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ABSTRACT

A careful analysis is presented of the most recent data for
R(e+e— + hadrons) using improved theoretical techniques. The analysis
is based on a generalized method for smoothing R. We show why the
hadronic cross section is potentially one of the best tests of QCD.
The theoretical complications such as unknown parameters and non-
perturbative corrections are discussed, and resultihg theoretical
uncertainties are estimated. Some previously neglected QED corrections
are accounted for. We find that for Vs near 7 GeV, the data lie about
15-17% above the theory; the experimental uncertainty is + 107
(dominated by systematics). TFor Vs near 5 GeV, the difference is only
5-8%. This apparent discrepancy may well be due to systematic
problems in the experiment. For completeness we consider the possi-
bility that there is a threshold for new particles at /s % 6 GeV.

We consider new quarks, Higgs bosons, quixes, integrally-charged and
even fractionally-charged leptons. While most of these hypotheses

are not particularly attractive, some cannot be ruled out.-
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I. INTRODUCTION

-

The problem of finding convincing tests of quantum chromodynamics1
(QCD) has proven to be difficult. However, as a result of the efforts
to find such tests, many of the theoretical issues involved in comparing
QCD with experiment are now better understood. The role of non-leading
perturbative corrections, in particular, has received much attention

recently.z'L+

It has become clear that order az contributions must be
computed if the theory is to be meaningfully tested and if the parame-
ters of QCD are to be reliably determined.2”® It also appears that
non-perturbative effects proportional to inverse powers of q2 can
complicate the analysis unless lqzl is quite 1arge.6

In this paper, we will study the problem of testing QCD in the
context of e+e- annihilation. In particular, we will consider the
ratio |

+ -
R = o(e e - hadrons) . (1.1)

+ - ¥ -
c(ee »>puwu)

The second order QCD corrections to R have recently been computed,”
and for center of mass energies /s > 3 GeV, these corrections are
quite small. This fact suggests that the predictions of QCD pertur-
bation theory should be quite reliable. In addition, a thorough

7 has recently been completed of data’ taken

experimental analysis
by the Stanford Linear Accelerator Center (SLAC)-Lawrence Berkeley
Laboratory (LBL) collaboration with the Mark I detector at SPEAR

+
(the "low-energy" e e storage ring at SLAC). New data are also

being reported at higher energies at PETRAS [the high-energy e%e_



storage ring at the Deutsches Elektronen Synchrotron (DESY)). Here
we will make a careful comparison of theory and experiment.

‘BCD is able to explain the successes of the parton model within
a theory of strong interactions. At short distances, corrections to
the quark-parton model can be computed systematically in powers of a
small, running coupling constant aS(Qz) (where aS(Qz) ~ log(QZ/Az)-1
and A is the scale parameter of QCD). These QCD corrections lead to
scaling violations in many processes. A great deal of experimental
and theoretical effort has been devoted to searching for such scaling
violations. It is possible to study logarithmic scaling violations
using leading-order QCD calculations. However, in order to reliably
determine specific numbers such as a, Or cross sections, it is essen-
tial that the corrections beyond leading order in a be calculated.

We believe that e+e_ annihilation is a particularly good context
in which to examine QCD. The theoretical analysis of R in e+e_ annihi-
lation is conceptually extremely simple. At high energies and away from
heavy quark thresholds there is only one relevant scale, the center of
mass energy, vs. Unlike processes such as deep-inelastic scattering,
where one needs to compile data over a range of Q2 and x in order to
observe a logarithmic deviation from scaling, one can consider a single
number, the cross section at a fixed energy. Since this energy can be
chosen to be qui;e large, one can hope to minimize non-perturbative
effects, such as higher-twist terms, which plague analyses of deep-
inelastic scattering. While at high energies the prediction for R is

quite insensitive to the value of A, there is a measurable difference

(of order 10%) between the prediction of QCD and of the quark-parton



model. Thus e+e_ annihilation can be an outstanding test of QCD, though
it is not likely to yield an accurate value for A.

<En our comparison of theory and experiment we will consider a large
number of possible corrections and uncertainties. For example, there
are effects associated with quark masses, uncertainties about the
application of QCD in the time-like region, and QED corrections. We will
see that, after taking account of these effects, there is reasonable
agreement between theory and experiment up to energies of 5.5 GeV.

Above 5.5 GeV, a potentially serious discrepancy exists (about 15-177%).
The theoretical prediction lies at the edge of the quoted systematic
uncertainties (10%).7 This potential discrepancy may well be due to
real systematic problems in the experiment. Tt may, however, represent
the presence of new phenomena in this energy range, or difficulties

with QCD. We will consider these possibilities in the final sections

of this paper.

The plan of this paper is as follows. In Section II, we briefly
review the theoretical analysis of R in QCD. The perturbative results
are summarized, and a variety of theoretical issues are considered.

The problems associated with new quark thresholds and the inclusion

6f quark masses are described. We address as well the general problem
of applying QCD in the time-like region. We describe our procedure
for smoothing ougithe local fluctuations in R due to resonances and
other, fundamentally non-perturbative, physics.

In Section III we consider certain QED corrections, pointed out
by Yndurain,? which have been neglected in experimental analyses up to

now. TInclusion of these corrections tends to improve agreement between

theory and experiment. However, these corrections also enter the



determination of the luminosity. We estimate this effect, and find that
it largely cancels the effect pointed out by Yndurain for present
- expewriments.

In Section IV, we confront theory with data, with and without
smoothing, and remark on the nature and magnitude of possible

discrepancies.

xT I T

Section V of this paper is devoted to the possibility that the
apparent discrepancy between theory and experiment is due not to
systematic error but to thresholds for new phenomena. Inclusion of
an additional charge 1/3 quark is shown to give dramatic agreement with
the data, but it is difficult to explain, in a conventional framework,
why there are no corresponding narrow resonances. A new heavy lepton
would give good agreement with the Mark I data for R, but other types
of data may contradict such a hypothesis. The possibil%ty that one
or more scalar meson thresholds have been passed is shown to give
marginal agreement with the data. Finally, we engage in some more
exotic speculations.

In our final section we conclude with a discussion of some of the

uncertainties which can affect the comparison of theory and data.

