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0.3. ABSTRACT

0.3 Abstract

We use the duality between Schur polynomials and half BPS operators in

order to diagonalize the one loop dilatation operator studied in [1] and [2].

This problem has been studied for operators with R-charge of O(1) and

O(
√
N), corresponding to Kaluza-Klein gravitons and strings respectively.

Due to the complexity of the problem, there has been no prior attempt

to study the problem with R-charge of O(N) corresponding to D-branes

solutions. In this work we study a large N limit where a particular sector

decouples. This sector corresponds to two nearly maximal spherical giant

gravitons.

4



Contents

0.1 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 9

2 String Theory 14

2.1 Particle Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 String Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Nambu-Goto Action . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Polyakov Action . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Fixing a Lightcone Gauge . . . . . . . . . . . . . . . . . . . 23

2.3 Conformal field theories . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 2D Conformal Field Theory . . . . . . . . . . . . . . . . . . 26

2.4 Quantizing the String . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conformally Invariant Field Theory . . . . . . . . . . . . . . . . . 30

2.5.1 Critical Dimension of Superstrings . . . . . . . . . . . . . . 34

2.5.2 Type IIB Superstrings . . . . . . . . . . . . . . . . . . . . . 35

3 Extensions and Implications 36

3.1 Interacting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5



CONTENTS CONTENTS

3.2 Kaluza-Klein reductions . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 D-Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Super Symmetry(SUSY) 45

4.1 Fermions and Spinors . . . . . . . . . . . . . . . . . . . . . . . . . 46
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Chapter 1

Introduction

To date the best description of nature is given by the Standard Model. There

are, however, a number of problems. One of the major problems is that the

theory of the strong interaction (QCD) cannot be solved in the low energy

limit using the existing perturbative methods of Quantum Field Theory.

The coupling of this theory increases as we flow down to lower energy scales.

Perturbation theory is not sensible for strong couplings. The origins of String

Theory were an attempt to solve this problem. It was suggested that quarks

were joined by a string, and as the distance between them grew, the force

of attraction between them would grow, as was observed experimentally.

This string corresponded to a gluon flux tube between these quarks. When a

sufficient amount of energy was gained, the extra energy would result in a new

string being created with a quark on each end. This model explained some

aspects of quark confinement. Nambu and Goto realized that these results

arose from a theory of relativistic strings. Although it was thought that this

model does not explain reality, there is a renewed interest in this particular

approach motivated by the AdS/CFT correspondence [3]. This conjecture
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1 Introduction 10

says that a Superstring Theory on an AdS5 × S5 space is equivalent to an

N = 4 Super-Yang-Mills Theory (SYM) in 3+1 dimensions. There is a hope

that we may, in time, be able to extend this correspondence so that we may

be able to understand a general Yang-Mills Theory in 3+1 dimensions. If

this can be achieved, then we will have found a way of describing QCD in

the low energy limit.

A second major problem with the Standard Model is that it does not

account for Gravity. We do not, as yet, have a consistent falsifiable theory

that unites Quantum Mechanics and Gravity. A major hurdle is the fact that

Newtons gravitational constant (GN) has an inverse mass dimension (~ =

c = 1). We can’t expand the theory perturbatively in powers of GN , since

Quantum Field Theory tells us that such a coupling is not renormalizable.

This means that we do not have a way of quantizing General Relativity.

String Theory is a promising candidate as a theory consistent with both

Quantum Mechanics and General Relativity.

We have seen two good reasons for studying String Theory, but we have

not yet discussed how we would go about formulating such a theory. We

already know how to build a theory of zero dimensional objects (particles).

String Theory replaces these zero dimensional objects with one dimensional

objects (strings), and later we will see that with certain boundary condi-

tions we will be allowed to have various other higher dimensional objects

(D-branes). String Theory starts with this basic premise, and attempts to

solve the dynamics, while keeping the theory consistent. Consistency re-

sults in a number of difficult conceptual issues, such as 26 dimensions (10

for Superstrings). Along with these conceptual difficulties there have been
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a number of promising results, such as predicting General Relativity and

Quantum Field Theory. It is also consistent with the Standard Model at

energies that we can achieve in the laboratory.

These strings are one dimensional, unlike strings that we see in our ev-

eryday world, which have a thickness and are made of a number of more

‘fundamental’ particles. The strings that we will study in String Theory

are fundamental in that they are not composed of other more fundemental

objects, in the way that a proton is reported to be made up of quarks.

When we consider a string that is made up of a number of particles, the

tension of the string changes depending on how far the individual particles

are pulled away from each other. As we stretch the string, the tension of

the string will increase. When we consider this fundamental string, there

are no basic particles that can move relative to each other. This means that

this fundamental string must have a constant tension. Before beginning any

further analysis, should String Theory prove to be correct, we will have a

new fundamental constant of nature. The fundamental constant of Special

Relativity relates lengths and times. The fundamental constant of Quantum

Mechanics related distances and momentums. It is hoped that this new

fundamental constant will relate Gravity (or curvature) with Quantum Field

Theory.

All of this seems very promising, but there are a number of drawbacks to

String Theory. The first is that performing many calculations is extremely

difficult. Secondly there are a number of difficult conceptual problems that

we do not fully understand. A final major problem is that we do not have

many clues as to what is going on from experimental observations. For this
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reason any possible source of insight about String Theory must be taken

seriously.

In this work we study some aspects of the AdS/CFT correspondence.

N = 4 SYM is unlike any physical theory of which we are aware. It is

conformally invariant and super symmetric, but does shed some light on how

to treat gauge theories. Although this duality does not match any physical

theories, it does shed some insight required to understand String Theory

as well as non-perturbative field theory. There is hope that we can extend

this duality to breaking some of the super symmetry of the problem, and

perhaps even the conformal invariance. There has been some progress in

breaking some of the super symmetry by considering deformations of the S5

background. If we can successfully break these symmetries, we may have a

new way of considering QCD.

One of the major tests of this correspondence has been to consider the case

where we hold λ = g2
YMN , fixed and take N → ∞. Here we are considering

an gauge theory with gauge group U(N). We consider the natural extension

to this work. We keep N large, but finite. This leads to a number of new

difficulties. The combinatorial factors associated with correlation functions

grows with N, so that non-planar diagrams are no longer suppressed. This

makes it very difficult to study operators with a large number of fields.

We can probe the correspondence, in this limit, by considering giant gravi-

tons [4]. These giant gravitons non-perturbative objects in string theory

(D3-branes) that would be difficult to study without the duality proposed

by Maldacena. In this report we consider these giant gravitons interact-

ing. According to [3], [5] & [6], the Hamiltonian for this system is given by
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the dilatation operator that is associated with the CFT. We will study the

dilatation operator at one loop.

There are a number of technical difficulties in performing such a cal-

culation. The half BPS states are given as multi trace operators. When

considering a large number of fields in the large N limit, these combinatorial

factors become difficult to work out. Also these multi trace operators are not

always diagonal. We employ methods using Schur polynomials to diagonalize

the two point correlation functions. When considering a particular limit of

these states, we can make progress in solving this problem, since we have a

dynamical decoupling of a subset of all possible operators.

There are three major sections to this dissertation:

• Chapters 2-4 gives a brief description of a number of background tools

required to understand the questions that this work attempts to ask.

• The remainder of the report highlights a number of results that apply

to solving our problem, as well as discussing the solution to the problem

in chapter 7.

• The appendices contain the mathematical tools required to solve this

particular problem.

The work from chapters 7 and 8 as well as appendices B,C,D,E & F is

new, and the results will be reported in a paper that is in preparation.



Chapter 2

String Theory

In this section we will outline the basic idea behind Bosonic String Theory.

We will start with the particle by choosing an action for it. We will then

consider including a “metric” (einbein) into the action as a tool that can be

used to remove the square root from the action. Then we will look at the

Nambu-Goto action and its classical dynamics, followed by the introduction

of the Polyakov action and describing the symmetries thereof. We then

will outline a particularly convenient gauge for considering the conformal

symmetries of the action.

Thereafter we will discuss some aspects of Conformal Field Theory that

will be useful, both for considering the Polyakov action and later when con-

sidering SYM.

We will then consider the path integral quantization of the Polyakov

action, which involves introducing ghost fields.

The section will be concluded by using some of the ideas from Conformal

Field Theory to show that the stress energy tensor is anomalous, but that

in 26 dimensions the ghost fields exactly cancel this anomaly [7], leaving the

14
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quantum theory conformal.

2.1 Particle Theory

Consider a free particle moving in a d+1 dimensional flat spacetime with

signature (-,+,+,...), and an action S0 = −m
∫
dℓ where dℓ is the infinitesimal

proper length of the worldline that the particle will follow. We can write

dℓ =
√
−ds = (−GµνdX

µdXν)1/2. We use G to describe the metric in

spacetime. If we parameterize the particles worldline by Xµ(λ), we can write

the action as:

So = −m
∫
dλ

(
−dX

µ

dλ

dXµ

dλ

)1/2

(2.1)

We have a first obvious symmetry. This action is invariant under the

Poincaré group.

Xµ → Λµ
νX

ν + cµ

This is a global symmetry of the theory.

We also have a reparameterization invariance. λ→ λ′ = f(λ).

dλ→ df

dλ
dλ

(
−dX

µ

dλ

dXµ

dλ

)1/2

→
(
df

dλ

)−1(
−dX

µ

dλ

dXµ

dλ

)1/2

S0 → S0
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This is a local (gauge) symmetry of the theory. Since we have a gauge

symmetry in which parameterization we use, we may as well choose a proper

time parameterization. In what follows we will write dq
dτ

= q̇

δS0 =m

∫
dτ
(
−ẊµẊµ

)−1/2

ẊνδẊν

= m
(
−ẊµẊµ

)−1/2

ẊνδXν

∣∣∣∣
τf

τi

−m

∫
dτδẊν

d

dτ

[(
−ẊµẊµ

)−1/2

Ẋν

]

We usually set the variation at the boundary equal to zero δXν(τf ) =

δXnu(τi) = 0.

When we solve for δS0 = 0, we get the equation of motion Ẍµ = 0.

This simply says that particles move along straight lines, or on a general

background that strings move along geodesic lines.

If we consider a new field g(τ), the action eq.(2.1) can be written as:

S =
1

2

∫
dτ
(
g−1ẊµẊµ − gm2

)
(2.2)

The equation of motion for g is given by:

g2m2 = −ẊµẊµ

Putting this expression back into S, we recover S0, showing that these

actions are classically equivalent. Further, this new action preserves both the

Poincaré invariance, as well as the reparameterization invariance.

Let’s now consider a String action.
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2.2 String Actions

The most important difference between a string and a particle is the fact that

a string can be excited, whereas a particle cannot. When we consider the

standard model, we are forced to define a large number of different particles

(quarks, photons, etc.) It is hoped that with String Theory we will not

have to define multiple different strings, but rather that the particles we are

familiar with will emerge as various quantum modes of this one species of

string. In this sense, String Theory hopes to explain why the standard model

takes the form that it does.

2.2.1 Nambu-Goto Action

The dynamics of a particle was given byXµ(τ), which mapped out a worldline

in spacetime. In the case of a string we now have an extra dimension, with

an extra parameter σ. The dynamics of the string are now given by Xµ(τ, σ).

Just as we started considering the action of particles being the length of the

world lines eq.(2.1), we now consider the action of a string to be the world

area of the string. This is called the Nambu and Goto action. Just as we

have dq
dτ

→ q̇ we also define dq
dσ

→ q′

S0 = −T
∫
dA = −T

∫
dτdσ (− det ∂aX

µ∂bXµ)
1/2 (2.3)

= −T
∫
dτdσ

[(
ẊµX ′

µ

)2

−
(
ẊµẊµ

) (
X ′µX ′

µ

)]1/2

(2.4)

We have introduced a new parameter T , which corresponds to the string

tension. It is often written in terms of α′, which is the Regge slope, or ℓs,

which gives a fundamental length scale.
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T =
1

2πα′ =
1

2πℓ2s
(2.5)

The first thing to notice here is that this action is invariant under repa-

rameterizations. This means that if the length of the string is finite, we can

scale the spacial parameter (σ) to run from 0 → 2π (it can be shown that

the energy of the string is proportional to its length, so any string of finite

energy is a string of finite length). Define L(Ẋ,X ′, τ, σ) by S =
∫
dτdσL.

Let’s consider the classical dynamics of this theory.

δS0 = −
∫
dτdσ

[
∂

∂τ

∂L
∂Ẋµ

+
∂

∂σ

∂L
∂X ′µ

]
δXµ

+

∫
dσ

∂L
∂Ẋµ

δXµ

∣∣∣∣
τf

τi

+

∫
dτ

∂L
∂X ′µ δX

µ

∣∣∣∣
σ=2π

σ=0

The first boundary contribution is set equal to zero as was the case with

the particle.

The second boundary term must also be equal to zero. There are a

number of ways that this can be achieved. The first option is to identify

σ = 0 with σ = 2π. This choice gives us a closed string. The second choice is

to choose Dirichlet boundary conditions (δXµ(τ, 0) = δXµ(τ, 2π) = 0). this

says that the end points of the string are attached to some fixed positions.

Later we will see that this leads to the idea of a higher dimensional object,

on which a string can start and end. This higher dimensional object has it

own dynamics, and is called a D-brane. The final option is to use Neumann

boundary conditions(∂L(τ,0)
∂X′µ = ∂L(τ,2π)

∂X′µ = 0)

Let’s analyze the Neumann boundary conditions more carefully. We know

that the canonical momentum (and in this case the actual momentum as well)
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is defined by:

P µ
τ =

∂L
∂Ẋµ

P µ
σ =

∂L
∂X ′

µ

Our equations of motion are given by:

∂

∂τ
P µ
τ +

∂

∂σ
P µ
σ = 0 and P µ

σ (τ, 0) = P µ
σ (τ, 2π) = 0

We have two different types of momentum in this problem. P µ
σ is the

momentum that is moving along the string. The boundary conditions say

that no momentum is moving off the end point of the string, unless it is a

closed string, in which case momentum can move around the string. The

other type of momentum is the momentum that the string is carrying. The

equation of motion that we see here is a statement about the conservation of

energy and momentum of a free string.

When considering Dirichlet-type boundary conditions, momentum can

move from the string. This does not makes sense unless the momentum from

the string is flowing into another object. This is the first indication that D-

Branes have their own dynamics. Energy (and momentum) can flow between

D-branes and the string connected to them.

2.2.2 Polyakov Action

When considering the dynamics of a particle, we were able to get rid of

the square root inside the action by introducing a new field (eq.(2.2)) in
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such a way that the equations of motion remain unchanged . In a similar

way we introduce the new action, understood by and named after Alexander

Polyakov.

S = −T
2

∫
dσdτ

√−ggab∂aXµ∂bXµ

= −T
2

∫
d2ξ

√−ggabhab (2.6)

Let’s study this equation. First note that the indices here run over a&b

corresponding to τ&σ. We have two different metrics. The metric g = g(τ, σ)

refers to the co-ordinates or parameters on the world sheet. They give the

metric on this 2 dimensional “target space” with d+1 scalar fields labeled

by Xµ. This looks like a 2 dimensional theory of gravity, which we will see

shortly can be quantized (without any anomalies) with 25+1 fields (Xµ). We

then have a separate metric G = G(Xµ), which is the metric of the spacetime

that the theory lives in.

Let’s now consider some of the symmetries of this action.

We clearly have Poincaré invariance.

Xµ → Λµ
νX

ν + cµ

This is a global symmetry of the theory, which we had before.

We also have a reparameterization invariance.

τ → ξ(1)(τ, σ)

σ → ξ(2)(τ, σ)
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From this point on we will use the notation of ξ(1) and ξ(2) instead of σ

and τ . This is a local (gauge) symmetry of the theory.

We also have a new type of symmetry in our theory.

gab → e2ω(ξ(1),ξ(2))gab

This is called conformal (Weyl) symmetry, and is particularly useful in 2

dimensions. We have 2 free parameters (ξ(i)), and 3 components in the most

general metric on our target space. We can therefore use our freedom in (ξ(i))

to set g12 = 0 and g22 = g11, at least locally. With this choice we can write

gab → g11ηµν . This is an important result. In 2 dimensions all metrics are

conformally equivalent to the Minkowski metric, and therefore to any other

metric.

This is not the case for higher dimensional spacetimes. This is the first in-

dication that trying to build a theory of higher dimensional objects is harder

than the theory of either particles or strings, since the metric on the world-

sheet will not have as much freedom.

Let’s now consider the equations of motion of the Polyakov action. First

varying the action with respect to the metric, and using δg = −ggabδgab,
where gab is defined by gabg

bc = δca. We get:

δS = − T

2

∫
d2ξ(−g)1/2δgab

[
hab −

1

2
gabg

cdhcd

]

⇒ hab −
1

2
gabg

cdhcd = 0

⇒ −1

4
det(gab)

[
gcdhcd

]2
= −det(hab)

√
−h =

1

2

√−ggabhab
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If we put this expression back into the Polyakov action we recover the

Nambu-Goto action, showing that these equations are classically equivalent.

At this point we recall a result from General relativity T ab ∝ − 1√−g
δS
δgab

.

Here we define our stress energy tensor in the worldsheet as:

T ab = − 2π√−g
δS

δgab
(2.7)

Since the theory is conformally invarient, the equations of motion force

T ab = 0.

We are now in a position to solve the equations of motion for the Polyakov

action in a particular gauge. We will choose the gauge where gab = ηab.The

equations of motion give:

Ẍµ −X ′′µ =0

ẊµX ′
µ =0

ẊµẊµ +X ′µX ′
µ =0

∫
dτX ′µδXµ

∣∣∣∣
σ=2π

σ=0

=0

An interesting consequence of the above equations of motion for the end-

points of an open string with Neumann boundary condition is that:

Ẋ(τ, 2π)µẊ(τ, 2π)µ = Ẋ(τ, 0)µẊ(τ, 0)µ = 0

This says that the end points of a string with Neumann Boundary con-

ditions are classically moving at the speed of light.
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These equation are surprisingly equivalent to the equations of motion for

the Nambu-Goto action. The simplicity of the equations of motion show the

power of the Polykov action over the Nambu-Goto action. Although it is

possible to quantize the Nambu-Goto action, the inconvenient square roots

make this problem particularly cumbersome. We will consider the Polyakov

action only from here on.

