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Abstract: Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past

few decades since the observation of CLFV would indicate a new physics Beyond the Standard

Model (BSM). As several future lepton colliders with high luminosity have been proposed, the search

for CLFV will reach an unprecedented level of precision. Many BSM models allow CLFV processes at

the tree level, such as the R-parity-violating (RPV) Minimal Supersymmetric Standard Model (MSSM),

which is a good choice for benchmarking. In this paper, we perform a detailed fast Monte Carlo

simulation study on RPV-induced CLFV processes at future lepton colliders, including a 240 GeV

circular electron positron collider (CEPC) and a 6 or 14 TeV Muon Collider. As a result, we found

that the upper limits on the τ-related RPV couplings will be significantly improved, while several

new limits on RPV couplings can be set, which are inaccessible by low-energy experiments.

Keywords: R-parity violation; charged lepton flavor violation; future lepton colliders

1. Introduction

Although the Standard Model (SM) has achieved great success in the field of particle
physics, it is still an incomplete theory. In the SM, lepton numbers are global U(1) sym-
metries; and thus the electron lepton number Le, muon lepton number Lµ , and tau lepton
numbers Lτ are separately conserved, as is the total lepton number L = Le + Lµ + Lτ .
However, it is not consistent with the discovery of neutrino oscillations and non-zero neu-
trino masses, demonstrating that these symmetries are accidental and that there could be a
lepton-flavor-violating short-range interaction among the charged leptons [1]. Therefore,
Charged Lepton Flavor Violation (CLFV) processes [2–4] are expected to occur. However,
even in the SM extended with a non-zero mass neutrino, CLFV rates are typically sup-
pressed by a factor of G2

Fm4
v ∼ 10−50, which is well below the sensitivity of the experiment

and should be unobservable.
Nevertheless, many models of physics Beyond the Standard Model (BSM) introduce

new sources of CLFV, such as Supersymmetry (SUSY) [5,6], Z′ boson [7], leptoquark [8],
quantum black hole (QBH) in low-scale gravity [9], two-Higgs-doublet model (2HDM) [10],
and R-parity-violating (RPV) Minimal Supersymmetric Standard Model (MSSM) [11,12].
These models can give rise to sizeable CLFV rates that may be detectable in the next
generation of collider experiments. Any such detection of CLFV would be clear evidence
for the existence of New Physics (NP) and shed light on the probe of BSM physics.

For the reasons above, the search for CLFV has attracted great interest in recent decades.
Numerous experiments have been performed or will be constructed with different approaches,
including muon-based experiments, such as µ−N → e−N at Mu2e [13,14] and COMET [15],
µ → eγ at MEG-II [16,17], µ → eee at Mu3e [18,19], and high energy colliders like LEP and
LHC looking for CLFV decays of mesons [20–23], µ, τ [24], Z bosons [25–27], and Higgs
bosons [28–30]. In the next decades, several proposed lepton colliders, such as the Circular
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Electron Positron Collider (CEPC) [31], the Future Circular Collider (FCC)-ee [32], the Inter-
national Linear Collider (ILC) [33], the Compact Linear Collider (CLIC) [34] and the Muon
Collider [35], will be ideal facilities to further probe CLFV processes [36–40] since they have
cleaner environments with low backgrounds and higher luminosity than hadron colliders.

In a previous work [41], the potential to search for CLFV signals induced by the
Z′ model has been studied at the future lepton colliders. In this paper, we focus on the
search for CLFV at CEPC and the Muon Collider with RPV-MSSM assumed. The Z′ model
assumes the existence of an extra Z′ boson that couples to different lepton flavors, while
RPV-MSSM is another interesting new physics model based on SUSY. The rest of this paper
is organized as follows. In Section 2, we will give a brief introduction to RPV-MSSM and its
present research status. Section 3 discusses the details of the fast Monte Carlo simulation
we performed at CEPC and Muon Collider. In Section 4, we present the numerical results of
RPV coupling limits and compare them with current and prospective experimental limits
from low-energy µ and τ experiments. Lastly, we close with a conclusion of this paper in
Section 5.