II. e'e” ANNIHILATION IN QCD

A. The theory of R

In the parton model, R simply measures the sum of the squares of
the quark charges. 1In QCD, this value is approached asymptotically

with increasing energy.10

For massless quarks, R is infrared-finite
order by order in perturbation theory. It is thus a function only of

s and the renormalization scale u. We can choose p=s; then R takes



the form
aS(S)

R = j{: Qi {1 + 22—,
1

2
a (s)
S ] +] . (2.1)

m

Here as(s) is the running coupling constant, and the sum runs over
color and flavor. The coefficient C2 has recently been calculated.?
This constant cannot be specified without also specifying a renormali-
zation procedure. The MS scheme of Bardeen et al.,2 has been shown to
yield small values for higher order corrections for both é+e- annihi-

lation and deep inelastic scattering. In this scheme,

C, = 1.98 - 0.115 n

9 (2.2)

f

where ng is the number of quark flavors. In determining R to second
order, one must also include the second order corrections to the running

coupling constant which appears in Eq. (2.1). Defining

0, 2 4
a (-q7) = s (2.3)
MS
where A___ is a scale parameter to be determined from experiment and
- MS
8. = 11 -2n (2.4)
0 3 °f ’ '

we use the Gell-Mann-Low equation11 to write

By
4R

a (=g =ad(-gH 11 + o2(q?) tatn(-a? /1)1 + 0L (ag(-4H)’1 (29

0
For SU(3),12

3, = 102 -+2n (2.6)



Fits to deep-inelastic scattering data give A__ = 0.3 GeV (within
MS

about 0.2 Gev).!3

40The calculation of R in e+e_ annihilation treats the final state
as if it consisted of free quarks and gluons. The effects which bind
quarks into the observed hadrons are not directly taken into account.
There are a number of arguments which make it seem reasonable to assume
that these non-perturbative, confining effects are soft, and generate
corrections to R which decrease rapidly with s.

One can be more rigorous and use dispersion theory to relate R(s)

to the vacuum polarization amplitude evaluated at spacelike (q2 < 0)

momenta, 1"

2, _ 2 2 .
Huv(q ) (q gy quqv) n(q™) ) (2.7)

This amplitude is related to the Fourier transform of the vacuum

expectation value of the product of electromagnetic currents by
V(g = fd“x et <olT(M ) V@) o> . (2.8)

For q2 large and negative, the right-hand side of this equation may be
evaluated using Wilson’s operator product expansion.!5 The usual
perturbative analysis corresponds to evaluating the coefficient
function for the leading-twist operator. The renormalization-group
analysis for this term is given in Appendix A. Terms involving
operators of higher dimension (higher twist) will fall off as powers
of s relative to the perturbative contribution. One can try to
estimate the contributions of non-leading twist operators by studying

data at low s (Vs ~ 1 GeV). Shifman et al.,!® for example, have
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attempted such an estimate. These contributions to R fall off as l/s2
Afor lgrge s, and can be ignored in the energy region considered in this
paper.

In the case of massive quarks, one must exercise caution in
applying the results of perturbation theory. The problem is most
simply discussed in‘the time-like region. The diagram of Fig. 1
contains, near threshold, a velocity singularity characteristic of

the Coulomb force. It diverges near threshold as v—l where

. (2.9)

These divergences become more severe in higher orders in perturbation
theory. If the final-state particles were electrons, these diagrams
would just sum to give the Balmer series for pqsitronium, below
threshold. Above threshold, they would give a Coulomb‘fhase shift.
In QCD, the bound state problem is inherently more complex, even
within perturbation theory. In particular, new contributions to the
long-range part of the force appear in every order, in contrast to QED,
where pnly the lowest-order Coulomb force exists. These contributions
will presumably be characterized by a coupling constant renormalized
not at s but at the much smaller scales typical of bound state
momentum transfers. Thus perturbation theory is unreliable near quark
thresholds.

For energies well above threshold, mass corrections will fall as
powers of mé/s. One can adopt a semiempirical approach to determine
whether perturbation theory should be reliable. We expect that R will

approach the perturbation theory results once the important bound



states channels have opened up and one is well into the continuum.
“Even‘yell above threshold there are significant effects due to finite
quark masses, which must be included in comparing theory and experiment.
To deal with these contributions, we have used an '"on-shell" definition
of the quark mass. 1In first order in @, all the necessary information
can be extracted from QED results (by including factors arising from
color) and the first-order calculation of the B-function. To order

ai, the necessary calculations are not available, but since the mass
effects are already small at order g they should be negligible at

2
order as.

For R we can write, using an interpolation formula due to

Schwinger:l7
S (3-v.) QOI1 + % a (s) £( °2 20)1 (2.10)
R 7 2., Vi) 3 0g(s) £(vy) + 5o ls '
i m
where
v, = (2.11)
and
. m _3+v {m_ 3
£(v) = 55 -3 [2 4“] . (2.12)

Here the sum runs over all quark flavors (and colors) with thresholds
below s. The zeroth order term is the familiar parton model result.
The 1/v term in f represents the Coulomb singularity described earlier.
As remarked previously, as we approach thresholds, perturbation theory

breaks down in two ways. First, additional singular terms (higher
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powers of 1/v) appear in every order of perturbation theory; second,
near threshold, the appropriate expansion parameter is as(p), where
p=1nqv. Thus one can trust this expression for R only well away from
thresholds or in appropriately smeared quantities (see Section II.B).
Mass—dependent terms also appear in the running coupling constant.

The following expression provides a reasonable approximation even

below threshold,

as(s) = - 127 5 . (2.13)
s s + Smi
33 4n — - 2 n
I\2 ; A+ Smi

In all of our work, we will treat the u, d and s quarks as massless.
The mass—dependent terms will be kept only for the charm and heavier

quarks.

B. The theory of smearing R

To apply the QCD calculation of R(s) to the experimentally
measured R(s), we shall employ smearing techniques. These smearing
techniques follow from the "optical theorem" which relates a suitably

normalized vacuum polarization amplitude to R,

R(s) = 1Im I(s) . (2.14)

This equation follows from Eq. (2.8) upon inserting a complete set
of intermediate states between Ju(x) and Jv(O). This procedure also
establishes TI(s) as an analytic function of s with singularities only

along the positive, real s axis.
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The vacuum polarization amplitude is a function which is calculable
in QCD. As discussed above, for values of s far from heavy quark
thre;%olds, and for ‘sl/A2 >> 1, a perturbative evaluation of T(s) should
be valid. However, in the resonance regions the perturbative evaluation
is not directly applicable and must be modified.

Among such modifications are dispersion theory techniques!®* which
relate R to the vacuum polarization tensor for spacelike s, (s < 0).
These techniques, however, are sensitive to data in the low-energy
resonance region and in varying degrees to the unmeasured high-energy
data. The interpretation of phenomena at a given energy is also obscure,
since the dispersion relations involve relating I(s), for space-like s,
to Tl integrated over all time-like s (s > 0).