2.2.3 Fixing a Lightcone Gauge

In this section we go about fixing a lightcone gauge, that will be convenient

for later use. We will consider the explicit case where the string is closed, so

as to avoid awkward boundary conditions. Define the quantity −iσ± = τ±σ.

This corresponds to doing two things. Going to a “light-cone” gauge, as well

as Wick rotating the fields. We then fix the following by making this choice.

g+− =
1

2

g+− = 2

∂±σ
± = 1

∂±σ
∓ = 0

The action becomes:

S = −T
∫
dσ+dσ−∂+X

µ∂−Xµ (2.8)

The stress energy tensor is given by:
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T±± = −2πT∂±X
µ∂±Xµ

T±∓ = 0 (2.9)

And the equation of motion is given by:

∂±∂∓X
µ = 0 (2.10)

When we come to studying 2 dimensional conformal theories, we will see

why this particular gauge is so convenient.

2.3 Conformal field theories

We are interested in studying infinitesimal transformations of the form xµ →
x′µ = xµ+ǫ(x)µ, which have the property that g(x)µν → g′(x′)µν = e2ω(x)g(x)µν .

If we consider an infinitesimal transformation, we have:

g′(x′)µν =
∂xα

∂x′µ
∂xβ

∂x′ν
g(x)αβ

=
(
δαµ − ∂µǫ

α
) (
δβν − ∂νǫ

β
)
g(x)αβ

Here we will consider the case where g(x)µν is the flat spacetime metric

ηµν . If we require that the transformation be conformal, after contracting

each side with dx′µdx′ν , we get metric transforms according to:

δgµν ∝− (∂µǫν + ∂νǫµ) (2.11)

2

d
∂ρǫρηµν =∂µǫν + ∂νǫµ
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We contract both sides of eq.(2.11) with ηµν in order to determine the

constant of proportionality, with d being the dimension of the space described

by the metric g. We can now act on the above expression with ∂µ, ∂ν , or ∂2.

After collecting terms, we find:

[
∂µ∂ν(d− 2) + ηµν∂

2
]
∂ρǫρ = 0 (2.12)

Again we can see what is so special about a 1+1 dimensional space,

such as the target space in String Theory. Conformal theories are much

easier to build. We are now in a position to find the form of ǫµ for d > 2.

From the above analysis, we can see that ǫ is at most quadratic in x. The

transformation are given by:

ǫ(x)µ =aµ + ωµνx
ν + λxµ + 2(b · x)xµ − x2bµ (2.13)

We can easily interpret the terms in eq. (2.13). The first is a translation

which has d generators (aµ), the second is a Lorentz transformation with

d(d−1)
2

generators(ωµν ). These two sets of transformations form the Poincaré

group. We then also have a scaling with 1 generator (λ), and finally we

have the “special conformal transformation” (2(b · x)xµ − x2bµ) which has

d generators (bµ). We now have a total of (d+2)(d+1)
2

generators. If we were

considering a space time with 1 temporal component and d-1 spacial compo-

nents, the Lorentz group would be isomorphic to SO(1,d-1). We could show

that the “conformal group” in this space is isomorphic to S0(2,d). We have

shown that at least there are the correct number of generators.

An important thing to note about Conformal field theories (where the
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theory can be mapped into a hyperplane Rn) is there is a one-to-one corre-

spondence between states and local operators. We will use this relation in

order to perform a number of calculations when we consider Giant Gravitons.

2.3.1 2D Conformal Field Theory

A large part of the above analysis does not apply to the case where we have

a 2 dimensional metric. If we work in flat Euclidean space using eq.(2.13)

∂ρǫρδµν =∂µǫν + ∂νǫµ

⇒ ∂1ǫ2 = − ∂2ǫ1

∂1ǫ1 =∂2ǫ2 (2.14)

We can move to the complex plane by defining z, z̄ = x1± ix2. This is the

identical action to that used in fixing the gauge where iσ± = τ ± σ, which

was discussed in section 2.2.3.

Then ǫ, ǭ = ǫ1 ± iǫ2. The above equations then take the form:

∂z ǭ = ∂z̄ǫ = 0 (2.15)

We see that the number of different functions that define a conformal

transformation is infinite. If we consider the generators of conformal trans-

formations, we define ln = −zn+1∂z and l̄m = −z̄m+1∂z̄ as the generators of

the group, we have a Lie group with an infinite number of generators and

the ‘Virasoro’ algebra:

[lm, ln] = (m− n)lm+n

[
l̄m, l̄n

]
= (m− n)l̄m+n

[
lm, l̄n

]
= 0 (2.16)
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We can now pick out a subgroup that can perform this mapping globally.

It turns out that the subgroup that we want to consider is generated by

l±, l0 & l̄±, l̄0. If we make this restriction we can identify the following: l−

generates a translation, l0 generates a scaling, and l+ generates a special

conformal transformation, as we saw in the general case.

Using these generators the restricted conformal transformation is given

by:

z → az + b

cz + d
(2.17)

Although all conformal transformations are allowed in the 2 dimensional

case, it is worth differentiating this sub-group from the rest.

We will return to using the conformal invariance, when we come to quan-

tization, since these conformal transformations are a gauge symmetry of the

theory.

2.4 Quantizing the String

We know from Quantum Field Theory that when we try to quantize a sys-

tem, we usually need to introduce a regulator in order to understand the

divergences. These regulators introduce a parameter that depends on the

scale at which we are studying the theory. When we quantize the string we

generally have to introduce some scale dependence. This scale dependence

breaks the Conformal Symmetry. This is called the Weyl (trace) anomaly.

If we break our conformal invariance, we have somehow introduced a scale

on the parameters τ and σ, which describe the world sheet of the particle.
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This is unphysical and will , in general, lead to inconsistencies. There are

two ways of getting around this problem. We work with a carefully chosen

number of fields (Xµ), or we introduce a new scalar field and modify the ac-

tion. As we will see, if we work in 26 dimensions, the theory retains its scale

invariance. This is called critical String Theory. The other option is working

in any other dimension, introducing a new (Liouville) field, and modifying

the action. We will only consider critical String Theory here.

We will consider the path integral quantization of the Polyakov action.

Since the action is invariant under gauge transformation we will need to use

the Fadeev-Popov method to quantize the system. This involves introducing

ghost fields to the theory. These ghost fields contribute to the energy and

momentum of the theory. The contribution from the ghosts and the contri-

bution from the Weyl anomaly exactly cancel in 26 dimensions, as we will

show shortly. We begin with

Z [Xµ, gab] ∝
∫

DXDgeiSPol[X
µ, gab] (2.18)

We need some sort of gauge fixing condition. We can choose any fiducial

metric ĝ, and use the gauge fixing condition that G = g − ĝ = 0

The most general gauge transformation that we can write leaving the

action invariant is given by:

δgab =∂aξb + ∂bξa + 2Λĝab

=(Pξ)ab + 2Λ̃ĝab

(Pξ)ab = ∂aξb + ∂bξa − (∂cξc)ĝab Λ̃ = Λ + 1
2
∂cξc
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Z ∝
∫

DXDgδ(G)eiSPol

∝
∫

DXDλdet
[
δG

δλ

]
eiSPol

∣∣∣∣
G=0

∝
∫

DXJeiSPol

∣∣∣∣
G=0

(2.19)

Here J is the Fadeev-Poppov determinant.

J−1 =

∫
dΛdγaδ

(
(Pγ)ab + 2Λ̃ĝab

)

=

∫
dΛdγadβabexp

[
2iπ

∫
d2ξ
√
−ĝβab ((Pγ)ab − ∂cγ

cĝab + 2Λĝab)

]

=

∫
dγadβabδ(β

abĝab)exp

[
2iπ

∫
d2ξ
√

−ĝβab ((Pγ)ab − ∂cγ
cĝab)

]

=

∫
dγadβ̂abexp

[
2iπ

∫
d2ξ
√

−ĝβ̂ab(Pγ)ab
]

We can invert J−1 to find J by using Grassmann valued γ&β̂. Introducing

the ghost action with Grassmann valued fields β̂ab and γa, we get:

Sgh =
1

2

∫
d2ξ
√

−ĝβ̂ab(Pγ)ab

=

∫
d2ξ

√−gβ̂ab∂aγb (2.20)

Z ∝
∫

DXDγDβ̂eiSPol+iSgh

∣∣∣∣
G=0

(2.21)

At this point we are free to choose any fiducial metric. We will work in

the gauge that we have already introduced in section 2.2.3. The properties

associated with Sgh are:
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Sgh =

∫
d2ξ
√
ĝβ̂ab∂aγb

=

∫
dzz̄

(
b∂̄c+ b̄∂c̄

)

Here we have used β̂zz = b, β̂ z̄z̄ = b̄ and γz = c, γ z̄ = c̄

The equations of motion are given by:

∂̄c = ∂c̄ = 0

∂̄b = ∂b̄ = 0

And the stress energy tensor is given by:

Tgh =c∂b− 2ab∂c

T̄gh =ac̄∂̄b̄− 2ab̄∂̄c̄

We can see that these are zero when the equations of motion are met.

We now return to arguments relating to conformal field theory in order

to continue the analysis.

2.5 Conformally Invariant Field Theory

A conformally invariant quantum field theory is one, where the conformal

invariance carries through to the quantum theory. This implies that the
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quantum theory must have a vanishing expectation value for the trace over

the stress energy tensor. It turns out that this is not the case for our theory.

The Weyl anomaly spoils this invariance on a curved background. We will

try to fix this anomaly in this section.

If we consider infinitesimal transformations among the parameters of the

theory, we know that we can choose a basis for the local fields such that the

field must transform in some way. We define a “quasi-primary” field as one

which transforms under the restricted conformal transformations (eq.(2.17))

z → z′ =
az + b

cz + d

z̄ → z̄′ =
āz̄ + b̄

c̄z̄ + d̄

as:

Φ(z, z̄) →
(
∂z′

∂x

)h(
∂z̄′

∂z̄

)h̄
Φ(z, z̄) (2.22)

Here we have introduced the numbers h and h̄, which are called the

conformal weights. If a field transforms as above for all conformal trans-

formations, then it is said to be a “primary” field. As we will see shortly,

the stress energy tensor is a quasi-primary field, and does not transform

correctly under the full conformal group. There is an anomalous term that

spoils the full conformal symmetry of the theory. If the stress energy tensor

is only a quasi-primary field, then there are conformal transformations that

will change value of the field. This anomaly spoils the theory.

Consider an infinitesimal transformation z → z′ = z + ǫ(z) and similarly

for z̄. If we consider how the field changes, we get:
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Φ(z, z̄) → (1 + ∂ǫ)h
(
1 + ∂̄ǭ

)h̄
Φ (z + ǫ, z̄ + ǭ)

= (1 + h∂ǫ)
(
1 + h̄∂̄ǭ

) (
1 + ǫ∂ + ǭ∂̄

)
Φ(z, z̄)

⇒ δΦ(z, z̄) =
(
h∂ǫ+ ǫ∂ + h̄∂̄ǭ+ ǭ∂̄

)
Φ(z, z̄) (2.23)

Let’s now consider the stress energy tensor again. Conformal invariance

requires T µµ = 0. The conformal anomaly shows itself at this point. T µµ ∝
R(2), where R(2) is the Ricci scalar on the worldsheet. In our situation we

find that Tzz̄ = Tz̄z = 0, and similarly we find that ∂µTµν = 0 as we found

classically. Since the stress energy tensor must be conserved at the quantum

level, we will enforce these relations while quantizing the field. We promote

the above expression to an operator equation.

We find that ∂T̄ = ∂̄T = 0. Now, since T (z) is conserved so must be

ǫ(z)T (z). We therefore have an infinite number of conserved charges.

Q =
1

2iπ

∮
dzǫ(z)T (z) +

1

2iπ

∮
dz̄ǭ(z̄)T̄ (z̄

We have each of these Q being an operator, Since T is an operator.

The suggestive name ǫ is used because these ǫ are in fact the infinitesimal

transformations of the parameters. Using eq.(2.23), we should find that:

δΦ(z, z̄) = [Q,Φ(z, z̄)]

=
(
h∂ǫ+ ǫ∂ + h̄∂̄ǭ+ ǭ∂̄

)
Φ(z, z̄)

Here we will have the product of operators Q,Φ(z, z̄). When considering

overlaps of operators, we always consider the time ordered product of the



2.5. CONFORMALLY INVARIANT FIELD THEORY 33

operators. In these co-ordinates this corresponds to radial ordered opera-

tors. When writing any operator product from here we imply time (radial)

ordering.

We now set about solving these expressions in terms of each other.

[Q,Φ(z, z̄)] =
1

2iπ

∮
(dwǫ(w)T (w)Φ(z, z̄) + “barred terms”)

= (h∂ǫ+ ǫ∂ + “barred terms”) Φ(z, z̄)

Solving the above expression, we only gain information about terms with

poles in them. The analytic terms give zero contributions when integrated

over. We find that any primary field with conformal weights h&h̄, must obey.

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w
∂Φ(w, w̄) + analytic terms

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄
∂̄Φ(w, w̄) + analytic terms (2.24)

We now have a way of testing whether or not a field is primary.

Using this test, we find that [8]:

T (z)T (y) =
D

2(z − y)4
+

2

(z − w)2
T (z) +

1

z − w
∂T (z) + analytic terms

We get a similar expression for the barred terms. We see that there is an

anomalous term in this theory, but at this point we have not included the

contribution from the ghost fields [8].
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Tgh(z)Tgh(y) =
−13

(z − y)4
+

2

(z − w)2
Tgh(z) +

1

z − w
∂Tgh(z) + analytic terms

Therefore, the anomaly from the ghost fields exactly cancels the Weyl

anomaly if we choose D = 26. This theory naturally predicts the dimension

in which it should live. This is the first surprising yet elegant prediction of

String Theory. It is a theory that makes a prediction about the spacetime

in which it can live. All physics of the Standard Model is assumed to live in

3+1 dimensions. This is a potential stumbling block of String Theory, but

as we will see shortly if some of these dimensions are compact, this problem

need not be a factor that ruins String Theory, but potentially allows for

experimental tests.

2.5.1 Critical Dimension of Superstrings

When we consider Superstrings, we are forced to introduce new ghost fields

which are associated with fermionic fields (dimensions). We will therefore

get a contribution that looks like 11
2
, which combines with the other ghost

fields to give a central charge of −26 + 11 + D∗. Here I use D∗, because

we no longer consider D bosonic fields, but rather D bosonic fields together

with D fermionic fields. This gives D∗ = 3
2
D. Therefore when considering

Superstrings we find the critical dimension is D = 10.
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2.5.2 Type IIB Superstrings

Later when we consider the AdS/CFT correspondence (5.1), we will look at

the particular situation where N = 4 SYM theory is dual to type IIB String

Theory on an AdS5 × S5 background.

Type IIB Superstrings are closed strings (with chiral boundary condition

[9]), together with open strings with Dirichlet boundary conditions. This

naturally implies the existence of Dp-branes. These branes are stable for

p ∈ {1, 3, 5, 7, 9}.



Chapter 3

Extensions and Implications

In this section we will briefly discuss some of the extensions and implications

of String Theory. The Polykov action as we have written it is not particularly

interesting. It is only when we consider the different ways in which these

strings can interact, that we see the richness of String Theory. We will

mention a few extensions to what we have already seen. Although we discuss

these aspects with the bosonic string in mind, these ideas naturally extend

to Superstrings.

We will start by considering the most general action that retains the

symmetries of the Polyakov action and interpret the different fields that

emerge, and briefly discuss the significance of each new field. We will then

discuss compact dimensions, and the implications of them. This will include

an outline of a Kaluza Klein type reduction. Then T-duality (specifically

for a circle) will be brielfy discussed, leading to the introduction of an open

string with Dirichlet boundary conditions as a dual theory to an open string

with Neumann boundary conditions. We then introduce the Dp-Brane as a

necessary consequence of Dirichlet boundary conditions.

36
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3.1 Interacting Models

We have developed the basic tools needed to understand the Polyakov action.

We will now try to discuss some of the extensions that can be made to the

Polyakov action, which may reflect some interesting physics. It turns out

that the most general second derivative co-ordinate invariant action that we

can write down for bosonic strings on with a Euclidean signature rather than

a Minkowski signature is given by [10]:

S =
1

8π

∫
d2ξ
{(√

ggabG(X)µν + iǫabB(X)µν
)
∇aX

µ∇bX
ν + 2

√
gR(2)Φ(X)

}

(3.1)

We could have included a surface term, which is important when consid-

ering String Theory, since the boundary condition for strings can be fairly

complicated.

These fields allow for a fairly natural interpretation, and all three survive

in all String Theories, and thus are worth taking some time to understand.

Gµν is a symmetric spin 2 field. Arguments by Feynman and Weinberg

state that any theory with a massless interacting spin 2 field must be a

gravitational theory. We interpret this as the metric of the spacetime, or

a graviton, where the metric of spacetime is a superposition of a number

of gravitons. This is analogous to the electric field being a superposition

of photons in Quantum Field Theory. With this model we see that String

Theory really is a quantum theory of Gravity.

Bµν is the string analogue of the (non-)abelian gauge fields with which we

are familiar from Quantum Field Theory. It is called the Kalb-Ramond field,

and is determined by background on which a string propagates. In order to



3.1. INTERACTING MODELS 38

understand this field let’s consider a particle moving along a world line, in

the presence of an electromagnetic potential.

S = −m
∫
dℓ→ −m

∫
dℓ+

∫
dxµAµ(x)

Similarly introducing a Kalb-Ramond field into a String Theory corre-

sponds to adding a term (
∫
dxµ ∧ dxνBµν)to the action. This amounts to

adding a 2-form to the action. When considering Dp-Branes, we need to

introduce a p-form to play the role of the gauge fields in the theory. We will

see this when we discuss Giant Gravitons.

