African Journal Of Mathematical Physics Vol 1 No 2 (2004)165-169

Sp(0) and Orientifolds

Karl Landsteiner

Insitituto de Fisica Teorica, C-XVI Universidad Autonoma de Madrid, 28049 Madrid,Spain.

Abstract

I discuss the geometric engineering perspective of the solution to the discrepancy between
matrix model and field theory effective superpotential in the case of None gauge theories
with matter in the antisymmetric representation.

I. INTRODUCTION

In a series of important papers Dijkgraaf and
Vafa'! formulated the conjecture that the exact ef-
fective Superpotential of a confining N = 1 su-
persymmetric gauge theory can be computed with
the help of a simple matrix model. Much work
has been devoted to apply this conjecture to the-
ories with varying gauge groups and matter con-
tent. A rather puzzling result has been reported
by Kraus and Shigemori in?. The authors investi-
gated theories with orthogonal or symplectic gauge
group and chiral matter multiplets in two index
tensor representations. In the case of Sp(N) gauge
groups and matter in the antisymmetric represen-
tation they found that matrix-model computation
did not reproduce the known results for low rank
gauge groups and simple superpotentials.

Their calculation was a perturbative evaluation
of the matrix-model partition function and this
lead to the impression that maybe some important
non-perturbative effects are missed. In two inde-
pendent papers® and? the large N expansions of
the matrix models were therefore compared with
the Konishi-anomaly constraints of the field the-
ory. Rather than showing a discrepancy a perfect
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match was found therefore even deepening the puz-
zle.

However, a solution could be found by Cachazo
in®. The main ingredient of his solution was em-
bedding the Sp(N) theory in a theory with uni-
tary gauge group. The embedding was such that
Sp(N) theory with tree-level superpotential of de-
gree n was embedded into a theory with unitary
gauge group U(N + 2n) and adjoint matter. In
particular this implied that the unbroken vacuum
with Sp(N) gauge group is embedded into a broken
vacuum of the unitary theory with braking pattern
U(N +2n) - U(N +2) ® U(2)"~!. This unex-
pected appearance of U(2)" ! has lead to the the
notion of “Sp(0)” gauge group factors.

In this talk T will discuss how the specifics of
the embedding, in particular the appearance of the
Sp(0) gauge group factors, can be understood as
orientifold effects in the geometric engineering of

the gauge theoriesS.

II. REVIEW OF THE DISCREPANCY

Following Dijkgraaf and Vafa one expects that
the exact effective superpotential of a confining
N = 1 supersymmetric gauge theory can be com-
puted using a matrix model whose action is given
by the tree-level superpotential of the gauge the-
ory. The partition function of the matrix model is
given by
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where |G| denotes the volume of the gauge group
and
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k+1
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W(z)=>) (2.2)

is the tree level superpotential of the gauge theory.
In a semiclassical large expansion we set

Si = K; (2.3)
which in field theory are interpreted as the gaug-
ino bilinears of the gauge group factors of the
breaking pattern Sp(N) — [], Sp(V;)induced by
a vev of an antisymmetric representation. S; =

—ﬁWi‘lWa,i. From the matrix model free en-

ergy
F(S) = —k*log(Z) (2.4)

we obtain the effective superpotential according

tol 77

OF:(S)
9S;

+ Fs + 4Fﬂ2 + 78. (2.5)

Werr = Z N;

To be specific let us look to the example of the
Sp(N) theory with cubic superpotential
m., 9,3
ree — o 59 - 2.
Wi 5 o+ 3¢ (2.6)
The field ¢ is transforming under the antisymmet-

ric representation, more precisely we have ¢.I =
I.¢" such that A = ¢.I is antisymmetric

(-4 )

Gauge transformations are ¢ — UgU' and leave
I invariant. Performing the matrix model calcu-
lation in the unbroken phase with Sp(NN) gauge
group perturbatively around (A) = zy.I leads to
the result?:

0
—1ny2

In/2
0

2.7)

Wyy = (N+2)S [1 —log (%3)] (2.8)
wpert — (3 — N)aS? + (53—9 - ?N) a?S3
+ (197— %N) adst...
where a = 9—23. Here Wyy is the Veneziano-

Yankielowicz part of the superpotential and has
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to be added by hand. Alternatively it can be de-
rived from the measure part of the Matrix model

integral'. The exact superpotential is supposed to
be

Wezact = Wy.y. + Wﬁﬁg , (29)
setting
6Wezact
= 2.1
55 0 (2.10)

and eliminating S in terms of A and choosing the
low rank gauge group Sp(4).
352

A28 + ...
o7 o’ +

Wm (A, @) = 3A% — ASa — A%? —
(2.11)

For some simple superpotentials and low rank
gauge groups pure field theory considerations
based on holomorphicity of the superpotential have
however lead to®
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— A3+ ..
o7 a” +

Wyi(A, @) = 3A3 — ASa — 2A%% —

(2.12)

I1I. KONISHI ANOMALIES AND LOOP
EQUATIONS

It is by now well known that generalized Konishi
anomalies in field theory can be mapped in a one
to one manner to the large expansion of the exact
matrix model loop equations®. Since this is based
on Ward-identities such a comparison between ma-
trix model and field theory is non-perturbative in
nature.