An alternative modification to the perturbative analysis was
‘proposed by Poggio, Quinn and Weinberg.18 They suggested using a
variant of R which can be reliably calculated in perturbation theory.
This variant, R, is just a smoothed version of R. The data (and theory)
for R(s) are convoluted with a function W(s, s', A) which produces a
weighted average of the data in the interval (s-A4) <s' < (s+4A).

A is chosen so as to smooth out the resonant structure.

In our analysis, we will use a slightly more general version of

the smearing method introduced by Poggio, Quinn and Weinberg. We

define the smeared R as

R(s) = f ds' W(s,s', &) R(s") . (2.15)
2
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An example of W is
—% (s~ s')2 /A2
- W(s,s', A) = e . (2.16)

The smearing function W used by Poggio, Quinn and Weinberg was

W(s,s', A) « 1 . (2.17)

(s—-s‘)2 + Az

We shall now show that if W is an analytic function of s and s’
with no singularity within a distance A of the positive real axis,
then R may be evaluated in perturbation theory. (The parameter
appropriate for this expansion is aS(A)). To see this we use the
"optical theorem" of Eq. (2.14) to derive a contour integral represen-

tation for R. Using Eqs. (2.14) and (2.15) we have

8

R(s) = ds' W(s,s', A) Im N(s') s (2.18)
2
4m
T
which can also be written as
= ds' . '
R(s) = TZF'W(S,S , A) Ti(s") . (2.19)
C

The contour C is_shown in Fig. 2.

To show that ﬁfmay be evaluated perturbatively, we deform the
contour of Eq. (2.19) to the contour C' shown in Fig. 3. For values
of s' along the contour C', we may expand Il in perturbation theory.
For wvalues of s far from quark thresholds, and for ls!/A2 >> 1, the

expansion parameter is as(lsl/Az). Near a heavy quark production
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threshold, however, the expansion parameter is aS(A/Az). Although
unsmeared perturbation theory would break down, the smearing procedure
removes singularities from the perturbation expansion (for A/A2
sufficiently large), and therefore R may be evaluated in perturbation
theory. These singularities would reappear as A > 0, and perturbation

theory would again break down. (For s near zero, that is, in the

resonance region for low mass quarks, these same arguments hold.)
III. QED CORRECTIONS

Theoretical expressions for R are generally obtained in the one-
photon approximation. However, certain QED corrections which are
nominally higher order in o (the fine structure constant) can be
comparable to QCD corrections at high energies and must be carefully
taken into account. Bremsstrahlung from the eiectron or positron line,
as well as contamination from the two photon processes, are accounted
for in the experimental analyses. Other QED corrections are also
substantial at SPEAR energies. 1In particular, diagrams with a vacuum
polarization insertion on the photon line (Fig. 4) can be quite large.9
As an éxample, consider the diagram with an electron loop shown in
Fig. 5. This diagram contains a term (a/3m) Zn(s/mi). For /s = 3 GeV,
the logarithm is 17.4. Thus, when this amplitude is interfered with
the Born term (Fig. 6), it gives a 37 contribution to the cross section.

For the y~pair and hadron production cross sections, these
corrections correspond to replacing o by o(s), the running coupling
constant of QED, in computing the Born term. Thus if one compared the

measured hadronic cross section with the measured u-pair cross section,

such effects would cancel out. It is important to note, however, that
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the quoted value for R is a corrected hadronic cross section divided by
uthe theoretical point cross section for u+u_ production. TFor the
analysis at Mark I, only loops of electrons were included in the
corrections. As Yndurain has pointed out,? however, the other contri~
butions to vacuum polarization give a three to four percent contribution
at these energies. Since QCD corrections to the parton model relations
are only of order 107%, it is important to include these effects.

However, such corrections also play a role in the determination of
the luminosity of the storage ring. The luminosity is determined by
measuring the Bhabha cross section (Fig. 7). At SPEAR (as in many
experiments), these measurements are made at Eigg_angles;7 they thus
involve large momentum transfers., For these momentum transfers, the
vacuum polarization corrections are again large. The luminosity is
determined by comparing the measured Bhabha rate with a theoretical
expression for the cross section. Once more, this theoretical expres-
sion includes only the Born term plus electron loop corrections to the
viftual photon line. As discussed below, the inclusion of the contri-
butions of other particles to the vacuum polarization largely cancels
out tﬁe effect noted by ¥Yndurain.

Most of the ingredients necessary for the analysis have been
presented9 by Berends and Komen and by ¥Yndurain, and we review these
briefly here. The real part of the vacuum polarization tensor is
easily computed for leptons. The contribution of each is given by
the formula,

20.

Re (s) = - 2= Pv(s) (3.1)
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where

i

2 2 2
V(s) = 3+ 4 2{1-‘%] '[1+3;“,—-} X(s) ,  (3.2)

Q and m are the charge and mass of the lepton, respectively,

1 1-v
X(s) = E;-Rn 14-V| , s 2 4m2
(3.3)
= l-ta _l{l} , 0 <8< 4m2 s
v
and
2
v = \/ S—im l . (3.4)

The hadronic contribution to @I can be obtained from experimental

data using the dispersion relation,

oo

1
Re T (s) = —55- f Z—SS:lS ds' . (3.5)
4n%0o, 2
4mTr

The integral on the right hand side has been estimated by Berends and
Komen and by Yndurain for several values of s, and they obtain similar

results.

For our analysis of the hadronic contribution, we used the naive

QCD expression

%s S”] |s]
Re 1, (8) = _2a Q2 V. (s) l-F———ng— ntn | —= (3.6)
h 37 i i T ’ :
i

and determined the m, for light quarks by fitting to results given

by Berends and Komen. The sum here is over quark flavors (and colors).



=16~

Taking
moo= my o= 0.1 Gev
m_ = 0.4 GeV
(3.7)
m = 1.25 Gev
c

4.7 GeV

Uﬁ

we obtained agreement to a few percent over the energy range of
interest. The resulting uncertainty in the cross section is less
than 0.057%.

The corresponding corrections to the Bhabha cross section are
computed from the diagrams of Fig. 7, in terms of Re TH(s). Denoting

the change in the differential cross section by §(do/dR), we have

do % 2 2 h
855 = ——5 {(2-20+99) Re () - $(1-1) (Re m(t) + Re 1(s))
sy
2 2
+ ¢v7(1-2¢ + 2¢7) Re Ii(s)} . (3.8)
Here = sin2(8/2), z = -syP and 6 is the angle relative to the

beam direction.

To correct the Mark I data, we integrated this expression over
the angular range used in the luminosity determination for various
values of s. Ag;in, we included the effects of muons, T-leptons
and hadrons, all of which had been neglected in the experimental
analysis.