The final scalar particle (Φ) is the dilaton. This particle is extremely in-

teresting in terms of the hierarchy problem. In the Standard Model, we make

a list of all fundamental particles, and consider all possible interactions (in-

cluding mass). We then go into a laboratory and measure these parameters.

There is no well established theoretical argument for why these parameters

take in the values that they do. In String Theory this is no longer the case.

The last term in the action contains no local dynamics, but is related to the

topology of the string world sheet. If, for example, the endpoints of a string

join, then the topology changes as we have a new handle. This changes the

contribution from the last term, thereby setting the interaction strength of

the process. In this way String Theory couplings are predicted, whereas par-

ticle couplings are fixed. This in some sense gives us an idea as to how to fix

the Hierarchy problem.

gs ∼ e〈Φ〉 (3.2)
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3.2 Kaluza-Klein reductions

We have already seen a great number of good ideas as to why String The-

ory may be a physical description of nature, but a large conceptual problem

is that consistency requires the theory to live in 26 dimensions (10 for the

Superstring). Further, when quantizing String Theory, we quantize space-

time, since each dimension corresponded to a field. Space time co-ordinates

will now experience some sort of spacetime uncertainty. We have blurred our

spacetime. Worse than that, when we consider the Supersting some of the di-

mensions are fermionic. String Theory naturally predicts a non-commutative

spacetime.

As we will see, changing the topology of these extra dimensions can result

in them being very hard to detect. The idea is that if some of the dimensions

are compact, then at the low energies at which we can perform experiments,

these dimensions can’t be detected. When we consider a particle in a box (of

size R) from quantum mechanics, the eigen-energiesEn ∝ n2

R2 . The interesting

thing to note is that the energy levels become very widely spaced as the

size of the box decreases. So, if we were to consider an extremely small

spherical dimension, the energy difference between the ground state and the

first excited state of a quantum system will be very far away from each other,

whereas the energy levels of the large dimensions that we perceive have energy

levels fairly close together. Therefore for low energy phenomena, we can’t

detect these small extra dimensions. It is hoped that for certain high energy

experiments, we may detect some energy leaking into some excited states in

these compact dimensions as a test of String Theory.

We will briefly discuss the idea of Kaluza, later modified by Klein. It was
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thought that Gravity and Electromagnetism could be unified into a single

theory. Kaluza suggested that instead of considering a 3+1 dimensional

space, we consider a 4+1 dimensional space. Since some of the components of

the metric transform in a specific way, we recover Maxwell’s equations as well

as General Relativity. Later Klein interpreted these special transformations

as being related to translations on a circle. We will briefly outline their

ideas here. In what follows µ ∈ {0, 1, 2, 3, 4} and µ̂ ∈ {0, 1, 2, 3}. with the

co-ordinate transforms xµ → x′µ = xµ + ǫµ

Gµν → G′
µν = Gµν − ∂µǫν − ∂νǫµ

If we consider a special class of transformation ǫ4(x̂) and ǫµ̂ = 0, which

corresponds to rotating the compact dimension, then we find that Gµ̂ν̂ and

G44 are invariant, while Gµ̂4 transforms as:

Gµ̂4 → G′
µ̂4 = Gµ̂4 − ∂µ̂ǫ4

We should note that this theory need not depend on x4. We should also

recognize the transformation law. This looks like the transformation law for

the photon. The metric can be decomposed as [8]:

ds2 = Gµνdx
µdxν = Gµ̂ν̂dx

µ̂dxν̂ +G44

(
dx4 + Aµ̂dx

µ̂
)2

If we write without loss of generality G44 = e2Φ, the Einstein Hilbert

action becomes [8]:
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S =
1

16πG
(5)
N

∫
d5x
√
−G(5)R(5)

=
1

16πG
(4)
N

∫
d4x
√
−G(4)

(
R(4) − 3

2
∇µΦ∇µΦ − 1

4
e3ΦFµ̂ν̂F

µ̂ν̂

)
(3.3)

G
(4)
N =

G
(5)
N

2πR

Here we have defined the d dimensional Gravitational constant G
(d)
N .

We notice a few things here. Electrodynamics naturally arises here, as a

result of compactifying the extra dimension. There is an extra field that also

arises from the above compactifications, Φ, which looks like the dilaton, since

it sets the strength of the electromagnetic interaction. The coupling between

the electromagnetic field and gravity is set by a particle that we have seen

emerging from reducing compact dimensions, as well as an extension of the

Polyakov action.

3.3 T-duality

The ideas from Kaluza and Klein can naturally be applied to String Theory.

There is a new feature that we need to take into account when considering

strings though. The strings can “wrap” around these compact dimensions.

Now since the tension in a string is constant, the energy of the string must

be related to the length of the string. Therefore winding a string around a

fairly large compact dimension will have a large amount of energy. Similarly,

momentum excitations of a string in a small compact dimension will also

have a large energy, as already discussed.

Consider a closed string wrapped around a circle. The first thing that we
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must notice is the momentum moving around the circle can now only take

on discrete value, so as to force the wave function to close. p25 = n
R
. The

other thing to notice is that the boundary conditions change. We now require

X25(σ) = X25(σ + 2π) + 2πmR. Here m is just the number of times that

the string has wrapped around the circle. The mass formula for the string is

given by [8]:

M2 =
n2

R2
+
m2R2

α′2 +
2

α′ (N + N̄ − 2)

nm = −(N + N̄)

α′ =
1

2πT

N and N̄ are the momentum excitations moving left and right along the

string.

We can see that a simple interchange m ↔ n and R ↔ α′

R
leaves the

theory invariant. This type of duality is called T-duality.

We know that in general a theory with closed strings must also contain

open strings. When we perform a similar compactification for open strings

with Neumann boundary conditions, we no longer require an integer number

of total windings, since the end points need not be joined. If we consider the

limit that R → 0, it looks as if the theory lives in 1 less spacetime dimension.

It looks as if closed strings live in D dimensions, whereas open strings live in

D-1 dimensions. Now we cannot distinguish between the interior part of an

open string or a closed string. The only things that we can tell the difference

between are the endpoints of the open string, which only live on a D-1 di-

mensional space. This D-1 dimensional hyper surface is a D-Brane. Since we

are considering a theory of gravity, it does not make sense to consider these
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D-Branes as static. These branes should themselves be dynamic objects.

3.4 D-Branes

We have now introduced the higher dimensional dynamical objects called

D-Branes. These D-Branes can also be open or closed. They can also live

in compact dimensions, and so when we look at T-dual theories, we will

again find hyper surfaces on which open Branes can start and end. This

leads naturally to the idea of a Dp-Brane. p+1 is the number of co-ordinates

needed to describe the world volume of the object. We naturally see that a

D0-Brane is a particle since its world line is parameterized by its proper time

alone. A D1-Brane is a string since it is parameterised by proper time and

σ in our description.

Since these D-Branes are dynamical objects in their own right, they must

have their own dynamics. These dynamics must be described by some action.

Just as we took the action of a particle to be the length of the worldline and

the action of a string the world sheet area, we use a worldvolume action for

these higher dimensional object. This action is called the Born-Infeld action.

Sp = −Tp
∫
dp+1ξ

√
− det(∂aXµ∂bXµ) (3.4)

This is a much more difficult problem to try to understand for a number

of reasons.

We know that divergences in field theories come from large numbers of

excitations. When considering string actions these divergences are renormal-

izable. On the other hand Born-Infeld actions are not renormalizable. This



3.4. D-BRANES 44

makes any quantum theory of D-branes very difficult.

In this dissertation, we use a Hamiltonian to describe a particular type

of D-brane system, which does not suffer from these problems.



Chapter 4

Super Symmetry(SUSY)

In this section we want to consider a natural way of extending the space time

symmetry of a theory. Since we demand that a theory be invariant under

the Lorentz (most case Poincaré) group, we want extensions that leave these

symmetries alone. A natural extension is to include some sort of symmetry

between the fields of the theory. SUSY is such an extension. It requires that

the fermions and the bosons described in a theory are somehow related to

each other. In this section we will discuss this symmetry, and then try to

extend it further to include conformal symmetry as well.

We will begin with a brief discussion on Grassmann numbers and spinors.

We will then describe the Poincaré Superalgebra, with a detailed description

of an N = 1 Lagrangian. The section will then conclude with a discussion

of N = 4 SYM.
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4.1 Fermions and Spinors

We use Grassmann numbers to describe fermions. These have the following

properties.

ψiψj = −ψjψi

We define derivatives and integrals that are also Grassmann valued (c is

a scalar):

d
dψ1

ψ2ψ1 = −ψ2
d
dψ1

ψ1 = −ψ2

∫
dψ1c = 0

∫
dψ1ψ2ψ1 = −ψ2

∫
dψ1ψ1 = −ψ2

We denote a left-handed Weyl spinor by ψa, and a right-handed spinor

[ψa]
† = ψ†

ȧ. We also make use of the Pauli matrices:

σ1 =


0 1

1 0


 σ2 =


0 −i
i 0


 σ3 =


1 0

0 −1




We build the invariant quantities σµaȧ = (I,
→
σ)aȧ and .σ̄µȧa = (I,− →

σ)ȧa.



4.2. POINCARÉ SUPERALGEBRA 47

4.2 Poincaré Superalgebra

When considering the Poincaré group, we have generators associated with

translations (Pµ) and Lorentz Transformations (Λµν). We want to extend the

theory to include generators that transform between the fields. We introduce

a N supercharges (QaA), where the lower case Roman character is a spinor

index, and the upper case Roman character labels the supercharge. The

Superalgebra is defined as [14]:

[QaA,Pµ] = 0 (4.1)
[
Q†
ȧA,Pµ

]
= 0 (4.2)

[QaA,Λ
µν ] = (SµνL )acQcA (4.3)

[
Q†
ȧA,Λ

µν
]

= (SµνR )ȧċQ†
ċA (4.4)

{QaA,QbB} = ZABǫab (4.5)
{
QaA,Q†

ḃB

}
= −2δABσ

µ

aḃ
Pµ (4.6)

Here we have introduced the matrices:

(SijL )ac =
1

2
εijkσ

k
ac

(S0k
L )ac =

i

2
σkac

(SµνR )ȧċ = − [(SµνL )ac]
∗

We want to build a theory that is invariant under each of these symme-

tries. To preserve translational invariance we must not have any explicit xµ

dependence. To preserve Lorentz invariance we can consider theories that

have contracted Lorentz indices.



4.2. POINCARÉ SUPERALGEBRA 48

In order to preserve SUSY, we introduce superfields Φ(xµ, θA, θ
∗
A), where

θA and θ∗A are Grassmann valued numbers.

In general, spacetime translations are generated by the momentum four-

vector.

[Φ,Pµ] = −i∂µΦ

We expect similar relationships when considering the action of the Q’s.

[Φ,Qa] = −iQaΦ
[
Φ,Q†

ȧ

]
= −iQ†

ȧΦ (4.7)

4.2.1 N = 1 Superfields

We now consider the case with one supercharge. The index on Q becomes

redundant, and we look for a representation for Q the superalgebra with

Z = 0. Defining ∂aθc = δac and a similar expression for θ∗, we find that:

Qa = ∂a + iσµaċθ
∗
ċ∂µ

Q†
ȧ = −∂∗a − iθcσ

µ
cȧ∂µ

Defining supercovarient derivatives:

Da = ∂a − iσµaċθ
∗
ċ∂µ

D∗
ȧ = −∂∗a + iθcσ

µ
cȧ∂µ
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To get the irreducible representations of SUSY, we can choose either

DaΦ = 0 (left-handed chiral superfield) or D∗
ȧΦ = 0 (right-handed chiral

superfield). Since θ and θ∗ are Grassmann valued, we find that a left-handed

chiral superfield obeys:

D∗
ȧΦ(x, θ, θ∗) = 0

Consider the change in co-ordinates yµ = xµ − iθaσ
µ
aȧθ

∗
ȧ. We then have

D∗
ȧθa = 0 and D∗

ȧy
µ = 0. We find that any superfield which is a function of

y and θ alone must be a right-handed chiral superfield. Expanding Φ to all

orders in θ:

Φ(x, θ, θ∗) = Φ(y, θ) = φ(y) +
√

2θaψa(y) + θθF (y)

Expanding y in terms of x gives:

Φ(x, θ, θ∗) =φ(x) +
√

2θaψa(x) + θaθaF (x) − iθaσ
µ
aȧθ

∗
ȧ∂µφ(x)

− i√
2
θcθcθ

∗
ȧσ

µ
aȧ∂µψa(x) +

1

4
θcθcθ

∗
ċθ

∗
ċ∂

µ∂µφ(x)

We can calculate:

QaΦ(y, θ) =
√

2ψa(y) + 2θaF (y)

Q∗
ȧΦ(y, θ) =i

√
2θθ∂µψc(y)σ

µ
cȧ − 2iθcσ

µ
cȧ∂µφ(y) (4.8)
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Now comparing eq.(4.7) to the above eq.(4.8) for each power of theta we

find [14]:

[φ,Qa] = −i
√

2ψa

[
φ,Q†

ȧ

]
= 0

[F,Qa] = 0
[
F,Q†

a

]
=

√
2∂µψaσ

µ
aȧ

{ψc,Qa} = −i
√

2εacF
{
ψc,Q†

a

}
= −

√
2σµaȧ∂µφ

(4.9)

We can see that for both φ and ψ the transformation laws are complicated.

When we consider F , however, we find that the the fields transform as a total

derivative. Therefore in general the coefficient of θθ in the series expansion

of a left-handed chiral superfield, when integrated over spacetime, will be

invariant under SUSY.

Another useful result is the fact that any function (W ) of left-handed

chiral superfields (Φi) will remain a left-handed chiral superfield. We there-

fore want to choose the coefficient of θθ in the expansion as a term in our

Lagrangian. This is denoted as:

W (Φ)|F =
∂W (φ)

∂φi
Fi −

1

2

∂2W (φ)

∂φi∂φj
ψiψj (4.10)

By similar arguments we want the coefficient of θθθ∗θ∗ from some function

of hermitian operators (V (Φ†Φ)). This is denoted by:

V (Φ†Φ)
∣∣
D

We are particularly interested in a kinetic term, which is quadratic in the

fields. Although other forms exist, we will only consider V (Φ†Φ) = Φ†
iΦi.
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Φ†Φ
∣∣
D

= −∂µφ†∂µφ+ iψ†
ȧσ̄

µ
ȧa∂µψa + F †F (4.11)

We can immediately integrate out the F terms since they are at most

quadratic. This result is equivalent to inserting the classical equation of

motion for F into the action.

L = Φ†
iΦi

∣∣∣
D

+ W (Φ)|F

= − ∂µφ†
i∂µφi + iψ†

i σ̄
µ∂µψi + F †

i Fi +
∂W (φ)

∂φi
Fi −

1

2

∂2W (φ)

∂φi∂φj
ψiψj

= − ∂µφ†
i∂µφi + iψ†

i σ̄
µ∂µψi −

∣∣∣∣
∂W (φ)

∂φi

∣∣∣∣
2

− 1

2

∂2W (φ)

∂φi∂φj
ψiψj

This is a general form of the N = 1 Lagrangian. The only assumption

that we have made is the form of the kinetic term in the Lagrangian, but this

can be generalized for other kinetic terms. If we consider a theory with U(1)

gauge invariance with W = 0, we recover the SUSY analogue of QED[14]:

L = iψ†σµ∂µψ − 1

4
F µνFµν (4.12)

4.3 N = 4 SYM

Even if nature is described by some sort of supersymmetric theory, we know

that the SUSY must be broken in some way. None-the-less it is particularly

useful to consider SUSY as a toy model that may lead to some deeper un-

derstanding of certain theories. It may well turn out that a broken SUSY
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describes nature and solves the hierarchy problem. At very least, it does give

us an insight into the nature of String Theory via the AdS/CFT correspon-

dence (sec:5.1).

There are a great many parallels between this theory and QCD, with a

major difference. N = 4 SYM is conformally invariant. This means that

the coupling constant does not change. This allows us to study some of the

aspects that exist in QCD without the problem of having a large coupling

constant at low energy. This makes N = 4 SYM an interesting toy model.

N = 4 SYM, is the 4 dimensional theory that contains the maximum

allowed symmetry without including gravitational interaction. It can be

derived by considering as similar analysis to the above (sec.4.2.1) with 4

different supercharges. It also has 16 generators. The Lagrangian is given

as1:

L =
N

λ
Tr
[
F µνFµν + θF µνF̃µν +DµφD

µφ

+ ψσµDµψ − ψφψ − [φi, φj][φi, φj]] (4.13)

Without considering all of the details here, the action has 1 gauge field,

4 spinor fields and 6 Higgs fields. The action allows for all renormalizable

interactions. In this dissertation we will be concerned primarily with the 2

of the Higgs fields. We see that this interaction has couplings θ, λ&N . λ is

called the t’Hooft coupling. If we consider a large N limit, we can associate

some surface to each Feynman diagram. The genus of the surface gives us

the N dependence of the diagram. This leads naturally to an expansion in

1
N

[15]. The t’Hooft coupling is related to the Yang-Mills coupling by:

1Indices on the fields have been omitted. Such interaction exist for each φi and ψj .
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g2
YMN = λ (4.14)

Although the theory has a conformal invariance, there is still an anoma-

lous dimension associated with the quantum theory. This anomalous dimen-

sion is measured by the dilatation operator. It is the goal of this report

to diagonalize this dilatation operator on the string side of the AdS/CFT

correspondence.

It is interesting to note that the first derivation of the N = 4 SYM

Lagrangian came from toroidal compactifications of a 10 dimensional N = 1

SYM [16] [17].

4.3.1 R Charge and BPS states

For a general theory that is invariant under the poincaré group, we have

the spacetime symmetries, Λµν and Pµ. Such a theory will have a number

of internal symmetries. The charges U associated with such symmetries are

conserved.

[Λµν , U ] = [Pµ, U ] = 0

We have similar expressions for the charges U in the SUSY extension.

[Λµν , U ] = [Pµ, U ] = [Qa, U ] = 0

We can also consider another type of charge when considering SUSY recall

equations (4.5) & (4.6)
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{QaA,QbB} = ZABǫab
{
QaA,Q†

ḃB

}
= −2δABσ

µ

aḃ
Pµ

These equations are invariant under U(N ) transformations.

