the structure fuctions F1 and F2 be

independent of the choice of the factorisation scale µF , that is:

µ2
F

(

dFi(x,Q
2)

dµ2
F

)

= 0 i = 1, 2 .

In a first step, the DGLAP equations were derived in the leading logarithm approx-

imation-LLA. The terms which give the dominant contributions at large x and Q2

were summed to all orders. All other terms were neglected.

In compact form, the DGLAP equations can be written as:

∂

∂ lnQ2

(

q

p

)

=
αs(Q

2)

2π

[

Pqq Pqg

Pgq Pgg

]

⊗
(

q

p

)

,

where q(x,Q2), (g(x,Q2)) are the quark (gluon) distributions, and Pij(x) are the

splitting functions. The latter describe the probability to find a parton of type i

with given fractional momentum originating from the parton type j, where i, j can

be a quark or a gluon.

Given a specific factorisation and normalisation schemes, the splitting functions

are obtained in pQCD as expansion series in αs:

αs

2π
Pij(x,Q

2) =
αs

2π
P

(1)
ij (x) + (

αs

2π
)2P

(2)
ij (x) + . . .

The truncation after the first two terms in the series defines the next-to-leading

order (NLO) DGLAP evolution equations.

The DGLAP equations are valid as long as the impact of the neglected terms is

small. At very low x this is not true anymore. In this region another approach is used

and the calculations lead to the BFKL (Balitsky-Fadin-Kuraev-Lipatov) equations.

DGLAP deals with Q2 evolution and is inadequate at very low x. BFKL deals with

the 1
x

evolution and it is inadequate at large Q2.

The inclusive measurement of F2 at HERA has shown that the evolution of

structure functions through the DGLAP equations is in good agreement with the

experimental results, as shown in Figure 1.3. In this figure we see the ZEUS NLO

QCD global fit [24], which will be used as the parametrisation of the proton PDFs

in our theoretical predictions of charm production. Until now, no experimental

evidence for the BFKL effects has been observed.

Attemps have been made to achieve a unified description embodying both DGLAP

and BFKL-type evolution. Evolution equations which allow an evolution in Q2 as

well as in x are include in the CCFM (Ciafaloni-Catani-Fiorani-Marchesini) evolu-

tion equations.
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1.6 Heavy Flavour Production

Heavy quark production provides an oportunity to study perturbative QCD, using

the mass of the qurk as a hard scale for the calculation. The study of charm quark

production in DIS in particular provides insight into the proton structure, as charm

contributes up to 30% of the total DIS cross section at medium Q2. Therefore under-

standing charm production is essential in order to have a complete understanding of

F2. The lifetime of many charmed mesons are comparatively long since they decay

weakly to strange mesons, which means their decay vertex is displaced slightly from

the primary vertex, typically by 100 − 300 µm. Unfortunately the ZEUS detector

did not have the capability to resolve such a small distances in the running period

1998-2000. Therefore, in order to understand the charm quark production, it is nec-

essary to study the formation of bound charm states, since they are detector-level

observables at HERA. Many hadronic final states have been used to tag charm at

HERA, such as semileptonic decays to electrons or muons [25–27], D0(1864) [8, 28],

D+
s (1969) [11] and D∗+(2010) [3, 5–9] mesons, and the J/ψ [29–31], a bound state

cc̄. Charm fragmentation studies have been done in ZEUS in γp regime, tagging

almost the whole charm spectrum, including D0, D+, D+
s , D∗+ and, for the first

time at HERA, the Λ+
c [2] baryon. Our analysis considers the same set of final states

(except Λ+
c ), but in DIS regime.

1.6.1 Production Mechanisms

Early results fram HERA showed that charm production in NC DIS is dominated

by the Boson-Gluon-Fusion (BGF) mechanism [32] : at leading order, pairs cc̄ are

produced through the coupling of the virtual photon emitted by the electron and a

gluon in the proton, as shown in Figure 1.2.

e+ (k')e+ (k)

proton (P)
g (xgP)

γ* (q)
c

c
_

W2

Figure 1.2: Feynman diagram for boson-gluon fusion in e±p interactions.
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This conclusion was made after comparison of the measured cross sections with

the HVQDIS [33] program, which calculates cc̄ production exclusively through the

BGF mechanism with NLO corrections [34]. The H1 data favour production via

the BGF mechanism [8]. ZEUS results [3, 5, 6] also show good agreement with

BGF production. With BGF as the dominant production mechanism, the reactions

e±p→ e±DX, with D a charmed hadron, are sensitive to the gluon distribution in

the proton.

It is also possible to produce charm in beauty decays during fragmentation, but

these contributions are small. The production of beauty is suppresed relative to

charm production by both ites greater mass and its weaker coupling to the photon

due to its charge.

1.6.2 Charm Evolution

There are two basic ways of trating charm in the evolution equations, based on the

factorisation equation : it can be included in the initial state and evolved with the

other parton densities (Variable Flavour Number Scheme(VFNS)), or excluded from

the initial state and treated separately (Fixed Flavour Number Scheme (FFNS)).

These two schemes are in fact different ways to organise the same perturbation series

in pQCD. However, as the series is usually terminated after only one or two terms,

the two approaches can provide different results depending on the kinematic region

involved.

Fixed Flavour Number Scheme (FFNS)

In this scheme the number of active flavours is fixed, independent of Q2. Only the

light quarks u, d, s and the gluon are included in the proton. These active flavours

are considered massless, and evolve according to the DGLAP equations. Charm is

not considered as an active flavour, so it does not contribute to the evolution of the

running coupling constant or the structure functions in the proton. Rather it has

zero density in the proton sea, and can only be produce dynamically by the BGF

process. HVQDIS treats charm production within this scheme. The presence of two

large scales Q2 and m2
c , can spoil the convergence of the perturbative series because

the neglected terms of orders higher than α2
s contain log(Q2/m2

c) factors which can

become large. Therefore, the results of HVQDIS are expected to be more accurate

at Q2 ∼ m2
c and become less reliable when Q2 ≫ m2

c .

Variable Flavour Number Scheme (VFNS)

This scheme tends to the FFNS at low Q2, and trats charm as an active massless

flavour in the proton sea above some threshold, thus providing a model that works

over the entire range in Q2. Therefore, at low Q2, charm is produced dynamically

through the BGF process as in the FFNS, whereas, at higher Q2, heavy-quark parton
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densities are introduced. The transition between the two extremes are treated in

different ways by different authors [20, 35]. The description relies on the assumption

that a probe of virtuality Q2 > m2
c can resolve a charm anti-charm pair in the proton

sea, and that at sufficiently high Q2 the charm mass can be neglected.

1.6.3 Charm Structure Function

The charm structure function is a subset of the inclusive structure function of the

proton. The double differential cross section can be related to the charm structure

function, F cc̄
2 by

d2σcc̄(x,Q2)

dxdQ2
=

2πα2

xQ4

(

1 + (1 − y)2F cc̄
2 (x,Q2)

)

As F cc̄
L is predicted to be very small, it is neglected in this equation [36–38]. Although

the rates of charm production are significantly higher on photoproduction, in DIS

the hadronic component of the photon is eliminated, and more reliable theoretical

and experimental results can be obtained.

1.6.4 Charm Fragmentation

The fragmentation of the charm quark into the hadrons that can be reconstructed

in the final state is a non-perturbative process described only by phenomenological

models. The c quark production process involves the charm mass, which is large

enough to allow reliable perturbative QCD calculations, but the fragmentation of

the c quark into a charmed hadron involves the long range, non perturbative effects

of light quarks and soft gluons.

Peterson Fragmentation

The most common fragmentation model is that of Peterson [39], which uses

quantum-mechanical methods to calculate the amplitude for fragmentation of a

heavy quark Q into a hadron Qq̄ containing also the light quark q. The momentum

fraction z taken from the c quark to create the charmed hadron distributes according

to

Dc→D(z; ǫ) =
Nz(1 − z)2

((1 − z)2 + ǫz)2
,

where N is a normalisation constant and ǫ is a free parameter.
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Figure 1.3: Measurement of the structure function F2 as a function of Q2 for different

values of x.
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Chapter 2

The HERA collider and the ZEUS

detector

2.1 The Hadron Electron Ring Accelerator

Figure 2.1: View of DESY.
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HERA

PETRA

DORIS

HASYLAB

Hall NORTH (H1)

Hall EAST (HERMES)

Hall SOUTH (ZEUS)

Hall WEST  (HERA-B)

Electrons / Positrons

Protons

Synchrotron Radiation

360 m

779 m

Linac
DESY

Figure 2.2: The HERA accelerator complex. Four experiments are located in the experi-

mental halls : South (ZEUS), West (HERA-B), North (H1), and East (HERMES).

The HERA (Hadron Elektron Ring Anlage) collider is located at DESY in Ham-

burg, Germany. It offers unique opportunities to explore the structure of the proton

as it is the first ep collider in the world. Figure 2.1 shows an aerial view of DESY and

the surrounding area including the location of the two largest accelerators HERA

and PETRA.

HERA was approved in 1984 and first collisions were observed in 1991. Opera-

tions for physics started in 1992. HERA consists of one storage ring for protons and

one for electrons.The design energy is 30 GeV for electrons and 820 GeV for protons.

Each storage ring consists of four 90◦ arcs connected by 360 m long straight sections

and is located (10–25) m below ground. Superconducting magnets are used for the

proton storage ring. Four experimental halls (North, South, East, West) are situ-

ated in the middle of the straight sections. The two collider experiments, H1 and

ZEUS, are located in the northern and southern experimental halls, respectively.

In both interaction regions electrons and protons collide head-on at zero crossing

angle. Two fixed-target experiments, HERMES and HERA-B, have been installed

in the eastern and western experimental halls, respectively. They make use of only
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the HERA electron (HERMES) and proton (HERA-B) beams, respectively. HER-

MES [40] is investigating the spin structure of the nucleon and HERA-B [41] aims

to study the CP-violation in the B0B0-system. Figure 2.2 shows the layout of the

HERA collider, the four experimental halls and the system of pre-accelerators used

at DESY. In a first step electrons and protons are accelerated using linear accelera-

tors. A small storage ring PIA (Positron-Intensity-Accumulator) is used in between

the linear accelerator and DESY II to accumulate electrons until sufficient intensity

is reached. In a next step the particles are injected into DESY II (electrons) and

DESY III (protons). After injection into PETRA and further acceleration, electrons

and protons are injected into HERA. From 1995 to 1997 positrons were used instead

of electrons because severe lifetime problems of the electron beam were observed.

The reason is most likely the capturing of positively-charged dust which originates

from ion getter pumps from the HERA electron vacuum system by the electron

beam [42]. With the installation of new pumps in the winter shutdown 1997/1998

the problem has been significantly reduced and HERA switched back to electrons in

1998. Several HERA parameters from the 1997 runing period and the corresponding

design values are given in table 2.1.

HERA parameters Design Values Values of 1997

e± p e+ p

Circumference (m) 6336

Energy (GeV) 30 820 27.6 821.2

Center-of-mass energy (GeV) 314 301

Injection energy (GeV) 14 40 12 40

Energy loss per turn (MeV) 127 1.4 · 10−10 127 1.4 · 10−10

Current (mA) 58 160 36 78

Magnetic field (T) 0.165 4.65 0.165 4.65

Number of bunches 210 210 174+15 174+6

Bunch crossing time (ns) 96

Horizontal beam size (mm) 0.301 0.276 0.200 0.200

Vertical beam size (mm) 0.067 0.087 0.054 0.054

Longitudinal beam size (mm) 0.8 11 0.8 11

Specific luminosity (cm−2s−1mA−2) 3.6 · 1029 5.0 · 1029

Instantaneous luminosity (cm−2s−1) 1.6 · 1031 1.45 · 1031

Integrated luminosity per year (pb−1/a) 35 36.5

Table 2.1: HERA parameters. In 1997 HERA operated with 174 colliding bunches, 15

positron-pilot bunches and 6 proton-pilot bunches.
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Figure 2.3: Integrated luminosity delivered by HERA in the different running periods (left

plot) and the one taken with the ZEUS detector (right plot). The latter is used for physics

analysis.

2.2 The ZEUS Detector

The ZEUS detector is a general purpose magnetic detector designed to study various

aspects of electron-proton scattering. It has been in operation since 1992 [43] and

consists of various sub-components to measure the hadrons and leptons in the final-

state and, therefore, to characterize the final-state in terms of energy, direction, and

type of the produced particles.

The coordinate system of the ZEUS detector is a Cartesian right-handed coordi-

nate system. The origin ((X, Y, Z) = (0, 0, 0)) is located at the nominal interaction

point. The Z-axis points in the proton beam direction, the Y-axis upwards, and

the X-axis horizontally towards the center of HERA. The polar (azimuthal) angle θ

(φ) is determined relative to the positive Z-axis (X-axis). With this definition the

polar angle of the incoming electron beam is 180◦ and that of the incoming proton

beam is 0◦. The +Z-direction is referred as the forward, and the –Z-direction as the

backward direction.

The ZEUS detector consists of the main detector located around the nominal

interaction point and several small detectors positioned along the beam line in both

positive and negative Z-directions. The main detector is shown in Figures 2.4 and 2.5
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Figure 2.4: View of the ZEUS detector along the beam direction.

along and perpendicular to the beam direction, respectively. The design is asymmet-

ric with respect to the Z-axis because of the large forward-backward asymmetry of

the final-state system. The difference in the energy of the electron beam (27.5 GeV)

and proton beam (820 GeV) results in a center-of-mass system which is moving in

the direction of the proton beam relative to the laboratory frame. The inner part

of the main detector consists of the tracking system enclosed by a superconducting

solenoid which produces an axial magnetic field of 1.43 T. The CTD, a cylindrical

drift chamber, surrounds the beam pipe at the interaction point. In order to provide

additional means of track reconstruction in the forward (backward) direction, the

CTD was supplemented by the FTD (RTD). The FTD consists of three sets of pla-

nar drift chambers with transition radiation detectors (TRD) in between. The RTD

is one planar drift chamber with three layers. The vertex detector VXD measures

the event vertex and possibly secondary vertices and improves the momentum and

angular resolution of charged particles as determined with the CTD alone. In 1994

high voltage problems and damage due to synchrotron radiation caused part of the

VXD to be off and it was removed.

The high resolution uranium calorimeter (UCAL) encloses the tracking detectors.

It is subdivided into the forward (FCAL), barrel (BCAL), and rear (RCAL) parts.

The UCAL in turn is surrounded by an iron yoke made of 7.3 cm thick iron
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Figure 2.5: View of the ZEUS detector perpendicular to the beam direction. See text for

a description of the components.

plates. The yoke serves two purposes: it provides a return path for the solenoid

magnetic field flux and, in addition, is instrumented with proportional chambers.

The latter design feature makes it possible to measure energy leakage out of the

UCAL. The yoke is therefore referred to as the backing calorimeter (BAC). As

the yoke is magnetized to 1.6 T by copper coils it is used to deflect muons. In

order to detect and measure the momentum of muons, limited streamer tubes are

mounted surrounding the iron yoke in the barrel (BMUI, BMUO) and the rear

(RMUI, RMUO) regions. As the particle density and the muon momentum in the

forward direction is higher than in the barrel and rear directions due to the energy

difference of the electron and proton beam, the muon chambers in the forward

direction are designed differently. Limited streamer tubes mounted on the inside

of the iron yoke (FMUI) and drift chambers and limited streamer tubes mounted

outside the iron yoke (FMUO) are used for this purpose. Two iron toroids provide

a toroidal magnetic field of 1.7 T. In the backward direction at Z = −7.3 m, a veto

wall outside the detector composed of iron and scintillation counters is used to reject

background events dominated by proton-beam-gas reactions.
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2.2.1 The Central Tracking Detector

The tracking system of the ZEUS detector consists of the forward, central and rear

tracking devices, which operate under a high magnetic field of 1.43 T to achieve

a high resolution for high momentum tracks. All the tracking quantities used in

this analysis are provided by the Central-Tracking Detector (CTD) [44]. The CTD

is a cylindrical drift chamber which provides a high precision measurement of the

direction and transverse momentum of charged particles and of the event vertex.

The position resolution in r − φ is about 230µm and the transverse momentum

resolution is

σ(pt)

pt

= 0.0058 · pt(GeV) ⊕ 0.0065 ⊕ 0.0014

pt

,

where the first term corresponds to the resolution of the hit positions, the second

term to smearing from multiple scattering within the CTD and the last term to

multiple scattering before the CTD. The position of the interaction point in X and

Y is measured with a resolution of 0.1 cm and in Z with a resolution of 0.4 cm.

The CTD is filled with a mixture of argon, CO2, and ethane. Particle identifica-

tion is possible by measurements of the mean energy loss dE/dx of charged particles

within the tracking detector. The CTD covers a polar angle of 15◦ < θ < 164◦ and

the full range of the azimuthal angle φ. Its active volume has a length of 205 cm, an

inner radius of 18.2 cm, and an outer radius of 79.4 cm.

The CTD is designed as a multi-cell superlayer chamber and subdivided into eight

sections and nine superlayers. One octant is shown in Figure 2.6. The CTD consists

of 576 cells with each cell being equipped with eight sense wires. The number of cells

increases from 32 in the innermost superlayer to 96 cells for the outermost superlayer.

Every other superlayer has its sense wires rotated by a certain angle with respect

to the beam axis. The angles for each superlayer are given in Figure 2.6. With this

configuration the Z position of a track can be reconstructed with an accuracy of

aproximately 2 mm.

2.2.2 The Uranium-Scintillator Calorimeter (UCAL)

Calorimeters in particle physics measure the energy of particles by their absorption

in a medium that becomes ionised or excited through shower processes. The ZEUS

calorimeter (UCAL) has been designed as a sampling calorimeter, where absorber

layers alternate with scintillator layers, which are the optical readout. The calorime-

ter is required to be hermetic with a nearly full solid-angle coverage and to have a

good hadronic energy resolution by achieving an equal response to electromagnetic

and hadronic particles.
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Figure 2.6: Layout of a CTD octant. Each octant has nine superlayers with the even

numbered ones declined with respect to the beam axis (‘Stereo angle’).

The UCAL is divided into three parts, which cover different polar angles [45–47].

All parts of the calorimeter, FCAL (2.2◦ < θ < 39.9◦), BCAL (36.7◦ < θ < 128.1◦),

and RCAL (128.1◦ < θ < 176.5◦) are built of alternating layers of 3.3 mm thick

depleted uranium and 2.6 mm thick plastic scintillator plates (SCSN38). The natural

radioactivity of 238U is used as a reference signal to calibrate the readout channels

to a precision of < 0.2%.