The effect of including these corrections is largely to cancel

out the correction to the hadronic cross section. The remaining
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correction is never more than half a percent over the energy range of
interest. This result is easily understood. The vacuum polarization
‘Acorfzctions may be thought of as building up the running coupling
constant of QED. Including them in the hadronic cross section is
equivalent to replacing a by a(s) in the Born term. Similarly, in the
Bhabha cross section, o is replaced by a(s) in the s-channel diagram,
and by o(t) in the t-channel diagram. Since the Bhabha measurement

is performed at large angles, s is of the same order as t. Then

a(s) ~ a(ltl), to logarithmic accuracy. For completeness, these

corrections have been retained in all the curves shown in this paper.

IV. COMPARISON OF THEORY AND DATA

A. Data

We consider here the most recent compilation of ddta’ for R taken
with the Mark I detector by the SLAC-LBL collaborations. Because there
may be 10-15% overall normalization differences between the R data
sets of different experiments, we have restricted our analysis to the
SLAC-LBL (Mark I) data. This data set (unlike all others) includes
significant coverage of the region between Vs = 5 and 8 GeV, which is
of particular interest to us. For comparison purposes, we will display
the world’s data on one plot.

We have used a fine grid of 147 data points from Vs = 2.6 to
7.8 GeV, with the highest density of points in the resonance region
(Vs ® 3.7 to 4.5 GeV). The J/y and ' are included (as they must be
for the integrals described below). For graphical purposes, we use
larger bins in order to reduce the number of data points. The error

bars shown are for statistical errors only. There is a 107
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systematic uncertainty in the overall normalization. There may be a
point-to-point systematic error of about 37 for every 0.5 GeV interval.
‘&he contribution to R of the tau lepton has been subtracted from
the SLAC-LBL data. The data are also corrected for the two-photon
component of the cross section; this is a small correction (~2%)
because of experimental cuts. The QED radiative corrections from

bremsstrahlung have been accounted for.

One must be sure that one is comparing the identical quantities for
theory and experiment. There has been confusion in the past for several
reasons. First, the muon cross section used in obtaining the value of
R quoted by experimentalists is the theoretical, point cross section,
0(é+e_ +-u+u—)- Second, in the numerator [0(e+e_ + hadrons)], the
electron vacuum polarization term (see Fig. 5) has been subtracted,
but the muon, tau and hadronic contributions have not been subtracted.?
As discussed in Section III, these corrections can be numerically
significant at SPEAR energies. Third, the numerator is normalized to
the measured Bhabha (e+e— -+ é+e—) cross section at large angles;
in this normalization the theoretical Bhabha cross section is taken to
be the point cross section, again with corrections only for electron

vacuum polarization. It follows that the quoted R is given by

— measured e
(o " % :
Re = 5 K (4.1)
5]
u
where
60+6‘Z
< = =5 = (4.2)

s+ 6% + % + 57 + &4
e e e e e
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measured e 0 Y T q
o'h - O’h = 0'h + Gh + O'h + Uh (4.3)
gmeasured e _ 0 o T . (4.4)
e e e e e e

Oi and oi refer to the total cross sections into hadrons and into muons.

52 refers to the Bhabha cross section into the solid angle covered by

a given detector. The superscript O on ¢ and § refers to the point

cross sections while the superscripts e, u, T and q refer to the

interference terms involving e, p, T and quarks in vacuum polarization
measured measured

loops (as in Fig. 5). %, and 9 are the measured cross

sections with bremsstrahlung radiative corrections included.

B. Theory

The theoretical curves used in comparisons with data resulted
from QCD calculations of R with o and ai terms included. For a given
value of A, the magnitude of the ai term depends on the renormalization
scheme and on the definition of the correction term in ag itself.

We have used the MS renormalization scheme of Bardeen et al.,2 and

B

o @) = a2@) - (2@®)? ‘”“130 wmen(Q* /0% . 4.5)

In general the ai term in R is only about 17 of the total, as expected.
The value of m, used was obtained in the smoothing procedure

(described below) and reflects the inclusion of J/¢ and ¥'. The results

are not very sensitive to the value chosen for A; for comparison we

will plot curves for A= 200, 450 and 700 MeV. We have not included the
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contributions of the weak interactions, since they are negligible in
theq;egion of interest. For Vs < 30 GeV, they contribute less than
0.01 units of R, while at Vs = 40 GeV they add 0.08 units of R.

Since the QED radiative corrections for vacuum polarization loops
with muons, taus and hadrons have not been subtracted from the SLAC-LBL
(Mark I) data, we have added them to the theoretical calculations.
These corrections enter in two places: 1in the hadron cross section
and in the Bhabha cross section which is used to normalize the hadron
cross section (see Egqs. (4.1) and (4.2)). The corrections to each of
the two cross sections are about 37 separately, but they tend to

v

cancel, resulting in corrections of about 0.57%.

C. Comparison of raw theory and data

In Figs. 8 and 9, the data and theory are shown. .Figure 9 shows
all data available as of August 1979 except in the vs = 3.7 -4.7 GeV
(resonance) region. Our attention will focus on Fig. 8 showing the
SLAC-LBL (Mark I) data. Of particular interest to us is the region
from {§'= 5 to 8 GeV which is far from both the ¢ and b quark thresholds.
Theory and data appear to be in reasonably good agreement around
Vs = 5 GeV, but the QCD curves fall consistently below the data for
/s = 5.5 GeV. The significance of this discrepancy will be analyzed
following the discussion of the smearing procedure. It cén be seen that

the results are relatively insensitive to A for larger values of /s .

D. Smeared theory and data

The theory behind the smearing procedure has been discussed in

Section II.B. We have compared the results of several different
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weighting functions. In each case the theory and the data are smeared

with the same weighting function. Two of these functions are

-

(with s= 4E2):

_ 2 2_-1
wij = [(si-sj) + A7 ] , (4.6)

(of Ref. 18) and

W

y exp[—-%(s—s')z/Az] ’ 4.7)

L]

where the smeared R = R is

Si+1 T %51 ]
Z R(Sj) Wij[ 5
R(s,) = J . (4.8)

Z W Si41 T Si-1
ij 2

3

For both theory and data, the sj are chosen only where data exist
(except for Vs < 2.5 GeV and Vs > 7.9 GeV). Since the. smearing
procedure requires integrating (summing) over all s, we assign the
value R=2.5 + 2.5 for points with Vs < 2.5 GeV and R=4.3 + 4.3 for
/s > 7.9 GeV; since these error bars are clearly exaggerated, the
resulting error bars on the smoothed data are also exaggerated. For
the bin including the J/¢ (and similarly for the y', T and T') we have
assigned a value to R such that the integral over the bin gives the
experimentally determined integrated contribution!? to R (plus

background). 1In particular

fee had Zhadmz
Res ~ 28 T + background ~ —o—+ background  (4.9)
all
where I is the integrated cross section to hadrons.

had
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The results from smearing with the two weighting functions are
shown in Fig. 11. The error bars (which are obtained by the standard
‘ procgdure for statistical errors) vary according to function, but the
relative shapes of smoothed theory and smoothed data are not signifi-
cantly different for different weighting functions.