QaA → UB
AQaB

This symmetry is called an R-symmetry, and will have corresponding

charges. These R-charges obey:

[Λµν ,R] = [Pµ,R] = 0

[Qa,R] 6= 0

R-charges are not internal symmetries of the theory, since even though

they commute with the bosonic spacetime symmetry generators (Λ&P), they

do not commute with the fermionic spacetime symmetry generators (Q&Q†).

We define BPS (Bogomol’nyi Prasad Sommerfeld) states as states that

preserve all SUSY generators. A 1/2 BPS state preserves only half the SUSY

generators. This idea will not be explored further here. More details are

available in [18].



Chapter 5

AdS/CFT and D-Branes

We have briefly described a number of features of bosonic String Theory.

Although our main problem does not apply to the bosonic string, all of the

important features highlighted in section 3 apply to Superstrings as well. On

of the major differences is the dimension in which these live (10 dimensions).

It turns out that there is more than one consistent Superstring theory, al-

though we won’t discuss these here. Our interest is in type IIB strings. These

strings are limited to closed strings and open strings with Dirichlet boundary

conditions.

In this section we will look briefly at the Maldacena conjecture. This will

involve looking at the symmetry aspects of the theory, and then highlighting

the strong/weak duality and its difficulties, as well as potential beauty.

After that we will briefly describe the Giant Gravitons, which have shown

to be an important probe into the AdS/CFT correspondence.
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5.1 AdS/CFT Correspondence

In order to understand this correspondence, we first need to understand what

an AdS space is. In order to do this we first consider Sn. This is most easily

considered by embedding the geometry in a higher dimensional flat space.

For example, we can consider the surface of a 3 ball as S2. In general we can

write this as:

X2
1 +X2

2 + · · · +X2
n+1 = R2 (5.1)

The simplest way to think of an AdSn space is in a similar way to how

we considered Sn above.

−X2
0 +X2

1 +X2
2 + · · · +X2

n−1 −X2
n = −R2 (5.2)

The AdS/CFT correspondence is a general statement that for any con-

formally invariant field theory there is a higher dimensional theory on an

AdS space, which is dual to the conformal field theory [21]. If we consider a

conformal field theory in a 3+1 dimensional Minkowski space, the field the-

ory is invariant under SO(2,4) (see section 2.3). When considering an AdS5

theory, this subspace is invariant under SO(2,4). This indicates that these

two theories may be related.

It is generally difficult to find conformally invariant field theories in

physics. The most studied version of this correspondence is to consider

an N = 4 SYM theory. This theory is also invariant under R-symmetry

SU(4) ∼ SO(6). We need to adjust the AdS side of the duality to contain
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the same symmetry. The simplest way is to extend the space to include an

S5. The proposed duality is between N = 4 SYM and type IIB string theory

on an AdS5 × S5 background.

For a more technical review see [3],[21].

Since the AdS/CFT correspondence is predicted to hold at all energy

scales, we must identify the coupling constants (see eq.(2.5), eq.(3.2)). We

get:

gs = g2
YM

R4

ℓ4s
= g2

YMN = λ (5.3)

Here we define R as the radius of curvature of the space. For distances

much smaller than R, the space looks flat, and gravitational effects can be

ignored. So if we have R >> ℓs, then we can perform perturbative calcu-

lations on the String Theory side of the equations. This particular choice

corresponds to a large t’Hooft coupling. This means that we cannot perform

sensible calculation on the field theory side. At the same time when λ << 1,

we can perform perturbative calculation on the field theory side of the corre-

spondence. This corresponds to a highly curved geometry for the string side,

making string calculations difficult. This is called a strong/weak duality.

This strong/weak duality is an extremely useful tool. A major problem

with physics for the Standard Model is that we do not know how to perform

QCD calculations. If this duality is shown to be correct, and we can find a

way of breaking some of the symmetries, we will have found a way to perform

accurate calculations in QCD.

The strength of this conjecture is also its weakness. The correspondence
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has not been proven, and until it has been rigorously proven, testing this

duality remains difficult. Only protected quantities can be used to test this

correspondence.

5.2 Giant Gravitons

The popular model that is often used from the AdS/CFT correspondence, is

the duality between String Theory on an AdS5 × S5 background and N = 4

SYM. In this section we will discuss a particular type of D-brane solution

that arises on this background. Further details can be found in [4].

We consider the motion of massless particles on the S5 ofAdS5×S5. These

particles correspond to particles such as gravitons. These particles have

an angular momentum L. We usually consider particles as point particles

regardless of their angular momentum. When we consider extended objects

that arise from String Theory, it seems natural to allow the size to change

as the angular momentum changes, which is a polarization effect. We will

see that the size of the object increases with the angular momentum. These

particles extend until they fill the S5. We naturally build a bound for the size

of these objects. When considering matrix models we see that the Kaluza-

Klein states terminate when these particles reach the size of the S5. This

results in a stringy exclusion principle [22], [23] & [24].

We will briefly outline some of the aspects of these giant gravitons below.



5.2. GIANT GRAVITONS 59

5.2.1 Dipole in a magnetic field

We will briefly consider a toy model to describe the basic idea behind giant

gravitons.

Consider two oppositely charged particles that are joined together by a

perfect spring. We will ignore the electric effect, as well as kinetic contribu-

tions. When these particles are not moving, the spring will naturally shrink

to zero size. When moving in a magnetic field, these particles will be pulled

away from each. As the particles move faster, they will move away from each

other.

Now consider constraining this problem to the surface of a sphere, with

a magnetic monopole placed at the center of the sphere, as shown in fig 5.1.

Again when the particles are not moving in the magnetic field, they will

shrink to a point, due to the spring. When we begin to rotate the system the

charges will separate. As the angular momentum of the system is increased,

the size of the spring will stretch further, until the charges are at the opposite

ends of the sphere. The spring cannot expand further than this.
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Figure 5.1: Dipole constrained to move on the surface of a Sphere, in the

presence of a magnetic monopole
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5.2.2 Sphere Giants

Consider the action of a spherical D3-brane (S3) moving in the S5 part of

the background. We recall that the Lagrangian describing such a field is

given by the Born-Infeld action (eq.(3.4)). If we couple in a Chern-Simons

term (four-form potential, analogous to a gauge potential when considering

particles), we get the action:

L = LBI + LCS

= −TΩ3r
3

√
1 − φ̇2(R2 − r2) + φ̇N

r4

R4
(5.4)

In this relation T is the tension of the brane, gs is the string coupling,

Ω3 is the volume of a unit 3-sphere, φ̇ is the angular velocity with which the

brane is moving around the S5, R is the radius of the background 5-sphere

and r is the radius of the brane.

The angular momentum is found to be:

L =
∂L
∂φ̇

=
Nr3(R2 − r2)

R4

√
1 − (R2 − r2)φ̇2

φ̇+
Nr4

R4
(5.5)

The energy is given by:

H = Lφ̇− L =
Nr3

R4

√
1 − φ̇2(R2 − r2)

(5.6)

There is a stable minimum for the energy at fixed angular momentum:
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r2 =
L

N
R2

E =
L

R
(5.7)

The expression for the energy (eq.(5.7)) is the same as the energy of a

Kaluza-Klein (kk) graviton, with angular momentum L around the S5. When

we consider large N , quantum corrections are suppressed. The kk graviton

is a BPS state, and the energy does not change if it blows up into a giant

state. Hence the size of the state is determined by the angular momentum.

Since the maximum size that the state can reach is R, there is a maximum

angular momentum of the state.

Another minimum for the energy occurs when r = 0. This corresponds to

a massless point particle moving around the equator. This solution is grav-

itationally singular. This singularity is avoided by blowing up the solution

into a large membrane.



Chapter 6

Schur Polynomial D-brane

Correspondence

We know that type IIB String Theory on an AdS5×S5 background is dual to

N = 4 SYM. Therefore we can use techniques on one side of the duality to

solve problems on the other side. This is the main idea of this dissertation.

We can use conformal techniques from the CFT side to perform calculations

on the string side.

The Kaluza-Klein states in the theory are built up by considering all

possible multi-trace operators that we can build from the field of N = 4

SYM. Here we will only consider the Scalar fields. In order the keep the U(N)

gauge freedom these are considered to be N ×N matrix fields described by

the action:

S =
N

(2π)3λ

∫
d4xTr

(
1

2
Dµφ

iDµφi +
1

4
([φi, φj])2

)

We can group these 6 real valued scalar fields into 3 complex valued
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scalars:

Z = φ1 + iφ2 Y = φ3 + iφ4 X = φ5 + iφ6

In the free field limit (N → ∞;λ = constant) the propagators are given

by:

〈
Z†i

jZ
l
m

〉
=
〈
Y †i

jY
l
m

〉
=
〈
X†i

jX
l
m

〉
=

4πλ

N
δimδ

l
j

The coefficient 4πλ
N

will not be carried through the calculation, as it is

easily inserted at the end.

Half BPS operators are built from only one of the complex fields, and

will remain supersymmetric, even when the coupling is switched on. When

considering a total of n Zs, it can be shown that there is a distinct operator

for each partition of these Zs. For instance when considering 3 Zs we can

portion them according to Tr(Z3);Tr(Z)Tr(Z2);Tr(Z)3. These operators

are not diagonal even in the large N limit. We must also note that there is

a cutoff when considering such operators. Tr(Zm),m ≥ N can be written in

terms of other operators with the power inside the trace smaller than N .

When we consider O(1) fields, we are studying something dual to a point

graviton. When considering something that is built from O(
√
N) fields we get

something dual to a string. When considering O(N) fields we are studying

operators dual to giant gravitons. We find a new geometry for operators with

O(N2) fields.

Previous calculation have studied operators with O(1) as well as O(
√
N)

fields by considering the large N limit. In that limit, a large number of “non-

planar” interactions can be ignored since they are suppressed by a factor of
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1
N

. When considering O(N) or more, we are no longer allowed to ignore the

non-planar contributions, due to the large combinatoric factors. This makes

the problem extremely difficult.

When we write a multi-trace of n fields Z we can write it as Tr(σZ⊗n)

where σ ∈ Sn is an element of the symmetric group. Using the cycle notation,

(1) is the identity element, which will not mix the Zs. Tr((1)Z⊗n) = Tr(Z)n.

When considering elements that cycle between elements, the corresponding

Z’s are joined. Tr((12)Z⊗n) = Tr(Z2)Tr(Z)n−2.

The Schur Polynomial is defined as:

χR(Z⊗n) =
1

n!

∑

σ∈Sn

Tr(ΓR(σ))Tr(σZ⊗n) (6.1)

Here ΓR(σ) is a representation of σ, corresponding to the Young diagram

R, with n boxes. The two point function is given by:

〈
χR(Z⊗n)χS(Z

†⊗n)
〉

= δRSfR (6.2)

Here fR is the product of the weights of the Young diagram R. The

weight of the box in the ith row and jth column is given by N − i+ j.

It turns out that there is a one-to-one correspondence between the Schur

Polynomials and the BPS operators. Further than this we have the added

convenience that the Schur Polynomials are diagonal to all orders in N when

the coupling is switched off. There is also a simple rule for evaluating 2

point functions in the zero coupling limit. For this reason it seems natural

to consider this problem in the Schur polynomial basis.
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When we have a long column (with O(N) boxes) in the Young diagram,

we associate this state with a giant graviton, growing in the S5. The size of

the giant is determined by the number of boxes in the young diagram. We saw

in section 5.2, that the size of a giant graviton is determined by its angular

momentum. A Young diagram with a large number of boxes in a column

represents a giant graviton with a large amount of angular momentum, and

therefore a larger size. The Young diagram can only contain N boxes in a

column. This corresponds to the cutoff associated with the stringy exclusion

principle we saw in section 5.2. It is natural to associate the length of the

column with the angular momentum, and therefore the size of the giant.

If we consider 2 columns we can interpret them as a state with 2 giant

gravitons. If the columns are the same length, we could also interpret this

as the giant winding around the S5.

When considering a large number of boxes in a row, we can interpret the

state as a giant graviton in the AdS5. Notice that the size of these giants is

not bounded, since the corresponding space is not compact.

In the situation where O(N) fields are considered, we can no longer con-

sider only the planar diagrams, since the large number of non-planar contri-

butions makes them significant. This has mean’t that previously no calcula-

tions have been done previously in this sector.

In our problem we want to consider the case where we have two nearly

maximal giants expanding into the S5. These membranes are nearly half

BPS. This means that there are a large number of Zs, with a small number

of impurities. These impurities complicate the problem again. In order to

study the problem with these impurities, we need to study an extension of
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the Schur polynomial, the restricted Schur polynomial.

Restricted Schur polynomials form a complete basis of multiple matrices.

When considering restricted Schur polynomials in q different matrices, we

label the problem by q+1 Young diagrams. The restricted Schur polynomials

with two impurities which are relevant to this study are defined by:

χR,{r,s}(Z
⊗n, X⊗2) =

1

n!2!

∑

σ∈Sn+2

Trr,s(ΓR(σ))Tr(σZ⊗nX⊗2) (6.3)

Here most of the notation is kept from the regular Schur polynomial. The

new feature is Trr,s(ΓR(σ)), which is an instruction to trace over only a par-

ticular subspace of the representation ΓR(σ). This is achieved by considering

projection operators which are discussed more in appendix A



Chapter 7

Dilatation Operator

In this section we describe the dilatation operator, and highlight the results

obtained from the diagonalization.

According to [2]1, when considering a conformal field theory, we must

have:

〈Oa(x)Ob(y)〉 =
δab

(x− y)2∆a
(7.1)

Here ∆a is the conformal dimension of the operator Oa. A standard way

to calculate this would be to consider a perturbative expansion. There are

a number of difficulties associated with such a computation. Some of these

difficulties are the problem of renormalization, and operator mixing. When

considering perturbative techniques, this amounts to solving this complex

problem for each loop. When we consider operators built from a large number

of fields, the Feynman diagrams are complicated and tedious.

The anomalous dimensions are the eigenvalues of the dilatation operator

1see also references therein
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D̂.

D̂Oa = ∆aOa (7.2)

The dilatation operator D̂ is computed up to two loops in [1] & [2].

We will restrict our discussion to dealing with operators built from the 6

Higgs fields alone [25] & [26]. We will use complex representations of these

fields.

X = Φ1 + iΦ2

Y = Φ3 + iΦ4

Z = Φ5 + iΦ6 (7.3)

In the free theory we have that:

〈
X†i

j(x)X
l
m(0)

〉
=
δimδ

l
j

x2

We have similar expressions for the other fields. We therefore must have

that the zero’th order dilatation operator counts the number of fields in the

theory.

D0 = Tr(XDX) + Tr(Y DY ) + Tr(ZDZ)

Here DX
i
jX

l
m = δimδ

l
j.

The zeroth order dilatation operator is diagonalized by Schur polynomi-

als. We will therefore perform our calculation in the Schur polynomial basis.
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The calculation for the one loop correction is more tricky. The result is

quoted below.

D2 = Tr([X,Y ][DY , DX ] + [X,Z][DZ , DX ] + [Y, Z][DZ , DY ]) (7.4)

The dilatation operator is given to one loop by:

D̂ = D0 +
g2
YM

16π2
D2 (7.5)

We now wish to find the eigenvalues and eigenoperators for eq.(7.2). This

gives the spectrum of the CFT. Since these form a basis, they must be a linear

combination of the restricted Schur polynomials (see appendix B).

We have considered the interpretation of this problem on the field theory

side. What is the corresponding question on the String Theory side? It turns

out that D2 is the Hamiltonian operator on the String Theory side.

Therefore solving eq.(7.2) corresponds to solving a time independent

Schroedinger equation. Conceptually this seems a simple enough problem.

In solving this problem we know how to calculate the action of H on

|Ψ′ >.

H|Ψ′
n > =

∑

m

βnm|Ψ′
m > (7.6)

We then look for a basis that diagonalizes the operator:

H
∑

n

αnl|Ψ′
n > =

∑

mn

αnlβnm|Ψ′
m > (7.7)

H|Ψl > = El|Ψl > (7.8)
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where

|ψl >=
∑

n

αnl|ψ′
n > (7.9)

The calculation of αmn&βmn is difficult, and the subject of the appendices

of this report.

It is natural to interpret these states as “wave functions”. We know from

Quantum Mechanics that the wave functions that diagonalize the Hamilto-

nian do not localize the particles.



Chapter 8

Results and Conclusions

Here we outline the results that have been obtained in this research. For

details see the appendices.

8.1 Action of the Dilatation Operator on Op-

erators with Two Impurities

We consider the one loop dilatation operator

D̂ = g2
YMTr[X,Z][DZ , DX ]

acting on the restricted Schur polynomial with 2 impurities.

χR;{r,s}(Z
⊗n, X⊗2) =

1

n!2!

∑

σ∈Sn+2

Tr(r,s)(ΓR(σ))Zi1
iφ1
...Zin

iφn
X
in+1

iφn+1
X
in+2

iφn+2

Here R is a Young diagram with n+2 boxes, r is a young diagram with n

boxes and s is a young diagram with 2 boxes. The action of the dilatation
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operator is given by (see appendix D):

g2
YM

(n− 1)!

∑

σ∈Sn+2

Tr(r,s)(ΓR([(n, n+ 2), σ]))Zi1
iφ1
...Z

in−1

iφn−1
[X,Z]iniφn

X
in+1

iφn+1
δ
in+2

iφn+2

We now wish to write this expression in terms of our original Schur poly-

nomial basis. This is done by performing the following steps.

• Change basis from the Sn × S2 basis to the Sn × S1 × S1 basis. (See

appendix B.4)

• Evaluate the action of (n,n+2). (See appendix B.4)

• Perform the reduction, removing the delta to get a Schur polynomial

labeled by Sn−1 × S1 × S1. (See appendix B.4, and also [27])

• Separate the XZ and ZX in the expression. (See appendix D.2, and

also [28])

• Change basis from the Sn × S1 × S1 basis to the Sn × S2 basis. (See

appendix B.4)

We chose to perform the calculation in the Sn×S1×S1 basis despite this

basis being overdetermined. It is overdetermined since the two impurities

are indistinguishable, we therefore move back to the Sn×S2 basis as soon as

the calculation is complete.