2. R-Parity Violating MSSM

MSSM is one of the promising candidates for BSM physics. In the MSSM, renormaliz-
ability and gauge invariance do not forbid all the coupling terms that cause lepton number
and baryon number violation. It can be prevented by introducing a Z2 symmetry called
R-parity [42].

Rp := (−1)3B+L+2S, (1)

where B, L, and S denote the baryon number, lepton number, and spin of the particle,
respectively. All the SM particles have an R-parity of +1, while all the SUSY particles have
an R-parity of −1. One of the motivations for this symmetry is to ensure the stability of
the lightest supersymmetric particle, which is a possible dark matter candidate [43–45].
R-parity conservation in MSSM will result in a large transverse missing energy signature at
the collider experiment [46–51], but no such signals have been observed so far. Furthermore,
RPV-MSSM can give a substantial contribution to muon g − 2 calculation through bilinear
and trilinear terms in the RPV superpotential [52–54]. Allowing R-parity to be broken
becomes acceptable and will give rise to a series of phenomenological consequences; thus,
R-parity violation has been extensively studied in phenomenological theory [55–62] and in
collider experiments [63–66].

When R-parity is broken, the R-parity violating superpotential must be included:

WRPV =
1

2
λijkLiLjE

c
k + λ′

ijkLiQjD
c
k +

1

2
λ′′

ijkUc
i Dc

j Dc
k + µiLi Hu, (2)

where L, E, Q, U, and D are superfields of lepton, charged lepton, quark, up quark, and
down quark respectively; Hu is one of the Higgs superfields; λijk, λ′

ijk, λ′′
ijk are Yukawa cou-

plings; and i, j, k denote the three generations. Gauge invariance enforces the antisymmetry
of two indices for these couplings, λijk = −λjik and λ′′

ijk = −λ′′
ikj. We can write down the

RPV part of the interaction Lagrangian in terms of component fields.

LI =− 1

2
λijk

(

ν̃iL l̄kRljL + l̃jL l̄kRνiL + l̃∗kRν̄c
iRljL − (i ↔ j)

)

− λ′
ijk

(

ν̃iLd̄kRdjL + d̃jLd̄kRνiL + d̃∗kRν̄c
iRdjL

−l̃iLd̄kRujL − ũjLd̄kRliL − d̃∗kR l̄c
iRujL

)

+ h.c.,

(3)

where λ′′ = 0 is assumed for simplicity since non-zero λ′′ corresponds to baryon number
violation, which is irrelevant to the search for CLFV. l, ν, u, d denote the field of charged
lepton, neutrino, up quark, and down quark, respectively. The tilde over a field represents
its superpartner field. The superscripts c and ∗ represent charge conjugation and complex
conjugation. The subscripts L and R represent left-handed and right-handed fields.
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The interaction Lagrangian can allow for several CLFV processes at the tree level. In
this work, we focus on CLFV processes produced by the above λijk ν̃iL l̄kRljL term, which
can contribute to lepton collision CLFV processes at lepton colliders. There have been
some studies similar to this paper performed to search for CLFV based on RPV-MSSM, but
with different CLFV processes like lepton and meson decay and were studied at different
experimental facilities like LHC and COMET [67–74].

3. Simulation and Analysis Framework

In this manuscript, we focus on the CLFV search based on RPV-MSSM and perform
the simulation at a 240 GeV electron–positron collider, i.e., the CEPC with an integrated
luminosity of 5 ab−1 and a 6 or 14 TeV Muon Collider with an integrated luminosity
of 4 ab−1.