Here we concentrate on results ogtained with the Gaussian weighting
function (Eq. 4.7). The results of smearing with this function for
different values of A are shown in Fig. 11. It is evident that below
Vs = 5.5 GeV and above the charm threshold region, there is good
agreement between the predictions of QCD and the SLAC-LBL (Mark I)
data. There is only a small (5-8%) discrepancy in the relative
normalizations. However, between Vs = 5.5 and 7.8 GeV, there is a
significant difference between the predictions of QCD (with u,d,s,c and
b quarks) and the data. This difference is about 15-17% and is far
greater than allowed by statistics, but is at the edge of the limits
set by systematic errors (which are +10%).%0 The rise of the data
between ¥s = 5.5 and 6.5 GeV is also at the limit of the estimated
energy-dependent systematic errors.20 If future experiments are able
to decrease the systematic errors, then this discrepancy would

become a significant problem.

V. EFFECTS OF ADDITIONAL THRESHOLDS

Examination of Fig. 11 reveals a potential discrepanéy between
theory and experiment. We feel that the magnitude of this discrepancy
is not large enough to demand consideration of additional thresholds.
It is interesting nonetheless to note the impact of various hypothe-

tical particle thresholds on the theoretical predictions, since it is
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possible that future experiments might give credence to the discrepancy.
‘It is~conceivable that there are new particles of mass 2- 3 GeV which
have been overlooked.

The effect of a quark of charge -1/3 and mass 3 GeV (compared with
m, = 1.38 GeV) is shown in Fig. 12. The resulting theoretical curve
appears to be in excellent agreement with the data except for a slight
(6-7%) overall normalization difference. To eliminate the question
of normalization, we can consider the slope of R as in Fig. 13.

Given our knowledge about ¢ and T, it is easy to estimate the
magnitude of Fee for the qq resonance expected for such a new quark
(Pee X 1 keV). However, the Mark I detector has scanned very carefully
through the region Vs = 4.5 to 7.5 GeV and such resonances have
apparently been ruled out, ree < 0.15 keV at the 907 confidence
level.2! 1If this resonance, unlike ¢ and T is very wide (> 100 MeV)
then it might well have been missed. Such a width would require an
entirely different decay mechanism than that which operates in the y
and T systems. Note that results from high energy machines
(Vs > 10 GeV) cannot easily rule out this hypothesis; because of
systematic errors in normalization, it would be necessary to go down
to Vs ® 5.5 GeV and observe the threshold region for such a quark.

So it is improved experiments at SPEAR energies which are needed.

Since the primary problem with proposing a new quark is that the
associated resonances have not been observed, one should consider the
possibility of a new lepton of massx 2.9 GeV. As seen in Fig. 14,
even the full contribution of an integrally-charged lepton is allowed

by the Mark I data. An additional full unit of R would appear to be



ruled out at Vs ~ 30 GeV by data from PETRA® (see Fig. 9), but one should
remember that the experimental cuts used in determining R at PETRA are
quite different than those used at SPEAR. In particular, PETRA experi-
ments typically require Evisible > 0.50 Etotal compared with > 0.20

E_o-al at SPEAR. The 2-prong signal used for identification of Tt is
also relevant to identification of a new heavy lepton. The Mark I
data?? for 2-charged-prong events (with the t background subtracted and
prong = e,y or hadron) can be interpreted as showing that the 2-prong
rate increases after Vs x~ 5.5, but this may not be significant because
of low efficiency. The 2-prong (e+X) data?3 from the DELCO experiment
at SPEAR are between 207 and 507 higher than expected from 1t for
/s = 6-8 GeV. On the other hand the Mark J data (u+X) of Ref. 24 at
Vs > 13 GeV and the Mark I data?? for 1+ e events at Vs = 6-8 GeV
appear to allow a new contribution which is no more than 30-407% of
that due to the t. Another signal which might be relevant at PETRA
energies is that of events with 1 prong in one hemisphere and 3 prongs
in the other.

A conventional lepton which decayed into a massless neutrino
(plus énything) would contribute to R at SPEAR but would not contribute
to R at PETRA because of the visible-energy cut. Because of the presence
of additional decay channels (cs and vt), the 2-prong signal would occur
approximately 50% as often as for tv. This appears to be slightly more
than allowed by the data of Ref. 24, but this and the "1 prong+ 3 prongs"
mode should be subjected to further experimental scrutiny. If the new

heavy lepton decays instead into a massive (~2 GeV) stable neutrino,

then the 1+ 3 prong mode would decrease and the 2-prong mode would be
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similar to that for t. However, the two prongs would each have very
1little energy (~2 GeV) and some experiments might exclude such events.
A lepton which decays into massive, stable neutrinos would contribute
to R at SPEAR but not at PETRA. If the massive neutrino were not
stable, then conclusions depend on the decay modes assumed. If the
dominant decay was to T (plus anything) then few 2-prong or 1+ 3 prong
events might appear. However, there would probably be a significant
contribution to R at PETRA. Depending on visible-energy cuts (and other
cuts) there could be more or less than half a unit of R (see Fig. 9).
One could also consider more exotic decay modes of the charged and
neutral leptons.

One might also speculate on the existence of new spin 1/2 leptons
of fractional charge (we use the work "lepton" to indicate the absence
of strong interactions). A lepton of charge 2/3 and méés 3 GeV, or
a degenerate multiplet of charge -1/3 leptons, would give almost the
same excellent fit as in Fig. 12. These new leptons must be short-lived.
Long-lived particles of charge 2/3 would have been identified as
fractipnally—charged particles by the Mark I and other detectors.
Long-lived particles of charge -1/3 would most likely escape detection
at all present detectors, and therefore would not contribute to R. If,
however, leptons_of charge 2/3 or -1/3 decayed into a charge -1/3 lepton
(of mass 1-2 GeV?) plus integrally-charged particles, theﬁ the events
would contribute to R and the outgoing charge -1/3 lepton would most
likely escape detection. We conclude from our discussions with experi-

mentalists that while it is dubious that any present accelerator
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experiment would observe leptons of charge -~1/3, experiments such as
FQS (at PEP), JADE (at PETRA) and Crystal Ball (at SPEAR) should be
kable‘Lo find such a particle within half a year (if it exists).