8.2 Single Membrane States

Single membranes states are found by considering R labeled by a Young

diagram with either a single row (AdS5 giant) or single column (S5 giant).
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These both correspond to one dimensional representations of R, and are thus

abelian. This implies that ΓR([(n, n + 2), σ]) = 0. We therefore find that

single membrane states remain supersymmetric. This agrees with the results

of [29] & [30].

8.3 Two membranes with two impurities

In this section we consider the case where R corresponds to a Young dia-

gram with 2 columns. This situation corresponds to 2 interacting S5 giant

gravitons.

8.3.1 Labeling Conventions

We consider Schur polynomials with n Z’s and 2 impurities (X ′s). We restrict

our analysis to considering only Schur polynomials labeled by young diagrams

with boxes in the first two columns. We can write our polynomials as:

χR;{r,s}(Z
⊗n, X⊗2) =

1

n!2!

∑

φ∈Sn+2

Tr{r,s}(ΓR(φ))Zi1
iφ1
Zi2
iφ2
...Zin

iφn
X
in+1

iφn+1
X
in+2

iφn+2

(8.1)

Here R is a young diagram with p boxes in the first column and q boxes in

the second column, r is any young diagram with two boxes removed from the

original diagram R. We also use the description that r is a young diagram

with b1 + b0 boxes in the first column, and b0 boxes in the second column.

Finally s is a diagram such that R is one of the diagrams obtained from

considering s⊗ r.
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χ

#
#

; (Z⊗n, X⊗2) = Oa(b1, b0)

χ
#
#

; (Z⊗n, X⊗2) = Ob(b1, b0)

χ

#

#

; (Z⊗n, X⊗2) = Od(b1, b0)

χ

#

#

; (Z⊗n, X⊗2) = Oe(b1, b0)

We can interpret Oa(b1, b0) as an operator dual to the state with two

giant gravitons, and two strings attached to the larger of the two giants,

and similarly Ob(b1, b0) can be considered has dual to two gravitons with 2

strings attached to the smaller giant. We can see that Od(b1, b0)&Oe(b1, b0)

correspond to states where the strings are attached to both gravitons. There

are two states that we will see emerging from this situation. The first is where

there is a string attached to the larger membrane, and a sting attached to the

smaller membrane (∼ Od(b1, b0)+Oe(b1, b0)). The seconds state corresponds

the two strings stretching between the giants (∼ Od(b1, b0) −Oe(b1, b0)).

8.3.2 Dilatation Operator

The exact expression for the action of the dilatation operator on normalized

states is given in appendix E. We see that the dilatation operator acting on

a two membrane state will generate a two membrane state with a box in the
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third column. This is potentially a fatal feature, since the action of a two

column state generates a three column state, similarly a three column state

will generate a four column state, and so on until we are forced to consider

all representations of Sn+2. This makes the problem extremely difficult.

It turns out that there is a particular limit in which the 2 membrane states

decouple from the rest of the dynamics. We take a large N limit, where the

number of boxes in each column is very large, then the three column contri-

butions generated by the dilatation operator is suppressed (when considering

normalized states) by a factor of O(1/
√
b0) where b0 is roughly the length of

the second column.

If we take the particular limit where both b1 and b0 are large, the dilatation

operator takes the form:

D̂ |b1, b0, a〉 ∼ λO(
1

b1
)

D̂ |b1, b0, b〉 ∼ λO(
1

b1
)

D̂ |b1, b0, d〉 ≈

λ(1 − b0
N

) (2 |b1, b0, d〉 − |b1 − 2, b0 + 1, d〉 − |b1 + 2, b0 − 1, d〉)

−λ(1 − b0
N

) (2 |b1, b0, e〉 − |b1 − 2, b0 + 1, e〉 − |b1 + 2, b0 − 1, e〉) + λO(
1

b1
)

D̂ |b1, b0, e〉 ≈ −D̂ |b1, b0, d〉 (8.2)

We see that for the two giants well separated, D̂ |b1, b0, a〉 , D̂ |b1, b0, b〉
both remain nearly supersymmetric. These states have impurities only in the

smaller (or larger) membrane. Recalling that single membrane states remain

supersymmetric (section 8.2), it seems natural that when the membranes

are well separated, these states will again remain supersymmetric. We can
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also see that D̂ |b1, b0, d〉+D̂ |b1, b0, e〉 will also remain nearly supersymmetric,

suggesting that there is a supersymmetric way to deform a pair of membranes.

Notice that D̂ |b1, b0, d〉+D̂ |b1, b0, e〉 looks like an operator with one string

attached to the larger membrane, and a string attached to the smaller mem-

brane (appendix B.4). We would guess that when the membranes are well

separated, and there are no strings between the membranes, that these would

nearly decouple.

We would therefore expect about 3/4 of our states to remain super-

symmetric. Finally consider the combination D̂ |b1, b0, d〉 − D̂ |b1, b0, e〉 =

Ôd−e(b1, b0). Again comparing this to appendix B.4, this looks like the states

where the strings are stretched between the membranes. We would expect

that this would be the most significant contribution, and we find that:

D̂Ôd−e(b1, b0) ≈ −2λg2
s

(
Ôd−e(b1 + 2, b0 − 1) − 2Ôd−e(b1, b0) + Ôd−e(b1 − 2, b0 + 1)

)

(8.3)

Here gs =
√

1 − b0
N

is the string coupling. This takes on the form of a

discretized second derivative operator. Diagonalizing this we would expect

to find evenly space energy levels, as we are looking to solve a discretized

form of:

D̂Ôd−e(x) = −2λg2
s

d2

dx2
Ôd−e(x) = ΛÔd−e(x)

We see that the young diagram forms the lattice, and represents the

geometry of the space.
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8.3.3 Numerical Results

When considering Young diagrams , we can not have columns that have more

that N boxes in them. Therefore if we consider the situation where there are

nearly 2N boxes in the young diagram, then b0 remains a large number, and

the three column contributions decouple from the rest of the problem. In

this cases we have a dynamic decoupling of states. Note that there is no

limit to the length of a row, so there is no analogue to this treatment when

considering AdS giants.

We want to consider the situation where the giants are separated by a

distance that is about the length of a string. This means that pmax− qmin ∼
O(

√
N). We also know that the size of the larger membrane is bound by the

size of S5 ⇒ pmax = N

This problem can be separated into one with an even number of boxes,

and one with an odd number of boxes. We will consider the case where the

number of boxes (M) is even.

We have σ = p− q ∈ {0, 2, 4, ...2N −M}. When σ = 0, we cannot define

|0, b0, a > or |0, b0, e >. All other states are well defined. For each value of σ,

there are four linearly independent operators, except for the above mentioned

exceptions. The total number of states is given by Ntotal = 4(2N−M
2

+1)−2 =

2(2N −M + 1).

The action of the dilatation operator on these states is degenerate, and

we only get one non-zero eigenvalue for each σ. We therefore have a total of

Nmassive = N − M
2

+ 1 massive states.

We find thatNmassless = 3
4
(Ntotal − 2).This seems to agree with the results

of the previous section.
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Using the methods of appendix F, we solve the problem for even values

of σ. The graph 8.1 shows the eigenvalues for N = 62500&M = 124500
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Figure 8.1: Eigenvalue spectrum

We describe some features that we see in fig.8.1. The first is that the

eigenvalues are nearly evenly spaced, showing that the system is an harmonic

oscillator. It is almost surprising that these eigenvalues are so evenly spaced.

We also notice that there is no degeneracy among the non-zero states. This

suggests that this is a one-dimensional harmonic oscillator, as we expected.

How do we find the emergence of the radial direction. Recalling that we can

interpret b1 as the difference in size between the two membranes, and b0 as
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the size of the larger membrane, we plot the expectation value of b1 with the

corresponding eigenvalue in fig.8.2.
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Figure 8.2: Eigenvalue spectrum, and 〈b1〉

We consider each membrane as an harmonic oscillator, with a string

stretched between them. The stretched string couples these oscillators. These

oscillators have two modes, corresponding to the membranes oscillating in

phase or out of phase. When the membranes are in phase, the string be-

tween them will hardly be excited. When the membranes are out of phase,

the string between them will have the largest energies. This is shown dia-

grammatically in fig. 8.3 & 8.4
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Figure 8.3: Low Energy Modes Figure 8.4: High Energy Modes

8.4 Conclusions

In this thesis we have determined the anomalous dimension of operators built

from O(N) fields. These operators can be interpreted via the AdS/CFT cor-

respondence as a membrane which appears in String theory, with the energy

corresponding to the anomalous dimension of the corresponding operator.

In particular we studied two nearly maximal sphere giants, which are

labeled by a Young diagram with 2 columns and O(N) boxes in each column.

When considering the case where these giants are nearly maximal, we see

that there is a dynamical decoupling. This corresponds to the membrane

number being conserved for large N (or alternatively at weak coupling). The

contribution which would build a third column is suppressed. We found that

these giants behave like two couple harmonic oscillators, with low energy

modes corresponding to the membranes oscillating in phase, and the high

energy modes corresponding to the membranes oscillating out of phase. We
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also saw the emergence of a discretized radial direction, with the lattice

labeled by the young diagram associated with the state.

We have also explicitly shown that single membrane states remain super-

symmetric.



Appendix A

Properties of Schur

Polynomials

A great deal of work had been dedicated to developing Schur polynomials.

In this appendix, we state some of the results together with some examples

to illustrate them. We do not, however, give detailed proofs or derivations.

The reader is referred to [31],[27],[32],[28],[26] & [33] for further details.

A.1 Schur polynomial

Schur polynomials are meant to form a basis for matrix polynomials. We

begin with a definition of Schur polynomials.

χR(Z⊗n) =
1

n!

∑

φ∈Sn

Tr (ΓR(φ))Tr(φZ⊗n) (A.1)

Here ΓR(φ) is representation of the element φ in the irrep R. The factor

Tr(φZ⊗n) is just a multi trace operator. φ tells us which multitrace to
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consider. If we have the identity, then we have Tr((1)Z⊗n) = Tr(Z)n. If

we have the elements that swaps between the first and second element, we

have Tr((12)Z⊗n) = Tr(Z2)Tr(Z)n−2. Since we sum over all elements of the

symmetric group, we build all possible partitions of the n Z’s, and therefore

all possible multi-trace operators.

Example 1

χ =
1

2
Tr(Γ (1))Zi1

i1
Zi2
i2

+
1

2
Tr(Γ (12))Zi1

i2
Zi2
i1

=
1

2
Tr(Z)2 +

1

2
Tr(Z2)

χ =
1

2
Tr(Γ (1))Zi1

i1
Zi2
i2

+
1

2
Tr(Γ (12))Zi1

i2
Zi2
i1

χ =
1

2
Tr(Z)2 − 1

2
Tr(Z2)

A.1.1 Reduction Formula

If we define the operator DZ
i
j by its action DX

i
jX

l
m = δimδ

l
j. One can show

that the action of the operator on a polynomial is:

DX
i
iχR(Z⊗n) =

1

n− 1!

∑

φ∈Sn

Tr (ΓR(φ))Zi1
iφ1
Zi2
iφ2
...δiniφn

=
∑

α

cαχR′
α
(Z⊗n−1) (A.2)

Where cα is the weight of the box labeled by α. If a box is in row i and

column j, then the weight of that box is N+j-i.

R′
α is the diagram obtained from R by removing box α.

Example 2

Dχ = Nχ + (N − 3)χ
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A.1.2 Correlation Functions

We normalize the free theory so that:

〈
Zi
jZ

∗l
m

〉
=δimδ

l
j

〈
Zi
jZ

l
m

〉
=0

〈
Z∗i

jZ
∗l
m

〉
=0

We can show that the correlation function between two Schur polynomials

is [31]:

〈
χR(Z)χS(Z

†)
〉

=
1

nR!nS!

∑

φ∈Sn

∑

φ′∈Sn

ΓR(φ)ΓS(φ)

×
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1

jφ′1
Z†j2

jφ′2
...Z†jn

jφ′n

〉

=δRSfR (A.3)

Here fR is the product of the weights associated with diagram R, and the

delta function ensures that the correlation function is zero, unless R and S

are the same rep of Sn

Example 3

〈
χ (Z)χ (Z†)

〉
=N2(N + 1)(N − 1)(N − 2)

〈
χ (Z)χ (Z†)

〉
=0
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A.2 Restricted Schurs

In this subsection we briefly describe how a basis of matrix polynomials in 2

different matrices (Z&W ) can be computed

Consider the action of the operator Tr(ZDZ).

Tr(ZDZ)χR(Z⊗n) = nχR(Z⊗n)

We can see that the action of this operator is to remove each possible

box, and replace it with a box that is associated with Z. Now consider the

action of the operator W (1)i

jDZ
j
i .This will be the same as above. Remove a

box associated with Z, and replace it with a box associated with W . This

must be done with each box.

∑

α

χR,Rα
(Z⊗n−1,W (1)) = Tr(W (1)DZ) χR(Z⊗n)

This expression tells us how to deal with the sum over α. How do we

treat each of the diagrams Rα? It turns out that this is done by tracing over

each of the subspaces of R.

We need to develop a consistent way of tracing over each of the subspaces.

We know that a rep ΓR(φ) is only well defined up to a change of basis.

We can therefore manipulate a rep by shifting ΓR(φ) ⇒ M−1ΓR(φ)M for

any matrix M . The choice of the matrix M fixes the basis. We need to

construct an operator that will trace over the correct subspace of ΓR(φ) for

a fixed choice of M . We will consider this problem first in a convenient

basis, and then try to develop a general method for constructing “Projection

operators”.



A.2. RESTRICTED SCHURS 87

A.2.1 Young-Yamanouchi Basis

If R is a rep of Sn, and Rα is the diagram with the box labeled α removed

from R. The Young-Yamanouchi basis is partially defined by the relation.[34]

ΓR(φ) =
∑

⊕α

ΓRα
(φ) ∀φ ∈ Sn−1

Here it is important to define the order of the ‘addition’. The first term

in the sum corresponds to first removing the lowest box that can be removed.

Continue in this way until all the boxes have been removed.

Example 4

Γ (φ) =Γ (φ) ⊕ Γ (φ)∀φ ∈ S4 ⊂ S5

=




Γ (φ) 0

0 Γ (φ)




We can easily see how to trace over the relevant subspaces in this par-

ticular example. We now need to understand how to build the remaining

elements of the group. Since we can build all the elements of the symmetric

group from various compositions of the 2-cycle elements, we only need to

find ΓR(n− 1, n) and we can generate all the elements of the group.

The first step is to label all the different orders of composing the Young

diagram. We then associate the Yamanouchi symbol with each diagram.

This is found by listing the row in which each number appears in the labeling,

starting with the largest number.
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Example 5

1 2
3 4
5

1 3
2 4
5

1 2
3 5
4

1 3
2 5
4

1 4
2 5
3

[32211] [32121] [23211] [23121] [21321]

Choose another label m which will label rows and columns of the rep

(m = 1 corresponding to the largest Yamanouchi symbol), we define the

state
∣∣∣Y (m)
R

〉
, by the labeling convention associated with m. In this labeling

convention, the label i is found in the row ri, and column ci, and similarly

for the label i− 1. Then we have

(i− 1, i) |Y m
R 〉 =

1

ci − ci−1 + ri−1 − ri
|Y m
R 〉 +

√
1 − 1

ci − ci−1 + ri−1 − ri

∣∣∣Y m′

R

〉

Here m′ is the diagram with the labels i − 1&i swapped. If we contract

each of these with each of 〈Yn| we have

ΓR(φ)(n,m) = 〈Y n
R |φ |Y m

R 〉

Example 6

Γ (4, 5) =




−1
2

0
√

3
2

0 0

0 −1
2

0
√

3
2

0
√

3
2

0 1
2

0 0

0
√

3
2

0 1
2

0

0 0 0 0 −1




In this particular basis, the idea of tracing over sub-spaces is very easy

and natural. We simply define the projection operator
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P

,

=




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(A.4)

Then

Tr

(
Γ (φ)

)
=Tr


P

;

Γ (φ)


 (A.5)

=

〈
1 m

∣∣∣∣∣ (φ)

∣∣∣∣∣
1 m

〉
(A.6)

There is a particularly convenient graphical notation that is introduced

from eq.(A.6). We define restricted Schur polynomials by the order that

boxes are to be removed from the rep R. This notation continues when

we consider polynomials obtained from tracing over off diagonal blocks in

appendix A.3.1

A.2.2 Projection Operators

We have seen how to take the trace over a particular subspace in a particular

basis. We now need to consider how to take the trace over a subspace for a

general basis.

We know that the sum over all elements in a particular class is propor-

tional to the identity. What if we consider all the elements in a particular

class of a subgroup.
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If we have Ô given by the sum of all elements in a class that leaves the

index n inert, then acting on an irrep of Sn−1 will be proportional to acting

with the identity in Sn−1.

Ô |R′
i〉 = λi |R′

i〉

⇒ Ô =
∑

i

λi |R′
i〉 〈R′

i|

& ΓR(1) =
∑

i

|R′
i〉 〈R′

i|

The eigenvalue is dependent on which subspace we are considering. No-

tice that in the situation that one of the eigenvalues is repeated, we can

distinguish between the different subspaces, by considering the next class.

We can use these relations to build a projection operator Pi = |R′
i〉 〈R′

i|.
The eigenvalue for a 2-cycle class of Sn with Young diagram with ri boxes

in the ith row and cj boxes in the jth column is given by:

λ =
1

2

∑

i

ri(ri − 1) − 1

2

∑

i

ci(ci − 1)
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Example 7

Ô =Γ (12) + Γ (13) + Γ (14) + Γ (23) + Γ (24) + Γ (34)

=0P

,

− 2P

,

Γ (1) =P

,

+ P

,

⇒ P

,

=Γ (1) +
1

2
Ô

=




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




The last result was evaluated in the Young-Yamanouchi basis, and is in

agreement with what we expected from eq. A.4. The result in any other

basis is related by conjugation by M .