Uranium is an advantageous absorber for hadron calorimetry, since it provides a

high yield of spallation neutrons which impart the energy to the hydrogen nuclei of

the scintillator. Together with an additional contribution of photons from neutron

capture of the uranium, this helps to compensate the signal loss of hadrons arising

from the loss of binding energy, nuclear fission fragments and from undetected decay

products. Electrons and photons do not suffer such losses as they interact predom-

inantly with the atomic electrons and not with the nuclei. The ratio between the

pulse heights of electrons and hadrons, e/h, which has been achieved is

e/h = 1.00 ± 0.03

The three calorimeter parts are subdivided into modules. The modules are transver-

sally separated into towers and the towers in turn longitudinally into electromagnetic

(EMC) and hadronic sections (HAC). The design of an FCAL module is shown in

figure 2.7. The FCAL and RCAL modules are planar and perpendicular with re-

spect to the beam axis (see figure 2.4), while the BCAL modules are wedge-shaped

and projective in the polar angle. The calorimeter modules are further segmented
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Figure 2.7: Layout of a FCAL module. The UCAL modules are subdivided into one elec-

tromagnetic (EMC) and two hadronic (HAC1,HAC2) sections, which in turn are divided

into cells. A cell is read out on two opposite sides by one wavelength shifter each.

into cells. The design of the three calorimeter parts takes into account the different

particle densities and energies due to the asymmetric electron and proton beam en-

ergies. Each EMC section is segmented transversally into four cells (two in RCAL),

while a HAC tower is not divided transversally. They are instead longitudinally

subdivided into two (one in RCAL) hadronic cells (HAC1, HAC2). Each cell is read

out on two opposite sides. This is done on each side by a wavelength shifter coupled

to one photomultiplier tube. The information of both photomultiplier tubes is used

to provide a limited reconstruction of the position of the measured particle and to

check the uniformity of the readout.

The single particle energy resolution for electrons and hadrons was determined in

test-beam experiments to be σE/E = 0.18/
√
E and σE/E = 0.35/

√
E respectively,

where E is mesured in GeV.
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Figure 2.8: Location of ZEUS detectors in negative Z-direction. Shown are the gamma

(LUMIG) and electron detectors (LUMIE) used for the luminosity measurement.

2.3 The Luminosity measurement

The luminosity, L ≡ N/σ, relates the number of events N with the cross section σ. A

precise determination of the luminosity is essential for any cross section measurement

in a high energy physics experiment. The luminosity of ep-collisions at HERA is

measured by observing the rate of hard bremsstrahlung photons from the Bethe-

Heitler process ep → eγp [48]. As the theoretical cross section is known to an

accuracy of 0.5% from QED calculations, a precise measurement of the photon rate

permits a precise determination of the ep-luminosity at HERA.

Figure 2.8 shows the layout of the HERA magnet system and the ZEUS lumi-

nosity detectors in the backward (–Z)-direction. In the case of ZEUS this is done

by two lead/scintillator electromagnetic calorimeters at Z = −34 m (LUMIE) and

Z = −107 m (LUMIG). Photons with θγ < 0.5 mrad originating from the Bethe-

Heitler process ep→ eγp are detected by the LUMIG detector [49, 50]. The energy

resolution of the LUMIG detector was measured under test-beam conditions to be

18%/
√
E. It was also determined that the carbon/lead filter placed in front of the de-

tector to shield it against synchrotron radiation degrades the resolution to 23%/
√
E.

The impact position of incoming photons can be determined with a resolution of

0.2 cm in X and Y , because at a depth of 7X0 1 cm wide scintillator strips are in-

stalled within the LUMIG detector. The LUMIG detector is also used to determine

the electron beam tilt and to measure photons from initial-state radiation.

The LUMIE calorimeter [49, 50] at Z = −35 m detects electrons in the limited

energy range from 7 to 20 GeV which are produced under polar angles of less than

5 mrad with respect to the electron beam direction. These electrons are deflected by

the HERA magnet system and leave the beam pipe at Z = −27 m through an exit

window similar to the one in front of the LUMIG detector. The LUMIE detector
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has an energy resolution of 18%/
√
E under test-beam conditions. It was initially

designed to measure the electrons of the Bethe-Heitler process ep→ eγp at the same

time as the photons of this process are measured in the LUMIG detector. It was

found that this was not necessary to have a precise measurement of the luminosity.

2.4 The ZEUS trigger and data acquisition systems

The short bunch crossing time at HERA of 96 ns, equivalent to a rate of of about

107 crossings per second , is a technical challenge and puts stringent requirements

on the ZEUS trigger and data acquisition systems. The total interaction rate, which

is dominated by background from upstream interactions of the proton beam with

residual gas in the beampipe, is of the order 10 - 100 kilo-events per second (10 -

100 kHz) while the rate of ep physics events in the ZEUS detector is of the order of

a few Hz [51, 52]. Other background sources are electron beam gas collisions, beam

halo and cosmic events.

ZEUS employs a sophisticated three-level trigger system in order to select ep

physics events efficiently while reducing the rate to a few Hz. A schematic diagram

of the ZEUS trigger system is shown in Figure 2.9.

The First Level trigger (FLT) is a hardware trigger, designed to reduce the

input rate below 1 kHz. Each detector component has its own FLT, which stores

the data in a pipeline, and makes a trigger decision within 2 µs after the bunch

crossing. The decision from the local FLTs are passed to the Global First Level

Trigger (GFLT), which decides whether to accept or reject the event, and returns this

decision readout within 4.4 µs. The typical information available at FLT are CAL

activity (total transverse energy, missing transverse momentum,...), CTD tracks

(number of tracks,...), hits in the muon chambers, etc.

If the event is accepted, the data is fully digitalised and transferred to the Second

Level Trigger (SLT). The trigger signals at the SLT have a better resolution than

those at the FLT. Moreover, some information is first available at the SLT like CAL

timings, which are useful in rejecting non-ep background events. The SLT is designed

to reduce the rates to the order of 50-100Hz. Each detector component has its own

SLT, which passes a trigger decision to the Global Second trigger (GSLT) [53].

If the event is accepted by the GSLT, all detector components send their data

to the Event Builder (EVB), which combines all the data of an event into a single

record of ADAMO [54] database tables. This is the data structure on which the

Third Level Trigger (TLT) code runs. The TLT is software based and runs part of

the offline reconstruction code. It is designed to reduce the rate to a few Hz.
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Figure 2.9: Schematic diagram of the ZEUS trigger and data acquisition systems.

2.5 Event reconstruction and analysis

The scheme of the ZEUS offline and Monte Carlo (MC) simulation programs is shown

in figure 2.10. Events from the real detector or simulated events are reconstructed

by the program ZEPHYR, where the signals of the different calorimeter components

are calibrated and highly complex tasks like tracking reconstruction are performed.

After reprocessing the raw data, the user has access to the raw and reconstructed

quantities via the program EAZE. In the framework of EAZE, the user writes his own

analysis program in either Fortran or C. It is used to reconstruct relevant quantities

and perform selection cuts. Subsets of the data or MC simulated events can be saved

for further analysis. The program LAZE is an event display program which allows
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graphical viewing of various aspects of an event including the tracks of charged

particles in the CTD, energy depositions in the CAL, and other component-related

quantities. To allow fast access to specific types of events during reconstruction it

is checked wether each event meets one of the conditions designed by the ZEUS

analysis groups. If a specific condition is met, a flag called a DSTBIT is set. Before

analyzing detailed component information in the user’s EAZE program, the events

can be preselected by requiring certain DSTBITS. This allows a faster loop over the

whole data sets since only those events are processed further.

MC events are generated using the program ZDIS which contains a shell envi-

ronment to steer a number of MC generator programs. The output data is stored

in the same (ADAMO) format as the data from the real detector and passed to the

ZEUS detector simulation program MOZART, based on the CERN GEANT pro-

gram [55]. A simulation of the ZEUS trigger chain is done by the program ZGANA.

Interfaces between the programs used for MC generation and the programs EAZE

and LAZE provide specific MC information such as generated kinematic quantities,

vertices and particles to the user. An overview of the physics analysis environment

of the ZEUS experiment can be found in [56].
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Chapter 3

Event Selection

In this chapter the selection criteria for the DIS charmed hadron enriched sample

is presented. The data used for the present analysis was collected with the ZEUS

detector at HERA during the 1998-2000 period. During 1998 and half of 1999,

HERA operated with protons of energy Ep = 920 GeV and electrons of energy Ee =

27.5 GeV. From mid of 1999 to 2000, the experiment used a positron beam instead

of an electron beam. The results are based on e−p and e+p samples corresponding

to integrated luminosities of 16.7± 0.3 pb−1 and 65.1± 1.5 pb−1, respectively. The

whole sample is used in the reconstruction of the D0, D+
s and D∗+ mesons. For

the reconstruction od D+ mesons and due to trigger availability, only the positron

sample was used.

3.1 Event Reconstruction

The final state of a DIS events contains two distinc objects : the scattered positron

and the hadronic system. The hadronic system combines everything that is is not

attributed to the scattered positron in one single object. The hadronic system can

be further broken down into jets, which appear after the hadronisation of quarks

and gluons, and the proton remnant.

3.1.1 The scattered positron

The identification of the scatterd electron, and accurate measurement of both its

angle and energy, are important as the kinematics is partially determined from these

quantiies. There are a number of software packages that are usedwithin the ZEUS

analysis framework. The most commonly used is the neural-network SINISTRA [57].

In many DIS events, the scattered electron is detected in the RCAL, well separated

from the hadronic activity in the event. In general, hadronic deposits shower deeper



28 Event Selection

into the calorimeter than positron deposits. There are however certain complica-

tions, such as multiple scattering in dead material before the electron reaches the

calorimeter, and low energy hadrons, or π0 conversions can “fake” a lepton signal.

The SINISTRA algorithm has been trained on low Q2 NC data and Monte Carlo

to optimise its efficiency at differenciating between electromagnetic and hadronic

deposits. Previous studies have shown that the efficiency has a turn on curve but it

is between 99% and 100% above 10 GeV.

Energy and Position Correction

The position of the scattered electron can be identified using the calorimeter

itself, but a better resolution can be obtained by using the matched track from

the CTD, or the position from the HES or SRTD. The resolution of the SRTD is

about 3mm, compare to centimeters in the calorimeter. The energy of the scattered

electron is corrected for losses in dead material between the interaction points and

the calorimeter. The components used for this corrections are the SRTD and the

Presampler. The number of particles in the shower is proportional to the energy loss.

Extensive studies of over-constrained events have determined the correction to be

applied in data and Monte Carlo for each component. A non-uniform correction is

also made to the energy measured in the calorimeter, based on the differing responses

of the cells close to the cracks between the calorimeter towers. If the lepton is not

detected near to these cracks, no correction is applied.

3.1.2 The Hadronic System

The hadronic activity within an event is reconstructed using the ZUFOS routine,

which uses calorimeter and CTD information. Details can be found in [58], but we

give an overview. Calorimeter clusters, known as “islands” are formed considering

the highest-energy neighbour for each cell. A cell with no higher energy neighbours

is defined as the center of the island. The island formed in the EMC and HAC

sections of the calorimeter are then matched with each other into “cone islands”.

Track matching is then performed using good tracks from the CTD, defined as

those passing through at least three superlayers. These tracks are extrapolated to

the calorimeter face, and matched to the energy deposits. If a track is matched to

a deposit, the CTD is used to determine the energy and momentum of the object,

provided the CTD momentum resolution is better than the calorimeter energy res-

olution. If a track is not matched to an energy deposit, the energy is calculated

assuming that the particle is a pion. If a cone island has no track matched to it, it

is assumed to originate from a photon, and its momentum is calculated ignoring the

mass and assuming an origin at the reconstructed primary vertex. If a cone island

has more than three tracks associated to it, its momentum is also calculated in this
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way. Once the objects have been trated in these way, they are referred to as ZUFOs,

or ZEUS Unidentified Flow Objects.

The hadronic final state is defined in terms of detector observables: δh, the

hadronic E − pz and the transverse momentum of the hadronic system pT , h, which

are defined as

δh =
∑

i

(E − pz,i)

p2
T,h = (

∑

i

px,i)
2 + (

∑

i

py,i)
2

where the sums run over all the calorimeter clusters that are not associated with the

scattered lepton. These two observables can be combined to give another variable:

cos γh =
p2

T,h − δ2
h

p2
T,h + δ2

h

which is, at leading order, the polar angle of the struck quark.

3.2 Kinematic Reconstruction

The quantities Q2, x and y can be reconstructed in different ways, each being suited

to a certain kinematic region. This is possible due to the ability to reconstruct the

energy and the angle of the scattered lepton, and almost the full hadronic final state

with the ZEUS detector. The criteria for the ideal choice of reconstruction method

are optimum resolution, and minimisation of migrations, that is, systematics shifts

of the reconstructed values with respect to the true kinematics. The reconstruction

of these variables can also be achieved using a combination of methods: two inde-

pendent variables can be reconstructed using two different methods. Then the third

one can be calculated using the relation

Q2 = xys ,

where s is the center of mass energy of the ep collision. For the analysis presented

here, the method used for the reconstruction of the kinematic variables was the

Sigma Method.

Electron Method

This method uses only the measurement of the scattered electron angle, θe, and

energy, E ′

e. For a given value of the initial electron beam energy Ee, the kinematic
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variables Q2, y and x are given by

Q2
el = 2EeE

′

e(1 + cos θe)

yel = 1 − E ′

e

2Ee
(1 − cos θe)

xel = EeE
′

e

(

1 + cos θe

2EpEe −EpE ′
e(1 − cos θe)

)

This method is sensitive to initial and final state radiation as it implicitly assumes

that the lepton interacts with the full beam energy Ee, and leaves with the scattered

energy E ′

e. A yel cut can be used to reduce photoproduction background, where some

hadronic activity cause a fake electron-like deposit, tipically in the FCAL, causing

a high yel value.

Jacquet-Blondel Method

The Jacquet-Blondel method [59] uses only the hadronic system to reconstruct

the kinematics of the event. This is naively the quark angle and energy, but this

cannot be measured directly. Instead, the sums of E − pz and pT of all the final

state particles excluding the scattered lepton are made:

δh =
∑

h

(E − pz)

pT,had =
∑

h

pT,h ,

and the kinematics is given by:

yJB =
δh

2Ee

Q2
JB =

p2
T,had

1 − yJB

xJB =
Q2

JB

syJB

Although this method does not provides the best resolution, yJB provides a mea-

surement of the hadronic activity in the event. Therefore, yJB can be used a useful

background cut.

Double Angle Method

The double angle method [60] is a reconstruction method that is based on the

angles both the hadronic system and the scattered lepton. The hadronic angle,

which can naively interpreted as the angle of the struck quark, is given by

cos γ =
p2

T,had − δ2
h

p2
T,had + δ2

h

,
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where pT,had and δh are given above. The reconstruction of the kinematics is done

by

Q2
DA = 4E2

e sin γ
1 + cos θe

sin γ + sin θe − sin(γ + θe)

yDA =
sin θe + (1 − cos θe)

sin γ + sin θe − sin(γ + θe)

xDA =
Ee sin γ + sin θe + sin(γ + θe)

Ep sin γ + sin θe − sin(γ + θe)

Since angles are in general better measured than energies with the ZEUS detector,

this method is competitive over a large proportion of the kinematic region available.

Sigma Method

The Σ method [61] uses both the scattered lepton and the hadronic system to

reconstruct the kinematics. The variables are given by:

yΣ =
δh
δ

(3.1)

Q2
Σ =

E ′2
e sin2 θe

1 − yΣ
(3.2)

xΣ =
Q2

Σ

syΣ
. (3.3)

In the case where no particle escapes detection, this method is identical to the

double-angle method, but its adventage is that it properly accounts for initial-state

radiation.

3.3 Trigger Selection

The ZEUS data acquisition system uses a three level trigger system to select events

online [62, 63]. After each step, the data volume is reduced and more time is

available, allowing for the reconstruction of more complicated information on which

to base trigger decisions.

3.3.1 First Level Trigger

At the FLT level, DIS events were triggered by either FLT30, FLT44 or FLT46.

• FLT30 requires an isolated CFLT tower (ISO-e) with energy greater than

2.08 GeV and that the HAC tower behind it is less than a third of the EMC

energy or less than 0.95 GeV. In addition, one of the following conditions were

imposed:
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– The RCAL EMC energy (excluding the first RCAL ring of 20 × 20 cm2

towers) is larger than 2 GeV.

– .OR. The total RCAL EMC energy is above 3.7 GeV.

– .OR. At least one CFLT tower (excluding the first RCAL ring and the

three FCAL rings closest to the beam) with energy above 0.5 GeV .AND.

the presence of a SRTD hit.

• FLT44 triggers if:

– the energy deposited at the BCAL EMC section is larger than 4.8 GeV.

A CTDFLT requirement is imposed in addition.

– .OR. The total RCAL EMC energy (excluding the first ring of 20×20 cm2

towers) is larger than 3.4 GeV.

• FLT46 is a logical .AND. od ISO-e and a CTDFLT requirement.

FLT44 is the softer conditions for events outside the first RCAL ring while FLT30

triggers the events inside the first RCAL ring.

3.3.2 Second Level Trigger

At the SLT beam gas background is furthered suppressed with the help of the UCAL

timing information. During the 1998-2000 data taking a requirement on the total

E −Pz was already present at the SLT. DIS06 (E −Pz > 29 GeV) bit was required.

3.3.3 Third Level Trigger

At the third level, events having at least a reconstructed D∗+, D0, D+, D+
s or Λ+

c

candidate, as well as a scattered-electron candidate, were kept for further analysis.

The efficiency of the online reconstruction for any of the above hadrons, determined

relative to an inclusive DIS trigger, was generally above 95% A brief description is

given below.