In the chiral ring the Konishi anomalies take the
form

ow

6@[@ =

1 %, k9(6%k)
3221 % 9%,

(3.1)

where §¢ is a holomorphic field transformation
and ¢ the superfield-strength. Capital indices de-
note a bases of the Representation of ¢. Choosing

1 2

1
N 32722 —¢

z2—¢ "’
leads to Ward identities for the generating func-
tions of the chiral correlators (¢¥) and (2¢*):

oo

56 = (3.2)

1 00\ wan 1
SRE) = WRE) + 51(2)

T(2)R(z) = W'(2)T(2) + 2R/ (2) + c(z)
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where f(z) and ¢(z) are polynomials of order n —
1 and R(2) = 2)a.ndT(z):(l).

1
3272 \z—¢ z—
Setting u = R — W' they can be solved in terms of
the hyperelliptic Riemann surface

u? = (W'(2)* + f(2)

The period integrals of R determine the gaugino
condensates and the period integrals of T'(z) the
ranks of the gauge group factors.

f ra= . 4 70

i

(3.3)

- N, (3.4)

The loop equations for the matrix model can be
obtained from the Ward identity
01
2 w0

Ja(Gmemo) =0

Introducing the matrix model resolvent w(z)

(3.5)

K (Zi‘ﬁ) they read
<%w(z)2 - %n‘w'(z) W (2)w(z) — %f(z)> —0

(3.6)

In the large expansion (w(2)) = wo(z) + Zw1(2) +
... we note that the loop equations reproduce the
Konishi anomalies of the field theories if we iden-
tify wo(z) = R(2) and 3, N; 2242 + 4oy (2)
T(z). Since (w(z)) determines the free energy
of the matrix model and T'(z) the superpoten-
tial it also follows from these identifications that
Wesr = >; Ni 85"5(? + 4F; up to a piece that is
independent of the tree-level couplings ty.

Although the perturbative calculation in the ma-
trix model shows a clear discrepancy from field
theory the loop equations reproduce the Konishi
anomalies perfectly.

IV. GEOMETRIC ENGINEERING

The puzzle of the discrepancy between the the
field theory results and the matrix model has been
solved by Cachazo in®. His main tool was an em-
bedding of the Sp(N) theory into a theory with
unitary gauge group. We want to give a geometric
engineering explanation of his results. But we can
even do a bit more. We will consider the complete
set of theories with orthogonal or symplectic gauge
groups with two-index matter representations, i.e.
we will consider the two cases

(A) SO(N) + symmetric or
SP(N) + antisymmetric
(B) SO(N) + adjoint or SP(N) + adjoint
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In both cases we can start with the singular A,
fibration in IIB string theory

Xo: zy=(@w—-W'e)(u+W () , (41)

The blow up X can be described as

Blu—W'(2)) = az
a(u+W'(z) = By
(u—W'2)(u+W'(2)) =y

The exceptional divisors are parametrized by the
projective coordinates [, 8] and lie above z = z;
with W'(z;) = 0 and will be denoted by D;.

We will also consider the two holomorphic »-
orientifold actions:

I::A : ([a,ﬂ],z,u,w,y) — ([_ﬂaa]7z7 _u7y7$)
kB : ([aaﬂ]azauaxay) — ([_Baa]a_zaua —y,—ﬂf) )

In the case B we have to demand that W (z) is an
even polynomial. Correspondingly there are then
n = 2m+1 zeros of W'(z) that come in pairs z_;
—z; except for the fixed point 29 = 0. We also note

that k4 acts on each exceptional divisor, whereas
kp acts on Dy but exchanges D; with D_j!
The fixed point loci are 5-Orientifolds:

Oa: z—y=u=2>4+W'(2)?=0, of/f==i
Op= z+y=z2=2+u>=0 , aff==i
where O4 = Oz € and Op = O;e and € keeps track
of the sign of the orientifold charge.

Wrapping D5-branes over the exceptional divisors
we have a realization of the gauge groups:

e=+1 e=-1
kA : HinZI SO(NZ) H?:l SP(NZ)
ki : | SP(No) ® [T/ U(N:) [ SO(No) ® TTE; U(N:)

In case (A) we find the breaking patter of a sym-
metric representation for orthogonal gauge groups
and the breaking pattern of an antisymmetric rep-
resentation for symplectic gauge groups whereas in
case (B) we recognize the breaking pattern that is
induced by a vacuum expectation value of a field
in the adjoint representation.