A.2.3 Reduction Formula

We now know how to trace over the different subspaces. It is now a simple

task to see that

Tr(DW (1))χR,R′(Z⊗n−1,W (1)) = c χR′(Z⊗n−1)

Where c is just the weight of the box removed from R to give R′
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Example 8

Tr(DW (1))χ
1

(Z⊗4,W (1)) = (N − 2)χ (Z⊗4)

A.3 Many Distinguishable Matrices

Having multiple distinguishable matrices is treated similarly to the way

that we treated one. The important thing to realize is that in general

χR,R′,R′′(Z⊗n,W (1),W (2)) 6= χR,R′,R′′(Z⊗n,W (2),W (1)) and that different ways

of going from R to R′′ lead to different polynomials. In general, the last ar-

gument of the Schur polynomial will be the first one to be removed.

Example 9

P

,

P
,

=




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




P

,

P

,

=




0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0



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A.3.1 Twisted States

When we consider tracing over two subspaces that are of the same shape, but

were obtained by different paths, we get non-zero polynomials. We interpret

these tracing over an off-diagonal subspace. Using the notation adopted

earlier, this corresponds to states that look like
〈
Y m
R,R′,R′′

∣∣φ
∣∣Y m
R,S′,R′′

〉
6=

〈
Y m
R,S′,R′′

∣∣φ
∣∣Y m
R,R′,R′′

〉

This is done by using introducing the operator [28]:

PAB =ℵ PAΓR(n− 1, n)PB

ℵ =

√
dim(R′′)

Tr(PAΓR(n− 1, n)PBΓR(n− 1, n)
(A.7)

Example 10

χ
2

1
1

2

(Z⊗3,W (2),W (1))

PAB =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Note that when performing reductions, we must take care considering the

order in which the W ’s are being removed. If we are reducing with respect

to the first W that is to be removed, the result for twisted states is zero.
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Example 11

Tr(DW (1))χ
2

1
1

2

(Z⊗3,W (2),W (1)) = 0

Tr(DW (2))χ
2

1
1

2

(Z⊗3,W (2),W (1)) 6= 0

The second line follows since we need to perform a subgroup swap so that

W (2) is removed first. This will be discussed in section A.3.2.

A.3.2 Sub group swap rule

Consider (1, 2)φ[1, 2, 3, ..., n](1, 2), where φ is some element of the symmetric

group. The two elements on either side of φ simply swap the arguments 1&2.

The result is φ[2, 1, 3, ..., n]. This simple result is the key to the sub group-

swap rule. Lets consider a Schur polynomial in n Z’s and 2 distinguishable X’s

(W (1) & W (2)). Here we will consider a subspace that leaves the Z’s invariant,

and has W (2) removed before W (1). This polynomial can be written as:

χR,R′,R′′(Z⊗n−2,W (1),W (2)) =
1

n− 2!

∑

σ∈Sn

TrR′,R′′ (ΓR(σ))×

× Zi1
iσ1
Zi2
iσ2
...Z

in−2

iσn−2
(W (1))

in−1

iσn−1
(W (2))iniσn

=
1

n− 2!

∑

σ∈Sn+2

TrR′,R′′ (ΓR((n+ 1, n+ 2)σ(n+ 1, n+ 2)))×

× Zi1
iσ1
Zi2
iσ2
...Z

in−2

iσn−2
(W (2))

in−1

iσn−1
(W (1))iniσn

(A.8)
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Example 12

χ
1

2

(Z⊗3,W (1),W (2)) =
1

4
χ

1
2

(Z⊗3,W (2),W (1)) +
3

4
χ

2
1

(Z⊗3,W (2),W (1))+

−
√

3

4
χ

1

2
2

1

(Z⊗3,W (2),W (1)) −
√

3

4
χ

2

1
1

2

(Z⊗3,W (2),W (1))
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A.4 Coset Expansions

We can write all the elements of a group in terms of products of two cycles

and a subgroup as

∑

φ∈Sn+2

F (φ) =
∑

φ∈Sn+1

n+2∑

i=1

F ((i, n+ 2)φ)

=
∑

φ∈Sn+1

n+2∑

i=1

F (φ(i, n+ 2))

for any function F .

Applying this result to the restricted schur polynomial, we find:

χR,r,s(Z
⊗n,W (1),W (2)) =

1

n!

∑

φ∈Sn+2

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
(W (2))

in+2

iφn+2

=
1

n!

∑

φ∈Sn+1

TrR,r,s((1, n+ 2)φ)(W (2)Z)i1iφ1
...Zin

iφn
(W (1))

in+1

iφn+1

+ ...+
1

n!

∑

φ∈Sn+1

TrR,r,s((n, n+ 2)φ)Zi1
iφ1
...(W (2)Z)iniφn

(W (1))
in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s((n+ 1, n+ 2)φ)Zi1
iφ1
...Zin

iφn
(W (2)W (1))

in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
Tr(W (2))

=
1

n!

∑

φ∈Sn+1

TrR,r,s(φ(1, n+ 2))(ZW (2))i1iφ1
...Zin

iφn
(W (1))

in+1

iφn+1

+ ...+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ(n, n+ 2))Zi1
iφ1
...(ZW (2))iniφn

(W (1))
in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ(n+ 1, n+ 2))Zi1
iφ1
...Zin

iφn
(W (1)W (2))

in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
Tr(W (2))
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The last thing left to realize is that all of the Z’s are indistinguishable,

and live in the same sub-space. Therefore the first n terms in each of the

expressions group together. We are left with:

χR,r,s(Z
⊗n,W (1),W (2)) =

1

n!

∑

φ∈Sn+2

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
(W (2))

in+2

iφn+2

=
1

(n− 1)!

∑

φ∈Sn+1

TrR,r,s((n, n+ 2)φ)Zi1
iφ1
...(W (2)Z)iniφn

(W (1))
in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s((n+ 1, n+ 2)φ)Zi1
iφ1
...Zin

iφn
(W (2)W (1))

in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
Tr(W (2))

(A.9)

=
1

(n− 1)!

∑

φ∈Sn+1

TrR,r,s(φ(n, n+ 2))Zi1
iφ1
...(ZW (2))iniφn

(W (1))
in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ(n+ 1, n+ 2))Zi1
iφ1
...Zin

iφn
(W (1)W (2))

in+1

iφn+1

+
1

n!

∑

φ∈Sn+1

TrR,r,s(φ)Zi1
iφ1
...Zin

iφn
(W (1))

in+1

iφn+1
Tr(W (2))

(A.10)
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Example 13

χ
1

2

(Z⊗3,W (1),W (2)) =Tr(W (2))χ
1

(Z⊗3,W (1))

+
1

2
χ

1

(Z⊗3, (W (2)W (1)))

− 5

6
χ 2

1

(Z⊗2, (W (2)Z),W (1))

+
1

2
χ

2
1

(Z⊗2, (W (2)Z),W (1))

−
√

2

3
χ 1

2

2

1

(Z⊗2, (W (2)Z),W (1))

A.5 Correlation Functions

We now want to consider the two point function of restricted Schur polyno-

mials. We will consider polynomials with one W , as principles remain the

same when considering many different W ’s. The most general form that the

problem can take is:

〈
W (1)i

jW
(1)†l

m

〉
=F

(1)
0 δimδ

l
j + F

(1)
1 δijδ

l
m

〈
Zi
jZ

†l
m

〉
=δimδ

l
j

All other correlation functions are zero. The coefficients F0&F1 can only

be calculated for specific forms of W . We will not discuss this in this section,

since for our problem, we have a particularly simple expression. We can write

this as [27]:
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〈
χR,R′(Z⊗n,W (1))χ†

S,S′(Z
⊗n,W (1))

〉

=F
(1)
1

〈
Tr(DW (1))χR,R′(Z⊗n,W (1))Tr(DW (1)†)χ

†
S,S′(Z

⊗n,W (1))
〉

+ F
(1)
0

(
(n+ 1)!

n!

)2 〈
χR,R′(Z⊗n+1)χ†

S,S′(Z
⊗n+1)

〉
|n+1

=F
(1)
1

〈
Tr(DW (1))χR,R′(Z⊗n,W (1))Tr(DW (1)†)χ

†
S,S′(Z

⊗n,W (1))
〉

+ F
(1)
0

〈
χ
R,

→

R′
(Z⊗n+1)χ†

S,
→

S′
(Z⊗n+1)

〉
|n+1 (A.11)

The notation |n+1 means that we perform the reduction by forcing the Z

associated with n + 1, to be contracted with the Z† associated with n + 1.

This is referred to as glueing.

Clearly in this situation we will find the answer proportional to δR,SδR′,S′ .

We already know how to perform the reduction, so all we need to do is

understand how to solve for the second term. The result from [27] is given

by

〈
χ
R,

→

R′
(Z⊗n+1)χ†

S,
→

S′
(Z⊗n+1)

〉
|n+1 =

(n+ 1)!

n!

dR′

dR
fR

HooksR
HooksR′

fRδR,SδR′,S′ (A.12)

Example 14
〈
χ

1

χ†

1

〉
=F1

〈
Tr(DW )χ

1

Tr(DW †)χ†

1

〉
+ F0

〈
χ

→

1

χ†

→

1

〉

=F1N
2(N2 − 1)(N − 2)2 + 10F0N

2(N2 − 1)(N − 2)

This is easily generalized for multiple W ′s, and is illustrated in the fol-

lowing example.
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Example 15

〈
χ

2
1

χ†

2
1

〉

=F
(1)
1 F

(2)
1

〈
Tr(D

(2)
W )Tr(D

(1)
W )χ

2
1

Tr(DW (2)†)Tr(DW (1)†)χ
†

2
1

〉
+ F

(1)
0 F

(2)
0

〈
χ

→

2
→

1

χ†
→

2
→

1

〉

+ F
(1)
0 F

(2)
1

〈
Tr(D

(2)
W )χ

2
→

1

Tr(DW (2)†)χ
†

2
→

1

〉
+ F

(1)
1 F

(2)
0

〈
Tr(D

(1)
W )χ

→

2
1

Tr(DW (1)†)χ
†

→

2
1

〉

=F
(1)
1 F

(2)
1 N3(N2 − 1)(N − 2)2 + 8F

(1)
0 F

(2)
0 N2(N2 − 1)(N − 2)

+
8

3
F

(1)
0 F

(2)
1 N3(N2 − 1)(N − 2) + 4F

(1)
1 F

(2)
0 N2(N2 − 1)(N − 2)2



Appendix B

Relationships

B.1 Labeling Conventions

For our particular problem we must consider distinguishable matrices Z&X.

These matrices are distinct and independent, and of size (N × N). We

consider Schur polynomials with n Z’s and 2 X ′s. We restrict our analysis

to considering only Schur polynomials labeled by young diagrams with boxes

in the first two columns only. This will be motivated further later, when we

show that contributions from a third column are small contributions. We

can write our polynomials as:

χR;{r,s}(Z
⊗n, X⊗2) =

1

n!2!

∑

φ∈Sn+2

TrR;{r,s}(φ)Zi1
iφ1
Zi2
iφ2
...Zin

iφn
X
in+1

iφn+1
X
in+2

iφn+2

(B.1)

Here R is a young diagram with p boxes in the first column and q boxes

in the second column, r is any young diagram with any two boxes removed

from the original diagram R. Finally s is a diagram such that R is one of the

101
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diagrams obtained from considering s⊗ r. We want to find a way of tracing

over both the subspace r and s. This can be done by considering projection

operators (one onto r and another onto s). We already know how to build

restricted polynomials with 2 distinguishable matrices W (1)&W (2), we will

need to develop a way of considering indistinguishable matrices for the reps

of S2. We therefore need to consider a new basis. We define the following

notation for later use.

|a; {b1(1), b0(3)}〉 = |

#
#

; 〉 = |

2
1

〉 = |1; {b1, b0}〉 (B.2)

|b; {b1(5), b0(1)}〉 = |
#
#

; 〉 = |
2
1

〉 = |2; {b1, b0}〉 (B.3)

|d; {b1(3), b0(2)}〉 = |
#

#

; 〉 = α |
2

1

〉 + β |
1

2

〉 = α |5; {b1, b0}〉 + β |4; {b1, b0}〉

(B.4)

|e; {b1(3), b0(2)}〉 = |
#

#

; 〉 = α̃ |
2

1

〉 + β̃ |
1

2

〉 = α̃ |5; {b1, b0}〉 + β̃ |4; {b1, b0}〉

(B.5)

We will also need to consider polynomials containing nZ’s and one other

matrix. For later use, we define:



B.1. LABELING CONVENTIONS 103

|R1{b1, b0}〉 = |

1

〉 (B.6)

|R2{b1, b0}〉 = |
1

〉 (B.7)

α, β, α̃&β̃ are all functions that need to be determined to ensure that

we have the correct symmetry for the rep of S2. b0 is the number of empty

boxes in the second column, and b1 is the number of empty boxes in the first

column less the number of empty boxes in the second column. The number in

brackets next to the definition is an example corresponding to the particular

Young diagrams. Each of the empty boxes correspond to one of the Z’s, and

each of the filled boxes corresponding to one of the Y’s. We therefore have

n = 2b0 + b1. We define the following Schur polynomials:
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χ

#
#

; (Z⊗n, X⊗2) = Oa(b1, b0) =O1(b1, b0)

χ
#
#

; (Z⊗n, X⊗2) = Ob(b1, b0) =O2(b1, b0)

χ

#

#

; (Z⊗n, X⊗2) = Od(b1, b0) =α2O5(b1, b0) + β2O4(b1, b0)

+ αβ [O4,5(b1, b0) +O5,4(b1, b0)]

χ

#

#

; (Z⊗n, X⊗2) = Oe(b1, b0) =α̃2O5(b1, b0) + β̃2O4(b1, b0)

+ α̃β̃ [O4,5(b1, b0) +O5,4(b1, b0)]

O4,5 is the Schur polynomial, where we trace over off diagonal elements.

The rows are labeled by the shape of O4, and the columns by the shape of

O5.

B.2 Building (anti-)Symmetric States

We have that |d; {b1, b0}〉 = α |5; {b1, b0}〉 + β |4; {b1, b0}〉. The conditions

that we require this state to satisfy are:
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〈d; {b1, b0} |d; {b1, b0}〉 = 1

(n+ 1, n+ 2) |d; {b1, b0}〉 = |d; {b1, b0}〉

The first condition gives α2 + β2 = 1. The second gives

(n+ 1, n+ 2) [α |5; {b1, b0}〉 + β |4; {b1, b0}〉]

=
−α
b1 + 1

|5; {b1, b0}〉 + β

√
1 − 1

(b1 + 1)2
|5; {b1, b0}〉

+
β

b1 + 1
|4; {b1, b0}〉 + α

√
1 − 1

(b1 + 1)2
|4; {b1, b0}〉

We find that:

α =

√
b1

2(b1 + 1)

β =

√
b1 + 2

2(b1 + 1)
(B.8)

Similarly by requiring that (n+ 1, n+ 2) |e; {b1, b0}〉 = − |e; {b1, b0}〉, we

find that α̃ = β and β̃ = −α
We therefore have:

Od(b1, b0) =
b1

2(b1 + 1)
O5(b1, b0) +

b1 + 2

2(b1 + 1)
O4(b1, b0)

+

√
b1(b1 + 2)

2(b1 + 1)
[O4,5(b1, b0) +O5,4(b1, b0)] (B.9)

Oe(b1, b0) =
b1 + 2

2(b1 + 1)
O5(b1, b0) +

b1
2(b1 + 1)

O4(b1, b0)

−
√
b1(b1 + 2)

2(b1 + 1)
[O4,5(b1, b0) +O5,4(b1, b0)] (B.10)
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Example 16

χ
#

#

; =
1

4
χ

2
1

+
3

4
χ

1
2

+

+

√
3

4


χ

1

2
2

1

+ χ
2

1
1

2




χ #

#

; =
5

8
χ 2

1

+
3

8
χ 1

2

+

−
√

15

8


χ 1

2

2

1

+ χ 2

1

1

2




B.3 Twisted States

For our problem the X’s are indistinguishable. Therefore if we apply the sub-

group swap rule to swap between the two X’s we will get the same polynomial

back again.

χR;{r,s} =
1

n!2!

∑

φ∈Sn+2

TrR;{r,s}(φ)Zi1
iφ1
Zi2
iφ2
...Zin

iφn
X
in+1

iφn+1
X
in+2

iφn+2

=
1

n!2!

∑

φ∈Sn+2

TrR;{r,s}((n+ 1, n+ 2)φ(n+ 1, n+ 2))Zi1
iφ1
Zi2
iφ2
...Zin

iφn
X in+1
iφn+1

X in+2
iφn+2

After performing all the relevant contractions, we can write:
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O5(b1, b0) =
1

(b1 + 1)2
O5(b1, b0) +

(
1 − 1

(b1 + 1)2

)
O4(b1, b0)

+
−1

b1 + 1

√
1 − 1

(b1 + 1)2
[O5,4(b1, b0) +O4,5(b1, b0)]

In a similar way we can show that:

O5,4(b1, b0) =
−1

(b1 + 1)2
O5,4(b1, b0) +

(
1 − 1

(b1 + 1)2

)
O4,5(b1, b0)

+
1

b1 + 1

√
1 − 1

(b1 + 1)2
[O4(b1, b0) −O5(b1, b0)]

These can be re-written to give the relations:

⇒ O5,4(b1, b0) = O4,5(b1, b0) =

√
b1(b1 + 2)

2
[O4(b1, b0) −O5(b1, b0)] (B.11)

Example 17

χ 1

2

2

1

= χ 2

1

1

2

=

√
15

2


χ 1

2

− χ 2

1




χ
1

2
2

1

= χ
2

1
1

2

=

√
3

2

[
χ

1
2

− χ
2

1

]

B.4 Swapping Basis

We have from eq.’s(B.9),(B.10), together with eq.(B.11):
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Od(b1, b0) =α2O5(b1, b0) + αβ (O4,5(b1, b0) +O5,4(b1, b0)) + β2O4(b1, b0)

=
b1

2(b1 + 1)
O5(b1, b0) +

b1(b1 + 2)

2(b1 + 1)
[O4(b1, b0) −O5(b1, b0)] +

b1 + 2

2(b1 + 1)
O4(b1, b0)

=
b1 + 2

2
O4(b1, b0) −

b1
2
O5(b1, b0) (B.12)

Oe(b1, b0) =
b1 + 2

2
O5(b1, b0) −

b1
2
O4(b1, b0) (B.13)

We can invert this to see that:

O5(b1, b0) =
b1 + 2

2(b1 + 1)
Oe(b1, b0) +

b1
2(b1 + 1)

Od(b1, b0) (B.14)

O4(b1, b0) =
b1 + 2

2(b1 + 1)
Od(b1, b0) +

b1
2(b1 + 1)

Oe(b1, b0) (B.15)

O4,5(b1, b0) = O5,4(b1, b0) =
1

2

√
1 − 1

(b1 + 1)2
[Od(b1, b0) −Oe(b1, b0)] (B.16)

Now using equations (B.12),(B.13),(B.14),(B.15) & (B.16), we have a

simple way of translating between the various bases.