HFL10 triggers if a D∗+ candidate decaying in the channel D∗+ → D0(→
K−π+)π+

s was found in the event. In additition, the following cuts are required:

• −50 cm < Zvertex < 50 cm and 3 < Ntracks < 100

• pT (K) > 0.35 GeV and pT (π) > 0.4 GeV (from D0 decay)

• pT (πslow) > 0.1 GeV

• Mass windows : 1.4 < M(Kπ) < 2.2 GeV and M(Kππs)−M(Kπ) < 170 GeV
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• pT (D∗) > 1.35 GeV GeV

.OR. same cuts plus DIS cuts (only for e+ data):

• DIS electron from Sinistra, Elec5 or EM finders

• Ee > 4.0 GeV, box cut 6 × 12 cm2, (E − pz) > 30 GeV

HFL12 triggers if a D0 candidate decaying in the channel D0 → K−π+ was

found in the event. In addition, the following cuts are required:

• −50 cm < Zvertex < 50 cm and 2 < Ntracks < 100

• pT (K) > 0.7 GeV and pT (π) > 0.7 GeV

• Mass windows : 1.6 < M(Kπ) < 2.2 GeV

• pT (D0) > 2.8 GeV, |η(D0)| < 2.0

.OR. same cuts plus DIS cuts (only for e+ data)

• DIS electron from Sinistra, Elec5 or EM finders

• Ee > 4.0 GeV, box cut 6 × 12 cm2, (E − pz) > 30 GeV

HFL13 triggers if aD+
s candidate decaying in the channelD+

s → φ(→ K+K−)π+

was found in the event. In addition, the following cuts are required:

• −50 cm < Zvertex < 50 cm and 3 < Ntracks < 100

• pT (K) > 0.7 GeV and pT (π) > 0.7 GeV

• Mass windows : 1.6 < M(KKπ) < 2.2 GeV

• pT (Ds) > 1.8 GeV, |η(Ds)| < 2.0

• No wrong charges

.OR. same cuts plus DIS cuts (only for e+ data):

• DIS electron from Sinistra, Elec5 or EM finders

• Ee > 4.0 GeV, box cut 6 × 12 cm2, (E − pz) > 30 GeV

HFL21 triggers if a D+ candidate decaying in the channel D+ → K−π+π+ was

found in the event. In addition, the following cuts are required:

• −50 cm < Zvertex < 50 cm and 3 < Ntracks < 100
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• pT (K) > 0.45 GeV and pT (π) > 0.45 GeV

• Mass windows : 1.7 < M(Kππ) < 2.1 GeV

• pT (D+/−) > 2.8 GeV, |η(D±)| < 2.0

plus DIS cuts:

• DIS electron from Sinistra, Elec5 or EM finders

• Ee > 4.0 GeV, box cut 6 × 12 cm2, (E − pz) > 30 GeV

HFL22 triggers if a Λ+
c candidate decaying in the channel Λ+

c → K−pπ+ was

found in the event. In addition, the following cuts are required:

• −50 cm < Zvertex < 50 cm and 3 < Ntracks < 100

• pT (K) > 0.45 GeV, pT (p) > 0.45 GeV and pT (π) > 0.45 GeV.

• Mass windows : 2.1 < M(Kpπ) < 2.5 GeV

• pT (Λc) > 3.6 GeV, |η(Λc)| < 2.0

plus DIS cuts:

• DIS electron from Sinistra, Elec5 or EM finders

• Ee > 4.0 GeV, box cut 6 × 12 cm2, (E − pz) > 30 GeV

3.4 DIS Selection Criteria

Selection cuts are intendended to optimise the NC DIS sample, reducing the back-

ground from photoproduction processes. The ratio signal to background events is

optimised by the kinematic cuts in (δ, Q2, y) and also some additional requirements

on the scattered electron candidate. On the event sample that passed the TLT

requirements, the following criteria were applied:

• 40 < E − pz < 65 GeV

For a perfectly measured DIS event δ should have the value δ = 2Ee = 55 GeV,

from energy-momentum conservation. Particles that scape through the beam

pipe do not contribute to the overal δ. In photoproduction events the scattered

electron is not detected. This effectively lowers the measured δ for these type

of events, so the δ distribution peaks at lower values, typically bellow 30 GeV.
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• −50 < Zvertex < 50 cm

The Z coordinate of the vertex is resticted to this range to garantee a good un-

derstanding of the acceptances of both the calorimeter and the central tracking

detector.

• yel < 0.95

Sometimes SINISTRA identifies an electromagnetic cluster in the FCAL as the

most probable candidate for the scattered electron. Usually this is due to a

π0, while the real scattered electron can be found elsewhere in the detector.

As these “fake” electrons are produced in a decay, they have an energy that is

much lower than expected for high Q2 event. From the relation 3.6 it follows

that yel will be very high for such misidentified electrons. The cut yel < 0.95

is intended to reject a large fraction of those events.

• Electron energy and probability cut

We require to have at least one DIS scattered electron candidate found with

SINISTRA and minimum energy Ee > 10 GeV.

• Box cut

The impact point of the scattered electron in the RCAL must lie outside the

region 26×14 cm2, which correponds to a harder box cut that those considered

in the DIS01 and DIS03 triggers. The best estimation of the electron position

is used (HES and STRD when available).

• yJB > 0.02

This cut removes part of the phase space that is characterised by low total

hadronic energy in the calorimeter.

The angle of the scattered electron was determined using either its impact posi-

tion on the CAL inner face or a reconstructed track in the CTD. When available,

SRTD and HES were also used. The energy of the scattered electron was corrected

for non-uniformity effects caused by cell and module boundaries.

The selected kinematic region of the measurement was

1.5 < Q2 < 1000 GeV2 0.02 < y < 0.7 .

3.5 Tracking Selection

In this analysis we use tracks reconstructed using only the CTD and originated

from the primary vertex, passing through at least three superlayers to ensure good

reconstruction, and having a minimum transverse momentum pT > 0.1 GeV.
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Chapter 4

Reconstruction of Charm Hadrons

In this chapter we reconstruct the D∗+, D0, D+, and D+
s charm mesons in the

range of transverse momentum pT (D) > 3 GeV and pseudorapidity |η(D)| < 1.6.

For each meson, a specific decay channel was used in the reconstruction. For the

D+
s , the pT (D+

s ) requirement was relaxed to pT (D+
s ) > 2 GeV, as the kinematics of

the decay channel used in its reconstruction kept the combinatorial background at

acceptable levels. The reconstruction of the Λ+
c baryon was attempted using the

decay Λ+
c → K−pπ+. The signal achieved had a statistical significance of around

three standard deviations, and therefore it was not used.

The charm mesons were reconstructed using tracks measured in the CTD. Further

background reduction was achieved by imposing cuts on the transverse momenta

and decay angles of the charm-hadron decay products. The cut values were tuned

using Monte Carlo (MC) simulation to enhance signal over background ratios while

keeping acceptances high.

The inclusive productions of the D0 and D∗+ mesons and related quantities

involved in the measurements of fragmentation properties can be obtained from

the combination of three independent samples [2]: those of D0 candidates with

and without a “∆M” tag and that of “additional” D∗+ candidates. The samples

are described below. The rationale for this division [2] will become apparent in

Chapter 6.

4.1 Reconstruction of D0 mesons

The D0 mesons were reconstructed from the decay D0 → K−π+. In each event,

tracks with opposite charges and pT > 0.8 GeV were combined in pairs to form D0

candidates. The nominal kaon and pion masses were assumed in turn for each track

and the pair invariant mass, M(Kπ), was calculated. The distribution of the cosine
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of the D0 decay angle (defined as the angle θ∗(K) between the kaon in the Kπ rest

frame and the Kπ line of flight in the laboratory frame; details about boosting can

be found in Appendix A) is flat, whereas the combinatorial background peaks in the

forward and backward directions. To suppress the background, | cos θ∗(K)| < 0.85

was required.

For selected D0 candidates, a search was performed for a track that could be

a “soft” pion (πs) in a D∗+ → D0π+
s decay. The soft pion was required to have

pT > 0.2 GeV and a charge opposite to that of the particle taken as a kaon. The

pT cut was raised to 0.25 GeV for a data subsample, corresponding to an integrated

luminosity of 17 pb−1, for which the low-momentum track reconstruction efficiency

was smaller due to the operating conditions of the CTD [64]. The corresponding

D0 candidate was assigned to a class of candidates “with ∆M tag” if the mass

difference, ∆M = M(Kππs)−M(Kπ), was in the range 0.143 < ∆M < 0.148 GeV.

All remaining D0 candidates were assigned to a class of candidates “without ∆M

tag”. For D0 candidates with ∆M tag, the kaon and pion mass assignment was

fixed by the track-charge requirements. For D0 mesons without ∆M tag, the mass

assignment is ambiguous. The pion and kaon masses can therefore be assigned to

two tracks either correctly, producing a signal peak, or incorrectly, producing a wider

reflected signal. To remove this reflection, the mass distribution, obtained for D0

candidates with ∆M tag and an opposite mass assignment to the kaon and pion

tracks, was subtracted from the M(Kπ) distribution for all D0 candidates without

∆M tag. The subtracted mass distribution was normalised to the ratio of numbers

of D0 mesons without and with ∆M tag obtained from a fit described below.

Figure 4.1 shows the M(Kπ) distribution for D0 candidates without ∆M tag,

obtained after the reflection subtraction, and the M(Kπ) distribution for D0 can-

didates with ∆M tag. Clear signals are seen at the nominal value of M(D0) in

both distributions. The distributions were fitted simultaneously assuming the same

shape for signals in both distributions. To describe the shape, a “modified” Gaussian

function (see Appendix B for details) was used:

Gaussmod ∝ exp[−0.5 · x1+1/(1+0.5·x)] ,

where x = |[M(Kπ) −M0]/σ|. This functional form described both data and MC

signals well. The signal position, M0, and width, σ, as well as the numbers of D0

mesons in each signal were free parameters of the fit. Monte Carlo studies showed

that background shapes in both distributions are compatible with being linear in the

mass range above the signals. For smaller M(Kπ) values, the background shapes

exhibit an exponential enhancement due to contributions from otherD0 decay modes

and other D mesons. Therefore the background shape in the fit was described by

the form [A + B ·M(Kπ)] for M(Kπ) > 1.86 GeV and [A + B ·M(Kπ)] · exp{C ·
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[M(Kπ) − 1.86]} for M(Kπ) < 1.86 GeV. The free parameters A, B and C were

assumed to be independent for the two M(Kπ) distributions. The numbers of D0

mesons yielded by the fit were Nuntag(D0) = 7996 ± 488 and N tag(D0) = 1970 ± 78

for selections without and with ∆M tag, respectively.

4.2 Reconstruction of additional D∗+ mesons

The D∗+ → D0π+
s events with pT (D∗+) > 3 GeV and |η(D∗+)| < 1.6 can be consid-

ered as a sum of two subsamples: events with the D0 having pT (D0) > 3 GeV and

|η(D0)| < 1.6, and events with the D0 outside of that kinematic range. The former

sample is represented by D0 mesons reconstructed with ∆M tag, as discussed in the

previous section. The latter sample of “additional” D∗+ mesons was obtained using

the same D0 → K−π+ decay channel and an independent selection described below.

In each event, tracks with opposite charges and pT > 0.4 GeV were combined in

pairs to form D0 candidates. To calculate the pair invariant mass, M(Kπ), kaon

and pion masses were assumed in turn for each track. Only D0 candidates which

satisfy 1.80 < M(Kπ) < 1.92 GeV were kept. Moreover, the D0 candidates were

required to have either pT (D0) < 3 GeV or |η(D0)| > 1.6. Any additional track,

with pT > 0.2 GeV and a charge opposite to that of the kaon track, was assigned

the pion mass and combined with the D0 candidate to form a D∗+ candidate with

invariant mass M(Kππs). Here again the pT cut was raised to 0.25 GeV for the data

subsample for which the low-momentum track reconstruction efficiency was smaller.

Figure 4.2 shows the ∆M distribution for the D∗+ candidates after all cuts. A

clear signal is seen at the nominal value of M(D∗+) −M(D0). The combinatorial

background was estimated from the mass-difference distribution for wrong-charge

combinations, in which both tracks forming the D0 candidate have the same charge

and the third track has the opposite charge. Details are given in Appendix C.

The number of reconstructed additionalD∗+ mesons was determined by subtract-

ing the wrong-charge ∆M distribution after normalising it to the distribution ofD∗+

candidates with the appropriate charges in the range 0.150 < ∆M < 0.170 GeV.

The subtraction, performed in the signal range 0.143 < ∆M < 0.148 GeV, yielded

Nadd(D∗+) = 317 ± 26.

The ∆M distribution was also fitted to a sum of the modified Gaussian function

describing the signal and a threshold function describing the non-resonant back-

ground. The threshold function had a form A · (∆M −mπ)B, where mπ is the pion

mass [65] and A and B were free parameters. The results obtained using the fit in-

stead of the subtraction procedure were used to estimate the systematic uncertainty

of the signal extraction procedure.
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4.3 Reconstruction of D+ mesons

The D+ mesons were reconstructed from the decay D+ → K−π+π+. The analysis

for this meson was done using the e+p data sample only, where the dedicated D+

trigger was implemented. In each event, two tracks with the same charges and pT >

0.5 GeV and a third track with opposite charge and pT > 0.7 GeV were combined

to form D+ candidates. The pion masses were assigned to the two tracks with the

same charges and the kaon mass was assigned to the third track, after which the

candidate invariant mass, M(Kππ), was calculated. To suppress the combinatorial

background, a cut of cos θ∗(K) > −0.75 was imposed, where θ∗(K) is the angle

between the kaon in the Kππ rest frame and the Kππ line of flight in the laboratory

frame. To suppress background from D∗+ decays, combinations with M(Kππ) −
M(Kπ) < 0.15 GeV were removed. The background from D+

s → φπ+ with φ →
K+K− was suppressed by requiring that the invariant mass of any two D+ candidate

tracks with opposite charges was not within ±8 MeV of the φ mass [65] when the

kaon mass was assigned to both tracks.

Figure 4.3 shows the M(Kππ) distribution for the D+ candidates after all cuts.

A clear signal is seen at the nominal value of D+ mass. The mass distribution was

fitted to a sum of a modified Gaussian function describing the signal and a linear

function describing the non-resonant background. The number of reconstructed D+

mesons yielded by the fit was N(D+) = 4785 ± 501.

4.4 Reconstruction of D+
s mesons

The D+
s mesons were reconstructed from the decay D+

s → φπ+ with φ → K+K−.

In each event, tracks with opposite charges and pT > 0.7 GeV were assigned the

kaon mass and combined in pairs to form φ candidates. The φ candidate was kept if

its invariant mass, M(KK), was within ±8 MeV of the φ mass [65]. Any additional

track with pT > 0.5 GeV was assigned the pion mass and combined with the φ

candidate to form a D+
s candidate with invariant mass M(KKπ). To suppress the

combinatorial background, the following requirements were applied:

• cos θ∗(π) < 0.85, where θ∗(π) is the angle between the pion in the KKπ rest

frame and the KKπ line of flight in the laboratory frame;

• | cos3 θ′(K)| > 0.1, where θ′(K) is the angle between one of the kaons and the

pion in the KK rest frame. The decay of the pseudoscalar D+
s meson to the φ

(vector) plus π+ (pseudoscalar) final state results in an alignment of the spin

of the φ meson with respect to the direction of motion of the φ relative to D+
s .

Consequently, the distribution of cos θ′(K) follows a cos2 θ′(K) shape, implying
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a flat distribution for cos3 θ′(K). In contrast, the cos θ′(K) distribution of the

combinatorial background is flat and its cos3 θ′(K) distribution peaks at zero.

The cut suppressed the background significantly while reducing the signal by

10%.

Figure 4.4 shows the M(KKπ) distribution for the D+
s candidates after all cuts.

A clear signal is seen at the nominal D+
s mass. There is also a smaller signal around

the nominal D+ mass as expected from the decay D+ → φπ+ with φ→ K+K−. The

mass distribution was fitted to a sum of two modified Gaussian functions describing

the signals and an exponential function describing the non-resonant background. To

reduce the number of free parameters, the width of the D+ signal was constrained to

be the same that of the D+
s signal width. The number of reconstructed D+

s mesons

yielded by the fit was N(D+
s ) = 647 ± 80, for pT (D+

s ) > 3 GeV and N(D+
s ) =

773 ± 96, for pT (D+
s ) > 2 GeV.
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Figure 4.1: The M(K−π+) distributions (dots) for (a) the D0 candidates without ∆M

tag, obtained after reflection subtraction, and for (b) the D0 candidates with ∆M tag.

The first and last bins are affected by the trigger selection. The solid curves represent a

fit to the sum of a modified Gaussian function and a background function.
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s )−M(K−π+), for

the “additional” D∗+ candidates (dots). The histogram shows the ∆M distribution for

wrong-charge combinations. For illustration, the solid curve represents a fit to the sum of

a modified Gaussian function and a background function.
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Figure 4.4: The M(K+K−π+) distribution for (a) D+
s candidates with pT (D+

s ) > 3 GeV

and (b) D+
s candidates with pT (D+

s ) > 2 GeV. The first bins are affected by the trigger

selection. The solid curves represent fits to the sum of two modified Gaussian functions

and an exponential background function. The first peak in both distributions is from D+

decaying through the same channel.
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Chapter 5

Charm-meson Production Cross

Sections

In this chapter we describe the simulations used to correct our data. Corrections

include reconstruction efficiencies due to detector effects, QED electromagnetic ra-

diation and contamination from beauty production. Charm-meson cross sections

are then measured using the reconstructed signals for the process ep → eDX pre-

sented in Chapter 4 in the kinematic region 1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7,

pT (D) > 3 GeV (for the D+
s also pT (D+

s ) > 2 GeV) and |η(D)| < 1.6.

5.1 Event and detector simulation

5.1.1 The role of the simulations

All measurements are always affected by detector effects. In order to extract the

physical observables which can be compared to the theoretical predictions, one has

to correct for these detector-related effects. This is usually done using Monte Carlo

methods. Monte Carlo methods are an essential tool in experimental high energy

physics. They are used to simulate complete events. Simulation splits in two differ-

ents parts: physisc simulation and detector simulation. The generated events (MC

events) are used to correct the data by detector effects (efficiency in the reconstruc-

tion, migrations, etc.). This can be done under the condition that the simulated

final-state quatities agree well with those measured with the detector.

The physics simulation of ep interactions at HERA is divided into several sepa-

rated steps:

• Hard Scattering: the SM is used to calculate the matrix elements of the hard

scattering at leading or higher orders.
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• Parton Showering: simulation of the initial and final state QCD radiation.

• Hadronization: partons fragment into color-neutral hadrons. This process is

essentially non-perturbative and various models are used for its implementa-

tion.

The output of the physics simulation is a list containing the four-vectors of all

particles generated in the event, which are then passed through a full simulation

of the detector. The detector simulation is based on the Geant 3.13 package [55].

A detailed simulation of the geometry and materials of the detector is performed

at this stage. In addition, the three-level trigger is simulated. The full Geant

simulation of the ZEUS detector uses the program Mozart (Monte Carlo for Zeus

Analysis, Reconstruction and Trigger). For every particle in the final state, Mozart

simulates its interaction with the detector material, its possible decays, the signals

produced in the different components (tracking, calorimeter. . . ) and the digitization

of the signal, including the various sources of noise. Finally, the information from

the detector and the trigger simulation of the events is written to tape in an identical

format as the real data. This allows to pass the Monte Carlo events through the

same reconstruction chain and selection as used for the data.

The state after the parton showering is called parton level, the one after the

hadronization hadron level and the final one detector level.