3.1. Event Simulation

The CLFV signal processes studied in this manuscript include ee → eµ, ee → eτ,
ee → µτ at 240 GeV CEPC and µµ → eµ, µµ → eτ, µµ → µτ at 6 or 14 TeV Muon Collider.
Figure 1 gives some examples of Feynman diagrams for these CLFV signal processes. The
main background processes for each signal process are summarized in Table 1, where
the WW and ττ background mean ℓℓ → WW or ττ, with both W or τ decaying into the
corresponding charged leptons in the final state. For the τ-related signal channel like
ee → eτ, the ττ background process has only one τ decaying into the charged lepton, while
the other τ goes through hadronic decay and is reconstructed with the jet collection in
DELPHES and likewise for the Hνν̄(H → ττ) and Hνν̄(H → WW) background processes.

ν̃

l−

l+

l+

l′−

(a) s channel diagram

ν̃

l+ l+

l− l′−

(b) t channel diagram

Figure 1. Feynman diagrams of CLFV signal processes, namely the s-channel process (a) and the

t-channel process (b), both propagated by s-neutrino.

Table 1. Summary of the CLFV signal and background processes.

Signal Process Background Processes

ee → eµ WW, Hνν̄(H → ττ), Hνν̄(H → WW), ττ
ee → eτ WW, Hνν̄(H → ττ), ττ
ee → µτ WW, Hνν̄(H → ττ), ττ
µµ → eµ WW, WWνν̄, Hνν̄(H → ττ), Hνν̄(H → WW), ττ
µµ → eτ WW, WWνν̄, Hνν̄(H → ττ), Hνν̄(H → WW), ττ
µµ → µτ WW, WWνν̄, Hνν̄(H → ττ), Hνν̄(H → WW), ττ

Using the UFO [75] model published on the FeynRules model database for RPV
extension of MSSM [76], both signal and background process events are generated with
MadGraph5_aMC@NLO version 3.4.2 [77,78], and then we perform parton shower and
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hadronization with PYTHIA8 version 3.0.6 [79]. In particular, the initial-state radiation (ISR)
effect [80] was incorporated into the simulation. Lastly, we used DELPHES version 3.5.0 [81]
for detector fast simulation with the default detector configuration cards of CEPC and the
Muon Collider.

3.2. Event Selection and Analysis Method

The event selection criteria are described as follows. First, the events must include
exactly two charged leptons in the final state with transverse momentum pT and pseudo-
rapidity η satisfying pT > 10 GeV/c and |η| < 2.5. In particular, for the τ-related channel,
τ goes through hadronic decay and is reconstructed with the jet collection in DELPHES,
and the jets must satisfy pT > 20 GeV/c and |η| < 5. These basic cuts applied on pT

and |η| follow the default detector configuration cards of DELPHES, reflecting the tracking
information provided by the detector. In addition, the final state leptons must meet
the requirements of lepton flavor change and charge conservation. For example, in the
e+e− → e−µ+(e+µ−) channel, all events must have only one e−(e+) and one µ

+(µ−).
For CEPC, the µ tracking efficiency ϵ is set to be 100% within 0.1 < |η| ⩽ 3, and 0%

for |η| > 3 or |η| ⩽ 0.1. For the Muon Collider, the µ tracking efficiency is ϵ ⩾ 90% within
|η| ⩽ 2.5, and 0% for |η| > 2.5. For the τ-related channel, as defined in DELPHES default
cards of the detector configuration, the τ tagging efficiency is assumed to be 40% for the
CEPC and 80% for the Muon Collider with pT > 10 GeV/c.