A necessary consequence of this proposal is that at least one of
the final products must be a stable, fractionally-charged particle
which should be found free in nature. One experiment has reported
observing fractionally-charged particles residing in matter,25 but
nothing is known about their masses or interactionms.

Let us return to the possibility that the resonances associated
with a new quark are not observed because they are quite wide. There
are a number of speculative mechanisms which might broaden otherwise
narrow resonances. One could, for example, imagine that these new
quarks are subject to some new, very strong interactions. One could
also consider the possibility that these quarks transform according to
some larger representation of the color group than the three (possibly
with some new charge assignment). The existence of such quarks has been
suggested before in other contexts. In particular, the possibility
that these quarks transform as sixes (quixes) have been considered
by several authors.2® These authors considered the possible weak
interactions of such particles, and explained why they might have
escaped detection in stable particle searches. While others have not
considered quixe; in our context, quixes could be relevant since a
charge -1/3 quix would contribute 2/3 units of R. This is near the
upper limit of what one could tolerate to explain the data. However,

the widths of the associated resonances would be only about fifty

times larger than those of ordinary heavy quarks, which is not broad
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enough to hide them from narrow resonance searches. One can consider
kothe{ﬁrepresentation and charge assignmments, but these usually suffer
from similar problems and in any case are aesthetically unpleasing.
Another possible explanation for the apparent rise in R is that
pairs of charged scalar (Higgs) bosons?’ are produced. This produc-
tion would contribute 1/4 units of R far above threshold. However,
near threshold, this contribution would rise quite slowly with s
compared with quark production. e+e— annihilation occurs through a
spin-1 channel and, as a result, scalars must emerge in a P-wave.
Fermions, on the other hand, may be produced in an S-wave. As a

result, scalar production near threshold is suppressed by a factor of

v (v

1]

velocity, Eq. (2.9)) relative to quark production. While scalar
bosons might account for the magnitude of the discrepancy in R, they
cannot explain the apparent threshold visible iﬁ Fig., 11 near Vs = 5.5
GeV. Since one scalar boson gives a very small contribution, we have
assumed in Fig. 15 that there are two scalar bosons of mass= 2 GeV.

Such bosons would probably be difficult to observe.

Other possibilities are even more speculative. One might imagine
that the charm quark has some structure on a scale of a few GeV, and
that its production should be described by a form factor. This seems
unlikely, since we have no evidence that e, W and T leptons or u, d and
s quarks possess structure at such scales. Nonetheless, one can fit
the data in this fashion. One could assume that the form factor occurs
because the charm quark is composite with constituent masses of order
3 GeV. There are at least three new parameters (the scale of the form

factor, the mass of the constituents and the magnitude of their
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contribution) so it is very easy to obtain excellent fits as in Fig. 16.
Given the number of parameters, however, the quality of the fit does
not provide motivation for this hypothesis.

As we have remarked before, the data do not necessarily require
hypotheses of the type we have described, because of the large
systematic uncertainties. Moreover, none of the ideas we have consid-
ered seem particularly attractive. Nonetheless we feel it is worth-

while to keep in mind that there remains the possibility that new

phenomena exist at what are now referred to as "low energies".

VI. CONCLUSIONS

In the previous sections, we have compared theory and experiment
in e+e— annihilation. We have noted that there may be a discrepancy
between the predictions of QCD and the values of R determined by the
SLAC-LBL collaboration. A variety of explanations for this apparent
discrepancy have been considered. Unfortunately, none of the explan-
ations which we have proposed seem particularly appealing. As we
conclude, it is perhaps worthwhile to review the uncertainties which
enter into the theoretical determination of R, and to present them in
tabular form.

These uncertainties fall into three classes. First, the numerical
parameters which enter into QCD calculations (coupling constant, masses)
are only approximately known. Second, the magnitude of higher-order,
uncalculated QCD (and QED) corrections are unknown. Finally, one must

worry about possible non-perturbative effects.
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The numerical quantities which parametrize QCD are the scale

parameter, A, which characterizes the running coupling constant, ags
and the quark masses, mq. Much effort has been devoted to extracting
A from deep-inelastic scattering data. As in the case of e+e_ annihi-
lation, theoretical contributions through second order in a, must be
kept, and (in comparisons) one must use the same renormalization
scheme as for e+e_ (here the MS scheme of Bardeen et al.?). However,
there are uncertainties (beyond experimental ones) in the value of A,
since this value is dependent on the method of extraction and on the
possible presence of significant higher-twist corrections.® As a

result (if we are very conservative), A may not be known to better

than * 200 MeV (with A probably less than 400 MeV). This uncertainty
in A leads to an uncertainty in R of about 27 for /s = 5-7 GeV.
Precision deep-inelastic scattering experimentsbnow in pfogress will
decrease the uncertainty somewhat.

This uncertainty is quite small compared to the systematic errors
of typical experiments which measure R (10-15%). Thus it is unlikely
that even greatly improved e+e— measurements will give a better deter-
mination of A than that provided by current deep-inelastic scattering
experiments. However, such experiments can hope to measure deviations
from scaling. Ibe difference between the parton model and QCD predic-
tions are of order 10% in the energy range considered in this paper.

Uncertainties in the numerical values of quark masses are impor-
tant only for energies near quark thresholds. For the energy region
considered in our analysis, only uncertainties in the charmed-quark

mass are important. The mass itself is quite accurately determined
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by matching the energy of the theoretical rise in R due to production
of charmed quark with the experimental rise. In this paper we have
used an on-shell definition of the quark mass. This mass was deter-

mined by matching the threshold behaviour of the theoretical and

experimental curves for R(A,s). The uncertainty in the value of the
charmed quark mass obtained in this way was of order 57%. While the

corresponding uncertainty in R may be as large as 107% near threshold
(Vs ¥ 3 GeV) it is less than 0.1% for Vs > 4.1 GeV.

The expectation for the theoretical value for R is, of course,
subject to uncertainties due to the perturbative contributions of
higher order which have not been calculated. These can arise from
both QCD and QED. The QCD calculations are naturally divided into two
distinct energy regions: energies far from quark thresholds, and ener-
gies within 1~ 2 GeV of a new quark threshold.

Near a quark threshold, we have argued the appropriate expansion
parameter is roughly aS(A), where A is the smearing parameter. Since
mass corrections have only been calculated through order ag, we expect

uncalculated perturbative contributions to be of order 3(aS(A))2Q%,

i
where Qi is the charge of the 'new" quark. For the charmed quark and
values of A of order 5 GeVZ, this number is of order 0.2, or about 5%
of R very near threshold.