5.1.2 Monte Carlo models

In this analysis, the Rapgap 2.08 [66] MC model is used as the nominal Monte

Carlo to correct the data, and Herwig 6.3 [67] is used for systematic studies. The

Rapgap MC model was interfaced with Heracles 4.6.1 [68], which simulates the

ep-DIS process, including first-order electroweak corrections.

The MC models were used to produce charm and beauty by the direct and the

resolved photon processes. The CTEQ5L [69] and GRV-LO [70] PDFs were used for

the proton and the photon, respectively. The charm and beauty quark-masses were

set to 1.5 GeV and 4.75 GeV, respectively. Both the Rapgap and Herwig MCs

use LO matrix elements with leading-logarithmic parton showers in the initial and

final state to simulate higher-order processes. Charm fragmentation is implemented

using either the Lund string fragmentation [71], as implemented in Jetset [72] (in

Rapgap) or a cluster fragmentation [73] model (in Herwig).

5.1.3 Monte Carlo sample

Rapgap MC events were generated with Q2 > 0.6 GeV2 and at least one of the
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following charm hadrons decaying in the specific channel used for the reconstruction:

D∗+ → D0(→ K−π+)π+
s with pT (D∗+) > 1.25 GeV

D∗+ → D0(→ K0
sπ

+π−)π+
s with pT (D∗+) > 1.35 GeV

D∗+ → D0(→ K−π+π+π−)π+
s with pT (D∗+) > 2.3 GeV

D0 → K−π+ with pT (D0) > 2.6 GeV

D+
s → φ(→ K+K−)π+ with pT (D+

s ) > 1.7 GeV

D+ → φ(→ K+K−)π+ with pT (D+) > 1.7 GeV

D+ → K−π+π+ with pT (D+) > 2.8 GeV

Λ+
c → K−pπ+ with pT (Λ+

c ) > 2.8 GeV .

All cuts used in this analysis as well as the kinematic region of the measurement

are compatible with the phase space available in the Monte Carlo. The luminosity

of the MC sample, LMC = 421 pb−1 is of the order of 5.1 times the luminosity of

the data sample, in order to make the statistical uncertainty of the MC simulation

negligible with respect that of the data.

5.1.4 Description of data by the simulation

The kinematic variables of the selected events were compared with the simulation.

All distributions have the combinatorial background subtracted, i.e. the comparison

is the number of reconstructed D mesons from the fit in bins of each distribution.

Figures 5.1, 5.4 and 5.5 compare the distribution of the kinematic variables Q2, x,

pT (D) and η(D) for events containing “untagged” D0, D+ and D+
s mesons, respec-

tively, between data and MC at detector level. The comparison shows that Rapgap

describes the data in a reasonable way. However, the convergence of the fits may be

spoilt in some particular bins due to a number of reasons, i.e. the use of the same

function to describe the bakcground in both data and MC, large fluctuations of the

background or a small ratio signal to background in the data, leading to the obser-

vation of large discrepancies between data and MC in those bins. As a cross check,

and to show that no reweighting of the MC was needed, two more, independent,

sets of control plots were made for the “untagged” D0 mesons. Figure 5.2 shows the

comparison of the kinematic variables Q2 and x for events containg untagged D0

mesons, after subtracting the background. In the first bin of the Q2 histogram, the

width of the corresponding “untag” M(K−, π+) distribution in the data was fixed

to the width of the corresponding MC distribution. In the first bin of the x his-

togram, the width of the corresponding “untag” M(K−, π+) distribution in the data

was fixed to the with of the corresponding data “tag” distribution. The agreement

between data and MC in these bins is better than in the nominal case (Figure 5.1).
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Additionally, Figure 5.3 shows again the comparison data/MC for the kinematic

variables Q2, x, pT (D0) and η(D0) for events containg “untagged” D0 mesons, but

in which the number of reconstructed D0 in each bin (data and MC) was extracted

following a method (“side bands”) involving no fits at all. In the corresponding mass

distribution to each bin, a signal region and two adjacents side bands regions were

defined. The signal region contains both signal and background events, whereas the

side bands regions contain only background. To estimate the number of D0 mesons

in the signal region, the background was subtracted according to the following pro-

cedure: candidates reconstructed inside the signal region were counted with a weight

+1, whereas candidates reconstructed in the side bands regions were counted with

weight −1. Even if the method can not be considered as accurate as the fit in order

to extract the number of reconstructed mesons, it is enough to show that the MC

simulation describes the data adecuately, and, moreover, it is free of convergence

problems.

5.1.5 Reconstruction acceptance calculation

As mentioned, detector effects were corrected using the MC simulation. Correction

factors were calculated for all particles and for all regions of the phase space in which

a cross section is measured, that is, the whole kinematic region for the total cross

sections and the bins of each distribution for the differential cross sections. The

correction factor, or acceptance, for a D-meson reconstructed via the generic decay

channel D → P1P2 · · ·Pn in the kinematic region M of the phase space is defined as

A(M) =
reconstructed D mesons in the region M after all cuts (in MC)

generated D → P1P2 · · ·Pn in the region M (in MC)
.

The kinematic region M is defined in terms of the reconstructed variables in the

numerator and in terms of the generated variables in the denominator. For the

reconstruction acceptance calculation associated to detector effects the kinematic

variables at the generated level in the MC were calculated from the virtual photon

vertex rather than from the difference of the 4-momenta between the incoming and

outgoing lepton. The reconstruction acceptances were calculated with Rapgap and

vary depending on the particle and the kinematic region of the measurement. For

1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7, transverse momenta pT (D0, D+) > 3 GeV,

pT (D+
s ) > 2 GeV and pseudorapidity |η(D)| < 1.6 the overall acceptances were

≈ 42%, ≈ 26% and ≈ 17% for D0, D+, and D+
s mesons, respectively. Figures 5.6,

5.7 and 5.8 show the reconstruction acceptances in bins of Q2, x, pT (D) and η(D) for

the D0, D+ and D+
s mesons. The corrections decrease with pT (D) as the daughter

tracks are more boosted and have less chances to scape from the CTD acceptance.

They are large in the low Q2 regime due to the decrease of the calorimeter acceptance
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near the rear beam pipe hole.

5.1.6 Experimental measurement of a cross section

Reconstruction acceptances are used to correct the data in order to measure cross

sections. The cross section corresponding to the production of the meson D in the

kinematic region M of the phase space is measured as

σ(D,M) =
N(D)

A(M) · L · B ,

where N(D) is the number of reconstructed D-mesons in the data in the region M ,

A(M) is the acceptance in the region M calculated with MC, L is the luminosity

corresponding to the data sample used for the measurement and B is the branching

ratio (or product of branching ratios) for the decay channel used in the reconstruction

of the meson D.

It is usual to slice the phase space in bins of a general observable X to define the

kinematic regions ∆Xi:

M → ∆Xi = {X | Xi < X < Xi+1} ,

where Xi and Xi+1 are the lower and upper bounds which define the i-bin. The

integrated cross section in each bin is then usually divided by the bin width ∆Xi

as an approximation to the D-meson differential production cross section in the

variable X:
dσ(D)

dX
∼ σ(D,∆Xi)

∆Xi

.

Higher-dimensional differential cross sections are measured in a similar way.

5.1.7 QED radiative corrections

The MC sample used for the acceptance correction factor incorporates first order

electromagnetic effects, i.e. QED radiation in both the initial and final state. Mea-

sured cross section using this factors are therefore corrected at the QED “radiative”

level. For consistent comparisons with theoretical predictions it is desireable to bring

them to the “Born” level. For this purpose, two independent MC samples containing

generated-level events were used: one without radiative correction (Born) and one

with radiative corrections (RC). Then, the following relation was assume in order

to bring the measured cross sections to the Born level:

σ(D,M)RC
DATA → σ(D,M)Born

DATA = σ(D,M)RC
DATA · β(D,M) ,
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with the factor β(D,M) given by

β(D,M) =
σ(D,M)Born

MC

σ(D,M)RC
MC

.

The Born and radiative MC cross sections are determined by taking the ratio be-

tween the number of D-mesons found in the kinematic region M and the correspond-

ing luminosities of both MC samples:

σ(D,M)Born
MC =

N(D,M)Born
MC

LBorn
MC

σ(D,M)RC
MC =

N(D,M)RC
MC

LRC
MC

.

β-correction factors were calculated independently for the D0, D+ and D+
s mesons

in the whole kinematic region of the measurement for the total cross sections and

in bins of each distributions for the differential cross sections. However, due to

statistical reasons, β factors calculated with D0, D+ and D+
s mesons events all

together were used to correct the measured cross sections and bring them to the

Born level. Figure 5.9 show the values of the β-factors for pT (D) > 3.0 GeV in bins

of each distribution. Typical corrections due to QED radiation are found to be of

the order of 1-2%.

5.1.8 Contamination from beauty production

The relative b-quark contributions, predicted by the MC simulation using branching

ratios of b-quark decays to the charmed hadrons measured at LEP [74, 75], were

subtracted from all measured cross sections. The subtraction of the b-quark contri-

bution reduced the measured cross sections by 3.1% for the D0 and D+ and 4.3%

for the D+
s and changed the measured charm fragmentation ratios and fractions by

less than 1%.

5.2 Charm-meson production cross sections

Charm-meson cross sections were measured using the reconstructed signals for the

process ep → eDX in the kinematic region 1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7,

pT (D) > 3 GeV (for the D+
s also pT (D+

s ) > 2 GeV) and |η(D)| < 1.6.

The systematic uncertainties presented in this and the following chapters will be

discussed in Chapter 8. The third set of uncertainties quoted for the measured cross

sections and charm fragmentation ratios and fractions are due to the propagation

of the relevant branching-ratio uncertainties.

The following cross sections were measured:
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• the production cross section for D0 mesons not originating from the D∗+ →
D0π+

s decays, hereafter called untagged D0 mesons, is:

σuntag(D0) = 5.56 ± 0.35(stat.)+0.32
−0.26(syst.) ± 0.10(br.) nb;

• the production cross section for D0 mesons originating from the D∗+ → D0π+
s

decays:

σtag(D0) = 1.78 ± 0.08(stat.)+0.12
−0.10(syst.) ± 0.03(br.) nb;

• the production cross section for all D0 mesons:

σkin(D
0) = σuntag(D0)+σtag(D0) = 7.34±0.36(stat.)+0.35

−0.27(syst.)±0.13(br.) nb;

• the production cross section for additional D∗+ mesons:

σadd(D∗+) = 0.518 ± 0.046(stat.)+0.051
−0.046(syst.) ± 0.01(br.) nb.

The production cross section forD∗+ mesons in the kinematic range pT (D∗+) >

3 GeV and |η(D∗+)| < 1.6, σkin(D
∗+), is given by the sum

σkin(D
∗+) = σadd(D∗+) + σtag(D0)/B(D∗+ → D0π+

s ) .

Using the measured cross sections, we get:

σkin(D
∗+) = 3.14 ± 0.12(stat.)+0.18

−0.15(syst.) ± 0.06(br.) nb;

• the production cross section for D+ mesons:

σkin(D
+) = 2.80 ± 0.30(stat.)+0.18

−0.14(syst.) ± 0.10(br.) nb;

• the production cross section for D+
s mesons with pT (D+

s ) > 3 GeV:

σkin(D
+
s ) = 1.27 ± 0.16(stat.)+0.11

−0.06(syst.)+0.19
−0.15(br.) nb;
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• the production cross section for D+
s mesons with pT (D+

s ) > 2 GeV:

σ2(D
+
s ) = 2.42 ± 0.30(stat.)+0.30

−0.14(syst.)+0.35
−0.27(br.) nb.
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Figure 5.1: Comparison of the kinematic variables Q2, x, pT (D0) and η(D0) for events

containing “untagged” D0 between data and MC at detector level. The background has

been subtracted. In each bin, the number of entries was obtained from a fit to the relevant

mass distributions, both in data and MC.
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Figure 5.2: Comparison of the kinematic variables Q2 and x for events containing “un-

tagged” D0 between data and MC at detector level. The background has been subtracted.

In each bin, the number of entries wa obtained from a fit to the relevant mass distribu-

tions, both in data and MC. In the first bin of the Q2 histogram, the width of the “untag”

M(K−, π+) distribution in the data was fixed to the width of the corresponding MC

distribution. In the first bin of the x histogram, the width of the “untag” M(K−, π+)

distribution in the data was fixed to the with of the corresponding data “tag” distribution.
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Figure 5.3: Comparison of the kinematic variables Q2, x, pT (D0) and η(D0) for events

containing “untagged” D0 between data and MC at detector level. The background has

been subtracted. In each bin, the number of entries was obtained using the “side bands”

method in the relevant mass distributions, both in data and MC. No fits were used.
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Figure 5.4: Comparison of the kinematic variables Q2, x, pT (D+) and η(D+) for events

containing D+ mesons between data and MC at detector level. The background has been

subtracted. In each bin, the number of entries was obtained from a fit to the relevant

mass distributions, both in data and MC.
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Figure 5.5: Comparison of the kinematic variables Q2, x, pT (D+
s ) and η(D+

s ) for events

containing D+
s mesons between data and MC at detector level. The background has been

subtracted. In each bin, the number of entries was obtained from a fit to the relevant

mass distributions, both in data and MC.
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Figure 5.6: Reconstruction acceptances in bins of Q2, x, pT (D0) and η(D0) for “untagged”

D0 mesons calculated with Rapgap.
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Figure 5.7: Reconstruction acceptances in bins of Q2, x, pT (D+) and η(D+) for D+ mesons

calculated with Rapgap.
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Figure 5.8: Reconstruction acceptances in bins of Q2, x, pT (D+
s ) and η(D+

s ) for D+
s mesons

calculated with Rapgap.
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Figure 5.9: Values of the β-QED correction factors for pT (D) > 3GeV in bins of Q2, x,

pT (D), η(D) and (Q2, y).
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Chapter 6

Charm Fragmentation Ratios and

Fractions

In this chapter we measure the charm fragmentation ratios and fractions. Typically,

these are defined as the relative productions of some particles with respect to others

in charm fragmentation, and therefore involve ratios of cross sections in the full

phase space. However, experimental limitations, i.e. finite available phase space in

the measurements and impossibility of reconstruction or isolation of some signals,

make impossible just to apply the theoretical definitions of ratios and fractions as

they are. We are then forced to give an experimental definition of the quantities to

be measured, involving necessarily some particular assumptions and prescriptions.

In our approach, we express and evaluate all fractions and ratios as functions of the

measured cross sections in the kinematic range pT (D) > 3 GeV and |η(D)| < 1.6

presented in Chapter 5, plus one additional input, as we will see. In particular, finite

phase space effects are treated by introducing what we call “equivalent phase space”.

The whole procedure follows closely the treatment recently reported by ZEUS in the

photoproduction regime [2].

6.1 Charm and charm-hadrons decays

Direct decays of charm quark occur mainly to one of the following states:

• the non-strange charmed mesons D0, D+ and their excited states D∗0 and D∗+;

• the strange charmed meson D+
s and its excited state D∗+

s ;

• the charmed baryon Λ+
c ;

• the charmed strange baryons Ξ+
c , Ξ0

c and Ω0
c .
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Quark content of the previous particles is summarised in Table 6.1. Decays to

heavier excited states are assumed to represent a small fraction of charm decays and

are not considered.

The excited states D∗0, D∗+ and D∗+
s always decay to some of the ground states:

• all D∗0 decays produce a D0 meson, i.e. σ(D∗0) = σ(D∗0 → D0 X);

• the D∗+ meson has only two possible decay modes, producing a D0 or a D+

meson, i.e. σ(D∗+) = σ(D∗+ → D0π+
s ) + σ(D∗+ → D+ X). The branching

ratios corresponding to both decay channels are therefore subjected to the

constraint B(D∗+ → D0π+
s ) + B(D∗+ → D+ X) = 1 ;

• all D∗+
s decays produce a D+

s meson, i.e. σ(D∗+
s ) = σ(D∗+

s → D+
s X) [65].

From these considerations we can inmediately write the different terms contributing

to the production of D0, D+ and D+
s mesons:

• D0 production includes contributions from direct charm decays, D∗0 decays

and D∗+ decays:

σ(D0) = σdir(D0) + σ(D∗0 → D0X) + σ(D∗+ → D0π+
s ) ;

• D+ production includes contributions from direct charm decays and from D∗+

decays:

σ(D+) = σdir(D+) + σ(D∗+ → D+X) ;

• D+
s production includes contributions from direct charm decays and from D∗+

s

decays:

σ(D+
s ) = σdir(D+

s ) + σ(D∗+
s → D+

s X) .

6.2 Ratios and fractions : definitions

The theoretical definitions of all observables we want to measure should be first

clearly stated. These ones will be used later as the basis to build the approximate,

experimental definitions which are the ones we actually use to determine the values

of our measurements.

6.2.1 Ratio of neutral to charge D-meson production rates

The ratio Ru/d is defined as the relative production of u quark with respect to the

production of d quark in charm fragmentation, in the D-meson sector:

Ru/d =
cū

cd
.
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Neglecting influences from heavier excited D-mesons, the direct production of u and

d quarks is given by (see Table 6.1):

u→ σ(D∗0) + σdir(D0) ,

d→ σ(D∗+) + σdir(D+) .

Therefore Ru/d becomes the ratio of neutral to charge D-meson production rates and

it is given by the ratio of the sum of D∗0 and direct D0 production cross sections to

the sum of D∗+ and direct D+ production cross sections:

Ru/d =
σ(D∗0) + σdir(D0)

σ(D∗+) + σdir(D+)
. (6.1)

6.2.2 Strangeness-suppression factor

The strageness-suppresion factor, γs, is defined as twice the relative production of

the s quark with respect to the d and u quarks in charm fragmentation, in the

D-meson sector:

γs =
2cs̄

cd+ cū
.

Neglecting influences from heavier excited D-mesons, the direct production of cs̄,

cd and cū quarks is given by (see Table 6.1):

2cs̄→ 2
{

σdir(D+
s ) + σ(D∗+

s )
}

= 2
{

σdir(D+
s ) + σ(D∗+

s → D+
s X)

}

= 2σ(D+
s ) ,

cd+ cū→ σdir(D0) + σ(D∗0) + σdir(D+) + σ(D∗+)

= σdir(D0) + σ(D∗0 → D0X)

+ σdir(D+)

+ σ(D∗+ → D0X) + σ(D∗+ → D+X)

= σdir(D0) + σ(D∗0 → D0X) + σ(D∗+ → D0X)

+ σdir(D+) + σ(D∗+ → D+X)

= σ(D0) + σ(D+) .