Moreover, we show the invariant mass distributions of final state di-leptons for dif-
ferent channels in Figure 2. To separate the signal from the backgrounds, as the filtering
condition, the invariant masses cut is imposed at the value maximizing the quantity
S/

√
S + B, where S denotes the event number of the signal and B denotes the event num-

ber of the background. Specifically, the invariant mass cuts of the final state di-leptons for
the ee → eµ (Figure 2a), ee → eτ (Figure 2c) and ee → µτ (Figure 2d) channel at CEPC,
µµ → eµ (Figure 2b), µµ → eτ (Figure 2d) and µµ → µτ (Figure 2f) channel at the 6 TeV
Muon Collider, as well as the case at the 14 TeV Muon Collider, are selected at 220 GeV,
160 GeV, 160 GeV for CEPC, 5.2 TeV, 4 TeV, 4.2 TeV for the 6 TeV Muon Collider, and
10 TeV, 9.5 TeV, 9.5 TeV for the 14 TeV Muon Collider, respectively, in order to maximize
signal sensitivities from the backgrounds. After all cuts, we obtain histograms on the final
state di-leptons pT distributions for different channels shown in Figure 3, which can be
exploited to set the upper limits on RPV coupling with the method described below.

For each process X, we define a per-event weight nLX
= σX L/NX to take into account

the cross-section difference between the signal and background processes, where L denotes
the integrated luminosity of the collider, σX denotes the cross-section of process X, and NX

denotes the number of generated events for process X. In our study, we simulate NX = 105

events for each signal and background process. The signal and backgrounds yields are
re-weighted according to their cross-section to be matched.

The test statistic Z is defined as follows,

Z =
nbins

∑
i=1

Zi,

{

Zi := 2[ni − bi + bi ln(bi/ni)] 95% C.L. Exclusion

Zi := 2[bi − ni + ni ln(ni/bi)] 5σ Discovery.

(4)

where b denotes the SM background yields, n = s + b denotes the total yields including
both signal and background, and s denotes the CLFV signal yields. In both cases, each Zi is
subjected to a χ2 distribution with 1 degree of freedom by Wald’s theorem [82], and thus,
test statistic Z is subjected to χ2 distribution with the number of degrees of freedom corre-
sponding to the number of bins [83]. By summing each Zi in pT distribution histograms
and finding the integral of χ2 probability density function to match the corresponding
significance, we can obtain the upper limits on RPV couplings. The results are summarized
and plotted in the next section.
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Figure 2. Invariant mass distributions of the final state di-leptons for ee → eµ (a), ee → eτ (c), and

ee → µτ (e) channel at CEPC, and µµ → eµ (b), µµ → eτ (d), and µµ → µτ (f) channel at the 6 TeV

Muon Collider. A.U. refers to the Arbitrary Unit.
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Figure 3. pT distributions of the final state di-leptons for ee → eµ (a), ee → eτ (c), and ee → µτ (e)

channel at CEPC, and µµ → eµ (b), µµ → eτ (d) and µµ → µτ (f) channel at the 6 TeV Muon Collider.

A.U. refers to the Arbitrary Unit.

4. Results

4.1. CEPC

Using the method described in Section 3.2, the 95% confidence level (C.L.) upper
limit results of various couplings versus different s-neutrino masses obtained from the
simulation at CEPC are presented in Figure 4. The current most stringent upper limit of
these couplings from low-energy µ and τ experiments are also included for comparison.
For a heavy lepton a decaying into leptons b and c and an anti–lepton d̄ [69],
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





















Γa→bcd̄ =
m5

la

6144π3m4
ν̃g

(

λ2
gdcλ2

gba + λ2
gcdλ2

gab + λ2
gdbλ2

gca + λ2
gbdλ2

gac

)

b ̸= c

Γa→bbd̄ =
m5

la

6144π3m4
ν̃gL

(

λ2
gdbλ2

gba + λ2
gbdλ2

gab

)

. b = c

(5)

by which we can convert the upper limits of the branching ratio obtained from the experi-
ment to the upper limits of RPV couplings.