Example 18

χ
2

1

=
3

4
χ ; +

1

4
χ ;

χ
1

2

=
3

4
χ ; +

1

4
χ ;

χ 2

1

=
5

8
χ ; +

3

8
χ ;

χ 1

2

=
5

8
χ ; +

3

8
χ ;



Appendix C

Correlation Functions

In this section we want to build up the technology to compute exact corre-

lation functions between our polynomials in 2 indistinguishable X’s, with:

〈
X i
jX

†l
m

〉
=δimδ

l
j

〈
Zi
jZ

†l
m

〉
=δimδ

l
j

We know how to solve correlation functions for the X’s being distinguish-

able, but not yet for the indistinguishable ones. Also, we know how to solve

correlation functions for the basis O1, O2, O4&O5. We will try to develop a

means of considering correlation functions in our basis with indistinguish-

able X’s in terms of correlation function in the basis O1, O2, O4&O5 between

distinguishable X’s.
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C.1 Regular Shapes

Let’s start by considering the correlation function between indistinguishable

X’s in the old basis.

〈
χR,R′,R′′(Z⊗n, X⊗2) χS,S′,S′′(Z†⊗n, X†⊗2

)
〉

=
1

n!2!

1

n!2!

∑

φ∈Sn+2

∑

φ′∈Sn+2

TrR,R′,R′′(φ)TrS,S′,S′′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
〈
X
in+1

iφn+1
X
in+2

iφn+2
X

†jn+1

jφ′n+1
X

†jn+2

jφ′n+2

〉

=
1

n!2!

1

n!2!

∑

φ∈Sn+2

∑

φ′∈Sn+2

TrR,R′,R′′(φ)TrS,S′,S′′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
[〈
X
in+1

iφn+1
X

†jn+1

jφ′n+1

〉〈
X
in+2

iφn+2
X

†jn+2

jφ′n+2

〉
+
〈
X
in+1

iφn+1
X

†jn+2

jφ′n+2

〉〈
X
in+2

iφn+2
X

†jn+1

jφ′n+1

〉]

=
1

n!2!

1

n!2!

∑

φ∈Sn+2

∑

φ′∈Sn+2

TrR,R′,R′′(φ)TrS,S′,S′′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
[〈
X(2)in+1

iφn+1
X(2)†jn+1

jφ′n+1

〉〈
X(1)in+2

iφn+2
X(1)†jn+2

jφ′n+2

〉
+
〈
X(2)in+1

iφn+1
X(2)†jn+2

jφ′n+2

〉〈
X(1)in+2

iφn+2
X(1)†jn+1

jφ′n+1

〉]

=
1

4

〈
χR,R′,R′′(Z⊗n, X, Y ) χS,S′,S′′(Z†⊗n, X, Y )

〉

+
1

4

〈
χR,R′,R′′(Z⊗n, X, Y ) χS,S′,S′′(Z†⊗n, Y,X)

〉

We already know how to perform these calculations from section A eq.(A.12).

In the second factor we simply apply the sub-group swap rule before we can

use the standard methods for determining the correlation function. Note that

we are now allowed to have different shapes having a non zero correlation

function.This means that the basis O1, O2, O4&O5 are no longer orthogonal.

This is another good motivation for building the (anti-)symmetric basis since

it is diagonal.
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The results relevant to our problem where the boxes are limited to the

first column only, are:

〈
O1O

†
1

〉indis
=

1

2

〈
O1O

†
1

〉dis

〈
O2O

†
2

〉indis
=

1

2

〈
O2O

†
2

〉dis

〈
O4O

†
4

〉indis
=

1

4

[
1 +

1

(b1 + 1)2

]〈
O4O

†
4

〉dis

〈
O5O

†
5

〉indis
=

1

4

[
1 +

1

(b1 + 1)2

]〈
O5O

†
5

〉dis

〈
O4O

†
5

〉indis
=

1

4

[
1 − 1

(b1 + 1)2

]〈
O4O

†
4

〉dis

〈
O5O

†
4

〉indis
=

1

4

[
1 − 1

(b1 + 1)2

]〈
O5O

†
5

〉dis

Here “dis” implies that the X’s are distinguishable, and “indis” implies

the X’s are indistinguishable. Now using
〈
O4O

†
4

〉dis
=
〈
O5O

†
5

〉dis

〈
OaO

†
a

〉
=

(b1 + 1)(b1 + b0 + 3)(b1 + b0 + 2)

2(b1 + 3)

N !

(N − b0 − b1 − 2)!

(N + 1)!

(N − b0 + 1)!
〈
ObO

†
b

〉
=

(b1 + 1)(b0 + 2)(b0 + 1)

2(b1 − 1)

N !

(N − b0 − b1)!

(N + 1)!

(N − b0 − 1)!
〈
OdO

†
d

〉
=

(b1 + b0 + 2)(b0 + 1)

2

N !

(N − b0 − b1 − 1)!

(N + 1)!

(N − b0)!
〈
OeO

†
e

〉
=

(b1 + b0 + 2)(b0 + 1)

2

N !

(N − b0 − b1 − 1)!

(N + 1)!

(N − b0)!
(C.1)

All other correlation functions are zero, showing that this basis is orthog-

onal under correlation functions.
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Example 19

〈
χ

#
#

; χ†

#
#

;

〉
= 4N2(N2 − 1)(N − 2)

〈
χ #

#

; χ†
#

#

;

〉
=

5

2
N(N2 − 1)(N − 2)(N − 3)

〈
χ #

#

; χ†
#
#

;

〉
= 2N2(N2 − 1)(N − 2)

Shortly we will need to consider polynomials with a box associated with

X in the third column. We will also need the correlation functions associated

with these. The symmetric state with a box in the first and third column

to be removed will be called f, and its antisymmetric counterpart called g.

Then the symmetric state with boxes in the second and third column to be

removed called h, and its symmetric counterpart called i.

Example 20

χf (2, 3) = χ #

#

;

χg(2, 3) = χ #

#

;

χh(2, 3) = χ #

#

;

χi(2, 3) = χ #

#

;

We get the relationships:
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〈
OfO

†
f

〉
=

(b0 + 1)(b1 + 1)(b1 + b0 + 3)

2b0(b1 + 2)

N !

(N − b0 − b1 − 1)!

(N + 1)!

(N − b0 + 1)!
(N + 2)

〈
OgO

†
g

〉
=

(b0 + 1)(b1 + 1)(b1 + b0 + 3)

2b0(b1 + 2)

N !

(N − b0 − b1 − 1)!

(N + 1)!

(N − b0 + 1)!
(N + 2)

〈
OhO

†
h

〉
=

(b1 + 1)(b1 + b0 + 2)(b0 + 2))

2b1(b1 + b0 + 1)

N !

(N − b0 − b1)!

(N + 1)!

(N − b0)!
(N + 2)

〈
OiO

†
i

〉
=

(b1 + 1)(b1 + b0 + 2)(b0 + 2))

2b1(b1 + b0 + 1)

N !

(N − b0 − b1)!

(N + 1)!

(N − b0)!
(N + 2)

(C.2)

C.2 Correlation Functions for Irregular Poly-

nomials

Later, when we solve for the dilatation operator in the original basis, we

will be left with polynomials in X2, as well as polynomials proportional to

Tr(X). The treatment of these terms is very similar for both cases.

We expect that all these polynomials in 2 X’s, should be expressed in

terms of the symmetrized basis. We therefore search for a way of writing

these irregular polynomials in terms of the original basis.

OR′(Z⊗n, X2) =
∑

R;{r,s}
ςR;{r,s}OR;{r,s}(Z

⊗n, X⊗2)

Tr(X)OR′(Z⊗n, X) =
∑

R;{r,s}
εR;{r,s}OR;{r,s}(Z

⊗n, X⊗2)

We need to solve for the expressions ςR;{r,s}&εR;{r,s}. This is done by using

the fact that the O(R;{r,s}) are orthogonal under correlation functions.
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〈
OR;{r,s}O

†
R,R′(Z

⊗n, X2)
〉

= ςR;{r,s}

〈
OR;{r,s}O

†
R;{r,s}

〉

We get a similar expression for εR;{r,s}. Let’s consider

〈
χR,R′(Z⊗n, X2) χS,S′(Z†⊗n, X†2)

〉

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+1

TrR,R′(φ)TrS,S′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
〈
X
in+1

l X l
iφn+1

X†jn+1
m X†m

jφ′n+1

〉

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+1

TrR,R′(φ)TrS,S′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
[〈
X
in+1

l X†jn+1
m

〉〈
X l
iφn+1

X†m
jφ′n+1

〉
+
〈
X
in+1

l X†m
jφ′n+1

〉 〈
X l
iφn+1

X†jn+1
m

〉]

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+1

TrR,R′(φ)TrS,S′(φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
[
δ
in+1

iφn+1
δ
jn+1

jφ′n+1
+ δ

in+1

jφ′n+1
δ
jn+1

iφn+1
N
]

=
〈
χR,R′(Z⊗n,W ) χS,S′(Z†⊗n,W †)

〉

UsingF0 = N&F1 = 1

Similarly we find that:

〈
Tr(X)χR,R′(Z⊗n, X) Tr(X†)χS,S′(Z†⊗n, X†)

〉

=
〈
χR,R′(Z⊗n, X2) χS,S′(Z†⊗n, X†2)

〉

If we consider each of the 2 cases, we have
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〈
χR′

1
(b1, b0)(Z

⊗n, X2) χR′
1
(b1, b0)(Z

†⊗n, X†2)
〉

=

[
(N − b0 − b1) +

N(b1 + 1)(b0 + b1 + 2)

b1 + 2

]
N !

(N − b0 − b1 − 1)!

(N + 1)!

(N − b0 + 1)!
〈
χR′

2
(b1, b0)(Z

⊗n, X2) χR′
2
(b1, b0)(Z

†⊗n, X†2)
〉

=

[
(N − b0 + 1) +

N(b1 + 1)(b0 + 1)

b1

]
N !

(N − b0 − b1)!

(N + 1)!

(N − b0)!
(C.3)

We now want to solve for the ςR;{r,s}. This involves solving problems of

the form:

〈
χS,S′(Z⊗n, X2) χR;{r,s}(Z

†⊗n, X†⊗2)
〉

=
1

n!

1

n!2!

∑

φ∈Sn+1

∑

φ′∈Sn+2

TrS,S′(φ)TrR;{r,s}(φ
′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
〈
X
in+1

l X l
iφn+1

X
†jn+1

jφ′n+1
X

†jn+2

jφ′n+2

〉

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+2

TrS,S′(φ)TrR;{r,s}(φ
′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

×
〈
X
in+1

l X
†jn+1

jφ′n+1

〉〈
X l
iφn+1

X
†jn+2

jφ′n+2

〉

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+1

TrS,S′(φ)TrR;{r,s}(φ
′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

× δ
in+1

jφ′n+1
δ
jn+1

jφ′n+2
δ
jn+2

iφn+1

=
1

n!

1

n!

∑

φ∈Sn+1

∑

φ′∈Sn+1

TrS,S′(φ)TrR;{r,s}((n+ 1, n+ 2)φ′)
〈
Zi1
iφ1
Zi2
iφ2
...Zin

iφn
Z†j1
jφ′1
Z†j2
jφ′2
...Z†jn

jφ′n

〉

× δ
in+1

jφ′n+2
δ
jn+1

jφ′n+1
δ
jn+2

iφn+1

=Γs((1, 2))
〈
χS,S′(Z⊗n, X) Tr(DX†)χR;{r,s}(Z

†⊗n, X†⊗2)
〉

Similarly we get:
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〈
χS,S′(Z⊗n, X2) χR;{r,s}(Z

†⊗n, X†⊗2)
〉

=
〈
χS,S′(Z⊗n, X) Tr(DX†)χR;{r,s}(Z

†⊗n, X†⊗2)
〉

We immediately see that
∥∥ςR;{r,s}

∥∥ = εR;{r,s}.

We can use these expressions to find the ς’s. The final solution is quoted

below.

ςR;{r,s} =

〈
OR;{r,s}O

†
R,R′(Z⊗n, X2)

〉

〈
OR;{r,s}O

†
R;{r,s}

〉

ςR1,a(b1, b0) =
−2(b1 + 3)

(b0 + b1 + 3)(b1 + 2)

ςR1,d(b1, b0) =
1

b0 + 1

ςR1,e(b1, b0) =
−b1

(b1 + 2)(b0 + 1)

ςR1,f (b1, b0) =
b0

b0 + 1

ςR1,g(b1, b0) =
−b0(b0 + b1 + 1)

(b0 + 3)(b0 + b1 + 3)

ςR2,b(b1, b0) =
−2(b1 − 1)

b1(b0 + 2)

ςR2,d(b1, b0) =
1

b0 + b1 + 2

ςR2,e(b1, b0) =
−(b1 + 2)

b1(b0 + b1 + 2)

ςR2,h(b1, b0) =
b0 + b1 + 1

b0 + b1 + 2

ςR2,i(b1, b0) =
−b0(b0 + b1 + 1)

(b0 + 2)(b0 + b1 + 2)
(C.4)



Appendix D

Dilatation Operator

We use the following operator as a candidate for our Hamiltonian operator.

D̂ = [X,Z]ij [DZ , DX ]ji (D.1)

We see that the action of the operator is to remove and then immediately

add an X and a Z when acting on our basis. We should be able to write

the action of this operator in terms of our original basis. In this appendix

we find the exact result for the action of the above operator on each of our

states.
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D.1 Action of the D̂

D̂χR,{r,s} = (XZ − ZX)ij
(
DZ

j
lDX

l
i −DX

j
lDZ

l
i

) 1

n!2!

∑

φ∈Sn+2

× TrR,{r,s}(φ)Zi1
iφ1
Zi2
iφ2
...Zin

iφn
X
in+1

iφn+1
X
in+2

iφn+2

= (XZ − ZX)ij
1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}(φ)Zi1
iφ1
...Zin−1

iφn−1
X
in+2

iφn+2
×

+ ×
[
δjiφn

δinl δ
l
iφn+1

δ
in+1

i − δjiφn+1
δ
in+1

l δliφn
δini

]

=
1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}(φ)Zi1
iφ1
...Zin−1

iφn−1
X
in+2

iφn+2
×

×
[
(XZ − ZX)in+1

iφn
δiniφn+1

− (XZ − ZX)iniφn+1
δ
in+1

iφn

]

We can now shift φ→ φ(n, n+ 1) to get

D̂χR,{r,s} =
1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}(φ(n, n+ 1))Zi1
iφ1
...Zin−1

iφn−1
X
in+2

iφn+2
×

×
[
(XZ − ZX)

in+1

iφn+1
δiniφn

− (XZ − ZX)iniφn
δ
in+1

iφn+1

]

Now we can use the sub-group swap rule to swap the δ from the n position

to the n+ 1 position in the first term. The second term will be left alone.

D̂χR,{r,s} =
1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}([(n, n+ 1), φ])Zi1
iφ1
...Zin−1

iφn−1
X
in+2

iφn+2
×

×
[
(XZ − ZX)iniφn

δ
in+1

iφn+1

]

The final step is to use the subgroup swap rule between to swap the δ and

the X. We also could have used the subgroup swap rule before we started the

calculation, since swapping the X’s has no effect.
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D̂χR,{r,s} =
1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}((n, n+ 2)φ− φ(n, n+ 2)))×

× Zi1
iφ1
...Zin−1

iφn−1
(XZ − ZX)iniφn

X
in+1

iφn+1
δ
in+2

iφn+2

=DV
i
i

1

(n− 1)!