Therefore, the strangeness-suppresion factor is given by the ratio of twice the D+
s

production cross section to the sum of D0 and D+ production cross sections:

γs =
2σ(D+

s )

σ(D0) + σ(D+)
. (6.2)
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6.2.3 Fraction of charged D mesons produced in a vector state

The fraction of D mesons produced in a vector state, P d
v , is defined as the relative

production of vector charm mesons with respect to (vector+pseudoscalar) charm

mesons, in charm fragmentation:

P d
v =

V

V + P
.

Neglecting influences from heavier excited D mesons, the direct production of vector

and (vector+pseudoscalar) D mesons is given by:

V → σ(D∗+)

V + P → σ(D∗+) + σdir(D+) .

Therefore, the fraction of D mesons produced in a vector state is given by the ratio

of D∗+ production cross section to the sum of D∗+ and direct D+ production cross

sections:

P d
v =

σ(D∗+)

σ(D∗+) + σdir(D+)
. (6.3)

6.2.4 Charm fragmentation fractions

The charm fragmentation fraction f(c → D) is defined as the probability that a c

quark hadronises as a particular charm hadron D. In terms of D and c production,

we have

f(c→ D) =
σ(D)

σ(c)
.

As every c quark ends up decaying to one of the charm ground states, the whole c

production is equal to the charm ground states production:

σ(c) → σgs = σ(D0) + σ(D+) + σ(D+
s ) + σ(Λ+

c ) + σ(Ξ+
c ,Ξ

0
c ,Ω

0
c) . (6.4)

Therefore, for any charm hadron D (ground or excited state), we have

f(c→ D) =
σ(D)

σgs
.

In our analysis, we measure the fragmentation fractions for the charm ground states

D0, D+ and D+
s and for the D∗+ meson, which are given by

f(c→ D0) = σ(D0)/σgs f(c→ D+) = σ(D+)/σgs

f(c→ D+
s ) = σ(D+

s )/σgs f(c→ D∗+) = σ(D∗+)/σgs . (6.5)
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6.3 Ratios and fractions: evaluation

In the previous section we have defined the ratios Ru/d, γs and P d
v and the fractions

f(c → D0, D+, D+
s , D

∗+), which are the observables in charm fragmentation that

we measure. In this section we provide detailed computations of all cross sections

needed for the evaluation of fractions and ratios. With these cross sections, we

determine their values. All prescriptions, assumptions and additional inputs needed

are also explained.

General

From the formulas derived in the previous section we have seen that a general

observable X, i.e. ratio or fraction, is a function of the inclusive and perhaps also

direct cross sections corresponding to the production of several charm hadrons Di,

in the full phase space:

X = f(σ(Di), σdir(Di)) .

Signal reconstruction is necessarily performed not in the full phase space, but in

some kinematic region which is determined by the detector. The production cross

sections we measure are therefore refered to that region. It seems natural just to

replace the cross sections in the full phase space by those measured in the accepted

kinematic range pT (D) > 3 GeV and |η(D)| < 1.6:

σ(Di) → σkin(D
i)

σdir(Di) → σdir
kin(D

i) ,

and take the last ones as the arguments of the function f to evaluate the observable

X in the kinematic region:

X → Xkin = f(σkin(D
i), σdir

kin(D
i)) .

Deciding if the proposed experimental definition needs or not extra corrections is

something that can only be answered relying on a MC simulation. Using simulated

data, one would compute the extrapolation factor corresponding to the observable

X as the ratio between the value of X evaluated with the MC cross sections in the

full phase space and the value of X evaluated with the MC cross sections in the

accepted kinematic region:

extrapolation(X) =
XMC

XMC
kin

.

MC studies show that to minimise differences between the values measured in the

accepted kinematic region and those in the full phase space, i.e. having extrapolation
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factors close to unity, the inclusive cross sections for D0 and D+ in the kinematic

range σkin(D
0) and σkin(D

+) need to be corrected with extra terms [2]. Qualitative

kinematic arguments can give us an idea about why and what kind of corrections are

needed. Apart from the direct component, D0 and D+ production has contributions

from D∗ decays: D0 production from D∗0 and D∗+ mesons, D+ production from

D∗+ mesons. Let’s analyze, as an example, the D+ case. When a D∗+ meson decays

producing a D+, only a fraction of the parent D∗ momentum is transferred to the

daughter D+. This means that, even if the parent D∗+ was produced inside the

accepted kinematic region, the daughter D+ may escape from the kinematic range,

i.e., it may be produced outside the kinematic range. Therefore, including only

D+ mesons reconstructed inside the kinematic range induces losses due to these

boundary effects in the available phase space of the measurement. The relative

production of D+ with respect to D∗+ measured in this way would be biased. The

same arguments apply to the production of D0 mesons. Therefore, to compare the

inclusive D+ and D0 cross sections with each other and with the inclusive D∗+ cross

section it is necessary to include their non direct contributions which lie outside

the accepted kinematic range. This is the idea behind the equivalent phase space

treatment. The “equivalent” D+ and D0 cross sections will be defined as the sums

of their direct cross sections and contributions from D∗+ and D∗0 decays:

σ(D+) → σeq(D+) = σdir
kin(D

+) + {contributions from D∗+}
σ(D0) → σeq(D0) = σdir

kin(D
0) + {contributions from D∗+and D∗0} .

MC studies show that these effects are suppressed in D+
s production (which has a

contribution from D∗+
s ), and therefore no equivalent phase space tratment was used

for the D+
s meson.

6.3.1 Ratio of neutral to charge D-meson production rates

The actual computation of Ru/d represents an exception to the general treatment

we claimed in the previous paragraph. In the definition with cross sections in the

full phase space (Eq. 6.1) we make the replacements

σ(D∗0) → σ(D∗0 → D0
inX) (instead of σkin(D

∗0))

σdir(D0) → σdir
kin(D

0)

σ(D∗+) → σ(D∗+ → D0
inπ

+
s )

B(D∗+ → D0π+)
=

σtag(D0)

B(D∗+ → D0π+)
(instead of σkin(D

∗+))

σdir(D+) → σdir
kin(D

+) .

We have used the subscript “in” to indicate “inside the kinematic region”. In the

same way, we will use the subscript “out” to denote “outside the kinematic region”.
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The direct production of D+ mesons is estimated by subtracting the D∗+ con-

tribution to its inclusive production, in the kinematic region:

σdir
kin(D

+) = σkin(D
+) − σ(D∗+ → D+

inX) .

To perform the subtraction, we notice that in the full phase space, production of

D+ and D0 mesons originated from D∗+ decays are related by scaling of their cross

sections with the appropiate branching ratios:

σ(D∗+ → D+X) = σ(D∗+ → D0π+
s )

B(D∗+ → D+X)

B(D∗+ → D0π+
s )

= σ(D∗+ → D0π+
s )

1 − B(D∗+ → D0π+
s )

B(D∗+ → D0π+
s )

.

Assuming that the kinematics of the reactions D∗+ → D+X and D∗+ → D0π+
s is the

same, the previous relation also holds in the kinematic region of the measurement:

σ(D∗+ → D+
inX) = σ(D∗+ → D0

inπ
+
s )

1 − B(D∗+ → D0π+
s )

B(D∗+ → D0π+
s )

= σtag(D0)
1 − B(D∗+ → D0π+

s )

B(D∗+ → D0π+
s )

,

and therefore

σdir
kin(D

+) = σkin(D
+) − σtag(D0)

1 − B(D∗+ → D0π+
s )

B(D∗+ → D0π+
s )

.

We have now all the necessary pieces for the actual computation of Ru/d. Substitu-

tion in the general formula gives, for the numerator:

σ(D∗0) + σdir(D0) → σ(D∗0 → D0
inX) + σdir

kin(D
0) = σuntag(D0) ,

and, for the denominator:

σ(D∗+) + σdir(D+) → σtag(D0) + σkin(D
+) .

Our final expression for the experimental estimation of Ru/d is, therefore

Ru/d =
σuntag(D0)

σtag(D0) + σkin(D+)
.

Using the measured cross sections, the ratio of neutral to charged D-meson produc-

tion rates is

Ru/d = 1.22 ± 0.11(stat.)+0.05
−0.02(syst.) ± 0.03(br.) .

The measured Ru/d value agrees with unity, i.e. it is consistent with isospin invari-

ance, which implies that u and d quarks are produced equally in charm fragmenta-

tion. In Table 6.2 and Fig. 6.1, this measurement is compared with those obtained

in DIS by the H1 collaboration [4], in photoproduction [2] and in e+e− annihila-

tions [76]. All measurements agree within experimental uncertainties.
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6.3.2 Strangeness-suppression factor

According to the general treatment, in the definition of γs with cross sections in the

full phase space (Eq. 6.2) we make the replacements

σ(D+
s ) → σkin(D

+
s )

σ(D0) → σeq(D0)

σ(D+) → σeq(D+) .

The equivalent D0 cross section includes, apart from the direct component in the

kinematic range, the contributions from D∗+ and D∗0 decays with the D0 meson

inside and outside the kinematic range:

σeq(D0) = σdir
kin(D

0) + σ(D∗0 → D0X) + σ(D∗+ → D0π+
s )

= σdir
kin(D

0)

+ σ(D∗0 → D0
inX) + σ(D∗0 → D0

outX)

+ σ(D∗+ → D0
inπ

+
s ) + σ(D∗+ → D0

outπ
+
s )

= σdir
kin(D

0) + σ(D∗0 → D0
inX)

+ σ(D∗+ → D0
inπ

+
s )

+ σ(D∗+ → D0
outπ

+
s )

+ σ(D∗0 → D0
outX)

= σuntag(D0)

+ σtag(D0)

+ σadd(D∗+)B(D∗+ → D0π+
s )

+ σ(D∗0 → D0
outX) .

The production of D0 mesons outside the kinematic range from neutral and charged

D∗ decays is assumed to be identical, up to the factor Ru/d. Under this assumption,

the last term in the previous equation, which escapes detection, becomes:

σ(D∗0 → D0
outX) = σ(D∗+ → D0

outπ
+
s )Ru/d = σadd(D∗+)B(D∗+ → D0π+

s )Ru/d .

Our final expression for the equivalent D0 cross section is therefore:

σeq(D0) = σuntag(D0) + σtag(D0) + σadd(D∗+)
{

Ru/d + B(D∗+ → D0π+
s )
}

.

In a totally analogous way, the equivalent D+ cross section includes, apart from the

direct component in the kinematic range, the contribution from D∗+ decays with
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the D+ meson inside and outside the kinematic range:

σeq(D+) = σdir
kin(D

+) + σ(D∗+ → D+X)

= σdir
kin(D

+) + σ(D∗+ → D+
inX)

+ σ(D∗+ → D+
outX)

= σkin(D
+) + σ(D∗+ → D+

outX) .

To estimate the last term, which escapes detection, we assume once more that

production of D+ and D0 mesons originated from D∗+ decays are identical in any

kinematic range, up to branching ratio:

σ(D∗+ → D+
outX) = σ(D∗+ → D0

outπ
+
s )

B(D∗+ → D+X)

B(D∗+ → D0π+
s )

=
σ(D∗+ → D0

outπ
+
s )

B(D∗+ → D0π+
s )

{

1 − B(D∗+ → D0π+
s )
}

= σadd(D∗+)
{

1 − B(D∗+ → D0π+
s )
}

Substitution in the previous equation gives, for the equivalent D+ cross section:

σeq(D+) = σkin(D
+) + σadd(D∗+)

{

1 − B(D∗+ → D0π+
s )
}

.

Computation of the equivalent D+ and D0 cross sections completes the calcula-

tions needed to determine the strangeness suppression factor γs, which we evaluate

according to:

γs =
2σkin(D

+
s )

σeq(D0) + σeq(D+)
.

Using the expressions for σeq(D0) and σeq(D+), we get:

γs =
2σkin(D

+
s )

σkin(D+) + σuntag(D0) + σtag(D0) + σadd(D∗+)
{

1 +Ru/d

} .

Using the measured cross sections, the strangeness-suppression factor is

γs = 0.225 ± 0.030(stat.)+0.018
−0.007(syst.)+0.034

−0.026(br.) .

Table 6.3 and Fig. 6.1 compare this measurement with the values measured in pho-

toproduction [2], in DIS by the H1 collaboration [4] and in e+e− annihilations [76].

All measurements agree within experimental uncertainties. The large branching-

ratio uncertainties are dominated by the uncertainties of the D+
s → φπ+ branching

ratio.
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6.3.3 Fraction of charged D mesons produced in a vector state

According to the general treatment, in the definition of P d
v with cross sections in

the full phase space (Eq. 6.3) we make the replacements

σ(D∗+) → σkin(D
∗+)

σdir(D+) → σdir
kin(D

+) .

The direct production of D+ mesons in the kinematic region of the measurement

was already computed in Subsection 6.3.1. The inclusive production of D∗+ mesons

in the kinematic range can be recovered from the production of D0 mesons produced

in D∗+ decays, scaling with branching ratio:

σkin(D
∗+) =

σ(D∗+ → D0π+
s )

B(D∗+ → D0π+)

=
1

B(D∗+ → D0π+)

{

σ(D∗+ → D0
inπ

+
s ) + σ(D∗+ → D0

outπ
+
s )
}

=
σ(D∗+ → D0

inπ
+
s )

B(D∗+ → D0π+)
+
σ(D∗+ → D0

outπ
+
s )

B(D∗+ → D0π+)

=
σtag(D0)

B(D∗+ → D0π+)
+ σadd(D∗+) ,

that is,

σkin(D
∗+) =

σtag(D0)

B(D∗+ → D0π+)
+ σadd(D∗+) .

This completes the calculations needed to get, according to our treatment, the ex-

perimental formula we use to evaluate P d
v :

P d
v =

σkin(D
∗+)

σkin(D∗+) + σdir
kin(D

+)
.

Using the expressions for σkin(D
∗+) and σdir

kin(D
+), we get:

P d
v =

σtag(D0)/B(D∗+ → D0π+) + σadd(D∗+)

σkin(D+) + σtag(D0) + σadd(D∗+)
.

Using the measured cross sections, the fraction of charged D mesons produced in a

vector state is

P d
v = 0.617 ± 0.038(stat.)+0.017

−0.009(syst.) ± 0.017(br.) .

The measured P d
v value is smaller than the naive spin-counting prediction of 0.75.

Recent calculations suggest a value which is closer to the measurement [77]. Table 6.4

and Fig. 6.1 compare this measurement with the values measured in photoproduc-

tion [2], in DIS by the H1 collaboration [4] and in e+e− annihilations [76]. All the

measurements are consistent.
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6.3.4 Charm fragmentation fractions

To compute the fractions of c quark hadronising as aD0, D+, D+
s and D∗+ meson we

start with the genaral formulas with cross sections in the full phase space (Eqs. 6.4

and 6.5) and replace the cross sections according to our general procedure:

σ(D0) → σeq(D0)

σ(D+) → σeq(D+)

σ(D+
s ) → σkin(D

+
s )

σ(D∗+) → σkin(D
∗+) .

The contribution from the charmed strange baryons Ξ+
c ,Ξ

0
c and Ω0

c and from the Λ+
c

baryon still remains to be determined.

The production rates of the charm-strange baryons Ξ+
c ,Ξ

0
c and Ω0

c were estimated

from the non-charm sector following the LEP procedure [78]. The measured Ξ−/Λ

and Ω−/Λ relative rates are (6.65 ± 0.28)% and (0.42 ± 0.07)%, respectively [65].

Assuming equal production of Ξ0 and Ξ− states and that a similar suppression is

applicable to the charm baryons, the total rate for the three charm-strange baryons

relative to the Λ+
c state is expected to be about 14%:

σ(Ξ+
c ,Ξ

0
c ,Ω

0
c) → 0.14 · σ(Λ+

c ) .

Therefore, the Λ+
c production cross section was scaled by a factor 1.14 in the sum

of the production cross sections:

σgs = σeq(D0) + σeq(D+) + σkin(D
+
s ) + 1.14 · σ(Λ+

c ) .

An error of ±0.05 was assigned to the scale factor when evaluating systematic un-

certainties.

The σ(Λ+
c ) was estimated using the corresponding fragmentation fraction mea-

sured in e+e− [76], f(c→ Λ+
c )e+e−, by the relation below:

f(c→ Λ+
c )e+e− =

σ(Λ+
c )

σgs
=

σ(Λ+
c )

σeq(D0) + σeq(D+) + σkin(D+
s ) + 1.14 · σ(Λ+

c )
.

Solving the previous equation for σ(Λ+
c ) gives:

σ(Λ+
c ) =

f(c→ Λ+
c )e+e− {σeq(D0) + σeq(D+) + σkin(D

+
s )}

1 − 1.14 · f(c→ Λ+
c )e+e−

,

which, using the expressions for σeq(D0) and σeq(D+) can be rewrited as

σ(Λ+
c ) =

f(c→ Λ+
c )e+e−

1 − 1.14 · f(c→ Λ+
c )e+e−

×
{

σkin(D
+) + σuntag(D0) + σtag(D0) + σadd(D∗+) ·

(

1 +Ru/d

)

+ σkin(D
+
s )
}

.
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The uncertainty of this procedure was estimated by using f(c → Λ+
c ) obtained in

photoproduction [2], and considering the uncertainty in f(c→ Λ+
c )e+e− [76].

With the expressions for σeq(D0) and σeq(D+) and the relation obtained for

σ(Λ+
c ), the sum of the production cross sections for all open-charm ground states is

given by

σgs = σkin(D
+) + σuntag(D0) + σtag(D0) + σadd(D∗+) ·

(

1 +Ru/d

)

+ σkin(D
+
s )

+ 1.14 · f(c→ Λ+
c )e+e−

1 − 1.14 · f(c→ Λ+
c )e+e−

×
{

σkin(D
+) + σuntag(D0) + σtag(D0) + σadd(D∗+) ·

(

1 +Ru/d

)

+ σkin(D
+
s )
}

.

Using the measured cross sections yields

σgs = 13.7 ± 0.6 (stat.)+1.4
−0.6 (syst.) ± 0.6 (br.) nb .

The estimation of the contribution from the charmed strange baryons Ξ+
c ,Ξ

0
c and

Ω0
c and the estimation of the (non-observed) σ(Λ+

c ) were the remaining pieces we

needed to determine the charm fragmentation fractions, which are finally given by

f(c→ D0) = σeq(D0)/σgs f(c→ D+) = σeq(D+)/σgs

f(c→ D+
s ) = σkin(D

+
s )/σgs f(c→ D∗+) = σkin(D

∗+)/σgs .

Using the expressions for σeq(D0), σeq(D+) and σkin(D
∗+), we have

f(c→ D0) =
σuntag(D0) + σtag(D0) + σadd(D∗+)

{

Ru/d + B(D∗+ → D0π+
s )
}

σgs

f(c→ D+) =
σkin(D

+) + σadd(D∗+) {1 − B(D∗+ → D0π+
s )}

σgs

f(c→ D+
s ) =

σkin(D
+
s )

σgs

f(c→ D∗+) =
σtag(D0)/B(D∗+ → D0π+

s ) + σadd(D∗+)

σgs
.