The geometry with the wrapped branes is sup-
posed to undergo a geometric transition'®. The
gauge dynamics lets the §*’s shrink to zero size and
instead three-cycles (S%) grow. The D5-branes dis-
appear but their original presence is now given by
RR-flux on the $%’s. The geometry is then given
by the deformation of Xg

gy =u’ = W'(2)* = (2) (4.2)
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where f(z) polynomial of order n — 1. Notice
that the right hand side describes a hyperelliptic
Riemann surface of precisely the same form as it
is found in the solution of the Konishi anomalies
(3.3). We chose a basis of three-cycles (A;, B;)
with symplectic intersection number
(Ai, Bj) = 0;5 (4.3)
All the B-cycles are non-compact. Indeed one can
reduce the period integrals on the Calabi-Yau to
period integrals on the Riemann surface (3.3)!!
The effective superpotential of the gauge theory
can then be computed as the flux-superpotential

WeffZ/Q/H—/H/Q (4.4)
Ai B,' Ai Bi
The period Integrals are

/Q=Sz- NREE

/ Q— / H=m1 (4.5)

Such that the flux-superpotential can be written

as
- Tisi)

Let us investigate the relation to the Konishi-
anomalies now and concentrate first on the case
(A). The orientifold plane is given by

+ 1) =

The Riemann surface (3.3) can be extracted by
just setting x = y = 0. Notice that the orientifold
pierces the Riemann surface precisely in the branch
points v = 0!

In3* it was shown that the Konishi-Anomalies
for these gauge theories are

O0F,

5 (4.6)

Wers = Z (N,

2

Op: z=y , 224+W'(2)? (4.7)

| /
SE=WERE+5

W'T =TR — 2R +c. (4.8)

The equation for R can be solved in terms of the
hyperelliptic curve

W'(2)* + f(2)
where R = W' —u. T can be obtained then as
WII

u? = (4.9)

T+9

T:E—Qe
u

- (4.10)

168

African Journal Of Mathematical Physics Vol 1 No 2 (2004)165-169

e

where T = £ with é = ¢ — 2¢W" and ¥ = 26%
¥(z) is precisely the contribution of the orien-
tifold! B
The pair (R, T') satisfies the Konishi anomaly re-
lations of unitary gauge groups with adjoint mat-
ter:
' 1 2 f 17 T ~
Since we have subtracted the orientifold contri-
bution we find that in this unitary theory the flux
numbers are shifted according to

V =?{ T:% T—?{ T =N;—2 (4.11)
Aj Aj Aj

The breaking pattern of the Sp/SO theory is
therefore mapped as

Il 5P0%) _, T
[, s0() ~ T

onto the unitary theory. For a degree n + 1 tree-
level superpotential the unbroken phase of SP(N)
is mapped to a broken phase of U(N + 2n)!

In particular for the cubic superpotential we find
SP(N)®SP(0) = U(N +2)®U(2) There are two
gaugino-condensates S; and S»! Correspondingly
the superpotential should be computed as

SP(

LSOV (4.12)

O0F, OF,

Weff = Nl@S +N265 +4F
OF OF
U Ol'o 0
Wty _(N1+2)6S +(N2+2)632
1 [ OF OF
»fh=3 (as? 652) (4.13)

Even in the perturbative calculation one has to
keep S2 = kg different from zero!

(5.

Indeed the calculation done in this manner for
SP(4) leads to

0
2112

Z()I1

(4=

(4.14)
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Wie(A,0) = 3A° — A% — 20%° — ——A"a® +

(4.15)

which now coincides with the field theory result!
Let us also briefly look to case (B) Here the ori-
entifold is given by
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Op: z=-y , z=0, 22 +u®>—f(0)=0.

(4.16)

The Konishi anomalies for these gauge theories are

1 2
wr=ir_{ | wr-TR+%R+.
2 2 z
(4.17)
again they can be solved by
2 ! ~
R=W'-u , T=S4= [lq] =T+0
u oz | u
(4.18)

Which gives ¥(z) = 2¢1 now!

There is an orientifold contribution only at the cut
around z = 0! R and T fulfill again the Konishi
anomaly relations of a unitary theory and the map
of the breaking patterns is now

SO(Ny)x f[ U(N;

=1

)
- U(No—2) x H (U(N;) x U(N;))
(4.19)

L UM +2) x [ W) x UN)

Jj=1

V. CONCLUSION

We have seen that the solution to the matrix
model puzzle in the case of Sp gauge groups with
antisymmetric matter can be understood easily in
terms of the geometric engineering. The some-
what mysterious “Sp(0)” gauge group factors can
be traced back to flux contributions of the orien-
tifold. Note that in the case of SO theories SO(2)
groups factors are mapped to U(0) factors which
confirms the absence of non-trivial gauge dynamics
in this case.
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