∑

φ∈Sn+2

TrR,{r,s}((n, n+ 2)φ− φ(n, n+ 2)))×

× Zi1
iφ1
...Zin−1

iφn−1
(XZ − ZX)iniφn

X
in+1

iφn+1
V
in+2

iφn+2

We cannot perform this reduction until we have looked at the action of

(n, n+ 2). At this point we need to split up our basis, and then perform the

reduction. Some of the states can be ignored, because they mix V , and will

be removed after the reduction. The diagonal states can be ignored since

they give the same contribution for both terms. We are left with:

D̂Oa(b1, b0)(Z
⊗n, X⊗2) =

(N − b0 − b1 − 1)
√

(b1 + 1)(b1 + 3)

(b1 + 2)(b1 + 3)
×

×
[
O4,5(b1 + 1, b0 − 1)(Z⊗n−1, XZ − ZX,X)

− O5,4(b1 + 1, b0 − 1)(Z⊗n−1, XZ − ZX,X)
]

(D.2)

D̂Ob(b1, b0)(Z
⊗n, X⊗2) =

(N − b0)
√

(b1 + 1)(b1 − 1)

b1(b1 − 1)
×

×
[
O4,5(b1 − 1, b0)(Z

⊗n−1, XZ − ZX,X)

− O5,4(b1 − 1, b0)(Z
⊗n−1, XZ − ZX,X)

]

(D.3)

=
N − b0

N − b0 − b1

b1 + 1

b1 − 1
D̂Oa(b1 − 2, b0 + 1) (D.4)
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D̂Od(b1, b0) =
b1
2
D̂Oa(b1 − 2, b0 + 1)

− b1 + 2

2
D̂Ob(b1 + 2, b0 − 1) (D.5)

D̂Oe(b1, b0) =
b1
2
D̂Ob(b1 + 2, b0 − 1)

− b1 + 2

2
D̂Oa(b1 − 2, b0 + 1) (D.6)

Example 21

D̂χ 2
1

=
N
√

2

3


χ 1

2

2

1

− χ 2

1

1

2




D̂χ
2
1

=
N − 3

3
√

2


χ 1

2

2

1

− χ 2

1

1

2




D.2 Splitting XZ & ZX

We now have an expression for the action of D̂ in terms of polynomials in

XZ&ZX. These polynomials need to be split and returned to the original

basis. Using the techniques of [28], and eq.’s (B.14),(B.15) & (B.16) to write:



D.2. SPLITTING XZ & ZX 121

DOa(b1, b0) = 2(N − b0 − b1 − 1)

[
2

(b1 + 2)2
Oa(b1, b0)

−1

b1 + 2
Od(b1, b0)

b1
(b1 + 2)2

Oe(b1, b0)

b1 + 1

(b1 + 2)(b1 + 3)
Od(b1 + 2, b0 − 1)

−(b1 + 4)(b1 + 1)

(b1 + 3)(b1 + 2)2
Oe(b1 + 2, b0 − 1)

2(b1 + 1)

(b1 + 3)(b1 + 2)2
Ob(b1 + 2, b0 − 1)

1

b1 + 2
OR1(b1, b0)(X

2)

−(b1 + 1)

(b1 + 2)(b1 + 3)
OR2(b1 + 2, b0 − 1)(X2)

]

(D.7)

Now using the relations (C.4), we can write the irregular polynomials in

terms of our original basis:
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DOa(b1, b0) = 2(N − b0 − b1 − 1)

[
2

(b1 + 2)2

(
1 − b1 + 3

b0 + b1 + 3

)
Oa(b1, b0)

−1

b1 + 2

(
1 − 1

b0 + 1

)
Od(b1, b0)

b1
(b1 + 2)2

(
1 − 1

b0 + 1

)
Oe(b1, b0)

b1 + 1

(b1 + 2)(b1 + 3)

(
1 − 1

b0 + b1 + 3

)
Od(b1 + 2, b0 − 1)

−(b1 + 4)(b1 + 1)

(b1 + 3)(b1 + 2)2

(
1 − 1

b0 + b1 + 3

)
Oe(b1 + 2, b0 − 1)

2(b1 + 1)

(b1 + 3)(b1 + 2)2

(
1 +

b1 + 1

b0 + 1

)
Ob(b1 + 2, b0 − 1)

1

b1 + 2

b0
b0 + 1

Of (b1, b0)

−1

b1 + 2

b0(b0 + b1 + 1)

(b0 + 1)(b0 + b1 + 3)
Og(b1, b0)

−(b1 + 1)

(b1 + 2)(b1 + 3)

b0 + b1 + 2

b0 + b1 + 3
Oh(b1 + 2, b0 − 1)

b1 + 1

(b1 + 2)(b1 + 3)

(b0 − 1)(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)
Oi(b1 + 2, b0 − 1)

]

Here we have defined Of , Og, Oh,&Oi in section C.1

We still obviously have the relations (D.4), (D.5) & (D.6).



Appendix E

Cuntz Chain States

In any conformal field theory there is a map between states and operators. In

this section we want to trade our operators for a set of normalized Cuntz chain

states. These normalization factors are easily inserted, since the dilatation

operator is linear. D̂(cO) = cD̂(O). Consider

ℵa(b1, b0) =
1√〈

O†
a(b1, b0)Oa(b1, b0)

〉

then

|b1, b0, a〉 = ℵa(b1, b0)Oa(b1, b0)

|b1, b0, b〉 = ℵb(b1, b0)Ob(b1, b0)

|b1, b0, d〉 = ℵd(b1, b0)Od(b1, b0)

|b1, b0, e〉 = ℵe(b1, b0)Oe(b1, b0)

From here on, we will absorb the weight into a factors that we call

Wa(b1, b0) = N − b0 − b1 − 1 and Wb(b1, b0) = N − b0.
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D |b1, b0, a〉 = 2Wa(b1, b0)

[
2

(b1 + 2)2

b0
b0 + b1 + 3

|b1, b0, a〉

−1

b1 + 2

b0
b0 + 1

ℵa(b1, b0)
ℵd(b1, b0)

|b1, b0, d〉

b1
(b1 + 2)2

b0
b0 + 1

ℵa(b1, b0)
ℵe(b1, b0)

|b1, b0, e〉

b1 + 1

(b1 + 2)(b1 + 3)

b0 + b1 + 2

b0 + b1 + 3

ℵa(b1, b0)
ℵd(b1 + 2, b0 − 1)

|b1 + 2, b0 − 1, d〉

−(b1 + 4)(b1 + 1)

(b1 + 3)(b1 + 2)2

b0 + b1 + 2

b0 + b1 + 3

ℵa(b1, b0)
ℵe(b1 + 2, b0 − 1)

|b1 + 2, b0 − 1, e〉

2(b1 + 1)

(b1 + 3)(b1 + 2)2

b0 + b1 + 2

b0 + 1

ℵa(b1, b0)
ℵb(b1 + 2, b0 − 1)

|b1 + 2, b0 − 1, b〉

1

b1 + 2

b0
b0 + 1

ℵa(b1, b0)
ℵf (b1, b0)

|b1, b0, f〉

−1

b1 + 2

b0(b0 + b1 + 1)

(b0 + 1)(b0 + b1 + 3)

ℵa(b1, b0)
ℵg(b1, b0)

|b1, b0, g〉

−(b1 + 1)

(b1 + 2)(b1 + 3)

b0 + b1 + 2

b0 + b1 + 3

ℵa(b1, b0)
ℵh(b1 + 2, b0 − 1)

|b1 + 2, b0 − 1, h〉

b1 + 1

(b1 + 2)(b1 + 3)

(b0 − 1)(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)

ℵa(b1, b0)
ℵi(b1 + 2, b0 − 1)

|b1 + 2, b0 − 1, i〉
]

D̂ |b1, b0, b〉 =
N − b0

N − b0 − b1

b1 + 1

b1 − 1

ℵb(b1, b0)
ℵa(b1 − 2, b0 + 1)

D̂ |b1 − 2, b0 + 1, a〉
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D̂ |b1, b0, d〉 =
b1
2

ℵd(b1, b0)
ℵa(b1 − 2, b0 + 1)

D̂ |b1 − 2, b0 + 1, a〉

− N − b0 + 1

N − b0 − b1 − 1

(b1 + 2)(b1 + 3)

2(b1 + 1)

ℵd(b1, b0)
ℵa(b1, b0)

D̂ |b1, b0, a〉

D̂Oe(b1, b0) =
N − b0 + 1

N − b0 − b1 − 1

b1(b1 + 3)

2(b1 + 1)

ℵe(b1, b0)
ℵa(b1, b0)

D̂ |b1, b0, a〉

− b1 + 2

2

ℵe(b1, b0)
ℵa(b1 − 2, b0 + 1)

D̂ |b1 − 2, b0 + 1, a〉

We are now in a position to start making approximations. We are inter-

ested in the large N limit for nearly maximal giants. This implies that b0 is

also large. We can make the approximations that 1√
N

∼ 1√
b0

∼ 0. Using the

normalization calculated in eq.’s (C.1) & (C.2)

ℵa(b1, b0)
ℵf (b1, b0)

=

√
(b0 + 1)(b1 + 3)

b0(b0 + b1 + 2)(b1 + 2)

N + 2

N − b0 − 1

=

√
(b0 + 1)(b1 + 3)

b0(b0 + b1 + 2)(b1 + 2)
+ O(

1√
N

)

∼ 1√
b0

∼ 0

We can drop the contributions from all the states that are labeled by

a Young diagram with a box in the third column. We can also make the

approximations that:

b0 + O(1)

b0
≈ b0 + b1 + O(1)

b0 + b1
≈ b0 + b1 + O(1)

b0
≈ 1 (E.1)

We can use the approximations (eq.(E.1)) to get the following identities:
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ℵd(b1, b0) = ℵe(b1, b0) (E.2)

ℵa(b1, b0)
ℵd(b1, b0)

=

√
(b1 + 3)

(b1 + 1)

(N − b0 + 1)

(N − b1 − b0 − 1)
(E.3)

ℵa(b1, b0)
ℵd(b1 + 2, b0 − 1)

=

√
(b1 + 3)

(b1 + 1)
(E.4)

ℵa(b1, b0)
ℵb(b1 + 2, b0 − 1)

=
(b1 + 3)

(b1 + 1)

√
(N − b0 + 1)

(N − b1 − b0 − 1)
(E.5)

Using these normalization factors we find that:

D |b1, b0, a〉 =
4

(b1 + 2)2
Wa(b1, b0) |b1, b0, a〉

−2

b1 + 2

√
b1 + 3

b1 + 1

√
Wa(b1, b0)Wb(b1 + 2, b0 − 1) |b1, b0, d〉

2b1
(b1 + 2)2

√
b1 + 3

b1 + 1

√
Wa(b1, b0)Wb(b1 + 2, b0 − 1) |b1, b0, e〉

2

b1 + 2

√
b1 + 1

b1 + 3
Wa(b1, b0) |b1 + 2, b0 − 1, d〉

−2(b1 + 4)

(b1 + 2)2

√
b1 + 1

b1 + 3
Wa(b1, b0) |b1 + 2, b0 − 1, e〉

4

(b1 + 2)2

√
Wa(b1, b0)Wb(b1 + 2, b0 − 1) |b1 + 2, b0 − 1, b〉

(E.6)

D̂ |b1, b0, b〉 =

√
Wb(b1, b0)

Wa(b1 − 2, b0 + 1)
D̂ |b1 − 2, b0 + 1, a〉 (E.7)

D̂ |b1, b0, d〉 =
b1
2

√
b1 − 1

b1 + 1
D̂ |b1 − 2, b0 + 1, a〉

− b1 + 2

2

√
Wb(b1 + 2, b0 − 1)

Wa(b1, b0)

√
b1 + 3

b1 + 1
D̂ |b1, b0, a〉 (E.8)
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D̂ |b1, b0, e〉 =
b1
2

√
Wb(b1 + 2, b0 − 1)

Wa(b1, b0)

√
b1 + 3

b1 + 1
D̂ |b1, b0, a〉

− b1 + 2

2

√
b1 − 1

b1 + 1
D̂ |b1 − 2, b0 + 1, a〉 (E.9)



Appendix F

Diagonalizing D̂

In this section we want to diagonalize D̂. Since we wish to consider D̂ as

a Hamiltonian, we should have real valued eigenvalues, which are at least

bounded below.

We know that the Schur polynomial basis is a complete basis for the

problem. This does not necessarily mean that the Schur polynomial basis will

diagonalize the dilatation operator. Since we wish to consider the dilatation

operator as the Hamiltonian of the system, we need to build states that

diagonalize it. These states will also form a basis for the problem. Our

goal in this appendix is to write these states in terms of the original Schur

polynomial, which we think we know how to interpret.

Since the total number of boxes in the Young diagram remains the same

after the action of D̂, we only need to label our states by one changing

parameter and shape. Since b1 appears most regularly it seems natural to

retain this when labeling the different states. The structure of the problem

means that b1 only changes by multiples of 2. We can therefore split the

problem into solving for an even number of boxes and an odd number of

128
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boxes. Let’s consider the number of boxes even, and for simplicity N even.

The only other freedom we have is in our choice of N. In order for us to

justify dropping all the polynomials, let N be a large number, and the total

number of boxes be slightly less than 2N . This means that the weight of

the last box in the first column will decrease to zero, as b1 increases. When

the weight of the last box in the first column goes to zero, this state has a

zero norm. This effectively truncates our sum, forcing b0 to always be a large

number.

At this point we will change notation slightly. Instead of labeling the

polynomials by b0&b1, we will now label them by the length of each column

p&q, which includes the boxes corresponding to X.

|b1, b0, a〉 → |p = b0 + b1 + 2, q = b0, a〉

|b1, b0, b〉 → |p = b0 + b1, q = b0 + 2, b〉

|b1, b0, d〉 → |p = b0 + b1 + 1, q = b0 + 1, d〉

|b1, b0, e〉 → |p = b0 + b1 + 1, q = b0 + 1, e〉

Wa(b1, b0) → Wa(p, q) = N + 1 − p

Wb(b1, b0) → Wb(p, q) = N + 2 − q

We are interested in the large N limit where we are considering 2 nearly

maximal Giant gravitons, with strings attached to them. We know that

strings have a length of O(N) therefore we must consider the situation where

the difference in size between the giants is O(N). We can naturally interpret

the size of the larger giant as p and the the size of the smaller one as q. The
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number p− q gives the difference in size of the two giants.

Due to the fact that we can’t define a state |p, p, a〉, we shift from writing

expressions in terms of D |p, q, a〉 to D |p, q, b〉
The relations (eq.’s (E.6), (E.7), (E.8) & (E.9)) from the previous section

become(σ = p− q):

D |p, q, b〉 =
4

(σ + 2)2

√
Wa(p+ 1, q − 1)Wb(p, q) |p+ 1, q − 1, a〉

−2

σ + 2

√
σ + 3

σ + 1
Wb(p, q) |p, q, d〉

2σ

(σ + 2)2

√
σ + 3

σ + 1
Wb(p, q) |p, q, e〉

2

σ + 2

√
σ + 1

σ + 3

√
Wa(p+ 1, q − 1)Wb(p, q) |p+ 1, q − 1, d〉

−2(σ + 4)

(σ + 2)2

√
σ + 1

σ + 3

√
Wa(p+ 1, q − 1)Wb(p, q) |p+ 1, q − 1, e〉

4

(σ + 2)2
Wb(p, q) |p, q, b〉

D̂ |p, q, a〉 =

√
Wa(p, q)

Wb(p− 1, q + 1)
D̂ |p− 1, q + 1, b〉

D̂ |p, q, d〉 =
σ

2

√
σ − 1

σ + 1

√
Wa(p, q)

Wb(p− 1, q + 1)
D̂ |p− 1, q + 1, b〉

− σ + 2

2

√
σ + 3

σ + 1
D̂ |p, q, b〉

D̂ |b1, b0, e〉 =
σ

2

√
σ + 3

σ + 1
D̂ |p, q, b〉

− σ + 2

2

√
σ − 1

σ + 1

√
Wa(p, q)

Wb(p− 1, q + 1)
D̂ |p− 1, q + 1, b〉
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We now define the number of boxes to be M = p+ q. Truncating the sum is

now easy. To avoid having a box with zero weight, we have pmax = N . The

minimum value of σ changes depending on the shape. The following table

gives the ranges of p and σ.

Shape pmax σmax pmin σmin

a N 2N −M M+2
2

2

b N 2N −M M
2

0

d N 2N −M M
2

0

e N 2N −M M+2
2

2

We can see that all the information about the polynomial is kept in

N,M, σ and the shape. Since N and M are the same for all of the poly-

nomials, we need only label states by σ ,the number of boxes and the shape.

Since the number of boxes does not change by the action of D̂, we only need

to keep track of σ and the shape.
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D̂

2N−M
2∑

j=0

b2j |2j, b〉 =

M−2N
2∑

j=0

4

(2j + 2)2

√
Wa(2j + 2)Wb(2j)b2j |2j + 2, a〉

−
2N−M

2∑

j=0

2

2j + 2

√
2j + 3

2j + 1
Wb(2j)b2j |2j, d〉

+

2N−M
2∑

j=0

2(2j)

(2j + 2)2

√
2j + 3

2j + 1
Wb(2j)b2j |2j, e〉

+

2N−M
2∑

j=0

2

2j + 2

√
2j + 1

2j + 3

√
Wa(2j + 2)Wb(2j)b2j |2j + 2, d〉

−
2N−M

2∑

j=0

2(2j + 4)

(2j + 2)2

√
2j + 1

2j + 3

√
Wa(2j + 2)Wb(2j)b2j |2j + 2, e〉

+

2N−M
2∑

j=0

4

(2j + 2)2
Wb(2j)b2j |2j, b〉

=

M−2N
2∑

j=1

4

(2j)2

√
Wa(2j)Wb(2j − 2)b2j−2 |2j, a〉

−
2N−M

2∑

j=0

2

2j + 2

√
2j + 3

2j + 1
Wb(2j)b2j |2j, d〉

+

2N−M
2∑

j=1

2(2j)

(2j + 2)2

√
2j + 3

2j + 1
Wb(2j)b2j |2j, e〉

+

2N−M
2∑

j=0

2

2j

√
2j − 1

2j + 1

√
Wa(2j)Wb(2j − 2)b2j−2 |2j, d〉

−
2N−M

2∑

j=1

2(2j + 2)

(2j)2

√
2j − 1

2j + 1

√
Wa(2j)Wb(2j − 2)b2j−2 |2j, e〉

+

2N−M
2∑

j=0

4

(2j + 2)2
Wb(2j)b2j |2j, b〉
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Here we have used the fact that Wa(
2N−M

2
+ 1)=0, and forced b−2

0
= 0.

The contributions for the other shapes are:
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D̂

2N−M
2∑

j=1

a2j |2j, a〉 =D̂

2N−M
2∑

j=1

√
Wa(2j)

Wb(2j − 2)
a2j |2j − 2, b〉

=D̂

2N−M
2∑

j=0

√
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We are now in a position to diagonalize D̂. We define Γ2j = b2j + b
(2)
2j +

b
(3)
2j + b

(4)
2j . We can then write our eigenvalue problem as:
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4

(2j)2

√
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We already know that there is a great deal of degeneracy in the problem,

and degeneracy corresponds to zero eigenvalues. The non-zero eigenvalues

and eigenvectors are of interest to us here.
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We can use eq.’s (F.5),(F.6),(F.7) to solve for eq. (F.1). We get the

following:
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b2jΛ = f−(2j)b2j−2 + f0(2j)b2j + f+(2j)b2j+2 (F.8)
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These expressions are very easily put into a matrix which can be diago-

nalized to find the eigenvalues and eigenvectors.
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