The open-charm fragmentation fractions, measured in the kinematic region 1.5 <

Q2 < 1000 GeV2, 0.02 < y < 0.7, pT (D) > 3 GeV and |η(D)| < 1.6, are summarised

in Table 6.5 and Fig. 6.1. The results are compared with the values obtained in pho-

toproduction [2], in DIS by the H1 collaboration [4] and in e+e− annihilations [76].

All the measurements are consistent. A Monte Carlo study [2] suggested that the

measured charm fragmentation ratios and fractions are close to those in the full

pT (D) and η(D) phase space.

The hadronisation fraction into untagged D0, needed later for comparisons with

theory, is defined as the probability that a c quark originates as a D0 which has not
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been produced in a D∗+ decay. Therefore, we have the identity:

funtag(c→ D0) = f(c→ D0) − f(c→ D∗+)B(D∗+ → D0π+
s ) .

Substituting the expressions for f(c→ D0) and f(c→ D∗+) we get:

funtag(c→ D0) =
σuntag(D0) + σadd(D∗+)Ru/d

σgs
.

Using the measured cross sections, the value for funtag(c→ D0) is

funtag(c→ D0) = 0.450 ± 0.020(stat.) +0.009
−0.039(syst.) +0.012

−0.017(br.) .
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Charmed hadron Quark content

D0, D∗0 cū

D+, D∗+ cd̄

D+
s , D∗+

s cs̄

Λ+
c udc

Ξ+
c usc

Ξ0
c dsc

Ω0
c ssc

Table 6.1: Quark content of the different charmed hadrons.
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Ru/d

ZEUS (DIS) 1.22 ± 0.11(stat.)+0.05
−0.02(syst.) ± 0.03(br.)

ZEUS (γp) [2] 1.100 ± 0.078(stat.)+0.038
−0.061(syst.)+0.047

−0.049(br.)

combined e+e− data 1.020 ± 0.069(stat. ⊕ syst.)+0.045
−0.047(br.)

H1 (DIS) [4] 1.26 ± 0.20(stat.) ± 0.11(syst.) ± 0.04(br. ⊕ theory)

Table 6.2: The ratio of neutral to charged D-meson production rates, Ru/d. The e+e−

values are taken from [2]; they are an update of the compilation in [76] using the branching-

ratio values of [79]. The measurements in this analysis, ZEUS (DIS), took the values for

all the branching ratios involved from [65], the rest of the quoted measurements took them

from [79].
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γs

ZEUS (DIS) 0.225 ± 0.030(stat.)+0.018
−0.007(syst.)+0.034

−0.026(br.)

ZEUS (γp) [2] 0.257 ± 0.024(stat.)+0.013
−0.016(syst.)+0.078

−0.049(br.)

ZEUS (γp) [11] 0.27 ± 0.04(stat.)+0.02
−0.03(syst.) ± 0.07(br.)

combined e+e− data 0.259 ± 0.023(stat. ⊕ syst.)+0.087
−0.052(br.)

H1 (DIS) [4] 0.36 ± 0.10(stat.) ± 0.01(syst.) ± 0.08(br. ⊕ theory)

Table 6.3: The strangeness-suppression factor in charm fragmentation, γs. The e+e−

values are taken from [2]; they are an update of the compilation in [76] using the branching-

ratio values of [79]. The measurements in this analysis, ZEUS (DIS), took the values for

all the branching ratios involved from [65], the rest of the quoted measurements took them

from [79].
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P d
v

ZEUS (DIS) 0.617 ± 0.038(stat.)+0.017
−0.009(syst.) ± 0.017(br.)

ZEUS (γp) [2] 0.566 ± 0.025(stat.)+0.007
−0.022(syst.)+0.022

−0.023(br.)

combined e+e− data 0.614 ± 0.019(stat. ⊕ syst.)+0.023
−0.025(br.)

H1 (DIS) [4] 0.693 ± 0.045(stat.) ± 0.004(syst.) ± 0.009(br. ⊕ theory)

Table 6.4: The fraction of charged D mesons produced in a vector state, P d
v . The e+e−

values are taken from [2]; they are an update of the compilation in [76] using the branching-

ratio values of [79]. The measurements in this analysis, ZEUS (DIS), took the values for

all the branching ratios involved from [65], the rest of the quoted measurements took them

from [79].
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ZEUS (DIS) ZEUS (γp) [2] Combined H1 (DIS)

pT (D) > 3GeV pT (D) > 3.8GeV e+e− data [76] [4]

|η(D)| < 1.6 |η(D)| < 1.6

stat. syst. br. stat. syst. stat.⊕ syst. br. total

f(c → D+) 0.216 ± 0.019 +0.002+0.008
−0.020−0.010 0.217 ± 0.014 +0.013

−0.005 0.226 ± 0.010 +0.016
−0.014 0.203 ± 0.026

f(c → D0) 0.605 ± 0.020 +0.009+0.015
−0.052−0.023 0.523 ± 0.021 +0.018

−0.017 0.557 ± 0.023 +0.014
−0.013 0.560 ± 0.046

f(c → D+
s ) 0.092 ± 0.011 +0.007+0.012

−0.008−0.010 0.095 ± 0.008 +0.005
−0.005 0.101 ± 0.009 +0.034

−0.020 0.151 ± 0.055

f(c → D∗+) 0.229 ± 0.011 +0.006+0.007
−0.021−0.010 0.200 ± 0.009 +0.008

−0.006 0.238 ± 0.007 +0.003
−0.003 0.263 ± 0.032

Table 6.5: The fractions of c quarks hadronising as a particular charm hadron, f(c → D). The fractions are shown for the D+, D0 and

D+
s charm ground states and for the D∗+ state. The measurements in this analysis, ZEUS (DIS), took the values for all the branching

ratios involved from [65], the rest of the quoted measurements took them from [79].
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Figure 6.1: (a) The ratio of neutral to charged D-meson production rates, Ru/d, the

strangeness-suppression factor in charm fragmentation, γs, and the fraction of charged D

mesons produced in a vector state, P d
v . (b) The fractions of c quarks hadronising as D+,

D0 and D+
s charm ground-state mesons, as D∗+ mesons and as Λ+

c baryons. The inner

error bars show the statistical uncertainties and the outer bars show the statistical and

systematic uncertainties added in quadrature. The measurements have further uncertain-

ties coming from the different branching ratios involved; their magnitudes are shown in

Tables 6.2, 6.3 and 6.4 for Ru/d, γs and P d
v , respectively, and in Table 6.5 for the fractions.



84 Charm Fragmentation Ratios and Fractions



Chapter 7

Cross Sections and pQCD

Comparisons

In this chapter the production of untagged D0, D+ and D+
s mesons in bins of Q2, x,

pT (D) and η(D) is studied. Measured cross sections are compared to the theoretical

predictions given by pQCD.

7.1 Theoretical predictions

The next-to-leading order (NLO) QCD predictions for cc̄ cross sections were ob-

tained using the HVQDIS program [33] based on the so-called fixed-flavour-number

scheme (FFNS). In this scheme, only light partons (u, d, s, g) are included in the

proton parton density functions (PDFs) which obey the DGLAP equations [80],

and the cc̄ pair is produced via the BGF mechanism [32] with NLO corrections [34].

This calculation is expected to be valid in the kinematic range of this measurement,

a photon virtuality 1.5 < Q2 < 1000 GeV2.

The following inputs have been used to obtain the predictions for D-meson pro-

duction at NLO using the program HVQDIS. The FFNS variant of the ZEUS-S

NLO QCD fit [24] to structure-function data was used as the parameterisation of

the proton PDFs. In this fit Λ
(3)
QCD was set to 0.363 GeV and the mass of the

charm quark was set to 1.35 GeV; the same mass and Λ
(3)
QCD were therefore used in

the HVQDIS calculation. The renormalisation and factorisation scales were set to

µ =
√

Q2 + 4m2
c for charm production both in the fit and in the HVQDIS calcula-

tion. The charm fragmentation to the particular D meson was carried out using the

Peterson function [39]. The values used for the hadronisation fractions to D mesons,

f(c → D), were those measured in this paper, and the Peterson parameter, ǫ, was

set to 0.035[81]. The effect of J/ψ production was found to be negligible [82, 83].
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7.2 Total cross sections

For the cross sections presented in Chapter 5 the predictions from the HVQDIS

program are σkin(D
0) = 7.90 nb, σuntag(D0) = 5.88 nb, σkin(D

+) = 2.82 nb and

σ2(D
+
s ) = 2.40 nb, with uncertainties around 15%, dominated by the input PDF

and the mass of the charm quark. They are in good agreement with the data.

7.3 Differential cross sections

Reconstruction of D0, D+ and D+
s mesons in the kinematic region 1.5 < Q2 < 1000

GeV2, 0.02 < y < 0.7, pT (D0, D+, {D+
s }) > 3{2} GeV and |η(D)| < 1.6 has been

done in bins of Q2, x, pT (D) and η(D) according to the procedures described in

Chapter 4. Figures 7.1, 7.2 and 7.3 show the corresponding mass distributions

fitted with the appropiate fuctions modelling signal and background, which allows

to extract the number of reconstructed mesons in each case. In addition, Figure 7.4

shows the mass distributions for the three particles in bins of (Q2, y).

The differential cross sections for untagged D0 (the D0 mesons coming from

D∗+ are already included in the previous ZEUS publication [3]), D+ and D+
s as a

function of Q2, x, pT (D) and η(D) are shown in Figs. 7.5, 7.6 and 7.7 and given in

Tables 7.1 and 7.2. All cross sections are measured in the kinematic region. The

subscript “kin” has been removed to simplify the notation. The cross sections in

Q2 and x both fall by about three orders of magnitude in the measured region. The

cross-section dσ/dpT (D) falls by two orders of magnitude with increasing pT (D).

The cross-section dσ/dη(D0) shows a mild increase with increasing η(D0); for the

D+ and D+
s no statistically significant dependence with η(D) is observed.

Figures 7.5, 7.6 and 7.7 show also the corresponding NLO calculations imple-

mented in the HVQDIS program as well as their uncertainties (Section 8.2). All the

differential cross sections measured are well described by the NLO calculation.
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untagged D0 D+

Q2 bin (GeV2) dσ/dQ2 ∆stat ∆syst dσ/dQ2 ∆stat ∆syst

(nb/GeV2) (nb/GeV2)

1.5, 5 0.56 ±0.08 +0.09
−0.03 0.275 ±0.066 +0.056

−0.044

5, 15 0.141 ±0.008 +0.011
−0.006 0.089 ±0.014 +0.003

−0.010

15, 40 0.044 ±0.005 +0.003
−0.002 0.016 ±0.003 +0.002

−0.001

40, 1000 0.0012 ±0.0002 +0.0002
−0.0001 0.0007 ±0.0002 +0.0001

−0.0001

x bin dσ/dx ∆stat ∆syst dσ/dx ∆stat ∆syst

(nb) (nb)

0.000021, 0.0001 15197 ±2543 +1137
−5789 4470 ±1572 +1078

−1112

0.0001, 0.0005 4162 ±304 +457
−231 2295 ±327 +157

−199

0.0005, 0.001 1476 ±195 +128
−72 1049 ±178 +39

−125

0.001, 0.1 20.7 ±2.3 +2.7
−1.0 10.5 ±2.2 +1.4

−0.5

pT (D) bin (GeV) dσ/dpT (D0) ∆stat ∆syst dσ/dpT (D+) ∆stat ∆syst

(nb/GeV) (nb/GeV)

3.0, 3.5 3.13 ±0.39 +0.28
−0.12 1.61 ±0.44 +0.45

−0.21

3.5, 4.5 1.93 ±0.20 +0.12
−0.11 0.77 ±0.14 +0.09

−0.06

4.5, 6.0 0.78 ±0.11 +0.05
−0.08 0.49 ±0.08 +0.05

−0.02

6.0, 20. 0.051 ±0.009 +0.004
−0.003 0.028 ±0.007 +0.002

−0.001

η(D) bin dσ/dη(D0) ∆stat ∆syst dσ/dη(D+) ∆stat ∆syst

(nb) (nb)

−1.6, −0.6 1.18 ±0.19 +0.13
−0.10 0.65 ±0.11 +0.08

−0.09

−0.6, 0.0 1.59 ±0.19 +0.10
−0.11 1.20 ±0.25 +0.15

−0.22

0.0, 0.6 2.05 ±0.22 +0.18
−0.14 1.06 ±0.21 +0.08

−0.15

0.6, 1.6 2.31 ±0.37 +0.09
−0.20 0.74 ±0.23 +0.22

−0.07

Table 7.1: Measured differential cross sections for D0 not coming from a D∗+ (left),

and D+ (right) as a function of Q2, x, pT (D) and η(D) for 1.5 < Q2 < 1000 GeV2,

0.02 < y < 0.7, pT (D) > 3 GeV and |η(D)| < 1.6. The estimated b-quark contribution

of 3.1 % has been subtracted. The statistical and systematic uncertainties are shown

separately. The D0 (D+) cross sections have a further 1.8% (3.6%) uncertainty from the

D0 → K−π+ (D+ → K−π+π+) branching ratios.
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D+
s

Q2 bin (GeV2) dσ/dQ2 ∆stat ∆syst

(nb/GeV2)

1.5, 5 0.31 ±0.07 +0.08
−0.05

5, 15 0.092 ±0.016 +0.004
−0.017

15, 40 0.016 ±0.005 +0.004
−0.003

40, 1000 0.00025 ±0.00010 +0.00008
−0.00004

x bin dσ/dx ∆stat ∆syst

(nb)

0.000021, 0.0001 4982 ±1967 +1354
−1333

0.0001, 0.0005 2765 ±443 +65
−644

0.0005, 0.001 934 ±250 +118
−155

0.001, 0.1 6.1 ±1.5 +0.8
−0.6

pT (D+
s ) bin (GeV) dσ/dpT (D+

s ) ∆stat ∆syst

(nb/GeV)

2.0, 2.5 1.65 ±0.52 +0.36
−0.50

2.5, 3.0 0.62 ±0.22 +0.14
−0.11

3.0, 3.5 0.59 ±0.21 +0.08
−0.12

3.5, 4.5 0.55 ±0.11 +0.05
−0.05

4.5, 6.0 0.20 ±0.05 +0.02
−0.01

6.0, 20. 0.011 ±0.004 +0.002
−0.001

η(D+
s ) bin dσ/dη(D+

s ) ∆stat ∆syst

(nb)

−1.6, −0.6 0.94 ±0.24 +0.11
−0.26

−0.6, 0.0 0.57 ±0.15 +0.14
−0.04

0.0, 0.6 0.76 ±0.18 +0.06
−0.09

0.6, 1.6 0.85 ±0.22 +0.17
−0.12

Table 7.2: Measured D+
s differential cross sections as a function of Q2, x, pT (D+

s ) and

η(D+
s ) for 1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7, pT (D+

s ) > 2 GeV and |η(D+
s )| < 1.6.

The estimated b-quark contribution of 4.3 % has been subtracted. The statistical and

systematic uncertainties are shown separately. The cross sections have a further 13%

uncertainty from the D+
s → φπ+ → K+K−π+ branching ratio.
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Figure 7.1: The M(K−, π+) distributions for untagged D0 candidates in bins of Q2, x, pT (D0) and η(D0).



9
0

C
r
o
s
s

S
e
c
t
io

n
s

a
n
d

p
Q

C
D

C
o
m

p
a
r
is

o
n
s

0

500

1000

1500

2000

2500

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 5 GeV2

0

500

1000

1500

2000

2500

3000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

5 < Q2 < 15 GeV2

0

500

1000

1500

2000

2500

3000

3500

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

15 < Q2 < 40 GeV2

0

1000

2000

3000

4000

5000

6000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

40 < Q2 < 1000 GeV2

0

200

400

600

800

1000

1200

1400

1600

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.000021 < x < 0.0001

0

500

1000

1500

2000

2500

3000

3500

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.0001 < x < 0.0005

0

250

500

750

1000

1250

1500

1750

2000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.0005 < x < 0.001

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.001 < x < 0.01

0

1000

2000

3000

4000

5000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

3.0 < pT(D+) < 3.5 GeV

0

1000

2000

3000

4000

5000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

3.5 < pT(D+) < 4.5 GeV

0

500

1000

1500

2000

2500

3000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

4.5 < pT(D+) < 6.0 GeV

0

200

400

600

800

1000

1200

1400

1600

1800

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

6.0 < pT(D+) < 20.0 GeV

0

250

500

750

1000

1250

1500

1750

2000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

-1.6 < η(D+) < -0.6

0

500

1000

1500

2000

2500

3000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

-0.6 < η(D+) < 0.0

0

500

1000

1500

2000

2500

3000

3500

4000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.0 < η(D+) < 0.6

0

1000

2000

3000

4000

5000

6000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

0.6 < η(D+) < 1.6

Figure 7.2: The M(K−, π+, π+) distributions for D+ candidates in bins of Q2, x, pT (D+) and η(D+).
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Figure 7.3: The M(K−,K+, π+) distributions for D+
s candidates in bins of Q2, x, pT (D+

s ) and η(D+
s ).