Away from quark thresholds, we expect the theoretical-calculation
to err by an amount of order az(s). In processes in the time~like

region, one frequently finds larger corrections. In Drell-Yan proceses,

for example, second order corrections are comparable in magnitude to
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the first order corrections. have

Moorhouse, Pennington and Ross
studied this problem in e+e— annihilation. The corrections which they
considered can be included by carefully taking the discontinuity of
the renormalization-group-improved expression for as(—qz). At 5 GeV
they are of order 17, and tend to decrease the value of R. We expect
the sum total of effects in order az(s) to be 1-27%.

QED corrections of order (a/ﬂ)z which have not yet been calculated
will give contributions to R which are small compared to the second-
order QCD contribution. We expect these corrections to make at most
a 0.27% contribution to R.

Among the uncertainties which arise from non-perturbative effects
are those due to thresholds for new, exclusive channels. For example,
one may well ask whether the rise in R near /§~= 5.5- 6 GeV might be
due to a threshold for the production of charmea baryoné. We believe
this explanation is implausible since this rise begins at an energy
well above the threshold for production of charmed baryons. The
measured rise of charmed-baryon production3? begins at Vs R 4.5 GeV
and levels off at about Vs = 5.1 GeV. The more general question of
whether, far from the threshold for the production of a new species
of quarks, the opening of new exclusive channels affects R signifi-
cantly can only be answered by considering the concept of local
duality. We address this question below.

It is quite reasonable to think that we can calculate quantities
such as H(qz) in the deep Euclidean region. Quantities relating to

the time-like region, on the other hand, involve inherently non-

perturbative phenomena. We have at best a limited understanding of
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the manner in which quarks "evolve'" into observed hadrons. The com~
parison of the unsmeared R with data away from resonance regions
-reliee on the hope that these non-perturbative effects are soft,

and have little effect on the total cross section.

In applying smearing techniques or dispersion relations, however,
we are relying on much weaker assumptions. Essentially, all we are
assuming is that H(qz) is a smooth function away from the real,
positive q2 axis. The smoothness assumption is almost equivalent to
the assumption of local duality. Consider, for example, the heavy-
quark resonance regions. If the cross section is smeared over an
interval A much larger than the spacing and widths of the resonances,
we expect that the result should be insensitive to the detailed
resonant structure. This will certainly be true, as we say in the
discussion of Section IT.B, if H(qz) is sufficiently smqoth at a
distance A from the real axis.

The arguments of Section II.B also require that H(qz) behave
sufficiently well at infinity that the relevant integral converge.
0f course, at high energies H(qz) is determined by unknown physics,
but it would be surprising if the high-energy behavior were so bad
as to destroy the smearing arguments.

Some notion of the validity of the smearing arguments can be
obtained by comparing the results obtained from theory and experiment
with different smearing functions. This tests the "smoothness"
hypothesis implicit in the smearing procedure, as well as the impor-
tance of unmeasured high-energy data to the comparison of theory and
experiment. It is particularly useful to compare the power-law type

smearing with the exponential smearing we have proposed in this paper.
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The exponential smearing function gives less weight to high-energy
‘behavipr than the power-law smearing functions; in fact, high-energy
behavior cannot significantly alter the results obtained with exponen-
tial weighting. On the other hand, the validity of exponential
weighting requires smoother behavior for H(qz) in the complex plane
than power law weighting. It is reassuring, then, that the difference
between theory and experiment obtained using the smearing function of
Poggio, Quinn and Weinberg18 and the difference obtained with the
Gaussian weight of Eq. (2.16) differ by only about 1% in the entire
energy range. The conclusions were similar with other smearing
functions.

Certain non-perturbative effects can be treated more quantita-
tively. Several authors have considered the effects of operators of
higher twist generated by low-mass quarks and the effecﬁé of instantons.
Instantons appear to give contributions which fall off as very large

31

powers of s. Both of these effects are negligible at high energies.

Near thresholds for production of heavy quarks, additional higher-

twist effects occur3?

associated with the inverse velocity contribu-
tions to R (see Eq. 2.10 and the discussion below it). The resulting
uncertainties can be estimated using the local duality arguments
discussed above. We find that such contributions should be negligible
for energies which are 1-2 GeV above the Vs ® 3 GeV charm fhreshold

and less than 5% very near threshold.

Now we summarize the results of this section in Table T.
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APPENDIX
RENORMALIZATION GROUP FOR H(q?')

‘\H(qz) is not multiplicatively renormalized. Its divergences,
which are associated with the wave function renormalization of the
photon, are cured by subtraction. The renormalization group analysis
of H(qz) is particularly simple if 't Hooft’s minimal subtraction
scheme is used.33 1In this scheme, one first computes the appropriate
Feynman diagrams (Fig. 17) using the dimensional regularization
procedure of 't Hooft and Veltman.3" Here Feynman diagrams are
continued to 4-¢ dimensions, and ultraviolet divergences appear as

poles in e. The bare coupling has dimension

gy ~ me/2 . (A.1)

To keep the renormalized coupling constant dimensionless, one writes

-e/2

where 1 is an arbitrary mass and Zg is an appropriate (dimensionless)

combination of wave function and vertex counterterms. These counter-

terms are chosen to cancel only the poles in €. 1In this appendix the

quark masses m,, are renormalized according to the same prescription.

(The "on-shell" procedure used in the text is discussed briefly at the
end of this section.) Thus for I we have

, N )
2 2 2 - E : n
Ho(q ’gO’mO:E) - U . (A-3)

n

It

2 2 2
m(q",g" ,m ,n)
n=1

Defining

ni-g = -5g+ () (A.4)
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and
= H 3
B Y, = . i (A.5)
we have
" = C (g
[u— B(g) 55ty m—-]H(q g% ,m,m) = [et+(e/2-B(g) —-]Z (A.6)
n=l
X
The left-hand-side is finite, so we obtain
2 3 2 _
[u-g B(g) JH(q 8 ,m,u) = 3g 8 ¢, (g) = D(g) , (A.7)
and
2 g% ()1 = 8(g) ¢ (A.8)
7 '8 “ny1'8 = B(g dg n(g) . .

o8

The second relation just reflects the well-known fact that the
leading divergences in each order are determined in terms of lower
order calculations. It appears explicitly, for example, in the
calculation of Dine and Sapirstein.“

For simplicity we consider massless quarks in the rest of this
section. Equation (A.7) is readily integrated using the running

coupling constant. With n = Qn(—qz/uz) we define
e = 8 . (A.9)