0 2 4 6 8 10 12 14
 (TeV)ν∼M

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10|
3

1
2

λ
3

1
1

λ|

CEPC 240 GeV 

 eee SINDRUM→ µ

 eee Mu3e→ µ

(a)

0 2 4 6 8 10 12 14
 (TeV)ν∼M

4−10

3−10

2−10

1−10

1

10

210

|
2

1
3

λ
2

1
1

λ|

CEPC 240 GeV 

 eee Belle→ τ

-1
 eee Belle II, 50 ab→ τ

(b)

0 2 4 6 8 10 12 14
 (TeV)ν∼M

4−10

3−10

2−10

1−10

1

10

210

|
2

3
2

λ
2

1
1

λ|

CEPC 240 GeV 

ee Bellµ → τ

-1ee Bell II, 50 abµ → τ

(c)

Figure 4. The 95% C.L. upper limit of RPV couplings |λ311λ312| (equivalent to |λ311λ321| and

|λ211λ212|) from ee → eµ simulation (a), |λ211λ213| (equivalent to |λ211λ231| and |λ311λ313|) from

ee → eτ simulation (b), |λ211λ232| (equivalent to |λ311λ323|) from ee → µτ simulation (c) versus

different s-neutrino masses at CEPC.

As shown in Figure 4, although the ee → eµ channel simulation gives a looser upper
limit of couplings |λ311λ312|, |λ311λ321| and |λ211λ212| than the result obtained from the
SINDRUM experiment [84] and prospect Mu3e experiment, the ee → eτ and ee → µτ

channel simulation can give more stringent upper limits of couplings |λ211λ213|, |λ211λ231|,
|λ311λ313| and |λ211λ232|, |λ311λ323| than the current best results from the Belle experi-
ment [85]. However, with future experiments included, the prospective Belle II experiments
will give more stringent upper limits of couplings than the ee → eτ and ee → µτ channels
in our simulation results at CEPC.

4.2. Muon Collider

In the same manner, the 95% confidence level (C.L.) upper limit result of various
couplings versus different s-neutrino masses obtained from simulation at the Muon Collider
are presented in Figure 5, with the current most stringent upper limit of these couplings
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available for comparison. µµ → eµ simulation can set new limits on couplings |λ312λ322|,
|λ321λ322| and |λ121λ122|, which have never been obtained from experiments yet since the
process of µ → µ̄µe cannot occur from µ decay.
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 (TeV)ν∼M
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Figure 5. 95% C.L. upper limit of RPV couplings |λ312λ322| (equivalent to |λ321λ322| and |λ121λ122|)
from µµ → eµ simulation (a), |λ122λ131| (equivalent to |λ322λ313|) from µµ → eτ simulation (b),

|λ122λ123| (equivalent to |λ122λ132| and |λ322λ323|) from µµ → µτ simulation (c) versus different

s-neutrino masses at the Muon Collider.

The simulation of the µµ → eτ and µµ → µτ channel gives more stringent upper limits
of couplings |λ122λ131|, |λ322λ313| and |λ122λ123|, |λ122λ132|, |λ322λ323| than the current
best results from the Belle experiment, and these results are even better than the prospect
constraints from the Belle II experiment when the mass of s-neutrino is greater than about
2 TeV.

5. Conclusions and Outlook

In this work, we discuss the sensitivity and the potential for searching for CLFV at
future lepton colliders based on RPV-MSSM. By performing fast Monte Carlo simulation of
the process ee → eµ, ee → eτ, ee → µτ at 240 GeV CEPC, and µµ → eµ, µµ → eτ, µµ → µτ

at the 6 or 14 TeV Muon Collider with MadGraph5, PYTHIA8 and DELPHES, the 95% C.L.
upper limits of RPV couplings versus different s-neutrino masses can be obtained. We
found that µµ → eµ simulation can set new limits on couplings |λ312λ322|, |λ321λ322| and

|λ121λ122|, which have not yet been obtained by experiments. The ee → eτ and ee → µτ,
µµ → eτ and µµ → µτ channel simulation can give more stringent upper limits than
the current best results from the Belle experiment. The µµ → eτ and µµ → µτ channel
simulation results are even better than the results of the prospect Belle II experiment. These
simulation results demonstrate that future lepton colliders have some superiority over the
current collider experiments and low-energy µ and τ experiments in the search for CLFV.
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