9
2

C
r
o
s
s

S
e
c
t
io

n
s

a
n
d

p
Q

C
D

C
o
m

p
a
r
is

o
n
s

0

100

200

300

400

500

600

700

800

1.6 1.7 1.8 1.9 2 2.1 2.2
MKππ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.02 < y < 0.18

0

250

500

750

1000

1250

1500

1750

2000

1.6 1.7 1.8 1.9 2 2.1 2.2
MKππ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.18 < y < 0.70

0

200

400

600

800

1000

1200

1400

1600

1800

1.6 1.7 1.8 1.9 2 2.1 2.2
MKππ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.02 < y < 0.20

0

200

400

600

800

1000

1200

1400

1600

1800

1.6 1.7 1.8 1.9 2 2.1 2.2
MKππ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.20 < y < 0.70

0

500

1000

1500

2000

2500

3000

3500

1.6 1.7 1.8 1.9 2 2.1 2.2
MKππ (GeV)

C
om

bi
na

ti
on

s

44 < Q2 < 1000 GeV2

0.02 < y < 0.70

0

200

400

600

800

1000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.02 < y < 0.18

0

500

1000

1500

2000

2500

3000

3500

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.18 < y < 0.70

0

500

1000

1500

2000

2500

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.02 < y < 0.20

0

500

1000

1500

2000

2500

3000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.20 < y < 0.70

0

1000

2000

3000

4000

5000

6000

1.7 1.8 1.9 2 2.1
MKππ (GeV)

C
om

bi
na

ti
on

s

44 < Q2 < 1000 GeV2

0.02 < y < 0.70

0

20

40

60

80

100

120

140

160

1.7 1.8 1.9 2 2.1
MKKπ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.02 < y < 0.18

0

50

100

150

200

250

1.7 1.8 1.9 2 2.1
MKKπ (GeV)

C
om

bi
na

ti
on

s

1.5 < Q2 < 9 GeV2

0.18 < y < 0.70

0

25

50

75

100

125

150

175

200

225

250

1.7 1.8 1.9 2 2.1
MKKπ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.02 < y < 0.20

0

50

100

150

200

250

1.7 1.8 1.9 2 2.1
MKKπ (GeV)

C
om

bi
na

ti
on

s

9 < Q2 < 44 GeV2

0.20 < y < 0.70

0

50

100

150

200

250

300

350

400

1.7 1.8 1.9 2 2.1
MKKπ (GeV)

C
om

bi
na

ti
on

s

44 < Q2 < 1000 GeV2

0.02 < y < 0.70

Figure 7.4: The M(K−, π+), M(K−, π+, π+) and M(K−,K+, π+) distributions for untagged D0, D+ and D+
s candidates respectively, in

bins of (Q2, y).
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Figure 7.5: Differential cross sections for D0 not coming from D∗+ as a function of Q2,

x, pT (D0) and η(D0) compared to the NLO QCD calculation of HVQDIS. The inner

error bars show the statistical uncertainties and the outer bars show the statistical and

systematic uncertainties added in quadrature. The lower and upper NLO QCD predictions

show the estimated theoretical uncertainty of the HVQDIS calculations. The data points

have a further 1.8% uncertainty from the D0 → K−π+ branching ratio.
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Figure 7.6: Differential D+ cross sections as a function of Q2, x, pT (D+) and η(D+) com-

pared to the NLO QCD calculation of HVQDIS. The inner error bars show the statistical

uncertainties and the outer bars show the statistical and systematic uncertainties added in

quadrature. The lower and upper NLO QCD predictions show the estimated theoretical

uncertainty of the HVQDIS calculations. The data points have a further 3.6% uncertainty

from the D+ → K−π+π+ branching ratio.
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Figure 7.7: Differential D+
s cross sections as a function of Q2, x, pT (D+

s ) and η(D+
s ) com-

pared to the NLO QCD calculation of HVQDIS. The inner error bars show the statistical

uncertainties and the outer bars show the statistical and systematic uncertainties added in

quadrature. The lower and upper NLO QCD predictions show the estimated theoretical

uncertainty of the HVQDIS calculations. The data points have a further 13% uncertainty

from the D+
s → φπ+ → K+K−π+ branching ratio.
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Chapter 8

Systematics Uncertainties

In this chapter the systematic uncertainties of the measured cross sections and frag-

mentation ratios and fractions are described. The uncertainties on the theoretical

predictions are also discussed.

8.1 Systematic uncertainties of measurements

The systematic uncertainties of the measured cross sections and fragmentation ratios

and fractions were determined by changing the analysis procedure and repeating all

calculations.

In the measurement of fragmentation ratios and fractions the following groups

of systematic uncertainty sources were considered (Table 8.1):

• {δ1} the model dependence of the acceptance corrections was estimated using

the Herwig MC sample;

• {δ2} the uncertainty of the beauty subtraction was determined by varying the

b-quark cross section by a factor of two in the reference MC sample;

• {δ3} the uncertainty of the tracking simulation was obtained by varying all

momenta by ±0.3% which corresponds to the uncertainty in the magnetic field;

and by changing the track momentum resolution and the angular resolution

by +20
−10% of their values. The asymmetric resolution variations were used since

the MC signals typically had somewhat narrower widths than observed in the

data;

• {δ4} the uncertainty in the CAL energy scale was studied by varying in the

MC the energy of the scattered e− by ±1% and the energy of the hadronic

system by ±3%;
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• {δ5} the uncertainties related to the signal extraction procedures were studied

as follows:

– the cuts on the minimum pT for the π and K candidates were indepen-

dently raised and lowered by 10% from their nominal values,

– the cut on the minimum pT for the πs was raised and lowered by 0.02 GeV

(for σtag(D0), σuntag(D0), σadd(D∗+)),

– the ∆M signal region was widened symmetrically by 0.003 GeV (for

σtag(D0), σuntag(D0), σadd(D∗+)),

– the M(Kπ) signal region was widened and narrowed symmetrically by

0.01 GeV (for σadd(D∗+)),

– the wrong-charge background normalisation region was changed to 0.152 <

∆M < 0.168 (for σadd(D∗+));

• {δ6} the uncertainties of the luminosities of the e−p (±1.8%) and e+p (±2.25%)

data samples were included, taking into account their correlations;

• {δ7} the uncertainty in the estimate of σ(Λ+
c ) (see Subsection 6.3.4);

• {δ8} the uncertainty in the rate of the charm-strange baryons (see Subsec-

tion 6.3.4);

Contributions from the different systematic uncertainties were calculated and

added in quadrature separately for positive and negative variations. Correlated

systematic uncertainties largely cancel in the calculation of the fragmentation ratios

and fractions.

For the total and differential cross-section measurements discussed in Sections 7.2

and 7.3 and those used for the extraction of F cc̄
2 (Section 9.1), further sources of

systematics were studied [3, 5], {δ9}:

• the cut on ye was changed to ye ≤ 0.90;

• the cut on yJB was changed to yJB ≥ 0.03;

• the cut on δ was changed to 42 ≤ δ ≤ 70 GeV;

• the cut on |Zvertex| was changed to |Zvertex| < 45 cm;

• the cut on Ee′ was changed to Ee′ > 11 GeV;

• the excluded region for the impact position of the scattered electron in the

RCAL was increased by 1 cm in each direction;
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• the electron method was used, except for cases when the scattered electron

track was reconstructed by the CTD. In the latter case, the DA method, which

has the best resolution at high Q2, was used.

These estimations were made in each bin in which the differential cross sections

were measured. In addition, for the lowest x bin of the differential cross section

of untagged D0, the systematic error accounted also for instabilities in the signal

extraction, not encountered in any other bin. The overall systematic uncertainty

was determined by adding the individual uncertainties in quadrature. Typically δ9
was below 4%. The uncertainty on the luminosity measurement was not included

in the systematic uncertainties for the differential cross sections.

Figures 8.1 and 8.2 show the effect of each systematic check in the values of the

charm fragmentation fraction and ratios and in the values of the measured total

cross sections, respectively.

8.2 Uncertainties on theoretical predictions

The NLO QCD predictions for D meson production are affected by the systematic

uncertainties listed below. Typical values are quoted for the total cross section:

• the ZEUS PDF uncertainties were propagated from the experimental uncer-

tainties of the fitted data (±5%). As an alternative parametrisation in the

FFNS, the CTEQ5F3 PDF was used in HVQDIS with a charm mass of 1.3

GeV (−2%);

• the charm mass was changed simultaneously in the PDF fit and in HVQDIS

by ∓0.15 GeV
(

+8
−8%

)

. The largest effect was at low pT (D);

• the scale was changed to 2
√

Q2 + 4m2
c and to max(

√

Q2/4 +m2
c , 2mc)

(

+5
−6%

)

;

• the Jetset fragmentation (see Appendix D for details) as implemented in the

previous analyses [3, 5] was used instead of the Peterson fragmentation (+5%

to +20%). The largest deviations were observed for D0 and D+ particles at

the lowest Q2 and x.
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δ1 − δ9 δ1 − δ8 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

σuntag(D0) +5.8
−4.7

+5.4
−4.1

+2.5
−0.0

+1.7
−3.3

+1.3
−0.9

+1.5
−0.6

+3.5
−0.4

+2.2
−2.1

σkin(D
+) +6.6

−5.0
+3.2
−4.6

+0.6
−0.0

+1.5
−3.1

+1.0
−1.9

+1.4
−0.6

+0.0
−1.5

+2.3
−2.2

σ2(D
+
s ) +9.1

−7.4
+8.8
−7.2

+0.0
−2.0

+0.0
−4.0

+1.2
−0.0

+0.5
−0.4

+8.0
−5.1

+2.2
−2.1

σtag(D0) +5.6
−4.6

+0.0
−1.5

+1.8
−3.5

+2.3
−1.1

+1.5
−0.3

+4.0
−0.8

+2.2
−2.1

σadd(D∗+) +9.9
−8.9

+0.0
−2.9

+1.9
−3.8

+4.2
−0.2

+2.3
−0.5

+8.2
−7.2

+2.2
−2.1

σkin(D∗+) +5.7
−4.7

+0.0
−1.8

+1.8
−3.6

+2.5
−0.8

+1.6
−0.3

+4.0
−1.1

+2.2
−2.1

σkin(D
+
s ) +8.9

−4.9
+2.8
−0.0

+2.2
−4.5

+4.0
−0.0

+0.4
−0.1

+6.8
−0.0

+2.2
−2.1

Ru/d
+4.3
−1.4

+2.7
−0.0

+0.0
−0.1

+1.4
−1.4

+0.1
−0.1

+3.0
−0.3

+0.1
−0.1

γs
+7.9
−3.0

+1.8
−0.0

+0.5
−1.2

+4.1
−0.4

+0.6
−1.3

+6.4
−2.4

+0.0
−0.0

P d
v

+2.8
−1.4

+0.0
−1.3

+0.1
−0.3

+1.4
−0.0

+0.2
−0.0

+2.4
−0.0

+0.0
−0.1

σgs
+10.3
−4.3

+1.2
−0.0

+1.7
−3.4

+1.2
−0.5

+1.4
−0.5

+2.4
−0.5

+2.2
−2.1

+9.3
−0.9

+0.4
−0.4

f(c → D+) +1.1
−9.2

+0.0
−0.7

+0.3
−0.2

+0.1
−1.7

+0.1
−0.2

+0.2
−2.9

+0.1
−0.1

+0.9
−8.5

+0.4
−0.4

f(c → D0) +1.1
−8.6

+0.0
−0.0

+0.0
−0.0

+0.5
−0.4

+0.2
−0.1

+1.8
−0.0

+0.0
−0.0

+0.9
−8.5

+0.4
−0.4

funtag(c → D0) +2.0
−8.6

+1.0
−0.0

+0.1
−0.0

+0.5
−0.9

+0.2
−0.1

+1.4
−0.2

+0.0
−0.0

+0.9
−8.5

+0.4
−0.4

f(c → D+
s ) +7.1

−8.9
+1.6
−0.0

+0.5
−1.0

+3.7
−0.3

+0.5
−1.2

+5.7
−2.1

+0.0
−0.0

+0.9
−8.5

+0.4
−0.4

f(c → D∗+) +2.8
−9.1

+0.0
−2.9

+0.1
−0.1

+1.5
−0.3

+0.2
−0.0

+2.2
−1.5

+0.0
−0.0

+0.9
−8.5

+0.4
−0.4

Table 8.1: The systematic uncertainties resulting from δ1-δ9, from δ1-δ8, and from δ1 to

δ8 independently (see text) for the charm hadron cross sections and charm fragmentation

ratios and fractions.
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Systematic identifier Description

1 statistical error

2 RAPGAP → HERWIG

3 in MC, σ(bb̄) → 2σ(bb̄)

4 in MC, pT (track) → (1 + 0.003)pT (track)

5 in MC, pT (track) → (1 − 0.003)pT (track)

6 in MC, Ee → (1 + 0.01)Ee

7 in MC, Ee → (1 − 0.01)Ee

8 in MC, Ehad → (1 + 0.03)Ehad

9 in MC, Ehad → (1 − 0.03)Ehad

10 mimimum pT (π) → (1 + 0.01) mimimum pT (π)

11 mimimum pT (π) → (1 − 0.01) mimimum pT (π)

12 mimimum pT (πs) → mimimum pT (πs) + 0.02 GeV

13 mimimum pT (πs) → mimimum pT (πs) − 0.02 GeV

14 mimimum pT (K) → (1 + 0.01) mimimum pT (K)

15 mimimum pT (K) → (1 − 0.01) mimimum pT (K)

16 ∆M signal region → ∆M signal region + 0.003 GeV

17 M(Kπ) signal region → M(Kπ) signal region + 0.01 GeV

18 M(Kπ) signal region → M(Kπ) signal region − 0.01 GeV

19 ye ≤ 0.95 → ye ≤ 0.90

20 yJB ≥ 0.02 → yJB ≥ 0.03

21 40 ≤ (E − pz) ≤ 60 GeV → 42 ≤ (E − pz) ≤ 70 GeV

22 |Zvertex| ≤ 50 cm → |Zvertex| ≤ 45 cm

23 Ee ≥ 10 GeV → Ee ≥ 11 GeV

24 boxcut in RCAL 26 × 14 cm2 → 27 × 15 cm2

25 reconstruction kinematic variables: Σ method → DA method

Table 8.2: Description of systematic checks in the order in which they appear in the

Figures.
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Figure 8.1: Systematic uncertainties for the charm fragmentation ratios and fractions. In each case, the first bin represents the statistical

error whereas the rest of the bins represent the effect of each systematic check.
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Figure 8.2: Systematic uncertainties for the measured total cross sections. The kinematic region extends up to pT (D) > 3 GeV, except

for the plot in the fourth row, where pT (D+
s ) > 2 GeV. In each case, the first bin represents the statistical error whereas the rest of the

bins represent the effect of each systematic check.
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Chapter 9

Extraction of F cc̄
2

9.1 Extraction of F cc̄
2

The open charm contribution, F cc̄
2 , to the proton structure-function F2 can be defined

in terms of the inclusive double-differential cc̄ cross section in x and Q2 by

d2σcc̄(x,Q2)

dxdQ2
=

2πα2

xQ4
{[1 + (1 − y)2]F cc̄

2 (x,Q2) − y2F cc̄
L (x,Q2)} .

In this analysis, the cc̄ cross section is obtained by measuring the untagged D0,

D+ and D+
s production cross sections and employing the measured hadronisation

fractions f(c → D). Since only a limited kinematic region in pT (D) and η(D)

is accessible, a prescription for extrapolating to the full kinematic phase space is

needed.

As reported in Chapter 7, the measured differential cross-sections are well de-

scribed in the probed kinematic region. Therefore the following relation was used

to extract F cc̄
2 :

F cc̄
2 (xi, Q

2
i ) =

σi,meas(ep→ DX)

σi,theo(ep→ DX)
F cc̄

2,theo(xi, Q
2
i ), (9.1)

where σi,meas is the cross section in the bin i in the measured region of pT (D)

and η(D) and σi,theo is the corresponding cross section evaluated with HVQDIS.

The value of F cc̄
2,theo was calculated in FFNS from the NLO coefficient functions [24]

using the same values of parameters as in the calculation of σi,theo. The cross sections

σi,meas(ep→ DX) were measured in bins of Q2 and y (Table 9.1) and F cc̄
2 was quoted

at representative Q2 and x values for each bin (Table 9.2). The F cc̄
2 measurements

obtained from each D meson were combined into a single set of measurements; the

result is also shown in Table 9.2.

The extrapolation factors from the measured pT (D) and η(D) ranges to the full

phase space, as estimated using HVQDIS, were between 17 at low Q2 and 2.5 at
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high Q2 for the D0 and D+ measurements. For the D+
s , the lower pT requirement

leads to lower extrapolation factors between 5.6 and 1.9. They are all shown in

Table 9.2. The uncertainty from the branching ratios was estimated by changing

each branching ratio independently in the calculation by ±1 standard deviation and

adding in quadrature the resulting variations of F cc̄
2 (+2.7

−4.1%).

The following uncertainties of the extrapolation prescription of Eq. (9.1) have

been evaluated:

• using Jetset instead of the Peterson fragmentation yielded changes of ≈
+28%, +15% and +5% for the data points at the lowest, middle and largest

Q2 ranges, respectively;

• changing the charm mass by ±0.15 GeV consistently in the HVQDIS calcula-

tion and in the calculation of F cc̄
2,theo led to differences in the extrapolation of

±5% at low x, low Q2; the value decreases rapidly at higher x and higher Q2;

• the uncertainty in the ZEUS NLO PDF fit led to uncertainties in the extracted

values of F cc̄
2 typically less than 1%;

• the extrapolation factors were evaluated using the CTEQ5F3 proton PDF

yielding differences compared to the nominal factors of ≈ +10%, +6% and

+1% for the lowest, middle and largest Q2 ranges, respectively.

As an illustration, Figure 9.1 shows the effect of each systematic check in the values

of F cc̄
2 measured using untagged D0.

The combined F cc̄
2 measurements are shown in Fig. 9.2. The quadratic addition

of the extrapolation uncertainties is shown independently as a band. Also shown in

Fig. 9.2 is the previous measurement [3] and the ZEUS NLO QCD fit. The two sets

of data are consistent1. The prediction describes the data well for all Q2 and x. The

uncertainty on the theoretical prediction is that from the PDF fit propagated from

the experimental uncertainties of the fitted data.

1The previous data were measured at Q2 = 4, 18 and 130 GeV2 and have been shifted to Q2 = 4.2,

20.4 and 111.8 GeV2 using the ZEUS NLO QCD fit.
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untagged D0

Q2 bin (GeV2) y bin σ ∆stat ∆syst (nb)

1.5, 9 0.18, 0.70 1.50 ±0.19 +0.14
−0.16

0.02, 0.18 1.03 ±0.19 +0.16
−0.12

9, 44 0.20, 0.70 1.02 ±0.14 +0.12
−0.09

0.02, 0.20 1.02 ±0.14 +0.12
−0.05

44, 1000 0.02, 0.70 1.03 ±0.19 +0.16
−0.05

D+

Q2 bin (GeV2) y bin σ ∆stat ∆syst (nb)

1.5, 9 0.18, 0.70 0.63 ±0.14 +0.05
−0.10

0.02, 0.18 0.65 ±0.13 +0.09
−0.08

9, 44 0.20, 0.70 0.52 ±0.11 +0.03
−0.10

0.02, 0.20 0.44 ±0.11 +0.06
−0.03

44, 1000 0.02, 0.70 0.61 ±0.25 +0.08
−0.09

D+
s

Q2 bin (GeV2) y bin σ ∆stat ∆syst (nb)

1.5, 9 0.18, 0.70 0.97 ±0.23 +0.16
−0.21

0.02, 0.18 0.56 ±0.15 +0.11
−0.08

9, 44 0.20, 0.70 0.61 ±0.15 +0.14
−0.15

0.02, 0.20 0.29 ±0.07 +0.12
−0.03

44, 1000 0.02, 0.70 0.20 ±0.11 +0.08
−0.03

Table 9.1: Measured cross sections for D0 not coming from a D∗+, D+ and D+
s in each

of the Q2 and y bins for pT (D0,D+) > 3 GeV, pT (D+
s ) > 2 GeV and |η(D)| < 1.6.