The first two terms on the right-hand side are known, and are

independent of renormalization convention.
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Writing
i B(g) = -8 —33—2 - B, ——g% (A.10)
16m (167°)
we have
By = 3 Cy -3 (41D
B, = %é-ci - %?—CA N, - 2 Cp Ng (A.12)

where CA and CF are the quadratic Casimir operators for the adjoint
and fermion representations, respectively, and Nf is the number of

flavors (for SU(N), CAf=N’ CF==(N2—1)/2N]. Defining as(qz)i(gz(n)/4w) ,

CRIE bn (A.13)

B, Rn(—qz/Az)

one may write, with an appropriate definition of A,

B
ag(@) = o2(aD) (1-af@ = =g’ /A + 06D . (a18)
0

Note that, to determine A, one must keep all terms in a given process
: 2
to order aq- To see this, note under the rescaling A - A' = aA,
0, 2 O 0'.2 - .
as(q ) - o +-(Bo/4ﬂ)£n(a)(as ). In terms of g(t), the solution of

(A.7) is

n
1@ = TEM),q0.m - fD(é(n’)] n' . (A.15)
0

Using well known QED results3® and the results of the second
order calculation, we have

o’ 2, 2.2 6
% Cp 2-+CE.[B4-80/8(L-4D)] (g7/477)" + O(g") (A.16)
b

|

wlr
!

[

c, (g =
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where

v}
Il

0.212 Cp - 0.0506 C, + 0.00579 Ng (A.17)

o
il

0.0564 (A.18)

and L reflects the freedom to make finite renormalizations of the
coupling constant. In particular, the ﬁg'scheme, due to Bardeen et al.,2
tends to yield small results for higher order corrections, and is

defined by

L = (&n 4m-v)/2 (A.19)

where y is Euler's constant. Tt is now a straightforward matter to
evaluate the right-hand side of Eq. (A.15). The result can be used
as input for dispersive analyses. Taking its discontinuity to obtain
R gives Eq. (2.1) for large s.

For including finite mass effects in first order in @, an
"on-shell" definition of the quark mass is convenient. Such a scheme
is discussed, for example, by De RdGjula and Georgi.!* 1In this scheme,
the B-function and the running coupling constant depend on the quark
masses. Such a definition is used in the text when effects of the charmed

quark mass are- included.
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TABLE T

Estimates of the Uncertainties in the Theoretical Calculation of R?

Magnitude of Uncertainties
Source /s = 3-5GeV| Vs 2 5 GeV
Uncertainty in value of A 47 27
107 P
Uncertainty in value of m < 0.1%
c o C
0.1%
QCD effects beyond the calculated order d 5% 1%
Higher-order QED effects 0.27% 0.27%
Uncertainty inherent in the smearing
1% 1%
technique

a e .
More specific remarks appear in the text.

b Magnitude of uncertainty forv/s ® 3 GeV.
N Magnitude of uncertainty forvs > 4.1 GeV.

This item encompasses non-perturbative corrections, higher-twist
effects, running-mass effects, etc.
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FIGURE CAPTIONS

1. _Feynman diagram for heavy quark production which diverges as 1/v
near threshold. Wavy lines represent photons; spiral lines

represent gluons.
2. Integration contour C for Eq. (2.19).

3. Integration contour C' for R(s). A is chosen sufficiently large

that T(s) may be evaluated along C' using perturbation theory.

4, Vacuum polarization insertion to the virtual photon line.

5. Electron loop contribution to vacuum polarization.
6. Born contribution to the annihilation cross section.
7. Diagrams contributing to the Bhabha cross section-involving

vacuum polarization loops.

8. Data for R from the SLAC-LBL collaboration (Ref. 7). In our
work we used smaller bins in the resonance region. The contribu-
tion of the t has been subtracted, and radiative corrections have
been applied. Only statistical errors are shown. The locations
of J/Y and ¢' have been indicated, since they are included in

determining the charm threshold. The curve is the QCD prediction

for R with A= 0.45 GeV (see discussion of QED corrections in text).
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11.

46—

All data (Refs. 7 and 8) for R above the charm resonance region

ire shown. The contribution of T has been subtracted, and radiative
corrections have been applied. Error bars are statistical only and
neglect 10-15% systematic uncertainties. Data around Vs = 30 GeV
are placed together in large bins as are all Mark I data. The
resonance region is drawn crudely, and some data below that region
are also shown. The location of J/¢, ¢', T and T' are also shown,
since they determine ¢ and b thresholds. The QCD calculations for

R for several values of A are given. A= 0 indicates the results

of the quark-parton model (as= 0).

A comparison of the results of smearing theoretical and experimental
values of R using two different weighting functions. In both cases
A=5 GeV2 and A=0.45 GeV (for the QCD curves). The SLAC~LBL

(Mark I) data are from Ref. 7. In the resonance region the data
bins are too close together to show individually, so we have shaded
them instead. (a) uses the Gaussian weighting function, Eq. (4.6).
(b) uses the power-law weighting function, Eq. (4.5), of Poggio,

Quinn and Weinberg.18

The results of smearing the theoretical and experimental values of

. 2
R with the Gaussian weighting function of Eq. (4.6) with A=5 GeV .

The SLAC-LBL (Mark I) data used are from Ref. 7. In the resonance
region the data bins are too close together so show individually,
so we have shaded them instead. The error bars shown are

statistical only. The curves are QCD for several values of A.

A=0 indicates the quark-parton model (as= 0).
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13.

14.

15.

16.

17.

47—

The results of smearing the theoretical and experimental values
of R as in Fig. 11. The theory curve represents QCD when a

hypothetical charge -1/3 quark of mass 3 GeV is included

(A=0.45 GeV).

The slopes (dR/d¥s) of the A=0.45 GeV curves for R in Figs. 11
and 12. The data are represented by the dotted curve (where error
bars have been omitted for clarity). The OCD curves are shown

with and without the hypothetical charge ~1/3 quark of mass 3 GeV.

A comparison of theoretical and experimental values of R as in
Fig. 8. The theoretical curve represents QCD when the full
contribution of a hypothetical lepton of integer charge and mass
2.85 GeV is included (A= 0.45 GeV). It is not necessary to smooth
R at high energies since the lepton does not have QCD corrections;

the smoothed R plot closely resembles this plot for Vs > 5 GeV.

The results of smearing the theoretical and experimental values
of R as in Fig. 11. The theory curve represents QCD when two
hypothetical charged Higgs bosons of mass 2 GeV are included

(A= 0.45 GeV).

The results of smearing the theoretical and experimental values
of R as in Fig. 11. The theory curve represents QCD when
hypothetical form-factor and constituents are assigned to the

charm quark (A= 0.45 GeV).

Diagrams contributing to Huv: (a) lowest-order term (quark-
model result), (b) order g2 corrections and (c) examples of

4 .
order g corrections.
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