The estimated b-quark contribution of 3.1 % for D0 and D+ and 4.3 % for D+
s has

been subtracted. The statistical and systematic uncertainties are shown separately. The

D0, D+ and D+
s cross sections have further 1.8%, 3.6% an d 13% uncertainties from

the D0 → K−π+, D+ → K−π+π+ and D+
s → φπ+ → K+K−π+ branching ratios,

respectively.
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untagged D0

Q2 (GeV2) x F cc̄
2 ∆stat ∆syst ∆extrap factor

4.2 0.00013 0.141 ±0.017 +0.013
−0.015

+0.048
−0.013 8.9

0.00061 0.090 ±0.017 +0.014
−0.011

+0.036
−0.006 17

20.4 0.00062 0.320 ±0.044 +0.037
−0.029

+0.061
−0.020 4.9

0.00281 0.156 ±0.021 +0.019
−0.008

+0.041
−0.004 5.8

111.8 0.00676 0.217 ±0.039 +0.033
−0.011

+0.014
−0.002 2.5

D+

Q2 (GeV2) x F cc̄
2 ∆stat ∆syst ∆extrap factor

4.2 0.00013 0.123 ±0.025 +0.010
−0.020

+0.037
−0.011 8.9

0.00061 0.109 ±0.020 +0.015
−0.014

+0.039
−0.007 17

20.4 0.00062 0.331 ±0.067 +0.016
−0.067

+0.066
−0.021 4.9

0.00281 0.130 ±0.039 +0.017
−0.009

+0.030
−0.003 5.8

111.8 0.00676 0.293 ±0.124 +0.037
−0.041

+0.021
−0.003 2.5

D+
s

Q2 (GeV2) x F cc̄
2 ∆stat ∆syst ∆extrap factor

4.2 0.00013 0.221 ±0.044 +0.037
−0.048

+0.036
−0.016 4.3

0.00061 0.075 ±0.017 +0.016
−0.011

+0.019
−0.004 5.6

20.4 0.00062 0.470 ±0.100 +0.109
−0.112

+0.037
−0.017 2.8

0.00281 0.100 ±0.022 +0.043
−0.009

+0.013
−0.001 2.9

111.8 0.00676 0.179 ±0.058 +0.075
−0.025

+0.013
−0.001 1.9

Combined
Q2 (GeV2) x F cc̄

2 ∆stat ∆syst ∆extrap

4.2 0.00013 0.144 ±0.014 +0.022
−0.015

+0.045
−0.013

0.00061 0.090 ±0.010 +0.010
−0.004

+0.029
−0.005

20.4 0.00062 0.341 ±0.035 +0.046
−0.042

+0.063
−0.021

0.00281 0.132 ±0.014 +0.024
−0.005

+0.024
−0.001

111.8 0.00676 0.211 ±0.032 +0.044
−0.013

+0.013
−0.002

Table 9.2: The extracted values of F cc̄
2 from the production cross sections of D0 not

coming from D∗+, D+ and D+
s and the combination of the m at each Q2 and x value. The

statistical, systematic and extrapolation uncertainties are shown separa tely. The values

of the extrapolation factor used to correct the full pT (D) and η(D) phase space are also

shown. All the extracted F cc̄
2 values have a further +2.7% −4.1% uncertainty from the

D0 → K−π+, D+ → K−π+π+ and D+
s → φπ+ → K+K−π+ branching ratios and the

f(c → Λ+
c ) value.
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Figure 9.1: Systematic uncertainties for F cc̄
2 measured in bins of (Q2, y) using untagged D0. In each case, the first bin represents the

statistical error whereas the rest of the bins represent the effect of each systematic check.
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Figure 9.2: The measured F cc̄
2 as a function of x for three Q2 bins. The current data are

compared with the previous ZEUS measurement [3]. The data are shown with statistical

uncertainties (inner bars) and statistical and systematic uncertainties added in quadrature

(outer bars). All measured F cc̄
2 values have a further +2.7% -4.1% uncertainty coming

from the current experimental uncertainty from the D0 → K−π+, D+ → K−π+π+ and

D+
s → φπ+ → K+K−π+ branching ratios and the f(c → Λ+

c ) value. The shaded band

corresponds to the estimated theoretical uncertainty in the extrapolation. The lower

and upper curves show the ZEUS NLO QCD fit [24] uncertainty propagated from the

experimental uncertainties of the fitted data.
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Conclusions

The production of the charm mesons D∗+, D0, D+ and D+
s has been measured with

the ZEUS detector in the kinematic range 1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7,

pT (D∗+, D0, D+) > 3 GeV, pT (D+
s ) > 2 GeV and |η(D)| < 1.6.

The cross sections have been used to determine the charm fragmentation ratios

and fractions. The ratio of neutral to charged D-meson production, Ru/d, is compat-

ible with unity, i.e. it is consistent with isospin invariance, which implies that u and

d quarks are produced equally in charm fragmentation. The strangeness-suppression

factor in charm fragmentation, γs, was measured to be about 20%. The fraction of

charged D mesons produced in a vector state, P d
v , was found to be smaller than

the naive spin-counting prediction of 0.75. The fraction of c quarks hadronising as

D∗+, D0, D+ and D+
s mesons have been calculated. The measured Ru/d, γs, P

d
v and

open charm fragmentation fractions are consistent with those obtained in charm

photoproduction and in e+e− annihilation. These measurements generally support

the hypothesis that fragmentation proceeds independently of the hard sub-process.

The measured D0, D+ and D+
s differential cross sections were compared to the

predictions of NLO QCD with the proton PDFs extracted from inclusive DIS data.

A good description was found.

The double-differential cross section in y and Q2 has been used to extract the

open charm contribution to F2, by using the NLO QCD calculation to extrapolate

outside the measured pT (D) and η(D) regions. The F cc̄
2 values obtained from the

different D mesons agree with previous results where a D∗+ meson was tagged.
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Conclusiones

La producción de mesones encantados D∗+, D0, D+ y D+
s ha sido medida con el

detector ZEUS en el rango cinemático 1.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7,

pT (D∗+, D0, D+) > 3 GeV, pT (D+
s ) > 2 GeV y |η(D)| < 1.6.

Las secciones eficaces han sido usadas para determinar las razones y fracciones

de fragmentacion del quark charm. La razón de producción de mesones cargados

respecto de mesones neutros, Ru/d, es compatible con la unidad, esto es, es compat-

ible con la invariancia de isosṕın, que implica igualdad en la producción de quarks u

y d en la fragmentación de charm. Para el factor de supresión de extrañeza en frag-

mentación de charm, γs, el valor medido se situó en torno al 20%. Para la fracción

de mesones cargados producidos en estado vectorial, P d
v , el valor medido fue menor

que el proporcionado por la predicción naive basada en contaje de espines, 0.75.

La fracciones de fragmentación de quarks c que se hadronizan en los mesones D∗+,

D0, D+ y D+
s fueron medidas. Los valores medidos de Ru/d, γs, P

d
v y fracciones de

fragmentación de charm son consistentes con los valores medidos en fotoproducción

y en aniquilaciones e+e−. Estas medidas sostienen en general la hipótesis de que el

proceso de fragmentación es independiende del sub-proceso duro.

Las secciones eficaces diferenciales medidas para la producción de D0, D+ and

D+
s fueron comparadas con las predicciones de NLO QCD con la PDFs de protón

extraida de datos inclusivos DIS. Se observó un buena descripción.

Las secciones eficaces diferenciales dobles en y y Q2 han sido usadas para extraer

la contribución de charm a F2, usando los calculos NLO QCD para extrapolar mas

allá de la región cinematica medida en pT (D) y η(D). Los valores obtenidos de F cc̄
2

usando los diferentes mesones D están en acuerdo con los resultados previos que

usan el meson D∗+ para identificar charm.
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Appendix A

Boosting

In this appendix we give details about how to boost to the rest frame of a real (mass

positive definite) particle.

Notation and conventions

• For the four-momentun of a particle we write p = (p0, p1, p2, p3) = (p0,p). In

the components pa of a four-vector, the index a can take any of the values

a = 0, 1, 2, 3, unless it is explicitly said.

• We use the standard metric in Minkowski space with diagonal elements

g = diag(+1,−1,−1,−1) ,

and zero for the rest of the elements.

With this choice, the square of the four momentum takes the form

p2 = pT g p = (p0)2 − (p)2 .

• The Lorentz group is defined as the set of real linear transformations over the

Minkowski space that leave invariant the square of the four-momentum.

L = {Λ ∈ GL(4,R) | p′ = Λp with p′2 = p2} .

Therefore they satisfy the equation

ΛT g Λ = g .

From this relation the inverse of any Lorenzt transformation can be computed

in a strightforward way :

Λ−1 = g−1 ΛT g . (A.1)
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The problem

Let us consider the four-momentum p of a massive particle Q in the lab frame:

p = (p0, p1, p2, p3) .

We will write k for the four-momentum of the same particle in its rest frame

k = (m, 0, 0, 0) ,

where m is the mass of the particle.

Our task consists of finding a Lorentz transformation L(p) which maps k onto p.

p = L(p) k . (A.2)

Computation of the matrix L(p)

The solutions L(p) to Eq. A.2 are not unique. If L(p) is a solution, then

L̄(p) = R(p̂, φ) L(p)

is also a solution. Here R(p̂, φ) is any 3-dimensional rotation of axe defined by the

unitary vector p̂ = p/‖p‖ and arbitrary angle φ. Due to this freedom, we have to

do a specific choice for L(p). This will be set to

L(p) =











L0
0 L0

1 L0
2 L0

3

L1
0 L1

1 L1
2 L1

3

L2
0 L2

1 L2
2 L2

3

L3
0 L3

1 L3
2 L3

3











with its elements given by [84]

Li
k = δik + (γ − 1)p̂ip̂k i, k = 1, 2, 3

Li
0 = L0

i = p̂i

√

γ2 − 1 i = 1, 2, 3

L0
0 = γ

Here p̂i with i = 1, 2, 3 are the components of the unitary vector along the p direc-

tion, and the factor γ is defined by

γ =
p0

m
=

√

p2 +m2

m
.

The matrix previously defined belongs to the Lorentz group. The proof is stright-

forward just by taking matrix elements in the equation L(p)T g L(p) = g, so it is

ommited here.
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We can easily check that L(p) defined in this way actually maps the rest four-

momentum k onto the lab four-momentum p. PROOF :

(L(p) k)a = L(p)a
b k

b = L(p)a
0 k

0 = L(p)a
0 m

• For a = 0 we have

(L(p) k)0 = L(p)0
0 m = γm =

p0

m
m = p0

• For a = i = 1, 2, 3 we have

(L(p) k)i = L(p)i
0 m = (p̂i

√

γ2 − 1)m = p̂i
‖p‖
m

m = pi

Q.E.D.

According to what Eq. A.1, the inverse of L(p) can be computed in a straight-

forward way

L−1(p) = g−1 LT (p) g =











L0
0 −L1

0 −L2
0 −L3

0

−L0
1 L1

1 L2
1 L3

1

−L0
2 L1

2 L2
2 L2

2

−L0
3 L1

3 L2
3 L3

3











(A.3)

Boosting

Let p1, . . . pn be the four-momenta of a system of particles in the lab frame. Then,

their four-momenta p′1, . . . p
′

n in rest frame of the the particle Q are given by:

p1 → p′1 = L−1(p) p1

· · ·
pn → p′n = L−1(p) pn ,

where the matrix L−1(p) is given by Eq. A.3.
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Appendix B

Modified Gaussian

In this appendix we detail how the number of reconstructed D-mesons was extracted

by fitting their mass distributions to a modified gaussian function.

B.1 Fit with a function

Let hi be the number of entries in the i-bin of the mass distribution histogram

corresponding to the production of the particle D in some kinematic region. In each

bin, we have

hi = si + bi ,

where si and bi are the number of signal and background combinations in the i-bin,

respectively. The quantities si and bi are not known independendently, but only their

sum hi. The number of D mesons, i.e. the total number of signal combinations in

the mass distribution, is the quantity we want to estimate:

N =
∑

i

si ,

where the sum is extended to all bins in the mass distribution histogram. One way

to give and estimation of N is by means of a fit.

Let us assume that we have found a function h(x) which “describes well” the

shape of the mass distribution. To simplify the notation, we do not write the

dependence with respect to the free parameters (p1, p2, p3, . . . pn), whose values are

determined by minimising χ2(p1, p2, p3, . . . pn) with a fit.

The function h(x) splits in two pieces

h(x) = s(x) + b(x) ,

with s(x) and b(x) modelling signal and background shapes, respectively. Then, the
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number of D-mesons is estimated according to

N =
∑

i

si =
1

d

∑

i

d si ∼
1

d

∞
∫

−∞

dx s(x) , (B.1)

where d is the bin width in the mass distribution histogram.

B.2 Fit with a modified gaussian

Usually, the function describing the signal s(x) is expected to exhibit gaussian be-

haviour

s(x) → g(x; d, p1, p2, p3) =
d p1√
2π p3

exp

{

−1

2

(

x− p2

p3

)2
}

,

where the bin width d has been explicitly extracted and (p1, p2, p3) are free param-

eters.

However, due to differences in the reconstruction of positive and negative tracks

at low momentum, deviations from gaussian behaviour are observed. A “modified”

gaussian function is then proposed

s(x) → gm(x; d, p1, p2, p3) =
d p1√
2π p3

exp

{

−1

2
x

1+ 1

1+0.5xs
s

}

, (B.2)

with

xs = |x− p2

p3
| .

Then, according to Eq. B.1, the estimation of the number D-mesons would be

N =
1

d
A , A ≡

∞
∫

−∞

dx gm(x; d, p1, p2, p3) .

Performing the change of variables in the integral

x→ x′ =
x− p2

p3

we see that

A = d p1 A0 , A0 ≡
∞
∫

−∞

dx gm(x; 1, 1, 0, 1) ,

and therefore

N = p1 A0 . (B.3)
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The integral A0 needs to be evaluated. However, the function gm(x) can not be

analytically integrated. Therefore, we must perform an aproximate numerical inte-

gration in a finite interval (−M,M), with M > 1, and give an upper bound to the

error due to truncating

A0 = Aapprox
0 +R,

with

Aapprox
0 =

+M
∫

−M

dx gm(x; 1, 1, 0, 1) R = 2

∞
∫

M

dx gm(x; 1, 1, 0, 1) .

The calculation of Aapprox
0 can be done using a suitable numerical method (i.e, mon-

tecarlo integration), with arbitrary precision. To give an upper bound to R we note

that

exp

{

−1

2
x1+ 1

1+0.5x

}

< exp

{

−1

2
x

}

x > 1 ,

so

R <
2√
2π

∞
∫

M

dx exp

{

−1

2
x

}

=
4√
2π
e−M/2 M > 1 .

Notice that having found an upper bound to R, we have proved that the modified

gaussian function represents a true probability distribution, i.e. it can be normalised.

Therefore, calculating Aapprox
0 with enough precision and taking M sufficiently large,

we can cansider A0 as a constant and neglect ∆A0/A0 against ∆p1/p1 in Eq. B.3.

Our computation gives

A0 = 1.217719399 . (B.4)

In summary, the number of reconstructed D-mesons and its error are given by

N = A0 p1 ∆N = A0 ∆p1

where the normalisation factorA0 is given by Eq. B.4 and the values of the parameter

p1 and its error ∆p1 are extracted from a fit to the mass distribution using the

modified gaussian funcion parametrised as in Eq. B.2 to model the signal shape.
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Appendix C

Wrong Charge Background

Estimator

In this appendix we describe an alternative method to the fit which is currently used

to estimate the background in D∗+ production.

C.1 Wrong charge subtraction

The reconstruction of D∗+ mesons was presented in Section 4.2. The ∆M mass dis-

tribution is filled with those triplets of tracks in the charge combination (K−, π+, π+
s ).

The set of these triplets is call the set of “right charge” combinations. Their ele-

ments can be either signal or background. On the other hand, triplets of tracks

in the charge combination (K+, π+, π−

s ) can only be background. The set of these

triplets is called the set of “wrong charge” combinations.

The wrong charge subtraction method assumes that right charge background

candidates distribute in the phase space in the same way that wrong charge events,

up to normalisation. An estimation to the number of D∗+ mesons in the signal

region is then given by

N = NA −NB · f f =
NC

ND

with NA and NB right and wrong charge events in the signal region, whereas NC

and ND are the analogous quantities in a normalization region away from the signal.

Standard error propagation gives, for the statistical error associated to N :

∆N =

√

NA +
1

(ND)2

{

NBNC

(

NB +NC +
NBNC

ND

)}

.
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Appendix D

Jetset Fragmentation

D.1 Models for fragmentation

Peterson model for the fragmentation c→ D gives no transverse momentum to the

produced D meson relative to the direction of the momentum carried by the parent

c quark. In Monte Carlo models (RAPGAP) fragmentation is treated in a more

complicated way. In addition to the Peterson model, the Lund model based on colour

strings is used to model the fragmentation. In these treatments, the produced D

meson has a transverse momentum relative to the direction of the parent c quark due

to the large colour flow from the c quark to the proton remnant. As a consecuence,

the D meson are produced more forward than the parent c quark [38].

Therefore, as an alternative, a Monte Carlo based bin-by-bin correction proce-

dure was employed to treat fragmentation. Explicitly, the theoretical predictions for

the D mesons cross sections were obtained as follows:

(

dσ(D)

dX

)

NLO+MC

=

(

dσ(cc̄)

dX

)

NLO

· f(c→ D) · N(D)MC

N(c)MC

where

• X is a generic variable under study,

• f(c→ D) is the corresponding measured fragmentation fraction,

• N(D)MC is the number of D mesons found in the MC sample which lie in the

kinematic region of the measurement 1 and in the bin dX,

• N(c)MC is the number of c quark decaying to a D meson found in the MC

sample which lie in the kinematic region of the measurement and in the bin

dX.
11.5 < Q2 < 1000 GeV2, 0.02 < y < 0.7, pT > 3.0 GeV (also pT > 2.0 GeV for D+

s ) and |η| < 1.6.
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The factor N(D)MC

N(c)MC
accounts for the migrations occured in the bin dX.
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[72] T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).

[73] B.R. Webber, Nucl. Phys. B 238, 492 (1984).

[74] ALEPH Coll., D. Buskulic et al., Phys. Lett. B 388, 648 (1996).

[75] OPAL Coll., K. Ackerstaff et al., Eur. Phys. J. C 1, 439 (1998).



REFERENCES 131

[76] L. Gladilin, Preprint hep-ex/9912064, 1999.
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Didar Dobur, Damir Lelas, John Loizides and James Ferrando. Last, but not least,

nothing of this would have been the same without Maria.


